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ABSTRACT
How do proteins fold? This thesis addresses this simple yet important
question by developing a first principles theoretical framework that accurately
describes the experimentally observed protein folding rate data. The success of
the new theory suggests that single domain proteins fold according two a two-
state mechanism consisting of
(1) a random, diffusive search for the native topology, followed by
(i1) non-random, local conformation changes within the native
topology to find the unique native state.
In chapter 1, a popular analogy between protein folding and the game of golf is
used to qualitatively illustrate the most important aspects of the new theory. In
chapter 2, mean-field computational methods are developed that allow the time
involved in the rate limiting diffusive search for the native state to be calculated.
Chapters 3 and 4 remove the mean-field restriction from the methods of chapter 2,
allowing the folding rate for an arbitrary two-state folding protein to be
calculated. Chapter 5 then explores how real proteins deviate from this ideal
model by examining the roles that non-random mechanisms such as helix,
hydrophobic core, and B-turn formation play in the early folding process. Finally,
chapter 6 develbps an empirical model that also capably predicts protein folding

rates, adding further support to the proposed folding mechanism.
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CHAPTER 1

PROTEINS: GREAT SHORT GAME, NO DRIVE



In 1967, an MIT professor named Cyrus Levinthal used a simple, back of the
envelope calculation to demonstrate that an average protein has far too many torsion
states to be sampled in a biologically relevant period of time [1]. For nearly 25 years
following this simple calculation, it was widely believed that Levinthal’s Paradox implied
that proteins must follow a directed pathway [2] in order to fold quickly, and that the
intermediates along this pathway should be experimentally observable. More recently,
experimental and theoretical work has led to a “new view” [3] or energy landscape
picture of protein folding that removes the restriction that protein folding must proceed
along a single reaction.

Early in my graduate career, this shift in understanding was detailed by Martin
Karplus in a review entitled: “The Levinthal Paradox: Yesterday and Today” [4]. The

abstract of this review begins as follows:

A change in the perception of the protein folding problem has taken place recently. The
nature of the change is outlined and the reasons for it are presented. An essential element
is the recognition that a bias toward the native state over much of the effective energy
surface may govern the folding process.

In the body of the review, Karplus explains the implications of the emerging new view:

This means that the difference in energy and free energy between the denatured and
native state is reflected in some way not only in the neighborhood of the native state
(‘golf course’ surface) but over a significant portion of the surface sampled during the
folding process.

He concludes the review by outlining a challenge for future research:

We are much more optimistic about being able to solve the folding problem because the
Levinthal paradox is no longer a concern. However, we are now faced with the issue of
how the energy bias toward the native state is made to extend over a sufficient portion of

configuration space to make folding possible on the experimental timescale.



Karplus’ comments on the new view’s resolution of the Levinthal Paradox can be
further understood using the familiar “drunken golfer” analogy. Obviously, a drunken
golfer spraying golf balls in random directions has almost no chance of successfully
getting the ball into the hole. The pathway model suggests that in order to succeed, the
golfer must wait and sober up, and then go out and “direct” the ball into the hole. In
contrast, the new view reasons that the drunken golfer can in fact succeed at golf, as long
as he or she finds a much less challenging golf course. Given a funnel-shaped course
with the hole at the funnel’s bottom, any number of poor shots by our beleaguered golfer
will be successful.

In terms of this analogy, this thesis demonstrates that there is another type of golf
course that would allow the drunken golfer to succeed. A primarily flat golf course with
appreciably sized, funnel-shaped putting greens, will also allow the drunken golfer to
succeed and make it back to the watering hole by nightfall. The course with the funnel-
shaped greens may require a few more strokes than the new view course, but even a
drunkard’s ball will eventually land on the green and slide into the hole.

So, we have a newer view for protein folding that seems plausible, at least in the

context of the golf analogy. Now we must ask the all important “is this a testable theory”

question;

Is there an experimental observable that will allow us to determine if the newly proposed

theory is better than the prevailing theory?

We will return to our golf analogy to find out why the answer to this critical
question is yes. Both theories suggest that the drunken golfer can succeed in a finite

amount of time. However, the parameters that define how long it will take to succeed in



each model are very different. According to the new view, the time required to sink the
ball is related to the average slope of the course’s funnel shaped walls, and the number of
sticks, twigs and traps that can hinder the ball’s progress toward the hole. In the model
proposed by this thesis, the time required to sink the ball is related to the ratio of the size
of the green to the size of the golf course, since the rate-limiting step is the search for the
green.

Thus, the golf analogy, while simple, clearly shows that the key to determining
which folding theory best describes the folding process lies in the analysis of protein
folding rate data. If the newer view is correct, the rate that proteins fold will be related to
the ratio between the number of states that can quickly descend to the native state and the
number of total states that are searched during the folding process. Thus, testing the
applicability of the newer view does not require an understanding of the energy of each
and every conformation state; it simply requires that the native state is the energy and
free energy minimum.

The fact that we do not need to estimate the energy of each state makes this model
very simple (satisfying Occam’s Razor [5]), and most importantly, festable. The chapters
in this thesis are devoted to developing the necessary theoretical and computational
framework required to validate the new folding theory. The analysis of the folding
kinetic data herein representé very strong evidence that the rate-limiting step in protein

folding is predominantly a diffusive search for the native topology.
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CHAPTER 2

THE TOPOMER SAMPLING MODEL OF PROTEIN FOLDING



ABSTRACT

Clearly a protein cannot sample all of its conformations (e.g., ~3'% = 10* for a 100
residue protein) on an in vivo folding timescale (<1 second). To investigate how the
conformational dynamics of a protein can accommodate sub-second folding time scales,
we introduce the concept of the native topomer, which is the set of all structures similar
to the native structure [obtainable from the native structure through local backbone
coordinate transformations that do not disrupt the covalent bonding of the peptide
backbone]. We have developed a compufational procedure for estimating the number of
distinct topomers required to span all conformations (compact and semi-compact) for a
polypeptide of a given length. For 100 residues, we find ~3x10’ distinct topomers.
Based on the distance calculated between different topomers, we estimate that a 100-
residue polypeptide diffusively samples one topomer every ~3 nanoseconds. Hence, a
100-residue protein can find its native topomer by random sampling in just ~100
milliseconds. These results suggest that sub-second folding of modest sized, single

domain proteins can be accomplished by a two-stage process of:

e Topomer diffusion: random, diffusive sampling of the 3x10’ distinct topomers to find

the native topomer (~0.1 sec) followed by

e Intra-topomer ordering: non-random, local conformational rearrangements within the

native topomer to settle into the precise native state.



INTRODUCTION

The question, “How do proteins fold?” [1] has puzzled researchers for decades.
Based on a very simple calculation, Levinthal [2] estimated that an average sized protein
would require longer than the age of the universe to sample every state (for example, if
there are three possible conformations for each residue [3], a 100-residue protein would
have ~3'% = 10* distinct backbone conformations, which would require ~10% years to
sample every state). Since proteins of this length can fold on a millisecond timescale,
they clearly sample only an infinitesimal fraction of their possible conformations. It was
originally assumed that proteins overcome this Levinthal Paradox by following a directed
folding pathway [4] that drastically reduces the number of structures that must be
sampled. Currently, however, it is generally acknowledged that proteins need not follow
a single pathway to fold on a millisecond timescale. Just as a water droplet can follow
many different trajectories while descending from the top of a ceramic funnel, a folding
energy landscape shaped like a funnel [5] can have numerous folding pathways leading to
a properly folded state at the base of the funnel. This suggests that proteins fold along an
ensemble of pathways with the folding time scale determined by the ruggedness (kinetic
barriers) and slope of the folding energy landscape (see [6] for an excellent review of the

“new view” of protein folding [7, 8]).

In considering the nature of the dynamics of an ensemble of folding protein
conformations, we find it useful to introduce the concept of a topomer. A topomer is the
set of structures that are obtainable from a specific structure through local backbone
coordinate transformations that do not disrupt the covalent bonding of the peptide

backbone. Thus, the native topomer is the set of near-native structures for a protein. In
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this paper, we present the GP computational procedure to estimate the number of disjoint
topomers required to span all possible compact and semi-compact conformations for an
N-residue polypeptide. For 100 residues, we find ~3x10’ disjoint topomers. This
procedure also leads to an estimate of the distance between neighboring topomers. By
combining this distance with an experimental determined protein intra-chain diffusion
constant, we estimate that a 100-residue polypeptide undergoing random, diffusive
motion samples one topomer every ~3 nanoseconds. This suggests that a 100-residue
protein can find its native topomer (the topomer containing the native conformation) by
random sampling in ~100 milliseconds. This is comparable to the experimentally
observed timescale required for a denatured protein domain to reestablish its native
structure. These results suggest that for a 100-residue protein (an average sized protein
domain), the folding from a denatured form can proceed in a two stage folding process

consisting of:

e Topomer diffusion: random, diffusive sampling to find the native topomer, followed

by

e Intra-topomer ordering: non-random, local conformational changes within the

native topomer to find the unique native state.

Our results suggest that the topomer diffusion step requires ~100ms for a 100-residue
protein. We expect that the time required for intra-topomer ordering may be more rapid
than the topomer diffusion stage, leading to a cooperative, two-state folding mechanism
[9, 10], or comparable to the topomer diffusion stage, leading to multi-state folding

kinetics.
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METHODS

We want to estimate the number of disjoint topomers required to span all possible
compact and semi-compact conformations for a polypeptide of length N. To do this we
use the Generic Protein Direct Monte Carlo procedure (GP) described below to generate
large ensembles of self-avoiding protein conformations. We compare each conformation
to a test set of ~20 dissimilar native protein structures of length N and determine if it is
topomeric to any of the test proteins. This process is continued until we have generated
at least one topomeric match to each and every bne of the ~20 test proteins. The number
of conformations generated at this point is a measure of the total number of disjoint

topomers for an N-residue polypeptide.

Definition of a topomer. We define two protein conformations to be topomeric if they
have the same backbone topology [11], that is, if one conformation is obtainable from the

other through local backbone coordinate transformations that:
* do not require cooperative movements between non-local residues and

e do not disrupt the overall compactness of the structure or covalent bonding of the

peptide backbone.

We define a topomer as the set of all conformations topomeric to a particular
conformation. Thus, a topomer is a bundle of conformations sharing the same backbone
topology. The native topomer for a protein consists of all conformations topomeric to the
native conformation. Figure 2.1 shows an example of two topomeric structures. We

present below a simple algorithm to test whether two conformations are topomeric.
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Figure 2.1 Example of two topomeric protein structures, one shown in purple, the other
in green. Any structure lying within the larger blue tube would be considered topomeric

to each of these structures as well.
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The Native Protein Test Sets. The native test proteins were compiled from the CATH
protein domain database (http://www.biochem.ucl.ac.uk/bsm/cath) [12]. In order to have
at least 20 test structures for each protein length N, we included longer structures
truncated at the carboxyl terminus. For example, our test set for N = 45 consists of
residues 1-45 from available protein structures with lengths of 45-49. In instances where
the coordinate file contained more than one set of coordinates for a given structure, we
used the first set. The 22 proteins in the test set for N = 100 are listed here by their
Brookhaven Databank or CATH domain classification name: laaj, 1ab2, lacx, 1bet,
lcmbA, letc, 1fd2, 1fkb, 1fus, lhks, lhrc, 1ltsD, lonc, lpal, 1put, 1thx, 1tlk, Iycc,
2atcB, 2cdv, 2imn, and 2pna. The complete list for each N is available at

http://www.wag.caltech.edu/home/derek/gp.

Generic Protein (GP) Direct Monte Carlo Method. The GP direct Monte Carlo
method employs the CCBB Direct Monte Carlo [13] procedure in conjunction with a

protein representation where:

e six (¢,y) backbone torsion pair choices [14] are allowed for each residue (the torsion
about the peptide bond is fixed at 180°, and all bonds and angles have fixed standard

values [15]), and

e a simple 12-6 Lennard-Jones potential is used to account for both the excluded

volume and the cohesion of each residue (identical for all amino acids).

This representation is shown in Figure 2.2.
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Figure 2.2 The generic protein representation.
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A GP conformation is constructed by adding residues one by one (alternating
right and left) to a single residue-starting fragment located at the center of the protein

sequence. During buildup, the probability of selecting one of the six (0,y) candidates is

given by

exXp _E‘VkT
P, =—£—l ()

TS (&
Sexl £/,

i=1

The addition energy, E;, of a single residue is given by the summation of its pair-wise
interaction energies with each residue in the polypeptide fragment. For all amino acids,

the energy of a residue pair is

12 6

ER=5| X | -of 21| @

Ro Ro
where Rg = 5.51&, Ey = 0.15 kcal/mol, and R is the distance between the o-carbon of each
residue. Here i and j include all pairs within a cutoff of 10A but excluding nearest and
next-nearest neighbors in the sequence. Energetically favorable addition steps are
replicated by a factor m = int[(zi/<zi>)/(zi.1/<zi.1>)], where z; = exp(-Ey/kT) and <z;>
denotes the average value of z at residue i over all generated chains, according to the

CCBB [13] procedure.

The parameter values Ry = 5.5A and Eo = 0.15 kcal/mol were selected because
they yield an ensemble of generic folds with about the same distribution for the radius of
gyration found in the protein databank. For the GP ensemble of 100-residue

conformations, half have a radius of gyration between 12A and 154 (Figure 2.3), the
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observed range for the radius of gyration for 100-residue globular proteins [16]. The GP
ensemble is 10% more compact than IZA, while 40% of the structures are less compact
than 15A. Thus, the GP procedure rapidly generates a diverse ensemble of compact and
semi-compact protein chains with realistic peptide backbone geometries [>10°
conformations for a 50 residue protein are generated in one day on a single processor
Silicon Graphics Inc. (SGI) R10000 workstation]. Since no information about sequence
identity is included in the GP energy expression, the GP ensemble is a generic, sequence

independent set of self-avoiding polypeptide conformations.
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Figure 2.3  Radius of gyration histogram for ten thousand 100-residue structures
generated by the GP method. Compact globular protein structures 100 residues in length
typically have a radius of gyration between 12A and 15A [16]. One half of the GP

structures are within this range, with only 10% of the GP structures more compact.



