
High-Level Synthesis and Rapid Prototyping of
Asynchronous VLSI Systems

Thesis by

Catherine Grace Wong

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2004

(Defended May 21, 2004)

ii

c© 2004

Catherine Grace Wong

All Rights Reserved

iii

All of us are better when we are loved.

— Alistair McLeod

To my parents, Andrew and Nancy Wong.

iv

Acknowledgements

I would very much like to begin by thanking my advisor, Alain Jean Martin, who introduced me to a

world without clocks. He has been a wonderful mentor, guiding me with wisdom, patience, humour,

and care. This thesis would not have been possible without his inspiration and support, and I shall

always appreciate his willingness to make time (even foregoing sleep on Saturday mornings!) to

discuss my research. The best of what I learned at Caltech, and what I continue to learn, can be

summed up by his lessons: to be intellectually daring, and to strive for elegance in all things.

Other professors have been inspiring as well. In particular, I thank André DeHon for his teaching

an excellent class at Caltech on electronic design automation, and for his feedback on my thesis and

other research papers. I would also like to thank the other professors on my Ph.D. committee,

Mani Chandy and Jason Hickey, for their helpful critiques and advice. I am grateful to Jonathan

Rose, my undergraduate advisor at the University of Toronto, for introducing me to reconfigurable

computing, and for offering suggestions on the asynchronous FPGA research presented here. I also

thank Tarek Abdelrahman and Corinna Lee, two professors who both inspired and encouraged me

to pursue research in computer hardware when I was an undergraduate student.

My years in graduate school have been enriched and enlivened by my fellow students in the

asynchronous VLSI group: Mika Nyström, Andrew Lines, Paul Pénzes, Robert Southworth, Uri

Cummings, Eitan Grinspun, Matt Hanna, Karl Papadantonakis, Piyush Prakash, Wonjin Jang, and

Jonathan Dama. By listening, encouraging, commenting and debating, they have all contributed to

and improved the quality of the research presented here. I thank them for their camaraderie, and

will truly miss group meetings together every Friday at 9:20 am. Mika especially has been a great

part of my life at Caltech, and I am thankful for not only his detailed comments on this work, but

v

for his friendship.

Other graduate students in the Computer Science department have also kept me sane (or happily

insane, depending on your point of view). Nathan Litke, Mark Meyer, Eve Schooler, Ilja Friedel,

and Jessi Stumpfel all shone their lights in my life in their own special ways, making the department

feel like a home. And, needless to say, all would have been chaos without the help of our friendly

department administrative staff. In particular, I’m not sure where I would be (stranded in Japan?)

were it not for the aid of Diane Goodfellow, Betta Dawson, and Jeri Chettum. Thank you!

I have been blessed with many amazing friendships throughout my time in Los Angeles. I thank

every kindred spirit who played with me, prayed with me, fed me, chauffered me, and cheered me

on with motivational messages written in Rice Krispie square letters!

Most importantly, I thank my family for their unfailing love and support.

My big sister has always been there to listen, to laugh, to send me books, and to pick me up

when I’m down. I treasure and am eternally grateful for our peerless “culture of two.” Her home

and family have been a refuge: her husband is the big brother I always wanted, and their children

are an endless source of delight.

My parents have always challenged me to do great things, but have never left me in doubt of

their unconditional love. From arithmetic lessons with Greenie the squeaky bath-toy dinosaur, to

the everyday examples of the grace and heart with which they live their own lives, they have taught

and shaped me in innumerable ways. Life has always been joyful in the Wong household! I dedicate

this thesis wholeheartedly to my mother and my father, and I thank God for them every day.

Lastly, I thank my fiancé Peter: my rock, and my love. Our time together at Caltech has been

a wonderful prelude; I stand alongside him full of hope, faith, and joy as the rich music of our life

together is about to begin.

vi

Abstract

This thesis introduces data-driven decomposition (DDD), a new method for the high-level synthe-

sis of asynchronous VLSI systems and the first method to target high-performance asynchronous

circuits. Given a sequential description of circuit behavior, DDD produces an equivalent network

of communicating processes that can each be directly implemented as fine-grained asynchronous

pipeline stages. Control and datapath are integrated within each pipeline stage of the final system.

We present many aspects of the synthesis of asynchronous VLSI systems, including general circuit

templates that DDD uses to estimate low-level performance and energy metrics while optimizing the

concurrent system. We also introduce a new circuit model and new techniques for slack matching, a

performance optimization that inserts pipelining into a system to modify asynchronous handshake

dynamics and increase throughput. The entire method is then applied to a complex control unit

from an asynchronous 8051 microcontroller, as an example.

This thesis also introduces a new architecture for an asynchronous field-programmable gate ar-

ray (FPGA). The architecture is cluster-based and, unlike most FPGA designs, contains an entirely

delay-insensitive interconnect. The basic reconfigurable cells of this FPGA fit the asynchronous

pipeline-stage circuit-template used by DDD, and the reconfigurable clusters include circuitry that

implements features assumed by an optimization phase of DDD, which reduces the energy consump-

tion of the system.

vii

Contents

Acknowledgements iv

Abstract vi

1 Introduction 1

1.1 The Advantages of Asynchrony . 1

1.2 VLSI Synthesis . 3

1.3 Contributions . 5

1.4 Organization . 6

1.5 Notation . 7

2 Data-Driven Decomposition 10

2.1 Introduction . 10

2.2 Basic Concepts for Data-Driven Decomposition . 12

2.2.1 Program Execution . 12

2.2.2 Program Equivalence . 13

2.2.3 Assignments and Data Dependencies . 15

2.2.4 Reaching Definitions . 16

2.2.5 DSA Transformations . 18

2.3 Dynamic Single Assignment . 20

2.3.1 Motivation . 20

2.3.2 DSA Indices . 22

viii

2.3.3 Straightline Code . 23

2.3.4 Selection Statements . 24

2.3.4.1 DSA Indices from Pre-Selection Code 25

2.3.4.2 DSA Indices for Post-Selection Code 26

2.3.4.3 Proof of Correctness . 28

2.3.5 Repetition Statements . 29

2.3.5.1 Loops with Terminating Bodies . 29

2.3.5.2 Nested Conditional Loops . 31

2.3.6 Special Cases . 34

2.3.7 Putting It Together . 34

2.4 Using the Projection Technique . 35

2.4.1 Dependency Sets . 36

2.4.2 Copy Variable and System Channel Insertion 37

2.4.2.1 Inserting Copy Variables . 38

2.4.2.2 Internal Communication Channel Insertion 40

2.4.3 Performing Projection . 41

2.4.4 Looking Ahead . 44

2.5 Related Work: Static Single Assignment Form . 44

2.6 Summary . 45

3 Asynchronous Circuits and Synthesis 47

3.1 Quasi Delay-Insensitivity . 47

3.2 Communications and Handshakes . 49

3.2.1 Channel Encodings . 49

3.2.2 Handshakes . 51

3.3 Asynchronous VLSI Synthesis Overview . 52

3.4 Asynchronous Pipeline Stages . 55

3.5 Precharged Half-Buffers . 56

ix

3.5.1 Traditional Compilation . 57

3.5.2 Circuit Templates . 59

3.5.2.1 Unconditional Communications . 61

3.5.2.2 Conditional Outputs . 63

3.5.2.3 Conditional Inputs . 65

3.5.2.4 State-holding Bits . 68

3.6 Performance Metrics . 68

3.7 Summary . 71

4 DDD Optimizations for Asynchronous VLSI 73

4.1 DDD Generation of PCHBs . 74

4.1.1 Variable Processes . 75

4.1.2 Channel Processes . 76

4.2 Isolating Hardware Units . 80

4.2.1 Arrays . 80

4.2.2 Functional Units . 82

4.3 Reducing System Communications . 83

4.3.1 Encoding Guard Expressions . 84

4.3.1.1 Removing Nested Selections . 86

4.3.1.2 Removing Basic Selections . 87

4.3.2 Conditional Communications . 88

4.4 Reducing System Computations . 89

4.4.1 Motivation . 89

4.4.2 Distillation . 92

4.4.3 Elimination . 96

4.4.4 Example . 96

4.5 Future Work . 96

4.6 Summary . 98

x

5 Clustering Asynchronous Processes 100

5.1 Motivation . 100

5.2 Recomposition of PCHB Processes . 102

5.2.1 Clustering in Series . 102

5.2.2 Clustering in Parallel . 103

5.2.3 Limits to Cluster Size . 104

5.3 Slack Matching . 105

5.3.1 FBI Delay Model for PCHBs . 106

5.3.1.1 FBI Graphs . 107

5.3.1.2 Messages and Tokens . 110

5.3.2 Critical Cycles . 112

5.3.2.1 Common Cycles . 112

5.3.2.2 Critical Cycles . 115

5.3.2.3 Basic Homogeneous Cases . 122

5.3.3 Dynamic Slack . 124

5.3.3.1 Base Case: Ring of PCHBs . 127

5.3.3.2 Base Case: Reconvergent Fanout . 128

5.4 Clustering Heuristic . 131

5.4.1 Preliminaries . 132

5.4.2 Copy Processes . 135

5.4.3 Simulated Annealing . 136

5.4.4 Clustering Homogeneous Systems . 137

5.4.5 Clustering Heterogeneous Systems . 139

5.5 Summary . 140

6 Case Study: Instruction Fetch Unit 142

6.1 Initial Specification . 142

6.2 Sequential Transformations . 145

xi

6.3 Decomposition and System Transformations . 146

7 Reconfigurable Asynchronous Circuits 151

7.1 Motivation and Background . 151

7.2 Logic Cells . 153

7.2.1 Reconfigurable PCHB Circuit . 154

7.2.2 Communication Patterns . 158

7.2.3 Performance and Area . 159

7.3 Cluster Design . 161

7.3.1 Copying Channels . 161

7.3.2 Feedback Channels . 161

7.3.3 Buffering and Initial Tokens . 163

7.3.4 Summary . 163

7.4 Mapping Examples . 164

7.4.1 Full Adder and ALU . 164

7.4.2 Microprocessor Execution Unit . 165

7.5 Architectural Models and Interconnect . 165

7.5.1 Logic Cell Comparisons . 167

7.5.2 Interconnect . 167

7.5.3 Parameterized Cluster Design . 170

7.6 Summary . 175

8 Conclusion 176

8.1 Summary of New Synthesis Methods . 176

8.2 Future Work . 179

A CHP Notation 181

A.1 Basic Constructs . 181

A.2 Basic Statements . 182

xii

A.3 Composition of Statements . 183

A.4 Control Statements . 183

A.5 Applicability of DDD . 184

Bibliography 185

xiii

List of Figures

2.1 Example of process decomposition. 11

2.2 Three programs demonstrating the importance of preserving reaching definitions. . . . 16

2.3 CHP selection statement and its transformation to DSA form. 26

2.4 DSA transformation of repetition statements. 33

2.5 Example CHP processes for projection. 37

2.6 Rewriting Q1 to create disjoint projection sets. 40

2.7 Final projection of example program Q3. 43

2.8 SSA and DSA forms. 45

3.1 Channel Encodings. 50

3.2 Four-phase handshake on a one-bit communication channel encoded as e1of2. 51

3.3 Formal synthesis flow for asynchronous VLSI design. 52

3.4 CMOS-implementable PRS. 58

3.5 Final CMOS-implementable PRS for the CHP process ∗[A?a,B?b;X!(a ∧ b)]. 59

3.6 PCHB corresponding to the PRS compiled from ∗[A?a,B?b;X!(a ∧ b)]. 60

3.7 General template for an unconditional precharged half-buffer circuit. 62

3.8 Template-designed PCHB circuit. 63

3.9 Example of a PCHB with conditional output X!. 65

3.10 Example of a PCHB with conditional input A?. 66

3.11 PCHB circuit annotated with transition counts and delays used to estimate cycle time. 70

4.1 Isolating arrays. 81

xiv

4.2 Systems without and with guard encoding. 86

4.3 Results of elimination and distillation on MiniMIPS WriteBack unit. 96

4.4 Vertical decomposition of decomposable (P) and non-decomposable (Q) processes. . . 97

5.1 Clustering two processes in series. 103

5.2 Clustering in parallel two processes that share inputs. 103

5.3 Basic slack matching structures. 105

5.4 Ring of PCHB stages with N=3. 107

5.5 FBI model for ring of PCHB stages with N=3. 108

5.6 Illustrating the FBI vertices on a PCHB circuit. 109

5.7 FBI graph for a PCHB annotated with edge boolean conditions for tokens. 111

5.8 FBI graph for a PCHBs showing placement of initial tokens. 112

5.9 Backward-latency cycles. 114

5.10 Acyclic forward-latency graph AF (G). 120

5.11 Throughput vs. number of messages. 126

5.12 Reconvergent fanout example. 129

5.13 Slack matching reconvergent fanout for pipelines with identical maximum throughputs. 130

5.14 Slack matching reconvergent fanout for pipelines with different maximum throughputs. 130

5.15 Breaking up a long handshake with a slack buffer. 131

5.16 Removing cycles for clustering. 133

5.17 Incrementer example of removing cycles for clustering. 133

5.18 Clustering schedule. 134

5.19 Splitting copy processes that exceed maximum fanout for clustering. 135

6.1 Fetch unit of the Lutonium 8051 microprocessor. 143

6.2 Guard encoding for the Fetch example. 146

6.3 Channels and variables in final DSA version of the Fetch. 146

6.4 Results of clustering and distillation. 149

xv

6.5 DDD example. 150

7.1 Quasi delay-insensitive asynchronous FPGA. 154

7.2 CHP specification for our asynchronous FPGA cell. 154

7.3 Logic cell for the asynchronous FPGA. 155

7.4 Reconfigurable cell: computation circuitry. 156

7.5 Reconfigurable cell. 156

7.6 Reconfigurable cell: completion circuitry. 156

7.7 Pulldown networks: chosen configuration. 157

7.8 Pulldown networks: alternate configuration. 158

7.9 Communication patterns for our asynchronous FPGA cell. 159

7.10 FPGA simulation results. 160

7.11 Layout for the basic FPGA cell, including twelve programmable SRAM bits. 160

7.12 Cluster block diagram. 162

7.13 FPGA full adder example. 164

7.14 Decomposition of the FBlock execution unit from the asynchronous MiniMIPS. 166

7.15 Comparison of three reconfigurable asynchronous logic cells. 167

7.16 Interconnect switches for different channel encodings. 168

7.17 Structured cluster design. 170

7.18 Logic cell slice for a cluster based on K-input e1ofM cells. 172

7.19 Slack buffer slice for a cluster based on e1ofM channels. 172

7.20 C-element tree slice. 173

7.21 Input multiplexer slice for a parameterized cluster. 174

8.1 DDD for the high-level synthesis of asynchronous VLSI systems. 177

1

Chapter 1

Introduction

Almost 40 years after the initial observation of Moore’s law, the data density of chips continues

to increase. Today, VLSI chips are among the most complex systems in technology. Fragility

accompanies complexity, though, and today’s chips are so finely tuned that small irregularities

or errors can render sophisticated systems useless. Set apart from performance or power targets,

managing complexity is the most important challenge facing the VLSI community. Our focus is on

creating methods for VLSI system design that can handle the high concurrency of complex systems

and separate the issue of system correctness from performance assumptions.

1.1 The Advantages of Asynchrony

Aside from complexity, increased power consumption and decreased robustness are currently the

most pressing issues that VLSI designers grapple with. In synchronous design, long the mainstay

of VLSI systems, global clock signals are implicated in both problems. Clock activity consumes a

significant amount of energy, especially when long clock distribution wires must switch. Meanwhile,

both the uncertainties in propagation delays of clock signals across a chip and the reduced device

reliability resulting from shrinking transistor sizes contribute to timing uncertainties in the system.

These uncertainties force designers to pad global clock periods with large safety margins, slowing

down the entire system.

These issues are often addressed by moving away from global synchronization and replacing

the single system clock with a collection of local clocks. Local clock signals do not span as great

2

distances across a chip, and can be stopped and started independently of each other to reduce

dynamic energy consumption while continuing to allow computations in other parts of the system.

However, the creation of multiple clock domains introduces complexities at domain interfaces that

reduce modularity, and does not remove the potential of a single fabrication or design error from

casting the entire system into disarray.

The alternative to synchronous design is asynchronous design, which eschews clocks entirely.

Asynchronous systems can be modeled as message-passing networks. Global synchronization is

replaced with local handshakes between the communicating asynchronous circuits. Practical evi-

dence of the energy and speed advantages of asynchrony (described in detail below) is provided by

the results of the most recent large asynchronous design: an 8051 microcontroller. Compared to

synchronous 8051s all running at the same operating voltage in the same fabrication technology,

the asynchronous chip both runs twice as fast as the advertised high-speed synchronous 8051, and

consumes only 75% of the energy of the advertised low-power synchronous 8051 [41].

Some design issues—most notably the problems related to clock-tree distribution—disappear

completely when a system is implemented asynchronously. Other issues, such as high dynamic

energy consumption, can be alleviated by the elimination of regularly switching clock networks

(as well as by the absence of glitches, that are not allowed in asynchronous logic). There can be

performance advantages as well, as fast computations in the system are no longer held back by

slower computations that restrict global-clock periods. An asynchronous system is free to run in

“average-case,” rather than “worst-case,” time. If a component runs slowly but infrequently, it is

not necessary to use every means possible to bring the system at large up to the desired speed; so

synthesis tools do not need to work so hard.

The elimination of the global clock cuts the number of timing assumptions in the system by

varying degrees, depending on the style of asynchrony chosen. As will be discussed, in the quasi delay-

insensitive (QDI) asynchronous style of this thesis, only one easily manageable timing assumption

remains. Other less conservative asynchronous design styles such as bundled data have enough

timing assumptions that although theoretically they would run faster than QDI systems, practically

3

the safety margins necessitated by uncertainty force them to run at a slower pace. In any case,

one immediate advantage of the elimination of some timing assumptions is that fewer or even no

timing assumptions need be reconciled across component interfaces. As the data density of chips

increases and systems-on-chip become more prevalent, this boost to the modularity and re-usability

of asynchronous circuits makes them more attractive.

Perhaps the greatest current advantage of asynchronous design is increased robustness: the lack

of timing assumptions separates issues of performance from issues of correctness. This allows asyn-

chronous systems to continue functioning despite variations in process technology or other physical

parameters such as voltage or temperature (some asynchronous systems have been shown to operate

properly at sub-threshold voltages [42]), and enables further energy savings by allowing energy to

be traded off against performance through voltage scaling without any need for special circuitry or

ramping protocols. It also simplifies system synthesis, matching particularly well with high-level

synthesis.

One drawback of asynchronous VLSI is the area overhead required by extra circuitry and wires to

eliminate timing assumptions by encoding a signal’s validity within the signal itself. This overhead

cost is offset by the fact that shrinking feature sizes both reduces the cost of area and increases

the time overhead due to uncertainty that is being eliminated by the extra circuitry. Even more

than area, the major obstacle preventing asynchronous VLSI from becoming a generally viable and

desired alternative to clocked chips is the current lack of design and test tools for high-performance

asynchronous systems. The research presented in this thesis seeks to remove a significant part of

this obstacle.

1.2 VLSI Synthesis

While their details differ, the synthesis flows for synchronous and asynchronous VLSI can be or-

ganized into analogous stages. Both design methods naturally begin with architectural design and

system specification. They then move on through behavioral, or high-level, synthesis, where algo-

rithmic descriptions are analyzed and structured into separate components, usually each at the level

4

of fine-grained pipeline stages. Finally, actual circuits are generated by logic synthesis and physical

design, and the overall system must be verified.

Specifically, the asynchronous design algorithms used in this thesis belong to the Caltech syn-

thesis method for asynchronous VLSI [37]. This method consists of a series of semantics-preserving

program transformations that ultimately convert an initial behavioral system specification into the

equivalent of a transistor netlist. The method is correct by construction, and every chip designed

using this approach (including the fastest working asynchronous microprocessors to date [39]) has

been functional on first silicon.

In synchronous VLSI, where correctness is inextricably linked to performance, much of the focus

is on design and verification at lower levels of synthesis (logic and physical), where it is essential

to achieve precise timing closure. In asynchronous VLSI however, small variations in circuit delays

and other low-level details can be easily tolerated by the system without significant degradation in

performance.

Much of the design emphasis in the synthesis of asynchronous VLSI is instead placed at higher

levels, when algorithms are decomposed into networks of small components, or processes. This

transformation is called process decomposition. With the absence of clocks and glitches, and the

necessity of all communication being acknowledged in local synchronizing handshakes, the inter-

process communications mapped during high-level synthesis have a significant effect on the energy

consumption of the final system. Also, while high performance is not necessary for correctness in

asynchronous systems, it is still obviously desirable. The throughput of asynchronous systems is

most dependent upon what is known as pipeline dynamics or handshaking dynamics, as determined

during high-level synthesis.

The relatively dim spotlight on high-level synthesis in synchronous design, combined with the lack

of mature design tools for high-performance asynchronous design has relegated behavioral synthesis

tools to the status of constantly emerging technology.

5

1.3 Contributions

The first contribution of this thesis is data-driven decomposition (DDD), a new method for process

decomposition that transforms a sequential program into a network of communicating processes

by analyzing the data dependencies in the original program. Basic DDD is independent of the

intended application of the target system. It is in fact more closely related to work on compiling

programs for data-flow architectures [2, 18, 31, 32, 16] and on data flow graphs for optimizing

software compilers [3, 12, 46, 49] than to other hardware synthesis methods. Unlike software or

data flow single-assignment language compilers, DDD is intended for use in the generation of actual

circuits. We present specific optimizations that make it the first behavioral synthesis method for

high-performance asynchronous VLSI systems.

While other asynchronous CAD tools exist, they are either syntax-directed and cannot generate

processes that are small enough for high throughput [4, 5, 9], or they begin at a level lower than

behavioral synthesis [11, 19, 28]. Until now, the fastest asynchronous microprocessors have been

decomposed manually, a task that is painstaking and whose results are highly dependent upon the

experience and intuition of the designer.

Within the framework of DDD for asynchronous VLSI, we

• present generalized circuit templates that can be used to estimate the performance, energy

consumption and size of high-level processes when they are implemented as asynchronous

pipeline stages;

• demonstrate new techniques for both high-level sequential programs and concurrent systems

to reduce the energy consumption of the final asynchronous VLSI system;

• and demonstrate new techniques to optimize the throughput of an asynchronous system while

still minimizing energy consumption.

The second contribution of this thesis is the presentation of a new clustered architecture for

asynchronous field-programmable gate arrays (FPGAs). As VLSI systems grow more complex,

system design time also grows and re-programmability is an increasingly attractive option in a world

6

where hardware development cycles can no longer keep pace with mask costs, and the technological

advancements and demands of applications. The modularity and robustness of asynchronous systems

makes them ideal vehicles for reconfigurable computation since they fit easily on systems-on-chip

and adapt easily to changing requirements for performance and power.

Unlike most previous asynchronous reconfigurable designs [22, 25, 33, 45], our architecture in-

tegrates datapath with control, and has a fully delay-insensitive interconnect. The lack of global

timing assumptions across the interconnect eases the strain on place and route tools considerably

by eliminating the necessity for complete timing closure. The main logic cells of this FPGA are

based on the same asynchronous pipeline stages targeted by DDD. Together, DDD and the recon-

figurable asynchronous architecture present new opportunities for designers seeking to synthesize

asynchronous VLSI systems.

1.4 Organization

The organization of this thesis is as follows:

1. We develop the method of data-driven decomposition (DDD), which transforms a sequential

algorithm into an equivalent system of communicating processes. The first half of DDD elim-

inates false syntactic data dependencies from the sequential algorithm, and the second half

analyzes the real data dependencies to decompose the algorithm into a concurrent system

(Chapter 2).

2. We introduce basic concepts of asynchronous VLSI including quasi delay-insensitivity and syn-

chronization through handshakes. We demonstrate the formal synthesis of asynchronous VLSI

and the generation of common circuits. We create general circuit templates for asynchronous

pipeline stages and demonstrate how they can be used to estimate low-level circuit performance

metrics from high-level algorithms (Chapter 3).

3. Making use of the new asynchronous circuit templates, we present optimizations to basic DDD

that generate practical asynchronous VLSI systems. These optimizations include “distillation,”

7

which identifies scenarios where conditional communications can be exploited to redesign asyn-

chronous pipeline stages so that they are idle and consume no dynamic energy for extended

periods of time (Chapter 4).

4. Given a decomposed network of asynchronous pipeline stages, we introduce a new clustering

phase that analyzes circuit performance estimates and pipeline dynamics to perform “recompo-

sition” (energy optimization) and “slack matching” (asynchronous throughput optimization)

simultaneously. These transformations can be considered analogous to partitioning and retim-

ing in synchronous VLSI systems. Their end result is an energy-efficient asynchronous system

capable of running at specified target speeds (Chapter 5).

5. We demonstrate the complete DDD method on a large control unit from an asynchronous 8051

microcontroller and compare its results to those of manual decomposition (Chapter 6).

6. We present a new architecture for asynchronous FPGAs that includes basic logic cells and

clusters of logic cells with added functionality, and demonstrate how a typical asynchronous

microprocessor unit can be implemented on the architecture. We analyze tradeoffs in the

design of delay-insensitive programmable interconnect, and introduce a parameterized model

of the FPGA architecture for use in future work (Chapter 7).

1.5 Notation

This programming language CHP (Communicating Hardware Processes) is used throughout this

thesis [37]. A more complete description of its syntax is provided in Appendix A, but we introduce

it briefly here. CHP is a high-level hardware description language that includes communications

primitives and concurrent processes. It is a simple imperative language, and none of its constructs

are explicitly tailored for hardware implementation.

CHP variables can be integers, enumerations, or arrays. A process is a single imperative program

that manipulates variables. Communications primitives can be used to transfer data and synchronize

computations with other processes. Communications channels are dedicated between two processes,

8

and have only one send and one receive port. A system consists of a group of processes, each running

concurrently and sharing information through communications across channels. Shared variables are

not allowed between processes in a system.

The major constructs of the CHP language used in this thesis are

Basic Statements:

• x := expr : Assignment.

Assign the value of expression expr to variable x .

• A?a: Input communication.

Assign the value on input channel A to variable a.

• B !b: Output communication.

Send the value of variable b on channel B .

• skip: Do nothing.

Composition of Statements:

• A; B : Execute A and then B in sequence.

• A,B : Execute A and B in parallel. Binds more strongly than “;.”

• A ‖ B : Execute A and B in parallel. Binds less strongly than “;.”

Control Structures:

• [g → A[]h → B]: Deterministic selection statement.

If g is true, execute A. If h is true, execute B . The program waits for one of g and h to be

true; g and h must be mutually exclusive.

• *[g → A[]h → B]: Deterministic repetition statement.

If g is true, execute A. If h is true, execute B . Repeat this behavior until both g and h are

false; g and h must be mutually exclusive.

9

• *[A]: Unconditional repetition statement.

Repeat A indefinitely. Equivalent to “*[true→ A].”

10

Chapter 2

Data-Driven Decomposition

Process decomposition transforms a sequential program into an equivalent network of communicat-

ing processes. This chapter introduces data-driven decomposition (DDD), a new method for the

process decomposition of deterministic processes. DDD transforms programs into single-assignment

form and uses data-dependency analysis when applying the projection technique to decompose a

program into a distributed system. We present the backbone of the DDD method, which is gener-

ally applicable not only to asynchronous VLSI design but also to synchronous design and parallel

programming in software.

2.1 Introduction

The goals of process decomposition are to expose concurrency, to pipeline computations, and to

divide the original sequential program into a network of processes, making any further transforma-

tions (such as low-level synthesis) easier. DDD performs process decomposition by analyzing data

dependencies in the original program to remove unnecessary synchronization and then partition-

ing the program into an equivalent system of target processes. If decomposition is applied as part

of a circuit-synthesis flow, DDD can factor in performance metrics such as cycle time and energy

consumption. Source and target processes are expressed in CHP.

As an example, the program

P ≡ *[A?a,B?b; x := f (a, b); X !x ; C ?c,D?d ; y := g(c, d); Y !y ; Z !h(x , y)]

11

D?

Z!

Y!

X!
P

P

X

PZ

PY
YZ

XZ

A?

B?

C?

Figure 2.1: Example of process decomposition.

can be decomposed into the system given below (see Figure 2.1):

P � PX ‖ PY ‖ PZ

PX ≡ *[A?a, B?b; x := f (a, b); X !x , XZ !x]

PY ≡ *[C ?c, D?d ; y := g(c, d); Y !y , YZ !y]

PZ ≡ *[XZ ?x , YZ ?y ; Z !h(x , y)]

Decomposition has introduced concurrency to the program, as the computations of x and of y

now occur in parallel. Also, if further synthesis is to be performed on the system, the target

processes PX , PY and PZ are more easily compiled.

There are three main phases in DDD:

1. DSA conversion: The first phase converts sequential programs into dynamic single-assignment

(DSA) form by splitting variables so that each is defined (assigned a value) only once during

execution. This removes unnecessary synchronization resulting from two unrelated variable

instances possessing the same name, leaving only inherent data dependencies in the sequential

program.

2. Projection: The second phase of DDD partitions the DSA sequential program into a new sys-

tem with one process for every variable in the code. Thus data dependencies are made explicit,

as each decomposed process includes all computations of its variable, input communications

with processes whose variables are used in the computations, and output communications with

12

processes that use its computation results in their computations.

3. Clustering: The final phase of DDD applies only when DDD is used to generate circuit sys-

tems. DDD clusters decomposed processes back together, simultaneously reducing communica-

tions overhead (particularly reducing energy consumption) and optimizing system throughput.

We begin presenting DDD by introducing basic concepts that are used in our data-driven method

(Section 2.2). DDD itself is introduced in Section 2.3, where we outline its first phase: transforming

sequential programs into DSA form. The DSA program can then be partitioned into parallel pro-

cesses through application of the projection technique, described in Section 2.4. Finally, Section 2.5

presents related work, and Section 2.6 summarizes the basic methods for the first two phases of DDD.

Additional asynchronous VLSI optimizations for these first two phases are described in Chapter 4,

and the final phase of clustering for asynchronous VLSI is presented in Chapter 5.

2.2 Basic Concepts for Data-Driven Decomposition

This section introduces the key concepts behind data-driven decomposition, such as program execu-

tion, program equivalence, and reaching definitions. These concepts set up the formal presentation

of the DDD method in following sections.

2.2.1 Program Execution

DDD manipulates deterministic programs that can be either terminating or non-terminating. A

terminating program contains no unconditional loops. We consider only non-terminating programs P

that fit the following template:

P ≡ Pinit ; *[Ploop]

where Pinit and Ploop are themselves terminating programs. (Nested unconditional loops are not

sensible. As will be described later in this chapter, if Ploop contains conditional loops, it can be

treated as a terminating program.)

13

We define a trace of a CHP program to be a sequence of basic statements (assignments and

communications) that occurs when the program is executed. A deterministic program with parallel

compositional operators can have multiple traces, since statements on either side of the operators

can be executed in any order. For example, the code “S1,S2” specifies that statements S1 and S2

can be executed in any order, and so both traces “S1; S2” and “S2; S1” can occur. The general

trace of a program P represents all possible execution traces of P , and is denoted as tr(P).

When reasoning formally about order and program transformations, we make use of the order

relation ≺. Given two instances of statements S1 and S2, S1 ≺ S2 indicates that statement S1

always precedes statement S2 in every possible execution trace of the program. (The notation S2 �

S1 is equivalent to S1 ≺ S2.) If S1 ≺ S2, then either there is at least one semicolon between

them in the code, or S1 and S2 appear in different iterations of the same loop with S1 in the

earlier iteration. In the example code “S1,S2; S3,” we have S1 ≺ S3 and S2 ≺ S3 but no such

order relation between S1 and S2. Given a set of statements Si from a program P , we define

min
≺
{Si} to be the set of statements that can be executed first among the statements of Si in general

trace tr(P). Similarly, we define max
≺
{Si} to be the set of statements that can be executed last

among the statements of Si in general trace tr(P).

2.2.2 Program Equivalence

DDD consists of a sequence of program transformations. The program transformations of the DSA

phase all transform sequential programs into new sequential programs. The program transformations

of the projection phase transform sequential programs into concurrent programs. The correctness

of any transformation P � Q depends on the program equivalence of the original program P and

the newly-generated program Q . (We use the notation “P � Q” to indicate that program P is

transformed into program Q .) We call two programs equivalent if their observable behavior is the

same. This section focuses on sequential program equivalence; the notion of equivalence between

sequential and concurrent programs is discussed in Section 2.4.

The observable behavior of a non-terminating CHP program P is its communications trace (the

14

projection of its trace onto communication actions). Since there are no shared variables between

CHP programs, communication channels are a program’s only interface to the outside world, and all

other program variables are strictly local. The observable behavior of a terminating CHP program

includes its communications trace, but can also include “results” that are stored in the program’s

variables (called “result variables”) at the end of execution. If temporary variables have been used

in the program, the program designer may wish to designate only a subset of variables as result

variables.

We define P .V to be the set of all variables used in a program P , and P .Vres ⊆ P .V be the set

of result variables for a terminating program P . For non-terminating programs P , we define P .Vinit

to be the set of variables that are assigned values (whether through regular assignment statements

or input communications) in the initial code Pinit . P .Vres consists of any variables whose values can

be used before being defined in an iteration of Ploop .

Finally, for every channel C in P , we define the individual communications trace tr(P)dC to be

the projection of the communications trace tr on only communications using C . Two individual

communications traces are equivalent only if their lengths are identical, and the sequence of values

communicated are identical.

Let us now apply a transformation to some deterministic program P such that P � Q . For

purposes of equivalence, we place only two restrictions on the transformation. First, the program

interface (its input and output communication channels) remains unchanged, so every channel C

in program P has a unique corresponding channel CQ in program Q . Secondly, if the program is

terminating, every result variable x in the original program P has a set of designated corresponding

result variables VQ(x) in the transformed program.

We can now define program equivalence for terminating programs.

Definition 1 [terminating-program equivalence] Given a deterministic terminating program P,

if P � Q then P
pgm
≡ Q if, for every possible trace of P and of Q:

• For any variable x ∈ P .Vres , the value stored in x at the completion of tr(P) equals the values

stored in variables y ∈ VQ(x) at the completion of tr(Q).

15

• For every channel C in P, tr(P)dC ≡ tr(Q)dCQ

2

Moving on to programs with infinite traces, consider the general program P which is a non-

terminating program that can be specified using terminating programs Pinit and Ploop .

Definition 2 [non-terminating-program equivalence] Given a deterministic non-terminating

program P ≡ Pinit ; *[Ploop], if P � Q then P
pgm
≡ Q if:

• Pinit
pgm
≡ Qinit , and

• (Ploop)n pgm
≡ (Qloop)n , for all iteration indices n.

2

Since Ploop
pgm
≡ Qloop , given the same inputs, they always perform the same communications and

compute the same results. We must still guarantee that they have the same inputs for each iteration.

The program P is non-terminating, so the “inputs” to each iteration of Ploop are the values stored

in the result variables, which can be used before they are defined in an iteration of Ploop . Thus,

for every variable x ∈ Ploop .Vres , the variable instances in Qloop that correspond to any instances

of x prior to its first assignment in Ploop must all have the same name as the variables in Qloop that

correspond to the instance of x on the LHS of its last assignment in Ploop .

2.2.3 Assignments and Data Dependencies

DDD uses assignments as its basic unit of reasoning. In this context, it considers both regular

assignments and communication statements to be “assignments,” and both regular variables and

communication channels to be “variables.” We say that variable x directly depends on variable y

if y is used in an assignment to x . More specifically, x uses y if:

• y appears on the RHS of a regular assignment statement to x (“x := y + 1”),

• y is an input channel and x is its input variable (“y?x”)

(x is on the LHS and y on the RHS of this assignment),

16

P ≡ y := 0 // S1
Y ?y // S2
x := y + 1 // S3

Q ≡ y1 := 0
Y ?y2

x := y2 + 1

Q′ ≡ y1 := 0
Y ?y2

x := y1 + 1

Figure 2.2: Three programs demonstrating the importance of preserving reaching definitions.
If x is a result variable, P and Q are equivalent but P and Q′ are not. If x is not a result variable,
all three are equivalent.

• x is an output channel and y appears in the expression that it sends (“x !f (y)”)

(x is on the LHS and y on the RHS of this assignment), or

• x is assigned a value within a guarded command and y appears in its guard condition

(“[y → x↑[]¬y → skip];” y is on the RHS and x is on the LHS of such an assignment).

In general, x depends on y if and only if

• x directly depends on y , or

• x directly depends on variable z , and z depends on y .

2.2.4 Reaching Definitions

We use reaching definitions [1, 10] to reason about whether a transformation changes the flow of data

in a program. Since changing data flow can lead to different values’ being output or stored in result

variables, reaching definitions play an important role in correctness proofs for transformations.

For example, consider the program P from Figure 2.2. There are two definitions of y in this

program (S1 and S2) but the results of only assignment S2 are used in statement S3. We therefore

say that S2 reaches S3, or that the reaching definition of y in S3 is S2. Now consider program

transformations that rename variable y in the code. In one case, P is transformed into Q and in

another, P is transformed into Q ′. Only P and Q are equivalent (assuming that x is the result

variable) because when the variable on the LHS of assignment S2 was renamed, the same renaming

was applied to all statements reached by S2. Thus, the reaching definition was preserved.

17

Definition 3 [reaching definition] The reaching definition of x in statement S is

RD(x, S) ≡ max
≺
{T ∈ P : T ≺ S ∩ T.LHS ≡ x}

If there are no assignments to x that precede statement S, then RD(x, S) ≡⊥. 2

Consider a program P with variable x and statements S and T . If T ≡ RD(x ,S) then, using the

notation of Hoare triples, for every possible execution trace of P :

{x 6=X }; T ; {x = X } . . . {x = X }; S

where the condition x = X holds true for some value X throughout “. . . .” In the example of

Figure 2.2 then, RD(y,S3) ≡ S2. Note that for a self-referencing assignment such as “x := x + 1,”

the reaching definition for x in this statement is a prior assignment, and not the assignment itself.

The remainder of this section considers transformations that insert and rename variables, insert

and reorder statements, but do not delete or alter the operations performed in statements. We

call this class of transformations operation-preserving transformations. Since statements are never

deleted, then if P
op
� Q , every statement S in P has a corresponding statement SQ in Q . Variables

in P can be renamed in multiple ways but statement operations cannot be changed, so we index

variables by their instances within statements. Thus, if statement S uses variables vS[i], each with

an index i that is unique for S , then vS[i] has a corresponding variable vSQ
[i] in SQ .

We can now say that a transformation preserves reaching definitions if:

RD(vS [i], S) ≡ T ⇒ RD(vSQ [i], SQ) ≡ TQ

When program transformations insert copy statements into the code, reaching definitions can

be changed without affecting the correctness of the transformation. For example, when a copy

statement “x := y” is inserted, even if y is replaced by x in all statements reached by the copy

statement, the reaching definitions of the program have changed. Since we use the preservation of

reaching definitions in our correctness proofs for DSA transformations that include the insertion of

18

copy statements, we extend the concept to introduce effective reaching definitions.

