
Geometric Interpretation of Physical Systems for Improved Elasticity
Simulations

Thesis by

Liliya Kharevych

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2010

(Defended 11 September 2009)

ii

c© 2010

Liliya Kharevych

All Rights Reserved

iii

Mami i Oksani.

iv

Acknowledgements

First and foremost, I would like to thank my advisors, Peter Schröder and Mathieu Desbrun, for their

guidance, support, encouragement, and enthusiasm. Next, I would like to thank the other members

of my committee, Alan Barr, Houman Owhadi, Jerrold E. Marsden, for their suggestions, ideas, and

advice. I would like to thank Jerrold E. Marsden and his colleagues for their work on variational

time integrators, and Houman Owhadi and his colleagues for their work on homogenization that

both became the basis for the work presented in this thesis.

I am very grateful to numerous people with whom I have had a pleasure to work over these years:

Boris Springborn, Yiying Tong, Eva Kanso, Weiwei Yang, Patrick Mullen, Keenan Crane, Nathan

Litke, and many others. They have been both friends and mentors providing me with great help and

inspiration.

I would like to thank my family, especially my mom, my sister, and Andriy. They have always

encouraged me to study and aim high, which led me on this path. Finally, I am thankful to my

friends, in particular the ones that I met during these years at Caltech: the times that we spent

hanging out, going out, working out, or just talking, has made the grad school years very enjoyable.

v

Abstract

The physics of most mechanical systems can be described from a geometric viewpoint; i.e., by

defining variational principles that the system obeys and the properties that are being preserved

(often referred to as invariants). The methods that arise from properly discretizing such principles

preserve corresponding discrete invariants of the mechanical system, even at very coarse resolu-

tions, yielding robust and efficient algorithms. In this thesis geometric interpretations of physical

systems are used to develop algorithms for discretization of both space (including proper material

discretization) and time. The effectiveness of these algorithms is demonstrated by their application

to the simulation of elastic bodies.

Time discretization is performed using variational time integrators that, unlike many of the standard

integrators (e.g., Explicit Euler, Implicit Euler, Runge-Kutta), do not introduce artificial numerical

energy decrease (damping) or increase. A new physical damping model that does not depend on

timestep size is proposed for finite viscoelasticity simulation. When used in conjunction with varia-

tional time integrators, this model yields simulations that physically damp the energy of the system,

even when timesteps of different sizes are used. The usual root-finding procedure for time update is

replaced with an energy minimization procedure, allowing for more precise step size control inside

a non-linear solver. Additionally, a study of variational and time-reversible methods for adapting

timestep size during the simulation is presented.

Spatial discretization is performed using a finite element approach for finite (non-linear) or linear

elasticity. A new method for the coarsening of elastic properties of heterogeneous linear materials

is proposed. The coarsening is accomplished through a precomputational procedure that converts

the heterogeneous elastic coefficients of the very fine mesh into anisotropic elastic coefficients of

the coarse mesh. This method does not depend on the material structure of objects, allowing for

vi

complex and non-uniform material structures. Simulation on the coarse mesh, equipped with the

resulting elastic coefficients, can then be performed at interactive rates using existing linear elasticity

solvers and, if desired, co-rotational methods. A time-reversible integrator is used to improve time

integration of co-rotated linear elasticity.

vii

Contents

Acknowledgements iv

Abstract v

1 Introduction 1

1.1 Contributions . 4

1.2 Overview of the Content . 5

2 Elasticity and Its Spatial Discretization 6

2.1 Introduction . 6

2.1.1 Continuous Formulation of Elasticity . 6

2.1.2 Tensor Notation . 8

2.2 Discretization of Elastic Bodies . 9

2.2.1 Finite Elasticity . 10

2.2.2 Linear Elasticity . 13

2.2.3 Co-Rotational Methods . 16

2.3 Damping Forces . 17

3 Structure Preserving Time Integrators 20

3.1 Introduction . 20

3.2 Fully Variational Integrators . 21

3.2.1 Background . 21

3.2.2 Overview of Continuous Lagrangian Dynamics 22

3.2.3 Discrete Lagrangian Mechanics . 24

3.2.4 Continuous Hamilton-Pontryagin Principle 26

viii

3.2.5 Discrete Hamilton-Pontryagin Principle 26

3.2.6 Discrete Pontryagin-d’Alembert Principle 28

3.2.7 Integration With Constraints . 29

3.2.8 Variational Update . 30

3.2.9 Including External Forces into Variational Update 34

3.2.10 Resolving Collisions Using Penalty Potentials 35

3.2.11 Discussion on Numerics . 35

3.2.12 Pontryagin Version of the Discrete Noether’s Theorem 37

3.3 Variational Approach to Time Adaption . 40

3.3.1 Time Step Control . 40

3.3.2 Naive Enforcement of Time Adaption . 41

3.3.3 Hamilton Principle with Added Time Constraints 42

3.3.4 Convergence Analysis . 43

3.3.5 External and Dissipative Forces . 44

3.3.6 Examples of Particular Integrators . 45

3.3.7 Limitations . 47

3.4 Time Reversible Integrators . 49

3.4.1 Time Reversible Approach to Time Adaption 50

3.4.2 Time Reversible Co-Rotational Methods 51

4 Material Upscaling 53

4.1 Introduction . 53

4.2 Previous Work . 54

4.2.1 Fast Deformable Models . 54

4.2.2 Scalar Homogenization . 55

4.3 Coarsening Methodology of Linear Elasticity . 57

4.3.1 Problem Statement . 57

4.3.2 Coarsening Procedure Setup and Overview 58

4.3.3 Downsampling Fields . 58

4.3.4 Numerical Coarsening Rationale . 59

4.3.5 Global Harmonic Displacements . 60

ix

4.3.6 Harmonic Mollifier . 61

4.3.7 Homogenization of Fine Scales . 62

4.3.8 Variational (Finite Element) Interpretation 62

4.3.9 Discussion . 63

4.4 Implementation Details . 64

4.4.1 Symmetric Tensor Representation . 64

4.4.2 Boundary Treatment . 65

4.4.3 Coarse-to-Fine Mapping for Display . 66

4.5 Results . 67

5 Conclusions 70

5.1 Future Work . 71

Bibliography 73

x

List of Figures

1.1 Discretization of space and time. 3

2.1 Behavior of an elastic body: (a) an elastic ball (undeformed configuration X) un-

dergoes deformation x due to the external load at time t0; (b) if the elastic material is

damped, the ball will return to its undeformed configuration when the load is released;

(c) if the elastic material has no or very little damping, the ball will keep deforming

(preserving total kinetic and potential energy), and due to energy cascading, at some

time tN the deformation will be dominated by high frequency vibrations of the ball. . 7

2.2 Discretization of an elastic body: the deformation of the discrete nodes is computed

on the vertices of the mesh and interpolated using basis function inside the elements.

For simplicial elements (triangle and tetrahedrals), linear basis functions are most

often used in graphics. 11

2.3 Visualization of the basic idea of corotational approaches: a deformed element (dark

grey) is translated (blue) and rotated (green) to “best” align with an undeformed con-

figuration (light green). 16

2.4 An elastic damped bar is flowing though space rotating and bending. As a simulation

progresses the bar behaves as a rigid body but still maintains its angular momenta. . 18

2.5 Schematic visualization of deformation gradients Fk, Fk+1, and Fk,k+1. 18

3.1 Advantages of symplecticity: for the equation of motion of a pendulum of length L

in a gravitation field g (left), the usual explicit Euler integrator amplifies oscillations,

the implicit one dampens the motion, while a symplectic integrator perfectly captures

the periodic nature of the pendulum (see [66] for details). 23

3.2 Discrete position (in black), momentum (in green), and velocity (in blue) variables. . 27

xi

3.3 Momenta and energy behavior for explicit integration over 2 million time steps: non-

linear elasticity with explicit integration is used to simulate an elastic rod (160 tets),

given a non-zero initial position-momentum. No damping or external forces are used.

Notice that the energy remains stable and the momenta are exactly preserved, even

after 8000 seconds of simulation with a time step of 0.004s. 31

3.4 Damping is added to the same setup as in Fig. 3.3. The energy plot shows a smooth

decrease over time, while momenta are still exactly preserved, even after 2 million

time steps (explicit integration was used, with a constant time step of 0.004s). . . . 33

3.5 Comparison of our damping model (same setup as in Fig. 3.4) to numerical damping

introduced by damped version of Newmark integrator [36]. Green and blue lines are

angular momenta and energy of the bar with Newmark integrator with the time step

0.004 and 0.002 respectively. Red lines are angular momenta and energy of the bar

when variational integrator is used with the time step 0.004 and 0.002 (notice that

energy loss and momenta preservation is independent of the time step used). 34

3.6 This 1D linear spring example, taken from Skeel [65], shows that certain time adap-

tion strategies (in particular when time step is changed every quarter period) can lead

to non-linear grows in energy (pink plot of the the total energy). Using our method

for the same example leads to long term good energy behavior (blue energy plot). . 40

3.7 When a time step is naively changed during pendulum simulation as a function of

current position (non-adapted explicit) or next position (non-adapted implicit), energy

decay or grows can happen. Using out time adaption strategy fixes this drift in the

energy. 41

3.8 Using various time adaption strategies for a simple pendulum. The top row shows

the motion of the pendulum for one period; the middle and the bottom rows plot the

angle of the pendulum with respect to iterations and time respectively. (a) integration

of the period with the fixed timestep, (b) equispaced positions, (c) equispaced phase

space points, (d) time step adapted to acceleration. 46

xii

3.9 Energy plots of time adaption tests for a system of 3 point masses connected by 3

linear springs, the Lagrangian is discretized using midpoint quadrature. The time

adaption strategy is picked so that σ = 1
W/10+1 for (c, d, e) and σ = 2

W/10+1 for (f, g,

h, and b). In (c) and (f) naive time adaption is performed (new time step is computed

using explicit σ-rule and is than used in the standard DEL equation); (d) and (g) use

symplectic time adaption and explicit σ, and in (e) and (h) midpoint discretization is

used, but symplecticity is not enforced, finally (b) uses midpoint discretization of σ

with symplecticity enforced. Note that for larger timesteps symplectic time adaptive

integrators “blow up” while time reversible ones (e and h) remains stable. Moreover,

(a) shows that the symplectic integrator with the large constant time step (where the

size of the timestep is the same as the largest step in all the other simulations) still

behaves reasonably, while being significantly more efficient. 48

3.10 The same set-up as on the Figure 3.9: a system of 3 point masses connected by 3

linear springs, σ = 1
W/10+1 . (a) shows energy plot of the simulation where naive

time adaption is performed (new time step is computed using explicit σ-rule and

is than used in the standard DEL equation obtained from the Lagrangian which is

discretized using midpoint quadrature: (qk+1−qk)TM(qk+1−qk)
2h − W(qk+qk+1

2)h); (b) shows

energy plot of the simulation with the same σ discretization, but the Lagrangian is

now not symmetric: (qk+1−qk)TM(qk+1−qk)
2h − W(3qk

4 +
qk+1

4)h. Notice that a symmetric

update rule yields a slight energy drift when the time step is not constant, while a

non-symmetric update yields the fast “blow up” of the simulation. 50

4.1 Numerical coarsening turns a fine mesh with heterogeneous elastic properties (here,

a 200K-tet liver with veins, extracted from MRI data; courtesy of Dobrina Boltcheva,

LSIIT, France) into a coarse mesh (640 tets) with anisotropic elastic properties that

effectively capture the same physical behavior. The coarse mesh (top) can thus be

used as a proxy to animate the object (falling on the ground) about a hundred times

faster than it would take to compute the elastic behavior on the fine mesh (bottom).

Collision detection is done using the interpolated fine mesh boundary. 54

xiii

4.2 Inhomogeneous materials leads to Anisotropic Behavior: In 1D (left), even a tiny

amount of soft material between two rigid rods renders the resulting bar highly de-

formable when pulled; a cube of composite material in 3D (right) made out of two

materials (the blue one being softer than the mauve one) exhibits significant anisotropy

due to its composition: in this case, it stretches much more vertically than horizontally. 56

4.3 The six harmonic displacements obtained from a homogenous material (top), and a

heterogeneous material made of layers of 2 different elastic materials (bottom). The

deformations correspond to respectively: h11,h22,h33,h12,h23, and h13. 60

4.4 Coarsening of Cracks: (left) In this 2D example, coarsening is used to turn a bar-like

object (blue) containing a thin slice of soft material (green) into a very coarse mesh

(peach-colored mesh); (right) when deformed under gravity, both models present sim-

ilar deformations; (bottom) a simple spatial averaging of the material elasticity co-

efficients or stiffness tensors does not capture this bending behavior, not accounting

properly for the weak material in the middle. 64

4.5 On the inhomogeneous layered cube used in Fig 4.3, a fine simulation (top, left) is

well captured by our coarsening approach (bottom, left), despite the anisotropy of

the object; if, however, the material coefficients (right, showing the most extreme

extended position reached during the motion) or the stiffness matrices of the original

object are simply averaged, coarse simulations do not match the fine behavior. 65

4.6 A 2-material composite object (left) is subjected to gravity with its top vertices fixed,

resulting in a elongated deformation (middle). From a coarse mesh deformation

made of a single triangle (right, dashed), we can reconstruct a quasi-static fine solu-

tion (right) using precomputed harmonic displacements: this cheap linear map from

coarse to fine deformation enhances visual impact at low cost. 66

4.7 The same bar with a crack as in the Figure 4.4, now the fine mesh is interpolated

using harmonic displacements over the coarse simulation (right), compare to the cor-

responding fine simulation on the left. 66

xiv

4.8 Elastic properties of a wheel of cheese with holes of various sizes in half of the wheel

are turned into anisotropic elastic properties on a coarse mesh (200 tets). Animating

the coarse object (right) takes only a fraction (∼1/150) of the cost it would take to

compute the elastic behavior on the fine mesh. Notice that the side containing the

holes behaves softer, even though the coarse mesh does not spatially capture these

cavities. 69

1

Chapter 1

Introduction

Describing the physical world using mathematic modeling has been a major scientific pursuit over

hundreds of years. Our capacity to simulate and visualize physics took a great leap forward with

the advent of the computer. Due to the discrete nature of computers, new algorithms for discretizing

mathematical models needed to be developed. With continuously increasing computational power

at our disposal, the physical systems that we are able to simulate are becoming increasingly more

complex, calling for both more elaborate mathematical models of these systems and more robust

discrete algorithms that realize them digitally.

Traditionally, discretization for physical simulations has been done by considering the final mathe-

matical equations that model the physical system and deriving discrete approximations of the equa-

tions. These types of methods are often convergent under refinement; i.e., when the size of discrete

element goes to zero they accurately model the continuous physical system; however, they often

lead to poor solutions when used with coarse resolutions. In contrast, geometric discretization

approaches consider the physical system from the unified geometry viewpoint and discretize the

system using appropriate discrete geometry tools. The connections between physics and geometry

have been extensively studied in the field of geometric mechanics, with fundamental principles first

emerging from the work of Fermat, Newton, Euler, Lagrange, Hamilton, and many others. In geo-

metrical approaches, the physical system is described through a variational principle that the system

obeys and the main properties that are being preserved (often referred to as invariants). The meth-

ods that arise from properly discretizing such principles preserve corresponding discrete invariants

of the mechanical system, even at very coarse resolutions, yielding robust and efficient algorithms.

2

The use of geometric discretization approaches for physically-based simulations in computer graph-

ics is not purely an intellectual exercise; it leads to methods that have two important properties:

• they still converge to the correct physical solution in the limit of refinement,

• they are also robust to space and time discretization, preserving some of the most important

invariants at very coarse resolutions.

These properties can be motivated further by providing some very basic examples:

Example: elasticity in one dimension. This example demonstrates the importance of considering

the physics of the problem rather than just the final mathematical equations when discretizing a

continuous problem. In graphics, a common way to represent an elastic medium is to approximate

it with a series of masses and springs that obey Hooke’s Law: F = −k∆x. Alternatively, from

the elasticity theory point of view, such springs can be thought of as finite elements discretizing a

continuous elasticity problem. The corresponding discrete equation is F = − λ
L0

∆x for each element,

where L0 is the initial length of the element and λ is a constant that only depends on the intrinsic

material properties. While both equations are equivalent for a particular resolution (given k = λ
L0

),

the former will not converge to the correct solution as the mesh is refined without accounting for

the dependance of k on the initial length of the spring. Even though this problem is easily solved

by appropriate weighting during the refinement, it shows that physics equations should not be taken

out of the context of the physical system being discretized when one seeks to achieve resolution

independent models.

Example: time integration of a single spring. In this example, we show that even when different

methods have the same accuracy and converge to the correct solution at the limit of refinement,

methods that preserve discrete invariants of the system at coarse resolutions have great advantages

over those that do not. Consider the time integration of the dynamics of a single spring. Its motion

can be described using Newton’s Second Law of Motion F = ma, or equivalently ẋ = v and v̇ = F
m ,

where x is the position of the spring, and v is the velocity. Using the explicit Euler method to

3

discretize these ODE’s gives update rules:

xk+1 = xk + ∆tvk,

vk+1 = vk + ∆t
F(xk)

m
.

Alternatively, one can observe that Newton’s Second Law comes from the fundamental principles of

mechanics and consider Hamilton’s principle, which states that the dynamics of a physical system

can be written as a variational, geometric problem in space and time. Discretizing Hamilton’s

principle using explicit quadrature and taking discrete variations leads to a different set of update

rules:

xk+1 = xk + ∆tvk+1,

vk+1 = vk + ∆t
F(xk)

m
.

Both sets of update rules are equivalent in terms of computational efficiency. The latter one, how-

ever, exhibits good long term behavior, keeping the energy of the system bounded (Section 3.2.12

will demonstrate that this property is linked to a symplectic nature of variational integrators). The

former update procedure, instead, increases the energy of the system, causing simulations to blow

up (the larger the timesteps that are used, the sooner the blow-up occurs).

Continuous world Discrete implementation

D
yn

am
ic

s
St

at
ic

sh
ap

es

Figure 1.1: Discretization of space and time.

4

In this thesis, methods are developed for the discretization of both time and space, focusing on ap-

plications to elasticity simulations. The algorithms to be presented are efficient and can be used

with very fine meshes and/or small timesteps, simulating the intricacies of continuous elastody-

namics. However, they can also be applied to very coarse meshes and large timesteps for fast,

real-time simulations that still effectively capture critical characteristics of the original system be-

havior. Such algorithms allow for a multi-resolution design process in computer animation, by

which artists can tune simulations at coarse resolutions but do final runs at fine resolutions, adding

more physical details without acquiring changes in the global behavior of animations. In addition

to computer graphics, these algorithms can be used for applications in many other fields where effi-

cient, resolution-independent, physical simulations are required; e.g., for simulation of earthquake

effects or virtual surgery.

1.1 Contributions

The time discretization problem is approached using structured time integrators developed during

recent years in the field of geometric mechanics [27, 47, 70]. In particular, variational time inte-

grators [70] are useful in many graphics applications, as they guarantee conservation of momentum

and good energy behavior over long durations, which allows for stable and efficient simulations.