Number of Structures

2000

1500

1000

500

19

9.0

120 150 180 210 24.0
Radius of Gyration in Angstroms

27.0




20
Determining the number of distinct topologies for an N-residue polypeptide. We
determined the number of distinct topologies for an N-residue polypeptide by calculating
how many GP structures must be generated in order to obtain a topomeric match to each
of ~20 dissimilar native test proteins of length N. As each GP structure was generated,
we calculated its CRMS (a-carbon root mean square deviation [17]) distance from each
structure in the native protein test set. Every GP structure with a relatively low CRMS to
any of the test structures was saved along with the point at which it was generated. Thus
after generating a large ensemble of GP structures, we retained a small subset of
structures (typically 100) with a low CRMS difference to each native test structure. [It
was necessary to save many structures for subsequent analysis, since a low CRMS

difference does not necessarily imply that two structures are topomeric. ]

From the retained sets of structures, we used the Native Topomer Test Procedure
to verify which structures (if any) were topomeric to each native test structure. First,
each candidate GP backbone was optimally superimposed onto the corresponding native
test structure. Next, each o-carbon in the candidate GP backbone was tethered with a
harmorﬁc constraint [using a force constant of 5 (kcal/mol)/Az] to the coordinates of the
same O-carbon in the native test structure. Conjugate gradient minimization (200 steps)
was then performed on the constrained GP backbone (using Dreiding [15] force-field
parameters). During minimization, each o-carbon in the GP structure attempts to follow
a direct, non-cooperative trajectory toward the corresponding native o-carbon. Topology
differences are easily observed by the inability of the GP structure to minimize to the
native coordinates, since the force-field parameters do not permit covalent bond breakage

in the peptide backbone. Using this automated method, it is possible to determine quite
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quickly whether a retained GP structure is topomeric to the corresponding native test
structure. Note that the Native Topomer Test Procedure is simply a computational test to
determine if two structures are topomeric. This Procedure does not accurately simulate
how a protein finds its precise native state once it has found its native topomer.
However, the Test Procedure minimization trajectories followed by the GP structures to
their corresponding native states are useful for visualizing the conformational differences
that two topomeric structures may possess. QuickTime movies of the minimization
trajectories  for all 277  native test structures are  available at

http://www.wag.caltech.edu/home/derek/gp.

The GP algorithm does not include any mechanism to prevent the generation of
more than one structure for each topology. Thus, by the point at which all 22 test
proteins had been matched for the N=100 calculation, we had found an average of about
5 matches for each test protein. This suggests that our measurement slightly
overestimates the number of distinct topologies. On the other hand, the use of a finite
number (~20) of test systems may underestimate the number of GP structures required to
generate a topomeric match to topologies more complex than any of the test proteins.
We expect that these factors balance each other. The calculated number of topomers
(Figure 2.4) increases monotonically with the number of residues despite completely
independent choices of the native protein test sets. This suggests that the estimate has

systematic inaccuracies well less than an order of magnitude.
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Figure 2.4 The number of disjoint topomers estimated for an N-residue polypeptide.
Beyond N = 50, the number of topomers, Sy, scales as Sy = (83936)x(1.0624)~. For

N=100, the number of topomers is ~(1. 19)N .
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Figure 2.5 Comparisons of the native conformations (purple) with their topomeric
counterparts from the generic structure sets (yellow).- In order to facilitate viewing, the
local geometry of each generic conformation has been refined to incorporate native helix
and B-strand segments while preserving the tertiary fold topology. This refinement is
demonstrated in (a), where the generic structure (left, in yellow) is refined using the
native helix assignment (right, in yellow).

(a) The 65-residue segment from fhe NMR determined structure of the proteolytic
fragment from Bacteriorhodopsin [18] (1bct). This example is one of many semi-
compact test folds that was topomerically matched by a GP structure. Thus, our
estimate considers semi-compact as well as compact topomers.

(b) 65-residue Porcine CSagesarg (1¢5a) [19].

(¢) 80-residue fragment from acyl-coenzyme A binding protein (1aca) [20].

(d) 80-residue segment from domain four of the N-terminal domain of 70kD Heat-Shock
Cognate protein (1hpmo04) [21].

(e) 100-residue segment from Heat Shock Transcription Factor (lhks) [22].
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Figure 2.6 The CRMS between each of the 277 native test conformations and their
topomeric matches from the generic structure sets. The dashed line in the figure
represents a previously developed average threshold for topological similarity developed
by Maiorov and Crippen [11]. They found that two N-residue structures are
topologically similar when their CRMS is below the threshold, Dy=a + b (N)” 3 , Where a
=-10.82 £ 0.37 and b = 4.31 £ 0.08. For N > 50, the CRMS values we obtained from
topomeric matches correlate well with the Maiorov-Crippen Dy threshold for topological
similarity. Fitting a similar functional form to the average and maximum of our CRMS

data for topomeric conformations yields D,y (a = -4.12 £ 0.24; b = 2.61 £ 0.06) and Dy«

(a=-5.6210.40; b =3.33 £ 0.11), respectively.
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RESULTS AND DISCUSSION

Total Number of Topomers. Figure 2.4 shows the number of topomers estimated for
polypeptides of length 20-100. For N = 55 to 100, the number of topomers scales as
(1.06)Y, even though the number of distinct conformation states scales at least as fast as
3N, For N = 100, we find ~3x10’ topomers, a large number, but vastly smaller than

3'9<10%, Visual comparisons between some of the test structures and the topomeric GP

structures are shown in Figure 2.5.

Estimates of Folding Times. Next, we estimated how long it would take a protein to
randomly sample all of its compact and semi-compact topomers. Figure 2.6 shows the
CRMS between each of the 277 conformations in the native protein test sets and its
topomeric match in the ensemble of GP structures. For 100-residues there is a maximal
CRMS distance of 9.8A between each native test protein and its topomeric conformation
in the GP set. This indicates that the greatest distance between any two conformations in
the same topomer is ~9.8A CRMS. Thus, any two conformation more than ~9.8A CRMS
from each other are necessarily members of different topomers. Hence, the maximum
distance between neighboring, yet disjoint topomer is ~9.8A CRMS. To estimate the

sampling timescale we use the three-dimensional Einstein diffusion equation,

t=%/,, 3)

where Xis the CRMS between neighboring, disjoint topomers, D is the diffusion
coefficient, and T is the topomer-sampling time. Eaton and coworkers [23] determined
that D=5x10" cm?/sec for extensive intra-chain protein motion in cytochrome c folding.

Using this value for D in equation (3), with ¥ = 9.8A, suggests that the topomer-sampling
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time for N=100 is T =3.2 ns. Given ~3x10 topomers and an average topomer-sampling
rate of one topomer every ~3.2ns, we estimate that a 100-residue protein can randomly

sample all compact and semi-compact topomers in ~100 milliseconds.

Similar estimates for other N (using the maximum CRMS for each N from Figure
2.6 and the number of topomers for each N from Figure 2.4) lead to the plot in Figure
2.7. In this plot, the solid circles represent the time estimated for a polypeptide to
randomly sample all of its topomers (for N= 50, 55, 60, 65, 70, 80, and 100), and the

solid line is the exponential fit through these points.

It is interesting to compare the folding timescales predicted by the topomer-
sampling model with experimentally determined folding times. The open diamond points
in Figure 2.7 represent 32 experimentally determined folding times (time = 1/k¢) for
single domain, two-state folding proteins compiled in Table 1 of a recent review by S. E.
Jackson [24]. The predicted topomer-sampling model timescale (10>-10° seconds)
correlates well with the experimentally determined folding times. Note that the correct
folding timescale is achieved in our model without using any tunable parameters (the
topomer folding timescale is determined directly from the number of topomers, the
distance between topomers, and an experimentally determined intra-chain diffusion
constant). [Table 1 in reference [24] contains 38 folding rates for small, monomeric
proteins that fold with two-state kinetics. Six of these rates were considered unsuitable
for this plot and were excluded: A-repressor (native helix stabilizing mutations), Arc
repressor (two domains connected by a linker), Villin 14T (greater than 120 residues),

and the three cytochrome c variants (heme-containing).]
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Figure 2.7 The dark circles represent the estimated time in seconds for a polypeptide of
length N to randomly sample all of its topomers. This is based on the results in Figures
2.4 and 2.6 combined with equation (3) using the experimentally derived diffusion
constant, D=5x10" cm%sec. The solid line is the best fit to these first principles
predicted topomer sampling times. It leads to a topomer sampling folding time,
troia(seconds) = (5.98><10'5) ><(1.O79)N. The open diamond points are 32 experimentally
determined folding timescales (time = 1/kf) for single domain proteins less than 120
residues in length compiled in Table 1 of a recent review by S. E. Jackson [24]. The
predicted topomer-sampling mode] timescale (107-10° seconds) correlates well with the

experimentally determined folding times.
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Figure 2.8 The timescale data in (a) replotted as the natural log of the intrinsic folding
rate, In(ks). The dashed line is the best exponential fit through the experimental folding
rate points. The p-value for this fit is p=0.082, suggesting that there is only a 1 in 12
chance that a correlation with this significant a slope would appear by chance. Thus, the
topomer sampling model (solid line) predicts the correct magnitude and length
dependence (slope), for the folding rates of two-state folding proteins without using any

adjustable parameters.
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In Figure 2.8, we replot the timescale data in Figure 2.7 as the natural log of the
intrinsic folding rate, In(ks). Experimental folding times can vary by 3 orders of
magnitude for proteins of similar length (even for homologous sequences [25]),
suggesting that factors independent of protein length (such as topological complexity
[26] and sequence mutation) drastically affect the rate of protein folding. However, we
expect that these factors average out over the different proteins in the experimental data
set. Hence, the best exponential fit through these experimental points (the dashed line in
Figure 2.8) is a reasonable estimate of the length dependent part of the protein folding
timescale. The p-value for this fit is p=0.082, implying that there is only a 1 in 12 chance
that a correlation with this significant a slope would appear by chance (see [26] for a
detailed explanation of p-values in this context). Remarkably, the predicted topomer-
sampling timescale (solid-line) and the apparent length dependent part of the
experimental folding timescale (dashed line) are in excellent agreement. Thus, the
topomer sampling model (solid line) predicts the correct magnitude and the correct length
dependence (slope), for the folding rates of two-state folding proteins without using any

adjustable parameters.

Folding Mechanisms. Our results suggest that an average sized protein domain can find
its native topology without any mechanisms to simplify the conformational search [27,
28]. Thus, the topomer-sampling model is fundamentally different from folding models
that insist that regions of correctly folded structure form during the early stages of protein
folding, before a structure with the native topology has been sampled. The topomer-
sampling model suggests that the condensation of specific native contacts [29] is not

required to simplify the search for the native topomer. Furthermore, the topomer-
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sampling model suggests that early nucleation of native secondary structure [30, 31] is
not essential for an average sized domain to fold. Indeed, the 86 amino acid reduced
HIV-1 Tat (trans-activator) protein [32] folds on a biologically relevant time frame to a
structure with a well-defined core, yet possesses no secondary structure or disulfide

bonds.

For large protein domains (longer than ~120 residues), our results imply that
some type of early nucleation or condensation mechanism is required for the native
topomer to be found in less than a second (Figure 2.7). Indeed, we expect that for many
large proteins (especially those with high helical content), such mechanisms greatly
expedite the search for the native topology and lead to folding rates that are faster than
those found in small proteins (because small proteins may not require early nucleation or
condensation mechanisms to fold, such mechanisms may not have evolved in short
sequences to the degree that they have in long ones). Experiments have shown that
native-like secondary structure is found in the kinetic folding intermediates of many
larger proteins [33] and in fragments excised from proteins [34, 35]. Such moderate local
structural biases probably help large domains find the native topology by reducing the
complexity of the search for the native topomer. These biases certainly help proteins of

all sizes find their precise native conformation once they have found the native topomer.

The Folding Landscape. To this point, we have treated the energy landscape outside the
native topomer as flat, yet rugged, like a golf course [36]. However, calorimetric studies
[37] and experiments using the hydrophobic fluorescent probe ANS [38] show that a
significant portion of the nonpolar surface area that is buried in the native state is also

buried in partially folded structures. Thus, the hydrophobic effect operates on the protein
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long before the protein has found its native topology, and conformations with poor

solvation energies [39] are not sampled during the search for the native topomer.

However, the fact that a protein only samples conformations with favorable
solvation energies need not drastically limit the number of topologies searched. Two
structures within the same topomer can have very different solvation energies, since
small perturbations in the backbone conformation can drastically affect the orientation of
the side chains with respect to the interior of the overall fold. Thus, one can easily
construct a conformation that is topomeric to the native structure such that the nonpolar
sidechains are directed away from the core and the polar sidechains are‘buried in the
interior. Conversely, most compact and semi-compact topomers contain conformations
such that the nonpolar sidechains are properly directed into the interior, and the polar
sidechains extend into the solvent. A protein will tend to sample good solvation energy

structures within each topomer.