Definition 4 [effective reaching definition] Let Scp be a chain of copy statements inserted into P

when P � Q, and let Scp .V be the set of variables used and defined in this chain. For any state-

ment SQ in Q and variable v ∈ Scp .V where RD(v ,SQ) ∈ Scp, the effective reaching definition of

v in SQ is

RDeff (v, SQ) ≡ RD((min
≺
{Scp}).RHS,min

≺
{Scp})

2

We say that a transformation “preserves effective reaching definitions” if

RD(vS [i], S) ≡ T ⇒ RD(vSQ [i], SQ) ≡ TQ ∪ RDeff (vSQ [i], SQ) ≡ TQ

For example, given the program

P ≡ a := 0, B?b; x := a + b

let SA, SB , and SX be the assignments to a, b, and x , respectively. Also, let vSX [0] ≡ a

and vSX [1] ≡ b. Thus, RD(vSX [0],SX) ≡ SA and RD(vSX [1],SX) ≡ SB . Let P � Q , and

Q ≡ a := 0, B?b1; b2 := b1; x := a + b2

Now, SAQ , SBQ , and SXQ correspond to the assignments to a, b1, and x . We also have vSXQ [0] ≡ a

and vSXQ [1] ≡ b2, where b2 is a new variable defined by a new copy statement. Despite the new

variable names and copy statement, this transformation has preserved effective reaching definitions

since RD(vSXQ [0], SXQ) ≡ SAQ and RDeff (vSXQ [1], SXQ) ≡ SBQ.

2.2.5 DSA Transformations

The compiler transformations used by DSA conversion are variable-renaming and copy-propagation.

Consider the following program:

P ≡ A?x ; B?y ; X !f (x , y); C ?x ; Y !g(x)

19

As an example of renaming variables, the variable x may be split into two new variables x1 and x2:

Pvar ≡ A?x1; B?y ; X !f (x1, y); C ?x2; Y !g(x2)

Meanwhile, copy propagation adds a copy assignment to the program. It is often combined with

variable renaming:

Pcpp ≡ A?x ; B?y ; X !f (x , y); C ?x ; y := x ; Y !g(y)

DSA transformations do not remove statements or alter the structure of operations performed

by statements in any way. They are therefore operation-preserving transformations (as described

at the end of the previous section), and we can use the following notation: if P � Q then S � SQ

and vS[i] � vSQ
[i] for statements S in P and variables vS[i] in S .

Theorem 1 Let us apply an operation-preserving transformation to a terminating deterministic pro-

gram P creating a new program Q. If the transformation preserves the effective reaching definitions

of P, then P
pgm
≡ Q.

Proof: Assume P
pgm

6≡ Q . Then, by Definition 1, there must be either a difference in the values

of result variables, a different value sent on an output channel, or guard conditions evaluating

differently and changing the number of communications executed on an input or output channel.

Within the constraints of operation-preserving transformations, these scenarios can only be caused

by the existence of at least one assignment S in the program (whether to a regular variable or to an

output channel) whose result has changed because of the transformation from P to Q . Let the first

such assignment be to some variable x in P .

Now, the transformation cannot change any operations in P , and all of the statements are

deterministic. Therefore, S can only assign a different value than SQ if the values of the vari-

ables used to compute x have changed. Let vS[i] represent the variables used to compute x ,

and let T ≡ RD(vS [i], S) in P . Since the transformation preserves effective reaching definitions,

TQ ≡ RD(vSQ [i], SQ) or TQ ≡ RDeff (vSQ [i], SQ). But, using the same logic as above, T can only

assign different values to vS[i] than TQ assigns to vSQ[i] if the input values to these assignments

differ.

20

By induction, P
pgm

6≡ Q only if the initialization assignments or the environment sources attached

to the programs’ input channels also differ. But the transformation is prohibited from making such

changes. Therefore, all assignments S in P write the same values as assignments SQ in Q and we

must have P
pgm
≡ Q , contradicting the initial assumption. 2

We will use Theorem 1 to prove the correctness of DSA transformations on terminating fragments

of CHP code. The results will also be used later to build correctness proofs for transformations on

non-terminating code.

2.3 Dynamic Single Assignment

This section presents the first major phase of DDD: transforming the original code to a sequential

program in dynamic single-assignment (DSA) form. Given a program whose main body (disregarding

initialization statements) is enclosed in a non-terminating loop, the program is in DSA form if at

most one assignment is executed per variable per iteration. We first provide the motivation for

such a transformation, and then illustrate how it can be applied to CHP programs by studying

the language’s three basic control structures: straightline code, selection statements, and repetition

statements.

2.3.1 Motivation

Data-driven decomposition is concerned with exposing concurrency in an algorithm. It therefore

relies on data dependencies rather than syntactic constraints often included by designers of sequential

programs. One of these constraints is the use of the same variable name for variables that are actually

unrelated. For example, the program

x := 0; z := f (x); A?x ; Y !x

can be transformed into

x := 0; z := f (x) ‖ A?y ; Y !y

21

without changing its semantics. In general, when there are multiple assignments to the same variable

in a program, different instances of the variable are considered unrelated if they have different

reaching definitions, or the reaching definition of the first instance is killed before the second instance.

Definition 5 [kill] A statement S kills the definition of statement T when

(S.LHS ≡ T.LHS) and (RD(T.LHS, S) ≡ T)

2

Let us rewrite a program so that every time the definition of a variable is killed, the LHS of the

killing assignment and all future appearances of the variable in the code are renamed. There is no

reordering involved, and this does not change any reaching definitions in the program, but unrelated

variable instances have now been decoupled.

The advantage of such a renaming is that in removing unnecessary syntactic dependencies, it

helps identify situations where statements can be reordered correctly, adding concurrency to the

programming. Another advantage of the renaming is that if it is used in DDD, when each variable is

projected into its own process, the processes now truly do execute only one assignment per iteration

of the outer loop. This relieves some concerns about generating a decomposed network where

the processes are still too large for post-DDD synthesis. (Chapter 3 explains how processes that

execute more than one assignment per iteration require additional circuitry when using the standard

compilation template.) This chapter describes the DSA transformation, which is based on renaming.

Definition 6 [DSA form] Given a terminating program P, P is in DSA form when, for every

assignment statement S in P,

RD(S.LHS, S) ≡⊥

If P is a non-terminating program, it is in DSA form when both Pinit and Ploop are individually in

DSA form. 2

22

2.3.2 DSA Indices

First, we introduce some terminology. The first phase of DDD transforms a program P into an

equivalent program in DSA form, called PDSA. Part of this transformation involves “splitting”

variables x from the original program P by replacing them with multiple new variables xn for PDSA,

each with a unique integer subscript n. The new variables are called DSA variables. The subscript

of a DSA variable xn is called its DSA index.

Even when DDD splits original variables into separate DSA variables, we maintain a connection

between them, purely to reason about DSA transforms.

Definition 7 [DSA reaching definition] Consider a program P containing the variable x . If P �

PDSA and x � XDSA (where XDSA ≡ {x1, x2, . . .}), then the DSA reaching definition of x for any

statement S in PDSA is as follows:

RDDSA(x, S) ≡ max
≺
{T : T ≺ S ∩ T.LHS ∈ XDSA}

If there are no assignments to xi ∈ XDSA that precede statement S, then RDDSA(x, S) ≡⊥. 2

We call the DSA index of (RDDSA(x, S)).LHS the reaching DSA index of x in S . If RDDSA(x ,S) ≡⊥

then the reaching DSA index is 0. Now, we also present the following definitions:

Definition 8 [initial DSA index] Given a variable x and a fragment of CHP code C from a

program P, let N C
0 [x] be the reaching DSA index of x immediately before CDSA in program PDSA.

This value is also called the initial DSA index of x in C . 2

Definition 9 [final DSA index] Given a variable x and a fragment of CHP code C from a pro-

gram P, let N C
∞[x] be the reaching DSA index of x immediately after CDSA in program PDSA. This

value is also called the final DSA index of x in C . 2

For example, given the CHP

P ≡ A?a; S ; X !a

S ≡ X !a; B?b; a := a + b

23

DSA conversion produces

PDSA ≡ A?a1; SDSA; X !a2

SDSA ≡ X !a1; B?b; a2 := a1 + b

with initial and final DSA reaching indices for SDSA:

N SDSA
0 [a] = 1

N SDSA
∞ [a] = 2

These concepts are helpful in developing methods to transform CHP programs into DSA form. The

rest of this section illustrates how the DSA transformation can be applied in general to the three

main control structures of CHP, and collectively to all deterministic CHP programs.

2.3.3 Straightline Code

Straightline code contains no selection or repetition statements but rather only basic CHP state-

ments separated by either sequential or parallel operators. For such code to be in DSA form, every

assignment in the text must have a different variable on its LHS. If a variable x has multiple assign-

ments in the code, the DSA transformation splits it into multiple new DSA variables xn , each with

unique integer subscripts n.

Consider general straightline code S . For every variable x in S , let us define an indexing function

n(i) = NS
0 [x] + i

The code can be converted to DSA form (S � SDSA) using the following method:

1. For all variables x in S , rename the variable on the LHS of the i th assignment to x “xn(i).”

2. For all statements reached by the i th assignment to x in S , rename all instances of x on

the RHS “xn(i).” (For any statements in S that use x before it has been defined, replace x

with xn(0).)

An example of the application of this algorithm (with N S
0 [a] = 0) is

24

S ≡ A?a; b := a, c := ¬a; a := a + 1, D !a; a := 1; d := f (a)

SDSA ≡ A?a1; b := a1, c := ¬a1; a2 := a1 + 1, D !a2; a3 := 1; d := f (a3)

(Note that if only one assignment to a variable x appears in the original code, that variable does

not need to actually be renamed x1.)

Theorem 2 Let S be deterministic straightline code. If S � SDSA as described above, then S
pgm
≡

SDSA and SDSA is in DSA form.

Proof: S is a terminating program. The method in question alters programs only by renaming

variables within the code. It is therefore a operation-preserving transformation. By construction

(step 2), whenever a variable x on the LHS of an assignment is renamed, all instances of x used in

statements reached by that definition are also renamed to match. Also by construction, whenever x

is used in S before it has been defined by S , its DSA variable uses the initial DSA index. Thus the

method preserves all reaching definitions from S and so, by Theorem 1, SDSA
pgm
≡ S .

It remains to show that SDSA fulfills the property required of a DSA program in Definition 6.

For every assignment to a variable x in S , the method replaces x on the LHS with a new variable xn

with a unique index n. (The index is unique because a deterministic program always maintains a

strict order between assignments to the same variable.) Since each assignment has a unique variable

on its LHS, RD(A.LHS ,A) ≡⊥ for all assignments A in SDSA. Therefore SDSA is indeed a DSA

program. 2

2.3.4 Selection Statements

Selection statements contain different branches of control, of which only one is executed per program

iteration. The command of each branch (guarded command) can be straightline code containing

numerous assignments, or even more general code that can also include nested selections or loops.

Recalling Definition (6) for DSA programs, a selection in a DSA program can therefore contain

multiple assignments to the same variable, as long as no more than one assignment appears in each

25

guarded command.

Let us consider only selection statements with straightline code as commands for now, and build

up the more general solution later in Section 2.3.7. For the ith branch in a selection G , we label

the guard condition Gi and the command (straightline code) Si . Our method for converting a

stand-alone selection statement into DSA form is to apply the straightline code DSA transformation

independently to every command Si in G . When this method is applied to

G ≡ [G1 −→ S1 [] ... [] Gi −→ Si [] ...]

the resulting structure is

GDSA ≡ [G1 −→ (S1)DSA [] ... [] Gi −→ (Si)DSA [] ...]

If the selection does stand alone then this transformation is in fact enough. However, selections

generally appear in the middle of a larger series of statements; variables used in a selection can

have initial values assigned prior to the selection and can also be used in other computations after

the selection. DDD must therefore take additional steps to ensure that the entire DSA program is

correct.

Throughout the rest of this section, we will illustrate different steps referring to the CHP pro-

grams P1, P2 and P3 from Figure 2.3. We label the selection statement in each program “G .”

The code may not be that efficient from a programming perspective, but it serves well as a simple

example for DSA transformation!

2.3.4.1 DSA Indices from Pre-Selection Code

When transforming a selection statement G to DSA form, we must replace all variables v that appear

in the guard conditions of G with the DSA variables vN G
0 [v]. This makes the indexing of new DSA

variables in the selection statement consistent with DSA indices used in any pre-selection code.

In Figure 2.3, this transformation is among those applied to P1 resulting in new selection state-

ment P2. The initial DSA indices used for variables in G are

NG
0 [a] = NG

0 [b] = NG
0 [c] = 1

26

P1 ≡ *[A?a, B?b, C ?c;
[a ∧ b ∧ c −→ C ?c; D !c; c := 5; f := 2*c; F !f
[] a ∧ ¬b −→ G?c; D !c
[] else −→ skip
];
X !a, Y !c

]

P2 ≡ *[A?a1, B?b1, C ?c1;
[a1 ∧ b1 ∧ c1 −→ C ?c2; D !c2; c3 := 5; f1 := 2*c3; F !f1
[] a1 ∧ ¬b1 −→ G?c2; D !c2

[] else −→ skip
];
...

]

P3 ≡ *[A?a1, B?b1, C ?c1;
[a1 ∧ b1 ∧ c1 −→ C ?c2; D !c2; c3 := 5; f1 := 2*c3; F !f1
[] a1 ∧ ¬b1 −→ G?c2; D !c2; c3 := c2

[] else −→ c3 := c1

];
X !a1, Y !c3

]

Figure 2.3: CHP selection statement and its transformation to DSA form.

NG
0 [f] = 0

Thus, a, b and c have all been assigned values prior to the selection statement G , but variable f

has not. Any variable that appears in a guard condition of G must have a DSA index greater

than 0 when the program enters the selection. Note that since the guard conditions cannot contain

any assignments to variables, NG
0 [v] = NSi

0 [v] for every variable v and every command Si in the

selection G .

2.3.4.2 DSA Indices for Post-Selection Code

It now remains to ensure that the DSA indices chosen for the selection statement are consistent with

those used for variables in code that follows the selection statement. Let us suppose that a variable v

appears in multiple branches of the selection statement and is assigned to a different number of times

in each one. Since each guarded command is converted independently to DSA form, the reaching

definition of original variable v may be different at the end of different commands. For example,

27

in P2, the reaching definition of original variable c is now “c3 := 5” at the end of the first control

branch, “G?c2” at the end of the second branch, and the pre-selection assignment “C ?c1” at the end

of the third. What new variable name—c1, c2 or c3—should be used to replace c in post-selection

statements?

To determine the answer, we must either carry information about the guarded conditions outside

of the selection statement, or join all of the different definitions of v from the different commands

back into a single variable definition for a single thread of control. (The terminology used here

is deliberately similar to that of join nodes, or φ-nodes, used in static single-assignment compiler

analysis [12]. The techniques used to merge multiple threads of control back into one are different,

however.)

We choose the second option, and appoint the new DSA variable with the largest index to hold

the definition that reaches post-selection statements. In other words, for a selection statement G

with commands Si ,

NG
∞[v] = max

i
NSi
∞ [v] (2.1)

The DSA index of v immediately following the selection statement G is NG
∞[v], and all statements

outside of G whose reaching definition of v is in G should use vN G
∞[v] on the RHS of their assignments.

Thus, the final DSA indices for variables in G in P2 are

NG
∞[c] = 3

NG
∞[a] = NG

∞[f] = 1

Note that since a is not assigned any values in G , N G
0 [a] = N G

∞[a]. As it turns out, we can

ignoreNG
∞[f] since in our example’s original program P1, f is never used after the selection statement.

For the variables that are used after the selection, we must ensure that vN G
∞[v] is always defined

at the end of G ! DDD accomplishes this using the following method:

1. For every command Si and every variable v assigned a value in G , if NSi
∞ [v] < NG

∞[v] then

28

insert the copy statement vNG∞[v] := v
N
Si
∞ [v]

to the end of the command

2. For every statement S and every variable v where G ≺ S and RD(v, S) is in G , change all

instances of v on the RHS of S into vN G
∞[v]

The DSA indices inside selection statement G are now consistent with the selection’s surrounding

code. When the above method is applied to P2, the resulting process is P3 in Figure 2.3.

2.3.4.3 Proof of Correctness

Theorem 3 Let G be a selection statement in a program P. If P �PDSA and G �GDSA as described

above, then G
pgm
≡ GDSA and GDSA is in DSA form.

Proof: The transformation in this section is limited to variable renaming and copy propagation at

the end of guarded commands. It is therefore an operation-preserving transformation, and we use

Theorem 1 to prove program equivalence by proving the preservation of effective reaching definitions

from P to PDSA.

Since only one command Si in G is ever executed at a time, the application of the DSA straightline

transformation to Si guarantees both that (Si)DSA is in DSA form and that Si
pgm
≡ (Si)DSA by

Theorem 2.

DDD replaces variables v that are used in guards Gi with vN G
0 [v]. By Definition 8, N G

0 [v] is the

reaching DSA index of v at the beginning of G , so RD(v ,Gi) ≡ RD(vN G
0 [v], (Gi)DSA). Reaching

definitions in the guards are therefore preserved. Since there are no assignments in guards, the

replacement of v with vN G
0 [v] does not affect the DSA form of the selection.

It remains to consider any copy statements inserted at the end of Si . Any variable vN G
∞[v] on

the LHS of these statements cannot have been defined before in Si (otherwise N Si
∞ ≥ N G

∞ and the

assignment would not exist), so this insertion leaves GDSA in DSA form. The new assignment kills

the last definition of v in Si , but is merely a copy statement that propagates the value of that def-

inition, and thus leaves the effective reaching definition intact. The inserted assignments therefore

do not change the semantics of the selection, and GDSA
pgm
≡ G . 2

29

2.3.5 Repetition Statements

While it is not necessary for the correctness of the method, we assume that all sequential programs P

to which DDD is applied are non-terminating. Any statements in Pinit can be considered the

reset protocol of the program; since the program’s loop is non-terminating, we do not consider

any statements that follow it. Nested non-terminating loops are nonsensical so we also ignore such

programs. Hence, when we speak of applying a DSA transformation to repetition statements in

CHP, we are referring to either a loop with only terminating programs inside, or nested loops where

the inner loop is conditional.

We begin by demonstrating how DDD converts loops with terminating bodies into DSA form,

and then how DDD handles nested loops.

2.3.5.1 Loops with Terminating Bodies

Consider a program

P ≡ A; *[G −→ S]; Z

where A, S and Z are all terminating programs that do not contain any repetition statements. Tra-

ditional “non-terminating programs” fall into this class (their guard condition G ≡ true, making Z

superfluous). Note that conditional loops with multiple branches

*[G1 −→ S1 [] G2 −→ S2 [] . . . [] GN −→ SN]

can also be rewritten to fit into this class of programs:

*[G1 ∨G2 ∨ . . . ∨GN −→ [G1 −→ S1 []. . .[]GN −→ SN]]

Let x be a variable that is defined in A and has multiple definitions in S . The presence of a

definition in A implies that x is used in S before it is defined in S . If x is split when S � SDSA, the

DSA variable that is used at the beginning will have a different DSA index from the DSA variable

defined at the end. The program will therefore be incorrect. For example, if

x := xinit ; *[X !x ; C ?x ; Y !x ; D?x]

30

is transformed into

x0 := xinit ; *[X !x0; C ?x1; Y !x1; D?x2]

then the variable x0 does not hold the value of x2 after an iteration but instead always keeps the

initial value xinit . DDD’s solution is to change the name of the variable defined in the initial code and

insert a copy statement for DSA variables of x at the beginning of the main loop. The transformed

program is therefore

x2 := xinit ; *[x0 := x2; X !x0; C ?x1; Y !x1; D?x2]

Consider a program P containing a loop as above, where x represents all variables used in S

before they are defined in S . DDD begins by individually converting A � ADSA, S � SDSA and Z �

ZDSA such that for all variables x in P , N ADSA
∞ [x] = N SDSA

0 [x] and N SDSA
∞ [x] = N ZDSA

0 [x]. It

transforms G � GDSA by replacing all instances of x in G with DSA variable x
N

ADSA
∞ [x]

. The

intermediate program that results is

ADSA; *[GDSA −→ SDSA]; ZDSA

(Note that when x is used before being defined in SDSA, its DSA index is N ADSA
∞ [x].) DDD then

inserts two copy statements into the code:

ADSA; x
N

SDSA
∞ [x]

:= x
N

ADSA
∞ [x]

; *[GDSA −→ x
N

ADSA
∞ [x]

:= x
N

SDSA
∞ [x]

; SDSA]; ZDSA

Theorem 4 Let P ≡ A; *[G → S]; Z be a non-terminating program with terminating compo-

nents A, S, and Z . If P �PDSA following the DDD method given above, then P
pgm
≡ PDSA and PDSA

is in DSA form.

Proof: We begin by noting that, for all variables x used before being defined in S ,

NADSA
∞ [x] = NSDSA

0 [x] ≤ NSDSA
∞ [x]

Therefore x
N

ADSA
∞ [x]

is used but not defined anywhere in the body of SDSA, and x
N

SDSA
∞ [x]

is also not

defined anywhere in the body of ADSA, and so the insertion of the two copy statements does not

31

affect the individual DSA form of either SDSA or of ADSA. Therefore, by Definition 6, since the code

preceding the loop, the code in the loop body, and the code following the loop are all individually

in DSA form, PDSA is in DSA form as well.

Now, since they are all terminating programs, A
pgm
≡ ADSA, S

pgm
≡ SDSA and Z

pgm
≡ ZDSA

by Theorems 2 and 3. To fulfill program equivalence for non-terminating programs as specified

in Definition 2, it remains to show that the names of all variables xi ∈ XDSA used in the body

of PDSA’s loop before being defined in the loop match the names of variables on the LHS of the l

ast assignments to any DSA variable xi ∈ XDSA in ADSA and SDSA.

But the first definition to a DSA variable in the loop body is actually the inserted copy assign-

ment at the beginning of the loop. The only DSA variable used before the definition is therefore

on the RHS of the definition itself, x
N

SDSA
∞ [x]

. By definition, this is the DSA variable last assigned

a value in SDSA. Because of the copy statement inserted immediately preceding the loop, it is also

the last DSA variable assigned a value in ADSA. Therefore, P
pgm
≡ PDSA. 2

2.3.5.2 Nested Conditional Loops

The case of conditional repetition statements nested within a non-terminating program is illustrated

by the following code:

P ≡ Ainit ; *[A; *[G −→ S]; Z]

We present two methods of transforming such loops into DSA form: one straightforward but ineffi-

cient, the other more complicated but also more generally applicable.

The first method, transforming the entire program into a state machine, is inefficient in terms of

the communications that it will require in the eventual decomposed system. We include it because

it is general and straightforward and can be useful in simple cases. The method converts nested

loops into selection statements through the addition of a state bit to the process. Then, the DSA

transformation for selection statements can be performed to rewrite the entire program in DSA form.

32

Consider the general program P for repetition statements given above. We introduce a state bit x

that is true when the program is executing statements within the loop, and false when the program

is on the outside of the loop. With the addition of a large encompassing selection statement, we can

now push the repetitive behavior of the inner loop out onto the unconditional main loop.

Ainit , x↓;

*[[¬x −→ A, x↑

[] x ∧ G −→ S

[] x ∧ ¬G −→ Z , x↓

]]

While this is a valid transformation, it is not ideal because all program variables now directly

depend upon x . When the variables are all split into their own processes by DDD, the value

of x will need to be explicitly communicated to all of them. Even when hardware optimizations

introduced in Chapter 4 are applied to the decomposed system, the system may be inefficient with

its communications. Still, the nested repetitions have been removed, and the program can be

converted to DSA form as illustrated in the previous section.

A more efficient way of handling nested loops is to perform an early decomposition of the se-

quential program. The code within the loop is moved to one process while the code outside of the

loop is kept in another. An example of such a solution is

P ≡ Ainit ; *[A; *[G −→ S]; Z] � Pout ‖ Pin

Pout ≡ Ainit ; *[A; AS !; SZ ?; Z]

Pin ≡ x↓; *[[¬x −→ AS? []x −→ skip];

[G −→ S , x↑

[]¬G −→ SZ !, x↓

]]

where AS and SZ are newly- introduced channels.

There is no added concurrency in this decomposition. Synchronizing semicolons in the sequential

program have been replaced with synchronizing communications in the decomposed system, and the

33

P ≡ Ainit; ause := faa(ainit);
*[adef := A(ause);

guse := fag(adef), suse := fas(adef), zuse := faz (adef);
*[G(guse) −→ sdef := S(suse);

guse := fsg(sdef), zuse := fsz (sdef), suse := fss(sdef)];
zdef := Z(zuse);
ause := fza(zdef)

]

P ≡ Pin ‖ Pout

Pout ≡ Ainit; ause := faa(ainit);
*[adef := A(ause);

guse := fag(adef), suse := fas(adef), zuse := faz (adef);
AS !{suse , guse}; SZ ?zuse ;
zdef := Z(zuse);
ause := fza(zdef)

]

Pin ≡ x↓;
*[[¬x −→ AS?{suse , guse} [] x −→ skip];

[G(guse) −→ sdef := S(suse);
guse := fsg(sdef), zuse := fsz (sdef), suse := fss(sdef), x↑

[] ¬ G(guse) −→ SZ !zuse , x↓
]]

Figure 2.4: DSA transformation of repetition statements.
Example of early decomposition, including data.

two implementations are semantically equivalent. The advantage of this solution over the general

state machine is that only short communication statements, and not arbitrarily long series, are

contained within selection statements. Thus, less communication will be required between guard

variables and decomposed processes in the eventual distributed system. Both processes can now be

converted into DSA form and decomposed separately.

We demonstrated the abstract split of computations above, but have not yet included the data

communications required between processes. A more realistic representation of the scenario that

explicitly includes variables that are used and defined by each CHP series is given in Figure 2.4. In

this example, the notation “vdef := V(vuse)” indicates that the CHP series V uses variables from the

set vuse and contains assignments to variables from the set vdef . The notation “wuse := fvw (vdef)” is

included to explicit indicate which variables assigned values in the series V are used in the ensuing

34

series W.

The decomposition shown in Figure 2.4 is correct: the two new processes together form the

equivalent of the original sequential program. Both new processes (Pin and Pout) contain only

straightline code and selection statements, and so can be converted into DSA form as demonstrated in

the previous sections. Now DDD can apply the projection technique of Section 2.4 to both processes

separately and then recombine the resulting systems for the clustering heuristic of Chapter 5.

2.3.6 Special Cases

We have not yet mentioned arrays, a special type of variable in CHP. When the original CHP

specification describes circuit behavior, arrays often represent special structures such as memories

or register files, and their detailed manipulation is left for Chapter 4, which describes DDD hardware

optimizations.

When the original program is not describing circuit behavior, we can generally consider an

array X [0. . .N] to be a collection of variables x0 . . . xN , and replace any array operations with

selection statements before applying DDD. Thus a statement “y := X [k]” can be rewritten as

[k = 0 −→ y := x0 [] k = 1 −→ y := x1 [] . . . [] k = N −→ y := xN]

and a statement “X [k] := y” can be rewritten as

[k = 0 −→ x0 := y [] k = 1 −→ x1 := y [] . . . [] k = N −→ xN := y]

2.3.7 Putting It Together

When converting general deterministic CHP programs into DSA form, the individual transformations

demonstrated for various control structures can be combined as follows. First, remove any nested

loops from the program using the techniques given in Section 2.3.5. Then the only structures left in

the processes are CHP series that combine selection statements with straightline code. Sections 2.3.3

and 2.3.4 showed how to transform these structures into DSA form. Since the methods for both

structures depend on the same concepts of initial and final DSA indices for variables in the structure

35

(NS
0 [v] andNS

∞[v]), they can be used together when dealing with general code that combines and

even nests straightline code and selection statements.

Suppose straightline code S appears in parallel with a selection statement G . The situation

where variables are assigned values in both S and G never arises because it would be an instance

of nondeterminism in the original code. Thus, all deterministic CHP programs can be converted to

DSA form.

2.4 Using the Projection Technique

Now that we have converted an original sequential process to DSA form, we can begin breaking

it into target processes. The basic units of our decomposition are assignment statements, and the

basic tool is the method of projection [34]. Projection is a decomposition technique in which a CHP

process is syntactically projected onto disjoint sets of its variables. The resulting images are the

new processes that together form a concurrent system which is functionally equivalent to the source

sequential process. DDD directs the projection technique by manipulating a program’s syntax to

achieve the semantically desired results.

A simple example of partitioning by projection begins with the process

P ≡ *[A?a; B?b; X !f (a); Y !g(b)]

When P is projected onto the two sets {A?, a,X !} and {B?, b,Y !} the resulting system is P � P1 ‖

P2, where

P1 ≡ *[A?a; X !f (a)]

P2 ≡ *[B?b; Y !g(b)]

All synchronization between the two computations has been removed by this transformation. The

correctness of projection has been proved under the assumption of slack elasticity [35]. In a CHP

system, the slack of a communication channel specifies the maximum of outstanding messages (the

amount of buffering) allowed on that channel. A system is slack elastic if its correctness is preserved

when the slack on its channels is increased. An open system S is locally slack elastic if, when

36

composed in parallel with an environment such that the new system is closed, adding slack to

any channel in the closed system introduces no non-determinism to S . All deterministic programs

are locally slack elastic and so, according to Manohar [34], projection performed on deterministic

programs is correct.

Historically, projection has been used to verify the equivalence between sequential processes

and systems that have been decomposed by hand. Projection is a tool; until now, no guiding

framework has been provided demonstrating effective and general ways to apply the tool to process

decomposition. Where in the past designers have relied on experience and intuition in choosing

the different variable sets for projection, DDD uses data-dependency analysis to specify sets of

variables for every process in the projected concurrent system. DDD’s methods are described in

Sections 2.4.1-2.4.4.

2.4.1 Dependency Sets

In projection, a process’s variables (including communication channels) are partitioned into disjoint

projection sets. The original process is then decomposed into a system containing one new process

per set. For example, consider the process

P ≡ *[A?a,B?b,C ?c; X !(a + b); [c −→ D?d ; y := c + d []¬c −→ skip]]

The variables of P can be partitioned into two projection sets: {A?, a,B?, b,X !} and {C ?, c,D?, d , y}.

When the original process is projected onto these sets, the resulting system is

P � Px ‖ Py

Px ≡ *[A?a, B?b; X !(a + b)]

Py ≡ *[C ?c; [c −→?d ; y := c + d []¬c −→ skip]]

There are rules about how variables can be grouped into projection sets. If instead of P , the

program from the previous example had been Q1 from Figure 2.5, we would not have been able to

split X ! and y into different projection sets since both variables use b in their assignments. In this

case, a copy of b would have needed to be inserted into the program before projection, as in the

37

Q1 ≡ *[A?a, B?b, C ?c; X !(a + b);
[c −→ D?d ; y := b + c + d [] ¬c −→ skip]]

Q2 ≡ *[A?a, B?b, C ?c; by := b; X !(a + b);
[c −→ D?d ; y := by + c + d [] ¬c −→ skip]]

Figure 2.5: Example CHP processes for projection.

rewritten process Q2. Now, X ! and y could have been split into different processes using completely

disjoint projection sets.

DDD creates one process for every variable in the DSA sequential program, and so projection

sets are based on the dependency sets of each variable. For a variable v , its dependency set DS (v)

consists of all of the variables used in its assignment. The only variables that do not have dependency

sets (and thus do not have their own processes in the decomposed system) are input-communication

channels. The dependency sets for all of the variables in the program Q2 are listed below:

DS(a) ≡ {A?}

DS(b) ≡ {B?}

DS(c) ≡ {C?}

DS(by) ≡ {b}

DS(X!) ≡ {a, b}

DS(d) ≡ {c,D?}

DS(y) ≡ {by, c, d}

2.4.2 Copy Variable and System Channel Insertion

A variable’s dependency set forms the core of its projection set in DDD, but other syntactic adjust-

ments are required to make the transformation formally correct. For example, if a variable appears

in the dependency sets of several other variables, copy variables need to be inserted in the sequential

code. And if projection is used to pipeline the program, regular assignments such as “x := a” need

to be replaced by distributed assignments: parallel communication statements on newly created

system channels, as in “XA!a,XA?x .” This section describes both of these steps.

38

2.4.2.1 Inserting Copy Variables

If a variable appears in the dependency sets of several other variables, DDD inserts new copy variables

into the program that can each be projected out into a different process. In general, if a variable v

appears in the dependency sets of variables ai , then DDD creates a new copy variable vcp and inserts

the assignment vcp := v immediately after the original assignment to v . (During projection, the

creation of this variable creates a separate copy process for v .) DDD then continues by inserting

other assignments of the form vai := vcp for each ai after the assignment to vcp . Finally, to maintain

program correctness, DDD replaces each instance of v on the RHS of the assignment to ai with the

new copy variable vai
.

For example, in the CHP example given below, DDD inserts copy variables acp , ax and aB to

transform the program R1 into R2 before assigning projection sets.

R1 ≡ *[A?a; x := a + 1, B !a;

[a > 0 −→ Z !f (x) [] else −→ skip]]

R2 ≡ *[A?a; acp := a; ax := acp , aB := acp , aZ := acp ; x := ax + 1, B !aB ;

[aZ > 0 −→ Z !f (x) [] else −→ skip]]

Consider a slightly more complicated scenario where a variable v appears in a guard condition

for a selection statement command containing multiple assignments to different variables. A copy

of v can be inserted for each of the assignments, but now they must all be incorporated in the guard

condition of the rewritten program. DDD accomplishes this by replacing all instances of “v” in

the guard condition with a conjunction of the new copy variables, and all instances of “¬v” with a

conjunction of the inverses of the new copy variables. Thus, the process R3 in the example below

can be rewritten as R4.

R3 ≡ *[... v := f (w , x); ...

[v −→ A?a, b := f (...) [] ¬v −→ skip] ...]

39

R4 ≡ *[... v := f (w , x); vcp := v ; va := vcp , vb := vcp ; ...

[va ∧ vb −→ A?a, b := f (...) [] ¬va ∧ ¬vb −→ skip] ...]

Thus far, we have been considering communication channels to be the equivalent of regular

variables in DDD. There are practical differences that must be acknowledged by our methods. While

DDD can copy regular variables to create coherent projection sets, input-communication channels

cannot be “copied” or “split.” Instead, DDD rewrites the code so that whenever an input channel

is used, the value read in is always stored in the same variable. If this is not the case in the

original code, DDD introduces a new input variable to the code for this purpose, and then inserts

assignments from this new variable to the original variables immediately afterwards. (This may

cause the program to no longer be in DSA form.) The input channel therefore does not directly

appear in the dependency or projection sets of any variable other than the new input variable, and

no split needs to be considered. In the example below, the process R5 is rewritten as R6:

R5 ≡ *[V ?a; x := f (v) ... ;

V ?b, W ?c; Z !(b + c)]

R6 ≡ *[V ?vin ; a := vin ; x := f (a) ... ;

V ?vin , W ?c; b := vin ; Z !(b + c)]

Once the appropriate copy and input variables have been inserted into the sequential program, DDD

rewrites all of the dependency sets.

Note that almost all transformations described in this section amount to copy propagation ac-

companied by variable renaming. (Variable renaming preserves effective reaching definitions.) The

sole exception is the transformation that replaces variables in guard expressions with conjunctions of

copies of themselves. In this last transformation, if x = x1 = x2, then x1∧x2 ≡ x and ¬x1∧¬x2 ≡ ¬x

are always true, so the guard replacement never alters the computations performed by the program.

Therefore, the transformations described here fall into the class of operation-preserving transfor-

mations and since they preserve effective reaching definitions, by Theorem 1, the new program is

equivalent to the original.

40

Q3 ≡ *[A?a, B?b, C ?c;
Bcp !b, Bcp?bcp , Ccp !c, Ccp?ccp ;
AX !a, AX ?ax ,
BX !bcp , BX ?bX , By !bcp , By?by ,
Cd !ccp , Cd?cd , Cy !ccp , Cy?cy ;
X !(aX + bX);
[cd ∧ cy −→ D?d ; Dy !d , Dy?dy ; y := by + cy + dy

[]¬cd ∧ ¬cy −→ skip
]]

Figure 2.6: Rewriting Q1 to create disjoint projection sets.

2.4.2.2 Internal Communication Channel Insertion

For projection to be formally correct, if a decomposed process includes a communications statement

then the statement must exist in the original sequential code. Given an original program where

variable b depends directly on variable a, DDD must perform projection so that the value computed

in the decomposed process for a is explicitly communicated to the new process for b. This is

accomplished by inserting the required communication statements into the sequential program before

projection.

If an assignment of the form “ab := acp” has already been inserted into the program, then DDD

can simply rewrite this assignment as “Ab !acp ,Ab?ab ,” where Ab is a new communication channel

created for use internally within the decomposed system. Both the regular assignment and the

distributed assignment assign the value of a to ab .

If, on the other hand, DS (b) is the only dependency set in which the variable a appears, then

DDD creates a dummy variable ab , inserts the concurrent communications statement (as above) into

the program immediately following the assignment to a, and replaces a on the RHS of the assignment

to b with ab . Figure 2.6 demonstrates the insertion of internal communications by rewriting the

process Q1 from Figure 2.5 and creating the projection channels AX , Bcp , BX , By , Ccp , Cd , Cy ,

and Dy .

Again, all transformations in this section are copy propagation transformations accompanied

by variable renaming to preserve effective reaching definitions. (Rewriting regular assignments as

communication statements can be considered simply another form of copy propagation, using the

41

new channel as a temporary variable.) By Theorem 1 then, the resulting programs are equivalent

to the old.

2.4.3 Performing Projection

Now the dependency sets for all non-copy variables are disjoint. DDD forms the projection sets PS (v)

for each variable v from the original program in the following manner:

1. Include the variable v itself in PS (v).

2. For every variable a in DS (v)

• include a in PS (v), and

• include internal input channel port Av ? in PS (v).

3. For every variable z in whose dependency set vz belongs, include the internal output channel

port Vz ! in PS (v).

Note that for all communication channels C , the input port (C ?) and output port (C !) are treated

as two separate variables. With the projection sets thus created, DDD can project the sequential

program onto each set.

We now prove the correctness of the projection phase of DDD. The transformation is considered

correct when the communication traces on each channel from the original sequential program are

identical to the communication traces on the same channels in the decomposed system.

Theorem 5 After applying DDD’s projection phase to a deterministic program, the final concurrent

system is equivalent to the original sequential program.

Proof: (Sketch) We have already demonstrated that every sequential transformation (copy variable

insertion, system channel insertion) performed on the original program results in new sequential

programs that are program equivalent to the old. It remains to prove that the final step, transforming

the sequential program into a concurrent system, is correct.

