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Caminante son tus huellas
el camino, y nada mas;
caminante, no hay camino,
se hace camino al andar.
Al andar se hace camino,

y al volver la vista atras
se ve la senda que nunca
se ha de volver a pisar.
Caminante, no hay camino,
sino estelas en la mar.

Antonio Machado
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ABSTRACT

The objective of this thesis is to study the electronic struc-
ture, geometries and chemical binding characteristics of the surfaces
of silicon and of the initial form of oxygenated Si. We examined the
(111), (100), and (110) surfaces, relaxation on the (111) and (100)
surfaces and reconstruction on the (100) surfaces. In addition we
examined steps on the (111) surfaces. In the oxygenated surface we
considered the geometry, excited states and ion states of both O and

0., bonded to the perfect (111) surface.

2
These studies indicated that surfaces and chemisorption lead
to localized e1ect;onic states for which explicit inclusion of elec-
tronic correlation (many body) effects is essential. These effects
are included through use of generalized valence bond (GVB) and con-
figuration interaction (CI) techniques. These techniques require use
of a finite collection of Si atoms to represent the surface. We find
that very small clusters lead to reliable results if the model system is
properly tied off with SiH bonds (to represent internal Si-Si bonds).
- In Chapter 1 we report an effective potential for replacing the
‘ten core electrons in calculations involving the Si atom. The poten-lu
tial is - obtained directly from ab initio calculations on the states
of the Si atom and no empirical data or adjustable parameters are used.
The ab initio effective potential is tested by carrying out Hartree-Fock
generalized valence bond and configuration interaction calculations on
05 3 6 331'02 and
calculated excitation energies, ionization potentials, and electron

various molecules. We considered Si, Si., SiH SiZH and H
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affinities both using the effective potential and without it (ab
initio). In essentially all cases the agreement is to better than
0.1 eV, providing strong evidence that the effective potential ade-
quately represents the Si core. This potential is utilized in all
of the calculations reported in subsequent chapters.

In Chapter 2 we consider clean (111), (100) and (110) silicon
surfaces. For the (111) surface the relaxation of silfcon surface
atoms is studied by means of an Si(SiH3)3 cluster. We find that the
surface state is accurately described as a dangling bond orbital with
93% p character. We determined the optimum relaxation of the surface
Tayer to be 0.0SX tbward the second layer. For the positive ion we
find that the surface atom relaxes toward the second layer by an ad-
ditional O.BOR. Using an S1’3H6 cluster we find that the interaction
between adjacent dangling bond orbitals indicates that they are very
weakly coupled (with a splitting of ~0.01. eV between the singlet and trip-
Tet spin ccup1ings.)

For the (100) surface we used an S1'(S1'H3)2 cluster. ’Ne find a
relaxation distance of 0.10R toward the vacuum. We also considered
the 2x1 reconstruction of such surfaces using the results for S1'2H4
and Si(SiH3)2 complexes. It is found that adjacent surface atoms
form a bond (1.76 eV bond strength), leading to pairing up of adjacent
silicons (with an optimum Si-Si bond length of 2.388).

In Chapter 3 we consider the electronic structure of divalent
steps on (111) silicon surfaces. We fina three localized electronic

-states separated by less than 0.3 eV. These states have guite
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different electronic structure and are expected to be reactive toward
a large range of chemical species.

In Chapter 4 we study the chemisorption of oxygen upon Si (111)
surfaces. For single oxygen atoms we find an optimum Si-0 bond length
of ].63&. We also find ionization potentials in the range 11-16 V.
Then we consider a model in which an oxygen molecule chemisorbed onto
the silicon surface has an electronic structure corresponding to a
peroxy radical. We find fonization potentials in the range 11-18 eV
in agreement with experiment. We find an optimum 0-0 bond length of
1.37R and a Si-0-0 bond angle of 126° for the chemisorbed peroxy

radical.
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PREFACE

The subject of this thesis is the theoretical study of silicon
surfaces and chemisorption on such surfaces. The electronic structure
of surfaces is a problem that has been in the minds of scientists for
many years since the pioneering work of Tamm and Shockley in the thir-
ties. However, it has been only in the last few years that theoretical
studies have become prominent in the 1literature. |

The primary questions that theory should answer with respect to
the study of surfaces concern the nature of the electronic and geomet -
ric structure at the surface; the characteristics of chemisorption,
such as bond energfes, geometrical configurations, excited states.
These are questions that are difficult to answer experimentally from
a microscopic point of view. They are quite different from the prob-
Tems generally studied by theoretical methods for the bulk of crystal-
1ine solids. In that case the geometrical structure of the solid is
usually known from x-ray diffraction studies, and the concentration
and characteristics of the electronic states is very differgnt.

In principle, one can obtain all the information required for a
complete characterization of the surface from the solutions of the

Schrodinger equation

Hp = Eyp .

The exact solution of this problem is not known at the present time,
and different approximations have to be introduced. For bulk solids

the standard approach used in the past has been the introduction of
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approximations consistent with the periodicity of crystalline solids,
and the band theory of such solids. For surfaces these techniques

are not immediately applicable due to the lack of three-dimensional
periodicity, the presence of localized states and the lack of expli-
cit electronic correlation for the standard band structure techniques.

We have undertaken the present study with the explicit pur-
pose of including these effects. To do this we have applied quantum
chemical techniques developed for studying molecular systems where
the states are highly localized and thus reguire inclusion of elec-
tronic correlation for a proper description of the system. Consequently
in our studies of surfaces, we have used generalized valence bond
(6vB) and configuration interaction (CI) wavefunctions.

At present it is not possible to apply such highly correlated
wavefunctions to semi-infinite systems. We have opted, instead, to
apply them to finite clusters of atoms designed to include the most
important interactions for the particular property being studied. In
order to ease these calculations, we have developed an effective
potential to replace the ten core eiectrons of the silicon atom.

This potential was obtained from ab initio calculations on the sili-
con atom without the introduction of any extermal parameters. The
~effective potential accurately reproduces the energies and shapes of
orbitals in molecular calculations.

| To apply these techniques we chose an insulator system of
tgchnicaT importance where a considerable amount of experimental in-

formation is available to compare with the theoretical calculations.
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In addition, chemical arguments suggest that nonpolar semiconductors,
like silicon, have electronic states that are rather localized at the
surface, much more, for example, than metals. This has two important
consequences: first, it makes for a conceptually ideal situation in
the application qf the GVB and CI wavefunctions, since these were
especially developed for localized systems. Second, microscopic
properties such as geometries and excitation energies are expected to
converge rapidly as a function of the number of atoms used in the cal-
cu]atfon; One can then obtain re]iébie résuifs with a relatively
small number of atoms.

The advantages of the present method are: (i) since total
energies are calculated, it is possible to minimize such energies to
find the optimum geometry of the system; (ii) due to the inclusion of
electronic correlation, reliable results are obtained for ground state
and excitation energies and geometries; (iii) low translational sym-
metry configurations like steps and chemisorbed molecules can be
studied without the introduction of ad hoc assumptions as to the geom-
etry of the system; (iv) qualitative interpretation of the results in
terms of localized orbitals makes the analysis of such results easily
tractable. The disadvantages of the present technique are: (i) because
finite clusters must be used, it is not possible to calculate quantities
that depend on the presence of large numbers of atoms, like the inter-
action of surface states with bulk states; (ii) long range effects have
to be introduced by additional assumptions, like the dielectric correc-

tion for ionization potentials. Our results, however, look very
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encouraging because many of the properties arising from localized
states do not depend strongly on the size of the system and they agree
with experiment.

We have considered the {(111), (100) and (110) clean surfaces of
silicon. For the (111) surface we studied the relaxation of surface
atoms and the interaction of adjacent dangling bonds on the surface.

We found an inward relaxation of 0.088 for the surface atoms. Adjacent
dangling bonds were found to be only weakly coupled.. For the (100)
surface we found a relaxation of 0.1OR toward the vacuum. We also con-
sidered the 2x1 reconstruction of this surface and found that a strong
(1.76 eV) bond 55 formed between adjacent surface silicon atoms, lead-
ing to pairing up of adjacent rows with an dptimum Si-Si bond distance
of 2.38R.

We have also studied the electronic structure of steps on silicon
(111) surfaces. Experimentally only steps characterized by divalent
atoms (atoms with only two nearest neighbors) are found. For this type
of state we found three localized states separated by less than 0.3 eV.
The e1ec£ronic structure at these steps is characterized by the divalent
atoms and thus they are quite different from the dangling bonds found
on the clean (111) surface. [They are similar to the states found on
(100) surfaces, which also have divalent surface atoms.] These states
are expected to be reactive toward a large range of chemical species.

As an example of chemisorption we have studied the oxidized per-
fect (111) surface, with both 0 atoms and O2 molecules. For the single

oxygen atom bound to the surface we have optimized the silicon-oxygen



-X7-

bond length, finding an Si-0 distance of 1.63R. This is consistent
with experimental values on systems having similar bonding between
oxygen and silicon atoms. - We have also calculated ionization poten-
tials and excitation energies for this system. We find that the
ionization potentials are in the range 11-16 eV. For 02 molecules

we find that on the first stage of chemisorption, the molecule has an
electronic structure corresponding to a peroxy radical, that is, only
one oxygen atom is bound to a surface silicon. This agrees with re-
cent experimental results in which the two oxygens are found to be
inequivalent. For this system we find ionization potentials in the
range 11-18 eV. The peak at 18 eV arises from an ionization out of
the 0-0 bond and is not present in the corresponding spectrum of
single oxygen atoms cﬁemisorbed onto the surface. For the peroxy radi-
cal we find an optimum 0-0 bond length of 1.372 and a S1-0-0 angle of
126°.

Summarizing, we have applied correlated wavefunctions to the
study of silicon surfaces. We find that the results are very encourag-
ing and agree well with experiment. The methods used in the present
work are expected to be applicable to other semiconductors if care is
taken, through the choice of clusters, to include all of the important
interactions for the probiem in question.

The following publications are based on parts of the work des-
cribed in the present thesis:

W. A. Goddard III, A. Redondo and T. C. McGill, "The Peroxy
Radjca] Model of O2 Chemisorption onto Silicon Surfaces," Solid State

Commn. 28, 981 (1976).
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A. Redondo, W. A. Goddard III and T. C. McGill, "Ab initio Ef-
fective Potentials for Silicon," Phys. Rev. B 14, Nov. 15, 1976 (in
press).

A. Redondo, W. A. Goddard ITI, T. C. McGill and G. T. Surratt,
"Relaxation of (111) Silicon Surface Atoms from Studies on Si4H9

Clusters," Solid State Comm. 20, 733 (1976).



Chapter

Appendix A
Appendix B

Appendix C

-xiii-
TABLE OF CONTENTS

Title

Ab initio Effective Potentials for Silicon
The Clean Surfaces of Silicon

Electronic Structure of Steps on (111)
Silicon Surfaces

Oxygen Chemisorption onto Si (111) Surfaces

The Generalized Valence Bond (GVB) Wavefunctions
Dielectric Corrections

Effect of Correlation, d-Functions and Lattice
Constraints on the S1'3H6 Cluster Model for
(100) Si Surfaces

Page



-1-

Chapter 1
AB INITIO EFFECTIVE POTENTIALS FOR SILICON

I. INTRODUCTION

The idea of using a pseudopotential to replace the core elec-
trons in quantum mechanical calculations of the electronic wavefunc-
tions of atoms, molecules, and solids is now well established. The
first attempts consisted of the work of Hellmann and Gombés1 in the
mid-thirties. They realized that these pseudopotentials should incor-
porate the effects of the Pauli principle in order to avoid the
collapse of the valence electrons into the core region. This was put
on a sound basis by Phillips and K]eimﬁan2 in i959. This work,
together with that of Heine and co]]aborators,3 initiated a vast series
of papers on the applications of pseudopotentials to the electronic
structure of soh’ds.4 These successes also reawakened the interest in
applying this approach to molecules and atoms.5

Although the basic idea in the pseudopotential method is to con-
struct an (simple) operator that reproduces the effect of the core
electrons of a given atom on the valence electron, there are a number
of approaches to determine the specific form of the pseudopotential.
The most common procedure (with many variations) is to select a simple
functional form for the potential and then to adjust the several param-
eters in thié potential to fit the experimental energy levels of the
atom or the band structure of the solid while requiring the pseudo-
potential to be wéak (Teading to orbitals with minimal numbcrs of

nodes). The alternate approach is to use.only theoretical information
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in determining the potential, requiring the core potential to repro-

duce the results of ab initio calculations. Our approach is of this

6,7)

latter category (the method of Melius and Goddard ; we choose the

core potential so as to reproduce the shapes and energies of ab

initio valence orbitals. The resulting core potential is referred to
as the ab initio effective potential, or more simply as the EP. Such
effective potentials have been previously developed for Li, Na, and K
atoms6 and for Fe and Ni atom38 and applied to a number of molecules
containing these atoms. Here we report the effective potential for
the core electrons of Si, which we have applied to all the calcula-
tions to be discussed in the succeeding chapters. We will assess the
accuracy of the effective potential by comparing the results of ab
initio and effective potential calculations on the ground and excited

states of Si SiH3, and SiH.,0

2° 32

The interactions of the valence electrons are handled just as in
ab initio calculations. Appropriate basis functions are placed on the
various centers and the molecular integrals are evaluated. These inte-
grals are then used for self-consistent Hartree-Fock (HF) or generalized
valence bond (GVB) calculations and ultimately in configuration inter-
action (CI) calculations to include various electron-correlation or
many-body effects. A special aspect of our approach is that we caléu-
late total energies directly so that we can determine the potential
surfaces énd geometries for various excited states.

Since the shapes of the valence orbitals are described correctly,

we expect the overlap between orbitals on various centers to behave

properly and hence for bond energies and geometries to be well described.
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Excitation energies, jonization potentials, and electron af-
finities are obtained by solving directly for the total energies of
each state and taking the difference. Consequently, one can distin-
guish between the different multiplet eigenstates of the molecule
(usually not possible in standard solid state pseudopotential
methodsg). Another advantage of the present method is that since we
include electron correlation effects explicitly, we can describe

processes that involve bond formation or bond breaking.

11. COMPARISON OF THE RESULTS OF EFFECTIVE POTENTIAL AND AB INITIO
CALCULATIONS

Before embarking on a description of the calculational details
for the Si effective potential, we will summarize some of the resuits
of the comparisons between the EP and gQ_jgj;ngO calculations on
molecules. This will put into perspective the procedure and what we
want to obtain from it. We start with self-consistent ab initio
Hartree-Fock calculations of the electronic wavefunctions of Si atoms
(both the ground and an excited state). From this ab initio calcula-
tion (using the method described in the next section) we obtain an ef-
fective potential without the introduction of any experimentally
determined parameters. It is this potential that we have used in the
calculations below.

As summarized in Table I, we carried out both 28-electron ab
initio calculations and 8-electron EP calculations for the electronic
11

states of the Siz molecule (at the experimental equilibrium geometry

for the ground state). The low-Tying states considered here have
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either two or four electrons in the w orbitals and are denoted as WZ
and n4, respectively. The second and third columns show the excita-

tion energies obtained from self-consistent GVB]2

calculations per-
formed on the ground state (325) and the lowest lying excited state
(]Z;). The fourth and fifth columns compare the excitation energies
obtained from CI calculations on the low lying excited states of 512.
In these CI calculations we included all appropriate excitations within
the space spanned by the GVB orbitals for the 32;(ﬂ2) or ]Z;(ﬂ4) states,
leading to ~200 Spin eigenfunctions of the proper spatial symmetry for
each CI calculation. In all cases the ab initio and effective poten-
tial calculations lead to excitation energies agreeing within 0.1 eV
for the CI wavefunctions. It is important to note that even for those
states that are close in energy, the ordering is not changed in the
effective potential calculations. Since there are numerous states of
various multiplicities and orbital coupling all within a small range

of energy, we consider Siz to be a stringent test of the adequacy of
our EP.

Next we consider the S1’H3 molecule (using the experiménta1 geom-
etry of si]ane13 but with one hydrogen atom omitted). Here we per-
formed Hartree-Fock self consistent field calculations on both the
ground state of the neutral (ZA]) and the ground state of the positive
jon (]A]), leading to the ionization potentials of Table II. The EP
calculation Teads to an jonization potential within 0.17 eV of the ab
initio value. In order to provide an idea of how similar the wave-

14

functions are, we compare the Mulliken populations ' in Table II.

Also Tisted in Table II are the ionization potentials (IP) from



Table )I. Energics for Sill, and SiF.® All Energies in eV,

State? Tonization Potential . Mulliken Population per Atom
ab initio cffective potential | 2D initio cifective polential
_ si m si H

LSiH, %A, | 0.0P 0.0° 3.50  1.17 3.74  1.09

sin} ‘A, | s.637 8.470 2,92 1,03 3.04  0.99

{oopmans ' ' A

Theorem 9.396 9.124

- _4 .