Unlike the commonly used Implicit Euler integrator, these integrators do not introduce numerical

damping. Since numerical damping is usually proportional to the timestep of the simulation, the

same simulation run with different timesteps would have very different solutions. Instead, our new

physically-based damping model does not depend on the timestep when used in conjunction with

variational integration. This guarantees that using different timesteps will lead to similar solutions,

an important property for preview purposes and real time simulations. We have also shown that the

time update that arises when using variational integrators is a variational problem itself, allowing

for more efficient numerical solvers. In this thesis, a time-adaptive integrator is also presented;

i.e., an integrator that automatically adjusts the size of the timestep as the simulation progresses.

Variational and time-reversible approaches to this problem are introduced and compared.

During the spatial discretization process, our goal is to use the fewest degrees of freedom (nodes)

possible, but still accurately model the physics of a continuous elastic body. This problem is most

challenging when simulating heterogeneous elastic bodies; i.e., bodies that have spatially varying

material properties, such as composite structures, porous materials, or biological tissues. Since the

5

material resolution of these bodies is often very fine, we cannot use a mesh that resolves all the ma-

terial details if we want to achieve an efficient simulation. However, we often cannot ignore those

details either. For example, a thin hard wire embedded in a large soft tissue will drastically change

the elastic behavior of the tissue – thus, we must model the heterogeneous properties of such a

composite material without incurring the excessive computational expense of directly resolving the

wire. A new approach is proposed, based on a recent development in homogenization theory [56],

to approximate a deformable object composed of arbitrary fine structures of various linear elastic

materials with a dynamically-similar coarse model. Our method translates the heterogeneous elastic

properties of a very fine mesh into anisotropic elastic properties of a coarse mesh that effectively

capture the same physical behavior. Simulation of the coarse mesh, equipped with the resulting

elastic coefficients, can then be performed at interactive rates using existing linear elasticity solvers.

In computer animation, co-rotational methods are often used in conjunction with linear elasticity

to allow for large rotational deformations without significant visual artifacts. Using co-rotational

methods with variational integrators leads to a non-linear time update problem. To maintain the

efficiency of the linear elasticity method, we introduce a time-reversible approach to updating el-

ements’ rotations. This approach keeps the energy and momenta of the system bounded, yielding

stable, predictable, and efficient simulations.

1.2 Overview of the Content

Chapter 2 provides a summary of linear and non-linear elasticity models, gives details on their

discretization using finite elements, and describes co-rotational methods to reduce numerical er-

ror associated with the linearization of elasticity. Section 2.3 presents our new physical structure-

preserving damping model for finite viscoelasticity. Chapter 3 focuses on structure-preserving time

integration, in particular variational and time-reversible integrators. Sections 3.3 and 3.4 describe

structure-preserving integrators that automatically adjust the size of the timestep as during the sim-

ulation. In Section 3.4 we also present a time-reversible approach to time integration of systems

that use co-rotational methods. In Chapter 4 we describe a numerical coarsening approach for the

simulation of heterogeneous elastic bodies. Finally, conclusions, implications of this research, and

future directions are presented in Chapter 5.

6

Chapter 2

Elasticity and Its Spatial Discretization

2.1 Introduction

To facilitate the understanding of the methods described in Chapters 3 and 4, this chapter gives a

brief overview of elasticity theory and provides the information needed for implementation of de-

scribed elasticity models. Section 2.2 summarizes discretization of non-linear (see also [10, 46, 55])

and linear (see also [18, 46, 43]) elasticity approaches. In Section 2.2.3 we describe and compare

co-rotational methods introduced in [50, 31, 53, 19, 25]. Our novel method for the discretization

of damping forces is described in Section 2.3. First, we give an overview of continuous elasticity

theory and notations that are used throughout this chapter.

2.1.1 Continuous Formulation of Elasticity

An elastic body B undergoes reversible deformations (changes in shape) due to applied forces (see

for example Figure 2.1). These may be body forces per unit volume or surface traction per unit

area. Deformation typically depends on the material, size, and geometry of the body as well as the

applied forces. A motion is a one-parameter (time) family of deformations and can be described by

x(X, t), where X denotes the position of a material particle of B in the reference configuration and

t is time. That is, x is the particle position in the deformed or current configuration. Notice that

usually capital letters (X, V , etc) are used to describe quantities in the reference (or undeformed)

configuration, and small letters (x, v, etc) are used for the quantities in the current (or deformed)

configuration. The kinetic energy of the body is given by:

7

X x(X, t0) x(X, t2) x(X, t2) x(X, tN)

(a) (b) (c)

Figure 2.1: Behavior of an elastic body: (a) an elastic ball (undeformed configuration X) undergoes defor-
mation x due to the external load at time t0; (b) if the elastic material is damped, the ball will
return to its undeformed configuration when the load is released; (c) if the elastic material has
no or very little damping, the ball will keep deforming (preserving total kinetic and potential en-
ergy), and due to energy cascading, at some time tN the deformation will be dominated by high
frequency vibrations of the ball.

K =
1
2

∫
B

ρ v · v dV, (2.1)

where ρ is the mass density, v is the velocity (function of material particle X and time t), and dV is a

volume element. Further, in the pure mechanical theory of elasticity, there exists a strain (or stored)

energy density function w per unit volume that represents the change in the internal energy due to

mechanical deformations, which means that the potential energy (excluding gravity) is written as

W =

∫
B

w dV. (2.2)

The rest state of the elastic body (static or quasi-static solutions) can be determined by minimiz-

ing potential energy (2.2) under prescribed traction or boundary conditions. Chapter 3 describes

variational approach that can be employed to solve for the dynamic path using the Lagrangian

(L = K −W) of the elastic body.

In order to compute the potential elastic energy, the notion of the strain is usually required. For 2D

or 3D the strain is computed and stored as a tensor that measures deformation in any direction. The

strain tensor is computed using the deformation gradient F of the mapping x(X, t):

FiJ =
∂xi

∂XJ
.

For example, in the case of non-linear elasticity Cauchy strain tensor C = FT F is most often used

to measure the rotation-invariant strain E = 1
2 (C − I). In the case of linear elasticity, the energy

8

density function is quadratic in the displacement and the strain is approximated using linearized

strain tensor ε = 1
2 (F + FT) − I. Then the energy density w is expressed as a function of a strain

tensor, capturing a particular material law.

Another common formulation of elasticity uses the Cauchy stress tensor σ to describe the forces

acting inside the body. Each component σi j of this tensor represents, pointwise, the i-component of

the force on a surface with unit area whose normal is in the j-direction. Consequently, body forces

are expressed by the divergence of the stress tensor, resulting in the static equation for elasticity

divσ = 0

under prescribed traction or boundary conditions, or equations of motion

ρ ü = divσ + f,

where f represents the external forces applied to the material.

2.1.2 Tensor Notation

Our exposition will make heavy use of tensors of various ranks as required in elasticity theory. To

facilitate the direct implementation of our approach, we will often employ an index-based notation,

where a rank-1 tensor X (i.e., vector, or 1D array for coding purposes) has its components denoted

as Xi (where i takes on the values 1, 2, or 3), a rank-2 tensor Y (i.e., a matrix, or 2D array) will

have its components referred to as Yi j, and so forth. The “Einstein” summation convention (where

summation is implied by repeated indices [6]) will be assumed. We will also employ the concise

notion of tensor contraction. A single contraction, where a summation over a single index is used,

will be denoted as “·”; X ·Y will therefore refer to either a matrix-vector product [X ·Y]i = XiaYa

or a matrix-matrix product [X ·Y]i j = XiaYa j. A double contraction, where now a summation over

two indices is performed, will be denoted as “:”. It will be used for products of a rank-4 tensor by

a rank-2 tensor, or products of two rank-4 tensors—[F : G]i j = Fi jabGab, and [F : G]i jkl = Fi jabGabkl

respectively. Finally, a comma will indicate differentiation with respect to one or several of the

coordinates as customary, while ∇ will refer to the gradient operator; e.g., (∇Y)i j = Yi, j = ∂Yi/∂x j

for a rank-1 tensor, (∇Y)i jk = Yi j,k = ∂Yi j/∂xk for a rank-2 tensor, etc. We will also use the

9

Kronecker delta δ function in our expressions, defined as:

δi j =

 1 if i = j

0 if i , j

Tensor-Matrix Conversion Tensors T = Tabcd of rank-4 in 3D (i.e., 1 ≤ a, b, c, d ≤ 3) contain 81

components, and are thus traditionally converted into a 9x9 matrix M through, assuming zero-based

indexing:

Tabcd = M[3(a − 1) + b, 3(c − 1) + d]. (2.3)

When T has minor symmetries (Tabcd = Tbacd and Tabcd = Tabdc, like most of the tensors used in

elasticity), one can further reduce the size of the representation by introducing a 6x6 matrix N such

that:

N = R MRT with R =

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

 ,
where R is called the reduction matrix. Converting back from this reduced matrix space to a full

tensor is easily achieved as well: from a 6x6 matrix N, the equivalent 9x9 matrix M is found

through:

M = ET NE with E =

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0

 ,
where E is called the expansion matrix, and the final conversion to a tensor uses Eq. (2.3).

2.2 Discretization of Elastic Bodies

In this section we discuss the differences between non-linear, linear, and co-rotational elasticity

models. We provide details on spacial discretization of corresponding elastic energies, forces, and

stiffness matrices on simplicial meshes using finite element method. In addition, a novel structure

preserving internal damping model is described. Discrete damping forces that arise from this model

do not depend on the size of the time step of the simulation and preserve linear and angular momenta.

10

2.2.1 Finite Elasticity

Non-linear Material Laws There are two main advantages for using non-linear (finite) elasticity

comparing to linear elasticity. First, the finite Lagrangian strain tensor

E =
1
2

(C − I) =
1
2

((∂x
∂X

)T (∂x
∂X

)
− I

)

measures a strain independent of the rotation of the rigid body, i.e., when the elastic body undergoes

rigid body rotation, this strain tensor does not change (unlike the linearized strain tensor). Second,

the expression for potential elastic energy function can be non-linear, covering a wider range of

material types. For example, many materials become stiffer when they are compressed, and such

behavior can only be captured with a non-linear material law. For these reasons, finite elasticity is

preferred for many applications in graphics when large deformations occur.

It is common to write non-linear elastic energy function w in terms of the right Cauchy-Green strain

tensor C:

W =

∫
B

w(C) dV.

More specifically for isotropic materials, w can only depend on the three invariants I1, I2 and I3 of

the Cauchy-Green strain tensor:

I1 = tr(C), I2 = tr(C2) − tr2(C), I3 = det(C).

The Jacobian of the deformation J = det(F) =
√

det(C) can be often seen in the expressions for the

w, representing the change of the volume due to the deformation. The function w(I1, I2, I3) varies

depending on the material type, for instance, for Mooney-Rivlin materials, w = a1(I1−3)+b1(I2−3),

and for neo-Hookean materials w = a1(I1 − 3) + b1(
√

I3 − 1)2. For all the non-linear elasticity

examples shown in this thesis we will use a modified neo-Hookean model [10]:

µ(
tr(C)

d√
J2
− d) +

1
2
κ(J − 1)2, (2.4)

where d is a number of dimensions (2 for 2D and 3 for 3D). The first part of this energy can be seen

as isochoric, penalizing shears, and the second part is volumetric, penalizing changes in volume.

11

X1

X3 X2

x1

x2
x3

Figure 2.2: Discretization of an elastic body: the deformation of the discrete nodes is computed on the
vertices of the mesh and interpolated using basis function inside the elements. For simplicial
elements (triangle and tetrahedrals), linear basis functions are most often used in graphics.

For implementation convenience we will provide the expressions for the gradient and the Hessian

of this energy in the Section 2.2.1. Notice that the gradient of this energy also corresponds to the

negated body forces in the current configuration.

Discretization and Differentiation The purpose of this section is to provide the reader with

more thorough details on the discretization of the finite elasticity energy, forces, and Jacobian of

the forces. In particular we will concentrate on 3D elastic bodies discretized using tetrahedral finite

elements. Such elements allow us to discretize shapes with complicated boundaries, approximating

them much better and with lower element count comparing to regular grid discretization. We use

variational tetrahedral meshing technique, see for instance [68], to obtain good quality meshes suit-

able for FEM simulations. To achieve the fastest simulations, we interpolate deformation inside the

elements using linear basis functions. Higher order basis functions (as in [26, 48]) can also be used,

however for simplicity and efficiency reasons we will concentrate on the linear basis function in this

thesis. Given a tetrahedral mesh D (that approximates an elastic body) with M vertices (nodes) and

E tets (elements), the original positions of the vertices Xn
i define the reference configuration of the

body. Note that we will use superscripts to refer to the indices of the vertices in the mesh, ranging

from 1 to M or the indices of the vertices in the tet, ranging from 1 to 4; subscripts will refer to the

coordinate directions x, y, z, ranging from 1 to 3 in 3D. As the mesh evolves in space, new positions

xn
i define the current configuration of the body. The deformation can be interpolated inside the ele-

ments using nodal basis functions N. For linear basis functions this amounts to a simple barycentric

interpolation of positions inside each tet: x =
∑4

p=1N(Xp)xp, with p ranging over the 4 vertices of

the tet. Such linear interpolation leads to the deformation gradient F that is constant per tet and is

12

computed as

Fi j =

4∑
p=0

∇N
p
j xp

i ,

where ∇Np is the gradient of the basis function associated with the node p computed in the reference

configuration. Geometrically the gradient of the basis function of the node p can be seen as a vector

perpendicular to the face opposite to p pointing outwards the tet, and can be computed as a cross

product of two edges of this face divided by the volume of the tet.

The potential energy density function can now be computed for each tet and discretely integrated

over the body by multiplying by the undeformed volume of the tet Vol(e) and summing over all the

tets:

W =

∫
B

w(C) dV =

E∑
t=1

w(F(e)T F(e)) Vol(e). (2.5)

Internal elastic forces are the negative of the gradient of the energy with respect to the deformed

positions, which can be computed using the chain rule:

∇Wn
i =

∑
e∈N(n)

∂we

∂Fqp

∂Fqp

∂xn
i

Vol(e), (2.6)

where N(n) is the set of 1-ring neighboring elements of the vertex n, the dependance of w on F is

assumed, and F is short for Fe. Solving quasi-static or implicit dynamic problems using Newton’s

method often requires the computation of the Hessian of the energy (sometimes referred to as the

Jacobian of the forces), which is obtained by differentiating the forces again with respect to the

deformed positions:

∇2Wnm
i j =

∑
e∈N(n)
e∈N(m)

∂2we

∂Fqp∂Flk

∂Fqp

∂xn
i

∂Flk

∂xm
j

Vol(e). (2.7)

In these expressions Einstein summation notation is used, i.e., there are summations over the re-

peated indices q, p, l, k from 1 to 3. Notice that deformation gradient F is constant per triangle

(to be more precise we should have used Fe to refer to a deformation gradient of an element e).

Moreover, notice that ∂Fqp
∂xn

i
=

∂∇Nn
p xn

q
∂xn

i
= δqi∇N

n
p (where ∇Nn

p is a gradient of a shape function of a

node n inside an element e), thus the equations (2.6) and (2.7) can be rewritten as:

∇Wn
i =

∑
e∈N(n)

∂we

∂Fip
∇Nn

p Vol(e), (2.8)

13

and

∇2Wnm
i j =

∑
e∈N(n)
e∈N(m)

∂2we

∂Fip∂F jk
∇Nn

p∇N
m
k Vol(e). (2.9)

For efficiency reasons, the computations of ∂we

∂F and ∂2we

∂F∂F can be done per tet, and ∇Nn can be

precomputed for each vertex n inside each tet e since they only depend on the undeformed positions.

Finally, the gradient and the Hessian of the energy defined in the Equation (2.4) are computed as

follows:

Gradient:
∂we

∂Fi j
=

µ
3√

J2

[
2Fi j −

2
3

F−1
ji tr(C)

]
+ κJF−1

ji (J − 1). (2.10)

Hessian:

∂2we

∂Fkl∂Fi j
=

2µ
3√

J2
δikδ jl+

2µ

3
3√

J2

[
tr(C)(

2
3

F−1
ji F−1

lk + F−1
li F−1

jk) − 2(FklF−1
ji + Fi jF−1

lk)
]
+

κJ
[
(2J − 1)F−1

ji F−1
lk − (J − 1)F−1

li F−1
jk

]
.

(2.11)

Other expressions of energy can be similarly differentiated using tensor differentiation rules (see [59]).

2.2.2 Linear Elasticity

While linear elasticity cannot capture all the intricacies of the behavior of elastic materials, it is

widely used in practice for its computational simplicity and efficiency. In order to obtain linear

equations of elasticity, the strain tensor needs to be linearized, and the potential elastic energy is

assumed to be quadratic. The linearized strain tensor is not invariant under rigid body rotations,

leading to large artificial changes in volume due to a rotation of the object. Such behavior is not

suitable for most of the graphics applications, and a co-rotational fix (see Section 2.2.3) is usually

added to reduce these artifacts. In addition to computational efficiency, an attractive feature of linear

elasticity for us is the linearity of the material law that results in constant elastic coefficients. We

will use this property for our coarsening approach that allows to precompute elastic coefficients

of the coarse mesh to closely mimic the behavior of the fine heterogeneous mesh (for a detailed

14

discussion see Chapter 4).

Summary of Linear Elasticity Linear elasticity has received extensive attention, and many de-

tailed explanations of its foundations can be found throughout the literature. We recap the main

notions nonetheless, by way of introduction to our notation and to the delicate issues of tensor

symmetries that will arise in our coarsening approach.

Strain Tensor. Given a displacement field u = x − X defined over the undeformed configuration of

an object, the symmetric part of the deformation gradient ε, computed as

ε =
1
2

(∇u + ∇uT) (i.e., εi j =
1
2

(ui, j + u j,i)), (2.12)

represents the strain undergone by the object. Indeed, the remaining part is antisymmetric, and thus

only represents a pure (infinitesimal) rotation–which does not induce a deformation. Note that by

definition, we have εi j = ε ji. This strain tensor is a linearized version of the more general Cauchy

strain tensor considered in non-linear elasticity. Using notation from Section 2.2.1, we can also

write linear strain as ε = 1
2 (F + FT) − I.

Potential Energy. Hookean materials are assumed to have, just like a simple spring, a potential

function W(u) that is quadratic in the strain tensor:

W(u) =
1
2
ε : C : ε =

1
2
εi j Ci jkl εkl, (2.13)

where C= {Ci jkl} is a rank-4 tensor called the elasticity tensor (sometimes referred to as the compli-

ance tensor, or tensor of elastic compliances).

Symmetries of Elasticity Tensor. While being a rank-4 tensor (thus with 81 components in 3D), the

elastic tensor C possesses several symmetries. The symmetry of the stress tensor implies that C is

symmetric in its first pair of indices (Ci jkl =C jikl), while the symmetry of the strain tensor results in

C being symmetric in its second pair of indices (Ci jkl = Ci jlk), these properties often called minor

symmetries. Finally, since the strain energy is a quadratic form, we also have symmetry under an

interchange of the first and second pairs of slots (Ci jkl = Ckli j), which often referred to as major

symmetry [24]. This leaves only 21 independent components in 3D.