42

The sequential program is deterministic, and therefore locally slack elastic. It has been proved

elsewhere that when projection is correctly applied to a locally slack elastic program, the projected

system is a valid implementation of the original program [34]. The correct application of projection

entails using projection sets that are both complete (i.e, the union of all projection sets includes

every variable and channel in the sequential program) and disjoint (i.e., no item appears in more

than one projection set). The items included in projection sets are regular variables, original input

channels, original output channels, and internal channels (both input and output).

First, consider the completeness of the projection sets. All regular variables receive their own

projection set except for those that are assigned copy variables and are generated specifically for other

variables to depend on and therefore include in their projection sets. All original output-channel

ports also receive their own projection set. Original input-channel ports are always attached to a

single input variable and included in their projection set. Finally, all internal-channel ports are also

linked to variables in the program and included in their projection sets. The projection sets are

therefore complete.

Now, any variables that appear in multiple dependency sets are split into new copy variables

specifically to keep projection sets disjoint. Original output-channel ports appear in their own

individual projection sets only and if original input-channel ports are used for different variables in

the original program, special input variables are inserted so that they need only appear in a single

projection set. Finally, internal channels are created to communicate data between two variables

only, so their ports appear only in one projection set each. Therefore, every variable and channel

port appears in only one projection set and the projection sets created by DDD are disjoint.

The partition designed by DDD is therefore both complete and disjoint, and the projection is

correct. 2

Continuing the example from Figures 2.5 and 2.6, the projection sets of the variables in Q3 are

as follows:

43

Dy

Y!

Ax

Bcp

Ccp

Bx

Cd

By

Cy

A?

B?

C?

X!

D?

Pa

Q3

Px

Pd

Py

CPb

CPcPc

Pb

Figure 2.7: Final projection of example program Q3.

PS (a) ≡ { A?, a, AX ! }

PS (b) ≡ { B?, b, Bcp ! }

PS (bcp) ≡ { Bcp?, b, BX !, By ! }

PS (c) ≡ { C ?, c, Ccp ! }

PS (ccp) ≡ { Ccp?, c, Cd !, Cy ! }

PS (X) ≡ { aX , AX ?, bX , BX ?, X ! }

PS (d) ≡ { cd , Cd?, D?, d , Dy ! }

PS (y) ≡ { by , By?, cy , Cy?, dy , Dy?, y }

When projection is applied to process Q3, the resulting system is as follows:

Pa ≡ *[A?a; AX !a]

Pb ≡ *[B?b; Bcp !b]

CPb ≡ *[Bcp?b; BX !b, By !b]

Pc ≡ *[C ?c; Ccp !c]

CPc ≡ *[Ccp?c; Cd !c, Cy !c]

PX ≡ *[AX ?aX , BX ?bX ; X !(aX + bX)]

Pd ≡ *[Cd?cd ; [cd −→ D?d ; Dy !d [] ¬cd −→ skip]]

Py ≡ *[By?by , Cy?cy ; [cy −→ Dy?dy ; y := by + cy + dy []¬cy −→ skip]]

Q3 � Pa ‖ Pb ‖ Pc ‖ PX ‖ Pd ‖ Py

44

This system is illustrated in Figure 2.7.

2.4.4 Looking Ahead

Note that there are several inefficiencies in the system implementing Q3. First, the processes Pa , Pb

and Pc are not necessary since they neither perform any computation nor copy their input variables

to multiple processes. Such processes are called L-R buffers and their elimination is placed in context

in Chapter 4. (After elimination, the channel AX ? in process PX is replaced with A?.) Secondly,

consider the process Pd . When we strip away the selection statement, this process also reads in a

value under a certain condition and then outputs the same value under the same condition. This

description is very similar to that of a simple buffer, which can be eliminated. The distillation

transformation identifies and handles such scenarios, and is also presented in Chapter 4.

2.5 Related Work: Static Single Assignment Form

The DSA form used by DDD is similar to the static single-assignment (SSA) form commonly used in

software compilers in conjunction with control dependence graphs [8, 12, 13]. While DSA programs

are limited to a variable being assigned a value at most once during execution, in SSA programs

only one assignment is allowed to a variable in the program text. Hence, even if assignments to a

variable appear in different branches of a selection statement, that variable must be split into new

variables with one assignment each. At the end of any selection statement, a φ-function is used to

gather the split variables from different branches back into a single variable.

For example, consider a CHP program containing the selection statement:

[g = 0 −→ x := f1(a, b)

[] g = 1 −→ x := f2(a, b)

[] g = 2 −→ x := f3(a, b)

]

the DSA version of this CHP fragment is actually unchanged since none of the shown variables are

45

Pb

Pg

Px

Pa

Pb

2Px 4Px

Pa

1Px

3Px

Pg

Figure 2.8: SSA and DSA forms.
The system on the left implements the SSA form of a selection statement while the system on the
right implements the DSA form of a selection statement.

ever assigned a value more than once during execution. However, when the fragment is converted

into SSA form, we have

[g = 0 −→ x1 := f1(a, b)

[] g = 1 −→ x2 := f2(a, b)

[] g = 2 −→ x3 := f3(a, b)

]; x4 := φ(x1, x2, x3)

The systems resulting from the DDD projections of these two program fragments are shown in

Figure 2.8.

As we can see, the DSA system uses fewer processes and channels. If DDD is used for hardware

synthesis, the DSA system is certainly more efficient than the SSA system. The SSA form is

more suitable for software and compiler applications, where communications are not as relatively

expensive, and optimizations of the larger code typical of these applications can benefit more from

the simpler data structures and reasoning arising from the true single-assignment form of SSA.

2.6 Summary

This chapter has presented the fundamental steps for the first two phases of DDD: transforming the

program into DSA form, and applying projection to decompose the DSA program.

Recall that DDD requires slack-elastic programs to guarantee correctness. The method performs

the following steps:

46

1. Dynamic Single Assignment Transformation

(a) Perform early decomposition to eliminate nested loops from the program.

(b) Transform the resulting programs into DSA form by rewriting selection statements and

straightline code.

2. Projection

(a) Build variable dependency sets for each program. If any variables appear in multiple sets,

insert the appropriate copy and input variables.

(b) Insert distributed assignments into the sequential code in order to prepare it for projec-

tion.

(c) Build the new dependency and projection sets for the program and apply the technique

of projection.

The results of these fundamental steps are a decomposed system that is semantically equivalent

to the original sequential program, with added concurrency. This system may include unnecessary

processes, unnecessary communications, and may not be optimized for circuit performance. Further

optimizations and additional techniques for DDD are described in Chapters 4 and 5.

47

Chapter 3

Asynchronous Circuits and
Synthesis

Now that we have presented DDD for general process decomposition, we focus our attention on

process decomposition for the high-level synthesis of asynchronous VLSI systems. Process decom-

position is the first step in the asynchronous design flow and the skill with which it is performed

greatly impacts the performance and energy consumption of the final hardware. For DDD to gen-

erate systems that can be implemented as fast and energy-efficient asynchronous circuits, low-level

circuit information must be incorporated in its high-level transformations.

This is the first of three chapters that present a version of DDD tailored specifically for use in

the design of asynchronous hardware. We begin in this chapter by providing a general introduction

to asynchronous VLSI circuits and synthesis. We then present templates for a family of fast asyn-

chronous circuits. These templates allow DDD to estimate low-level circuit performance metrics

without requiring formal logic synthesis. The ensuing chapters describe the actual modifications to

DDD for use in asynchronous design.

3.1 Quasi Delay-Insensitivity

By definition, asynchronous systems eschew a global clock signal, but they may still make many dif-

ferent timing assumptions to synchronize their actions. The most conservative style of asynchronous

design is delay-insensitive (DI), which makes no timing assumptions and guarantees the correctness

48

of computations for any set of wire- and gate-delays. It has been shown that the class of completely

DI systems is quite limited, excluding most circuits of interest [36].

Quasi delay-insensitive (QDI) design makes only one kind of timing assumption, and is the

most conservative approach commonly found in asynchronous VLSI systems. QDI systems include

isochronic forks, where the assumption is made that when a certain wire splits, signals propagate

along the different wire paths with similar delays. The addition of this one timing assumption allows

entire microprocessors to be built. In fact, the fastest working asynchronous microprocessors to date

are QDI [42]. (Other asynchronous design styles exist with more timing assumptions [21] but, as

with clocked circuits, the safety margins required to ensure correctness hinder their performance.)

The Caltech synthesis techniques (both manual and automated) described in this thesis localize

isochronic forks to the extent that their assumptions are easily met.

The QDI design style enhances some of the inherent advantages of asynchronous design, and

adds others too:

• Low Power: Unlike asynchronous design styles with more timing assumptions, no delay lines

or similar elements are required to match delays along different paths for correctness. Hence,

QDI circuits stop switching completely when idle, reducing idle dynamic-energy consumption

to zero. From the perspective of synchronous VLSI, this is equivalent to “perfect” clock gating.

• Robustness: Independence from delays allows systems to remain correct no matter how phys-

ical parameters affect performance. With only the minimal timing assumption of isochronic

forks, QDI systems are robust to variations in physical parameters such as voltage, tempera-

ture, and fabrication. (Variations in fabrication are becoming increasingly prevalent as feature

size shrinks.) In practice, the voltage of QDI systems can be scaled during runtime to trade

off energy and speed without requiring any dedicated circuitry or ramp-down protocols. QDI

microprocessors have been demonstrated running correctly at sub-threshold voltages [42].

• Modularity: Using the Caltech synthesis flow for QDI design (both the existing manual

approaches and the new DDD techniques), isochronic forks are almost always localized within

49

individual circuits, leaving the system interconnect delay-insensitive. Modular design with QDI

systems is therefore easier than with synchronous components that may have different clock

domains, or with less conservative asynchronous components where different timing constraints

may need to be met at the interfaces. Increased modularity also promotes the re-usability of

circuits designed in the asynchronous QDI style.

The main disadvantages of QDI design are an area penalty caused by the extra circuitry and

wiring required to implement delay-insensitivity, and a current lack of synthesis tools for automated

design. The area penalty can increase the energy consumption of a system, but this effect is usually

dwarfed by the other low-power advantages of asynchronous and QDI design. The lack of automated

synthesis tools is, of course, addressed in part by DDD.

3.2 Communications and Handshakes

We regard an asynchronous VLSI system as a distributed system where modules (or processes) com-

municate data and synchronize computations via message-passing communications over dedicated

channels. A communications channel is unidirectional and connects a sender process to a receiver

process. QDI systems have no global clock signal or other timing assumption for processes to distin-

guish between old messages and new messages on channels. Channels therefore alternate between

“valid” and “neutral” states, and the validity of a signal on channel wires (i.e., the presence of a

message on the channel), is encoded within the signal itself.

3.2.1 Channel Encodings

Channel encodings used in QDI systems include not only different states for every possible message

value, but also a special neutral state to signify the absence of valid data, and possibly one or more

forbidden states. The most common encoding is e1ofN, which consists of N + 1 rails (wires): N

data rails that encode the message, and one enable rail used in communication handshakes. On a

channel between two communicating processes, data rails are set by the sender while the enable rail

50

C.0 C.1 State
false false Neutral
true false Data = 0
false true Data = 1
true true Illegal

(a)

C.0 C.1 State
true true Neutral
false true Data = 0
true false Data = 1
false false Illegal

(b)

Figure 3.1: Channel Encodings.
Different encodings for one bit of information: (a) Data rails for an e1of2 channel C, or all rails for
a 1of2 channel C. (b) All rails for a 1of2 channel C.

is set by the receiver.

An e1ofN channel C’s enable rail is labeled C.e, and is used in handshakes to signal both the

reception of valid data and then the readiness for more. In a possibly more familiar context, an enable

rail is equivalent to an inversion of the acknowledge signal commonly used in data/acknowledgment

handshakes for off-chip protocols. The acknowledge signal is inverted to simplify QDI circuits.

The N data rails of an e1ofN channel C (labeled C.0, C.1, . . . , C.N − 1) form a one-hot code

that can express N different messages. When all rails are false, the channel is in its neutral state

with no message present. Only one rail can be true at a time. If multiple data rails are true, the

channel is in an illegal state. This data encoding is illustrated in Figure 3.1a. Figure 3.1b presents a

1ofN data encoding consisting only of data rails that together implement an inverted one-hot code.

This encoding is not commonly used to communicate between processes but rather to store data

internally within QDI circuits.

Thus, we can express one bit of information using an e1of2 (or dual-rail) channel C and its

three wires: data rails C.0 and C.1, and enable rail C.e. Similarly, two bits of information can be

expressed using an e1of4 channel (with five wires), and three bits of information can be expressed

using either an e1of8 channel (with nine wires) or, alternatively, the combination of an e1of2 and

an e1of4 channel (with eight wires total). Usually, bytes or words are encoded using a combination

of e1of4 channels. For example, a one-byte channel can be implemented by four e1of4 channels,

each carrying two bits of information. This is for reasons of efficiency. (For a channel encoding,

4× (4 + 1) = 20 wires is more efficient than 28 + 1 = 257 wires.)

51

neutralneutral data=1

2φ

φ

φ

neutral

1φ

2φ 4

data=0

3

4φ

φ

1 3φ

C?

C.0

C.1

C.e

Sender Receiver

C.0
C.1

C.e

C!

Figure 3.2: Four-phase handshake on a one-bit communication channel encoded as e1of2.

3.2.2 Handshakes

Communications on e1ofN channels are implemented with a four-phase handshake protocol, illus-

trated in Figure 3.2 and given below:

• Receiver:

1. Set phase: Wait for one of the data rails to be true (valid data)

2. Set phase: Set the enable rail to false

3. Reset phase: Wait for all data rails to be false (neutral data)

4. Reset phase: Reset the enable rail to true

• Sender:

1. Set phase: Wait for the enable rail to be true

2. Set phase: Set the message’s data rail to true (set valid data)

3. Reset phase: Wait for the enable to be false

4. Reset phase: Reset data rails to false (reset neutral data)

52

DDD

Circuit
Templates

High−Level Synthesis

Logic Synthesis

Concurrent System

Transistor Netlist

(CHP)
Sequential Program

(HSE)
Boolean w/ Sequencing

(CHP)

Physical
Design

Expansion

(PRS)

Production Rule

Process
Decomposition

Circuit Behaviour
Specification

Handshaking
Expansion

Figure 3.3: Formal synthesis flow for asynchronous VLSI design.

3.3 Asynchronous VLSI Synthesis Overview

The Caltech synthesis method for asynchronous VLSI consists of a series of semantics-preserving

program transformations [37]. System behavior is initially specified as a sequential program in the

high-level CHP language. The transformations are then applied successively, each generating a

lower-level circuit description. The final output of the formal method can be used as a transistor

netlist. The method is illustrated in Figure 3.3.

The first program transformation is process decomposition, in which the original process with

the sequential program is transformed into a concurrent system of communicating processes, still

expressed in the high-level language. This transformation serves three main purposes: dividing the

process to enable its conquering by lower-level program transformations, pipelining computations,

53

and introducing concurrency into the system. It is performed repeatedly, until the processes are

deemed to be small enough for tractable further synthesis. If the new processes still use wide

channels (for example, communicating bytes of data), the transformation of vertical decomposition

is performed to split a process and its channels into multiple “slices” that operate on smaller channel

encodings.

After process decomposition, we have a concurrent system that may still be implemented as

software, synchronous hardware, or asynchronous hardware. The next transformation of handshaking

expansion brings the system into the realm of asynchronous design, as high-level communications

are mapped onto QDI handshake protocols. The handshaking expansion language HSE is a subset

of CHP where all data types are boolean (or a collection of booleans), and the only possible actions

are to wait for a boolean condition to become true, or to assign a value to a boolean variable or

channel rail. Selection and repetition control structures remain in the HSE language.

The standard four-phase receive protocol described in the previous section for e1of2 input com-

munication “A?a” is expressed in HSE as

[A.0 ∨ A.1]; A.e↓; [¬A.0 ∧ ¬A.1]; A.e↑

where “[B]” indicates “wait until boolean condition B is true.” Meanwhile, the send protocol for

a four-phase handshake of an output communication “X !0” expressed in HSE is as follows:

[X .e]; X .0↑; [¬X .e]; X .0↓

Some of the intricacies of handshaking expansion lie in the interleaving of handshakes for different

channels so that a minimum amount of data requires explicit storage. For example, given the original

CHP “A?x ; X !x”, where all encodings are e1of2, the handshakes for the receive and send actions

could result in the following HSE:

[A.0 −→ x .0↑ ∨A.1 −→ x .1↑]; A.e↓; [¬A.0 ∧ ¬A.1]; A.e↑;

[X .e]; [x .0 −→ X .0↑ [] x .1 −→ X .1↑]; [¬X .e]; X .0↓, X .1↓

However, the variable x must now be explicitly stored within the process. If instead the handshakes

for the two communications are interleaved:

54

[X .e]; [A.0 −→ X .0↑ [] A.1 −→ X .1↑]; A.e↓;

[¬A.0 ∧ ¬A.1 ∧ ¬X .e]; X .0↓,X .1↓

the same value is always communicated, but no intermediate variable is required.

Handshaking expansion makes QDI communications explicit and expresses behavior at the level

of circuit nodes and wires. However, HSE still assumes an implicit sequencing of actions (using the

semicolon operator) that does not exist in actual circuits. The final transformation of production-

rule expansion converts each sequential HSE program into a concurrent set of actions, or production

rules. Production rules have the form “B → x↑” or “B → x↓”, where B is a boolean guard condition,

and x↑ is the equivalent of assignment x := true to boolean variable x , and x↓ is the equivalent

of the assignment x := false. PRS assignments can only be executed, or fired, when their guard

conditions evaluate to true.

Generated PRS can be treated as a transistor netlist. As a simple example, the PRS (production-

rule set)

a ∧ b → x↓

¬a ∨ ¬b → x↑

implements a nand-gate. PRS is executed in the following manner: note the production rules whose

guard conditions currently evaluate to true, and fire one of them. There is no sequencing between

the rules and so all ordering must be made explicit within the guard conditions of the production

rules.

As described in greater detail elsewhere [38], a production-rule set is correct when it is both

stable and non-interfering. Stability requires that once any guard evaluates to true, it remains true

until after the rule has fired. Non-interference requires that given production rules “B1 → x↑”

and “B2 → x↓” for a variable x , “¬B1 ∨ ¬B2” is always true. Creating correct PRS for an HSE

process often involves inserting new variables into the HSE to enforce stability and non-interference.

The formal synthesis flow outlined here can be used to generate many different types of QDI

circuits. DDD automates process decomposition. Some tools exist to perform low-level handshaking

55

and production-rule expansion, but there is enough freedom in the general transformations that

applying the tools to anything but small and simple processes is infeasible. Practically, QDI designers

limit themselves to a family of circuits with a set interleaving of handshakes. This limits the

freedom of handshaking and production rule expansion, but also makes the transformations tractable.

Examples of formal low-level synthesis for this circuit family are provided, along with less formal

circuit templates, in the following section.

3.4 Asynchronous Pipeline Stages

High-performance QDI systems use fine-grained asynchronous pipeline stages as their standard build-

ing blocks. These pipeline stages are based on the simple CHP process “*[A?a; X !f (a)],” but can

be considerably more complex. Consider a process that receives data on multiple input channels,

computes new values using that data, and sends the results on multiple output channels. The com-

putations and communications can appear in any pattern, be executed conditionally in selection

statements, and repeated indefinitely in loops. All such behavior can be expressed in CHP and

implemented in hardware by an asynchronous pipeline stage that integrates control with datapath.

CHP processes are not always intended to be synthesized into hardware systems, but processes

that do describe circuit behaviors usually have the following basic form (familiar from Chapter 2):

P ≡ Pinit ; *[Ploop]

Pinit consists of assignments and output communications that are executed once to initialize the

system. The main loop body Ploop represents the repeated behavior of the circuit after initialization.

When we mention an “iteration” of a circuit, we refer to the CHP in Ploop itself, not including the

outer unconditional loop. Henceforth, we assume that all CHP programs fit this form.

We specify a strict set of requirements for CHP processes that are directly implementable as

asynchronous pipeline stages. These requirements are sufficient but not necessary; many CHP

programs that do not conform can still be transformed at lower levels of synthesis into such stages.

Nevertheless, we present these specifications so that later we can easily and formally demonstrate

56

that DDD always creates networks of processes that can each be implemented as single asynchronous

pipeline stages.

Definition 10 [Strict CHP requirements for asynchronous pipeline stages] A CHP pro-

cess P ≡ Pinit ; *[Ploop] can be directly implemented as an asynchronous pipeline stage if the follow-

ing conditions are true:

• Both Pinit and Ploop are terminating programs

• Pinit contains only assignments or output communications

• No channel is used more than once in any execution trace of either Pinit or Ploop

• In any trace of Ploop, all input communications precede all output communications

2

While nested loops are not allowed by this specification, nested selection statements and conditional

communications are, so long as no channel is used more than once in any selection branch.

3.5 Precharged Half-Buffers

Among the various types of asynchronous pipeline stages, precharged half-buffers (PCHBs) offer the

most attractive combination of speed and compactness. The fastest asynchronous microprocessors

to date use PCHBs for more than 90% of their circuits. PCHBs both compute and store data.

They derive their name from the facts that they are precharged circuits and that, because of their

handshaking expansions, two are required to store one message. (These details are described further

in Chapter 5.) PCHB circuits are the target of our synthesis method for asynchronous systems, and

also the basis of our reconfigurable asynchronous architecture.

We have already specified the requirements for a CHP process to be directly implementable as

an asynchronous pipeline stage. (Under physical constraints of circuit size such as the maximum

number of transistors allowed in series, asynchronous pipeline stages can be implemented as PCHBs.)

57

Next, we present low-level language specifications of PCHB circuits and demonstrate how they can

be generated using traditional handshaking and production-rule expansion. This formal compilation

is no longer required, as circuit templates can be used to generate PCHBs. We therefore introduce

the general PCHB template that DDD uses to incorporate low-level circuit information efficiently

when performing high-level synthesis.

3.5.1 Traditional Compilation

Recall the basic send (R!x) and receive (L?x) handshakes for four-phase communication

[R.e]; R.d↑; [¬R.e]; R.d↓

and

[L.d]; L.e↓; [¬L.d]; L.e↑

(where, given a channel C , C .e represents its enable rail and C .d represents its collective data rails).

For a simple buffer “*[L?x ; R!x]”, the PCHB interleaving of these handshakes is

[R.e]; [L.d]; R.d↑; L.e↓; [¬R.e]; R.d↓; [¬L.d]; L.e↑

Thus, for example, given a CHP process *[A?a,B?b; X !(a∧b)] (where all channels encode booleans

as e1of2), we can compile it into a PCHB circuit by first writing its handshaking expansion as follows:

*[[X .e]; [A.0 ∨A.1], [B .0 ∨ B .1];

[A.0 ∨ B .0 −→ X .0↑ [] A.1 ∧ B .1 −→ X .1↑]; A.e↓,B .e↓;

[¬X .e]; X .0↓,X .1↓; ([¬A.0 ∧ ¬A.1]; A.e↑), ([¬B .0 ∧ ¬B .1]; B .e↑)

]

The next step in traditional synthesis is to compile the HSE into a stable and non-interfering set of

production rules. For the result to be implementable in CMOS technology, the production rules must

be inverting: rules “B → x↑” must contain only negated nodes such as “¬a” in guard B , while rules

“B → x↓” must contain only unnegated nodes. The presence of HSE such as “[A.0∨B .0→ X .0↑ . . .”

already indicates that the compiled PRS will not be CMOS-implementable. We therefore insert

inverse variables into the HSE:

58

A.e ∧ B .e ∧X .e ∧ (A.0 ∨ B .0) → X .0↓
A.e ∧ B .e ∧X .e ∧ (A.1 ∧ B .1) → X .1↓
¬ X .0 → X .0↑
¬ X .1 → X .1↑
(A.0 ∨A.1) ∧ (X .0 ∨X .1) → A.e↓
(B .0 ∨ B .1) ∧ (X .0 ∨X .1) → B .e↓
¬A.e ∧ ¬B .e ∧ ¬X .e → X .0↑
¬A.e ∧ ¬B .e ∧ ¬X .e → X .1↑
X .0 → X .0↓
X .1 → X .1↓

(¬A.0 ∧ ¬A.1) ∧ (¬X .0 ∧ ¬X .1) → A.e↑
(¬B .0 ∧ ¬B .1) ∧ (¬X .0 ∧ ¬X .1) → B .e↑

Figure 3.4: CMOS-implementable PRS.
For the CHP process ∗[A?a,B?b;X!(a∧b)]. Modifications are required to reduce the number of p-transistors
in series.

*[[X .e]; [A.0 ∨A.1], [B .0 ∨ B .1];

[A.0 ∨ B .0 −→ X .0↓; X .0↑ [] A.1 ∧ B .1 −→ X .1↓; X .1↑]; A.e↓,B .e↓;

[¬X .e]; X .0↑, X .1↑; X .0↓,X .1↓; ([¬A.0 ∧ ¬A.1]; A.e↑), ([¬B .0 ∧ ¬B .1]; B .e↑)

]

Using techniques described by Martin [38], we compile this HSE to generate the PRS given in

Figure 3.4. This PRS is CMOS-implementable but contains gates with as many as four p-transistors

in series, which is unadvisable for performance reasons. We therefore insert more intermediate

variables to the circuit to reduce the number of p-transistors in series. These variables include

channel data validities and a local circuit enable signal en. The final PRS, which remains CMOS-

implementable as well as stable and non-interfering, is given in Figure 3.5. The final result is not

the most efficient PRS possible, but serves as an gentle introductory example to traditional low-level

compilation methods for asynchronous VLSI. The circuit corresponding to the PRS is illustrated in

Figure 3.6.

Staticizers (keeper circuits featuring cross-coupled inverters, one of which is weak) do not appear

in the PRS but are added to non-combinational nodes. Muller C-element gates are common in general

asynchronous circuit design and are present in the PCHB. C-elements are not combinational. Their

outputs only switch when all inputs agree, and otherwise retain their previous value. These gates

must therefore be followed by staticizers. If a C-element’s output is fed into an inverter, then that

59

A.0 ∨A.1 → Av↓
B .0 ∨ B .1 → Bv↓
¬ Av → Av↑
¬ Bv → Bv↑
en ∧X .e ∧ (A.0 ∨ B .0) → X .0↓
en ∧X .e ∧ (A.1 ∧ B .1) → X .1↓
¬ X .0 → X .0↑
¬ X .1 → X .1↑
¬ X .0 ∨ ¬ X .1 → Xv↑
Av ∧Xv → A.e↓
Bv ∧Xv → B .e↓
¬A.e ∧ ¬B .e → en↑
en → en↓
¬A.0 ∧ ¬A.1 → Av↑
¬B .0 ∧ ¬B .1 → Bv↑
Av → Av↓
Bv → Bv↓
¬en ∧ ¬X .e → X .0↑
¬en ∧ ¬X .e → X .1↑
X .0 → X .0↓
X .1 → X .1↓
X .0 ∧ X .1 → Xv↓
¬Av ∧ ¬Xv → A.e↑
¬Bv ∧ ¬Xv → B .e↑
A.e ∧ B .e → en↓
¬ en → en↑

Figure 3.5: Final CMOS-implementable PRS for the CHP process ∗[A?a,B?b;X!(a ∧ b)].

inverter is incorporated into the staticizer circuit. This is the case with the staticizer for the circuit

node “ en” in Figure 3.6.

3.5.2 Circuit Templates

DDD does not perform traditional compilation from CHP to HSE to PRS when designing systems

of PCHBs. Instead, it exploits the regularity of PCHB circuits by creating templates (based upon

formal compilations) from which it can easily estimate circuit performance metrics such as cycle

time and energy consumption. These templates do not always represent the most efficient design

for a specific CHP process, but can be generally and reasonably applied to any CHP directly im-

plementable as an asynchronous pipeline stage. A PCHB circuit comprises three main components:

computation networks, validity trees, and completion networks.

While the lack of clock distribution trees saves energy, the bulk of energy savings in QDI systems

60

A.0 B.0

B.eA.e

_en

en

en

BvAv

_Bv B.1

en

B.1

Xv

X.e

_X.0X.e

A.0

A.1

_Av B.0

A.1

X.1

X.0
_X.1

w

w

C C

C

w

w

w

Figure 3.6: PCHB corresponding to the PRS compiled from ∗[A?a,B?b;X!(a ∧ b)].
Synthesized using traditional techniques, this is not the most efficient implementation (fewer gates
are required if the validity trees for channels A and B are combined), but serves well as an intro-
duction to formal asynchronous VLSI synthesis.

compared to synchronous systems arises from the absence of unnecessary “don’t care” communica-

tions. The communications of a QDI system consume much more energy than the computations.

Since channels are always reset to neutral encodings and all communications must be acknowledged,

communications where the data is simply thrown away are wasteful and expensive indeed.

QDI systems avoid “don’t cares” by using conditional communications, where a PCHB performs

certain inputs or outputs only if data received on other channels fulfills certain logical conditions. For

conditional outputs, the PCHB may compute but ultimately discard output data. For conditional

inputs, the PCHB may ignore and fail to acknowledge valid data on the input channel. In the latter

case, any data (which can have arrived early since there is no global clock synchronizing the different

processes) is left on the channel’s data rails, awaiting the iteration when other control data indicates

that it should be received.

While additional circuitry is required in each PCHB to implement conditional communications,

the overall energy savings are still significant. Not only can switching be reduced on interconnect

wires, but conditional communications can render entire processes idle with no dynamic energy

61

consumption for long periods of time. For example, consider the case where process A receives data

from processes B and C. Both B and C have conditional outputs, where data is only set when some

system variable g is true. When g is true, A receives its inputs, performs its computations, and

sends out its specified outputs. When g is false, however, A receives no inputs at all and therefore

performs no computations or output communications, but simply remains idle. Such situations are

considered in further detail in Chapter 4.

We begin this section by considering PCHBs with only unconditional communications.

3.5.2.1 Unconditional Communications

A basic circuit template for PCHBs with only unconditional communications is presented in Fig-

ure 3.7.

Each PCHB output channel has a computation network in which the values sent on the channel are

computed. The computation networks resemble precharge domino logic seen in synchronous circuit

design. Instead of a global clock, it is the local enable signal en along with the output channel

enable that guards the power supplies. The computation for an output channel X ! is performed

in a pulldown network of n-transistors. The pullup network of p-transistors is small and does not

perform any computations, simply precharging the output nodes instead.

The output nodes X .d of the computation network use a 1ofN encoding, and are inverted to

produce data rails X .d . (These inverters form part of the staticizers that store the outputs of the

non-combinational precharged stage.) The resulting even parity of the forward latency (e.g., from

input channel data rails A.d to output channel data rails X .d) enables computations in neighboring

pipeline stages always to occur in n-transistor networks, instead of alternating stages using slower

p-transistor networks. The PCHB computation networks for output channels X ! and Y ! are shaded

in Figure 3.7.

Beside the computation network, each input and output channel in a PCHB has its own validity

tree that checks for the presence or absence of data on the channel’s data rails. The trees are

composed of combinational gates that together form the equivalent of a large or-gate (with inverted

62

w

C

completion
logic

w

w

validity
tree

validity
tree

w

en

validity
tree

validity
tree

enable

input

data rails
output

input
data rails

...

...
Computation

Pulldown Logic

output
enable

en

Precharged Computation

Precharged Computation

data rails
output

input
data rails

...

...
Computation

Pulldown Logic

output
enable

en

Figure 3.7: General template for an unconditional precharged half-buffer circuit.

inputs for output-channel validity). Regardless of the number of computation networks in which it

is used, an input channel has only one validity tree per PCHB.

Although other configurations are possible, DDD assumes in its cycle-time estimations that

each channel has its own validity tree. Input and output channel validities are gathered together

63

en

en

en

en

Yv

X.1

Y.0
Y.e

X.0
_X.0

Y.1
_Y.1

X.e

A.0

A.1

A.1

A.0

B.1

B.0

_Av

_Bv

Xv

A.e, B.e

B.1

X.e _Y.0

_X.1

Y.e

en

A.0

B.0

A.1 w

w

w

w

w

w

C

C

C

w

Figure 3.8: Template-designed PCHB circuit.
For the following CHP process with dual-rail channels: ∗[A?a,B?b;X!(a∨b), Y !a]. The computation
networks for the two output channels are shaded.

in a completion network, to generate signals for input channel enable rails, and the local enable

signal en that guards the power supplies of every computation network. An input enable depends

on the validities of the input channel and all output channels that use the input variable in their

computations. The local enable signal depends upon all of the input enables, and unites the various

computation networks in the PCHB. Because of their potentially large fanout, the input enables

and the signal en are usually immediately preceded by at least one inverter, and possibly by two for

CMOS parity. An example of a template-designed PCHB for a CHP process is given in Figure 3.8.

3.5.2.2 Conditional Outputs

There are several ways of implementing conditional communications. We present techniques that

can be applied in general to any CHP process that fits the requirements for asynchronous pipeline

stages.

The design problem presented by conditional outputs reduces to the fact that communications

on input channels must still be acknowledged if no output is performed. We accomplish this by

adding an extra state for the PCHB’s internal representation of conditional output channels that

64

signifies that the channel is ready for communication but the condition is such that no communication

should take place. This extra state is included in the output validity checks so that even if no output

handshakes occur, the input handshakes can note this extra state and complete their handshakes

without deadlock.

Our approach to generally implementing this extra conditional output state is to add an extra

“dummy” rail to the internal 1ofN encoded data computed by the precharge stage. This extra rail

is also an input to the output channel validity tree. It is active (low) when no communications occur

on the output channel so that the input channels can still be acknowledged and the internal enable

signal reset for the next iteration. As a simple example, consider the process *[A?a,G?g ; [g = 0→

skip[]g = 1→ X !a]]. The basic handshaking expansion is

*[[X .e]; [A.d], [G .d];

[G .1 ∧ A.d −→ X .d↓; X .d↑; A.e↓,G .e↓; [¬X .e]

[]G .0 −→ X .N ↓; A.e↓,G .e↓

]; X .d↑, X .N ↑; X .d↓; [¬A.d ∧ ¬G .d]; A.e↑,G .e↑

]

where X .d represents the collective data rails of channel X , X .d represents the inverted data rails

for output channel X , and X .N represents the extra output rail for conditional output channel X .

The traditional compilation of this HSE into CMOS-implementable production rules inserts a local

enable and validity variables.

The final PCHB circuit is illustrated in Figure 3.9. (Staticizers are not shown.) Note in particular

that the precharge network for the dummy rail X .2 contains only the local circuit enable signal en

and not the output channel enable X .e. (This is necessary to avoid deadlock, since the output

channel X is inactive when X .2 is pulled down, and its enable X .e will not be lowered.) Thus,

the template for PCHBs with conditional outputs is identical to those for unconditional PCHBs,

except for the dummy inverted output rail, the logic associated with its pulldown and pullup, and

its connection to the output validity tree.

65

X.1

X.0
X.e

en

en

_X.0

Xv

_X.2

X.e

_X.1

C

C

A.e, G.e

G.0

G.1

en

G.1

G.0
_Gv

A.1

A.0

A.1

_Av

A.0

Figure 3.9: Example of a PCHB with conditional output X!.

3.5.2.3 Conditional Inputs

It is more expensive to implement conditional inputs than conditional outputs. Complexities and

additional circuitry arise because in addition to computing the input condition and modifying the

validity circuitry, conditional inputs require that the enable rail for the input channel be suppressed

and replaced in the PCHB’s completion tree. (This must be accomplished without introducing

deadlock or unacknowledged transitions within the PCHB circuit.)

A simple but general way to fulfill all these requirements is to compute the input condition as

if it were another dual-rail output (i.e., perform the computation in a separate precharged stage

guarded by the local enable signal). The results of this computation are used in three distinct parts

of the PCHB:

• Condition Validity: The validity of the condition computation is included in the completion

trees of any other input channels used in the condition expression. In this sense, the condition

computation is treated as another output computation.

• Suppressing Input Channel Validity: If an input channel contains a valid message but is

66

_X.1

X.e

en

X.e

en

en

X.0

X.1

Xv

_X.0

useA.1

useA.1
w

C
G.1

G.0

CC
C

C

ww

w

A.1

A.0

G.1

A.1

G.0A.0

G.1

G.0

_useA.1

_useA.0

G.eA.e
_useA.0

en

Av

Gv

useAv

Figure 3.10: Example of a PCHB with conditional input A?.

not to be used during this iteration, the positive condition rail is used to prevent the conditional

input-channel validity from propagating in the PCHB. This prevents acknowledgment of the

data on the input channel, and postpones communications for another iteration.

• Replacing Input Channel Enable: When the conditional input channel is not required,

the negative condition rail is used to replace the input enable in the local completion tree,

preventing deadlock.

We use the process

*[G?g ; [g = 0 −→ X !1 [] g = 1 −→ A?a; X !a]]

to illustrate these points.

For the conditional input channel A?, the new precharged network has outputs that are encoded

in an internal 1of2 channel called useA, with useA.1 being false if the condition is met (i.e., the

input should occur) and useA.0 being false if the condition is not met (i.e., the input should not

67

occur). The basic handshaking expansion is

*[[R.e]; [G .d];

[G .0 −→ useA.0↓, R.1↓; R.1↑; G .e↓; useA.0↑, R.1↑; R.1↓; [¬G .d]

[] G .1 −→ useA.1↓, [A.d]; R.d↓; R.d↑; A.e↓, G .e↓;

useA.1↑, R.d↑; R.d↓; ([¬A.d]; A.e↑), ([¬G .d]; G .e↑)

]]

The CMOS-implementable PCHB compiled from this handshaking expansion is illustrated in Fig-

ure 3.10. It includes a validity signal useAv for the input-channel condition nodes. This condition

validity is treated as an output-channel validity and is included in the generation of the input en-

able for the control channel used to compute the condition G . Note that while unconditional input

channels can copy the same input enable signal, input enables for conditional channels must be kept

separate so that they may switch under different conditions.

Elsewhere, in the PCHB’s completion circuitry, condition signal useA.1 prevents the propagation

of input-channel validity signal Av in the PCHB when no input on A should occur. (If an input

arrives early on A, Av may evaluate to true even though A is not to be used during this cycle.) This

prevents any inputs on A from being incorrectly acknowledged by A.e.

In cases where the completion network for A.e actually comprises multiple levels of C-elements,

both Av and useA.1 must be included as inputs together for the same C-element at a leaf of the tree.

Otherwise, the signal on Av may propagate through C-elements and even if it is eventually suppressed

later in the tree by by useA.1, transitions on internal C-element tree nodes may be unacknowledged

(i.e., have no successor transitions). Such behavior is not allowed in QDI systems [36]. Avoiding

this problem in conditional completion trees can be tricky in general, and avoiding it in an optimal

fashion is a complex enough problem to involve random heuristics and be dealt with using separate

tools. By setting up the conditional inputs as we have described here, ensuring that the two pertinent

signals share a C-element is straightforward.

Finally, in every iteration, either A is used and A.e is lowered, or A is not used and useA.0 is

lowered. Thus, including signal useA.0 along with A.e in the final completion circuitry generating

68

local signal en prevents deadlock in the PCHB whenever the input channel A is not used.