Figure 2.9 presents a diagram for the folding energy landscape that
simultaneously illustrates these ideas about the variability of solvation energies and the
similarity of conformational states within a single topomer. The folding energy
landscape 1s shaped like the seating in the Rose Bowl. The total energy is given by the
height of the stadium. Conformations with poor solvation energy are situated far away
from the playing field, while conformations with favorable solvation energies are situated
close to the field. The conformations within one topomer are distributed in a single,
columnar section in the stadium (the complete energy landscape for a 100-residue
polypeptide contains 3x10" topomer columns).  Thus, each topomer contains

conformations with both very poor and very favorable solvation energies. As a protein
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folds, it samples different topomers by randomly sampling the favorable solvation energy
states. When the protein samples a conformation in the native topomer, the native funnel

directs the protein to its unique native structure.
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Figure 2.9 A representation of the folding energy landscape suggested by the topomer-
sampling model. This diagram indicates that structures within the same topomer have a
variety of solvation energies (shown along the radial axis). The landscape is shaped like
the seating in the Rose Bowl. The total energy is given by the height in the stadium.
Conformations with poor solvation energy are situated far from the playing field, while
conformations with favorable solvation energies are situated close to the field. The
conformations within a single topomer are distributed in a single, columnar section of the
stadium. For a 100-residue polypeptide, the complete folding energy landscape contains
3%x107 such topomer columns. On this topomer folding diagram, the topomer-sampling
model of protein folding is a meandering trajectory (black line with arrowhead) that
travels from topomer to topomer, sampling only favorable solvation energy
conformations within each topomer. When the protein samplés a conformation within its
native topomer, specific favorable hydrogen bonding and core packing interactions
(represented by a funnel within the native topomer) direct the protein to its unique native
structure (N). We show this funnel connected to only a part of the space spanned by the
native topomer to indicate that only the favorable solvation energy structures in the
native topomer are near the native funnel. Thus, mutations which affect the solvation
properties of the protein can drastically affect the time required for a protein to find its
native funnel (see text). On this diagram, an early folding nucleation event decreases the
number of topomer columns that must be sampled, thereby decreasing the folding rate

(by whatever fraction of the total number of topomers 1s eliminated).
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In the topomer-sampling model, even though an average sized protein is assured
of randomly sampling some conformation in the native topomer, there is no guarantee
that this conformation will be within the clutches of the native folding funnel. We
believe that the hydrophobic effect plays a key role in ensuring that when a protein
samples a conformation in the native topomer, its sidechain and hydrogen bond donor

orientations will be appropriate for a cooperative collapse to the native state.

In the complete absence of a hydrophobic effect, the solvation energy dimension
of the folding energy landscape collapses (Figure 2.9), so that the folding energy
landscape becomes a flat, rugged surface. In such a scenario, the line representing the
protein folding trajectory is not confined to the lower levels of a stadium-like surface but
is allowed to wander over an entire flat landscape, precluding the protein from finding
the native folding funnel on a tractable timescale. In this manner, we expect that
disruptions in the solvation properties of a protein (by changing the solvent or making
sequence mutations) will drastically influence the time it takes to find the native funnel
-and consequently have a large effect on the overall folding rate. Consistent with this,
numerous experiments have demonstrated that there is a strong correlation between
protein folding rates and protein stability across differing solvent conditions [40], and
that stability is a significant determinant of the relative kinetics of homologous proteins

[25, 41, 42].

Our estimate of the folding timescale as the time it takes to randomly sample all
compact and semi-compact topomers assumes that each topomer contains one or more
conformations of favorable solvation energy and that each topomer is sampled as the

protein moves between favorable solvation energy conformations. Barron and coworkers
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[43, 44] have recently used Raman optical activity experiments to show that residues in
disordered regions in molten globule states “flicker” between the allowed regions of the
Ramachandran plot at rates of ~10"%s™, This suggests that local polypeptide chain
dynamics can accommodate very fast equilibration to low solvation energy
conformations without disturbing the tertiary topology. We have not yet evaluated the
solvation energy for all possible conformations of a 100-residue polypeptide. Hence, we
do not yet know how many topomers do not contain any conformations With favorable
solvation energies. However, we believe that it is not a significant fraction (probably less
than a factor of 100), because our assumption that all semi-compact and compact

topomers are sampled correlates well with experimental folding rate data.

CONCLUSION

We find that partitioning conformation space into sets of topologically equivalent
conformations (topomers) allows us to understand how proteins can fold to native
structures on a sub-second timescale. Our results suggest that average sized protein

domains (<120 residues) can fold by a two-step process:

e Topomer diffusion: a random, diffusive search for a conformation with the native

topology (~ 0.1 sec for 100 residues) followed by

e Intra-topomer ordering: a non-random, “funneled” local conformational search for

the precise native state.

Thus early protein folding can be a highly dynamic, diffusive process. This highly

dynamic mechanism for folding is consistent with recent experiments showing that the
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rate of protein folding is strongly dependent on the viscosity of the solvent [45], [46],
[47]. Resolving the exact details of these early folding processes requires monitoring

protein folding in the microsecond time regime.

This dynamic picture of early folding is also consistent with the phenomenon of
prions [48], proteins that apparently have more than one stable conformation. The
topomer-sampling model suggests that numerous non-native topologies are explored
before the native topology is sampled. It is quite conceivable that there could be more
than one topology containing a funnel with the correct properties to yield a kinetically
trapped folded state. Evidently, evolution has selected for protein sequences that have

only one such funnel and hence fold to a singular native state at biological temperatures.
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CHAPTER 3

PROTEIN FOLD DETERMINATION FROM SPARSE DISANCE
RESTRAINTS: THE RESTRAINED GENERIC PROTEIN DIRECT

MONTE CARLO METHOD
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ABSTRACT

We present the generate-and-select hierarchy for tertiary protein structure
prediction. The foundation of this hierarchy is the Restrained Generic Protein (RGP)
Direct Monte Carlo method. The RGP method is a highly efficient off-lattice residue
buildup procedure that can quickly generate the complete set of topologies that satisfy a
very small number of inter-residue distance restraints. For 3 restraints uniformly
distributed in a 72-residue protein, we demonstrate that the size of this set is ~10*. The
RGP method can generate this set of structures in less than one hour using a Silicon
Graphics R10000 single processor workstation. Following structure generation, a simple
criterion that measures the burial of hydrophobic and hydrophilic residues can reliably
select a reduced set of ~107 structures that contains the native topology. A minimization
of the structures in the reduced set typically ranks the native topology in the five lowest
energy folds. Thus, using this hierarchical approach, we suggest that de novo prediction
of moderate resolution globular protein structure can be achieved in just a few hours on a

single processor workstation.
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INTRODUCTION

Given the difficulty of protein structure prediction, it is important to simplify the
problem using prediction approaches that incorpofate predicted or experimentally
determined structural ihformation. For many prediction targets, distance restraints are
available from labeling experiments, disulfide bond connectivity, or preliminary NMR
data. Furthermore, methods exist for predicting local structural characteristics' such as
residue contacts,”’ secondary structure*® and accessible surface area,’ and surface turns.’

Dewitte et al.” established the basic feasibility of obtaining fold predictions using
a limited amount of distance information. They developed a method to exhaustively
" enumerate all walks on a diamond lattice consistent with a set of lattice pair restraint
conditions. Their work demonstrated that as few as one restraint per residue could
successfully limit the number of possible walks (conformations) to ~10°. Unfortunately,
the method was not computationally feasible when the number of restraints was small
compared to the number of lattice steps (residues).

Since this original work, several different methods have been applied to the
problem of structure prediction using a small number of distance restraints. Aszédi er al.’
developed a distance-geometry-based approach that incorporated distance restraints and
native secondary structure assignments as well as knowledge-based criteria such as
backbone connectivity, hydrophobicity, and conservation data obtained from multiple
alignments. This method efficiently generated structures with the correct topology using
as few as N/10 restraints for very simple protein topologies, and ~N/4 restraints for more

complex folds.
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Another approach is a dynamic Monte Carlo (MC) method, MONSSTER," that

folds random coil conformations using an energy function incorporating secondary
structure and distance restraint information. Recently, this method achieved low-
resolution structures (typically 5-6A CRMS) for a number of small proteins when used in
conjunction with secondary structure and residue contact predictions.!! However, since
the algorithm is a dynamic procedure, generating a single structure that satisfies the
restraints requires overnight simulation.

The results obtained by distance-geometry and dynamic MC suggest that knowing
the correct secondary structure and ~N/4 distance restraints leaves a very small number
of possibilities for the topology of a polypeptide. In both methods, coupling this distance
information with simple energy criteria usually resulted in an unambiguous
determination of the native fold topology. Thus each method capably finds the correct
overall fold when the amount of distance knowledge specifies the correct topology with
little ambiguity.

In this paper, we present a novel method that is useful in instances when very
limited (sparse) structural information is available and the topology of the protein is far
from uniquely specified. The method efficiently generates the complete set of topologies
consistent with a set of inter-residue restraints, even when the number of restraints is very
small. We will show that as few as N/24 inter-residue restraints reduce the number of
topologies sufficiently so that a simple residue burial score can identify the native
topology in a very small set of candidates (typically < 5). We expect that improved
contact prediction approaches will be capable of obtaining reliable sparse restraint

information (at a level of ~N/12-N/24) for a wide array of protein prediction targets.
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Furthermore, for many protein sequences, knowledge of simple biochemical information
such as disulfide bond connectivity provides enough information to successfully apply
our prediction hierarchy. With this hierarchical approach, moderate resolution globular
protein structure can be determined from sparse distance information in just a few hours

on a single processor workstation.

METHODS

The Restrained Generic Protein (RGP) Direct MC method is an off-lattice residue
buildup procedure for generating all polypeptide topologies that are consistent with a set
of inter-residue distance restraints. The RGP method is the first step in the generate-and-
select hierarchical structure prediction procedure shown in Figure 3.1. In the second step
of the hierarchy, a static residue burial (S-RB) scoring function is used to select a small
set of candidates from the RGP ensemble. In the third hierarchical step, an intact peptide
backbone representation is constructed for each fold in the selected set (the RGP method
produces an o—carbon trace of each conformation). Following the construction of the
intact peptide backbone, each of the selected conformations is minimized with respect to
the residue burial function used in step 2. This dynamic residue burial (D-RB) selection
process further reduces the set of remaining fold candidates. The final stage of the
prediction hierarchy uses predicted secondary structure information or additional distance

restraints to further reduce and refine the surviving set from the previous step.
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Figure 3.1 Flowchart diagram of the generate-and-select hierarchical method for

predicting moderate resolution tertiary protein structure from sparse distance restraints.
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Figure 3.2 Ball and stick peptide representation used in the RGP-DMC method. Each

residue is connected to its neighboring residues by a fixed bond length, /= 3.8A, with

fixed bond angle, 6=120°. The possible values of ¢, in an n-state per residue

representation are ¢, = ix(360°/n) for i=0,1,2,...n—1.
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A. Protein representation

The RGP method employs a “ball and stick” protein model.” Each residue is
connected to its neighboring residues by a fixed bond length, /= 3.8A, with fixed bond
angle, 8 = 120°. Thus, the coordinates of residue i are precisely determined from the
coordinates of residues i~1, i-2, and i-3, given a single torsion, 0., about the central bond
(Figure 3.2). The possible values of ¢, in an n-state per residue representation are ¢, = ix
(360°/n) for i=0,1,2...n~1. Hence, for a 6-state per residue representation, 9, = 0°, 60°,
120°, 180°, 240°, or 300°.

B. Restraint implementation

The RGP method is a residue buildup procedure. Residues are added one by one
from the N- to C-terminus to construct a complete polypeptide. An efficient restraint
technique assures that the polypeptide conformations are consistent with a set of user
defined inter-residue distance restraints. Consider using a buildup procedure to construct
a polypeptide where residue j and residue k are less than 6A apart (j < k). The simplest
approach is to randomly enumerate all possible conformations of residue j through
residue k and discard the “dead end” conformations that do not satisfy this restraint.’
Unfortunately, this approach becomes prohibitively expensive as the sequential distance
between j and k increases, since the detection of a dead end occurs after the construction
of residue k.

An algorithm that can determine if a conformation is a dead end prior to the
addition of residue k yields a vast improvement in efficiency. The longest distance

traversed by each residue addition step is a single bond length, /= 3.8A. Thus, it is

impossible to place residue k within 6A of residue j if residue i (j <1<k)is greater than
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6+3.8(k-i) angstroms from residue j. Thus, it is possible to predict at step i if a
conformation must eventually result in a dead end at step k.

The restraint method incorporated into the RGP method is slightly more complex
in that it also considers the angle between residues j, i, and i-1. Figure 3.3 shows the
possible positions for residue i+4 in our peptide model when ¢, ,, ¢..,, and ¢, ,, = 0° or 180
°. Consider a cylindrical coordinate system where the z-axis travels through the bond
between residue i~1 and residue i, and the z-axis origin is at residue i—1. The radial axis,
p, represents the perpendicular distance to the z-axis. In the figure, the solid line around
the perimeter traces the maximum radial distance that residue i+4 may be from the z-axis
for a given value of z. Hence, this solid line represents the most extreme position in (z,

) space that residue (i-145) may be placed from residues i—1 and i in our polypeptide

model.
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Figure 3.3 The allowed positions of residue i+4 in relation to residue i-1 and residue i
when residues i-1, i, i+1, i+2, i+3, and i+4 all lie in the same plane. For the cylindrical
coordinate system (z, r), the maximum value of r for residue i+4 may be expressed as a

function of z. This is used to derive equations (1)-(7).
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Similar diagrams lead to a general expression for the maximum value of p, p

for an arbitrary residue (i-1)+n at a specific z coordinate. Defining

P = (n-1)(4in60°),

we find that
(a) If n is even, then z must lie between

{Zior Zou} = {(=34/4)(n=4), (34/4)(n)},
and two cases define p__ :
(a.1) for z>3//2,

Prax = Py — (tan 30°)(z—(3412)),
(a.2) forz < 3//2,

Puax = P+ (tan 30°)(z—(34/2)).

(b) If n is odd, then z must lie in the range

{Zoior Zow} = {1 (2+3(0-5)), (44)(4+3(n-1))},

and two cases define p__ :

max®

(b.1)forz >/
pmax = ppeak— (tan 300)(Z~/)7
(b.2)forz< {

Poax = Pyeu+ (tan 30°)(z—4).

max?

¢y

2)

3)

(4)

()

(6)

(7)
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Thus, expressions (1)-(7) specify the greatest distance in (z, p) space that any residue (i-
I+n) may be placed from residues i—1 and i.

