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ABSTRACT

PART 1. The charge transfer processes occurring in collisions of
alkali atoms with alkali ions have been studied theoretically using the
molecular wavefunction approach. In Part A, we discuss the coupling
process between electronic states as exemplified in collisions of

Li + Natand Na + Li*. We find that the total transition process can

be decomposed into a succession of simple two-state transition processes.
The -3 two-state process can be described by a three-step process
involving a coupling region, an uncoupled phase changing region, and

a decoupling region. On the other hand, in the molecular wavefunction
formulation, the Z-II two-state transition involves a continuous coupling
process. The resulting transition probabilities for Z-II coupling differs
from - coupling leading to different cross sections. In Part B, the
molecular wavefunction approach is used to calculate the charge trans-
fer cross sections of alkali-atoms and alkali-ions involving Li, Na,

and K.

PART II. We have investigated the method of effective potentials in
replacing the core electrons in molecular calculations. The effective
potential method has been formulated in a way which will simplify
computations while preserving ab initio quality results. The effective
potential is expressed in an analytic form which represents the actual
ab initio non-local potential (as defined by the matrix elements for a
given basis set). Furthermore, this analytic form permits efficient
computations of the effective potential integrals by incorporating the

properties of Gaussian basis functions. To minimize the number of



basis functions required in the molecular calculations, we define a new
ab initio effective potential derived from a modified HF orbital whose
core character has been removed. The effective potential method as
formulated becomes a very strong but reliable tool in attempting

calculations on very large molecules.
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PART 1

The Charge Transfer Process Using

the Molecular Wavefunction Approach

PART I-A

A Description of the Asymmetric Charge Transfer

Process in Li + Nat and Na + Li'



I. INTRODUCTION

Collisionally induced transitions between electronic states during
slow atom-atom collisions (e.g., electronic excitation, electronic transfer,
or electronic excitation transfer) are described in the near-adiabatic for-
malism in which the electronic wavefunction does not depend on the motion
of the nuclei. Early investigations of the charge transfer process were
carried out by Landau, 1 Zener, 2 and Stueckelberg. 3 They obtained an
estimate of the two-state transition probability for two potential energy curves
having a crossing or a near crossing (giving rise to the LZS approximation).4
Estimates of the charge transfer probability between two near-resonant
electronic states has been considered by Gurnee and Magee, 5 Rapp and

7-11

Francis, 6 and others. More recently, the importance of coupling to

other states, in particular the rotational coupling to 7 states, has been

12-14 These approaches usually take the electronic states to

considered.
be atom eigenstates. On the other hand, one can take the electronic states
to be molecular wavefunctions obtained from the Born-Oppenheimer

approximation. 15 This molecular wavefunction approach has been applied

12,13, 16-19 However, difficulties exist

to several charge transfer systems
in this procedure, both in the evaluation of the molecular wavefunctions
and energy curves and in the evaluation of the coupling terms between the
molecular states. 20
Herein, we report the use of the multistate molecular wavefunction

approach to obtain electronic transition cross sections for the collisions
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Li+Nat — Li" + Na (1)

and
Na + Li" — Na™ + Li (2)

The molecular wavefunctions and coupling terms are evaluated rigorously.
We find that the molecular wavefunction approach leads to a simple picture
of the charge transfer process involving a succession of two-state tran-
sition processes. The two-state coupling process is discussed and

compared with existing models.

II. DETAILS OF THE METHOD

A. The Coupled Equations

The total wavefunction ¥ for the scattering system can be expressed
in the time independent representation as a function of the internuclear
distance R and the electronic coordinates, taken collectively as r. Since
the nuclear masses are much greater than the electronic mass, we expand

the total wavefunction as
¥ = ?FI(B\)ZPI('F\, R) (3)

where zpi describes a given electronic state of the system (which may depend
on the internuclear separation, but not on the orientation of the molecule
in space), while Fi describes the nuclear motion for the given electronic
state z,bi.

Substituting Eq. (3) into the time-independent Schroedinger equation,
multiplying on the left by zpj, and integrating over the electronic coordinates,

we obtain the set of coupled equations for the nuclear motixon21

2 b=

T..
1 2 ___.Ll_ ] — B
z {8i5- g Vg - B) + ViRV + L - =1 - VRpIF(R) = 0 ()



where
Si5 = (¥ 19 (52)
Vij = 5y - (¥; | Heg [99) (5b)
Ty = 4 [Vg (¥ (5¢)
Ty = (¥l-3 VRl (54)

and H ) is the electronic Hamiltonian.

While Eq. (4) is exact, it involves an infinite number of states
(including the continuum). To be computationally feasible, it is necessary
to choose a representation for y; so that Eq. (3) can be approximated in
terms of a small number of states. One approach is to take z/)i to be the
atomic eigenfunctions of the separated atoms. This is a good approxi-
mation for very high nuclear velocities since the nuclei would typically be
moving as fast as the valence electrons (e.g., v ~ 10° cm/sec corresponding
to a Na* ion energy of ~ 120 KeV). For slower velocities, the electron
is best described in terms of molecular wavefunctions. One uses the

15

Born-Oppenheimer approximation™ "~ to define each z/)i as the soiution of

the electronic Hamiltonian
% ¥i(r, R) = E,R)(r,R) . (6)

In this case Sij = éij and Vij = Viéij' The Vi's represent adiabatic potential '
energy curves along which the nuclei move.

For the energy range we are considering, E > Vi(R) —Vi(oo)
[i.e., E> 100 eV]. We can therefore assume that the projectile travels

in a straight line (this should be valid except for very small impact



parameters, which contribute little to the total cross section.) Using this

impact parameter approach, 22 the nuclear wavefunction can be taken as

R = ay(z) espli [ Ky(a)dz'] Q

where z° + b° = R2, b is the impact parameter, R is the internuclear distance,
1

K, = I2m(E -Vi)]z, E is the translational energy for the separated system

(E=3% Mvz), and V; is the potential energy of the ith molecular state (see

Fig. 1). Substituting Eq. (6) into Eq. (3), taking k; = k; ~ k = Mv, and

J
ignoring terms of order 1/M compared to unity, we obtain23

dai(z) -
el -2]?1“13(2) exp[-lwij<z)]aj(z) (8)
where
Z
wij(z) = f_ (Vj—Vi)dz' (9)
and
_ d
Iy52) = Wlgz vy - (10)

Eq. (8) represents the usual set of close coupled equations to be solved
in the impact parameter method. 22
The I‘ij's represent the non-adiabatic coupling terms between

molecular states due to the breakdown of the Born-Oppenheimer approximation:

_Z b
Ty = ' M+ r Ny (11)

where
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My = Wy lag (122)
Ny = g o ) - (12b)

Mij will couple states of the same symmetry (i.e., Z-Z, II- IT etc.)
while Nij will couple states whose angular momentum differs by one,
(i.e., =~ TI).

B. The Molecular Eigenstates

The molecular wavefunction y, [ Eq.(6)] were evaluated using the

24 The angular-dependent effective potentials

effective potential method.
were obtained from modified Hartree-Fock orbitals and were designed

to provide ab initio quality results with minimal computational effort.

The method should reproduce the HF description of the wavefunctions
which should be appropriate for the single valence electron of LiNa'.

The HF description of the alkali atoms leads to a small error in the
ionization energies for the various atomic states. However, this error

is very serious for small energy differences between different atoms
(e.g., the energy defect for Li(2s) and Na(3s) should be .0093 h = .25 eV
rather than 0.0i41 h ). To alleviate this difficulty, the effective
potentials have been modified to reproduce the experimental ionization
energies. The basis set for the ¥ states consisted of three s, three p

and one d contracted Gaussians on each center, appropriate for describing
the lowest 2S and °P states of each atom. For the II states, the basis

set was modified by deleting the s functions and adding a d function to

each center.



The effective potential method breaks down for small R (<3. 5a,)
since it assumes that the core orbitals do not change with R. However,
the dominant charge transfer processes occur at long range, so a
detailed knowledge of the potential energy curves and coupling terms at
small R are not necessary. We found that modification of the potential
energy curves and coupling terms for R < 3.5 a, did not significantly change

the charge transfer cross sections.
C. Evaluation of the Coupling Matrix Elements

The coupling terms Mij and Nij are evaluated by substituting

the solutions of Eq.(6) into Eqgs.(123 and (12b).However, a difficulty exists

in the Mij and Nij since they are not translationally invariant. 20, 22

That is, the evaluation of the matrix elements depends upon the origin
used to define the coordinate system. As an example,in Fig. 2 we
show the coupling term between the 1 ?>" and 2 °=" states of LiNa’ with
the origin taken at the Li atom ((1 {-5% |2) Li) and with the origin taken
at the Na atom ((1 15% ]2) Na)' To counteract the lack of translational

invariance, travelling phase factors have been introduced into the basis

functions used o describe the :,U-l's. 25-28 While traveling phase factors

29

are appropriate for the atomic eigenfunction approximation, ©° this

method results in non-symmetric matrix elements (i.e., L.

ij
even when the velocity goes to zero. 30 The corresponding coupling

¢_I?|i)



terms for LiNa' for small velocity obtained from the translational

phase factor method are shown by dashed lines in Fig. 2. Since

rij = Pji’ probability conservation and detailed balancing are not satisfied
While translational phase factors are important for taking
into account the translational momentum of the electron and should be
included for high velocities (for which the electron's translational energy

32

is comparable to the energy separation between states, " the method

does not yield the correct coupling terms for the molecular wavefunction
approach.

We have, therefore, formulated a simple and straightforward
method for obtaining the coupling matrix elements between molecular
wavefunctions which does not involve phase factors. 33 For example,

the coupling between the 2s and 2p states of an atom when the other



nucleus is at infinity should be zero, which corresponds to the origin
being located on the atom. If one were to take the origin as the center
of mass, for example, the coupling term would be non-zero. Thus, the
origin for evaluating I' should depend on the position of the electron and
not on the positions of the nuclei. One can consider the electronic
transition as occurring instantaneously (i.e., the electron does not shift
its position during the transition). The transition represents the change
in the evolution operator describing the electron's motion. Thus, the
transition depends on the probability of both states finding the electron
at the same point in space. We therefore define the origin for evaluating
the matrix element as the position r of the electron during the transition.
Since there are various positions of the electron for which a transition
can take place (due to the wave nature of the electron), we define a

weighted value rij for the matrix element as

fd TPy (r) L. (r)/fd"’rp () (13)

where I‘..(r) is the coupling term evaluated with the origin taken at point
r and p, (r) is the weighting function [ p; (r) = ixp W (r) | for that
point r.

For diatomic molecules, I‘ij(y\) is a linear function of the distance
z along the internuclear axis (not to be confused with z of the impact
parameter method). One can then find a point r =z (X = 0, y = 0) such

that

fdsr pl](’{) (Z'E) = 0. (14)
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T‘ij of Eq. (13) can therefore be replaced by

r..=TIL. (z) (15)

where z specifies the origin of the coordinate system in which I"i]. is
evaluated. The corresponding coupling term for LiNa® (1 173% [2)—2-)
is shown in Fig. 2.

The definition of Fij’ as formulated, depends only on the position
of the electron and is independent of the masses of the nuclei. That is,
the coupling term due to the breakdown of the Born-Oppenheimer
approximation results from the motion of the nuclei which are taken as
infinitely massive. This is consistent with the derivation of Eq. (8)
which assumes the motion of the nuclei to be independent of the
instantaneous position or velocity of the electron.

In actually evaluating rij on the computer, Nij can be evaluated
by direct operation of the s(% upon the basis functions (since the

., however, the operation of

coefficients depend only upon R). For M.13

§§R_ upon the coefficient is not known. Therefore, we used
0 1
My; = Wy lag Wy = lim 5 @ R) [ R+)) (16)
6—-0

since <ll/i(R) |xpj(R)> =0, A value of 0.001 a, was used for 6.
D. Solutions of the Coupled Equations

The N-state coupled equations in (8) were solved by transforming
to a new set of variables depending only on the ratio of each state, i, to

some reference state, o. Letting
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ip,

a,=a, p;e (17a)
(. +w, )
cX®=Re[pje ' ] (17b)
and ( )
(. + w.
ci™ =mm[p; e * 1] (17¢)

where P and qbi are real, and taking the initial conditions to be

a; =0, (18)

we obtain in place of (8) a new set of 2(N-1) coupled equations involving

cnly real functions, i.e.,

Re N-1
o C, AE.
i oY - ~RE _ Re~Re _ ~ImIm ~Im io
Z i=0 v
(19)
Im N-1
o C; AE.
i _ T Im _ ReIm Re~Imy1 _ ~Re io
=) AGG7 - TCTCT + ¢ - ¢ :
0Z v
i=0

The coupled equations (19) were solved for various impact parameters
and energies using an integration scheme by Bulirsch and Stoer. 34
The equations were integrated from z = -30 a, to z = + 30 a,, transforming

first to a new variable

u = az/Y1+a?z® (20)

-

so that -1 < u< 1. [e was taken to be z(initial)™". ]35 A fixed step
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size was taken in u, using 200 to 300 points, the resulting a,i(-i-oo) being
accurate to three places. 36
The transition probability is given by
N-1
PonilVsD) = [25(=) [ = p"(=)/(1 + 7 pyi(=)) (20)
=1

while the cross section for going from state o to state i is given by

o i) =21 [TP__. (v,b)b db. (21)

o—i o

The impact parameter was varied by increments of 0.25 a, to 0.5 a, from
b =0 a, tob = 20 a,, while the velocity was incremented by 1.0 atomic
units of inverse velocity. Spline interpolation was used to obtain the

transition probabilities for other impact parameters and velocities.

Ii. RESULTS

t

In order to describe the charge transfer processes which occur
between electronic states, we use as an example the collisional processes
involved in Li + Na" and Na + Li'. 31 The six lowest molecular states
of the LiNa® molecule (four ?s% states and two 2Il states) dissociating
to the Li 2s and Li 2p states and to the Na 3s and Na 3p states, were
used in the calculations. The potential energy curves used to evaluate
the Vi [Eq.(6)] are shown in Fig. 3. The coupling terms M;; [Eq.(12a))
are shown in Fig. 4 while the coupling terms Nj; [Eq.(12p)] without the

1 . N
& factor (i.e., (Z[% |H)) are shown in Fig. 5.
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The resulting total charge transfer cross section for Li + Na®
and Na + Li" are shown in Fig. 6 and compared with the experimental
results of Daley and Perel. 38 We see that the theoretical and experi-
mental results are in very good agreement. In particular, the phases and
amplitudes of the oscillatory structure are in excellent agreement.
Furthermore, the cross sections for processes Li + Na® and Na + Li* are
correctly distinguished. The estimated uncertainty in the absolute
magnitude for either experimental cross sections is 10%.39 Inclusion
of the six molecular states should adequately represent the total charge
transfer procéss. Hence the main error in the theoretical cross sections
is due to the neglect of translational momentum of the electrons.
Neglecting translational momentum will lead to an overestimate of the
transition probability between states, the error increasing with the ion

velocity. 40
1V. DISCUSSION
A. Cross Sections for Transitions to Individual States

We have shown that the molecular wavefunction approach can
provide quite accurate charge transfer cross sections (including the
detailed structure). It can also distinguish between such similar
collisions as Li + Nat and Na + Li". However, if one hopes to obtain
estimates for cross sections of electronic transitions occurring in other
collisions for which the exact potential energy curves or coupling terms
are not known, then the nature of the coupling processes between

electronic states must be understood. We, therefore, present an
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analysis of the coupling processes occurring in the Li + Na’ and Na + Li*
collisions, the conclusions of which should be of general applicability.

The LiNa™ molecular system represents an ideal system to study
theoretically since the energy defect IAEI between the ground states
for the twé atoms (Li 2s and Na 3s) is 0.0093 h ( = 0.25 eV) while the next
higher state is 0.0586h above the Na 3s. Thus, we have a near-resonance
between the Li 2s and Na 3s. As a result the 2-state approximation
(involving the 1 25* and 2 27 states) should yield a reasonable estimation
of the charge transfer cross section.

In order to determine the relative importance of the 1 *°Z" — 2 %27
transition to the other transitions which could occur, we carried out three

sets of calculations:

(i) 2 states (123, 2%z
(ii) 3 states (1 °z%, 2%z%, 1°n)
2t 2

(iii) 6 states (1 2zt 2%z7, 3%2%, 4%, 1 %0, 2 %)

for both (1) and (2). The resulting cross sections are given in Fig. 7.
We see that the cross sections are dominated by transition between the
two lowest 27 states. The transition to the Li 2p T state is, to a
certain extent, also important, particularly for the exothermic process
Nz + Li*, where the transition Na 3s - Li 2pﬂ eventually dominates the
Na 3s -= Li 2s for low energies. Cross sections to other states are
considerably smaller. Comparing the 2 state, 3 state, and 6 state
results, we see that the oscillations in the total cross section arise

.

from the 1 3% — 2 *" transition. However, the oscillations in the 2-state
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calculations are out of phase with the 3- and 6~state calculations which
include the 1 °II state. The difference in the total cross sections for
processes (1) and (2) (Fig. 6) result essentially from the added contri-
pbution of the transition to the 1 °II state for process (2), which the two-
state approximation does not include.

From Fig. 7 we see that the three- and six-state calculations
Jead to essentially identical cross sections for the 1 ?3% — 2 %57
transition, both in amplitude and oscillatory structure. On the other
hand, the cross section for transition to the 1 *I1 state in the 3-
state approximation represents the sum of the cross sections for transition
into the 1 ZH, 2°0 3 22+, and 4 ?3" states in the 6-state approximation.
! For high velocities (v > .2 a.u.), the 3-state approximation breaks
down as transitions to the higher lying states become important. |

To understand these results, we must first understand the
coupling process. We therefore discuss the two different types of two-
state coupling processes which occur in the molecular wavefunction
approach: (a) radially induced transitions between states of the same
symmetry (e.g., Z~ £ and II- II) and (b) rotationally induced transitions

between states of different symmetries (e.g., Z~ II).
B. The Two~State Z~-Z Coupling Process

The simplest 2-state process involves symmetric, resonant charge

5, 6,41 For the symmetric case, there is no coupling between

transfer.
states because the two T states have different symmetries (i.e., g andu)

leading to Mij = 0.
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However, since each state representé motion on a different potential
energy curve, the resulting nuclear wavefunctions differ in phase

[see Eq.(7)]leading to oscillation in the charge transfer cross section as
a function of impact parameter (for a given velocity). This may be seen
more clearly from Eq.(19) where the phase factors of Eq.(7) have been
incorporated into the coupled equations. The initial boundary conditions

are p =1, ¢ =0 in Eq.(17a). The resulting transition probability is

P(v,b) = sin’(% A¢) (22)

where

ap=L 7 V.- Vi 23)

We see that P for a given b and v depends only upon the energy difference
between the adiabatic states. As an example, we show the energy difference
between the 1 22g+ and 1 22u+ states for Na;r in Fig. 8. The resulting
P(v,b) for

Na+ Na’ - Na’ + Na (24)

is shown in Fig. 9a as a function of b for various v. As the impact
parameter decreases, the energy difference for the minimum distance
of approach increases and P oscillates rather uniformly. However, due
to a maximum in the energy difference (RmaX(Na2+) =11.44a,), the rate

of oscillation is decreased for impact parameters smaller than this Rm
42,43

ax’

leading to oscillations in the total cross section. The total cross

-

section for process (24) in the 2-state approximation is shown in Fig. 10.
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As expected from (23), the oscillation varies as v

We now consider the near-resonant 2-state charge transfer
process. The coupling term between states [M,, = (Y, ‘-5% | w.)] repre-
sents the transformation of the orbitals from being left and right atomic
orbitals at infinity (R > 20 a, ) to being bonding and antibonding molecular
orbitals at small internuclear distances (R <6 a,). M,, for LiNa™ is
plotted in Fig. 8. For finite velocities one might expecti transitions between
these adiabatic states throughout the entire region (R =6 a, to 22 a, ).
However, the energy difference between states (shown in Fig. 8) grows
exponentially as the atomic orbitals begin to overlap, preventing any net
transfer between the states for smaller R [ due to the rapid oscillation
of the exponential terms in Eq. (8)]. [Note that translaticnal energy
needed to cause an appreciable transition probability is much greater than
the energy difference between electronic states (103 eV compared tc 1 eV)].
Transitions between states occur only at large R, (between ~12 a, and
22 a, for LiNa+, the actual width depending on the velocity) where M,,
is large while AE is stiil small. We denote this region as the transition
region. For smaller R, the nuclei enter an intermediate region in which
no net transitions occur between the states. However, since each siate
represents motion on a different potential energy curve, the phase factors
of Eq. (7) will differ, the resulting phase difference being

R,

ap = [ ° 1 AEdz (25)
-R, v
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where R, is a representative internuclear distance of the transition
region. As the nuclei separate, they again pass through the transition
region, where the states decouple. The different regions are depicted
in Fig. 11. If there were no change in phase (A¢ = 0), then the states
would reverse the transition process yielding the original starting state
[ since T' has changed sign(I'(-z) = ~-I'(z))]. However, A¢ is not zero,
in general, leading to a charge transfer probability which depends on the
relative phase change (27) between the two intermediate states.