15

However, if the material is further assumed to be isotropic, as is pervasive in graphics, then C only

possesses 2 independent components, usually expressed as Lamé coefficients λ and µ, or as Young

modulus E and Poisson ratio ν. Using matrix notation described in Section 2.1.2, such isotropic C

can be written as:

C =

λ+2µ λ λ 0 0 0
λ λ+2µ λ 0 0 0
λ λ λ+2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 .
Note that this isotropic assumption amounts to assuming that deformations within the medium have

no preferred direction.

Implementation Details Linear elastic forces can be computed as a matrix-vector multiply Ku,

where K is a stiffness matrix and u is a displacement vector. A stiffness matrix K for linear finite

element discretization is computed as:

Knm
i j =

∑
e∈N(n)
e∈N(m)

Ce
ip jk∇N

n
p∇N

m
k Vol(e). (2.14)

For the purpose of efficiency, local stiffness matrices Ke are traditionally computed for each element

e and then assembled into the global stiffness matrix.

The global stiffness matrix K is positive semidefinite, having a null space that corresponds to zero

energy modes of the system (usually translation and infinitesimal rotation modes). For static prob-

lems

div(C : ε) = Ku = b, (2.15)

when no constraints are specified (such as in the problem described in Section 4.3.5), the force

vector b need to be modified to remove translation and torque. Translation free force vector b̂ is

computed as b̂k = bk −
∑M

i bi
M for the vertex k, and the torque free vector b̃ as b̃k = b̂k − mkrk ×

(�−1 ∑M
i ri × b̂i), where rk is the vector from the center of the body to the vertex k, and � is the

inertia tensor of the body:

� =

M∑
i

mi

y2

i + z2
i −xiyi −xizi

−xiyi x2
i + z2

i −xizi

−xizi −xizi x2
i + y2

i

 . (2.16)

16

X1

X3 X2

X +u1 1

X +u3 3

X +u2 2

X +u -b3 3 e

X +u -b2 2 e

X +u -b1 1 e

R (X +u -b)3 3 eTe

R (X +u -b)2 2 eTe

R (X +u -b)1 1 eTe

Figure 2.3: Visualization of the basic idea of corotational approaches: a deformed element (dark grey) is
translated (blue) and rotated (green) to “best” align with an undeformed configuration (light
green).

2.2.3 Co-Rotational Methods

Corotational methods all share the same intent: they try to render the linear strain tensor (Eq. (2.12))

more accurate for large deformation by removing as much of the current local rotation as possible.

For each tetrahedral element a corotated reference frame is chosen, “with respect to which the

relative displacements [...] due to the current deformations are minimum in some global sense” [19].

Instead of expressing the position of the deformed body always in the same coordinate frame (by

adding the current displacements u to the rest state X), a corotational approach defines a matrix Re

per element e (expressing a rotation around the current barycenter be of the element) such that the

current deformed position xe of the element’s nodes satisfies:

Rexe = Xe + ue − be,

where Re removes the purely rotational part of the current deformation (see Figure 2.3). This

amounts to defining a “corotated displacement” ûe per element as:

ûe = ReT (Xe + ue − be) − (Xe − be
0),

where b0 denotes the barycenter of the element in the rest configuration. The potential W = 1
2 uT Ku

is then replaced by 1
2 ûT Kû, thus turning into a sum over all elements now function of both the

displacement field u and the rotation field R = {R1, . . . ,R|T |}. The force field in the elastic body

becomes:

∇W =
1
2

∑
e

[
ReKeReT (Xe + ue − be) − 2ReKe(Xe − be

0)
]
.

Notice that the material velocity ẋ is still equal to u̇: the corotational treatment presented above only

affects the potential energy computations (and thus, the internal forces).

17

While corotational methods define various procedures to derive the rotation matrix Re of each ele-

ment [50, 31, 53], we follow the treatment of [19]. That is, we pick the corotational frame of each

element by minimizing |̂ue|2: our tests show improved behavior compared to QR or polar decom-

position, as reported in [25]. We followed the implementation of this latter reference to solve the

small non-linear system for each tetrahedral element.

Treatment of point constraints. We found that in practice more stable results are achieved when

the rotation of the elements that have multiple nodes constrained is treated in a special manner. In

particular, for a tetrahedron that has four or three nodes constrained, we assume the rotation matrix

to be identity. If a tet has two vertices constrained, we only consider rotations around the vector

defined by the two constrained vertices. If only a single vertex of a tet is constrained, the rotation is

found in the traditional way.

The details of time integration for co-rotational approaches are discussed in Section 3.4.2, where an

efficient and stable time integrator that does not suffer from numerical dissipation is introduced.

2.3 Damping Forces

The energy and momenta of physical objects are not preserved because of internal damping, drag,

friction, and other external forces. People often use this claim to justify the use of implicit methods

that numerically damp energy. However, artificial numerical energy loss does not correctly represent

energy decrease due to the real physical external forces and the internal damping (see Figure 3.5).

Moreover, numerical damping strongly depends on the timestep of the simulation and the resolution

of the mesh. By using structure preserving time integrators we can first duplicate the physics of the

conservation laws, and then have the option of adding damping, friction, air drag, and other external

forces. Thus, there is a need for resolution independent models that capture physical behavior of

these effects as well as possible. For example, internal damping forces that decrease the energy of

the system without changing linear or angular momenta can be added. The idea is to use the strain

energy function to “measure” and damp the amount of deformation happening in one step, tanta-

mount to a generalized Rayleigh damping. Such damping model removes high frequency vibrations

from the elastic body. Strongly damped elastic objects will quickly reach equilibrium positions or,

if no constraints or other external forces are present, will move though space as a rigid body with

constant kinetic energy (Figure 2.4).

18

Figure 2.4: An elastic damped bar is flowing though space rotating and bending. As a simulation progresses
the bar behaves as a rigid body but still maintains its angular momenta.

xk

X

xk+1

Fk = ∂xk
∂X

Fk+1 = ∂xk+1
∂X

Fk,k+1 = ∂xk+1
∂xk

= Fk+1F−1
k

Figure 2.5: Schematic visualization of deformation gradients Fk, Fk+1, and Fk,k+1.

In order to compute damping, the same strain energy function W (as discussed in Section 2.2.1)

of the Cauchy tensor C = FT F can be used. Deformation gradient F is itself a function of the

initial configuration X and the deformed configuration x: W = W(F(X, x)). Consider the deformed

configurations of the body at two consequent times tk and tk+1, internal elastic forces are then

computed as −∇W(F(X, xk)) =
∂W(F(X,xk))

∂xk
, −∇W(F(X, xk+1), or −∇W(F(X, xk+xk+1

2)) if the forces are

discretized at the midpoint. The discrete damping forces between times tk and tk+1 are computed

as −∇W(F(xk, xk+1) =
∂W(F(xk ,xk+1))

∂xk+1
. This amounts to computing damping forces as elastic forces

based on xk being undeformed configuration and xk+1 being deformed configuration. Using notation

from the Figure 2.5 one can also write this expression of damping forces as −∇W(Fk+1F−1
k).

Example. This example shows how to compute introduced damping forces for 1D linear spring.

Consider a spring connecting nodes a and b with the original length l0 = |Xa−Xb| and the deformed

19

length l = |xa − xb|. The potential elastic energy of the spring is simply W = 1
2λ(F − 1)2l0, with

the deformation gradient F = l
l0

, and the gradient of the energy ∇W = λ(l
l0
− 1) ∂l

∂x . Thus the elastic

force acting on the node a at the time tk is −λ(lk
l0
−1)

xa
k−xb

k
|xa

k−xb
k |

and the damping force acting on the same

node is −λkd(lk
lk−1
− 1)

xa
k−xb

k
|xa

k−xb
k |

, where lk is the length of the spring at the time tk, lk−1 is the length of

the spring at the time tk−1, and kd is a damping coefficient.

Explicit and Implicit Damping Forces. Let xk−1, xk, and xk+1 denote deformed configurations of

an elastic body at corresponding times tk−1, tk−1, tk+1. Damping forces at time tk can be computed

to minimize deformation between xk−1 and xk configurations:

FdampExp(xk−1, xk) = −kD∇W(F(xk−1, xk))

resulting in an explicit forces. Minimizing deformation between xk and xk+1 configurations will

provide an implicit damping force:

FdampImp(xk, xk+1) = kD∇W(F(xk+1, xk)).

Because in the both cases forces are computed based on deformed configuration xk they do not

create torque: Fd
damp × xk = 0. Numerical experiments demonstrating the quality of this damping

model when used with variational time integrators (in particular, the fact that it does not reduce

either linear or angular momentum) are described in Figure 3.4. For more information on how to

include these damping forces into variational time integrator see Section 3.2.9.

Limitations. Since the damping model presented above is non-linear we use it for the simulations

that use non-linear elasticity models. In the cases when linear or co-rotational elasticity models

are used we revert to traditional damping forces −Kẋ (where K is a stiffness matrix and ẋ is the

velocity). A more extensive study of linearized damping models is desirable and is left for the

future work.

20

Chapter 3

Structure Preserving Time Integrators

3.1 Introduction

Mathematical models of the evolution in time of dynamical systems (whether in biology, economics,

or computer animation) generally involve systems of differential equations. Solving a physical sys-

tem means figuring out how to move the system forward in time from a set of initial conditions,

allowing the computation of, for instance, the trajectory of a ball (i.e., its position as a function of

time) thrown up in the air. Although this example can easily be solved analytically, direct solutions

of the differential equations governing a system are generally hard or impossible—we need to re-

sort to numerical techniques to find a discrete temporal description of a motion. Consequently, there

has been a significant amount of research in applied mathematics on how to deal with some of the

most useful systems of equations, leading to a plethora of numerical schemes with various proper-

ties, orders of accuracy, and levels of complexity of implementation [60]. In computer animation,

these integrators are crucial computational tools at the core of most physics-based animation tech-

niques, and classical methods (such as fourth-order Runge-Kutta, implicit Euler, and more recently

the Newmark scheme) have been methods of choice in practice [57]. In this chapter, we present

a general-purpose numerical scheme for time integration of Lagrangian dynamical systems - an

important computational tool at the core of most physics-based animation techniques. Several fea-

tures make this particular time integrator highly desirable for computer animation: it numerically

preserves important invariants, such as linear and angular momenta; the symplectic nature of the

integrator also guarantees a correct energy behavior, even when dissipation and external forces are

added; holonomic constraints can also be enforced quite simply; finally, our simple methodology

21

allows for the design of high-order accurate schemes if needed. Two key properties set the method

apart from earlier approaches. First, the nonlinear equations that must be solved during an update

step are replaced by a minimization of a novel functional. Second, the formulation introduces addi-

tional variables that provide key flexibility in the implementation of the method. These properties

are achieved using a discrete form of a general variational principle called the Pontryagin-Hamilton

principle, expressing time integration in a discrete geometric manner analog in spirit to geometric

modeling techniques to design smooth curves or surfaces.

3.2 Fully Variational Integrators

3.2.1 Background

Dynamics as a Variational Problem Considering mechanics from a variational point of view

goes back to Euler, Lagrange and Hamilton. The form of the variational principle most important

for continuous mechanics is due to Hamilton, and is often called Hamilton’s principle or the least

action principle (as we will see later, this is a bit of a misnomer: “stationary action principle” would

be more correct): it states that a dynamical system always finds an optimal course from one position

to another (a more formal definition will be presented in Section 3.2.2). One consequence is that

we can recast the traditional way of thinking about an object accelerating in response to applied

forces, into a geometric viewpoint. There the path followed by the object has optimal geometric

properties—analogous to the notion of geodesics on curved surfaces. This point of view is equiva-

lent to Newton’s laws in the context of classical mechanics, but is broad enough to encompass areas

ranging to E&M and quantum mechanics.

Geometric Integrators Geometric integrators are a class of numerical time-stepping methods

that exploit the geometric structure of mechanical systems [27]. Of particular interest within this

class, variational integrators [47] discretize the variational formulation of mechanics we mentioned

above, providing a solution for most ordinary and partial differential equations that arise in me-

chanics. While the idea of discretizing variational formulations of mechanics is standard for elliptic

problems using Galerkin Finite Element methods for instance, only recently did it get used to derive

variational time-stepping algorithms for mechanical systems. This approach allows the construction

of integrators with any order of accuracy [70, 44], that can handle constraints [40] as well as ex-

ternal forcing. The integrators that are derived from variational principles are symplectic, i.e., they

preserve area in phase space, where the phase space consists of discrete position and momenta vari-

22

ables. This property discretely mimics the symplectic nature of continuous Hamiltonian systems.

Variational integrators have been shown remarkably powerful for simulations of physical phenom-

ena when compared to traditional numerical time stepping methods [36]. This discrete geometric

framework is thus versatile, powerful, and general. For example, the well-known symplectic vari-

ant of the Newmark scheme (velocity Verlet) can best be elucidated by writing it as a variational

integrator [70]. Of particular interest in computer animation, the simplest variational integrator can

be implemented by taking two consecutive positions q0 = q(t0) and q1 = q(t0 + dt) of the sys-

tem to compute the next position q2. Repeating this process calculates an entire discrete (in time)

trajectory.

Accurate vs. Qualitative Integrators While it is unavoidable to make approximations in nu-

merical algorithms (i.e., to differ from the continuous equivalent), the matter becomes whether the

numerics can provide satisfactory results. Qualitative reproduction of phenomena is often favored

in computer animation over absolute accuracy. We argue in the following that one does not have to

ask for either plausibility or accuracy. In fact, we seek a simple method robust enough to provide

good, qualitative simulations that can also be easily rendered arbitrarily accurate. The symplectic

character of variational integrators provides good foundations for the design of robust algorithms:

this property guarantees good statistical predictability through accurate preservation of the geomet-

ric properties of the exact flow of the differential equations. As a consequence, subjectivity offers

long-time energy preservation—a crucial property since large energy increase is often synonymous

with numerical divergence while a large decrease dampens the motion, decreasing visual plausi-

bility. A well-known example where this property is crucial is the simple pendulum (particularly

relevant in robotic applications for articulated figures), for which other (even high-order) integra-

tors can fail in keeping the amplitude of the oscillations (see Figure 3.2). With this in mind, we will

pursue numerical schemes which offer qualitatively-correct as well as arbitrarily accurate solutions.

3.2.2 Overview of Continuous Lagrangian Dynamics

Consider a finite-dimensional dynamical system parameterized by the state variable q (i.e., the vec-

tor containing all degrees of freedom). The Lagrangian function of the system is given as a function

of q and q̇. In classical mechanics, this Lagrangian function L is defined as the kinetic energy K

23

Figure 3.1: Advantages of symplecticity: for the equation of motion of a pendulum of length L in a grav-
itation field g (left), the usual explicit Euler integrator amplifies oscillations, the implicit one
dampens the motion, while a symplectic integrator perfectly captures the periodic nature of the
pendulum (see [66] for details).

minus the potential energy W of the system:

L(q, q̇) = K(q̇) −W(q).

The action functional is the integral of L along a path q(t), over time t ∈ [0,T]. Hamilton’s prin-

ciple now states that the correct path of motion of a dynamical system is such that its action has a

stationary value, i.e., the integral along the correct path has the same value to within first-order in-

finitesimal perturbations. As an “integral principle” this description encompasses the entire motion

of a system between two fixed times.

Computing variations of the action induced by variations δq of the path q(t) results in:

δS (q) = δ

∫ T

0
L(q(t), q̇(t)) dt

=

∫ T

0

[
∂L
∂q
· δq +

∂L
∂q̇
· δq̇

]
dt

=

∫ T

0

[
∂L
∂q
−

d
dt

(
∂L
∂q̇

)]
δqdt +

[
∂L
∂q̇
· δq

]T

0
,

where integration by parts is used in the last equality. When the endpoints of q(t) are held fixed with

respect to all variations δq(t) (i.e., δq(0) = δq(T) = 0), the rightmost term in the above equation

vanishes. Therefore, the condition of stationary action for arbitrary variations δq with fixed end-

points stated in Hamilton’s principle directly indicates that the remaining integrand in the previous

24

equation must be zero for all time t, yielding the well-known Euler-Lagrange equations:

∂L
∂q
−

d
dt

(
∂L
∂q̇

)
= 0. (3.1)

Standard Example. Let K = 1
2 q̇T Mq̇, where M is the mass matrix. Then (3.1) simply states New-

ton’s law: Mq̈ = −∇W(q), i.e., mass times acceleration equals force. Here, the force is conservative

(no damping occurs) since it is derived from a potential function.

Forced Systems. To account for non-conservative forces F (typically, dissipation), the least action

principle is modified to become:

δ

∫ T

0
L(q(t), q̇(t)) dt +

∫ T

0
F(q(t), q̇(t)) · δq dt = 0,

which is known as the Lagrange-d’Alembert principle.

Lagrangian vs. Hamiltonian Mechanics Lagrangian mechanics is not the only existing formal-

ism available. In fact, Hamiltonian mechanics provides an alternative, closely related formulation.

For later use we point out that Hamiltonian mechanics is described in phase space, i.e., the current

state of a dynamical system is given as a pair (q, p), where q is the state variable, while p is the

momentum, defined as p = ∂L/∂q̇.

3.2.3 Discrete Lagrangian Mechanics

The least action principle stated above can be used as a guiding principle to derive discrete integra-

tors. In fact, West [70] proposed a direct discretization of the integral of the Lagrangian to construct

a proper and simple discrete action function. The main idea is to discretize the least action principle

directly rather than discretizing Equation (3.1).

Time Discretization A motion q(t) of the mesh, for t ∈ [0,T], is replaced by a discrete sequence

of poses qk, with k = 0, . . . ,N ∈ N, at discrete times: {t0 = 0, . . . , tk−1, tk, tk+1, . . . , tN = T }; hk+1 is

the timestep between time tk and tk+1. For the cases when constant size timesteps are used hk, hk+1,

hk+2, etc. are often abbreviated with h.

25

Discrete Euler-Lagrange Equations The integral
∫ tk+1

tk
L dt is approximated on each time inter-

val [tk, tk+1] by a discrete Lagrangian1 Ld(qk, qk+1, hk+1), and can be evaluated using an appropriate

quadrature rule. The discrete version of the Lagrangian formulation requires one to find paths {qk}
N
0

such that for all discrete variations {δqk}
N
0 , one has:

δS d = δ

N∑
k=0

Ld(qk, qk+1, hk+1) = 0.

This yields the discrete Euler-Lagrange (DEL) equations :

D1Ld(qk+1, qk+2, hk+2) + D2Ld(qk, qk+1, hk+1) = 0, (3.2)

where D1 and D2 denote differentiation with respect to the first and second arguments. Notice

that this condition only involves three consecutive positions. Therefore, for two given successive

positions qk and qk+1, Eq. (3.2) defines qk+2.

Quadrature-Based Discrete Lagrangian The accuracy of the resulting integrator depends on

the quadrature rule used to approximate the discrete Lagrangian. Second-order explicit time inte-

gration can be derived by using the trapezoidal rule to evaluate the integral of potential energy and

with q̇ replaced by (qk+1 − qk)/hk+1:

Ld(qk, qk+1, hk+1) =
hk+1

2
qk+1 − qk

hk+1

T
M

qk+1 − qk

hk+1
− hk+1

W(qk) + W(qk+1)
2

(3.3)

For an implicit integrator, a simple one-point quadrature can be used:

Ld(qk, qk+1, hk+1) =
hk+1

2
qk+1 − qk

hk+1

T
M

qk+1 − qk

hk+1
− hk+1W((1 − α)qk + αqk+1) (3.4)

where α ∈ [0, 1]. For α equal to 1/2 the quadrature is second order accurate. Note that the equations

for α = 0 and 1 are the same as for the trapezoidal rule if constant size timesteps are used. Any other

value of α leads to linear accuracy. The higher-order quadratures of the Lagrangian lead naturally

to higher-order integration schemes. For more details on the DEL equations, we refer the reader to

an introductory text on discrete mechanics [66].

