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The scientist does not study nature because it is useful; he studies i
because he delights in it and he delights in it because ¥ is beautiful. Of
course, I do not speak here of that beauty which strikes the senses, the
‘beauty of gqualities and appearances, mot that I undervalue such
beauty, far from it, but it has nothing to do with science; I mean that
profounder beauty which comes from the harmonious order of the parts
and which a pure intelligence can grasp.

Henri Poincaré
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ABSTRACT

This thesis presents an ab initio generalization of Pauling's theory of
resonance, the generalized resonating valence bond (GRVB) method. In

GRVB, we optimize a wavefunction of the form
‘I’rgy' = CA\I’A + CB‘I’B .

where ¥, and ¥ are multiconfigurational wavefunctions with arbitrary
overlap. This type of wavefunction has been considered unfeasible for
more than a few electrons due to the n! computational dependence of
evaluating the matrix element <¥4|H |¥p>. We reduce this dependence to
~n% by biorthogonalizing the orbitals in each determinant pair. GRVB is
ideally suited to describing systems which require a resonance of more
than one bonding structure, such as benzene, molecules with three-
electron bonds, and reaction transition states. Besides yielding a concep-
tually simple wavefunction, we find that GRVB yields quantitative results
for processes in which the dominant differential correlation is a reso-
nance effect. For example, the GRVB barrier heights for the HCl + H and
HF + H exchange reactions are each within one kcal of the basis set limit,
in contrast to the orthogonal configuration interaction (CI) approaches
which require hundreds or thousands of configurations to achieve the
same accuracy. We also present application to the three-electron bond-

ing in noble gas dimer ions, and various other examples.



Introduction to Thesis

For many molecules, the natural way to describe the electronic

wavefunction is as a linear combination of bonding structures,

\I’TOT = CA‘I/A + CB‘PB + - (1)

As an example, consider the classic resonating system, benzene, which

chemists have for years described as a superposition of two structures

30

The "resonance energy"” resulting from this superposition is accepted as

with localized = bonding,

the reason for the unusual stability of the benzene molecule,1 and indeed,
this resonance energy concept has been pervasive in organic chemistry
ever since the early work of Paulingz, Slater® and Hiickel.* In addition,
systems with coupled localized excitations, such as the n-n* state in

glyoxal,5

hypervalent compounds such as CiFs,
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and even reaction transition states,

® + (5)

are best described as a resonance of more than one bonding structure.
However, while an ab initio technique such as the generalized valence
bond (GVB)6 method is particularly suited to optimizing one of these
localized bonding structures, allowing more than one localized structure
to mix has been impractical due to the overlap of the orbitals in ¥, with

those in ¥p.

The GVB method has been successful in obtaining quantitative results
using a conceptually simple wavefunction,” and has been instrumental in
reinforcing the concepts of the valence bond model of P‘auling.1 For sys-
tems such as (R)-(5), in which a single valence bond structure is inade-
quate, there has been no method® which could yield quantitative results
from a compact wavefunction. The development of a method which could
solve directly for a wavefunction such as (1) should lead to quantitative
and conceptual progress in understanding such systems, and provide a
rigorous test for the concept of resonance. In this thesis we describe
such a method and demonstrate its utility on a variety of systems.

Chapter 1 gives an introduction to resonating wavefunctions, and an

overview of their behavior. Chapter 2 reviews the previous work along



these lines. Chapter 3, Section II describes the resonating GVB (R-GVB)
method, in which ¥, and ¥p are found using the conventional GVB method
and then the resonance energy and energy of ¥ror are evaluated, and Sec-
tion III describes the generalized resonating valence bond (GRVB) method
in which ¥, and ¥p are optimized in the presence of resonance; that is,
¥ 7or is optimized directly. Later chapters present various applications of
R-GVB and GRVB. These applications demonstrate that the R-GVB and
GRVB methods do indeed provide a simmple yet quantitative description of
resonating molecular systems and verify that the concept of resonance is
valid and useful. In particular we find that the GRVB method can be used
to predict reaction barriers to kcal accuracy using only the two valence
bond structures corresponding to reactants and products. Thus, the
GRVB method may prove extremely useful in elucidating reaction transi-

tion states and pathways, a problem of current chemical interest.
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CHAPTER 1
Resonating Wavefunctions - Introduction and Overview

I. Introduction

This chapter introduces many of the concepts which are important for
understanding the results presented in later chapters, and gives an over-
view of the features of resonating wavefunctions. The first sections build
up a description of the generalized valence bond (GVB) wavefunction,
because it is the GVB form which is used to construct the resonating
wavefunctions, while later sections discuss various results and examples.
The reader who is uninterested in the details of how the resonating
wavefunctions are optimized should find that this chapter provides the
necessary background, while those familiar with wavefunctions and their
optimization will still wish to read the latter sections of this chapter, as
they introduce many concepts not contained in the "Description of the
Method"” chapter. The reader wishing more detail on the basics presented

in the following sections should see Reference 1.
II. The MO and VB Wavefunctions - 2 Electrons

The valence bond (VB) wavefunction for the two electron system H, is

written as
Yyg = Al(ir+71)] a B8] (1}

where A is the antisymmetrizer and ! and » are the atomic 1s orbitals on

the left and right hydrogens, respectively,

oo

2 v
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In the VB wavefunction , when one electron is on the left-hand hydrogen
the other electron is on the right-hand hydrogen, and vice-versa, stress-
ing the atomic or covalent character of the bonding. The molecular orbi-

tal (MO) wavefunction for H; is
V0 = Algg of] (3)
where ¢, is the "MO" formed by adding ¢ and r,
g =l+r (4)

(we will not worry about normalization most of the time). The MO
wavefunction emphasizes the "molecular” character of the bond, by put-
ting two electrons in an orbital smeared over the molecule. The disadvan-
tage of the MO wavefunction appears when we try to pull the molecule
apart - the two electrons are still smeared over the whole molecule, lead-
ing to a higher energy state than two H atoms. This is easily demon-

strated by expanding the ¥¥° orbital in terms of ¢ and r,
VMO = (147)(l+7)(af—Ba) = (U +ir +rl +77)(af—B) (5)

While the ir and 7l terms correspond to one electron on each H atom
(covalent terms), the & and 7T terms correspond to an F~ ion and a H*
(ionic terms), and the long R wavefunction is forced to include these
terms because of the form of the MO wavefunction. Thus, while the MO
wavefunction gives a good description of the electronic structure at small
internuclear distances, it does not 'dissociate” properly. The VB
wavefunction, on the other hand, dissociates properly, leading to two

ground state H atoms, as seen by inspection of equation (1).
OI. The HF and GVB Wavefunctions - 2 Electrons

The Hartree-Fock (HF) wavefunction is the generalized version of the
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MO wavefunction, in which the orbital g in equation (3) is allowed to have
any shape which will give the lowest energy for the wavefunction. This
gives a better description then MO in the bonding region, but still dissoci-
ates improperly, because no matter what shape ¢, takes, there will still
be at least half "ionic" character at long R, due to the form of the
wavefunction.

The generalized valence bond (GVB) wavefunction is the generalized
form of the VB wavefunction, in which "I and '"7" are allowed to have any
shape which will minimize the energy for the VB form of the wavefunc-
tion. The GVB wavefunction still dissociates properly, Aof course, and gives
a better description of the electronic structure at short R than the VB
wavefunction (and is equivalent to VB at long R). The result of allowing
the orbital shapes to optimize in the GVB wavefunction is that the orbi-

tals polarize to iicrease the favorable bonding overlap, shown schemati-

= <)

H H H H (8)

”l” ”T”

cally here:

IV. The N.O. Representation of GVB

Because it is computationally more convenient to work with orthogo-
nal orbitals, we actually solve for the GVB wavefunction using "Natural

Orbitals" (NO), which are defined as

gno, = L+T ~ (7a)

¢nog = LT (7b)

(again we are ignoring normalization). The GVB wavefunction can be

rigorously written in terms of these NOs as



YO = Al(c)(pno,)*+c2(pno,)?)aB] (8)

where we must optimize the shapes of gxp, and gxp,, and also the values of

C, and C, (with the constraint that C¢ + C§ = 1). Once we have optimized
the wavefunction, we can decompose g, and gno, (using €, and Cz) to get
back the orbitals "I and "r'", which look something like the drawings in
(8}, and which we call the "GVB orbitals". Inspecting‘ equation (8), we can
recognize the following important property of the GVB wavefunction. By
choosing C; =0, the GVB wavefunction becomes the Hartree-Fock

wavefunctlion,
YOVE (¢, = 0) = ¥ = A[(pno,)?aB]. (9)

Since the orbital shapes an-d coeflficients in the GVB wavefunction are
optimized to give the lowest energy, the GVB energy will always be equal
to or lower than the HF energy. Thus, the GVB wavefunction is able to
describe both the MO-like character and the VB-like character in the

bonding region. In general, at short %, we find that gyp, looks very much

like the optimum HF orbital, and C, is close to 1 while C; is small and

negative. (Atlong R, C, = —Cp = V2, which is pure VB.)

V. The HF and GVB Wavefunctions for Many Electrons

For many-electron systems, the HF wavefunction has many doubly

occupied orbitals, and possibly some high-spin singly occupied orbitals,
VEF = AlgPed pRofoB aBPmuPmsz ¥noa o] . (10

In the many-electron GVB wavefunction, we replace certain doubly occu-
pied orbitals in the HF wavefunction with pairs of singlet-coupled GVB
orbitals. Since the majority of electron pairs in a many-electron system

are reasonably well described as two electrons in one orbital (e.g. the 1s



and 2s pairs in N atom), we usually perform this substitution only for a
few pairs. We choose those pairs in which the extra correlation afforded
by the GVB form will yield a more accurate description of the process of
interest. For example, if we wish to describe the bond dissociation pro-
cess in Nz, we apply this substitution to each of the three bond pairs,
yielding

Vi = Alpf, 0f, 95, 20, (00, 0,0 ) (2120 + 2o 2) (Y1 Y- +Yr Y1 )0Bf - - - af] (11)

In the GVB terminology, we say that we have "correlated” three pairs, or

that this wavefunction has three "GVB pairs”. We call ¥§'# a GVB(3/6)

wavefunction, because we correlated three pairs using six natural orbitals
(two per pair). In general, a GVB(n /m) wavefunction has n GVB pairs,
correlated with m natural orbitals, and usually m = 2n. Sometimes, if we
want to describe more of the correlation in a particular pair of electrons,
we use more than two natural orbitals on that pair. The reader is
referred elsewhere® for a discussion of the physical interpretation of
using multiple NO’s per GVB pair. Such a wavefunction is no longer a

"single particle” wavefunction, a term we discuss in the next section.

VI. Definition of a Single Particle Wavefunction

Both the HF and GVB(n/2n) wavefunctions are "single particle”
wavefunctions, which means that each electron can be assigned to a par-
ticular orbital. An example of a wavefunction which is not a simple parti-

cle wavefunction is a configuration interaction (CI) wavefunction,
Ve = c,pf + copf + capf + 0 . (12)

Because the electron pair is partly in ¢, and partly in ¢, and partly in ¢s,

etc., we cannot assign a particular orbital to either electron. If the orbi-
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tals in (12) are optimized sirmultaneously with the CI coefficients, we call
this a multiconfigurational self consistent field (MCSCF) wavefunction.
The GVB wavefunction as written in (8) is actually an MCSCF wavefunc-
tion, but due to its restricted form, it can be decomposed into one-
electron orbitals (as in (1)), and thus it is still a single particle wavefunc-
tion. The advantage of a single particle wavefunction is that it retains a
simple physical interpretation, since, for example, we can plot the orbi-
tals and see where the electrons are. Thus, single particle wavefunctions
enable us to extract principles which can be used to make predictions on
other molecules and understand trends. The disadvantage of single parti-
cle wavefunctions is that they often do not contain enough of the impor-
tant electron correlation to yield accurate results. For example, the GVB
wavefunction predicts a bond energy of 84.9 kcal for H2,3 while a fancy
MCSCF wavefunction is able to get 108.6 keal,* much closer to the experi-
mental value of 109.4 kcal.’ The most highly correlated many-electron
wavefunction which still retains a single particle interpretation is one
which has one orbital for each electron, makes no restriction on the over-
lap of these orbitals with each other, and allows a totally general spin
coupling of the electrons. We can write this wavefunction for n electrons

as

YFT = Al(prpaps - ¢n)0] | (13)

where @ is the totally general spin function. We will refer to this
wavefunction as spin-optimized GvB.87 Solving for this wavefunction is
unfeasible for more than a few electrons, so we usually try to make do

with more restricted wavefunctions, such as HF and GVB.
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VII. The R-GVB wavefunction

We wish to describe systems which require a resonance of more than

one valence bond structure, such as benzene

@ : @ (19

or the transition state in the HCI + H exchange reaction

H-Cl H

(15)

H Cl=H

The GVB wavefunction is ideally suited for describing one of these local-
ized structures, since it emphasizes the bonding character of a wavefunc-
tion. Taking benzene as our sample case, the first step is to solve for the
GVB(3/6) wavefunction which correlates the three m bond pairs in one

localized structure, and we denote this as ¥4,

N
| (16)

Al(ocore)(p1902+9201) (papatpaps)(pspetveps)afofaf].

The orbitals ¢; through ¢ are the GVB orbitals centered predominantly

on carbon 1 through carbon 8, respectively
[

® 2

7

c 3 (17)
"

The orbitals ¢, and ¢, are plotted in Figure 1, and the localized bonding

character is clearly evident. Due to the symmetry of the molecule, orbi-
tals ps and g, are simply Cs rotated versions of p; and gz, and gs and gg

can be generated by rotating by Cs aLgain.8 The other resonance
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structure, ¥p is also a GVB(3/8) wavefunction,

(18)

Al(ocore') (@1 g2 +92'91 ) (¢s'a +¢4'9s') (@5 96 +¢6 ¢s ) aBapaf]

where we know by symmetry that a Cs rotation relates these two

wavefunctions,
¥p = Co(¥a) (19
so that
W = Cslyy) (20a)
w2 = Ce(p2) » (20b)
= Cg(wps) (20c)
¢4 = Ca(pa) (20d)
¢s' = Ce(ps) (208)
ve' = Co(ps) (201)

We wish to mix ¥, with ¥p, leading to a total wavefunction of the form
VYror = Cq¥4+Cp¥p (R1)

which has energy

E _ <CA¢A+CB¢B[H|CA@A+CB®B>
Tor = <Cy&, +Cpdp | Cydy+Cpdp>

(22)
_ CEHuy+CEHpp+2C,CyHyp
- C2+CB+2C,CpSyp
Because of the symmetry of this system, we know that
HAA = HBB (238)
CA = iCB ' (23b)

and (22) thus reduces to
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Erop = Hys 224200 (24)

where Hy, is the energy of ¥, ,

Hyy = <V, |H|¥,> (25a)
Hyp is the Hamiltonian matrix element between
¥, and ¥z,

Hyg = <V, |H|¥g> (25b)
and S,p is the overlap of ¥, with ¥p ,

Syp = <¥,|¥p> (R5c)

Yror is a two-configuration CI wavefunction, but unlike most CI's, the
configurations are not orthogonal. ¥, overlaps ¥5 because we have made
no restriction on the overlap of the orbitals in ¥, with those in ¥5. The
advantage of this approach is that ¥, and ¥5 are iree to look like the
chemically meaningful resonance structures shown in (14), so that mixing
them corresponds to the 'resonance’ which chemists associate with the
benzene molecule. The disadvantage of this wavefunction with overlap-.
ping configurations is that the H,z and S,z matrix elements are much
harder to evaluate. Thus, with very few excepitions, chemists have used
orthogonal ClI wavefunctions, which sacrifice interpretability for
affordability. The next chapter presents a method which vastly simplifies
the computation of H,p, making overlapping Cl wavefunctions feasible

(though still much more expensive than orthogonal CI's).

Using the method of the next chapter, we obtain®
Hup = =5.713776
S,p = 0.BB7276

which combined with
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Hy = E4 = —8.415199

enables us to compute the energy of the resonant and antiresonant

states from (24) as

E,=E, —7.5kcal (C4 =+ Cg =0.51)

E;=FE, + 128.4keal (Cy = —Cp =2.11) .

Thus, mixing the two GVB(3/6) wavefunctions leads to a lowering of 7.5
kcal. We call this a resonating GVB or R-GVB wavefunction, (in this case
an R-GVB(3/8)). The R-GVB wavefunction is not strictly a single-particle
wavefunction, since each electron is partly in a ¥4 orbital and partly in a
¥p orbital. However, the R-GVB wavefunction does retain a physically
meaningful form, corresponding to the drawings in (14) for example,
which chemists have felt comfortable with for years. Thus we say that
the R-GVB wavefunction retains a 'single particle plus resonance”
interpretation.

The first thing we notice in our benzene case is that the antiresonant
state goes up much more than the resonant state goes down. This can be
understood by examining the second term in equation (24), which is
responsible for the raising and lowering of the two states. If Sy were
zero, the two states would be displaced equally about E4, with a splitting
of 2 H,p, but for nonzero Sy, the denominator causes an imbalance in the
displacement. Because Syp is large in this case, the effect is dramatic. It
is always the antiresonant state which is displaced further, even if Syp is
less than zero (in which case Hyp will be positive, and C; = — Cp will be the
resonant state). This is not obvious from inspecton of (24), but we can
understand it physically as follows: When the GVB wavefunctions are

mixed, the resonant state is lowered because the combination of
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wavefunctions samples a larger region of configuration space than either
one alone. Any amount the wavefunctions overlap corresponds to a
redundancy, and thus cannot help in lowering the energy. In the limit
where S4p = 1, the resonance lowering is zero, because there is no new
space obtained by mixing ¥, and ¥p. The antiresonant state, however, is
essentially the piece left over after mixing ¥, and ¥p , and the more that
¥4 and ¥g overlap, the less that is left over to adequately describe the
antiresonant state, thus raising its energy. In the limit where Syp = £1,
the antiresonant state is undefined, since there is only one degree of
freedom in the space, which is used up by the resonant state.

Another aspect we notice is that the "resonance energy"” ‘of 7.5 kcal is
much smaller than the 36 kcal usually associated with the resonance in
benzene, obtained by comparing the heat of hydrogenation of benzene to

10 There are at

three times the heat of hydrogenation of cyclohexene.
least three reasons for this difference. First, the experimental resonance
energy is obtained by comparing systems with different steric interac-
tions, and thus may not be the same as the purely electronic resonance
energy at a fixed benzene geometry (though this is not the key issue
here}. Second, by comparing the R-GVB energy to the GVB energy, we
imply that the GVB wavefunction is a "nonresonating” reference state.
However, the GVB wavefunction doeg include some resonance as we dis-
cuss later. Third, the orbitals in the GVB wavefunction were optimized
for the GVB form of the wavefunction, but the orbitals in the R-GVB
wavefunction were not optirrﬁzed for the R-GVB form; i.e. the orbitals
were not reoptimized in the presence of resonance. The second and third

flaws each cause the calculated resonance energy to be too low, so that

7.5 kcal is a lower bound on the resonance energy.
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One way to allow the wavefunction to partially relax in the presence of
resonance is reoptimizing the natural orbital coeflicients in eqn (8). We
call this a pairwise-relaxed R-GVB, or R-GVB(pr) wavefunction, because we
relax the NO coeflicients while maintaining the pairwise normalizations
which ensures that each subwavefunction is still a single-particle GVB
wavefunction. (We could lower the energy further by allowing totally gen-
eral relaxation of the coefficients, but this would lose the simple interpre-
tation, so that we might as well do a large CI using an orthogonal basis.)

The R-GVB(pr) wavefunction for benzene leads to
Epps = E4 — B.7 keal

and
Eantr = E4 + 128.4 keal

where we have allowed a different set of coefficients for each state, so

that both states are lowered from R-GVB.

VIII. The GRVB Wavelunction

If we allow the orbital shapes in ¥, and ¥p to reoptimize in the pres-
ence of resonance, we have a generalized resonating valence bond (GRVB)
wavefunction, so called because it is the 'generalized” (orbital-shape
optimized) version of the resonating VB wavefunction. The form of the
GRVB wavefunction is still exactly as in (16), (18) and (21) (so that each
subwavefunction is still a GVB wavefunction), except that ¥ror is optim-

ized rather than ¥,. A GRVB(3/6) calculation on benzene leads to

Ergs = E4 — 13.5 kcal

0.602618

S.p
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for the resonant state, and the GVB orbitals from this wavefunction are
plotted in Fig. 1, along with the GVB(3/6) orbitals for comparison. The
GRVB orbitals are seen to be much more localized than the GVB orbitals.
The GVB wavefunction includes some resonance by smearing out the orbi-
tals of the one structure to contain some character of the other strue-
ture. At the GRVB level, the orbitals in each GVB subwavefunction are
free to localize strongly, since the other resonance structure is explicitly
included in the wavefunction. This is also evident from the drop in Sgs
from 0.887 to 0.603 upon going to GRVB, an occurrence which is generally

true of GRVB wavefunctions.

Optimizing the GRVB wavefunction for the antiresonant state leads

to

Sap 0.716054

Es + 96.4 keal |

Eanmr

an energy drop of 32.0 kcal from R-GVB. This large change is in accord
with the idea that the GVB wavefunction is trying to describe both the
localized VB structure and the resonance, so that GVB orbitals are more
appropriate for the resonant state than the antiresonant state. The

antiresonant GRVB orbitals are plotted in Figure 2.
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IX. On the Definition of a Resonance Energy

Comparing the GVB(3/6) energy to the GRVB(3/6) energy leads to a
resonance lowering of 13.5 kcal. However, we demonstrated in Section
VIII that the GVB(3/6) wavefunction does include some resonance. To
rigorously define a resonance energy, the energy of the pure, nonresonat-
ing state must be known, and this is not easily determined. Thus, the
GRVB energy lowering (compared to GVB) does not correspond to the
true electronic resonance energy. It can, however, be taken as a lower
bound on the true resonance energy, since E(GVB) will always lie at or

below the energy of the pure, nonresonating state.

X. Resonance Between Multiple or Nondegenerate Structures

If the two VB structures being resonated are not related by a sym-
metry operation, so that E4# Ep, or if more than two structures are
involved, then evaluating the energy of ¥yor requires solving for the
coefficients C,, Cp, - - - in equation (21). This is accomplished by solving

the secular equation, written here in matrix form
HC = SCE (26)

where the elements of H are the hamiltonian matrix elements Hy, Hgp.
etc., S contains the overlap elements, E is the resulting diagonal matrix of
energies, and C is the matrix of solution vectors, so that a column of C
contains C4 Cp -+ . The R-GVB and GRVB approaches are still well
defined for wavefunctions of this type.11

For the case of two nondegenerate structures, the R-GVB approach

requires that both GVB structures be optimized (rather than generating

one from the other using a symmetry operation). Sometimes this is not
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possible, if one structure (¥p) is too much higher in energy. A GVB solu-
tion for ¥p is artificial, since if the orbitals were truly "optimum", the
wavefunction would have the energy of the lower state. However, very
often such wavefunctions can be "trapped", due to the localized nature of
GVB, and do have a certain physical meaning, corresponding to a VB
structure. If ¥5 can not be trapped, the R-GVB is inapplicable, but the
GRVB approach can still be used. An example of this is the H-H-F transi-
tion state of the H, + F reaction. The reaction has a very "early"” transi-
tion state, with a short H-H bond and a very stretched H-F bond.'* A
GVB(1/2) calculation leads to a strongly localized H-H bond pair, with the
unpaired electron on the F atom (¥,), and the GVB(1/2) wavefunction
with an H-F bond (¥p) can not be trapped because it relaxes to ¥,. Using
the GRVB approach, ¥p can be trapped, since ¥, is already included in
the wavefunction, and the result is €4 = 0.9147, Cg = -0.2180, Eggs = Ey4 -
9.1 kcal. In general, in a nondegenerate resonance system, the lower
(resonant) state will be predominantly ¥,. The amount of resonance
lowering usually will be smaller than similar systems with degenerate VB
structures, and will decrease as the energy separation is made larger.

For example, in the cyclobutadiene system,

V= Cy + CB‘ (R7)
|

—
————

the resonance energy is 22 kecal at a square geometry where Ey = Ep, but
reduces to 4.3 kcal at the optimum rectangular geometry where
Eg = E4 + 66.2 kcal.

The GRVB apprdach must be applied judiciously in cases where Ep is
far above E,, since the ¥ orbitals may converge to something other than

the VB structure. For example, in the reaction
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(28)

the transition state is well described by

Yror = Ca( ﬂ::N/ H *C{ N=N ) -
(29)

(¥4) (¥5)

However, solving for the GRVB wavefunction at a geometry near the HNN
limit results in a ¥ which does not look like that in (29), but rather is
describing the correlation of one of the N, electron pairs which was not
correlated in V4. This happens because mixing in the highly unfavorable
V¥p structure leads to a smaller resonance energy than the energy lower-
ing obtained by correlating another electron pair. When this occurs, the
GRVB energy is no longer appropriate for interpretation within the
resonating VB model, though it is a lower bound on the "correct” GRVB
energy.

In the case where there are multiple degenerate resonance struc-
tures, each of which have the same interaction matrix elements (Hyg Saz)
with every other structure (this will not always be the case), the total
resonance lowering is increased less with each new structure which is
mixed in (assuming R-GVB level, so that Hypp and Syp don't change). For
example, in the positive ion of VCl;, which has one bond which is predom-
inantly metal 4s to chlorine 3p, while the other three are metal 3d to

chlorine 3p,

TN
g N,

¥, (30)

there are four possible resonance structures. Mixing two, three or four of
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these together leads to

E(1) = Ey (31a)
E(2) = Ey — 12.2 kcal (31b)
E(3)= E4 — 18.9 kcal (31c)
E(4) = F4 ~— 19.5 kcal (31d)

and using the same matrix elements ( Ay = -142.9183, Hyp = -114.257655,
Sup = 0.799216 ) to predict the lowering of the hypothetical wavefunctions

with more than four resonance structures gives

E(8) = E4 — 23.3 kecal (31e)
F(18) = E4 — 25.4 kcal (311)
E(32) = E4 — 26.5 kcal (31g)
F(64) = E4 — 27.0 keal (31h)

If, instead of converging, the resonance energy kept increasing, systems
such as graphite (which has a nearly infinite number of resonance struc-

tures) would be extraordinarily stable.

Xi. Other Features of Resonating Systems

The effects of resonance in the benzene example are fairly representa-
tive of the behavior of many resonating molecules we have studied. Table
1 shows the R-GVB and GRVB results for a variety of systems, and in this
section we point out some of the trends and the reasons for the excep-
tions to these trends.

While we know that if all else is equal, a high overlap, Ssp, will yield
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less resonance lowering than a low overlap because low overlap means
more of configuration space is sampled, examination of Table 1 shows no
clear correlation between Syp and the R-GVB resonance lowering. This is
because there are two ways that the overlap can be small, as demon-

strated with the one-electron wavefunctions g¢,, ¢z, and gs:

© 0O O
\ /
\ /
N /
- @~ 7@

; ' 32)

¢ ¢, % (32)
The overlap between ¢, and ¢; is zero because of a cancelation of regions
of positive and negative overlap, while the overlap <y, |¢3> is zero because
there is no region of overlap. We can say that ¢; and ¢, have a large
"absolute overlap', meaning that the overlap between |¢,| and |g,| would
be large, while y; and ¢s have a small absolute overlap. If the overlap
between two wavefunctions is low because of low absolute overlap, then
the resonance interaction will likewise be small. This is observed in the
Ng and COZ core ionized states, which have low absolute overlap due to
the high degree of localization in the 1s core holes. The R-GVB resonance

lowering is seen to be only 1 kcal (S45<0.01). In contrast, the R-GVB mix-

ing of the two forms of neutral CO;

(33)

leads to a resonance lowering of 12.4 kcal, even though the overlap is

0.945.



23

The relation between overlap and resonance lowering does hold when
comparing R-GVB and GRVB wavefunctions for the same molecule. For
every system we have studied, Syp is smaller (in magnitude) for the GRVB
wavefunction than the R-GVB wavefunction, in accord with the concept
that there is less delocalization of ¥4 to include ¥p character once the
resonance is included explicitly in the wavefunction. Since a large Syp
between the GVB wavefunctions is indicative of a large amount of "delo-
calization resonance", we expect a large Syp to signal a large GRVB reso-
nance lowering compared to R-GVB. This is because the delocalization
tendency will be strongest when the molecule has the most to gain from
the resonance, and if it is strongly delocalized, it will gain more additional
resonance lowering in a GRVB optimization than a wavefunction which is
already fairly localized at the GVB level. In some of the systems listed in
Table 1, the delocalization tendency is so strong that the wavefunction
overlap is unity (e.g. triplet cyclobutadiene, Hs, He?), and the additional
GRVB lowering is more than 10 eV in each of these cases (HHF is
excluded, since E4#Eg).

Another trend is that related systems often have similar resonance
lowerings. For example, the square H, system (the saddle point in the
rectangle-square-rectangle H, + D; -2HD pathway has an R-GVB resonance
of 23.1 kecal, while the isomorphic system, square cyclobutadiene has an
R-GVB resonance of 21.8 kcal. These systems have the special property
that the GVB wavefunction is almost resonance-iree, due to the principles
of forbidden reactions (see Chapter 5 Section V), and thus the R-GVB
resonance lowering is very closé to being the true electronic resonance
energy. This property makes the comparison of H, and C,H, especially

clean. This 22-23 kcal resonance is for each species in its optimum
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square geometry. The relationship also appears to hold for other
geormnetries as well; distorting Hy by the same amount as the rectangular
geometry of C4H, leads to an R-GVB resonance of 4.3 kcal for C{Hy, and 5.7
kcal for Hy. If the square geometry is retained, but the side length is
stretched to infinity, the resonance in both C,H, and H, vanishes.

Similar resonance effects are also exhibited in the reaction transition
state species HFH and HCIH. For both cases the R-GVB lowering is small
(due to delocalization), 3.1 keal and 5.2 kcal, respectively, and increases
to 21.8 and 23.8, respectively, for GRVB. The Hg iransition state shows
slightly different behavior. At the GVB level, the delocalization tendency
is so strong that Syz =1, so that E§F®=0, and the GRVB resonance lower-
ing is 13.7 kecal (actually GRHF13). The 13.7 kcal GRVB lowering cannot be
directly compared to the 22-24 kcal lowering in HFH and HCIH, since the
GVB reference state contains an undetermined amount of extra lowering,
due to delocalization resonance, not present in HFH and HCIH. Removing
this extra lowering from the Hj reference state would raise the effective

GRVB lowering, making it closer to the HCIH and HFH values.

XII. Conclusions

The reader should now have a feeling for the nature of resonating VB
wavefunctions. More in depth examples are given in the following
chapters. To summarize, the GVB wavefunction is the basic unit of the
R-GVB and GRVB methods, because it allows the appropriate VB character
in the localized bonding structures. The R-GVB approach simply mixes
two GVB wavefunctions, which is sufficient if the two wavefunctions are
already highly localized. The GRVB method allows the orbitals to reop-

timize in the presence of resonance, an effect that is immportant if the
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GVB wavefunction is strongly delocalized. The difference between the
GVB energy and the GRVB energy is a lower bound to the true fixed-
geometry electronic resonance energy. Both the R-GVB and GRVB
wavefunctions retain a “single-particle plus resonance’ interpretation, so

that orbitals may be plotted and chemical concepts may be developed.



1)

2)

3)

4)

5)

26

References

(a) W.A. Goddard III, Course Notes for Chem. 120, Caltech (1981); (b)
L. Pauling, The Nature of the Chernical Bond, 3™ ed. (Cornell Univer-
sity Press, Ithaca, New York, 1960); (c¢) H.F. Schaeflfer llI, The Elec-
tronic Structure of Aftoms and Molecules. 4 Survey of Rigorous
Quantum Mechanical Results (Addison-Wesley, London, 1972); (d) I.N.
Levine, Quantum Chemistry, 2™ ed. (Allyn and Bacon, Boston, Mass.,
1976); (e) M.A. Morrison, T.L. Estle and N.F. Lane, Quantum States of
Atoms, Molecules and Solids, (Prentice Hall, Englewood Cliffs, N.J.,
1976)

F.W. Bobrowicz and W.A. Goddard 111, in: Modern Theoretical Chemis-
lry, Vol. 3, Methods of Electronic Structure Theory, edited by H.F.
Schaeffer III (Plenum, New York 1977}, Chap. 4

See Chapter 5, Table 9 of this thesis.
S. Hagstrom and H. Schull, Rev. Mod. Phys. %35, 624 (1963)

K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Struc-
ture, Vol. 4, Constants of Diatomic Molecules, (Van Nostrand Rein-

hold Co., New York 1979)



6)

7)

8)

9)

10)

11)

12)

13)

27

R.C. Ladner and W.A. Goddard III, J. Chem. Phys. 61, 1073 (1969)

Spin-optimized GVB is not the same as "SOGVB", which stands for
"strong-orthogonal” GVB; see W.J. Hunt, T.H. Dunning Jr. and W.A.
Goddard III, Chem. Phys. Lett. 3, 606 (1969); W.J. Hunt, P.J. Hay and
W.A. Goddard 111, J. Chem. Phys. 57, 738 (1972)

C. refers to the —2-_nl radian rotation about the principle molecular

axis.

The energies are small because we have eliminated the o core elec-
trons from the calculation. The GVB(3/6) total energy of benzene is
-230.68504 h.

p. 183 of Ref. 1b.
The GRVB program is currently limited to two subwavefunctions.

C.F. Bender, P.K. Pearson, S.V. O'Neil and H.F. Schaeffer IIl, J. Chem.
Phys. 56, 4626 (1972)

GRHF is defined as generalized resonating Hartree-Fock.



28

Table 1. Bome repr ive r ng sy The energies are in kcal with respect tot he single
structure GVB energy. A :+ B means A + B is resonant and A - B is antir nt (using a r
able choice for the wavefunction phases). A + AB means A is the dominant resonant structure
and B is the dominant antiresonant structure.

R-GVB GRVB
Wavefunction 5 ti
System Level SAB Eres Eantt Eros Egnty srAeB s:nB
© 3 @ GVB(3/6)  0.8705 -5 128.4 -13.5  96.4  0.6026  0.7186
[:] 7 D GVB(2/4) -0.3483  -30.6 3.1 -21.8  33.4 -0.2140  -0,2781
ANTR GVB(1/2) -0.754 -5.8 5.9 -17.7 515 0.00029 -0, 5441
[j : B GVB(1/2) 1.0 0 - -16.1 59.4  0.0826 0. 00032
B;).;] GVB(2/4) -0.2532 4.3 189
a1
¥
H—E i u GVB(2/4) -0.3254  -23.1 36.5
B—H # #+ §# H—H HF 1.0 0 - -18.7
. GVB(1/2)  0,9437 -3.1  107.6 -21.8  67.0  0.4539 -0, 0686
H—F H + H F—B
GVB(1/5) -2.0 -22.3
.. GVB(1/2)  0.9443 -5.3 81.6 -23,8 0.55
B—Cl H + § C1—H
GVB(1/5)  0.9371 -6.5  196.6
H—H F + AH H—F GVB(1/2) 1.0 0 - -9.1 0.2904

ﬂsr/ e, cb"ﬂ'&’l
u g other GVB(3/8) 0.9758 -4.1 331.8

e, -

@ e

NN ¥ N=EN GVB(5/10) 0.0023 =11 1.1

® ®

o=C=0 :eo..—;c_—.o GVB(2/4)  0,00036 -1.4 1.4

3]

NéNe ¥ NeNé HF =0, 7062 -13.0 75.8 42,6

HeHe GRHF 1.0 0 - -19.4

“

GVB(2/4)  0.9448 -12.4 436, 7

GVB(1/2)  0,9752 -1.5 597.4 -18.2 0. 6504

"

3 other GVB(3/8) 0.7982 -16.9 109. 6

(2) 2 (=) GVB(1/2) 1.0 0 -~ -26.4 94.3 0.3788  0,0575

II m

Fo (H,0), Fe " (5,0), HF <0, 04 <0.3

+ other

g v

2o\ 75

¢ - GVB(2/4) 0,626 -9.5 40.7
CflV\ c//e-u c()z\/§ b (2/4)

"

b T %
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C6H6 GVB(3/6) 1.0 BOHR RBOVE MOL. PLANE

GvB PRIR

C6H6 GRVB (3/6)

Gve PAIR

Figure 1. The GVB orbitals (top) and GRVB orbitals {bottom) for one bond

pair in benzene.