Thus, templates for conditional inputs include an extra entire precharge stage for each conditional

input, and extra inputs to the completion networks of the PCHB.

3.5.2.4 State-holding Bits

Finally, state-holding bits may be explicitly added to DDD processes when they are rewritten to

avoid multiple communications per iteration. For example, *[A?a; X !a; A?b; Y !b] may be rewritten

as

s↓; *[A?a; [¬s −→ X !a, s↑ [] s −→ Y !b, s↓]]

The main loop body of this program uses new variable s before assigning it a value. Such vari-

ables can be implemented by including internal registers in the PCHB. Section 4.1.2 describes how

DDD inserts state-holding bits when transforming processes to make them directly implementable

as PCHBs. Specific circuit techniques for implementing general state-holding bits are given by

Lines [29].

3.6 Performance Metrics

PCHB templates allow DDD, a high-level synthesis algorithm, to perform circuit-level optimizations

on a system without design iterations involving actual low-level synthesis. Given the CHP speci-

fication and channel encodings of a process, we can estimate the cycle time and dynamic energy

consumption when it is eventually implemented as a PCHB.

The three circuit characteristics estimated by DDD are cycle time, energy consumption, and

size limitations in terms of transistors in series. We measure the cycle time of a PCHB in units

of transitions, where the firing of a production rule equals one transition. While a path with more

transitions can be faster than a path with fewer transitions but larger nodes, transition counts

provide a quick way to estimate the performance of a circuit without delving into lower-level analog

details.

69

The internal cycle-time of a PCHB is defined as the number of transitions that occur between

consecutive resets of the local enable signal en. Since this number can depend on the size of other

PCHBs with which our circuit performs communications handshakes, we assume that simple left-

right PCHB buffers are placed at each of the input and output channels when measuring the internal

cycle-time of a PCHB. Since an odd number of transitions are required in CMOS to set and then

reset values, transition counts for PCHB cycle times are usually twice an odd number. (Recent

asynchronous microprocessor designs have operated at cycle times of 18 and 22 transitions [39, 41].)

The major exception to this rule are processes that include state-holding bits, which can have cycle

times of twice an even number—the average number of transitions for the set and reset phases which

have different odd numbers of transitions.

DDD estimates the cycle time of a circuit by considering the number of input and output channels,

the width and conditionality of each channel, and the maximum fanin for any type of logic gate.

The maximum fanin (set for different target technologies) determines the height of validity trees

and completion networks. Given the PCHB templates from the previous section, this information is

sufficient to estimate the number of transitions required per cycle.

For example, consider an unconditional PCHB with Nin input channels labeled A0 . . .ANin−1

and Nout output channels labeled X0 . . .XNout−1. Each channel C has C .N data rails. We assume

for now that the circuit is “fully connected” (all of the outputs depend upon all of the inputs).

The computation in this section is not guaranteed to return the minimum achievable cycle time

because it assumes that all channel validities must be generated before input enable signals can be

generated (“monolithic completion”). This is our base circuit; more complicated scenarios involving

partially connected circuits, early channel validities, and conditional communications are presented

elsewhere [53].

Let τvin be the maximum number of transitions between the circuit’s receiving data and its

generating a validity signal for any input channel. Let τvout be the maximum number of transitions

between the circuit’s receiving data and its generating a validity signal for any output channel. Let

τvalid be the maximum number of transitions between the circuit’s receiving data and its generating

70

en

en

en

en

Yv

X.1

Y.0
Y.e

X.0
_X.0

Y.1
_Y.1

X.e

A.0

A.1

A.1

A.0

B.1

B.0

_Av

_Bv

Xv

A.e, B.e

B.1

X.e _Y.0

_X.1

Y.e

en

A.0

B.0

A.1 w

w

w

w

C

w

w

C

C

w

= −
τ

1 1

2 2

2 2

3

7

5

cmplτ 4 2
leτ

voutτ

2

voutτvalidτ

vin

cycleτ

1

/ 2

Figure 3.11: PCHB circuit annotated with transition counts and delays used to estimate cycle time.

validity signals for any channel. Let τcmpl be the number of transitions required to gather all of

the channel validities into a single signal (this is the completion tree). Let τle be the number of

transitions required to generate the left enable signal. Let τcycle be the cycle time. These delays are

all annotated in Figure 3.11 for the PCHB given in Figure 3.8.

We introduce the function

makeOdd(x) = x+ (x+ 1) mod 2

to achieve the desired transistor count parities for our inverting CMOS circuits. We also can easily

compute the height of trees with fanin N that compute input channel validities, output channel

validities, and enable signals using functions Height(iv,N), Height(ov,N), and Height(ce,N), re-

spectively. (Input validity trees consist of alternating nor- and nand-gates; output validity trees

consist of alternating nand- and nor-gates; enable trees consist of C-elements.) We have the follow-

71

ing:

τvin = max0≤i<Nin { Height(iv, Ai.N) }

τvout = 1 + max0≤i<Nout { Height(ov, Xi.N) }

τvalid = max (τvin, τvout)

τcmpl = Height(ce, Nin +Nout)

τle = makeOdd (τvalid + τcmpl)

τcycle = 2× (τle + 2)

DDD estimates the dynamic energy consumption of a circuit by counting the number of gates

that switch during every cycle, and noting the number of inputs for each gate. The energy consumed

by standard gates (nor, nand, and C-elements) can be cataloged, by the number of inputs, for the

fabrication technology ahead of time. DDD can then access this information to perform energy

estimations for use in its final clustering phase, where multiple PCHBs can be grouped into a single

PCHB to reduce energy consumption. As will be discussed further in Chapter 5, the changes in

energy consumption of pulldown networks during clustering are insignificant compared to the changes

in the validity tree and completion networks. Therefore DDD’s estimates will be sufficiently accurate

since these components comprise mostly standard gates.

In addition to cycle time, the size of a PCHB can be limited by the number of transistors in

series in its pulldown computation network. The upper limit on the number of transistors required

in series is set by the fanin of a PCHB process. A production rule guard containing the logic “A.0∧

A.1” is nonsensical—it will never evaluate to true for e1ofN channels. Hence, if a PCHB has Nin

input channels, the number of transistors in series in a computation network can be no more than

Nin +2, where the extra two transistors are the local enable en and the output channel enable “feet”

transistors.

3.7 Summary

We have presented an overview of the synthesis of asynchronous VLSI systems and introduced

the precharged half-buffer as the basic building block of high-performance quasi delay-insensitive

72

design. After demonstrating the traditional compilation of PCHBs, we introduced general templates

for PCHBs both with and without conditional communications. We defined the requirements for

CHP processes to be implemented as asynchronous pipeline stages, and have set the stage for

demonstrating how DDD decomposes programs into networks of fine-grained PCHB circuits. After

demonstrating traditional compilation of PCHBs, we introduced circuit templates for general PCHBs

both with and without conditional communications. Finally, we illustrated how these templates can

be used to estimate the cycle time, energy, and size limitations of any PCHB process generated by

DDD.

73

Chapter 4

DDD Optimizations for
Asynchronous VLSI

This chapter presents a set of modifications to basic DDD (as described in Chapter 2) that opti-

mize target systems implemented as hardware, and specifically as networks of asynchronous PCHB

circuits. In practice, asynchronous designers usually set maximum cycle times for systems, and

then work to achieve the minimum energy consumption for that cycle time. DDD can use PCHB

templates to accomplish the same goal automatically.

We begin by showing that all processes generated by the DSA and projection phases of DDD

can either be implemented as a PCHB, or easily rewritten to be implemented as a PCHB. In terms

of performance, these first two phases of DDD need only produce decomposed processes that, when

implemented as PCHBs, individually meet the desired cycle time. The DSA transformation already

helps control the size of DDD processes. Processes with wide channels that encode, for instance, bytes

of information typically need to be vertically decomposed to meet desired cycle times. In rare cases

where vertically-decomposed processes are still not fast enough, designers must consider function

decomposition to allow DDD to “horizontally decompose” the process and solve the problem.

Most of the modifications in this chapter focus on reducing the switching activity and hence the

energy consumption of the decomposed system. (The remainder either isolates expensive computa-

tions to avoid redundancy, or isolates memories, which are implemented using specialized circuits.)

Communications consume the bulk of energy in asynchronous systems, and so we present methods

to reduce both the number and the activity factors of communication channels required by the de-

74

composition. QDI circuits consume no dynamic energy when they are idle, and so we also introduce

techniques to reduce the activity of computational processes. The DDD modifications are presented

in chronological order, and are integrated within basic DDD before, after, and in between the DSA

and projection phases.

4.1 DDD Generation of PCHBs

Recall the list of requirements for CHP processes in the hardware form “Pinit ; *[Ploop]” to be directly

implementable as PCHBs (Definition 10). The main requirements are that there be no nested loops,

that Pinit not contain any input communications, that no more than one communication is executed

on any channel during a single iteration, and that all input communications precede all output

communications in every iteration. DDD creates CHP processes that either meet these requirements

or can be easily rewritten to meet them. This section addresses each PCHB requirement.

Before projection, DDD rewrites the original program by converting it into DSA form, removing

nested loops, and inserting both copy and projection variables. Projection is a syntactic translation.

Thus, regarding the first requirement, since nested loops have been removed from the sequential

program, none of the decomposed processes can contain nested loops. Therefore, all of their sub-

programs Pinit and Ploop are terminating programs. Similarly, for the second requirement, since we

have limited the initial code Pinit of the sequential program to containing regular assignments and

output communications only, no decomposed processes can contain input communications in their

initial code. This fulfills the second requirement for a process to be directly implementable as a

PCHB.

Whether or not DDD processes satisfy the last two PCHB requirements depends upon the type of

process under consideration. Every process in the eventual DDD concurrent system corresponds to

either a single regular variable or to a single channel port in that pre-projection sequential program.

We consider the two possibilities separately.

75

4.1.1 Variable Processes

By the DSA transformation, DDD processes that represent regular variables assign only one value

to that variable per iteration: variables with more than one assignment executed per iteration of

the original main loop are split into multiple DSA variables.

Input and output channels for DDD-variable processes either exist in the original sequential

specification, or were inserted by projection and are internal to the decomposed system. In the case of

original channels, output channels are always isolated in their own channel processes (Section 2.4.1).

If original input channels are used more than once per main-loop iteration, DDD separates them into

their own process (Section 2.4.2.1). Therefore any original channels that appear in a DDD-variable

process are input channels and are used at most once per iteration.

Now consider the case of channels inserted by projection. If variable x depends upon variable a

then the projection phase inserts a communication on internal channel “AX ” immediately following

any assignment to a (Section 2.4.2). Since the program is in DSA form, there can be only one

assignment to a executed during any iteration of the main loop. Hence, there can be only one

communication on internal channel AX during any iteration of the main loop. Therefore, any

internal channels inserted by projection that appear in a DDD-variable process (such as a process

Px for x) are used at most once per iteration.

It remains to show that all input communications precede all output communications in every

iteration of a DDD-variable process. Given a DDD process for variable x , all input channels receive

variables used in the computation of x and all output channels send the results of the assignment

to x to other variables for use in their assignments (Section 2.4.3). By construction, every variable

is assigned a value before it is used in every iteration (Section 2.3.5). Thus, all input communi-

cations in the variable process must precede the assignment to x , which must precede all output

communications.

Therefore DDD-variable processes fulfill all necessary CHP requirements to be directly imple-

mented as asynchronous pipeline stages (Definition 10).

76

4.1.2 Channel Processes

DDD-channel processes exist for both input and output channels from the initial CHP specification.

If the initial specification includes multiple communications in sequence on a channel per iteration,

then the DDD process will also execute multiple communications in sequence on that channel per

iteration. As such, DDD-channel processes may not at first fulfill the asynchronous pipeline stage

requirements given above, but can be rewritten to do so.

Consider a DDD process PX for channel X , where X is used in multiple communications per iter-

ation. First note that X is the only channel in this process that may have multiple communications

per iteration. As reasoned in the previous section, channels from the original sequential program

are isolated in their own DDD processes when they are used multiple times and, by construction,

internal channels inserted by projection can be used at most once per iteration. To rewrite this

process so that it may be directly implemented as a PCHB, we introduce state in such a way that

only one communication on X is performed per state, and only one state is executed per iteration.

This transformation goes as follows.

Let PX ≡ Pinit ; *[Ploop]. We begin by assuming that Pinit and Ploop are straightline series;

selection statements can be easily incorporated into the basic transformation later. Let SX be any

communication on channel X . Let T be any statement in parallel with SX .

For every SX and T , insert a semicolon so that if X is an input channel T ≺ SX and if T

is an output channel then SX ≺ T . This reordering preserves reaching definitions because there

can be no data dependencies between parallel statements in a deterministic CHP program. By

Theorem 1, the new process is program-equivalent to the original process PX since we have only

reordered statements and not changed the operations performed by any statements, For example,

A?a; X !a, B?b; X !b � A?a; X !a; B?b; X !b

Now there is a strict order relation between any communication on X and all other statements in

the code.

We group all statements in the process into three classes: input communications SI , regular

77

assignment statements SA, and output communications SO . If statements belonging to different

classes are in parallel, insert semicolons between them establishing class order relations SA ≺ SO ≺

SI . (We assume that the program environment is designed so that this does not introduce deadlock.)

Now the only statements that may be in parallel with each other in the process belong to the

same class. Again, since the program is deterministic, reaching definitions are preserved and the

transformed process is program-equivalent to the original. For example,

R?r ; s := f (r); P?p, q := g(r), S !s; Q !g(p, q), T !p

� R?r ; s := f (r); q := g(r); S !s; P?p; Q !g(p, q), T !p

Consider Ploop . It can now be written as

(PI)1; (PA)1; (PO)1; (PI)2; (PA)2; (PO)2; . . . ; (PI)N ; (PA)N ; (PO)N

where PI is a sequence containing only input communications SI , PA is a sequence containing

only regular assignments SA, and PO is a sequence containing only output communications SO .

Each individual sequence may be empty and contain no statements at all. If X is an input chan-

nel then communications SX belong in sequences PI ; if X is an output channel then commu-

nications SX belong in sequences PO . No sequence can contain more than one communication

on X . For example, if X is an output channel then the code “(SX)n ; (SX)n+1” may be written

as “(PI)k ; (PA)k ; (PO)k ; (PI)k+1; (PA)k+1; (PO)k+1” where (PO)k ≡ (SX)n , (PO)k+1 ≡ (SX)n+1,

and (PI)k , (PA)k , (PI)k+1 and (PA)k+1 are empty sequences. This provides a clear separation for

different communications on the same channel.

We can now introduce state to the process through a new variable s, which is initialized to zero

and incremented after every sequence of output communications (PO)n , except the last, where it is

reset to zero. Including assertions, the process can be rewritten as follows:

78

PX ≡ Pinit ; *[Ploop]

PX � Pinit , s := 0;

*[{s = 0} (PI)1; (PA)1; (PO)1; s := 1;

{s = 1} (PI)2; (PA)2; (PO)2; s := 2;

{s = 2} . . . s := N − 1;

{s = N − 1} (PI)N ; (PA)N ; (PO)N ; s := 0

]

The added assignments to s do not affect any reaching definitions from the original code, and so the

rewritten process is program-equivalent to the old process. It is easy to see that we may go one step

further and transform the body of the program from a straightline series to a selection statement:

PX � Pinit , s := 0;

*[[s = 0 −→ (PI)1; (PA)1; (PO)1; s := 1

[] s = 1 −→ (PI)2; (PA)2; (PO)2; s := 2

[] s = 2 −→ . . . s := N − 1

[] s = N − 1 −→ (PI)N ; (PA)N ; (PO)N ; s := 0

]]

Now every iteration of the main loop executes only one guarded command. By construction, all

input communications precede all output communications in each guarded command. Recall that in

a DDD-channel process for X , no channel other than X can be used in multiple communications. By

construction, no guarded command contains more than one communication on X . If X is an output

channel and there are multiple communications on X within the initial code Pinit , all sequences

“(PI)k ; (PA)k ; (PO)k ” with k > 1 are moved into Ploop and given their own guarded command.

(Input communications do not exist in Pinit .) Thus, this transformation generates a process that

satisfies the third and fourth requirements of Definition 10 and can, under electrical constraints,

therefore be directly implemented as a PCHB.

Further transformations can create more efficient PCHBs. Consider the following example:

79

*[A?a, B?b; X !f (a); C ?c; d := g(b, c); X !h(d)]

� s := 0;

*[[s = 0 −→ A?a, B?b; X !f (a); s := 1

[] s = 1 −→ C ?c; d := g(b, c); X !h(d); s := 0

]]

The new process is program-equivalent to the original and satisfies the conditions for asynchronous

pipeline stages. However, the value of variable b is assigned in one iteration and used in the next,

requiring explicit storage using state bits either within the PCHB or on a feedback loop outside the

PCHB. If the process is rewritten again as

s := 0;

*[[s = 0 −→ A?a; X !f (a); s := 1

[] s = 1 −→ B?b, C ?c; d := g(b, c); X !h(d); s := 0

]]

then no extra state bits are required.

In general then, the transformation of DDD-channel processes can also reorder statements so

that they are assigned to sequences (and thus guarded commands) in such a way as to minimize the

number of state bits required. Usually, input communications are moved as late as possible without

changing reaching definitions, while output communications are moved as early as possible without

changing reaching definitions. Assignment statements, which typically have multiple variables on

their RHS but only one on their LHS, are usually moved as early as possible (without changing

reaching definitions). This is an attempt to place assignments in the same guarded command as the

assignments to the variables on their RHS.

We have shown that all CHP processes generated by the DSA and projection phases of DDD

can be rewritten to be directly implementable as asynchronous pipeline stages.

80

4.2 Isolating Hardware Units

This section presents the first modification of the DDD method for asynchronous VLSI. It intro-

duces techniques for DDD to handle “expensive” system resources such as memories and arithmetic

execution units. The circuits that implement memories or register files are more complicated than

regular PCHBs, and should be implemented separately. We therefore introduce a methodical trans-

formation that isolates arrays (the usual CHP representation of memories). The PCHBs required to

compute the functions can be quite large, and should be treated as a system resource to be re-used

in time as opposed to repeated in area. Our modification to DDD therefore allows designers to flag

functions that should be isolated for re-use during decomposition. Both modifications are applied

before DSA conversion and projection.

4.2.1 Arrays

We have previously shown how DDD can rewrite statements using arrays as selection statements

treating each array element as a separate variable (Section 2.3.6). When the sequential program

containing these selection statements are decomposed, each array element receives its own process,

with dedicated channels between each of them and the array index process. This solution is usually

prohibitively expensive for systems that are to be implemented in hardware. In CHP specifying

circuit behavior, arrays usually represent system memories or register files, structures implemented

using specialized circuits that do not fit the PCHB template.

For hardware design, we therefore isolate arrays at the very beginning of synthesis. DDD accom-

plishes this by rewriting the original sequential program and inserting variables in such a way that

after the first two phases of DDD are applied, the entire array is in its own process that can be syn-

thesized separately from the rest of the system. The target array process for some array A includes

a control channel OPA, an index channel IDXA, a read channel RA, and a write channel WA. Its

CHP is as follows:

81

a

A

P
idxA

A op
P

PA wr

PA rd

Pard_1Paop_1

Paop_n

Pawr_1

Pawr_k

Paidx_n

Paidx_1

P

P

rd_m

RA

IDXA

OPA

W A

Figure 4.1: Isolating arrays.
System decomposed from sequential program containing k write operations to and m = n− k read
operations from array A.

PA ≡ *[OPA?op, IDXA?i ;

[op = read −→ RA!A[i]

[] op = write −→ WA?A[i]

]]

DDD rewrites the sequential program P by splitting it into two concurrent processes PA and PĀ,

where the first process is as given above and the second is the sequential program with array A

excised. The program PĀ is generated by transforming array manipulations from P into commu-

nications on the array channels. This involves the insertion of new variables aop , aidx , and ard

or awr into the program. Assignments where arrays appear on the RHS are turned into array read

operations:

v := f (A[g(i)], j)

� aop := read, aidx := g(i); OPA!aop , IDXA!aidx ; RA?ard ; v := f (ard , j)

Assignments to array elements are turned into array write operations:

A[g(i)] := f (v)

� aop := write, aidx := g(i), awr := f (v); OPA!aop , IDXA!aidx , WA!awr

82

While the inclusion of special variables (aop) as well as special channels (OPA!) may seem re-

dundant, the reasoning is as follows. Consider an array A that is used multiple times in the original

program. If the DDD processes for the array channels such as OPA! are to be directly implementable

as PCHBs, they require the state transformation presented in Section 4.1.2. In order to avoid any

single DDD process’s requiring excess circuitry that could increase its cycle time and thus the sys-

tem cycle time, DDD attempts to separate computations from state-holding bits. Thus, a separate

variable aidx allows computations of functions such as g(i) to be isolated in a non-state-holding

process. Similarly, if array accesses occur within selection statements, a separate variable aop allows

the computations of the guard conditions to be separated from the state-holding process for chan-

nel OPA. If such caution proves unnecessary, the excess processes will be efficiently recomposed,

using methods presented in Chapter 5.

Consider a sequential program P containing n statements using an array A: k write operations

and m = n − k read operations. Figure 4.1 illustrates the system that results from applying the

array transformation described here followed by DSA conversion and projection. Note that pro-

cesses PAop , PAidx
, PAwr and PArd

all contain state-holding bits to distinguish between the multiple

array accesses required in one iteration of the original program.

4.2.2 Functional Units

DDD decomposes programs using variables as the basic units, not functions. If the same function is

used in computing values for different variables, different processes in the decomposed system may

end up looking very similar. On the other hand, if all variables queued up to use the one process

that executed every instance of a function, expensive state-holding mechanisms would be required,

and lack of resources could slow the entire system down. Our compromise is to allow designers

to specify which functions—typically expensive arithmetic units—should be isolated and reused by

different variables, while letting all others be repeated throughout the system as needed.

Functions can be handled using an approach similar to that for array read operations. For

example, we assume that a function f with two arguments will be isolated by an unconditional

83

process

Pf ≡ *[FA?fa , FB?fb ; FOUT !f (fa , fb)]

We therefore set up processes that merge the various arguments and forward them on channels FA

and FB , and another process that reads the function evaluation result on FOUT and splits it for

the result variables. Thus, when function f is flagged in the code below but function g is not:

. . . v := f (h1(a), h2(b)) ∧ g(c, d); w := f (h2(r), h1(s)) ∨ g(t , u) . . .

� . . . fa := h1(a), fb := h2(b); FA!fa , FB !fb ; FOUT?fout ; v := fout ∧ g(c, d);

fa := h2(r), fb := h1(s); FA!fa , FB !fb ; FOUT?fout ; w := fout ∨ g(t , u) . . .

After DSA conversion and projection, the system includes the following processes:

P � Pf ‖ PFA ‖ PFB ‖ PFOUT ‖ Pv ‖ Pw ‖ Pfa1 ‖ Pfa2 ‖ Pfb1 ‖ Pfb2

Pfa1 ≡ Afa1?a; FA1FA!h1(a)

Pfa2 ≡ Bfa2?b; FA2FA!h2(b)

Pfb1 ≡ Rfb1?r ; FB1FB !h2(r)

Pfb2 ≡ Sfb1?s; FB2FA!h1(s)

PFA ≡ FA1FA?fa ; FA!fa ; FA2FA?fa ; FA!fa

PFB ≡ FB1FB?fb ; FB !fb ; FB2FB?fb ; FB !fb

PFOUT ≡ FOUT?fout ; FOUTv !fout ; FOUT?fout ; FOUTw !fout

Pv ≡ FOUTv ?fout , Cv ?c, Dv ?d ; v := fout ∧ g(c, d)

Pw ≡ FOUTw ?fout , Tw ?t , Uw ?u; w := fout ∧ g(t , u)

Note that the evaluation of function f appears in one process only, while the evaluation of g appears

in both Pv and Pw .

4.3 Reducing System Communications

Reducing the number of communications in a system can greatly reduce the energy consumption.

Of course, we cannot change the specification of the original sequential program, and so the com-

84

munications on external channels must remain the same. However, we can encode expressions in

new variables to reduce the number of new channels required in the decomposed system, and we can

make communications on other channels conditional.

These measures decrease energy consumption in three ways:

• by decreasing the actual number of channels in the system;

• by reducing the wire load that is switched per cycle;

• by making entire modules conditional.

The first two ways are described in this section; the last is addressed in Section 4.4. The transfor-

mations occur after the DSA phase of DDD, and before or during projection.

4.3.1 Encoding Guard Expressions

Our first technique encodes guards of selection statements in fewer variables. The purpose of the

transformation is to reduce the number and size of physical channels required in the decomposed

system, given that every variable assigned a value within a selection statement depends upon the

variables in guard conditions. For example, consider the following process.

*[G0?g0,G1?g1,G2?g2,G3?g3; A?a,B?b,C ?c;

[f (g0, g1, g2, g3) −→ X !(a ∧ b),Y !(b ∧ c), z := a ∧ c

[]¬f (g0, g1, g2, g3) −→ z := b ∨ c

]; Z !(a ∨ z)

]

Would there be more or fewer channels in the decomposed system if the guard conditions were

encoded as follows?

85

*[G0?g0,G1?g1,G2?g2,G3?g3; A?a,B?b,C ?c;

h := f (g0, g1, g2, g3);

[h −→ X !(a ∧ b), Y !(b ∧ c), z := a ∧ c

[]¬h −→ z := b ∨ c

]; Z !(a ∨ z)

]

The answer depends on the size of the variables gi and changes depending on both the number of

variables assigned a value in the selection (three: X !, Y ! and z), and on the number of guarded

commands in the selection statement (two).

We begin encoding guards by assigning a communications cost to every variable in the sequen-

tial code. A variable that can hold K different values can be communicated on a 1ofK channel.

Practically speaking, we always break channels up into a group of channels of more manageable size

(e.g., 1 byte variables are not communicated on a 1of256 channel but rather on four 1of4 channels).

Let us choose some base channel size 1ofB. Normally, B = 4, but any reasonable value (say, B≤6)

can be chosen for this purpose. Consider a variable x that can assume Kx different values. The

channel required to communicate x can be implemented as dlogBKxe different 1ofB channels. This

variable is therefore assigned a communications cost of Cx = dlogB(Kx)e.

Scanning through the sequential program, for every selection statement G , we have

• VG = set of all guard variables in the selection;

• NG = # conditions in the selection;

• AG = # variables assigned a value within the selection.

Let h be the variable that encodes the guard conditions. Now, let us compute Cenc (the commu-

nications cost when guard conditions are encoded in h), and Cunenc (the cost when they are left

unencoded):

CVG =
∑
∀vi∈VG

Cvi

86

G0?

G1?

G2?

G3?

A? B? C? A? B? C?

G0?

G1?

G2?

G3?

X!

Y!

Z!

X!

Y!

Z!

cacba

Z

z

Y

X

Z

z

Y

X

g3

g2

g1

g0

g3

g2

g1

g0

h

b

Figure 4.2: Systems without and with guard encoding.

Ch = dlogB(NG)e

Cunenc = CVG ·AG

Cenc = CVG + Ch ·AG

If Cenc < Cunenc then we know to encode the guard conditions of the selection in question. If not, we

leave the selection unencoded. The systems in Figure 4.2 demonstrate the possible communications

savings when guards using gi are encoded in h using the technique described here.

Returning to our example, we see that NG = 2 and AG = 3. Let Vvi = 4 for ∀vi ∈ VG. Then

CVG = 4, Ch = 1, Cunenc = 12, and Cenc = 7. In this case, encoding the guard conditions reduces

the communications cost of the selection by almost half! In contrast, when Va = Vb = 4, the process

*[A?a, B?b; [a ∧ b −→ x↑ []¬a ∨ ¬b −→ x↓]]

is an example of a selection for which it is better not to encode the guard conditions (Cunenc = 2,

Cenc = 3).

The encoding of guard conditions takes place after an initial DSA transformation but before

projection. Nested selection statements should be flattened before guard encoding.

4.3.1.1 Removing Nested Selections

Nested selection statements are allowed in CHP but are often not necessary. For example, the

selection statement

87

[g −→ x := f (a); [h −→ Y !x [] ¬h −→ skip]

[] ¬g −→ x := 0; [h −→ Y !x [] ¬h −→ skip]

]

can be rewritten as

[g ∧ h −→ x := f (a); Y !x

[] g ∧ ¬h −→ x := f (a)

[] ¬g ∧ h −→ x := 0; Y !x

[] ¬g ∧ ¬h −→ x := 0

]

To keep manipulations—including guard encoding—of selection statements and their variables se-

mantically clear, DDD removes any selection nesting where the guards of the inner selection are not

conditionally input in different communication patterns in outer levels of nesting. For example, the

nesting

[g −→ x := f (a), H 1?h; [h −→ Y !x [] ¬h −→ skip]

[] ¬g −→ x := 0, H 2?h; [h −→ Y !x [] ¬h −→ skip]

]

must remain intact. The removal of nested selections is performed prior to guard encoding.

4.3.1.2 Removing Basic Selections

Similarly to unnecessarily nested selections, basic selection statements are also often unnecessary.

For example, the code

[g −→ x := f (a, b) [] ¬g −→ x := f (c, d)]

contains no conditional communications and so can be easily rewritten as

x := f ′(g , a, b, c, d)

88

If such a communicationless selection statement contains assignments to multiple variables, it is

wise to check if guard encoding results in a better system before rewriting the selection statement.

This removal can therefore take place after guard encoding, or in each individual process following

projection. Then, no selection statements exist in the code unless they contain communication

statements.

4.3.2 Conditional Communications

We can reduce the energy consumption of a system by reducing the activity level on some of its

internal channels. This can be accomplished within the DDD framework by altering the way in which

copy variables are inserted in the sequential program during projection (Section 2.4.2). Consider

a variable v on the LHS of an assignment that appears within a selection statement G . Instead

of inserting copy variables for every variable that depends upon v , DDD can insert copy variables

only for variables that use v in the same branch as the assignment. Variables that use v in other

branches of G do not require copies of v within the current branch.

Consider the following program, which is already in DSA form:

P ≡ *[G?g , A?x0; Y !x0;

[g = 0 −→ B?b; x1 := f1(x0, b); C ?c; x2 := f2(x1, c)

[] g = 1 −→ B?b; W !b, x2 := x0

[] g = 2 −→ x2 := x0

]; Z !x2

]

We want to ensure that we send defined values of variables only when they are actually used in the

computation implemented by the receiving module. To illustrate, we see that in P the variable x1

and the channels W ! and Z ! all depend upon b. However, x1 is only assigned a value when g = 0 and

W !b is only executed when g = 1. We therefore place the projection assignments for intermediate

channels Bx1 and BW as follows:

89

*[G?g , A?x0; Y !x0;

[g = 0 −→ B?b; Bx1 !b, Bx1?bx1 ;

x1 := f1(x0, bx1); C ?c; x2 := f2(x1, c)

[] g = 1 −→ B?b; BW !b, BW ?bW ; W !bW , x2 := x0

[] g = 2 −→ x2 := x0

]; Z !x2

]

After projection, the process implementing assignments to variable b is

Pb ≡ *[Gb?g ;

[g = 0 −→ B?b; Bx1 !b

[] g = 1 −→ B?b; BW !b

[] g = 2 −→ skip

]]

4.4 Reducing System Computations

This section describes a post-decomposition synthesis phase that “tidies up” the system and reduces

energy consumption. There are two transformations involved: distillation, where unnecessary control

structures are removed from the system; and elimination, where processes that do not perform any

computation or copy function are removed.

4.4.1 Motivation

Given a sequential program, DDD produces a concurrent system of processes. Ideally, every process

serves a purpose whether it be performing a computation, splitting or merging channels, or even just

copying values. However, the first two phases of DDD can produce systems with processes that are

nothing more than simple L-R buffers. DDD may well end up inserting such buffers in a throughput

optimization during its clustering phase, but we do not wish to add unnecessary constraints on where

90

the buffers should appear. DDD therefore removes these extra buffers from the decomposed system.

(Any deadlock that arises because of this removal of slack is also handled during DDD’s clustering

phase.) This elimination is performed in a separate phase after projection because new buffers can

be created by a more complicated post-projection transformation, called distillation.

Distillation removes unnecessary control structures from the system. This can result in the

removal of guard variables and the channels on which they are communicated, reducing the system’s

dynamic energy consumption. The energy reduction extends beyond fewer communications, to

fewer computations as well. If only one channel is used in the execution of a process iteration

and all others are conditionally suppressed, that process still consumes dynamic switching activity

in its computation stages (recall that conditional outputs are implemented through an additional

computation stage output) and its completion tree (which suppresses the generation of conditional

input enables but must still generate the local enable signal en).

When a process contains a selection statement where one of the guarded commands is “g → skip”

with no actions, if the selection statement can be properly removed, then the process no longer

consumes any dynamic switching activity in its computation stages or completion tree when the

condition g is true. Thus the channels carrying the guard variables have been eliminated, and

computations have been eliminated from the system too. This is the motivation for distillation, and

the following sections describe the situations in which selections can be “properly removed,” and

the act of removing them.

As a simple illustration, consider the following system:

SYSTEM ≡ Pctrl ‖ Psend ‖ Precv

Pctrl ≡ *[G?g ; Gsend !g , Grecv !g]

Psend ≡ *[Gsend?g , A?a; [g −→ B !f (a) [] ¬g −→ skip]]

Precv ≡ *[Grecv ?g ; [g −→ B?b; C !h(b) [] ¬g −→ skip]]

Communications only occur on channel B when g is true. In fact, processes on both sides of the

channel check this condition before performing their input or output statement. One of these checks

is redundant: if we envision a channel as a pipe with valves on both ends, only one of the valves

91

need be closed for the flow through the pipe to cease. If we choose to distill Precv , then the resulting

system is equivalent:

SYSTEM � SYSTEM 2 ≡ P2ctrl ‖ P2send ‖ P2recv

P2ctrl ≡ *[G?g ; Gsend !g]

P2send ≡ *[Gsend?g , A?a; [g −→ B !f (a) [] ¬g −→ skip]]

P2recv ≡ *[B?b; C !h(b)]

Now elimination can be performed on the new L-R buffer P2ctrl , reducing energy consumption in

the system even further:

SYSTEM � SYSTEM 3 ≡ P3send ‖ P2recv

P3send ≡ *[G?g , A?a; [g −→ B !f (a) [] ¬g −→ skip]]

P2recv ≡ *[B?b; C !h(b)]

Distillation and elimination have transformed a system with three processes (two with expensive

conditional communication circuitry) that are all active whenever an input arrives on G?, into an

equivalent system of two processes (only one with conditional communication circuitry) where one

is active whenever an input arrives on G? but the other is active only when that input evaluates to

true.

In general, when there are conditions on both sides of a channel, we prefer to remove the condi-

tions from the receiving end, leaving a conditional output on the sending end. The reason for this

is that conditional inputs are more expensive to implement than conditional outputs. Conditional

inputs require an entirely new computation stage that switches whether the condition is true or

not, as well as extra gates in the completion tree to generate individual conditional input enables.

In contrast, conditional outputs simply require an extra computation stage output whose path to

ground only consumes dynamic energy when the condition is false, and an increase in size of a va-

lidity gate. Experiments on a simple system using e1of2 channels indicate that during distillation,

a system that keeps its conditional input consumes 45% more energy than a system that keeps its

conditional output.

92

4.4.2 Distillation

Distillation eliminates unnecessary control from a system by either removing selection statements

from processes or moving conditional computations to new processes with fewer levels of nested

selections. Aside from guard variable channels eliminated along with selections, the communication

traces for individual channels in the system are unchanged by distillation because of redundancy in

the control of systems generated by DDD.

In a DDD-generated system, when an internal channel is used conditionally in one process, the

same condition is also always checked in the process on the other end of the channel. An internal

communication arises from single assignment in the sequential code; the input and output projection

communications inserted by DDD replace this assignment and thus are always performed under

the same condition. Upon decomposition, any guard variables that compute the communication’s

condition are sent to the processes representing both the variable being sent and the variable being

received. For example, consider the DDD transformations below:

*[. . . [g −→ b := a [] ¬g −→ skip] . . .]

� *[. . . [g −→ Ab !a, Ab?b [] ¬g −→ skip] . . .]

� *[. . . [g −→ Ab !a [] ¬g −→ skip] . . .]

‖ *[. . . [g −→ Ab?b [] ¬g −→ skip] . . .]

In the final system, communications on internal channel Ab are checked for the condition g = true in

both processes attached to its ports. (DDD also assumes that conditions are checked on both sides

of external channels; the user must override this assumption if it is not the case.) When distilling

a process, DDD can therefore focus solely on the behavior of the process under consideration, and

can ignore the behavior any other processes.

A selection statement can be eliminated without affecting a system’s computations if its guards

are used only to distinguish between action and non-action, and not between different communication

patterns or computations when action is specified. Since processes on both sides of a channel evaluate

the conditions under which communications occur, the action/non-action checks in the receiving

process are redundant, and the selection statement (including guard variables and channels) can be

93

removed from the receiving process, if not used for other purposes.

Formally, consider a process P that contains a channel C . Let us define the guard condi-

tion P .C .G to be the boolean condition under which C is used in P . If C does not appear in any

selection statements, then P .C .G ≡ true. If C does appear in selection statements, then P .C .G is

a combination of the guard conditions for the commands in which it is used. (Nested selections lead

to a conjunction of guard conditions while C ’s being used in multiple branches of the same selection

leads to a disjunction of guard conditions.)

DDD performs distillation by creating a dependency graph for process P . This graph contains

one node for each channel in P . Edges can exist only between an input channel node and an output

channel node. If a variable received on an input channel is used in a computation for a value

sent on an output channel, not including selection statement guard conditions, then an edge exists

between the nodes representing those two channels. The resulting bipartite graph indicates the data

dependencies between process channels, but ignores control dependencies that could be eliminated

along with selection statements during distillation.

The dependency graph may be composed of multiple unconnected subgraphs. Each maximally-

connected subgraph is called a process component, and each component is considered separately for

distillation. Assume for now that P contains no nested selections. A component can be distilled if:

• all channels P .C in the component have equivalent guard conditions P .C .G , and

• output channels in the component always send values computed by the same function(s) when

their guard condition is true.

The first requirement is that control variables do not distinguish between different communication

patterns. The second requirement is that control variables do not distinguish between different

computations. If both of these requirements are fulfilled, then the component can be distilled. If

the component is one of multiple components, then we say that the process is partially distilled,

and the component is decomposed into its own process, with no selection statement. If there is

only one component for the entire process, then the process is distilled and the selection statement

94

eliminated.