We thus find that in the molecular wavefunction framework the
description of the near-resonant charge transfer process is
guite comparable to that of the symmetric resonant charge transfer
process (where R, = oo).44 Initially the electron starts out localized on
one atom. As the nuclei approach, they pass through a transition
region after which the electron has a certain probability l Ei(RI) lz of being
in either of the two molecular states (|:'a.'l 52+ lé; |2 = 1). [For the symmetric
case, [2,(Bp)|® = |a,®p|” = 3.1 The magnitudes &, and |=, | remain
constant in the intermediate region but the phase factors change, leading to
a relative phase change of A¢as in Eq. (25). The nuclei upon separating
re-enter the transition region where the states are decoupled. Phase

interference yields a resulting transition probability
2
PW,b)~ 4 |7,3,| sin’[$A¢] (26)

where A¢ is defined in (25). Eq. (26) reduces to Eq. (22) for the resonant

case. Since |a;|% + 13,]° = 1, we will denote |a,|?as p (which depends



upon v and b) and rewrite (26) as
P(v,b) = 4 p(1 - p) sin’[ A0]. (26”)

While P represents the transition probability for the entire process, p
represents the transition probability after crossing the transition region
only once.

The actual transition probabilities for LiNa' as obtained from
Eq. 8) in the two-state approximation are shown in Fig.%. In particular, we
have superimposed the transition probabilities P, for v '=6,12 and 18 a_u'. in
Fig. 12 which shows that P{v,b) does depend on sin?[;A¢] where A¢ is proportional
tov™'. The values of p(v,b) for v~ = 6, 12, and 18 a.u. are shown in
Fig. 13.[The p's were obtained by integrating Eq. (8)from z = - « to
z = 0.} Note that no oscillations occur in p since the transition region
has only been crossed once.

The process involving II-TI coupling is equivalent to the Z-Z coupling

process, with Eqn. 26 representing the transition probability.
C. A Two-State Model for Z-2 Coupling

In order to better understand the 2~state coupling, we will
consider a simple model. Using a 2-state atomic eigenfunction model
for the molecular wavefunctions, an approximate functional dependence
of p and A¢ on the velocity and the impact parameter can be derived.

We assume that the molecular wavefunctions can be expressed
as a linear combination of the two atomic orbitals (at least in the

transition region). We further assume that the overlap between the
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two atomic orbitals can be ignored in this region. The transformation

from atomic orbitals ¢ to molecular orbitals y is given by

Y, (z) cosf sind d)A

= (27)
Y, (z)/ \~sind cos@ ¢n
where 8 is a function of z. Letting € A and € be the eigenenergies of

o] A and ¢>B respectively, and H AB the interaction hamiltonian, we

have
AE =2H,p Vo2 +1 (28)
tanf=ca £ vo2 + 1 (29)
where
AV

o0
CY=-2—H—A§ andAsz !EB-€A|.
Using Eq.(27) the coupling term for b = 0 is just

M, = @, ff}% ‘11/2> = %% . (31)

That is, the Born-Oppenheimer coupling term for the molecular wave-~
function represents the rate of rotation of the two atomic wavefunctions
between themselves to form the molecular wavefunctions. The final

molecular wavefunction (R = 0) corresponds to a rotation of /4.
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To obtain an estimate of M,, we take HAB to be decreasing

exponentially in the transition region, i.e.,
H AB - € . (32)

We define the point RM as the midway point in the rotation [i.e., G(RM)-
6(«) = w/8}, which occurs when 2 H,p = AV, or @ =1. Using Eq.(31)

and Eq. (29), we obtain

M,, = g- sechB R - RM). (33)
For LiNa+, we find from Fig. 8 that M,, does indeed have the general
form of Eq. (33)in the transition region where Ry, ~ 12. 82, and g ~ .42, 45

[corresponding to K = 1.4 in Eq. (32)]. [ Note that the value of M, at
the maximum (8/4) is related to the exponential decay rate B since the
total area under curve for M,, must equal the total A8 = 6(R=0)-6(x) =
/4. 45]

Substituting Eq. (33)and Eq. (28)into Eq. (8)and integrating from
z = -~ o to z = 0, we obtain p(v,b). The resulting p(v,b) are shown in

Fig. 15 (solid lines). These can be compared with the actual p's in Fig. 14.

Analytic forms for p (v, b) can be obtained in two limiting cases.
For zero impact parameter (b = 0), I, = - M,, since z = - R. The solution

of Eq. (8)then yields

p(v,0) = :sechy e (34)
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where
T AV
')/ =
2BV
AV
At high velocities ( T < 1) p(v, 0) equals 3 (which is equivalent to
the symmetric case for which A\‘/;m = 0). As the velocity goes to

zero, p(v, 0) goes to zero exponentially as v '.
The other case which can be solved analytically is the high energy
limit. In this case, the exponential terms in Eq. (8)can be ignored and

we obtain
pleo, b) = sin’l § arctan (sinh AR -b)) + g-] (35)

We see that p(e,b) has a value of 3 at b = 0 and eventually dies exponentially
to zero at large b. This decrease inp with increasing impact parameter
results from the z/R dependence of I}, (i.e., I}, = 2/R M,;,). Thus, for
large impacts, z = YRZ~-Db?2 <« R in the transition region (see Fig. 11).

To obtain an approximate analytical form for p(v,b), we can take

p to be a product of p(v, 0) and p(=,b), i.e.,
p(v,b) = 2 p(v, 0) p{x, b) (36)

where p(v, o) is defined in Eq. (34)and p(=,b) is defined in Eq. 35). This
approximate p is shown in Fig. 14 (dashed line) and compared with the
p obtained from substituting the 2-state model into Eq.(8). To complete
the atomic eigenfunction model of Eq. (26/), we can obtain an estimate

of the phase difference A¢. Ignoring the AV _ compared to H AB and
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k, = <« yields

1
v

A¢p= = 4kb K, (bB) (37)

where K, is a Bessel function of the second kind. Since K, rapidly goes
to infinity as b - 0, sinz[—,f;Acb] oscillates very rapidly at small b and

can be approximated by its average value of 1. However, since K, does
not possess a maximum, no oscillations are present in the total cross
section. The exponential decrease of the cross section results from the
velocity dependence of p in Eq. 34. The high energy limit is proportional
to v™? due to the v_' dependence of A¢. 4T From Eq. (6) we would expect
the minimum in the cross section to occur when both the cosine and sine
parts of the exponential term can maintain the same sign throughout the

transition region, i.e., when

AVOo Az
T
— (38)

Vmax

where Az is a measure of the width of the transition region. For LiNa®

AV_ =.0093 a.u. and V nax = 0.14 a.u. and hence (38) leads to Az = 12 a,.

ax
Eq. (38) is the basis of the 'mear-adiabatic' theory proposed by Ma,ssey.48
From Eq. (33), we see that Az is inversely proporticnal to 8. This
property is reflected in the transition probability p [Eq. (34)] which is

a function of %%3 One can interpret p as sin’(Af) where A represents

the area under the part of the M,, curve that can remain in phase during
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the evolution through the transition region.
D. The Two-State Z-11 Coupling Process

The coupling between Z and II states results from the rotation
of the nuclear axis with respect to the space fixed axis. The Z~IIcoupling
process has been studied in detail in a recent paper by Russek. 14
Russek's model assumed a constant coupling term and intersecting
straight line potential energy curves. From Fig. 3 and Fig. 5, we see
that these approximations are quite good for the LiNa" 2=t - 1 I
transition (for LiNa¥, (2°2%|-%|1°m ~ .95, R ~5.12,). The actual
2~state transition probabilities between the 2 ?s" and 1 *II states of
LiNa' are shown in Fig. 9c for various velocities. We see that transitions
can occur for impacts larger than the curve crossing. A maximum in
the transition probability, Py _p occurs at an impact parameter which
is just inside the curve crossing. For smaller b, PZ-H decreases,

eventually becoming zero at b = C. 48

Oscillations appear in PE-H for
small b as the velocity decreases. However, the maximum in Ps._p
remains close to unity, decreasing very slowly at smaller velocities.
Therefore, the total cross section for Z-II coupling (see Fig. 10)
decreases very slowly as v goes to zero (due essentially to the narrowing
of Py._p; about its maximum). The cross section for very low velocities
can be estimated from Fig. 7 of Russek's paper. Since PE-H for small
b does not contribute significantly to the total cross section (because

P -TI is small and is weighted by b), no significant oscillations occur

z
in the total cross section due to the oscillation in PE-H (see Fig. 9c).
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The resulting 2~ Il transition probability differs from the -3
transition probability due to the different nature of the Z-Z and the
2-II coupling processes. The Z~Z coupling process could be divided into
three steps involving a transition region and an intermediate region.
On the other hand the Z-~II coupling process in the molecular wavefunction
approach is more appropriately treated as one continuous process. The
difference results from the different nature of the coupling terms.

While I%._s has the general form

T, =% % sech BR - Ry (39)

{see Eq.(33)], Iy, p; has the form (in the coupling region)

i

b
Ty g=qr L (40)

where L is a constant. Thus, I, , does not go to zero for small R, but
rather, increases. This growth in T" as R becomes smaller compensates
for the corresponding increase in the energy difference, leading to a
continuous coupling between the states. Thus, the phase interference
between states is an integral part of the coupling process and oscillations
occur throughout the transition [ see Ref. (14)]. While I _5 is zero at
the half-way point in the collision (i.e., z = 0), FZ-H reaches its maximum
value at this point. Furthermore, Iy, maintains the same sign
throughout the collision. Thus, unlike Z~2Z coupling, large transition
probabilities occur for collision trajectories which are tangential to

and even outside the curve crossing [ see Fig.(9¢)]. Due to the curve

crossing, PE-H can be large even for small velocities, unlike Ps_s
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which decreases exponentially as v (see Fig. 10).

At high velocities, the total cross section does not go to zero,
but increases instead (see Fig. 10). This results from the neglect of
the translational momentum of the electron. This neglect is much more
serious for Z~II coupling than for Z~X coupling because of the different
nature of the coupling process. The Z-Z coupling term [eq. (39)] is
antisymmetric with respect to z, which reverses the transition process
at high energies, leading to zero charge transfer. On the other hand,
Iy _y L Eq. (40)] maintains the same sign during the collision, leading
to twice the rotation A8 between states as occurred at z = 0. Thus, the
2,-11 cross section eventually goes to a constant at infinite velocity since
(2 2yt i—a%- |l Iy does not remain constant but goes to zero at large R.
In the model used by Russek, the coupling term is assumed constant for
all R, but the energy difference is assumed to be infinite at large R, so
his cross section remains flat at high energy. However, neither cross
section is really meaningful at this high energy limit, since the molecular
wavefunction approach is not appropriate for such high velocities.

The neglect of the electronic translational momentum along the
Z axis causes the Z-II transiticn probability to be overestimated at lower
energies as well, though to a lesser extent. This error in o5._p is
much greater than the error in oy,_sfor equivalent ion velocities, due to

the high angular velocities reached at small impact parameters.
D. The Multistate Coupling Process

Having considered the 2-state processes, we now consider the

entire coupling process involved in the scattering processes (1a) and
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(1b). We find that the multistate coupling process can be interpreted as

a series of 2~state coupling processes. 50 We showed that transitions
between two Z states occur only at long range where the

potential energy curves are close together; for smaller R, the two Z
states were uncoupled. On the other hand, Z-II transitions occur in the
region of the curve crossing between the Z and II states. From

the potential energy curves for the LiNa" quasimolecule (Fig. 3), we

see that the 1 22" and 2 °27 potential energy curves are nearly degenerate at

large R (R212a0 ),permitting a strong T-X coupling between these states.
other °=" states are much higher in energy, so that no direct transitions
will occur to these higher lying 2 states [ except at high energies (v >
.2 a.u.)]. On the other hand, the 1 J1 state crosses the 2 °3%" state at
5.1 a,, permitting transitions tc occur between the 2 2% and 1 °1 states
at small R. There is a curve crossing of the 1 11 curve and 3 °Z" curve
at 10.7 a,, allowing a 2-state coupling between these two states. And
finally, the 3 =% and 4 "I states and the 1 “I and 2 °II states have a
near resonance at large R  permitting -2 and II-II coupling to occur
respectively between these two pairs of states. Coupling will not occur
between other pairs of states because the energy difference is too large.
Since Z-Z transitions (or II-Mtransitions) occur at large R while Z~1I
transitions occur at small R for which the Z states are uncoupled, we
can decompose the multistate process into separate 2-state processes.
First, as the nuclei approach each, the electron entering on the
123" or 2 %27 state passes through the transition region coupling the
12x" and 2 5" states. The probability for a transition is given by

Eq. 36. For smaller R, an electron in the 1 25% is not coupled with any

The
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other state, until the nuclei separaté and re-enter the 1 °x% - 2 5%

transition region. On the other hand, an electron in the 2 237 is
coupled to the 1 °Il state at smaller R. The transition between the
2 25" and 1 °II states can be treated by the 2-state process considered
in part D. Thus, as the nuclei begin to separate, there is a probability
for being in the 1 2‘2+, 222" and 1 °H states. As the nuclei separate
further, a transition can occur between the 1 *II state and the 3 257
state (at ~ 10.7 a,). Finally, for R > 12 a, the separating nuclei
enter the transition regions for the 1 *=" - 2 *" coupling,
1?0 - 2°1 coupling, and 3 ?Z" ~ 4 25" coupling. For the
13t - 2257 coupling, the resulting transition probability is no longer
given by Eq. (26),but the basic principles still hold. The probability
amplitude on the 2 25" state in the intermediate region has been reduced.
Thus, when the atoms depart there is a smaller component of 2 %S to
interfere with the 1 257 state, giving rise to smaller oscillations in p,
Also, A¢ has been changeddue to the new possible trajectories created
by addition of the 1 °II state.

If p’ represents the probability to remain on the 2 25" state

during the intermediate step, then Eq. (26) becomes

P = 4p(1-pfp’sin’(3A¢’) + £(1-p")] (41)

This can be best shown for the symmetric Na2+ charge transfer
whose transition probabilities for the 3~state process (1 Eg, 1 oy 1 Hu)
are shown in Fig. 9d [in this case, p = 3 in Eq. (41)]. Since the A¢ has
changed, the oscillatidns in the total cross section for Na,; have changed
(see Fig. 10). The corresponding transition probabilities for Na + Lit

in the 3~state approximation are shown in Fig. 9e. Again, the change
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in A¢ leads to a shift in the oscillations in the 1 2% — 2 %5% cross
sections (see Fig. 7, Fig. 10). Note that the 2 *>S* — 1 2II transition
probabilities are similar for the 2~ and 3-state approximations except
for a scaling factor (1-p) where p is defined in Eq. (31). [ For Na2+,
(1-p) = %, so the 2-state Z-II transition probability (not shown) is equiva-
lent to the Z-II transition probability in the 3-state approximation scaled
by a factor of two. ]

For the 3~-state approximation, the 1 Il state was not allowed
to interact with the other higher lying states. However, as we saw from
the potential energy curves, transitions could occur from the 1 °II state
to the 3 “=* and 2 ®II states and then from the 3 25" state to the 4 ="
state. However, since small impact parameters are required to populate
the 1 %0 state, the 1 °II — 3 *2* transition probability will be small.
Also, since the Li 2p - Na 3p energy splitting (0. 0187h) is larger than the
Li 2s - Na 3s energy splitting, the 3°s" ~ 4%s" and 1 %0 -~ 2211
transition probabilities are small. The resulting transitions do not involve
any interference (as in 1T - 2% coupling) since the transition region is

only crossed once.

E. A Comparison of the Molecular Wavefunction and the Atomic Eigen-

Function Formulations

We have used the molecular wavefunction formulation (MWF) to
obtain charge transfer cross sections. In this approach, the Sand V
matrices of Eq. (4) were taken as diagonal so that the coupling between

(molecular) states results from the f matrix [ Eq. (11)]. One could
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have used, instead,the diabatic representation involving frozen atomic
orbitals in Eq. (4), and would have obtained an equivalent solution
(assuming an infinite number of states). In this atomic eigenfunction
formulation (AEF), 'I: is equal to zero (neglecting the overlap between
atomic states), with the coupling between (atomic) states resulting from

the non-zero V matrix. Using the impact parameter method, the resulting

2~-state coupled equationsinthe diabatic representation are 6
. H - SH .
d -i TAB BB _-iQ(z)
(a;) = = e a,
dz ‘1 v (1 - SZ)
(42)
. H -SH .
d _-i “AB AA  +i(z)
=%y e ¢ &
z 2\ dz
where Q(z) = _{oo (HBB -H,,)/1-5) 7 S+ <¢)A,¢B>’ Hyp = (‘f’Al

Heﬁi(pB> , etc. Usually, one further assumes that S= 0 and, for systems
like A+B" ~ A" + B, assumes that Hpp, - Hyp ™ €q- éA. The
resulting equations look very similar to Eq. (8), but differ in two essential
respects. First, since €p " € is a constant, the exponential terms

in Eq. (42) oscillate uniformly along the entire trajectory. And second,
——, increases rapidly as the internuclear distance

v
decreases and depends inversely upon the velocity. Thus, in the AEF, we

the coupling term,

have transitions throughout the entire interaction region, with the
strongest coupling for smaller R. This gives rise to strong oscillations

in the transition probability during the entire collision.
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If one were to make the approximations presented in Part D of
this section (i.e., the two-molecular states must be linear combinations
of the two atomic orbitals, the overlap is zero, and straight line tra-
jectories are used), then the resulting transition probabilities for the
MWF would be identical for either formulation. For example, substitu-
ting Eq. (34) into Eq. (26’), we obtain the same transition probability
o

for zero impact as Demkov"® { Eq. (11) of this paper] obtained using the

AEF. !

However, in general, A wants te include polarization and also
wants to become more contracted. This requires many atomic orbitals,
including those in the continuum. To see what effect this restriction
has on the cross section, we carried out a frozen Li 2s and Na 3s basis
set calculation to obtain AE’ and M,,’. These are compared with the
actual AE and M,, in Fig. 15. We see that AE’ is smaller, and that
M,,’ has been shifted inward. The difference results essentially from
polarization of the orbitals, allowing them to interact at longer range.
The resulting values for f and Ry of Eq. (33) are 8/ = .38 and

Ry; =118 a, compared with g = .42 and Ry, = 12.8 a, for the actual

M
molecular wavefunctions. This error results in a cross section which
is too small.

Further approximating M,, and AE by the model presented in
section IV~C, one usually takes g8 = V21 (defined in a.u.'s) where I is

6,8 For

the smaller of the ionization energies for atoms A and B.
LiNa+, B = .62 which makes the resulting cross section even smaller.
Olson 11 uses this method to obtain an estimate of the LiNa® charge

. 2 L :
transfer cross section. 5 As expected, the cross section is too smallsince
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RM is too small and B is too large. This does not mean that the model
presented in IV-C is poor. Using 8 =0.42 and RM: 12.8a,, we in fact obtained
a very good approximation to the cross section. The only difficulty is that
one needs a better empirical formula for estimating 8 and Ryp- Using
the appropriate 8 and RM, obtained perhaps from a simple MO calcula-
tion, the reduced cross section presented in Olson's paper11 should be
very useful for estimating charge transfer cross sections.

A further difficulty arises in the atomic eigenfunction formulation.
For the multistate process the AEF does not provide a simple picture
of the transition process representing a succession of 2-state processes
as occurs in the MWF (section IV~-D) because the transition region in
the AEF extends throughout the entire interaction region. To obtain an
estimate of the transition probability to other states in the MWF, we
need to know p, the probability for being in an intermediate molecular
state [ Eq. (36)]. The AEF provides only thetotal transition probability,
P. One can extractp from P if P is put in the form of[Eq. (26’)].
8

This form of P has been estimated by Rapp and }F‘remcils6 and by Demkov.

Using Eq. (51) of Ref. 6, we obtain

pRF = % sech [YRF] ex.p[ "YRF}
(43)

TV 22
YRF B ) BV w

while from Eq. (11) of Ref. 8, we obtain
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P = z sech [-yD] exp [ -vp]

(44)

where Ry, is the same as used in Eq. (33). These estimates of p are
compared with our estimate of p (denoted py;) f Eq. (36)] in Fig.16 for
v =12, B =.42, RM=12. 8a, and AV = 0.0093h and also compared with
the p obtained from numerical calculation (pN). We see that py, Py,
and Py 2gree for small b. However, pp goes to zero at RM. On the
other hand, PR is an asymptotic approximation for large b,so is not
expected to be good as small b. However, even for large b, Pp decreases
too slowly.

Another case where differences occur between the MWF and the
AEF is when the rectilinear trajectory restriction is lifted. As we have
shown, when the energy difference between states is large the nuclei
will move on one or the other of the adiabatic potential energy curves
with no coupling between states. On the other hand, no simple picture
is obtained in the diabatic representation. Transitions occur constantly
between the diabatic states. These "transitions' really mean that the
electron does not want to be in a diabatic atomic state, but rather it
wants to be in an adiabatic molecular state. Each molecular state in
itself can be considered to have an electron jumping back and forth
between the two atoms. The resulting oscillations in the transition
probability [ Eq. (23)] represent the difference in the electron jumping
rates for the two different molecular states. This is much like the

mechanism for an interferometer.
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In the region where transitions occur, we found that the trans~
lational energy must be much greater than the potential energy difference.
Thus, for small energy differences it doesn't matter which potential
energy curves the nuclei move on since the change in potential energy
is negligible compared to the nuclear kinetic energy [this is pointed

53 In the

out very clearly in a paper by Delos, Thorson, and Knudson].
transition region, therefore, we can treat the trajectories for either
state as being identical. Inside the transition region, however, we must
use two different trajectories defined by the adiabatic potentials.