The plotting plane is 1.0 bohr above the molecular

plane, with the projected position of the carbon framework indicated for

clarity.
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GVB PAIR

Figure 2. The GRVB orbitals for the antiresonant state of benzene, plotted

as in Figure 1.
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128.4

ENERGY (kcal)

R-GVB GRVB

GvB

WAVE FUNCTION

Figure 3. Energy disgram for various levels of resonance in benzene,

GVB(3/6), R-GVB(3/6) and GRVB(3/6).
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CHAPTER 2

Motivation and Previous Work

I Introduction

In the last chapter we appealed to the principles of valence bond (VB)
theory to recognize molecular systems which weould be best described as
a resonance of localized bonding structures. In this chapter we show that
the problem of mixing nonorthogonal wavefunctions is of general interest,
both to VB and molecular orbital (MO) theorists, and discuss the previous

efforts to solve this problem.

It has been known for many years that certain systems require a
localized wavefunction.#444%€ A dramatic examniple is the 1s core ioniza-
tion of 02‘6 Solving for the Hartree-Fock (HF) wavefunction with a 1s core
hole localized on one oxygen yields an energy more than 10 eV lower than
if the wavefunction is forced to retain the full molecular symmetry, with
the singly-occupied core orbital delocalized ontc both oxygens. This
phenomenon, in which the wavefunction can achieve a better energy by
relaxing to a lower symmetry than that of the molecular geometry, is
known as "symmetry breaking'. Other cases which have been observed

1526 ang allyl-like compounds,2 the ground state of

27

include allyl radica
NOg,lO trimethylene methane, the nn* states and lone pair ionized
states of compounds with multiple carbonyl groups such as glyoxal,17 par-
abenzoquinone16’20'23 and PMDA (pyromellitic acid dianhydride),?'2 nitro-

13,20 core-ionized states of various

gen nr* and n ion states of pyrazine,
first-row c:ornpoulrlds,5’6’9’1""15"21'24’28 and the valence-ionized states of
small copper clusters. 24! In mathematical terms, this effect can be

viewed as an instability in the solution to the HF equations, and some
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research has been directed towards determining when such instabilities
should occur.®®2® Such a viewpoint is natural within the context of MO
theory, since molecular orbitals are expected to be delocalized over the
molecule, each belonging to some irreducible representation of the
molecular point group. In VB theory, on the other hand, broken sym-
metry (b.s.) solutions can be viewed as a tendency for the wavefunction
to achieve the chemically intuitive localized structure (e.g., the b.s. solu-
tion in the m space of allyl radical corresponds to a localized n bond--the
natural VB structure). From either viewpoint, however, the broken sym-
metry wavefunction causes problems for the following reasons. The true
electronic wavefunction should possess the full symmetry of the nuclear
geometry, and the broken symmetry solution does not. If the molecular
symmetry is imposed on it (while optimizing), the resulting solution will
give faulty energetics (e.g., for Op, this approach would predict a 1s ioni-
zation potential 10 eV too high). However, using the b.s. solution to
determine energetics is also inappropriate, since it is a mixture of two
(or more) states with the full molecular symmetry, and the splitting
between these states is thus ‘unknown. Further, if a geometry optimiza-
tion is being performed, using the b.s. solution can lead to an incorrect,
distorted geometry (e.g., inequivalent bond lengths in allyl radical), while
using the symmetry restricted solution will cause a discontinuity in the
energy surface when the geometry passes from symmetric to asym-

metric.

Clearly, the best approach to this problem is to resonate the b.s.
solutions. This would yield the states of the proper symmetry, while
retaining the important electron correlation which caused the break in

symmetry. However, such a calculation is not trivial, as is shown in the
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following paragraph.
Taking the total wavefunction as a linear combination of two broken

symmetry solutions ¥, and ¥,

Vror = CsYa + CBYB . (1)

we obtain an energy expression,

CAEHAA + cﬁHEB + 2 CACBHAB
cf+ch+2cscpSup

E = (2)

where Hy, and Hpp are the energies of ¥, and ¥, respectively,

Hup = <y4|H{yp> (3)

and

Sap = <Yul¥B> . ‘ (4)

where H is the usual Hamiltonian operator. Expressing ¥, and ¥p as an

antisymmetrized product of spin orbitals,

Ya = Alpfof o (5a)
¥vg = Alefef ] . (5b)

where A is the antisymmetrizer, and each y; is a spatial orbital times a

spin function, we can write the overlap term as

I

Sap = <Alpfed i) AleBef oF]>

(6)
<pfod g |AlpPed -¢2)> .

Because there is no restriction on the overlap between the orbitals in ¥,

with the orbitals in ¥p,
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<pflgf> =2 (7)

all n! permutations of the gg orbitals generated by the antisymmetrizer
yield terms which may be nonzero (many of these terms will be zero by
spin overlap). Similarly, Hss is composed of n! terms which need to be
calculated. In a normal configuration interaction (CI) wavefunction, in
which every configuration is constructed from the same set of orthonor-
mal orbitals, at most n® terms survive in any Hamiltonian matrix element
between two configurations. This is because any permutation of higher
order than a simple transposition lines up three or more orthogonal spin
orbitals, and the Hamiltonian contains only one- and two-electron opera-

tors, leaving at least one zero orbital overlap multiplying the term.

Hence, while a conventional CI involving 20 or 30 electrons and
thousands of configurations is easily solved, an overlapping Cl with n!

dependence is computationally unfeasible for more than a few electrons.
II. Orthogonal CI Approaches

The usual approach to this problemn has been to use standard CI

wavefunctions to simulate thel nonorthogonal CI. This can be accom-

plished in two ways:

(1) The symmetry-restricted SCF orbitals are used as the CI basis, and
the CI is designed to restore the localized character to the total

wavefunction, while retaining the full symmetry.

(2) The symmetry-broken SCF orbitals are used as the CI basis, and the
Cl is designed to restore the full molecular symmetry to the

wavefunction.

Procedure (1) has the advantage of using a symmetrical CI basis

which is computationally more efficient than an asymmetric basis {as in
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procedure (2)]. The disadvantage of procedure (1) is that the CI must
include very high-order excitations to actually restore the localized char-
acter to the wavefunction. This approach was used by Butscher et al 28in
describing the 1s ionized state of N;. Using a multi-reference singles and
doubles CI (MRDCI) approach, they were able to reduce the IP from the
SCF value of 419.77 eV to 410.51 eV (experiment = 409.9230). This
required a 31,694 configuration CI (though a selection procedure reduced
the actual computational work to 2118 configurations). Their similar
treatment of the core-ionized shakeup stales required 200,000 to 300,000
configurations, a calculation which is well beyond the capabilities of most
Cl programs. On a similar system, OZ, Kgren et al.° used a
multiconfigurational SCF (MCSCF) procedure called complete active
space SCF (CASSCF),31’32 but were not able to do as well as the broken
symmetry ASCF results in describing either the IP or the splittings
between the shakeup states. Very recently, Bénard? has proposed a sys-
temnatic procedure for designing compact CI expansions to describe local-
ized hole states. The procedure defines as a subset of the occupied orbi-
tals those n orbitals which would be recombined to give the localized hole
orbital (e.g., this subset would be ®1c, and g, for the 1s core hole state
of N2). Within this subset, all single excitations are performed (i.e., the
hole is moved into each of the other n-1 orbitals), and from this list of n-
1 configurations (the original reference configuration is excluded), all sin-

gle excitations are performed. Bénard tested this approach on the d,

hole state of Cug by generating this CI expansion for both the symmetry-
restricted orbitals (37 configurations) and the symmetry-relaxed orbitals
(71 configurations). In contrast to previous (slightly more extensive) CI's

he had performed, the special expansion led to a lower energy for the
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symmetry-restricted basis than for the symmetry-relaxed basis. From
this he concluded that all the localization correlation errors had been
recovered in the symmetry-restricted CI wavefunction. Bénard's
approach is appealing since it is generalizable to any localized hole sys-
tem, and requires only a very short CI list. However, it is the feeling of
this author that the method would not work for a case involving more

extensive valence electron reorganization, such as core-ionized 0,.

One other point can be made about MCSCF and CI methods using pro-
cedure (1). Such an approach cannot be used if a geometry optimization
is being performed along the asymmetric coordinate corresponding to
the symmetry of the broken symmetry wavefunction. This is because
there will be a discontinuity at the point where the geometry passes from
slightly asymmetric (with an asymmetric wavefunction) to symmetric
(where the wavefunction is symmetry-constrained), unless a sufficiently
large CI is being used (in general, this would need to be a full CI). For
such a geometry search, the type (2) procedure must be used, and we

discuss it next.

The advantage of procedure (2) is that the localization correlation is
automatically included in the wavefunction. The disadvantage is that a
very large CI may be required to include the character of the other bro-
ken symmetry solution. Whether the Cl is accomplishing this can be
tested by checking whether the full symmetry is restored to the
wavefunction when the calculation is performed at a symmetric
geometry. Davidson and co-workers!%#7:32 pave investigated the poten-
tial surfaces of various molecules using a Cl from a broken symmetry
solution. They obtained satisfactory results for the excited states of

trimethylene methane?’ by performing a full # Cl in an STO-3G minimum



38

10 they found that even an all sin-

basis. For the two lowest states of NOg,
gles and doubles CI was insufficient to restore the dual character from-
one set of SCF orbitals, and the results of truncated CI lists were strongly
dependent on the choice of molecular orbitals for the CI basis. For
glyoxal they concluded that the CI required to investigate the distorted

geometries of the nr* states was computationally unfeasible. >

Another approach, which incorporates the localized character from
both broken symmetry solutions directly into the CI basis, is that used by
Wadt and Goddard! in describing the nn* and n ion states of pyrazine.
They took linear combinations of each occupied with the corresponding
occupied from the opposite b.s. solution, thus forming a doubled set of
symmetry orbitals to use as the CI basis. This approach is appealing
since the CI basis contains both the localized character and (at sym-
metric geometries) the fully symmetry of the molecule. In addition, this
method may be used as the geometry becomes asymmetric with no loss
of continuity, assuming that both b.s. solutions may still be found (one
will be higher energy and may relax to the lower-energy solution, though
often the higher-energy wavefunction can be successfully trapped).
Hence, this approach would be suitable for geometry searches. However,
though Wadt and Goddard obtained reasonable results for the state split-
tings in the pyrazine case, there is no general prescription for generating
the CI in this basis which corresponds to a simple resonating wavefunc-
tion, making it difficult to describe different states with consistent levels

of correlation.
OI. Nonorthogonal CI Approaches

The above discussion represents a fairly complete survey of the methods
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which have been investigated for describing resonance of localized struc-
tures using a single orthogonal orbital set. A few researchers 0343844
have used nonorthogonal CI approaches to directly resonate the two
localized wavefunctions, in a fashion related to the method described in

this thesis; we discuss these below.

In his study of the nn* and n ion states of pyrazine and benzoquinone,
Martin?° computed the direct resonance of two HF wavefunctions using a
biorthogonalization approach35 like we describe in the next chapter. This
2 x 2 nonorthogonal CI corresponds to what we call resonating HF, or k-
HF. Newton has also used the biorthogonalization approach to compute

the matrix element between two HF wavefunctions,

<Fel(H,0)g Fell(Hz0)g| Fel(Hz0)eFe(Hz0)e>

7 Jackals and Davidson

to use in calculating electron transier rates.>
used an R-HF wavefunction for the geometry search on N02,10 finding this
description superior to the best CI they could design. In each of these
cases the resonance involved a pair of single-determinant SCF wavefunc-

tions. The R-GVB method we present in the next chapter allows the reso-

nance of any number of multiconfigurational wavefunctions.

Lastly, we note two methods which actually allow optimization of the
orbitals in the resonating wavefunction. The spatially-projected spin-
optimized valence bond (PSOGI) method described by Huestis3® optimizes

a wavefunction of the form

‘¢PSOGI = Ai{(¢1¢2"'¢n) = (31@2@7&)]@;

where © is a totally general spin function, ¢, through ¢, are one-electron

orbitals with completely general shape and no overlap restriction, and
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each @; corresponds to ¢; by

where B is a symmetry operator which interconverts the two localized
orbital sets. This method is very elegant as it incorporates resonance
into the most general possible single-particle* wavefunction, leading to a
"single-particle plus resonance’ picture. This methoed has been applied to
the excited states of H, (Huestis and Goddardsg), the excited states of He;
(Guberman and Goddard4o’41), and to the = space of allyl radical® and
cyclobutaudieneq“2 (Levin and Goddard). The PSOGI wavefunction is more
general than the GRVB wavefunction presented in this thesis, since in
PSOGI there is no restriction on the overlap between orbitals within a
given determinant (i.e., ¢, and g, may overlap), while the GRVB method
usually employs the perfect-pairing (PP) approximation, requiring that
each determinant be expressed in terms of orthonormal natural orbitals.
(The PP restriction on full GVB has become quite common among practi-
tioners of the GVB method, resulting in great computational savings with
only a slight loss in generality.43 ) While the GRVB program has the capa-
bility of handling any general spin coupling of the orthogonal orbitals,
thus allowing relaxation of the PP restriction, the majority of cases
presented in this thesis retain the PP restriction. The GRVB method

represents an improvement over the PSOGI method in two ways:

(1) The PSOGI method required specific programming for each number
of electrons, and this programming was especialy cumbersome for

more than four electrons, while the GRVB program is applicable for
* By "single-particle” we mean that each electron can be assigned to a single orbi-

tal, so that a simple physical picture is retained. This concept is discussed in
more depth in Chapter 1.
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any number of electrons (given enough computer time).

(2) The PSOGI method can only be used on cases in which a symmetry
operator relates 9, and ¥, while GRVB can optimize any two (or
more) resonating wavefunctions, so that the molecule need not be at

a symmetric geometry.

The other method which optimizes the orbitals in a nonorthogonal CI
is the "VB SCF" approach presented by van lLenthe and Balint-Kurti.%®
They applied this method to the potential curve of OH, allowing the
O((P)H(%S), O('D)H(2S), O*(3D°)H-(!S), O*(®P®)H~(!S), and O~(*P®)H* valence
bond configurations to mix. However, their approach appears to retain
the n! computational dependence, so that more than a few electrons
would be unmanageable. They were able to simplify the computation for

the OH study by restricting each orbital to mix only with those basis

functions on the same atomic center.
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CHAPTER 3

Description of the Method

I. Introduction

We have recently developed a new ab initio method which allows the
optirrﬁzation of a wavefunction in which the orbitals in different
configurations need not be orthogonal. This generalized resonating
valence bond (GRVB) approach is useful for treating molecules which are
best described as a resonance of more than one localized bonding struc-
ture. In addition to applications involving classical resonating systems
such as allyl radical or benzene, the approach is especially suited to
describing the transition states for reactions. For example, in the HF + D
-+ H + FD and HC] + D » H + CID exchange reactions, the GRVB wavefunc-
tion using just the two GVB configurations corresponding to the product
and reactant wavefunctions (a total of four determinants) yields quantita-

1

tive accuracy (~1 kcal/mol) for the reaction barriers®. This chapter will

describe the GRVB method in more detail.

In GRVB the problem is to minimize the energy of a wavefunction hav-

ing the form
Vror = Cp¥ys + Cg¥p + -+, (1)

where each subwavefunction (¥, or V¥p) is a correlated
multiconfigurational wavefunction (e.g. GVB). The determinants within
one of these subwavefunctions are expressed in terms of a single orthoe-
normal set of orbitals, but there is no overlap constraint between the
orbitals of different subwavefunctions. There is also no constraint on the

overlap of subwavefunctions, <¥,|¥p>. Because of the complexity of this



47

wavefunction, rather than using Fock operators we optimize the
wavefunction by numerically evaluating the energy derivatives for each
possible orbital rotation, using optimal searching procedures to minimize
the number of iterations required to obtain the optimum wavefunction.

In Section Il we describe how the energy of a wavefunction such as (1)
is evaluated, and in Section III how the energy derivatives are obtained

and used to optimize the wavefunction.
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II. Evaluating the Energy - R-GVB

For simplicity we discuss the case with only two subwavefunctions, ¥4
and ¥p; the generalization to multiple terms is trivial. Our wavefunction

is thus
Vror = C4¥y + Cp¥p (4)

where ¥4 and ¥y are each multideterminant wavefunctions,
N, N
vo=Yomt s Y= YCByP (52)
1 1

The energy of this wavefunction is

E _ CAEEA+C_§EB+2CACBHAB (6)
TOT = " CP+ CE+2CyCpSap

(assuming ¥4, and ¥ are normalized), where E, and Ep are the energies

of ¥4 and ¥p,

Hyp = <¥4 | B |¥p> = LCACP<y | H |¥f> (7)

L)
and

S = Y, CACE<yf | A |yE> (8)
1.J

Since the essence of the method lies in evaluating terms such as

<yf|H|yF> and <yf|yP>, we temporarily restrict our discussion to one

determinant pair ¢4, ¥, and drop the i and j subscripts to simplify nota-

tion. Consider first the case where ¥4 and ¥® are both closed shell deter-
minants,

¥4 = Al(ef)2(@f)? - (¢h)aBaB - - - af (9a)

¥P = Al (ef)? - (¢R)?aBaB - aB) . (Sb)

Because of the nonorthogonality of the ¥4 orbitals §{ ¢#} with the ¥ orbi-

tals {¢f}, the evaluation of <y4|H|y®> or <y4|¢®P> would normally
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involve the tedious computation of numerous minors and subminors of
the determinant of the overlaps between the two orbital sets, leading to
computational work which scales as n!. Using the invariafice (to within a
phase) of any determinental wavefunction under a unitary transformation

d%2 a pair of transformations U4 and U® that

of spinorbitals, one can fin
biorthogonalize the two orbital sets. Thus, the new orbital sets §9f 1 and

{%f 1 found by

= LefU's (10a)
J

and

v = 2;0;5[]35-; (10b)
j

meet the biorthogonality condition
<pdlof> = N6y (11)
This greatly simplifies the evalutation of Hs, and Ssp. The appropriate
transformations U4 and Uf may be found using the procedure described
in Appendix A.
Using the biorthogonalized orbital sets, the overlap matrix element is

reduced to a single term,
<y 1YE> = NENENS - AE (12)

because any orbital transposition generated by the antisymmetrizer
yields a term including an off-diagonal orbital overlap which is zero by
equation (11).

The Hamiltonian matrix element becomes

<A | 1¥P> = 25n. <l (98> + Yoy RIAP-KE) (13)
t %)

where

ny = <Y YE>/N (14)
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and
ny = <P [¥EP>/ NN (15)

Here the simplifying notation
1 -
JEE = <plpf a|¢f¢f> (16)

1=
K8 = <ptof| =—|3fel> (17)
Tie

has been introduced, utilizing the similarity of these terms to standard
coulomb and exchange integrals. Equation (13) looks like an energy
expression for a closed shell wavefunction except that two orbital sets are
involved and the factors n; and 7;; are included. Thus, evaluation of
<yA | H |48 > for two closed shell determinants requires roughly the same
work as evaluating the energy of ¢4, plus the work required to find the
biorthogonalized orbital sets. Since each orbital is expanded in a P

dimensional basis set,
P
@i = 2 CuiXu - (18)
o

the work involved in evaluating <y |8 |¢®> scales as nP*, and is always
much greater than the work required to obtain the biorthogonalized orbi-
tals °.

If ¥* and ¥® are open shell determinants, the determinants are rewrit-
ten with the orbitals grouped by spin

Vi = Alplovds  pialaa - eford - w8 - B) (18a)

VP = Alpfied - elloc - elied - em(B8- B} . (19b)

and then two pairs of transformations are found, one to biorthogonalize

the n orbitals with « spin, and the other to biorthogonalize the m orbitals

with g spin. The biorthogonalization condition is thus®
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<PLIBE> = NSy (20a)
and

<BH1TE> = Mo Gy (20b)

where a and b subscripts represent a and g spin, respectively. The over-

lap term for this case is
<P 1¥P> = Mahea Mg AisAes Ao (R1)

and <y* | A |¢?> becomes
-~ n m
YA YP> = Lne<pl |k 28> + L<pd | [2d>
a W

n
+ 2 Maje {Jél?ja-f(iﬁ%a]
ia >ja

+ f Nib jo [chi:%b —K‘%E.?jb]
W >jb

+ nEmnm,,-b {Ji‘%}?jb] . (22)

ia>jb
where the definitions for the n's are the same as before. For open shell
wavefunctions it is important that the biorthogonalization not change the
phase of either wavefunction. This can be ensured by requiring that the
determinant of each transfofmation matrix U be positive.

To obtain the full Sy and H,p matrix elements, the primitive matrix
elements for each determinant pair are contracted according to equa-
tions (7) and (8). Since the appropriate biorthogonalization matrices
depend on the orbitals in both ¥, and ¥, a different biorthogonalization
must be performed for each determinant pair. Hence the work required
to evaluate Hp betwéen two Ihulticonﬁgurational wavefunctions scales as
NyNgnp*, where N, and Ny are the the number of determinants in ¥4 and
B,

To find the energy of the super wavefunction ¥yor we take the matrix

elements found by (7) and (8) and the self terms H,, and Hpp, and solve
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the two by two secular equation,

Hyy Hpp
Hap Hpp

Ca
Cg

Ca

c (23)

_ 1 S
‘ElSAB 1

to obtain G4, Cp and E. If ¥, and ¥p are generalized valence bond (GVB)7
wavefunctions, we call ¥yppr a resonating GVB or R-GVB wavefunction®.
While the R-GVB wavefunction is not strictly a single particle wavefunc-
tion, it maintains chemical interpretability as the resonance of two single
particle wavefunctions, and for many systems this is the lowest level
which yields an adequate description.

n general, the determinant coefficients ¢2 and ¢ (equation (5)) which
have been optimized for the individual wavefunctions ¥, and ¥ are not
optimal for the super wavefunction ¥ppp. If desired, these coeflicients
may be reoptimized (with unchanged orbital shapes) by solving the
Ny+Np dimensional secular equation using the matrix elements from
each determinant pair between ¥, and ¥ (e.g. <y#|#|¢F>) in addition to
the matrix elements within each subwavefunction (e.g. <y#| A |y¢f>). This
has the effect of allowing the coefficients to relax in the presence of reso-
nance, and the magnitude of this readjustment is useful as an indicator
for the expected readjustment upon orbital relaxation. In a GVB

wavefunctionv,

YO8 = Af{core [(G1ap5at9 1095 ) (020952 + G20 ¥5s) (gqa¢§a+gqb %20)5 . (24)
the single particle interpretation is maintained by requiring that
95+ 98 =1 (25)

for all ¢ GVB pairs (the a and b subscripts here do not refer to a and g8
spin, but rather to the 1% and 2™ natural orbitals within a GVB pair). This

allows (24) to be rewritten as
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YOVB = pt[core (¢u@ir+@rrpu ) (Pavert@arva) ($qéer+éeea)l . (28]

in which ¢; and ¢ are the overlapping GVB orbitals making up the i*
valence bond pair. Although general coefficient relaxation while resonat-
ing would destroy the GVB interpretation, a modified relaxation pro-
cedure which maintains the pairwise normalization leads to subwavefunc-
tions which are still rigorously GVB wavefunctions. This procedure is
described in Appendix B. We call this a pairwise relaxed R-GVB wavefunc-
tion or R-GVB(pr). This same procedure can be used for the more general

case of more than two natural orbitals per GVB pair.
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III. Orbital Optimization - GRVB

While the R-GVB wavefunction leads to a very good description for
many systems, it is often desirable to allow the orbital shapes to relax in
the presence of resonance. Optimizing the orbital shapes and
coefficients for a wavefunction such as (1) leads to a variational resonat-
ing wavefunction which we call the GRVB wavefunction.

Given some trial wavefunction ¥7or, (e.g. an R-GVB wavefunction), we
form the perturbed wavefunction ¥¥4 in which orbitals ¢# and ¢/ are
mixed by a small amount A, so that

(#f) = plcos (A) + gf'sin (N) (R7a)
(pf) = ~pfsin(\) + gfcos(N) (R7b)
and evaluate the R-GVB(pr) energy of this perturbed wavefunction using
the procedure in Section II. The energy derivative for this rotation 64 is

then found by

a%i _ E(?P&)A;E(‘Pror) . | (28)
assumning Ay<2n. To optimize the wavefunction, we are interested in
accurnulating the gradient for all orbital rotations which can lead to a
change in the energy. Since all the determinants in a given subwavefunc-
tion use a common orthonormal set of orbitals, the number of necessary
orbital rotations does not depend explicitly on the number of deter-
minants. The number of rotations required within subwavefunction ¥, is

Nfor = NANSys + ¥WN&p(Nbmp—1) + NANZ + NiNEg + NINS (31)
where

N2 = number of closed shell orbitals in ¥,

(doubly occupied in every determinant),
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Néyz = number of orbitals involved in GVB pairs in ¥4

(occupation varies with determinant),

N§ = number of high spin orbitals in ¥,

(singly occupied in every determinant),

NZ = number of virtual orbitals in ¥,

(zero occupation in every determinant),
and
N# = Nire + Nbyp + Npen -
The total dimensionality of the gradient is
Npor = Nfor+ Nfor . (32)

Since rotations with all virtual orbitals are allowed within each
subwavefunction, there is no need to perform rotations between orbitals
in ¥4 and orbitals in ¥5. Thus all rotations are within one orthogonal orbi-
tal set. If ¥, and ¥ are related by symmetry, as in allyl radical for exam-
ple, then only the rotations among V¥, orbitals need be considered
(Ngor = N8or), since V¥ is generated from V¥ for each rotation. That is
Vo = ¥ + ¥
=¥¥ + Ryy | (33)
where R is the symmetry operation which converts ¥, to ¥p.
In addition to calculating the Ngor dimensional gradient vector g, by
performing pairs of incremental rotations, we can calculate the elements

in the curvature matrix B by

_ RE  _ E(YRR)-E¥r)-E(¥¥or)+E(Yror)
By = 86,06, Aij A (34)

Using B and g we can solve for an improved set of orbitals using the New-

ton Raphson method®



BA=—g , (35)

where A is the solution vector of orbital rotations. Such an approach
leads to quadratic convergence, but requires roughly (Ngor)® energy
evaluations in constructing the curvature matrix. We find satisfactory
convergence can be obtained with considerably less work by evaluating
only the diagonal curvature matrix elements and utilizing the principles
of conjugate gradient techniquesm. Since the most important correction
to a solution vector in the steepest descent method (in which only the
gradient is used), is usually along the (orthogonal) direction of the previ-
ous solution, such methods often converge slowly because they oscillate
in a two dimensional subspace. The conjugate gradient method, which
also uses only a gradient vector, circumvents this problem by including a
component of the previous solution in the current solution vector. In our
approach the gradient plus diagonal curvatures are used to find an initial

solution vector with components
A‘Kl) = ~g:/ By . (36)

and then a fully quadratic search is performed in the two dimensional
subspace defined by A} and the solution vector from the previous itera-
tion. This solution is then further improved by performing a similar
search in the two dimensional subspace defined by the current solution
vector and the gradient vector. It is important to note that each energy
evaluation allows a relaxation of all determinant coeflicients (pairwise
relaxed to retain GVB interpretation), and the C4, Cp subwavefunction
coeflicients, so that coefficient optimization and orbital optimization are
fully coupled. This leads to rapid convergence, and if the full curvature
matrix is evaluated, rigorous quadratic convergence is achieved.

To retain orbital orthonormalization during rotations involving more
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than one orbital pair, the matrix exponentiation method described by
Yaffe!! is employed. In this approach the orbital transformation T

(Nror by Nror, where Nypr = Noee + Nyie) is obtained as
T =ezp[A] (36)
where A is the antisymmetric Nygr by Nyror matrix of rotations so that
Aj; = —An =N (37)
The new orbitals for ¥, (the first N, of which are occupied) are found by

off = Y efTx
3

= LxuChisTa (38) -
J

or in matrix notation,

CY =CAT . (39)
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Appendix A. Biorthogonalization

We present here the method of biorthogonalization used in the GRVB
program. The proof that such a transformation exists for the general
case has been given by Amos and Hall®>. We consider here only the case in
which each orbital set contains an equal number of real orbitals.

Given two sets of n orbitals, {¢#] and {¢f}, we wish to find a suitable
pair of orthogonal transformations to yield new orbital sets (e and (28}
in which each orbital in set A overlaps only one orbital in set B. We define

the n by n orbital overlap matrix Spg by
(Sap)y; = <¢ief> . (a-1)
or in matrix notation
Sap=TiSTg . (A-2)

where S is the basis set overlap matrix, and T, and Tg are the matrices
whose columns represent the orbitals in this basis for orbital sets A4 and
B respectively. We seek orthogonal transformations UA and UB which

when applied to T, and Ty yield new orbital sets T, and Tg

Ta=T,UA (A-3a)

Tp = TRUB | ' (A-3b)
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which meet the biorthogonality condition
Tk STB =A, (A'4)

where A is the diagonal matrix of overlaps. Combining (A-2), (A-3) and
(A-4) we see that this is equivalent to finding UA and UB such that

UN'S,UB=A . (A-5)
Right multiplying Sag by its transpose (Sagt= Sps) vields a positive
definite Hermitian matrix which we can diagonalize with the orthogonal
matrix VA
VA(S,pSp) VA= DA | (A-8)
Rewriting (A-8) as
(SaV)'(SpaV4) = DA (4-6)
shows that Sp,V? is itself a matrix with orthogonal (Aut not normalized)

columns. Hence SBAVA may be written as an orthogonal matrix (VB) times

a diagonal matrix which appropriately "denormalizes” the columns,
SpaVA = VB(DA% (A-7)
Left multiplying (A-7) by VB and taking the transpose of each side yields
VA'S,gVE = (DM | (4-8)

and comparison to (A-5) shows we have found the desired biorthogonaliza-
" tion transformations UA= VA and UB=VB, with A= (DA%

The computational procedure is as follows:
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a) Given T,, Tg and S, form the overlap matrix Syg = Tk STg.
b) Right multiply Sag by Spgt and diagonalize; this yields UA and DA
¢} TFind the 4 biorthogonalized orbitals by T, = To,UA

d) Find the UP transformation by UP = S,gtUM(DY)™% Inverting D* is
trivial since it is diagonal. (The case where (DA% is undefined due to

zero diagonal elements is discussed below.)

e) Find the B biorthogonalized orbitals by Tg = TgUB.

We now consider the case in which some diagonal element d, of the
eigenvalue matrix D? is zero, causing (DY in step d to be undefined.
Since the procedure for finding T, is still well defined, we are only faced
with finding Tg. From (A-4) we know that (D)% is the matrix of overlaps of
the biorthogonalized orbital sets, so that

@tieP> = bydh (4-9)

Hence, a zero element d, indicates that # does not overlap any orbital in

the set B, and we may choose any linear combination of orbitals from set

B in constructing »f without violating the condition (A-9) for i=k. The

biorthogonalization procedure can thus be effected by replacing step d
above with the following:

d) Reorder DA so that any zero elements appear last (let m equal

the number of zero elements), and correspondingly reorder the

columns of Ty, Perform the matrix multiplication UB = SygtUA(DA)*

only for the first n—m columns of UB Find the last m columns of
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UB by Schmidt orthogonalization (pick as trial vectors those m orbi-

tals least used in the first n -m columns of UB).
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Appendix B. Pairwise CoefTicient Optimization

The GVB wavefunction with g pairs can be written as
VOV = Affcore](91a9fatg10¢5o)(Geaviat92095)  *  (JgaPia+Fqo¥& )} (B-1)
We are interested in optimizing the GVB coeflicients (g, 9w ) in two such
wavefunctions which are resonating,

\I’TOT = CA‘I’EVB + CB\P§VB. (B'Z)
(hereafter we drop the GVB superscript; ¥, and ¥ are assumed to be

GVB wavefunctions), while maintaining the pairwise normalization,
guzl + gl% =1 [ (B-S)

for each GVB pair. We have available the matrix elements between any
determinant from ¥4 or ¥p and any other determinant. Hence we wish to

solve the secular equation,
HC = SCE, (B-4)
using the determinants from ¥, plus the determinants from ¥ as the

basis states, but with the constraint (B-3).

We can reexpress ¥, as

Vg =guVh + gVl . (B-5)
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where

Va4 = Atcore (g 1avha+gweh)  (92)  (Gea¥latIgred))  (B-Ba)
and

¥4 = Alcore)(gravhtgneh)  (#8)  (Juev@tIpeen)  (B-6D)

so that the coeflicients for GVB pair i premultiply the ¥, subwavefunc-

tions ¥4 and ¥4. [f we do the same for GVB pair j of ¥5, we have

Yror = Calga Vi + g¥d) + ColgP¥g + gRYR) . (B-7)
where superscripts have been added to the GVB coefficients to distin-
guish ¥, coefficients from ¥5 coefficients. By using ¥4, ¥4, ¥, and ¥f as

the basis states for a four by four secular determinant, we solve for a

coeflicient vector C in which

c(1) = Cugla (B-8a)
C(R) = Cagh (B-8b)
c(3) = Cpgh (B-8c)
C(4) = Cagh . (B-84)

Combining these four equations with the two constraints given by (B-3)
yields all six coefficients uniquely, and by cycling through all GVB pairs i
and j the solution will converge to self consistency. Matrix elements such
as <V4|A |¥£> are computed by contracting the primitive determinant
pair matrix elements using the same algorithm as for <4 | B |4F> except
that all determinants in ¥, involving ¢4 and all determinants in ¥5 involv-

ing ¢ are excluded.



64

Appendix C. Computational Procedure for GRVB

Program

Input Routine

a) Read in a starting guess for ¥4, and ¥g.

b} Orthonormalize the orbitals within ¥4 and within V.

c) Find the number of determinant pairs (NDET), etc.

d) Read one and two electron integrals over atomic basis functions into

e)

memory if there is room.

Call routine SEARCH.

SEARCH Routine - Performs search to optimize ¥y

a)

b)

Call ENERGY (which returns the energy of ¥ppr) with starting guess
orbitals. The first call to ENERGY also returns the number of orbital
rotations Ngor.

Call ENERGY with each possible incremental orbital rotation. This
enables calculation of the gradient vector (g), and combining pairs of
rotations allows evaluation of the curvature matrix (B). (Usually only

make calls required for diagonal B matrix elements.)

Solve the Newton Raphson equation,

BA=-g .



d)
e)

)

g)

h)
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in the Nzor dimensional space. This yields the solution vector A.
Rotate the orbitals by 0.6A.

Perform a two-dimensional search in the space made up of A and g.
This yields the solution A.

Perform a two-dimensional search in the space made up of A and the
final solution from iteration n—1. This yields A"

The final solution vector A, equals the vector corresponding to the
best energy found (the lowest energy ever returned from ENERGY),
minus the position at the beginning of this iteration.

If ¥7or is not converged (e.g. if the magnitude of A, is above a thres-

hold value), go to step b.