1This term could also be called an action, as it is a time integral of a Lagrangian; however, just like the term “discrete
curvature” in CG refers to a small local integral of a continuous curvature, we prefer this naming convention.

26

3.2.4 Continuous Hamilton-Pontryagin Principle

The Hamilton-Pontryagin principle (deeply rooted in the control of dynamical systems) states that

the equations of mechanics are given by the critical points of the Hamilton-Pontryagin action:

δ

∫ T

0

[
p(q̇ − v) + L(q, v)

]
dt = 0,

where the configuration variable q, the velocity v and the momentum p are all viewed as independent

variables. (See [72] for an exposition and history.) That is, q(t), v(t), p(t) are varied independently

(with end-point conditions on q(t)). Notice the similarity with Hamilton’s principle: p can be inter-

preted as a Lagrange multiplier to enforce the equality between q̇ and v. The Hamilton-Pontryagin

principle yields equations equivalent to the Euler-Lagrange equations (3.1), since, for the respective

variations δp(t), δq(t) and δv(t) over the three independent variables, we get:

v = q̇,
dp
dt

=
∂L(q, v)
∂q

, p =
∂L(q, v)
∂v

. (3.5)

We stress the important feature this different variational approach brings and that points to the

generality of this principle: with the addition of the new variables, these equations can be understood

from a Lagrangian and Hamiltonian point of view since the formulation involves both phase-space

variables q and p within the action. A more thorough discussion on this connection to Hamiltonian

mechanics can be found in [42].

3.2.5 Discrete Hamilton-Pontryagin Principle

Discrete Variables Same as in the usual formulation, a motion q(t), for t ∈ [0,T], is replaced by a

discrete sequence qk, with k = 0, . . . ,N ∈ N, at discrete times: {t0 = 0, . . . , tk−1, tk, tk+1, . . . , tN = T }.

We similarly discretize v(t) and p(t) by the sets {vk}
N
k=0 and {pk}

N
k=0. Velocities vk+1 and momenta

pk+1 are viewed as approximations within the interval [tk, tk+1], i.e., staggered with respect to the

positions qk.

Quadrature-based Discrete Action We will remain agnostic as to the Lagrangian used in this

section: the cases of non-linear and linear elasticity are addressed using potential elastic energy

given in Chapter 2, but our explanations are valid for any continuous Lagrangian L(q, q̇). The dis-

crete Lagrangian Ld(qk, vk+1, hk+1) is defined in terms of the new variables and is equal to traditional

27

pk−1
qk−1

vk

pk

qk vk+1 qk+1

pk+1

Figure 3.2: Discrete position (in black), momentum (in green), and velocity (in blue) variables.

Ld(qk, qk+1, hk+1) defined in Section 3.2.3, assuming that vk+1 =
qk+1−qk

hk+1
. For example, for one point

quadrature:

Ld(qk, vk+1, hk+1) =
hk+1

2
vT

k+1Mvk+1 − hk+1W(qk + αhk+1vk+1) = Ld(qk, qk+1, hk+1) (3.6)

This quadrature has quadratic accuracy for α = 1/2 and linear accuracy for all other α ∈ [0, 1]

(notice that for α = 0 or 1 the update rules are explicit). Explicit second order accurate scheme can

be achieved with trapezoidal discretization:

Ld(qk, vk+1) =
hk+1

2
vT

k+1Mvk+1 −
hk+1

2
(W(qk) + W(qk + hk+1vk+1)) (3.7)

More accurate quadrature rules (be they of Newton-Cotes or Gaussian type [60], for example) can

be employed to increase the approximation order if necessary.

Discrete Variational Equations Once a discrete Lagrangian is given, a discrete Hamilton-

Pontryagin principle can be expressed through:

δ

N∑
k=0

[
pk+1(

qk+1 − qk

hk+1
− vk+1)hk+1 + Ld(qk, vk+1)

]
= 0. (3.8)

The discrete Hamilton-Pontryagin principle yields, upon taking discrete variations with respect to

each state variable with fixed endpoints:

δp : qk+1 − qk = hk+1vk+1 (3.9)

δq : pk+1 − pk = D1Ld(qk, vk+1) (3.10)

δv : hk+1 pk+1 = D2Ld(qk, vk+1) (3.11)

28

where D1 and D2 denote the differentiation with respect to the first (qk) and second (vk+1) arguments

of Ld and hk+1 = tk+1 − tk.

Natural Update Procedure Given a point in the discrete Pontryagin-state space (qk, vk, pk), the

above equations are to be solved for (qk+1, vk+1, pk+1) in the following way:

• Plug (3.10) into (3.11) so that pk+1 is replaced by a function of pk and D1Ld(qk, vk+1).

• The resulting equation:

D2Ld(qk, vk+1) − hk+1 pk − hk+1D1Ld(qk, vk+1) = 0 (3.12)

can now be solved for vk+1 with any non-linear solver, or used to compute vk+1 directly in the

explicit case.

• qk+1 and pk+1 are found with (3.9) and (3.11) respectively.

Example. For a system with a potential energy W, a mass matrix M, and a Lagrangian discretized

as Ld(qk, vk+1) = 1
2 vT

k+1Mvk+1 −W(qk + 1
2 hvk+1) the update rules are as following:

Mvk+1 +
h
2
∇W(qk +

1
2

hvk+1) − pk = 0

qk+1 = qk + hvk+1

pk+1 = Mvk+1 −
h
2
∇W(qk +

1
2

hvk+1).

Equivalence with DEL Equations One can readily verify (using the chain rule) that the integra-

tion procedure (3.9-3.11) obtained from the discrete Hamilton-Pontryagin principle is mathemati-

cally equivalent to the variational integrator described in [70]. Thus, both schemes share the same

numerical benefits such as the conservation of discrete momenta and energy, as we will discuss

further in Section 3.2.12—but with now more variables to control the motion if needed.

3.2.6 Discrete Pontryagin-d’Alembert Principle

Pontryagin-d’Alembert principle is a generalization of Hamilton-Pontryagin principle for non-conservative

mechanical systems, i.e., for systems with exterior forces. The continuous Pontryagin-d’Alembert

29

principle is given by:

δ

∫ T

0

[
L(q, v) + p(q̇ − v)

]
dt +

∫ T

0
Fν(q, v) · δq dt = 0

where F(q, v) is an arbitrary external non-conservative force.

The discrete Pontryagin-d’Alembert principle can thus be defined as:

δ
(N∑

k=0

pk+1(qk+1 − qk − hkvk+1) + Ld(qk, vk+1)
)
+

N∑
k=0

(
Fd−(qk, vk+1) · δqk + Fd+(qk, vk+1) · δqk+1

)
= 0,

where Fd− and Fd+ approximate the total forcing over a time step (see schematic figure below)

through: ∫ tk+1

tk
F(q, q̇)δq dt ' Fd−(qk, vk+1)δqk + Fd+(qk, vk+1)δqk+1.

Fd−(qk, vk+1) Fd+(qk, vk+1) Fd−(qk+1, vk+2)

tk tk+1

This yields, upon taking discrete variations, the following forced discrete variational equations:

qk+1 − qk = hkvk+1

pk+1 − pk = D1Ld(qk, vk+1) + Fd−(qk, vk+1) + Fd+(qk−1, vk)

hk pk+1 = D2Ld(qk, vk+1).

(3.13)

3.2.7 Integration With Constraints

Imposing constraints on a mechanical system is another way to represent external forces, in cases

when these forces do not need to be resolved directly, and only their effect on the motion of the

system needs to be captured. Our integration scheme can accommodate holonomic constraints, i.e.,

30

constraints that are acting on the configuration space of the system and can be written as

g(q, t) = 0.

Some examples of such constraints include incompressibility of an elastic body, non-penetration, or

fixing some of the degrees of freedom. A convenient way to resolve such constraints is to write the

Hamilton-Pontryagin principle in terms of the variables q, p, and v,while using Lagrange multipliers

λ to impose g(q) = 0:

δ

∫ T

0

[
L(q, v) + p(q̇ − v)

]
dt + λ g(q) = 0.

The discrete counterpart is then given by:

δ

N∑
k=0

pk+1(qk+1 − qk − hkvk+1) + Ld(qk, vk+1) + hkλk+1 g(qk+1) = 0,

which yields the following constrained discrete Hamilton-Pontryagin equations:

qk+1 − qk = hkvk+1

pk+1 − pk = D1Ld(qk, vk+1) + hk λk∇g(qk)

hk pk+1 = D2Ld(qk, vk+1)

g(qk+1) = 0.

(3.14)

These equations can be used by a non-linear solver to derive new positions in time satisfying the

holonomic constraints. For the treatment of non-holonomic constraints, i.e., constraints that involve

conditions on the velocities (that cannot be written as ∇B(q) · v = 0) see [11, 40].

3.2.8 Variational Update

The time integrator that is based on (3.9-3.11) can be replaced by a variational update procedure

done via minimization of an energy-like function given that the dynamical system satisfies certain

integrability conditions as discussed below. This technique extends an idea of Radovitzky and Or-

tiz [61], where Verlet’s integrator was shown to satisfy a minimum principle—a surprising fact given

the extremum nature of Hamilton’s principle. Our construction extends this property to a whole

family of arbitrarily high order schemes that we call fully-variational integrators as a variational

principle is not only used for their derivation, but also for numerical computations.

31

Variational Integrability Assumption We consider the class of dynamical systems whose dis-

crete Lagrangian Ld has the property:

D1Ld(qk, vk+1) = D2P(qk, vk+1) (3.15)

for some function P(qk, vk+1). The property (3.15) will be referred to as the variational integrability

property. One can view this property as a design criterion that some (exceptionally nice) variational

integrators might have, and in fact this condition is strictly equivalent to another formulation given

in Section 2.8 of [44]. However, this particular property is not as restrictive as indicated in this ref-

erence: in fact, most current models used in Computer Animation satisfy it. Indeed, this property is

valid for any quadrature-based discretization of a Lagrangian describing an arbitrary elastic model.

Thus, our assumption is general, and can directly be used to design higher-order accurate schemes

(through higher order quadrature rules which map continuous integrals to discrete sums [47]) still

satisfying this integrability criterion.

7500 8000
0

0.04

0.08

0.12

0 500 1000 1500

-0.1

0

0.1

0 500 1000 1500 7500 8000

Figure 3.3: Momenta and energy behavior for explicit integration over 2 million time steps: non-linear elas-
ticity with explicit integration is used to simulate an elastic rod (160 tets), given a non-zero initial
position-momentum. No damping or external forces are used. Notice that the energy remains
stable and the momenta are exactly preserved, even after 8000 seconds of simulation with a time
step of 0.004s.

Fully-Variational Update Now, start again with the variational equations (3.9-3.11). Clearly,

(3.11) can be rewritten as:

∂

∂vk+1

[
−hk pk+1vk+1 + Ld(qk, vk+1)

]
= −hk pk+1 + D2Ld(qk, vk+1) = 0

32

We can substitute (3.10) in the above equation to get:

−hk pk − hkD1Ld(qk, vk+1) + D2Ld(qk, vk+1) = 0

Thanks to the variational integrability property, this last equation can be rewritten as

∂

∂vk+1

[
−hk pkvk+1 − hkP(qk, vk+1) + Ld(qk, vk+1)

]
= 0. (3.16)

The quantity inside the bracket is an energy-like function of qk, pk and vk+1 and will be referred to

hereafter as the Lilyan function E:

E(vk+1) = −hk pkvk+1 − hkP(qk, vk+1) + Ld(qk, vk+1). (3.17)

The value of vk+1 can then be found as a critical point of the Lilyan. We can now state the following

result:

Suppose that the variational integrability property (3.15) holds. Given the triplet (qk, pk, vk),

we can find vk+1 by minimizing the Lilyan defined by (3.17), while qk+1 and pk+1 are then ex-

plicitly computed using (3.9) and (3.10). The resulting triplet (qk+1, pk+1, vk+1) satisfies (3.9),

(3.10), and (3.11), giving us a fully variational integration scheme. In particular, this proce-

dure defines a (symplectic) update map (qk, pk) 7→ (qk+1, pk+1).

Proof. Of course (3.9) and (3.10) are satisfied by construction. We need to check that (3.11) holds

when minimizing (3.17) with respect to vk+1. However, this is a simple calculation:

hk pk+1 = hk pk + hkD1Ld(qk, vk+1) [definition of pk+1]

= hk pk + hkD2P(qk, vk+1) [using eq. (3.15)]

=
∂

∂vk+1

[
hk pkvk+1 + hkP(qk, vk+1)

]
=

∂

∂vk+1
Ld(qk, vk+1) [assumed eq. (3.16)]

= D2Ld(qk, vk+1),

which is the desired equation (3.11). The last statement of our claim holds because this update map

33

is equivalent to the position momentum form of the DEL equation mentioned in [70]. �

Example. For the system mentioned in the example in Section 3.2.5 the update rules

Mvk+1 +
h
2
∇W(qk +

1
2

hvk+1) − pk = 0

qk+1 = qk + hvk+1

pk+1 = Mvk+1 −
h
2
∇W(qk +

1
2

hvk+1)

can be written as the variational update procedure:

argmin
vk+1∈R3n

1
2

vT
k+1Mvk+1 + W(qk +

1
2

hvk+1) − pkvk+1

qk+1 = qk + hvk+1

pk+1 = Mvk+1 −
h
2
∇W(qk +

1
2

hvk+1).

7500 8000150010000 500
0

0.04

0.08

0.12

-0.1

0

0.1

0 500 1000 1500 7500 8000

Figure 3.4: Damping is added to the same setup as in Fig. 3.3. The energy plot shows a smooth decrease
over time, while momenta are still exactly preserved, even after 2 million time steps (explicit
integration was used, with a constant time step of 0.004s).

34

0

0.05

0.1

0 25
....

7975 8000
-0.1

0

0 25 7975 8000
....

Angular Moment in Z Direction Total Energy

Figure 3.5: Comparison of our damping model (same setup as in Fig. 3.4) to numerical damping introduced
by damped version of Newmark integrator [36]. Green and blue lines are angular momenta and
energy of the bar with Newmark integrator with the time step 0.004 and 0.002 respectively. Red
lines are angular momenta and energy of the bar when variational integrator is used with the time
step 0.004 and 0.002 (notice that energy loss and momenta preservation is independent of the
time step used).

3.2.9 Including External Forces into Variational Update

Most of the update rules that include external forces (such as Eqs. (3.13)) or constraints (such as

Eqs. (3.14)) can also be transformed into the variational update procedure. To account for explicit

forces or constraints the terms Fd+(qk−1, vk) · vk+1 and λk∇g(qk) · vk+1 respectively are simply added

to the Lilyan. To incorporate implicit forces Fd−(qk, vk+1) , they need to be integrable, i.e., there is

a function B(vk+1) such that

∇B(vk+1) = Fd−(qk, vk+1).

Notice that such function exists when the Jacobian of the forces ∂Fd−(qk ,vk+1)
∂vk+1

is symmetric. If B(vk+1)

exists, it is added to the Lilyan, otherwise one will need to use this force explicitly, modify it to be

integrable, or revert to root finding.

Example: Damping forces. The damping forces described in Section 2.3 can be incorporated into

variational time integrators by either using the explicit damping force

Fd+ = FdampExp(qk−1, qk) = −kD∇W(F(qk−1, qk)),

or the implicit damping force

Fd− = FdampImp(qk, vk+1) = kD∇W(F(qk+1, qk)).

However FdampImp(qk, vk+1) is not integrable, so in practice we use a slight approximation:

Fd
dampImpApprox(qk, vk+1) = −kD∇W(F(qk, qk+1)).

35

Such force is integrable and is much more efficient to compute; although it does not conserve

angular momenta exactly, it keeps the oscillations of the momenta bounded so the visual plausibility

is not lost.

3.2.10 Resolving Collisions Using Penalty Potentials

Collisions and contact between deformable objects are an essential part of creating lively and re-

alistic animations, so the problem of resolving collisions has received extensive attention from the

computer graphics community. Numerous methods to handle collision response for rigid or de-

formable bodies have been developed, which can be loosely classified into constraint-based [3, 37],

impulse-based [49], projection-based [38], or penalty-based [67] methods or often a combination

of them [13, 30]. The geometric mechanics community has addressed variational approaches to

collision response [22, 23], however, since these methods compute the exact time of each particle

collision, they lack the efficiency needed for simulation of complex deformable objects.

In the examples presented in this thesis, a penalty-based, variational approach to collision response

was employed. The penalty function is traditionally computed as a penetration distance, area, or

volume. This function should have a minimum when the objects are touching and is set to zero

when the objects are separated. Adding penalty function directly to the Lagrangian as an extra

potential leads to a fully elastic collision response (the energy after the collision is reserved), elim-

inating artificial numerical friction and allowing for precise control of frictional forces. Similar to

other penalty-based methods, the collisions are not exactly resolved at each given time, and we rec-

ommend using extra projection only for the visualization purposes in order to resolve these artifacts

without corrupting the dynamics. A more robust approach to penalty-based, variational collision

response was developed in [29] in the context of asynchronous variational integrators.

3.2.11 Discussion on Numerics

Current variational integrators resort to non-linear (root finding) solvers to find the next position so

that it satisfies the DEL equations (typically using an algorithm such as Newton’s method [60]). Our

novel integration scheme is, so far, no different: Eq. 3.12 needs to be solved similarly. Although

seemingly related to a minimization, solving a set of non-linear equations can be far more delicate.

The reason is quite simple: while the notion of “downhill” for a scalar field is easy and well defined,

it does not translate directly to the case of multidimensional fields where there are conflicting down-

36

hill directions in each dimension. To circumvent this issue, solvers traditionally use the notion of

“merit function” (the squared norm of the residual) to monitor the progress made towards reaching

the zero [54]. Significant computational gain could thus be achieved by having a scalar function to

minimize instead, with lower order and complexity than the merit function. In fact, this idea is very

much responsible for the success of the well-known Conjugate Gradient method to solve a linear

system like Ax = b. Its foundations come from a minimization technique applied to the function

f (x) = 1
2 xtAx−bx. If one were to use the residual ‖Ax−b‖2 instead, the “merit function” has a term

in xt(AtA)x, resulting in a worse condition number. When non-linear equations are to be solved, the

gain can be even greater. A closer look shows that if hk+1 is small, the Lilyan E is quadratic in vk+1:

the terms depending on the potential energy are of order h2
k+1, leaving only pkvk+1 and the kinetic

energy as terms of order hk+1—and those form a quadratic function of vk+1. Thus, for small enough

time steps, one can always find vk+1 as the value that globally minimizes the Lilyan for the current

values of qk and pk.