Now we return to the example of constructing a polypeptide conformation with
restrained residues j and k. Assume that the restraint limits the distance between j and k
to a maximum of 6.58A. This distance is equivalent to the maximum distance traveled in

2 residue addition steps, i.e., 2/(sin6/2) = 6.58A. Thus placing residue k within 6.58A of

residue j is similar to requiring that residue j lies in allowed (z, p) space for residue k+2.
Thus if a candidate torsion ¢, places residue i (j <1 < k) in a location such that residue j
lies outside allowed (z, p) space for n= k+2—(i~1), the torsion will inevitably result in a
dead end, and we can eliminate it.

In the above example, we assigned the distance restraint between residue j and
residue k a bond order (bo,), which represents the number of residue addition steps

required to span the restraint distance. A single addition step of length / spans 3.8A;
hence, bo, =1 represents this distance. Two residue addition steps span distances up to 2/

X(sinB/2) = 6.58A, hence for 3.8A < d <6.58A, bo,=2.

The above discussion specifies how the RGP method satisfies a single inter-
residue restraint. A single restraint between two residues is called a first order restraint.
A first order restraint occurs when residues j and k are restrained, and we seek to add
residue i (j< i < k) such that

i-j 2 k-i+bo, 2. (8)
If two restraints (j, k) and (p, q) are specified where j < k < p < g, then the restraint on (j,

k) is satisfied before residue p is added. Thus these restraints are separate. However, if
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p<k, then when adding new residues i, where p <1 <k, we must simultaneously consider
both restraints. We refer to this as a second order restraint. Consider a polypeptide with
a first order restraint between residues (bo,,;=2) and a first order restraint between
residues 17 and 39 (bo,,,;=2). Then there is effectively a second order restraint between
residues 5 and 17, with bo, , = bo,,;+bo,, .= 4. Thus as we grow each residue i, such that
=5 2 17-i+bo, -2 (i.e., residues 12, 13, 14, 15, 16, and 17), residue 5 must lie in allowed
(z, p) space for n = 17+bo, —~(i-1). Thus, depending on the configuration of the inter-

residue restraints in the protein, there can be first and second order restraints that require

attention at each growth step i.

C. Conformation sampling procedure

Now that we have described the restraint technique, it is possible to list the steps
followed to construct a complete polypeptide by the RGP method.

1. The inputs required for the RGP method are the number of residues in the
polypeptide (N), and a list of inter-residue distance restraints with restraint bond
orders, bo;,. The first and second order restraints for each residue addition step i are
determined.

2. A three-residue starting fragment corresponding to the first three residues in the
polypeptide sequence is constructed. Residues are added one at a time in one of p=6
different torsional states to construct the complete N-residue polypeptide. For each
residue addition step, q', the restraint conditions are evaluated. If the candidate

torsion does not satisfy the restraints, the probability of selecting this torsion is zero.
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If a candidate torsion does satisfy the restraints, the probability of selecting this

torsion is

®)

where p is the number of candidate torsions and E, is the addition energy for a
specific torsion candidate q, according to the CCB-DMC procedure.” The addition
energy of a torsion candidate for residue i is given by the summation of the energy
between residue i and each existing residue in the peptide fragment. For all residue

types, the energy of a residue pair is taken as

12 6

R R
E;(R)=Eo| — | -2 — | | (10)

Ro Ro

where R = S.SA, E, = 0.15 kcal/mol, R is the distance between the coordinates of
each residue, and i and j are not nearest neighbors in the sequence. This sequence
independent energy function accounts for the excluded volume of each residue.

. At a given residue addition step i, if no candidate torsion satisfies the restraint
conditions, the polypeptide is re-grown from residue i-4 in an attempt to satisfy this
restraint. The current implementation allows one such backtrack before discarding
the entire polypeptide and growing a new polypeptide from the starting fragment.

A look-ahead strategy may also be performed, where the placement of residue i+1
determines the probability of selecting the torsion angle for residue i. That is, for a

particular torsion candidate for residue i, if there is no torsion candidate ¢_, that
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satisfies the restraints on residue i+1, the probability of selecting that particular

torsion candidate for residue i is zero.

D. Static residue burial (S-RB) score

The RGP method generates the a—carbon coordinates for distance-restrained
protein conformations without considering the identity of the amino acid sequence. In
order to assign an energy to each of the RGP conformations, we developed a very simple,
static residue burtal (S-RB) score based on the observation that the o—carbon positions
for the hydrophobic residues (Cys, Ile, Leu, Phe, and Val) lie closer to the protein center
of mass than the hydrophilic residues (Arg, Asn, Asp, Gln, Glu, Lys, Pro, and Ser)
(Figure 3.4). Once the RGP method generates a complete polypeptide, the center of mass
is calculated from the o~—carbon coordinates. The distance from each hydrophilic and

hydrophobic residue to the center of mass is calculated and expressed as a factor of

R, (N)=-126+2.79N3, (11)

where R, represents the expected minimum radius of gyration for a globular protein of N

residues.” Each hydrophobic and hydrophilic residue receives a residue burial score, W,

that depends on its distance from the center of mass, [R-R__
For hydrophobic residues we take
W=-1ifR-R_ <D, (12a)
W=2if R-R_|>D,,
where
D, = 1.2R, for Phe and Ile residues; (12b)

D = 1.25Rg for Leu and Val residues; and

phob
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D, = 1.3R, for Cys residues.

For hydrophilic residues we take

W=2if[R-R_|<D, (13a)
W=-1if[R-R_|>D,,

where
D, =0.85R, for Asp residues; (13b)
D,,;=0.8R_ for Asn, Gln, Glu, Lys, Pro, and Ser residues; and
D, =0.75R, for Arg residues.

The S-RB score for the polypeptide is the sum of the individual residue burial scores,

SRB= YW, (14)

i=]

E. Intact backbone construction

The RGP method generates the o—carbon trace of a polypeptide. Thus, an intact
peptide backbone must be constructed for each structure in the selected set. Since the
RGP structures are very low-resolution folds, it is not critical that the backbone preserves
the original trace exactly. To this end, we find that an algorithm developed by Park and
Levitt”® works well for quickly producing an intact backbone highly similar to the
original RGP trace. A six-state per residue backbone representation’® generates a full
atom backbone from the o—carbon coordinates that is typically less than 3A CRMS from

the original RGP conformation. A much better method is given by Milik et al.
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Figure 3.4 Frequency histogram of the distance of hydrophobic (solid line) and

hydrophilic (dotted line) residues to the center of mass for 61 non-homologous, single-
domain proteins. The distance is normalized by the factor R,(N), the expected minimum
radius of gyration for a globular protein structure of N residues (see equation (11) in

text).
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Figure 3.5 Burial bias potentials used for D-RB minimization. The solid line is the
hydrophobic burial bias potential, E, , ,, and the dotted line is the hydrophilic burial bias
potential, E,_, (Rg=12A). Using these potentials, hydrophobic residues are drawn toward

the protein interior, while hydrophilic residues are excluded from the protein core.
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F. Dynamic residue burial (D-RB) score

Once a peptide backbone has been constructed, each backbone is minimized with
respect to the S-RB criteria using the simple burial bias potentials, E, , , and E,_,,, shown
in Figure 3.5. Letting x = |R-R_|, these have the form

B, pan(X) =0kcal forx <D, . (15)
Bymoo®) =50(x - D )" keal/A” for D, < x <D, +3.16A.

E, poe(X) = (500+ 50(x - D )/A) keal for x > D+ 3.16A.

B, (X)) =(200 + 10(x - Dphob)/A) kcal for x < Dphu-ZA. (16)
E, () =50(x-D, ) keal/A’for D, ,-2A <x <D,

E, u(x) =0kcal forx>D,,.

Distance restraint bias potentials are added to preserve the original inter-residue distance
restraints between residue j and residue k. Letting x = |R, - R}, these have the form
E,(x) = (200 + 10(4A-x)/A) kcal for x < 2A.
(17)
E,(x) =50(4A-x)’keal/A’ for 2A <x <4A.
E, (x) = 0 kcal for 4A <x <7A.
B, (x) =50(x-7A)Ykeal/A’ for 7A <x < 7A + 3.16A.

B, (x) =(500+ 50(x-7A)/A) keal for x > 7A + 3.16A.

Once the hydrophobic, hydrophilic, and distance restraint potentials are in place, 500

steps of conjugate gradient minimization are performed, where standard force field terms
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represent the peptide backbone.” After minimization, the S-RB score is recalculated,

yielding the D-RB score.

G. Additional restraints

Additional inter-residue distance restraints can be incorporated into a structure by
minimization using the restraint bias potential described in equation (17) between the
newly restrained residues. Local structure can be refined to incorporate a secondary
structure prediction using a restrained minimization procedure that refines the o—carbon
coordinates in the original structure to comply with an optimally superimposed secondary

structural unit.

COMPUTATIONAL PROTOCOL AND EFFICIENCY

In this paper, we consider the ability of the RGP algorithm to generate low-
resolution tertiary folds given sparse inter-residue distance information. A list of
appropriate inter-residue distance restraints was selected for each native protein by
selecting pairs of residues known to be between 4A and 7A away in the native coordinate
file. RGP treated each restraint pair (j, k) with bOj,k=2’ until the addition of residue k. At
this addition step, the RGP algorithm required that residue k be placed anywhere from
3.8A to 7.4A from residue j, rather than calculating z and p__ according to equations (1)-
(7). Thus the difference in the distance between the restrained residues in the generated
structure and the native structure could be as large as 3.4A.

Figure 3.6 shows the probability of satisfying a first order restraint pair (bo, =2)

separated by N residues using the RGP method. For a sequence separation of 50
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residues, the RGP method generates conformations that satisfy the restraint with >60%
efficiency using just six-states per residue without a look-ahead step. Without a restraint
coupling, the probability of generating a 50-residue segment with the terminal residues
between 3.8A and 7.4A apart is less than 0.005. Thus, by identifying dead ends at each
step in the buildup procedure, RGP leads to an efficiency increase by a factor of 120 over
a random or exhaustive approach. Using a Silicon Graphics R10000 processor, the RGP-
DMC method can generate 1000 50-residue polypeptides with restrained termini in less

than 3 minutes (six-state per residue representation).
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Figure 3.6 The probability of satisfying an inter-residue restraint of bond order two
plotted versus the sequence separation of the restrained residues using the RGP-DMC
method. A six state per residue representation coupled with a look-ahead step is denoted
by (m) markers, a twelve state per residue representation without a look-ahead step is
denoted by (#) markers, and a six state per residue representation without a look-ahead

step is denoted by (A) markers.
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RESULTS

We will demonstrate how the RGP method can be used for making successful
low-resolution tertiary structure predictions by applying the generate-and-select
prediction hierarchy to two sequences with known tertiary structure. The first prediction
target is the LexA repressor DNA binding domain from E. coli (1lea),”” a 72-residue
protein with helical and beta strand secondary structure. The second target is sea hare

myoglobin (1mba),” a 146-residue protein with eight helices.

A. LexA repressor DNA binding domain (72 AA)

Table 3.1 shows the results obtained by applying the generate-and-select
prediction hierarchy to the LexA repressor sequence using 2 (N/36), 3 (N/24), 6 (N/12),
and 12 (N/6) inter-residue distance restraints. For each restraint set (see Table 3.3), the
RGP algorithm generated an ensemble of S structures (column 2 of Table 3.1) using a
six-state per residue representation. The closest match to the experimental sfructure in
this ensemble has a CRMS as given in column 3 of table 3.1. From this original
ensemble, a small subset of s structures (column 4) was selected according to the S-RB
score. We then optimized the structure using D-RB minimization. Comparing these
structures with the experimental structure, we found a near-native match with the rank
given in column 5 and the CRMS given in column 6. We then took each structure in the
selected set s and refined it to incorporate the results of a PHD® secondary structure
prediction. We again applied D-RB and ranked the structures. We found a near native
match to the experimental structure with the rank given in column 7 and the CRMS given

in column 8.
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Table 3.1 shows that 3 (N/24) inter-residue restraints combined with a secondary
structure prediction is sufficient to identify a low-resolution native conformation (6.1A
CRMS) in the top 3 of all conformations. Less than 30 minutes on a Silicon Graphics
R10000 processor was required to generate and score the 5,000 structure ensemble, and
less than two hours was required to refine and minimize the selected set, resulting in an
overall prediction time of less than three hours.

Given 6 (N/12) inter-residue distance restraints, an RGP ensemble of only 500
structures resulted in a low-resolution structure that was 6.3A CRMS from the native.
Adding the predicted secondary structure resulted in a 4.5A CRMS structure ranked in
the top 10 of all candidates. Figure 3.7 shows this structure compared to the native.

Generating the 500-structure set with N/12 restraints required less than 10
minutes on our single processor workstation. Increasing the restraint density results in
lower efficiency, and thus rather than generate structures with N/6 restraints using RGP,
we began with the set of 271 lowest S-RB energy N/12 structures, and added the
remaining six restraints during D-RB minimization. This led to just 44 structures that
satisfied all 12 restraints. The second lowest D-RB energy structure had the same overall
fold as the native (6.13A CRMS). Including the secondary structure prediction and

carrying out D-RB minimization resulted in a near-native fold (CRMS=5.76A) tied for

the best D-RB score.
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Table 3.1 Results of the generate-and-select prediction hierarchy for LexA repressor (72
residues) using different sets of inter-residue restraints. As an example, consider the case
of 3 distance restraints (row N/24). The RGP method generated S = 5,000 structures.
One of the structures in this set has a CRMS of 6.57A from the native structure.
Applying S-RB criteria to this set, we selected the s = 209 lowest energy conformations
and performed a D-RB minimization. We found a near native match in the top 7 (CRMS
= 6.76A). We then incorporated a PHDé secondary structure prediction into the 209
conformations and ranked each structure according to its D-RB score. We found a near
native match in the top 3 structures (CRMS = 6.11A). The total time for this process was

180 minutes on an SGI workstation.