ENERGY Routine - Evaluates Energy of ¥5or

a)

b)

Form the rotation matrix from the vector (containing Nper com-

ponents) passed by SEARCH.

Exponentiate this rotation matrix to get the transformation to apply

to the ¥, orbitals.

If ¥p is related to ¥4 by a symmetry operation, "reflect” ¥, to get ¥p.
If not, some of the Ngor rotations are used to transform ¥ (¥, and

Vp are optimized simultaneously).
Make the following calls to routine RES:
call RES( ¥, ¥4 ) (RES returns the matrices Hy, and Spa)
call RES( ¥5, ¥, ) (RES returns the matrices Hp, and Sp)
call RES( ¥5, ¥5 ) (RES returns the matrices Hgg and Sgg) where

(Hap)i; = <y | H |¥F>
and
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(SAB)ij = <'¢/'i4“§(’JB>

e) Merge the three matrices Haa, Hpa, and Hpg from step d into a super
matrix H over all determinants in ¥ror, and likewise form S.

f) Solve the secular equation HC=SCE in a pairwise fashion (see Appen-
dix A) to obtain the GVB coeflicients, the wavefunction coeflicients Cy
and Cg, and the total energy E{(¥ror).

e) Return E(¥ror) to the calling routine (SEARCH).

RES Routine

RES evaluates H and S matrix elements for all determinant pairs in a

given pair of subwavefunctions, ¥, and ¥ (where ¥, may be the same as

¥5). RES returns these matrix elements as the matrices Hyg and Syp

which are defined in step d above.

a)

b)

d)

By comparing the orbitals in ¥, and ¥ to those at the beginning of
the iteration, determine which (if any) determinants in ¥, and in ¥

have not changed.
Pick the next determinant pair 4j; that is, ¥¢ and ¥/.

If y# and ¥ are both unchanged from original, go to step b. (Skip

this determinant pair, since (Hap);; and (Spp)y; are already known.)

Biorthogonalization: (trivial if ¥, = ¥3)

Closed Shell
biorthogonalize {¢4] with {7} to get {p*} and {g?] where

<§7’iAE?PjB> = A«ldij
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Open Shell

separate a and g orbitals
biorthogonalize o sets
biorthogonalize g sets

put the new g orbitals after the new a orbitals for both deter-
minants
e) Call OFFDAG( {24}, {2%) (OFFDAG evaluates <y |H |¥F> and <yf iy f>)
f) Gotostep b unless there are no more determinant pairs

g) Return Hap and Spp to calling routine (ENERGY).

OFFDAG Routine

Evaluates Hyp = <y#1H |¢f> and Syp = <y |y P>

a) Evaluate Sgp

Closed Shell (i=2): Sg5 = IA?

13
Open Shell (f=1): Sgp = 1A , nel =n,+ng

b) Setupn; and 7y, 1.5 =1norb

Sap Sap

-

™= T Ny = W
(These are actually calculated by taking the product of all A's except

the i** one (or the i and j*), to prevent a divide by zero when
»=0.)
c) Evaluate the one-electron part of Hyp (Hyy = HiY + HIP)
HiY =ty ni<pl|h 28>
1

= VM LTk
T
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d) Evaluate the two-electron part of Hyp

closed shell:
HIp = Tng (2745 - KEP)
.
open shell:
HE = Yy (1 - '5‘5)“{}8'6&%3)
i.5 )
where §=0sgpin(i).spin(j) -

1
J%B=<¢i4¢ff—;f¢?¢f>

-
= ¥ eheheeeh (wvlop) |
wop
1
KPP = <pfef| —Iefef>

T2
= Y eheleiel uplov)
wop
While this appears to require (NBF)*(NORB)?® work, it can be accom-
plished with (NBF)*(NORB) work, by performing two hali-

transformations.

e) Return to calling routine (RES).
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CHAPTER 4
The Resonating Valence Bond Description of Cyclobutadiene

1. Introduction

Cyclobutadiene (CBD}, the simplest cyclic four-electron n system, has

generated interest for many years. In agreement with simple Huckel
theory arguments, the molecule is highly unstable, though it has been

! and observed as a short-

isolated in low temperature matrix studies,
lived intermediate in solution.®> Two features of CBD are particularly
intriguing.  First, the most stable geometry 1is found both
experimentally1'3 and theoreticallyl*'7 to be rectangular, with the square
geometry 6-12 kcal higher, representing a saddle point for interconver-
sion of the two rectangular s’t.ructures.8 Second, the lowest state at the
square geometry is found to be a singlet, in contradiction to the molecu-
lar orbital (MO) theory prediction of a triplet ground state.

Because the resonating valence bond (VB) model offers a different
view of these (and other) features than MO theory, the cyclobutadiene
molecule makes a good vehicle for contrasting these two theories. In the
following we discuss the electronic structure of square cyclobutadiene at
a qualitative level from both points of view. Then, using self-consistent
field (SCF) calculations to represent the MO wavefunctions, and general-
ized resonating valence bond (GRVB) calculations to represent the
resonating VB wavefunctions, we compare these results to each other and
to accurate configuration interaction (CI) calculations.i We then consider

distortions from the square geometry to give the observed rectangular

geometry.
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II. Molecular Orbital (MO) Approach - Square Geometry

In the MO approach, we combine the four atomic pm functions of CBD

into four symmetry-adapted MOs,

|

C 09
o @0
¥1 ¥z ¥3 ¥4

(alg) (ewx) (euy) (ng)

which have the energy ordering shown here:

Occupying these MOs with four electrons leads to various states, the
lowest of which is the 34, state,
YHO(B4,.) = A[(o core)pfpapsafoc] . (1)

This state is the lowest because g, and g3 are degenerate. Considering all
possible states which can arise from keeping ¢, filled and ¢, empty, we
can write (leaving off the redundant filled orbitals and ignoring normali-

zation)

VHO(3400) = (s — pspz) (0B + Bx) (Ra)
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VHO(1B,0) = (paps + pape)(af — B) (Rt}
YHO(1Bg) = (¢ — ¢8)(af — ) (2c;
YHO(14,,) = (p8 + 05)(af— ) (2d)

Factoring away the spin function, and replacing ¢, by "X and ¢z by "Y'

(since this is the symmetry they have), we have

Sdpy = XV - YX (3a)
1Bpg = XY +YX (3b;
1By, = XX ~YY (3¢
14, = XX+ 7YY (3d)

Taking the orbital shapes to be the same for each state, the energies are

E(XY-YX) = Eo+ Jxy — Kxy (4a)
E(XY+YX) = Eq + Jxy + Kyvy (4b)
E(XX-YY) = Eq + Jxx — Ky (4c)
EXX+YY)=Eo+ Jxx + Kxy (4d)

where J and K are the usual two-electron coulomb and exchange

integrals,

Txy = <X(1)Y(2)] sz X(1)Y(2)> (5a)

Kyy = <X(1)Y(2)! Tl—; Y(1)Xx(2)> (5b)

12

We see immediately that F{XY —YX) lies below E{(XY + YX), because the J

and K integrals are always positive, and similarly E{(XX — YY) lies below
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E(XX +YY). We also know that Jyy is greater than Jyy, so that E(XY - ¥X)
is below F{(XX-YY), and E(XY+YX) is below E{XX+YY). Thus, the

%A (XY — YX) state lies lowest, and the 84z, (XY =+ Y2) state lies highest, but
we have not yet placed the !B, (XX~YY) states To compare these, we

make use of the fact that
XX=YY = (X+Y)(X=Y) + (X-1}{X+Y) , (6

i.e. the XX-YY wavefunction is equivalent to singiet-coupling one electron
in an X+Y orbital with one electron in ar X-Y orbital. Thus EF(XX-YY)

becomes
EXX=YY)=Eo+ Jysyx-v+ Ky vy . (7)

and by inspection of the shapes of the X+Y and X-Y orbitals,

) O @ ’
\ 4

7/ N

\\ s/ (8)
N /
N /
N /s
N /

X+Y X=-Y

we expect Jy,yx-y and Ky.yx-y to be smaller than Jyy and Kyy, respec-
tively, because the node in the X+7Y orbital passes through the maximum
density region of the X-Y orbital, and vice versa. This is not true for the
X and Y orbitals. Thus, 'B.g(XX-YY) lies below By (XY+7YX). This state
ordering is shown in Figure 1, along with the rclative energies from seli-
consistent field (SCF) calculations on each state Even though the SCF
allows slightly different orbital shapes for eech state, the ordering is
exactly as predicted.

The !B, {XX-YY) state is seen to be only 4.4 kcal above the
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34, (XY-YX) state. As we noted above, the B, (XX-YY) wavefunction can
be rigorously rewritten as the singlet coupling of two electrons in X+Y
and X-Y orbitals. Because any determinant is invariant to mixing orbi-
tals of the same spin, we can reexpress the 34, (XY-YX) state as a triplet

coupling of X+Y and X-Y orbitals, so that

E(Az) = Eg + Jxayx-v — Kxavx-v (9a)
E('Byg) = Eo+ Jyxsyx-vy + Kxsvx-v (9b)

which means that
Kyivx-y & 2.2 keal . (10)

In contrast, comparing the !By, (XY+YX) state with the %45, (XY~YX) state
yields

Kyy = 28.2 kecal , (11
so that Kyy is much larger than Ky,yx-y, as we claimed above. Thus, in
MO theory, the lowest two states of this system can be thought of as aris-

ing from the singlet and triplet couplings of the two weakly interacting

orthogonal orbitals shown in (8).

We have also included in Figure 1 the first excited triplet state,
Y(*Ey) = Alpipapsapaa] (12)

which is seen to be far above the three singlets.
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III. Resonating Valence Bond Approach - Square Geometry

In the valence bond (VB) formalism, the natural description of cyclo-

butadiene has two = bonds,

o (13)
Denoting the atomic orbitalsasa,b,c, andd,
a b
(14)
o ¢
we can write this wavefunction as
¥(| T |) = Al(o core)(ab +ba)(cd +dc)apaf] . (15)
However, we could just as easily write
v(il | )‘ = A[(o core)(ad +da)(bc +cb)afaf] . (16)

so that the appropriate description of the ground state is a resonance of

these two structures,

‘I’R_VB(IBlg) - - | |

= A{(ocore)[(ab +ba)(cd +dc)afaf — (ad+da)(bc+cb)afafly . (17)

The other linear combination leads to an antiresonant state,

¥('ay,) = . (18)

To construct a triplet state, we must break one of these two = bonds,

leading to four equivalent structures,

— - o & [ 4
| - al
P [

which we can write as
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YYE(1™ 1) = Al(o core)abed(af — Ba)an] (19a)
¥(|" ||) = Al(o core)beda{af - fa)aa] (19b)
¥B(I" 1) = A[(o core)edab (af - fo)aa] (19¢)
Y| ’]) = A[(o core)dabe(af - Ba)aa] . (19d)

Combining these triplets into symmetry adapted wavefunctions leads to &

resonant 4, state,

T I o R A R i A (R

L3 [

and a degenerate pair of antiresonant states,

ey = 1T - 1S - Ry

& 0 — ]

(There are only three linearly independent triplets for four electrons in
four orbitals,® so we lose the fourth linear combination.) So far we have
predicted four states, a resonant and antiresonant pair of singlets, and a
resonant and antiresonant pair of triplets. Unless the resonance energy
is much greater for the triplet state, we expect a ground state singlet,
and a low lying triplet. The other singlet state predicted by MO theory,

the !By, (XY+YX) state, arises in VB theory from an ionic wavefunction,

©
¥( ) = A[(o core)aacc afag] (22)
which is combined with its rotated form to give
S (]
YR-VB(1g, ) = - (23a)
© ©
and
S)
VR-VB(214,.) = + . _ (23b)
]

In Figure 2 we show the splitting of the VB singlet and triplet

wavefunctions into resonant and antiresonant states. The energies
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assigned to each state are the results of GVB and GRVB calculations,
which find the best orbital shapes for the particular VB or resonating VB
form of the wavefunction. These resonating wavefunctions are not
exactly as written in (17), since the orbitals are allowed to have a

different shape in each resonance structure. Thus
VERVBE(1g, ) = Al(ab+ba)(cd +dc)afaf — (ad +d'a’)(b'c +c'b )apap] (R4)

and the result is that each orbital polarizes to achieve higher overlap

with its bonding partner. We know that ¥(|| {|) should be the 90 degree
)3

rotation of ¥(

Ll = R(ZD . (25)

and thus the primed set of orbitals are simply related to the unprimed

set by
a = B | (262)
b = R(c) (28b)
c = R(d) (26¢)
d = Ba) (26d)

We discuss the GRVB wavefunctions in depth in the following sections, and
conclude this section with a brief summary of the resonating VB descrip-
tion of CBD.

In cyclobutadiene, the lowest lying VB structure is a singlet, with a
triplet at higher energy. Each of these structures can resonate with
energetically equivalent VB structures to give a lower energy (resonant)
state and a higher energy (antiresonant) state. Because the resonance

lowering is comparable, these states interleave to give a singlet, triplet,
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singlet, triplet state ordering. There is also an ionic state at some higher
energy (see equation (23)), but we cannot say a priori whether it lies
above or below the antiresonant states.

IV. Calculational Details

All calculations employed Dunning's valence double zeta contraction
of Huzinaga’'s 9s5p carbon basis!! and 4s hydrogen basis (scaled by 1.2).
The square geometry was that optimized by Borden, et al.® (Ree = 1.453,

Rey = 1.10). The rectangular calculalion was performed at R, = 1.54 X. Ro

= 1.38 ‘Z Rey = 1.10 R very near the geometry optimized by Walkup, Ho,
and Goddard'? for the singlet state using a full n ClI wavefunction in the
same basis as ours. The SCF wavefunctions used to describe
the MO states were performed using the Caltech GVB2P5 prograrn.13 The
triplet states were simple Hartree-Fock wavefunctions, while the singlet
states were two configuration wavefunctions, as given by equations (2b),
(Re), and (2d). The VB wavefunctions were also optimized using GVB2P5,
using a GVB(2/4) wavefunction for the VB singlet, and a GVB(1/2)
wavefunction for the triplet. The resonating VB wavefunctions were
optimized using the GRVB program described elsewhere in this thesis,
while thé R-GVB energies were evaluated using the RESGVB program (also
described in this thesis). All GRVB and full = CI calculations were per-
formed using a frozen symmetric sigma core taken from the !By, state
for the square geometry, and from the GVB(2/4) singlet for the rectangu-
lar geometry. With the sigma core removed, the GRVB and CI calculations
were optimized in a space of eight basis functions. The effect of allowing
the sigma space to relax was found to be only 1.2 kcal for the GVB(2/4)
singlet state, and we feel that the effect on the relative state energies is

negligible.‘ Both the full CI and the GRVB calculations are unfeasible if
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the sigma space is included in the calculation.

The form of the GRVB(2/4) singlet wavefunction which was optimized
is given in equations (24), (25), and (26), and a separate calculation was
performed for the resonant and antiresonant states, leading to slightly
different orbital shapes. The effect on the energy of allowing the orbitals
to relax from GVB to GRVB is discussed in section VI. The GRVB program
actually works in terms of natural orbitals, rather than overlapping GVB
orbitals, but the number of orbitals which need to be optimized is still
four. The other resonance structure is completely defined by these four
orbitals, and the 90 degree rotation operator R. It is interesting to note
that for the GRVB(2/4) singlet, the number of unique orbitals can be
reduced to one by taking advantage of the various symmetry operations

in Dyg,. For example,

——— —_— e (28)

Ya ®b Pc Pa

Since there are eight basis functions total, optimizing the shape of this
one orbital would require optimizing only seven orbital rotations. How-
ever, this approach would be messy, since in general, a rotation of ¢, with
one of the seven virtual orbitals would introduce an overlap between ¢,
with ¢, and ¢q,* which is unallowed in the perfect pairing GVB wavefunc-
tion. Thus, after each orbital rotation, a symmetric orthogonalization
would be necessary, to maintain both the required orthogonality and the

symmetry relation between the orbitals. We instead optimize all four

* »4 is allowed to overlap @, of course, since they are singlet paired.
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orbitals, in terms of the natural orbitals

%1 = ¥a t o (28a)
$2 = ¥a = Pb (28b)
¥s = ¢ + ¢a (R8c)
%4 = Pc — ¢a (28d)

and take advantage of the symmetry with respect to the o, reflection
plane. Thus there are two symmetric occupieds (¢; and ¢3) which can mix
with each other and with two symmetric virtual orbitals, and two
antisymmetric occupieds (¢, and ¢,) which can mix with each other and

two virtuals, leading to a total of ten orbital rotations.?>

The GRVB(1/2) triplet wavefunction was optimized using only two of
the four resonance structures shown in (20) ((19a) and (19c¢)), and then
these orbitals were used to construct the full four structure resonating
wavefunction using the RESGVB program. The effect of including the two
extra resonance structures is seen from Figure 2 to be 6.9 kcal, but the
effect of opfimizing the orbitals with four structures rather than two is
expected to be negligible. This is because the dominant effect in going
from GVB to GRVB is the localization of the orbitals, and examination of
Figure 5 shows that the localization appears to be complete. It is
interesting to note that if the orbital shapes a, b, ¢, and d, are restricted
to be the same for each resonance structure, as written in the VB
wavefunctions (19a) - (19d), then the two-structure form of the triplet is

equivalent to the four-structure form, since

T . = 1 o+ 01 (29)

The 8.9 kcal lowering we observe by including the third and fourth struc-

tures indicates the importance of allowing the orbitals to polarize for
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optimum bonding overlap. Simultaneously optimizing four symmetry-
related structures would require roughly twice the computational work as
for two resonance structures, since there are two unique off-diagonal

matrix elements to be evaluated,

f‘?;"_'ano!.‘.?:%-.

While this is easily feasible, the current version of the GRVB program is
restricled to two subwavefunctions. As with the singlet, the shapes of ¢,,
vy, ¢ and ggq are transferred between subwavefunctions by a symmetry
operation, in this case a €, rotation. This leads to two unique orbitals, ¢,
and ¢, in (19a), just as there was one unique orbital for the GRVB singlet,
but as above, we optimize four orbitals, the two GVB natural orbitals

©1= ¢a + Pp (30a)

®2 = ¥a ~ ¥b (30b)
and the two high spin orbitals ¢, and ¢4. By combining the high spin orbi-
tals as

¥s = ¢c + pa (30c)

¥4 = ¥c — ¥ (30d)
we can impose symmetry constraints on the orbitals, so that ¢, and g3
are symmetric under vertical reflection plane, while ¢, and ¢, are
antisymmetric. Thus, as with the singlet there are ten orbital rotations.
For the antiresonant GRVB(1/2) triplet state, using two resonance stfuc-
tures to optimize the orbitals is not a restriction, as the third and fourth

structures cannot interact with the first two, because they represent the
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other degenerate component of the 3E, state.

All orbitals are plotted in a plane which is 0.5;& above, and parallel to,
the plane of the molecule. The projected positions of the atoms are
included on the plots for clarity, and the contour range from -1.0 a.u. to
1.0 a.u. by increments of 0.05, with negative contours represented by dot-

ted lines.
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V. Resulis and Discussion - Square Geometry

In Figure 3 we show the energy levels (relative to the !B, state)
resulting from a full 7 CI calculation, along with the SCF and GRVB
results. The full 7 CI is the fully correlated limit of this basis set (which
excludes the sigma space), and thus represents the "correct” set of
energy levels to which we can compare SCF and GRVB. The disadvantage
of the full CI wavefunction is that we cannot extract simple physical ideas
from the multitude of configurations (in this case, 266), as we can from
the SCF and GRVB wavefunctions.

With the exception of the !Bj, state, which was not optimized, the
GRVB resulls are seen to be in very good agreement with the CI. The
ground state is correctly predicted to be !By, state, the first triplet is
about 10 kcal up (CI: 10.2, GRVB: 13.0) and the '4,; and 3E, antiresonant
states are within 5.2 kcal and 1.7 kcal, respectively, of the CI. Thus, the
key features of the valence state spectrum are produced by the resonat-
ing VB model.

The SCF results are seen to be in poorer agreement with the CI. The
ground state is incorrectly predicted to be a triplet (a relative error of
14.6 kcal), the !B, state is 31.0 kcal too low, the 3E, state is 31.3 kcal
too high, and the '4,; and !By, states are interchanged.

That MO theory predicts the incorrect ground state is significant, as
this is considered to represent a violation of Hund's rule.[7] Kollmar and
Staemmler have proposed a mechanism they call "dynamic spin polariza-
tion" [14] by which the singlet state in a biradical species is expected to
be lowered by CI more than the triplet. They have used this mechanism
io justify the Hund’'s rule violation in H,, twisted ethylene, and planar

methane, as well as in cyclobutadiene. The effect is expected to cause a
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state crossing when the singlet and triplet states are nearly degenerate,
as occurs when the exchange integral between the two singly-occupied
orthogonal orbitals is small. As discussed in section II, the exchange

integral in this case is
Ky+v x-y = 2.2 keal . (10;

The spin polarization theory is a formalized version of a qualitative expla-
nation put forth earlier by Borden[15] to explain the cyclobutadiene vio-
lation. Without going into the details of the dynamic spin polarization
theory, we simply point out that the CI terms which are purported to
cause this ""spin polarization' are similar to those required to convert the
SCF wavefunction into a resonating VB wavefunction. Thus the same
effect can be accounted for with a much simpler model than those
authors proposed. Using the resonating valence bond model also leads to
the correct ground state of square H,, which is isomorphic to the m space
of cyclobutadiene. (The singlet-triplet inversion in twisted ethylene can
also be explained using a single-particle wavefunction (spin-optimized
GVB), rather than resorting to dynamic spin polarization.[16])

In Figure 4 we show the bond pair from the GVB(2/4) singlet wavefunc-
tion (equation (15)). The orbitals are seen to be strongly localized, and
polarized to achieve favorable bonding overlaps. The GRVB(2/4) orbitals
from the resonant (!5, and antiresonant ('4,,) states are also displayed,
‘and are virtually indistinguishable from the GVB orbitals. Unlike in ben-
zene, for example, the orbitals are completely localized even before reso-
nance is included. This is discussed in the next section. Figure 5 shows
the orbitals from the GVB(1/2) triplet and the GRVB(1/2) resonant and
antiresonant triplet states. In contrast to the singlet state, the triplet

orbitals are completely delocalized in the GVB wavefunction, and beccme
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very localized in the GRVB wavefunctions. This is because the orbitals try
to include the effect of resonance at the GVB level by smearing out over
the molecule. This tendency is so strong that the GVB ""bond pair” is dis-
torted into a bond between the diagonal carbons. When the resonance is
explicitly included in the GRVB wavefunction by allowing two structures,
the orbitals are free to localize, taking on shapes expected from VB
theory. This occurs in most systems to which we have applied GRVB, and
the next section discusses why the CBD singlet is an exception. Another
noticeable feature of the GRVB triplet orbitals is that the antiresonant
state orbitals are more localized than those of the resonant state. This
"tightening up’ of each orbital reduces the interaction between the iwo
resonance structures, thereby reducing the amount that the
antiresonant state is driven up in energy from the energy of a single reso-
nance structure. It is important to understand that reducing this
"interaction" does not necessarily mean reducing the wavefunction over-

lap. The whole term
Hyp—SspH,
Egnrr = Hag — _AB;:L".‘L
1-Sap5

must be reduced, though in fact, the wavefunction overlap does decrease
from 0.0826 for the resonant state to 0.003227 for the antiresonant state.

It is interesting that the ionic !B, state is actually below the
antiresonant triplet state. Perhaps a better description of this state is as
a resonance of two structures, each of which has four one-electron bonds.
By appropriately singlet-coupling pairs of these one-electron bonds, we

can get the desired !By symmetry:

wrong s G - 69 . @

Since the carbon-carbon two-electron w bond is more than twice as
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strong as the one-electron n bond, the four one-electron bonds will not be
competitive wilth two two-electron bonds. However, it seems reasonable
that such a structure might be more stable than the structure with two
negatively charged carbons. The antiresonant combination of these
"ionic" structures leads to a state with A,; symmetry (see equation
(23Db)), and thus the !4,, state at 50.0 kcal may contain a small amount
of this character. This would explain why the GRVB description of the
'4,, state is 5.2 kcal too high, since the GRVB wavefunction does not
include this "ionic character".

Finally, we note that the GRVB value for the !B, to 34, excitation is
2.8 kcal above the CI value. Since the correlation error in the two bond
pairs is expected to be greater than the correlation error in one bond
pair plus a triplet coupled pair, this result is opposite to expectation.
One possible implication is that the triplet resonance is not completely
described, a result of using only two resonance structures to optimize the
orbitals. As discussed in Section IV, we believe this error is negligible,
Another possibility is that there is a contribution from the one-electron

bond structures

~ N/

W)= Gn ) + A + QM) - 9 (33)

(where the wiggly line represents triplet coupling), which is included in

the CI, but notl in the GRVB wavefunction.
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VI. The VB Singlet State -~ A "Forbidden Reaction"

In the last section we saw that the GRVB(1/2) singlet oribitals differed
only slightly from the GVB(2/4) orbitals. In contrast, the triplet state
orbitals behave much more like those of most systems we have studied,
going from very delocalized in the GVB wavefunctions (because they are
trying to include resonance), to very localized at the GRVB level (because
the resonance is included explicitly). The reason for this anomolous
behavior of the single can be understood by appealing to the orbital
phase continuity principle (OPCP) 17  which is used to predict whether a
reaction is "allowed" or "forbidden"”. the OPCP approach makes identical
predictions as the W@dward—Hoﬁfmann rules!® for systems with sym-
metry, but OPCP does not require symmetry to work. For example, using
OPCP, the Hz+D;-»2HD reaction is predicted to be forbidden for any
approach geometry, based on what necessarily happens to the phases of
the orbitals as they convert from the reactant bonding structure to pro-
duct bonding structure. Because the relative phases of the two orbitals in
one of the bond pairs must change sign, the transition state corresponds
to breaking a bond. We do not give a derivation of OPCP here, but simply
state the consequence that bears on the problem at hand. If the inter-
conversion of two bonding siructures ts "allowed" by OPCP, then an SCF
which describes one of these bonding structures may delocalize to con-
tain some character from the other bonding structure. If the inter-
converston of the two bonding structures is OPCP- 'forbidden', then an
SCF will nol delocalize to include character from the other bonding
structure. Since the m space of the cyclobutadiene singlet is isomorphic

with a "forbidden" 242 reaction, the two VB structures cannot intercon-

vert by OPCP. Thus, the "smearing out"”, which allows some resonance at
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the GVB level, is forbidden by OPCP for the CBD singlet. Whatever extent
the wavefunction tries to include resonance by smearing out, it picks up
character of a broken bond, which is energetically unfavorable. However,
this inability to interconvert bonding structures has no bearing on the
ability to gain a lowering in energy upon resonating the two structures,
and indeed the resonance is a 22 kcal effect. The CBD triplet, and most of
the other resonating systems we have studied, are isomorphic with
"allowed" reactions, and thus show considerable delocalization at the SCF
level.

An important ramification of this property of the CBD singlet is that
the GRVB wavefunction is only slightly different than the R-GVB wavefunc-
tion, as shown in Figure 6. The resonance lowering for the R-GVB
wavefunction is 20.6 kcal, only 1.2 kcal less than GRVB. Similarly, the
antiresonant state only drops by 0.7 kcal in going from R-GVB to GRVB.
Thus for single CBD, and any other resonating system that is isomorphic
with a forbidden reaction, the much less expensive R-GVB wavefunction
can be used to get near-GRVB results.

Another consequence of this result is that cyclobutadiene is one of the
few systems in which the electronic resonance energy can be estimated
to high accuracy, because the GVB wavefunction corresponds very closely
to the non-resonating reference state. Assuming that the resonance
lowering would not change significantly upon increasing the basis se't.,19
we can state that the electronic resonance energy in square cyclobuta-
diene is between 21.8 kcal (F£(GVB)-£(GRVB)) and 23.1 kcal ( E(¥YFV?) -E
(GRVB)).
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VII. Rectangular Distortion

We now consider distorting square CBD to a rectangular geometry. In
resonating VB theory, this leads to two VB structures which are ine-

quivalent,

VYror = Cy l/ | + Cp (34)

The good structure (¥,) goes down in energy because it attains bond
lengths closer to the ideal values for single and double bonds. The bad
structure (¥p) goes up in energy, leading to a decrease in the resonance
energy. Thus, the molecule will distort if the good structure drops in
energy faster than the resonance energy declines. Figure 7 shows the
potential curves before and after resonance. The resonance is not strong
enough to prevent the distortion, and the rectangular geometry is 4.8
kcal below square. This is in excellent agreement with the = CI result of
5.1 kcal at the same geometry. The MO theory analysis of the distortion
relies on a perturbation theory argument known as the second-order
Jahn-Teller effect.z0 This theory is discussed by Pearson,z1 and we state
only the result here. If a low-lying electronic state (¥,) has the symmetry
such that the integral <¥,{8H/ 8@ |¥,> is nonzero, then a distortion might
occur along coordinate . The integral is nonzero if the direct product of
the symmetry representations of @ and ¥, contains the symmetry
representation of ¥;. For CBD, the rectangular distortion is of b,; sym-
metry, the first excited singlet is '4,; (e;, symmetry), and the ground
state is b,;, symmetry, so that a second-order Jahn-Teller distortion is
plausible. As in resonationg VB theory, we cannot make an a priori pred-
iction that the distortion will occur, only that is reasonable. The SCF

results are also displayed in Figure 7, and the SCF is seen to correctly
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predict the ground state of the molecule to be a rectangular singlet, with

the 7.5 kcal lower than the square singlet.

Other theoretical estimates have placed this energy difference at 4.2
kecal (STO-3G basis 5) and 6 kcal (6-31G* basis 6), using full = CI calcula-
tions, and the barrier roughly doubles if o correlation is included. Prob-
ably the best estimate so far is 12 kcal made by Jafri and Newton® using
or Cl in a 8-31G* basis set. Whitman and Carpenter have recently placed
an experimental lower bound on this bafrier to interconversion of the
rectangles, by comparing the rate of interconversion to the rate of Diels-
Alder trappings. The CBD was isotopically labeled in a way that yielded
different trapping products for the two rectangular forms, and the activa-
tion energy for automerization was determined to be 1.6 kcal higher than
the activation for trapping. Since the trapping reaction should not have a
negative activation energy, 1.6 kcal is a lower bound on the CBD automer-

ization barrier.

VIII. Conclusions

We have applied MO theory and resonating VB theory to understand
the low lying states of cyclobutadiene in its square geometry. The MO
description of CBD is as a diradical with a triplet ground state and a
corresponding open shell singlet slightly higher. VB theory describes
ground state CBD as a resonance of two structures, each with two =
bonds, and the triplet state is higher because it has one broken bond.
Through the use of SCF and GRVB techniques, the orbital-optimized ver-
sions of the MO and resonating VB wavefunctions can be found, and the
resulting state energies are consistent with the model predictions. Com-
parison to the results of a full m CI indicates that the VB model more

accurately portrays the features of the CBD system, giving the correct
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ground state and reasonable excitation energies. While in MO theory CED
is often described as ""antiaromatlic”, and attributed with a negative reso-
nance energy,22 we find a positive resonance energy of 22 kcal with
respect to a single VB structure. This apparent discrepancy results from

a difference in the conventions for the reference energy.

In VB theory, the distortion to a rectangular geometry is favored by a
relaxation of strained bonds, and disfavored by a loss of resonance
energy. In MO theory the distortion is possible due to a second-order
Jahn-Teller coupling with the '4,;, statz. Neither theory predicts qualita-
tively whether the distortion will actuallv occur, but the SCF and GRVB
calculations both find a rectangular singlet ground state, as does the full

m Cl.
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SQUARE  CYCLOBUTADIENE - MO THEORY
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Figure 1. MO theory description of the low lying states of square cyclobu-

tadiene. -The energies are from an SCF calculation on each state.
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SQUARE CYCLOBUTADIENE -RESONATING VB THEORY

GVB GRVB

Figure 2. Resonating VB theory description of the low lying states of

square cyclobutadiene.
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SQUARE CYCLOBUTADIENE
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Figure 3. Quantitative comparison of MO theory and resonating VB
theory. The total energies for the 'B,, state are: SCF: -153.58584, GRVB:
-153.76295, and full n Cl: -153.657826. The GRVB and n CI wavefunctions
use the same frozen o core, while the SCF wavefunctions are completely

relaxed.
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Figure 4. The GVB and GRVB orbitals for singlet cyclobutadiene. Top:
GVB(2/4); Middle: GRVB(2/4), 'B,, (resonant) state; Bottom: GRVB(2/4),

'A;; (antiresonant) state. Only one of the two (equivalent) bond pairs is

shown in each case. The plotting plane is 0.5 A above the molecular

plane, and the projected positions of the carbon atoms are indicated.
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Figure 5. The GVB and GRVB orbitals for triplet cyclobutadiene. Top:
GVB(1/2) (delocalizes); Middie: GRVB(1/2), A (resonant) state; Bottom:

" GRVB(1/2), ®E, (antiresonant) state.
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RESONANCE IN
SQUARE CYCLOBUTADIENE
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Figure 6. Various levels of resonance in cyclobutadiene; GVB(2/4), R-

GVB(2/4) and GRVB(2/4). All calculations used the same sigma space.
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Figure 7. Resonating VB model of the rectangular distortion at square

.eyclobutadiene. The solid lines are R-GVB results, while the full n Cl is

indicated by a dashed line. Energies are with respect to the rectangular

ground state.
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CHAPTER 5

The Resonating Valence Bond Description of Chemical Reactions

I Introduction

Most chemical reactions are ideally suited to a resonating valence
bond model, since in the process of a reaction a bonding structure
corresponding to reactants is converted to a bonding structure
corresponding to products. Thus, the wavefunction along the reaction
pathway can be represented as a continuously varying linear combination

of reactant structure and product structure.

For example, in the HCl + D exchange reaction,

H-—-Cl + D —» H+ Cl--D (1)

reactants products
the ''reactant structure” (¥,) has a bond between the H and Cl with an

unpaired electron on D, while the 'product structure” (¥p) has a bond

between Cl and D, and we can write the total wavefunction as

Yror = Cq¥y + Cp¥p (2)

where C; and Cp depend on nuclear geometry. Even without explicitly
defining the form of ¥4 (so long as ¥, is reactant-like and ¥ is product-
like), we can see that (2) yields a very neat conceptual picture of the
reaction process, as shown in Figure 1. The diabatic states ¥, and ¥p are
completely appropriate for the reactant and product limits, * while C4, Cp,

and the energy of ¥7or at any other point along the reaction coordinate

* There may be a small contribution to Eppr from the other structure at the reac-
tion limits, but the corresponding energy lowering will be negligible.
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can be found by solving the two-dimensional secular equation using ¥y

and ¥y as the basis states. The resonance energy, defined as

Ergs = Epwer — Eror | (3)

where Ej.r is the lower of E, or Ejp, is seen to be larger when £, and £j3
are closer. For a symmetric reaction such as (1)* we can slate that the
transition state will occur at a point where E4 and Ep cross, that this will
be a maximum in Epps along the reaction coordinate q, and that at this

point

1Cal = 1CB| .

For a nonsymmetric reaction such as

H + Clz — HClI + Cl , (4)

the transition state may not occur at the crossing of £4 and £g, but the
resonance energy will reach a maximum near this crossing point, and the
transition state will also be nearby, unless the slopes of £, and Ep are
very different at the crossing. If £, and Ep are fairly smooth in this
region, the transition state will be shifted towards the state with the
more shallow slope, as shown in Figure 2. If Eggs could be expressed as a
function of E, — Ep, a simple expression for the magnitude of this shift
could be obtained in terms of the slopes of E, and Ey. However, Epgs
results from a delicate interplay of the matrix element <¥,|{H|¥z>, and

the overlap <¥,|¥g,, and a simple expression could thus be misleading.