Improved Numerics for Implicit Integrators Although implicit symplectic integrators with

fixed time-step size theoretically preserve energy extremely well, choosing a fairly large tolerance

for the non-linear solver (as commonly used in graphics for efficiency reasons) can have spurious

consequences in the long run: the inaccuracies in the solves can conspire to result in energy drift.

A simple and inexpensive fix is to reinject whatever residual the solver gets after solving the DEL

equations

rk+1 = DEL(qk−1, qk, qk+1)

into the next DEL equations

DEL(qk, qk+1, qk+2) + rk+1 = 0

as if coming from an external forcing: in this fashion, numerical inaccuracies get accounted for at

the next time step. Our tests show that this procedure allows for more slack on the tolerance without

noticeable consequences (up to a certain point).

Example. Consider solving a system previously described in the example in Section 3.2.8:

argmin
vk+1∈R3n

1
2

vT
k+1Mvk+1 + W(qk +

1
2

hvk+1) − pkvk+1.

The residual is computed as the value of the gradient of the above energy at the solution (ideally it

37

should be zero):

rk+1 = Mvk+1 +
h
2
∇W(qk +

1
2

hvk+1) − pk,

and reinjected into the system using momenta update:

pk+1 = Mvk+1 −
h
2
∇W(qk +

1
2

hvk+1) − rk+1

Notice that the above equation is equivalent to Equation (3.10) without accounting for the residual.

3.2.12 Pontryagin Version of the Discrete Noether’s Theorem

A nice feature of discrete variational framework is that the relationship between symmetry and con-

served quantities matches the continuous theory of mechanics. More precisely, the invariance of the

(continuous) Lagrangian under a given set of transformations of its variables defines its symmetries.

Clearly, these leave the action integral invariant as well. Thus symmetries give rise to conserved

quantities, as stated in Noether’s theorem. For example, the invariance of L(q(t), q̇(t)) under trans-

lations and rotations results in the conservation of linear and angular momenta, respectively. This

section shows how the invariants of the Lagrangian are used to derive conservation properties of the

corresponding update rule.

Combining Equations (3.10) and (3.11), we get the Pontryagin version of DEL:

hD1Ld(qk, vk+1) + D2Ld(qk−1, vk) = D2Ld(qk, vk+1). (3.18)

In the following, suppose we organize qk into groups of 3 DoFs that correspond to (x, y, z).

Linear and Angular Momenta To show the conservation of linear momenta, we assume invari-

ance under a translation βu:

Ld(qk + βu, vk+1) = Ld(qk, vk+1),

where the same translation is applied to each group of D0Fs. Taking variations of this Lagrangian

with respect to β at β = 0 gives the following equation:

D1Ld(qk, vk+1) · u = 0. (3.19)

38

Plugging (3.19) into Equation (3.18)·u and using the expression for pk and pk+1 from Equation (3.10),

gives the linear momenta preservation formula expressed in terms of the discrete Lagrangian:

D2Ld(qk, vk+1)
h

· u =
D2Ld(qk−1, vk)

h
· u,

which implies

pk+1 · u = pk · u.

A similar procedure can be done to show angular momenta preservation. Add an infinitesimal

rotation Rω(β) to the Lagrangian: Ld(Rω(β)qk,Rω(β)vk+1), where Rω(β) is a block diagonal matrix

with each block the same 3 × 3 rotation matrix representing a rotation around axis ω. Taking

variations of this expression with respect to β gives:

D1Ld(qk, vk+1) · (ω × qk) + D2Ld(qk, vk+1) · (ω × vk+1) = 0, (3.20)

where the cross product is applied to each group of 3 DoFs in q. Subtracting the above from

Equation (3.18)·(ω × qk) (and switching the order of cross and dot product using the triple product

rule) gives the angular momenta preservation rule (around axis ω) as:

(
D2Ld(qk, vk+1)

h
× qk+1) · (ω . . . ω)t = (

D2Ld(qk−1, vk)
h

× qk) · (ω . . . ω)t,

or, equivalently,

(pk+1 × qk+1) · (ω . . . ω)t = (pk × qk) · (ω . . . ω)t,

where, again, cross product is done between groups of 3 DoFs.

Conservation of linear momenta and conservation of angular momenta can be seen as two special

cases of the general Noether’s theorem, where the invariance of the Lagrangian under translation

and rotation is assumed. Similarly, if the Lagrangian is invariant under the action of another one

parameter symmetry Lie group G(α), the preservation rule would be:

D2Ld(qk, vk+1)
h

· (G′(0)qk+1) =
D2Ld(qk−1, vk)

h
· (G′(0)qk).

39

Discrete Energy Behavior The symplectic nature of our scheme also guarantees good energy be-

havior. For conservative systems, the integration shows a nice energy preservation as demonstrated

in Figure 3.3. An expression for the bounded difference of discrete energies E(qk−1, vk)−E(qk, vk+1)

can be obtained by taking variations of the discrete action with respect to tk. This expression

is more conveniently derived from discrete Hamilton’s principle, but can also be derived from

Hamilton-Pontryagin principle. Below is an example derivation of the difference of discrete en-

ergies for the midpoint quadrature of the Lagrangian. Taking variation of (3.8) w.r.t. tk (remember

that hk = tk − tk−1 and hk+1 = tk+1 − tk) leads to:

−
Mv2

k+1

2
+ W

(
qk +

hk+1

2
vk+1

)
+ pk+1vk+1 +

hk+1vk+1

2
∇W

(
qk +

hk+1

2
vk+1

)
−

−Mv2
k

2
+ W

(
qk−1 +

hk

2
vk

)
+ pkvk +

hkvk

2
∇W

(
qk−1 +

hk

2
vk

) = 0,
(3.21)

using the identity obtained from taking variations of (3.8) w.r.t. vk+1

pk+1 +
hk+1

2
∇W

(
qk +

hk+1

2
vk+1

)
= Mvk+1,

and plugging it into (3.21), the usual expression for the discrete energy is obtained: E(qk, vk+1) =

Mv2
k+1

2 + W
(
qk +

hk+1
2 vk+1

)
.

The proper treatment of forced systems handles energy dissipation gracefully as well (see Fig-

ure 3.4). Note that the energy dissipation in more traditional integrators is often a mix of user-

prescribed damping and uncontrollable numerical viscosity (depending on the time step size). In

sharp contrast, our algorithm allows a precise control of the amount of damping introduced in the

simulation independent of the time step used for simulation—a particularly desirable property when

the same simulation needs to be run with different time step, for example for preview purposes.

Special Case of Quadratic Potentials It is worth mentioning that, in special cases, when the

Lagrangian is at most quadratic function of positions (e.g., linear elasticity Lagrangian) and the

potential energy is discretized using midpoint rule, the update equations obtained using variational

integrator coincide with the discrete energy-momentum preserving updates from [64]. Thus, such

update rule is both symplectic and energy preserving, where the energy exactly conserved is ex-

pressed now as Ẽk = 1
2 pT

k M−1 pk + W (qk).

40

3.3 Variational Approach to Time Adaption

While variational integrators offer robust and accurate time integration when a fixed time step size

is used, the situation is quite different when the time step size is changed throughout simulation.

In fact, there has been repeated evidence that naively changing the time step size can be quite

harmful to the qualitative behavior of a simulation (see [65] and Fig. 3.6): symplecticity is no longer

enforced, resulting in growing errors in energy and positions similar to non-symplectic integrators

of equivalent accuracy order, even if the time step size is adapted in a way intended to improve

accuracy [27]. This is a serious limitation, since a fixed time step is inefficient for most applications.

In recent years, time-adaptive integrators that maintain their symplectic nature have been proposed

in the context of Hamiltonian systems [27, 14], often based on a Sundman/Poincaré transforma-

tion [9]. However, no equivalent has been proposed for variational integrators derived in the La-

grangian setting. We present a way to handle time adaption rigorously in the Lagrangian setting to

preserve the typical numerical properties expected from a variational integrator.

To
ta

l E
ne

rg
y

Iterations

Skeel Example

1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1000

0.25

100

0.2

0

0.2

Iterations

Ti
m

e
St

ep
Po

si
tio

n

Figure 3.6: This 1D linear spring example, taken from Skeel [65], shows that certain time adaption strategies
(in particular when time step is changed every quarter period) can lead to non-linear grows in
energy (pink plot of the the total energy). Using our method for the same example leads to long
term good energy behavior (blue energy plot).

3.3.1 Time Step Control

Both implicit and explicit integration methods require the choice of a time step size h for integration.

If h is too small, the efficiency of an integration scheme can be dramatically low; if h is too large,

numerical blow-ups are likely to occur. Thus, as dynamical systems usually evolve very unevenly

through time (sometimes quickly, sometimes slowly), an obvious idea to optimize performance is

41

Iterations in thousands

To
ta

l E
ne

rg
y

Figure 3.7: When a time step is naively changed during pendulum simulation as a function of current posi-
tion (non-adapted explicit) or next position (non-adapted implicit), energy decay or grows can
happen. Using out time adaption strategy fixes this drift in the energy.

to introduce variable time stepping. For generality, let’s suppose that we have a heuristic for time

adaption of the form:

tk+1 = tk + hσ(qk, qk+1). (3.22)

We will provide various such functions σ(qk, qk+1), or σ-rules, in Section 3.3.6, but remain agnostic

about their exact expressions for now, as the design of a σ-rule is likely to be highly application-

dependent. The only assumptions on σ we will make is that it is differentiable, and bounded from

below, i.e., there exists a positive value σmin > 0 such that:

∀(q, r), σmin ≤ σ(q, r). (3.23)

This value will guarantee that the simulation always goes strictly forward in time: for any given

strictly positive h, time step sizes will be positive and larger than hσmin. Notice that for the trivial

choice σ = 1, we get fixed time steps of size h.

3.3.2 Naive Enforcement of Time Adaption

In the case where σ depends only on qk (i.e., for explicit time adaption heuristics), one could try to

control the time step in a manner similar to previous adaption approaches: from the current position

qk, the next time step tk+1 is computed as tk+1 = tk + hσ(qk); in turn, the next position qk+1 can be

solved for using one’s favorite time integrator. Although the order of accuracy can be maintained

42

even with such non-constant time step sizes, there is no guarantee that other numerical artifacts will

not appear. In fact, Fig. 3.6 shows that such a time adaption strategy can fail even for a system as

simple as a single spring.

One could instead be tempted to directly incorporate this time step update rule (explicit or implicit

this time) into one’s favorite implicit integrator to increase stability: it is likely more stable to

find qk+1 and tk+1 simultaneously by performing a (non-linear) solve on the usual implicit update

rules and the time step control in Eq. (3.22). While the stability of the resulting integrator may be

improved, this approach is no longer symplectic, and can thus lead to energy drift, accompanied by

numerical issues after a number of time steps (see Fig. 3.7 and [27]). A principled approach to time

adaption is thus direly needed.

3.3.3 Hamilton Principle with Added Time Constraints

Rather than trying to add the time adaption into an existing time integration update rule such as

Eq. (3.2) or Eqs. (3.9-3.11), we go back to Hamilton’s key principle behind variational integrators

and include a constraint to ensure time step control directly at the level of the discrete action. This

will allow us to formulate the integrator in such a way that, by leveraging the symplecticity of

variational integrators for fixed time steps, both stability and correct qualitative behavior can be

achieved. For clarity we first assume no external, non-conservative forces, before presenting the

full treatment. We still want to satisfy Hamilton’s principle numerically, but this time under the

constraint of the time adaptation rule tk+1− tk = hσ(qk, qk+1). Notice that it reduces to the regular

case of variational integrators with constant time step if σ(qk, qk+1)=1. To solve such a constrained

extremization problem, a common technique is to enforce the constraint using a Lagrange multiplier

λ as described in Section 3.2.7. In our case, we can rewrite the discrete (but now constrained) action

Ŝ K
0 as a function of the qk’s, tk’s, and λk’s:

Ŝ K
0 =

K−1∑
k=0

[
L(qk, qk+1, tk+1 − tk) + λk

(
tk+1 − tk − hσ(qk, qk+1)

)]
(3.24)

Hamilton’s principle states that the solution path {qk, tk} is a critical point of the discrete time-

adapted action Ŝ for fixed end points (q0, t0) and (qK , tK). Thus, variations of the action with respect

to qk, tk, and λk must vanish (the variation w.r.t tk is often called horizontal variation in Lagrangian

43

mechanics literature), yielding respectively:

D1Lk,k+1 + D2Lk−1,k − hλk−1
∂σ(qk−1, qk)

∂qk
− hλk

∂σ(qk, qk+1)
∂qk

= 0 (3.25)

λk = λk−1 + (Ek+1 − Ek) (3.26)

tk+1 = tk + h σ(qk, qk+1) (3.27)

where Ek+1 is the discrete energy expressed as

Ek+1 = −D3L(qk, qk+1, tk+1 − tk),

E0 is thus the initial energy of the system. These equations form an update rule, which solves for

tk+1, qk+1, and λk from tk−1, tk, qk−1, qk, and λk−1. The system is bootstrapped with t0, t1, q0, q1, and

λ0 = 0. One can verify that the case σ= 1 gives back the ordinary DEL equation for fixed time step

sizes, as Eq. (3.25) reduces to Eq. (3.2). Notice that Eq. (3.27), resulting from the variation with

respect to λk, is the desired time update rule as expected; note also that Eq. (3.26) can be rewritten

as λk = Ek+1 − E0.

3.3.4 Convergence Analysis

A closer look at Eqs. (3.25), (3.27), and (3.26) reveals that if λk stays near zero, the new time-

adapted DEL equation is only a slight modification to the fixed-time-step DEL equation (Eq. (3.2)),

and the fixed-time-step discrete energy Ek stays near the initial energy E0. In other words, as

long as λk remains small enough, our integrator provides a discrete path in space-time whose local

flow remains nearby the one defined by the original system without losing its long term energy

preservation properties.

To convince ourselves that any time adaption rule σ will have this property (and thus, result in a

valid integrator), let us define fictitious time steps τk that are equispaced such that h=τk+1 − τk. We

may now view the above integrator as a variational integrator with fixed (fictitious) time steps h of

a modified mechanical system with an action integral:

K−1∑
k=0

[
L(qk, qk+1) + λk

(
tk+1 − tk − (τk+1 − τk)σ(qk, qk+1)

)]

44

Now taking variations with respect to τk gives the difference of discrete energies as:

Êk+1 − Êk = λkσ(qk, qk+1) − λk−1σ(qk−1, qk)

Thus the discrete energy of this time-adapted system being essentially preserved by this integrator

is:

Êk+1 = λk σ(qk, qk+1) = (Ek+1 − E0) σ(qk, qk+1).

Since this is now a variational integrator with fixed time steps, albeit of a different system, we

inherit the long-time energy conservation of symplectic schemes. In particular, it means that there

is essentially no accumulation of errors in time of the energy Ê, and since Ê0 = 0 by definition, we

get Êk =O(h2) over exponentially long time intervals for integrators with quadratic accuracy. Since

we required that σ be bounded from below by σmin, we have |Ek − E0|=O(h2/σmin), guaranteeing

that the original energy Ek remains near E0 if h is small enough: no noticeable energetic gain or loss

is added to the system through time adaption, and each iteration corresponds to a slightly modified

flow of the system we wish to simulate. (Note that since |Ek−E0|=O(h2/σk), the original discrete

energy may get further away from E0 than for constant time steps due to the approximate nature

of this energy estimate; but no error accumulation will be produced.) Consequently, our treatment

of time adaption preserve the same numerical properties as variational integrators with fixed time

steps.

3.3.5 External and Dissipative Forces

In continuum Lagrangian mechanics, external forces that cannot be expressed as deriving from a

potential (and therefore result in loss or gain of energy) are treated through the Lagrange-d’Alembert

principle, an extension of Hamilton’s principle to account for the added dissipative forces:

δ

∫ T

0
Ldt +

∫ T

0
F(δq − q̇δt)dt = 0,

where F is the external force. An important remark is in order here: notice that former approaches to

dissipative forces for symplectic integrators do not include the term q̇δt as they are not considering

variations of time [47]. However, the effective virtual spatial displacement for a variation in space

and time does require this term: a change in the time sequence {tk}N0 with a fixed space sequence

{qk}
N
0 results in a change in space q(t) for a given instant t. Implementing this variational principle

45

is achieved quite simply through a two-point quadrature rule of the external forces integrated over a

time interval [tk, tk+1], leading to the expression of the approximate forcing term as:

[
F−(qk, qk+1)(δqk − vk,k+1δtk) + F+(qk, qk+1)(δqk+1 − vk,k+1δtk+1)

]
(tk+1 − tk),

where F−(qk, qk+1) and F+(qk, qk+1) are the forces evaluated at the first and second quadrature points

of the time interval respectively, and vk,k+1 =
qk+1−qk
tk+1−tk

is the velocity between times tk and tk+1. Incor-

porating these forcing terms into the time-adapted Euler-Lagrange equations, Eq. (3.25) becomes:

D1L(qk, qk+1) + D2L(qk−1, qk) − hλk−1
∂σ(qk−1, qk)

∂qk
− hλk

∂σ(qk, qk+1)
∂qk

+ F+(qk−1, qk)(tk − tk−1) + F−(qk, qk+1)(tk+1 − tk) = 0,

and Eq. (3.26) becomes:

λk = λk−1 + (Ek+1 − Ek) − F+(qk−1, qk)(qk − qk−1) − F−(qk, qk+1)(qk+1 − qk).

These changes correspond to accounting for the external forces in the momentum update, and com-

pensating for the work done by these forces in the change of energy, respectively. Note that the latter

change will keep λ close to 0 as the energy level changes over time based on the external forces. In

particular, damping forces often used in computer animation are accurately treated by this formula-

tion despite uneven time step sizes. Similarly, nonconservative collision or friction forces can also

be handled this way.

3.3.6 Examples of Particular Integrators

We now discuss the design of symplectic time adapted integrators by providing general principles

as well as specific examples of σ-rules and different discretizations of the Lagrangian useful in the

context of computer animation. We tested a series of relevant adaption strategies suggested in [27],

including:

• Equispaced poses:

σ(qk, qk+1) = 1/
√

E0−W(qk+qk+1
2)+ε.

• Equispaced phase space points:

46

10 20 30 40 50 60

4

3

2

1

10 20 30 40 50 60

4

3

2

1

10 20 30 40 50 60

4

3

2

1

10 20 30 40 50 60

4

3

2

1

50 100 150 200

4

3

2

1

50 100 150 200

4

3

2

1

20 40 60 80 100 120 140

4

3

2

1

50 100 150 200 250

4

3

2

1

Iterations Iterations Iterations Iterations

A
ng
le

A
ng
le

A
ng
le

A
ng
le

A
ng
le

A
ng
le

A
ng
le

A
ng
le

Time Time Time Time

(a) (b) (c) (d)
Figure 3.8: Using various time adaption strategies for a simple pendulum. The top row shows the motion of

the pendulum for one period; the middle and the bottom rows plot the angle of the pendulum with
respect to iterations and time respectively. (a) integration of the period with the fixed timestep,
(b) equispaced positions, (c) equispaced phase space points, (d) time step adapted to acceleration.

σ(qk,qk+1)=1/
√

E0−W(qk+qk+1
2)+||∇W(qk+qk+1

2)||2+ε.