2 fhe geomelry is the same as in silane but without one hydrogen atom; RSi—H =

2.796 a,, J HSiH = 109°28'. The basis sets used are the Si (6s4p) and the Si

(2s2p) of Table1V, and a (2s) contraction of the {hree gaussian hydrogen bases

of S. Huzinaga, J. Chem, Phys. 42, 1293 (1965).

b qotal energy calculated is -290.56390 h.

€ Total enerpgy calculated is -5, 38986 h.,

dThe ten core electrons have been subtracted from the

ab initio Si population.
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application of Koopmans theorem. This leads to IP's too high by
0.7 eV for both ab initio and EP.

As a final test, we considered the molecule H33102,

H
S

H \“‘2 \

H 0

corresponding to the above S1'H3 unit bound to an oxygen molecule (the
new bond lengths are Si0: 1.643,]5 and 00+ 1.3668,]5 while the

] _
5). In these calculations only the Si core

$i00 bond angle is 125°53'
is replaced by an EP. Self-consistent GVB calculations (ab initio and
EP) were carried out on the ground state (ZA"), and the CI calculations
were carried out within the orbital spaces spanned by these GVB
orbitals. The range of the excitation energies, as shown in Table III,
is from 0 to 19.6 eV, and in all cases the ab initio and effective
potential calculations lead to the same ordering of states as in the
ab initio calculations.

These results indicate that the excitation energies and joniza-
tion potentials obtained with the effective potentials are in excel-
Tent agreement with those of the ab initio calculations. Since the

systems compared here are reasonably distinct, we consider these re-

sults to demonstrate the usefulness of our effective potentials.

C. THE AB INITIO EFFECTIVE POTENTIAL

The general form we use for the EP 16 is
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2
Table J1I. Encrgies for Various Stales SiH,0, and SHISO:. All Xnergies in eV,

State Excitation Bnergy ;
2b initio effective potential Number of '
CIb CI Conﬁgmrationsc
SiH,0, _ o
25" 0.09 0.0° 98
o\ 0.692 0. 662 283
A’ . 6. 600 ' 6. 617 283
ZAY : CM.924 7.850 98
A’ 8,142 , 8.116 283
A - 15,419 15,453 98
T AN 16.174 16,172 283
SiH,0F
-\ 11,117 11,173 496
'A” 12.210 12,263 316
15! 12.582 12,613 340
7\ 13.985 14,031 : 340
A" 15.447 15.459 316
A 15.468 15,493 530
A" 15.495 15.520 496
AT 15,771 ' 15.1790 530
A" 17.366 17.415 496
17 18.988 ) 19.048 316
177 19.556 19.620 340
Y © 19,619 19.638 530

AThe geon’ietry is as follows: The SiH, geometry is the same as in Table II; the O,
bonded as a peroxy-radical to Si atom, eclipsed with one of the hydrogen atoms;
Rg; o = 3.0982,; Ry _o = 2.581 a,; J O-O-5i = 125°53". )

b'I'he C1 was carried out using the SCF orbitals from GVB(2)-SCF calculations of the Y
ground state, All double excitations from ground state configuration into the 7 orbitals

“of the O, part were included. These calculations were meant as a test of the effective
potential as compared with the ab initio results and need not represent the most appro-
priate way of describing the excitations within this molecule. . '

Crhis is the nunmber of spin eigenfunctions of proper spatial synmetry.

dTotal energy calculated is -440.29763 h.

€rotal cnergy calculated is -155.15456 h.
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P = T unleal (1)
=0 ~

centered on each atom whose core is being replaced. Here Vl(r) is a
function of the radius only and
2

[e><2| = 7 [em><am| " (2)
m=-%

is a projection operator onto states of angular momentum £ with res-
pect to the center of interest. As described below, the Vz(r) are
obtained from ab initio calculations on various states of the atom; no
readjustments are made to fit the molecular systems. Rather, we have
in mind that the potential (1) describes the interactions of the atomic
core of interest with orbitals on all centefs of the system. With
this effective potential we then completely eliminate the core orbitals
from the system. Consequently, no basis functions for describing the
core orbitals are required, considerably simplifying ab initio calcu-
lations. We do not require that other orbitals be orthogonal to the
core being replaced and hence VQ contains components representing the
~effects of the Pauli principle. As a result, for Si the Vg for g =0
and & = 1 are highly repulsive in the core region, as can be seen from
Fig. 1.

The Vl(r) in (1) are fitted to an analytic expansion of the form

Mk 2
Vl(r) = E Cr exp(-ckr ) , (3)

for ease in evaluating the multicenter integrals required in molecular

calculations. Use of two to five such terms allows an excellent fit to
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80 SI EFFECTIVE POTENTIAL
D 4.0
=, B Vs
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‘_._.
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Figure 1. Si Effective Potential (EP) Components Vz(r). Curves
‘plotted include the nuclear attraction term.
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the ab initio atomic wavefunctions.
In calculations of the wavefunctions of the molecules (or solids)

we must evaluate matrix elements of the form

Xl Yy (rgd1%,¢” ,

where the XA and X,c are (Gaussian) basis functions centered on the
various nuclei (A,B,C) of the molecule. For terms of the form (3)

Melius, Kahn, and Goddard®*’

have developed formulae, algorithms, and
computer programs allowing rapid evaluation of the various one-, two-,
and three-centered integrals.

The EP is obtained as follows. We consider the Hartree-Fock

equation for the valence orbital of angular momentum £, ¢§E R
GHF ~HF HF _ HF
(h + Veore ¥ Vval) %ng = €ng %ng ’ (4)
where vﬂgre is the operator (involving Coulomb and exchange operators)

describing the interaction of ¢ﬂ£ with the core.

The first step consists in replacing the Hartree-Fock orbital

6 CHF
Pna

goes smoothly to zero as r + 0. The reasons for doing this are to

¢g§ by the “coreless Hartree-Fock (CHF)" orbital whose amplitude
avoid singularities in the resulting local potential Vz(r) and to
minimize the number of basis functions required to describe the valence
orbitals. The CHF orbital is obtained by simply mixing Hartree-Fock

core orbitals of the same 2 with ¢2§

-1
CHF _ HF " HF
%ne T %ng T CZ] Ce o (5)
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CHF(O) 6

ng
to the procedure used in OPW formalism where the CHF orbital is re-

so that ¢ = 0 and the orbital is smooth. [This is analogous

placed by a plane wave.] Once the orbital ¢g3F is determined, one ob-

tains a corresponding Hartree-Fock equation. In it the core and

oHF oHF . CHF
valence operatorsrvCore and Vva] are replaced by new operators Vcore

GCHE CHF

and Vva] which reflect the fact that ¢n2 may now overlap the core or-

bitals. That is, Eq. (4) becomes

oCHF SCHFy CHF _ CHF

(h + Vcore * vva]) %o T Ene Png : (4")
Note that the orbital energy is still the same while the operator Vggie

now contains a repulsive part (arising from the Pauli principle) which
serves to prevent the collapse cf the valence orbitals inte the inner
shells.

The CHF orbital in (5) is not normalized. After renormalizing,

the amplitude of ¢ggF

at large r differs from that of ¢E§ by just the
‘ normalization factor. This means that overlaps and other interaction
quantities between orbitals on different centers will be modified by
this same (small) factor. We want the transformation from HF orbitals
to coreless orbitals to leave intermolecular interactions invariant,

and hence we have modified the CHF orbital as follows, leading to the

coreless valence orbital (CV0). The basis set for the HF orbital is

partitioned into the core set (those basis functions important for the

1s and 2s core orbitals of Si) and the valence set,
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M! M

HF
& = X C'ox'. o+ z C )\ , (6)
ng = B ul =M UL

where primes denote the core set. The CVO is taken to have the Torm

M M

Vo |
¢ o = a X, * C X s (7)
ni UZ] MR u=MZ+T e

where the valence coefficients are exactly the same as in (6). The

(1) cvo

conditions on the a_ of (7) are: $ng 85 written in (7) must be

U
normalized and (ii) the CVQ goes smoothly to zero as r goes to zero. To

determine the {au}, we set

Cvo
. ¢n£
Tim (r) =0
r-20 r

and adjust the other M'-1 degrees of freedom so as to minimize the

kinetic energy of the orbital. The net result is

oCV0 CVO Cvo Cvo

(h + Vcore val) %ng = Eng ¢n2 ’ (4")

In Fig. 2 we compare the HF, CHF, and CVO orbitals for the Si
atom.
. »CVO0
The next step is to replace the operator Vcore

effective potential, Vip(r) (that is, a mere function of r), such that

in (4")with an

the eigenfunction and eigenvalue of (4") are also the eigenfunction

and eigenvalue of (8)

oCv0, CVO _ Cvo ) (8)

(h+ V (r) * Vval) ¢n2 [ ¢n2

‘The components of the potential Vl(r) are obtained by projecting (8)
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a) 3s type; b) 3p type.

S1 35S ORBITALS
0.l H
0.0 7N
\\L_¢cvo
3s
- 0.1
HF
¢3s
-0.21
,0'_3 l ] 1 A ! 1 ]
0.2 .
 SI'3P ORBITALS
O.!
0.0
-0.1
-0.2
-0.3
-0.4
-oslV L ! L 1 1 1
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 80
~ DISTANCE FROM NUCLEUS [BOHR]
Figure 2. HF, CHF and CVOQ orbitals for the Si atom.
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onto the basis

Cvo

<Xpl(h + Vz(r) * V - €n2)|¢n£'>, , (9)

val

and adjusting the parameters in (3) to minimize the deviation of (9)
from zero. [More precisely we require that the square of (9) -summed
over all basis functions is minimized.] In (9) one uses the normal
basis functions for an atom plus additional basis functions represent-
ing important regions of function space for which Vz(r) is signifi-
cant. In particular, it is important to add diffuse basis functions
to the basis in order to ensure that fitting (9) will lead to the cor-
rect long-range behavior of Vz(r). The basis used to solve (9) is
included in Table IV [we solve the HF equafions for the new basis so

that all basis functions are included in the ¢gxo

of (9)]. After
obtaining the effective potential, all basis functions required only
for the core can be eliminated (along with the functions added only
for fitting the EP).

For those angular momenta % represented in the core, Vz(r)
contains a large repulsive component representing the effect of the
Pauli principle (the orth@gonality of the ab initio valence orbital

with respect to the core orbital). For & not represented in the core,

Vi(r) is nearly independent of &. Thus for Si we set
Vk(r) = Vd(r) | for 2 >2

and rewrite (1) as

VEP(r) = v_(r)]s><s] + V_(r)[p><p] + V (r) T |2><t]
S p d 2:2
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Table IV. Basis Sets® uscd in the 2b initio and cffective potential calculations on the Silicon atom.

Set used to obtain Ab initio double zeta EP (4s4p) EP double zeta
the EP Fq. (8)b -U}_;;:ii;;;:xsls set® basis sct (2s2p) basis sct
¢ cun " aun o a;m o aun B ’ "un
s 26740.0 1 1.0 1 0.002583
8 4076.0 2 1.0 1 0.019237
5 953.3 3 1.0 1 0.093843
s 274.6 4 1.0 1 0.341235
8 90,68 5 1.0 1 0.641675
s 90.68 .- 2 0.121439
s 33,53 6 1.0 2 0.653143
s 13.46 " 1.0 2 0.277624
s 4,051 8 1.0 "3 1.0 1 1.0 1 0.043652
s 1.484 9 1.0 4 1.0 2 1.0 1 -0,274872
s 0.2704 10 1.0 5 1.0 3 1.0 1 0.653119
s 0.2704 - —-- - 2 -0. 200408
s 0.09932 11 1.0 6 1.0 4 1.0 2 0.424753
s 0.03751 12 1.0 - ——- ——-
s 0.01401 13 1.0 - --- -
163.7. 14 1.0 7 0.011498 - .-
Py 38.85 15 1.0 7 0.077726 --- -
P, 12.02 16 1.0 1 0.263595 - ---
Py .. 4.185 17 1.0 " 0.758262 5 1.0 3 | -0,004717
P 4.185 - 8 -1.173045 - -
Py 1.483 18 1.0 8 1.438335 6 1.0 3 -0.036542
Py 0.3350 19 1.0 ) 1.0 " 1.0 3 0.345438
Py 0.3350 - ——- 4 -0.030736
P 0.09699 20 1.0 10 1.0 8 1.0 4 0.144725
Px 0.02766 21 1.0
Py 0.007890 22 1.0
dy 2.973 23 1.0
4y 0.7966 24 1.0
4y 0.2863 25 1.0
4y 0.1154 26 1.0
L. 0.04998 27 1.0
dey 0.01789 28 1.0
4y 0.007211 29 1.0
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FOOTNOTES FOR TABLE IV

®The form of a given basis function, Xu’ of angular momentum 2 1is

= P,q,S -
X, Nu g U XY 2 exp( Cin®

2

Nu is the normalization coefficient; p = q=s = 0 for an s-type func-

tion (#=0), p =1, q=s =0 for a p,-type function (2=1), etc.

bThis basis set is essentially the (11s7p) set of S. Huzinaga ("Approx-
imate Atomic Functions. II.", Report from the Department of Chemistry,
The University of Alberta, unpublished) with diffuse and d functions
added.

CDunm’ng's double zeta contraction (T. H. Dunning, Jr., private communi-

cation) used in all ab initio calculations.

dThis set was used in the EP calculations on the Si atom and the Siz

molecule.

®This set is equivalent to an ab initio double zeta set. It was used

in the EP calculations on SIH3 and SIH302.
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or

EP

VR = v () U ls>es] + Vp_d|p><p| ; (10)

where

Vs-d(r) = VS(F) = Vd(r)
Vo_g(r) = Vplr) - Vy(r) ;

and where s, p, and d indicate 2 =0, 1, and 2.

D. THE EFFECTIVE POTENTIAL FOR SILICON

In Table IV.we 1ist the usual basis for g§_igj§jg_ca1cu1ations
on Si and the additional functions used in (9) for determining the poten-
tial.

To determine the d potential, Vd’ we considered the
(15)%(25)%(2p)°(35) ! (3p)%(30)'
quintet state of Si, solving (4) for the ¢34 orbital. The Vs-d and

Vp-d potentials were obtained from the 935 and ¢3p orbitals of the trip-

let ground state of Si
(15)%(25)%(20)°(35)%(3p)? .

In doing this we write

v

]
-l

S d
v

1
-

p d

and solve (9) for V__, and for Vp-d'
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The resulting potentials are listed in Table V and are plotted

in Fig. 1. With just three terms each, we were able to obtain devia-

tions (sums of the squares) of 1.886 x 10'?0, 3.05 x 1078

8

, and
8.469 x 107" in the least squares fit to (9) for the Vo V. 4> and
Vp—d potentials, respective]y (for the large basis set of Table IV).

Using the EP, the basis on the Si can be modified to eliminate
the functions required for describing the core orbitals. This reduces
the double zeta valence basis from 18 to eight functions as indicated
in Table IV.

We compare in Table VI the results of EP and ab initio calcula-
tions on various states of Si, Si~, and Si+. Here we find errors of
the order of 0.01 to 0.06 eV, quite satisfactory for our purposes.
Bear in mind that the EP was determined from fitting of the d orbital
of a quintet state and of the s and p orbitals to a triplet state. No
further adjustments were made and hence the good agreement here is
already evidence that the potential adequately represents the core
e]ectrons. At the HF and GVB level, the lack of complete electron
corre]ation leads to errors in the excitation energies. Thus the ex-

17

perimental triplet-singlet excitation energy is 0.781 eV and hence

0.275 eV below the GVB value. The experimental IP of Si is 8.149 eV 7
or 0.864 eV higher than the GVB value, and the experimental electron

18 or 0.769 eV lower than our value.

affinity is 1.385 eV
For éomparison in Fig. 3 we show the 3s and 3pX orbitals of the

ground state (szpz) of Si for the ab initio and EP calculations. In

Table VII we compére the orbital energies for the EP and the ab initio

calculations referred to in Table VI. In most cases the difference
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Table v, Parameters for the Si Atom Effective Potentials. See Eq. (3) for
the definitions of n, {, and C,andEq,(10) for the form of the fotal potential.

Quantities are in hartree atomic units, 2

n XS C
vy 0 0. 0991736 " -0.01189620

-1 0. 2900090 -0. 07889166

-1 3.2105169 -3.59100110
Vig 0 3, 5641009 30. 31756200
' -2 0.1570854 0.24891789

-2 1.8478285 4.08004340
Vpa 0 4.0620237 - 36.58557100

-2 0.2389864 0.45326622

-2 0. 9686443 0. 86954814
a

The effective potential for the core electrons also includes a long-range term of
+10/r. There is also a ~14/r term in the h of (4), corresponding to the nuclear
attraction. We have deleted the +10/r term from the table with the under standing

that the nuclear attraction term in h will be -4/r.
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Table VI. Energies for Various States of Si, Si+, and Si~ (Energies in eV).