We, therefore, strongly disagree with the conclusions reached

o4 and by Corrigall, Kuppers, and Wallace. 55

by Penner and Wallace
Whilie the actual charge transfer process occurs through two different
trajectories with a given probability for being on each state | i'afl iz and
152 Izof Eq. (23)], Wallace et al. attempt to define a single trajectory
for the entire process. Their erroneous conclusion results from a
misinterpretation of the meaning of a molecular wavefunction and from a
misinterpretation of the transition probability as a function of the
trajectory. The conclusion of the results presented in this paper indicate
that semiclassical trajectories defined by adiabatic potential energy
curves from molecular wavefunctions can correctly describe most
collisional processes. o6

The rea;son the molecular wavefunction approach is appropriate
is that for energies such that the electron is moving much faster than the

nuclei, the electron has time to adjust its motion in order to define a

particular energy state (within energy limits resulting from the uncertainty
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principle). Generally, the energy splitting between states will be larger
than the energy uncertainty. Therefore, the states will be essentially
uncoupled. Only for pseudo curve crossings and near-resonances will
the energy uncertainty be of the same size as the energy splitting to

allow transitions.
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region is generally outside Demkov's R, (= our RM) since the
energy difference is smaller. Instead of Eq. (11) of Demkov's
paper (which implies that the transition occurs at a discrete
point), one should use Eq. (36) substituted into Eq. (26’) (which
was obtained using the molecular wavefunction approach). The
basic ideas presented in Demkov's paper however, are correct,
as we have shown. Demkov estimates 8 of Eq. (32) to be
B=V2I (=.62a, for LiNa) while we find that 8 = .42 a,™".
However, this error in Demkov's values results from approxi-
mating H AB and does not reflect on the interpretation of the results

in his paper.
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Olson's (Ref. 11) attempts to improve upon the approximation for

B by taking 8 = .86 V2I where the factor (. 86) is obtained from
experimental observation. He obtains an Ry = 10.63 a,. Though
Hy  could have been put in the form (32) with ¥« = 1.3 and 8 = . 535
(by taking R = RM), Olson takes k = 1.0 and obtains a
final value B = . 506, .

J. B. Delos, W. R. Thorson, and S. K. Knudson, Phys. Rev.

A6, 709 (1972).

A. Penner and R. Wallace, Phys. Rev. A5, 639 (1972).

B. Corrigall, K. Kuppers, and R. Wallace, Phys. Rev. A4, 977
(1971).

For Z~1 coupling, we found that the molecular wavefunction approach
leads to coupling throughout the entire coupling region. The reason is
that the molecuI;r wavefunctions are not the correct representation.
The correct representation involves angular momentum states
defined by (Z+ RI)AL + A and (A2 - ill)/(1 + %) where X depends

on R and v. In this new representation, the coupling process

would then involve a transition region (near the pseudo-curve
crossing) and an intermediate region. The resulting potential

energy curves would provide the appropriate trajectory paths.



42

FIGURE CAPTIONS

Fig. 1. Collision geometry. The projectile (B) moves with a constant
velocity along the z axis from z = -« to z =+« past the target (A) at

an impact parameter b,

Fig. 2. The coupling term M;, between the 125 and 2237 states of
R 0 G 0
LiNa". (1| %R/ 2>Li, (1] /3R | 2), and (1| %/oR|2)- represent
M,, evaluated with the origin taken at the Li atom, Na atom, and Z,
> and - ¢

aC
cR oR
when the overlap of basis functions is ignored.

respectively. (C,|S| | S| C,) represent M,,

Fig. 3. The potential energy curves for the LiNa* molecule [atomic
united @ =1, e =1, me = 1) are used; 1 hartree = 27.211 eV, 1 Bohr =

0.52917A].

Fig. 4. The coupling terms Mjj = (¥ | a/aR | ¥;) between the various

molecular states of LiNa*.

Fig. 5. The coupling terms RN;; = (¥ | %30|¥;) between the various

molecular states of LiNa™.

Fig. 6. Comparison of the thecretical (six-state) and experimental cross

sections for Li'Na” » Li™Na and Na + Li" - Na¥ + Li [ theoretical;
————— experimental]. Estimated error in the absolute values of the experi-

mental total cross sections is 10%.



43

Fig. 7. Comparison of the theoretical cross sections to individual

atomic states using six-state (

), three-state (---), and two-
state (----) approximations for collisions of Na + Li* and ILi + Na™

-16 cm?).

(1 a.u. velocity =2.18x 108 cm/sec; may2 = 0.879x 10
Fig. 8. The potential energy difference curves [AE =V,(R) - V,(R)]
for Na,” (dotted line), LiNa™ (solid line), and the two-state model for
+

LiNa™ (dashed line). Also plotted are the coupling terms M,, for LiNa
(solid line) and the two-state model for LiNa™ (dashed line).

Fig. 9. The transition probabilities P(v,b) as a function of impact
parameter b for various velocities for (a) Na+Na™ (123, 125,"
two-state); (b) Na+Li™ (1227, 223+ two-state); (¢) Na+Li™ (2 eyt

1271 two-state); (d) Na+Na™ (1 22g+, 1 2Eu+, 1211, three-state), and (e)

Na+Li* (12", 2257, 120 three-state).

Fig. 10. Total charge transfer cross sections for Na + Na© and
Na + Li" in the three-state approximation (solid lines) and in the two-state
approximation (dashed line). Also plotted are cross sections for transitions

to the 121 (or 12]I,) state in the three-state approximation.

Fig. 11. A diagram of the transition region and the intermediate region

of the charge transfer process.

Fig. 12. The transition probabilities P(v,b) for the two-state Li + Na* -
Li" + Na charge transfer process for inverse velocities vt 6,12, and

18 a.u.
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Fig. 13. The transition probabilities p at z = 0 for the two-state Li +

+ A+ -
Na” —1i" + Na charge transfer process for v*

=6, 12, and 18.
Fig. 14. The transition probabilities p at z = 0 for the two-state Li +
Na' - 1i" + Na charge transfer process using the two-state model

(
.0093 h, and R

) and Eqn. 36 (---) forv- ' =6, 12, and 18 (B = .42, AV, =
=12.94a,).

M

Fig. 15. A comparison of the coupling term M and energy difference
AE for the frozen orbital (FO) and the complete basis set calculations

on LiNa+.

Fig. 16. A comparison of the transition probabilities p using Eq. (36)
(pMG), Eq.(43) (pRF) and Eq.(44) (pD) with the actual theoretical
transition probability p, for v ' =12a.u. (see Figs. 13 and 14).
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PART 1

The Charge Transfer Process Using

the Molecular Wavefunction Approach

PART I-B

An Application to Alkali-Atom Alkali-Ion

Collisions Involving Li, Na, and K



59

L_INTRODUCTION

Collisions of atoms or melecules involving the change of the
electron from one electronic state to another (i.e., charge transfer,
electronic excitation, electronic excitation transfer) can be described
in the molecular wavefunction represen’ca.tion1 whereby coupling between
electronic states of the quasimolecule is caused by a collisionally induced
breakdown of the Born-Oppenheimer approximation. 2 This molecular
wavefunction approach has been used to study the resonant and near-

resonant charge transfer process for a number of systems. 3-9

Though
a two~state approximation is usually employed, several studies have
included the effect of other states, in particular, I states which are
rotational coupled. 7-9

However, difficulties have existed both in the evaluation of the
Born-COppenheimer breakdown i:erms10 and in the determination of the
molecular wavefunctions for a number of excited states. As a result,
little has been reported on multistate excitations in various systems using
the molecular wavefunction approach.

Herein we report multistate calculations on the charge transfer
processes involved in collisions of Li + Na+, Na + Li+, Li+ K+, K + Li+,
Na + K+, and K + Na'. The potential energy curves and Born~-Oppen-~
heimer breakdown terms were rigorously evaluated. The resulis are in
good agreement with experimental results. Furthermore, we find that
the results can be explained very simply in the molecular wavefunction

approach from simple considerations of the potential energy curves.

The dominant processes involve 1 rt - 2%t coupling, 2 °% — 1 ’n
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coupling and, for K + Li+, 2%5" w337 coupling. The relative
importance of each of these processes depends on the relative velocity

of the nuclei and on the potential energy differences.
II. DETAILS OF THE METHOD

‘The molecular wavefunction approach is used to obtain the

transition probabilities and cross sections between the various electronic

states of the colliding atoms. Details of this method are presented in

-

an earlier paper (Paper I). i1 In this approach, the total wavefunction is

expressed as

1

where R is the infernuclear distance and r represents all the electronic
coordinates. F, describes the nuclear wavefunction while Y; is the

solution of the electronic Hamiltonian for the molecule
Gceﬁ %Ul(ﬁ, R) = El(R) Wi(}:: R)- (2)

Using the impact parameter approach { which should be valid for the

energies we consider (e.g., E > 100 eV)|, we take the nuclear wave-

function to be

z
Fi(lfc\) = ai(z) expf i f ki(z’)dz']

- Q0

where z° + b° = R%, b is the impact parameter, R is the internuclear

1
distance, k. = [2M(E-V,)] 2, E is the translational energy for the
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separated atoms (E = #M v?), and V. is the energy of the it" molecular

state. The resulting coupled equations to be solved in the molecular

. 1
wavefunction approach are

d ai(z) |
= = I.. -iw.,. .
" Z 1](z) expf - i wll(z) aJ(z) (3)
]
where
1 2
W=7 f- (Vi -y dz (4)
and
r.-%2M.+2 N (52)
§TRUHTR W :
= Wyl ==l (5b)
Ny = Wlg o v (5¢)
iy~ Wilg 39 1¥y -
The I‘]_] g are the Born~Oppenheimer breakdown terms which couple the
states together. A difficulty exists in the evaluation of these terms since
they are not translationally invariant. 2,10 A method has been developed

to overcome this difficulty and has been presented in Paper I.
The molecular wavefunctions Y; were calculated using the effective

12 The effective potentials were derived from careless

potential method.
Hartree-Fock orbitals (CHF) and designed to provide ab initio quality
results with minimal computational effort. The method should reproduce
the HF description of the wavefunction and therefore should be appropriate

for the single valence electron of the alkali-atom alkali~ion molecular
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system. The HF description leads to a small error in the ionization
energies for the various atomic states. However, this error is very
serious for small energy differences between different atoms (e.g., the
energy defect for Li(2s) and Na(3s) should be .0093 h = . 25 eV rather
than 0. 141 h as obtained from HF). To alleviate this difficulty, the
effective potentials were modified to reproduce the experimental ioniza-
tion energies. The basis set for each molecular calculation included
three s, three p and one d contracted Gaussians on each center to
describe the ¥ states, and three p and two d contracted Gaussians on
each center to describe the II states.

The effective potential method assumes that the cores remain
frozen. Therefore, the method breaks down for small R when the cores
from different atoms begin to overlap (R ~3.5a, to 5 a,, being smallest
for those molecules containing Li and largest for those molecules
containing K). However, since the charge transfer process for alkali-atom
alkali~ion collision is dominated by large impact parameter collisions,

the resulting cross sections are not significantly affected. 13

iIl. RESULTS

Using the coupled equations of (6) we have calculated the charge
transfer cross sections for collisions of Li + Na+, Na + Li+, Li+ K+,

K + Li", Na+ K", andK + Li'.
A. Potential Curves

The six lowest molecular states (4 Zand 2 I1 states) dissociating

to the lowest °S and 2P states of each atom were used in the calculations.
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The resulting potential energy curves for LiNa+, LiK+, and NaK” are

shown in Fig. 1. 14

For comparison, we also show in Fig. 1 the corres-
ponding potential energy curves for L12+, Na2+ and K2+.

For the homonuclear systems the degenerate states of the
separated atoms form bonding and antibonding g and u states which split
in energy as the energy decreases. This splitting is sufficiently large

to cause a crossing of the 3 ’% ¥ and 2 2Eu+ states. For the heteronuclear

dialkalis, the potential energy g’;urves represent wavefunctions which

start off localized on one or the other of the atoms at infinity but eventually
change to bonding and antibonding orbitals at smaller R as the interaction
energy between the atomic eigenfunctions becomes much larger than the
energy difference at infinity.

We see, for example, that the 125" curve of LiNa® is bounded by
the 1 22g+ curves of Li2+ and Na2+, with similar bounds for the inter-
nuclear dialkalis. The crossing of the Eu and Eg curves of the homo-
nuclear molecules are replaced in the heteronuclear molecules by near
crossings. For L'1K+, the K 4s energy is close enough to the Li 2p energy
to allow considerable mixing between these two states, though at smaller
R mixing of the K 4s and the Li 2s becomes more important.

The long-range behavior of the two lowest potential energy curves
for each molecule are proportional to ai/ 2R* where o, is the polariza-
bility for each atom (e ;~ 166 a,°, ay, ™ 186 2,°, and og = 282 ag from the
theoretical calculations). The excited states do not exhibit this R™*behavior
with the IIstates being repulsive at long-range. As far as the charge transfer
process is concerned, however, this long range behavior is not important

and the potential energy curves can be considered to be flat at large R.
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The important part of the potential energy curves involves smaller R
where the atomic wavefunctions overlap, causing large changes in the

potential energy curves.

B. The Cougling Term

The coupling terms Mij between the various T states and between
the II states for LiNa+, LiK+, and NaK™ are shown in Fig. 2. The Mij's
reflect the changes in the wavefunctions as a function of R as they go
from being atomic orbitals at large R to molecular bonding and anti-
bonding orbitals at smalier R. At very small R (<4 a,) the rapid change

in the Mi.’s represent the interaction of the core orbitals with each other.

For larg; R, coupling terms between wavefunctions dissociating to
different atoms (e.g., Li 2s and Na 3s) go  to zero exponentially as
the overlap of the atomic eigenfunctions. On the other hand, the coupling
term between wavefunctions dissociating to the same atom (e.g., Li 2s
and Li 2p) go to zero as R’ due to polarization of the atom by the
positive charge of the other atom.

The coupling terms Nij which couple the Z states to Il states are
| a—g I)).
The coupling results from rotation in space of the internuclear axis along
15

shown in Fig. 3 (the actual functions plotted are R Nij R) = (Z;
which the molecular states have been quantized. At infinity, the
rotation will couple the degenerate pairs of angular momentum states of
the atom (e.g., Li 2px and Li sz for rotation about the y axis). Like-
wise, as the atoms come together, rotation will couple together those

molecular states which have a similar shape but are rotated by 90°
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[e.g., the 225" and 1 °II states of LiNa® at small R both resemble

hydrogenic 2p orbitals (ignoring orthogonality to the cores)].
C. Total Cross-Sections

The resulting total cross sections for the various alkali-atom
alkali-ion collisions are shown in Fig. 4 as a function of velocity. We
see that the cross sections are small at low velocity, increase with
increasing velocity, pass through a maximum, and then fall off to zero
at higher velocity. The charge transfer cross sections for the exothermic
reactions are larger than for the endothermic reactions. While the
cross sections for Li + Na* and Na + Li" are quite similar, we see that
the cross section for K + Li" is much larger than the cross section for
Li" + K. The ratio of the cross sections for Na + K™ and K + Na* lie
between these two extremes. For most of the cross sections, we find
an oscillatory structure imposed on the overall shape. The oscillations
for K + Li' are difficult to see due to the rapid rise in the cross section.
The oscillatory structures for Li + Na™ and Na + Li" and for Na + K" and
X + Na© are nearly equivalent both in amplitude and phase.

In Figs. 5, 6, and 7 we compare the theoretical cross sections

with the experimental results of Perel and Daley. 16

The experimental
results are estimated to have an accuracy of 10% in the absolute magnitude
of the cross section. 17 The accuracy in the experimental results decreases
at either extreme of the experimental range, particularly for the low
energy end. We see that the theoretical and experimental cross sections

for Li + Na' and Na + Li" are in very good agreement, both in the total
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magnitude and in the oscillatory structure. For the other endothermic
reactions (Li + K* and Na + K7) the cross sections are also in fairly
good agreement, the oscillatory structure agreeing quite well, but the
theoretical magnitude being somewhat small. For the exothermic
processes K + Lit and K + Na+, however, the theoretical cross sections
are too large in total magnitude, though the oscillatory structure is quite
good. The velocities at which the cross sections reach a maximum for
the theoretical and experimentalresults are in good agreement for all
the collisional cross sections studied.

While there is some error in the experimental results, particularly
inNa + K" and K + Na® measurements,the main disagreement between the
experimental and theoretical results probably lies in the approximations
made in the theoretical calculations. The molecular wavefunctions used
in the calculations form a sufficiently complete basis set (see discussion)
to provide an accurate description. Also, the assumption of linear
trajectories is valid except at small impact parameters which do not
contribute significantly to the cross section. However, the approximation
which neglects the translational momentum of the electron leads to cross
sections which are over estimated. This error increases with increasing
velocity. The neglect of translational momentum is particularly significant
for the Z~H coupling process which leads to the overestimate of the cross-
sections for K + Li" and K + Na™.

Overall, however, we find that the theoretical calculations provide
a good description of the charge transfer cross sections. Furthermore,
as we shall see, the various alkali-atom alkali-ion cross sections can be
explained very simply in terms of transitions between the molecular states

of the gquasimolecule formed during the collision.



IV. DISCUSSION
A, Li+ NaJr and Na + Lit

As mentioned in the previous section, Li + Na® and Na + Li*
have very similar charge transfer cross sections, both in total magnitude
and in the oscillatory structure (see Fig. 4). To see why, we have
plotted in Fig. 8 the cross sections for transitions to the individual states
(using the six~-state approximation). We see that the cross-sections are
dominated by transitions between the two lowest ®57" states [ note that
7 96 — Na3s ™ “Na 3s — Li 2s due to the detailed balancing]. The
transition to the Li Zpﬁ state is, to a certain extent, also important,
particularly for the exothermic process Na + Li*. In fact the Na 3s —
Li Zpﬁ transition eveniually dominates the Na 3s — Li 2s at low energies
due to its slower rate of decrease. Cross sections for transitions to
other states are considerably smaller.

Given an understanding of the coupling process between
molecular states,the explanation for these results becomes readily
obvious and even predictable from simple considerations of potential
energy curves. A detailed discussion of the coupling process between
states in the molecular wavefunction approach is given in Part L.

A brief summary of the process is presented below.

In the molecular wavefunction approach, the transition between
two states(of the separated quasimolecule) involves a three-step process.
First, as the atoms approach, they enter a transition region where the
two molecular states couple. This region (where the wavefunctions

change their character from atomic to molecular) is defined as the
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range over which the energy difference is small while the coupling term
is large. Second, as the atoms approach closer, they enter an inter-
mediate region where the two states are uncoupled. Finally, as the
atoms separate, they re-enter the transition region and decouple.
However, due to the different evolution of their phase factors [see Eq.
(5)] in the intermediate region, interference occurs in the decoupling
region leading, ingeneral, to a non~zero probability for a transition.

From the potential energy curves for the LiNa" quasimolecule
(Fig. 1), we see that the lowest two 23" states are nearly degenerate at
large R. Thus, we expect a strong coupling between these two states
at large R (the actual transition region is roughly 12 a;, < R < 22 a,).
On the other hand, the energy difference to the higher-lying 25t states
is too large to allow significant transitions [ except for v > 0.2 a.u.
(v=4x 107 cm/sec or E =7 keV for Li* + Na)]. From the potential
energy curve, we see that the II states also have large energy differences
at large R. However, the 1 Il state crosses the 2 2" state at 5.1 a,.
Thus, transiticns can occur from the 2 25t state to the 1 °1I state at
small impact parameters due to rotational coupling.

Transitions to the other higher-lying states occur by first popula-
ting the 1 I state and then transferring to the other states which are
close in energy to the 1 ®II state. For collisions involving Li + Na+, the
electron must first transfer from the 1 °Z" state to the 2 °Z7 state.
Thus the Li 2s - Li Zpﬂ cross section is much smaller than the Na 3s —
Li 2pﬂ cross section at smail velocities. We see that the total cross

section for the process Na + Li’ — Na' + Li is larger than for the
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reverse process Li + Na® - Li" + Na due to the added cross section for
the 2 *=7 ~ 1 I transition.

From Fig. 8, we see that the oscillatory structure in the total
charge transfer cross section is due to the 1 2w 2257 transition,
resulting from a maximum in the energy difference between these two

states. 6

The phase of the oscillatory structure differs from that obtained
in a simple two~state calculation due to the other trajectory available in
the 1 °II state. No significant oscillatory structure is present in the

%~ transitions due to the different nature of the Z-~II rotational coupling

process. [ For a detailed discussion, see Part L]

Experimental results have been obtained for transitions to the

18 The cross sections for Na(3s) +

excited states by Aquilanti et al.
Lit - Na{3p) + Li" is of the same order of magnitude as our theoretical
cross section. However, for Na(3s) + Lit— Na© + Li(2p), their
experimental cross section is several orders of magnitude smaller than
we predict. From the potential energy curves of LiNa" and Na; (Fig. 1)
one finds curve crossings of the second °2* state with the first °1I state.
One would, therefore, expect the cross section Na(3s) + Li" — Na¥
Li(2p) to be nearly as large as the Na(3s) + Na' - Na* + Na(3p) cross
section (for which their results are in good agreement with ours). We

therefore believe their experimental cross sections for Na(3s) + Li" -

Na' + Li(2p) to be in error.
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B. Li+K"and K + Li"

Untike the Li + Na’ and Na* + Li charge transfer cross sections,
the cross section for K + Li" is quite different from the Li + K™ cross
section. To see why the difference occurs, we have plotted the cross
sections for transitions to the individual states in Fig. 9. We see that
the Li+ K" charge transfer process is very similar to the Li + Na©
charge transfer process being dominated by the transition between the
two lowest Z states. On the other hand, the X + Li* charge transfer
process is dominated by transitions between the 2 22" state and the
1 °I state. Also, transitions between the 2 22" and 3 =7 states play an
important role similar to that between the 1 *Z" and 2 *°%* states. The
oscillations in the total cross section result from the Z-Z transitions.
However, since the K + Li* = X" + Li cross section represents two
different Z~2 transitions, the oscillations for each process slightly
interfere leading to smaller net oscillations thanintheLi+K ~Li" + K
cross section. As was done for Li + Na© and Na + Li+, these results
can be readily explained by looking at the molecular potential energy
curves for LiK~ and using the simple concepts for molecular transition
processes. From Fig. 1 we see that the energy defect | AE(x)] between
the two lowest = states of LiK™ (0.039 h = 1.06eV) is much larger
than in LiNa' while it is comparable to the energy defect between the
2 °2% and 3 *z7 states (0.029h = 0.79 eV).