For example, let

P ≡ *[G?g ;

[g = 0 −→ A?a; X !f (a)

[] g = 1 −→ A?a, B?b; X !f (a), Y !b

[] g = 2 −→ B?b; Y !(¬b)

]]

There are two components for this process: one consisting of A? and X !; the other consisting of B?

and Y !. The component containing A and X fulfills the two requirements for distillation given

above, but the component containing B and Y does not because, although P .B .G ≡ P .Y .G ≡ g =

1∨ g = 2, the function output on Y differs for that channel’s two active cases. Since the conditional

communications on A are controlled by the process on the other side of the channel, and the guard

variable g is not needed to distinguish between any other behavior (whether communications patterns

or computations) of A or the other channels in its component, then the component containing A

can be distilled. This results in the following system:

*[A?a; X !f (a)] ‖

*[G?g ; [g = 0 −→ skip [] g = 1 −→ B?b; Y !b [] g = 2 −→ B?b; Y !(¬b)]]

P has been partially distilled.

Let us now move on to consider processes with nested selections. Distillation considers the

removal of selections one nesting level at a time, starting with the outermost selection and moving

inwards. To determine whether distillation can remove a selection level, we create a dependency

graph for each nested level, omitting edges for guard variables only at that or at outer levels. Each

connected component can only be distilled if, at the current level of nesting:

• the projection of each channel’s guard conditions on variables used in the guards of the current

nested selection are all equivalent, and

• output channels in the component always send values computed by the same function(s) in

95

communications at this level of nesting. If no functions are used at this level and all commu-

nications take place in inner selections, then the second condition is considered to be fulfilled.

Once distillation is not possible at a level of nesting, no further distillation is possible at nesting

levels that are further in.

For example, consider the process

Q ≡ *[G?g ;

[g −→ A?a, H ?h; [h = 0 −→ X !f1(a) []h = 1 −→ X !f2(a) []h = 2 −→ skip]

[] ¬g −→ skip

]]

Distillation begins by considering the outermost selection statement. The component at this level

includes channels A?, X !, and H ?. (H ? is not used for guard variables at this level of nesting, and

is considered part of the component.) Now,

Q .A.G ≡ Q .H .G ≡ g

Q .X .G ≡ g ∧ (h = 0 ∨ h = 1)

The projection of the guard conditions of all channels in this component on guard variable g are

equivalent:

Q .A.G d g ≡ Q .H .G d g ≡ Q .X .G d g ≡ g

There are no communications on the only output channel X at this level, so there are no functions

to compare. Therefore, distillation can remove the outer selection, resulting in the following new

process:

*[A?a, H ?h; [h = 0 −→ X !f1(a) []h = 1 −→ X !f2(a) []h = 2 −→ skip]]

Moving onto the next level of nesting, H ? is now a guard channel, and the new dependency graph has

a single component consisting of channels A and X . When the guard conditions of these channels are

projected on variable h, they are not equivalent: Q .A.Gdh ≡ true and Q .X .Gdh ≡ (h = 0∨ h = 1).

No further distillation is possible.

96

Transformation No. Processes No. Channels
Initial DDD 15 39
Elimination I 13 37
Distillation 13 35

Elimination II 11 33

Figure 4.3: Results of elimination and distillation on MiniMIPS WriteBack unit.

4.4.3 Elimination

After the distillation transformation has been applied to the system, we can search for and remove

processes that are no more than L-R buffers. In fact, this transformation can be performed in

conjunction with distillation. A process is a L-R buffer if it is unconditional, has only one input

and one output channel, and always computes the identity function. Elimination reduces the energy

consumption of a system, and possibly the overall latency as well.

4.4.4 Example

We applied the elimination and distillation transformations to a system decomposed by DDD that

implements the WriteBack unit from the asynchronous MiniMIPS. This unit has multiple control

channels, and a two-byte datapath. After DDD, there were 15 processes and 39 channels in the

decomposed system. Elimination removed two processes and two channels from the system imme-

diately. Two more processes were then distilled (deleting two control channels), resulting in simple

buffers that were then eliminated (removing two more data channels from the system). After the

transformations, the new system comprised 11 processes and 33 channels. Of the six channels that

were deleted, one was a two-byte datapath channel, one was an e1of6, two were e1of2 channels,

and two more were e1of3 channels. These results are summarized in Figure 4.3.

4.5 Future Work

There are other program transformations not completely implemented by DDD that are helpful

when synthesizing asynchronous circuits.

97

P_vd (system)

x:=decode(a0,a1,a2,a3)x:=decode(a)A?a X!x

x:=a^0x33A?a X!x

x3:=0

x2:=a2

x1:=0

x0:=a0

A2?a2

A1?a1

A3?a3

A0?a0

A1?a1

A2?a2

A3?a3

A0?a0 X0!x0

X1!x1

X3!x3

X0!x0

X2!x2

X3!x3

X1!x1

X2!x2

byte byte

bytebyte

e1of4

e1of4

e1of4

e1of4

e1of4

e1of4

e1of4

e1of4 e1of4

e1of4

e1of4

e1of4

e1of4

e1of4

e1of4

e1of4

P_abstract

Q_abstract Q_vd

Figure 4.4: Vertical decomposition of decomposable (P) and non-decomposable (Q) processes.

The first such transformation is vertical decomposition, which is performed immediately before

guard encoding. If a CHP process contains variables that are byte- or word-sized, their variables and

their channels are usually split into hardware-implementable e1of4 encodings instead. For example,

a byte is sliced into four e1of4 variables encoding two bits each. If the computations performed on

the variable are decomposable into separate computations for each e1of4 slice, then the process is

also broken into pieces, with the control variables copied to all of them. Otherwise, the process

remains intact but the channels are still split into separate entities. Both of these situations are

illustrated in Figure 4.4. Currently, DDD does not determine whether functions are separable or

not, and the user must rewrite the function for the smaller variables manually.

Other transformations that may be added to DDD in the future include the pipelining of single

functions, and the use of arbiters to handle non-determinism. If a single computation is deemed too

large to fit into a PCHB circuit with a given cycle time, function decomposition can be performed

to break the computation into pieces that can be assigned to new intermediate variables. If non-

deterministic selection statements exist in the original code, their results can be stored in a variable

and that variable used as a guard in the subsequent deterministic selection statement. The non-

deterministic selection can then be isolated and removed, leaving behind a deterministic locally slack

elastic system to which DDD can be applied. The synthesis of the non-deterministic process involves

98

arbiter circuits and can be handled separately from DDD, much as array memories are now.

4.6 Summary

We have presented modifications to DDD that are tailored to produce systems that can be imple-

mented as energy- and area-efficient asynchronous QDI circuits. The entire method, including the

modifications, is as follows:

1. Isolation of Arrays and Large Compute Functions

2. DSA Transformation

(a) Early decomposition of nested loops

(b) Transformation of straightline series and selection statements

3. Vertical Decomposition

4. Guard Encoding

5. Projection

(a) Build dependency sets

(b) Insert copy variables and projection communications

(c) Build new dependency and projection sets, apply projection

6. Distillation

7. Elimination

Note that arrays and expensive functions must be isolated before the DSA transformation because

their isolation introduces new channels and variables to the sequential program. If their isolated

process is accessed more than once per sequential iteration, the channels and variables will be affected

by the DSA transformation. Meanwhile, the DSA transformation and vertical decomposition can

be performed in any order relative to each other, but must both precede the guard encoding step

99

introduced in this chapter. Guard encoding depends upon the number of variables assigned values

in a selection statement, and this number can be affected by both DSA and vertical decomposition.

Lastly, the distillation technique can only be applied after a concurrent system has been projected

from the sequential program. Since distillation can convert complicated processes into simple ones,

to eliminate L-R buffers in a single pass, elimination follows distillation.

100

Chapter 5

Clustering Asynchronous Processes

We have presented the first two phases of DDD, where sequential programs are decomposed into

systems of concurrent processes, each implementable as a PCHB. We now focus on DDD’s last phase,

clustering. Clustering recomposes the DDD-generated processes into larger processes to improve

system efficiency. It is performed in conjunction with slack matching, a performance optimization

for asynchronous systems. The global optimization problem that combines recomposition and slack

matching is complex; DDD addresses it with the randomized heuristic of simulated annealing. This

chapter describes the circumstances under which individual processes can and should be recomposed,

the system model used to implement slack matching, a new method for slack matching homogeneous

systems, and the cost functions used in the simulated annealing.

5.1 Motivation

One way of optimizing asynchronous systems is to specify a maximum cycle time before process de-

composition, and then to strive to create a decomposed system that meets the target with minimum

global energy consumption. The first two phases of DDD limit processes to performing computa-

tions for only one variable, and hence usually produce systems where each individual process can

easily meet reasonable cycle time constraints. We define the individual cycle time of a process to be

the cycle time when its environment consists solely of simple L-R buffers.The system’s cycle time is

different, and can depend on the amount of available slack.

Communication actions typically consume much more energy than computations, especially in

101

QDI systems with four-phase handshakes. It is therefore important to select a process granularity for

the decomposed system that strikes a balance between processes’ being small enough to achieve the

desired cycle time and their being large enough that communications overhead is not needlessly large.

For example, an assignment comprising multiple branches of a selection statement and containing

significant logic in both the assigned and guard expressions certainly forms the basis for a process

being large enough to stand on its own in the final decomposed system. However, in CHP used

to design asynchronous chips, assignments are often unconditional and no more complex than a

single static assignment. Basic processes that do little more than input two values and output their

conjunction do not offer enough computation to be worth the three communications performed on

the computation’s behalf.

DDD systems are in fact often over-decomposed: multiple processes can be combined into one

and still meet realistic target cycle times. The clustering phase of DDD presented here seeks out such

situations and recomposes processes to reduce energy consumption and latency in the new system.

Clustering is performed assuming that the processes are implemented as PCHB circuits; DDD uses

the PCHB template to estimate the cycle time and energy consumption of a process given only the

high-level CHP specification.

Breaking the original circuit specification into small processes only to regroup some of them

back into larger processes may seem wasteful, but there are two major advantages to this approach.

The first is that while we generally cluster processes to minimize communications and energy con-

sumption, other metrics can be chosen by designers instead, requiring only a change in the cost

functions used during the clustering heuristic. For example, in a hypothetical system where Vdd

can be set independently for each module, DDD clustering can be used to minimize the system’s

energy complexity, Et2. (This metric is independent of voltage to first order, and thus significant

when comparing circuits that function in environments where voltage scaling is performed to trade

energy off against performance [40].)

The second advantage of recomposition is that the performance optimization of slack matching

can be applied simultaneously to the same decomposed system of processes. While the first two

102

phases of DDD may produce processes that can individually fulfill cycle-time constraints, the system

as a whole may not contain enough buffering, or slack, to meet the global performance target. We

therefore insert L-R buffers at select points of the system, and attempt to do so while adding as little

energy consumption as possible. If clustering were performed before slack matching, processes could

be recomposed only for a chain of buffers to be later inserted in their place, at a greater energy cost.

Linking the two transformations eliminates such unhelpful cancellations from the synthesis flow.

We begin this chapter by defining system models and describing methods for performing the slack-

matching optimization. We then describe situations in which process recomposition is advantageous,

and demonstrate how low-level circuit information is extracted from high-level CHP specifications to

compute the performance costs and energy savings of clusters. Finally, we introduce the clustering

heuristic for DDD that combines recomposition with slack matching, describe approaches to special

cases. Results from our prototype clustering tool are presented in Chapter 6.

5.2 Recomposition of PCHB Processes

Let us consider the individual action of process recomposition. Using the circuit template given in

Chapter 3, we can study the effects of combining two PCHB processes. Our current goal is to lower

the energy consumption of the concurrent system. Recomposition can achieve this in two ways:

• reducing the number of communications (and hence the amount of switching) in the circuit;

• removing redundancy by merging processes whose circuits have identical parts.

We specify the situations where combining processes leads to significant energy savings within the

circuit. We also present size limits for recomposed PCHBs.

5.2.1 Clustering in Series

Recomposition can significantly reduce energy when a communication channel exists between the

two processes being clustered. This scenario is illustrated in Figure 5.1. If the composition of the two

original computations is not too large for a single PCHB (as will be discussed later in this section),

103

Bc cluster
A?

X?

Y?

C!C!

A?

X?
Y?

b:=f(a) c:=g(b) c:=g(f(a))

Figure 5.1: Clustering two processes in series.

cluster
CPaPa

Pb

Pc

Pa PbcAbc

A1?

A2?

X?

Y?

B!
C!Acp

A1?

X?

Y?

A2?

B!

C!

Ac

Ab

Figure 5.2: Clustering in parallel two processes that share inputs.

then combining the two processes eliminates a communication channel and the validity trees on both

sides of the channel. The wider the channel, the more beneficial the recomposition.

5.2.2 Clustering in Parallel

Consider the case where two processes share the same input, as illustrated in Figure 5.2. In the

basic decomposed system, the inputs appear on different channels originating from the same copy

process. If the two processes are merged, one of the channels, and possibly the copy process itself,

will be eliminated. This alone contributes towards the first goal of clustering for low energy.

There are further savings from clustering processes that share inputs. The two original processes

used redundant validity trees for this input. Merging them eliminates one copy of the tree, fulfilling

the second goal of recomposition. Thus, combining basic processes that share the same input leads

to energy savings. If the processes are the only ones to which that input value is sent (and therefore

a copy process is eliminated), or if the input value is particularly wide (and therefore has large

validity trees), this clustering is especially desirable.

Since there are no shared variables or shared communication channels in our concurrent systems,

processes can never share the same output. If their output channels have a common destination

104

process, however, their output enable signals R.e can be shared. No internal circuit savings arise

from this sharing, but externally we need to route only one acknowledge signal instead of two. This

eliminates switching on one wire and can simplify the routing problem, but does not have significant

impact on the energy consumption of the system. Our clustering heuristic groups together processes

with characteristics that offer greater reductions in energy; DDD focuses on clustering processes

that share inputs or are arranged in series.

5.2.3 Limits to Cluster Size

A process is deemed too large for hardware implementation if either of the following conditions

apply:

• it has too many transistors in series, or

• its validity/completion trees have too many levels to be implemented in a fast asynchronous

pipeline stage.

The first problem is straightforward: if the computational logic is complex then the circuit may

have more pulldown transistors in series than is advisable in the target technology for synthesis.

The pulldown network should not require more transistors in series than the sum of foot transistors

(at most one for the internal enable and one for the enable of the output channel being computed)

and the total number of input channels to the process. To determine the number of transistors in

series more precisely, we can find the maximum number of conjunctions in the assigned and guard

expressions for communications on each channel, and add the largest of these values to the number

of foot transistors.

When two processes are combined because they share input channels, their pulldown networks

remain separate since their outputs are not shared. The maximum number of transistors in series

therefore remains the same. However, when two processes are clustered in series, the pulldown

network for the computational logic can grow in size. Such a recomposition may be disallowed

because it exceeds the maximum number of transistors in series.

105

Figure 5.3: Basic slack matching structures.
Ring of PCHBs (left) and Reconvergent Fanout (two nested cases, right).

The second limit to the size of a recombined process involves the maximum cycle time specified

by the designer prior to decomposition. Deep completion or validity trees in a process could increase

its cycle time, possibly slowing down the entire system. The depth of these trees depends on both

the size of their fanin (which in turn depends upon the width and number of channels), and on the

maximum number of transistors allowed in series (which limits the fanin for each individual gate).

All of the information required to estimate a recomposed process’s cycle time can be determined

from its CHP specification (see Chapter 3).

5.3 Slack Matching

Slack matching is a system optimization where simple L-R buffers are inserted into a QDI system

to increase system throughput. The slack matching solutions presented in this section are only for

individual structures with slack constraints, as illustrated in Figure 5.3. The two types of slack-

matching structures are rings and reconvergent fanout (composed of a fork process, a join process,

and parallel branches in between the two.)

The more general problem of slack matching systems composed of multiple structures is addressed

in the following section, as part of the global clustering heuristic. Not all asynchronous systems can

be slack matched without duplication of processes. While the class of such unsolvable systems

has not been rigorously defined, we have shown elsewhere that the presence of supercycles of slack

constraints (groups of more than two rings or reconvergent fanout structures that share edges) is a

necessary condition for insolvability [54].

Slack matching is often described as analogous to the retiming of synchronous VLSI systems

106

for optimal throughput [27, 17, 43, 30]. However, the pipeline dynamics arising from asynchronous

handshakes make it more complex. While retiming can be performed in polynomial time, the general

slack matching problem has been proved to be NP-complete [24].

The static slack of a pipeline is the maximum number of messages that can be introduced to

the pipeline (with none being removed) before deadlock occurs. A pipeline of N PCHB circuits

has a static slack of s = N/2, because PCHB handshake protocols allow valid data on the rails

of only alternating (and not adjacent) PCHBs composed in series. This is the origin of the name

“half-buffer.” A pipeline holding m messages is deadlock-free when 0 < m < s. While static slack

determines the number of messages that a system may hold without deadlock, the additional concept

of dynamic slack determines the range of messages that can be held for optimal throughput.

This section introduces the FBI model for PCHBs that forms the basis of our slack analysis

of asynchronous systems. We classify and present methods for determining the critical cycles of

FBI systems, and then use this knowledge in dynamic slack-matching for optimal throughput in

structures containing basic slack constraints: rings and reconvergent fanout. Separate techniques

are presented for homogeneous systems (composed of PCHBs with identical timing characteristics)

and heterogeneous systems (composed of PCHBs whose timing characteristics may differ).

5.3.1 FBI Delay Model for PCHBs

For the purposes of slack matching, we can characterize circuits using graphs whose vertices represent

circuit elements (production rules or production rule sets) and whose edges represent transitions on

circuit nodes. One example of such a graph is the “FBI delay model” for PCHB circuits. The name

of this model is derived from the fact that it expresses the forward-latency cycles (F), backward-

latency cycles (B), and internal cycles (I) of a system of PCHBs. We begin by focussing on rings

of PCHBs each with only one input and one output channel, but the model can be extended to

general PCHBs.

107

2L ?0 R !0 L ?1 R !1 L ?2 R !
PCHBPCHB

n=1n=0 n=2
PCHB

Figure 5.4: Ring of PCHB stages with N=3.

5.3.1.1 FBI Graphs

Consider a ring of three PCHB pipeline stages containing one message, as illustrated in Figure 5.4.

To determine the critical cycle time of this system, we must represent the PCHBs using a more

detailed model that includes handshake behavior. The FBI model corresponding to the ring in

Figure 5.4 is illustrated in Figure 5.5.

Each vertex in the graph has a label φn , where

φ ∈ Φ ≡ {fu, fd, bu, bd, iu, id, vu, vd} (5.1)

and 0 ≤ n < N is a PCHB index in a ring of N PCHBs. The meanings of these labels in reference

to a PCHB circuit are illustrated in Figure 5.6. The delay of the circuit element represented by a

vertex φn is δ(φn), and each vertex delay in the FBI model is defined as follows. Given a PCHB

with index n, let the notation “[B]” indicate that boolean expression B evaluates to true:

• δ(fun) is the delay from [enn ∧ R.en ∧ L.dn] to both R.dn↑ and rvn↑

• δ(vun) is the delay from [L.dn] to lvn↑

• δ(bdn) is the delay from [lvn ∧ rvn] to L.en↓

• δ(idn) is the delay from [¬L.en] to enn↓

• δ(fdn) is the delay from [¬enn ∧ ¬R.en] to both R.dn↓ and rvn↓

• δ(vdn) is the delay from [¬L.dn] to lvn↓

• δ(bun) is the delay from [¬lvn ∧ ¬rvn] to L.en↑

108

PCHB PCHB
n=1

PCHB
n=2n=0

[2]

3σ [2]
3σ [1]

σ4
[2]

σ5
[2]

ρ0[0] ρ0[1] ρ0[2]

ρ
1

[0]

ρ
2[0]

ρ
1

[1]

ρ
2[1]

ρ
1

[2]

ρ
2[2]

λ0 λ0
[1] λ0

[2]

λ1 [0] λ1 [1] λ1 [2]

ρ
3[0]

ρ
4[0] ρ

4[1]

ρ
3[1] ρ

3[2]

ρ
4[2]

[0]

σ0[0]

σ1 [0]

σ
2
[0]

3σ [0]

σ4
[0]

σ5
[0]

σ0[1]

σ1 [1]

σ
2
[1]

σ4
[1]

σ5
[1]

σ0[2]

σ1 [2]

σ
2

0

0
vu

0vd

2fu1fu0fu

2vd1vd0vd

2
vu

0
vu

1
vu

2iu

2bu

2fufd

2id

2bd

2fu

1iu

1bu

1fufd

1id

1bd

1fu

0iu

0bu

0fufd

0id

0bd

fu

Figure 5.5: FBI model for ring of PCHB stages with N=3.
Dashed vertices and edges are redundant and included to demonstrate wraparound connections.

• δ(iun) is the delay from [L.en] to enn↑

Delays are expressed in units of transition counts, and “L.d” represents the data rails of communi-

cation channel L. The use of the same delays fun and fdn for the generation of both R.d and rv is

based on the practical assumption that the maximum channel size for circuits in a given technology

is no greater than the maximum number of n-transistors allowed in series. Hence, the validity of

an output channel can be computed in a single gate. The input-validity delays vun and vdn are

not similarly included with fun and fdn because of the asymmetry of PCHB pulldown and pullup

networks: the set phase for output data R.d depends upon input data L.d but the reset phase does

109

rv

_R.0

_R.1

en

en

L.2

R.0

R.1

L.1

L.0

lv

en

L.e

L.3

R.e

R.e

w

w

w

C

fd

bd, bu

id, iu

vd, vu

fu

Figure 5.6: Illustrating the FBI vertices on a PCHB circuit.

not.

The edges in the graph are labelled with names e(n), where 0 ≤ n < N is the PCHB index and

e ∈ ε ≡ {λ0, λ1, σ0, σ1, σ2, σ3, σ4, σ5, ρ0, ρ1, ρ2, ρ3, ρ4} (5.2)

The symbols in ε indicate whether an edge points to the PCHB on the left (λj), stays within the

current PCHB (σj), or points to the PCHB on the right (ρj). Each edge has a source and a sink

vertex. For example, in Figure 5.5, we have src(λ0[n]) = bdn and snk(λ0[n]) = fdn−1. A path P

is a sequence of edges P = e0e1e2..., where snk(ej) = src(ej+1). For paths P = e0e1...eL, the path

source is src(P) = src(e0) and the path sink is snk(P) = snk(eL). A cycle is a path P for which

src(P) = snk(P). A simple cycle P is a cycle for which all src(ej) are unique over all ej ∈ P (i.e.,

110

in which no vertex is appears more than once). The path delay of a path P is

δ(P) =
L∑
j=0

δ(src(ej)) (5.3)

5.3.1.2 Messages and Tokens

A ring with N PCHBs and static slack s = N /2 may contain 0 ≤ m ≤ s messages. Each message

is represented in the ring’s FBI system by multiple tokens travelling around forward-latency cycles,

backward-latency cycles, internal cycles, and handshake cycles concurrently. A token on an edge in

the FBI model represents a boolean condition that evaluates to true and is a conjunction term in the

guard of a production rule that has not yet fired. (We require that disjunctive logic be encapsulated

within an FBI vertex: a production rule whose guard contains disjunctions must be grouped in

the same vertex with the production rules that set its guard variables.) When all fanin edges to a

vertex contain tokens, the true conditions together contribute to enabling all production rules for

that vertex. Figure 5.7 annotates each edge with the boolean condition that it represents.

Tokens traverse the graph as follows: if the fanin edges of a vertex all contain a token, a token

is removed from each fanin edge and a token is placed on each fanout edge of the vertex. (This

behavior is similar to that of Petri nets [44].) Thus, the number of tokens on a cycle is always

conserved, and the number of tokens on any cycle at reset is the number of tokens flowing on that

cycle when the system is in steady state.

Tokens are introduced to the system by reset circuitry. Specifically, pre-tokens are placed on

edges corresponding to production rules that are initialized by the Reset signal. For example, given

the production rule “Reset → en↓,” a pre-token is placed on corresponding edge σ2. Pre-tokens

traverse the graph as regular tokens do. When the system has stabilized and is frozen at the

end of the Reset phase (the progress of pre-tokens may be impeded by production rules such as

“¬Reset ∧ ¬ en → en↑”), any pre-tokens at the inputs of production rules whose firings would be

non-vacuous are converted into actual tokens.

Thus, we can specify the FBI model of a system of N PCHBs as G = 〈V ,E ,R〉, where, if we

111

PCHB
n=1

[1]

ρ0[0]

ρ
2[0]

ρ
1

[1]

λ0
[1]

λ1 [1]

ρ
4[0]

ρ [1]3

σ0[1]

σ1 [1]

σ
2
[1]

σ4
[1]

σ5
[1]

3σ

[R.d]

1

bd1

id 1

fdfu 1

bu1

iu 1

vu
1

vd1

fu 1

[L.d] [R.d]

[rv]

[lv]

[~L.e]

[~en]

[~R.d]

[~R.e]

[L.e]

[en]

[L.e]

[~L.e]

[~rv]

[R.e]

[L.d]

[~L.d]

[~lv]

fu

Figure 5.7: FBI graph for a PCHB annotated with edge boolean conditions for tokens.
“L.d” represents valid data on the data rails of channel “L;” “L.e” is the enable (inverted acknowl-
edgment) rail of channel “L.”

define SN ≡ {n | n < N ∩ n ∈ N}, then

• V = Φ×SN is the set of vertices

• E = ε×SN is the set of edges

• R ⊆ E is the set of edges on which tokens exist at the end of the Reset phase.

For PCHBs, each buffer is initialized either to send a message, to receive a message, or to a state

with no message initialization. The location of tokens for these three cases of PCHBs at the end of

the Reset phase is illustrated in Figure 5.8. For a PCHB with index n in an FBI graph, the following

conditions hold:

112

SEND MSG

PCHB
n=2

PCHB
n=0

REGULAR RECV MSG

PCHB
n=1

3[1]

ρ
1

[2]

ρ0[2]ρ0[1]

σ5
[1]

σ
2

[1]

3σ [1]

ρ
1

[1]

λ0
[0]

λ1 [0]

3σ [0]

σ4
[0]

σ5
[0]

ρ
4[2]

σ
2

[0]

σ1 [0]

ρ
2[2]

σ0[0]

ρ
3[0]

ρ
1

[0]

ρ [0]0

ρ

0
[2]

λ1 [1] λ1 [2]

ρ
3[2]

σ1 [1]

σ4
[1]

σ1 [2]

σ
2

[2]

3σ [2]

σ4
[2]

σ5
[2]

ρ
4[0] ρ

4[1]

λ0
[1]

ρ
2[0]

λ

2[1]

σ0[1] σ0[2]

ρ

1

vu

0fu

0iu

0bu

0fufd

0id

0bd

0fu

0vd

2
vu

1
vu

2fu

2iu

2bu

2fufd

2id

2bd

2fu

1fu

1iu

1bu

1fufd

0

id

1bd

1fu

2vd1vd

Figure 5.8: FBI graph for a PCHBs showing placement of initial tokens.

• Rreg[n] ≡ {σ3[n], ρ3[n]}

• Rsnd[n] ≡ {σ2[n], ρ0[n], ρ1[n]}

• Rrcv[n] ≡ {σ4[n], ρ3[n]}

5.3.2 Critical Cycles

A system’s throughput depends on the length of its FBI cycles, and the number of tokens on

these cycles.

5.3.2.1 Common Cycles

Lines [29] categorized the following cycles: forward-latency cycles, backward-latency cycles, internal

cycles, and handshake cycles. Before proceeding with further analysis, we use the FBI model to

113

define these commonly-mentioned cycles in asynchronous QDI systems. Other cycles exist in the

FBI system and we explore them methodically in the following section, but many real-life PCHB

systems fall into a category that renders these common cycles significant in determining the critical

cycle time of a system.

Given a ring of N PCHBs that contains m messages, the common forward-latency cycle is τ †f :

Cf = ρ0[0] ρ0[1] . . . ρ0[N − 1]

δ†f = δ(Cf)

τ †f =
δ†f
m

(5.4)

(The notation δ†f and τ †f is used to distinguish these common cycle definitions from the more general

definitions δf and τf presented in the following section.)

The common backward-latency cycle is traversed by message acknowledgment tokens moving

backwards around the ring (i.e., in the direction of decreasing PCHB indices). Another perspective

is that there are absences of messages, or s−m “holes,” moving backwards around the ring as the

messages move forward. If N is odd, there is one cycle that traverses each PCHB twice. If N is

even, there are two cycles that each traverse each PCHB once. These scenarios are illustrated in

Figure 5.9.

Cbodd = σ0[N − 1] λ0[N − 1] σ3[N − 2] λ1[N − 2] . . . λ0[0]

σ3[N − 1] λ1[N − 1] . . . σ3[0] λ1[0]

Cbevn0 = σ0[N − 1]λ0[N − 1]σ3[N − 2]λ1[N − 2]σ0[N − 3] . . . σ3[0]λ1[0]

Cbevn1 = σ3[N − 1]λ1[N − 1]σ0[N − 2]λ0[N − 2]σ3[N − 3] . . . σ0[0]λ0[0]

δ†b =


1
2δ(Cbodd) if N mod 2 = 1

max{δ(Cbevn0), δ(Cbevn1)} if N mod 2 = 0
(5.5)

τ †b =
δ†b

s−m
(5.6)

114

σ

iu

bu

fd

id

bd

fu

fu

iu

bu

fd

id

bd

fu

fu

bd

id

fd

bu

iu

fu

fu

vd

vu vu vuvu

iu

bu

fd

id

bd

fu

fu

vd

iu

id

bd

fu

bu

vdvd

σ
2

σ
0

σ
1

σ
3

σ
4

σ
5

σ
2

σ
0

σ
1

σ
3

σ
4

σ
5

σ
2

σ
0

σ
1

σ
3

σ
4

σ
5

σ
2

σ
0

σ
1

σ
3

σ
4

σ
5

σ
2

σ
0

σ
1

σ
3

σ
4

σ
5

λ 0

λ 1

λ 0

λ 1

λ 0

λ 1

λ 0

λ 1

iu

bu

fd

id

bd

fu

fu

iu

bu

fd

id

bd

fu

fu

bd

id

fd

bu

iu

fu

fu

vd

vu vu

vd vd

iu

bu

fd

id

bd

fu

σ
2

σ
0

σ
1

σ
3

σ
4

σ
5

vu

σ
2

σ
0

σ
1

3

σ
4

σ
5

σ
2

σ
0

σ
1

σ
3

σ
4

σ
5

σ
2

σ
0

σ
1

σ
3

σ
4

σ
5

λ 0

λ1

λ 0

λ1

λ 0

λ1

4

3

n=1

2

n=2

n=2

2 4

n=0 n=0n=1

3

5

62

7

5

3

5

n=0

n=3

4

5
1

1

6

3

n=0

2 4

3

42 23

1

4

fd

fu

fu

Figure 5.9: Backward-latency cycles.
The FBI system on the top has an odd number of PCHBs. Starting from vertex fu (n=2), a common
backward-latency cycle that traverses each PCHB twice is marked on the graph. (The graph is a
torus; follow the numbers on the path as they wrap around the edges.) The FBI system on the
bottom has an even number of PCHBs. There are two common backward-latency cycles marked
on the graph: one starting at vertex fu (n=3) and the other starting at vertex fd (n=3). Each
traverses each PCHB once.

115

The common longest internal cycle is the longest cycle that remains within any single PCHB in the

ring.

Ci[n] = σ0[n] σ1[n] σ2[n] σ3[n] σ4[n] σ5[n]

τ †i = max
n
{δ(Ci[n])} (5.7)

Handshake cycles occur between two adjacent (communicating) PCHBs. The common longest hand-

shake cycle is

Ch[n] = ρ1[n] ρ2[n] λ0[n+ 1] ρ3[n] ρ4[n] λ1[n+ 1]

τ †h = max
n
{δ(Ch[n])} (5.8)

5.3.2.2 Critical Cycles

Consider an FBI system for a linear series of N PCHBs. If we begin by ignoring PCHB indices

then, by inspection, all paths with source fun and sink fum are expressed by the following regular

expression P :

P = (F ∗C∗)∗

where

F = ρ0

C = [σ0|ρ1ρ2] [σ1σ2|λ0] [σ3|ρ3ρ4] [σ4σ5|λ1]

Let us consider the regular expression C more closely. C always begins at some vertex fun in

the FBI graph. If n is the index of the current PCHB in the ring, when traversing edges in the FBI

116

system we have

{n = K} λj {n = (K − 1) mod N}

{n = K} σj {n = K}

{n = K} [ρ0 | ρ1ρ2 | ρ3ρ4] {n = (K + 1) mod N}

Since there are a finite number of edges in any instance of C , we can assign all possible paths fitting

the pattern C into one of the following subpatterns:

{n = K} C0 {n = K}

{n = K} C+1 {n = (K + 1) mod N}

{n = K} C+2 {n = (K + 2) mod N}

{n = K} C−1 {n = (K − 1) mod N}

{n = K} C−2 {n = (K − 2) mod N}

We can now write our general pattern specification for paths with source fun as

P = (F ∗[C0|C+1|C+2|C−1|C−2]∗)∗

Paths that fit subpattern Cn traverse more than one edge, begin at fuN , and end at fuN+n without

traversing any other nodes fum , where m 6= N and m 6= N + n. Paths in subpattern F traverse only

one edge ρ0[n].

Given this pattern for traversing an FBI graph, we find the simple cycle in the graph with the

largest cycle time, which is defined as the cycle delay divided by number of tokens on the cycle. This

section presents an analysis for a general heterogeneous ring of L-R buffers; the following sections

make assumptions on the PCHBs to reduce the possible cycles put forth here into the four common

cycles described in Section 5.3.2.1.

117

Case 1: Stationary Cycles {n = K} C0 {n = K}

Any pattern P that includes C0 must include a cycle since src(C0) = snk(C0) = fuK . Any path

in C0 must contain twice the number of edges ρj as it does edges λj . There are six such paths (all

simple cycles) for any PCHB[n]:

C0
0 [n] = σ0[n] σ1[n] σ2[n] σ3[n] σ4[n] σ5[n]

C1
0 [n] = σ0[n] σ1[n] σ2[n] ρ3[n] ρ4[n] λ1[n+ 1]

C2
0 [n] = ρ1[n] ρ2[n] λ0[n] σ3[n] σ4[n] σ5[n]

C3
0 [n] = ρ1[n] ρ2[n] λ0[n] ρ3[n] ρ4[n] λ1[n+ 1]

C4
0 [n] = ρ1[n] ρ2[n] σ1[n+ 1] σ2[n+ 1] σ3[n+ 1] λ1[n+ 1]

C5
0 [n] = σ0[n] λ0[n] ρ3[n− 1] ρ4[n− 1] σ4[n] σ5[n]

Analysis of the reset sets in Section 5.3.1.2 shows that all possible internal cycles C0 contain one

token. Thus, the maximum cycle time is as follows:

τC0 = max
{
δ(Cj0 [n]) : 0≤n<N, 0≤j<6

}
(5.9)

Note that τC0 includes all common internal cycles Ci[n] and handshake cycles Ch[n] from Sec-

tion 5.3.2.1.

Case 2: Consecutive C -iterations With Direction Change:

[C+1|C+2][C−1|C−2] or [C−1|C−2][C+1|C+2]

All of the scenarios in this case reduce to stationary cycles. In other words, all eight paths

in [C+1|C+2][C−1|C−2] and [C−1|C−2][C+1|C+2] contain a simple cycle c, where either c ∈ C0

or rot(c) ∈ C0 (where rot(c) is any rotation of the cycle c). To demonstrate this fact, let us first

note that given a path c ∈ C , where src(c) = fun , the following edges must be a part of c:

c ∈ C+1[n] ⇒ ρ1[n]ρ2[n] ∈ c ∩ (σ2[n+ 1] ∈ c ∪ ρ4[n] ∈ c) ∪ ρ3[n]ρ4[n] ∈ c

118

c ∈ C+2[n] ⇒ ρ1[n]ρ2[n] ∈ c ∩ ρ3[n+ 1]ρ4[n+ 1] ∈ c

c ∈ C−1[n] ⇒ σ0[n]λ0[n] ∈ c ∪ σ3[n]λ1[n] ∈ c

c ∈ C−2[n] ⇒ σ0[n]λ0[n]σ3[n− 1]λ1[n− 1] ∈ c

Now we can consider each possible iteration. Using the statements above to determine whether an

edge is in the iteration or not, and the FBI graph to determine the sources and sinks of these edges,

we can check for simple cycles by looking for vertices that appear twice in the path:

1. PC = C+1[n]C−1[n+ 1] or PC = C−1[n+ 1]C+1[n]:

We see that snk(ρ2[n]) = src(λ0[n+1]), snk(σ2[n+1]) = src(σ3[n+1]), src(ρ3[n]) = snk(λ0[n+

1]), and snk(ρ4[n]) = src(λ1[n+ 1]). Therefore a simple cycle c ∈ PC exists s.t. rot(c) ∈ C0.

2. PC = C+2[n]C−2[n+ 2] or PC = C−2[n+ 2]C+2[n]:

Since src((ρ3[n+ 1]) = snk(λ0[n+ 2]), there exists a simple cycle c ∈ PC s.t. rot(c) ∈ C0.

3. PC = C+1[n]C−2[n+ 1]:

Since snk((ρ2[n]) = src(λ0[n + 1]) and src(ρ3[n]) = src(σ3[n]), there exists a simple cycle

c ∈ PC s.t. rot(c) ∈ C0.

4. PC = C−2[n+ 2]C+1[n]:

Since snk((σ2[n+ 1]) = snk(λ0[n+ 2]), and snk(ρ4[n]) = src(λ1[n+ 1]), there exists a simple

cycle c ∈ PC s.t. rot(c) ∈ C0.

5. PC = C−1[n+ 1]C+2[n]:

Since src((λ0[n + 1]) = snk(ρ2[n]), and src(σ3[n + 1]) = src(ρ3[n + 1]), there exists a simple

cycle c ∈ PC s.t. rot(c) ∈ C0.

6. PC = C+2[n]C−1[n+ 2]:

Since src((ρ3[n+1]) = snk(λ0[n+2]) and snk(ρ4[n+1]) = src(λ1[n+2]), there exists a simple

cycle c ∈ PC s.t. rot(c) ∈ C0.

119

Therefore all possible iterations in this case include a simple cycle, and the maximum cycle time for

all subpatterns of C in this case is τC0 .

Case 3: Forward-Latency Paths: {n = K} [F |C+1|C+2] {n ≥ (K + 1) mod N}

All iterations of P in these subpatterns move forward. Cycles can exist only when the forward-

latency path spans the entire ring of N PCHBs at least once. Given a source vertex fun , there

is only one possible path c ∈ F[n] (ρ0[n]), four possible paths c ∈ C+1[n] (labelled C0
+1[n] –

C3
+1[n]), and one possible path c ∈ C+2[n] (ρ1[n]ρ2[n]σ1[n + 1]σ2[n + 1]ρ3[n + 1]ρ4[n + 1]). The

number of tokens on each possible path ranges from zero to two, and depends upon whether the

PCHBs traversed are initialized to send a value, to receive a value, or neither.