• Time step adapted to acceleration:

σ(qk, qk+1) = ||∇W(qk) + ∇W(qk+1) + ε||−1.

The results of using these particular σ-rules are shown in Figure 3.8. Notice that the coefficient ε

serves two purposes, preventing division by zero while also providing a guaranteed lower bound for

σ as required for symplecticity. More application-specific rules, such as decreasing time steps when

the object is in a given region of space (for example for resolving collisions), can easily be imple-

mented as well. Particularly for explicit integrators, it is often useful to base σ on a “smoothed”

energy function, so that time steps can be decreased shortly before reaching a numerically stiff state.

In fact, even totally aphysical rules can lead to a successful integrator, although this often places a

heavy burden on the numerical solver.

After one picks a relevant time adaption strategy: the quadratures for integrating the Lagrangian,

and the σ-function, the equations of motions are derived using Eqs. (3.25-3.27). For example,

47

update rules based on a discrete Lagrangian L =
(qk+1−qk)TM(qk+1−qk)

2(tk+1−tk) −W(qk)(tk+1− tk) and an explicit

adaption function σ are:

qk+1 = qk + M−1
(

M(qk − qk−1)
(tk − tk−1)

− (tk+1 − tk)∇W(qk) − λk∇σ(qk)
)

(tk+1 − tk)

λk = λk−1 +
(qk+1 − qk)T M(qk+1 − qk)

2(tk+1 − tk)2 + W(qk) −
(qk − qk−1)T M(qk − qk−1)

2(tk − tk−1)2 −W(qk−1)

tk+1 = tk + hσ(qk)

Notice that even though the discretizations of both Lagrangian and σ are explicit, the resulting

update equations are implicit because the update of λk is quadratic in qk+1, and the update of qk+1

depends on λk. Here is another example of the update equations, now in the case when midpoint

quadrature is used for both Lagrangian and σ:

M(qk − qk−1)
(tk − tk−1)

−
M(qk+1 − qk)

(tk+1 − tk)
−

(tk+1 − tk)
2

∇W(
qk + qk+1

2
) −

(tk − tk−1)
2

∇W(
qk−1 + qk

2
)

−
λk−1

2
∇σ(

qk−1 + qk

2
) −

λk

2
∇σ(

qk + qk+1

2
) = 0,

λk = λk−1 +
(qk+1 − qk)T M(qk+1 − qk)

2(tk+1 − tk)2 + W(
qk + qk+1

2
) −

(qk − qk−1)T M(qk − qk−1)
2(tk − tk−1)2 −W(

qk−1 + qk

2
),

tk+1 = tk + hσ(
qk + qk+1

2
).

In this case, all the above equations (in total 3M + 2 equations in 3D for a mesh with M vertices)

need to be solved simultaneously using an appropriate non-linear solver.

3.3.7 Limitations

Our symplectic approach to time-adapted integrators requires similar type of non-linear solves as

traditional implicit DEL equations for the fixed time step. The only noticeable difference is in the

computation of the Jacobian of DEL: now that time and space are both solved for, the Jacobian

is no longer symmetric; moreover, its terms due the ∇σ term in the DEL equations (Eq. (3.25))

can be quite involved, and make the matrix potentially dense. To palliate this last numerical issue,

we simply disregard these terms, thus considerably simplifying the assembling of the Jacobian

matrix—as is commonly done for complex energies (see, e.g., [4]). We did, however, notice that

this simplification can result in more iterations needed for the convergence of the nonlinear solver.

The most important limitation that we have found while testing our method, is that the fictitious time

48

50 100 150 200

20

40

60

80

100

120

2 4 6 8 10

50

100

150

200

250

300

350

2 4 6 8 10

50

100

150

200

250

300

20 40 60 80 100

20

40

60

80

100

120

50 100 150 200

20

40

60

80

100

120

20 40 60 80 100

50

100

150

50 100 150 200

20

40

60

80

100

120

20 40 60 80 100

50

100

150

200

(a) (b)

(c)

(h)

(d) (e)

(f) (g)

Total Energy

Potential Energy

Kinetic Energy

Figure 3.9: Energy plots of time adaption tests for a system of 3 point masses connected by 3 linear springs,
the Lagrangian is discretized using midpoint quadrature. The time adaption strategy is picked
so that σ = 1

W/10+1 for (c, d, e) and σ = 2
W/10+1 for (f, g, h, and b). In (c) and (f) naive time

adaption is performed (new time step is computed using explicit σ-rule and is than used in the
standard DEL equation); (d) and (g) use symplectic time adaption and explicit σ, and in (e) and
(h) midpoint discretization is used, but symplecticity is not enforced, finally (b) uses midpoint
discretization of σ with symplecticity enforced. Note that for larger timesteps symplectic time
adaptive integrators “blow up” while time reversible ones (e and h) remains stable. Moreover,
(a) shows that the symplectic integrator with the large constant time step (where the size of the
timestep is the same as the largest step in all the other simulations) still behaves reasonably, while
being significantly more efficient.

49

step h = τk+1 − τk might need to be decreased to guarantee the stability of the modified system. As

Figure 3.9 shows, in such cases the stability restriction on real time steps tk+1 − tk could be stronger

than if one was to use traditional variational integrators with the constant time step. Thus, if the

goal of adapting time step size is achieving efficiency, symplectic time adaption may not always

be the right choice. We now discuss an alternative, time reversible approach to time adaption that

according to our tests allows for larger time steps.

3.4 Time Reversible Integrators

Time reversible continuous mechanical system have the property that if the initial velocity is negated

and the initial position is kept the same, the direction of the motion of the system is inverted, but the

shape of the trajectory in space-time remains the same. In other words, the system will follow the

same motion backwards when run with negative timesteps. It turns out that keeping time reversibil-

ity property when creating discrete integrators leads to numerical solutions that have long-time be-

havior similar to that of symplectic integrators [27]. Discrete update rule Ψ(qk, qk+1, qk+2, hk+1, hk+2) :

(qk, qk+1, hk+1, hk+2)→ qk+2 is said to be time-reversible or symmetric if Ψ(qk, qk+1, qk+2, hk+1, hk+2) =

−Ψ(qk+2, qk+1, qk,−hk+2,−hk+1). For example, discrete Euler-Lagrange equation (3.2) is both sym-

plectic and time-reversible when:

D1Ld(qk+1, qk+2, hk+2) + D2Ld(qk, qk+1, hk+1) = −D1Ld(qk+1, qk,−hk+1) − D2Ld(qk+2, qk+1,−hk+2).

(3.28)

In general, if the discrete Lagrangian has the property:

Ld(q0, q1, h) = −Ld(q1, q0,−h) (3.29)

then the variational integrator obtained from such Lagrangian is time-reversible.

Proof. Differenting both side of the Eq. (3.29) by q0 gives

D1Ld(q0, q1, h) = −D2Ld(q1, q0,−h).

This implies that D1Ld(qk+1, qk+2, hk+2) = −D2Ld(qk+2, qk+1,−hk+2) and D2Ld(qk, qk+1, hk+1) =

−D1Ld(qk+1, qk,−hk+1), making the right and the left hand sides of Eq. (3.28) equal. �

50

(a) (b)

Total Energy

Potential Energy

Kinetic Energy
10 20 30 40 50

200

400

600

800

10 20 30 40 50

20

40

60

80

100

120

Time Time

En
er

gy

En
er

gy

Figure 3.10: The same set-up as on the Figure 3.9: a system of 3 point masses connected by 3 linear
springs, σ = 1

W/10+1 . (a) shows energy plot of the simulation where naive time adaption is
performed (new time step is computed using explicit σ-rule and is than used in the standard
DEL equation obtained from the Lagrangian which is discretized using midpoint quadrature:
(qk+1−qk)TM(qk+1−qk)

2h − W(qk+qk+1
2)h); (b) shows energy plot of the simulation with the same σ dis-

cretization, but the Lagrangian is now not symmetric: (qk+1−qk)TM(qk+1−qk)
2h −W(3qk

4 +
qk+1

4)h. Notice
that a symmetric update rule yields a slight energy drift when the time step is not constant,
while a non-symmetric update yields the fast “blow up” of the simulation.

Examples of time reversible discretizations of the Lagrangian are midpoint and trapezoidal rules.

For the systems that are time reversible, the use of time reversible variational integrators is preferred.

Such integrators do not only capture the symmetry of the system on the discrete level, but also lead

to update rules that are at least quadratic accurate. This property is especially important when the

time step size keeps on changing, because linear accuracy in time can than cause very large errors,

see Figure. 3.10.

3.4.1 Time Reversible Approach to Time Adaption

It turns out that enforcing symplecticity for timestep adaptation is not always required: one can

obtain good long-term behavior using time reversible approach to time adaption (see Figure 3.9). A

time adaptive integrator is time reversible (or symmetric) when both its update rule and its σ rule

are symmetric. One type of integrators that satisfy this property can be written as:

ĥk+1 = hσ(qk, qk+1) = hσ(qk+1, qk) (3.30)

ĥk+2 = hσ(qk+1, qk+2) = hσ(qk+2, qk+1) (3.31)

D1Ld(qk+1, qk+2, ĥk+2) + D2Ld(qk, qk+1, ĥk+1) = 0, (3.32)

where Equation (3.32) is a symmetric update rule as defined in Equation (3.28). Most of the useful

σ rules will be nonlinear functions of the positions, in particular qk+2, thus making update 3.32

implicit. To learn about how to design explicit, time reversible, integrators see [28].

51

Notice that when Equations (3.25-3.27) are discretized using midpoint quadrature or trapezoidal

rule they also give another type of time reversible update rules which are in addition symplectic.

However, for mechanical systems that we tested such symplectic/symmetric update rules generally

require smaller timesteps and yield larger energy oscillations, thus they are less efficient and less

stable when larger time steps are taken.

3.4.2 Time Reversible Co-Rotational Methods

Co-rotational methods described in Section 2.2.3 are used to reduce the problems that arise due

to the fact that linear elasticity is not invariant under rigid body rotation. The main idea is to

modify the linear system to be solved to account for the rotation of each element. Traditionally,

time discretization is done using Implicit Euler or Runge-Kutta integrators and the stiffness matrix

is modified using rotations computed at the current configuration (see [50, 31, 53, 19, 25]). Such

discretization suffers from the usual numerical dissipation and, moreover, the time at which the

rotations are computed is different from the time at which the elastic forces are computed, so the

angular momenta of the system is not conserved. We will address these issues in this section.

First, we will consider time-reversible, variational, energy-preserving integrator for linear elasticity

problem, obtained using midpoint discretization of quadratic elastic energy. Following the update

procedure from Section 3.2.5 we write the update equations for the case of linear elasticity as:

Mvk+1 +
h
2

Kuk+ 1
2
− pk = 0

qk+1 = qk + hvk+1

pk+1 = Mvk+1 −
h
2

Kuk+ 1
2
,

where K = ∇2W(qk + 1
2 hvk+1) is the constant stiffness matrix as described in Section 2.2.2, and

uk+ 1
2

= qk + 1
2 hvk+1 − q0 is the total midpoint displacement. So the linear system that needs to be

solved is:

vk+1 =

[
M +

h2

4
K
]−1 (

−
h
2

(Kqk − Kq0) + pk

)
.

Since Kuk+ 1
2

corresponds to the elastic forces computed at time tk+ 1
2
, in order to achieve proper

symplectic integrator we would need to use the rotations computed at the time tk+ 1
2

to modify the

stiffness matrix K. Unfortunately, since the rotations are not linear, such integrator will require

52

solving a system of non-linear equations each update of vk+1. Instead we will still use the rotations

computed using known positions at time tk, but we will use rotations computed at time tk+1 to update

momenta pk+1:

vk+1 =

M +
h2

4

∑
e

Re
kKeReT

k

−1 −h
2

(
∑

e

Re
kKeReT

k qk −
∑

e

Re
kKeq0) + pk

pk+1 = Mvk+1 −

h
2

∑
e

Re
k+1KeReT

k+1(qk +
1
2

hvk+1) −
∑

e

Re
k+1Keq0

(3.33)

This update rule is time reversible in Re and q, so it is not a surprise that our empirical tests show

good long term behavior of the simulated system. While this integrator does not exactly conserve

energy or angular momenta, our test show that both quantities stay bounded during the simulations.

Notice that this update procedure does not assume a specific rule of how the rotations Re are com-

puted, so any of the approaches described in the literature can be used. A development of (implicit)

symplectic integrators for the co-rotational methods is left as a future work. Depending on the ap-

plications, one can use explicit symplectic integrators, since they will only require computation of

the rotations in the known configurations. However, the implicit integrator described in Eqs. (3.33)

allows for significantly larger timesteps compared to explicit ones, and thus, is much more efficient,

especially for stiff elastic systems.

53

Chapter 4

Material Upscaling

4.1 Introduction

Simulating ever larger and more complex dynamical systems requires ever more elaborate com-

putational methods. While improved CPU speed and faster numerical solvers (see for example

Chapter 2 and Chapter 3 of this thesis) have allowed exquisitely detailed animation of complex de-

formable models, one outstanding limitation in computer animation (and in fact, in computational

physics) is that simulation costs scale with structural complexity: capturing the proper dynamical

behavior of a heterogeneous object requires a mesh fine enough to resolve the fine-scale hetero-

geneities. This sampling requirement can lead to prohibitive simulation times if the fine scales are

geometrically complex, such as veinal structures in an organ. However, simply ignoring these fine

scales can dramatically affect the overall dynamics of the object, rendering the object more or less

rigid, or even failing to capture basic coarse deformation.

We present an approach to numerical coarsening of linear elastic objects to allow for interactive,

realistic physical animation of structurally complex deformable objects. From a pair of meshes

representing respectively a fine and a coarse geometric description of the elastic body, we devise

a numerical procedure to turn the heterogeneous elastic properties of the fine mesh into possibly

anisotropic elastic properties on the coarse mesh that effectively capture (in the H1 sense) the same

physical behavior. Simulation of the coarse mesh equipped with these resulting coarse elastic prop-

erties is thus faithful to the dynamics of the original fine-detailed object, but at a fraction of the cost.

54

Figure 4.1: Numerical coarsening turns a fine mesh with heterogeneous elastic properties (here, a 200K-tet
liver with veins, extracted from MRI data; courtesy of Dobrina Boltcheva, LSIIT, France) into
a coarse mesh (640 tets) with anisotropic elastic properties that effectively capture the same
physical behavior. The coarse mesh (top) can thus be used as a proxy to animate the object
(falling on the ground) about a hundred times faster than it would take to compute the elastic
behavior on the fine mesh (bottom). Collision detection is done using the interpolated fine mesh
boundary.

4.2 Previous Work

Simplifying a model while still capturing (numerically or visually) its coarse physical behavior has

been investigated in many areas of science, of which we discuss the two most relevant to our context.

4.2.1 Fast Deformable Models

As the complexity of objects required in computer animation grew, several strategies were devised

to address the problem of efficiency and scalability. Solvers were made to scale nearly linearly in

the number of nodes, through specific integration schemes providing fast, yet stable updates [4]

and/or multiresolution strategies for which adaptive refinement of the simulation is often based on

the local amount of deformation [20, 26, 16, 53]. Physical models were also drastically simplified to

reduce computational requirements [62], leading to a resurgence of (sometimes quasi-static) linear

elasticity [33] where the well-known limitations for large deformation are nicely compensated for

by corotational methods as discussed in Section 2.2.3.

Another string of contributions focused on model reduction to achieve further efficiency. These

55

approaches reduced the state space dimension by limiting the space of possible deformations, typ-

ically though eigen-analysis of either the stiffness matrix [58] or of a set of observations [41].

Model reduction, however, often leads to a significantly reduced set of admissible interactions [32],

to non-local reduced (Ritz) basis functions and a mismatch between geometric and deformation

DOFs [58, 34, 17, 69], and/or to non-linear runtime complexity [45, 5, 1].

A simple, yet efficient way to simulate complex objects at low cost is through domain embedding,

where a complex geometry is embedded in a coarse mesh (sometimes referred to as a cage). Animat-

ing the coarse volumetric mesh induces deformation of the high resolution embedded geometry, pro-

viding a cheap and easy dynamic approximation of a complex object’s behavior [58, 20, 15, 51, 71].

The main advantage of this approach is that the geometric and physical DOFs coincide, eliminating

the non-sparsity issue of reduced spaces; one can reuse the exact same material simulator, but now

on a coarse embedding mesh rather than on a fine, detailed geometry. However, methods of this last

class focus almost exclusively on homogeneous materials. When a heterogeneous object is at play,

the coarse mesh must now be assigned “averaged” material properties to best match the behavior

of the original object. This issue was addressed in computer animation in [53, 52], where a spatial

average of the elasticity tensor was proposed on cubical grids. Yet, such a simple average does not

accurately coarsen an elastic material: this procedure in 1D amounts to averaging a set of springs

in series by their mean stiffness, while the correct equivalent stiffness is the inverse of the sum of

the reciprocal of each fine stiffness (this relation is easily derived using the well-known electro-

mechanical analogy; unfortunately, no such result in 2D or 3D is known). The difference between

these two coarsening approaches can be quite significant: consider a 1D system made out of a very

small and very soft section sandwiched between two large, extremely rigid sections; the resulting

system is obviously very soft (see Figure 4.2(left)), whereas a spatial average would have made it

much stiffer. A proper numerical coarsening is thus crucial when approximating the dynamics of

heterogenous objects on coarse grids.

4.2.2 Scalar Homogenization

Homogenization theory [7, 35] has been developed for this exact purpose of extracting information

from fine scales to computational scales in order to perform efficient computations over composite,

inhomogeneous materials (i.e., with spatially varying physical properties, such as laminates, rebar-

reinforced concrete, etc). In essence, this theory replaces the microscopic structure of a composite

56

Figure 4.2: Inhomogeneous materials leads to Anisotropic Behavior: In 1D (left), even a tiny amount of soft
material between two rigid rods renders the resulting bar highly deformable when pulled; a cube
of composite material in 3D (right) made out of two materials (the blue one being softer than the
mauve one) exhibits significant anisotropy due to its composition: in this case, it stretches much
more vertically than horizontally.

by an idealized, locally-homogenous material with equivalent macroscopic physical properties—a

procedure referred to as coarsening, homogenization, or upscaling. A variety of coarsening methods

have been proposed, starting from well-known arithmetic and harmonic averages, to more involved

ones like the renormalization method or the representative elementary volume; see [21] for a re-

view. Unfortunately, the numerical homogenization techniques available so far can offer accurate

results only if periodicity, ergodicity, or scale-separation assumptions on the material properties are

satisfied, making them quite poorly adapted to our needs in computer animation.

Recently a homogenization technique of elliptic equations in divergence form requiring no assump-

tions on the material at hand was proposed in [56], providing a way to approximate a fine solution

u of the static problem:
div(C(x)∇u) = f inside a domain D

u = u0 on ∂D
(4.1)

with spatially-varying conductivity C(x), by a coarse function uh that provably satisfies:

||u − uh||H1 ≤ Ch|| f ||L2 .

This coarse function uh is thus a good match (in the H1 sense, thus even better in the L2 sense) for

the real (fine) solution, even if it requires a much cheaper numerical solve. While seemingly appro-

priate for elastostatics given the similarities between Eq. (4.1) and the balance equation in elasticity,

this technique is limited to the scalar case (as well as other related recent methods, see [2, 63]).