Excitation Energy

Type of Ab Initio Effective Simplified

Electronic State Wavefunction® “SCT Pol eni‘ial }IZDgL eC cnttii\:i
Si” quartet (s%p°%) HF -0.616 -0. 623 ~0. 030

Si triplet (s°p) GVB(1) 0.0° 0.09 0.0°

Si” doublet (s7p")° GVB(1) 0.684 0. 696 1.532
Si singlet (s%p°) GVE(1) 1.056 11,078 1.107
Si quintet (sp°) HF 2.893 2.836 2.476
Sit doublet (s’p’) GVB(1/3) 7.285 7.276 7.192

®The basis sets used were the Si (6s4p) and the Si (4sdp) sets of

Table IV.

Both of them were complemented with one diffuse function

for each angular momentum type (cun = 0.03731 for s and gun = 0.2766

for p type).

for an explanation of the terms used in this column.

See Ref. 12 and the appendix to the present chapter

bFor each state we considered the wavefunction using real orbitals and

orbital symmetry restrictions.

of EZ.

“Total energy calculated is -288.84378 h.

Thus this state is not an eigenstate

dTota] energy calculated using the effective potential is -3.67668 h.

eTota] energy calculated using the simplified effective potential is

-3.81514 h.
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Table VII. Comparisonof Orbital Energies for Ab Initio (AI) and Effective Potential

(EP) Calculations for Various States of Si, Si*, and Si”. All Energies in hartree

atomic units.
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Orbital

State 3s 3bx 3py

Si” quartet (s’p’) Al -0.3020 -0.0615 -0.0615
EP -0.3028 -0.0620 | -0.0620

Si triplet (pY) Al -0.5544 -0.2958 | -0.8671
| (0. 9904)° (-0.1380)

EP -0.5551 -0.2956 -0.8725
(0. 9900) | (-0.1409)

Si” doublet (s%p%)® AI -0.3187 -0.0586 | -0.0272

B | ©.7671)¢

EP | -0.3199 -0.0593 -0. 0275
(0.7071)

Si singlet (s°p?) Al -0.5617 -0.2597 -0. 8747
(0.9904) | (-0.1382)

EP -0.5629 -0.2590 | -0.8804
(0. 9900) (-0.1412)

Si quintet (sp’)  AI -0.17247 -0.3487 | -0.3487
EP -0.17298 -0.3489 | -0.3489

Si* doublet (s’p') Al -0. 8661 -0.5817 -1.185

' (0. 9819) (-0.1341)4

EP -0. 8664 -0.5801 -1.189

(0. 9811) (-0. 1370)
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FOOTNOTES FOR TABLE VII

See footnote b of Table VI.

bNumbers in parentheses indicate CI coefficients of GVB correlated

pairs. The wavefunctions of these pairs have the form C]¢$ + Cz¢§

i

+ C3¢§, where the Ci (C1 coefficients) satisfy ) C% 1. See
1

Ref. 12 and the appendix to the present chapter.

®This orbital is correlated with a 3pZ orbital having also C{ = 0.7071.

dThis orbital and a 3pZ orbital like it correlate the 3s orbital in a

GVB(1/3) wavefunction.
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between the ab initio and EP orbital energies was about 0.001 hartree
= (0.037 eV. This difference is as high as 0.005 hartree only for
some of the GVB correlated pairs. In Tables VIII, IX, and X we show
the orbital energies for the Siz, SiHB, and S1’H3O2 SCF calculations,
respectively. Here we note that the differences between the ab initio
and EP values are larger than they were in the atomic case. This is
to be expected since the effective potentié] was constructed from the
atomic SCF calculations. In the molecular orbital energies most of
the differences between the ab initio and EP values are below 0.020
hartree = 0.3 eV except for some of the GVB correlated pairs in which
it is as high as 0.030 hartree. We note, however, that the correlation
energies for most of those same GVB pairs (given in Tables VIII-X)
agree to better than 0.005 hartree = 0.015 eV.

Ke have also performed calculations on disilane, H3Si—SiH3.
The double zeta (2s2p) basis set of Table IV was used for silicon and

13

a Si-H bond length '~ of 1.483 with tetrahedral H-Si-H angles were em-

ployed. A Si-Si bond potential energy curve was calculated by doing HF
and GVB calculations at four different points (2.22, 2.32, 2.43 and

2.53X, respectively) for the ]A ground state of the system. From the

g
HF calculations we find an equilibrium bond length of 2.352. The ex-

19 2.3312. We therefore predict a bond length

perimental value is
which is 0.0ZK too Tong. By using a Numerov numerical integration of
the HF potenfia1 curve we find that the first vibrational level for

the Si-Si stretch is at 0.055 eV, whereas the experimental value iszo

0.054 eV. From the GVB calculations on this molecule and those on
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Table X. Orbital Energies for the ’A” Ground State of SiH,0,.2

All Energies in hartree atomic units.

ab initio effective potential
A. Orhital Epergies
€, -20. 6740 -20. 6777
€, -20.6181 -20.6148
€, -1.3737 -1.3711
€, -1.0588 -1.0638
€, -0.17313 -0.72063
€y -0.5940 -0.5972
€, -0.5099 -0.5084
Gall —O. 6345 ‘ 0. 6367
) Ea” ‘ : -0.4910 -0.4911
en” -0.6172  -0.6207
B. For GVB Pairs®
a. Si-O bond
€180 | -0.7721 -0. 7691
C, | -0. 0852 - -0.0881
S.1 0.8424 0.8376
AE -0.0142 -0.0147
b. O-O bond |
€1NO ~0.17871 -0.7909
c, -0.1639 -0.1637
S.p | 0.7151 0.7154

AE ~ -0.0397 -0.0396
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FOOTNOTES FOR TABLE X

%The basis sets used are the Si {6s4p) and the Si (2s2p) of Table IV
and the H (2s) and 0 (4s2p) of T. H. Dunning, Jr., J. Chem. Phys.
53, 2823 (1970) and S. Huzinaga, ibid. 42, 1293 (1965).

bThis orbital is singly occupied.

©1 NO and 2 NO indicate the natural orbitals of the correlated pair,
2 2 . . . . 2 2 _ 1y,

C]¢] o C2¢2 NO> C2 is the CI coefficient (C] + C2 = 1);

the correlation energy of the pair; Sab is the overlap of the GVB

AE is

orbitals of the pair. See Ref. 12 and the appendix to the present

chapter.
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of Table II we find a bond energy of 3.08 eV or 71.1 kcal.
21

S1H3

Experimentally it is found™" that this bond strength is 8 +4 kcal.
For reference in future chapters we have listed in Table XI
all the different basis sets used in the calculations to be described
in them. Two basic types of basis sets have been used: first a
minimum basis se% (MBS) which consists of the same number of functions
per symmetry type as there are orbitals in the atom in question. This
basis set is the one that has the least amount of flexibility of all of
the - types described here. A second type of basis set is the double
zeta (DZ) in which the number of functions is twice that of orbitals
in the atom. We have also used in some of the calculations basis
sets which consist of modifications of the two mentioned above. One
such type of basis set is what we have termed as a mixed basis set
(MXS1 and MXS2) which for some parts of the molecule consists of a
MBS set while the "surface" part has DZ character.
The set MXS1 has only been used in calculations on the S1'3H6 cluster
of Chapter 2. The set MXS2 has been used in the silicon part of the
Si3H602'calcu1ations of Chapter 4. Two other types of sets have been
used; one is a double zeta set with additional d-functions (denoted
DZd) which has been used in various calculations in Chapters 2 and 3.
The last set consists of a double zeta part with diffuse s and p func-
tions (denoted DZR). This set was used in the S1'4H9 calculations of
Chapter 2.
We find that the EP obtained using the above ideas leads to

excellent agreement with ab initio calculations while eliminating
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Table XI. Si Atom Basis Sets® Used in Calculations Discussed in
Chapters 2 to 4

Minimum Basis Set Double Zeta
. Cn (MBS)P (02)©

H ‘ H aun
s 4.051 1 0.043662 1 0.043662
s 1.484 1 -0.274872 1 . -0.274872
s 0.2704 1 0.452711 1 0.653119
s 0.2704 - 2 -0.200408
s 0.09932 1 0.424753 2 0.424753
p, 418 | 2 -0.004717 3 -0.004717
P, 1.483 2 -0.036542 3 -0.036542
p,  0.3350 2 0.314702 3 0.345438
p,  0.3350 - 4 -0.030736
p,  0.09699 2 0.144725 4 0.144725

%The form of a given function is given in footnote a to Table IV,
together with a meaning of the symbols used in this table.

bTwo mixed basis sets, MXS1 and MXS2 are obtained from this MBS set by
adding the function with p = 4 of the DZ set (for MXS1) and functions
with u = 2 and u = 4 of the DZ set (for MXS2). In all calculations in
which hydrogen atoms are present the 3-gaussian basis of S. Huzinaga
[J. Chem. Phys. 42, 1293 (1965)] was used.

“This set is the same as the (2s2p) set of Table IV. For the DZR set

two diffuse functions are added to DZ, of s and Py type, with gun=0.03648
and t,= 0.02808 , respectively. For the DZd basis set, a set of
d-functions with _— 0.3247 was added to the DZ basis set. In all
calculations in which hydrogen atoms are present a DZ contraction of

the 3-gaussian basis of S. Huzinaga [J. Chem. Phys. 42, 1293 (1965)]

was used.
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core orbitals and core basis functions. However, although this EP
leads to great computational gains, it still requires four basis

functions of each type (s, P> Py pZ) on each Si. For use in our

studies of large clusters we havi also developed a much cruder, sim-
plified EP (SEP) .adjusted so as to require only two basis functions

per type per center. In this case we eliminated all core functions
from (7) leading to a smooth valence orbital with finfte amplitude at
the nucleus. The parameters for the SEP are listed in Table XII.

Since the o}bital is finite at the nucleus, the SEP is much less repul-
sive at small r than the EP. A plot of this potential is shown in Fig.
4. Table VI compares values of energies obtained with this SEP and

ab initio calculations for the Si atom.

We have also tested the SEP as compared to the EP in calcula-
tions in S1'4H9 complexes. Here the complex models a Si(111) surface
with one Si surface atom bound to three "second layer" Si atoms. These
in turn are bound to nine hydrogens, used to decouple what otherwise
would be "second layer dangling bonds". These second 1ayer electrons
are then localized in Si-H bonds and do not couple with the surface
dangling bond. In the calculations (described in more detail in Chap-
ter 2) the surface atom is allowed to move along the [111] direction,
keeping all other atoms fixed. When we use the EP to substitute the
core electrons of all four Si atoms the minimum energy is found at
0.152 bohr from the tetrahedral geometry, toward the bulk. When in
the three second layer silicons we uée the SEP, with the EP only on

tHe surface atom, the minimum occurs at 0.153 bohr. Thus the SEP gives

a good description of the environment of the core electrons when one
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uses it in atoms which do not determine the principal characteristics
of the electronic states of the cluster.
For band caiculations on solids using plane wave expansions, an
overréding consideratfon is the feduction of the number of plane wave
components. Thus,rfor such studies the SEP is likely to be more useful

than the EP.

E. CONCLUSIONS

These results are very encouraging. The effective potential pro-
duces wavefunctions of ab initio quality, as well as very good agreement
in the energy quantities of molecular and atomic systems. It must also
be noted that since the wavefunctions obtained with the effective poten-
tial are smooth at the core, we can reduce considerably the number of
primitive functions on the basis sets emp]oyea. This produces an appre-
ciable reduction of cost in the calculation of the integrals. A further
reduction in cost (for large complexes) is.obtained when one uses the
simplified effective potential for atoms that are not actively involved
in the calculation (e.g., "bulk" atoms)when calculating surface proper-
ties. Besides this, one gets the corresponding reduction in the SCF

costs due to the smaller number of electrons involved.



2.
3.

10.

-36--

REFERENCES FOR CHAPTER 1
(a) H. Hellmann, J. Chem. Phys. 3, 61 (1935); (b) P. Gombds, Z.
Phys. 94, 473 (1935).
J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
(a) M. H. Cohen and V. Heine, ibid. 122, 1821 (1961); (b) B. J.
Austin, V. Heine, and L. J. Sham, ibid. 127, 276 (1961).
For a review, see the following (and the references cited there-

in): (a) W. A. Harrison, Pseudopotentials in the Theory of Metals

(Benjamfn, New York, 1966); (b) M. L. Cohen and V. Heine, in Solid

State Physics, ed. by H. Ehrenreich, F. Seitz, and D. Turnbull

(Academic Press, New York, 1970), Vol. 24, p. 37.

For a review, see (a) J. D. Weeks, A. Hazi, and S. A. Rice, Adv.
Chem. Phys. 16, 283 {1969); (b) J. N. Bardsley, Case Studies in
Atomic Physics 4, 299 (1974).

C. F. Melius and W. A. Goddard III, Phys. Rev. A 10, 1528 (1974).
Earlier work on related approaches is summarized in (a) L. R. Kahn
and W. A. Goddard III, J. Chem. Phys. 56, 2685 (1972); (b) idem,
Chem. Phys. Lett. 2, 667 (1968); (c) L. R. Kahn, Ph.D. Thesis,
California Institute of Technology, 1971.

C. F. Melius, B. D. Olafson, and W. A. Goddard III, Chem. Phys.
Lett. 28, 457 (1974).

See, for example, M. L. Cohen, M. Schluter, J. R. Chelikowsky, and
S. G. Louie, Phys. Rev. B 12, 5375 (1975).

By ab initio we mean a calculation in which all the electrons of

" the system are taken into account and all energy quantities are

calculated exactly.



-37-

11. B. Rosen, Selected Constants--Spectroscopic Data Relative to

Diatomic Molecules (Pergamon Press, Oxford, 1970).

12. a) W. J. Hunt, P. J. Hay, and W. A. Goddard 1II, J. Chem. Phys.
57, 738 (1972); b) W. A. Goddard III, T. H. Dunning, Jr., W. d.
Hunt, and P. J. Hay, Accts. Chem. Res. 6, 368 (1973).

13. D. R. Boyd, J. Chem. Phys. 23, 922 (1955).

14. R. S. Mulliken, J. Chem. Phys. 23, 1833, 1841 (1955).

15. W. A. Goddard III, A. Redondo, and T. C. McGill, Solid State
Cormm. l§, 981 (1976); see also Chapter 4.

16. A similar form for the effective potential was used by V. Heine
and I. Abarenkov [Phil. Mag. 9, 451 (1964)]. They used

Vg‘(r) _ 'AZ(E) r < RM
-Z/r r> RM
where Aﬁ(E) is a constant that depends on the orbital energy E
of the eigenstates of the ion core of charge Z. RM is the core
radius.

17. C.'Moore, Atomic Energy Levels (NBS Circular 467, Vol. I, 1949).

18. H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 439
(1975).

19. B. Beagley, A. R. Conrad, J. M. Freeman, J. J. Monaghan, B. G.
Norton and G. C. Holywell, J. Mol. Structure 11, 371 (1972).

20. G. Bethke and M. K. Wilson, J. Chem. Phys. 26, 1107 (1957).

21. R. Walsh, private communication to W. A. Goddard III.

22.° W. J. Hunt, T. H. Dunning, Jr. and W. A. Goddard III, Chem. Phys.
Lett. 3, 606 (1969).



-38~

Chapter 2
THE CLEAN SURFACES OF SILICON

I.  INTRODUCTION

In this chapter we will consider the (111), (100), and (110)
surfaces of si]iéon. In particular, we will be concerned with the
electronic structures for clean surfaces (i.e., in the absence of im-
purities) and some of the consequences the electronic structure has
on the geometri¢a1 configurations of such surfaces.

The presence of a surface on a semiconductor can modify the
electronic structure in two ways:] (i) The interruption of the long
range periodicity will modify the properties and characteristics of
the bulk states; such effects should not be very sensitive to the
specific surface; (ii) there will generally also be localized elec-
tronic states associated with the unsaturated valences of the surface
atoms and hence quite sensitive to the specific atomic arrangement at
the surface. Case (i) can be studied using the techniques of buik band
structure calculations to treat the two-dimensional region para11e1 to
the surface and matching layers in the direction perpendicular to the
surface using appropriate boundary conditions.

It is the localized states, case (i1), we will be concerned
with herein. For such localized states it is essential to account
properly fok electronic correlation or many body effects, and hence
the usual band techniques are inadequate. Consequently we will apply
the generalized valence bondZ(GVB) and configuration 1nteraction3 (CI)

methods to the study of the wavefunctions characteristic of these
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Tocalized states.