Note that if our pattern consists solely of edges ρ0[n] and P = F *, then F can be repeated

only N times before a simple cycle is created. In fact, this is the common forward-latency cycle Cf

from Section 5.3.2.1, and since m messages in the ring result in m initial tokens on edges labelled ρ0,

(there are m PCHBs that initially send tokens and use Rsnd), the forward-latency cycle-time is

therefore commensurate with the previous common cycle definition of τ †f :

1
m

N−1∑
n=0

δ(fun)

Returning to paths including subpatterns other than F , since each possible subpattern in this

case moves forward, we can from our FBI graph G = 〈V ,E ,R〉 construct a new acyclic graph AF (G)

and use it to determine the maximum cycle time for this case. Since forward-latency simple-cycles

can traverse the PCHB ring once or twice (depending on whether N is even or odd), we unroll the

ring in AF (G) so that each PCHB has three vertices in the new acyclic graph. This is demonstrated

in Figure 5.10.

The PCHB vertices in AF (G) are connected by edges representing the paths in F[n], C+1[n]

and C+2[n]. Each edge is annotated with the delay of and number of tokens on the paths in G .

Thus, given G = 〈V,E,R〉, we create AF (G) = 〈VF , EF , DF , TF 〉, where

• VF = N × {1, 2, 3}

120

[1] C+2 [2]

F [0] F [0] F [2] F [0]F [1] F [2] F [1] F [1]

C+1 [0] C+1 [0]C+1 [0] C+1 [1] C+1 [2] C+1 [1] C+1 [2] C+1 [1]

C+2 [0] C+2 [0] C+2 [0]C+2 [1] C+2 [2] C+2

n=0
copy 1

PCHBPCHB
n=2

copy 1
n=2

PCHB
n=0

copy 2 copy 2

PCHB
n=1

copy 2copy 1

PCHB
n=0

copy 3

PCHB PCHB
n=1

copy 3

PCHB PCHB
n=2

copy 3
n=1

Figure 5.10: Acyclic forward-latency graph AF (G).

• EF = {F,C0
+1, C

1
+1, C

2
+1, C

3
+1, C+2} ×N represents a path c, where src(c) = fun

• DF : EF → N is the delay of the edge’s path

• TF : EF → N is the number of tokens on the edge’s path

It remains therefore to search AF (G) to determine the path with source and sink vertices both

labelled with the same PCHB index 0 ≤ n < N that has the maximum quotient of total path

delay divided by the total number of reset tokens on the path. (Some combinations of successive

edges belonging to the class C+1 contain internal cycles and can be ignored by the heuristic.) This

quotient is the newly-defined forward-latency cycle-time τf for the system.

Case 4: Composite Backward-Latency Paths:

{n = K} [C−1 | C−2 | C−2FC−2] {n ≤ (K − 1) mod N}

First we note that, to avoid simple cycles from the subpattern C0, the step F is allowed only if it is

between two instances of a path from C−2. Any other subpatterns involving F are left for Case 5.

We therefore create a new class

{n = K} C−3 = C−2FC−2 {n = (K − 3) mod N}

We can now rewrite the pattern for this case as [C−1|C−2|C−3]. There are four possible paths c ∈

C−1, one possible path c ∈ C−2, and one possible path C−3.

Similarly to what we did for the forward handshake cycles of Case 3, we create an acyclic

graph AB (G) from the FBI model in which edges represent paths from either C−1[n], C−2[n] or

C−3[n]. Again, it remains to search the acyclic graph to determine the path with matching source

121

and sink and the largest quotient of path delay divided by number of tokens (i.e., the backward-

latency cycle-time τb).

Case 5: Direction Change Including F -iterations:

C−1F or FC−1 or [F |C+1|C+2]FC−2 or C−2F [F |C+1|C+2]

Let us begin by considering the two subpatterns that use F and C−1, as well as the two subpatterns

that include C−2 and two instances of F . All of these subpatterns begin and end at the same node,

forming a simple cycle. There are five cycles whose rotations create all paths for these subpatterns:

C0
−F [n] = ρ0[n] σ0[n+ 1] σ1[n+ 1] σ2[n+ 1] σ3[n+ 1] λ1[n+ 1]

C1
−F [n] = ρ0[n] σ0[n+ 1] λ0[n+ 1] σ3[n] σ4[n] σ5[n]

C2
−F [n] = ρ0[n] σ0[n+ 1] λ0[n+ 1] ρ3[n] ρ4[n+ 1] λ1[n+ 1]

C3
−F [n] = ρ0[n] ρ1[n+ 1] ρ2[n+ 2] λ0[n+ 2] σ3[n+ 1] λ1[n+ 1]

C4
−F [n] = ρ0[n] ρ0[n+ 1] σ0[n+ 2] λ0[n+ 2] σ3[n+ 1] λ1[n+ 1]

Let C−F be the set containing all of these cycles, all of which contain exactly one token.

All other subpatterns in this case reduce to a rotation of one of the five cycles listed above.

1. PC = C+1[n]F [n + 1]C−2[n + 2]: Since snk((σ2[n + 1]) = snk(λ0[n + 2]), and snk((ρ4[n]) =

snk(σ3[n+ 1]), there exists a simple cycle c ∈ PC s.t. rot(c) ∈ C−F .

2. PC = C−2[n+ 2]F [n]C+1[n+ 1]: Since snk((ρ2[n+ 1]) = snk(σ0[n+ 2]), and src((ρ3[n+ 1]) =

snk(λ0[n+ 2]), there exists a simple cycle c ∈ PC s.t. rot(c) ∈ C−F .

3. PC = C+2[n]F [n+2]C−2[n+3]: Since snk((ρ4[n]) = snk(σ3[n+2]), there exists a simple cycle

c ∈ PC s.t. rot(c) ∈ C−F .

4. PC = C−2[n]F [n−2]C+2[n−1]: Since snk((σ0[n]) = snk(ρ2[n−1]), there exists a simple cycle

c ∈ PC s.t. rot(c) ∈ C−F .

Thus,

τC−F = max
{
δ(Cj−F [n]) : 0≤n<N, 0≤j<5

}
(5.10)

122

is the maximum cycle time for all subpatterns in this case.

5.3.2.3 Basic Homogeneous Cases

Let us consider the results of our critical-cycle analysis when applied to a subset of homogeneous

systems. In a homogeneous system of PCHBs, every PCHB has identical delays in the FBI model.

In the subset considered in this section, we have δ(fun) = δ(fdn) = δ(vun) = δ(vdn) = f , δ(bun) =

δ(bdn) = b, and δ(iun) = δ(idn) = i for all 0 ≤ n < N . We call such systems basic homogeneous.

Basic homogeneous systems are a practical reduction of homogeneous systems. Usually, only

processes containing state bits have different delay values for the set and reset phases of the cycle.

In PCHBs with single inputs and outputs, channel sizes are limited by the maximum number of

n-transistors allowed in series in the technology. Thus, input validities can be computed in the same

number of transitions as forward latencies.

Referring to the common cycles defined previously in Section 5.3.2.1, their equations reduce to

the following:

τ †i = 2f + 2b+ 2i (5.11)

τ †h = 4f + 2b (5.12)

τ †f =
Nf

m
(5.13)

τ †b =
N(f + b)
s−m

(5.14)

where m is the number of messages in the ring. Note that the backward time τb is equal for both

even- and odd-length rings.

Theorem 6 Given an FBI representation of a basic homogeneous ring of PCHBs, the critical cycle

time is max{τ †f , τ
†
b , τ
†
i , τ
†
h}.

Proof: For the internal cycles in our FBI system,

τC0 = 2f + 2b+ 2 max{f, i} = max{τi, τh}

123

For the forward-latency cycles in our FBI system,

δF = f

δC+1 = 3f + 2b+ max{f, i}

δC+2 = 4f + 2b+ 2i

Without loss of generality, let the critical forward-latency cycle include n2 instances of C+2, n1

instances of C+1, and nf instances of F . Consider simple cycles within one traversal of the ring

of N PCHBs. By inspection, all subpatterns C+1 contain one reset token except subpatterns orig-

inating at a PCHB that sends an initial message, which contain two reset tokens. Similarily, all

subpatterns C+2 contain one reset token except subpatterns that pass through a PCHB with an

initial send, which also contain two reset tokens. Thus, given N = 2n2 + n1 + nf ,

n2δC+2 + n1δC+1 + nfδF

n2 + n1 +m
=

(4n2 + 3n1 + nf)f + (2n2 + 2n1)b+ 2n2i+ n1 max{f + i}
n2 + n1 +m

=
n2τ

†
i + n1 max{τ †h,

1
2 (τ †h + τ †i)}+ (2n2 + nf)f

n2 + n1 +m

≤
n2τ

†
i + n1 max{τ †h, τ

†
i }+mτ †f

n2 + n1 +m

≤ max{τ †i , τ
†
h, τ
†
f}

If two traversals of the ring are required, then we set 2N = 2n2 + n1 + nf and expect n2 + n1 + 2m

tokens in the ring. The analysis that follows is similar to the above and yields the same final result.

When considering backward-latency cycles, by inspection, subpattern C−1 contains one token

unless the source PCHB is an initial receiver, in which case it may contain zero tokens. Meanwhile,

subpattern C−2 contains one token, unless it passes through an initial receiver, in which case it

contains zero tokens. Finally, subpattern C−3 contains two tokens, unless it passes through an initial

receiver, in which case it contains one token. Since we are searching for the maximum possible cycle

124

time, given N = 3n3 + 2n2 + n1,

δC−1 = 2f + 2b+ max{f, i}

δC−2 = 2f + 2b

δC−3 = 5f + 4b

n3δC−3 + n2δC−2 + n1δC−1

2n3 + n2 + n1 −m
=

(5n3 + 2n2 + 2n1)f + (4n3 + 2n2 + 2n1)b+ n1 max{f, i}
2n3 + n2 + n1 −m

=
N(f + b) + (2n3 + n1)f + (n3 + n1)b+ n1 max{f, i}

2n3 + n2 + n1 −m

=
(s−m)τ †b + n1

2 max{τ †i , τ
†
h}+ n3

2 τ
†
h

2n3 + n2 + n1 −m

=
(3n3+2n2+n1

2 −m)τ †b + n1
2 max{τ †i , τ

†
h}+ n3

2 τ
†
h

2n3 + n2 + n1 −m

≤ max{τ †b , τ
†
i , τ
†
h}

If multiple traversals of the ring are required, similar analyses can be performed changing the defi-

nition of N and the number of tokens expected in the denominator, yielding identical final results.

And finally, for the cycles including F and a direction change,

τC−F = max{3f + 2b+ max{f, i}, 4f + 2b} ≤ max{τ †i , τ
†
h}

Therefore every possible critical cycle in a basic homogeneous ring of PCHBs collapses into the

maximum of the four common cycles: internal τ †i , handshake τ †h, forward latency τ †f , and backward

latency τ †b . 2

5.3.3 Dynamic Slack

While static slack expresses the maximum number of messages that can be present in a pipeline

without deadlock, the dynamic slack of a pipeline is the range of number of messages that a pipeline

can hold while operating at maximum throughput [29]. This range depends not only on the number

of PCHBs in the pipeline but also on the forward and backward latencies, and the maximum internal

125

and handshake cycle-times of the pipeline. The insertion of L-R buffers into a pipeline of complex

PCHBs performing computations can affect all of these values, possibly increasing the dynamic slack

of the system. (Previous analyses of asynchronous pipelines have been performed by Williams [52]

and Lines [29]).

We make use of the following definitions for general heterogeneous systems:

δf = m τf (5.15)

δb = (s−m) τb (5.16)

where τf and τb are the cycle times of critical cycles discovered by the heuristics presented in

Section 5.3.2.2 (cases 3 and 4). The maximum throughput of a system is the reciprocal of the

critical cycle time, and is achieved at an intersection of internal, handshake, forward-latency or

backward-latency time constraints. The equations in this section assume that the common cycles

defined in Section 5.3.2.1 are the critical ones but can be reformulated to incorporate the critical

cycles found for general heterogeneous systems in the previous section.

Let us therefore begin by defining

d = m s.t. τf = τb

=
Nδf

2(δb + δf)
(5.17)

where m is the number of messages in the system. If a system is indeed limited by its latency

cycles (i.e., if max{τi, τh} ≤ τf |m=d), then d is the dynamic slack and the system runs at maximum

throughput when m = d . However, if the system is instead limited by either its internal or its

handshake cycles, the system runs at maximum throughput whenever m is within dynamic slack

range [dmin, dmax] for that cycle time, where

dmin = m s.t. τf = τC0

126

−1

max
d

min

5/210/95/9 5/7

1/18

1/14

T

m

d s

(m) (m)

(m)

(m)

τ f τ b

τ i

τ h

−1 −1

−1

d

Figure 5.11: Throughput vs. number of messages.
For a basic homogeneous ring of five PCHBs with f = 2, b = 3, i = 2. While m ≤ dmin, τcrit = τf ,
while dmin ≤ m ≤ dmax, τcrit = τi, and while dmax ≤ m, τcrit = τb.

=
δf
τC0

(5.18)

and

dmax = m s.t. τb = τC0

=
N

2
− δb
τC0

(5.19)

Note that for the system to run at some cycle time τ ≥ τC0 , we can substitute τ for τC0 in

the definitions above and in any equations that depend upon these definitions. As described by

Lines [29], the plot of a pipeline’s throughput T against the number of messages m resembles either

a triangle with a peak at m = d and Tmax = 1
τcrit

, or a trapezoid, where the throughput is at Tmax

for all dmin ≤ m ≤ dmax . A trapezoidal case is illustrated in Figure 5.11. Note that, as is usually

the case in heterogeneous systems and always the case in basic homogeneous systems,

dmin ≤ d ≤ dmax ⇐⇒ δb ≤
NτC0 − 2δf

2
(5.20)

127

Given a system composed of multiple pipelines and rings, the system’s maximum throughput

is the lowest individual maximum throughput of any of its pipelines or rings. Therefore, when

slack matching this system, our task is to insert L-R buffers to decrease the critical cycle time of

slower rings and pipelines, and to align the dynamic slacks or ranges of dynamic slack so that each

component is operating at this system maximum throughput. This often requires knowledge of the

number of messages that will be in a ring or a pipeline.

As an example, in basic homogeneous systems,

d =
Nf

2(2f + b)
=

Nf

τh
(5.21)

dmin =
Nf

2(f + b+ max {f, i})
=

Nf

max{τi, τh}
(5.22)

dmax =
N max {f, i}

2(f + b+ max {f, i})
=

N max{f, i}
max{τi, τh}

(5.23)

Since dmin ≤ dmax and f ≤ max {f, i}, we know that basic homogenous systems are always limited

by their internal cycle or by their handshake cycle. Structures in these systems are therefore always

slack matched when they contain m tokens and dmin ≤ m ≤ dmax.

5.3.3.1 Base Case: Ring of PCHBs

Consider first a basic homogeneous ring containing N PCHBs. We wish to determine the optimal

number ns of slack buffers to be inserted in the ring so that it runs at maximum throughput. If

we know that the ring will always contain m = M messages, then the constraint dmin ≤ m ≤ dmax

for maximum throughput for homogeneous pipelines presented at the end of the previous section is

fulfilled when

M max {τi, τh}
max {f, i}

≤ (N + ns) ≤
M max {τi, τh}

f

(In situations when f ≥ i , the above inequality becomes an equality equivalent to previous claims of

optimality that link cycle time, stage latency, and number of stages, where each stage has identical

cycle time [42, 39, 41].) Thus, the minimum number of slack buffers that should be inserted into a

128

basic homogeneous ring for maximum throughput is as follows:

ns =
⌈
M max {τi, τh}

max {f, i}
−N

⌉
(5.24)

If we wish the ring to run at some cycle time τ ≥ τcrit , then we can substitute τ for max{τi , τh} in

the above equation.

Now consider a heterogeneous ring currently containing N PCHBs with critical stationary cy-

cle τC0 , forward-latency delay δf , and backward-latency delay δb . We wish to determine the optimal

number ns of slack buffers to be inserted in the ring so that it runs at maximum throughput. Assume

that slack buffers have short internal cycles that do not increase the maximum τC0 of the system

and have equal set and reset delays (fs = δ(fus) = δ(fds) and bs = δ(bds) = δ(bus)).

If we know that the ring will always contain m = M messages, then the constraint for maximum

throughput for homogeneous pipelines presented at the end of the previous section is fulfilled when

min{dmin, d} ≤ m ≤ max{d, dmax}. For the purposes of illustration, let us consider the following

scenario:

dmin ≤ m ≤ dmax

δf + nsfs
τC0

≤ M ≤ N + ns
2

− δb + ns(fs + bs)
τC0

τC0(2M −N) + 2(δb)
τC0 − 2(fs + bs)

≤ ns ≤ MτC0 − δf
fs

The minimum number of slack buffers required for the heterogeneous ring to run at maximum

throughput is therefore

ns =
⌈
τC0(2M −N) + 2(δb)
τC0 − 2(fs + bs)

⌉
(5.25)

5.3.3.2 Base Case: Reconvergent Fanout

Consider a system where one PCHB sends tokens on two different output channels connected to two

separate pipelines that reconverge in a PCHB with two inputs at the end. An example is shown in

Figure 5.12. The two pipelines in this case are called P (S → P1 → P2 → P3 → P4 → P5 → M)

129

Pipeline P

Pipeline Q

S

P2 P3 P4 P5

Q1

M

P1

Figure 5.12: Reconvergent fanout example.

and Q (S → Q1→ M). Note that the processes M and S are included in both pipelines.

If P and Q are not slack matched, a possible plot of throughput as a function of the number of

messages is shown in Figure 5.13. Note that the system’s highest attainable throughput is less than

the maximum attainable throughput of the individual pipelines. In this case, since the maximum

throughputs for each individual pipeline are identical, we slack match the system by inserting L-R

buffers so that the dynamic slack ranges of the two pipelines overlap and the pipelines can run at

maximum combined throughput. If the maximum throughputs for the individual pipelines differ, we

slack match the system by inserting L-R buffers so that the throughput functions for the pipelines

intersect at the lowest of the maximum individual throughputs. This is the highest throughput at

which the system as a whole can run. (A system can only be as fast as its slowest pipeline.) This

alternate scenario is illustrated in Figure 5.14. For the remainder of this section, we assume that

the maximum throughputs for each individual pipeline are identical.

In a basic homogeneous system, d , dmin , dmax , τf , and τb are all proportional to N , while τh

and τi have constant identical values for both pipelines. In our example, we have NQ < NP and so

if dmax (Q) < dmin(P), we must add ns slack buffers to Q until their dynamic slack ranges overlap.

dmax(Q) ≥ dmin(P)

(NQ + ns) max{f, i} ≥ NP f

ns ≥ NP f

max{f, i}
−NQ (5.26)

130

T

max
d

min
N

Q
N

P
(Q)

Q P

(P)
m

T

N
P

d
min

(P)
d

max
(Q)

+nsN
Q

Q P

m
d

Figure 5.13: Slack matching reconvergent fanout for pipelines with identical maximum throughputs.
The plot on the left shows system throughputs before slack matching. The maximum throughputs
attainable by pipelines P and Q individually are both greater than the maximum throughput attain-
able by the system as a whole. (System throughput is indicated by the thick line.) The plot on the
right is for the slack matched system. Slack matching adds buffers to Q so that the dynamic slack
ranges of the two pipelines overlap, and the system can run as quickly as its individual pipelines.

N min
(P)d

max
(Q)d

max
(Q) d

min
(P)

P

T
Q

P

T

m m

Q

QQ NP Ps+nN Nd

Figure 5.14: Slack matching reconvergent fanout for pipelines with different maximum throughputs.
The plot on the left shows system throughputs before slack matching. The maximum throughputs
attainable by pipelines P and Q individually differ, and the maximum throughput attainable by the
system (thick line) is lower than both of them. The plot on the right is for the slack matched system.
Slack matching adds buffers to Q so that the two throughput functions intersect at the lower of the
two maximum individual throughputs. The system can now run as quickly as its slowest individual
pipeline.

Note that if f ≥ i , this is tantamount to saying that both pipelines should contain the same number

of stages.

In the heterogeneous case, without loss of generality, assume that if the pipelines’ ranges of

dynamic slack do not overlap, then dmax (Q) < dmin(P). We wish to add the mininum number

of ns slack buffers to Q so that dmax (Q) ≥ dmin(P). (For completeness, we actually check that

max{d(Q), dmax (Q)} ≥ min{dmin(P), d(P)} but for the purpose of illustration, we let the sim-

131

P2P1

Buffer

P1 P2

L−R

Figure 5.15: Breaking up a long handshake with a slack buffer.

pler condition suffice.) Let δf (Q) be the current forward-latency delay and δb(Q) be the current

backward-latency delay of Q , and let δf (P) be the forward latency of P . For the slack buffers,

assume again that fs = δ(fus) = δ(fds) and bs = δ(bus) = δ(bds)). Then,

dmax(Q) ≥ dmin(P)

NQ + ns
2

− δb(Q) + ns(fs + bs)
max{τi, τh}

≥ δf (P)
max{τh, τi}

ns ≥ 2(δf (P) + δb(Q))−NQ max{τh, τi}
max{τh, τi} − 2(fs + bs)

(5.27)

Thus we can determine the minimum number of slack buffers that need be added to a branch of

reconvergent fanout for maximum throughput.

5.4 Clustering Heuristic

Given a decomposed system created by the DSA and projection phases of DDD, the clustering phase

of DDD recomposes processes and slack matches the resulting system to run at any cycle time less

than or equal to τmax (specified by the designer). In doing so, DDD also attempts to minimize the

system communications energy consumption. It is assumed that τmax is greater than or equal to the

longest internal cycle time τi of any PCHB in the decomposed system, and that if any handshake

cycles τh in the system exceed τmax , then a slack buffer can be inserted in between the two PCHBs

to break the long handshake into two shorter handshakes whose cycle times do not exceed τmax .

(See Figure 5.15). If either of these two assumptions is not true, the target cycle time cannot be

achieved by the DDD-generated system.

132

5.4.1 Preliminaries

For clustering, DDD expresses the decomposed system as a graph G = 〈V ,E 〉. Each edge e ∈

E represents a communication channel from a source src(e) ∈ V to a sink snk(e) ∈ V . Each

vertex v ∈ V either represents a PCHB or serves as a dummy source for edges representing system

input-channels or a dummy sink for edges representing system output-channels. The number of data

rails in a channel is width(e). Paths, path sources, and path sinks are defined as for FBI graphs

in Section 5.3.1.1. The length NP of a path P is given by the number of vertices traversed by the

path, src(P) and snk(P) inclusive. The designer may place latency constraints upon the system

during clustering, requiring that the longest forward-latency path between a specific system input

channel and system output channel cannot exceed δ transitions.

Rings of vertices in G can be one of three types generated by DDD. The first type of ring includes

DSA variables that were used before being defined in an iteration of the DSA sequential program.

The second type of ring includes processes with internal state bits that represent external system

channels used multiple times within the original sequential program. The third type of ring includes

processes for complex functions that are used multiple times in the sequential program and have

been isolated from the rest of the system.

Prior to slack matching, DDD eliminates these rings and transforms G into an acyclic graph

G ′ = 〈V ′,E ′〉. Each ring of PCHBs is removed by selecting an edge in the ring, and changing the

edge’s source from the original vertex to a new dummy source with the same FBI values as the

orginal vertex. The result is a straight path, called a ring path, with a length one greater than that

of the original cycle. DDD then places a latency constraint on this path, the maximum value of

which is determined by using techniques from Section 5.3 to slack match the original ring to meet a

specific cycle time. After the clustering phase is complete, DDD restores the ring from the original

graph, each edge containing the newly-determined number of slack buffers.

As illustrated in Figure 5.16, DSA-variable rings are broken between vertices for x0 and xn ,

where n is the maximum DSA index for x . The source of the edge between these two vertices is

changed from process Pxn to new dummy source process P
′

xn
. For rings that include external system

133

ring path

0 Px 1

τ

2 Px 3 Px 0 Px 1 Px 2 Px 3Px

max
3Px ’X3x0

Px

X3x0

Figure 5.16: Removing cycles for clustering.
The ring in the PCHB graph on the left implements a chain of DSA variables x0 . . . x3, where the
value of x3 is assigned to x0 at the beginning of the DSA program. The ring is transformed into an
acyclic path with a dummy source that has the same FBI values as the variable with the maximum
DSA index, as shown in the graph on the right. A latency constraint derived from slack matching
the ring to run at τmax can now be placed on the path between vertices Px′3 and Px3.

ring path
τ max2

INCARG SUM

Eback
SUM’ Eback

SUM ARG INC

Figure 5.17: Incrementer example of removing cycles for clustering.
The ring in the PCHB graph on the left implements an incrementer process INC that has been
isolated but is used twice per iteration of the original sequential program. The processes ARG
and SUM each contain one state bit implementing two states, and collect incrementer inputs and
distribute incrementer outputs, respectively. The ring is transformed into an acyclic path with a
dummy source that has the same FBI values as SUM , as shown in the graph on the right. A latency
constraint derived from slack matching the ring to run at 2τmax (because the entire ring is traversed
only once for every two times the vertices ARG, INC, and SUM are traversed) can now be placed
on the path between vertices SUM ′ and SUM .

input channels used multiple times, the ring is broken immediately before the input channel’s vertex.

(If an external output channel is used multiple times, rings containing its vertex cannot exist within

the system alone.) And finally, in the case of rings that include isolated processes used multiple

times, the ring is broken immediately before the process that gathers inputs for the isolated process.

In both of the last two cases, the ring is slack matched for the cycle time Nst · τmax , where the

entire ring is traversed only once for every Nst times that its stateholding processes are traversed.

This allows the overall system to run at τmax . A scenario with an isolated incrementer that is used

twice per sequential program iteration is presented in Figure 5.17.

Once acyclic graph G ′ has been created, if any of the latency constraints (either user-specified

or ring-derived) are exceeded, then processes must be clustered in series until they are met. DDD

134

A?P8CP4P2CP1

P3

P6

P5 P7
C?

B?

A? X!
CP1

P3

P2 CP4

P5

P6

P7

P8

B?

C?

X!
SNK

SRC

SRC

5 6

SRC

0 1 2 3 4

Figure 5.18: Clustering schedule.
The original graph (left) can be initilaly configured using an ASAP (as soon as possible) schedule
(right).

uses a greedy heuristic to choose which edges should be removed by clustering in series. Processes

should not be clustered if the new internal cycles τi or handshake cycles τh generated are greater

than τmax . If it is not possible to reduce path lengths to meet latency constraints without increasing

the maximum cycle time of the system, then either the latency constraints or the target cycle time

must be relaxed.

After generating a homogeneous acyclic graph G ′, DDD creates a table of Lmax columns, where

Lmax is the length of the longest path in G ′. Every vertex is assigned to a column such that for

all v ∈ V , 0 ≤ col(v) < Lmax . For the column assignments to be legal, the following order constraint

must be fulfilled:

∀e ∈ E′ : col(snk(e)) > col(src(e)) (5.28)

Now, the span of an edge e ∈ E ′ is defined as follows:

span(e) = col(snk(e))− col(src(e))− 1 (5.29)

We also define a schedule of G ′ to be a set of column assignments to the vertices of V ′. An example

of an initial schedule is given in Figure 5.18.

135

4

5

6

7
8

CP

1

2

3

4

5

6

7

8

CP

CP

CP

CP

CP

CP

CP
2

1

3

1

2

3

4

5

6

7

8

CPPHPH
B

B

B
B

B

Figure 5.19: Splitting copy processes that exceed maximum fanout for clustering.

5.4.2 Copy Processes

Although they do not include any computation, there is a size limit for copy processes because large

fanout leads to both electrical slowdowns and tall completion trees. The maximum fanout of a copy

process can be set depending on the fabrication technology and desired cycle time. DDD splits any

process in the decomposed system that exceeds this fanout limit into a tree of copy processes.

It is not advisable to assign the copy channels to different leaf processes before the rest of

the clustering stages assign processes to columns, since the processes on the receiving end of the

channels could be placed in columns that are far apart. The copy process would then be constrained

to appear in a column before the earliest of the receiving columns, and the channels to the later

receivers would inefficiently require the insertion of many slack matching buffers. It is therefore

better to wait until after the receiving processes have been assigned before grouping them together

for leaf copy processes.

However, we must still create spacer processes to hold columns for every level of the tree when the

copy process is eventually split. Thus, if an eight-way copy process needs to be split in a system with

a maximum copy fanout of two, the process is first converted into three processes in series, where

the first two are place-holder buffers (PH) and the last is still an eight-way copy. The clustering

proceeds to assign all of the processes to columns, and then the three copy processes are turned

into a three-level tree (if they span more than three columns, the branching is saved for the last

two columns). The eight receiving processes are assigned to leaf copy processes in groups of two,

according to how close their new columns are. Figure 5.19 illustrates the steps in this procedure.

136

5.4.3 Simulated Annealing

DDD uses simulated annealing to recompose processes and reduce energy consumption while ensuring

that the system’s critical cycle time is no greater than τmax . In simulated annealing [26], a system

is randomly perturbed and if the perturbation decreases the overall system cost, then the new

configuration is accepted. If the move increases the overall system cost, then the new configuration is

accepted with a probability that decreases with time. The number of perturbations and probabilities

of acceptance are set by an annealing schedule, and whenever the “temperature” is changed, the

configuration with minimum system cost using the previous temperature is chosen as the starting

point for the next temperature. We have chosen this randomized heuristic because the cost function

and size constraints for clustering do not fit the formats required by linear or quadratic programming,

and greedy non-randomized heuristics are easily trapped in local minima, producing subpar results.

For DDD clustering, the processes are initially assigned columns using ASAP (as soon as possible)

scheduling, where each vertex is assigned to the column with the lowest possible index such that

the assignment still maintains the order constraint. The possible individual annealing moves are as

follows:

• move a process to a different column;

• move a process to a different column and cluster it in series with another process in that column;

• cluster a process in parallel with another process in the same column that shares at least

one input;

• remove a process from a cluster in which it was included by recomposition in parallel;

• remove a process from a cluster in which it was included by recomposition in series and, to

maintain the order constraint, move it to a different column.

Whenever a move is selected by the heuristic, DDD slack matches the system to meet the target

cycle time and then computes the cost difference to determine whether or not to accept the move.

The cost function chosen for clustering is the energy consumed by communications, including slack

137

buffers and input validity trees for channels. The energy cost of computations is either not affected

by recomposition (when performed in parallel), or small compared to the change in communication

costs (when performed in series). Thus,

fobj =
∑
e∈E′

Nslack(e)fbuf (width(e)) +
∑
e∈E′

fval(width(e)) (5.30)

is the objective function to be minimized by simulated annealing. Nslack (e) will be determined by

slack matching and is the number of slack buffers on the edge e, fbuf (x) is the energy consumed by a

slack buffer for e1ofx channels, and fval(x) is the energy consumed by a validity tree with x inputs.

Both fbuf and fval can be experimentally determined for the technology targeted by DDD. As we

will demonstrate in the following sections, Nslack is easy to determine for homogeneous systems but

harder for heterogeneous systems.

5.4.4 Clustering Homogeneous Systems

Consider a system where for all n : 0 ≤ n < N , δ(fun) = fu, δ(bdn) = bd , δ(idn) = id , δ(fdn) = fd ,

δ(bun) = bu, δ(iun) = iu, δ(vun) = vu, and δ(vdn) = vd . Note that this case is more general than

the basic homogeneous case presented for slack matching structures in Section 5.3.3. Within the

framework of simulated annealing, our task is to determine the number of slack buffers Nslack (e)

required for each edge e ∈ E ′ so that the critical cycle time of the system is no greater than τmax .

Since it has already been established that all internal and handshake cycle times are less than or

equal to τmax , it remains only to ensure that the dynamic slack ranges of different branches of

reconvergent fanout overlap, and that the ring paths contain the proper number of slack buffers to

run at τmax (given the initial number of messages M in the rings).

First, we consider slack matching in cases of reconvergent fanout. Consider the base case of

reconvergent fanout with two branches P and Q . Without loss of generality, let NQ ≤ NP . Let

us add span(e) slack buffers to every edge e in branch P , so that there are N ′P vertices in that

branch—one for every column between the branch source and sink. This structure is optimally

138

slack-matched when dmin(P) ≤ dmax(Q) ≤ dmax(P). In a homogeneous system, this is equivalent

to

r ·N ′P ≤ N ′Q ≤ N ′P

where

r =
2 · fu

τmax − fu− fd− bu− bd

and N ′Q is the sum of NQ and the total number of slack buffers that will be added to the branch Q .

Every column spanned by an edge in branch Q now contains a vertex in branch P . So, to slack

match the branches while adding the least number of buffers to Q , we add

Nslack(e) = dr · span(e)e (5.31)

slack buffers to each edge e in branch Q , giving us N ′Q = NQ +
∑

Nslack (e) vertices in the branch.

The inequalities r · N ′P ≤ N ′Q ≤ N ′P hold, and the structure has been slack matched. Note that

we never need add more than span(e) slack buffers to an edge e during slack matching. Therefore,

slack matching homogeneous reconvergent fanout does not change the column assignments for any

vertices from the pre-slack-matched structure.

When considering ring paths, DDD must choose a length constraint for slack matching. The

ring can operate at τmax when dmin ≤ M ≤ dmax . For a ring path P in a homogeneous system, this

translates to

fu ·NP
τmax

≤M ≤ NP
2
− NP (fu+ bd+ fd+ bu)

2τmax

The minimum length of the path for throughput τ−1
max is therefore

NP ≥ 2τmaxM
τmax − (fu+ bd+ fd+ bd)

= r · τmaxM
fu

We can therefore make use of the same slack-matching procedure for rings as for branches of recon-

139

vergent fanout, by setting the length constraint for the ring path as follows:

NP = 1 +
τmaxM

fu
(5.32)

Here, P includes the dummy source of the ring path. Now if dr · span(e)e L-R buffers are placed on

every edge e in the ring, the total length of the ring will fulfill the inequality

NP ≥ r ·
τmaxM

fu

Thus, when slack matching a homogeneous system, DDD first adds slack buffers to the longest

branches in any reconvergent fanout structure so that every column traversed by the branches con-

tains a vertex. Then, DDD simply sets Nslack(e) = dr · span(e)e for every edge e ∈ E ′. This

computation is simple enough to be incorporated into determining cost function for simulated an-

nealing. Note that clustering can only be performed legitimately within this framework if the new

clustered processes retain the homogeneous FBI values φ ∈ Φ.

5.4.5 Clustering Heterogeneous Systems

Clustering heterogeneous systems is more complex than clustering homogeneous systems. While we

still make use of the table of columns to enforce legal moves during clustering-annealing steps, the

concept of edge spans cannot be used to determine the number of slack buffers because dynamic

slack values for ring paths and branches of reconvergent fanout are no longer linear in the path

length. Instead, after a configuration change is proposed by a simulated annealing move, DDD slack

matches the system in the manner presented below.

For every edge e ∈ E ′, let the current number of slack buffers on the edge be Nslack (e). DDD

creates for each edge e a set P(e) of paths that include e and potentially need to be individually

slack matched. These paths can be either ring paths or branches of reconvergent fanout. Each

path p ∈
⋃

e∈E ′ P(e) is analyzed independently, and then DDD assigns to Nslack (p) the number of

additional slack buffers required on that path for the system to run at τmax . If the system is slack

140

matched then these values are all zero.

When slack matching a system for energy, we are concerned both with the number of buffers

required, and the widths of the channels on which the buffers are placed. In current technologies,

experiments show that the energy consumed by the smallest slack buffer is greater than the difference

in energy consumption between the smallest slack buffer and a slack buffer for the widest allowed

channel. Therefore, given the choice of placing a single buffer on a wide channel or placing two

buffers on narrow channels, DDD always opts to place a single buffer. In general, DDD aims at first

slack matching the system with as few buffers as possible, and secondly, at placing those buffers on

the narrowest channels available.

Thus, to slack match a heterogeneous system, DDD first creates set Eslack ⊆ E ′ where

Eslack ≡ {e s.t. ∀p ∈ P (e) : Nslack(p) > 0} (5.33)

Let emax ∈ Eslack be the edge with maximum cardinality |P (e)|. DDD then adds

min
p∈P (emax)

{Nslack(p)}

buffers to edge emax and updates all path constraints Nslack (p) for all edges e in E ′ accordingly.

This step is repeated until the system is slack matched or Eslack is empty. In the latter case, it is

necessary to add buffers to an edge e even though some paths p ∈ P(e) already have Nslack (p) = 0.

DDD adds the extraneous buffers; as long as N ≥ dmin ⇒ δf ≤ M τmax , the system will still run

at the desired throughput.

5.5 Summary

This chapter presented a clustering phase for DDD which includes both the recomposition of pro-

cesses to improve latency and energy consumption, and the slack matching of the entire system

to improve system throughput. Recomposition is most beneficial in systems of PCHBs when the

141

processes being combined are connected in series, or share the same input. Processes are restricted

in size by constraints involving the number of transitors allowed in series, which affects both compu-

tation pulldown networks and completion gate fanin (and thus the process’s individual cycle time).

Both the slack matching optimization in general and dynamic slack matching in particular were

presented in this chapter. We introduced the FBI model for PCHB systems, for use in determining

critical cycles in the system, so as to perform dynamic slack matching. We demonstrated dynamic

slack matching for both homogeneous and heterogeneous basic slack matching structures (rings

and reconvergent fanout). Finally, we presented the simulated annealing heuristic used to combine

recomposition and slack matching. Results of this heuristic are given in the next chapter.

142

Chapter 6

Case Study: Instruction Fetch Unit

We have applied the techniques of DDD to the designing of the instruction fetch unit of the Lutonium,

an asynchronous 8051 microcontroller [41]. The unit combines control with a 16-bit datapath for the

program counter. It is the limiting factor on instruction throughput of the entire microcontroller,

and in a custom design consumes roughly 12% of the energy of the microcontroller core. Prior to

DDD, its manual decomposition required weeks for a designer to perfect.

6.1 Initial Specification

The Fetch unit communicates with the instruction memory, the microcontroller branch unit, and

the instruction decode. It is responsible for instruction decoding (of variable length instructions),

generation of the next program counter, read and write accesses to instruction memory, and interrupt

handling. The fetch control is complicated by the fact that although instructions can be one to three

bytes in length, they are always fetched from memory two bytes at a time. Unaligned instructions

can therefore introduce speculation to the fetching.

The unit is shown in context within the Lutonium in Figure 6.1. Its original sequential CHP

specification, including declaration types as used in the chpsim simulator, is given below.

143

FETCH

IOK?

S0! S1! M0!
M1! M2! MA!

IG?

DIG!

Addrz?Addra?

......

I?

IMemPC!

OP!

PtrPC!