Additionally, general boundary conditions or non-conforming coarse meshes are neither discussed

57

nor tackled.

4.3 Coarsening Methodology of Linear Elasticity

We now present how we derive, from an elastic, inhomogeneous object, a coarse approximation

that possesses a similar physical behavior. We assume that the procedure is performed in dimension

d, where d = 1, 2, or 3 for generality. Additionally, for consistency and clarity, we use ROMAN

characters to refer to quantities living on the fine mesh D, and ���������� characters to

refer to quantities on the coarse mesh �.

4.3.1 Problem Statement

We present a practical solution to the following numerical coarsening problem:

Given (a) a fine tetrahedral mesh D, in which each tet Tp (p = 1 . . . |D|) has a different

elasticity tensor CTp , and (b) a coarse tetrahedral mesh� (of much smaller element count,

i.e., |�| � |D|) approximating the same geometry as D, find an “effective” elasticity

tensor ��q per coarse tet �q such that the overall dynamics obtained by an off-the-shelf

elasticity simulator applied to either of them matches well.

Our coarsening procedure is achieved by first computing on D a set of global harmonic displace-

ments to analyze the heterogeneous fine-scale properties, then by deducing the effective coarse-scale

property for each coarse mesh element. We show how our approach can be seen as a mollification of

the displacement field to allow for proper averaging of the physical properties, and how it matches

the simple, known case of elasticity in 1D. Note that even if the object described by the fine mesh

is made out of different isotropic materials (i.e., with the same stiffness independent of the direc-

tional orientation of the applied force), the resulting elasticity tensors at the coarse level are often

anisotropic as they reflect the object’s fine, inhomogeneous composition (see Figure 4.2).

Our approach contrasts with previous work in several ways. Unlike methods based on Krylov spaces

(using various definitions of “eigen” deformations), our coarse model is not limited to a linear space

of deformations, and does not involve reduced coordinates not matching the geometric description

of the object. Instead, our coarse model is simulated with a traditional finite-element solver but

on a coarser grid approximating the object’s global geometry. The resulting dynamical system can

thus be deformed arbitrarily with a computational complexity proportional to the size of the coarse

mesh. Additionally, the accuracy of our approach decays gracefully with the maximum edge length

58

of the coarse mesh.

4.3.2 Coarsening Procedure Setup and Overview

We start from a fine mesh D, in which each tet Tp (p=1 . . . |D|) has a different elasticity tensor CTp

(i.e., a different set of Lamé coefficients if we assume isotropy of each fine elements). We wish

to approximate its dynamics on a given coarser mesh � (with |�| � |D|) that describes the same

geometry. That is, we need to find, as a precomputation, an effective elasticity tensor ��q on each

coarse mesh element �q so that the dynamics of the resulting coarse system closely matches the

original fine object.

(D = {Tp},C = {CTp})
coarsening
−−−−−−−−→ (� = {�q},� = {C�q})

Our approach first “probes” the fine material by computing d(d + 1)/2 harmonic displacements to

capture how the fine mesh behaves when forces are applied to the boundary of the material. This set

of displacements will in turn be used to derive a coarsening procedure to enforce that the potential

energy of the coarse mesh (�,�) exactly matches the integral of the potential of the fine mesh (D,C)

within each coarse tet �q. This coarsening procedure can be seen as an extension of the upscaling

procedure with discontinuous elements introduced in Section 1.3 of [56] for scalar equations.

4.3.3 Downsampling Fields

Downsampling a field from the fine mesh D to the coarse mesh � is easily achieved. Each coarse-

mesh vertex position �i is expressed as a linear combination (through barycentric coordinates) of

the fine-mesh vertices xi defining the fine tetrahedron in which �i lies at rest. In other words, the

vertex positions xi of the fine mesh are first interpolated by linear finite elements on the fine mesh D,

then the coarse nodes are defined as samples of this linear reconstruction. Boundary nodes that lie

outside of the fine domain D require special treatment: for these nodes that do not have a bounding

fine tet, we find one (or more) fine element(s) closest to it and use barycentric extrapolation instead

(i.e., negative barycentric coordinates). More details of this procedure and special handling of

boundaries will be discussed in Section 4.4.

Notice however that such a downsampling is accurate only if the field we downsample is sufficiently

smooth. While displacements of the objects throughout an animation can be assumed to be fairly

59

smooth, this is far from true for a field like the elasticity tensor C, as we assume the material to be

inhomogeneous on fine scales.

4.3.4 Numerical Coarsening Rationale

While displacements are easily downsampled, the elasticity tensor and mass matrix require more

care to enforce that the coarse dynamics closely approximates the fine dynamics.

Potential Energy We first need to derive a tensor ��q per coarse tet �q. In order to correctly

reproduce the force field within the object, we should enforce that the potential energy of each

coarse tet matches the integral of the potential energy over the fine tets contained within the coarse

tet; i.e., given our setup, we should target the following equality:

∫
�q

ε(u) : C : ε(u) dV =

∫
�q

ε(�) : � : ε(�) dV

on each coarse tet �q for all possible deformation fields u. This is a tall order, as even if each

(potentially anisotropic) coarse elasticity tensor has 21 degrees of freedom, the space of possible

fine deformations is significant. Therefore the best we can hope to achieve is to perfectly capture

this equality on a few displacements: if these displacements are characteristic of the typical defor-

mations that the fine mesh can endure, we will have achieved our goals. As we will show below,

we will introduce characteristic displacements hαβ (with 1 ≤ α ≤ β ≤ d, for a total of d(d + 1)/2

displacement fields) and derive coarse elasticity tensors that enforce:

∫
�q

ε(hαβ) : C : ε(hδγ) dV =

∫
�q

ε(�αβ) : � : ε(�δγ) dV (4.2)

on each coarse tet �q, and for all α ≤ β and δ ≤ γ (note that�αβ is the upscaled displacement based

on hαβ as defined in Section 4.3.3). This results in 21 independent equations in 3D after accounting

for the major symmetry of C, and their enforcement is equivalent to enforcing potential energy

equality for all linear combinations of the test displacements. We will also demonstrate that our

particular choice of characteristic displacements leads to a variational interpretation, giving another

justification of our approach. Note that for clarity we will continue to use Greek letter indices

for indexing among characteristic displacements, while Roman letter indices will still be used for

coordinates and gradients.

60

Figure 4.3: The six harmonic displacements obtained from a homogenous material (top), and a heteroge-
neous material made of layers of 2 different elastic materials (bottom). The deformations corre-
spond to respectively: h11,h22,h33,h12,h23, and h13.

Kinetic Energy As one of our goals is to be able to reuse a conventional finite-element solver on

the coarse model, we do not allow the coarse mass matrix to be anisotropic since most implemen-

tations that we are aware of in graphics assume a lumped, diagonal mass matrix. Therefore, we

define the mass matrix � to be a diagonal matrix, for which the diagonal elements represent the

usual lumped mass around each node of the coarse mesh. Note that to obtain a better coarsening of

the mass matrix such that the kinetic energies match well:

1
2

∫
�
�̇

T ·� · �̇ ≈
1
2

∫
D

u̇T ·M · u̇,

our treatment of the potential energy could also be used–where now we need to compute “charac-

teristic frequencies” as it involves time derivatives. We omit this treatment here because unless the

mass density contrast in the object is significant, phase errors on the final behavior of the coars-

ened system are unlikely to be visually crucial to be worth the extra computational time required by

non-lumped (non-diagonal) mass matrices.

4.3.5 Global Harmonic Displacements

We first compute a few defining displacements hαβ to study how the fine mesh behaves under a set of

chosen conditions. For our purposes of simulating elastic objects, we compute these displacements

by solving the following set of static boundary value problems for {hαβ}1≤α≤β≤d:

div

(
C : ε(hαβ)

)
= 0 inside Ω(

C : ε(hαβ)
)
· n = ε(xα eβ) · n for x ∈ ∂Ω,

(4.3)

61

where xα denotes the α-th coordinate of space and eβ is the unit vector in the β-th coordinate di-

rection. Note that we can thus rewrite ε(xα eβ) as 1
2 (eα⊗eβ+eβ⊗eα). The harmonic displacements

are computed by solving each system using linear elasticity setup from Section 2.2.2 and fixing

the last six degrees of freedom (translation and rotation) of Eq. (4.3) by fixing the zero-th and first

moments (also described in Secion 2.2.2), resulting in a unique solution. The reader may recognize

the typical requirement of C−harmonicity, along with Neumann boundary conditions prescribing

surface tractions equal to ε(xα eβ) · n. We will thus refer to this family of d(d + 1)/2 static solutions

as “global harmonic displacements” (see Figure 4.3 for basic examples on both homogeneous and

inhomogeneous materials). These static solutions represent characteristic displacements resulting

from a global “probing" of the object by a set of linear traction fields on the boundary. For notational

simplicity, we will denote by H the rank-3 tensor whose components are the coordinates of every

harmonic displacement hαβ, i.e., Hkαβ = (hαβ)k.We finally symmetrize H through Hkαβ = Hkβα for

simplicity, as it avoids having the restriction α ≤ β in further equations.

4.3.6 Harmonic Mollifier

The symmetric part of the gradient of the tensor Hkαβ will play a crucial role in coarsening. This

rank-4 tensor G is defined as

Gklαβ =
1
2

(
Hkαβ,l + Hlαβ,k

)
.

Note that this last expression is a generalization of the symmetrized gradient operator ε for rank-2

tensors, and therefore the resulting G has the minor symmetry Gklαβ = Glkαβ as well as Gklαβ = Gklβα

thanks to the symmetry of H. Although of higher-order in our case, this tensor can be shown

to help mollify solutions of the elastic equation just as [56] demonstrated in the scalar case of

anisotropic Poisson equations: we also observe that for any displacement u of our fine object, the

field G−1 : ε(u) becomes Hölder continuous, i.e., quite smooth, though not necessarily Lipschitz.

This will be particularly useful: this “mollified” field can be approximated (for any reasonably

smooth displacement field) on the coarse level without significant loss of information, by subsam-

pling each term:

G−1 : ε(u) ≈ �−1 : ε(�) (4.4)

where � is the coarse mesh analogue of G. This property is crucial in getting accurate coarsening.

62

4.3.7 Homogenization of Fine Scales

We finally “downsample” the elasticity tensor � as follows, so as to preserve the symmetries of the

coarse elasticity tensor mentioned in Section 2.2.2:

��q := �−T
�q

: 〈GT : C : G〉�q : �−1
�q
, (4.5)

or rewritten using tensor notation,

[
C�q

]
i jkl

:=
[
�−T
�q

]
i jαβ

[
〈GT : C : G〉�q

]
αβγδ

[
�−1
�q

]
γδkl

.

This coarsening is achieved by first averaging quantities on the fine mesh D through:

[
〈GT : C : G〉�q

]
αβγδ

:=
∑

Tp∈D
Tp∩�q,∅

|Tp ∩ �q|

|�q|
[GT

Tp
]αβi j[CTp]i jkl[GTp]klγδ,

then by computing the inverse of the tensor � on the coarse mesh. We stress that this inverse needs

to be done with care: this is an inverse in the (reduced) space of tensors acting on symmetric tensors.

However, as we will represent this tensor in the reduced space, this will be a standard 6x6 matrix

inverse, the conversion of tensors to matrix form is described in Section 2.1.2.

This procedure for deriving an effective tensor not only respects the symmetries that any elastic

tensor should have, but also satisfies Eq. (4.2).

4.3.8 Variational (Finite Element) Interpretation

Since the traditional finite-element variational treatment of elasticity considers the weaker form of

the divergence term by pairing it with another arbitrary “test” deformation z, we can now write

63

(discarding boundary terms for clarity):

∫
�

div(C : ε(u)) z =

∫
�
ε(z) : C : ε(u)

=

∫
�
ε(z) : G−T : GT : C : G : G−1 : ε(u)

∗
≈

∫
�
ε(�) : �−T : GT : C : G : �−1 : ε(�)

=

∫
�
ε(�) : � : ε(�) =

∫
�

div(� : ε(�)) �

where the step marked by the asterisk is a consequence of the mollification property in Eq. (4.4)

used on both u and z. Therefore, our definition of the upscaled elasticity tensors can be seen as a

particular choice of a test function z for which the upscaled test function � is a linear basis function

of the coarse mesh �, so that a typical linear finite-element treatment of the coarse mesh closely

corresponds to a finite-element treatment of the fine mesh.

4.3.9 Discussion

Our specific procedure to accurately downsample the elasticity tensor field of a fine elastic object

can be understood either from the variational point of view (through mollification of the displace-

ment, Section 4.3.8), or from the exact matching of the potential energy for a set of characteristic

displacements. Other variants can also be derived, potentially at the cost of losing one of these

two properties. For instance, characteristic functions satisfying an alternate set of boundary value

problems could be chosen. In particular, the boundary conditions of the harmonic equation should

be changed to mixed Dirichlet/Neumann conditions if some vertices are known to be always fixed

during simulation: this will capture harmonic displacements that are more appropriate to this par-

ticular use. Other extensions could relax the exact enforcement of Eq. (4.2), and consider a least

square solution for a larger family of carefully-tuned characteristic displacements instead if prior

knowledge on the use of the coarse simulation is available. Also, computing local harmonic charac-

teristic fields would become attractive if the mesh topology is allowed to change over time: we will

leave this local approach for future work, as a careful study of the consequences of these multiple

local solves versus a global solve for coarsening is delicate to perform, by lack of a proper metric

to use for fair comparison.

With our proposed approach, we can piggyback on the analysis provided in [56] (with further details

64

in [8]) to conclude that our coarse simulation using � will satisfy:

‖u −�‖H1 ≤ αh‖f‖L2

(where h is the maximum size of a coarse element), thus by duality,

‖u −�‖L2 ≤ Cαh2‖f‖L2 .

In practice, this implies that the error made by the coarsening procedure is of the order of the size

of the coarse mesh.

Figure 4.4: Coarsening of Cracks: (left) In this 2D example, coarsening is used to turn a bar-like object
(blue) containing a thin slice of soft material (green) into a very coarse mesh (peach-colored
mesh); (right) when deformed under gravity, both models present similar deformations; (bottom)
a simple spatial averaging of the material elasticity coefficients or stiffness tensors does not
capture this bending behavior, not accounting properly for the weak material in the middle.

4.4 Implementation Details

Although 3D numerical coarsening is mostly achieved by solving six harmonic displacement fields

and a few linear algebra operations as we explained in the previous section, several components

deserve more details.

4.4.1 Symmetric Tensor Representation

While our presentation has consistently used tensor notation, implementation can be done using 6D

vectors to represent symmetric rank-2 (3x3) tensors, and 6x6 matrices to encode rank-4 tensors:

65

Figure 4.5: On the inhomogeneous layered cube used in Fig 4.3, a fine simulation (top, left) is well captured
by our coarsening approach (bottom, left), despite the anisotropy of the object; if, however,
the material coefficients (right, showing the most extreme extended position reached during the
motion) or the stiffness matrices of the original object are simply averaged, coarse simulations
do not match the fine behavior.

this memory-efficient representation often used in computer graphics exploits the symmetries of the

tensor we have to deal with, as explained in Section 2.1.2. In this representation, double contractions

can be performed by 6x6 matrix products, and the entity �−1 is exactly the inverse of the 6x6 matrix

� used to encode the harmonic mollifier. Alternatively, one can implement coarsening by copying

literally the formulae provided in our explanations using arrays and their indices—although �−1

will then require special care.

4.4.2 Boundary Treatment

As briefly mentioned earlier, we treat coarse nodes that are outside the fine domain through barycen-

tric extrapolation, i.e., when a field needs to be evaluated on this coarse node, we rely on the values

of a few closest fine boundary nodes (between one and three in our implementation, depending on

the local curvature of the object) to extrapolate the field based on the positions of the respective

positions at rest. Additionally, we found it beneficial to alter the local definition of the normal n

used in the Neumann condition of Eq. (4.3) to become the normal N of the coarse bounding tet

instead. This change is more in line with the variational interpretation described in Section 4.3.8, as

the test function near the boundary should be reverted to the coarse element basis function, hence

improving boundary coarsening. Note that only the external boundary of the object should be sub-

jected to traction: holes inside the domain must be left without traction to be treated as such when

66

computing harmonic displacements.

Figure 4.6: A 2-material composite object (left) is subjected to gravity with its top vertices fixed, resulting
in a elongated deformation (middle). From a coarse mesh deformation made of a single tri-
angle (right, dashed), we can reconstruct a quasi-static fine solution (right) using precomputed
harmonic displacements: this cheap linear map from coarse to fine deformation enhances visual
impact at low cost.

Figure 4.7: The same bar with a crack as in the Figure 4.4, now the fine mesh is interpolated using harmonic
displacements over the coarse simulation (right), compare to the corresponding fine simulation
on the left.

4.4.3 Coarse-to-Fine Mapping for Display

The tensors used for numerical coarsening can also be reused to deduce fine-mesh vertex positions

deduced from coarse deformations. This coarse-to-fine interpolation is a quasi-static approxima-

tion, as it assumes equilibrium inside each coarse tetrahedron, so it is devoid of higher temporal

frequencies of the fine mesh. However, it can be an effective way to reuse some of the information

67

gathered about the anisotropy of the object being simulated.

For each coarse tet �q = {v1, v2, v3, v4} with undeformed vertex positions {x0
0, x

1
0, x

2
0, x

3
0} and current

deformed positions {x0, x1, x2, x3} we solve for a rotation matrix R and a symmetric matrix S such

that
R(x1 − x0)

R(x2 − x0)

R(x3 − x0)

 =

x1

0 − x0
0

x2
0 − x0

0

x3
0 − x0

0

 +

(H1 −H0) : S

(H2 −H0) : S

(H3 −H0) : S

 (4.6)

where Hi is the component of H (defined in Section 4.3.5) corresponding to the vertex vi. The

interpolated current deformed position for any fine vertex x inside this tet can then be computed as

x = x0 + RT (x0 − x0
0 + (Hx −H0) : S) (4.7)

where Hx is the component of H for x. This amounts to finding a rotation and linear combination of

the harmonic displacements which matches the coarse tet vertices exactly, and then using this same

rotation and linear combination to place the fine vertices. Blending of the displacements across

adjacent coarse tets can also be added to avoid derivative discontinuities. As this interpolation relies

on linear elasticity, it may not not be appropriate for large coarse deformations, and a robust solution

based on projection onto the shape space spanned by harmonic displacements is left as future work.

Figures 4.6 and 4.7 show how this coarse-to-fine map behaves on 2D examples.

4.5 Results

In order to demonstrate the efficacy of numerical coarsening, we tested our approach on models of

varying size, shape, and material composition. A first sanity check was to test that a homogenous

object is coarsened into the same material—for coarse tets entirely inside the model. We then tried

a layered object (Figures 4.2(right), 4.3(bottom), and 4.5) made out of two distinct materials. As

expected, we witness an “accordion" effect when the object is deformed perpendicular to its layers,

while lateral deformation are much less pronounced. This example is simple yet anisotropic enough

to convincingly prove that other forms of coarsening (average of stiffness matrices, or of material

coefficients) are just not enough to capture the proper dynamics on the coarse mesh.