RGP Ensemble Selected Set Sec. Prediction

s? CRMS® §° Rank® CRMS® Rank’ CRMS®
N/36 30,000  6.85A 395 24t 7.46A 14t 6.67A
N/24 5,000 6.57A 209 6t 6.76A 2t 6.11A
N/12 500 6.28A 271 1 6.43A 7t 4.45A
N/6 - - 44 2 6.13A 1t 5.76A

* § denotes the total number of structures generated in the RGP ensemble (for N/6 constraints, the RGP
method was not used to generate a conformation ensemble; the 271 structures in the selected set for N/12
were used as a starting set).

* The lowest 0—carbon CRMS structure in the RGP ensemble.

© Set of s structures selected from the original RGP ensemble according to the SRBS.

¢ Rank of the lowest energy structure possessing the native global fold using the DRB score (t denotes a
tie).

° CRMS of ranked structure from column d.

" Rank of the lowest energy structure possessing the native global fold using the DRB score after
incorporation of predicted sheet and helical regions from a PHD® secondary structure prediction.

£ CRMS of ranked structure from column f.
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Figure 3.7 Thé generate-and-select backbone prediction (4.5A CRMS, dark strand) for
72-residue lexA repressor (light strand). Six inter-residue distance restraints were used in
conjunction with predicted secondary structure to obtain this prediction. The complete
generate-and-select hierarchy required less than 3 hours on a single processor R10000

Silicon Graphics workstation for this protein.
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B. Myoglobin (146 AA)

The RGP method was also successful when applied to a much longer sequence
using 12 (~N/12) restraints (Table 3.2). After an ensemble of S =50,000 structures was
generated using the RGP algorithm, a smaller set of s = 117 conformations was selected
based on S-RB score (the non-minimized residue burial score). Applying D-RB to this
set led to a near-native match as number 11. Incorporating the secondary structure
predicted by PHD® into each conformation and applying D-RB resulted in a near-native
structure ranked fifth (7.01A CRMS).

Starting with the 117 structures with 12 restraints, we added 12 more (N/6 total)
during D-RB minimization. This led to 23 structures that satisfied all 24 restraints. The
lowest energy fold in this set possessed the native overall fold topology. Incorporating
the secondary structure prediction led to a highest-ranking structure with the correct

overall fold (6.30A CRMS). Figure 3.8 compares this structure to native myoglobin.

Table 3.2 Results of the generate-and-select prediction hierarchy for myoglobin (146
residues) using N/12 and N/6 inter-residue restraints. The definition of each column is

similar to Table 3.1.

RGP Ensemble Selected Set Sec. Prediction
S CRMS 8 Rank CRMS Rank CRMS
N/12 50,000 8.95A 117 11 8.77A 5 7.01A
N/6 - - 23 1 9.28A 1 6.30A




80
Figure 3.8 The generate-and-select backbone prediction (6.3A CRMS, dark strand) for

146-residue myoglobin (light strand). Twenty-four inter-residue distance restraints were
used in conjunction with predicted secondary structure to obtain this prediction. The
complete generate-and-select hierarchy required less than 12 hours on a single processor

R10000 Silicon Graphics workstation for this protein.
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Table 3.3 List of inter-residue restraints used for the LexA repressor and myoglobin
structure predictions.  Each restraint set contained the restraints listed in the

corresponding row along with the restraints listed in each prior row.

(a) LexA (N = 72 residues)

N/36 (2) 1-72 25-64

N/24 (3) 11-31 '

N/12 (6) 8-50 28-44 55-68

N/6 (12) 2-53 11-47 18-26
31-43 51-58 58-65

(b) Myoglobin (N = 146 residues)
N/12 (12) 1-84 6-129 10-75
16-119 22-65 30-51
46-54 88-137 93-144
102-141 109-131 113-127

N/6 (24) 3-79 9-125 10-130
13-123 17-116 26-60
41-48 78-84 101-146

105-138 117-122 141-146
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DISCUSSION

Both distance-geometry and dynamic MC methods produce correct low-
resolution structure predictions given ~N/6 inter-residue restraints and accurate
secondary structure assignments. We have demonstrated that a direct MC approach
obtains predictions of similar precision with very little computational effort.
Furthermore, since the RGP method employs a very simple packing force field, it can
provide a coarse sampling of conformation space many orders of magnitude faster than
more detailed dynamic simulation methods. Consequently, RGP is computationally
feasible even when restraint information is very sparse.

' have considered the ability of many different types of

Levitt and coworkers
functions to “recognize” correct low-resolution (near-native) folds from large sets of

incorrect decoys. In order to measure the success of a particular function, they devised a

quality factor,
— M
Q= 10g10( nr) (18)

where M is the total number of structures in the set, r is the highest rank of a near-native
structure, and n is the number of near-native structures in the set. While many selection
functions recognize native crystal structures with Q-scores greater than 4, near-native
structures (<4A CRMS by their definition) are far more difficult to recognize, with Q
rarely exceeding 2. Thus, selecting a near-native structure from a set of greater than 10’
decoys is not feasible with current recognition potentials.

To successfully recognize near-native folds, a selection function must possess two
important properties. First, it should rank the native structure as one of the lowest energy

conformations. Second, the selection function should be insensitive to small structural
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changes, so that near-native structures appear similar in energy to the native.
Unfortunately, selection functions that unambiguoﬁsly identify the native typically do so
at the cost of being highly sensitive to small changes in structure.

Though our S-RB selection function is very simple, it too is sensitive to small
structural changes. By performing a short conformational minimization (D-RB) we
greatly increase the structural invariance of the S-RB score, since each conformation is
evaluated at a local minimum of the selection function.

Given just 3 restraints for the 72-residue llea, an ensemble of ~10* structures
contains several native topology conformations. Thus, preserving the native topology in
a smaller set of ~10” structures requires Q~1.5, a level of recognition attained by our S-
RB function, and possibly many previously developed recognition approaches. Most
importantly, since this reduced set of structures is very manageable in size, it is
computationally feasible to use a dynamic selection procedure to select an even smaller
set that will still contain the native topology. In this manner, the most promising
topologies are analyzed by a selection procedure that possesses both properties required

for successful near-native structure recognition.

CONCLUSION

We have developed a direct Monte Carlo method for efficiently generating the
complete set of protein topologies consistent with a set of inter-residue distance
restraints. We find that fewer than 10° distinct topologies are consistent with having 3
uniformly distributed restraints for a 72-residue protein. The RGP method can sample all

of these topologies in less than one hour using a single Silicon Graphics R10000
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processor workstation. Using the simple S-RB and D-RB criteria, it is possible to
preserve a small set of structures that contains native topology. Since this remaining set
is typically <10 structures, we suggest it is computationally feasible to perform much
more detailed structure analysis to uniquely determine the native topology.

Future work will apply the generate-and-select hierarchy to the de novo
prediction problem using predicted inter-residue contacts and biochemical structural
restraints (such as disulfiﬁde bridges) as starting restraints for the RGP algorithm. A
distinct benefit of the RGP method over previously developed methods is that only a very
small number of restraints (<N/12) are needed to generate the native topology. For many
protein sequences, knowledge of disulfide bond connectivity may be sufficient to lead to
a correct low-resolution structure prediction. Furthermore, because the set of restraints is
small compared to other methods, only a few of the most reliably predicted restraints’
must be used, greatly minimizing the chance of including incorrect constraints in the
predictions. Even so, it will be critical to understand how well the RGP method performs
when some of the supplied tertiary restraints are inaccurate. Our results suggest that
there is a sizable margin for error, since the present work allowed a 7.4A distance

between restrained residues.
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CHAPTER 4

FIRST PRINCIPLES PREDICTION OF PROTEIN FOLDING RATES
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ABSTRACT

Experimental studies have demonstrated that many small, single-domain proteins
fold via simple two-state kinetics. We present a first principles approach for predicting
these experimentally determined folding rates. Our approach is based on a nucleation-
condensation folding mechanism, where the rate-limiting step is a random, diffusive
search for the native tertiary topology. To estimate the rates of folding for various
proteins via this mechanism, we first determine the probability of randomly sampling a
conformation with the native fold topology. Next, we convert these probabilities into
folding rates by estimating the rate that a protein samples different topologies during
diffusive folding. This topology-sampling rate is calculated using the Einstein diffusion
equation in conjunction with an experimentally determined intra-protein diffusion
constant. We have applied our prediction method to the 21 topologically distinct small
proteins for which two-state rate data is available. For the 18 beta-sheet and mixed
alpha-beta native proteins, we predict folding rates within an average factor of 4, even
though the experimental rates vary by a factor of ~4x10*. Interestingly, the experimental
folding rates for the three four-helix bundle proteins are significantly underestimated by
this approach, suggesting that proteins with significant helical content may fold by a
faster, alternative mechanism. This method can be applied to any protein for which the
structure is known and hence can be used to predict the folding rates of many proteins

prior to experiment.
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INTRODUCTION

One of the most important challenges in biology is to understand the relationship
between the folded structure of a protein and its priméry amino acid sequence.
Consequently, there has been great interest in understanding how proteins fold. An
important advance in 1991 was the experimental demonstration that stable intermediates
were not present in the fast folding of Chymotrypsin Inhibitor 2 (Jackson & Fersht,
1991). Since then, two-state folding rates for 20 more small (<120 residues),
topologically distinct proteins have been determined, providing sufficient rate data to
begin testing quantitative aspects of proposed folding mechanisms (Jackson, 1998).
Recently, Plaxco et al. reported a statistically significant correlation between the natural
log of the two-state folding rate, In(ks), and a measure of the native state topological
complexity (contact order) (Plaxco et al., 1998b). This empirical observation suggests
that the chemistry underlying the folding of simple, single-domain proteins may be
universal, implying that a single mechanistic model might quantitatively account for the

observed folding rates.

We recently proposed the Topomer-Sampling Model (TSM) of protein folding,

wherein proteins fold by a two-state mechanism consisting of (Debe et al., 1999a):

(1) topomer diffusion: random, diffusive sampling to find the native topomer

(topomers are tubes of topologically equivalent conformations), followed by

(i1) intra-topomer ordering: non-random, local conformational changes within the

native topology to find the unique native state.
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Assuming step (i) represents the rate-limiting step in folding, the TSM folding

rate is given by
ke = P(Ntop) X kiop, (1)

where P(Ntop) is the probability of randomly sampling a structure with the native tertiary
topology (i.e., a structure in the native topomer), and k;, is the rate at which a protein
samples different tertiary topologies as it folds [see (Debe et al., 1999a) for a precise
definition of native tertiary topology in this context]. Previously, we developed a method
to determine the total number of topomers, SN, for a protein of length N, allowing us to
estimate P(Ntop) = (SN)'I. Using this value of P(Ntop) in Eq. 1, we estimated that the
rate for the topomer diffusion step (i) is ~10sec™ for a 100-residue protein. This was an
encouraging result, since this calculated rate is similar to experimentally observed folding
rates. However, this calculation assumed that all topologies for a protein of length N
ha\;e an equal probability of being sampled, and thus the predicted folding rate did not
depend on the structure of the native fold. We now propose a quantitative first principles
approach for predicting folding rates of specific proteins, where the probability of
sampling the native topology is explicitly calculated from the native protein structure.
This approach accurately predicts the folding rates of beta-sheet and mixed alpha-beta

proteins.
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METHODS AND RESULTS
We estimate P(Ntop) for a specific, native protein structure as follows. Consider
choosing © contacts (residue pairs whose alpha-carbons are within ~8A) uniformly

distributed throughout the protein structure. Given these p contacts, we may write
P(Ntop) = P(u) x P(Ntop | W), (2)

where P(u) is the probability of forming the p contacts, and P(Ntop | ) is the conditional
probability of sampling the native topology when the u contacts are satisfied. We will

focus on solving the terms in Eq. 2 to determine P(Ntop) for a native protein structure.

The determination of P(W) is not trivial, since the probability of forming various
inter-residue contacts in a protein depends on the location of these contacts along the
protein sequence. For contact pairs that overlap in the sequence, the probability of
forming one contact pair is influenced by the presence of the other contact, and thus the
correlation between contact pairs must be considered while determining P(uw). Flory
determined P(u) for an average polymer of length N with i arbitrary cross-links (the
mean field approximation) (Flory, 1956). This mean field result has also been obtained
using replica calculations (Gutin & Shakhnovich, 1994). Less progress has been made
determining P(u) for a particular set of p contacts (no mean field approximation). Chan
and Dill have determined correlation functions for up to three overlapping contacts with a
non-arbitrary sequence separation using a cubic lattice polymer representation (Chan &

Dill, 1990). However, P(u) has not been determined for specific protein or polymer

contact configurations for p > 3.
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We determine P(u) as follows. Let P(1) be the probability of sampling a

conformation that satisfies one of the p specified contacts. Then P(u) can be written as
P(w) = P(u|1) x P(1), 3)

where P(u | 1) is the conditional probability of sampling a conformation that satisfies all
U contacts when one of the contacts is already satisfied. Similarly, the first term in Eq. 3

can be written as
P =PW[2)xPQ2|1). “4)
By recursion, it follows that
P(W = P(u | pu—1) xP(u=1]p-2) x... X P2 | 1) x P(1). ®)

The individual probability terms in Eq. 5 can be solved using the Restrained
Generic Protein (RGP) Direct Monte Carlo Method (Debe et al., 1999b). The RGP
method is a fast computational procedure for generating large ensembles of self-avoiding,
off-lattice [ball-and-stick (Levitt, 1976)] protein conformations that comply with a set of
user-defined inter-residue distance restraints. The term P(1) in Eq. 5 is given by the
probability of satisfying one (or more) of the | contacts in an unrestrained RGP ensemble
of protein conformations. The next term, P(2 | 1), is given by the probability of satisfying
two (or more) of the y contacts in an ensemble of conformations that already comply
with the inter-residue contacts that were satisfied during the determination of P(1).
Hence, the i (or more) contacts satisfied in the conformations during the determination of

P(i | i-1) are saved and used as inter-residue restraints to be satisfied by the conformations
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generated during the determination of P(i+1 | 1). Each term in Eq. 5 can be determined by

this approach, yielding P(u).