IMem

InstrAlign

IrptArbiter

Decode

BranchUnit

Figure 6.1: Fetch unit of the Lutonium 8051 microprocessor.

process fetch()(

I? : byte; // Instruction from Memory

IMemPC! : word; // Next program counter, to Memory

OP! : e1of3; // Control Operation, to Memory

Addrz? : e1of2; // lsb of Address from Branch Unit

Addra?, PtrPC! : word; // Addresses to/from Branch Unit

S0!, S1! : e1of5; // Instr Alignment Control (Mem to Decode)

M0!, M1!, M2!, MA! : e1of2; // Instr Alignment Control

IG? : e1of2; // Possible Interrupt Warning

IOK? : e1of6; // Interrupt Confirmation

DIG! : e1of2 // Interrupt Confirmation, to Decode

)

chp {
var i : byte; // Instruction

var pca, aa : word; // Program counter and branch address

var pcz, az : e1of2; // lsb of program counter and branch address

var iLen : e1of3; // Instruction length

var ig : e1of2; // Interrupt warning

var irpt : e1of6; // Actual interrupt

var newpc : e1of4; // Branch information decoded from instruction

pca := 0, pcz := 0, IMemPC !0, OP !0, S0!0, M 0!0;
*[I ?i ; iLen := ilength(i);

newpc := idecode(i);

[pcz = 0 −→
[iLen = 0 ∧ newpc = 0 −→ pcz := 1
[] iLen = 1 ∧ newpc = 0 −→ pcz := 0, pca := pca + 1, S1!1, M 1!1
[] iLen = 2 ∧ newpc = 0 −→ pcz := 1, pca := pca + 1, S1!1, M 1!1;

IMemPC !pca, OP !0, S0!2, M 2!0

144

[] iLen = 0 ∧ newpc = 1 −→ pcz := 1, S1!4; PtrPC !{pca[31..1], pcz}
[] iLen = 1 ∧ newpc = 1 −→ pcz := 0, pca := pca + 1, S1!1, M 1!1; PtrPC !{pca[31..1], pcz}
[] iLen = 2 ∧ newpc = 1 −→ pcz := 1, pca := pca + 1, S1!1, M 1!1; PtrPC !{pca[31..1], pcz},

IMemPC !pca, OP !0, S0!2, M 2!0; S1!4

[] newpc = 2 −→ pcz := 1, S1!4; PtrPC !{pca[31..1], pcz}
[] newpc = 3 −→ pcz := 1, S1!4
]

[] pcz = 1 −→ pca := pca + 1;
[iLen = 0 ∧ newpc = 0 −→ pcz := 0
[] iLen = 1 ∧ newpc = 0 −→ pcz := 1; IMemPC !pca, OP !0, S0!1, M 1!0
[] iLen = 2 ∧ newpc = 0 −→ pcz := 0; IMemPC !pca, OP !0, S0!1, M 1!0, S1!2, M 2!1,

pca := pca + 1

[] iLen = 0 ∧ newpc = 1 −→ pcz := 0; PtrPC !{pca[31..1], pcz}
[] iLen = 1 ∧ newpc = 1 −→ pcz := 1; IMemPC !pca, OP !0, S0!1, M 1!0, S1!4,

PtrPC !{pca[31..1], pcz}

[] iLen = 2 ∧ newpc = 1 −→ pcz := 0; IMemPC !pca, OP !0, S0!1, M 1!0, S1!2, M 2!1,
pca := pca + 1; PtrPC !{pca[31..1], pcz}

[] newpc = 2 −→ pcz := 0; PtrPC !{pca[31..1], pcz}
[] newpc = 3 −→ pcz := 0
]

];

IG?ig ; DIG!ig , [ig = 1 −→ IOK ?irpt [] ig = 0 −→ irpt := 0];
[irpt ! = 0 −→

[newpc = 0 −→ [pcz = 1 −→ S1!4 [] pcz = 0 −→ skip]
[] newpc = 1 −→ Addra?pca, Addrz?pcz
[] newpc = 2 −→ Addra?aa, Addrz?az ; IMemPC !{aa[31..1], az}, OP !0,

[az = 0 −→ S0!3, MA!0,S1!4 [] az = 1 −→ S0!4,S1!3, MA!1]
[] newpc = 3 −→ Addra?aa, Addrz?az ; IMemPC !{aa[31..1], az};

[az = 0 −→ OP !1 [] az = 1 −→ OP !2]
]; newpc := 1, PtrPC !{pca[31..1], pcz}; Addra?pca, Addrz?pcz

[] irpt = 0 −→
[newpc = 0 −→ skip
[] newpc = 1 −→ Addra?pca, Addrz?pcz
[] newpc = 2 −→ Addra?aa, Addrz?az ; IMemPC !{aa[31..1], az}, OP !0,

[az = 0 −→ S0!3, MA!0,S1!4 [] az = 1 −→ S0!4,S1!3, MA!1]
[] newpc = 3 −→ Addra?aa, Addrz?az ; IMemPC !{aa[31..1], az},

[az = 0 −→ OP !1 [] az = 1 −→ OP !2]
]

];

[pcz = 0 −→ IMemPC !pca, OP !0, S0!0, M 0!0
[] pcz = 1 ∧ newpc! = 0 −→ IMemPC !pca, OP !0, S0!4, S1!0, M 0!1
[] pcz = 1 ∧ newpc = 0 −→ S1!0, M 0!1
]

]

}

During every cycle, the instruction (i) is input and decoded (iLen, newpc). The next 16-bit

program counter is computed (a concatenation of the variable pca and the lsb variable pcz) and

either sent to the instruction memory, or to an external unit for storage in case of branches. The

145

instruction bytes read from the program memory are aligned through output control channels (S0!,

S1!, M 0!, etc.) before being used within the fetch or sent to the external decode unit.

6.2 Sequential Transformations

Multiple instances of addition by one (“pca := pca + 1”) are possible in certain iterations of the

sequential code. These operations are therefore replaced in the original text by communications on

channels linked to a newly isolated 16-bit incrementer (“INC !pca; SUM ?pca”).

There are no nested loops within the Fetch unit (indeed, nested loops are rare in hardware

specifications), and so we proceed to convert the sequential program into dynamic single-assignment

form. The original variables pca, pcz , and newpc are split into five, four, and two new DSA variables,

respectively. Input channels Addra?, Addrz?, and the new incrementer channel SUM ? are all used

multiple times within the program, and so new non-DSA input variables addra in, addrz in and

sum in are inserted for their eventual projection. (For example, an original incrementer instruction

may now be written as “INC !pca 0; SUM ?sum in; pca 1 := sum in.”)

Next, since the incrementer will be implemented as two separate 8-bit incrementers, we vertically

decompose our 16-bit channels and variables into two 8-bit versions. While byte encodings are

eventually implemented as four e1of4 encodings, we decide to leave them intact prior to clustering

to ensure that they will always finish in the same cluster. After clustering, they will be vertically

decomposed further, and during clustering any control channels to byte processes are weighted more

heavily to acknowledge their extra switching load. This choice makes the layout more regular and

easier to design, and is an example of the tradeoffs that often arise when performing a combination

of manual and automated synthesis.

It now remains to perform guard encoding before DDD’s projection phase decomposes the se-

quential program. From the original code, we see that there are four main selection statements in

the sequential code. (Nested selections are considered part of their outermost selection statements.)

When we apply the guard-encoding tests to these selections, three of the four should be encoded.

The computations for each selection are given in Figure 6.2. The channels and variables of the final

146

Guard Variables NG AG CVG Cunenc Cenc Encoded Variables
pcz 0, iLen, newpc 0 16 12 3 36 27 gx (e1of4), gy (e1of4)
ig 2 1 1 1 2 Unencoded
irpt , newpc 0 8 14 3 42 31 hx (e1of2), hy (e1of4)
pcz 3, newpc 1 3 5 2 10 7 jx (e1of3)

Figure 6.2: Guard encoding for the Fetch example.

Variable Type Name Encoding
Input Channels I ?, Addra B0?, Addra B1?, SUM B0?, SUM B1? byte

Addrz?, IG? e1of2
IOK ? e1of6

Output Channels IMemPC B0!, IMemPC B1!, PtrPC B0!, PtrPC B1! byte
INC B0!, INC B1! byte
M 0!, M 1!, M 2!, MA!, DIG ! e1of2
OP ! e1of3
S0!, S1! e1of5

Variables i , aa B0, aa B1 byte
pca B0 0, pca B0 1, pca B0 2, pca B0 3, pca B0 4 byte
pca B1 0, pca B1 1, pca B1 2, pca B1 3, pca B1 4 byte
sum in B0, sum in B1, addra in B0, addra in B1 byte
pcz 0, pcz 1, pcz 2, pcz 3, az e1of2
ig , hy , addrz in e1of2
iLen, jx e1of3
newpc 0, newpc 1, gx , gy , hy e1of4
irpt e1of6

Figure 6.3: Channels and variables in final DSA version of the Fetch.

DSA program are given in Figure 6.3.

6.3 Decomposition and System Transformations

When the projection phase of DDD transforms the final DSA program, the initially generated system

has 88 processes (including copy processes and copy place-holding processes) and 219 channels. The

first transformations that DDD applies to the decomposed system are distillation and elimination.

For example, the process Paz should be distilled:

147

Paz ≡ *[HX az?hx , HY az?hy ;

[hx = 0 ∧ hy = 0 −→ skip

[] hx = 0 ∧ hy = 1 −→ skip

[] hx = 0 ∧ hy = 2 −→ ADDRZ az?addrz in; az := addrz in;

AZ imempcb0!az , AZ s0!az , AZ ma!az , AZ s1!az , AZ op!az

[] hx = 0 ∧ hy = 3 −→ ADDRZ az?addrz in; az := addrz in;

AZ imempcb0!az , AZ s0!az , AZ ma!az , AZ s1!az , AZ op!az

[] hx = 1 ∧ hy = 0 −→ skip

[] hx = 1 ∧ hy = 1 −→ skip

[] hx = 1 ∧ hy = 2 −→ ADDRZ az?addrz in; az := addrz in;

AZ imempcb0!az , AZ s0!az , AZ ma!az , AZ s1!az , AZ op!az

[] hx = 1 ∧ hy = 3 −→ ADDRZ az?addrz in; az := addrz in;

AZ imempcb0!az , AZ s0!az , AZ ma!az , AZ s1!az , AZ op!az

]]

In this process, the same operations are being performed for variables addrz in and az regardless

of the values of hx and hy . The channels HX az0 and HY az are therefore eliminated, and the

simpler distilled version of Paz generated:

P
′

az ≡ *[ADDRZ az?addrz in; az := addrz in;

AZ imempcb0!az , AZ s0!az , AZ ma!az , AZ s1!az , AZ op!az]

The new version is now a simple copy process.

An example of partial distillation can be found in the process PMA:

148

*[HX ma?hx , HY ma?hy ;

[hx = 0 ∧ hy = 0 −→ skip

[] hx = 0 ∧ hy = 1 −→ skip

[] hx = 0 ∧ hy = 2 −→ AZ ma?az ; [az = 0 −→ MA!(0) [] az = 1 −→ MA!(1)]

[] hx = 0 ∧ hy = 3 −→ AZ ma?az

[] hx = 1 ∧ hy = 0 −→ skip

[] hx = 1 ∧ hy = 1 −→ skip

[] hx = 1 ∧ hy = 2 −→ AZ ma?az ; [az = 0 −→ MA!(0) [] az = 1 −→ MA!(1)]

[] hx = 1 ∧ hy = 3 −→ AZ ma?az

]]

In this case, the control variable hy is necessary to distinguish between the operations that need to

be performed but variable hx is not. We therefore eliminate the channel HX ma from the system,

and the newly simplified process is

*[HY ma?hy ;

[hy = 0 −→ skip

[] hy = 1 −→ skip

[] hy = 2 −→ AZ ma?az ; [az = 0 −→ MA!(0) [] az = 1 −→ MA!(1)]

[] hy = 3 −→ AZ ma?az

]]

Together, the distillation and elimination techniques result in a system with 55 processes and 168

channels, reducing the clustering tool’s computed energy cost of the system by roughly 15%. These

results are summarized in Figure 6.4.

Next the decomposed system is clustered, using a simulated annealing tool that simultaneously

performs recomposition and homogeneous slack matching. Since the system is heterogeneous, with

no processes having lesser delays than the intended slack buffers, the results are over slack-matched,

and consume more energy than necessary. The results of this experiment are therefore worse than

149

Transformation No. Processes No. Channels Normalized Energy Cost
Manual Decomp 12 45 1
DSA/Projection 88 219 7.3
Distill/Elim I 55 168 6.1
Cluster I 36 124 2.8
Distill/Elim II 27 94 2.1

Figure 6.4: Results of clustering and distillation.

can be expected with a heterogeneous clustering tool, and as such are very encouraging. When

given a maximum cycle time of 22 transitions (the same target cycle time used in the manually

decomposed Lutonium Fetch unit), the clustered system contains 36 regular processes (excluding

slack buffers) and 124 channels, with a further reduction of 55% in energy cost compared to the

unclustered distilled system.

Since the system has changed, we can perform a second round of distillation, elimination, and

clustering. The final result is a system with 27 processes (excluding slack buffers) and 94 channels,

with another 23% reduction in energy cost compared to the first clustered system. Overall, even

taking into account the pessimistic slack matching, clustering has therefore reduced the energy cost

of the system by 70%. The final system is illustrated in Figure 6.5.

Figure 6.4 summarizes the results of the distillation and clustering transformations, and compares

them to the manual decomposition that was performed (over a period of weeks) for the original

Lutonium Fetch unit. Both decompositions began with the same initial CHP. We can see that the

DDD system has the same throughput but roughly twice the energy as the manually decomposed

system. Heterogeneous slack matching would reduce this energy factor somewhat. These results are

more than satisfactory, and shall only improve as the capabilities of the tools expand.

150

S0!

I?

DIG!

IG?

Addrz? Addra_B1? Addra_B0?

PtrPC_B0!
IMemPC_B0!

PtrPC_B1!
IMemPC_B1!

IOK?

M0!
M1! M2! OP! MA!

S1!

INC

fcn

fcn
INCREMENT

B0

SUM

pcz1

HCtrl
PCUnit_B1

IDecode

INCREMENT

GCtrl

addraB1

M12

PCUnit_B0

Router

ZCtrl

B1

Figure 6.5: DDD example.
The system that results when DDD is applied to the Fetch unit of the asynchronous 8051 microcon-
troller. The circles represent simple copy processes.

151

Chapter 7

Reconfigurable Asynchronous
Circuits

This chapter presents an architecture for an asynchronous QDI field-programmable gate array

(FPGA). The basic reconfigurable cell is an asynchronous precharged half-buffer stage with condi-

tional inputs and outputs. These logic cells are then grouped together to form a larger computation

block, or cluster, with internal copies and feedback. DDD can be modified to map systems onto

this FPGA architecture. Beyond its standard algorithms, DDD can use encoding and vertical de-

composition techniques to guarantee that every process generated by its DSA and clustering phases

can be mapped to a basic FPGA cell. Then, clustering and slack matching can be performed to

map these cells to FPGA clusters without actually recomposing their processes. Together, DDD

and the reconfigurable architecture presented here make the rapid prototyping of high-performance

asynchronous VLSI systems possible.

The logic cells and clusters initially presented in this chapter are dual rail. After demonstrating

how designs can be implemented on this architecture, we discuss the merits of different channel

encodings, and create models to analyze general asynchronous QDI reconfigurable architectures.

7.1 Motivation and Background

Programmable logic is becoming increasingly attractive as the decrease in CMOS feature-size con-

tinues to improve the size and performance of programmable devices. High power consumption and

152

difficult timing closure represent the current downside of reprogrammability. Since two of the main

advantages of asynchronous logic are low power consumption and the absence of the global time

constraints imposed by clocks, it seems natural to apply asynchronous technology to the design of

FPGAs.

Timing issues present difficulties in synchronous FPGA design because the mapping procedure

(partitioning, placement, and interconnect routing) may cause violation of necessary timing con-

straints. Eliminating the clock greatly relaxes the constraints, but there are still some timing re-

quirements to be met in asynchronous design. As exposited in Chapter 1, the different asynchronous

techniques distinguish themselves through their timing assumptions. The QDI style used in this the-

sis makes the weakest timing assumptions. The circuits are completely delay-independent except

for some forks—called isochronic forks—in which the propagation delays on the different branches

of the fork are similar.

Automatic placement by a mapping procedure could violate the delay assumption on isochronic

forks. An important advantage of our joint FPGA architecture and DDD synthesis method is that

DDD guarantees that all isochronic forks are local to the logic cells and therefore are unaffected by the

placement procedure. Communication between cells is entirely delay-insensitive: It is implemented

as a four-phase handshake, where the data to be transmitted is encoded in an e1ofN code. Hence,

the mapping procedure does not have to meet any timing requirement, which makes this architecture

particularly suitable for dynamically configurable systems.

Of course, the mapping algorithms will consider performance metrics such as latency and path-

length. In fact, homogeneous slack matching can be performed. The advantage of delay-insensitive

design can be seen when one component of the system does not meet timing constraints but is off

the critical path or used only infrequently. Instead of dedicating computation time to eliminating

timing errors from this component, it can be left as is, and the whole system will still function

correctly and close to the desired speed.

Several proposals for asynchronous FPGAs have already appeared in the literature [45, 22, 33, 25,

48, 51]. Some of the approaches provide the same level of functionality as our PCHB pulldown logic

153

(3-4 input look-up tables, called LUTs), but most do not offer an implementation of the input and

output handshakes and sequencing—say, the equivalent of the control part of the PCHB. In these

alternative proposals, the control has to be implemented explicitly, exposing the issues of timing

assumptions and isochronic forks, and adding large efficiency penalties in terms of area, cycle time,

and energy. In all but [48] and [51], either timing assumptions are needed to separate the control

from the datapath, or the implementation of the sequencing results in unpredictable placement of

isochronic forks.

Rettberg and Kleinjohann offer a delay-insensitive FPGA architecture [48] but it has been proved

that the class of entirely delay-insensitive circuits is very limited [36]. Recently, Teifel and Manohar

have published a new design that also uses PCHBs but uses multiple types of PCHBs with different

communication patterns as basic cells [51]. When systems are mapped, the majority of these cells

may be unusable. In contrast, the architecture presented in this chapter uses one general cell that

can be programmed with different communication patterns. This single cell is more complex, but is

always usable when a system is being mapped on the FPGA. It may be that architectural choices

are each better suited for different classes of applications. A clearer picture will emerge when we

combine our synthesis tools with the area and performance estimation tools under development,

based on the general architectural model described at the end of this chapter.

The rest of this chapter describes a new architecture for asynchronous QDI FPGAs that is

cluster-based. An overview of the architecture is shown in Figure 7.1.

7.2 Logic Cells

Our basic logic cell consists of a single PCHB circuit with three dual-rail input channels and one

dual-rail output channel. Each cell contains twelve programmable SRAM cells: eight to configure the

cell’s computation and four to configure the cell’s communication patterns. The CHP specification

of the cell is given in Figure 7.2. Sb, Sc, Si and Sz are the programmable bits that configure

communications, while S is an array of the eight programmable bits that control the computation.

The CHP specification is given in Figure 7.2.

154

Cell

Cell

Cell

CLUSTER

Cell

CLUSTER

CLUSTER

Cell

Cell Cell

Cell

Cell

CLUSTER

Cell

Cell

CLUSTER

Cell

Cell

CLUSTER

Cell

Cell Cell

Cell Cell

Cell Cell

Cell

CellCell

Cell

Figure 7.1: Quasi delay-insensitive asynchronous FPGA.

Cell ≡ *[A?a;
[¬Sb −→ b := 0, c := 0
[] Sb ∧ ¬Si −→ [¬Sc −→ B?b, c := 0 []Sc −→ B?b,C ?c]
[] Sb ∧ Si −→

[¬Sc −→ [¬a −→ B?b, c := 0 []a −→ b := 0, c := 0]
[] Sc −→ [¬a −→ B?b, c := 0 []a −→ b := 0,C ?c]
]

];
[¬Sz −→ Z !f (S , a, b, c)
[] Sz −→ [a −→ Z !f (S , a, b, c) []¬a −→ skip]
]

]

Figure 7.2: CHP specification for our asynchronous FPGA cell.
Basic logic cells are grouped together in clusters which contain additional conditionality and serve as
the interface to the interconnect. Sb, Si and Sc are SRAM cells that program input conditions; Sz
is an SRAM cell that programs output conditions; S is an array of eight SRAM cells that together
program the computation.

7.2.1 Reconfigurable PCHB Circuit

The basic logic cell largely follows the PCHB template given in Chapter 3 and shown in Figure 3.7.

There is a computation stage that consists of a pulldown network of n-transistors and a simple

pullup network of p-transistors. Input and output channel validity trees are also present, along with

155

Cell
Logic

A

B

C

Z

A.0
A.1
A.e

B.0
B.1
B.e

C.0
C.1
C.e

Z.0
Z.1

Z.e

Figure 7.3: Logic cell for the asynchronous FPGA.
The cell includes three dual-rail input channels, and one dual-rail output channel. Dashed lines
indicate channels on which communications may be conditional.

completion logic to generate input enable signals. Again, these components must account for data

dependencies when conditional communications are programmed.

We limit the cell to one output channel as multiple output channels would require multiple

separate precharged computation stages that could go unused. (Area is an important factor when

designing FPGA cells since they are repeated across the chip.) Instead, by grouping single-output

logic cells inside clusters where they can share input channels, there is some redundancy in validity

circuitry when multiple outputs are computed from the same inputs, but no unusable circuitry when

there is no sharing (as is often the case). We limit the cell to three input channels because with four

input channels, the pulldown networks of the computation logic grow too long for high performance.

For our prototype design, we choose dual-rail encoding since its binary nature keeps low the

number of SRAM cells required to program the compute function. This encoding also allows us to

implement inverting functions in the routing network by simply swapping the connections to the

two data rails, instead of using up an entire logic cell to perform this task. Other channel encoding

choices are discussed later in Section 7.5.2. The basic circuit for the cell is illustrated in Figures 7.3—

7.6. (These are not an exact representation of the circuit: details such as the reset circuitry and

staticizers for each of the C-elements have been omitted.)

There are several deviations from the original PCHB template. One difference is that instead of

using both the output channel enable Z .e and the local signal enable en in the pullup network and

foot transistors of the precharged computation stage, we combine the output enable with internally-

generated signals via a C-element into a single new signal, “go.” This reduces the number of

transistors in series of the pulldown network which, because of the extra logic required to program

156

COMPUTATION
Pull−Down Network
3−4 n−transistors

in series
SRAM cell
_s s

S[0] S[1] S[2] S[3] S[4] S[5] S[6] S[7]

w

w

Z.0
Z.1

go

go

pre
comp

Si
Sb
Sc

Sz

A.0
A.1
B.0
B.1
C.0
C.1

Figure 7.4: Reconfigurable cell: computation circuitry.

_skipz

A.0
A.1
B.0
B.1
C.0
C.1

_av

_cv

_bv

zv
_Z.0
_Z.1

Si.0
Sc.1

Sb.1
Si.0

Sc.1
cv

a.1

Sb.1

_readc

gate

gate

gate

go
Sz.1

a.0

Si.1
a.0

Sc.0

a.1
Si.1

Sb.0

_skipc

_skipb

gate

_readb

_skipz

a.0
bv

Sb.0

(a) (b)

Figure 7.5: Reconfigurable cell.
(a) Input and output validity generation. (b) Circuitry for conditional communications.

Sb.0

zv

_av

_readb

_readc

go

z.e

a.e
b.e

c.e

_skipb
_skipc Sc.0

C

C

gateC
C

Figure 7.6: Reconfigurable cell: completion circuitry.

157

_Z.1

S0.1 S1.1 S2.1 S3.1 S4.1 S5.1 S6.1 S7.1

S0.0 S1.0 S2.0 S3.0 S4.0 S5.0 S6.0 S7.0

C.0 C.0 C.0 C.0C.1 C.1 C.1 C.1

B.0 B.0B.1 B.1

A.0 A.1

go

_Z.0

Figure 7.7: Pulldown networks: chosen configuration.
SRAM cells placed next to the outputs in a sample pulldown network for programmable PCHB with
unconditional communications. (48 transistors, no charge-sharing problems.)

the computations, is already large. The size of the computation network also leads to the second

deviation: instead of a single foot transistor, multiple feet provide parallel paths to ground. This

alleviates otherwise inevitable charge-sharing problems. Finally, the “pre-comp” unit in Figure 7.4

consists of combinational gates that have been extracted from the pulldown network to reduce the

number of n-transistors in series. Since the unit depends only on SRAM-cell outputs, it does not

add to the forward latency or the cycle time of the PCHB after the cell has been programmed.

Meanwhile, for conditional communications, instead of the general solutions presented in Chap-

ter 3, we create a specific implementation for our cell. This involves the use of non-precharged gates

to generate the programmable conditions, as shown in Figure 7.5. The output condition signal skipz

is the equivalent of the extra dummy rail presented in earlier sections, and is similarly used in the

output validity. The internal signals readb and readc are analogous to useb.1 and usec.1 in the

general solution for conditional inputs, while skipb and skipc are analogous to useb.0 and usec.0,

respectively.

Note that in our pulldown computation networks, we chose to place the SRAM transistors at the

top (next to the output nodes) rather than at the bottom (next to the foot transistor for go). The two

alternate implementations for a three-input logic cell with no conditional communications are shown

in Figures 7.7 and 7.8. The second design has large internal nodes and likely requires additional

internal precharge p-transistors (not shown in the diagram) to avoid charge-sharing problems. Since

158

S0.1S1.0 S2.0S0.0 S3.0 S4.0 S5.0 S6.0 S7.0

A.0 A.1

B.0 B.0B.1 B.1

C.0 C.1

_Z.0

go

A.0 A.1

B.0 B.0B.1 B.1

C.0 C.1

_Z.1

go

S7.1S6.1S5.1S4.1S3.1S2.1S1.1

Figure 7.8: Pulldown networks: alternate configuration.
SRAM cells placed next to the foot transistors in a sample pulldown network for programmable
PCHB with unconditional communications. (46 transistors, not including extra precharge transistors
to alleviate charge-sharing problems.)

aside from the additional precharge transistors the two configurations have roughly the same size,

we choose the configuration without charge-sharing problems for our basic cell.

This decision is rejustified later when we consider e1of4 channels, since even without considering

extra precharge transistors, the second configuration uses over 10% more area than the first. In

general, if we consider basic cells with K e1ofM input channels, then the computation configuration

with SRAM transistors on the top requires

Ntop(M,K) = MK(M dlog2(M)e+K + 1) = MK+1 dlog2(M)e+ (K + 1)MK

transistors, while the second implementation, with SRAM next to the foot, requires

Nbot(M,K) = M(MK dlog2(M)e+
K∑
i=0

M i) = MK+1 dlog2(M)e+
M(MK+1 − 1)

M − 1

transistors.

7.2.2 Communication Patterns

Using the programmable bits Sb, Si, Sc and Sz, the cell can be configured to use either one,

two, or three inputs. The cell’s input channel A? is always unconditional (a communication must

occur on every cycle) but communications on all of the other channels—input channels B? and

159

Sb Sc Si Sz a b c Z!
0 X X 0 X 0 0 f(S, a, 0, 0)
0 X X 1 0 0 0 —
0 X X 1 1 0 0 f(S, 1, 0, 0)
1 0 0 0 X B? 0 f(S, a, b, 0)
1 0 0 1 0 B? 0 —
1 0 0 1 1 B? 0 f(S, 1, b, 0)
1 1 0 0 X B? C? f(S, a, b, c)
1 1 0 1 0 B? C? —
1 1 0 1 1 B? C? f(S, 1, b, c)
1 0 1 0 0 B? 0 f(S, 0, b, 0)
1 0 1 0 1 0 0 f(S, 1, 0, 0)
1 0 1 1 0 B? 0 f(S, 0, b, 0)
1 0 1 1 1 0 0 —
1 1 1 0 0 B? 0 f(S, 0, b, 0)
1 1 1 0 1 0 C? f(S, 1, 0, c)
1 1 1 1 0 B? 0 f(S, 0, b, 0)
1 1 1 1 1 0 C? —

Figure 7.9: Communication patterns for our asynchronous FPGA cell.

C?, and output channel Z!—can be programmed to depend upon the value input upon A?. These

conditional communications allow each cell to be configured to fit ten different communication

patterns, some of which include data-dependency. From these patterns, a cell can not only implement

basic computation blocks but also, either singly or in combination with another cell, two basic control

circuits in asynchronous QDI design: the controlled merge and the controlled split. The importance

of these cells is demonstrated in the FBlock example of Section 7.4.

7.2.3 Performance and Area

We have created layout and performed analog SPICE simulations for our logic cell in TSMC 0.18-µm

technology. The simulations show that a cell operates with a cycle time of 190-235 MHz (depending

upon its configuration), and consumes anywhere from 2.1-3.1 pJ/cycle. The results are summarized

in Figure 7.10.

The FPGA cell layout, including twelve bits of SRAM, is shown in Figure 7.11. Its dimensions

are 334x323-lambda (1079 µm2). While the design of the asynchronous logic cell may seem bulky

compared to basic logic cells in synchronous FPGAs, we note that QDI designs face a similar area

penalty in custom VLSI design yet outperform their synchronous counterparts in both speed and

160

Sb Sc Si Sz communication cycle time energy
MHz pJ/cycle

0 X X 0 A?,Z! 206 2.4
0 X X 1 A?,(Z!) 235 2.1
1 0 0 0 A?,B?,Z! 195 2.8
1 0 0 1 A?,B?,(Z!) 222 2.4
1 0 1 0 A?,(B?),Z! 200 2.6
1 0 1 1 A?,(B?),(Z!) 217 2.4
1 1 0 0 A?,B?,C?,Z! 190 3.1
1 1 0 1 A?,B?,C?,(Z!) 220 2.7
1 1 1 0 A?,(B?,C?),Z! 199 2.8
1 1 1 1 A?,(B?,C?,Z!) 214 2.6

Figure 7.10: FPGA simulation results.
Results of SPICE simulations for different configurations of the basic cell in 0.18-µm technology.
Parentheses indicate that communications depend upon the data input on channel A?.

Figure 7.11: Layout for the basic FPGA cell, including twelve programmable SRAM bits.

energy consumption [42]. The interconnect area penalty that arises from the multiple wires of a

dual-rail channel is also offset in part by the omission of a clock tree in an asynchronous FPGA.

161

7.3 Cluster Design

The logic cells serve as versatile building blocks for an asynchronous FPGA. However, additional

functionality and interfacing can help implement programs and embed the cells into an interconnect

mesh more efficiently. To incorporate features such as channel replication, slack-matching buffers

for performance optimization, and initial tokens generated at reset, we group cells together into

structures called clusters. While a more general model is presented in Section 7.5, a cluster in

this section consists of four basic logic cells, L[0]–L[3] with additional programmable SRAM and

circuitry to implement the new features. This design is illustrated in Figure 7.12, and its features

are described below.

7.3.1 Copying Channels

QDI channels cannot be split or shared between PCHBs without additional completion circuitry to

acknowledge every transition on the channel. If the data rails of a channel are split and copied to

two different input ports, then the two enable rails from those ports must be collected in a C-element

with that gate’s output serving as the new enable rail for the copied channel. Clusters include extra

enable rails and C-elements so that any input channel can be copied either to L[0] and L[1], to

L[2] and L[3], or to all four logic cells. To configure the cluster and copy input channels, instead

of connecting separate enable rails (e.g., both A[0].e and A[1].e) to the interconnect mesh, connect

instead their copy enable generated by a C-element (e.g., cpA 01 e).

In cases where a channel needs to be copied to two cells in different clusters, an extra enable

rail is also provided for each output channel. This rail is sent through a C-element with the original

output enable rail and a multiplexer programmed by the SRAM bit Scpzi is used to choose the

enable signal from either the original single output enable signal or the combined copy enables.

7.3.2 Feedback Channels

There are many cases when the output channel of a logic cell in a cluster is required as an input

to another cell (or, perhaps to several other logic cells) in that same cluster. One example is when

162

slack
buffer

slack
buffer

slack
buffer

slack
buffer

Z.0

Scpz3

Cell

C

Logic

C

Z.e

C

A.0
A.1
A.e

B.0
B.1
B.e

C.0
C.1
C.e

Z.1
Z.0

Z.e

A.0
A.1
A.e

B.0
B.1
B.e

C.0
C.1
C.e

Z.1
Z.0

Z.e

Logic
Cell

Logic
Cell

A.0

Z.1

CC.e
C.1

C

C
C

C.0

B.e

C

C

B.1
B.0

C

CLUSTER

external interconnect

internal feedback

external interconnect

Scpz0

A.e
A.1

Scpz1

A.0

C
C

C

Scpz2

Cell
Logic

Z.e

Z.0
Z.1

C.e
C.1
C.0

B.e
B.1
B.0

A.e
A.1

L[0]

L[2]

L[1]

L[3]

cpA_23_e
cpB_23_e
cpC_23_e

cpB_01_e

cpA_03_e
cpB_03_e
cpC_03_e

cpC_01_e

cpA_01_e Sbuf0

Sbuf3

Sbuf1

Sbuf2

Figure 7.12: Cluster block diagram.
Includes circuitry implementing channel copying, feedback, slack buffers, and initial reset tokens.

multiple bits of a full adder are grouped together in one cluster and the carry-out of one bit must be

fed into multiple cells implementing the next bit. To implement this scenario as simply as possible,

feedback channels are provided within the cluster. The logic cells can be programmed to connect to

these channels in the same way that they can connect to external interconnect—the new channels

are completely local.

163

7.3.3 Buffering and Initial Tokens

Since all cells in the FPGA are identical, optimizing the performance of a system implemented on

the FPGA requires homogeneous slack matching. While the logic cell can be programmed to serve as

a slack buffer, this is its simplest configuration and wastes much of its circuitry. We therefore insert

small dedicated slack buffers to the system. Each output channel contains a QDI “slack buffer” that

the output signals may be programmed (using the SRAM bits Sbufi) to either skip or pass through.

These slack buffers actually serve a dual-purpose and are also used at reset, when a system may

be initialized with tokens of data on certain channels. Because such channels require slightly different

completion circuitry, we choose to include the circuitry in the PCHBs, where it can be implemented

more efficiently than in the basic cells. Thus, the slack buffers can be programmed with different

reset token configurations: no token, initial token zero, and initial token one.

7.3.4 Summary

Aside from SRAM cells used to connect channels to interconnect, the cluster described in this section

contains 60 programmable SRAM cells: twelve within each logic cell, four to select whether or not

each logic cell output will pass through a slack buffer, four to choose whether or not each output

channel will be copied, and four to program initial tokens on the output channels.

The programmable features allow clusters to be used in a variety of ways, ranging from four

independent computation cells to an eight-way copy for a single channel. In attempting to provide a

flexible cluster architecture for our FPGA, we may have added too much functionality to the clusters.

For example, although the bypass feature has proved very useful in decompositions thus far, it is not

yet clear whether slack-matching buffers (and their programmable initial tokens) are really required

for every logic cell, whether there should be fewer such buffers per cluster, or whether they should

be moved out of the clusters entirely and inserted into the switches in the routing network. These

are all issues for further study and experimentation.

164

B[0]?
A[0]?

C[0]?
S[0]!

A[1]?
B[1]? S[1]!

C[2]!

cluster

LC[0]

LC[1]

LC[2]

LC[3]

C[1]

Figure 7.13: FPGA full adder example.
One cluster implementing two bits of a full adder with input channels A and B, sum output channel
S, and carry channels C.

7.4 Mapping Examples

In this section, we demonstrate different possible configurations of the clustered architecture de-

scribed in Sections 7.2 and 7.3 by decomposing programs of different sizes and mapping them to

cells and clusters. We start by considering a simple full adder and then a four-bit ALU. The final

example is a 32-bit datapath unit taken from an asynchronous microprocessor.

7.4.1 Full Adder and ALU

One bit of a ripple-carry full adder can be implemented using two dual-rail logic cells. When multiple

bits are required, copy and feedback channels allow each cluster to implement two bits of the adder.

A possible cluster setup is shown in Figure 7.13.

Building upon this full adder, consider the implementation of a four-bit ALU that can perform

addition, subtraction, logical AND, and logical OR. Such a system requires two clusters to implement

the full adder cells, one cluster to negate the subtrahend in case of subtraction, and one cluster to

implement the boolean functions. We also need three more clusters to conditionally send the inputs

and opcodes to either the full adder or the boolean computation blocks, and one cluster to merge

165

the outputs of these two sets of blocks. The sum total of cells required to implement this four-bit

ALU is 32. The cells can be mapped to eight clusters.

7.4.2 Microprocessor Execution Unit

We have decomposed the FBlock execution unit from the asynchronous MiniMIPS [39] for imple-

mentation on our clustered architecture. The FBlock is a classic datapath unit (32-bits wide) with

simple control. Its initial high-level CHP specification is as follows:

FBlock(C ? : e1of 2[5];

X ?,Y ?,Z ! : e1of 2[32];

ImL?, ImH ? : e1of 2[16]) ≡

*[C ?c;

[c ∈ {and , or , xor ,nor} −→ X ?x ,Y ?y , Z !op(c)(x , y)

[]c ∈ {andi , ori , xori} −→ X ?x , ImL?il ; Z !op(c)(x , il)

[]c = lui −→ ImH ?ih; Z !(ih*216)

]]

The final decomposition of this unit consists of 834 logic cells, grouped in 209 clusters. All but two

of the clusters are fully populated. 661 of the cells take advantage of conditional communications.

On a related note, only 93 of the cells are active on every cycle. Hence, in the absence of a clock,

only 93 of the 834 cells are consuming dynamic energy every cycle. These results help justify the

additional circuitry inserted into PCHBs to implement conditional communications. A high-level

view of the decomposed system is shown in Figure 7.14.

7.5 Architectural Models and Interconnect

We have presented the design of a basic e1of2 logic cell, and of a cluster that contains four such

cells as well as four slack buffers. However, there are many other design points to consider when

constructing a fast, energy- and area-efficient asynchronous FPGA. We have begun studying different

166

24 cells
6 clusters

Merge2

16bAnd/Or
16b

24 cells
6 clusters

48 cells
12 clusters

Split2

16b

48 cells
12 clusters

Merge2

32b

48 cells
12 clusters

Merge2

32b

48 cells
12 clusters

Xor/Nor

32b

48 cells
12 clusters

And/Or

32b

24 clusters
96 cells

Split2

32b

96 cells
24 clusters

Split2

32b
96 cells

24 clusters

Split2

32b

48 cells
12 clusters

Split2

16b
24 cells

6 clusters

Id/Zero

16b

48 cells
12 clusters

Split2

16b

CCI0

CX

CCY0

CCY0

CCY1aor

CCY1xnor

CCY0

CCI0

CCI0 CCI1aor

CCI1aor

CCI0 CLUImrg

CLUImrg

C

CCI0

ImL?

ImH?

Y?

X?

Z!

C[0]?

CCY1aor
CCI1aor

C
CCI0

CCY1xnor
CLUImrg

CCY0
CX

50 cells
13 clusters

C[4]?
C[3]?C[1]?

C[2]?

Control & Copy

Xor
16b

16 cells
4 clusters

24 cells
6 clusters

Merge2

16b
24 cells

6 clusters

Id/Zero

16b

24 cells
6 clusters

Merge2

16b

Figure 7.14: Decomposition of the FBlock execution unit from the asynchronous MiniMIPS.

designs with different channel types (performance considerations limit us to considering e1of2 and

e1of4 encodings), varying cluster configurations, interconnect switches and routing architectures.