For an electron starting on the 1 *Z7 state (Li + K¥), only the
2 *=* state is close in energy. Therefore, one would expect and, in

fact, finds that the charge transfer process is dominated by the
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1227 ~ 225" two-state coupling process. However, as expected, the
cross section is much smaller than for Li + Na+, due to the larger
energy defect. The minimum in the energy difference (0. 037 h) occurs
at 14.5 a, rather than at infinity (excluding effects of polarizability)
due to mixing of the K 4s and the Li 2p atomic states. The net effect,
though, is rather negligible. At smaller R, the K 4s and the Li 2s
interact strongly to split the 1 ?x" and 2 ®=% states apart.

For an electron starting on the 2 =¥ state (K + Li"), both the
1 °z* state and the 3 =7 state are close in energy, allowing coupling
to both states. As mentioned though, the energy difference to either
is considerably larger than for LiNa' so that transitions to either state
will be small at low velocities. [ At higher velocities ¥ > ~ .2 a.u.)
(7 keV for Lit or 39 keV for K' ) these transition processes become
important. ] On the other hand, a curve crossing exists between the
2 =% and the 1 1 states. Therefore, significant charge transfer can
occur from the K atom to the Li atom through rotational coupling of the
molecular Z and II states of the quasi~-molecule. The cross section
for transitions to the 3 2Z" state does not exhibit the characteristic
shape of the 1 ’5% ~ 2227 cross section because in addition to the direct
2 25" ~ 3 227 transition, we also have transitions from the 1 °{ state
to the 3 *°=" state due to a curve crossing of these two potential energy
curves at R =12.5 a,. For comparison, in Fig. 10, we show what
the resulting cross sections would have been, (i) if only the 2 *%7 and
1 *I states were allowed to interact, and (ii) if only the 1%2% 27z

and 3 >27 states were allowed to interac’c.19 At lower velocities, both
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Z-Z transitions go to zero exponentially while the Z~II cross section
falls off very slowly. At higher energies, the 2~-Z cross sections reach
a maximum and then go to zero. On the other hand, the Z~II cross
section does not possess a maximum, but continues to increase with
increasing velocity. This defect results from the neglect of transla-
tional momentum of the electron (see Part 1I). This defect leads to
an overemphasis of the Z-~II cross section, resulting in too large a
theoretical cross section for K + Li' with the error increasing with
velocity. At the cross section maximum, this error leads to an apparent
overestimate of the theoretical cross section, which is almost three
times the experimental cross section. Similarly, the theoretical cross
section for the endothermic process Li + K" is too small because
amplitude on the 2 25T state is decreased by transitions to the 1 %1

state.
C. Na+K'  andK + Na'

The total cross sections for Na + K™ and K + Na* represent a pair
of cross sections which are intermediate between the nearly equivalent
cross sections for Li + Na' and Na + Li" on the one hand and the rather
dissimilar cross sections for Li + K* and K + Li* on the other hand.

The cross sections for transitions to individual states are plotted in

Fig. 11. Asin Li+ Na' and Li + K" the Na + K" total cross section

is dominated by transitions from the 1 237 state to the 2 *=7 state.

The K + Na total cross section, on the other hand, represents a mixture

of processes. At lower velocities the cross section is dominated by transitions
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from the 2 °=7 state to the 1 211 However, as the velocity increases,
the 2 227 ~ 1 °2" cross section quickly grows and soon dominates. At
higher velocities, the 2 25" - 323% cross section also becomes
important.

As for the LiNa' and LiK" an explanation of these results can
be obtained from simple considerations of the potential energy curves
for the NaX " molecule (see Fig. 2¢). We see that the 2 2Z7 curve is
closer to the 1 2Z7 curve (AE() = 0.030h = 0.82 eV) than to the 3 >Z7
curve (AE(w) = 0.048 h = 1.31 eV). Thus, the two-state 1’27 — 2257
transition process will be quite important. It is essentially the only
process available for the Na + K" collision. Since the energy defect is
larger than in LiNa+, the cross secticn for this process is smaller than
for LiNa". For an electron starting in the 2 2yt state, transitions can
occur (i) to the 1 2T state through Z-Z coupling at large R or (ii) to the
1 °II state through rotational coupling due to the curve crossing of the
2°>% and 1 °M state at R= 5.8a,. At higher energies, the electron
can also transfer directly to the 3 2% state. Due to the small energy
differénce between the Na 3p and K 4p atomic states, strong coupling
will occur between the 3 =7 and 4 *=" states and between 1 °H and 2 %Il
states. However, no oscillations occur between these pairs of states
since the transition region is only crossed once. We see that oscillations
in the total cross sections are caused by oscillations in the 1 2ot -
2 °z* cross section.

Aquilanti et al. 23 obtained experimental cross sections for

Na(3s) + K"~ Na(3p) + K" and Na(3s) + K" ~ Na* + K(4p). The magnitudes
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of these cross sections are so small that they are less than the error

in our calculations due to effects at small impact parameters. How-
ever, our calculations predict that the cross section for forming Na(3p)
should be larger than for forming K(4p) which is opposite from what they
observe.

The experimental results of Perel and Daley16’ 17

indicate that
the cross sections for Na + K* and K + Na¥ meet at 3 x 10 cm/sec. The
twocross sections, however, should have a continuously increasing difference

since
ONa + KT o Na*t + K~ 71 gt -2 st (6)
while

~ 2 2 2 P
Tk sNat ~K' + Na© 92 5% =157 * 99'st o 17p

2 2

t 027t 3" (7)

(see Fig. 11), but
— 2

O1¥st so'st = 0oyt o1 s
due to detailed balancing, so (7) should be greater than (6). Also,
at low velocities, the Na + K" - Na"+K experimental cross section
appears to go to a constant rather than decreasing exponentially to zero
as it should. On the other hand, the splitting between the endothermic
(Na + K+) and exothermic (K + Na+) cross sections is overestimated
theoretically due to the neglect of translational momentum of the electron.
This defect overestimates the Z-II transition probability, giving rise, in

particular, toa K + Na® —»K* + Na theoretical cross section which should

be too large. Therefore, the actual charge transfer cross sections for

Na + KT and X + Nat are probably somewhere between the theoreticaland

experimental resuits.
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CONCLUSION

We have used the molecular wavefunction approach to calculate
the charge transfer cross sections for alkali atoms colliding with alkali
ions. We obtained cross sections which were in fairly good agreement
with experiment. In the molecular wavefunction approach, coupling
between states occurs either through the radial change of one state into
another Mij = (Y, ['5% [zpj>) or through the rotational change of one state
into another (Nij = Y IRL —a—% !z[/j>). However, transitions only occur
between those states which are close in energy. Using the simple
ideas of the coupling process, therefore, one need only examine the
potential energy curves for each system to understand and even predict
the resulting cross sections.

For the endothermic collisions (i.e., Li+ Na', Li+ K", Na + K"),
the electron is initially on the 1 257" state. Since the 2 2= state is the only
state close in energy (ignoring small impact parameters), charge transfer
occurs essentially through the two-state Z-Z coupling process. The cross
section for this process rises exponentially with increasing velocity,
reaches a maximum, and then goes to zero at high velocities. Oscillatory
structure in the total cross section result from oscillations in this two-
state process.

For the exothermic collisions (i.e., Na+ Li*, K + Li*, K + Na+),
the electron is initially on the 2 >57" state. In addition to the small energy
difference with the 1 23" state, however, the 2 25" state also crosses
the 1 *II state. Therefore, charge transfer can occur either through

Z-Z coupling to the ground state or through rotational coupling to the
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Il state. In addition, a small energy difference can also occur between
the 2 =" and 3 =" states, such as in K + Li', leading to charge transfer
coupling between these two states. The relative importance of each of
these processes depends on the energy difference and the velocity. At
very low velocities, the Z~II transition dominates. The magnitude of the
cross section is determined mostly by the internuclear distance of the
crossing point. For small energy defects between the * states, such as
for Na + Li+, 223~ 123" transitions begin to dominate as the velocity
increases. The larger cross section results from the larger internuclear
distance of the transition region. For large energy defects, such as
X + Li', the growth of the 2 °Z% -~ 123" as well as 2 25" - 125" cross
sections occurs at much higher energies so that the Z~II transition
remains a significant part of the total charge transfer cross section.
The oscillatory structure in the total cross section as well as the cross
section maximum result from the presence of these characteristics in
the Z-Z transitions. The rotational coupling process appears to over-
estimate the charge transfer cross section as does the Z-Z coupling to
a lesser extent due to neglect of the translational energy of the electron.
However, the general shape of the charge transfer cross section is
correct. In particular, the position of the maximum as well as the
detailed oscillatory structure is in excellent agreement, both in the
ampiitude and in the phase of oscillations.

In conclusion, the molecular wavefunction approach can provide
quite accurate total cross sections while at the same time providing a
simple picture of the coupling processes. These results should be useful
in making qualitative predictions of the electronic transitions which can

occur in a variety of scattering systems.
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Fig. 1. The potential energy curves for (a) LiNa*, (b) LiK", (c) NaK+,
(@) Li,", (e) Na,", and (f) K} [atomic unites (5 =1, e = 1, mg = 1) are

used; 1 hartree = 27.211 eV, 1 Bohr = 0.52917 A].

Fig. 2. The coupling terms Mij = (¥ | %aR | ¥;) between the various

molecular states for (a) LiNa’, (b) LiK', and (c) NaK".

Fig. 3. The coupling terms R Nij = (¥ | a/ae | \Ifj) between the

various molecular states for (a) LiNa™, (b) LiK", and (c) NaK'.

Fig. 4. The total charge transfer cross sections for Li + Na® —

Li* +Na, Na + Li* »Na’ + i, Li+ K" - Li" +K, K+ Li* - K" + Li,

Na + K" ~Na® + K, and K + Na* — K* + Na (1 a.u. velocity = 2.18 x 108

16

cm/sec; may 2 =0.879x 107" cm?),

Fig. 5. Comparison of the theoretical and experimental cross sections

for Li + Na* > Ti* + Na and Na + Li" = Nat + Li [ theoretical;

--- experimental (Perel and Daley, Ref. 16)].

Fig. 6. Comparison of the theoretical and experimental cross sections
for Li+ K —Li" +K and K+ Li* K" + Li [—— theoretical; ---

experimental (Perel and Daley, Ref. 16)].

\

Fig. 7. Comparison of the theoretical and experimental cross sections

forNa + K —-Na' +Kand K + Nat - k' + Na [

theoretical, ---

experimental {(Perel and Daley, Ref. 16)].
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Fig. 8. Theoretical cross sections to individual states for (@) Li + Na*

and (b) Na + Li".

Fig. 9. Theoretical cross sections to individual states for (@) Li + K
and (b) K + Li*.
Fig. 10. Theoretical cross sections to individual states for (a) Na + K

and (b) K + Na™.

Fig. 11. Theoretical cross sections to individual states for K + Li"

in the three state (1227, 225" 323¥) approximation (——) and the

two-state (225, 12[1) approximation.
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PART II

The Effective Potential Method in Molecular

Quantum Mechanics

PART II-A

The Use of Ab-Initio Effective Potentials

in Molecular Calculations



91
I. INTRODUCTION

For many years chemists and physicists have realized that many of
the chemical and physical properties of atoms are determined by only the
cuter few (valence) electrons. Indeed, the concept of the periodic table derives
from this idea. Thus in describing the nature of the chemical bond, one needs
only focus his attention upon a few electrons for each atom, and, in a chemical
sense, molecules involving Ra are no more complicated than those involving
Mg. Unfortunately, in quantum mechanical considerations, the electrons

are indistinguishable and all must be considered. Treating Ra is there-
fore considerably more complicated than treating Mg. However, it was
clear to early workers that Ra and Mg could be described as simple two-
electron problems by merely replacing the Rn and Ne cores, respectively,
with an appropriate effective potential (EP) [1-2].

As was realized by these workers, the EP could not be just some
simple electrostatic p’otential due to the core electrons. Rather, it must
also incorporate the effects of the Pauli exclusion principle, leading to
additional 'r.:apulsive terms in the EP's. There are not unique solutions
to this problem. As a result, a number of approaches have been suggested
and used. Some approaches are empirical and adjust the EP to match
some experimental data [1-3LOther approaches are theoretically based
and adjust the EP to match the results of ab initio calculations 14-10].

In this paper we present a theoretically based method which has
evolved from an approach previously applied by Goddard, Kahn, and
Melius [ 7-10] /tsoome simple systems. The method has been formulated
to yield ab intio quality wavefunctions for the valence electrons while

remaining computationally simple and straightforward.
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. THE AB INITIC EFFECTIVE POTENTIAL
In the Hartree-Fock approximation to, say, the Na atom, the wave-

function has the form
d {écore(va] ) (1)

where & core is a product of (ten) spatial orbitals very similar to the orbitals
of Na™ and ¢, is the valence orbital (the one removed is going to Na¥). [x

is an appropriate product of spin functions. | The low-lying states of Na

are also given by (1) but with nearly the same q’core so that only by changes.
To obtain the HF wavefunction we solve for t}}e orbitals of (1) self-consistently

leading to variational equations of the form

H g, = ¢, (2)

where the one-electron HF Hamiltonian is given by

Za ~
H =-'.“1§V -— 4 '%K (3)
r a
Py a

where -1V’ is the kinetic energy term, - Z a/r o is the nuclear attraction
potential. The quantities J a and X - depend upon which orbital is being
solved for. For the valence orbital J a is equivalent to the classical Coulomb

potential due to a charge density corresponding to the @ The exchange

core’
operator f{a is an integral operator resulting from the antisymmetric
form of the wavefunction (i.e., from the Pauli Principle).

Ignoring slight changes in the core orbitals, the valence orbitals
for the excited states of Na satisfy the same Eqn. (3). Similarly for a Na
bonded to something else, we might expect that the core orbitals could be

replaced by the effective potential

~HF . 4
U, =3, =K, (4)



just as __for the atomicwstatesr. _A__The J o in (4) can be expressed as a function

of r. If;UgF could also be expressed as a function of r
TEP,
U, (r)
we could merely replace the core on each atom with ng(r) and consider

only the valence electrons in all further considerations. In this case the

potential in (3) would become

Z
yyBEP _ _ o
Vm (ra)— _—

F, ng(ra) (5a)

so that (3) becomes

h = --é—V2 + Vgp(r (5b)

o)

Thus the HF theory provides a basic foundation for the use of EP's.
However (4) does not zllow us to forget about the core orbitals since

IIE o is an integral operator and upon operating on a function ¢>v leads to

terms involving integrals cver products of <¢>V with core orbitals. Thus to

eliminate the core orbitals and obtain effective potentials of the form (5)

Wé need to somehow approximate the effect of the exchange integral ﬁa‘

There are many ways of doing this leading to a number of types of EP's.

‘ Even without using the EP approximations the wavefunction in (1) is
an approximate one and hence the excitations energies from (2) will not be
exactly the experimental values. Tuesz errors due to the approximate
form of the wavefunction are referred to as correlation errors. [For a
system with one valence electron these correlation errors are generally not
large. (For Na the 3s and 3p ionization potentials are calculated to be

and whereas the experimental values are and ,
thus the effect of correlation error upon these IP's is eV.] However
they do lead to small errcors in fhe predicted IP even if no EP approximation

is made in (4).
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A. Empirically Adjusted Potentials

The first work on effective potentials was by Hellmann [1] and

Gombag [2], who used a simple, repulsive potential of the form

Ulr) = 2 exp(-2Kr) (6)

with A and K determined empirically so that the first few excitation energies
[of (5)] match the experimental values. Since their work, more general
forms of the potential in (6) have been used and fit to more of the experimental
excitation energies [3].

Since the spectrum of states using (6) is fitted to the experimental
spectrum, the potential (6) in some sense corrects for differences in cor-
relation energies in the various states. Inclusion of correlation (i.e., super-
position of configuration) involving ¢ invalidates the use of (2) and hence
of the use of (B) to solve for the excited states of even a one-valence-electron
system. Thps determining a generalized form of (6) to fit the excitation
energies of the atom does not imply that the wavefunctions and hence the
other properties are as well described. The use of several such potentials
in a molecule could lead to large errors in describing molecular binding
energies (and a fortiori cther properties) despite good atomic excitation

energies.

B. Theoretically based potentials

A different approach to EP's was suggested by Phillips and Kleinman
[4] who modified the HF equations (4) (for a one-valence—-electron system)

into the form 7z
T + U + U )X, = € X (7a)



a5

where Xy differs from the HF valence orbital cbv in that components of
the core orbital are subtracted from ¢v in order to obtain a smooth valence
orbital (i.e., no large oscillations in the core region like <|>v). With this

transformation the total potential

Z ~
V.= - ?+UHFv+UPK (Tb)

is relatively weak. This stimulated a great deal of theoretical analysis on
the electronic properties of solids since using (7b) the presence of atoms
could be considered as a perturbation to the free electron gas. Phillips
and Kleinman showed that (7) leads to the same energy € as (4) if {FPK

has the form

07 = T e - le 0 (o ] (8)

[

co s . PK
In this viewpoint of the EP, V {called the pseudopotential) is a
repulsive potential which plays the role of enforcing the Pauli principle,

preventing Xy from collapsing into the core. The "\\/'PK

was generalized by
Weeks and Rice [5, 12] in order to properly account for the off-diagonal
Lagrange multipliers necessarily present in the HF equations for open shell
systems. (A detailed discussion of these methods and others have been

presented by Hazi, Weeks, and Rice [5] and by Kahn and Goddard [9]).

Although (7) and (4) are equivalent for the first state, €, they
are not equivalent in general for the excited states. In addition, there
is not a unique (7) but rather an infinite number of possible choices
(corresponding to all the ways of mixing core character ¢C into tbv to

form Xy

X, = wv— X«bc]/(l +\2%). (9)

¥
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Furthermore, the effective potential in (8) is still an integral operator and
hence is not as convenient as a local potential such as (6). To obtain an EP
that is a function of r we let V operate on xv(r) and then divide by Xy{T).

(1 Xy has a node, this approach leads to a difficulty since the resulting
potential has a singularity, forcing all the excited state orbitals to also have
a node at that point. ] In any case this approach leads to an infinite number

of such local potentials, each with its own spectra of excited states.

C. The G1 Ab Initio Effective Potential and the MKE Effective Potential

Goddard included dominant correlation terms missing in the HF
method by using a wavefunction corresponding to a self-consistent form of
a generalizatibn of the valence bond type wavefunctions., With this approach

the orbitals are given by a set of equations similar to (4)

H "¢y = €;¢4 (10)

G1 is similar to HHF but contains a more complicated exchange

where H
term (integral operators) than 12 o A major difference is that this method
(called the G1 method {13 ] or GVB method {14]) leads to G1 valence orbitals
that are not orthogonal to the core orbitals. In addition these orbitals are
smooth in the core region and are uniquely determined. This suggested
using the G1 ab initio method on the atoms to determine the unique (smooth)

orbital ¢, and then to choose the effective potential (called the G1 atomic
EP or GAEP [7,9])

1 9% 4
(€i+2V)¢V

GL, .\ _
VI r) = %5

. (11)

This approach was applied by Kahn, Melius, and Goddard [8,9,10] to the
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ground and excited states of several small diatomic and triatomic molecules

and was found to provide good quality wavefuhctions as well as energies.

While the G1 valence orbital ¢O* is unique, a combination of HF

Gl

orbitals x, can be found that is similar to ¢ . Surratt and Goddard [15]

found that if A in (9) is determined to minimize the kinetic energy of X,

MKE
v

minimum kinetic energy effective potentials (MKE EP's) are therefore

the resulting orbital x is very close to the G1 orbital. The resulting
similar to the Gl EO's. Arbarenkov, Sham, and Horne [36] has pre-
ﬁously suggested that the MKE EP would be a reasonable choice for defining
a unique EP. Both of these potentials have been used for calculations on
solids [16, 17] where the electronic wavefunctions are expressed in
momentum space. Since the potentials are weak, and the orbitals are
smooth, only a small number of plane wave states are needed to describe

the wavefunctions, thereby reducing the computational effort.