Once P(W) is determined, the remaining term required to solve for P(Ntop) by Eq.
2 is P(Ntop | W), the probability of sampling the native topology when the p contacts are
satisfied. P(Ntop | p) is determined by generating RGP conformations that satisfy all u
contacts and using the Native Topomer Test Procedure (Debe et al., 1999a) to determine

the fraction of the conformations possessing the native tertiary topology.

Thus, P(Ntop) can be calculated according to Eq. 2. The predicted rate of folding
is computed using Eq. 1, where ki, is the rate a protein samples different topologies as it
folds. We take this as the inverse of the time, 7, to diffuse from one topology to the

next, approximated by the Einstein diffusion equation (Einstein, 1905):

b =S =) (©)

where X is the average CRMS distance between two neighboring topologies for a protein
of length N as from our previous calculations [ x = a + b(N)” 3, where a=-4.12; b =2.61;
Debe et al., 1999a], and D = 5x107cm?s is an experimentally determined intra-protein
diffusion constant (Hagen et al., 1996). While the Einstein diffusion equation is certainly
an approximation for a finite, constrained system such as a protein, the proportionality
Toc x* has been shown to hold for proteins using molecular dynamics [see for example,

trajectories 11 and 16 in Figure 2a of Lazaridis & Karplus, 1997]. Furthermore,

since (X5 / Xyoso) = 2, the variation in predicted folding rates is dominated by the
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P(Ntop) term in Eq. 1, not by k,,,. Hence, we expect that deviations from ideal diffusive

behavior and chain length scaling errors do not significantly affect the rate predictions.

We refer to the overall procedure outlined above as the Native Topology
Probability (NTP) method. Table 4.1 shows the predicted and experimental rate data for
the 21 small proteins whose two-state folding rates have been determined. Figure 4.1
compares the experimentally determined In(ky) versus the predicted In(ky) for the set of 18
topologically distinct, beta-sheet and mixed alpha-beta proteins. The linear fit has a
significant correlation (R=0.78), corresponding to an average prediction error of e'?=3.7.
This is similar to the error in rate, e'%~2.7 arising from sequence changes in five
structurally homologous protein families for which there is sufficient rate data (vertical
error bars). Thus, the NTP method accurately predicts the general, sequence independent

rate for alpha-beta and beta protein folding.



96

Figure 4.1 Experimental folding rate versus predicted folding rate for all 18 alpha-beta
(®) and beta (A) proteins for which there is rate data (Table 4.1). Over this data set the
average error in the predicted rate is e'?=3.7 (R = 0.78; R=0.87 for the fit excluding the
outlier ULA/S6). The vertical error bars show the average error due to sequence changes
across five structurally homologous families (average error is ¢'°=2.7). The horizontal
error bar represents the average error in the NTP rate predictions, e**=1.6. The predicted
folding rates were calculated from Eq. 1. P(Ntop) in Eq. 1 was determined using Eq. 2.
The term P(W) in Eq. 2 was determined from the individual terms of the form P(i+1 | i) in
Eq. 5. These terms were determined from ensembles of protein conformations generated
by the RGP method (see text). The radius of gyration (Rg) of the RGP conformations
used in the determination of each P(i+1 | i) term was limited to Rgq, < Rg < 2Rgmin,
where Rgmin = -1.26+2.79(N)”* (Maiorov & Crippen, 1995). This ensured that overly
compact and non-compact conformations would not be considered. Inter-residue
contacts were considered satisfied if their alpha-carbons were within 9.5A. Two hundred
conformations were generated for each P(i+1 | i) determination. P(i+1 | i) was typically
~0.2, yielding ~40 conformations out of the 200 that satisfied i+1 or more contacts. The
~40 sets of contacts satisfied during the determination of P(i+1 | i) were saved and used
during the determination of P(i+2 | i+1). Two hundred new conformations were grown to
determine P(i+2 | i+1), so that on average, each of the ~40 different constraint sets was
used to grow 5 of the new conformations (the algorithm cycles through the restraint sets
in the order they were originally generated). Note that during the determination of P(i+1
| i), more than i+1 contacts can be satisfied, for example i+3. In this case, all i+3 contacts

are saved and used as restraints in the determination of the next probabilities, so that i+2
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~and i+3 contacts are necessarily satisfied when this contact set is used in the
determination of P(i+2 | i+1) and P(i+3 | i+2), respectively. Note that the contact
distance of 9.5A is the only adjustable parameter in our model and is the same for all of
the proteins considered. A distance of 9.5A was chosen so that the calculated P(Ntop)

values result in In(ky) predictions of the appropriate magnitude.
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Table 4;1 Predicted and experimentally determined kinetic data for the 21 small, single
domain, topologically distinct proteins (and protein families) that have been
characterized. The predicted folding rates have an average uncertainty of ~e*’=1.6,
based on calculations using at least two different sets of contacts to determine P()) and

P(Ntop | p) for each protein (the contacts sets used for each protein are given in Tables
4.2-1 through 4.2-21). Column 7 lists the number and type of experiments that have been
done on structurally homologous proteins of different sequence (M denotes point
mutation experiments; H denotes homologous sequence experiments; T denotes
experjments on proteins that are structural, but not sequence homologues). Such

experiments estimate the extent that sequence specific effects influence the folding rate.
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Protein FDB Pred  Pred # Exp.  Exp.
Code Length Ink, c Exp. Ink, G

Q. proteins

Monomeric 1LMB 80 3.67 0.52 M 10.23 1.26

A-repressor*

ACBP® 2ABD 86 284 159 4H 6.62  1.04

Im9° 1IMQ 86 447 0.74 1 7.31 -

8 proteins

Tendamistat* 2AIT 74 3.60  0.13 1 420 -

Cold Shock Protein 1CSP 67 4.73 0.83 4H 6.04 0.72

(A and B)® MIC 69 3M

SH3 domain 1TUD 64 451 0.24 3H 3.45 1.22

(o-spectrin, src, INYF 67

fyn)'

SH3 domain 1PKS 84 1.92 0.06 1 -1.05 -

(P13 kinase)®

Twitchin® 1WIT 93 043 0.98 1 0.41 -

°FN-NI & Tenascin ~ 1FNF 90 070 067 2H 026 1.18

(short and long)' ITEN 92

o/ proteins

Protein G B1 2GB1 56 5.23 0.26 M 6.26 0.60

domain’

CI2* 1COA 64 3.80 0.58 90M 3.51 0.86

ADAR?' 1PBA 80 3.54 046 1 6.80 -

Arc repressor™ 1ARR 53 9.01 0.51 1 9.27 -

Ubiquitin - 1UBQ 76 371 0.27 1 4.63 -

(Val26—Ala)"

IgG binding domain 2PTL 62 3.94 047 10M 4.22 0.64

of protein L°

Hpr? 1HDN 85 3.20 1.06 1 2.70 -

FKBP12¢ 1FKB 107 -1.00 045 1 1.46 -

AcP (Muscle and 1APS 98 =235 016 2H -0.42 1.05

Common Type)' 2ACY

C-terminal Domain 1DIV 93 1.15 1.00 1 1.15 -

of protein L9* :

N-terminal Domain 1DIV 56 7.69 0.24 1 6.58 -

of protein L9

Spliceosomal UTA 1URN 102 -0.04  0.56 2T 5.73 0.09

and Ribosomal S6" 1RIS

* Huang & Oas (1995), Burton ez al. (1996), Ghaemmaghami ef al. (1998).
b Kragelund ez al. (1995), Kragelund et al. (1996).

¢ Ferguson et al. (1999).

¢ Schonbrunner et al. (1997).

® Schindler er al. (1995), Perl et al. (1998), Reid er al. (1998).

fViguera et al. (1994), Viguera et al. (1996), Grantcharova & Baker (1997), Plaxco et al. (1998a).
& Guijarro ef al. (1998).

"'S. I. Hamill, unpublished observations. Data from Jackson (1998).

i Plaxco et al. (1997), Clarke er al. (1997), Hamill ef al. (1998).

) Smith et al. (1996).

k Jackson & Fersht (1991), Itzhaki et al. (1995), Ladurner ef al. (1998).
"Villegas et al. (1995).

™ Robinson & Sauer (1996).

" Khorasanizadeh et al. (1996).
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© Scalley et al. (1997).

P Van Nuland ez al. (1998).

48. E. Jackson, unpublished observations. Data from Jackson (1998).
"van Nuland et al. (1998), Taddei ez al. (1999).

$ Sato et al. (1999).

' Kuhlman et al. (1998).

“ Silow & Oliveberg, (1997), Otzen et al. (1999).

The NTP procedure considerably underestimates the folding kinetics for the three
o-helical bundle proteins (Table 4.1), where In(k.,,) exceeds In(kp.s) by e6'6_z735,
e*8~45, and e*®~16. We expect that sequence-local helical conformational biases
probably cause these helical proteins to fold faster via a diffusion collision mechanism
(Karplus and Weaver, 1976). Future work will focus on understanding the amount of

early helix formation required to produce the observed helical bundle folding rates.

The NTP rate predictions are based on the mechanistic assumption that the rate-
limiting step in protein folding is a random, diffusive search for the native topology
(Debe et al., 1999a). Thus we assume a nucleation-condensation mechanism (Fersht,
1995), where the transition-state required for condensation to the native state is the set of
structures having the same tertiary topology as the native state. This is similar to the
transition-state picture developed by the Fersht group from CI2 protein engineering
studies (Itzhaki et al., 1995). The accuracy of our first principles predicted rates provides
evidence in favor of this nucleation-condensation mechanism. Furthermore, our
calculations demonstrate how a nucleation-condensation mechanism accounts for the
inverse relationship between folding rate and solvent viscosity recently observed for
three small, two-state folding proteins (Jacob er al., 1997; Plaxco & Baker, 199§;

Bhattacharyya & Sosnick, 1999). This relationship is directly implied in our model by



102

Eq. 6 given the inverse proportionality between the diffusion constant and solvent

viscosity in Stokes' Law.

We did not include any information about the stability of the native fold to
accurately predict folding rates. Thus, we do not expect that stability is a primary factor
in determining the folding rate (Plaxco et al., 1998b). However, a correlation could exist
between native stability and folding rate for structurally homologous protein families
(Plaxco ef al., 1998a). This correlation could arise from stabilizing sequence changes
that increase the probability of trapping the protein once it has diffused into its native

topomer.

The NTP predictions provide a useful framework for understanding factors that
can change folding kinetics. The predicted folding rate is equivalent to the rate of
randomly sampling a conformation in the transition-state ensemble. Thus, the folding
rate is directly related to the difficulty of finding a conformation that can quickly
condense to the native state. As the transition-state becomes more native-like (referred to
as a tight transition state), the difficulty of finding a structure in the transition-state
increases, and the folding rate decreases unless there is a mechanism to aid the search for
a transition-state structure. Similarly, as the transition-state becomes less native-like (a
loose transition state), the folding rate is expected to increase. Folding kinetics can also
be affected by a change in the number of topologies that are available to the folding
peptide. Faster folding rates might arise from sequence specific conformation biases,
such as helical formation, which could preclude a protein from sampling a significant

fraction of its possible topologies.
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Careful examination of Figure 4.1 reveals that the NTP procedure accurately
predicts the folding rates of all reported two-state beta-sheet and mixed alpha-beta
proteins, with only one exception. The exception is spliceosomal protein UlA (and its
recently characterized structural homologue ribosomal protein S6), which folds some
e’#~330 times more rapidly than predicted by the NTP method. UlA and S6 are quite
long for two-state folding proteins (102 and 101 residues, respectively) and exhibit
exceptional folding behavior, in that the log(kunmig) versus denaturant concentration and
log(ksiq) versus denaturant plots exhibit equal and opposite curvatﬁre in many of the
mutants studied (Silow & Oliveberg, 1997; Otzen et al:, 1999). This curvature is
interpreted by Silow and Oliveberg to imply that there is a change in the position of the
folding transition-state with denaturant concentration (many of the mutants exhibit a very
loose folding transition state in water, which qualitatively implies they should indeed fold
faster than the NTP procedure predicts). Removing UlA from our data set on these
grounds greatly improves the overall correlation (R=0.87), corresponding to an average

prediction error of e''=3.0.

The NTP predictions apply to single domain proteins with single folding nuclei.
Similar estimates can be made for multiple domain proteins if the nucleus formation
events for different domains are independent (indeed, this assumption was used to predict
the folding rates for the Arc repressor and the C-terminal domain of protein L.9). Based
on our previous estimates, we expect that single domain proteins longer than ~120
residues require more than a second to fold by a topomer sampling mechanism (Debe et
al., 1999a), which would expose them to proteolysis in vivo. Possibly, the mechanisms

that speed up the folding kinetics in alpha-helical proteins and the U1 A family also allow
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protein domains beyond ~120 residues to fold on the shorter time scale appropriate for in
vivo folding. Strong local structure propensities (Baldwin, 1993), early helix formation
(Viguera et al., 1997), and beta sheet inducing mechanisms such as glycosylation
(O'Connor & Imperiali, 1998) are likely to play an important role during the in vivo

folding of large protein domains.