We also tested more subtle geometric details that can significantly affect the dynamics. In particular,

Figures 4.4 and 4.7 show that a fine, but deep crack is properly taken into account, resulting in a

68

coarsened motion exhibiting much larger deformation due to the local “weakening" of the material.

In Figure 4.8, we demonstrate the coarsening of a cheese wheel model, with half of the wheel

containing gruyere-like holes. As the harmonic deformations clearly exhibit, the coarsened material

properties are significantly affected by the inhomogeneity of the model. We also compare the motion

of the coarsened model (200 tets) to the much finer original tetrahedral mesh (35K tets needed in

order to represent the holes) of the wheel, indicating good visual agreement while reducing the

computational complexity: the coarse animation runs 150 times faster than the fine one. Finally,

we applied our numerical coarsening technique to a medical model, consisting of a liver and its two

interior veins (portal vein, and inferior vena cava; see Figure 4.1). The veins act as reinforcement,

rendering the liver stiffer. We started from a MRI dataset made out of 200K tets tagged as either

belonging to the liver, or one of the two veins. After assigning material properties to these three

components, we numerically coarsened this model to obtain an anisotropic coarse material made

out of 210 vertices behaving dynamically similar to the original model.

Limitations. It should be reemphasized that our coarsening is currently limited to linear elasticity.

The use of corotational methods injects geometric nonlinearity to coarse simulations, thus limiting

the visual drawbacks of linear elasticity. However, the same use of corotated elements for fine

meshes will add non-linear details that low tet-count meshes will be unable to match, even after

proper coarsening. An extension to non-linear coarsening is thus desirable.

69

Fine mesh and cross
sections (35K tets,
top), along with its

harmonic
deformations.

Fine (left) and
Coarse (right)

animations. The
coarse mesh has only

200 tets.

Figure 4.8: Elastic properties of a wheel of cheese with holes of various sizes in half of the wheel are turned
into anisotropic elastic properties on a coarse mesh (200 tets). Animating the coarse object
(right) takes only a fraction (∼1/150) of the cost it would take to compute the elastic behavior on
the fine mesh. Notice that the side containing the holes behaves softer, even though the coarse
mesh does not spatially capture these cavities.

70

Chapter 5

Conclusions

Structure-preserving approaches to time integration of Lagrangian systems and a method to upscale

heterogeneous elastic material properties have been presented in this thesis.

The design of time integrators has received little attention in the graphics community despite their

widespread use. Given the importance of qualitatively correct behavior in computer animation, the

geometric view is particularly pertinent as it ensures conservation of important quantities, even for

lower accuracy/higher speed simulations. An approach to derive general purpose, fully variational

time integrators for a wide class of mechanical systems using a discrete Hamilton- Pontryagin prin-

ciple has been developed. One of the innovative aspects of this work is the introduction of the vari-

ational integrability condition that allows to solve the non-linear problem at each time step (when

using implicit integration) through a minimization procedure instead of computation-intensive mul-

tidimensional root-finding. Together with the use of velocity, momentum, and position variables it

promises to play an important role in motion control.

Two different approaches to time adaption, i.e., automatic adjustment of timestep size during the

simulation, have been presented. The variational approach enforces the particular timestep size us-

ing Lagrange multipliers inside the action integral, yielding a symplectic integrator with variable

timesteps, including the cases when external forces are present. The symmetric approach utilizes

the time-reversibility property of continuous dynamical systems, yielding a time adaptive time-

reversible integrator. Our test showed that the latter integrator leads to more efficient time updates,

as the system solved is less stiff. However, both methods appeared to be less efficient than inte-

gration with a constant timestep, thus, the problem of developing efficient and robust time adaptive

71

approaches remains open.

A formulation of elasticity modeling on coarse resolutions was proposed, where the influence of

known fine scales is modeled through the derivation of effective anisotropic elasticity tensors. The

effective tensors are obtained by solving inhomogeneous Laplace equations with Neumann bound-

ary conditions, leading to non-trivial, symmetry-respecting averaging of the material properties.

Directions of future work are manifold. An extension for which coarsening is performed through a

series of local computations over each coarse tetrahedron would be highly desirable, as this would

allow for fast updates of fine structures, during tearing for example. Geometric approaches to re-

construct fine deformations from the coarse ones would be valuable complements in order to further

improve visual impact at low cost. Using non-diagonal mass matrices on the coarse mesh would

also most likely bring benefits, albeit at a non-negligible computational cost.

5.1 Future Work

While this work has lead to a number of contributions, there are still many simulation problems

that could benefit from more rigorous discretizations of space and time. In this section, potential

avenues of future research will be discussed, which may directly or indirectly follow the work

heretofore completed.

Model Reduction. Model reduction is an essential tool for achieving real-time simulations of

complex models or systems. It consists of finding a coarse model (or coarse variables) that can

reproduce the most critical aspects of the behavior of a complex dynamical system. Improving

upon our material coarsening method (see Chapter 4 and [39]), an analogous method would be

desired to allow for the coarsening of non-linear heterogeneous elastic materials to better handle

large deformations. In the same vein, another interesting direction for research is coarsening of

shells. This task involves finding a few coarse variables that can efficiently capture the overall

motion of a very complicated shell model. Such a problem is very non-linear, since coarse variables

may not only depend on the material parameters of the fine model, but also on the shape (and

curvature) of the original fine shell.

Variational Approach to Fracture. In computer animation, elastic or rigid bodies involved in a

simulation often undergo many complex changes, such as plastic deformations, fracture, or both of

them combined (ductile fracture). Geometric models of such effects can be developed and combined

72

with the viscoelastic dynamics model described in this thesis. For example, crack propagation

through inhomogeneous media can be formulated as a variational problem [12], thus geometric

discretization techniques can be applied in order to preserve the underlying geometric structures in

the discrete model.

Control of Simulation. For many applications in computer graphics and robotics, direct simula-

tion of a physical system with given initial conditions is not sufficient. One may instead want to

control the system to reach predetermined states (often at given times) such that the least amount

of external force or internal power (fuel, steering, or wheel turning) is applied. Since this problem

often involves solving large systems of equations for space-time degrees of freedom, a good reduced

model of the system and a careful time discretization are both necessary for creating efficient control

algorithms. The work presented in this thesis can be particularly useful for such applications.

73

Bibliography

[1] AN, S., KIM, T., AND JAMES, D. L. Optimizing cubature for efficient integration of subspace

deformations. ACM Transactions on Graphics (SIGGRAPH Asia) 27, 4 (Dec. 2008).

[2] BABUŠKA, I., AND SAUTER, S. A. Efficient solution of anisotropic lattice equations by the

recovery method. SIAM J. Sci. Comput. 30, 5 (2008), 2386–2404.

[3] BARAFF, D. Analytical methods for dynamic simulation of non-penetrating rigid bodies. In

ACM Trans. on Graphics, SIGGRAPH ’89 (1989), ACM, pp. 223–232.

[4] BARAFF, D., AND WITKIN, A. P. Large steps in cloth simulation. In ACM SIGGRAPH

Proceedings (July 1998), pp. 43–54.

[5] BARBIC̃, J., AND JAMES, D. Real-time subspace integration for St. Venant-Kirchhoff de-

formable models. ACM Trans. on Graphics 24, 3 (Aug. 2005), 982–990.

[6] BARR, A. H. The Einstein summation notation: introduction and extensions. ACM SIG-

GRAPH Course Notes #30 “Topics in Physically-based Modeling”, 1989, pp. J1–J12.

[7] BENSOUSSAN, A., LIONS, J. L., AND PAPANICOLAOU, G. Asymptotic analysis for periodic

structure. North Holland, Amsterdam, 1978.

[8] BERLYAND, L., AND OWHADI, H. Finite dimensional approximation of solutions of diver-

gence form systems of equations with rough and high contrast coefficients. To appear (2009).

[9] BLANES, S., AND BUDD, C. Explicit adaptive symplectic (EASY) integrators: a scaling

invariant generalisation of the Levi-Civita and KS regularizations. Celestial Mechanics and

Dynamical Astronomy 89, 4 (2004), 383–405.

74

[10] BONET, J., AND BURTON, A. A simple average nodal pressure tetrahedral element for in-

compressible and nearly incompressible dynamic explicit applications. Comm. in Num. Meth.

in Eng. 14, 5 (1998), 437–449.

[11] BOU-RABEE, N., AND MARSDEN, J. E. HamiltonŰpontryagin integrators on lie groups

part i: Introduction and structure-preserving properties. Found. Comput. Math. 9, 2 (2009),

197–219.

[12] BOURDIN, B., FRANCFORT, G. A., AND MARIGO, J.-J. The variational approach to fracture.

Journal of Elasticity 91, 1-3 (Mar. 2008), 5–148.

[13] BRIDSON, R., FEDKIW, R., AND ANDERSON, J. Robust treatment of collisions, contact

and friction for cloth animation. In ACM Trans. on Graphics, SIGGRAPH ’02 (2002), ACM,

pp. 594–603.

[14] CALVO, M. P., LOPEZ-MARCOS, M. A., AND SANZ-SERNA, J. M. Variable step imple-

mentation of geometric integrators. Applied Numerical Mathematicsg 28, 1 (1998), 1–16.

[15] CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND POPOVIĆ, Z. Interactive

skeleton-driven dynamic deformations. ACM SIGGRAPH 21, 3 (July 2002), 586–593.

[16] CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND POPOVIĆ, Z. A multiresolution

framework for dynamic deformations. In Symposium on Computer Animation (July 2002),

pp. 41–48.

[17] CHOI, M.-G., AND KO, H.-S. Modal warping: real-time simulation of large rotational de-

formation. IEEE Trans. on Visualization and Computer Graphics 11, 1 (2005), 91–101.

[18] CIARLET, P. Mathematical elasticity, Volume I: three-dimensional elasticity. North-Holland,

1988.

[19] DE VEUBEKE, B. F. The dynamics of flexible bodies. International Journal of Engineering

Science 14 (1976), 895–913.

75

[20] DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. H. Dynamic real-time defor-

mations using space & time adaptive sampling. In Proceedings of ACM SIGGRAPH (Aug.

2001), pp. 31–36.

[21] FARMER, C. L. Upscaling: A review. In International Journal for Numerical Methods in

Fluids (2002), vol. 40, pp. 63–78.

[22] FETECAU, R. C. Variational methods for nonsmooth mechanics. PhD thesis, Caltech, April

2003.

[23] FETECAU, R. C., MARSDEN, J. E., ORTIZ, M., AND WEST, M. Nonsmooth lagrangian

mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems

2 (2003), 381–416.

[24] FEYNMAN, R., LEIGHTON, R., AND SANDS, M. The Feynman lectures on physics. Addison-

Wesley, 2006.

[25] GEORGII, J., AND WESTERMANN, R. Corotated finite elements made fast and stable. In Pro-

ceedings of the 5th Workshop on Virtual Reality Interaction and Physical Simulation (2008).

[26] GRINSPUN, E., KRYSL, P., AND SCHRÖDER, P. Charms: A simple framework for adaptive

simulation. ACM Transactions on Graphics 21, 3 (July 2002), 281–290.

[27] HAIRER, E., LUBICH, C., AND WANNER, G. Geometric numerical integration: structure-

preserving algorithms for ODEs. Springer, 2002.

[28] HAIRER, E., AND SÖDERLIND, G. Explicit, time reversible, adaptive step size control. SIAM

J. Sci. Comput. 26, 6 (2005), 1838–1851.

[29] HARMON, D., VOUGA, E., SMITH, B., TAMSTORF, R., AND GRINSPUN, E. Asynchronous

contact mechanics. ACM Trans. Graph. 28, 3 (2009).

[30] HARMON, D., VOUGA, E., TAMSTORF, R., AND GRINSPUN, E. Robust treatment of simul-

taneous collisions. In ACM Trans. on Graphics, SIGGRAPH ’08 (2008), ACM, pp. 1–4.

76

[31] HAUTH, M., AND STRASSER, W. Corotational simulation of deformable solids. In Winter

School on Computer Graphics (Feb. 2004), pp. 137–144.

[32] JAMES, D. L., AND FATAHALIAN, K. Precomputing interactive dynamic deformable scenes.

ACM Transactions on Graphics 22, 3 (July 2003), 879–887.

[33] JAMES, D. L., AND PAI, D. K. ARTDEFO: Accurate real time deformable objects. In ACM

SIGGRAPH Proceedings (Aug. 1999), pp. 65–72.

[34] JAMES, D. L., AND PAI, D. K. DyRT: Dynamic response textures for real time deformation

simulation with graphics hardware. ACM Trans. on Graphics 21, 3 (July 2002), 582–585.

[35] JIKOV, V. V., KOZLOV, S. M., AND OLEINIK, O. A. Homogenization of differential opera-

tors and integral functionals. Springer-Verlag, 1991.

[36] KANE, C., MARSDEN, J. E., ORTIZ, M., AND WEST, M. Variational integrators and

the Newmark algorithm for conservative and dissipative mechanical systems. I.J.N.M.E. 49

(2000), 1295–1325.

[37] KAUFMAN, D. M., EDMUNDS, T., AND PAI, D. K. Fast frictional dynamics for rigid bodies.

In ACM Trans. on Graphics, SIGGRAPH ’05 (2005), ACM, pp. 946–956.

[38] KAUFMAN, D. M., SUEDA, S., JAMES, D. L., AND PAI, D. K. Staggered projections for

frictional contact in multibody systems. In ACM SIGGRAPH Asia 2008 papers (2008), ACM,

pp. 1–11.

[39] KHAREVYCH, L., MULLEN, P., OWHADI, H., AND DESBRUN, M. Numerical coarsening of

inhomogeneous elastic materials. ACM Trans. on Graphics 28, 3 (2009).

[40] KOBILAROV, M., CRANE, K., AND DESBRUN, M. Lie group integrators for animation and

control of vehicles. ACM Trans. Graph. 28, 2 (2009), 1–14.

[41] KRYSL, P., LALL, S., AND MARSDEN, J. Dimensional model reduction in non-linear finite

element dynamics of solids and structures. I.J.N.M.E. 51 (2000), 479–504.

77

[42] LALL, S., AND WEST, M. Discrete variational Hamiltonian mechanics. J. Phys. A: Math.

Gen. 39 (2006), 5509–5519.

[43] LANDAU, L., AND LIFSHITZ, E. Theory of elasticity. Oxford, England: Butterworth Heine-

mann, 1986.

[44] LEW, A. Variational time integrators in computational solid mechanics. PhD thesis, Caltech,

May 2003.

[45] LI, R.-C., AND BAI, Z. Structure preserving model reduction using a Krylov subspace pro-

jection formulation. Comm. Math. Sci. 3, 2 (2005), 179–199.

[46] MARSDEN, J. E., AND HUGHES, T. J. R. Mathematical foundations of elasticity. Prentice-

Hall, 1983.

[47] MARSDEN, J. E., AND WEST, M. Discrete mechanics and variational integrators. Acta

Numerica (2001), 357–515.

[48] MARTIN, S., KAUFMANN, P., BOTSCH, M., WICKE, M., AND GROSS, M. Polyhedral finite

elements using harmonic basis functions. Computer Graphics Forum 27, 5 (2008), 1521–1529.

[49] MIRTICH, B., AND CANNY, J. F. Impulse-based dynamic simulation. Tech. rep., 1994.

[50] MÜLLER, M., DORSEY, J., MCMILLAN, L., JAGNOW, R., AND CUTLER, B. Stable real-

time deformations. In Proceedings of the Symposium on Computer Animation (2002), pp. 49–

54.

[51] MÜLLER, M., AND GROSS, M. Interactive virtual materials. In Proceedings of Graphics

Interface (2004), pp. 239–246.

[52] NESME, M., KRY, P. G., JEŘÁBKOVÁ, L., AND FAURE, F. Preserving topology and elasticity

for embedded deformable models. ACM Trans. on Graphics 28, 3 (Aug. 2009).

[53] NESME, M., PAYAN, Y., AND FAURE, F. Animating shapes at arbitrary resolution with

non-uniform stiffness. In Eurographics Workshop in Virtual Reality Interaction and Physical

Simulation (VRIPHYS) (Nov 2006).

78

[54] NOCEDAL, J., AND WRIGHT, S. J. Numerical optimization. Series in Operations Research.

Springer, 1999.

[55] OGDEN, R. W. Non-linear elastic deformations. Dover Publications, 1997.

[56] OWHADI, H., AND ZHANG, L. Metric-based upscaling. Communications on Pure and Ap-

plied Math. 60 (2007), 675–723.

[57] PARENT, R. Computer animation: algorithms and techniques. Morgan Kaufmann, 2001.

[58] PENTLAND, A., AND WILLIAMS, J. Good vibrations: modal dynamics for graphics and

animation. In ACM SIGGRAPH Proceedings (1989), pp. 215–222.

[59] PETERSEN, K. B., AND PEDERSEN, M. S. The matrix cookbook, oct 2008. Version

20081110.

[60] PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VETTERLING, W. T. Numerical

recipes in C: the art of scientific computing, 2nd ed. Cambridge University Press, 1992.

[61] RADOVITZKY, R., AND ORTIZ, M. Error estimation and adaptive meshing in strongly non-

linear dynamic problems. Comput. Method. Appl. M 172, 1-4 (1999), 203–240.

[62] RIVERS, A. R., AND JAMES, D. L. Fastlsm: Fast lattice shape matching for robust real-time

deformation. ACM Trans. on Graphics 26, 3 (July 2007), 82:1–82:6.

[63] SHU, S., BABUŠKA, I., XIAO, Y., XU, J., AND ZIKATANOV, L. Multilevel preconditioning

methods for discrete models of lattice block materials. SIAM Journal on Scientific Computing

31, 1 (2008), 687–707.

[64] SIMO, J. C., AND TARNOW, N. The discrete energy-momentum method: conserving algo-

rithms for nonlinear elastodynamics. Z. Angew. Math. Phys. 43, 5 (1992), 757–792.

[65] SKEEL, R. D. Variable step size destabilizes the Störmer/leapfrog/Verlet method. BIT Nu-

merical Mathematics 33, 1 (1993), 172–175.

[66] STEIN, A., AND DESBRUN, M. Discrete geometric mechanics for variational time integrators.

In Discrete Differential Geometry. ACM SIGGRAPH Course Notes, 2006.

79

[67] TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. Elastically deformable

models. In ACM Trans. on Graphics (1987), vol. 21, ACM Press, pp. 205–214.

[68] TOURNOIS, J., WORMSER, C., ALLIEZ, P., AND DESBRUN, M. Interleaving delaunay

refinement and optimization for practical isotropic tetrahedron mesh generation. ACM Trans.

Graph. 28, 3 (2009).

[69] TREUILLE, A., LEWIS, A., AND POPOVIĆ, Z. Model reduction for real-time fluids. ACM

Trans. on Graphics 25, 3 (July 2006), 826–834.

[70] WEST, M. Variational integrators. PhD thesis, Caltech, June 2003.

[71] WOJTAN, C., AND TURK, G. Fast viscoelastic behavior with thin features. ACM Trans. on

Graphics 27(3), 47 (Aug. 2008).

[72] YOSHIMURA, H., AND MARSDEN, J. E. Dirac structures and Lagrangian mechanics. J.

Geom. and Physics (2006).