The R-GVB and GRVB methods presented in Chapter 3 allow us to

* Within the Borrn Oppenheimer approximatior, the HCl + D reacticn has a sym-
metric potential energy surface.
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solve for the wavefunctions ¥, and ¥p and mix them to obtain
Cs. Cp. Ergs, and Erpr. These wavefunctions and energies can be inter-
preted directly within the framework of the simple model just discussed,
and thus provide a test of the validity of the resonating valence bond
model of chemical reactions. The results of various test cases are

presented in the following sections.
O. The HF + D Exchange Reaction

A Introduction

The reactions of HF with a hydrogen atom,

HF = D ————- H + FD, (5)
and

D + HF ————m DH + F, (8)
147 attention

have received considerable experimentall'3 and theoretica
in recent years, primarily due to the influence of such reactions on the
performance of the HF chemical laser. In the following we compare vari-
ous theoretical methods in describing the activation barrier of the ther-
moneutral exchange reaction (5). Calculations by Wadt and Winter? have
shown that the activation barrier is 1-2 kcal lower for a nonlinear transi-
tion state geometry. We consider this bent state in Section ILF, but the
majority of our calculations were performed at a collinear geometry. The
collinear transition state has been the subject of all other previous work,
and is thus well suited to a comparison of calculations. In particular, we
compare the results from simple wavefunctions in which one-electron
orbitals can be plotted with the results from complex, highly correlated

wavefunctions. We find that the GRVB wavefunction yields a barrier

height in excellent agreement with the accurate wavefunctions (49 kcal),
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while all other simple approaches give a barrier more than 9 kcal too high
(in most cases, 15-20 kcal high). Further, the GRVB orbitals supply strong
evidence for the validity of the resonating valence bond model at the

tramnsition state.

B. Calculational Details

All collinear calculations employed the flexible contracted gaussian
basis set listed in Table 1. The fluorine basis is Huzinaga's (9s,5p) basis®
as contracted to (3s,2p) by Dum'u'ng,10 augmented by a single d polariza-
tion function («x = 1.34), and the hydrogen basis is a triple zeta contrac-
tion of Huzinaga's 6s basis plus a single p polarization function (a = 1.45).
This basis is comparable to the double zeta polarization basis employed
by Dulrming,8 and the less flexible of the two basis sets used by Wadt and
Winter.* The more flexible basis they used contained diffuse s and p Ryd-
berg functions on the fluorine, which were necessary f[or accurate
description of the bent geometries but only had a slight effect (~2 kecal)
on the collinear transition state. The Caltech Program GVB2P5!! was
used for all Hartree-Fock and GVB calculations, Caltech GVB3 program12
was used for the full-valence multiconfigurational SCF’'s (MCSCF), and the
Caltech CI2P5 program was used for the configuration interaction (CI)
wavefunctions. All CI, MCSCF, and GRVB wavefunctions maintained a
frozen 1s orbital on the fluorine, taken from the Hartree-Fock calcula-
tions which used full symmetry. A number of wavefunctions allowed
optimization of orbitals in the sigma space only, and for these the
doubly-occupied 2p; and 2p, orbitals were taken from Hartree-Fock
wavefunctions with full symmetry. The relaxation of these pn orbitals to

an asymmetric shape in the GRVB wavefunction lowered the total energy
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by only 0.7 kcal. In this sigma-space basis, the GRVB wavefunction had
four occupied orbitals (a closed-shell 2s, a GVB pair for the bond, and an
open shell) and 9 virtual orbitals, leading to 42 orbital rotations to be
optimized. For the symmetric geometries, ¥ was defined by the
reflection of ¥,, so that only the ¥, orbitals were explicitly optimized. At
the asymmetric geometries, the ¥ orbitals and ¥, orbitals were each
optimized, requiring 42 rotations for each subwavefunction. Using the
procedure described in Chapter 3, all 84 rotations were optimized in a
single GRVB run. The desired orthonormality of occupied and virtual
orbitals within a subwavefunction was maintained by using a different set

of virtual orbitals for ¥, and ¥5.

Typical CPU times on a DEC VAX 11/780 computer were 12,000
seconds for the o-GRVB at symmetric geometries, 14,400 seconds at
asymmetric geometries (20 iterations using a new basis each iteration),
115 seconds to perform the GVB(1/R) calculations, 2,776 seconds for the
o-full CI at symmetric geometries, 11,835 seconds at asymrmetlric
geometries, and 192 seconds to compute the atomic integrals

(assymetric geometry).

Unless otherwise noted, calculations were performed at the R, = Rp =
1.17 A collinear geometry of HFH as optimized by Wadt and Winter,* and
the experimental geometry of R = 0.9176 A for HF.!® The geometry used
for the bent transition state study was that optimized by Wadt and Winter
(R, =R, =1.08 A 0= 106°), and some of our calculations employed their

large (4s,3p,1d/2s,1p) basis.

All orbital contour plots use the same scale (the horizontal width of
the box is always 7 ;&) and are plotted in a plane containing the molecule.

Contours from 1.0 a.u. to -1.0 a.u. are displayed in steps of 0.05, with
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negative contours represented by dashed lines.

C. Results from High Level Wavefunctions

In Table 2 we list the activation barrier for collinear HF + H as calcu-
lated from highly correlated wavefunctions by various workers. These
values represent the most accurate theoretical estimates currently avail-
able and are seen to be in reasonable agreement with each other. They
are probably an upper bound on the barrier which would result from a
full CI in an infinite basis, since barriers in other systems have invariably
dropped when more correlation or a larger basis was employed.14 How-
ever, there is no reason to believe that the barrier would drop more than
another 5 kcal. Thus, these results are in agreement with the only exper-
imental estimate,® which brackets the barrier between 42 and 53 keal.
The various abbreviations are defined here:

A GVB(n/2n) wavefunction is GVB perfect-pairing11 in which n orbi-

tals are correlated with two natural orbitals each (the Wadt and

Winter GVB(3/6) calculations correlated the H-F bond, the F 3s pair

and one of the pr orbitals).

A GVB-Cl is a full CI within the GVB active space, which consists of the

2n GVB natural orbitals plus any open-shell orbitals.

An SD-CI is all single and double excitations from some configuration

or configurations. Thus, Wadt and Winter's GVB + SD-CI is a GVB-CI

plus (not times) an SD-CI from the GVB dominant configuration, énd
their POL(3)CI is a GVB-CI plus an all triples CI from the GVB dom-

inant, restricted to have only one electron in the virtual space.
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SOGVB refers to "strongly orthogonal" GVB in which the spin coupling of
the GVB electrons is optimized (while maintaining orthogonal GVB natural
orbitals), in contrast to GVB perfect-pairing (which we call simply GVB),
which only allows the singlet coupling within each GVB pair.

PNO-CEPA refers to the pseudo-natural orbital correlated electron

pair approximation. 15

The o-full CI wavefunction is a full CI in the sigma space only, as
defined in Section II-B. Some of the wavefunctions we will describe in the
following sections (o-GRVB, 0-SOGI, o-full valence) are optimized in this
same sigma space, and the barriers thus obtained should be compared
with the o-full CI barrier of 48.6 kcal, the fully correlated limit of this

basis.

D. Results and Discussion of Conceptually Simple Wavefunclions

In Table 3 we list the barrier heights obtained from various wavefunc-
tions, which retain a "single particle” (or "single particle plus resonance’’)
interpretation, i.e., each electron in in the system can be assigned to one
orbital. (This is not possible for most CI and MCSCF wavefunctions.) The
simplest of these is the Hartree-Fock wavefunction, which gives a barrier
~20 kcal too high (67.8). Using a GVB(1/2) wavefunction in which the
bond pair is described by two singlet-coupled one-electron orbitals*, the
barrier is calculated by comparing the GVB(1/2) energy of HF (and
Hartree-Fock H atom) with the GVB(1/2) energy of HFH. Interestingly,

this leads to an even higher barrier than Hartree-Fock (69.5 kcal versus

*GVB(n/2n) refers to n electron pairs correlated with two orbitals each, while
GVB(n/m) means that n electron pairs are correlated with a total of m natural or-
bitals. The reader who is unfamiliar with GVB is referred to Chapter 1.
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67.8 kcal). This can be understood by examination of Figure 3, in which
we have plotted the Hartree-Fock and GVB(1/2) orbitals. The GVB pair is
seen to be only slightly localized, and is essentially an "in-out" correla-
tion on the F 2p orbital, rather than "left-right” bond pair correlation.
This occurs because the GVB wavefunction is trying to incorporate reso-
nance, and having only one bond structure available, accomplishes this to
a degree by simply smearing this bonding over the whole molecule. This
also occurs in the Hartree-Fock wavefunction, where the delocalization
tendency is so strong that forcing symmetry on the wavefunction does
not change the energy (i.e., the Hartree-Fock wavefunction does not
"break symmetry'). Thus the GVB barrier height is even higher than
Hartree-Fock because while the HF energy is lowered by the sigma bond
correlation (14.6 kcal), the HFH energy is not, because the wavefunction
refused to scarifice the energy gained by delocalization. The GRVB(1/5)
wavefunction, which correlates the bond pair with five natural orbitals,
gives an even higher barrier, for the same reasons. The most sophisti-
cated single-particle wavefunction we can optimize that does not include

16 in which each electron in the

resonance* is the "SOGI(3)" wavefunction,
active space (in this case, three electrons) has its own orbital and the
spin coupling among these electrons is completely optimized with no res-
trictions on the overlap between the orbitals. The SOGI wavefunction on
HFH is consistent with a GVB(1/2) wavefunction on HF [since SOGI(2) for
the bond pair is equivalent to GVB(1/2)], yielding a barrier of 57.7 kcal.

The ¢-SOGI(3) wavefunction listed in Table 3 was optimized with a frozen n

space, so the appropriate comparison is to the o-full CI barrier of 48.6

* We refer to the smearing cut tendency exhibited by the Hartree-Fock and GVB
wavefunctions as "delocalization’ and reserve the term "resonance” for wavefunc-
tions that explicitly include multiple resonating subwavefunctions, such as R-GVB
or GRVB.
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keal.

The SOGI(3) barrier is 9 kcal high because even though the spin cou-
pling corresponding to each bond structure is included in the wavefunc-
tion, the shapes of the orbitals are not able to oplimize for each reso-
nance configuration. We now consider wavefunctions that include reso-
nance explicitly.

The R-GVB(1/2) wavefunction in which a GVB(1/2) wavefunction is
resonated with its reflection* gives a barrier 66.5 kcal, corresponding to
Eqs = 3.0 kcal. This resonance energy is small because the GVB(1/2)
wavefunction is only very slightly localized, as evidenced by the high
overlap of 0.94 (if it were completely delocalized, E,, would be zero). The
same problem occurs for the GVB(1/5) wavefunction (£, = 2.0 kcal), and
allowing the GVB coefficients to relax in the resonating wavefunction [see
the R-GVB(pr) entries] has only a negligible effect. Thus the R-GVB
approach gives only marginal improvement over GVB in describing the

barrier height.

The strong delocalization tendency of the GVB wavefunctions is an
indicator of the importance of resonance in this system. A GRVB(1/2)
wavefunction in which each GVB(1/2)-like subwavefunction is optimized
in the presence of resonance [this dissociates to a GVB(1/2) wavefunction
on HF and a Hartree-Fock H atom] yields a barrier height of 47.7 keal, in
much closer agreement with the high quality wavefunctions. The most
meaningful comparison is between the o-GRVB(1/2), optimized in the
sigma space only, and the o-full CI, which includes all possible correla-

tions in this space. While the o-full CI energy for HFH is 14.4 kcal lower

* "Reflection’" refers to the symmetry operation that interchanges the two H
atoms.
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than o0-GRVB(1/2), the barrier heights differ by only 0.2 kcal. Thus it
appears that the differential correlation in the activation process is com-
pletely included by resonating two localized structures. The orbitals
from one of the two GRVB(1/2) subwavefunctions [e.g., ¥4 in Eq. (2)_ are
plotted in Figure 4, along with the corresponding orbitals from the HF
molecule and H atom. It can be seen that the GRVB subwavefunction
locks very much like an HF molecule next to an H atom, with the H atom
staying orthogonal to the HF orbitals. Note that the GRVB wavefunction
was not forced to look like this. With only the restriction that ¥p be the
reflection of ¥4, the best possible ¥, was optimized. The resulting orbi-
tals and the highly accurate calculated barrier are strong evidence for
the validity of the simple resonating valence bond model of the transition

stale species:

@—@%@@ . @@ 2

The Pauli-induced orthogonality of the hydrogen electron raises the
energy of the wavefunction, and the fluorine 2s pair is the main contribu-
tor to this condition, since it pooches away from the H-F bond and
towards the hydrogen. Thus we can understand why the barrier height in
this "allowed' reaction is ~ 50 kcal, while H + H,, for example, has a bar-
rier of only 9.8 kecal.l” The difference between the 0-GRVB(1/2) wavefunc-
tion and the GRVB(1/2) wavefunction is in the relaxation of the F 2p, and
2p, electron pairs in response to the localized bonding. This relaxation

lowers the energy by only 0.7 kcal, and Figure 5 shows that the 2p 7 orbi-
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become only slightly asymmetric. We also find that the GRVB(1/5)
wavefunction leads to a barrier within 0.8 kcal of GRVB(1/2). Thus the

important differential effects appear to be contained in the sigma space.

The optimized resonance of two Hartree-Fock wavefunctions, termed
GRHF, leads to a barrier of 52.5 kcal, 4 kcal above the o-full CI result. We
conclude from this that a proper description of the bond pair correlation
is not nearly as important as explicit inclusion of resonance. It is reason-
able that the GRHF barrier is higher than the GRVB barrier, as Hartree-
Fock does not dissociate properly,'18 leading to an artificially high energy

for the elongated HF bond at the saddle point geometry.

Another wavefunction tested was the full-valence MCSCF, in which
orbitals are optimized for a full CI within the active valence space. Using
a three-orbital, three-electron active space, and optimizing with the same
restrictions as the o-full CI, the full valence wavefunction led to a barrier
of 57.7 kcal, 9 kcal high. This is noteworthy, as some researchers use the
full valence approach to compute reaction barriers.'® The deficiency in
the full valence wavefunction results from the fact that it does not allow
shape readjustments necessary for the two different resonance struc-
tures. The 3s orbital is optimized, but has only one shape for both spin
couplings of the other three electrons. A full valence wavefunction that
allowed two orbitals per valence electron, including the 3s pair, would be

expected to give much more accurate results.

We also tested the GRVB approach in describing the position and
shape of the minimum along the symmmetric stretch mode in the saddle
point region. The results are in Table 4, and the 0-GRVB(1/2) minimurm is

seen to be in excellent agreement with the o-full ClI, differing by only
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0.002 K The force constant is farther off, predicting a curvature that is

too shallow by ~ 77%.

E. The Resonating Valence Bond Model Along the Reaction Coordinate

As discussed in the Introduction, the resonating VB model offers a
compact representation of the wavefunction for all points along the reac-
tion coordinate. This is shown diagrammatically in Figure 1 for a sym-
metric reaction such as HF + D. The reaction coordinate displayed is
idealized, but the important features are present. Starting at the ¥,
limit, where C; = 1 and Cp = 0, and moving towards the transition state,
the energy Eyor is dominated at first by £4, and smoofhly increases. For
this region, the reaction coordinate is roughly half symmetric H-F-
stretch, and half asymmetric stretch, corresponding to the motion of a
rigid HF molecule towards a D atom. As the saddle point is approached,
the HF bond length increases, increasing the amount of asymmetric
stretch in the reaction coordinate. The unfavorable structure, ¥, which
looks like a very long F-D bond with a hydrogen crowded next to the
fluorine, begins to drop in energy due to the decrease in Pauli repulsion
that accompanies the H-F stretch. The magnitude of Cp smoothly
increases, as does the resonance lowering of Erpr. At the transition state
geometry, the reaction coordinate is purely asymmetric stretch, and the
resonance energy is at @ maximum. 1f there were no resonance of ¥, and
Vg, the wavefunction would be purely ¥, until the transition state, at
which point it would switch to pure ¥, leading to a cusp in the energy.
Thus, resonance has the effect of flattening out the energy in the transi-

tion state region, and smoothing the conversion from ¥, to ¥p.

To explore the capability of GRVB in describing this process, we per-
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formed calculations at various points along an approximate reaction
coordinate. The true reaction coordinate is defined as the path of
steepest descent leading away from the saddle point geometry, and
finding this path would require a search of the two-dimensional hypersur-
face. The approximate coordinate we used, sufficient for our purposes,
consisted of fixing one bond distance at 1.17 1& (the transition state bond
length) and varying the other bond distance. This coordinate goes
through the correct saddle point at 48.4 kecal, though it does not coincide
with the asymmetric str.etch mode at the saddle point. The results are
displayed in Figure 6, and the agreement between the o-full CI and o-
GRVB is excellent at both the saddle point and the reaction "limits". In
our discussion, we will implicitly refer to the left side of Figure 6, where

E, is below Ejp.

We do not show results from an R-GVB wavefunction because at asym-
metric geometries, the '"bad-bond" GVB(1/2) wavefunction (¥p) is
unstable and collapses to the lower-energy ''good-bond" structure (¥4). In
the GRVB description, ¥3 can be "trapped"” because ¥, is already included
in the wavefunction, so that ¥p contributes to the total energy via the
resonance energy. If the energy of ¥p is high enough that the resonance
energy is smaller than the energy of some other pair correlation in the
system, then the bad-bond GRVB (1/2) subwavefunction may collapse to a
good-bond structure, but with a different shape for some orbital. For
example, the wavefunction may choose to describe the in-out correlation
of the fluorine 2s pair, which is worth 2.4 kcal for the isolated HF
molecule.b0 If the GRVB wavelunction collapses in this way, it is no longer
appropriate for calculating an energy along the reaction coordinate,

since it is describing a correlation that is not present in the reactant (or
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product) fragments. This collapse should not occur when the geometry is
still close enough to the saddle point that the resonance energy is large.
Figure 6 shows that this collapse occurs for geometries farther than 0.1 Zi
from the saddle point, as evidenced by the erratic behavior of the dia-
batic subwavefunction energies, and the drop off in the GRVB energy
compared with the o-full CI. The orbital plots of the ¥5 subwavefunction

in this region (not shown) are also consistent with this collapse.

In the region where the GRVB wavefunction is well-behaved, the
agreement with the o-full CI is excellent (also see Table 5), and the quali-
tative trends discussed above are observed. The diabatic state energies,
defined as the energies of the subwavefunctions ¥4, and ¥p in ¥ypr, are
changing rapidly as they cross, but the resonance effect yields a rela-
tively flat Eppr curve. We must be careful in assigning too much physical
meaning to the diabatic energies defined in this way, since, for example,
a different pair of curves would result by using E, and Ep from the
excited state wavefunction. The behavior of £, and Ep does appear rea-
sonable, approaching the GVB(1/2) energy as the distance from the sad-
dle point is increased. F, is always above the GVB energy, since the GVB
wavefunction contains some resonance (from ''smearing out'), while the
diabatic energy contains no resonance. This is also required by the varia-
tional principle, since ¥, and ¥gyp have the same form, but ¥¢ is optim-
ized to minimize its own total energy, while ¥, is varied to minimize the
energy of a wavefunction of which ¥, is only a piece. That the GVB
wavefunction does not contain the full resonance is evident from the

cusped shape of E(GVB) at the saddle point.

Another Ieature of the resonating VB model is the antiresonant

excited state curve, which should have its minimum at the saddle point
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(hence, in this excited state, HFH is a bound species), and approach the
diabatic curves at more asymmetric geometries. We solved for this state
at the symmetric saddle point geometry, and the agreement between the
o0-GRVB energy and the o-full CI is very good (136.3 and 133.3, respec-
tively). Using the resonant state GRVB orbitals to compute the energy of
this antiresonant state leads to an energy of 223.8 kcal, indicating the
importance of allowing the orbitals to readjust in the presence of the

antiresonant interaction.

F. The Bent Transition State

In their study of the HF + H reaction, Wadt and Winter* considered
bent transition state geometries and found the following interesting

results:

1) At the POL(R) CI level (in their large basis set), the lowest collinear
barrier height is 47.6 keal (R = 1.17 A), while the global saddle
point is at 108° (Ryr = 1.08131) with a barrier of 47.2 kcal. Thus, the
potential surface is very flat, with less than 1 kcal separating linear

HFH from HFH bent 106°.

2) Adding diffuse fluorine functions to the basis set was found to have a
small effect for collinear geometries (lowering the barrier from 48.7
kcal to 47.6 kcal), but had a very dramatic effect for bent

geometries, lowering the barrier from 59.6 kcal to 47.2 kcal.

3) In either basis set, first optimizing the collinear transition state and
then bending with a fixed HF distance predicts a collinear transition:
state. This is because the HF bond shortens as the angle decreases
from 180°. Wadt and Winter interpreted these results as indicating

that at bent geometries there is a contribution from the F(2p --> 3s)
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Rydberg state, which can make two HF bonds, as shown here,

The energy of such a state can be estimated by subtracting an HF
" bond energy (6.1 eV) from the 2p --> 3s excitation energy in fluorine
atom (12.8 eVzo) to yield 6.7 eV, which is ~4.6 eV above the transition
state energy. To invoke a similar state at the collinear geometry
requires a 2s —> 3s Rydberg excitation, so that two sp hybrid lobe

H-F bonds are formed,

G

Ignoring the difference in bond strength between a p bond and a lobe
bond, this state is expected to be ~20.5 eV higher than for the bent
case (the energy of a s --> 2p excitation in F+29) so that even if such
a state is important for the bent geometry, it should make an
insignificant contribution to the collinear energy. It is interesting to
notice that the saddle point geometry has a bond angle very similar
to Hz0, which is isoelectronic with HpF*, and the H-F bond lengths are
shorter at the bent T.S. geometry than at the linear geometry, indi-

cating more bonding character. Thus the Rydberg-like transition
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state is a reasonable hypothesis.

We were interested in what a GRVB treatment would yield. Using the
bent geometry optimized at the POL(2)CI level by Wadt and Winter, we
performed two o-GRVB(1/2) calculations,* one using our basis set and the
other using the large basis of Wadt and Winter (WW). The results of these
calculations are in Table 6. The ¢-GRVB(1/2) barrier using the large WW
basis is in excellent agreement with both the POL(2)CI and the POL(3)Cl.
Thus, whatever the character of the bent transition state is, the reso-
nance of two mirror image wavefunctions contains the essential features.
In addition, it is seen that our basis, which differs from the small WW
basis only by having triple zeta hydrogens instead of double zeta, yields a
0-GRVB(1/2) barrier nearly as low as the large WW basis. From this we
conclude that most of the energy lowering obtained with fluorine Rydberg
functions can be recovered by using instead a more flexible hydrogen
basis. Is the transition state Rydberg-like? The orbitals from one GRVB
subwavefunction are plotted in Figure 7. As at the collinear geometry
(Figure 4), the orbitals look very much like an HF molecule with a hydro-
gen nearby that must stay orthogonal, though in this case the dominant
repulsive interaction is with a fluorine 2p orbital rather than a 2s. The
hydrogen open-shell orbital is clearly more diffuse than for the collinear
case, and has built in more character on the fluorine. It appears that the
open-shell orbital is a mixture of a hydrogen is and a fluorine Rydberg sp
hybrid pointing towards the hydrogen. Thus we agree with the assess-
ment of WW that the bent transition state contains some Rydberg charac-

ter, and are encouraged to find that not only does GRVB describe the

* The sigma space at the bent geometry includes a 2p orbital that is of 7 sym-
metry at the linear geometry. ’
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state adequately, it even helps us confirm the presence of Rydberg char-

acter.

Af. this point it is reasonable to ask whether we are being fooled by

this simple model; perhaps the bent transition state is almost completely

Rydberg in character. If it is, we might still conclude that the dominant

feature is the resonance of two non-Rydberg structures with only one H-F

bond, because that is the nature of the wavefunction we optimized. We

can counter such an argument in three ways:

1)

2)

3)

While the bond lengths in the bent transition state are shorter than
at the linear saddle point (1.08 Aversus 1.17 5.), they are still consid-
erably longer than in HF* (0.95 &)21 or H,0 (0.958 &).22

The GVB(3/8) wavefunction, which would be expected to emphasize
the Rydberg character (since it has two bond pairs correlated identi-
cally), predicts bond lengths 0.05 A shorter than the POL(2)CI, which
(we hope) contains the correct amount of Rydberg character. Fur-
thermore, the drop in barrier height upon adding Rydberg functions
is 18.4 kecal for the GVB(3/6) wavefunction, but only 12.4 kcal for the
POL(2)CI (though these are at different geometries).

We have solved for a GVB(2/4) wavefunction with equivalently corre-
lated bond pairs and a delocalized open shell, as in the Rydberg
model, but this wavefunction is unstable by 0.9 kcal®® with respect to
an asymmetric GVB(2/4) wavefunction that has one H-F bond corre-
lated with the open shell fairly localized on the other hydrogen, and
the second GVB pair describing an in-out correlation of the other p o
orbital.

While the transition state is not predominantly Rydberg-like,
there does seem to be significant Rydberg character. Also, the POL(2)
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surface WW published4 shows a significant softening of the bond dis-
tance force constant in the region around 105°-115°, indicating the
true- Rydberg species, with short bond lengths, may not be too much
higher in energy (though it is not a local minimum). This seems
inconsistent with the estimate that the Rydberg species is 4.6 eV (106
kcal) above the saddle point. We can obtain a more accurate esti-
mate in the following way. The energy of the HFH 3s Rydberg elec-
tron should be comparable to that of the 3s electron in the lowest
Rydberg state of Hz0. The stabilization due to the partially

t,z4 and was missing from the earlier

deshielded protons is importan
estimate. We use the average ionization potential (IP) of the !B, (3s)
and 38, (3s) Rydberg states of H.0,® and combine this with the pro-
ton affinity of HF (111 kcal at 0°K)?® and the IP of hydrogen as shown
diagrammatically in Figure 8. The HzF Rydberg species is estmated to
be 72 kcal above H + HF, or 25 kcal above the calculated saddle point
energy, and it is thus reasonable that such a structure could mix into
the transition state wavefunction. If the POL(2)CI without diffuse
fluorine functions can be taken as an estimate of the saddle point
energy in the absence of Rydberg character, then the Rydberg
species is seen to be only 12.4 kcal (72 - 59.6) above the saddle point

before mixing.

Finally, we note that one could solve for a GRVB wavefunction that
allowed the resonance of three bonding structures, the two valence

states, and the Rydberg state,
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We would expect the two valence states to exhibit tighter open-shell orbi-
tals than in the two-state GRVB wavefunction, since the Rydberg state is
now explicitly included in a separate subwavefunction. Similarly, the
Rydberg state would be expected to be more diffuse than in the two-state
GRVB, and would be smeared symmetrically over the molecule. The
coeflicients C;, Cz, and Cp would be expected to change dramatically as
the bond length is varied, since the short-R wavefunction should be
almost purely Rydberg, and the long-R wavefunction is dominated by the
resonating valence states. One must be careful, however, in using such a
wavefunction to calculate the activation barrier, since the transition
state may be over-described compared with the H + HF limit. In design-
ing GRVB wavefunctions, it is important to maintain a balanced, con-
sistent description. If the two-state GRVB wavefunction can adequately
describe the Rydberg character, the three-state GRVB wavefunction
might use the extra degrees of freedom to include some additional corre-

lation that is extraneous to the process of interest.

]
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OI. The HCl + H Exchange Reaction

A Introduction

The H + HCI abstraction reaction,
H + HCl ———> H; + Cl, (7a)

and exchange reaction,
H + CID ———- HCI + D, (7b)

have long been of interest due to their role in the hydrogen-chlorine
chain reaction, the HCl chemical laser, and the photochemistry of the
stratosphere, and have been the subject of numerous experimental
studies.?”™® For a long time there has been a controversy over the
height of the barrier in the exchange reaction® *® (7b). Some

37-39 imply that it is lower than the barrier to abstraction

28,32,33,40

experiments
(3.1 kca130'32), while others are consistent with a higher barrier
ranging from 8 kcal to over 20 kcal. Recent experiments by Miller and

28,32 which measured the forward rate of the abstraction reac-

Gordon,
tion, placed a lower bound of 7.2 kcal on the exchange barrier, and indi-
cated that previous photochemical determinations were plagued by sur-

face effects.

The use of serni-empirical potential surfaces has added to the confu-
sion, since applying the LEPS surface on the abstraction reaction to the
exchange reaction predicts a very low activation barrier including a well
in the transition state region.27 Ab initio calculations*!** have con-
sistently predicted barriers between 20 and 25 kcal, though Botschwina
and Meyer43 estimate that accounting for the effects of missing correla-

tion and a truncated basis could lead to a barrier of 10-15 kcal (they
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actually calculate 22.1 kcal).

We present here a comparison of the accuracy of various ab initio
wavefunctions in describing the barrier height for the exchange reaction
(7a). We observe the same trends as in the analogous HF + H exchange
reaction. The GRVB(1/2) wavefunction is in excellent agreement with the
basis set limit, while all other single-particle wavefunctions lead to bar-
riers 15-20 kcal high. The GRVB result (25.1 kcal) is also in good agree-
ment with the best previous calculations, and we find no evidence in this
basis set for a barrier below 20 kcal, assuming a collinear transition

state.

B. Calculational Details

QOur calculations employed a contracted gaussian basis set of valence
double zeta plus polarization quality, as listed in Table 7. The chlorine
basis was contracted to 4s,3p from Huzinaga's 12s,8p basis,? reoptimizing
the exponents of three gaussians which were used twice in the contrac-
tion. The hydrogen basis was the standard Dunning double zeta contrac-
tion!® of the Huzinaga four-gaussian basis,® scaied by 1.2 and augmented
with a set of p functions (a = 1.0). Some of the calculations were
repeated using the same valence basis but with the 1s,2s, and 2p core
functions replaced by an effective potential.d‘5 This was found to have an
effect of less than 1 kcal on the calculated barrier height in all cases
tested. All HCIH calculations were performed at the collinear saddle
point geometry optimized by Botschwina and Meyer® (B, = R, = 1.502),
while the experimental geometry was used for HCl (R = 1.2’?45513). The
programs used in optimizing the wavefunctions are described in the HF +

H section. The o¢-GRVB(1/2) and o-full CI wavefunctions employed a

frozen is, 2s, 2p, and 3p m space, and the GRVB(1/2) used a frozen s, 2s,
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and 2p space, taken from the Hartree-Fock wavefunction in each case.
All orbital contour plots are in a plane containing the molecule, with the
same scale and conventions as for the HFH plots.

C. Results and Discussion

Table 8 lists the results of various calculations on the barrier height.
The highest level of calculation we performed is the o-full Cl, and the bar-
rier of 25.5 kcal is seen to agree well with the results of other workers.
The Hartree-Fock, GVB, and R-GVB wavefunctions give barriers 18 to 25
kcal higher than this, and orbital plots [rom these wavefunctions are
shown in Figures 9 to 11. Just as for HF + H, the Hartree-Fock wavefunc-
tion is totally delocalized, and the GVB wavefunction shows only slight
localization of the bonding pair, and hence has very high overlap with its
reflection. All these effects are discussed in depth in the HF + H section.
The GRVB(1/2) wavefunction yields a much more reasonable barrier (25.1
kcal), and the ¢-GRVB(1/2) wavefunction, optimized in the same space as
the o-full CI gives a barrier of 25.3 kcal. Thus, as with HFH, the o-
GRVB(1/2) wavefunction gives a barrier within 1 kcal of the sigma basis
set limit. We could not test the GRVB wavefunction against the full basis
limit since a full CI is unfeasible. Relaxing the m space is seen to have a
negligible effect on both the orbital shapes (Figure 11) and the total
energy (< % kcal), though these effects might increase slightly if the n

polarization basis were made more flexible.

Examination of the orbital plots for one GRVB subwavefunction (Fig-
ure 10) shows that as for collinear HFH, the saddle point in this reaction
is very aptly described as the resonance of two mirror image bonding
structures, each of which looks like a stretched HCIl molecule with an H

atom nearby, which must stay orthogonal. However, Pauli-induced
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orthogonalization is seen to be much less severe for HCIH than for HFH,
causing a much smaller perturbation of the hydrogen 1s orbital. This is
probably because in chlorine the effective size of the 3p orbital is
significantly larger than the 3s orbital, while in fluorine the 2s and 2p are
comparable in size. (This results from the fact that the 2s, 3d, and 2p
orbitals rmust stay orthogonal to filled orbitals of the same symmetry with
lower principal quantum number, while the 2p does not.) Thus, as a
hydrogen atom aproaches close enough to make a strong bond with the p
orbital, it “bumps into’" an s orbital much more severely for fluorine than
chlorine. In HFH this effect is large enough that the H atom can approach
the side of the HF molecule, bumping into a 2p orbital, with roughly the
same barrier as the collinear case (with some help from the 3s Rydberg
state). We did not test bent geometries for HCIH, but we predict that
they would be higher in energy than the collinear saddle point, both
because of the reduced repulsion for the linear approach in HCIH, and
because the 2p -—-> 3s Rydberg state, which helped stabilize the bent
transition state in HFH, is predicted to be at 684 kcal for HCIH,* 39 kcal
above the observed saddle point. This estimate was calculated in the
same manner as for HFH (see Figure 8), using the proton affinity of HCL

(139 kca146), and the IP of the lowest Rydberg state of HpS (110 keal®").

The full valence and SOGI levels were not tested for HCIH, but we

expect they would lead to barriers at least 9 kcal too high, as for HFH.

* This is a lower bound; the actual value may be higher if the lowest Rydberg state
at HoS is not the 35 state. See reference 47.
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IV. The H + HF Abstraction Reaction

A Introduction

The H + HF abstraction reaction
H+ H —-——> Hy; + F (Ba)

has been well characterized experirnentally'*e''j‘9 and studied theoreti-

cally.v’8 The exothermic reverse reactiorn,
Hy + F ———-> H + HF (8b)

has the same features, of course, and we will use this form in our discus-
sions. The Hp + F reaction is characterized by a large exothermicity of

1,'3‘8 as shown in Fig-

31.2 keal*® and a very low activation energy of 1.7 kca
ure 12. The experimental activation energy is not identical to the barrier
height on the adiabatic surface,5O but is probably within 1 kcal (Mucker-

1°1): we will not

man estimates that the true barrier height is about 1 kea
worry about this distinction. Ab initio potential surfaces that have been
computed for this reaction indicate a collinear transition state. Asistyp-
ical of computer reaction surfaces, the reactant and product fragments
are better described than the transition state, so that insufficient elec-
tron correlation leads to barriers that are too high, and increasing the
level of the calculation gives barriers that approach the true barrier from
above. The best calculations to date on Hp + F give a barrier in excellent
agreement with experiment, and in accord with the Hammond Postu-
late,%® the saddle point is found to be very reactant-like, with an Hp bond
stretched only 0.085 g from equilibrium, and an H-F distance 0.26 A

longer than equilibrium HF. Thus the H; + F reaction is an example of the

asymmetric reaction shown in Figure 2, with a saddle point that does not
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occur at the crossing of the diabatic states, and makes a suitable test
case for the ability of the GRVB method to describe reactions of this type.
In the following we present results of preliminary calculations at a fixed
transition state geometry. At this geometry, the o-full CI predicts a bar-
rier of 11.0 kcal, which is 9 kcal above experiment. As with the HF + H
and HCl + H exchange reactions, we are more concerned with how well
the GRVB method compares with the fully correlated limit of the basis
than with experiment, and we find excellent agreement--the o-GRVB(1/2)

barrier is 10.7 keal.