To predict the folding rates for specific native proteins, we have developed a
procedure for determining the probability of satisfying a specific set of contacts in a
native protein structure. In addition to accurate rate prediction, our method explains the
observed dependence of folding rate on solvent viscosity and provides a satisfying
structural definition of the folding transition-state that correlates well with a nucleation-
condensation picture of folding. Our approach is quite different from correlated energy
landscape (Plotkin, er al., 1996) and free energy functional (Shoemaker et al., 1999)
folding theories which use mean-field approximations to estimate the conformational
entropy. Our approach avoids a mean-field treatment of contact probability, allowing it
to be applied to native proteins very easily. However, unlike these theories, our method
lacks any quantitative estimate of the enthalpy of various conformations [often given by
the interaction energies of various contacts in other folding models (Miyazawa &
Jernigan, 1985)]. Future work will seek to merge our approach into a theoretical
framework that allows free energies to be estimated. We expect that our calculations can
be used to tune the entropy estimates in mean-field approaches to specific native proteins
[possibly using an interpolation between mean-field and specific contact probability

formulations (Shoemaker et al., 1999)], leading to unified theories that yield approximate
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free energy estimates simultaneously with accurate, experimentally verifiable rate

predictions.
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Supplementary Table 4.2-1. Monomeric A Repressor (Helical)

PDB File Contacts InP(1) InP(Ntop | u)

1LMB:; u=10 1-49 5-74 12-71 14-46 20-64 —13.83 -3.3
28-42 31-63 35-56 54-79  57-68

1LMB: =8 2-51 13-71 14-46 24-64 2843 -12.63 -3.9
35-59 54-79 57-68 - -

1LMB: u=7 2-51 9-72 14-46  16-64 2842 -12.51 -3.4
35-59  54-79 - - -

Supplementary Table 4.2-2. ACBP (Helical)

PDB File Contacts InP() InP(Ntop [ 1)

2ABD: u=7 3-70 6-35 15-85 21-60  27-73 —13.79 -3.9
34-66  39-58 - - -

2ABD: p=6 3-70 6-35 15-85 21-50 34-66 —13.98 -5.0
39-58 - - - -

2ABD: u=3 6-35 15-85  21-50 - - ~8.26 -6.9

Supplementary Table 4.2-3. Im9 (Helical)

PDB File Contacts InP(u) InP(Ntop | u)

1IMQ:p=7 7-44 9-84 15-40  16-68 23-36 —10.09 -4.8
46-74  53-67 - - -

1IMQ:p=6 6-43 11-84  18-40 20-64 37-50 -12.38 -4.0
46-74 54-79  57-68 - -

Supplementary Table 4.2-4. Tendamistat (Beta)

PDB File Contacts InP(u) InP(Ntop|u)

2AIT: n =10 7-71 11-27 16-67 19-59 23-54 1275 -3.9
28-50 32-72 3445 38-66  43-57

2AIT: n=7 7-71 11-27 19-59 28-50 32-72 ~11.92 —4.6
38-66  43-57 - - -

2AIT:u==6 7-71 19-59 28-50 32-72 3866 -—11.73 -5.1

43-57 -
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Supplementary Table 4.2-5. Cold Shock Protein A & B (Beta)

PDB File Contacts InP(u) InP(Ntop [ u)

1CSP: u=10 2-50 4-20 8-17 9-43 14-30 —9.63 -5.1
18-26  26-59  34-64  36-67 51-60

1CSP: =8 1-49 2-50 4-20 9-43 15-29 -10.23 -4.9
26-59 34-64  36-67 - -

IMJC: =10 3-53 4-23 9-47 10-19  16-33 —-12.49 -3.4
20-29  30-62 37-67 49-69 54-64

1MJIC: u=7 4-52 6-23 13-43 16-33 30-62 -12.68 —4.2
36-65 50-69 - - -

Supplementary Table 4.2-6. SH3 domains: a-spectrin, src & fyn (Beta)

PDB File Contacts InP(u) InP(Ntop [u)

INYF:u=5 3-27 4-57 17-48 25-42 35-52 —-11.30 —4.5

1TUD: u=7 1-60 3-35 7-53 9-25 20-46 —12.10 —4.1
26-40  44-59 - - .

Supplementary Table 4.2-7. SH3 domains: PI3 kinase (Beta)

PDB File Contacts InP(u) InP(Nfop|u)

1PKS: u=10 1-30 3-76 8-23 9-70 18-65 —-14.36 -3.9
25-59  31-44 33-54 45-73  52-67

1PKS: u=8 1-76 2-31 8-28 9-70 18-64 -13.79 —-4.6
29-55 45-73  53-66 - -

Supplementary Table 4.2-8. Twitchin (Beta)

PDB File Contacts inP(u) InP(Ntop | 1)

TWIT: =10 2-82 5-26 9-87 16-93 19-62 -16.19 —4.4

- 27-56 3279 3872 49-64  69-92

1WIT: u=9 1-82 5-25 7-86 15-92 18-64 -15.67 —4.3
26-57 35-75 4964 70-90 -

TWIT: u=8 3-84 5-25 15-92 19-62 26-57 -13.46 —4.8
38-72  49-64 70-90 - -
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Supplementary Table 4.2-9. °FN-Iil & Tenascin (Beta)

PDB File Contacts InP() InP(Ntop | 1)

1TEN: p=10 2-26 8-20 12-89  14-63 22-54 -13.95 -4.5
28-75 29-51 34-46 37-67 70-84

1TEN:u=8 1-80 4-24 14-89  15-61  28-75 —14.55 -5.5
30-51 37-67 66-88 - -

1FNF: p=10 3-27 4-82 15-90 16-62 22-55 —-14.78 —4.8
20-76  30-52 38-68 48-59 69-87

Supplementary Table 4.2-10. B1 domain of protein G (Alpha-Beta)

PDB File Contacts InP(u) InP(Niop |u)

2GB1:u=8 1-21 3-50 5-16 5-30 9-56 ~-11.38 -3.7
23-45  31-40 42-55 - -

2GB1:pu=6 1-21 3-50 5-30 9-56 23-45 ~10.51 -5.1
42-55 - - - -

Supplementary Table 4.2-11. CI2 (Alpha-Beta)

PDB File Contacts InP(u) InP(Niop | )

1COA: u=10 1-24 3-63 5-20 12-56  17-29 —-12.51 ~4.6
27-45 32-50 34-58 42-64  49-61

1COA: u=6 2-23 3-63 10-56  27-45 33-51 —-12.35 ~4.6
44-64 - - - -

1COA: n=5 2-23 10-56 27-45 3351 4464 -10.71 -5.1

Supplementary Table 4.2-12. ADAh2 (Alpha-Beta)

PDB File Contacts InP(u) InP(Niop | u)

1PBA: u=8 3-62 11-79  12-55 1948 26-73 -13.10 —4.1
27-43  34-64  39-53 - -

1PBA: u=7 3-62 11-79  11-56  19-48 27-44 -12.23 -3.9
34-64  38-54 - - -

1PBA: u =16 3-62 11-55  13-77 1949 27-43 -11.95 —4.6

34-60
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Supplementary Table 4.2-13. Arc Repressor (Alpha-Beta)

PDB File Contacts InP(1) InP(Ntop | 1)

1ARR:u=2  9-3¢  22.37 - - - -5.01 -6.1

1ARR; u=2 12-34  23-33 - - - ~4.32 -7.8

Supplementary Table 4.2-14. Ubiquitin (Alpha-Beta)

PDB File Contacts InP(u) InP(Ntop [ 1)

1UBQ:u=10 1-18 2-64 4-14 8-69 15-30 ~12.61 -3.9
19-57  24-52  27-38 40-72  45-67

1UBQ:u=7 1-17 2-64 8-69 15-30 23-53 -12.85 —4.1
40-72  45-67 - - -

1UBQ:n==6 1-17 8-69 15-30  23-583 40-72 -11.80 —4.4
45-67 - - - -

Supplementary Table 4.2-15. 1gG binding domain of protein L (Alpha-Beta)

PDB File Contacts InP(u) InP(Ntop | u)

2PTL: u=10 1-22 5-55 7-17 8-35 11-61 -11.23 -4.8
20-30 25-54 3247 42-62  47-57

2PTL: u=6 1-22 5-55 8-35 11-61  25-54 -11.48 55
42-62 - - - -

Supplementary Table 4.2-16. Hpr (Alpha-Beta)

PDB File Contacts InP(u) InP(Ntop | u)

1HDN: p =10 1-66 6-78 7-60 14-85 15-55 —14.67 -3.5
22-80 23-47 30-68 3443 38-61

1HDN: u =8 1-66 2-71 9-58 14-85 23-47 -13.00 ~4.1
30-68  34-43  38-61 - - :

1HDN: u=7 1-66 9-58 14-85 2347 30-68 -11.77 -3.8

34-43  38-61 - - -
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Supplementary Table 4.2-17. FKBP12 (Alpha-Beta)

PDB File Contacts inP() InP(Ntop | 1)

1FKB: n =10 2-76 10-70 16-106 19-50 21-107 -14.92 -5.5
26-39 31-97 56-81 71-102 78-95

1FKB: 1 =8 3-75 10-70  19-50 21-106 26-38 —15.71 -5.7

31-96  56-81 77-96 - -

Supplementary Table 4.2-18. Muscle and Common Type AcP (Alpha-Beta)

PDB File Contacts inP(u) InP(Ntop |u)

1APS: p=8 6-55 7-85 15-76  17-44  27-94 -16.00 -6.2
35-52  40-98  53-89 - -

2ACY: u=10 6-55 7-85 15-76 18-45 25-70 -16.02 -6.2
27-94  35-52 40-98 53-89 62-80

2ACY:pu=9 2-55 7-85 14-77 18-45 25-70 -15.65 —-6.9

27-94  33-57  40-97  52-89 -

Supplementary Table 4.2-19. N-terminal domain of protein L9 (Alpha-Beta)

PDB File Contacts InP(i) InP(Ntop | u)

iDIViu=7 1-21 3-38 6-14 7-35 15-51 -9.32 -3.7
18-44  27-37 - - -

1DIV:u=86 1-23 3-39 5-17 8-35 15-51 -8.98 -3.8
27-37 - - - -

Supplementary Table 4.2-20. Spliceosomal U1A & Ribosomal S6 (Alpha-Beta)

PDB File Contacts InP(1) InP(Ntop | 1)

{URN: # =10 3-84  9-89  10-57 16-77 17-52 —14.36 -5.8
22-46  30-42 36-63 43-55 68-83

1URN: p=7  10-62 11-87 15-54 18-78 23-45 -12.40 6.9
37-68  41-58 - - -

1RIS: u=8 366 591 11-84 1258 26-79 -14.72 -5.9

33-71 39-64  44-59 - -

Supplementary Table 4.2-21. C-terminal domain of protein L9 (Alpha-Beta)

PDB File Contacts InP(uw) InP(Ntop | 1)

1DIV:u=9 9-77 16-83  21-49 27-91 31-67 —-12.59 —5.3
39-56 43-56  58-76 69-89 -

1DIV:u=8 9-81 19-86  21-49 25-92 31-68 -13.98 —6.2

39-56 59-75 69-89 - -
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CHAPTER 5

UNDERSTANDING NON-RANDOM PROCESSES IN EARLY

PROTEIN FOLDING
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ABSTRACT

In chapter 4, we demonstrated that the raté of folding for single-domain proteins
can be determined from first principles by assuming that the rate-limiting step in folding
is a random, diffusive search for the native tertiary topology. In this chapter, we examine
two different types of experimental data that further suggest a diffusive folding
mechanism: (i) the ratio of the refolding rates for two single disulphide tendamistat
Variﬁnts, and (ii) the concentration of single disulphide bond trapped intermediates
observed in the folding of Ribonuclease A and BPTI. Using the NTP method developed
in chapter 4, we show that the experimentally determined folding rates for these variants
behave according to a diffusive folding mechanism. In the refolding of RNase A and
BPTI, disulphide bonds further apart in sequence are less frequently observed than those
that are closer in sequence, also expected by the diffusive model. However, there are a
few disulphide pairs that do not behave in strict accordance with a diffusive mechanism.
These outliers provide clues about the nature of non-random interactions that can bias the
predominantly diffusive search for the native state. In Ribonuclease A, the fast formation
of a disulphide bond between residues 65 and 72 suggests that a -turn centered at
residues 68-69 biases the early folding process. In BPTI, the rate of disulphide formation
is anomalous for a triad of disulphide bonds, where 14-30 forms very slowly, while 14-38
and 30-38 both form very quickly. Using the NTP procedure to investigate this non-
random behavior, we find that these anomalous rates of disulphide bond formation are
caused by the fast formation of a hydrophobic core and a propensity for amino acids with

large, branched side-chains to lie in the extended, 3-strand region of the Ramachandran

plot.
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INTRODUCTION
In chapter 4, proteins composed of predominantly helical residues all folded
significantly faster than expected according to a diffusive mechanism. Folding rates for
beta-sheet proteins and o/f3 proteins with low overall helical content were consistent with
the diffusive mechanism predicted rates. This suggests that helix formation represents an
early local interaction that increases the rate of folding. In this chapter, we investigate

the nature of other non-random processes present in early protein folding.

METHODS AND DISCUSSION
TENDAMISTAT: A SYSTEM WITH PREFORMED DISULPHIDE BONDS

One protein that does not contain any helical residues is the 74-residue ot-amylase
inhibitor tendamistat. This small protein contains two native disulphide bonds, one
between cysteines 11 and 27, the other between cysteines 45 and 73. In order to
understand the effect of preformed tertiary structure on the rate of protein folding,
Kiefhaber and coworkers have measured the folding rate of wild type tendamistat (both
disulphides), as well as each of the two possible single disulphide variants (prepared
using site directed mutagenesis) [1]. They find that the rate of the refolding reaction is
decreased by 30-fold for the C45A/C73A mutant and 8-fold for the C11A/C27S mutant.

Given their results, it is interesting to ask whether they are adequately explained
by a random, diffusive folding mechanism. The wild-type tendamistat contains two
disulphide bonds. The mutants each possess one disulphide. In a diffusive mechanism,
the rate of folding will increase as the number of accessible topologies decreases. This

behavior is indeed observed in the Kiefthaber work, since the double-disulphide wild-type
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variant folds faster than either single-disulphide mutant. Thus, qualitatively, the results
of these experiments are described by the diffusive folding mechanism.