Of particular interest in the study of the localized surface
states is the determination of the displacement of the surface atoms
from their respective locations in the bulk. We will distinguish
two such distortions: (i) relaxation, which we define as a uniform
motion of the surface atoms along the direction perpendicular to the
surface, either toward or away from the free surface; (ii) reconstruc-
tion, that is, nonuniform displacement of atoms, either laterally or
perpendicu]ér]y to the surface, or movement of the atoms to entirely
new positions. Here we will consider both relaxation and some types
of reconstruction.

The major difficulty in applying the GVB and CI methods to sur-
faces is that we do not yet know how to include such correlation ef-
fects for infinite systems. As a result we must use a finite cluster
of silicon atoms. In order to obtain rapid convergence of the surface
states as a function of cluster size, it is very important to ensure
that all Si atoms included in the cluster have the same coordination
as in the semi~infinite system. Thus visualizing the formation of a
cluster by cutting it away from the semi-infinite solid, we maintain
the proper coordination numbers by replacing any broken Si-Si bond
with a Si-H bond. This procedure has been applied to the clusters
discussed herein.

Unless otherwise stated, all calculations described in the
present chapter have the following chéracteristics on common: (i) The

Si.effective potential (EP) described in Chapter 1 was employed to
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replace the core electrons of each silicon atom in the cluster;

(ii) a Si-S1 bond length of 2.352 (from the Si crystal structure4)
and a Si-H bond length of 1.488 (from siTaneS STHA) were used. In
studies of relaxation and rearrangement effects involving motion of
a Si atom attached to a hydrogen, the H atom was moved so that all
bond angles were the same as for the semi-infinite system. That is,
the virtual position of the (stationary) Si represented by the H de-

termines the motion of the H atom so that the Si-H bonds move as if

they were the original Si-Si bonds.

I1. THE (111) SURFACE OF SILICON

A. Introduction

6 On

The cleavage faces of silicon crystals are (111) surfaces.
this plane each surface Si atom is bonded to three Si atoms on the
plane below. (this is sketched in Fig. 1) and one electron is left in
a nonbonding or dangling bond orbital, pointing away from the surface.
Retaining the full symmetry of the surface (1x1 unit cell), we find
(gjgg_igjgg) that the surface Si atoms relax 0.0BR toward the bulk
positions (this is 10% of the bulk interlayer spacing of 0.788).

Experimentally, freshly cleaved Si (111) surfaces exhibit a
2x1 unit ce116 in the low energy electron diffraction7 (LEED) pat-
terns, indicating some degree of reconstruction. Further treatment
(usually therma]) leads to additional rearrangement and a more stable
7x7 unit ce11.6 This suggests that considerable motion of the surface

atoms might be involved in the 7x7 structure. Although the real

cleaved surfaces suffer reconstruction, it is of considerable
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Fig. 1. Sketch of (111) Surface of Silicon. Surface atoms are indicated
by filled circles. Second layer atoms are indicated by crosses.
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theoretical value to investigate the electronic structures of ideal
(tetrahedral geometry) and relaxed surfaces.

For the clean (111) surface we were -interested in investigating
two basic problems: (i) the relaxation of the surface Si atoms; and
(i1) the interaction between dangling bond orbitals on different
neighborihg surface atoms. Two different types of clusters (described

below) were employed for these studies.

B. Surface Relaxation

General Description

In order to study the relaxation of the surface atoms, we used a
cluster consisting of one surface Si atom, its three Si neighbors on
the next layer plus three H atoms bonded to’each of these second layer
Si's, leading to a S1'4H9 complex as shown in Fig. 2. To investigate
the effect of relaxation we allowed the surface silicon to move along
the [111] direction. Similar studies were also carried out for the.
positive and negative ion systems in order to determine the ioniéation

potential (IP) and electron affinity (EA) for this complex.

Calculational Details

The calculations described in the present section were performed
using the double zeta (DZ) basis set of Table XI, Chapter 1 (p.31). (Double
zeta means that two basis functions are included for each orbital
present in the atom). Since a negative ion generally leads to mo}e dif-
fuse orbitals the DZR basis set (Table XI, Chapter 1) was used for the
cése in which a second electron had Eeen added to the danglina bond

orbital (negative ion). This set contains diffuse s and p basis
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functions on the surface Si to allow a greater flexibility in the
variational calculation of such an orbital.

The geometry chosen is that of a tetrahedral bulk configuration
except that the position of the surface atom was varied along the [111]
direction (threefpld axis). The range of the variation was from -0.8
to 0.6 bohr. (Positive displacement implies motion away from the sur-
face.)

An important consideration is the form of the wavefunctions used.
The neutral complex is a doublet state and we carried out fully self-
consistent open-shell Hartree-Fock (HF) calculations for this state.

The wavefunction Has the form
O-[((b](b]c'vs)((i‘quzas) v (¢]2¢]2a8)(¢]30‘)]
= Q{83 (1 -+ 5280 [015(25) a(25)1} (1)

where (. is the antisymmetrizer or determinant operator; 05 is a
spatial orbital, o and 8 are the up and down one-electron spin func-
tions. (Note, spatial and spin functions are always ordered with
sequence of increasing e]ectron number unless directed otherwise.) On
the right hand side @bu]k(1,-'-,24) denotes the wavefunction of the 24
nondangling-bond electrons. (Recall that the Si 1s, 2s, and 2p elec-
trons are included in the EP). ¢]3(25) and «(25) correspond to the
spatial and spin functions of the dangling bond electron. We thus have
avtota1 of 12 doubly-occupied bondingvva1ence orbitals plus the dangl-

ing bond orbital, ¢]3. In our calculations all 13 orbitals are solved
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self-consistently, allowing each orbital to delocalize and

distort to whatever extent it wishes.

The positive ion is a closed-shell singlet and the corresponding
closed-shell HF calculations were performed. In this case the wavefunc-
tion is

Cl,[®5u]k(]a”'324)] ’

where the prime indicates that the optimum orbitals ¢] to ¢]2 are not
the same as (although very similar to) those of (1).
For the negative ion state the HF description is to place the

new electron in ¢13 with spin B ,

CL [Qbu]k(]a"':zq) ¢]3(25) ¢13(26) O‘(25) 8(26)] s

solving consistently for the 13 orbitals.

Since two electrons are moving, uncorrelated, in one orbital,
this description of the negative ion should lead to too low an electron
affinity. To be consistent with (1) we allowed these two electrons to
be correlated. In the GVB wavefunction such correlation is introduced
by replacing a doubly-occupied orbital with a pair of overlapping or-

bitals

¢1(])¢1(2) — ¢ia(])¢ib(2) + ¢ib(])¢ia(2)

In the Si surface, % 4 and 9;, are lobe orbitals localized on the sur-
face atom but i o is more compact while i is more diffuse, thereby
allowing for radial correlation of the motion of the electrons (this is

referred to as in-out correlation). An alternate way of writing the
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GVB pair, as described in Appendix A is

61210035 (2) + b5 (Nog,(2) = €8, (105 (2) 4 €T, (1) (2)

(2)
where
¢1g = (¢1a + ¢ib)/D]
iy = (¢, - ¢ib)/D2
T P
G 146
S <bp,lep
(D] and D2 are appropriate normalization constants). The orthogonal

orbitals ¢ig and ¢iu are referred to as natural orbitals, ¢ig resembles
a localized Hartree-Fock orbital (see Fig. 3); ¢iu is denoted as the
correlating orbital; generally Cg = 1.0 and C, = 0.1.

Although the GVB wavefunction includes the dominant correlation
term, there are smaller terms that are important in properly describ-
ing negative ions. In general, the most significant correlating
orbitals are those that have one more nodal surface than the orbital
being correlated. Thus the two important corfe]ations in addition to
those in (2) involve correlating orbitals whose nodal plane bisects

¢i3 and passes perpendicular to the surface (see Fig. 3). We refer to
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Fige 3. Amplitudes for the natural orbitals of the negative ion GVB
(1/L) Si)Hg Calculation., a) First Natural Orbital, $13; b)
Second Hatural Orbital, (bw (in-out correlating orbital); c)
Third Hatural Orbital,(b15 (angular correlating orbital).
Solid lines indicate positive amplitude values, short dashes
indicate nesative amplitudes, long dashes indicate nodel sur-
faces. Contours are drawn every 0.05 atomic units. Atoms are
dencied by an asterisk. Distances are in atomic units.
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these as m orbitals (mz = x] with respect to the [111] axis) while the
orbitals of (2) are referred to as o orbitals (m2 = 0 with respect to
the [111] axis). The correlations effected by w orbitals are called
angular correlations. Including all these correlations together the

dangling bond pairs of the negative ion are described as

and the total wavefunction is

a [q)i)'u'lk“"“’24)@surf(25’26)] o (3)

All 16 orbitals and the coefficients C]3 to C16 are solved self-

8,9 ..
the coefficients C.{4 to C16

consistently. In the present case,
have values between 0.04 and 0.08, whereas C]3 has a value of 0.995.
The energy obtained with the wavefunction (3) is 0.35 eV lower than

that of the corresponding HF wavefunction.

~ Results
OQur results for the 51'4H9 complex are summarized in Table I.

For the neutral system we find that the surface atom moves towards the
bulk 0.08R (10% of the interplanar distance), leading to a new Si-Si
bond length of 2.333 (compared to 2.35% in the bulk). The resulting
dangling bond orbital, ¢]3, js shown in Fig. 4. It is localized in
the region of the surface atom (93.1%) and is mainly p-like (92.9%).

v For the positive ion the sdrface atom moves toward the bulk by
an additional 0.302 (a total relaxation of 48% of the interplanar

distance). The new S$i-Si bond length is 2.253. The resulting verticaT
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Table I.  Summary of Quantities Relating to the S1'4H9 Cluster Model

of the Si(111) Surfaces

With dielectric

Without dielectric

corrections corrections
. Positive Negative Positive Negative
Neutral Ton Ion Ion Ton
) ﬁ a .

Relaxation(A) -0.08 -0.38 0.17 -0.36 0.23
Res i (R) 2.33  2.25 2.41 2.26 2.4
Excitation

Energy (eV)

Adiabatic O.Ob’d 5.435 -3.062 7.358 -0.667

Vertical 0.0 5.778 -2.745 7.661 -0.862
HAw (ev) © 0.036  0.030 0.030

%The relaxation is with respect to the undistorted positions of the sur-

face Si, the positive direction is away from the bulk.

b

The total energy is = -20.04811 hartree

CEnergy necessary to excite the first symmetric C3v vibrational state.
This was calculated by solving numerically for the lowest two vibra-

tional wavefunctions.

The use of the harmonic force constant leads to

vibrational frequencies of 0.033, 0.030, 0.028 eV, respectively.

dThe energy at the minimum is 0.024 eV lower than the energy at the tet-
rahedral undistorted geometry.
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jonization potential is 5.78 eV which is to be compared with experimental

10 of 5.6 eV to 5.9 eV. Allowing the ion to relax to its new

values
equilibrium position leads to an energy decrease of-0.34 eV giving an
adiabatic ionization potential of 5.44 eV.

For the negative ion we find that the surface atom moves away
from the surface by 0.252 (from the location of the optimum neutral

surface), leading to a new Si-Si bond length of 2.413. The adiabatic

electronic affinity is 3.06 eV.

Discusgion

The relaxation distance of 0.08R reported above was obtained by
optimizing the total energy of the system. This is, to our knowledge,
the first time this has been done for a silicon surface. In the past,

1 relating bond order to bond length was used

a formula due to Pauling
to estimate relaxation dis.tamces.M"40 This leads to a relaxation dis-
tance that is 4 times as large as our calculated value.

12 have used LEED to analyze an impurity sta-

Recently Shih et al.
bilized Si(111) 1x 1 structure. They find excellent agreement between
the observed and calculated spectra when the first layer relaxes 0.12ﬁ
toward the bulk (15% of the interlayer spacing). This is in very good
agreement with our results.

In the above calculations the initial (undistorted) geometry was
based on the experimental geometry of the soh’d4 (RSi-Si = 2.353). As
shown in Chapter 1, the results on H3S1'-S1'H3 demonstrate that similar

calculations overestimate the Si-Si bond length by 0.023. Assuming

such an overestimate for Si-(SiH3)3 we would expect the optimum Si-Si
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bond at the surface to be at 2.312 leading to a relaxation of 0.13X
rather than 0.088. On the other hand, in our relaxation calculations
we allowed only the one surface Si to relax. Repeating the calcula-
tions and letting the six hydrogen atoms representing other Si surface
atoms also relax a proportional amount, produces a calculated Si-Si
bond length of 2.342 and the surface relaxation changes from 0.088 to
0.033. Combining both corrections leads to a correctéd Si-S1 bond
length of 2.33R and hence a surface relaxation of 0.08&, that is, the

two corrections cancel out.

Size of Complex: Neutral System

To test the convergence of our results with the size of the com-
plex, we also carried out calculations on SiH3, certaih]y an extremely
small complex for modeiling the surface. The orbital coefficients for
the dangling bond orbital for S1'H3 and Si-(SiH3)3 are compared in Table
II. Here we see that the dangling bond orbitals are very similar. In
addftion, the orbital energy (which by Koopmans' theorem is the joniza-
tion potential for the case where the other orbitals are not allowed
to readjust) for the dangling bond orbital changes only by 0.5% between
these two cases.

Our conclusion is that the Si-(SiH3)3 complex provides an excel-
lent model for the dangling bond state and its interactions with the
bulk bonds. The remaining question concerning the interaction of sur-
face Si atoms with each other (through their dangling bonds) is

addressed in Section C of the present chapter.
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Table II. Comparison of Quantities Relative to the Dangling Bond

Orbitals of SiH3 and Si4H9.

Si-(SiM3)4

S1H3

orbital energy -
(hartrees) 0.3340

-0.3356

s-functions pz~functions

s-functions pz-functions

b

coefficients 0.2315 0.5197

0.0992 0.5558

0.2585 0.5313
0.1239 0.5263

4at the undistorted geometry

bThese are the expansion coefficients for the appropriate basis func-

tions on the “surface" Si atom.
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Size of the System: Ion Systems

For the neutral surface state, the effects of the bulk bonds on
the surface orbital are basically related to the overlap of the local-
ized bond pairs with the localized dangling bond orbital. Hence the
effects should decrease exponentially with the distance and satisfac-
tory results are expected with a small complex. On the other hand for
states with a net charge at the surface long range effects are ex-
pected. Thus, upon ionizing the electron from the dangling bond
orbital, the resulting positive charge leads to effects that fall off
as r']. In the semi-infinite system this results in polarizations
extending over a Targe,region of the crystal surrounding the surface
charge. For example, in Table III we see that although the Koopmansg'
jonization potential is nearly the same, 9.13 eV and 9.09 eV, for SiH3

and Si-(SiH respectively, the self-consistent calculations yield

3)3
smaller and much different values, 8.47 eV and 7.81 eV, respectively.
These differences are due to polarization of the bonds in the complex
in response to the positive charge at the surface. Our estimaté is
that it would require a complex having a radius ofmJGSR to treat cor-
rectly all polarization effects to within 0.1 eV (v ZOR for 0.3 eV).
Such large size complexes are not currently practicable, and we&have

instead developed an approximate procedure as explained in the follow-

ing subsection.

The Dielectric Continuum Correction

Consider a semi-infinite solid with dielectric constant ¢ , and

a positive charge at a height h above the surface as in part a of the
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Table III. Comparison of Ionization Potentials for S1’H3 and

Si4H9.a A11 energies are in eV.

S1H3 Si-(SiH3)3 .
Koopmans' theoremb 9.13 9.09
Self-consistent ioniza-
tion potentia]c 8.47 7.81

%At the undistorted geometry

bObtained from the orbital energy of the appropriate dangling bond
orbital

obtained by taking the difference between the energies of the pos-
itive ion and the ground state self-consistent calculations



diagram below.

o3

«—h —

[

A B C

The total interaction energy of the charge with the surface is

S |
AE = (e+1)h

resulting from the polarization induced on the dielectric medium.
Considering our finite complex as a hemisphere of radius ros 25 in
part ¢ of the diagram above, we include the polarizations within this
hemisphere but ignore the polarization effects in the balance of the
semi-infinite system (part b in the diagram). We have estimated this
additional correction as follows. From the wavefunctions of the
Si—(SiH3)3 complex we evaluated the average position h of the dangling

132 obtaining h = 0.805R. Using this

bond orbital from the surface,
value of h, the self-consistent energies for the Si4HQ complex were
corrected using the polarization energy of the semi-infinite slab minus

the hemisphere of radius ro? due to a positive charge at h (part b of
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the diagram above). This correction energy is]3b

2 . 2.1/2
 1e-1.1; h (rg +h%)
AE = - 7(E5T) ﬁ{ro+ p - Todl ro¥ h 1 ’

which for the undisturbed complex becomes

AE = -1.87 eV .