B. Calculational Details

The basis set is exactly as described for the HF and H exchange reac-
tion (Section II-B), being valence double zeta plus polarization on the
fluorine and triple zeta plus polarization on the hydrogen. The geometry

used was that optimized by Dunm’ng8 at the GVB+SDCI level

(Rug = 0.790A, Ry = 1.4134, O = 180%), with a double zeta plus polariza-
tion basis comparable in flexibility to ours. The o-full CI and o-GRVB(1/2)
wavefunctions employed a frozen n space from the GVB(1/2) wavefunc-
tion. The barrier height (E,,) for each level of wavefunction was calcu-

lated with respect to the minimum energy geometry of H, for that
wavefunction. The optimum H, geometries are 0.734&, 0.756;\, 0.741;.,
0.7502, and 0.7412, for Hartree-Fock, GVB(1/2), GVB(1/5), full ¢ CI, and

full CI, respectively. If the experimental H, geometry (0.74113)13 is used,
the change in the calculated bond dissociation energies (and in the bar-

rier heights) is less than 0.1 kcal in each case. The experimental

geometry (0.91'?611)13 was used for HF. All contour plots use the same
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scale and conventions as the HFH and HCIH plots.

C. Results and Discussion

The results of various levels of calculation are listed in Table 9, and as
anticipated, this syétem exhibits a number of features not present in
symrmetric exchange reactions. As in the exchange reactions, the
Hartree-Fock and GVB(1/2) wavefunctions predict barriers (E;,) which
are higher by 6.7 kcal and 8.8 kcal, respectively, than the o-full CI barrier
of 11.0 kecal. The discrepancy is not as large as for HFH, in which the GVB
barrier was ~20 kcal too high, and this can be understood by examining
Figure 2. While.resonance is important in the saddle point region, the sad-
dle point does not occur at the crossing of the diabatic states, where the
resonance is largest, but is instead shifted toward reactants (Hz+F). This
is borne out by the shapes of the GVB orbitals, shown in Figure 13, which
are clearly describing a reactant-like state with a bond between the
hydrogens. The fluorine 2p orbital, which must stay orthogonal to the H;
bond pair, is seen to be only slightly perturbed, because the H-F distance
is so large at this "early"” transition state.

The R-GVB approach cannot be used on this system, because the
GVB(1/2) wavefunction with a bond between the hydrogen and fluorine is
unstable, collapsing to the H-H bonded form. Thus, to include resonance,
we must use a GRVB wavefunction. In the GRVB wavefunction, one
GVB(1/2) subwavefunction (¥,) looks very much like the GVB(1/2)
wavefunction described above (with an H-H bond), while the other
subwavefunction (¥g) describes the H-F bonded form. It does not collapse
to the H-H form because that character is already explicitly included in

¥,. Instead, ¥g contributes to the total energy of ¥rgr through the reso-
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nance energy, even though the diagonal energy (Eg) is many kcal above
E.. If the geometry is such that this Eg is too far above E,, so that the
resonance energy is very small, then Vg might readjust to some different
form which can contribute more to the total energy. This effect was
observed for some asymmetric geometries in the HF+H exchange reac-
tion, as discussed in Section II-E, but does not appear to be a problem
here. The orbitals from the o-GRVB(1/2) wavefunction are plotted in Fig-
ure 14. The ¥, orbitals look almost exactly like the GVB(1/2) orbitals,
while the ¥ orbitals look like an H atom next to an HF molecule. (A pecu-
liar feature of ¥p is that the open shell orbital is nodeless, while the
doubly-occupied orbitals build in nodes to maintain orthogonality. This is
contrary to the behavior of usual SCF wavefunctions, since the total
energy is raised less when a singly cccupied orbital incorporates a node
than when a doubly occupied orbital does. This same phenomenon occurs
in the GRVB wavefunction for the three-electron bond in Hes and Neg).
The resonance lowering compared to the GVB(1/2) energy is 9.1 kcal,
leading to a GRVB(1/2) barrier height of 10.7 kecal. If the ¥, subwavefunc-
tion is constrained to be exactly the GVB(1/2) wavefunction, the o-
GRVB(1/2) energy is raised by only 0.8 kecal, and the resulting ¥y orbitals
are virtually indistinguishable from the ¥y orbitals in the unconstrained
o-GRVB wavefunction. As in HF+H and HCl+H, a full CI wavefunction is
unfeasible, so the best comparison we can make is between the ¢-CRVE
barrier and the o-full CI barrier, since the o-full CI represents the basis
set limit for the space in which the 0-GRVB wavefunction was optimized.
The agreement between 0-GRVB and o-full CI is excellent for the forward
direction barrier height (Eq,).

If we compare the o-GRVB barrier height to the experimental activa-
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tion barrier, we find that it is 8.3 kcal too high for the forward direction,
but 6.3 kcal too low for the reverse direction (E;2). This is because the
GVB(1/2) wavefunction which is used to describe the reaction limits gives
a better description of the H; bond than the HF bond, resulting in a heat
of reaction different from experiment. Thus, another issue peculiar to
asymmetric reactions emerges: can an accurate barrier height be
cbtained from a wavefunction which does not predict the correct AH, and
if so, which activation barrier is the "correct” one - Eq; or Eg2? This ques-
tion is not important if a large enough CI wavefunction is used, since
presumably the CI will describe both E, and AH accurately. However,
wavefunctions which retain a conceptually simple form, such as GVB, will
often lead to errors in the computed AH. Moreover, for most systems, the
CI large enough to obtain an accurate AH is beyond current computa-
tional feasiblity. This can be seen from the AH values tabulated in Table 9.
Even in this fairly small HHF system, the large CI wavefunction used by
Bender et al gives a AH 3.8 kecal too large in magnitude, an error twice the
size of the computed barrier height. Thus, the above question is impor-
tant for assessing the accuracy of both the state-of-the-art CI calcula-
tions, and the GRVB method. In the following paragraph, we explore this
question using a very simple model, and conclude that the error in the
calculated barrier height should be less than half the error in AH, and for
very early transition states (such as in Hp and F), the error could be even
smaller yet. We also show that the barrier is more reliable when calcu-
lated from the higher-energy side.

Take the energies of the diabatic states along the reaction coordinate
to be simple parabolas, whose minima are displaced relative to each

other by z; along the abcissa, and AH along the ordinate, as is sketched in
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Figure 15. In this model, the barrier to reaction will be taken as the

crossing point of the two parabolas, so that we are ignoring resonance

effects. As a further simplification, we will take the force constant, &, of

each diabatic state to be equal, and the states are thus represented by

EA= %’Zz,
and
_k 2
Eg = ?(z - zg)* + AH.

Solving for E, = Ep yields the forward barrier height,

-, AH  (AHP
Ba = g7+ 5% on

where we have defined the parameter a as

o =kzf (energy units).

(9)

(10)

(11)

(12)

We now make the assumption that an error in AH simply raises one para-

bola with respect to the other, without affecling either the force constant

or z, Calling this error A, we can compute the resulting change in E,

from (11) as
AE,; = EG(AH + >\) - Ea(AH)
=2, LlioaaH + A
2 2o '

Using (11) we can re-express a as

(13a)

(13b)

(14

so that by picking values for E; and AH, we can compute the dependence

of AE; on A. In Table 10, we have tabulated the values of AE; for various

choices of AH, E,, and A. It can be seen that AE; is less than A—in all cases,
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and is significantly less than g—for cases with very early transition states

(low E,, large, negative AH). This can be understood by examining the
diagram in Figure 15b; when the Eg parabola is shifted vertically, the very
steep slope of Eg compared to E, causes only a slight change in E;. It is
also clear from this analysis that evaluating E, from the high energy side
(Eq:) vields a more accurate barrier than using the low energy side (Egz),
since Eg; picks up most of the error in AH. This model is admittedly
crude, and pushing it too far would be a mistake, but we make one
further point regarding the early transition state case. The parabolic
assumption is probably valid for the reactant state E,, which is near its
minimum, but the product curve, Eg, is far from its minimum in the
crossing region. In terms of the H;+F reaction, this means the H-F dis-
tance is highly stretched at the saddle point. In this region, two effects
contribute to the slope of Eg being non-parabolic. One is the anharmoni-
city of the H-F stretching mode, which acts to decrease the slope from
parabolic. The other effect is a large Pauli repulsion between the two
hydrogens, because the H-H distance is roughly that of an H; bond, and is
highly unfavorable for a hydrogen staying orthogonal to an HF molecule.
This acts to increase the slope of Ep, and the magnitude of this effect
should increase rapidly as the transition state is made “earlier,” due to
the exponential nature of Pauli repulsions. (This will be mitigated by the
fact that the reaction coordinate at the saddle point is dominated by H-F
stretch for an early transition state, while the Pauli repulsion only acts
on the H-H stretch component). If this latter effect dominates, the depen-
dence of AE; on A will be even further reduced.

Thus it is possible that the GRVB(1/2) wavefunction could yield an

accurate barrier height for the Hp+F reaction, and other reactions of this
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type. The excellent agreement with the full g-full CI at this one geometry
is encouraging, but a two dimensional (Ryr, Ruy) search to find the true
saddle point must be performed before the barrier height éan be
predicted for either the o-full CI or GRVB wavefunction. In the symmetric
exchange case, in which only one dimension (e.g. the symmetric H-F-H
stretch) needs to be searched for the saddle point, a barrier calculated
at any symmetric geometry gives an upper bound to the barrier obtained
using the true saddle point geometry. In contrast, for an asymmetric
reaction the error caused by an incorrect transition state geometry may
be either positive or negative, since one coordinate, the reaction coordi-
nate, has negative curvature, and the other has positive curvature. Thus,
we cannot say whether the true 6-GRVB(1/2) barrier is above or below the
10.7 kcal calculated here. We do, however, expect that inclusion of the n
space in the GRVB calculation should have a larger effect than in the
HF+H symmetric exchange reaction (<1 kcal). This is because the
fluorine ~ orbitals need a more diffuse radial form to describe the H H-F
diabatic state than the H-H F diabatic state, due to the p_artial ionic char-
acter in the H-F bond. In the ¢-GRVB(1/2) wavefunction, the n orbitals
were taken from the GVB(1/2) wavefunction, thus destabilizing the H H-F
species. In spite of our arguments in the last paragraph, the final
GRVB(1/2) barrier may still be too high, simply because of the large
discrepancy in the calculated AH. If this is the case, the GRVB description
of the saddle point could be improved by resonating two wavefunctions
which dissociate to limits with a more accurate AH. The error in AH at the
GVB(1/2) level arises because the GVB(1/2) wavefunction gives a bond
energy within 14.5 kcal of experiment for Hp but is 30.2 kecal off for HF.

The extra correlation error in HF is largely due to the need for both ionic
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and covalent components,
Yur = Ceov (H—F) + Cionic (H+F—)- : (15)

and while the GVB(1/2) wavefunction can incorporate partial ionic char-
acter in the bond, the shapes of the rest of the orbitals ( 2p;, 2p,, @s) are
a compromise between the optimum F~ shapes and the optimum F
shapes. Thus, a GRVB wavefunction of the form in (15) might lower the
energy of HF to give better agreement with Hp, and hence a more reason-
able AH. The corresponding GRVB description of the transition state would
‘then contain three subwavefunctions, the GVB(1/2) wavefunction with an
HH bond, the GVB(1/2) wavefunction with an HF covalent bond, and the

Hartree-Fock wavelunction with an ionic HF bond.
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V. Forbidden Reactions

A Introduction

The HF+D, H+HF, HCl+D and H.+D reactions presented above are
classed as "allowed" reactions by the Woodward-Hoffmann rules(WHR)53

).%% The resonating VB

or the Orbital Phase Continuity Principle(OPCP
model can also be applied to '"forbidden'”” reactions, and some important
differences arise in the implementation of R-GVB and GRVB. In this sec-
tion we demonstrate the resonating VB model for forbidden reactions
using the Hp + Dz » 2HD reaction as an example. We begin with a brief

review of the definition of a forbidden reaction.

B. Definition of a Forbidden Reaction

A forbidden reaction is defined by WHR or OPCP as one in which the
orbitals and spin coupling of the reactant wavefunction cannot be con-
verted smoothly into the orbitals and spin coupling of the product
wavefunction.

WHR theory is a molecular orbital(MO) approach, in which a correla-
tion diagram is constructed which maps each reactant MO onto a particu-
lar product MO based on the symmetries of the MOs. If an occupied MO in
the reactants correlates with an unoccupied MO in the products, the
reaction is forbidden, because the ground state of the reactants becomes
an excited state of the products. This is shown in Figure 16 for the
rectangular-square-reactangular reaction coordinate of the H; + D, » 2HD
reaction. The barrier to reaction corresponds to the crossing of the ¢fp§
and pf¢? states.

In the OPCP method of analysis, a forbidden reaction is one in which

the reactant VB structure cannot be converted to the product VB struc-
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ture without breaking a bond, as shown in Figure 17. The barrier thus
corresponds to the energy required to break this bond. OPCP predicts
exactly the same classes of reactions to be forbidden as WHR, and the
analysis does not require that symmetry be preserved throughout the
reaction. Thus, the H; + D reaction is predicted to have a high barrier for
any approach geometry. Indeed, theoretical studies of tetrahedral, T-
shaped, linear, rhombohedral, square and trapezoidal transition states
for H, + D; have failed to find a barrier lower than the energy of H; and
55

two H atoms.

C. Consequences for Resonating VB theory

While a forbidden reaction is topologically different than an allowed
reaction, the resonating VB model applies in the same way. The total
wavefunction is expressed as a continuously varying linear combination of
reactant wavefunction (¥,) and product wavefunction (¥g), with a reso-
nance mixing that is strongest where E, and Eg cross, though this cross-
ing will occur at a much higher energy than in an allowed reaction. In
applying R-GVB and GRVB to describe these reactions, an important
difference arises, due to the following principle.

The same ftopological features of a forbidden reaciion which prevent
the smooth interconversion of reactant and producls also prevent ¥,
from delocalizing to include some character of ¥g at the SCF level. Thus
the "smearing out” (to include resonance) observed in the GVB wavefunc-
tion for the HF+H and HCI+H transition states does not occur for a for-
bidden reaction. The ramification of this is that the GVB wavefunction will
be almost as localized as the GRVB wavefunction, so that R-GVB can be
used to obtain results nearly as accurate as the more expensive GRVB. We

have demonstrated this property on the m space of cyclobutadiene (see
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Chapter 4), which is topologically equivalent to a forbidden reaction. The
GRVB energy was found to be only one kcal below R-GVB.
D. H; + D; - Calculational Details

Calculations on H; + D, employed a triple zeta plus polarization con-
tracted gaussian basis. The three s functions were the same as described
for the HF+H calculations, but the p exponent was different («a=1.0). The
purpose of the calculations was to demonstrate the resonating VB model
along a reaction coordinate, and a rectangle-square-rectangle pathway
was chosen for simplicity. Transition states other than square have been
shown to give a lower energy,55 though none are lower thén E(Hz+2H). The

reaction coordinate was defined by first optimizing the square geometry

at the R-GVB(2/4) level, leading to RHH=1.28;&, and then considering rec-
tangular distortions which maintained a constant perimeter. This
definition for the reaction coordinate coincides with the exact rectangle-
square-rectangle reaction coordinate at the square saddle point, and is a
good approximation at nearby geometries. Making this assumption allevi-
ated the need for a two - dimensional search of the rectangular energy
hypersurface to find the true reaction coordinate. The R-GVB(2/4)
wavefunction was defined as the resonance mixing of the "good” struc-

ture,

¥, = } = Al{ab +ba){cd +dc )aBaf] (16a)

and the "bad" structure,

C—o

¥y = ( Y= Al(a'b’+b'a’){c'd +d'c)aBafB] (16b;

C—=
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optimized in separate GVB(2/4) calculations. The "bad" structure does
not have the same orbital shapes as the good structure, distinguishing
these calculations from the SOGI calculations of Wilson and Goddard.®® All

R-GVB calculations are referenced to twice the energy of a GVB(1/2) cal-

culation on H; at its experimental geometry 0.741 3.13 At geometries too
far from the saddle point, trapping the GVB(2/4) wavefunction for ¥p
became difficult, as it had a tendency to collapse to ¥,. We were able to
trap ¥ for energies as much as 133 kcal above ¥,, where the resonance
energy was less than 2 kcal. A reaction coordinate without the symmetry
afforded by the rectangle would make this trapping more difficult. If we
had optimized a GRVB wavefunction, ¥g would have been more stable with
respect to collapse.

The effect of relaxing the GVB coefficients in the presence of reso-
nance (i.e. GVB(2/4)(pr)) was 1.1 kcal at the square geometry, and 0.4
kcal at AR=0.16 (see Figure 18 for the definition of AR).
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E. Hz + D; - Results and Discussion

Figure 18 shows the diabatic energy curves (GVB(2/4)) and the result-
ing resonant and antiresonant states (R-GVB(2/4)) for the rectangle-
square-rectangle reaction pathway. Because we are using an R-GVB
wavefunction, the same diabatic curves are appropriate for both the
resonant and antiresonant states. As predicted above, the diabatic curves
show no signs of delocalization resonance, crossing sharply at the square
geometry, in contrast to the behavior of the GVB wavefunction in the
HF+H exchange reaction (see Figure 8). As expected, the resonance
lowering rapidly increases as the saddle point is approached, leading to a
smoothing of the cusp present in the diabatic state crossing. The reso-
nance lowering at the saddle point is 23.1 kcal, and drops to less than 2
kcal at AR=0.16. The antiresonant state is raised by 36.5 kcal at the sad-
dle point, and is still 16.6 kcal above the bad diabatic state at AR=0.18.

The 143.0 kcal barrier calculated using R-GVB is in very good agree-
ment with the o-full CI value of 141.6 kcal and the 1.4 kcal error is com-
parable to the lowering expected if the orbitals were reoptimized using
GRVB.®” The antiresonant state is predicted by R-GVB to be at 202.5 kcal,
compared to the o-full CI value of 191.9 kcal. This discrepancy may be
due to ionmic character not included in the R-GVB wavefunction.”® At
AR=0.08, the agreement is similar, R-GVB obtaining 128.4 kcal and 219.7
kcal, while the o¢-full CI yields 126.0 kcal and 209.4 kcal. Figure 19 shows

the behavior of C,, Cg and S,p along the reaction coordinate. C, and Cp act

as expected, with ¥y becoming almost purely diabatic by AR=O.16;§. Sap
is seen to be almost constant for this portion of the reaction coordinate
(-0.225 - -0.228).

It is interesting that the maximum resonance energy (23.1 kcal) is
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almost identical to the isomorphic cyclobutadiene 7 system (22-23 kcal).
Though the resonance energy is harder to define for the case of an
allowed reaction, we did observe a similarity between the resonance
lowering in the HFH and HCIH systems. This strengthens the concept of a
transferrable resonance energy.

Figure 20 shows the behavior of the energy quantities as the bond

length of square H, is varied. While the GVB(R/4) wavefunction yields a
minimum at R=1.31 4, the R-GVB(2/4) minimum is at R=1.28A This is
because the resonance energy is stronger at shorter R, it peaks and
begins to decline at R shorter than 1.1:&. At infinite R, corresponding to
four H atoms, E,s is zero, and S,z is -0.5. This nonzero value for S,p is
easily obtained by expanding <V¥,|¥g> with orthogonal orbitals. Since the

atoms are infinitely separated, and cannot interact, the primed set of

orbitals in equation 18b will be the same as the unprimed set. Thus,

Sap = <V, |¥p>

= -<abod (af—pa)(aB—fa) | A[boad (af~Fa){af—Bo)|>
and only one term survives,‘

Sag = i—(abcd labed ><afaf—~afBa—Laaf+pBafa | aaff—Lofo—afaf+pBaa>

=-0.5

However, though these wavefunctions overlap, the matrix element

between them reduces to

Hap = —%{«z]f[ia) +<b RiB>+<clhlc>+<d|hid>]

where A is the one-electron operator. The off diagonal one-electron terms

-~ 1
(e.g. <a {A'b>), and the two electron terms (e.g. <ab ;T‘—; ab >) all vanish
12
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due to the infinite separation of the orbitals. The same terms vanish in

the energy, Has, leaving the simple relation
Hag = SpgHaa,

and thus the resonance energy is zero, because the only interaction
between the two wavefunctions arises from the pieces they have in com-
mon. At smaller R, Spp decreases in magnitude, a result of the nodes
which are built into the orbitals. At the smallest value of R we examined
(R=0.9) S, was still decreasing (see Table 11). Thus, it is erroneous to
think of an increase in interaction between two wavefunctions as neces-

sarily causing an increase in the wavefunction overlap.

F. Conclusions

The resonating VB model applies well to forbidden reactions, and in
fact results in a simplification in the implementation of R-GVB and GRVB.
Because the reactant and product wavefunctions cannot delocalize into
each other, the diabatic states are well defined and the less expensive R-
GVB is sufficient to obtain GRVB-quality results. The concept of a 'reso-
nance energy" is also more well defined, and is ~23 kcal for the case of
square H, at its equilibrium geometry.

It is interesting to note that both WHR and OPCP ignore the effect of
resonance on the reaction barrier. The goal of WHR and OPCP is to
predict whether a reaction will proceed at a reasonable rate (under rea-
sonable conditions) in a concerted fashion, which classifies it as
"allowed"”, or whether a concerted process is no better than a stepwise
process with bond cleavage, in which case the reaction is "forbidden".
Clearly, the rectangular Hp+D; reaction is "forbidden”, whether or not the

23 kcal of resonance energy is included, since the barrier is still 35 kcal
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greater than an H-H bond energy. However, it is possible that in some
reaction, the inclusion of resonance could actually convert a "forbidden”
reaction into an "allowed"” reaction. We know of no such case, but in the
WHR formalism, this anomaly could occur if the resonance energy were
comparable in magnitude to the energy required to reach the crossing of
the ¢f¢f and ¢?p% states. In OPCP, the requisite condition would be that
the resonance energy be comparable to the energy of a bond which is

active in the reaction process.
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V1. Conclusions

We have demonstrated that the GRVB wavefunction can yield accurate
activation energies for symmetric exchange reactions, and the results
look promising for asymetric reactions as well. Further, the orbitals
from the GRVB subwavefunctions are strikingly similar to the orbitals of
the corresponding reactant or product fragments, reinforcing the con-
ceptual nature of the resonating VB model. The most general single par-
ticle wavefunction leads to an incorrect barrier height for the HF + H
reaction, indicating the need for the 'single-particle plus resonance"
description provided by GRVB.

Because of the conceptual simplicity of the wavefunction, the effect of
the Pauli-induced orthogonalization (which makes the HF + H barrier
~ 25 kcal higher than in HCl + H) could actually be seen in the orbital
plots. The Rydberg character in the bent HFH species was also clearly
visible.

The location of reaction transition states and the calculation of accu-
rate barrier heights is a topic of current interest among ab initio theor-
ists,”® and the ramifications of the work presented here are three-fold.
First, the GRVB approach appears to be as reliable as the currently used
Cl approaches for generating accurate transition state properties. The
present GRVB program is very CPU intensive, because it optimizes the
wavefunction numerically. If an analytical optimization procedure for
GRVB were to be developed, GRVB would scale better than the CI
approaches, and could become the method of choice for generating reac-
tion potential surfaces. Proposition 4 demonstrates that an analytical
optimization with first-order convergence can be programmed,

representing a first step towards this goal.
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Second, even if GRVB is never competitive with the state-of-the-art CI
techniques, the principles which emerge from our GRVB study can be
valuable in designing CI wavefunctions which will yield accurate results.
For example, Feller, Schmidt and Ruedenberg19 recently computed the

barrier for the concerted exchange of hydrogen between ethane and

ethylene,
H H
H\\E _______ *: ~~~~~~ LM
W7 e C\\H
H H

using the FORS approach. FORS (full optimized reaction space) is essen-
tially a full-valence MCSCF wavefunction, which in this case would have a
six-orbital active space, because six electrons are involved in the reaction
process. They obtained a barrier height of 74.5 kcal using an SCF
wavefunction and 69.3 kcal using FORS in the same double-zeta basis. We
know from the HFH study that even a full Cl in a space which has only one
orbital per electron yields a barrier that is too high ( > 5 kcal for HFH).
Thus, the appropriate CI for ethane-ethylene exchange should contain
twelve active orbitals, a doubled set. (This system is too large for GRVB
presently, but an R-GVB study yielded 4.1 kcal of resonance lowering,
with a very high overlap (Syp = 0.9758), indicative of a potentially large
GRVB lowering.)

Third, for forbidden reactions, the R-GVB approach may already be
competitive with the state-of-the-art CI methods in both accuracy and
computational speed, though forbidden reactions are usually less

interesting chemically.
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Table 1. Contracted Gaussian Basis Used for HF + H Calculations,

Hydrogen Basis (6s, 1p/3slp) "TZ + pol"

Function Type Exponent Coefficient

1 s 68. 1600000 0. 0025500
1 s 10. 2465000 0. 0183800
1 s 2, 3464800 0. 0928000
1 S 0. 6733200 0. 2943000
2 s 0. 2246600 1. 6000000
3 s 0. 0822170 1, 0000000
4 P 1,45 1.0

Hartree-Fock Total Energy = -0.499940
MQM Basis Name: HU3Z6 and HU2PF

Fluorine Basis (98, 5p, 1d/3s, 2p, 1d) " VDZ + pol"

Function Type Exponent Coefficient
1 s 9995, 0000000 0. 0011660
1 s 1506, 0000000 0. 0088700
1 S 350, 3000000 0. 0432800
1 ] 104. 1000000 0. 1429290
1 s 34, 8400000 0. 3553720
1 '8 12, 2200000 0. 4620850
1 S 4. 3690000 0. 1408480
2 8 12, 2200000 -0. 1484520
2 s 1, 2080000 1. 0552700
3 s 0. 3634000 1. 0000000
4 P 44. 3600000 0. 0208760
4 P 10. 0800000 0. 1301070
4 P 2. 9960000 0. 3961660
4 P 0. 9383000 0. 6204040
5 P 0. 2733000 1. 0000000
6 D L34 1.0

Hartree Fock Total Energy = -99. 394288
MQM Basis Name: Fl and F2D
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Table 2. Results from Highly Correlated Wavefunction on the Barrier Height

in the HF + H Exchange Reaction.

Authors Basis® Level? RA)  E, (keal)
Wadt and Winter?  [4,3,1/2,1] GVB(3/6)+SDCI  1.17°  50.0
Wadt and Winter [4,3,1/2,1] GVB(3/6) +SDCI  1.14 48.1
Wadt and Winter [4,3,1/2,1] POL(3) CI 1.14 47.6
Bender et al.® [5,3,1/3,1] HF + SD CI 1.14° 49,0
Dunning’ [3,2,1/2,1] SOGVB(3/6)+SDCI  1.18°  48.81
Botschwina c

ad Meyer [8,4,2/4,2] PNO-CEPA 1.143°  45.0
Botschwina

and Meyer [9,6,3,1/4,2] PNO-CEPA 1.143 44.9
This Work [3,2,1/3,1] o-full CI 1.176°  48.6
Bartoszek et al, & --- experiment --- 42-53

314,3,1/2,1] = 4s,3p,1d on F, 2s,1p on H.

b Abbreviations are defined in text.

¢ Optimized geometry.

d Reference 4.
€ Reference 6.
£ Reference 8.

€ Reference 3.



Table 3. Results from Conceptually Simple Wavefunctions on the Barrier
Height in the HF + H Exchange Reaction.

Level E(HF)? E(HFH)? Spyp.  Barrier (kcal)®
HF -0. 046859 -0.438709 67.8
GVB(1/2) -0. 070146 -0.459273 69. 5
GVB(1/5) -0. 077287 -0.464658 70.6 .
0-SOGI(3) -0. 070146 -0, 478162 57.7°
¢-R-GVB(1/2) -0. 070146 -0,46418 0. 9437 66. 5
¢-R-GVB(1/2)(pr) -0. 070146 -0, 46422 0.9436 66. 4
R-GVB(1/5) -0, 077287 -0, 467857 68. 6
R-GVB(1/5)(pr) -0. 077287 -0, 467879 68. 6
o-GRHF -0. 046859 -0. 4632 -0.590 52, 5¢
¢-GRVB(1/2) -0, 070146 0.4929 0.501 48. 4°
GRVB(1/2) -0. 070146 -0.4940 0.405 417
GRVB(1/5) -0. 077287 -0, 50023 48. 3
o-full CI -0. 093466 -0.515924 48. 6°

a Energy relative to -100. 0 hartrees at R = 0. 9176 A.

b Energy relative to -100, 0 hartrees at R, = R, = 1.17 A.

C E(H) = -0.499940 in this basis.

.
SaAB

that are actually resonated.

= overlap of with reflected = ( Y ); only listed for wavefunctions
A A A'YB

€ These wavefunctions use only the sigma space as described in the text and should

be compared with the o-full CI barrier of 48. 6 kcal.
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Table 4. Geometry of Saddle Point in HF + H Exchange Reaction for Various
Levels of Wavefunction.®

2
Level R(A) k(r/R ) Barrier Height
(kcal)
Hartree-Fock 1.10 1.089 66.3
o-GRVB(1/2) 1.178 0.894 48.4
o-full CI 1.176 1.062 48.8

[ ]
% obtained from a fit to three points: #;=R,=1.13, 1.17 and 1.21A
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Table 7, Contracted Gaussian Basis Used for HCI + H Calculations.

Hydrogen Basis (4s, 1p/2s, 1p) "DZ + pol"

Function Type Exponent Coefficient
1 S 19. 2405660 0. 0190600
1 S 2. 8991520 0. 1342400
1 S 0, 6534101 0. 4744900
2 S 0. 1775765 0. 5090700
3 P 1.0 1.0

Hartree-Fock Total Energy = 0.499277 (when unscaled)
MQM Basis Name: HS2Z4 and HS1P
Chlorine Basis (14s, 9p/4s, 3p) " VDZ + pol"

Function Type Exponent Coefficient
1 s 40850, 0000000 0. 0010043
1 S 6179, 6000000 0.0076146
1 K} 1425. 0000000 0. 0377671
1 s 409, 2000000 0. 1370181
1 S 135, 5000000 0. 3395575
1 S 50. 1300000 0.4383927
1 S 20. 2100000 0. 1862295
2 S 55. 9124593 -0, 0888737
2 s 17. 4882249 -0. 0323297
2 S 6. 2830000 0. 5374505
2 S 2. 4600000 0. 5542866
3 S .2,8413781 -0. 2598590
3 S 0, 5271000 1. 1399213
4 S 0. 1884000 1. 0000000
5 P 240, 8000000 0. 0132703
5 P 56. 5600000 0. 0896296
5 P 17, 8500000 0. 2990394
5 P 6. 3500000 0.4923323
5 P 2, 4030000 0. 3022806
6 P 6.2162548 -0. 0484020
6 P 2. 4092929 0. 0903526
6 P 0. 6410000 0.9573171
7 P 0. 1838000 1. 0000000
8 D 0.60 1.00

MQM Basis Name: CL1 and CI1D
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Table 8. Barrier Heights for the HCl + H Exchange Reaction.

Level E(HCL? E(HCIH)® Sap Barrier (kcal)®
Hartree-Fock -0.04777 -0.477081 - 43.9
GVB(1/2) -0, 06384 -0.48518 48.9
GVB(1/5) -0. 7340 -0. 490989 51. 3
R-GVB(1/2) . -0.06384 -0.493486 0. 944 43.17
R-GVB(1,/2)(pr) -0. 06384 -0.49522 0.939 42.6
R-GVB(1/5) -0. 073403 -0.501281 0. 937 44.8
R-GVB(1/5)(pr) -0, 073403 -0.503366 0.932 43.5
o-GRVB(1/2) -0. 06384 -0.5228 0.533 25.3
GRVB(1/2) -0. 6384 -0.5231 25.1
o-full CI -0. 082604 -0.541169 25. 5

Qther Workers
Pol CI Dunning® 25.3
PNO-CEPA Botschwina and Meyere 23.9
PNO-CEPA Botschwina and Meyer? 22.1

a Energy relative to -460 hartrees at R, = 1.27455 A.
b Energy relative to -460 hartrees at R, = R, = 1.502 A, ’
¢ E(H) = -0.499277 in this basis.

d Reference 42.

e 11s, 7p, 2d/5s, 2p basis; reference 43.

f 13s, 10p, 3d, 1£/6s, 2p basis; reference 43.
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AF, for various values of £,, AH, and A. All values are in kcal.

Table 10.

52

25

12

.....

.....
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Table 11. Energy Quantities for Square and Rectangular H,.