D. The Coreless Hartree-Fock Effective Potential

In carrying out molecular calculations we expand each valence orbital
in terms of a set of basis functions {xu} (e.g., experimental or Gaussian
functions) of appropriate shape centered on the various atoms. In this case

the differential Eqn. (2) becomes a matrix equation

HC; = 5191 (12a)
where :
H,, = (ulcHFyy (12b)

The cost of the calculation depends crucially on how many basis functions
must be included and we wish to keep the size of this set to a minimum

without sacrificing accuracy.
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For example, consider the Na atom. With Gaussian basis functions
it requires about " functions to obtain a good description of the 1s HF
orbital, The 2s HF orbital is orthogonal to the 1s orbital and requires the

functions for the 10 plus 2 addition functions. The 3s HF orbital is
orthogonal to the 1s and 2s orbitals émd requires the ” functions for the 1s
and 2s plus 2 additional functions. By using instead the G1 or MKE des-
cription the valence orbital is relatively smooth in the core region and
requires much fewer functions (only about ! ) for a good description.
Even though these G1 and MKE orbitals are relatively smooth they do have
a cusp at the nucleus and possess some wiggles. To describe such cusps
and wiggles requires basis functions in the core region. In order to reduce
the basis set requirements to a minimum we would like to suppress all
unnecessary cusps and wiggles in the core region. This suggests starting

with the HF valence orbital and mixing with it core orbitals

‘ c
with the requirement of minimizing the number of basis functions needed
to describe Xy Since each HF orbital satisfies the cusp condition at the

nucleus
1 4 ___ Z
Xy ar Xy r=0 - T I+T

a cusp (a% Xy # 0) is avoided only if X (0) = 0. Thus we want the coef-

ficients in (13) to be such that '\ZV(O) = 0. One might then define the other
conditions in the cc2fficients so that higher order derivatives would also
be zero at r = 0. However we found that for K requiring the first

derivatives {o be zero led to a function that is slightly negative for small



29

r, changes sign at small r and then becomes large and positive. This
character near r = 0 would tend to increase the size of the basis set.

We have instead formulated a different criteria that places conditions
on the overall shape or )‘(v rather than upon properties at one point. Namely
we will choose the coefficients in (13) so as to obtain a best fit of ')Zv toa

p = 3 Slater orbital [19]
r? e-{r

(the { parameter is chosen so as to give the largest overlap with Xy)-
This leads to aiv that is smoothly decreasing in the core region, the
desired property for reducing the size of the basis. Since this new
orbital has had the core-character removed, we will denote it as the

coreless Hartree-Fock orbital (CHF). As indicated in Fig. 1, XSHF goes

to ;zero at the origin as r? but has no other nodes in it. The corresponding

EP can be obtained, then, by inverting the orbital

CHF
€, + 3%
VCHF(r) = 4 CHF Y (14)

Xy

The resulting CHF EP's as well as MKE EP's for various systems are
presented in Sec. VI.

The advantage of this smooth Hartree~Fock orbital is obvious. Since the
new orbital does not contain any core character, no tight basis functions(i. e.,
basis functions with high exponents) are used in the molecular calculations.
In particular, one can use Gaussian basis functions, Gaussian basis functions
are advantageous because the one— and two—electron integrals can be evaluated
analytically, thereby greatly reducing the computational time. These same
properties of the Gaussian basis functions can also be used to evaluate the

effective potential integrals analytically {see Sec. IV).
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The usual difficulty with Gaussian basis functions has been their
poor description of the sharp cusp character of the orbital near the origin.
Since Gaussians are flat at the origin, many tight Gaussian basis functions
have been required to adequately describe the steep slope (with the integral
time growing as the number of basis functions to the fourth power). On
the other hand, using the smooth CHF orbital, the orbital is flat at the
origin and no difficulty arises. We have therefore simplified the computation
by requiring the evaluation of only valence type basis functions. As an
example, we compare in Table I the basis sets required for the HF and
CHF descriptions of the K 4s valence orbital (Table I [20]). We see that
while both orbitals need the diffuse basis functions, the CHF orbital does

not require any of the tight core basis functions used by the HF orbital.

II. The General Form of the Effective Potential

Empirical methods of generating EP's have generally concentrated
on fitting the energy spectrum of the atom. However we are not just
interested in the energy but rather want to obtain many other properties
for molecular systems. Thus we want the EP to be such that the whole
wavefunction is accurately described, not just the energy [21]. Indeed
even to obtain good potential energy curves it is necessary that the
various atomic orbitals have the right shape so that the interatomic
overlaps (and other quantities related to bonding) behave properly with R.
This suggests that the EP be chosen so that its eigenfunctions (not just
its eigenvalues) are as close as possible to the eigenfunctions obtained
with ab initio potentials.

In the self-consistent field approach such as HF (Eqn. 4) or G1
(Eqn. 10), each orbital (singly occupied) is an eigenfunction of a one-

electron Hamiltonian which includes the effect of all the other orbitals
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(and includes exchange or non-local terms). That is, for each ¢4 (e.g.,

MKE 1 _CHF
Xv ) ¢$ ) XV )’

Hé, = e (15a)
H = - iV \71 (15b)

where ’Vi (e. g. V?dKE, ViGI, \‘;iCHF)is a non—local potential operator

depending on the other orbitals [22]. Replacing Vi by a local operator
V(r)

_ ]_ A _ (Ei+ %Vz)d"l
we obtain an effective potential which is equivalent to the non-local
potential for that particular orbital. Solving for the eigenfunction of Vi(r)
then leads back to the original ¢;-
Let us now consider another electronic state of the system. Again,

each orbital ¢i' is obtained from a one—electron Hamilton

Hilq’i’ = € i’ ¢i’ (173)
T . 1 2 LT '
H’ = -3 Va4 A (17b)

for which one could obtain a new effective potential

(e,” = (-3 V%),
- _ 3 ) 1
v, (r) = 5 (18)

i
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In general, the V;' obtained here is not equal to the corresponding V; of

another state for the molecular system. In some cases, however, when

V; for orbital ¢, is used in place of Vi' in Eqn. 17a, the new ¢i' Pon

ei'EP will be very similar to the original ¢, and €; [23].

d

To understand when this will happen, we need to consider the non-
local potential operators \7’1 and f’i'. Since f/i is non-local, it depends on
all the other orbitals of the system. We will consider only systems for which
the other orbital (i.e., the core orbitals) would not readjust significantly
from one state to another and we will take these core orbitals from (say)
the ground state, Converting the non-local p.otentials \?i and i\fi' to local
potentials as in (16), we see that the potential depends (through the exchange
operator) on the orbital to be solved for the valence orbital. Thus the two
localized potentials will be similar, only if the two (valence) orbitals are
similar in the core region.

Now the two orbitals cannot have the same description every-
where sinC(; they must be orthogonal to each other [24]. But the exchange
operator weights only that part of the valence orbital which is near the
core,by nature of the integration involving the core orbital. Therefore,
as long as the excited state orbital has the same orbital description in

the core regiﬂoﬂn asrtrhrg-:vvalence orbital [25], one would expect the local

potential for one orbital to be similar to the local potential for the other.

As an example, let us consider the Li atom, with three electrons.
In particular, we will consider the Gl representation for which
each of the orbitals is uniquely defined. The excited states of the Li atom
represent the excitation of the outer or valence electron, while the two
inner electrons remain essentially the same as in the ground state. There~

fore, the requirement that all the electrons except one be taken as frozen
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is satisfied. However, in order to replace the core by an effective po-
tential, we also require that for each excited state the valence orbital hasg
the same description in the region of the core. To see when this is the
case, we have plotted in Fig. (2) the valence orbitals for several of the
low-lying states of the Li atom. We see that the 2P orbital is very different
from the 22S orbital in the region of the core and thus we would not ex-
pect the effective potentiafs for these two states to be similar. On the
other hand, the 32S orbital has essentially the same behavior as the 2 2S
orbital in the core region [26] (within a scaling factor) as do the higher
2S5 orbitals. Thus, for this case, we would expect the effective potentials
to be similar. Likewise, all the ?P states can be represented by the
same effective potential, and so on for all the other angular momentum
states. Therefore, we expect that the core orbitals can be replaced by an

effective potential of the form

@D

-

2 Vg = Lo Vy(r) [4m){tm] . (19)
But where there is a different potential for each angular momentum one
potential is sufficient for describing the various (bound) excited states of

the same angular momentum.

The VS(r), Vp(r), and Vd(r) from the Li atom (excluding Zn/r) are
shown in Fig. 3. While VS is quite different from Vp and Vg Wwe see that
Vp and V, are quite similar. This results from the p and d orbitals having
similar character in the core region {zero amplitude at the origin while
the s orbital contuins core character. The higher angular momentum

orbitals should be very similar to the d orbital in the core region, yielding

Vf_'s essentially equivalent to Vd’ From such consideraticns we expect
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that for angular momenta £ greater than that involved in the core A (A = 0

for Li, y = 1 for Na) the V, should be approximately equal

Vl NVA'_’_I for l> A

In this case (19) becomes

A

Verr = Vyua(t) + gz=0 AV, (r) [£m){tm] (20)

where AV! = V! - V)H-l'
In general, to replace cores of atoms containing at most s and p
orbitals, one would expect Vs to differ from Vp and both should differ from

V. However, we would expect that V, = Vg for £ > 2 as L would equal 2.

d
For atoms whose cores also contain d orbitals, L would equal 3.

We have so far considered the electron moving in a spherically sym-
metric potential of the atom, obtaining an effective potential which is valid
for the spherjcally symmetric atomic case. We must now consider whether

the potential is still valid for an electron moving in a molecular system.
To proceed, we can expand the electronic orbital in terms of the spherical
harmonics of the atom and use the potential as defined in (20). However,
for the potential to be accurate, the radial part of the orbital for each
angular term must have the same character near the core as did the cor-
responding atomic radial function. For most molecules, fhis is indeed

the case. That is, near the atom the wavefunction can be expressed quite

well as a linear combination of the lcwer lying states of that atom [27 ].
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The effective potential will not be accurate however, when the
electron is localized in a small region near the atom (for example, by
getting a highly charged ion in close proximity with the atom). The
reason is that the local effective potential obtained in (16) represents the
actual non-local potential only in a global sense (averaging over the
region of the core) not piecewise. Also, the effective potential will not
be correct when the cores (which are taken to being frozen) are greatly
perturbed. These are not serious problems though, if care is taken
when applying effective potentials to molecular systems. In general,
therefore, we find that effective potentials defined as in Eqn. 20 can be
used in a wide range of molecular wavefunctions yielding results that

should be in close agreement with the ab initio results.

Iv. Analztic Form of the Effective Potential

In order for effective potentials to be utilized advantageously in
SCF calculations, the integrals involving these potentials must be evaluated
efficiently. Therefore, the effective potentials must have a simple form,
yet have sufficient flexibility to reproduce the effect of the replaced elec-
trons. It was shown in Section I that effective potentials can correctly

represent the effect of the core electrons in molecular systems if they
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have the form

Veff= FVI(r)km)(!ml (a7")

0

T8

where Vl is a function only of r [i.e., Veff is a local potential not de-

pending explicitly (as an integral function) on the core orbitals]. We

further showed that for some £ = L » V could be put in the form

max eff
max
v =V (r) +
eff L . flo AV,(r)|tm) {tm] (18")
where AV! = Vl -V . We therefore wish to find a simple form for
max

Veff as defined in Eqn. 18.

In evaluating the integrals, we will take the basis function to be
Gausgsian., The advantage of Gaussians in evaluating the other integrals
can also be used in evaluating the effective pctential integrals. As pre-
viously mentioned, by judiciously defining the effective potential, the
major drawbé’ulck of Gaussians (i. e., the need for many primitives) has
been eliminated.

To understand what form the EP should take, we need to consider
what type of integrals must be evaluated. Since the V! are only a function

of r, the angular integration can be carried out directly, yielding the

following types of radial equations:

® n -pr?
f U(r)r e PT™ r2 ar (19a)
0

© n

—pr? ,
f U(r)r e Ml(ar) r¢ dr (19b)
0 .



@ n -pr? 2
j(; Ulr)r e M!l(ar) M!Z(br)r dr (19¢)

where U(r) represents Vz(r) or AVl(r) of Veff and the M!’s are modified
spherical Bessel functions. To evaluate these integrals, one could inte-
grate the integrals numerically. However, this procedure has been found
to be too time consuming, thereby defeating the purpose of using effective
potentials. Instead, we evé.luate each of the integrals analytically.
Therefore, we need to express U(r) as some analytic function such that
the integrals in Eqn. 10 can be easily expressed analytically. One sees
immediately that if we let

n, —gkrz

U(r) = é T e , (20

then the form of the integral is the same as if the U(r) were not present.
That is, the integrals are essentially no more difficult to evaluate than
the overlap fU(r) = 1] and the nuclear potential [U(r) = Z/r] integrals.
These integrals can be readily expressed in analytic form [28].

We therefore need to develop a method for expressing the V! in
the form defined by Eqn. 20. We must first establish what shape the
potentials will have so that we will know what type of terms to include.

Any function of r can be expressed as in Eqn. 20 given a sufficient
number of terms. To make the evaluation of effective potentials efficient,
one would hope that only a few terms would be required to express the
effective potentials accurately. The requirement of accuracy will be
discussed in the S:ction V when methods of obtaining effective potentials

are presented. It will be shown that, indeed, only a few terms are needed.
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To see what type of terms these will be, we consider a typical

potential, In particular, we will consider the Vs potential of the Li atom.
First, we consider the EP obtained from the Gl Li 223 orbital (which has
essentially the same behavior as the MKE HF orbital).

A plot of this potential, as obtained from Eqn.14 is shown in Fig. 4a.

The long-range nature of this potential is just -1/r. Thatis, an electron

>

at a large distance from the Li nucleus sees an effective nuclear charge Zeff

of +1.0. Therefore, one of the terms in Eqn. 20 will have ¢ = ~1.0

with n, = -1and = 0.0. Since this term is common to all Vl’ we can

b
factor it out and have it replace the old nuclear charge term —Zn/r(zn: 3.0 for Li
To determine what other type of terrﬁs are required, let us multi~

ply the effective potential by r, generating the negative of what we call
the effective charge. Subtracting off the long range effective charge (which
(Zeff (o) = 1.0), we obtain a function which is plotted in

Fig. 4b. At the nucleus, the function has the value of —(Zﬁze We

ff)'

will denote this difference between the nuclear charge and the effective nuclear

charge as the core charge (Zcore = ZrIZeff)'

Zcore represents, in general, the number of electrons which we
are replacing. We see from Fig. 4b that the function is localized in the

region of the core orbitals. It rises smoothly from a value of - 7
: core

at the origin to 2 maximum around Bohr and then falls of quickly
to zero. The positive region of the potential represents the repulsive

character of the effective potential, keeping the valence orbital of I,

from collapsing into the core.
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From Fig. 4b, we see that terms of the type in Eqn. 20 can
readily reproduce the behavior of this function. The exponential part
allows the function to be localized in the region of the core. Itis suf-
ficient to let n, = -1 or 0, The sum of the coefficients with n, = -1 will
equal ~Z while the sum of the coefficients with n, = 0 will equal the

core
slope of the function at the origin. To express AVl(r) in the form of Eqn.
20 the Zcore behavior of the function is cancelled out so that only terms

with n, = 0 are needed.

Let us now consider the new Vs effective potential ror the Li atom
resulting from the coreless Hartree—Fock orbital (CHF). The Vs can be
obtained, for example, by inverting the orbital as in Eqn. 14. This new
potential is plotted in Fig. 4c. Since this new orbital has zero amplitude
at the originc i;atnd, thus, no core character), the effective potential mu st
approach plus infinity as r~%, (it is the repulsive singularity which pre-
vents the lowest solution of the potential from collapsing into the core. )

Thus, we need to include terms in Eqn. 20 withn, = -2, [Note that

k

no singularity exists in the effective potential integral since the r—2
factor is cancelled by the r? factor of the volume element. ]

In conclusion, therefore, we see that in order to express any
arbitrary EP in the form given in Eqn. 20 we need consider only terms
with n, = 0, -1, or 2. Methods to determine values of the variables ¢

k

and Lk for each term will be discussed next.
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V. Methods for Obtaining Effective Potentials

In order to use effective potentials, we need a method for obtaining
an analytic form for the EP which correctly represents the effect of the
non—-local potential due to the core electrons. It was shown that the
EP should be of the form given in Eqn. 18 where VLmax and V! are ex—
pressed in the general form of Eqn. 20, We therefore need to develop a
method for determining the ck's, nk's and Lk's so that V(r) will correctly
represent the apprepriate potential.

One method would be to obtain the poténtial V(r) by inverting the
orbital, as defined in Eqn. 14. One can then 'least squares'' fit the potential
to the form given i‘n Egn. 20, optimizing the exponents and the coefficients.

By adding a sufficient number of terms, one can obtain a fit to whatever

degree of accuracy is desired.

While this approach is straightforward, several problems arise.
£ .
For instance, how accurate does the fit need to be (that is, how many
terms are needed)? This problem is made more compléx when one real-

izes that the orbital used in the inversion (see Eqn. 14 is not exact

but usually is an approximation expressed in some basis set. There-
fore, the potential to which we would fit is itself only an approximation.
Furthermore, the potential for one state of the system (e.q. Li 2 2s)

is only an approximation for another state of the system (e.g., Li 3 8S).



Additional problems can arisg in this method due to the nature
of the orbital used in Eqn. 14. The orbital must be nodeless to prevent
singularities from arising in the potential (other than at the origin). Also,
effective potentials can only be obtained for those systems which support
a bound state so that an orbital exists which can be inverted. Thus, for
example, one could not obtain a complete EP to replace the F atom since
F 35, 3P, etc. states do not exist.

To circumvent these problems, a new method has been developed
for obtaining effective potentials. The result-is to obtain Veff directly
from whatis known about the ab initio non-local potential operator to be
replaced.

In general, the orbital which is used in Eqn. 14 has been obtained
from diagonalization of a one-electron Hamiltonian defined over a set of
basis functions. Thatis, our knowledge of the non-local potential is
contained in 2 set of matrix elements of the potential defined over a given
basis set. In order to define the effective potential, one may require
that the local potential as given in Eqn. 20 reproduce the same matrix

elements as those obtained from the original . non—local potential. That is,

we define Veff such that

-~

GVl = GIVID- (21)
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However, since a local opefator is not equivalent to a non-local operator,
(21) cannot be an identity for alli and j. Thus, (21) must
be satisfied in a least—-squares sense. We choose the ck's, nk’S, and
f's of Egqn. 20 to minimize the quantity
-~ 2
I = Z w5 ({x Ivefflxj) - (x4 llej>) (22)
i,j i

where the (xiE{’ ]Xj) 's are matrix elements of the non-local potential and
Wij is a weighting factor for each matrix element.

We see from this formulation that it is not necessary to evaluate
Veff( r) as a function of r (as is implied from Eqn.l4). Indeed, the non-
lo cal potential itself does not exist pointwise as a function of r. To fit
the potential to the form given by Eqn. 14 is to assume more knowledge
of the potential than in fact exists. Inversion of the orbital (Egn.14 ) can
lead to oscillations in the potential which are not meaningful and, in
particular, lead to the wrong limit of the potential at large r [29]. The
meaningful qilantity for the EP is its integrated value, weighted by the
appropriate basis function. Therefore, we define the EP directly by Eqn.
21,

By defining the effective potential as in (21) thex any new electronic
orbital we obtain from an EP calculation will correctly see the effect
of the core electrons as long as the orbital is expressed in the same

basis set as that used in fitting the matrix elements.,
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The picture presented so far is an ideal one which will not, in
general, be obeyed in practice. The new orbitals cannot always be
expressed in the original basis set, and even if they could, not all the
matrix elements can be fit exactly (since a non—1local operator is not
equivalent to a local operator). However, we have the
freedom to choose those basis functions and therefore those matrix
elements [by a judicious choice of wij in (22)] which will be most impor-
tant in describing the new orbitals. Therefore, we can at least make
those matrix elements agree. The extent to which we can reproduce the
non-local matrix elements by the EP matrix elements will provide a

test of confidence which we can apply to any calculations we would carry

out based on that EP.

Fortunately, for most cases, this is not a serious problem, and
the effective potential idea works very well. The reason is due to the
difference in the spatial extent of the core orbitals which are replaced and
the valence orbitals. In general, basis functions used to describe the
valence-like orbitals are much more diffuse than the basis functions used
to describe the core. Therefore, if we define our effective potential
[using (21)] in terms of matrix elements representing valence—like basis
functions, we will, in fact, obtain a useful and meaningful effective po—
tential.

A method which makes direct use of this pointis to choose the
Xj to be the valence orbital for some molecular system containing the

frozen core. That is, we define Veff to be
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<Xilveff!¢v) = <Xi i{/:M)v> (23a)

= (x;|E,~Tlé) (23b)

where the X; are chosen to span the space of the valence orbital An im-
mediate connection is seen between Eqn.23and Eqn. 14. However,
since the inverse of d>v is not required, it is permissible for ¢v to have
nodes in it. Also, we can include other valence orbitals in Eqn. 23
permitting one to obtain the best EP which will satisfy both Eqn. 14
and Eqn. 16. For systems which do not have bound states, one can still

use Eqn. 2! defined over basis functions.

VL The Resulting Effective Potentials for Various Systems

In this section, we present examples of ab initio effective potentials
which have been obtained for various systems. The potentials were obtained

using methods described in the previous szction.

ViA. Alkali Atoms

The alkali atoms (Li, Na, K, etc.) contain a single valence electron
with a completely filled inner core of electrons (isoelectronic with the rare

gases). The excited states of the atom represent a one-electron excitation

of the valence orbital while the core orbitals remain essentially frozen.
Therefore, the alkali atoms represent the ideal system for using effective

potentials.

We nresent here results for two different effective potentials for
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the alkali atoms: (1) the EP obtained from the minimum kinetic energy
Hartree—Fock orbital (MKE) [or from the nearly equivalent Gl orbital
(GAEP)}] and (2) the EP obtained from the newly defined coreless
Hartree—Fock orbital (CHF). Plots of these various orbitals for Li, Na,

and K are shown in Fig. 5 and compared with the HF orbitals.