Similar corrections were made for each position of the surface Si
leading to the results in Tables I and 1IV.

An ambiguity in our model is the value to use for o Is it the
radius to the nearest Si atom (ro= 2.353), or to the midpoint of the
SiH bonds (r0= 3.09R), or to the H atoms (r0= 3.833)? (The numbers
used in parentheses are for the undisturbed complex.) Since the Si-H
bond is much less polarizable than the Si-Si bond, the value of "o
should be smaller than the value to the midpoint of the Si-H bond but
not smaller than the Si-Si bond length. " In our calculations we took
r, to be the distance to the nearest Si atom (ro= 2.358 for the undis-
turbed geometry). Changing "o by iO.]X leads to a change of 0.1 eV
in the correction energy. Similarly changing h by=* O.3X changes the
correction energy by 0.3 eV. Thus we estimate that our corrections
are probably good to #0.4 eV.

The procedure is approximate, of course. One would Tike to
carry out such corrections self-consistently, replacing the charge at

h with a charge density spread over the complex.
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FOOTNOTES FOR TABLE IV

4istance along the [111] direction. Zero corresponds to the unrelaxed
geometry; positive values indicate motion toward the vacuum.

bHartree—Fock calculations [egs. (1) and (2)] using DZ basis of Table
XI of Chapter 1 {p. 31). )

CGeneralized Valence Bond calculations [eq. (3)] using the DZR basis
of Table XI of Chapter 1. From G. T. Surratt, Ph.D. Thesis, Cali-
fornia Institute of Technology, 1975, Table VI.4.

dInterpo]ated energy from a cubic splines fit.
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C. Interaction of the Surface Dangling Bonds

General Description

In order to study the interaction between adjacent dangliing
bond orbitals on the unrelaxed-unreconstructed surface, we used the
Si3H6 cluster illustrated in Fig. 5, the smallest complex suitable
for this study. It consists of three silicon atoms, two of which are
on the surface, and the third is bonded to both surface Si atoms. The
six hydrogen atoms replace the bulk Si-Si bonds broken in cutting the
complex from the semi-infinite solid.

Self-consistent solutions of the wavefunctions of this complex
lead to a ground state possessing a singly occupied dangling bond or-
bital on the end of the two surface Si atoms. These two orbitals will
be denoted as ¢z and e Coupling these orbitals together leads to
both a singlet state and a triplet state. Treating all Si-H and Si-Si
bond pairs as doubly-occupied (as in the Hartree-Fock description) but
allowing the dangling bond orbitals, ¢2 and P to each be siqgly-

occupied, leads to the two wavefunctions (for valence electrons only)

Tarar) = 0819188 =g fo, 1 o ()0, (2) +6,(1)e, (2)]
x [a(1)8(2) - 8(1a(2)]} (4)
and
3an(er). = oPTTPIEY 2, 1 [8,(1)6,.(2) - 6,(1)6, (2)]

x [a(1)8(2) + g(1) «(2)1} , (5)

where
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%1k = L07(30a(3) 106, (A)8(H)1- - [85(17)a(17) ag(18)8(18)]  (6)
contains all bond pairs. Solving for these wavefunctions self-consistently
leads to the results in Table V. Here we see that the triplet state is
consistently 0.01 eV below the singlet. Although both states were solved
self-consistently, the orbitals of wavefunctions (4) and (5) are nearly
identical so that use of the ®sing1et orbitals in the Qtrip1et wavefunc-
tion increases the energy by only 0.002 eV. The dangling bond orbitals of
(4) are shown in Fig. 6.

Using the same orbitals for both states the energies of (4) and

(5) can be written astd

gsinglet _ Eo * Ex
1+S

gtriplet _ Eo ~ By
-5

where S is the overlap, <¢2}¢r> of the two 0rbita1s,]5

E, = <pplhfop> + <¢r\h|¢r> .

is the energy of the product wavefunction, Gpdps amd]5

_Ex - 2S<¢llhl¢r> ¥ Kzr

is the exchange term. Here er and Kzr are the usual two-electron

Coulomb and exchange interactions.

In the case that $ = 0, we see that EX = K,..> 0, and hence that

Ly
the triplet state is the ground state (just as in Hund's rule). The
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Table V. Quantities Related to the Interaction of Adjacent

Dangling Bonds in the S13H6 Cluster Model of the Si(111)

Surface. A1l energies are in eV,

Statea Unrelaxed Re]a'xedb
mes © Mxs1¢ nz° Dz

3pm (a,) 0.0 0.09 .08 0.0°

Tar(r) 0.009  0.014 0.013 0.015

Overtap® 0.004 0.006 0.013 0.006

®The states are defined by the local symmetry, QS, of the S1'3H6 complex,
see (4) and (5) for the wavefunctions.

o)
bThe relaxation distance of the surface Si atoms was 0.08A. The

"surface" hydrogens were relaxed as if the Si-H bonds were Si-Si
bonds.

“The basis sets are defined in Table XI of Chapter 1; DZ is the most
flexible. |

dTota] energies calculated were -14.12125, -14.47428, -14.54304 and
-14.54255 hartrees7

Over1ap of the two dangling bond orbitals, ¢2 and ¢ , from the
A (2r) GVYB calculation.

respectively.



-64-
SiyHg A CRBITALS

< 7 .

Vi -~ ~
- -~ A
7 ’ - ~ A9
t N e
A
~

u.0 ,,"'"‘~~~ /
P U /
L4 ~
V4 - T~ AN
- .
-

[ J (

—5.$ [l! C} ] 12.5

Fig. 6. Dangling Bond Orbitals for the ]A'(Rr) GVB(1) Calculation of
Si3H6. Positive amplitudes are denoted by solid lines, negative
amplitudes by short dashes. Long dashes indicate nodal planes.
Amplitude contours are drawn every 0.05 atomic units.
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one-electron term in Ex is negative and, for larger S (e.g., S > 0.1),
this term dominates over Kzr’ leading to Ex_g 0 and hence a singlet
ground state.

Thus, depending upon the sign of Ex and the relative magnitude
of EX and kT (thermal energy) the surface could be diamagnetic, para-
magnetic or ferromagnetic.

Calculational Details

Initially we chose the Si3H6 complex to have a tetrahedral geom-
etry, as in an unrelaxed-unreconstructed (111) Si surface. A second
calculation was performed at the relaxed geometry, obtained from the
calculations reported in Section B. [The surface silicons were relaxed
by 0.08R towards the bulk along the [111] direction, keeping the other
silicon fixed and rotating the Si-H bonds as if they were Si-Si bonds
with the (virtual) second layer silicons fixed.]

In order to study the effect of basis sets on the wavefunctions,
we carried out similar calculations using three different basis sets:
MBS (Minimum Basis Sets, one basis function per atomic orbital),

MXST1 (Mixed Set) and DZ (Double Zeta, two basis functions per atomic
orbital), as described in Table XI, Chapter 1 (p. 31). The MXS1 de-

viates from the MBS only by the presence of an extra P, hasis function

on each surface center.

Excited States

The states (4) and (5) are referred to as covalent states since
each atom is bonded as expected from its neutral atomic configuration.

Other excited states of this cluster are as follows:
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(i) Neutral ionic states: Keeping two electrons distributed

over the two dangling bond orbitals, we can construct two states in

addition to (4) and (5), namely

T (22-r%) 2oy p, [0, (1)8,(2) -6 (Do (2)1[(D)a(2)] . (7)
A (B ey g Lo, (106, (2) +6 (16 (2)
- Mo, (1D8,(2) + 0, (1o, NI(MB()T} - (8)

These states correspond to the ionic or charge transfer states in

which an electron is moved from one dangling bond orbital to the other,
leading to a positive ion on one surface Si and a negative ion on the
other. For the actual calculation it js computationally more expedient
to recombine these states to yield symmetry functions {(with respect to
the local symmetry of the cluster, in this case 95)'

The ]A“(22~r2) state is straightforward to obtain from a self-

consistent calculation; however, the ]A'(22+r2) state 1s more complex

(due to a lower state of the same symmetry; note the orthogonalization
parameter A ). Both states were studied with CI calculations, as des-

cribed below.

A simple estimate for such charge transfer excitation energies

is
AE = IP - EA - &
R
where R is the separation distance of the centers; IP is the ionization

potential and EA is the electron affinity. Using the values of Table I
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for the Si4H9 complex, and assuming no geometrical relaxation, this

leads to

m
1]

7.66 eV - (-0.86 eV) - (7-2-15—&1——)(27.21 eV/hartree)
) 0

I

4.77 eV

which is in very good agreement with the value of 4.82 eV obtained
from self-consistent calculations (Table VI).

Such states may be significantly stabilized by polarization ef-
fects around each charge center and hence the use of a finite complex

may lead to an excessively large excitation energy.

(i1) Band to surface states: Since the dangling bond orbitals are

only partially occupied, one expects low-lying transitions in which an
electron is excited out of a "bulk" orbital, say Bpy 5 into a dangling
bond orbital (¢z or ¢r)' The simplest description of such states is

3 '

(b—>S) :a'[@bu]k((bﬁ,djﬂ,q)}"(bbi ¢r¢r¢£‘bb)0‘80ﬂ0{-] s (9)

and
(b>s) =QL0L 3, (g0,0,0, % 6 00,0, )aBa8] (10)

[here @Bu]k'denotes the wavefunction corresponding to (6) but with the
¢b terms deleted], leading to A' and A" symmetries for both spins.
Although certain of these states can be solved self-consistently, a

consistent level of description of all states requires a configuration

interaction wavefunction.
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Of course, the use of a finite cluster with an abbreviated
description of the bulk states should have a great effect in the ex-

citation energies as compared with the semi-infinite system.

(ii1) Surface to bulk states: Other transitions involving the

surface orbitals consist of excitations into the empty bulk states.
Such transitions should require a more complete basis (diffuse s- and
p-functions in addition to d-functions) as well as a large complex.

Typical excitations have the form

3(s~> b*) = QLo 7y (9 + ¢,)0y 0] (11)

and
s b%) = ALgy q, (0,2 0,) 0 4(0B-B0)T (12)
leading to A' and A" symmetries for both spins.

Configuration Interaction Studies

In order to explore the effects of electronic correlation in
the bulk orbitals upon the covalent states and to obtain a censistent
description of the other excited states, we carried out configuration
interaction calculations as follows.

Starting out with the self-consistent wavefunction for the 3pn
ground state and using the MXS1 basis we allowed all double excitations
within the space spanned by the four orbitals describing the dangling
bond region (for the 3A" state two of them are occupied and two unoc-
cupied) simultaneous with all single excitations out of the "bulk"

orbitals (denoted as CI). CI should lead to a good description of
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the covalent and neutral ionic states and to a fairly good description

of the b+s and s~b* transitions (within the restrictions of our basis).

Hartree-Fock Wavefunctions

Combining the ¢2 and 9. orbitals as

6g = (0, + 0,0/ V2(T¥S)
by = (8, - 9/ V2(T-5)

leads to two orthogonal orbitals which are symmetry functions for this

particular complex. Since
- _ YA
budq ™ by = (8,0, = 0,0,/ /1-5)

we see that wavefunction (5) can be equally well written in the Hartree-

Fock form,

o IPTEE = Aoy 1y, Loy (15,(2) - 0, (1)6,(2)T[e(1)B(2) + 8(1a(2) T}

(5")

g

On the other hand,

Bybp 0,0, = €100

r g'g ¢

C2¢u u

where 1 :'c? for S~ 0 . Thus the GVB wavefunction for the singlet
cannot be expressed as a simple molecular orbital (MO) wavefunction.

Indeed, the best closed-shell MO calculation

26%) = Qo g, Loy (Do (2)a(13(2)T)

leads to energies]6 " 3 eV above the GVB wévefunction (4). Thus, the
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HF wavefunction does particularly poorly for singlet coupled orbitals
having a small overlap. Since most band structure techniques are
based on the closed-shell HF formalism we expect such approaches to
yield erroneous results for such surface states despite the use of a
large complex or a semi-infinite system.

Since
- 2
b0y * udg = (88, = 8,00/ /18

1

Hartree-Fock calculations on the A”(zz-rz) state should be quite ade-

quate, however, the ]A'(Q2+F2) state cannot be well described. Some
of the b-+s and s~b* transitions can also be adequately described with

a HF wavefunction.

Results

(i) Covalent states - In Table V we show some of the quantities

relating to the two covalent states for the Sl‘BH6 cluster model of Si
(111) surfaces. For both the unrelaxed and relaxed calculations the
overlap S = <¢2'¢r> is very small (S = 0.01). This means that there
is only a relatively small amount of interaction between adjacent dangl-
ing bonds. This leads to a 0.01 eV splitting between the triplet ground
state and the singlet state. |

Inc]dding the surface atoms of the whole surface these results

suggest the use of a Heisenberg Hamiltonian

H=E - ¥ J,.5.+S.
e RS B

with an exchange term between adjacent surface atoms of
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J.. = 0.01 eV

N
For kT (thermal energy) large compared to Jij’ the surface dangling
bonds would act as individual paramagnets, but for kT small compared
with Jij we could expect cooperative magnetic behavior. The calculated

J. . would seem to indicate a ferromagnetic surface for kT << 0.01 eV.

iJ
However, slight displacements of the surface atoms can cause energy ef-
fects much Targer than 0.01 eV and indeed could stabilize singlet pair-
ing of adjacent dangling bonds. Because of the Pauli principle, dis-

tortions leading to stabilization of singlet pairing would be expected

to produce a lowering of the surface symmetry to at least a 2x 1 unit

cell (since the singlet paired orbitals would not be translationally

equivalent).

(i1) Excited states - Table VI shows self-consistent field re-

sults for some of the excited states discussed above. We also compare
the effect of the basis set on the energies. The ifonization potential
of 8.63 eV is about 3 eV higher than the experimental va]ue.10 This
discrepancy is due mainly to polarization of the solid, ‘as discussed in

Section B. The wavefunctions for the positive ion states have the form

2A|(S g Vacuum) :a[q)bu]k(q)pv'{'(i)r)a] ’

and

*a (b > vacuum) =QLofq, (8,0, - 6,6 )e 0]

where ®éu1k is similar to (6) but with the ¢y, terms omitted. 2p
(s » vacuum) represents an ionization out of one of the dangling bond

orbitals while JA! (b > vacuum) is the wavefunction for an ionization

Trom one of the bulk orbitals.



~72~

Table VI . Comparison of Calculations for the S1'3H6 Cluster Model
of (111) Si surfaces using the MBS, MXS1 and DZ Basis

Sets.2 Al energies are in eV.

Dz MXST MBS
State Basis Set Basis Set Basis Set

3am (4r) 0.0° 0.0° 0.0°

Tar(ar) 0.013 0.014 0.009
The (22-¢2) 4.816 5.064 6.793
3t (b s) 4.856 4.824 6.415
3a1 (5 b¥) 7.252 11.172 10.871
2R (s vacuum) 8.630 8. 440 7.830
" (b vacuum) 9.496 9.236 8.711

The unrelaxed geometry was used.

bTota1 energies calculated were -14.54304, -14.47428, and -14.12125
hartree, respectively.
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It is interesting to note that for the DZ basis the
]A”(Qz-rz) state is lower in energy than the 3A'(b—*s) state. For
the MSX1 basis the 3A'(b+s) state is relatively well described be-
cause the surface part of the basis has the same flexibility as the
DZ set (for the pz—functions). On the other hand, MSX1 is the same
as the MBS set for the "bulk" part of the complex. This is reflected

Z-rz state, where the ¢q and L orbitals

in a poor description of the 2
are more delocalized over this region.

The results of the CI calculations are illustrated in Table VII.
The separation between the singlet and triplet covalent states is still
very small (v 0.02 eV) but the total energy of the ground state is
0.26 eV lower than the corresponding SCF value. The order of the

1 2)

A”(zz—r and 3A‘(be—s) is reversed with respect to the SCF value for

the same basis set. The reason for this is that the CI description for
the Qz—rz state is better than that of the b->s state (some configura-
tions important for the b-s state are not present in CI).

In Table VIII we compare the CI results of calculations of the
positive ion, 513HZ, with Koopmans ' theorem values for the ionization
potentials. The CI configurations were obtained by doing all single
excitations out of a basic set of 10 configurations formed by cmitting
one e]ectron‘at a time from each occupied orbital. This latter set of

basic configuration was used for the Koopmans' theorem calculation. In

Table VIII we also show the values obtained from the orbital energies

3

of the “A"(2r) SCF calculation.
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Table VII. Results of CI Calculations for the S1'3H6 Cluster Model

of the Si (111) Surface.a’b A1l energies are in eV.