R(A) R(A) R-GVBM) Bpoy Eg..2 E,° EgE, S 5 Eres
(kecal) (kcal) (kcal) (kcal) .
0.9 0.9  -1.995482 192.3 243.7 215.0 O 0.11642 22.7
1.0 1.0  -2.039433 164.8 219.7 188.3 0 0.14276 23.6
1.1 1.1  -2.062527 150.3 207.9 174.1 0 0.17100 23.9
1.2 1.2 -2.072393 144.1 203.2 167.7 O 0.20080 23.6
1.3 1.3  -2.073042 143.1 202.6 165.9 0 0.23166 22.9
1.4 1.4  -2,070397 145.3 203.8 166.9 0 0.29922 21.6
5.0 5.0  -1.999764 189.8 189.8 189.8 O 0.49999 0.0
1.28  1.28 -2.074125° 143.0 202.5 166.0 O 0.22543 23.1
1.26  1.30 -2.075956 141.8 203.8 157.8 16.5  0.22546 16.0
1.24 1,32 -2.081026 138.7 207.5 149.8  33.1  0.22550 11.1
1.22  1.34 -2.088437 134.0 213.0 141.9 49.6  0.22556 7.9
1.20  1.36 -2.097335 128.4 219.7 134.1 66.2  0.22556 5.7
1.18  1.38 -2.107112 122.3 227.3 126.4 82.8  0.22576 4.2
1.16  1.40 -2,117381 115.8 235.6 118,9  99.4  0.22689 3.1
1.14  1.42 -2.112243  109.2 244.4 111.6 116.1  0.22605 2.4
1.12  1.44 -2,138502 102.6 253.7 104.4 132.7  0.22630 1.8
0.734 «  -2.301983 0 0 0.0

% Relative to 2H,

at GVB(1/2) level.

bERES = lower of E, or Ey, minus Epp.

cBy comparison, a o-full CI leads to ETOT = -2.093055, a barrier of 141, 6 keal.
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A 4’ =C \l’ + C
REACTANTS Tor™ %A+ Ca¥e PROSUCTS
Ca = Ca=0
Cq = Cg- |

REACTION COORDINATE

Figure 1. Hypothetical energy diagram for a reaction such as HCl + D

-> H + CID
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crossing
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REACTION COORDINATE

Figure 2. Energy diagram for an asymmetric reaction. The transition
state (T.S.) is shifted from the diabatic crossing towards the less steep

slope.
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ONE
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Figure 3. The Hartree-Fock (left) and GVB (right) orbitals for the sym-

metric HFH transition state.

slightly asymmetric,

Notice that the GVB orbitals are only
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o-GRVB(1/2)

Gv8 PRIR 6v8 PRI ——m—————f

Figure 4. The orbitals from one subwavefunction of the o-GRVB(1/2)
wavefunction at the symmetric HFH saddle point. Juxtaposed on the
right side are the orbitals from free HF (GVB(1/2)), and free H atom
(Hartree-Fock), which show a striking similarity to the GRVB orbitals.
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Figure 5. 2p m orbitals at symmetric HFH saddle point. Top: symmetric
Hartree-Fock; Middle: GVB(1/2); Bottom: (GRVB(1/2)
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Figure 8. o-GRVB(1/2), GVB(1/2) and o-full CI energies along the HFH

reaction coordinate. See discussion in

text.
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GRVB(1/2)

ONE

b3
ONE ONE
GVB PAIR
TWO TWO

Figure 7. 0-GRVB(1/2) orbitals for the bent HFH transition state. Notice

the Rydberg character in the singly-occupied orbital.
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e +H+HF

| |

PA(HF) = 111 kcal

‘e‘+ HZF +
IP(3s Rydberg Hy0)

IP(H) IP (H>0)-AE (35—-—1;)1)
(312.8 keal) (130 kcal)
A H2F 3sRydberg state
RESULT = 72 kcal
H_+_YHF ________________

Figure 8. Thermochemical estimate of the energy of the HFH 3s Rydberg

species.
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GVB(1/2)

ONE

ONE

Figure 9. GVB(1/2) orbitals for the HCIH transition state.
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o-GRVB(1/2)

ONE ONE

ONE ONE

Figure 10. The orbitals from one subwavefunction of the o-GRVB(1/2)
wavefunction at the symmetric state. Juxtaposed on the right are the
orbitals from free HF (GVB(1/2)) and free H atom, which show a strong
similarity to the GRVB orbitals.
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Figure 11. 3pn orbitals at symmetric HCIH transition state. Top:
GVB(1/2); Bottom: GRVB(1/2).
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Ho+F<==H + HF

H+H+F H+H+F

BDE(H,) BDE (HF)

H+HF

REACTION COORDINATE

Figure 12. Energy diagram for the H; + F abstraction reaction.
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Figure 13. GVB(1/2) orbitals for HHF transition state
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o-GRVB(1/2)
¥, {'B
ONE ONE
ONE ONE
LR )
ONE ONE
: I’ BK
TWO TWO
¥ % *
H H F H H F

Figure 14. o-GRVB(1/2) orbitals for HHF transition state. Both ¥, and ¥p

are shown.
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(A)

ENERGY

"REACTION COORDINATE", x

(B)

Figure 15. (a) Energy diagram for model reaction coordinate. The dia-
batic curves are taken as parabolas, and the resonance effects are
neglected. (b) Diagrammatic demonstration of stability of calculated E,

with respect to errors in calculated AH, for very early transition states.
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Figure 17. OPCP analysis of the forbidden Hz + Dz --> 2 HD reaction. As

¥» and @, change centers to move the bonds, ¢, must build in a node to

maintain orthogonality to ¢,. This causes g, to change phase as it grows

into its new position, so that the overlap between ¢, and g4 changes from

positive in the reactants to negative in the products. Thus, the bond

beiween ¢, and gy must be broken during the reaction, because the

bonding overlap <g. | ¢4 > passes through zero.
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CHAPTER 6

Core Ionized N5 and Allyl Radical

Preface

The follovﬁng is a paper which presents the R-GVB method and two
applications, the localized core hole states of Nf and the resonance in
allyl radical. The description of the method is redundant, since it is

presented also as part of Chapter 3 of this thesis.
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In a valence bond (VB) description of wavefunctions there may be several distinct but energetically similar bonding
structures. Examples include aromatic molecules (e.g. benzene) and excited states of molecules with equivalent
chromophores (e.g. glyoxal). The variational generalization of VB theory, the generalized valence bond (GVB) method,
has limitations for such systems since it can only describe one of the bonding structures, allowing no explicit mixing or
“resonance’ with the other structures. We present herein a method for evaluating the matrix elements necessary to
optimize the mixing between the various distinct bonding structures. Evaluation of such matrix elements has heretofore
been computationaily difficult since the wavefunctions in general have nonzero overlap. Applications of the method are
presented for the resonance in allyl radical and the splitting of the localized core hole states of N3.

1. Introduction

For many molecules the natural approach to
studying the electronic wavefunction is to
superimpose the wavefunctions for various
bonding structures. For example,

AN 2 N (1)

o) o.
H_cf . H—c< )
o No
o)
H— c{ * % H—C< (3)
C—H C—H
7 o/

Unfortunately the wavefunctions for different
bonding structures are generally nonorthogonal,
leading to severe difficulties in evaluating the
energy and in optimizing the orbitals. These
difficulties become even more severe when
electron correlation effects are included.

* Contribution No. 6355.

In this paper we describe an approach for
calculating the interaction of nonorthogonal
correlated wavefunctions that does not suffer
from the usual computational dependence. In
addition, we report applications of this approach
to two typical problems:

(a) The resonance of the two equivalent
configurations of allyl (1) where each 7 bond is
correlated (GVB level).

(b) The resonance of the 1s core ionization
states of N>

O Nv=N : @Or=N D)

where the core hole is allowed to be localized
on one N atom, and the remainder of the
molecule is fully correlated (GVB level).

2. The method

Consider a state ¥ involving the super-
position of two wavefunctions ¥* and W5,

Y= Ca¥*+ Cg¥P, (4)

0301-0104/81/0000-0000/3%02.50 © North-Holland Publishing Company
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where ¥ and W are correlated (multi-
configurational) wavefunctions for two possible
bonding structures. [For simplicity we consider
only two configurations in (4); the generaliza-
tion to multiple terms is trivial.] Each correlated
wavefunction ¥* and ¥® can be expanded in
terms of determinantal wavefunctions {¢'} as

=z clul, (5)
where
(et}

Assuming that ¥* and ¥® are normalized,
the energy of the wavefunction ¥ is

E- CAEa+CREp+2CaCaHas -
T CA+CR+2CACsSas

where E and Ep are the energies of ¥4 and
VB, respectively, and

San= (¥ ¥P =TT CECPwilu?), (8)

Hap=(YAHWP =TT CACP w9, (9)

Because of the nonorthogonality of the orbitals

{0 k=1,.., M)} (10)
with »
i k=1,.., M)} (11)

the evaluation of terms like (¢ |y ) and
(W %|y?) would normally involve tedious
computation of numerous minors and subminors
of the determinant of the overlaps between the
A and B sets of orbitals.

The determinantal wavefunctions wf‘ and «/f?
are invariant (to within a phase) under unitary
transformations U'* and U'® of the orbitals

¢2"—Z¢>L"UH, p1° =L ¢ lPULL. (12)
k

Thus, by choosing these transformations so that

the new orbitals are biorthogonal [1]

(6*131°) = Aidu, (13)

we can greatly simplify evaluation of matrix
elements such as (¢ [%#|¢}) and (¥ |y}). For a

closed-shell configuration (only doubly-occupied
orbitals) the same transformations are applied
to the a-spin and B~spin orbitals, leading to

WePy=2A7A3, .. A%, (14)

WrHle?)=2 Z n(bi|hBL)

Seldrer)—(drdrldlrdr)]
(15)

(where &'t and #'® have been denoted simply
as ¢* and ") and

+ Z ma(2(é

<¢,-¢,-1¢k¢,>zf &y j &ry 6* (1616 E 2)n(2)
(16)
and

M =AAT . AD A mu=QATA3 . A0 Ak

(17)

For a more general wavefunction in which the
determinants are not closed-shell, the trans-
formations factor into a transformation among «
spin orbitals and a different transformation
among B spin orbitals (taking care that the
transformation does not change the phase). The
result in this case is

WMUTY=A1aA2a oo Anad (626 ..o Amby (18)

(lﬁ?l%lw?):kz ﬂka(akAthlfgfﬁ*‘kzb nkb((g?bl]’](g‘?b)
+k Zl nka.la[((b—ﬁa&?al(ﬁ_ﬁz(gg)
~ (Db rald hadia)]
+ ka N nkh.lh{((;l/:‘bfgfb,agg&ﬁ)— (Qgﬁhﬁg.?blglAbJEb)]
+kZIb Mia.ib{ (bkad’kaldJm i) (19)

where ka, la indicate orbitals corresponding to
a spin, kb, Ib indicate orbitals corresponding to

B8 spin

Nka = WMNY ) Aka (20a)
and
Mats = W1 07V Akakip. (20b)
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Thus the Sapg and Hap of eqgs. (8) and (9) can
be evaluated by applying the above formulae to
each pair of determinants (for an open-shell
system, this requires four separate trans-
formations to biorthogonal orbitals). For a GVB
wavefunction in which each of n bonds is cor-
related with two natural orbitals, the resulting
GVB(n/2n)-PP wavefunction can be written as

A{[core][Carda1 + Co1d31 [Cazd 22 + Coadbiz ...
[Can¢:a’ln + Cbn¢§n ]}7 (21)

leading to 2" determinants. [This leads to the
evaluation of 2°" terms of the form (8) and (9).]
The approach can, of course, be applied to find
H,p between any two multiconfigurational
wavefunctions.

Wavefunctions obtained by this procedure are
referred to as resonating generalized valence
bond or R-GVB.

The computational time required for the allyl
case (13 orbitals per wavefunctions, four
determinant pairs) was 105 s of CPU on a VAX
11/780, to be compared with 1300 s required to
calculate the integrals over 37 gaussian basis
functions and 936 s to converge the GVB 1/2
wavefunction (19 iterations).

3. Allyl radical

There are two bonding structures for allyl
radical (H,C—CH—CH,), namely,

Z\ and ./\ (22)

[}
That is, the = bond can be on the left or right,
and the 7 radical orbital is on the opposite
center. These wavefunctions can be combined
into a resonance (stabilized) form

¥ . = AN - (23)

res .

and an antiresonance (destabilized) form
Vi = AN Y N (24)

The experimental consequence of this resonance
stabilization is that the CH bond energy of
propene

H H
c C
H,c/ \cnz —_— H,c/ \cn, + H (25)

is 87 kcal [2], whereas a terminal CH bond for
an alkane would normally be 98 kcal [2]. This
difference, 11 kcal, is generally referred to as
the resonance energy. It need not be identical
to the resonance stabilization of (23) for reasons
discussed later in this section.

The wavefunctions for the bonding structures
in (22) are

d’t’ = d{[al]((bt"bc + ¢c ¢(’)¢raBa}
and (26)

Yr= d{[ar](‘brﬁbc + ¢c¢r)¢€aﬁa}

(where only the 7 electrons are written explic-
itly), each containing a two-electron 7r bond to
the central atom. Optimizing the orbitals of ¢,
and ¢, leads to » orbitals ¢, ¢, and ¢, that
are different between ¢, and ¢,. Fig. 1 shows
the = orbitals for ¢, The energies for the
resonant and antiresonant states are given by

Eres = (Hfl' —H(r)/(l —S(’r) = H(’(‘ — €,

Eani=(Hee+ Heo)[(1+ Ser) = Hye + €, (27)
where

Hee=Hee= (el #|be),  Sec=(belte),

Ho= (Y|l (28)

and the resonance energy ¢, and antiresonant
energy €, are defined. Note that the o orbitals
of Y, and ¢, are also slightly different, an effect
that is included in these calculations.

The results are in table 1. Mixing the GVB
wavefunctions ¢, and ¢, yields S, =—0.754 and
H,, =87.763 hartree, leading to a resonance
energy €, = 9.8 kcal. This resonance energy does
not correspond exactly to the experimental
value for three reasons. First, the experimental
resonance energy is obtained by comparing two
bonds with different steric interactions. Second,
the experimental resonance energy includes the
energy required to change the geometry from
one long carbon—carbon single bond and one
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ALLYL RADICAL GVB PI ORBITALS

.

-30

______

-40 40

Fig. 1. GVB = orbitals for the localized wavefunction of allyl radical ¢, (26). The overlap between the paired orbitals ¢, and
. is 0.719. The plotting plane is 0.5 bohr above the molecular plane with projected carbon atom positions indicated for clarity.

The amplitude increment is 0.05 au.

short double bond to a symmetric geometry that
can maximize electronic resonance. This acts to
decrease the perceived resonance energy. Third,
the e, we define compares the energy of the
optimized GVB wavefunction ¢, with the
wavefunction V,., in which the orbitals have not
been reoptimized in the presence of the
resonance. Including this reoptimization would
increase €. The close agreement between e,
(9.8 kcal) and experiment (11 kcal) implies that
these effects roughly balance. Work directed at
quantifying these effects is currently in progress.
Previous studies of the resonance in allyl using
the full GVB method [3] (including optimization
of spin coupling) yielded a resonance energy of

Table 1
Energies for allyl wavefunctions *

11.4 kcal. Use of a spatially projected GVB [4]
wavefunction gave a value of 14.3 kcal. Each of
those calculations used a frozen symmetric o
core taken from a Hartree-Fock (HF) cal-
culation, as optimization of the o orbitals was
not feasible at that level of calculation.

The antiresonance energy e, is found to be
69.9 kcal, and decreases to 65.6 kcal if the GVB
natural orbital coefficients are allowed to
readjust in the presence of the resonance. This
leads to a A, B, excitation energy of
75.6 kcal, which compares very well with the
full 7 configuration interaction (CI) result of
75.4 kcal, indicating that the resonant—
antiresonant description of these states is valid.

Calculation

Single bonding

Resonance state

Resonance energy Antiresonance energy

Excitation energy

structure (Hye)  (PAy) (e) (€2) By« ’A;
(hartree) (hartree) (kcal) (kcal) (kcal)
HF ~116.4130 -116.4129° 114.1
R-GVB® -116.4296 ~116.4452 9.8 69.9 19.7
R-GVB()? -116.4454 10.0 65.6 75.6
full # C1° -116.4596 - - 75.4

* All calculations use the symmetric geometry R(CC)=1.40 A, R(C—H)=1.08 A, ail angles 120°.
® All calculations use the Dunning-Huzinaga valence double zeta basis (9s/5p) contracted to (3s/2p) for C and the scaled basis

for H 4s to 2s (scaled by 1.2).

¢ One 7 bond was correlated, as indicated in (26).
¥ The CI coefficients for the natural orbital expression of the GVB wavefunction [see (21)] were allowed to reoptimize after

including resonance. This is still rigorously a GVB wavefunction.

*) The o core was taken from the HF wavefunction of the 2A2 state.
" Note that the symmetry-restricted HF solution has an energy 0.0001 hartree higher than the best HF wavefunction.
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While a CI calculation can produce the most
accurate results for a given basis set, it cannot
yield conceptually important quantities like e,
and e,.

4. Core ionization of N,

Molecular orbitals of symmetric molecules are
generally taken as symmetry functions for the
symmetry group of the molecule. While this is
appropriate for closed-shell molecules, some
spectacular failures are known for open-shell
molecules, where imposing symmetry upon the
molecular orbitals leads to a much higher
energy than if symmetry is relaxed. Well known
examples include the lowest ionization of pyra-
zine [5],

e
O

and the singlet state of trimethylene methane

(6],

(30)

A similar difficulty occurs upon ionizing elec-
trons from core orbitals. Thus, for N, the ion-
ization potential out of the 1s orbital is predic-
ted to be almost 10 eV higher when symmetry
orbitals are used to describe the ion state than
when localized orbitals are used [7].

This indicates that the nature of the core ion-
ized state is really that of a localized hole,
which we can understand in the following way.
The contribution each valence electron makes
to the total energy goes roughly as the square of
the effective nuclear charge (Z.i) the electron
“sees’’ (assuming hydrogenic behavior). For the
case of the delocalized hole, each valence elec-
tron sees a new effective charge of Z4+0.5,
while for the localized case half the valence
electrons see Z.;+ 1.0, whiie the other half see
Zois. Since (Zog+1.0°=Z2% is always greater

‘than 2[(Zes+3)°~ Z% ], more energy is gained

by the localized hole. This is borne out by the
fact that the relaxation energy for the localized
ion is 16.5 eV (Koopmans’ IP versus direct HF),
which is very close to the 15.3 eV relaxation
energy of the 1s ionized nitrogen atom, while
the delocalized relaxation energy for N, is only
7.3 eV. While the core ion state has the nature
of a localized hole, the total wavefunction
should still retain the full molecular symmetry,
and does if we take the linear combinations

Yg=te+ - (31a)
and
Yu=e— Y, (31b)

where ¢, and ¢, are the overlapping localized
core hole wavefunctions.

The results of various calculations are shown
in table 2. Calculations were carried out treating
the neutral and ion states both at the HF level
and with all valence electrons correlated,
GVB(5/10). For the neutral the latter cal-
culation leads to three bond pairs (o, 7, m,)
and two lone pairs (“2s”") localized one on each

N,
ON=NG) (32)

The delocalized HF calculations not only lead
to an ionization potential 9.2 eV too large but
they also lead to a g-u splitting energy 50% too
large (0.126 versus 0.082 eV). Correlating the
valence electrons leads to a slight decrease
(0.32 eV) in the ionization potential and a slight
increase in the splitting energy (0.082-

0.093 eV). The final calculated ionization
potential is 409.84 eV, in good agreement with
the experimental value of 409.9 eV [8]. Such
close agreement is fortuitous since correlation of
the electron pair in the 1s orbital being ionized
was not included (this would increase the ion-
ization potential by =1 eV). Probably this error
is balanced by some inadequacy in the basis set
for describing the shape readjustment in the

ion.

The very small resonant splittings are due to
the very small overlap (Se, = 0.0023) of the
localized wavefunctions in (32).
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Table 2
Ionization potentials for N3 %)
Level Neutral ground Ionization potential (eV) Splitting
state total energy energy
(hartree) localized 22; 22; (eV)
Basis I ®
Koopmans' IP 427.59° 427.54 427.64 0.096
delocalized HF -108.9059 - 420.28 420.41 0.124
localized HF 411.05 411.01° 411.09¢ 0.082
GVB 5/10 —-109.0049 410.65 410.63° 410.72°¢ 0.090
Basis 11
Koopmans' IP 426.81"° 426.76 426.86 0.095
delocalized HF -108.9808 - 419.41 419.53 0.126
localized HF 410.16 410.12° 410.20° 0.082
GVB 5/10 -109.0731 409.84 409.79 ¢ 409.88¢ 0.093
experiment ¥ 409.9

* All calculations performed at experimental ground state geometry (R, = 1.09768 Aj[12).
® Basis I is Huzinaga's (11s/7p) primitive gaussian basis contracted to (7s/4p), allowing four functions to describe the 1s orbital.
< Basis II is Huzinaga's (11s/7p) primitive gaussian basis contracted to (7s/5p) plus an optimized d exponent of 0.9 (further

decontraction of the s and p was found unnecessary).

9 Ref.[9]. ' These numbers result from the resonance of two overlapping wavefunctions.
' Localized Koopmans' IP values were obtained by forming a localized ¢, = 2"”2(10',-# 1o,) and evaluating the ion energy with

frozen orbitals.

Many previous calculations on core hole
states of first-row diatomics have been per-
formed [7-10] and the need for a localized
description has been well established. The cal-
culations presented here are the first to restore
full symmetry to the ionic states while retaining
a localized description.

Miiller et al. [7] have studied the effect of
core hole localization on the predicted lineshape
of the photoelectron peak. They found that
while a delocalized hole predicts a linewidth too
large by =80%, a localized hole description
predicts a linewidth of 0.32 eV, in reasonable
agreement with the experimental value of
0.42 eV. This agreement becomes even closer if
one includes the peak broadening due to the
0.093 eV state splitting we calculate.

5. Discussion

One of the first studies of the importance of
symmetry lowering in HF wavefunctions was the

work by Wadt and Goddard [5] on the n ion
and n7* excitation states of pyrazine. They
showed that the optimized wavefunction is
localized but did not calculate the resonance
energy by the R-GVB procedure. Instead, they
converted the localized orbitals into a double
set of symmetry orbitals and designed a CI cal-
culation to mimic a resonating wavefunction.
Recently Martin {11] tested these results for the
positive ion by calculating the resonance energy
of the localized HF wavefunction in the same
fashion described in section 2. He found
resonance energies essentially identical to those
of Wadt and Goddard.

We have generalized this treatment to allow
calculation of resonance interactions for cor-
related muilticonfigurational wavefunctions. This
is important since many electronic states are not
adequately described at the HF level. This
method is not limited to resonance of equivalent
configurations, allowing treatment of resonance
as a function of geometry, as in rectangular
cyclobutadiene,
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- <

The remaining flaw in the resonating GVB
approach is that the orbitals are calculated
before resonating. As a result, the orbitals tend
to delocalize in order to incorporate part of the
resonance effect. We are currently developing
an approach in which the orbitals are optimized
in the presence of resonance, thus allowing each
orbital to have the optimum shape for a partic-
ular localized form. This approach is more
difficult than the usual self-consistent field
methods because of the overlapping orbitals. It
will be especially useful for cases where the
delocalization tendency is so strong that the
conventional wavefunction is totally delocalized.

We believe that the resonating GVB method
will be useful both for quantitative and concep-
tual progress in analyzing wavefunctions. With
this method, many complicated electronic states
that previously required extensive CI cal-
culations may be adequately described in terms
of a small number of meaningful resonance
contributors, a picture that is conceptually
simple and chemically appealing.
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CHAPTER 7

The Resonating Valence Bond Description of Three-Electron Bonds

1. Introduction

Three-electron bonds are quite common in chemical systerns,1 and are
often quite strong. Examples include the = system in O,, the noble gas
dimer ions, and sulfur radical cations.? It was proposed by Pauling over
50 years ago that the strength of such bonds lies in the ability of the sys-

tem to resonate between two forms,

AB «- AB (1)
This resonance will be largest if the two forms are equivalent in energy,
as is evident from the bond energies shown in Table 1. The homonuclear
ions Neg, F7, Arg, and Clg, in which the two forms in (1) are isoenergetic,
each have a bond of ~30 kcal, while the mixed species NeF and ArCl have
almost no bond, due to the instability of the resonance structure

Ne~F*,

This resonance is also important in the 0, n system, causing a
discrepancy between the O-H bond energy in OOH and HOOH. The first

hydrogen approaching 0, must disrupt the resonance to form a bond,

() 0 O
CH—) +  (—(
omRe 5,

® O)

while the second bond to a hydrogen causes no loss in resonance (assum-
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ing the H—6—6 structure is unimportant). The first bond is worth 45.8
kcal, while the second is 88.7 kcal, consistent with a resonance energy of
43.1 keal.* Thus, the evidencé seems consistent with a resonating valence
bond model of three-electron bonds. In this chapter we examine two pro-
totype three-electron bond systems, Heg and Nej, using the resonating
generalized valence bond (R-GVB) and generalized resonating valence
bond (GRVB) methods. These ab initio approaches allow us to describe

the resonance in a conceptually straight-forward fashion.
II. Calculational Details

The Heg calculations were performed using Huzinaga's 7s gaussian

5 contracted to 4s,® augmented by a p polarization function with

basis
exponent 1.0. This basis gives a Hartree-Fock(HF) total energy of
—1.999741 hartree for He*, and —2.861491 hartree for He. The Neg calcula-
tions employed the Huzinaga 9s5p basis® contracted to valence double
zeta (3s.2p) by Dunning.7 This basis yields an energy of —127.79338 har-
tree for Nef (HF), and —12B.52235 hartree for Ne atom (HF). The pro-
grams used to perform the various calculations are described elsewhere.®
The GRVB calculations on Neg employed a frozen 1s orbital on each Ne
atom, taken from the symmetric HF wavefunction at the same geometry,

but all other orbitals were optimized. This restriction was found to have

an effect of less than 107® hartree on the energy of a localized HF

wavefunction at £ = 100.03. (the most critical test).
The 'Valence Bond' (VB) wavefunction listed in Table 2 consists of the
properly antisymmetrized product of orbitals taken from separate HF

calculations on He and He*. Thus,

VP = Alp? ¢+ 0Bal . (2)
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where ¢, . has been Schmidt-orthogonalized to ¢g. The R-VB calculation
is simply the resonance of ¥, with its spatially reflected form (ie.
corresponding to (1)). The gR-VB wavefunction is the R-VB wavefunction
which has orbitals optimized in two-dimensional space composed of g

and ¢+ This optimization is performed via a parameter, A, which mixes

P He and P et

$He = PHe + AP trg+ (Sa)

¢.’;13+ = ¢H8.+ — A\¢He . (3b)

(ignoring normalization), and we find that the optimum value for A is -1.1,
corresponding to a node in the doubly-occupied orbital, as observed in

the GRHF wavefunction.

HOI. Results and Discussion - Hes

Because the Heg system has so few electrons, the best ab initio results
are in excellent agreement with experiment. The extended-basis full CI
calculations of Liu® yigld a bond energy (D,) of 56.4 kcal, while the experi-
mental value is 56.9 kcal.'® Because we will be comparing various con-
ceptually simple wavefunctions which have only sigma orbitals occupied,
we will take the “"correct” bond energy to be 54.1 kcal, the result of a full
Cl in the sigma space of our basis set. The very good agreement with the
near-exact result of Liu implies that we are not excluding any conceptu-
ally important portion of the wavefunction. In the simplest ab initio
description of the bonding process, we allow one orbital for the two He
electrons and one orbital for the one electron on He*, and let these orbi-
tals take any shape as R is varied. This is simply the Hartree-Fock (HF)

wavefunction,
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VAP = AlpPga0afal, 4)

and leads to a bond energy of 37.7 kcal, as shown in Table 2. The
optimum orbitals in this wavefunction are symmetric (i.e. ¢; is ¢, and ¢,
is @y ), just as in Molecular Orbital Theory.

We wish to describe resonance in this system, and the simplest
resonating wavefunction consists of allowing the optimum shape for ¢,
and g¢p, while simultaneously mixing in the other resonance structure. We

call this a generalized resonating HF (GRHF) wavefunction, written as
VORHF = A[pfpa0pa] ~ Alpfpeapal (5)

where ¢, and ¢, are generated from ¢, and ¢, via the spatial reflecton

operator which is perpendicular to the bond axis,

-~

¢1= Ko, (6a)

Y2 = R P2 (Gb)

While the HF wavefunction included a certain amount of resonance
through orbital delocalization, the GRHF wavefunction includes resonance
explicitly, allowing the orbitals to localize, as shown in Fig. 1. Notice that
the doubly occupied ¢, has a node while ¢, does not. This is contrary to
the usual behavior of SCF wavefunctions. This may indicate that the
GRHF wavefunction is including some extra correlation energy beyond
that expected from the form in (5). Further evidence for this is the fact
that Ygpyr remains partially delocalized at infinite R, leading to a total
energy 1.6 kcal lower than ¥#F. This is surprising, since infinitely
separated He and He® would not be expected to inleract, so that the
“"resonance energy'’ should be zero. Thus, this extra 1.6 kcal is presum-
ably describing some atomic correlation. If we assume that this atomic

correlation energy is independent of 7, then we can obtain a valid GRHF
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bond energy by comparing the short-R GRHF energy to the long-R GRHF
energy, thus cancelling out the extra correlation effect. This leads to &
bond energy of 55.5 kecal, 1.4 kcal greater than the o - full CI bond. Since
bond energies are usually low when the correlation is not complete, we
can infer that the GRHF wavefunction still contains more correlation at
the molecular geometry than at long R. If instead of resonating two HF
wavefunctions, we resonate two correlated wavefunctions, this effect
should diminish. The dominant correlation in He atom is in-out, describ-
able with a GVB(1/2) wavefunction, and the orbitally optimized resonance
of two GVB(1/2) wavefunctions is a GRVB(1/2) wavefunction. The
GRVB(1/2) wavefunction leads to a bond energy of 53.8 kcal, and gives the
same energy at large R as a GVB(1/2) wavefunction. Thus the delocaliza-
tion at large R is no longer necessary once the dominant in-out correla-
tion is explicitly included in the wavefunction.

We can get another estimate of the magnitude of the extra correlation
in the short-R GRHF wavefunction by using a VB wavefunction. The VB
wavefunction is restricted to have the orbital shapes from atomic He and
He* wavefunctions. The VB wavefunction leads to a bond energy of -40.8
kcal, while the R-VB bond is 38.4 kcal. Clearly, resonance is important in
this wavefunction. Since the R-VB wavefunction has frozen orbital
shapes, it cannot contain any of the extra correlation that the GKHF
wavefunction apparently has. Letting the two VB orbitals mix with each
other (gR-VB, see calc. details section) leads to a node in ¢,, just as in the
GRHF wavefunction, so we can infer that this gR-VB wavefunction is
including the same type of atomic correlation as GRHF. The differencc in
energy between R-VB and gR-VB is only 1.0 kcal, so the magnitude of this

effect is small.
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IV. Results and Discussion - Nej

The results for Ned are similar to those of Hed, as shown in Table 3.
One difference is that the short-R HF wavefunction for Ne# chooses to be
localized, leading to an energy 6.2 kcal lower than the symmetry res-

11 The localization force is stronger in Neg

tricted HF wavefunction.
because there are more electrons in the system which can relax in
response to the localized hole. For systems such as core ionized Ng, this
relaxation energy is 10 eV, as discussed in Chapter 8, Section 4. Because
the HF wavefunction is localized, we can test the effect of resonance
without reoptimizing the orbitals, by using an R-HF wavefunction. This
leads to a bond energy of 11.6 kcal, a resonance lowering of 10.2 kcal.
Optimizing the orbitals in a GRHF calculation leads to a bond energy of
30.1 kcal, in good agreement with the CI results of Cohen and Schreider!?
(27.7 keal), and the experimental value of 31.2-kca1.1:3 Because of the size
of the Ned system, we cannot perform a full Cl in our basis to use as a
reference energy. Figure 2 shows the R dependence of the various
wavefunctions, and as expected, the GRHF wavefunction leads to a
shorter bond than HF, because the resonance is stronger at shorter .

As in Hes, the GRHF wavefunction dissociates to a wavefunction which
is lower in energy than HF, and the effect is larger for Neg due to the
extra electrons. Thus, for both of these cases, we needed to correct for
this extra correlation energy by using the GRHF wavefunction at all bond

4 we did not encounter

distances. In the GRVB description of reactions,1
this problem, so that the GRVB wavefunction near the transition state
was appropriate for comparison to a GVB wavefunction at the separated
limits. The GRVB wavefunction is equivalent to GVB at the reaction limits

because only one subwavefunction is dominant, while the other
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subwavefunction corresponds to a ""bad” bonding structure at higher

energy,

H—F H HF H

good bad

Also, the anomalous nodal structure found in Hef and Nef was not

observed in the transition state wavefunctions.

V. Conclusions

We have examined the prototype three-electron bond systems Hez and
Ned, using the resonating valence bond model,
Hed _
A ENONOEROXO)

(7a)
CX D T (T2 (XX
e 9

The GRHF wavefunction, which 1s simply the orbitally-oplimized version of

(7a) or (7b), leads to quantitative accuracy for the total bond energy in
each systemn, indicating the validity of this model. In the Ned system, the
resonance is responsible for almost all the bonding, while the Hejf
wavefunction is harder to dissect due to the unknown amount of reso-
nance present in the delocalized Hartree-Fock wavefunction. Thus, we
understand why the mixed-atom systems in Table 1 have essentially no
bond - they have no resonance.

The GRHF wavefunction is found to include some extra correlation
energy beyond the '"resonance energy', but this effect can be cancelled

by using the GRHF wavefunction at all bond distances.
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Table 1: Some Three-Electron Bond Energies (kcal).

Molecule D(,al
He, 54.6
H, 20-40
Ne, 30,0
F, 29.5
Ar; 30. 7
CL 29.1
HeH <0.1
NeF not observed
ArCl very weak

2 Reference 3.
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Table 2. He; Bond Energies.

Wavefunctions
He; He  He' E(He)? D, (kcal)
Hartree-Fock HF HF -4, 92128 37.7
GRHF HF  HF -4. 95222 (57.1)
GRHF GRHF -4. 95222 55.5
GRVB(1/2) GVB(1/2) HF -4, 9631 53.8
GRVB(1/2) GRVB(1/2) -4, 9631 53.8
vBP HF  HF -4. 79621 ~40. 8
R-VB® HF HF -4. 92249 38.4
gR-VB% HF  HF -4.92399 39.4
o-full CI o-full CI 4. 970055 54. 1
full CI® full CI -4. 99389 56. 4
experimentf 56.9

AAtR =1.09 A.
b
ized to an atomic He orbital.

€ R-VB is the resonance mixing of the VB wavefunction.

d

The VB wavefunction is defined as an atomic He" orbital orthogonal-

gR-VB is an "optimized' version of R-VB, in which the two VB

atomic orbitals (after orthogonalization) are rotated with each other.
The optimum rotation angle is A = -0. 124,

€ B. Liu (Ref. 1) 4s, 3p, 2d, 1f basis at 1, 08 A.

f Reference 10,
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Wavefunctions

Ne; Ne Ne' Basis E(Nej)? R(A) D (kcal)
HF (sym.)° HF HF DZ 0.30663 1.759  -5.8
HF (loc.)® HF HF DZ  0.31801 2,12 1.4
R-HF HF HF DZ  0.33311 1.175 11.6
GRHF HF HF DZ 0.38026  1.77%  (40.5)
GRHF GRHF DZ  0.38026 1.7 30. 1
cr® 1.75 27,7
Experiment 31.2

2 To obtain total energy in hartrees, subtract these values from

-256. 0.
b

CHartree- Fock with broken symmetry.

d Optimized geometry.

€ Cohen and Schneider, Ref. 13.

Hartree-Fock with full symmetry imposed on orbitals.
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HARTREE-FOCK
TWO ONE
GRFH
TWO ONE

He He

Figure 1. The HF (top) and GRHF (bottom) orbitals for Heg. The orbitals

in the other GRHF subwavefunction are not shown.
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Figure 2. Energies of various Neg wavefunctions.
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Thesis Conclusions

We are encouraged by the results presented in the preceding
chapters, and feel that the R-GVB and GRVB approaches will lead to quan-
titative and conceptual progress in understanding a variety of chemical
systems. The accuracy of GRVB in describing reaction transition states
and three-electron bonds is strong testimony to the wvalidity of the
resonating VB model.

The GRVB method increases by one the number of classes of systems
which can be accurately represented with a conceptually simple
wavefunction. For atoms, the Hartree-Fock (HF) wavefunction is gen-
erally an appropriate description; it is not unreasonable to envision two
electrons in each atomic orbital. In des~ribing a covalent bond, the HF
wavefunction is inadequate, because the wavefunction dissociates
improperly. The two-configuration GVB wavefunction avoids this problem,
describing the salient features of the bonding process with a VB model.
For the class of systems which involve resonance, the GVB wavefunction is
inadequate, as it only describes one resonance structure. Thus, for
example, the GVB description of a three-electron bond leads to a bond
energy many kcal too low. The GRVB approaéh handles this type of bond
easily, because it includes the resonance explicitly. Similarly, the GVB
description of a reaction transition state will lead to activation energies
10 to 20 kcal too high while the GRVB wavefunction yields quantitative
results. It is interesting to note that the GRVB method often leads to
more accurate results for the systems to which it is suited than the GVB
method does in describing covalent bonds. For a covalent bond, the VB

model is qualitatively appropriate, but an accurate bond energy
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calculation requires the inclusion of many instantaneous correlations,
because the bonding process takes two non-interacting electrons and
places them into intimate proximity as a bond pair. In contrast, no
covalent bond is formed in the three-electron bonding process. Thus,
while there is considerable correlation error in a HF description of the
active electron pair (e.g. the He is pair in Heg), the differential correla-
tion effects are small, because the correlations are atomic in nature, and
do not change significantly in the bonding process. The dominant corre-
lation effect is that of resonance, which is included in the GRVB wavefunc-
tion. The errors involved in the GRVB description of a reaction process
cancel in a similar way. Each subwavefunction retains the same number
of bonds throughout the reaction, so that the dominant feature is the
change in resonance energy as the reaction coordinate is traversed.