We see that the amplitude outside the co’re is essentially the same
for the HF, MKE, and CHF orbitals. However, the HF orbital has large
oscillations and significant amplitude in the core region. Likewise, the MKE
orbital, though it is flat in the core region, still has wiggles in it and,
for the s orbital, has a cusp at the origin. Therefore, both of these type
orbitals require tight basis functions. On the ather hand, the coreless
HF orbital {(CHF) is smooth, having no wiggles in it.

To evaluate the EP's, Eqn. (23) was used, ¢v representing the MKE
or CHF orbital. The basis functions X; were taken to be the same basis
functions that were used to express d?v' Since the matrix elements for
the most diffése basis functions represent integration cver the entire po-
tential [30], we desire that these matrix elements be very accurate.
Therefore, a weighting of the matrix elements proportional to the inverse
of the orbital exponent was used. Since calculations using the CHF-EP will
not use any tight core—like function, it is not necessary tc use matrix ele—
ments from tight basis functions in the fit.

The resulting EP's are Smoothly varying functions. Therefore,
very few terms are needed to express the potential. It turns out that the
EP's obtained from the fit do not, in general, possess the behavior near

the origin that woulc be expected from inversion of the orbital (e. g.,



-ZN/r for the MKE orbital) since the orbital itself is not sufficiently
accurate. However, this behavior near the originis not important, since
integration over the EP to obtain the matrix elements cancels out any
errors.

After performing the least-squares fit of the matrix elements,
we obtain effective potentials for the various atoms. The effective charges
representing these potentials are shown in Fig. 6. [The actual function
plotted is -(Zeﬁ.(r) - Zeff (@)) where Veff - Zeff/r]. The expansion terms
for each of the EP's are given in Table II.

In general, we see that if the valence orbital has the same symmetry
as one of the core orbitals, then the EP contains some repulsive character in
the core region to prevent the valence orbital from collapsing into the
core. For the CHF orbitals, the repulsive character is represented by the
singularity at the origin. The MKE-EP's, on the other hand, are proportional
to ~A/r (A > 0) near the origin [ 31].

Using“these EP's, we have determined a
set of optimized (Gaussian) basis functions for each atorﬁ. We will devote
our attention to CHF orbitals which were formulated in order to reduce
the size of the basis set. The basis sets were chosen to provide an accur-
acy in the energy to within 107 Hartree (~ 3 x 10 3eV or ~6 x 10~2Kca1).
The resulting basis sets are given in Table III.

As one can see, the 1argér the atom, the fewer number of basis
functions are needed. This is in direct contrast with the orthogonal HF
orbitals for which the number of basis functions grow very quickly with

the size of the atom.
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Thus, the CHF effective potential provides a significant reduction

in computation of the integrals while still providing ab initio quality.

VI-B. The Hydrogen Negative Ion

We next consider a quite different type of electronic system
for which one can obtain an effective potential. This type of system
contains a core which is not filied, though the orbitals can be taken
as frozen. Such éystems would include the halide ions. As an example,
were consider the hydrogen negative ion.

When the hydrogen atom combines with other atoms to form
molecules, dne of the orbitals remains essentially a hydrogenic 1s orbital about
the proton ?2]. Therefore, one would expect that an effective potential could be
used to replace this orbital. Since another electron can couple with the ls
electron to form a singlet or a triplet, two different effective potentials
are needed. Expressing the EP in the form (18),we can, to a good ap-
proximation, take Lmax equal to 1 since the core is only of S symmetry.

To obtain each of the V,'s, we cannot use Eqn. 5, becaurse only

4
the 1S valence orbital exists. No bound states for the 3S, 'P, and %P
states exist. However, using the method of fitting matrix elements, one

can use Eqn.2l to obtain an effective potential which correctly represents
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the non—local potential.

In obtaining the matrix fit, we give greater weight to the more
diffuse basis functions (e.g. using a weight proportional to the inverse
of the sum of the orbital exponents) since the more diffuse basis functions
will be most important in describing an electron in the region of a hydrogen
atom. In particular, we can transform the basis functions so that they
represent eigenfunctions of the Hamiltonian (Eqn. 1 3a) as was done to ob-—
tain Eqn. 232, and then weight only the lowest eigenfunctions.

We first consider the EP for H 3. For the % state, the valence
orbital can contain an arbitrary amount of ls.core character, since the
two electrons are tripletly coupled. Therefore, we candefine a MKE
orbital or a CHF orbital, as well as the HF orbital, and obtain an ef-
fective potential for each of these potentials. The orbitals are shown in
Fig. 7.

We first look at the effective potential obtained from the HF orbital.
If we obtaiﬁ the effective potential by inverting the orbital, we obtain a
discontinuous singularity in the potenti‘al due to the node in the orbital [33].
Using the matrix element fitting method, however, we can obtain a
different effective potential which has no singularities. Theproczdure
is to transform the basis functions of Eqn. (Z2l) to a space orthogonal to
that of the H 1s orbital. That is, we work in the Hilbert space for which
the pseudopotential (or the gent?ralized Phillip-Kleinman potential) is zero.
The resulting H S EP (which';duenoted HF-EP) is plotted in Fig. 7. This
EP can be used in molecular calculations as long as the basis functions

are taken to be orthogonal tc the H ls orbital.
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It is inconveneint and time consuming, however, to require the
basis functions to be orthogonal to a given space. We would prefer to
include a repulsive term in the EP which represents the localization of
the generalized Phillip-Kleinman potential. This leads us to either the
MKE-EP or the CHF-EP. These potentials are also plotted in Fig. 7.

We qee that both these potentials contain a repulsive region which replaces
the orthogonality constraint of the HF-EP.

In using these different potentials, we find that the MKE-EP
can, in certain instances, lead to erroneous results. To see why this
error occurs, we must understand what happc;,ns to the core solution in
the effective potential framework. For the HF-EP, the core solution is
projected away and no longer exists. For the MKE-EP and CHF-EP,
the core solution exists but, due to the repulsive term in the potential,
the energy for this orbital has been shifted above the energy of the valence
orbital [34] ’(in general, the orbital energy becomes unbound).

Whe;x- we carry out a molecular calculation, the new orbital may
be expressed in terms of the energy states of the atomic effective potential,
The degree of mixing of the states can be estimated from simple pertur-—
bation theory. For the CHF-EP, the core orbital's eneryy is raised es—
sentially to infinity, so no mixing will occur between the EP orbital and
the core orbital. For the MKE-EP, however, the core orbital's energy
is raised just into the continuum. This presents little difficulty for the
alkali atoms because there are still an infinite number of bound states

lower than this core solution. F¥or the H 3 state, however, the 2s valence
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shifted
orbital is itself unbound and lies very near in energy to the/core orbital =nergy

leading to strong mixing possibilities. The problem results from the fact

potential
that the local effective/ as mentioned in Sectior V, does not have meaning

point wise, but rather, only after integration. The repulsive term in the
EP will be correct only if it acts on basis functions which are more diffuse
than the core. In general, this is satisfied even for H since the hydrogen
will not attract another electron which is tripletly coupled. However, if
we localize the electron in a small region of the potential (i. e. by putting
a positive charge in close proximity to the H atom), then the entire EP is
not sampled and the EP approximation breaks down. Therefore, the MKE-
EP for H 35 can lead to erroneous results.

We next consider the EP for H !S. The outer orbital is obtained
using the Gl method [35]. Since the outer orbital is unique and nodeless
the orbital can be inverted to obtain an EP. This potential is shown in
Fig. 8 [36]. On the other hand, one can use the matrix clement fit to
obtain a sirnifiar effective potential, This potential is also shown in Fig.
8. Both potentials reproduce the same valence orbital, indicating that
information in obtaining effective potentials is limited by the finite
basis sets.

The effective potentials for H !Pand H °P are considered next.
The EP's are obtained straightforwardly by the matrix element fitting
method and are plotted in Fig. 9. Since the p orbitals are orthogonal
to the core by symmetry, the singlet and triplet EP's represent } + IE and J:— K‘,

~ -~

respectively, where J is the coulomb operator and K is the exchange
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operator. By taking the sum and differences, we can therefore obtain

-~

a local representafion for the exchange operator K (which is purely non—

-

local) as well as for the local coulomb operator J.

vi~C, The EP for the Fe Core

Proceeding as in the case for alkali atoms, one can obtain effective
potentials to repliace the filled core orbitals of other atoms. One treats
the frozen core of the atomm plus an electron (which is isoelectronic with the
alkali atoms) in the same manner as was discussed for the alkali atoms.
This method is straightforward and can provide effective potentials
for the atom in close agreement with the a’ initio results. The effective
potential approximation, however, is not quite as accurate as was the
case for the alkali atoms. To understand what difficulties begin to arise,
we present ajn example from the transition metals, in particular, the Fe atom.
As mentioned in the previous section, the effective potential method
works best v:hen the valence orbital is much more diffuse than the core
(that is, the valence orbital occupies a different Hilbert space). Now the
Argon-like core of Fe contains no 3d orbitals, even though it contains
3s and 3p orbitals. Therefore, the Argon-like core is, in a sense, not
filled. For K, this presents no difficulty because the 3d is much more
diffuse than the core. Its orbital energy is above that of the Rydberg K 5s

. +7
orbital. For Fe however, the 3d orbital is quite contracted, becoming

very similar to the iron core in radial extent. Its orbital energy has
dropped down below the valence 4s orbital. Therefore, the iron 3d orbitals

are not separated from, but rather, have become a part of the iron core

which is unfilled. Strong electron correlation exists between the 3p,

3s,and 3p orbitals and the 3d crbitals.
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The difficulty does not prevent us from obtaining an effective
potential for the Fe atom, but certain precautions must be taken. The
Fe+8 core can still be taken as frozen and we can fit the matrix elements
to obtain an effective potential. We find, however, that we cannot simul-
taneously fit the matrix elements for the valence-like basis functions and
the Rydberg basis functions. For studying binding of Fe to other mole-
cules we wish to obtain an effective potential which can be used to describe
the valence orbitals of Fe and not the Rydberg orbitals. We choose the
appropriate weighting factors in Eqn. 23. This allows us to obtain a valid
effective potential for the iron atom which wiil correctly describe the 4s-
4p~ and 3d-like orbitals of the Fe in a molecular system [37]. This ef-
fective potential for Fe is shown in Fig., 10.

For other transition elements, similar precautions must be used.
Once the 3d shell is filled (as for Cu, Zn, Ga, ...)[38], one can consider
these orbitalﬂs as part of the frozen core. In this case, one can proceed

in the usual manner as for the alkali atoms (Sec. VI~A).

Vi-D. Effective Potentials That Fit Experimental Data

The effective potential method has been developed in an effort to
provide results which will agree with full electron ab initio calculations
[39]. The basic approximation was only that the core orbitals remain
frozen. There are times, however, when the ab initio calculations are
not sufficiently accurate. The error results from the neglect of instan—

taneous electron correlation between the core orhitals and the valence
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orbitals. Correcting this error in full electron calculations is exceedingly
expensive, requiring the introduction of configuration interactions. How~
ever, when we introduce instantaneous electron correlation, we can no
longer discuss an ''independent particle interpretation.' Thatis, no orbi-
tal exists from which one can obtain a unique effective potential. In addition,
the electron correlation differs greatly, for different states, yielding differ-
ent effective '"cores. "

On the other hand, effective potentials can be modified to include,
to some extent, the average effect of electron correlation without intro—-
ducing extra work. We can add arbitrary terms which can help bring the
ab initio calculations into closer agreement with experiment. Considering
the K atom as an example, we find that the error in the ionization energy
due to electron correlation depends upon which eigenstate is considered
(see Table ITI). The larger the interaction of the valence electron with the
core, the larger is the error in the ionization energy. In general, we need
a modified effective potential which is more attractive. Since the electron
correlation takes place in the core region, we add to the ab initio effective
potential an attractive term which extends over the core region. The coef-
ficient is determined by matching the orbital energy to the experimental
ionization energy. The exact form of this additional term is not important
{as long as it is small) since only the integrated average is important.

In carrying out this process, we find that only one eigenvalue of
a given symmetry can be matched with experiment. The difficulty arices
because each orbital of a given symmetry has the same shape in the core

region, even though the electron correlation is different for each state,
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Since we are usually interested in the lowest sta e of each symmetry,
it is a good approximation to match the lowest eigenvalues of each sym-—
metry.

Another method for obtaining local effective potentials involves
the direct fitting of some arbitrary analytic form of a potential to the
experimental energies of the atomic spectra [3].

However, very little information is available since only the lowest
(valence) state, representing one data point, samples the core region
appreciably. The core character of the excited (Rydberg) state corre-
sponds to the valence orbital which has been mixed in for orthogonality
purposes. Thus, the higher lying energy states are already determined
essentially from the strength (i.e., integrated value) of the effective po—
tential. [For this' reason, it has not mattered much what form has
been chosen for the empirical (or model) potential, as long as the quantity
(Zeff(r) - Zeff(m ) is limited to the core region. The averaged effective
charge of the€ core appears as a parameter in the Rydberg series formula
for the excited state energies. ]

Since the empirical potentials are arbitrary in shape, the resulting
empirical orbitals will not be equivalent to the ab initio orbitals, even within
the general space defined by Eqn. (9). This can lead to possibly serious
errors in multielectron effective potential calculations, where the two-
electron energy depends on the shape of the valence orbitals. Also, the
empirical potential can lead to an additional low lying corelike solution
to the EP calculation (since the valence orbital is not necessarily nodeless,
[3b). This lower lying solution must be ignored, yet basis functions

must be included to describe this state.
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VII Conclusion

The purpose of effective potentials has been to simplify the
computational efforts required in large polyatomic molecular calculations.
Toward this end we have developed the ab initio effective potential method
to provide reliable yet computationally efficient results. We define a new
type of effective potential (CHF EP) derived from the newly defined core-
less Hartree—Fock orbital (CHF). Since the CHF orbital does not contain
any core character, no tight basis functions are necessary in the calcu-
lations. To further simplify the computational efforts, we express the
effective potential in an analytic form which permits rapid evaluation of
the potential integrals over Gaussian basis functions. To ensure a reli-
ability in the EP calculations, we derive the local EP directly from the
matrix elements of the actual ab initio non—local potential defined over a
given set of basis functions. The extent of the fit between the EP elements
and the non-Iocal potential matrix elements provides a test of the reli-
ability we can expect from the use of similar EP matrix elements in
molecular calculations. Furthermore, by using the matrix fit method
for defining EP's, we can obtain EP's for systems which have no bound
states (e.g. Cl, %, '3P). In fact, using the matrix fit, we can obtain
EP's representing the potential an electron sees due to a molecular
system, such as a CO ligand in a mctal complex. The essential require-
ment is that the electronic molecular core (being replaced) can be taken
as frozen.

Thus, using the methods developed in tiis paper, one should be
able to use the effective potential method as a reliable tool for calculations

of large molecular systems.
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Table I

Orbital Exponents ({i) and Coefficients (Ci) to Describe
the K4s HF and CHF Orbitals in a Gaussian Basis Set

ur?®) CHF
St G ¢ !

150591. - .00001
22629.6 -0.00004
5223,16 -0.00019
1498.06 -0.00076
495.165 -0.00253
180.1792 -0.00681
71.1940 -0.01337
29.3723 -0.01081
8.68863 0.05066
3.46382 0.09076
.811307 -0.14349

.312555 " -0.30129 .270275 -.21571

.035668 0.70102 .040528 +.59488

.016517 0.40765 .018283 +.51810

a) A.J.H. Wachters, J. Ch. Phys. 52, 1033, (1969).



Table I

Expansion Terms for the CHF Effective Potentials? b
Potential c; n, §i
LiVg 2.5378 -2 1.9088

1.1097 0 . 9470
0.3527 0 .4905
0.00894 0 .09825
LiVp_n -0.1261 0 1.0147
-0, 1901 V] 13,1143
-0.2393 0 3.0810
Li Vp -1.0 -1 0.0
0.4296 -1 11.0026
-0.2426 -1 1.5083
2.0262 0 4.3868
2.5342 0 1.7530
-0.03384 0 .T159
Na Vg p 5. 8539 -2 1.3940
20,4418 0 28.4200
1,55641 4] . 6105
. 00687 0 . 0762
Na Vp_.p 1.5653 -2 3.9264
' -43. 9069 -2 1.7704
87.5679 0 2.8630
16,1439 0 1.5166
3.5816 0 .3031
Na- VD ” -1. 0 -1 0. 0
11.003¢9 -1 12.2245
-11.0951 -1 1.3859
9.3093 0 4.2010
10.2369S 0 1.7972
-0.0220 0 . 2280
K Vg p 8.2055 -2 .3538
0.5086 -2 . .0346
-0.7927 0 1.0610
KVp_p 6.8315 -2 L4676
g.2874 ¢ . 1496
1,1498 0 . 4673
KVp -1.0 -1 0.0
-4,4701 -1 . 6990
-0, 2924 -1 .2042
-G. 1675 =2 .3325

n.
a Vp=Ze¢;r 1 expl -¢.r

217 b

t
4

VS = VS-D + VD; VP-D + VD.
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Table I
Gaussian Basis Sets for CHF Orbitals
Orbital | Exponent £j Coefficient ci AE2
Li 2s 2. 89379 -0.01833 . 00004
"61815 -0. 10355
107385 0. 56443
"02817 0. 51544
Li 2p° 2.697 0.01105 .00002
- 535 0. 05975
"147 0. 23126
| 0528 0.50862
102014 0. 36686
Li 3¢P .07569 0.11767 . 00006
102260 0.49639
- 00830 0. 52600
Na 3s 1.22999 -0. 03546 . 00002
"45196 -0.11338
105780 0. 67382
"02101 0. 41526
Na 3p - 1.24376 -0. 00772 . 00003
110841 0. 11749
104619 0. 47586
101769 0.50738
Na 3d° 07677 0.10844 00007
. 102245 0. 51879
‘ 100825 0. 52922
K 4s .27028 -0.21571 . 00005
| 64053 0. 59488
[01828 0. 51810
K 4p 44296 -0. 02645 . 00004
.03888 0. 50049 |
101439 0. 57413
X 3d° .10366 .10643 00017
102485 " 52483
100849 | 54588

2 AE equals the difference between the orbital energy for the given

basis set and the orbital energy for an infinite basis set.

D The Li 2p, Li 3d, Na 3¢, and K 3d HF orbitals are unique.
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Fig. 1. A comparison of the HF, MKE and CHF orbitals of K 4s.

Fig. 2. A plot of the various G1 orbital wavefunctions for the valence
electron of Li atom.

Fig. 3. The Ug, U,, and Uq local potentials for Li atom using G1 orbitals.

p’

Fig. 4. A plot of (a) the MKE Vs effective potential and (b) the resulting

effective charge Zgg{E (Zeff =1 V) for Li atom and (c) the corresponding

CHF

Z off

for the CHF Vg local potential of Li.

Fig. 5. The various HF, MKE, and CHF orbitals of Li, Na, and K

(since Li 2p contains no p core orbitals, it is unique).

Fig. 6. The various effective potentials for (a) Li, (b) Na, and (c) K.

The actual quantities plotted are Zeﬁ(r) = Zogs () = lt'V!Z - 1.0.

Fig. 7. The HF, MKE, and CHF effective potentials for the H™ 3S

system [ the actual quantities plotted are Zeﬁ(r) (Zeﬁ(oo): 0)].

Fig. 8. The effective charges for the H™ 1S system obtained from inverting

the orbital (Z -;) and from the matrix fit method (225
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Fig. 9. The effective charges for the H™ 'P and the H~ 3P systems.

Fig. 10. The effective potentials which replace the Fe+8 core.

[actual quantities plotted are Z g (r) - Z ep(d) .
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PART II

The Effective Potential Method in Molecular

Quantum Mechanics

PART II-B

The Evaluation of Effective Potential Matrix

Elements in a2 Gaussian Basis Set
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_EVALUATION OF THE EFFECTIVE POTENTIALS OVER A
MULTICENTER GAUSSIAN BASIS SET

We wish to evaluate the effective potential matrix elements
(GB | UAlGC> where GB is a Gaussian basis function located on center
B

2
n n n, —CrB

Gg=Nzxp “yg V25 %e (I11-1)

B

and U A is an angular dependent effective potential located on center A

LMAX-1 ¢
Up = Upprax (Ta) + 22 i AUy (rp)|emg Y(mg | (1II-2)
10 me-0 A A

where ULMAX + AUQ are local (i.e., functions of r, not integral
operators). Though we will only be concerned with s, p, and d basis
functions, and LMAX = 2, the formulas derived are general and
can be easily extended to f, etc., basis functions and to larger LMAX.
Since the effective potential contains angular projection
operators on center A, the integration will be done with respect to
center A, using spherical coordinates. We must, therefore, expand
the Gaussian basis functions onto center A. In our notation, we will
use a small letter subseripti, i =1, 2, 3, to represent the x, y, and
z direction, respectively, and a capital letter subscript to label the
center. When there is no ambiguity, the subscript for center A will

be dropped. Thus,

rBl = Xg, rB2 = ¥Yp and ng = Zgp-
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A Gaussian s function on center B will be denoted by Gg(s), a

Gaussian p function on center B will be denoted by GB(rBi)’ and a

Gaussian d function on center B will be denoted by GB(rBirBj).
To transfer the angular factors of the Gaussian function on

center B (i.e., rB‘) to center A, we use the relationship
i

tp = xp - A, (IT1- 3)

where

BA, -8, -% - -AB, BA- [B-A|

- 2
To transfer the exponential term e ch to center A, we must rotate
the A - coordinate system so that the new z’- axis points toward center

B. In the prime coordinate system

rp? =z + BA® - 2BA r, cost,, . (I11-4)

Having expressed the iocal potential integral (GB]UA|GC) in
terms of spherical coordinates on center A, we may now proceed to
evaluate the integral. We divide the local potential into its LMAX
parts, evaluating (GB|ULMAX|GC) and each (Gp|AU, 1%1 | 4m) (4m |G-

separately and then summing together.