No. of Spin No. of

State® -~ Energy Eigenfunctions Determinants
3pn (ar) 0.09 824 1036
Ta(ar) 0.019 614 1632
Tan (2242 4.286 612 ;
3 b >s) 4.293 814 1018
3an (b +s) 4.482 824 1036
Tar (224r2) 4.561 614 1632
Tar(p +s) 4.607 612 -
TAr(b>s) 4.629 614 1632
3pu(br > s) 6.392 824 1036
3at(bt ) 6.407 814 1018
T (b s) 6.487 612 -
A (b +s) 6.492 614 1632
3a1(b" +s) 7.407 814 1018

%The MXST basis set was used with a tetrahedral (unrelaxed) geometry.

bIn the CI calculations double excitations were allowed within the

two occupied and two virtual orbitals corresponding to the dangling
bond. Simultaneously, all single excitations were allowed from all
"bulk™ orbitals to all virtual orbitals of the basis.

“Successive primes on the b's indicate different "bulk" orbitals.

dThe total energy calculated is -14.48445 hartree.
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D. Review of Experimental Data

One of the most important experimental characteristics of the
(111) surface of silicon single crystals is that it is the cleavage

face of the diamond structure.6

This has very important conseguences
on the experimental determination and study of silicon surfaces. Any
other surface has to be cut or prepared and annea1ed6 before one can
study it. This can modify the ideal environment of the surfaces in
ways that are difficult to predict. On the other hand, a freshly
cleaved surface corresponds more closely to the idea that one has of
what an undisturbed surface is. The cleaving can be performed under
conditions of ultra-high vacuum, so that for good cleaves the surface, be-
sides being undisturbed, is not contaminated by other atomic or mole-
cular species.

The basic experimental tool in the structural study of surfaces

is Low Energy Electron Diffraction.7

It is based on principles similar
to those of X-ray diffraction techniques for crystalline solids. In
LEED, the probe consists of electrons ejected by a gun at energies
ranging from 10 eV to 1000 eV. This means that their de Broglie wave-
lengths 1ie between 3.878 and 0.398, that is, of the same order of
magnitude as the typical interatomic dimensions in a solid. On the
other hand, Tow energy (10 to 500 eV) electrons exhibit inelastic mean

0
7 of 2 to 10A, thus the electrons collected by the LEED

free paths
apparatus come from the first few layers of the surface.
A freshly cleaved silicon (111) surface leads to a structure

showing a 2x]1 pattern,]7 indicating that the unit cell is twice as
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large in one direction (compared to the ideal or 1x 1 surface). Upon
heating this 2 x1 structure changes irreversibly into a 7x7 struc-

17

ture. The transition occurs]8 between 350°C and 390°C (depending

on the surface roughness).

Clearly, some sort of rearrangement has occurred for both
structures. The temperature behavior indicates that the degree of
rearrangement involves greater motion for the 7x7 structure than for
the 2 x1 structure. Since the 7x 7 structure cannot be transformed
back into the 2 x 1 structure, the 7 x7 pattern most likely is the more
stable one.

Other LEED patterns have been observed in Si (111) surfaces.6’17
However, since they are not easily reproduced and since some of them
seem to be due to the presence of small amounts of impurities]7a, we
will ignore these cases.

In the early sixties it was speculated that the low energy tail
in the total electron yield vs photon energy in photoemission experi-

19

ments was due to surface states. This view was supported Tater by

20

further photoemission experiments. More recently, photoemission

10a 10b

experiments by Eastman and Grobman have

and by Wagner and Spicer
shown the presence of surface states on silicon and germanium (111)
surfaces. They used synchrotron radiation with photon energies in the
range 7 to 30 eV. The energy distribution curves of the emitted elec-
trons wera measured for fixed incident photon energies. The emitted
electrons contain contributions from both the bulk solid and the sur-

face. The surface contribution was separated by making a second mea-

surement when the surface was contaminated with oxygen (presumably
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removing the surface states by bonding to oxygen atoms or molecules.)
The photoemission curves of the oxidized surface would then only have
the bulk contribution, together with photoemission from the oxygen-
surface complex. By studying the difference spectra between the clean
and contaminated surfaces, one can observe peaks assumed to be produced

10a

by the surface states. Eastman and Grobmqn find, for silicon (111)

surfaces, a band of states centered at 0.75 eV below the Fermi energy,
or 0.43 eV below the valence band edge. Wagner and Spicer]ob obtained
similar results, with a peak at 1.1 eV and a shoulder at 0.5 eV below
the Fermi level. From these measurements and from the known width of

the valence band, and assuming that the matrix elements for surface

and bulk transitions are the same, it was conduded]Ob that the surface

14

state density is 8x10 e]ectrons—cm"z. Assuming one electron per

each surface silicon atom leads to a surface state density of 7.85 x

10]4 e]ectrons—cm—z. Since there is a band bending of 0.6 eV,

Poisson's equation requires]Ob 0.3 x 1014 surface states per cm2,
leading to a total of 8.1 x 10]4 occupied surface states per cmz, in
good agreement with the photoemission estimate. Additional photoemis-

21 21b

sion experiments by Rowe & and Rowe and Ibach

also lend support to
the idea of characteristic surface states.

Other experimental techniques have also successfully identified
the presence of surface states on silicon (111) surfaces. An example
is shown by the field emission experiments of Lewis and Fischer.22

Their results are in qualitative agreement with the photoemission mea-

surements discussed above. Hagstrum and Becker23 have alse reported
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ion-neutralization spectroscopy experiments in which the presence
of surface states is made evident.

It is now possible to detect transitions between surface
states. One of the methods used in this context is total internal
optical reflection spectroscopy. Chiarotti et a1.24 have measured
a transition peaked at 0.5 eV, which occurs in 2 x1 structures of
Si(111) surfaces but disappears when the surface is exposed to oxygen

24

or when heated to obtain the 7 x7 structure. Another way of detect-

ing surface state transitions is by photoconductance measurements;
Muller and Mﬁnch25 have shown that a surface sensitive shoulder ap-
pears in the bulk photoconductance curves for cleaved Si(111) sur-
faces. The shoulder disappears when the surface is exposed to oxygen.
Further experimental evidence for surface state transitions is
obtained from ellipsometry expem’ments26 and energy-10ss experiments.27
We now return to a more detailed analysis of the LEED patterns
for (111) Si surfaces and their interpretations in terms of theoreti-
cal models. Two basic patterns are found: a 2x1 and a 7x7. We will

consider the 2x1 pattern first. This structureiis found when cleaving

silicon single crystals at room temperature under ultra-high vacuum17
6

It is believed” that the rearrangement suffered by the surface does
not involve large migrations of surface atoms. This is confirmed by
mating experiments6 in which two surfaces are created by brittle
cracking in ultra-high vacuum. They are then replaced on top of each

other, thereby healing the crack. The experiment is only applicable

to materials that show no plastic flow at the temperature at which the



-80-

experiment is performed. This applies to silicon at room temperature
under mild fracture stress. Evidence has been obtained6 that almost
perfect atom-on-atom replacement occurs when the two surfaces are
mechanically fused together. One of the important aspects of this
experiment is that the two surfaces are not allowed to fully separ-
ate; this insures that precise replacement is possible. Large atomic
rearrangements are practically ruled out by this experiment, suggest-
ing that the 2x1 structure is originated by small displacements of
the surface atoms (possibly more than one layer) about the positions
that they occupied on the solid. (Note that LEED cannot be used in
this technique to determine what pattern is present in the crack;
the assumption is that the 2x1 pattern is present since the experi-
ment is performed in ultra-high vacuum and at room temperature.)
Unfortunately, these experiments cannot be performed at high tempera-
tures (to observe the transition to the 7x7 pattern) because the
necessary electrical contacts to the Si crystal are lost upon heating.
Haneman28 has proposed a model to account for the observed
2x1 structure on Si (111) cleaved surfaces. This widely discussed
model assumes that the surface undergoes buckling, so that alternate
rows of surface atoms are raised and lowered, producing the observed
LEED pattern. The mechanism for the buckling is based on the follow-

8328 he Jowered rows have dangling bonds with sp’ hybridization

ing
(tending - to produce a planar confiquration, hence the lowering of
the row), while the raised rows have pure s character for the dangl-
ing bonds (producing 90° angles for the bonds to the second Tayer,

thereby raising the atoms). This model was designed to explain the
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salient experimental features known at the time; namely, the 2x1
structure observed in LEED experiments and the Electron Paramagnetic
Resonance (EPR) experiments by Haneman and coworkers?? in which a

spin density of 0.8 to 2 x 1014 spins per cm2 was found (that is,
roughly one spin per four to ten surface atoms). It is now known that
single crystal (111) surfaces of silicon have no detectable EPR sig-
na]30 that can be ascribed to a surface spin density.

Our calculations on the S1'3H6 cluster (see Section C) indicate
that the coupling between adjacent dangling bond orbitals is too small
to produce the distortions proposed by Haneman.28 O0f course, slight
motions might account for such reconstruction, but it is our opinicn

28 and Haneman and Heron31 is

that the mechanism proposed by Haneman
not entirely correct (i.e., we do not find the hybridization schemes
proposed in Ref. 31). It is possible that charge transfer states might
account for such a reconstruction. This is suggested by our calcula-
tions on Si4H9 clusters (see Table I), where we found that the positive
jon state relaxes inward (toward the bulk) whereas the negative ion
state relaxes outward (toward the vacuum). Further calculations, using
larger clusters, to test this model are warranted.

When a cleaved (111) surface of silicon is heated to at least
400°C, the 7x7 LEED pattern appears. All the fractional order spots
are present in this pattern, indicating that the basic structure of the
surface has a truly 7x7 unit cell and it is not the result of a smaller
unit cell with an overall 7x7 pattern. Also, since the formation of

such patterns requires high temperatures, it is beh‘eved6 that there

is considerable motion of the atoms on the surface. A model for this
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structure has been proposed by Lander and Morrison,32 based on a
series of vacancies of the surface atoms so that benzene-type rings
are fermed, presumably stabilizing the surface structure. Up to

the present no strong evidence has been found to favor this proposed
structure. Our studies of Si-Si bonds indicate that the w bond is

very weak, suggesting that benzene-Tike structures are not particu-

larly favored.

E. Review of Other Theoretical Calculations

Theoretical calculations of surface states have been performed

33a and Shock]ey33b in the thirties. One

since the early work of Tamm
can partition the techniques into those utiiizing finite clusters and
those utilizing semi~infinite systems.

Cluster calculations on silicon surfaces have been performed by

Batra and Ciraci.>” 35

They used the Xa method,™” which uses a wolecular
orbital (doubly-occupied orbital) wavefunction. Their results seem
to be in general accordance with those obtained using semi-infinite
systems. They find a dangling bond orbital with a high degree of P,
character whose orbital energy is in the neighborhood of 7 to 8 eV.
Most of the theoretical calculations in the literature use a
semi~infinite solid. These calculations can be divided into two
classes: (i) calculations utilizing an effective hamiltonian (non-
self-consistent); and (ii) calculations involving some sort of self-
consistent procedure. Non-self-consistent calculations have used the

36

tight-binding formalism, " the bend orbital method37 or pseudo-poten-

38

tial methods. The self-consistent calculations use self-consistent
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pseudo-potentials and a local approximation to the exchange energy.39’40

Basically, the same conclusions are reached by both Appelbaum and

Hamann39 and Schliiter et a1.40
The method of Appelbaum and Hamann39a assumes a potential of the
form
- > > ->
Vo(r) = V  (r) + v (r) + Ve (r)

where Ves and VXC are the electrostatic (found by solving Poisson's
equation) and exchange potentials. VXC(?) is a local approximation
to the exchange energy which uses the Wigner interpolation form d

for the correlation energy of the jellium model. Vion(?) represents

. . . . . 42
the non-electrostatic electron-ion core interactions and was obtained

by fitting to bulk band structure calculations. The potential VT(r)

is then introduced into the one-electron Schridinger equation

-3 V) V(P () = B (1)

Equation (11) is then expanded in the Laue representation43

which
assumes two-dimensional periodicity parallel to the surface. This
results in a one-dimensional set of coupled differential equations
that have to be solved numefica11y.39a

Appé]baum and Hamann39 find an jonization potential of 5.3 eV
for the ideal (111) surface, which is insensitive to small normal dis-
placements. For all geometries a dangling bond state is found which

is highly localized on the surface atoms. This band is partially oc-

cupied, lying close to the top of the valence band. When relaxation
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is allowed this band splits into two peaks and additional bands ap-

pear.

Schluter et a1.40 used a standard solid band structure calcula-

tion technique with a slab geometry which is repeated in a direction
normal to the slab. They find an ionization potential of 4.0 eV.
They find a surface band structure near the top of the valence band
which is similar to that found in Ref. 39.

One characteristic common to all these methods is that for geom-
etry variations all these methods use a priori chosen values of the
relaxation distances. The reason for this is that the techniques
cannot be used to calculate total energies, and therefore cannot opti-
mize geometries. One of the methods used to estimate relaxation dis-
tances37_40 uses a formula due to Pau11ng]] in which bond lengths are
related to bond order. In the case of the unreconstructed Si (111)
surface this predicts a relaxation of 0.348. This is four times as
large as the value we have calculated using the Si-(SiH3)3 cluster
(see Table I) and about three times as large as the experimental value

12

of Shih et al. For this reason, since the electronic structures cal-

culated using these techniques are highly dependent on what relaxation
37,39,40

distances are used, a careful comparison between experiment and

theoretical calculations for different geometries would clarify the
situation.

The techniques discussed in this section use doubly occupied
orbitals (i.e., explicit electronic correlation is not included),
leading to systematic errors which can be of great importance in ob-

taining the correct electronic structure of the systems in consider-

ation.44
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IT. THE (100) SURFACE OF SILICON

A. Introduction

The (100) surface of diamond structure (as of crystalline sili-
con) presents a completely different geometry from that of tne (111)
surface. Whereas the surface atoms of the (111) surface form a hexag-
cnal pattern, with nearest (surface) neighbor distances of 3.838, the
(100) surface presents a square lattice structure (shown in Fig. 7),
also with nearest neighbor distances of 3.832.

In the unreconstructed (111) surface each surface atom is
bonded to three second layer nearest neighbors. This leads to one
dangling bond electron per surface atom. In the (100) surface each
surface atom is bonded to two second layer nearest neighbors (for the
ideal unreconstructed surface). This leaves two nonbonding electrons

per surface atom.

An important experimental difference between the (100) and

the (111) surfaces is the fact that a (100) surface cannot be cleaved.
Instéad one has to prepare the crystals by first cutting and then sub-
mitting them to extensive treatment to clean and heal the disruption
caused by the cutting process. This may eliminate simple metastable
structures similar to the 2x1 pattern of the (111) surface. The treat-
ment to which the crystal faces are subjected is capable of producing
the most stable structure, even if this means very considerable rear-
rangement of the surface atoms. It is not surprising then, to find

LEED patterns indicating reconstruction of the surface.



Fig. 7. Sketch of (100) Surface of Silicon.
by filled circles.
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Surface atoms are denoted
Second layer atoms are denoted by crosses.

Arrows indicate the motion of atoms for one of the reconstruc-
tion models (discussed in Section C).
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In our approach we again use a finite cluster of atoms. In the
present case we were interested in investigating two types of problems:
(i) the basic electronic structure of an ideal surface, as well as the
relaxation distances for the different states; and (ii) the feasibility
of one of the proposed reconstruction mechanisms for the (100) surface.

Our results can be summarized as follows. For the ideal (100) sur-
face we find that the electronic structure is determined by the divalent
character of the surface silicons. There are two "surface" electrons
per surface silicon atom with two basic low-lying states. For the
ground state the relaxation distance is O.]OR towards the vacuum, while
for the first excited state the surface relaxes inward by 0.053. Ye
also find that bond pairing of adjacent surface atoms leads to a bond
whose strength is 1.74 eV. (Each Si atom moves so that the Si-Si bond
length is 2-383)- This makes plausible the reconstruction of the sur-

a5

face by the mechanism proposed by Levine™ 1in which two adjacent rows

rotate towards each other producing a 2x1 unit cell.

B. Basic Electronic Structure

General Description

For the basic model of the (TQO) Si surface we have chosen an
Si3H6 cluster (quite different from the Si3H6 complex used in the (111)
surface), in which only one silicon atom is a surface atom, bound to
two nearest neighbors corresponding to second layer atoms in the ideal
unreconstructed surface. These, in turn, should each be bound to three

other silicon atoms but we have substituted them by hydrogen atoms.