This section describes our approach to creating a parameterized model (including both computation

blocks and interconnect) for an asynchronous FPGA, and notes some initial results and trends

concerning area that have surfaced when comparing synchronous FPGAs with asynchronous FPGAs

that use e1of2 and e1of4 channel encodings.

In our analysis, we use the minimum-width transistor area estimation technique presented by

Betz, Rose and Marquardt [6]. This method estimates total circuit area by using an experimentally-

derived function to compute the area required by a transistor of a given size in units of the area

167

M K #SRAM Total Area: Datapath #Functions
(e1ofM) (fanin) cells Area SRAM/total Width

2 3 12 400 0.18 1b 28

4 3 132 1777 0.45 2b 464

4 2 34 516 0.40 2b 416

Figure 7.15: Comparison of three reconfigurable asynchronous logic cells.
The logic cells are parameterized by channel width (M) and fanin (K). Area estimates are given in
units of minimum-width transistors.

required by a minimally-sized transistor in the same technology.

7.5.1 Logic Cell Comparisons

At the logic cell level, the three-input e1of2 cell described in section 7.2 requires twelve SRAM bits

and roughly 2.5 times the area of an equivalent three-input synchronous cell (which includes a 3-LUT,

a multiplexer, and nine SRAM bits). Recall that the asynchronous e1of2 cell includes circuitry that

allows conditional communications by only generating enable signals under certain data-dependent

conditions. This circuitry may not be necessary in a synchronous design, but contributes to the

energy-efficiency of our circuits since the majority of energy in asynchronous chips is consumed in

communications and not computation. Also, recall that conditional communications on channels

allow entire cells to be used (i.e., be “active”) only conditionally. Since there is no global clock,

asynchronous QDI cells do not consume any dynamic energy when they are inactive.

Compared to the e1of2 cell, an equivalent e1of4 cell (with the same control logic but twice

the datapath) requires 132 SRAM bits and more than five times the area. The e1of4 cell can

be programmed to compute 443
different functions while the e1of2 version can compute only 223

.

However, details at the analog circuit level may cause the e1of4 cell to run slower than the smaller

e1of2 cell. A comparison of the three cells is given in Figure 7.15.

7.5.2 Interconnect

Asynchronous circuits require more wires than synchronous circuits to communicate information.

(In QDI asynchronous design, N + 1 wires are required in a channel that encodes dlog2Ne bits.)

168

Channel #Gates #SRAM cells #Channels
Type per per per 2n-bits

channel switch channel switch of datapath
sync/1-bit 1 1 2n
sync/2-bit 2 1 n
async/e1of2 3 1 2n
async/e1of4 5 1 n

Figure 7.16: Interconnect switches for different channel encodings.

However, the general interconnect of asynchronous FPGAs can be conceptually modeled after that of

synchronous FPGAs, with an asynchronous channel being the equivalent of a synchronous wire. The

area required by asynchronous interconnect does not simply scale with the number of wires. While

each switch for an e1ofN channel involves N + 1 wires and programmable gates (either pass-gates

or tri-state buffers), only one SRAM cell is required for configuration. Figure 7.16 characterizes the

interconnect switches for some basic synchronous and asynchronous channel encodings. We include

synchronous interconnect where each wire can be routed individually, synchronous interconnect

where the wires are grouped in pairs to carry 2-bit quantities and are always routed together, and

the asynchronous e1of2 and e1of4 channel encodings.

Consider the situation in which interconnect area is dominated by switches and not wires. (Con-

ventional experience indicates this is the case, and while the growing number of metal layers in new

technologies help us increase the density of wiring networks, switches currently require space on the

substrate and cannot be easily stacked [15].) The specific computations performed in this section

assume a network that uses 50% pass-gates and 50% tri-state buffers. Since tri-state buffers are

usually more than twice the size of pass-gates, the numerical results will vary depending on the frac-

tion of pass-gates used in interconnect. However, for each switching network architecture considered

here, the relative ordering of the switching areas required by the various channel encodings remains

the same no matter what combination of pass-gates and tri-state buffers are used.

We begin by noting that both synchronous 1-bit and e1of2 interconnect require the same number

of channels to route a given datapath. Given a switching network architecture then, both types of

interconnect will use the same number of switches; only the area per channel switch will differ.

169

Following the circuit area estimation technique described earlier, e1of2 switches require, on aver-

age, about 2.2 times the area of their synchronous 1-bit counterparts. Hence, no matter what type

of switching network is chosen (i.e., no matter whether the number of switches grows linearly or

super-linearly with the number of inputs and outputs to the network [50]), e1of2 interconnect will

use up roughly 2.2 times as much area as synchronous 1-bit interconnect. Similarly, e1of4 intercon-

nect will use up about 2.1 times the area as synchronous 2-bit interconnect, regardless of the type of

switching network chosen. (The comparisons in this section ignore the wires required to distribute

clock signals throughout a synchronous FPGA.)

In contrast, when comparing the two asynchronous encodings, e1of4 interconnect requires fewer

channels but larger individual channel switches than e1of2 interconnect. The ratio of total inter-

connect areas for the two channel-encoding schemes therefore depends on the switching network

architecture chosen. For example, consider a network that uses O(N2) switches, where N is the

number of network sources and sinks. Given this switching architecture and equally wide datapaths,

e1of4 interconnect uses up only 39% of the area of e1of2 interconnect. When the switching network

uses O(N) switches, e1of4 interconnect still requires less area than e1of2 interconnect, but at the

higher fraction of 77%.

Typically, routing resources take up 90% and logic cells only 10% of the area of current syn-

chronous FPGAs. If this ratio holds true for asynchronous FPGAs then, ignoring clusters and

focusing on this section’s area comparisons for logic cells and switching networks, an asynchronous

e1of2 FPGA requires roughly 2.2 times the area of its synchronous 1-bit equivalent. (The fact that

e1of2 cells and switching networks are similar factors larger than their 1-bit synchronous counterparts

points to the ratio remaining roughly the same.)

The computation is more complicated when comparing e1of2 and e1of4 asynchronous FPGAs.

One reason is the effect of different switching network architectures on the area required by e1of4

interconnect. Another is that while e1of4 cells can handle twice the datapath of e1of2 cells, the

percentage of cells that make use of this doubled datapath depends on the nature of the system

being implemented. In a datapath element such as the FBlock described in section 7.4, close to 95%

170

feedback

INPUT DATA

INPUT ENABLES

OUTPUT DATA

OUTPUT ENABLES

I input channels

Nc logic cells

Nb slack buffers

K inputs

K inputs

SLACK

e1ofM channels

CELL

IMUX

BUF

CELL

CELL

CE TREE

BUF

K inputs

SLACK

c

c

c

Figure 7.17: Structured cluster design.
The cells and slack buffers are PCHBs, while the C-element tree and input enable multiplexer
(IMUX) generate and route enable signals for channels entering the cluster from the interconnect.

of the cells would take advantage of the larger cells. In a less regular control element, that percentage

might drop. We are working on combining our synthesis and area estimation tools to study this

issue further.

7.5.3 Parameterized Cluster Design

We cluster cells in FPGAs to save area by taking advantage of locality in mapped applications, and to

relieve the burden on global physical design tools by reducing the size of the problems they face. We

have already presented one possible cluster architecture, but wish to analyze others. We therefore

apply structure to our clusters and use this structure to parameterize their design. Parameters

include the number of cells, the number of slack buffers, the fanin into the cluster, the fanin into

each cell, and the size of each channel.

The structure that we have chosen for our clusters is displayed in Figure 7.17. This cluster is

171

very general: instead of tying slack buffers to logic cells, the numbers of both components present in

the cluster are independent, and any cell can be connected to any buffer or even a chain of buffers

through the internal cluster network of feedback channels. Meanwhile, instead of only specific two-

way or four-way copies being programmable, the cluster allows incoming channels to be copied to

any number and combination of logic cells by gathering all of their input enables together in a

C-element tree (“CE TREE” in Figure 7.17).

Finally, the programmable input enable multiplexer (“IMUX” in Figure 7.17)) allows the cluster

to have a lower fanin than the total fanin of its internal logic cells and slack buffers. For example,

even if a cluster has four three-input logic cells and one slack buffer (with a total of 13 internal input

ports), the architecture may allow only a fanin of eight channels from interconnect for the cluster.

Interconnect comprises 90% of the area of typical FPGAs, so often the utilization levels of logic cells

are sacrificed to reduce the amount of interconnect required [14].

Consider a cluster based on e1ofM channels and K-input logic cells. In our parameterized

model, let there be Nc such logic cells (each with area Ac(M ,K)) and Nb e1ofM slack buffers (with

area Ab(M)). The total fanin of the cluster logic cells and slack buffers is therefore Imax = K·Nc+Nb.

Let I ≤ Imax be the fanin of the cluster.

Feedback (FB) channels in the cluster have Nc + Nb possible sources (one for each output of

a logic cell or slack buffer) and K · Nc + Nb possible sinks (one for each input of a cell or buffer).

Each logic cell or slack buffer input can therefore choose from I +Nc +Nb possible input channels.

Meanwhile, all logic cell and slack buffer outputs can be copied to two different channels in the

interconnect. C-elements that feeds into the output enable multiplexer implement these copies.

We present the parameterized logic cell component of a cluster in Figure 7.18. The component

includes both the logic cell itself, and multiplexers that provide a programmable interface with the

rest of the cluster. Every logic cell component includes K ·M multiplexers for its input channel data

rails, each with I+Nc+Nb inputs. Only K SRAM cells are required to program these multiplexers,

however, as all data rails must be connected to the same channel. Input enable rails are passed

through electrical buffers (as opposed to asynchronous pipeline stage buffers) to increase their drive

172

R.e (1)

R.d (M)

fr CE TREEto CE TREE

c

fr FB

fr IC

Nc+Nb

I M1

M2

LOGIC CELL
area=Ac(M,K)

num=Nc

to IC

to IC

fr FB

fr IC

fr IC

(Nc+Nb)
to FB

(I)

to FB

(2Nc−2)

(KNc+Nb)

Nc−1

KNc+Nb

L.d (K*M)

L.e (K)

Figure 7.18: Logic cell slice for a cluster based on K-input e1ofM cells.

num=Nb

SLACK BUF

M2

M1 R.d (M)

c

fr FB

fr IC

Nc+Nb

I to IC

to IC

fr FB

fr IC

fr IC

(Nc+Nb)
to FB

(I)

to FB
(KNc+Nb)

KNc+Nb

L.d (M)

L.e (K) R.e (1)

area=Ab(M)

Figure 7.19: Slack buffer slice for a cluster based on e1ofM channels.

strength before they are copied to the IMUX, to the feedback channels, and to the C-element tree.

On the output port of the logic cell, the data rails are copied to both the interconnect and the

feedback channels. The output enable has multiplexer with inputs from feedback channels, the

C-element tree, and two inputs (one generated by a copy C-element) from the interconnect. This

multiplexer can be programmed by two SRAM cells.

We can already see that the cost of generality for the cluster is quite high; if it proves to be

exorbitantly high, the model can easily be modified to limit the number of feedback channels, for

example, and trade off area against flexibility. The parameterized slack buffer, shown in Figure 7.19,

is similar to the logic cell. However, it has only one input instead of K , and since channels cannot be

copied to slack buffer input ports, has less possible connections for its input data rails and enables.

For the C-element tree, we make the following design decisions at the outset. Any input channel

from the interconnect or feedback channel from within the cluster can be copied. Channels can be

173

Nc

c

c
c

c

Figure 7.20: C-element tree slice.
C-element tree for a cluster with Nc = 5. The tree can be programmed to handle a 5-way copy, a
4-way copy, a 3-way copy, a 3-way and a 2-way copy, and two 2-way copies.

copied only to logic cell input ports, and not to slack buffer input ports. (The slack buffers will

be used more often in series than in parallel.) Finally, if each K-input logic cell has input channel

ports labeled C k , where 0 ≤ k < K , then a channel can only be copied to different logic cell input

ports that have the same index k . The only reason to distinguish between the different input ports

of a logic cell is if the condition of communication for that channel is important. While there are

cases where an unconditional input for one cell will be a copy of a conditional input in another cell,

they are not common. Therefore, to save area and keep our cluster mapping free of such conditional

muddy waters, we insist that all input ports of the copy channels match. (This suits the common

case of vertical decomposition.)

Input copies require a programmable tree of C-elements that gather all the copy acknowledgments

into a single acknowledgement signal. Since copy channels are restricted to one of the K possible

logic cell input ports, we may use K identical trees that each handle Nc inputs. For now, we wish

to keep the C-element trees as general as possible—they should be able to handle an Nc-way copy,

two Nc
2 -way copies, etc. We therefore keep the tree as balanced as possible, allow outputs from

every C-element in the tree, and make all Nc possible input acknowledgements available to every

C-element in the tree. A C-element tree for a cluster where Nc = 5 is illustrated in figure 7.20.

Let demux (x), mux (x), and celem(x) return the areas required by demultiplexers, multiplexers,

and C-elements with x inputs, respectively. In general, the area of such a C-element tree is

ACE(Nc) = (Nc − 1) · celem(2) + (Nc − 2) · demux(2)

174

fr CE TREE

fr CELLs

fr BUFs

KNc

Nb

Nc−1

to I.e

Figure 7.21: Input multiplexer slice for a parameterized cluster.

+Nc ·mux(Nc) + (Nc − 2) ·mux(Nc + 1) (7.1)

where the area functions for demultiplexers and multiplexers include the SRAM cells required to

program them.

Finally, if I channels enter the cluster from the interconnect and are distributed among the

Nc logic cells and Nb slack buffers, then I multiplexers are required to gather all of the possible

acknowledgement wires (including possible copies) and choose the appropriate one to send back out

to the interconnect. Such a multiplexer has K ·Nc+Nb+Nc−1 inputs, and is shown in figure 7.21.

Combining the information for the various cluster components, we can use the minimum-width

transistor technique to estimate the area of a cluster given the parameters M , K , Nc , Nb and I .

Following standard practise, the buffers that strengthen signals to be sent out to the interconnect

(shown in figures 7.18 and 7.19) are not included in the cluster area but are instead credited towards

the routing area of an FPGA. Multiplexers are assumed to consist of 6-transistor SRAM cells and

minimum-sized n-transistors. Then, the area functions for the logic cell and slack buffer slices are

ALC(M,K,Nc, Nb, I) = Ac(M,K) +M ·K ·mux(Nc +Nb + I)

+mux(K ·Nc +Nb +Nc + 2) + celem(2) (7.2)

ASB(M,K,Nc, Nb, I) = Ab(M) +M ·mux(Nc +Nb + I)

+mux(K ·Nc +Nb +Nc − 1 + 2) + celem(2) (7.3)

The area function for C-element trees was given in a previous section, and so the total area of

175

the cluster is

Acluster(M,K,Nc, Nb, I) = Nc ·ALC(M,K,Nc, Nb, I) +Nb ·ASB(M,Nc, Nb, I)

+ACE(Nc) + I ·mux(K ·Nc +Nb +Nc − 1) (7.4)

7.6 Summary

We have presented a clustered architecture for an asynchronous FPGA. The system is QDI, and

places no timing constraints on any placement and routing tools that target this FPGA. Examples

of how to implement several different circuits on this architecture have been given, including one for

a large datapath unit from an asynchronous microprocessor. We have considered different channel

encoding options for interconnect, and set up a parameterized model for clusters to explore different

architectures. While there are many issues open to further research (which we will discuss in Chap-

ter 8), the cell and cluster designs presented here offer a good general basis for future asynchronous

FPGAs.

176

Chapter 8

Conclusion

We have presented data-driven decomposition (DDD), a new method that can transform a sequential

algorithm into a distributed network of circuits optimized for both speed and energy. While its early

phases can be applied to convert both software and hardware algorithms into concurrent systems,

we have also introduced techniques to DDD that make it the first high-level synthesis technique

to target the pipeline stages used in high-performance asynchronous VLSI systems. In addition,

we have presented a new architecture for asynchronous FPGAs that is quasi delay-insensitive, and

whose interconnect is entirely delay insensitive. Together, DDD and reconfigurable asynchronous

architectures represent a significant step forward in the automated design and rapid prototyping of

asynchronous VLSI systems, allowing more designers to exploit the many advantages of asynchrony.

8.1 Summary of New Synthesis Methods

DDD uses data-dependency analysis to decompose a sequential program into a concurrent system

of communicating processes. The method can be applied to any deterministic CHP program and is

summarized in Figure 8.1.

The first main phase of DDD transforms the original program into dynamic single-assignment

(DSA) form, to limit the size of processes in the distributed system and to eliminate unnecessary

syntactic constraints, thus exposing concurrency in the algorithm. We have shown how deterministic

programs written in CHP can be systematically rewritten in DSA form by constructing a method

based on the three control structures in CHP: straightline series, selection statements, and repetition

177

DDD

Network of

Synthesis for
Reconfigurable

Half Buffers
Precharge

Architecture

Custom VLSI

Distributed System

Asynchronous FPGA

Sequential Program

until further
clustering exceeds
size or throughput
constraints

Low−Level
Synthesis

Distillation

DSA Transform

Straightline Series & Selection Statements

Guard Encoding

Vertical Decomposition

Isolation of Expensive Resources

Build dependency sets
Insert projection variables & communications
Build new dependency sets & projection sets

Apply projection

Projection

Elimination

Nested Loops

Clustering
Recompose in series to meet Latency constraints

Build FBI Graph for Slack Matching
Simulated Annealing

(slack matching, parallel & series recomposition)

Figure 8.1: DDD for the high-level synthesis of asynchronous VLSI systems.

178

statements.

After the DSA transformation has been applied along with other optimizations such as the isola-

tion of expensive resources (area optimization), vertical decomposition (performance optimization),

and guard encoding (energy optimization), DDD splits the single sequential description into an

equivalent concurrent system of communicating processes. This is accomplished using the syntactic

transformation of projection (until now primarily used for verification purposes). DDD provides a

semantic framework in which data-dependency analysis can be performed, allowing projection to be

systematically applied to decompose the sequential program.

We have presented parameterizable circuit templates for precharged half-buffers (PCHBs), the

family of asynchronous pipeline stages used in most high-performance asynchronous VLSI systems,

and we have shown that all processes in the decomposed system generated by DDD can be im-

plemented directly as PCHBs. DDD now uses these templates to perform energy and throughput

optimizations on the distributed system generated by projection. First, DDD removes redundant

control circuitry through distillation, which individually transforms certain processes with condi-

tional communications so that the entire processes are idle more often, consuming no dynamic

energy. Then, DDD performs elimination, removing L-R buffers from the system.

At this point, each individual process implements the computations for a single variable and is

simple enough for lower-level synthesis to be feasible. However, this simplicity is often accompanied

by a communications overhead in energy consumption that is sizable relative to the energy con-

sumed by the actual computations being performed. We have therefore presented DDD’s clustering

phase where, to reduce system energy consumption, DDD recomposes select processes to eliminate

communications and their related wires and circuitry from the system.

Clustering performs the slack matching performance-optimization in conjunction with recomposi-

tion. This transformation inserts additional pipelining into the system to alter handshake dynamics

and increase system throughput. We have introduced the FBI model to analyze the handshake

dynamics in a system and shown that in certain systems, the set of possible critical cycles can be

limited to four basic cycles. We have demonstrated how recomposition and slack matching can be

179

combined using a simulated-annealing heuristic, reducing system energy costs by as much as 70%

without decreasing system performance.

8.2 Future Work

While the first two phases of DDD are largely independent of whether the final system is implemented

in software or hardware, the clustering phase of DDD is tailored specifically for high-performance

asynchronous VLSI systems. In the future, DDD can be reformulated for synchronous VLSI systems

as well, by changing methods of low-level performance estimation and replacing the slack-matching

transformation with retiming. Also, currently, DDD can be applied only to deterministic sequential

programs. Although the majority of programs used in asynchronous VLSI design are deterministic,

future research incorporating non-determinism and arbitration will make the DDD method complete.

The focus of DDD as presented in this thesis is, through its performance estimations and opti-

mizations, often on the communications within an asynchronous system. Many future improvements

to the method therefore involve the computations within an asynchronous system. Currently, DDD

can isolate computations that the designer deems costly. Also, DDD can automatically perform ver-

tical decomposition on processes that either do not involve computation, or include computations

that the designer indicates can be “evenly sliced.” The bitwise AND is an example of a computation

that can be evenly sliced, since each vertically decomposed computation is identical and can operate

independently.

Future extensions to DDD may involve function decomposition, allowing the method to auto-

matically distribute a single computation across multiple variables (and, eventually, processes) to

improve the energy or performance of the final system. Function decomposition is also necessary for

vertical decomposition to be automatically applied in cases where computations cannot be evenly

sliced. Although most of the energy consumed in asynchronous systems is in communications, au-

tomatic function synthesis would allow DDD to make more accurate energy estimations for PCHBs

by including computation pulldown networks.

In the clustering phase of DDD, the creation of a more efficient method for slack matching

180

systems, particularly heterogeneous ones, will be a fertile area for further research. Future work

may modify its approach and cost functions to optimize other metrics. One possible such metric is

the voltage-independent metric Et2, which grows more attractive as power concerns lead to more

solutions involving dynamic voltage scaling. Another interesting addition to DDD is the inclusion

of layout considerations into the recomposition heuristic. While vertical decomposition often allows

slices of layout to be generated and then duplicated, clustering two such slices may result in a

reduction in energy but increase the number of individual processes for which physical layout must

be designed. In other cases, clustering can reduce the regularity of the system, also making the

physical design of a system more difficult. Also, DDD clustering currently seeks to minimize energy

while maintaining a specified system throughput.

Of course, physical design is not necessary when using asynchronous FPGAs. As has already been

discussed, there is much work yet to be done in using the parameterized reconfigurable constructs

presented here to explore different FPGA architectures with different criteria in mind. Specifically,

the relationships between cluster area, interconnect area, and logic utilization should be determined.

It is likely that irregular microprocessor designs will be best implemented on one type of FPGA

architecture, while DSP designs will be best implemented on another type.

The DDD tool can be combined with area- and performance-estimation tools for FPGAs to exam-

ine all possibilities, including more adventurous interconnect schemes that exploit delay-insensitivity

and the flexibility of asynchronous design. For the DDD tool to be used in such experiments, we must

add constraints to the current DDD method so that decomposition phases target the CHP used by

the basic reconfigurable cell, and the clustering phase targets the specific reconfigurable clusters of

the FPGA. Finally, since the delay-insensitivity of our reconfigurable interconnect reduces pressure

on mapping tools, the architecture presented here is attractive for FPGAs that can be dynamically

reprogrammed. The use of asynchronous VLSI technology in evolutionary hardware is an exciting

path that has not yet been explored.

181

Appendix A

CHP Notation

CHP is a high-level hardware description language that includes communications primitives and

concurrent processes. It is based on Hoare’s CSP (communicating sequential processes) language for

parallel programming [23]. In our overall synthesis method, we begin by describing the behavior of

circuits and systems using CHP and indeed, the initial process for a simple microprocessor can fit

into a single page of code. CHP is a simple language though, and none of its constructs are explicitly

tailored for hardware implementation.

This appendix is intended as a brief and informal introduction to the basic CHP features and

structures used in this dissertation. A formal description of the CHP language can be found in [38].

A.1 Basic Constructs

CHP variables can be integers, enumerations, or arrays. Numerous other variable types can be

defined as well, but in the interests of clarity, this dissertation limits variables to those three basic

types.

A process is a single imperative program that manipulates variables. While communications

primitives can be used to communicate with other processes, they are not necessary to transfer

information within a single process.

A system consists of a group of processes, each running concurrently and sharing information

through communications across channels. Shared variables are not allowed between processes in

a system. If two processes share information, it must be communicated explicitly between them.

182

Without these synchronizing communications, different processes in a system can run independently

at their own pace.

Communications channels are dedicated between two processes. Channel types exist that cor-

respond to every type and size of variable. They have only two ports and are, in most cases,

unidirectional (i.e., the process attached to one port is always the sender of information and the

process attached to the other port is always the receiver of information.) The exception to unidi-

rectionality is when the channel is used purely for the synchronization of processes, and no data is

communicated. In this case, at the CHP level, the channel is considered to have no “direction” at

all.

A.2 Basic Statements

The simplest statement in CHP is “skip,” which does nothing.

Aside from that “no-op,” the most basic statements in CHP are regular assignments, where the

value of some expression is assigned to a variable. Examples of regular assignments are “x := 0”

and “x := a + b,” for variables x , a, and b. The variables being written are considered to be

on the “left-hand side” (LHS) of an assignment; the variables that appear in the expression being

evaluated are considered to be on the “right-hand side” (RHS) of the assignment. (If the assignment

statement is labeled “A,” then the abbreviations “A.LHS” and “A.RHS” may also be used to refer to

the set of variables on the LHS or RHS of A.) Expressions can be boolean, arithmetic, or otherwise

defined by users. Short forms often used for assignments to boolean variables are “a↑” (equivalent

to “a := true”) and “a↓” (equivalent to “a := false”).

Communications primitives can also be used in assignment statements. For example, the send

statement “C !(a + b)” evaluates an expression containing variables a and b and assigns the result

to (sends it out on) the output channel C . Thus, C is on the LHS of the assignment while a and b

are on the RHS. Similarly, the receive statement “D?x” reads a value off of input channel D and

assigns it to the variable x . In this case, x is on the LHS of the assignment and channel D is on the

RHS.

183

A.3 Composition of Statements

Statements can be composed in sequence and in parallel. The sequential operator is the semicolon.

The CHP “A; B” means “execute first A and then B in sequence.”

There are two parallel operators: the comma and the parallel bars. For example, “A,B” means

“execute A and B in any order.” The comma is a stronger compositional operator than the semicolon.

Meanwhile, the code “A ‖ B” also means execute the two statements in parallel (i.e., any order),

but the parallel bars are a weaker compositional operator than the semicolon.

Any fragment of CHP code that consists of only basic statements and sequential and parallel

compositional operators is called straightline code. Its name is derived from the fact that there are

no branches of control—each of the basic statements will be executed right after each other, in some

partial order.

A.4 Control Statements

More complex than the basic statements introduced earlier, selection statements and repetition state-

ments (also called loops) are control structures in CHP. Both make use of guarded commands, where

each guarded command consists of a boolean condition (the guard) and a sequence of statements

(the command). In such a structure, whenever one of the boolean conditions evaluates to true, the

command associated with that guard is executed. If multiple guards can evaluate to true at the

same time, one is chosen randomly and the structure is nondeterministic. If the guards are mutually

exclusive, then the structure is deterministic. This thesis deals only with deterministic guarded

commands.

Selection statements contain multiple guarded commands. When a CHP program enters this

structure, it stalls until at one of the guards becomes true. At that point the true guard’s corre-

sponding command is executed and then the program exits the selection statement. A syntactic

example for a deterministic selection statement is

[g1 −→ S1 [] g2 −→ S2 [] g3 −→ S3]

184

In this structure, at most one of the boolean expressions g1, g2 and g3 can be true at any given time.

When guard gi evaluates to true, then its command Si is executed. If g3 ≡“else,” then one of the

three guards always evaluates to true and the program never stalls at the selection statement.

The repetition statement, or loop, can also contain guarded commands. A program only enters

the loop if one of the guards is true. Otherwise, it skips the loop entirely and moves on to the next

statement. Once in the loop, the program executes the command corresponding to the true guard

and when finished, evaluates all of the guards again. The program continues within the loop until

none of the guards are true, at which point it exits the repetition statement. The syntax of a loop

is illustrated by

*[g1 −→ S1 [] g2 −→ S2 [] g3 −→ S3]

There is an implicit semicolon at the end of every guarded command in the loop. This sequences

the end of one iteration with the beginning of the next.

A very simple loop is the non-terminating loop “*[true → S],” usually shortened to “*[S].”

Such a loop means “repeat S forever,” and is often used an outer loop for programs describing

circuit behavior that repeats indefinitely. In such situations, when we refer to “one iteration” of the

circuit’s program, we mean one iteration of this main unconditional loop.

Selection and repetition statements can be nested within each other, with no limit. When we

refer to a sequence of statements (for example, the command within guarded commands), we mean

any combination of basic, selection, and repetition statements arranged using both sequential and

parallel operators.

A.5 Applicability of DDD

This section has introduced all of the constructs of the CHP language that are used in this thesis,

and indeed the majority of the CHP language itself. The DDD method described in this work can

be applied to any deterministic CHP program. Any combination of the structures described here

fits that description.

185

Bibliography

[1] A.V. Aho, R. Sethi and J.D. Ullman. “Compilers: Principles, Techniques, and Tools.” Addison-

Wesley, 1986.

[2] S.J. Allan and A.E. Oldehoeft. A Flow Analysis Procedure for the Translation of High-Level

Languages to a Data Flow Language. IEEE Transactions on Computers, vol. C-29, No. 9,

September 1980.

[3] R.A. Ballance, A.B. Maccabe and K.J. Ottenstein. The Program Dependence Web: A Represen-

tation Supporting Control-, Data-, and Demand-Driven Interpretation of Imperative Languages.

Proc. ACM SIGPLAN’90 Conference on Programming Language Design and Implementation,

June 1990.

[4] A. Bardsley and D.A. Edwards. The Balsa Asynchronous Circuit Synthesis System. Forum on

Design Languages, 2000.

[5] C.H. van Berkel and R.W.J.J. Saeijs. Compilation of Communicating Processes Into Delay-

Insensitive Circuits. Proc. International Conference on Computer Design, 1988.

[6] V. Betz, J. Rose and A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs. Kluwer

Academic Publishers, 1999.

[7] S.S. Bhattacharyya, P.K. Murthy, and E.A. Lee. Synthesis of Embedded Software from Syn-

chronous Dataflow Specifications. Journal of VLSI Signal Processing 21, 1999.

186

[8] M.M. Brandis and H. Mossenboock. Single-Pass Generation of Static Single-Assignment Form

for Structured Languages. ACM Transactions on Programming Languages and Systems, Vol.

16, No. 6 November 1994.

[9] S.M. Burns and A.J. Martin. Synthesis of Self-Timed Circuits by Program Transformation. In

G.J. Milne, ed., The Fusion of Hardware Design and Verification, North-Holland, 1988.

[10] J-F. Collard. Reasoning About Program Transformations: Imperative Programming and Flow

of Data. Springer-Verlag, 2003.

[11] J. Cortadella, M. Kishinevsky et al. Petrify: A Tool for Manipulating Concurrent Specifications

and Synthesis of Asynchronous Controllers. IEICE Transactions on Information and Systems,

Vol. E80-D, No. 3, March 1997.

[12] R. Cytron, J. Ferrante, et al. Efficiently Static Single Assignment Form and the Control De-

pendence Graph. ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4,

October 1991.

[13] R.K. Cytron and J. Ferrante. Efficiently Computing φ-Nodes On-The-Fly. ACM Transactions

on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

[14] A. DeHon. Balancing Interconnect and Computation in a Reconfigurable Computing Array

(or, why you don’t really want 100Proc. International Symposium on Field Programmable Gate

Arrays (FPGA‘99), February 1999.

[15] A. DeHon. Rent’s Rule Based Switching Requirements, Proc. System-Level Interconnect Pre-

diction (SLIP’01), 2001.

[16] J.B. Dennis. Data Flow Supercomputers. IEEE Computer Magazine, November 1980.

[17] P. Duncan, S. Swamy and R. Jain. Low-Power DSP Circuit Design Using Retimed Maximally

Parallel Architectures. Proc. 1st Symposium on Integrated Systems, March 1993.

[18] R.A. Finkel. “Advanced Programming Language Design.” Addison-Wesley, 1996.

187

[19] R.M. Fuhrer, S.M.!Nowick et al. MINIMALIST: An Environment for the Synthesis, Verification

and Testability of Burst-Mode Asynchronous Machines. Columbia University CS Tech Report

CUCS-020-99, 1999.

[20] H. van Gageldonk, K. van Berkel, and A. Peeters. An Asynchronous Low-Power 80C51 Mi-

crocontroller. Proc. 4th Intl Symposium on Advanced Research in Asynchronous Circuits and

Systems, April 1998.

[21] S. Hauck. Asynchronous Design Methodologies: An Overview. Proceedings of the IEEE, 83(1),

1995.

[22] S. Hauck, S. Burns, G. Borriello and C. Ebeling. A FPGA for Implementing Asynchronous

Circuits. IEEE Design and Test of Computers, 11(3), 1994.

[23] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM, Vol. 21 No.

8, August 1978.

[24] S. Kim and P. Beerel. Pipeline Optimization for Asynchronous Circuits: Complexity Analysis

and an Efficient Optimal Algorithm. Proc. International Conference on Computer-Aided Design,

2000.

[25] R. Konishi, H. Ito, H. Nakada, A. Nagoya, K. Oguri, N. Imlig, T. Schiozawa, M. Inamori and K.

Nagami. PCA-1: A Fully Asynchronous, Self-Reconfigurable LSI, Proc. Seventh Intl Symposium

on Asynchronous Circuits and Systems, March 2001.

[26] S. Kirkpatrik, C.D. Gellatt, Jr. and M.P. Vecchi. Optimization by Simulated Annealing. Science,

220(4598), 1983.

[27] C.E. Leiserson and J.B. Saxe. Retiming Synchronous Circuitry. Algorithmica, 6:5-35, 1991.

[28] M. Ligthart, K. Fant, et al. Asynchronous Design Using Commercial HDL Synthesis Tools. Proc.

Sixth International Symposium on Advanced Research in Asynchronous Circuits and Systems,

April 2000.

188

[29] A.M. Lines. Pipelined Asynchronous Circuits, M.S. Thesis, Dept of Computer Science, Califor-

nia Institute of Technology, 1995.

[30] K.N. Lalgudi and M.C. Papaefthymiou. Fixed-Phase Retiming for Low Power Design. Proc.

International Symposium on Low Power Electronics and Design, 1996.

[31] J.R. McGraw. The VAL Language: Description and Analysis. ACM TOPLAS, January 1982.

[32] J.R. McGraw, S. Skedzielewski et al. SISAL: Streams and Iteration in a Single-Assignment

Language. Lawrence Livermore National Laboratories, Report M-146, 1983.

[33] K. Maheswaran. Implementing Self-Timed Circuits in Field Programmable Gate Arrays. Mas-

ter’s thesis, U.C.Davis, 1995. September 1996.

[34] R. Manohar, T.K. Lee and A.J. Martin. Projection: A Synthesis Technique for Concurrent

Systems. Proc. Fifth International Symposium on Advanced Research in Asynchronous Circuits

and Systems, April 1999.

[35] R. Manohar and A.J. Martin. Slack Elasticity in Concurrent Computing. Proc. 4th International

Conference on the Mathematics of Program Construction, in J. Jeuring ed., Lecture Notes in

Computer Science 1422 Springer Verlag, 1998.

[36] A.J. Martin. The Limitations to Delay-Insensitivity in Asynchronous Circuits. Sixth MIT Con-

ference on Advanced Research in VLSI, ed. W.J. Dally, MIT Press, 1990.

[37] A.J. Martin. Programming in VLSI: From Communicating Processes to Delay-Insensitive Cir-

cuits. In C.A.R. Hoare, ed: Developments in Concurrency and Communication, UT Year of

Programming Series. Addison-Wesley, 1990.

[38] A.J. Martin. Synthesis of Asynchronous VLSI Circuits. Caltech Computer Science Technical

Report CS-TR-93-28, 1993.

[39] A.J. Martin, A. Lines, R. Manohar, M. Nyström, P. Penzes, R. Southworth, U. Cummings and

T.K. Lee. The Design of an Asynchronous MIPS R3000 Microprocessor. Proc. 17th Conference

on Advanced Research in VLSI, 1997.

189

[40] A.J. Martin, M. Nyström and P. Penzes. Et2: A Metric For Time and Energy Efficiency of

Computation. In R. Melhem and R. Graybill ed., “Power-Aware Computing,” Kluwer Academic

Publishers, 2001.

[41] A.J. Martin, M. Nyström, K. Papadantonakis, P.I. Penzes, P. Prakash, C.G. Wong, J. Chang,

K.S. Ko, B. Lee, E. Ou, J. Pugh, E. Talvala, J.T. Tong, and A Tura. The Lutonium: A Sub-

Nanojoule Asynchronous 8051 Microcontroller, Proc. 9th IEEE Intl Symposium on Advanced

Research in Asynchronous Circuits and Systems, May 2003.

[42] A.J. Martin, M. Nyström and C.G. Wong. Three Generations of Asynchronous Microprocessors.

IEEE Design & Test of Computers, Special Issue on Clockless VLSI, November-December 2003.

[43] J. Monteiro, S. Devadas and A. Ghosh. Retiming Sequential Circuits for Low Power. Proc.

International Conference on Computer-Aided Design (ICCAD), 1993.

[44] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 77(4),

1989.

[45] R.E. Payne. Asynchronous FPGA Architectures. IEE Proceedings on Computers and Digital

Techniques, Special Issue on Asynchronous Processors, September 1996.

[46] K. Pingali, M. Beck, et al. Dependence Flow Graphs: An Algebraic Approach to Program

Dependencies. Proc. 18th annual ACM Symposium on Principles of Programming Languages,

1991.

[47] K. Rath and S.D. Johnson. Toward a Basis for Protocol Specification and Process Decomposi-

tion. Proc. 1993 IFIP Conference on Hardware Description Languages and their Applications,

April 1993.

[48] A. Rettberg and B. Kleinjohann. A Fast Asynchronous Reconfigurable Architecture for Multi-

media Applications, Proc. 14th Symposium on Integrated Circuits and Systems Design, Septem-

ber 2001.

190

[49] A. Rogers and K. Pingali. Process Decomposition Through Locality of Reference. Proc. ACM

SIGPLAN Conference on Programming Language Design and Implementation, 1989.

[50] R. Rubin and A. DeHon. Design of FPGA Interconnect for Multilevel Metalization, Proc.

International Symposium on Field-Programmable Gate Arrays (FPGA2003), February 2003.

[51] J. Teifel and R. Manohar. Programmable Asynchronous Pipeline Arrays. Proc. 13th Intl Con-

ference on Field Programmable Logic and Applications, September 2003.

[52] T. Williams. Latency and Throughput Tradeoffs in Self-Timed Asynchronous Pipelines and

Rings, Stanford Technical Report CSL-TR-90-431, May 1990.

[53] C.G. Wong. Performance Estimations for Asynchronous Pipeline Stages. In preparation.

[54] C.G. Wong. Slack-Matching Systems. In preparation.

[55] C.G. Wong and A.J. Martin. High-Level Synthesis of Asynchronous Systems by Data-Driven

Decomposition. Proc. 40th Design Automation Conference (DAC), June 2003.

[56] C.G. Wong, A.J. Martin, and P. Thomas. An Architecture for Asynchronous FPGAs. Proc.

IEEE International Conference on Field-Programmable Technology (FPT‘03), 2003.