(Gp|UalGe) = (GplUppax!Ge?

LMAX-1

0
+3 GplaU, = l2m) @m|Gr)
=0 B =g 'S¢ (IT1- 5)
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Three types of integrals must be considered: (1) the one-
center integral where centers A, B, and C are the same, (2) the two-
center integral where centers A and C are the same but not equivalent
to center B, and (3) the three-center integral where center A differs
from both center B and center C but where B and C may be the
same.

The one-center integrals are trivial and are considered later.
The two-center integrals can be readily evaluated from the three-center
integral by setting CA  equal to zero. Of the three-center integrals,
(GB | ULMAXi GC) is related to the two-center integral, and as such
is a simplification of the angular momentum dependent integral
(GrBiAU!Z z |em) (4m | ]GC) with £ = 0. We, therefore, derive a
general anné.llytic expression for the integral which contains the three-
center angular projection operator, i.e.,

2
(Gg (rgrg.. AU, (r,) 2 lzmQAme | |Galre rg -0
i7j M= -4 A k ~¢

We first integrate over the angular coordinates, reducing
the integrand to a function of rp only. Due to the projection operator,
the total integral consists of a sum over m terms of products of two
angular integrations. We denote a generalized angular integration by

- _ {' (63 }
langn 4 m (rp) = Ja, Zy s’ Gp (rBi, rcj. ..)ae,  (I-6)

such that
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(Gplav, 2 |em) (4m]|Ge) =
m

o0

[ r2ydry AU, (rA)a (

0

(rA)I

ange o A D)

ang B,¢,m

)

To evaluate I angB. 0. m’ W€ first expand the Gaussian function
=~
located on center D onto center A. Using relations (III-3) and (III-4),
e can express I an as f functi .o
W Xpr gp, g, m 25 @ sum of functions ZGy (rAi,rAj, Fp eve)

k
where

_ -2¢6.BAr, cosf,s
ZGﬁm(rAirAj. .. )_N(rA)fQA Z!&m(ﬂA)rAirAj’ c.e 75 A ATdQ,

(I11-8)

and
0 2
-¢ DA
N e o e D
N(rA)—Nie DA e
In transforming the Gaussian from center D to center A (see III-4),
the A-coordinate system was rotated into the A’ coordinate system.
Let the inverse rotation matrix be denoted by A. Each component
. I 4
of rp must be transformed into r A
ra= ALy (I11-9)
Since the angular momentum projection operators are fixed to the axis, they
must alsobe rotated. For ¢=0, thereisno change(Zoo(QA):Zoo(QA)). For ¢ =1,
the zi{ m (QA )'s transform like Xp» Yp» andz, . Using Table A-1 of App I,
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we can express the projection operators in terms of the corresponding com-
ponents of r,. Defining a new yie (rl'{ r;. ..) whose angular integra-

tion is carried out in the primed coordinate system

. ’
rA . e26iDATA cosfy

2 rmot
7ZG' (el rf...) = r
k¥g b A TA,

d(cosf ) dcpAz, (ITI-10)

we can express the integral ZG(rirj. ..) as a linear combination of
the ZG' (rl'{’r;ﬁ. ..)'s through the transformation A,

To evaluate ZG’ (r;r'j. ..), each ri' is expressed in spherical
coordinates and the exponential function of cosé A’ is expressed in

terms of the modified spherical Bessel functions (see App. III)

20 DA r, cos6,. ®
e I A AT LT (2¢ + 1) M, (25, DA r,)P,(cosf,/).(TII-11)

£=0

The ¢A' integration is carried out making use of the integrals in
Table A-II. The 6 dependent terms are expressed in terms of the
Legendre polynomials (see App. I) and integrated with respect to
d(cos6). The infinite sum resulting from (III-11) is reduced to a finite
sum by making use of the orthogonality of the Legendre polynomials.
We will consider only s, p, and d functions (£< 2) and
potentials with LMAX < 2; hence, we need only consider the
integrals ZG’ (r];:r'j. ..) containing at most four r{’s. These integrals

are listed in Table I. (The argument for M, is understood to be
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ZﬁiT)K r A)' As an example, the integration is carried out in detail
for 7ZG' (x'°z') in App. IV-a.
Having evaluated the ZG’ (r{rg. ..) as a function of r,, we can

now express the ZG (r;r... .) in terms of these ZG’. Using (III-9) and

i
taking advantage of the zero integrals of Table I, we obtain general

expressions for ZG (rir. ..) which are listed in Table II. As an

i
example, we carry out the transformation for ZG (rir J.rk) in App. IV-~b.
Finally, we can express the I angp ¢ m (rA) in terms of the
expressions for ZG (rirjrk. ..) by using the transformation in (II1-3).
These are listed in Table IIi, with the following notation being used.

Terms of like powers of r and values of £ are collected together to

form the general expression

I (rA) = N(r) V47 (24+1) Z‘ Cnﬁ’ "™

angp, (I11-12)
n, ¢’

El

For the £ = 1 projection operators, each expression had to be multiplied
by —“/—-:5’——— because of relationship between ZZ m and ry (see Table A-II).

r

Since center D is equivalent to center B, we substitute —B—AL for Di

(see App. II). In addition the symbol Zl’m is used such that
_ 5C - —
2oy, = Zl?l oy = le’l L3 = Zl?o

An example for f Zg o GD (rBirB_er) dSZA is given in App. IV-c.
Substituting II1-12 into IMI-7, summing over m,and collecting
terms of like powers of rAn and same MQ and MQ , we obtain as an
1 2

integral over r A the expression
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(Gplau, 24 [4m) (m | |Go) = 47 (20 + 1) 2 Cng,e,
m n, £, £,

o TR drp AUy (rp) Ng (ry) N () iy My (28 TR Tp)

‘M, (285BAr ) (ITI-13)

where

Np (rA) =q -{gTaA e'CB-BI,z ete.,

the £, refers to center C, and the £, refers to center B. As an
example, the substitution of (III-12) into (III-7) is carried out in detail
| for (GB(rBi)IAUplp)(pj |GC(er) in App. IV-d.

We note from Table III that the modified spherical Bessel
functions involved are M,, M;, M,, M; and M,. We can eliminate
M,, M, and M, by use of the recursion formula for Bessel functions
(see A-TII-4), thereby reducing the number of terms in ITI-13 to only
those for which £, and £, equal zero and one.

Next, we consider the integral <GB(rBirB].' . ‘)EULMAX(rA”
G~~~ ...)). Since there is no projection operator, we can com-

CYC. C )

bine the Gaussian exponentials on centers B and C to form a new
Gaussian exponential on center D (see App. V), thereby obtaining the
integral (ULMAX(rA)|GD(rBirBj. .. rckrci. ..)). Since Ul MAX
(r A) is spherically symmetric, only that part of GD which is spherically
symmetric about center A will contribute to the integral. We can,

therefore, write the integral in an equivalent form (ULMAxls)(s |GD> .
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But this is just

Jo ¥y drp VA Upyax (04) N (rp) N (r) Tang, o (o)

where Ly D.0.0 has already been defined in (III-6) and evaluated
(see Table III). Thus, we have

o)
(Gp|UppaxlGe) =41 20 € g [Tr] dry Upyiay (@)
n, £

Np (ra) No (p)  rp" My g + o) DA ry) (I11-14)

After integrating (III-13) and (3II-14) over the radial coordinate, the
integrals are summed together (see III-5) to obtain the total value for
the three-center local potential integral (GBI Uy lGC) .

To evaluate the twe-ceunter integral <GA(rAi' .. ),UA!GB(I‘ 2,

jl . @
we may use the same expressions obtained for (GBlULMAX]GC) in
(II-14), letting CA = 0, replacing Ul MAX by the correct local potential.

Rewriting the local potential in (III-2) in its original form

= i
Uy = 2 U, 27 |am){4m]| (111-2)
£=0 m=-~{

where for £ < LMAX, we must have

1]

U U +AU£

£ LMAX

to ensure consistency in the integral evaluation. The projection opera-

tor on center A operating on a Gaussian s or p function on center A
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will leave only one non-zero term in II-2’. Considering the Gaussian
s function, for example, we can let U, = Ug for all £, thus treating
(GA(s)|UA |GB) as a three-center integral of the type expressed in
(I-14) except that ULMAX is replaced by U- Similarly, for
(GA(rAi) | UAIGB) . Uppax is replaced by Up' The integral
<GA(rAirA}-)‘UA‘ GB(er’ ..)) must be treated somewhat differently since
GA(rAirA.) is not necessarily of pure d symmetry. Using U, as in
(I0-2), we evaluate <GA(rAirA.)’ULMAX’GB> as in (I1I-14) (assuming
LMAX < 2) with CA = 0 and find that
LMAX-1
(GA(rAirAj)! 2, AU |tm)(4m]|Gp)=
£=0

var Pl G, (e) r*|au Gy) | (I-15)

which is evaluated just like (G, (s)|U, |Gp) considered above with Ug
replaced by rQAUS. The sum of these two terms represents the total
integral for (GA(rirj)‘UA ‘GB).

For the one center integrals, we express U, in the form (III-2’),
the projection operators reducing the infinite sum to one term, or as in the

case of GA(riz), two terms, the resulting radial integration being

(G lUL Gy =D0C, [7r) dry, r,Me ™A, T a) TA Uyfr, YII-16)
n

We note that when <GBE‘ULMAX|GC> has Gp centered on A, the

integral reduces to a sum of one-center type integrals.
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Table I: The Function ZG' (r '1 ’]
ZG'(s) = NVdr M,
7G'(z’) = NV4r rM,, allother ZG'(r'i) =0
7G' (x"%) = ZG'(y ’2) = Nvar rz (M, - M,)
7G' (z'%) = Nvdr L (M +2M ), a11 other ZG (r'r')
7G' x'%z") = ZG (y'zz') Nvér — (M1 - M,)
7G’ (z"®) = N«/G (3M, + 2M 5), a11 other ZG’ (r'ir'].r'k) =
7ZG' (x'*) = 2G' (y'4) NVET (9M 30M, + 21M,)
4

105
7G’ (x'%2'?) = 2G' (y'* ’2) Nvar = {5 (“12M, + 5M, + TM,)
ZG' (x'%y’'?) = Nﬂ—105 (3M, - 10M, + TM,)

7ZG'(z'") = NvVar 105 (24M, + 60M2 + 21M,)

All other zG’ (r' ‘ri ;2) =0
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Table II: The Function ZG (rirj. ..)

ZG(s) = Nvir [M, ]
zG(r;)) = Nvdr r [D;M,]
ZGlr;r) = NV&T +° [(D;D; - ?_;_J'_) M, +—H M, ]

3
ZG((I'I'I‘ ):NV47T 1'3 {(DDD —(Dgll_(..;.D_G_}E.*_D ._61_]_))M
i"j°k ik is5 is k 5 3
.. 2k, p Bk Gij)M]
i 5 I5 kK5 1

4 1 2 1
ZG(rirjrkri) = NY4r r [Al—f—) M, +(B-~2e1A)M2 +(C-B +§5A)M4]

where A = Gkﬂéij + éjﬂéik + 6jk61£

=21 21K X p. 2K p.
B - DkD!i + 5 DjDQ + 7 D]Dk + 7 DlD!Z +

5 5
2L Okt
1= Doy + = DDy

C= DiDjDkD!Z
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Table III: The Function Iang D.{. m
» X3

[Z4,Gp(8)d2y = NVanr [CooM, ]; Gy =1

[Z,G

p(rp A2y = NV&T [CyoM, + CourM, )

Coo = 'BAi Ci = Di

onoGD(rB,rC_)dQA = Nvédr [Coo M, + Cy I'zMo + CurM, + Cpor'M, |;
1]

[Z4,

[240G

(ro oA~ A )
DBiBjCkCQ

6..
COO = BA-CA C20 fad j_
1 ] 3
Cll = BAiDj + CA]Di C22 pand DiDj - C20

GD(rB.rB.er)dﬂA = NVAr [CooM, + Cypor™M, + Cpy M, + Cyyr'M,
1]

+ Cpol°M, + Cay°M, ]
Coo = 'BAiBA'CAk C, = BAiBAjDk + BAiCAij+BAjCPs1{I)1

6..
= -(BA, *L BA. 5;“ CAk—%L)

C, = ~(BA,D.D

Pk BA].Dka + CAkDiDj + Cyy)

Cy = DiD;Dy - Cyy
dQ = NVEr [CyoM, + C,*M, + Cpor’M, + Cor M,

+ Cy M, + Cgy®M, + CuqT'M, + Cpot M, + Cpur'™M, ]

Coo = BA{BACACA,
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TABLE III-Continued

Cyi = -(BA{BA;CAD, + BA;BACA Dy + BA;CALCA D +

[ £

BA i CAkCA !lDi)

Okyg 0ig dik
Cy = (BA;BA; == + BA;CA —1= + BA{CA g3 *+ BACA,

0ig ik 0ij
—— +BA,CA) == + CACA, —3_1_)

C.. = (BA;BAD, D) + BA,CA DDy + BA;CA; DD, + BA,CA, DD,

+ BA CA D.D, + CAkCA

271k i ])—C%

5 51
Okl BAD, }Sﬁ + BAD,

Oky

_ bik
C31 - -(BAlDJ —5— + BADl -+ BA

6 .
D% . BA.D 5”&4-

_l_
K5 i2g 5 + CA D; CA, D

Sik Oij )
5

+CA£ |5

04 Ok
CADy —L + CAgD; =1 + CA(D;

Cys (BADDan+BADDk£+CA DDD£+CAQDDDk) C,,

, —
Coo = 6kﬁ61j + 5]'261}{ + 0 ,Q(S]k
r 1 : i ] 1
8ip Ok
&L+ pp, 5
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Table III- Continued

. . BA
fzv mGB(S)dQ = Nv12¢ [Co 1M1]7 Co 1 :_]é—XL

) AmeB(r )dQA = NV121 [Cy,M,; + CjprM, + CpptM, |

- A 01
COI = BAIBBA C]_o - 13rn 3 C]_z = _(Co l/BA -+ C].O)

le)mGB(rB.rB.)dﬂA = NVI2r [Cy .M, + C)orM, + CpprM, + Cour°M, +
17
2
Cyor M, J;

BAm
BA

@]
=)
[l

BA. BA]

6 .
Cyo = -(BA;—12 + BA, %im

3 i 3

BA
C12 s (2 BA BAJ —‘B_A%]") - CIO
BA: 5 BA; ©6; BApy 6ii
e jm ] im m 9ij
Car = 2 5 "BA 5 ' Ba )
BA;BABAn
Cys =
BA3

21
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Having carried out the angular integration, each local potential
integral is found to be expressed in terms of only three radial inte-

grations (see equations (III-13), (III-14), and (I1I-16));

. o -(€. + C-)rz '
Z,i Cor [ rPare T My (I11-17a)
n

0 "(C + §-)I‘2 !
Eﬂcn'ﬁ fo rddre =V B U(r) M, (ar) (II1-17Db)
n’,

© 2 -(Ci * Cj)rz n’
25 Coryy, [Trfare " U(r) M, (ar) M, (br)(III-17c)
n’, 4,0 e ' i
y X1t

where U(r) represents Uﬁ(r) or AUﬂ(r). One could evaluate each of
these integrals by numerical integration. However, this method is
very time consuming and defeats the purpose of using local potentials.
Instead, the U(r) is expressed in terms of some analytic functions
which would permit each of the integrals (i), (ii), and (iii) of (III-17)
to be evaluated analytically. At the same time, the analytic functions
must contain enough freedom to adequately and simply describe the

local potential. We find that a potential of the form

. n - 2
Ulr) = 22 C, T K o CkT n = -2 (I11-18)
k

satisfies these conditions. This form of the potential adds no com-
plications to the evaluation of the integral since (1) the exponential

part can be incorporated into the exponential already present, and
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(2) the power of r is added to the power of r already present. Letting
r? represent the product of the n dependence (n = 2 +n’ + nk) and
letting ¢ = g, + cj + Ck’ we have (after a change of variables) the following

three fypes of integrals to evaluate

0

1 o -
Al‘l(t) = m f € re rn dr (III—19a)

1 a

L ,(¢ 2 [ e T " M, (7=r)dr (I11-19b)
n, £\>Ve Cin + )72 J, 2(\/?
o ._b_ _ © ~r n iy
Jn’ —0—1’ 9‘2(§, \/E; \/—C_) - §\7n " }) ) j;) e r M,Ql(\/c_ r)
- M, (\/?r) dr (111-19c¢)

wheren = 0 and £(2,,£,) = 0, 1.

The first type of integral is well known

1 2 réy) (TT1-20)
oo ~1 n = -
A (8) :W fo e r dr 2§(n+1572

The second type of integral must be evaluated by two different means.
Forn= £ +1, Mlmay be expressed in terms of the sinh and cosh func-
tions, each term integrated separately and then added together.
Expressing the sinh and cosh in terms of exponentials and defining

o n-1 (e-(r—x)2

VPn(x) :f r

0

VM, (x) = f°°rn'1 (e'(r‘x)2 - e_(r+x)2)dr (I11-21)

0

+ e_(r+X)2)dr
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Vo) = VR, () - o VM (),
we have that
a’?
-+

1 T 1 2’
L, o a")=5e 2’ ¢@+1)/2 VM, ()

, 13 1 , (I11-22)
I 1(§, a') = 9 € g entl)/z vy (2—12‘)

The functions VMn(x) and Vn(x) have the following recursion relations

n+1

VMH+2(X) = X Vn+1(X) + -—2- VMn(X)
. (I1I-23)
Via® = &+ V) g+ 52 VM ()

Therefore, we need only integrate the two sets of integrals {VM,, V. }
and {VM,, V,} from which all the other VM_ and V_ can be evaluated
from the recussion relations. The integrations are straight forward
(see App. VIa), the results given in Table IV.

For n=4, Mﬁ(a'r) cannot be decomposed into a sum of functions

7 I4

Y and e™® T since the integral of each term taken separate-

involving e
ly would diverge. To evaluate I, , and I,, ,, therefore, MQ is
expressed in terms of its integral representation (see App. II), the
order of integration is reversed, and the r integration is carried

out first (see App. VI-b). Putting the integral in the form of (III-22),

an expression is obtained for VM, and V, (See Table IV).
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Table IV
VM, () = 247 Do (%) V,(x) = v (1- Do),
VM,(x) = 2 E, &) Vax) = (x- 92 Eq(x) + X
VM,(x) = Vi x Vyx) = V1 x°

1
VM, o(x) = x V {(%) ﬁL%VMn (x)  Vp,g) =+ V, &

+ (M, ()

2
2 z _ X ~0
D, (x) = e erGdc E,(x) = f e™ " do

0



For the third type of integral, the same procedure is followed

as for the two center integrals. Forn = ¢, + {, + 2, Mz and Mﬂ
1 2

may be expressed in terms of the sinh and cosh functions, with each
term being integrated separately. The final expression can be

expressed in terms of the functions defined in (III-21). Modifying

the definitions of (III-21) so that VP’ (x) = e-Xz

VP(x), etc, we have
1 1 ! bl

J I == ' a + ’

n (Caa ,b ) C(n+l)/2 'Wa [VP n-1 (—2——‘) -VP n-1

50 10

1 1
o , a’+b’
Jn, 0, 1(C ,aal o’ ) = (n+1)/2 43 b’ [(VM n_l(_z_"") - VMn_l

Er2) - 2, (ver_,@R) _ypr , (R17aY)]

1 1

= T T LV B v

n-1

b’ -3’ 1 , ’ ’ , 't
E2)) - 5 ver o, EFR) - Ve, Br2)) ]

at+b’

J (C’a,’b,):mwi(vpn 1(—2—) VP' 1( ))

M, R -y (25R) (I11-24)

1 , bl | o ,
"b"(VM z("1+ )+ MO FEY) s (VP

For n < £, + ¢, + 2, each of the Mg's must be expressed in their
integral representation and the order of the integration switched.

The actual integration is carried out in App. VIII, resulting in the

general expression
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g9,
1 1
' W) = i+i,
Jny ¢, ﬂ'z(c’a b7 CZn+1)/2 29,+8, 20+0,+1 Z Z—‘ (=) G l)
i, =0 ,=0
a,(!Zl-le-l)b,(Qz-le—l) (I1I-25)
21, o k
21 ...
Z Z ( 11) (- )]2 ( 12)—3—;]'—_{_1— ? (F s Iy 1+, §iti, £5a7,b7)
j:=0 j,=0 j=0

- F(kd, ity 3ith, & a’h’))

where for n + £,+ 4, = 2k

(_?g’ia')z
+ Py - il 4 * ’
1,0, 0@ P7) = Tlrae i, 0 @007 Dyengyziojrg
b’+a’
=)
while forn+ ¢, + £, =2k + 1
(b’ +a’)? ol
+ e +
fj',g(a b)) {2(% )DE3 2k-j+1+2i

. ‘' b?) =
Pk i,0r,0 5P = e

"4 2k+1 b'
( a’ +a’ )}

. Z L p, .
~-j’+4 2]+1 G-A7 2k—]-h+21-j'+ﬂ
Care must be taken in evaluating J, 0, by means of equation
y 1
(I11-25) since considerable accuracy is lost when a’ « b’ or b’ « a’.
To avoid this problem, a power series expansion is used for MQ (a’)
1

(see App. III) when a’ is small (similarly for M, (b’) if b’ is small)
2

1 2,
1 I
T I‘n+1 +2k (b'r)dr

Jn’ﬂl’ﬁz’ (g,a',b') (n+1)/z (2£ +1)!' EC ‘fo
(I11-26)
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A

=gy 2 Ck Incgeak, g, ©0)

1 2
zal

K(20,+2k+1) Ck-1

where C, =1 and CK =

TheﬂIn +0,42K, 8, are readily evaluated from equation (III-22) using
(II1-25).