Here, as before, the hydrogens have the function of decoupling the
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"back-side-of-the-cluster" electrons from the "surface" electrons.
This complex is shown in Fig. 8 for the tetrahedral (ideal) geometry.
Since each surface Si is bound to two other silicons, two nonbonded
electrons are left. Thus the complex can be schematically represented
as H3Si—Si—SiH3, where the "bulk" (second layer) Si are fixed at the
normal tetrahedral positions, but the surface Si (divalent) are allowed
to relax. Two basic low-lying states result from this particular con-

figuration (shown schematically in Fig. 9):

{om): Of the two nonbonded electrons one is in a p-like orbital
perpendicular to the Si-Si-Si plane (this is denoted by m and indicated
in Fig. 9 by a circle; visualize an orbital sticking out of the paper)
and the other is in an sp-hybrid orbital located mainly in the plane of
the three silicons (this is denoted as ¢ and indicated in Fig. 9 by a
lobe). Two different spin couplings are possible, a triplet and a
singlet. Since the two orbitals are orthogonal, a favorable exchange
integral predicts the triplet to be the lowest of the two (as in Hund's
rule). The triplet and singlet states are denoted in Fig. 9 by 3(cn)

and ](cw) respectively.

iggl; The other state can be thought of as having both nonbonded
valence electrons in a ¢ orbital. 1In our GVB calculations this o pair
is correlated, 1eadiﬁg to one orbital pointing above the Si-Si-Si plane
with a shape of the form46 o+ Am and the other electron is in an
orbital pointing below the $i-Si-Si plane, of the form ¢ -Awm. These

orbitals are spin-paired into a singlet state denoted 1(02).
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For the (om) states electron correlation effects are not of
majoy importance because each orbital is singly occupied. For the
(02) configuration a Hartree-Fock description leads to large corre-
lation errors and as a result obtains the wrong ordering of the
states. Introducing normal correlation (GVB wavefunction), we find

3

the “{ow) and 1(02) states to be very close to each other with ](02)

lower.

These states are analogous to the states of the methylene
mo]ecu]e47 (CHZ) and its derivatives. Few such systems are known for
silicon; an example is Sin, which has a singlet 1(02) ground State48
(with an optimum angle of 92°). For the carbon systems the ground

state is generally the 3(Oﬂ) state.47

Calculational Details

The geometry variations performed in this system consisted of
keeping the "second layer" silicons fixed at the tetrahedral positions
and letting the "surface" Si relax along the [100] direction. The
actual calculations were performed for four different values of the
Si-Si-Si angle; namely 95°, 105°, 109°28' (tetrahedral geometry) and
115°, corresponding to 0.402, 0.116, 0.0 and —0.1353, respectively,
for the relaxation distance along the [100] direction (positive values
indicate‘motion away from the bulk, toward the vacuum). For each of
these points the ](02), 3(Oﬂ) and ](Gﬂ) states were each solved self-
consistently. A

The calculations for the 3(Oﬂ) and ](Gw) states consisted of

open-shell Hartree-Fock wavefunctions, in which the o and w orbitals
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were singly-occupied. Thus the wavefunctions have the form

3om) =QAey Lo (e (2) - o (108 (2)I[e(1)8(2) + 8(1)a(2) 1}

and
Hom =de, q, Lo, (16, (2) + 6 (106 (2)I[a(1)8(2) -8(Na(2)]

where @bulk represents the wavefunction of all bond pairs.
For the 1(02) state a GVB(1) wavefunction was utilized (see

Appendix A) 1in which each nonbonded electron is allowed to have

its own orbital. The wavefunction has the form

1(02) =Cl{®5u1k[¢o+kﬂ(])¢0-kw(2)'+¢o—kw(1)¢c+Aw(2)]

x [a(1)8(2) - B(1)a(2)]

As shown in Appendix C, the closed-shell Hartree-Fock wavefunction for

this state

YoM =@ o, q Lo, (Do () TMe(a()]

gives an energy which is approximately 0.54 eV higher than the GVB(1)
result, therefore predicting the wrong ground state.

The basis set used in these calculations consists of the double
zeta (DZ) basis on the bulk Si and H atoms (see Table XI of Chapter 1).
However, from studies of methylene systems, it is known that d-functions
are essential for a consistent description of (02) and (om) states. We

have tested this for the present system and have confirmed the need for
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d-functions on the central (divalent) Si of the cluster (the compari-
son between basis sets with and without d-functions is discussed

in Appendix C) . Hence, all calculations include
d-functions on the central Si atom of the 813H6 complex. (This basis

is described as DZd in Table XI of Chapter 1.)

Results
The results for the relaxation calculations are summarized in

Table IX and in Fig. 9. As is found™®

in Sin, the ground state of the
system is the ](02) state. The optimum Si-Si-Si angle is 105.4°,
corresponding to a displacement (along the [100] direction) of 0.108
toward the vacuum (with respect to the unreconstructed, unrelaxed
tetrahedral geometry). The first excited state is 3(mr), with a verti-
cal excitation energy of 0.34 eV. The optimum bond angle for this state
is 111.5°, corresponding to a displacement of the surface atom by 0.058
toward the bulk from the unrelaxed tetrahedral geometry. The 1(o‘ﬂ)
state, as expected, is higher in energy, with a vertical excitation
energy of 1.64 eV. The optimum angle for this state is 111.7°, also
corresponding to a displacement of 0.058 toward the bulk. Geometric
relaxation effects account for a further drop of 0.16 eV in the energy
of these states, giving 0.18 and 1.48 eV for the adiabatic excitation
energies of the 3(0ﬂ) and ](gw) states, respectively.

Since the 3(0ﬂ) and ](Gﬁ) states have the same electronic con-
figuration, their geometries are very similar. They both lead to larger

central angles because there is only one electron in the nonbonding o

orbital. For the ](02) state the geometry is quite different. Now two
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Table IX. Results for the S1'3H6 Cluster Modes of the (100) Si Surface

Vertical Adiabatic
Optimum Relaxation Excitation Excitation
State and Optimum Energy Angle Distance€ Energy Energy

Wavefunction® (hartrees) (°) (R) (eV) (eV)
To®yevs(1) -14.594092 105.43 0.104 0.0 0.0
3(om)HF -14.587655 111.49 -0.050 0.34 0.18
Vom)uF 14.539713 111.67  -0.055 1.64 1.48

%ee the text for an explanation of the symbols.

bObtained by a cubic splines fit to the calculated points (see Appendix

C).

“Positive values indicate motion toward the vacuum. Zero corresponds
to the tetrahedral (unrelaxed) geometry.
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electrons occupy overlapping o-like orbitals leading to repulsive in-
teractions (because of the Pauli principle) with the adjacent Si-Si
bonds. This leads to the surface Si moving toward the vacuum and hence
smaller angles at the central Si. These effects are more drastic for

a system in which the constraints of the lattice are absent (see Appendix
B). In that case we find optimum angles of 95.2° and

%)

119.9° for the (¢”) and 3(Oﬂ) states respectively. Here the vertical and

adiabatic excitation energies for the 3(0W) state are 0.49 eV and 0.18 eV

respectively.

For the ](02) state, the two o-orbitals point away from each

other, one above the Si-Si-Si plane and the other below. The final

S0.44 0.53

. . . 19 .
hybridizations for these orb1ta1sé‘ is p , where the shape of the

orbitals is oxaw. These orbitals are plotted in Fig. 10. For the
3(m) state the two (triplet coupled) electrons occupy a w-like orbital,

localized at the central Si, and a o-1ike orbital, also localized at the

49 s 30"20p0‘68 0.01.

central Si, whose hybridization™™ i d These orbitals

are plotted in Fig. 11.

C. Surface Reconstruction

Introduction

The (100) surface is sketched in Fig. 7. Each surface Si (denoted
by a filled circle) is bonded to two bulk Si (denoted by x) leaving two
non-bonded surface electrons. It has been suggested (by Schlier and
FarnsworthSo and modified by Levineds) that these surface Si pair up by

moving alternate rows towards each other (as shown by the arrows in Fig.
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Fig. 10. o+Am and o-Am GYB Orbitals for the Non-Bonded Electrons of the
](02) State of the Si3H6 Cluster Model of (100) Surfaces.
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7) leading to formation of single or double bonds. In the latter
case it is assumed that the optimum dimer distance should then be
very close to the optimum distance observed in the gas spectraS] of
the molecule Siz of 2.253. If single bonds are more appropriate, it
is expected45 that the dimer distance is very similar to the Si-Si
distance in the bulk, namely 2.352.

To test this model we have performed calculations utilizing
an S1'2H4 cluster consisting of two separate SiH2 units.

Let us now consider how the states of this system can be
2) 3(

described. Starting with the (o ow) and ](oﬂ) states of two

S1'H2 units at an infinite Rgj.gj distance we can construct the
states by considering the different combinations as sketched in Fig.
12. Four different singlets (S = 0), four triplets (S = 1) and one
quintet are possible. At Rj.gi = = the ground state should consist
of two ](UZ). The next state should have the form 3[1(0§)3(orwr)]

+ 3[(O£ﬂ£)](63)]. [Recall that for S1'H2 the order of the states is

48D petween the 3(ow)

](02), 3(GW) and ](Oﬂ)]. Since the difference
and ](Oﬂ) of SiH2 is about 1.4 eV, one expects that two 3(0W) is

lower in energy than a ](02) and a ](Gﬂ), thus the next state should

have the form 5[3(02ﬂ2)3(0rﬂr)]. Next a state with ](Uﬂ) must be
considered, namely ][](02)1(orwr)] + ][](ogw2)1(0$)]. Similarly for

higher states. As the two S1'H2 units are brought together to the un-
reconstructed Si (100) nearest surface neighbor distance, we expect
the shapes and spin couplings of the orbitals to remain basically

the same with only small changes in the energy.
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For our calculations we started with the two Si atoms at the
positions they would have in an unreconstructed (100) surface. We
then allowed them to rotate as if the SiH bonds were Si-Si bonds,
letting the two Si atoms get closer. In Fig.'iz we show the geom-
etry for this complex for two diffekent Si-Si distances (at the un-
reconstructed (100) surface and the bulk Si-Si distances for the two
silicons).

As the two silicons move towards each other we expect to find
more drastic changes in the nature of the orbitals and the spin
couplings. The total energies also change noticeably as sketched
in Fig. 13 (for that figure we have used the calculated shapes of
the lowest singlet, lowest triplet and the quintet states; all other
curves constitute guesses). In Fig. 14 we show how the orbitals
change as a function of distance for the singlet ground state and
the Towest triplet state. We notice that for the orbitals of the singlet
state for the unreconstructed (100) surface geometry, the ground state
can be accurately described as ][](03)](o§)]. This is no longer true
at the bulk Si, silicon-silicon distance. Here we would have to

describe this state as ][](Wlﬂr)](g Or)]' Similarly, the triplet

L

. 3r1, 2,3 ‘ 3r3 1, 2
state can be well described by °[ (02 (grﬂr)] + [ (Ggﬂl) (00)]

for the unreconstructed geometry. At the bulk silicon distance, that
state is better described by 3[](ﬂ2ﬂr)3(020r)]. We thus see that
forming a q-n bond between adjacent silicons produces a considerable
lowering in the energy, particularly as the silicons get closer to

each other. For states that do not form a n-w bond we expect the
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Si,H,

R=3.83 A

"IOO]

R=2.35 A ””O'

A PN

Fig. 12. Geometry for the Si H4 Cluster Model of Reconstruction on the
(100) Surface. (a) RS1'~S1' = 3.838 (unreconstructed geometry).
(b) Ry ;= 2.358 (bulk Si-Si bond Tength).
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31 3, 1
[ LPEANC A

(o2 teD]
'{‘(7‘7')'(c;7r)1

Fig. 13. Schematic of the Different States for the S1'2H4 Model of Recon-
struction for (100) Surfaces. Small horizontal lines denote
values obtained from actual calculations. Values at infinity
are estimates based on Ref. 48b. All other features are approx-
imate. Orbitals connected by a solid line are singlet coupled;
orbitals connected by a wavy line are triplet coupled.
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potential energy surface to be repulsive or to have a very shallow

minimum.

Results

The results of the S1'2H4 cé]cu]ations are summarized in Table
X. Figure 15 shows the potential curves obtained for the
3r1 \3 11 1 503 3

L (ﬂgﬂr) (Gzﬁr)], [ (ﬂzﬂr) (olor)] and °[ (WQGQ) (Wﬁﬁr)] states. The
ground state, at the unreconstructed geometry, is the ][](og)](ca)].
This corresponds to two, noninteracting ](62) states localized on each
. 31 13 11

of the surface Si atoms. Both the [ (Wﬁnr) (dzcr)] and [ (Wzﬂr)
](Ogdr)] states are very close in energy, with the singlet state being

Tower (by 0.13 eV). The bond energy (energy difference between the

2

][](ﬂzﬂr)](ﬁzﬁr)] at its minimum and the ][](02)](03)] at the unrecon-

structed geometry) is 2.41 eV.

The SiZH4 cluster does not include the energy due to the bend-
ing of the Si-Si bonds at the second layer (i.e., the Si-H bonds of
the S1‘2H4 cluster do not account for hybridization changes). We have
accounted for the change in the hybridization at the second layer Si
atoms by doing a calculation on the HBSi—éi—SiH3 cluster. Here we
bend the central silicon off the plane formed by the two second layer
S1 atoms and the divalent silicon (at the tetrahedral geometry) as
shown in Fig. 16. Here one expects the eneray due to the change in
hybridization increases as the bending angle departs from the tetra-

hedral geometry.
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To account for the increase in energy due to the change in hy-
bridization of the second layer atoms, we must add to the S1'2H4 results
the potential curve obtained from the S1’3H6 bending calculations. The
enargies obtained in the SiSHG calculations are shown in Table XI.

Since the 813H6 calculations were performed by bending the two "surface"
hydrogens as well as the central silicon, they already include the poten-
tial barrier that we should add for both sides of the dimer (512H4).

The corrected potential curves for the dimer are also shown in Fig. 15.
When these corrections are included we obtain a bond energy of 1,74 2V

with an optimum Si-Si distance of 2.382.

From these calculations one concludes that the Schlier-
Farnsworth-Levine model is energetically feasible. Of course, these

calculations do not rule out other models.

Calculational Details

(1) Si,H, cluster

For the Si2H4 cluster the geometry was varied by allowing the
two S1'H2 groups to rotate as if the Si-H bonds were Si-Si bonds (as
if the second layer Si atoms were fixed at the tetrahedral unrecon-
stituted geometry). The actual calculations were performed for Si-Si
distances of 3.84, 3.09, 2.46, 2.35 and 2.258 (corresponding tobending
angles of 0.0, 15.91, 33.24 and 55.31 degrees). The basis set con-
sisted of a double zeta hasis with d-functions added to each silicon
(DZd set of Table XI, Chapter 1, p. 31). We have shown in Apnendix C
that this is necessary for a proper description of the 02 and

states. As in the H3Si~é§-SiH3 calculations, correlation effects are
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Table XI. Potential Curve for the Bending of the Central Si

Atom in the H351-§1’-51H3 Complex.