We have presented in depth only a few of the possible applications of
R-GVB and GRVB. Other problems suited to a resonating VB treatment
include the calculation of electron transfer rates,’ separation of the
covalent and ionic character in a partial ionic bond such as HF or BeO,
and description of the bonding in hypervalent comple:;essuch as ClF;.
Another application is the calculation of photoelectron (PE) cross sec-
tions for core-ionized states. Daasch et al.® have recently found that a
localized hole description of the COZ ion leads to a qualitatively different
PE spectrum than a delocalized hole. However, they did not allow the
hole state to relax (which is worth ~10 eV), and this should lead to an
even larger change in the PE spectrum. The proper treatment of such a
problem would require the R-GVB mixing of the two localized-hole states
to restore the full molecular symmetry.

Finally, we note that the most important future use for GRVB is prob-
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ably in the description of chemical reactions. While the current version
of the GRVB program is very CPU intensive, an analytical optimization
procedure would make GRVB competitive with (if not significantly faster
than) the current CI approaches. The fourth proposition attached to this
thesis discusses such a procedure.

In his classic text, The Nature of the Chemical Bond, Pauling's con-
cluding remarks include a prediction (in 1960) of the future course of the
theory of chemical reactions,3 in which he states, "It is hoped that the
quantitative treatments can be made more precise and more reliable;
but before this can be done effectively, an extensive development of the
qualitative theory of chemical reactions must take place, probably in
terms of resonance.” We hope that the work presented here represents a

step in that direction.
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Proposition 1

ABSTRACT

A method is presented which should allow the
rigorous inclusion of the Pauli Principle in the Quantum
Monte Carlo (QMC) method. With this modification, QMC can
be used to find exact many-electron solutions to the Schrod-
inger equation to within a statistical uncertainty. Since this
uncertainty can be made arbitrarily small, chemically

"exact" calculations on real molecules should be possible.
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I. Introduction

One of the ultimate goals of quantum chemistry is the ability to calcu-
late molecular properties to arbitrary accuracy. The majority of work in
this field has employed self consistent field (SCF), multiconfiguration SCF
(MCSCF), and configuration interaction (CI) approaches,! in which the
molecular wavefunction is taken as a linear combination of slater deter-
minants and the orbital shapes and or expansion coefficients are optim-
ized to give the lowest energy. Because of the Variational Principle, the
energy of this optimized wavefunction will be above the exact energy
unless the size of the basis set and the number of determinants is made
infinitely large. In practice it has been found that many molecular pro-
perties can be accurately calculated with wavefunctions which fall short
of the exact energy by many percent.2 This is accomplished by including
in the calculation all electron correlation effects which are differential for
the process of interest.

An alternative approach which has received attention recently is the
Quantum Monte Carlo (QMC)>*5!! or Random Waik®"'®® method. In this
approach the Schrodinger equation is solved stochastically by taking
advantage of its similarity to the diffusion equation. By allowing "parti-
cles" to diffuse in imaginary time, a solution is obtained which is the
exact many-electron Schrodinger solution to within a statistical uncer-
tainty. In principle this uncertainty may be made arbitrarily small by
following the evolution of a large enough number of particles over a long

enough time. This is quite appealing since unlike the variational
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approaches in which one never knows for sure how much correlation
error remains in the best attainable wavefunctions, in the QMC approach
the uncertainty is known, and can be reduced to an acceptable value.
There remains a problem with the QMC method however, since simu-
lating the diffusion equation leads to the solution appropriate for a set of
bosons rather than fermions. This is because the Schrodinger equation
does not explicitly include the Pauli Principle. For systems with two
singlet coupled electrons (e.g. Hp, He.Hf) in which the boson and fermion
solutions are identical, the QMC approach has been employed with excel-
lent results.®? For more than two electrons the Pauli Principle may be
included by imposing nodal surfaces on the many electron space through
which the particles are not allowed to diffuse. However, as will be shown
in section III, there is no way to know a priori where the nodal surfaces
should be located. Placing them approximately (as from a trial wavefunc-
tion which is properly antisymmetrized) yields a solution which is a varia-
tional upper bound to the exact energy,10 in addition to the statistical
uncertainty. While the energies thus obtained are better than with any
other variational approach,11 the QMC method will be of limited chemical
utility until the problem of exact nodal placement is solved. The reason
for this is as follows. The most common applications of molecular quan-
tum mechanical calculations (e.g. bond energies, excitation energies,
activation energies) involve a comparison of two energies. The current
variational approaches have achieved considerable success in this area

because much effort has gone into learning how to eliminate the
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differential error for a particular type of chemical process. Thus for
example, the triplet to singlet excitation energy in methylene may be cal-
culéted to an accuracy of 1 kcal, even though the correlation error
remaining in the calculation is many times that.!? Presumably it would
take many years to develop an analogous methodology for QMC methods,
and until then the results would not be as reliable as the current varia-
ticnal approaches. However, if an approach can be developed which
allows the exact nodal shapes to be found, the QMC method should lead to
significant advances in quantum chemistry. While one procedure for
allowing node readjustment has been proposed by Ceperly,5 it is in gen-
eral unstable, collapsing to the boson solution. The next section contains
a closer lock at how QMC is actually implemented for the spinless Schrod-
inger equation. In Section IIl the current methods of imposing the Pauli
Principle are discussed, and in Section IV a new procedure is proposed

which should allow the exact nodal structure to be found.

II. The Quanlum Monte Carlo Hethod

The purpose of this section is to give the spirit of the QMC method and
present encugh information about the calculational procedure to lay a
foundation for the proposal in Section IV. A detailed description of the
method may be found elsewhere. '3

The time dependent Schrodinger equation for a single particle in cne

dimension,

_ — RR a2
0¥ _ —R% 6%V

Bt~ 2u 8z? v (1)
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where u is the particle’s reduced mass, and V=V(z) is the potential
energy, is similar in form to the diffusion equation

2

—_—= D—_—

ot ax? '

where C=C(z.t) is the concentration of, say, dye molecules and D is the

diffusion coefficient. If we rewrite the Schrodinger equation as

av _ [R?] a2

o = |2a]aar VY (3)
where
it
=X 4
T= = (4)

and momentarily ignore the —V¥ term, we see that the Schrodinger equa-

tion can be thought of as describing the diffusion in imaginary time of

72
particles with distribution ¥(z.t) and diffusion coefficient D = %—L— These

"'particles” are not physical particles, but rather points in configuration
space, and we will henceforth call these "psi particles" or "psips". Since
diffusion can be described by a collection of particles undergoing
independent random walks, equation (3) (still ignoring the ~V¥ term) can

be simulated by following a collection of psips performing random walks

with diffusion coefficient g;— To include the V¥ term in our simulation,

we note the similarity to the equation describing a first order rate pro-

cCess

= -kC , (5)



215

so that

o

5 = VY (6)

can be modeled by allowing our psips to radioactively decay with rate

constant £ =V, or if V is negative, to give birth. The actual calculational

procedure is as follows:

1)

2)

4)

Start with N psips (e.g. N =1000) distributed over configuration space
(each psip specifies a position for every electron in the system.) This

is our starting guess for V.

Increment the (imaginary) time coordinate = by A7. During this time,
each psip will have walked a distance dependent on the diffusion
coeflicient J. Since the probability of finding the particle at some
new position is a gaussian distribution with standard deviation
o =VZDAT the new position for each psip is chosen by picking a ran-

dom number weighted by that gaussian.

Calculate the potential energy V for each psip. This is simply the sum
of all coulombic interactions with all the other electrons and nuclei
in the system. Note that we never have to worry about the kinetic

energy, since that is accounted for by allowing the psips to diffuse.

For each psip, decide whether there is decay or birth based on the

probability

Pdecay = (V"Vraf:)AT , (?)
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If the psip decays, delete it from the list of active psips. If it gives
birth, add a new psip to the list with identical coordinates. The con-
stant term V., is included to keep the total number of decays and
births roughly equal, so that the total psip population N is fairly con-

stant. V., has no other effect on the solution.

5) The energy of the wavefuuction at this point is V, the potential
energy averaged over all the psips. Store this energy, readjust V.,

and go to 2).

As steps 2-5 are repeated, the energy will approach the exact energy
and then fluctuate about it with an amplitude dependent on the time step
At and the psip population N. The statistical uncertainty is reduced by
using large N, following the propagation over a long time 7, and extrapo-
lating the results of multiple runs to Ar=0. The wavefunction amplitude
at any point in configuration space is given by the concentration of psips
in that region (for higher accuracy this may be averaged over many time
steps). The overall precision and speed of convergence may be increased

9,13 in which a trial wavefunc-

by a procedure called importance sampling,
tion guides the motion of the psips, but the fundamental idea remains
that the psips wander about in configuration space with a probability of

decaying or multiplying proportional to the potential they sense.
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III. Inclusion of the Pauli Principle

The method described thus far will give the correct ground state only
for systems with up to two electrons. For more than two electrons (or for
a two electron triplet), the effects of the Pauli Principle must be
included. This is accomplished by imposing nodes on the wavefunction
which separate regions of positive and negative amplitude. Jf a psip tries
to wander through the node, it vanishes. While we know something about
the node location based on the antisymmetry of the wavefunction, we can
not specify its shape completely. The easiest way to demonstrate this is
by considering a two electron triplet system where each electron may
move in two dimensions, leading to a four dimensional configuration

space. From the antisymmetry of the wavefunction we know that
V(z1y1Z2y2) = —¥(Z2.¥2.Z1.Y1) . (8)

which specifies a plane (x,=zx; y,=yz) where ¥=0. However, a plane is
not sufficient to define a boundary in four dimensional space, just as a
line is not sufficient to subdivide three dimensional space. Thus, the
node we need is a three dimensional solid,lzL but we do not know the
shape of the third dimension.

The current approach to this problem has been to use the nodal
shapes obtained from a properly antisymmetrized trial wavefunction (e.g.
an MCSCF wavefunction). Using the procedure described in Section II
with the additional constraint that a psip vanishes if it passes through a

node leads to a very accurate wavefunction. However, as pointed out in
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the introduction, since the nodes are not necessarily correctly placed,

the energy is a variational upper bound to the exact energy.

IV. Proposed Method for Nodal Relaxation

Just as allowing the psips to diffuse in configuration space automati-
cally finds the optimal shape for ¥, the same principle can be applied to
find the optimal nedal structure. By letting each node move in response
to the pressure of the diffusing particles, an equilibrium position will be
reached which has minimal energy. That is, simply let the node move
around until in any given region the number of psips that run into it and
vanish is the same on each side of the node. While it seems intuitive that
this would yield the lowest Pauli-allowed energy state, a more rigorous
proof may be given. Consider a QMC simulation using an infinite number
of psips, so that at any point in configuration space the wavefunection
amplitude is given accurately by the density of psips at that point. In the
region near one side of a nodal surface, the wavefunction amplitude will
die off smoothly and vanish at the node. This is because the nearer a psip
is to the node, the greater chance it has of straying across the node in
the next time step, so that the population in that area is continually
depleted. Hence, assuming the potential is not sihgular, and by consider-
ing a small enough region of space, we can say that the psip density
increases monotonically with the distance from the node. The slope of
this psip density is a monotonic function of the number of psips de-

stroyed by the node per unit time. If we consider an infinitessimally
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short time step, so that any psip which could bump into the node comes
from a position so close to the node that the potential energy can be con-
sidered constant, then if the number of psips destroyed on each side of
the node is equal, the psip density slopes are also equal. Since the psip
densities on opposite sides of the node represent wavefunction ampli-
tudes of opposite phase, then only if the psip density slopes are equal will
the first derivative of the wavefunction amplitude be continuous. Since
we require any valid wavefunction to have a continuous first derivative
(for a nonsingular potential), the node is thus correctly placed.

Implementation of this procedure for a noninfinite number of psips
could be accomplished in various ways. One approach would be to count
the number of psips which are desiroyed on each side of a given section
of a nodal surface in a certain time period, and then readjust the nodal
shape towards equilibrium. The disadvantage of this approach is that it
requires the storage and continual updating of all nodal surfaces, and
decisions must be made about the most appropriate {unctional form to
describe the node.

An alternative to actually storing information about nocial surfaces
would be to keep track of the phase of each psip, and then simply delete
any pair of psips with opposite phase which approach closer than a
threshhold distance. The positive and negative psips would be inilially
distributed based on a trial wavefunction, and the integrity of the positive
and negative zoning would be maintained during the diffusion process by

keeping the threshhold distance large enough (or the average psip den-
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sity large enough) so that psips of one phase could not sneak between
psips of the other phase. The diffusing psips would define their own phase
boundaries similar to the boundary between two imrmiscible liquids. This
procedure inay require an unfeasibly large number of psips, and has the
additional disadvantage that the situation where two psips are very close
but on opposite sides of a node would be unallowed, leading to a bias in
the statistical simulation.

An improvement could be made in the following manner. Rather than
using a fixed cutoff distance, assign a probability for annihilation of a pair
of psips which goes as the overlap of two gaussians centered on each psip.
This has physical meaning since the probability distribution for the loca-

tion of a psip after a time step At is the gaussian

Wibz)= '\/él‘mr exp (g‘;gz } , ©
where
o=~VZDAT , (10)

and hence the overlap of two of these gaussians can be thought of as how
much the psips "touch”. Replacing the simple gaussian by the approxi-

mate Green’s function for the system,

G(Az) = \/%.exp[(g‘;gz}exp[—(V—me)AT] - (11)

takes into account the probability that the psip will decay (or multiply)

as it diffuses.
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One other possible procedure will be described here and this is prob-
ably the best one. After moving a particular psip and allowing it to decay
or give birth, decide whether it is destroyed by a node according to the
following test. Call the location of this i¥* psip R;. Sum up the Green's
function value at R; for every positive and negative psip in the system
except the i®* one. If the i* psip has a phase opposite to that of the sum,
delete it, since it has moved into a region dominated by psips of opposite
phase. If the sum and the i** psip have the same phase, the psip sur-

vives.

V. Conclusions

Implementation of the procedure described in section IV could lead to
a QMC approach which yields exact wavefunctions and energies while
rigorously including the Pauli Principle. Since in principle the statistical
uncertainty may be made arbitrarily small, chemical properties could be
calculated to any desired accuracy. While in variational approaches the
choice of basis set and the number and type of configurations employed
is critical, such considerations are completely eliminated with QMC.
Another appealing aspect of QMC is that there is no need for the Born-
Oppenheimer approximation. By simply allowing the nuclei to diffuse
along with the electrons (the diffusion coeflicient for the nuclei would be
smaller) the fully-coupled nuclear-electronic wavefunction can be found
(such a calculation has not yet been attempted). The cne remaining un-

known is the effect of relativity, since the nonrelativistic hamiltonian is
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used, but for many systems of chemical interest these effects are known
to be small. Work is currently in progress to incorporate relativistic

effects into the QMC method.!°
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Proposition II

ABSTRACT

It is proposed that a modification of the Quantum
Monte Carlo method may be used to directly calculate key
features of potential energy surfaces to very high accuracy,
by allowing the nuclei to "diffuse” in imaginary time along
with the electrons. We discuss application of the method to
finding the barrier height in the vinylidene-acetylene rear-
rangement, a task which is beyond the capabilities of the

current theoretical methods.
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1. Introduction

One of the challenges currently facing quantum chemists is the accu-
rate calculation of molecular potential energy surfaces. This is important
for obtaining equilibrium geometries and vibrational force constants, and
also for the accurate estimation of activation barriers to obtain reaction
rates and mechanisms. The difficulty lies in the fact that there are 38N -6
coupled coordinates which need to be searched for either the saddle
point or the minimum, leading to large amounts of computational work.

One way of reducing this work is through the use of gradient
approaches. Methods have been developed which yield the energy gra-
dient as a function of nuclear displacement for Hartree Fock! and certain
configuration interaction (CI)2 wavefunctions at roughly three times the
computational cost of obtaining the wavefunction with no gradient. By
accumulating the gradient information at a number of geometries, a cur-
vature matrix may be constructed, which both speeds convergence to the
minimum (or saddle point), and yields the desired force constant infor-
mation.

Conventional self-consistent field (SCF) and CI approaches, in conjunc-
tion with gradient methods, have been successful in many applications

3

for finding equilibrium geometries” and transition state saddle points.4

However, cases are known which tax the limits of the current methods.>
One example is the rearrangement of vinylidene to acetylene,

H

\czc: _ H-C=C-H (1)

/
H
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The reaction is known to be downhill by roughly 42 kcal,6 but high quality
calculations disagree on the barrier height, i.e. the depth of the local
minimum in the potential energy surface corresponding to the vinylidene
structure. Calculations by Dykstra and Schaeffer’ using the self-
consistent electron pairs (SEPA) method (roughly equivalent to all singles
and doubles CI) in a double zeta plus polarization basis yielded a barrier
of B.6 kcal. Pople et al® obtained a barrier of 8.1 keal using fourth-order
Moller-Plesset perturbation theory (MP4) in a similar basis set. Later cal-
culations by Krishnan, Frisch, Pople and von Rague Schleyer6 using a
more extended basis (6-311G* - triple zeta plus polarization) lowered
this barrier to 2.2 kcal, and recent calculations by Osarmura, Schaeffer,
Gray and Miller® yielded 5.4 kcal. Inclusion of the zero point energies for
all modes other than the isomerization coordinate lowers these barriers
by 1-2 kcal. The question arises whether the vinylidene structure
represents a minimum at all -- Krishnan et al® speculate that further
increasing the basis set quality and correlation level could eliminate the
activation barrier completely. If indeed the true surface has no barrier,
then state-of-the-art calculations are giving a qualitatively incorrect
description of the surface. While Skell et 2110 predicted a lifetime of
slightly less than 107!'%®s based on trapping experiments, which is in
accord with a barrier of 2-5 keal,® the possibility that triplet vinylidene
(which should have a substantial barrier to rearrangement!!) was being
formed in the trapping reaction means the lifetime of singlet vinylidene

could be much shorter. Reiser and Steinfeld!? have reported that multi-
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ple infra-red photon excitation of vinyl chloride (H,C=CHCl) to eliminate
HCl yields only acetylene. However, due to the vibrationally excited
nature of the initially formed vinylidene, this experiment also could not
distinguish a barrier of zero kcal from a barrier of 5 kcal. Hence, accu-
rate determination of the kinetic stability of vinylidene appears to be
beyond the reach of both theory and experiment at the present time. In
the next section we outline a new method for calculating potential energy

surfaces which should be accurate enough to settle the vinylidene issue.

II. Description of the Method

It is proposed that the key features of a potential surface may be
obtained directly from a single calculation, using a modification of the
Quantum Monte Carlo (QMC) method. The QMC method has been

13.1% 51d an overview is presented in Propo-

described in detail elsewhere,
sition I. Using QMC, the full Schrodinger equation is solved directly using
a random walk process which yields the wavefunction and energy to
within a statistical uncertainty which can (in principle} be made arbi-
trarily small. In this approach there is no need for the Born-
Oppenheimer approximation, so that the {full electronic-nuclear
wavefunction may be found (though QMC has not been used in this way
before). This would be accomplished by simply allowing the "psips" {(psi
particles -- see Proposition I} to move not only along the electronic coor-

dinates, but along the nuclear coordinates as well. The diffusion

coefTicient in the nuclear directions is much smaller, but the procedure
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is otherwise unchanged. In this application of QMC, the nodal relaxation
outlined in Proposition [ would be important. The resulting wavefunction,
¥(R), would be a distribution of psips in the full ¥ dimensional space
where
N =N, + N, (2)

with

Ng = number of electrons

N, = number of nuclei
and R is the coordinate in N-space. Projecting ¥(R) onto the N, dimen-
sional nuclear space (by simply ignoring the other N, coordinates for
each psip) yields a distribution of psips representing a nuclear wavefunc-
tion ¥(R,). By inverting the Schrodinger equation for the motion of the
nuclei,

R*®

2 VE¥(R,) . (3)

V(R,)

i

a potential energy surface V(R,) could be oblained from ¥(R,). The sum-
mation in (3) is over a complete set of orthonormal vibrational coordi-
nates, each with reduced mass w;. While V(R,) corresponds roughly to
the energy surface which would result from solving for a highly correlated
electronic wavefunction at many nuclear geometries, it is not the same,
since V(R,) includes the effects of electronic-nuclear coupling. The inver-
sion of ¥(R,) to give V(R,) may prove tedious for the general case, but
certain features would be easily obtained. For example, the equilibrium

geometry, R$, corresponds to the maximum in ¥(R,). Harmonic force
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constanis could also be extracted by solving (3) for various slices through
a set of trial normal coordinates, and then applying the F-G matrix
method of Wilson.’® The location and properties of saddle points for
intramolecular rearrangement could even be computed, provided the
barriers are low enough that ¥(R,) is not vanishingly small in the saddle
point region.

It is inleresting to note that it is generally thought that calculation of
potential energy surfaces would prove the downfall of the QMC method,
since the statistical uncertainty in the energy at a given geometry would
- lead to very large uncertainties in numerical derivatives calculated using
adjacent points. However, in this proposed method, the surface is found
from only one calculation, so that this problem is eliminated. There may
be a problem, however, in inverting a wavefunction which is described by
a distribution of particles (psips), rather than as a linear combination of
analytical functions. This could be handled by accurnulating the psip dis-
tribution over many time steps, until the density of psips in all regions of
interest is high encugh to allow an accurate fit to some analytical func-
tion. _

A more serious objection is that using QMC in this way may be prohibi-
tively expensive, since the nuclei diffuse thousands of times slower than
the electrons. The development of QMC is still young, and considerable
improvements in speed and size scaling have been made in just a few
years.13 There is thus no reason to believe that QMC applied to potential

surfaces might not rapidly become competitive with current methods for
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computing potential surfaces, especially given that QMC scales better
than conventional approaches (n? versus n* — where n is the number of
electrons)le. In addition, the fact that QMC leads to a chemically "exact”
“result (since the uncertainty can be made arbitrarily small), makes it
especially powerful, so that it should be useful in cases where standard
methods fail, even if it is expensive. The vinylidene rearrangement may
be such a case, and we outline below how QMC would be applied to solve
this problemn. We then propose using this approach to find the transition
state and barrier height in the rearrangement of the negative ion of
vinylidene, a task which would be essentially impossible using current

methods.

II. Application of Relaxed-Nucleui QMC to Vinylidene

Finding the barrier height for the vinylidene rearrangement could be
accomplished with the following procedure:
(1) Given a suitable starting guess for the vinylidene geometry and the
nodal structure of the electronic wavefunction, solve for the QMC
wavefunction at this fixed geometry.
(2) Starting from this wavelunction, partially relax the frozen nuclei re-
striction by allowing the nuclei to diffuse along the three nuclear coordi-
nates corresponding to the totally symmetric A, representation in Cy,, as

shown below.

Ny H
/}\c—c- Ne=c. Nt
=Gl / =\ / .

\H/ : H H

's
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This yields the best possible description of the vinylidene species (assum-
ing it is planar).

(3) Starting with the partially relaxed distribution of psips from step (2),
allow the nuclei to diffuse along any direction in the plane of the
molecule. If there is no barrier to rearrangement, the wave packet will
steadily diffuse along the reaction coordinate, leaving no maximum in the
psip distribution in the region of the vinylidene geometry, and form a
pool in the region of the acetylene geometry, mapping out the ground
vibrational wavefunction of acetylene. If there is a barrier to rearrange-
ment, there will still be significant diffusion along the reaction coordinate
(since the barrier is known to be low), bul there will remain a maximum
in the psip distribution at the vinylidene geometry. These two cases are
skeiched in Fig. 1.

(4) For the no-barrier case, the calculation is done at this point. If
there is a barrier, we wish to know how high it is. To get an accurate
representation of the wavefunction, the psips must be allowed to diffuse
for a long (imaginary) time. A psip which drifts past the barrier has only a
very small probability of returning to the high-energy vinylidene region,
so ultimately the majority of psips will be in the acelylene pool. Since we
are not interested in an accurate representation of ¥(R,) for acetylene,
we continually remove psips from that region, and periodically double the
psip population (by adding a new psip everywhere one exists currently) to
maintain a roughly constant number of psips. This should have a neglig-

able effect on the random walk statistics, since the reaction is so exo-
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thermic, and keeps a high enough density of psips in the region of
interest (the vinylidene pool and the saddle point region) so that the
desired features of V(R,) can be extracied.

(8) To calculate the barrier height once ¥(R,) has stabilized, two
geometries must be located, the vinylidene equilibrium geometry, R¥,
and the saddle point geometry, R??. R corresponds to the local max-
imum in ¥(R,), and RY is at the stationary point in ¥(R,) that has exactly
one positive curvature (the direction of this positive curvature is the
reaction coordinate). The barrier could then be calculated by solving (3)
for V(R3Y) — V(R,‘:‘I),” but a better approach would be to evaluate E{R,sp)
and £(R by using clamped-nuclei QMC at these two geometries. This
would give the Born-Oppenheimer adiabatic barrier height without zero
point correction. The statistical error bars on this barrier height would
be V2 times the error in a single fixed-nucleus QMC calculation, and this

should be well under one kcal.

IV. Application to Vinylidene Negative Ion

A radical anion with the composition C;H; has been observed in the
gas phase as a product of the reaction of 0~ with ethylene.18 The question
of whether this is the negative ion of vinylidene or acetylene has been
addressed recently by Chandrasekhar et al.1® Using double zeta plus
polarization basis sets at the MP2 level, they found a negative electron
affinity of —1.7 eV for acetylene (vertical electron transmission spectros-

copy has obtained —2.6 eVzo), and a positive electron affinity of 0.21 eV for
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vinylidene. The energy of the vinylidene anion is 43 kcal above neutral
acetylene, so that C;Hz is thermodynamically unstable with respect to
ejection of an electron and isomerization to acetylene. It would be
interesting to know what the barrier to this rearrangement is, and what
the transition state looks like, since it involves the simultaneous breaking
of a C-H bond, the formation of a new C-H bond, and the ejection of an
electron. Accurate calculation of this potential surface in the transition
state region would be extremely difficult using current CI methods,
because the wavefunction would require a high level of correlation to
describe the two valence bond structures, and many very diffuse basis
functions to deséribe the escaping electron. Thus the C;Hg system is
ideally suited to the relaxed-nuclei QMC method, since the QMC wavefunc-
tion is completely correlated, and an electron is free to wander off to
infinity if necessary. The procedure outlined in Section III would work for
this case, though since the barrier is higher, the imaginary-time evolu-
tion of the psip distribulion would have to be run longer to accumulate a

reasonable description of ¥(R,) in the seddle point region.

IV. Conclusions

We have proposed a method for elucidating molecular potential sur-
faces which consists of extending Quantum Monte Carlo to allow the
nuclei to diffuse in imaginary time simultaneously with the electrons.
Such a procedure leads to the exact, fully-coupled solution to the Schrod-

inger equation, to within a statistical uncertainty which can be made
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arbitrarily small given enough computer time. The resulting wavefunc-
tion, ¥(R), can be projected onto the nuclear geometry space to give
¥(R,), and ¥(R,) can be inverted to yield a potential surface V(Ry).

We have proposed applying this approach to accurately determine the
kinetic stability of the elusive vinylidene species, and to describing the
electron ejection process in the rearrangement of vinylidene anion. Each
of these applications is beyond the capabilities of the current theoretical

methods.
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Proposition I1I

ABSTRACT

A formalism is presented for generating configuration
interaction (CI) wavefunctions appropriate for describing
localized hole states within a symmetry adépted molecular
orbital basis. The prescription can be applied to find a con-
sistent level of description for states arising from an excita-
tion, or ionization out of a localized orbital. The use of a
symmetry adapted basis results in computational savings,
and only standard self-consistent field (SCF) and CI programs

are required.
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The deficiency of symmetry constrained SCF solutions in describing
states with localized excitations or ionizations is well known.! The remo-
val of the symmetry restrictions can lead to SCF solutions as much as 10
eV lower in energy,2 clearly indicating the importance of the localized
character. Including this localized character in the wavefunction is thus
crucial for accurate predictions of transition energies and other proper-
ties.

One approach to describing such states is to recombine the
symmetry-broken SCF solutions to form wavefunctions with the full
molecular symmetry which explicitly contain the localized hole charac-
ter. This approach has been described extensively elsewhere in this

3 and will not be elaborated on here.

dissertation,

The alternative approach is to start from the symmetry constrained
SCF solution and restore the localized character to the wavefunction
through a CI calculation. The advantage of this procedure is that stan-
dard SCF and CI programs may be used (the above approach requires the
use of a special program such as R-GVB), and retaining symmetry in the
orbitals results in significant computational savings in the SCF step.4
However, the set of CI configurations necessary Lo restore localized char-
acter to the wavefunction.is not well defined. Performing all possible
excitations (a full CI) is clearly sufficient, though probably not necessary,
and such a calculation is unfeasible for systems with more than 4 or 5

electrons. Restricting the CI to all single and double excilations, a stan-

dard level of correlation whose properties are well characterized,® can
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still lead to unacceptably long CI lists,s’7 especially when these excita-
tions are done from multiple reference configurations, as is appropriate
in this application. For example, Butscher et al® achieved accurate
results for the core ionized shakeup states of N3 using an all singles and
doubles approach, but performed CI calculations which selected from
more than 200,000 configurations. Hence, the search is still active for a
Cl expansion of manageable size which can include the effects of localiza-
tion using delocalized orbitals.

Very recently, Benard presented a procedure for generating a very
short CI list which he felt achieved this goad.7 Using the 3d, hole states of
Cus as a test case, he applied his prescription to generate two CI
wavefunctions: one using the delocalized, symmetry adapted SCF orbi-
tals as the CI basis, and the other using the localized ('symmetry-
broken') SCF orbitals. Because the symmetry adapted CI yielded a lower
energy than the symmetry-broken Cl, he concluded that the localization
energy had been recovered in the symmetry adapted CI. This is a reason-
able way to test the method; however,_for reasons given later, we feel
that Benard's CI is too restrictive to pass the same test on a state which
requires more substantial electron readjustment in response to moving
the hole from one site to another (symmetry equivalent) site. For exam-
ple, more readjustment would be expected to occur in more deeply ion-
ized states such as 3s ionized Cus. We present here a method which
should overcome this defficiency while maintaining an acceptably short

configuration list.
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Consider a molecule with n centers equivalent by symmetry. For each
core atomic function of type x, (a = 1s,2s,2p; - - ), there are n occupied
MO’s in the symmetry constrained SCF wavefunction corresponding to
linear combinations of x, on each equivalent center. We are interested in
describing an ionization, or excitation, of an electron out of a particular
core function x,, Denote the set of n symmelry adapted occupied orbi-

tals corresponding to Xag @S 11,22 ' - i,, and denote the product of occu-

pied spin orbitals other than the set {i] as &, The ground state

wavefunction becomes
Yo = A[®o(i51F - - B)] |

where A is the antisymmetrizer. There are n energetically similar SCF

wavefunctions that can be optimized for the excited case, which can be

written as
¥, = A8 (i8E - i2id)]
Vo = A[S¢' (145 - iniR)]

where ¢y’ replaces &; because an electron has been excited, though &¢' =&,
if the electron has been ionized out of the molecule (ignoring the fact
that the shapes of the orbitals in &, will have changed in response to the
ionization). ¥, through V¥, possess the correct symmetries for the states
arising from this excitation, but they do not contain the localized charac-

ter. To obtain a balanced set of orbitals for the CI, an SCF is performed
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with an orbital occupation that is the average of ¥, to ¥,

Yy = A[®g(FiE - - - )] o z=

This is easily accomplished with an SCF program which allows user-input
Hamiltonians. Using the orbitals from ¥4 as the CI basis, consider the
wavefunction resulting from moving the electron hole into each of the n
positions in the set {i} (i.e. the orbital occcupations in ¥, through ¥, ), and
denote this ¥4;. This corresponds to a full CI within the orbital space {i{,
and thus ¥} is invariant under any unitary transformation of these orbi-
tals. Since we could choose this (hypothetical) transformation to be the

one which converts {i{ into the set of n localized functions, Exao {, we see

that ¥} is equivalent to mixing n localized hole states. However, the
shapes of these localized holes, and (more importantly) the shapes of the
other occupied orbitals, are not the same as would result from a
symmetry-broken SCF. This shape readjustment can be included through
first order by using single excitations. Thus, we propose the following
procedure, and call the resulting CI wavefunclion ¥%. Using the occupied
plus virtuals from ¥, as the CI basis, generate all single excitations from
each of the n configurations in ¥}, with the restriction that the total
occupation of the {i} set of orbitals is less than or equal to 2n—-1 elec-
trons. This restriction prevents the character of the ground and low-
lying states from mixing into the excited state. (Such a restriction is not
necessary if the Cl program is capable of solving for the correct highly
excited root of the secular equation,6 but this requires much extra work

for most CI programs.) Excluding these configurations should have a
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slight effect on the first order shape readjustments. For a system such
as Cugd, ¥& would consist of less than 100 configurations per state.’

It is now easy to describe Benard's CI, ¥&. Using the orbitals from ¥4
as the CI basis he performed single excitations from all configurations in
¥} except the one with occupation corresponding to ¥§;. Since ¥& does
not include all the occupations in ¥4, it allows the hole to localize, but
does not include the necessary shape readjustment in a balanced way. If
this relaxation is substantial, Y& may be inadequate, especially in
describing the splittings between the n states resulting from one hole
type. ¥ should give a reasonably balanced description of these states,
since no bias is built in at either the SCF of CI step, and should also be
superior to ¥& in describing the relative energies of states arising from
different hole types.

Since the shape relaxation is only included to first order, ¥% may be
insufficient for deeply ionized states. A test to determine the limitations
of the method would be to compute the energy for the states of Cus
resulting from ionization out of the
15,25,2p 0. Ry, 35,3p . 3P n 344, 3d,, and 3ds orbitals using three different
wavefunctions: ¥4, ¥4, and R-HF (the resonance of two symmetry-broken
HF solutionse). The R-HF wavefunction is used as a reference, since it is
exactly what these Cl wavefunctions are designed to mimic. The total
energies of ¥% and ¥& will probably be lower than the corresponding R-
HF states, because they include some extra correlation energy in addi-

tion to the localization energy, but the appropriate test is how well the
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state splittings match. It is anticipated that ¥% will be superior to ¥§ in
all comparisons, though it may fail to reproduce the R-HF results for the
AE[Cug (3d,) — Cug (1s)] energy difference. Testing the ability of ¥4 to
match R-HF for transitions between various core to valence excitations

(e.g. oxygen P, ., (pi°«3s)) would also be useful.

In conclusion, we have presented a generalizable CI procedure, which
should be capable of mimicking a resonating, symmetry-broken SCF for
localized hole states of symmetric molecules. The number of
configurations generated is small, e.g. less than 100 for the hole states of
Cug. The molecular symmetry can be retained throughout the calcula-
tions, which saves time in both T;he SCF and CI, and leads to states of pure
symmetry. The generalization to handle correlated wavefunctions such
as GVB is trivial, consisting of simply multiplying the CI list times the

various GVB occupations of the natural orbitals.
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Proposition IV

ABSTRACT

A pseudo Generalized Resonating Valence Bond (p-GRVB)
method is proposed, in which the localized character which
appears naturally in a true GRVB wavefunction is artificially
induced by a modified self-consistent field (SCF) procedure
which optimizes only one subwavefunction. The "localization
force’ is simulated by optimizing an SCF wavefunction with
the constraint that it have a specified overlap with its mirror
image wavefunction, and multiple SCF runs allow the p-GRVB
energy to be minimized as a function of this overlap. Since
the p-GRVB energy is an upper bound on the true GRVB
energy, the p-GRVB method would be useful for systems too
large to handle with GRVB. The necessary SCF equations are
derived by expanding the overlap term through second order
in the orbital mixing coefficient 4. We discuss the implica-
tions of using a similar expansion to find the analytical

derivatives necessary to optimize a true GRVB wavefunction.
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I. INTRODUCTION

In the Generalized Resonating Valence Bond (GRVB) method, a

wavefunction of the form
Yror = c4¥y + cp¥p (1)

is optimized, where ¥4 and ¥z are subwavefunctions which may overlap.
GRVB has been demonstrated to yield quantitative results from this con-
ceptually simple wavefunction,! but due to the overlap of orbitals in ¥4
with orbitals in ¥z, the orbital optimization requires far more computer
time than a standard SCF calculation.