Though the program originally contained the general expressions
for Jn, 0,0, in (III-24) and (III-25), a restriction has since been made
requiring n + £, + £, to be an even number. In particular, LT of
(III-18) must equal -2 or 0. This restriction on n, does not limit
the accuracy of (III~18), while significantly simplifying
the analytic expressions for Jn, 2,9 Instead of (I11-24), we have,

for example,
J (¢,a’,b’) = N sinh (z)
25020
. (I~ 27)
Jor 0. (€ a7,b") = N[ (?2— ~ g7 ) sinh (z) + %—cosh (z)]
a’2 +b’?

1 s

_ 1 ’ —
where z = 3 a’b a.ndN—g(mD/2 I ©

For (I11I-25) all terms containing D, are collected together and written
explicitly. Terms containing DEi j do not exist. Therefore, the

evaluation of the J n. 0.8 integrals, which is the most time consuming
2 1 A2

part of the potential integral evaluation, is greatly reduced.
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Appendix I: Spherical Harmonics and Legendre Polynomials

Zz, m(Q A) is defined as a real spherical harmonic on center A:

z5 = 7——1 (Y, +Y%_ )
»Q,m 2 ﬁ,m ,Q’—m
. (AI-1)

S = -
Zem =2 Vgm=Y§-m)

The first few real spherical harmonics are defined in Table A-I

Table A~]
1
Zoo = 4

c _ 13 x s__ﬁ_z _ﬁz
Zl’l ”«J":_”' T Zul" a7 r Zuo— Zﬁ}‘ ?

2 2
chyzz’t,l;% \/—i E:ZY_)‘ Zzs’z :1[4% V3 2

2 r r
c 5 Xz S 5 Z
ZZ? 1 = EF— 3 ‘Ijz" 229 1~ ‘/4—"17 ‘/—3— 1‘2

7 __V/’E; 1 (3z°-r%)
220 “Vig 2 r

where x = r sind cos®, y = r siné sin¢, and z = r cos@. Useful

angular integrals are given in Table A-II.

Table A-II

fzwcostl) do = ,f 2”sincb do = fzwcoscb sing d¢ = f‘z"
¢ 0 0 1]

. 2
sin ¢ cos¢ =

[ znsind) cos’dde =0

0
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fZﬂcoszcb do = fznsin2¢ do =1
]

0

f 2Meos’ode = [ 2Tsin‘¢p dp = 5 7 f 2T 082 sin®p = L 1
0 0 4 0 4

The first few Legendre polynomials are given in Table A-III

Table A-III

P(x)=1 P,x)=x P, = % (3x2-1)  P,(x) = %. (55°-~3x)

(35x" ~ 30x° + 3)

P,(x) —21;

(where x = cosfd). The orthogonality relationship for the Legendre

Polynomials is given by

Lll PQ(X) PQ,(X) dx =T2-ﬂz—m 621, (AI-2)

Useful relationships between the trigonometric functions and the

Legendre polynomials are given in Table A-IV.

Table A-IV
cosd = P,
sin®6 =2 P, - 2 P, c0829=%P0+% P,
sin’f cosé :%Pl - —E—PB cos’f =-§—Pl+% P,
cos'f = %P4+%PZ+%PO cos’8 sin’0 -——3-85P4+221—P2
sin'f = %Pq—%%PZﬁL%PO + ]25 P,
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Appendix II: Rotation of Coordinate Systems

Let A be the matrix that transforms the x’ coordinate system

into the x coordinate system, i.e.

x=Ax' (A-11-1)
o “DKX 6 ‘DKZ
where cos < = "DK; = and cos = — . Then
A - ‘DIX“DKZ —’DKX DKX
- ITK\/D*PX +DKYZ VDK?{ +'DK; DA
DA, DA, DA, DA; | (a-1-2)
EKVDT;( +UK§7 \/D_K;; +15K; DA
VBA? +DA? DA
X vy 0 VA
\ DA DA

Since the transformation involves rotation of both the basis function and
the projection operator, the integral involves products of the elements
of the transformation matrix. The following relationships are used in
App. IV-b.
DA,
A =
k3 px

From the unitarity property of A

ZAik Ajk = 513 (A-I1-4)
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(taking A as real), so that

2845 = ApAy - AphAy = 3DD; - Oy (A-II-5)
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Appendix ITI: Modified Spherical Bessel Functions of the First Kind

M, (&) = i% g (-18) (A-T1I-1)

where ig is the spherical Bessel function (see Abramowitz and Stegun
p. 443).

1p(2) = L -i— 5‘2)*@ (ii_zg?) (A-111-2)
We have

M (g) _ sinh (‘g’)

° 3
_ cosh (§) _ sinh (§) .

M, (f) = 2 . (A-III-3)
From the recursion relationship for Bessel functions

Mﬁ_l(‘f) - MQ+1(£) = (20+) Mﬁ(g)/g (A-TI1-4)

For small values of the argument, a power series expansion may be
made:
4 * 1 g2k
3 (3 &) -
M) = T L K sernn (A-lD)
k=0

The integral representation of the modified spherical Bessel function

is

M, (§) = —p7—— [ cosh (§u) (1-u)% du (A-111- 6)



166

The exponential of the cosine function can be represented in terms of

modified spherical Bessel functions by the relation

o0

eacose = Z (20+1) Mﬂ (a) Pﬁ(cose) (A-III-7)
=0
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Appendix IV: Detailed Evaluation of the Local Potential Integral
Part A: Evaluation of ZG’ (x’°z’)

’ ’ N ’ 2C;
ZG (x’zz ) = Tir fﬂA' x'’z’ e ¢iBAr COSGA' d(cos@A,)d¢A,

Using(A-III-7)

' ZG’(x’zz') =N fozﬁ fl (r sinBA, cos¢A,)2(r cosGA,){ Z (20+1) Mﬁ

vV -
i ' 20
(2§iBKr)P£(coseA, )} d(cosGA,) dqu,
From Table A-II and Table A-IV and integrating over ¢A' )
o Vi s 12 2 S
7G’ (x'%2') = N % r’ “[1 (5 P,(®) - = Py (x))( > (20+1) M (28 BAr)P (x))dx

£=0

Finally, using A-«I-2 we have

7G’ (x'%z’) = Nm—rg- {Ml(2§;BKr)-M3(2§;BKr)]

Part B: Transformation of ZG’ (r/, rory n)Q to ZG(r r. rk)Q
A’ A

i ’ i Iy '
We wish to e:{press G (rirjrk)QA in terms of the ZG (rirr'nrr’l)szA S.
Since only ZG’ (x’"z’), ZG’(y’?z’) and ZG’ (z'®) are non-zero, we need

only consider the coefficients involving these terms. Considering all

permutations of the indices, we can see that

Ty = (A A Ak3 + A11A33Ak1 + A13A]1Ak1)xr 2,1

+ (ApAphys + AizA].BAk2 + AisAjzAkz)y’zz'

12 ]2

+ (AAs3Ay,) 2°° + other terms

]3



168

Since ZG’ (x’?z’) and ZG (y'zz’) are equal (see Table I), we can

combine the first two expressions together obtaining
7ZG (rirjrk) = NVag [((AilA].l + AizAjz)Ak3 + (A A, + AizAkz)Aj3

3
+ (A A + ApAge)Ag) = (M, - M)

r3
+ AeAghy - (3M, + 2M,)]
Using (A-II-3) and (A-II-5), we obtain

ZG (rirjrk) = NVdr (C,; r*M, (28 BAr) + Cy, r’M, (2¢;BAr))

where
d.. 0. 6.
(1 k ik
Cyy = (5= Dy + -%_ D, +—5— Dj)
Csy; = DiDjDk - C31

Part C: Expressing (Z()(,AIG(JL'B rg r'c )) in terms of the modified
i Pj “k
spherical Bessel functions.

Transforming rn ry '~ to center A, we obtain (using (III-3))
Bi Bj Ck

rBirBjer = rirjrk - Birjrk - Bjrirk - Ckrirj

+ BiBjrk + BiCkrj + Bjckri - BiBjCk
Therefore,
(ZooAlGD(rBirBjer)) = ZG(rirjrk) - (B; ZG(rjrk) + Bj ZG(rirk)

Cy ZG(rirj)) + (BiBjZG (rk) + B;Cy ZG(rj) + Bjck ZG(ri)) -BiBjCk ZG(9)
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Finally, using Table II, we obtain the appropriate expression in

Table IV.

Part D: Evaluation of <GB(rBi) IAUplp) <pl iGC(rC.»
)

From (III-7) we have

<GB(rBi>1AUp!p> o] lGC(rcj» = [ rlydep AU (ry) ) @angg |
0 m
Tange | o)

Using Table III, we see that

m m m
I a'ngB, lL,m 127 NB (rA) ECO 1B M, (g) + ClOB r M, (8) + C12B r M, (B)]

where
o M BAPAy o ™ %im c = a(C, 5/BA+ )
018 BA 108 3 12RB

m m m
and I ange |y, = V127 N (rA){Co 1 M, (@) + C160 Mo (0) + Cipc rM, (a)]

m CACA, m 0. . m m m
Where COlC == —‘fCK:_‘ ClOC :—'3_— C12C:- (COIC/CA + ClOC)

and where o = ZCCCKrA and B = 2§B-EXI‘A

Thus,
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g;, I angp 1 ange y oy = 127 Ng (r)N(r) [ Copo ™M, (@M, (8)+C 0,

rMo(@M, (8) + C 30 TM, (€)M (B) + CopM, ()M, (B) + Cyu Mo ()M, (B) + Cozp 1°M, @)

M, (B) + CrtM,(0)M,(B) + Cppy tM,(GM(B) + Cpppr”M, ()M, (8)]
3 m m _ 3 6. 0. 0..
where Cyy, = 2 C1oB Coc Z — = -
m=1 m=1 3 3 9
3 m m 3 BAy Oy  BABA
Cio1 = z ClOCCOIB =Z 'BAi -
o o BA 3 3BA
5 m om 3 CA, 6,  CACA
Cio = Z Co 10 CIOB = E 'CA]' —_— == =-—
S o CA 3 3CA
; m m ’ CA CA BA; BAm (TREZ
= = —— ‘—‘B . ]
Cous mZ—1 Coic Coup mz-::i A Ba AN [CalBA

From the relation Clzg = -(C, fE/BA + CloB) and C, C -(C, 1rél/CA +

. C ,
Clol(ljl) we obtain C,,, = - %ﬁ_ = Coo0 Copo = '_C]jf' = Co0, Cip =

Conr C C
- -Cips Ci = - - - Cio1 » and Cyy, = - Sl Cazo
RA CA BA
C
or - 12 - C202-

CA
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Appendix V: Combining two Gaussian Exponentials on Center B and

C to form a new Gaussian Exponential on Center D

o~8CE-CF - @B)_-Cc+B)r*+2x(0 ([Tt pBy) + 2y(€Cy+tpB,)

+ ZZ(CCCZ—*—CBB_Z) - (CCCZ"LCBEZ)

Let D ¢ Cx*t5Px _ CCCy‘LCBEY + D = CC€Z+CB§z
X Corlp y T g 2™ T
Then ¢S (EBE B _ - 2C'B TB* -(tc+tp)@-BY
C "B

Thus, the product of two Gaussian exponentials is a Gaussian exponential

on a new center times a constant.
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Appendix VI(a): Evaluation VPm(x) and VM | (x)

(1) VPm(X) _ f°°dr {e-(r-—x)2 . e-(r+X)2er-1 dr

m = 2k+1

k
VP2k+1(X) = 7 (]+2)(2k) 20e-9)
i=0

VP,(x) = Vo (X + 1)

m = 2k+2

k

VPor+a
j=0 =0
2

VP,(x) = 2x B, (x) + e %

) "( +x)° ~1
(i) VM, f dr {e” (r-x ) et g
m = 2k+1
5 e 2 kel ]
N k k-j ~X
VM2k+1(X) =2) (23) X Ej(X) ) (2j+1)e ),
j:O j____o A:O

VM, (%) = 2E, (x)
m = 2k+2

2k+1 2(k~-j)+1
VMo, 2 (%) Z A ) x

i=0

(x) = ZZ (2k+]) 2k+1-2j E](X) + Z (%{:11) e-x Z

G-2)1

it
G001

2(k—7x)

<2 (k-)) -1



VM, (x) = V1 x

2
-0

£ 9
where Ej(x) = f one do (see Appendix VIII-a), I'= Gamma function,
0

and (;) = Binomial Coefficient



Appendix VI-b: Special Cases VM, (x) and V,(x)

2
Iss o (8, 2%) =T=_ }: dr ™" M, (2xr)

From (A-III-6) M, (£) = 4 [ cosh (£w) du

1 2
Ipso(8, 2%) =7—E’fowdr e " %f_i cosh (2xru) du

i 1 o 2.2 a2 - 2
T 3 L) du fPar XV [en T om0

xu”

1
-7 [_11 du e* " VP, (xu)
From (App. VI-a) VP, (xu) = V1
2
-X X 2 .
Let D;(x) = ;e-é—w L e%0" do (See App. VIII-b)
1 X2 1
Io;o((y ZX) =3z € ( )\/—_ [ X)]
Thus, VM, (x) = 2V1 Dg(x)

I, 2x)= —é— fooodr re-rle(zxr)
M, (¢) = 4_% [} cosh (£0)(1-u)du

1

2 2
I,,,(,2x) = -é— }45 Jo, du XY (1-u) VP, (xu)



Using the recursion relations for Dj (x) (See App. VIII-b)

X
g (27 2

I, 1(5, 2x) = %‘ -

) a i

L~

Thus, V,(x) = 2V _§(_><_) - f,,‘(l_DQX(X) )
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Appendix VII: Evaluation of the J integral
nf g,

oo 1 © 2
Jn, e, ﬂz(t’a/’b ) = C1n+1$/2 fo e T MQ (a’r) M2 (b’r) r™ dr
1 2

1 a’ 'le! L, 1 2. 1 2\ 4,
= du (1-u")™ dv (1-v") A-VII-1
¢(n+1)/2 2Q1+Q2+2Q13g21 f_l [-l

2
* fooe_r cosh (a’ur) cosh (b’vr) et g
4]

Substituting the relation
cosh (a’ur) cosh (b’vr) = 3{ cosh ((a’u+b’v)r) + cosh ((a’u-b’v)r)] into

(A-VIF1) and noting that the integral is even in v for both terms, we

may change v to -v in the second term which is equivalent to the
first so that

2,.,4 .
") = L a’ b’ "? ' vale [° _onle

Jn, ,Ql, »02(5’ a',b ) - Cin+1,§72 2Q1+£2+21 1ot f_l dV(l v ) J_l dv(l V2>
JLECY

Jf‘ooe—rz cosh ((a’u+b’v)r)rn+£l+12dr
0
3 1 aI—el‘bl 22 }: jr 1 du(l—uz)ﬂl f 1 dv (1—V2)22 (_a_,_l;l__i__bly_lz
- 0+0,+2 2 J-1 ! e 4
C(n+1)/2 9 i+ 0,101
a’u+b’v,
VPn+£l+£2 ("—2——_’
L atpks

|

Let A=
c(n+1)/2 211“}'22'*‘211'22!
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Let o= a’u B =b’v and expanding (l—uz)gl and (l—vz)ﬁ2 ,

L &
'Y - 1,+i 1 [}
Tn, 0, 6,820 =4 L) (DY —p e () ()
i =0 =0 a b
31 L
a’ b? . oi lowp)
21 2 ———4———— o+
La’ da f—b’ ap o p™z e VPn+J21+£2 (_2'£)
_ X 0X
Letting x:%é y:%—é J:aaﬁzz
dy dy

and noting that the integrand is even under the simultaneous change

of ¢and 8 to ~a, ~-f3

2, 4 o
A =+
Jn,ﬂ,ﬂz(c’ a,)b,) = A Z f/_ (-1)11 E - 1 - .ﬁl (12)
! i,=0 ]-;“:0 ar 21+l 2i+1 L7 L
a’+b’
2 a’-x 9 923 2
4f dx dy (x+y)“ti(x-y)“R X VP (x)
- fo f—b’+x yxry y n+4,+4,

b’ -a’

I

0 -b’+x

. . 2
dy (xry)?1 (x-3)? & VR, ()
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Defining

(s, 1, a’,b7) = (7 [ BT IT 4 g b i it (it 1]
- 2 2
Dm(x):e Xfxegomdo
o
- rx O o -T2 j
m(x) =e f e’ o f e 7 lar
4] o

we have by straightforward integration

! ') = 1 1 i +12 1 ﬁz
Jn,ﬂuﬁz(c’a ,P") g(n+1)/2 gyt Hp+1 E ? (=) ) (j2)
=0 i,=0

a’ (ﬁl'zil'l)b, (£2-212_1)

21, 2i, k
" 2i, /N1, 12;,,\ 1 / P .. ’ ;
DY GGy L F & it iiths & a7,b7)
jl:O jZ:O ]:O

-F_(ka j’ il+i27 j1+j27 ﬂ) a’,b'))

where for n+f,+6, = 2k

(b':l: al )2
+ ; N\ s 1y 4 +
Fic,i,1,47, 0@5P) = Ti+a) e 50, 0@ D (g (k-g)+21-7+ 1)
b’'+a’)
2
and for n+9 +0,=2k+1
. (b’;taL’)2
+ k+l 4 + PR
Fy,i,1,,1, 0@ =2 Gg7) @ fj' ¢@ ") DE; o1 1149

2

blraf, 2+l b2a)
RN aARC LY T f WICH ? T]‘)‘] X1 Dok 1+ 2 oy 232)
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Appendix VIII: Special Funetions

(a) E;(x) = fo Xe"’z o2l do (1)

E, (x) is related by a multiplicative factor of @ to the error function

Recursion formula: E].+1(x) =4 (2j+1)E].(x) - e'xzxzjﬂ] (2)
However, for small x accuracy is lost as one goes from small i to

large j. It is better to express Ej in terms of Ej+1' For small x,

the power series expansion may be used:

? 2i+1 2
By) = &2 (1 2 1 2 1 ] ®

To evaluate E, (x) (let it be represented by y), the program interpolates

from a table using a Taylor series expansion. Since

y(n+2) _ 9y y(n+1) —on y(n) (4)

each term in the expansion is easily evaluated. The table itself is
readily created by the same means. Due to the alternating sign of
(4),errors are damped out during evaluation of the grid points of

the table. For large values of X, E,(x) is set equal E (») = E The

5 -
function Err3(x), defined such that
-x° 3
E,(x) =e x(1.0 + Err’(x))

is evaluated before E, (x) in the program for small x in order to avoid

loss in accuracy.
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Appendix VIII-b.

2 2
(b) Dj(x) =e* [*e ddo (1)
()
D, (x) is called the Dawson integral (see

p. 298)

2

D,(x) = %(l"e_x )
The recursion formula
Dy,p®) = 3" (+1) D;(x)) (2)

Like Ej(x), accuracy is lost for small x using (2), so the inverse of (2)

is used, with for some maximum value j;
+1 2

D.(x) = % (1-
j j+1 m+3 %

X (1- 22 X (1-+-) 3)

To evaluate D, (x), the program uses the same procedure as for E, ().

Letting the function be represented by y, we have

y0+2) o _oxy®+D) o, 1), @) (4)

which is very similar to (4) of VIII-a. For small values of x,

2

D, (x) = x{1- 2;

(1- 2 1o Q

which is similar to (3) of Vill-a. For large values of x,

Dy () = g (14 gz (Lt oy (L4 gy (L4 ++4))) (6)
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The function Daws 3(x} defined such that
D, (x) = x (1.0 + Daws 3(x))

is evaluated before D, (x) in the program for small x in order to avoid

loss in accuracy.



Appendix VIII-c

X pX o i pu -0 2j
(c) DE:.| i(X) =e f e u f e ~ o do (1)
b 0 o .

The recursion formula is

2
. -X _i+2j+2
D.':_l_fl-}-l. - (i+1 o _ex.
E],1+2 i X E}(X) (i+1) DE]’ 1(x) ST (2a)
X i+2j+2
-X _i+2j+
B ,.=@Q+1)DE, , -2 X 2b
DLE+1;1 21 (23+1) 31 i+2j+2 ] (2b)
As for E.(x) and D, (x), for small x it is better to start with large
J J
values of i and j for DEj i(x). For small x,
bl
2 . .
~-X _i+2j+2 1 2
. _e%x P 1 2x° 1 . 2x
Dhj, :L<X) B 2i+1 - m+23+2+ 21+3 [i+2j+4 +2j+5
1
§i+2j+6 + °]” (3)

To evaluate DE,, , (x) and DEg, ,(x}(let them be represented by y and

w respectively), the procedure is the same as for E,(x) and D, (x),

with
y(n+2) _ 2xy(n+1) + 2ny"
, ()
W\n) - (n_l)y(n"l) + Xyn
For large values of x, DEj i(x) may be approximated by
X 2
X [T aua o b (5)