Anglea Energy
(hartrees)

0.0 -14.594074
15.0 -14.589742
30.0 ~14.575700
45.0 ~-14.549754

This is the angle between the plane formed by the three Si atoms
and the vertical plane that contains the Si atoms and the two
"surface" hydrogens for the tetrahedral geometry.
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crucial for the ][](oi)](oi)] state. For this state we have used a
SOGVB wavefunction§7in which both pairs of "surface" electrons are

correlated. The wavefunction has the form

162 62T =Qog; (15 +28)0,  caco(@see 51201 5 (12)

where ¢ represents the wavefunction for the Si-H bond pairs (having

Si-H
the standard closed-shell Hartree-Fock form); and where

Psurface (> 18 = Ogain) O Ogangy (10 Sginm) (1) 800 (12)

*{cyLa(9)8(10)a(11)8(12) - a(9)8(10)8(11)a(12)

- 8(9)a(10)a(11)8(12)+ 8(9)a(10)8(11)a(12)]

+ c2[2a(9)u(10)6(11)8(12)— 8(9)a(10)8(11)u(12)

- a(9)8(10)8(11)a(12) -a(9)8(10)a(11)8(12)
+ 28(9)8(10)e(11)a(12) - 8(9)a(10)o(11)8(12)]}

Correlation is also necessary to properly describe the

3r1 )
L (Wzﬂr)3(0£0r)] state. The wavefunction has the form of (12), with



-110-

Yurpace(9+ 4 12) = Lo, 900, (10)6, (1N)g, (12)]

X {C][a(9)8(10)u(11)a(]2) - 8(9a(10)a(11)a(12)]
+ c2[2a(9)a(10)6(11)a(12) - a(9)8(10)a(11)a(12) - B(9)a(10)a(11)a(12)]

+ c3[3u(9)a(10)a(1])8(12) - 8(9)a(10)a(11)a(12)

- a(9)8(10)a(11)a(12) - a(9)a(10)8(11)a(12)1}

For the quintet 5[3(0£ﬂ2)3(0rﬂr)] the wavefunction is also of the form

(12) with

% urfacelds T o 12) = [¢W9(9)¢%(10)¢ﬂr(11)¢gr(12)]

x  [e(9)a(10)a(11)a(12)]

(i1) §i3ﬂ6 cluster

For this cluster the geometry variation consisted of "bending"
the central Si atom off the Vertica] plane, indicated in Fig.16 . Al1l
the calculations were performed for an Si-Si-Si angle of 105°. The
bending angles (determined by the three silicon atoms and the verti-
cal plane; a = 0 for an unreconstructed surface) for which the cal-
culations were performed were 0, 15, 20 and 45 degrees. At each of

these geometries, only the 1(02) state was solved at the GVB(1) Tevel.
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Sy H,

o= 45°

Fig. 16 Geometry for S1'3H6 Calculations in which the Central Silicon
is bent off the tetrahedral geometry. (a) No bending (tetra-
hedral geometry). (b) Bending angle equal to 45° (the angle
between the plane of the 3 silicons and the vertical plane is
45°).
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D. Review of Experimental Data

The experimental situation for the Si (100) surface is, by far,
much less clear than that of the (111) surface. The reason for this
is that these surfaces are cleaned usually by ion bombardment followed
by annea]ing.6 Several LEED patterns have been observed, but differ-
ences among them suggest that impurities might be of crucial importance
in obtaining such patterns.6 The involvement of impurities has not
been exhaustively studied6 and no conclusive results are as yet avail-
able. The most commonly known structure is a 2x2 pattern.50’52 A
4x4 structure has also been observed.53 The 2x2 and 4x4 LEED patterns
can be explained by 2x1 and 4x2 structures (unit cells with basis vec-
tors that are twice or four times as long as those of the unrecon-
structed tetrahedral geometry). The observed LEED patterns are obtained
from the 2x1 and 4x2 structures by orienting these in orthogenal direc-
tions in different domains of the surface of the crystal.

Two basic models have been proposed for the reconstruction of Si
(100) surfaces. Lander and Morrison53a have proposed a model for the
4x2 structure in which atoms in the first two layers are drawn together
in pairs, leading to the appropriate reconstruction. The other model
is for the 2x1 reconstruction, initially proposed by Schlier and

FarnsworthSO and modified by Levine.45

In this model adjacent rows of
Si surface atoms form bonds via their dangling bonds, producing double
rows. The surface atoms are constrained to move in such a way that

they keep the same bond length as in the bulk, but variable bond angles.
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If only single bonds are formed between adjacent
surface atoms, it is expected that the dimer distance is approximately
that of the bulk interatomic spacing, 2.35x. This leads to a2 displace-
ment of iO.7SR in the horizontal plane (for the surface Si atoms ), and
a vertical displacement of 0.238 in such a way that the surface sili-
cons are still at 2.BSR from their nearest neighbors in the second
layer. This is equivalent to a rotation of #34° of the surface atoms
as measured from the [100] direction to the [010] direction. This
model leads to a unit cell with a rectangular shape with sides a/Jf
and 2a/J?} where a is the buik unit cell side, 5.41733. The atoms
are arranged in “"caves" (grooves) and “"pedestals" (formed by the two
vows drawn together).

We have previously discussed some of thé features of this model
in relation to our calculations on 512H4 complexes. At that time we

concluded that this is a feasible model.>*

Recently, experimental
evidence has been obtained that suggests that the 2x2 LEED pattern is
due to the 2x1 pairing (dimer) model. The experiments55 consist of a
study of the chemisorption of hydrogén on Si (100) surfaces. Two dif-
ferent phases have been found, one with a 2x2 LEED pattern, the other
with a Ix1 LEED pattern. Each phase can be obtained from the other one
by controlling the temperature and the time of exposure to atomic hydro-
gen. This suggests that the reconstruction is produced by motion of

the surface atoms rather than by vacancies. Furthermore, using the

45,50

pairing model of Schlier-Farnsworth-Levine one can explain the

experimental results of Sakurai and Hagstrum.55 The two stages of H
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chemisorption are explained as follows. Starting with the pairing

model, two adjacent atoms are close to each other due to the Ty

bond (i.e., we start out with either the 3[](n£nr)3(n£nr)] or

][](“zﬂr)](ozgr)] states of Si2H ). This leaves two dangling bonds,

Oy and Ty which can be coupled into singlet and triplet spin states

with very similar energies. In the first stage of the chemisorption,
hydrogen atoms can bind to each of these dangling bonds still pro-

ducing a 2x2 LEED pattern. This phase has been called by Sakurai and

55

Hagstrum™ the monohydride phase, since at saturation there is one H

atom per surface Si. In the second stage of the chemisorption process

additional hydrogen atoms attack the dimer breaking the « T bonds,

'S
with the result that two hydrogens bind to one surface silicon. This

leads to a 1x1 LEED pattern, since the lateral bonds which produced

the displacement of adjacent surface rows are no longer present.

55

Sakurai and Hagstrum™ have termed this phase the dihydride phase.
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ITI. THE (110) SURFACE OF SILICON

A. Introduction

Looking - at an unreconstructed (110) surface of the
diamond structure from above, the surface atoms appear arranged in
bands with a rectangular unit cell. Each band consists of atoms in
a zig-zag fashion, lying on the (110) plane and with tetrahedral bond
angles of 109°28' (see Fig.17'). The nearest neighbor distance for
the atoms within one of these zig-zag bands is 2.358 (for the unrecon-
structed geometry). The length of the short side of the rectangular
unit cell is 3.833, while the distance between two adjacent zig-zag
bands is equal to the side of the cubic unit cell of the bulk, namely
5.4]&. Fach surface atom is trivalent, i.e., it is bound to three
ﬁearest neighbors, two of which are surface atoms in the same zig-zag

band, and the third is a second layer atom. This means that each sur-

face atom has one electron in a dangling bond. For the tetrahedral
geometry this orbital makes an angle of about 36° with the normal
to the plane of the surface.

As in the case of the (100) surface, the (110) surface cannot
be cleaved, and therefore has to be prepared by other methods, usually
cutting and cleaning with ion bombardment followed by annealing at
high temperature. This means that considerable rearrangement of the
surface atoms is possible, so that the surface attains its most stable
structure before any kind of experiment can be performed on it. This

allows rather complicated LEED structures to form.
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Fig. 17 Sketch of the (110) Surface of Silicon. Surface atoms are de-
noted by filled circles, second layer atoms are denoted by

crosses.
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The basic characteristic we wanted to investigate was the in-
teraction between dangling bond orbitals on adjacent atoms. In par-
ticular we wanted to determine the basic spin states when a number of
Si atoms are present in the zig-zag configuration. Since the orbitals
initially point towards opposite sides of the zig-iag band and at an
angle of approximately 36° (for the tetrahedral unrelaxed geometry)
from the normal to the surface, triplet and singlet pairing of these
orbitals are nearly equivalent.

To study the basic spin couplings we have chosen three clusters

consisting of two, three and four silicons, namely Si SiH. and

2Mg> ST3Ms
514H6. From these calculations the most important conclusion is that
for the undistorted geometry the ground state has high spin coupling
(a1l dangling bonds having the same spin). Of course distortions

might stabilize the singlet spin coupling of adjacent dangling honds.

B. Summary

In order to establish the basic nature of the coupling of ad-
jacent Si dangling bond orbitals we considered the S1'2H4 model shown

in the diagram below.

/S S

H
H =5
\/S}<1 Hg
Hs
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Here both Si represent surface Si, while both HS replace surface Si
and both Hb replace bulk Si. There are two important electronic
states 3(0102) and ](0102), depending upon the coupling of the dangl-
ing bond orbitals.

In the undistorted geometry we find that the triplet state is
the ground state, with the singlet state 0.1 eV higher. This is a
small excitation energy, one that might be removed upon relaxation
of the surface Si atoms. In order to examine the effect of such
distortions we allowed the hydrogens to rotate about the Si-Si bond,
so that the two pairs of hydrogens end up in front of each other
(eclipsed geometry) as shown in Fig.18 . In this case the two dangl-
ing bonds are almost parallel to each other. (This would be the op-
timum configuration for pairing). For this system we also expect two
low lying states: a singlet, ](6102), and a tfip]et, 3(6102). For
the real reconstructed Si (110) surface one would not expect the
eclipsed geometry to be a very strong possibility, since this would
introduce strains in the lattice, raising the energy. An intermediate
geometry is more Tikely in which the Si atoms would rotate slightly
so that the dangling bonds point in directions that are closer to
being parallel than the directions in which they point at the unre-
constructed tetrahedral geometry.

The results of these calculations are shown in Table XII. For
the tetrahedral geometry the ground state is the triplet. The
singlet state is up by 0.10 eV. For the eclipsed geometry the ground

state is the singlet, ](c]oz) by 0.19 eV. We also note that the
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Fig. 18 Geometry for the S1'2H4 Cluster Model of (110) Surfaces.
(a) Unreconstructed geometry. (b) Eclipsed geometry.
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AN o

Fig. 19 Geometry for Three and Four Silicon Clusters Modeling the
(110) Surface. (a) 513H5. (b) Si4H6.
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Table XII Comparison of Energies for the S1’2H4 Cluster Model

of (110) Surfaces.? Energies are in hartrees.
Geometry
Dangling Bands Point- . Dangling Bands Point-
State and ing in Opposite ing in Parallel
Wavefunction Directions (tetrahedral) Directions (eclipsed)
!(oy0,)6v8(1) ~9.659599 ~9.668258
; (0.23) (0.0)
(G]OZ)HF -9.663312 -9.661324
(0.13) (0.19)

a . : . . .
Values in parentheses are the energies in eV measured with respect

to the ground state ](0102) of the eclipsed geometry.



-i22-

ground state singlet of the eclipsed geometry is lower than the
triplet 3(6102) of the tetrahedral geometry by 0.13 eV. This means
that singlet coupling of adjacent dangling bonds on the Si (110)
surface is at least possible for a non-tetrahedral geometry. This
can be a cause for some of the rearrangement that the surface suf-
fers.

In the (110) surface there are infinite chains of such atoms
and in order to study the effects of coupling more than two together,
we considered complexes with three and four silicons.

With three Si (S1'3H5 complex shown in Fig. 19) the low lying

states have the form shown in the diagrem below

H\/\/H Energy

3 ‘
4[ (0102)03] S = 3/2 .W?wmm, 0.0
“Ioqoylogl 5 =172 4 1 0.01
2[]( - A i
0362)0]] S =1/2 i v {\ 0.02

?

] . . . . .
Here a '_____ Y indicates singlet pairing of two orbitals, while a
.qAﬂJUx? indicates triplet pairing. Note that two different doub-
let states can be obtained from three electron systems, which can

be described as the resonant and anti-resonant states



or in terms of wavefunctions, as
{[o7(Noy(2)o5(3) £ 04(1)0,(2)0 (3) el 1)8(2) - B(1)a(2)Te(3)} -

As expected from the S1'2H4 results, the undisturbed surface leads
to a high spin ground state.
For four Si (S‘E4H6 complex shown in Fig. 19) the Tow lying

states (for the undisturbed surface) have the form

H H
H A A
Energy Average
V H
H H
500 o)l S =2 fnd Tt 0.0 0.0
A
3[1(0104)3(0203)] §=1 ? TI\I\N\.I ; 0.05
MACEAUCRNL IS TWJV::\{ww? 0.14 0.13
oo loge)l s =1 (R N 0.21
oy, Hoge)] s =0 Vb o d 0.10

0.10
Moyop) (o501 s =0 R 0.10
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Note that one electron in each of the four orbjtals leads to one
quintet (S = 2), three triplet (S = 1) and two singlet (S = 0)
states. Again, the ground state is the high spin state, but the
excitation energies are smaller than for the 3 and 2 silicon cases.
These results are also shown in Table XIII.

For both the S1'3H5 and S1'4H6 clusters, correlation effects
are important for all states that have at Teast one pair of dangling
bond orbitals coupled into a singlet. In this case a closed-shell
Hartree-Fock wavefunction would put both electrons in the same orbital
spread over both centers which, even for adjacent centers, leads to

56

considerable error. The effect is more pronounced in the case in

which two pairs of electrons are singlet coupled, as in ][](o]cz)
1
(6304)].

Calculational Details

Only self-consistent field calculations were performed at the
GVB Tlevel for the S1'2H4 complex. The two geometries chosen are shown
in Fig. 18. The double zeta (DZ) basis of Table XI of Chapter I was

used. The general form of the wavefunction is that of (13) with

Howoy)s aune = [8,(1069(2) + 6y (1), (2)TTa(1)6(2) - 6(1)a(2)]
Ho19,): Oue = L81(1)4,(2) - 6,(1)8,(2)T[a(1)8(2) + 5(1)a(2)] .

For S1'3H5 and S1'4H6 the geometry used in all the calculations

was the unreconstructed tetrahedral one. Two types of calculations were
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performed on both clusters. In the first case self-consistent GVB level

wavefunctions were utilized. The second kind was a CI wavefunction in

which a full CI was performed over the dangling bond space of the high
. 4.3 . 53

spin state of each cluster ([ (0102)03] for S13H5 and [ (0102)

3(0304)] for Si4H6) augmented by the dangling bond space of the lowest

energy low spin state (2[](0102)03] for S1'3H5 and ][](0162)1(0364)]
for Si,H.).

aHg The general form of the wavefunctions for the states of

the Si H. cluster at the GVB level is

¢ = CL{Qbu]k qurf} ? (13)

where @bulk is the wavefunction for the Si-H and Si-Si bond pairs;

@surf is the wavefunction for the dangling bond electrons with the

form shown below

Clogogls 8 e = 01(1)0,(2)65(3) a(1)a(2)a(3)
“IHogo)ogds o = Loy (1)6,(2) +6,(1)0 (2) Ia(1)8(2)

- 8(2)a(1)] ¢5(3)a(3)

For the S1'4H6 cluster the GVB level wavefunction has the form

(13), with ésurf having the form shown below for the different states:
5.3 3 ) - ,
[3(0,0,) (0,00 2 e = 67(1)0,(2)05(3)8,(4)a(1)e(2)a(3)a(4)

010 Mopo )1 o= [6,(1)8,(2)- ¢,(De (2)1a(1)(2)

- 8(1)e(2)] ¢2(3)¢3(4)u(3)a(4)



-1 27

M010) (0505 2gypp = L8 (10,205 0,(1)0, (2)1[a(1)8(2)

- 8(1)u(2)1¢3(3)¢4(4)a(3)0ﬁ(4)

1 0,0,) 05901 0y ne = [07(16,(2) +0,(1)8(2)1(1)8(2)-8(1)a(2)]

X Lo5(3)0,(4) + 6,(3)05(4) a(3)8(4) - 6(3)(4)]

(0,00 og05) T B o= [ (1)8,(2) + 0, (1)6;(2) 1L 1)B(2)-B(1e(2)]
% [0,(3)05(4)+ 85(3)0,(4)1[a(3)8(4) - B(3)a()]

The basis set used was the double zeta (DZ) set of Table XI of Chapter
1.

For the 2[](0102)03] we have also performed SOGVB calculations®/
in which the spin coupling is optimized concurrently with the self-
consistent solution of the orbitals. The wavefunction has the form

(13) with

bupr = 7(185(2)85(3) {qLa(1)5(2) - 8(1)0(2)1a(3) +

t col2a(1)af2)6(3) - [a(1)8(2) + 8(1)a(2)]a(3) 1}
where c% + cg = 1.

D. Review of Experimental Data

Several LEED structures have been observed, in general it is

agreed that this surface also suffers reconstruction. The different

-
LEED structures inc]udeoza’58 2x1, 5x1, 7(or 2)x1, 4x5 and 5x2 depend-

52a

ing on the annealing process. Jona could not find a recipe for the
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preparation of the above structures in a reproducible way. The only
general statement that could be made was that the 5x1 structure was
likely to appear at high temperatures (T > 1000°C). The high tempera-
tures used in the cleaning and annealing process introduce the possi-
bility of impurities at the surface. These can possibly come6 from
the bulk by diffusion or from the ambient. Sakurai and Hagstrum59 have
recently determined by hydrogen chemisorption, that the 5x1 recon-
struction is likely to be due to relaxation or slight motion of the
surface Si atoms, rather than due to surface vacancies. (They con-
cluded this from the observation that when the 5x1 structure is
exposed to H atoms at 350°C the pattern is replaced by a 1x1 pattern),
The experimental situation for this surface, other than what
was mentioned above, is in a relatively poor status, as compared with
the (111) surface and even with the (100) surface. Due to the experi-

mental uncertainty, no models for the reconstruction have been put

forth in the literature.
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