For many resonating systems, an adequate description is obtained
using the resonating Generalized Valence. Bond (R-GVB) wavefunction,?
which has the form in (1) but with the orbitals in ¥4 and ¥z optimized in
separate SCF calculations, without resonance. R-GVB has the advantage
of being much less expensive than GRVB, and works well in cases where
the orbitals in ¥4 and ¥ have a natural tendency to localize. This occurs
for transition states of reactions which are forbidden by orbital sym-
metry, such as Hp+ Dz »2HD, in systems whose electronic structure is
isomorphic with a forbidden reaction, such as the 7 space of cyclobuta-
diene, and in localized core hole states, such as 1s ionized Ng. In each of
these cases, the orbitals in one subwavefunction localized strongly at the
GVB level, and the orbitals change only slightly if they are reoptimized
using GRVB. For example, in cyclobutadiene, optimizing a GVB wavefunc-

tion leads to two localized m bonds,
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Mixing this with the other localized form using R-GVB,

yR-GVB — I I + 2)

leads to a resonance energy of 20.7 kcal, while the GRVB energy is only 1
kcal lower than R-GVB and the change in orbital shapes is imperceptible.

R-GVB is inadequate, however, if the orbitals tend to delocalize to
include the resonance at the SCF level, so that ¥4, and ¥p are very simi-
lar. In these cases, mixing ¥, and ¥p does not gain very much energy.
This occurs in the transition states of "allowed" reactions, such as
HF +D->H+FD, or in states which are isomorphic with an allowed reac-
tion, such as the 7 space of allyl radical or benzene. For example, at the
symmetric saddle point in the HF -f-D exchange reaction,
<V §B¥EVP> =0.95, with a resonance energy of only 3.0 kcal, while
<V FRVE |y ERVES =0 45, and the GRVB energy is 19 kcal below R-GVB. For
the Ho+ D -» H + HD transition state the GVB wavefunction will not localize
at all, (<¥F8|¥§VP> = 1), so that R-GVB is inapplicable.

R-GVB can also be difficult to apply if ¥4 and ¥ are not isocenergetic,
since sometimes the higher energy subwavefunction cannot be "trapped”,
and instead converges to the lower energy result. This occurs for the H-
H-F transition state of the H+HF->H;+F reaction, where the GVB
wavefunction with a bond between the two hydrogens can be optimized,
but the H-F bonded form cannot.

For these cases where R-GVB will not suffice, the GRVB method is
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appropriate, but many systems are too large for GRVB (reatment. As an
alternative, we have been interested in developing an approximate GRVB
method with the computational dependence of a standard SCF. In such an
approach, GRVB would be simulated by artificially inducing in each
subwavefunction the orbital localization which is characteristic of a true
GRVB wavefunction, and then mixing these subwavefunctions (using R-
GVB) to obtain a total energy. This pseudo GRVB (p-GRVB) wavefunction
would be useful as a starting guess for GRVB in cases that will not localize
at the GVB level. In addition, for molecules that are too large for GRVB,
the p-GRVB method could be used instead to yield an upper bound to the
true GRVB energy. That the p-GRVB energy is an upper bound to GRVB is
easy to show, as follows. The form of the p-GRVB wavefunction is as in (1),
where ¥, and ¥ are each normalized, antisymmetric wavefunctions, but
the orbitals shapes are found by some special (as yet unspecified) SCF
scheme designed to give localized orbitals. The energy of ¥ror evaluated
with these special subwavefunctions is E(p-GRVB), and E(GRVB) is the
energy cbtained if ¥pyp is variationally optimized. Since the p-GEVB orbi-
tal shaves can at best be exactly the same as the GRVB orbitals, we can

state that E(p-GRVB) is an upper bound to E(GRVB),
F(p—GRVB) = E(GRVB) . (3)

We have tried various approaches to obtain reasonable p-GRVB
subwavefunctions, but have been unsuccessful in obtaining an energy
even as low as R-GVB. In one approach, appropriate for transition states,

the wavefunctions from the isolated reactant fragments were suitably
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orthogonalized at the transition state geometry and used as ¥4, while ¥z
was obtained analogously from product fragments. This approach did
give localized structures, but E(p-GRVB) was far above E(R-GVB), since
the juxtaposed subwavefunctions were not allowed to relax in response to
each other. This, and other tests, led to the (not surprising) conclusion
that the energy is very semnsitive to minor shape readjustments. Thus,
any successful p-GRVB method will have to impose the localized charac-

ter on ¥4 and ¥ in a gentle fashion, i.e. the energy of the localized

wavefunctions must not be disregarded.

II. THE PROPOSED METHOD

We wish to find localized wavefunctions ¥, and ¥z which are as dis-
tinct as possible, so that mixing them maximizes the amount of
configuration space contained in the total wavefunction. Since a good
indicator of the extent ¥4 and V¥p sample different regions of

configuration space is the wavefunction overlap,
Spp = <Yyl ¥p> (4)

a reasonable p-GRVB subwavefunction might result from optimizing ¥4
while minimizing Ssp. Since we do not know in advance how small Sz
should be, a more general approach would be to optimize ¥, with the
constraint that S,z be fixed at some value. By optimizing ¥, and ¥p in
this way for a few values of Syp, the p-GRVB energy can be minimized as a

parametric function of Syp. This method has the feature that the orbi-
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tals are localized in the least brutal way possible. In the following, we
derive the equations necessary to optimize such a wavefunction for the
case in which ¥4 and ¥z are related by a symmetry operation, and show
that the computational dependence of p-GRVB is comparable to a stan-

dard SCF.

I1. DESCRIPTION OF THE METHOD

We wish to mimimize the functional
F=E s+ W(So—Ss5)? , (5)
where £ is the energy of ¥,,
Eg =<V, [HI¥s> , (6)

S is the value to which Syp will be constrained, and W is a fixed weight-
ing factor. The derivation will be valid for anyb multiconfigurational

wavefunction expressed as a linear combination of determinants,

¥, = ;ry‘l’ﬁ , (7)

in whicii the other resonance structure, ¥p, is related to ¥, by the sym-

metry operator R,
¥p = R(¥Yy) . (8)
Because of this symmetry property, we can express the orbitals in both

¥, and ¥p in terms of one orthonormal set of orbitals, {g;{, some of

which appear in some (or all) determinants in ¥4 (these are called occu-
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pied orbitals), and some of which do not appear in any determinants in

¥4 (virtual orbitals). Thus

i =9 , (9a)
»f =R(p;) . (9b)

Our approach will be to find the change in F resulting from an incremen-

tal rotation (8y,) of two orbitals in ¥4, ¢, and ¢;,

(6y) _ 1
= + 0 10a
1+51§1 (§0k KPL) ( )
Ou) o 1 -y 10b
#L 1+f5i?z (¢ kUPk) . ( )

2
Thus we seek OF and £ and from (5) we have

804 863
oF BEA 6SA3
= + 2W(S5—5 11
300 50, (So—Suz) . (11)
and
0%F _ 6°Ey GRS 355 |?
= + 2W(Sa—S - 2W|—== . 12
363 863 (S0~ Sap) 862 80 (12)
. 0°E, 3 _
The derivatives and are well known,” and are used in the
adkl adkl

standard optimizion of an MCSCF wavefunction. The derivatives 3 (5AB
Kl
%S,

365

and

are nonstandard, and we derive them here. We will restrict

our consideration to a single orbital rotation, dropping the &l subscript
from ¢, and will make no explicit distinction between occupied and virtual

orbitals, though clearly the derivatives are zero if both ¢, and ¢, are
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virtual orbitals. The capital roman subscripts / and J will always refer to
determinants, £ and ! will always refer to the orbitals being rotated, and
i, J, p, and g will be used as general orbital indices. The total number of
orbitals (occupied plus virtual) is N, and the number of electrons is n.
Often the orbitals will be notated simply be their index, so that for exam-
ple, <i]j>=<g;|g;>.

From (7) and (4) we have

Sup =1?7c1cJ5U , (13)
where
Skh = <¥i|¥g> (14)
so that
8S,p  NDET 85k
35 IZJC[CJ 55 (15a)
and
0°Sup _ NRET  0%Skp
67— [Z:/C[CJ 662 . (15b)

We will now restrict our discussion to only one pair of determinants (/,J),
and take ¥} and ¥4 to be simple high spin determinants (we will consider

the more general case later),
and

‘I’éZAE("'%'B'"%B"‘))Gﬁ"'ﬁg: (18b)
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so that there are n orbitals in each determinant, and (16) is intentionally
vague about exactly which of the N orbitals appear in ¥} and ¥£. Alterna-

tively, we could write

N
Y= Aiilgl((ﬁia)g (17a)
and
Af
¥4 = AL (Rp; ) (17b)

where 2e/ means 7 is summed only over occupieds in determinant I, and
we have made use of the symmetry relations in (8). Note that because of
(8), the n occupieds appearing in determinant ‘If‘ﬁ are the same as those
in ¥§ (so that "occupieds in determinant I" is unambiguous), except that
they have been reflected. Since we will be considering Si5, where I does
not necessarily equal J, we do not know whether the reflection of a cer-
tain orbital appearing in ¥} appears in \I/;é. We now apply the biorthogo-
nalization procedure? to the orbitals in (17a) and (17b) to yield a new set

of orbitals for ¥} and vy,

a_ & A
i =y e Us (18a)
Jel
and
B N B
v = L Rl U (18b)
jed
such that

<@ P> = Nibyy (19)
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where J;; is the kronicker-delta function ( not a rotation between orbitals
i and 7), and U4 and UZ are the unitary matrices which perform the
biorthogonalization. We can now rewrite ¥4 and ¥4 as

Vi=V=Alefd  phoa- - af (20a)
Vh=Vh=AlePed 2266 - B (20b)

where the p? and 7P orbitals are uniquely numbered from 1 ton. It is
important to note that U4, UZ, {A;}, and of course §@{}{ and {pP{ are
unique to this particular determinant pair (/,/), but to avoid clutter, no
1J index will be tagged on. Using the new orbital sets {243 and (2% 1, Sﬁ‘,’;

becomes simply the product of the diagonal overlaps,

Sih=xAe A, (21)
because all other terms generated by the antisymmetrizer vanish due to
the biorthogonality condition (19). Because the biorthogonalization
mixes up the orbitals in ¥} and ¥4, the orbital rotation &, affects every

orbital in the biorthogonalized sets §@{} and {»#}. From (10) and (18),

Ea{“‘s) and 7.p{3(6) can be expressed as

v 0 = T, Ul + 601 UA = 09, UL (R2a)
je
and
280 = ZJR(%.)U;{ + 6R(p, ) UE — 6R(pe ) UE | (22b)
je

renormalization term (we will pick it

1
where we have dropped the
PP +6%

up later), or more simply
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5 =980 — 28 = 6(p, UL — 0 US) (23a)
AP =3P —3F = §(Rlp,) UE - R(p ) UE) . (23b)

Rather than worrying explicitly about whether ¢; and ¢; appear in the

determinants, we simply define
Ui =0 if p; isnot in ¥4
UB 0 if R(y;) is not in A (24)

which results because the summation in (18) is only over orbitals that

appear in the determinant. We wish to expand S{{% through second

order in 9§,
SIS = SK + 6(0,S1E) + 6%(AxSE) + higher order terms ,  (25)

so that the desired derivatives may be found (equation (15)).

First Order Terms
Substituting the rotated orbitals into (21) yields
SiF® = f:.k:a{‘ +0pf ol + 80 f> (26)
and retaining only the terms through first order gives

15 13 n Stk AB
SAB( ) = SAB + 62—5\—_ A)u » (2?)

1 )

where we have defined

047 = —[<wfidef> + <tpfinf>] . (28)

L
0

Thus the first order correction term in (25) is
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Sl
B
£, Sk = z }i (A48 (29)
Si5 .
Note that z does not present a problem when A; =0, because this
i

term is actually computed by omitting A; from the product in (21).
Second Order Terms

Second order terms arise both from the diagonal overlap in (26), and
from the single transpositions generated by the antisymmetrizer. We
consider the diagonal overlap terms first. Extracting terms in 6° from

(268) yields

IJ
AgS (26\ = 2—}\;—<A¢z |A§0
+ 2[ [@z |A~Pz >+<A‘Pz |§0z ][@J 1A¢J>+<A¢J l‘ﬁ] ] (30)
t>] }‘1)‘
and introducing the notation
(MNP = <ol Mo f> (31)
simplifics (30) to
SIJ
225H(26) = ¥ 22 ()4 + 2 EPWE (32)

T T ‘L>J
The other second order terms arise by considering single transpositions

generated by the antisymmetrizer,

Skh=MAz - Ay — T <TLIT5 V8>, (33)
1>7
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<¥i !-rUTIfé> =
MAz - <pi+bplipfriol><pfr it pfrapfs (34)
Bearing in mind that <pj! fcpj >=0for 1#j, we obtain the following second

order terms from (33):

' Sik
SH(E9) = ~ % - WA (35)

Collecting the terms from (32) and (35) we obtain the full second order

correction,
AZS]J =

n Qlf
B3 + B Si5 iy ama)48 - P | (36)
L t>7

To actually evaluate A\S}; and A;Si5, we need to expand (A)4F and
(AA)A5 ( off diagonal (AA);}B terms are not needed) in terms of the original

orbilals {¢; {. Using (28), (23), and (10), we obtain

(028 = Lot 8085 + <tpfpf>
6 |

<p#| UEReg, - UBRe,> + <Ufg~ Ufor P> (37)

Z{(UéU@+UéU5)<qiR§l>—-(U;’iULJ UfUBY<q IR k>,
q

and from (31) and (23),

(A8)45 = 52 ——<0%{ | AP >

= <Ugo ~Ulier IR UL g - UBp> (38)
= USUB<LIR|L> + UAUB<k [Rik> — (UAUB+ UAUB)<L Rk >,
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where we have made use of*

<g;i |Rp;> =<i|R|j>=<j|R]i> .

The Denominator

1 .
——factor which appears for ever
1 5° PP y

occurrence of 90,55) or gpl(a). Let m equal the number of occurrences of

Until now, we have neglected the

either ¢f% or ¢/® in ¥ or R¥}. Thus m can range from O to 4, and for

m =0, SﬁJB is left unchanged by 8;;. We can express S} as

O T Y/ b3 2 34
SAB = (1+62)m lSAB+6(AlsAB)+d (AZSAB) (Sga)

(so that (25) is actually incorrect), or expanding the denominator

through second order in ¢

S = — L st + o(a,SHh) + 68D | (390)
1+mé

Differentiating yields

8545
55,y = Sk (40)
and
GZS]J
[ ang o -2mSih + 28,54 . (41)

Equations (40) and (41) thus give the derivatives ready to contract over

determinant pairs by (15) and plug into (11) and (12) to obtain %and

* This is true because the orbitals are real.
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8%F
96°

for this orbital rotation.

Computational Dependence

To decide whether this method is feasible, we need to know the com-

aS. GES)
putational dependence of evaluating agB and 661‘;3' Because each

determinant pair requires a unique biorthogonalization, the dependence

on NDET will be (NDET)?. Examination of (28) and (38) shows that for a

8Si%

aé

(note that we ignore any constant pre-multiplier) and since there are nN

2

given rotation kl the evaluation of requires work which scales as n

(number of occupieds times total number of orbitals), possible &kl rota-

tions which will lead to a change in Sygp* the total work involved in

obtaining 56 scales as
aS
work( ﬁf’) ~ NDET?Nn? . (42)
_ , ‘ 0°Syp _
Analogously, from inspection of (368) and (37), 552 appears to require

n +n3~n3 work per kl (assuming the <g |R|l> terms are precalculated)
for a total dependence of (NDET)*Nn* However, by precalculating the

terms

L : !
Xi =Y Us<g R/ I> (43a)
q

* Rctations between occupied orbitals with the same Hamiltonian may also be ex-
cluded, so that N1 is an upper bound.
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and
B_ 7B
x{4 = LUE<g|RIL> (43b)
q

which only depend on 7 and ! (Nn terms, n summation for each; total

work = n?%), we can write

(N =x4UE + UaxE — x4 UE - USxR . (43c)
625,43
so that the total dependence for 352 isreduced to
0%S,p 2 3
work 552 ~ (NDET)*Nn° . (44)
2
In a normal SCF, the evaluation of %%— and _at%Tb‘;— scales as
°E 4

work 52 ) & (NHAM )nt (45)

where NHAM is the number of Hamiltonians in the wavefunction (roughly
equal to NDET), so that the evaluation of the extra S,p derivatives could
add significant work to each iteration, but does not affect the overall scal-
ing depcndence on the number of basis functions or the number of elec-

trons.

General Case - both o and 8 spin in determinants.

For the case in which ¥} and ¥£ contain both a and @ spin orbitals,
two biorthogonalizations are performed, one for the a orbitals, and one

for the B orbitals. The summations in (29), (36), and (37) are performed
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twice, once for the n, « orbitals and once for the ng 8 orbitals. The
terms which will differ between a and g are }\i,(A){;-B, (AA)ZP, and any U4

or U matrix element, while S{§, and <i!R|j> will remain unchanged.

For example,

SIE=afOa - A@ANE) . AB (46)
a £
and
Ng SIJ n SIJ
I - AB AB AB AB
8,545 = ;7\1;(“) (AC)AB + zﬁw(A(ﬂ))a‘ , (47)

and so forth. The computational dependence on n, N and NDET is

unchanged.

CI Coefficient Optimization

Until now, we have only considered the change in F due to orbital mix-
ing. We must also consider the effect on F of varying the determinant
coefficients fc¢;{ in equation (7). In a general Cl expansion over deter-
minants as in (7), the coefficients which optimize the energy (for the

current set of orbitals) are found by

NDET
E = 3 cicpHy (48)
I.J
with the constraint
NDET
Y ciey =1, (49)
7

where
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Hyy = <‘I’,{ EH|‘I’,‘4!> (50a)

Sy = <¥[|¥i> =6y (50b)
(here &;; is the kronicker-delta). This yields the secular equation
HC = CE , (51)

where H is the matrix of Hy; elements (S does not appear due to the
orthonormality of the E*IQ{ ! determinants), Cis the matrix of solution vec-

tors, and E is the diagonal matrix of energies. If we instead differentiate

(5),

8E NDET
OF - 4 4 oW(Se-5Sus) 3, 2e1SK | (52)
ocy dcg 7

and apply the same constraint (49), we obtain the modified secular equa-
tion
GC =CF , (53)
where
G = Hyy + 2W(So=Sap)Skh . - (54)

which yields the solution (C), and the diagonal matrix of F values (F), for
our special energy expression in (5). For a special MCSCF wavefunction
such as GVB, we need to apply additional consiraints to retain pairwise

normalization of the GVB pairs, and we outline this in the next section.
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GVB Coefficient Optimization

3

The GVB wavefunction with g pairs® can be written as*

VEVB = Afcorel(g1a 9% + 91095 ) (92095 + Tob95)
tee (gqagpga. +gqb §aqzb); (55)

and we wish to optimize the GVB pair coeflicients (g;4,5: ) While main-

taining pairwise normalization
g +gk =1 (56)
for each GVB pair. By re-expressing ¥¢'% as
VB = gioVin + g Vi (87)
where
Vg = Aflcore [(g1a9fatg109h) - (98) - (GgaPiatIpvi) (582)
and
Yy = Alcore (g1a9fatgivl) - (08) - (9qaPlatIewvd) . (58b)

we can solve the two by two secular equation using the basis states ¥,
and ¥, , to yield improved vahies for g, and g;,. Repeatedly cycling
through the g GVB pairs gives a converged set of coefficients for all pairs.
To modify this approach for the special energy expression in (5), we

replace
Higip = <V | H [ ¥y > (59)

Here we are treating the case with two Natural Orbitals per GVB pair; the general-
ization to multiple Natural Orbitals per pair is trivial.
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with
Giap = <VA|H+2W(So—Sup)R|¥4>

= Hig, + 2W(So—Ss5)SiE" (60)
where Si%® is obtained by

Sﬁ%’w = 2 C[CJS,{:IQ . (61)

Ieia,Jeth

The meaning of /eia, Jetb is that the summation only allows those values

of I and J for which ¢;, appears in ¥4 and ¢, appears in ¥4.

IV. IMPLICATIONS FOR ANALYTICALLY-OPTIMIZED GRVB

We have shown that the change in <¥,4 |R(¥4)> resulting from an orbi-
tal rotation 6 can be found through second order in 6 with a computa-
tional dependence of (NDET)?*Nn3. If a similar approach could be used to
find the derivatives of <¥, H|R(¥4)>, a rigourous GRVB wavefunction
could be optimized analytically, leading to vast computational savings
over the current numerical optimization. Writing the Hamiltonian matrix

element between two determinants in the biorthogonalized orbitals gives

nSih 4 B
H%:Z—.‘@i!h'fﬁi>
T
Sk a4 1 BB Al L 4B
+2W<¢ifﬂj|;‘;‘2—wi Pi> T <PiY; ;Wj R (82)

where again we are treating the simple high-spin determinant case. Con-

sidering first order changes in &, the worst computational dependence
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lies in the terms arising from transposing orbital = or j with orbital g in
the two-electron sum over 1 and j, and this gives rise to

AHLE (worst) =

L
-y —— (A) <piof 1 lfo :pB> + three similar terms| , (63)
qigN }\ Ag J
which would have a total computational dependence of

(NDET)Z(Nn)(ns)=NDET2Nn4, assurning the two-electron integrals of

the type <@f® l I.pq B> are precalculated ( this can be accom-

plished with n® work if the integrals of the form <ij | ;_-l-—lpq > have been
12

precalculated at the beginning of the iteration at a cost of N*n). For
large N, the N*n integral transformation (once per iteration) would dom-
inate the scaling dependence. Thus an analytical GRVB program with
first-order convergence could be written, and should run much faster
than the current numerical version,! which has a computational depen-
dence of ~NDET?N°n? For comparison, this approach would scale
roughly the same as (or faster than) the modern MCSCF p: ocedures®
which also require an integral transformation each iteraticn, though the
number ol iteralions required would be rmuch greater for the first-order
GRVB. The convergence could be improved beyond first order by accu-
mulating approximatle diagonal second derivatives for each orbital rota-
tion. This can be accomplished knowing the gradient of a given orbital

rotation and its value from the previous iteration, along with the com-

ponent of the solution vector along this rotation.
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Proposition V

ABSTRACT

It is shown that for separated-pair wavefunctions, such
as Hartree Fock or generalized valence bond (GVB), the total
energy of a homonuclear diatomic molecule can be
expressed as a sum of contributions from each occupied
orbital, thus allowing the unique partitioning of the bond
energy into ¢ and 7 components. The key to such an analysis
is correctly dividing the nuclear repulsion into orbital contri-
butions. Unlike analyses based on orbital energies, the
method presented here yields a meaningful dependence of
each orbital contribution on the internuclear distance, /.
Thus this method can be used to isolate the various bonding,
antibonding and nonbonding interactions which act together
to yield observed bond strengths, leading to a deeper under-

standing of molecular bonding.
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Introduction

A tantalizing unsolved problem is the separation of the bond energy of
a molecule such as Oy, Nj, or Fp into its ¢ and m compenents. One reason
this would be useful is that the bonding in these simple molecules is
unperturbed by steric repulsions or ring strain, so that the N, o bond, for
example, would be close to the "intrinsic bond energy” for an N-N sigma
bond. The concept of an intrinsic bond strength implies that the cohesive
energy of a molecule is the sum of the intrinsic bond energies for all the
bonds in the molecule, corrected for any steric repulsions, lone pair
repulsions, ring strain, etc., peculiar to the molecule. That such a con-
cept is valid is supported by the fact that Benson group additivity calcu-

1 can predict heats of formation to kcal accuracy for a large

lations
number of molecules using only a small number of group values. Intrin-
sic bond strengths, as opposed to total bond strengths, would be
expected to follow very simple trends. For example, the observed bond

strengths of the dihalogens are®

Fo 36.9 kceal

Clp 57.2 kcal

Br, 45.4 kcal

Is 35.6 kcal .
There is a clear trend towards increasing bond strength as we move up
the column from I to Cl,, as expected from contragradience arguments,3

but F, does not fit this trend. This is probably due to the increased mag-

nitude of the pm interactions in the n=2 row compared to the n=3 rows.
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If this pm repulsion could be separated out, the intrinsic bond strengths
obtained would be expected to increase monotonically from Iz to Fo. In
fact, the F-F intrinsic o bond may be the strongest homonuclear ¢ bond
in the periodic table, even though the observed F; bond is one of the
weakest.

While quantum chemical methods can be used to compute highly accu-
rate total bond energies,4 the division into separate interactions has not
been performed. Using bond energies (experimental or calculated) from
various molecules can yield useful transferrable bond energies, but Lthese
are always masked by some extra interactions. For example, the
strength of a C-C 7 bond can be roughly calculated as the rotational bar-
rier height in ethylene (85 kcal®), but this also contains a change in the
steric interactions between the C-H bonds. In the following we present an
approach for partitioning the total energy of a Hartree Fock or general-
ized valence bond (GVB) description of a diatomic molecule into ccntribu-
tions from each occupied orbital. While these wavefunctions do not yield
highly accurate bond energies, the ability to dismantle the bond into its
various components should lead to valuable insight, and take us a step

closer to the direct evaluation of intrinsic bond eneries.
Description of the Method

We wish to express the total energy of a wavefunction as a sum over
orbital contributions. Consider a closed shell Hartree Fock wavefunction

with n doubly-occupied spatial orbitals,
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VAP = p[oR0% - 2] . (1)

Given the full Hamiltonian for an N electron system

FaS
H =

L B3

A N 1
hip) + ZT +0Q, (2)
B9 P9

where h(p) contains the electron-nuclear attraction and kinetic energy

terms for electron p, 1—is the coulomb repulsion between electrons p
rq

and g, and (1 is the nuclear repulsion energy, we can write the energy of

(1) as

A
EHF = <VHF | | $HF S (3)
= ZZh.n + 22‘].‘] _KJ + Q ,
i i.J

where h;; is the expectation value of ¢ for the one-electron operator A

A A
hiz = <@ilh|@i> = <p; [ X h(p) 9> (4)
)
and

Ji = <pi0; | Sl @ip;> (5a)

Ti2

1 _

Kij = <9, | T—! Qi P> . (5b)

12

Defining the Fock operator HEF as

A

A A A
HF
I =B+ DTy, - K,) (6)

where J; and K; are defined by
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A
<pildglei> = Jy (7a)

<¢1’K¢j|§0i>=Ki' ) (7b)

we can write (3) as

EfF = Y(h; +e4) + 0 (8)

k3
where
SHF
£y = <@g |[H" (9> (9

Equation (8) represents the total energy as the desired sum, ezcept for
the nuclear repulsion (). We now propose a method for pariitioning ( into.
orbital contributions for a diatomic moleulule AB. For this case, we have
simply

Z4Zp

Q= Ron

: (10)
where Z, and Zg are the nuclear charges, and we seek the set of values
{fi} such that

EHE =SB, = S\ (hy + e + £,Q) (11)
3 7

where

Yfi=1. (12)

Consider an electron pair localized in ¢, on atom A, (e.g. a 1s pair) which
does not participate in the bonding process. If f is chosen correctly, Z;

for this pair will not depend on F4p5. Taking F4p to be very large, so that
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there is no significant overlap between the orbitals on A with those on B,

the two electron integrals between ¢, on center A and g; on center B

simplify to
2
2ka - I(kj R 2ka R -é- . (14)
Thus, £, becomes
_ =24 , =2B 1 2
B = 2<y; | — + - >V o> + :;(Zka Kii) (15)

Zp . fuZuZp
7t T %

Zp
R

Defining E;° as the part of E, which is independent of R (at long R), we

Z
term arises from summing (14) over the 25 §0s on B.

where the 5

have
~Zp Zp , JklaZp
= E= f !
Ek E,c + 2<qﬂk | R I(,O]C> + R + Jz: (168)
w_ 25 , JkZaZlp
= - + .
Ex 7 5 (16b)
Thus, the value for f, which makes £} independent of R is
A
B -1 (18)

e = ZyZp  Zy

We can understand this result as follows. Ignoring bonding effects, two
atoms at large distance have no net attraction or repulsion because the

ZB AZB )

Vg

nuclear repulsion ( ) and the electron-electron repulsion (
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are exactly balanced by the attraction of the electrons on A(B) to the

-Z47
nuclei on B(4) (2 -—-—;—?-—B—-). In equation (18a), the
-Z -27
<y | RB | gp> = ZRB term arises from the attraction of the electron

+ZB
R

repulsion of this pair with each pair on B. (The other half of this repulsion

term is half of the

pair in ¢, for the nuclei on center B, while the

is contained in the E; terms for each of the orbitals on B.) Thus, an addi-
+ZB
R

the nuclear repulsion energy. To verify that the sum of these contribu-

tional is required to make these balance, and we take that from

tions over all occupied orbitals adds up to the total nuclear repulsion

energy, we note that the number of doubly occupied orbitals on center A

o

1S

Z
4_and on Bis —zg;(assuming neutral atoms), so that (12) becomes

VA

1

(1
\

A

So, assuming each orbital can be assigned to either atom A or B, the con-
tributions to (0 add up to the total Q correctly. However, there is a
dilemma if ¢, has character on both A and B (as a bond would). A popula-
tion analysis could be used to modify f, according to how much of ¢, is

on A and how much is on B, so that

Sk =PA,=(§1A—) +PB,‘(i) , (R0)
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where p,, and pp, are the populations of ¢; on A and B, respectively, and

Py tpPp =1, , (R1)
but it is not obvious which (if any) method of population analysis would be
appropriate, and there are many to choose from.® Rather than deal with
this issue, we instead restrict ourselves to homonuclear diatomic
molecules, where

Zy=Z2g =2, (22)
and it is easily verified from equation (20) that f; is independent of p,,
and pg,,

e =pa(3) +p5(5)

1

(P4, + PB,,)?
1
4 23
: (29)

We now consider more complex wavefunctions, such as open shell
Hartree-Fock (as would be required for a description of ground state Os)
or GVB. We restrict ourselves to separated-pair wavefunctions’ whose

energy can be written as®

E =Ygy + Lew (R4)

where g; is an occupation parameter (g; =1 for a doubly-cccupied orbi-

tal), and
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&y = <g; | Fy o> (25)
where F; is the generalized Fock operator,

F;, =g,h +2(Q1]J +b; Ky (=26)

and the a;; and b;; coeflicients correctly describe the coupling between
orbitals. For example, g; =1, a; =2, and &; =-1, if ¢; and g; are
doubly-occupied orbitals, as in (8). The reader should see reference 13
for a more detailed discussion of these wavefunctions; (note that g; here
corresponds to f; in that paper). For such wavefunctions, it is still easy
to partition the energy by orbital, and it can be shown that the appropri-

ate value of f for this case is
fro = —, 27
b3 7 (R7)

that is, fi is simply weighted by the occupation of ;. We demonstrate
here that this is true for lhe case of a Hartree-Fock wavefunction with
high-spin open shells (singly-occupied orbitals). For a singly-occupied

orbital ¢, on center A (g, =1%) we have

Eopen = gkh'kk + €kt + %‘Q

= by + 15, (RJy; — Kiey) + 1o (Jij — Kijy + %% , (28)
) ;

which at long & (assuming no bonding) reduces to

= E7 + <pi|

Sl BT TR otk (@)

closed
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= 5= BTy eyl

= .Elcm ; (29)

where we have made use of the fact that the total number of electrons on
center B is Zp, and we are only distinguishing Z, and Zz to make clear
which interactions are being discussed. As before, we see that EFFe™ does
not depend on K since f, has been chosen properly. We can thus make

the following postulate:

For a neutral, homonuclear diatomic molecule with charge Z on each
nucleus, the contmbution to the fotal energy of a separated- pair
wavefunction (such as Hartree- Fock or GVB) from o given occupied

orbital ¢ s
_ VA
By = Gehye + ep + gy = (30)

and the behavior of Ej as a function of R will correctly reflect the bond-
ing, antibonding, or nonbonding character of ¢, .

We note at this point that the most general separated pair wavefunc-
tion” is the highest level wavefunction for which a decomposition such as
(30) is possible, since in more complicated wavefunctions there is no
longer a one-to-one correspondence between a pair of electrons and an
orbital ( or set of orbitals for a GVB pair). A separated-pair wavefunction
is written as an antisymmetrized product of normalized two-electron

subwavefunctions (or one-electron subwavefunctions, for open shell orbi-
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tals). An example of this type of wavefunction is

¥ = A[§012‘P22 v ‘Prztcore(clafplza'*' C1b¢lzb)(02a¢22a +C26¢§b) (31)
A mPmer Pl (31)
where ¢, through ¢pcre are doubly-occupied Hartree-Fock orbitals, ¢4

and ¢y, make up the first GVB pair, with
cf +ck =1, (32)

and ¢,, through ¢, are high-spin orbitals, with all orbitals mutually

orthogonal.
Applications of the Method

One interesting study would be the decomposition of the dihalide bond
energies into 0 and m components, as mentioned in the Introduction. This
would be accomplished by summing the Ej values from the four m orbi-
tals to obtain the 7 contribution, and summing £, over the ¢ space to
obtain the ¢ contribution, and subtracting frem each of these the
corresponding sums for the two independent halide atoms. While
Hartree-Fock predicts a negative bond energy for Fz,g correlating the ¢
bond pair with two natural orbitals (cg 092+ c202) in a GVB(1/2) wavefunc-
tion!® leads to a more reasonable value of 12.5 kcal. Increasing the
correlation to GVB(1/5) (5 natural orbitals*) should lead to a good, if not
quantitative, description of the total bond, suitable for this study. The

trend in intrinsic bond energies calculated in this manner should be

* Note that in a GVB(1/5) wavefunction, £, would contain some contributiors
from orbitals of 7 symmetry which are used in correlating the 0 bond.
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monotonic, leading to a very strong Fz ¢ bond. Correspondingly, the anti-
bonding nature of the m space should show a marked increase for Fy as
compared to Cl,, Bry, and I,.

Another quantity that could be extracted using this approach is the
ideal bond length for an N-N o bond or an N-N 7 bond. It is well known
that pm bonds tend to be shorter than po bonds of the same principle
quantum number and this method could show for the first time the K
dependence of these separate bonding interactions. It would be interest-
ing to know, for example, how much bonding energy is lost due to the
compromise in bond length.

Many other applications are possible, and we mention just one more.
The exceptionally weak bond in the Li, molecule (Dg = 24.1 kcalz) is
thought to be due to the Pauli repulsion of the two ls core orbitals. The
approach presented here could be used to determine how short and
strong the Li-Li bond would be if this repulsion were eliminated. A

GVB(1/5) wavefunction would be an appropriate level for this study.
Conclusions

Chemists have for years used orbital energies (g;;) as a way of analyz-
ing the energy properties of the orbitals in a wavefunction.!! Since the
negative orbital energy corresponds to the ionization potential in the

12 such an analysis has physical meaning.

frozen-orbital approximation,
However, the orbital energies do not sum to the total electronic energy

and do not contain any nuclear repulsion energy, and as a result, some
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models have led to erroneous predictions. 13 Similarly, for analyzing the
dependence of bonding interactions in a diatomic molecule, orbital ener-
gies are inadequate. The E; quantities we define here do sum to the total
energy, and should have meaningful behavior as a function of &, though
they have no correspondence to the ionization potential. The £
approach should lead to valuable insight into the components of bonding
interactions which lead to observed bond strengths and bond strength

trends.
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