We can also ask if the quantitative results of these experiments are accurately
described by a diffusive folding mechanism. In the experiments, the variant lacking the
long disulphide loop between residues 45 and 73 folds 3.75 times slower than the variant
that lacks the short loop between residues 11 and 27.

The NTP method developed in chapter 4 can be used to determine if this folding
rate reduction is expected given a diffusive folding process. Using NTP, it is possible to
determine the probability of forming loop 45-73 when loop 11-27 is already formed,
P(45-73|11-27), and conversely, the probability of forming loop 11-27 when loop 45-73
is already formed P(11-27|45-73). The ratio P(11-27|45-73)/P(45-73|11-27) represents
the fraction of topologies that the variant with the 45-73 loop intact will not have to
search compared to the protein with only the 11-27 loop intact. Thus, in our diffusive,
topology sampling model, this ratio should be similar to the experimentally determined
rate ratio of 3.75.

Using the NTP method, we find that P(11-27]45-73)/P(45-73|11-27) = (61.0/17.4)
= 3.51. This correlates well with the experimental results, substantiating the topology-

sampling model for tendamistat.

DISULPHIDE BOND INTERMEDIATES: RNaseA and BPTI
Experiments that monitor the concentration of single disulphide bond
intermediates observed in the folding of proteins containing two or more disulphide

bonds provide a unique fingerprint for determining other examples of local or non-local
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phenomena that bias the early search for the native topology. In a truly random folding
process, one would expect the following:

i) The various disulphide intermediates will collect with kinetic
concentrations that decrease as the sequential distance between the
participating cysteine residues increases, and

(i1) there will not be a bias towards those disulphide bonds that are found
in the native state over those that are not present in the protein’s native
state.

For the two systems where there is a complete body of experimental data,
Ribonuclease A (RNase A) and BPTI, points (i) and (ii) are satisfied by nearly all of the
possible single disulphide pairings. However, there are some deviations from random
behavior present in these systems. These deviations provide unique clues about the
nature of non-random interactions that can bias a protein’s search for the native state.

Bovine pancreatic RNase A is a 124-residue protein with four native disulphide
bonds: [26-84], [40-95], [58-110], and [65-72]. Scheraga and coworkers have studied the
formation of disulphide bond intermediates in this system for more than 20 years [2]. In
1999, they finished the complete characterization of the distribution of all one-disulphide
bonds in the two-disulphide bond intermediates in the oxidative refolding of RNase A
[3].

The first important finding from this work is that all of the 28 possible disulphide
single disulphide pairs were found in the two-disulphide intermediates, demonstrating
that all of the non-native disulphide bond pairs were accessed in the early folding events.

Thus criteria (ii) above is satisfied in the RNase A system.



124

The second important finding in this work lies in an analysis of the observed
single-disulfide bond concentrations. Two loop systems are simple enough that an
expression for the expected entropy change for an arbitrary distribution of two disulphide
loops in a protein may be calculated. In their work, Scheraga and coworkers use the
following expression [4] for the entropy change for adding two disulphide loops, which is
based on a random flight statistical mechanical model [5, 6] and on the Wang-Uhlenbeck
expression for multivariate Gaussian distributions:

AS°=R(-6.94 + 6 In(a) — 1.5 In|C| ), (1)
where R is the gas constant, a is the length of a chain element, and |C]| is the determinant
of C, where C is a 2x2 matrix whose elements are Cj = (a%) x (# of shared residues by
loops i and j). Thus equation (1) yields the entropy of formation for any set of
independent or overlapping pair of disulphide bonds. After determining the entropic cost
of forming each of the 210 possible two-disulphide bond intermediates for RNase A
system, they calculated the expected distribution of the 28 possible single disulphide
bonded species (includes the 4 pairs observed in the native state, as well as 24 non-native
disulphide possibilities). Since equation (1) only considers the entropic contributions and
is based on a random-walk model, these calculated distributions represent what would be
expected if a random search process represented the rate-limiting step in the folding
process.

Figure 5.1 on the following page shows the results of Scheraga and coworkers
study. Since equation (1) suffers from a systematic error as the length of the disulphide
loop size increase, the y-axis is the ratio of the experimentally determined percentage

occupancy to the theoretically predicted percentage occupancy, while the x-axis is the
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loop length for each of the 28 single disulphide loops. Thus in this plot, deviations from
ideal diffusive behavior exist for points that lie significantly off of the diagonal line. For
this data set, there is only one such point, the native disulphide between residues 65 and
72. It lies well above the line, implying that its occupancy is much higher than predicted.
Scheraga and coworkers suggest that this is due to an energetically favorable P-turn
centered at residues 68 and 69. This appears to be one mechanism that reduces the

number of accessible topologies during early folding.
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Figure 5.1 The ratio of the experimental to theoretical abundance for each possible
disulphide bond as a function of the sequence length of the disulphide loop. The four

native disulphide bonds are labeled.
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It is very interesting that the occupancies for many of the non-native disulphide
intermediates lie above the best line through the data, while two of the four native
disulphide configurations lie below this line. Furthermore, each and every one of the
possible 28 single disulphide configurations are observed with occupancies above or near
their diffusion predicted value. This confirms that a large and possibly complete set of
topologies is accessed during the rate-limiting search for the native topology.

Another system whose single disulphide intermediates have been thoroughly
characterized is BPTI (bovine pancreatic trypsin inhibitor). BPTI is a 58-residue protein
with three native disulphide bonds, residues 5-55, 14-38, and 30-51. Since there are six
total cysteines, 15 one-disulphide bond intermediates are possible. As in RNase A, all of
the single disulphide intermediates are observed during BPTI folding.

By monitoring the glutathione-mediated disulphide bond formation of the
intramolecular disulphide bonds in BPTI, Dadlez and Kim [7] have determined the
effective concentration, Ce, for all 15 single disulphide bond intermediates for BPTL
The data they obtained is shown below in Table 5.1.

In addition to the Dadlez and Kim experimental data, Table 5.1 also contains the
results obtained by applying the NTP method to this preblem. In the column labeled
“P(Diffusion),” we have the results of the NTP method where a purely diffusive
mechanism has been assumed. An ensemble of 10,000 unconstrained BPTI chains was
grown, and the probability of placing the residue pairs from column one within 9.5A (a
bond order of 3) of one another was determined (a 0.05 implies that 0.05 x 10,000 = 500

chains satisfied the 9.5A restraint),
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Cysteine Pair | Cer | P(Phobic Core) | P(Core+Stiff)
5-14 16.9 0.11 0.08
5-30 4.3 0.03 0.02
5-38 6.9 0.04 0.04
5-51 6.2 0.01 0.01
5-55 6.3 0.00 0.01
14-30 4.1 0.05 0.01
14-38 27.0 0.22 0.13
14-51 7.5 0.04 0.02
14-55 6.3 0.03 0.02
30-38 17.1 0.06 0.07
30-51 12.3 0.03 0.04
30-55 6.5 0.01 0.01
38-51 9.5 0.03 0.06
38-55 8.1 0.04 0.03
51-55 14.0 - -

Table 5.1 The experimentally observed effective concentrations of different single
disulphide intermediates in BPTI. The experimental data lies in column “Ce,” while the
NTP predictions for the probability of formation lie in the final two columns (see text for
description). The final disulphide, 51-55, is only 4 residues long and is therefore too

short to obtain a reliable value using the NTP method.

Since only the single-disulphide bonded intermediates were considered in this
study, Dadlez and Kim were able to assess which disulphide bonds were deviating

significantly from ideal diffusive behavior simply by plotting Ces versus length. They
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found that pair 14-38 forms much faster than expected, while the pair 14-30 folds much
slower.

In a follow-up to this original work [8], Dadlez studies a series of 24 BPTI
mutants and found that eight non-polar or aromatic sidechain mutations (I18A, I19A,
Y21A, F22A, Y23A, F33A, V34A, and Y35A) all decrease the rate of folding. Because
of this, Dadlez proposed that the fast formation of hydrophobic core is responsible for the
increased presence of the 14-38 intermediate.

The NTP method can be used to understand the effect that early hydrophobic core
formation has on the rate of formation of the various disulphide intermediates. The data
in Table 5.1 under the column heading “P(Phobic Core),” is the probability of forming
each of the various disulphide pairs when residues 16 and 35 are constrained to be within
10A of each other (only chains that meet this condition can contribute to the probability
values). This approximates the existence of a crude hydrophobic core that contains or is

adjacent to both residues 16 and 35. This data is plotted versus Cess in Figure 5.2.
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Figure 5.2 Predicted P(Phobic-Core) versus experimental Ceg.
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Figure 5.3 Predicted P(Core+Stiff) versus experimental Cesr.
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From Figure 5.2, we see that while the addition of the hydrophobic core restraint
capably accounts for the observed increase in the 14-38 intermediate, it does not account
for the observed decrease in the 14-30 intermediate. The fact that the 14-38 pair and the
30-38 pair both fold very quickly rules out the possibility that the observed decrease in
the 14-30 pair is due to an experimental artifact caused by the local environment of either
CYS14 or CYS30. However, Dadelez has not proposed a mechanism for the slower than
expected formation of the 14-30 pair.

Examining the amino acid sequence between residues 18 and 25 in BPTI reveals
that five out of the seven residues are large branched or aromatic sidechains. Street and
Mayo [9] have demonstrated that the increased propensity for Threonine, Isoleucine,
Valine, Tyrosine, and Phenylalanine residues to be involved in 3-sheets is due to the van
der Waals interactions between the large sidechains and the local backbone.

The data in Table 5.1, under the column heading “P(Core+Stiff),” is the
probability of formation of the various 4disulphide pairs when the hydrophobic core
restraint described above is imposed, while residues 19-23 are extended, like a stiff -
strand. This stiffness criterion is accomplished in the ensemble growth by limiting the ¢
torsion angle to 145, 165, 180, 195, and 215 degrees, instead of the usual 0, 60, 120, 180,
240, and 300 degrees. The data in this column is plotted versus Cg in Figure 5.3. The
correlation for the best line through the data is very high (R=0.96), and the nonrandom

behavior of pairs 14-30 and 14-38 are adequately explained.
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CONCLUSION

In this chapter we have demonstrated how the NTP method can be used to probe
and understand non-random processes that occur during early protein folding. Analytical
estimates for the entropy loss during disulphide formation become inaccurate when the
number of bonds exceeds one. Furthermore, analytical estimates cannot address even
simple important processes, such as f-turn catalysis and space-filling effects. The NTP
computational approach provides a unique tool capable of taking into account many

different physical aspects of the folding reaction.
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CHAPTER 6

THE SIMPLEST EMPERICAL FOLDING MODEL:

THE HELIX-BIASED DIFFUSION MODEL
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ABSTRACT

Chapters 2-5 have focused on the development and application of a first principles
calculation whose foundation is a diffusive, topology-sampling model for protein folding.
In this final chapter, we leave the first principles calculation to present a very simple
Helix-Biased-Diffusion (HBD) empirical model that is also rooted in the topology
diffusion model. This new empirical model accurately predicts the foiding rate for all
small two-state folding proteins, helical and non-helical alike. Furthermore, we show
that this empirical model also applies to larger, multi-domain proteins as well. The rates
for these larger, more complex systems can be determined once the rate-limiting folding
unit (RLFU) is identified. Finally, we analyze the “contact order” empirical model for
predicting folding rates, an alternative empirical model that has recently received

significant literature attention.
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INTRODUCTION

In 1991, Jackson and Fersht [1] measured the first observed two-state folding rate
for a small protein, Chymotrypsin Inhibitor 2. Since then, two-state folding rates for
more than 20 other proteins have been determined, providing sufficient rate data to begin
testing quantitative aspects of proposed folding mechanisms [2].

The first attempt to make some sense of all of the available two-state folding rate
data was made in 1998 by Kevin Plaxco, then a post-doc in David Baker’s laboratory at
the University of Washington [3]. They reported a statistically significant correlation
between the natural log of the two-state folding rate, In(ky), and a measure of the native
state topological complexity, which they referred to as relative contact order (CO).
While there were only 12 distinct proteins whose rates had been determined at the time of
their publication, their ability to fit the rate date with a simple empirical equation
suggested that the mechanism underlying the folding of single-domain proteins could be
very simple.

Relative contact order is defined as the average sequence distance between all

pairs of contacting residues normalized by the total sequence length:

N
CO=—3As,,. (1)

where N is the total number of contacts, AS;; is the sequence separation between
contacting residues i and j, and L is the total number of residues in the protein (here
residues are considered in contact if they have two non-hydrogen atoms within 6A in the
native structure). Figure 6.1 shows the correlation between the log of the folding rate,

log(ky), versus relative contact order for a set of 24 two-state folding proteins [4].
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Figure 6.1 The log of the folding rate, log(ks) versus the relative contact order for 24, 2-

state folding proteins. The correlation for the best line through the data points is 0.92.
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While relative contact order can be described very simply, e.g., “the average
sequence distance between all pairs of contacting residues normalized by the total
sequence length,” no one to date has been able to relate this empirical equation to a
fundamental, physical folding mechanism. Fersht [5] has recently made some simple
arguments that relate relative contact order to chain entropy; however, no direct
‘correlation to a physical folding mechanism has been made.

In chapter 4, proteins composed of predominantly helical residues all folded
significantly faster than what would be expected given a diffusive mechanism. This
suggests that helix formation represents an early local interaction that biases the folding
and dramatically increases the rate of folding. In chapter 5, we analyzed the
concentration of disulphide intermediates in BPTI and RNase A in order to find other
non-random processes that affect the predominantly early diffusion search for the native
protein topology. Our analysis of the available experimental studies suggests that early

B-turn formation plays a role in RNase A folding, while early hydrophobic collapse and

[B-strand stiffening play a role in BPTI folding.

~ Now that we have determined that the physical processes that play a role in the
rate-limiting step in protein folding, it is interesting to see if we can develop a simple
empirical model based on the physics that can accurately predict the rate that a protein

will fold. This chapter is devoted to developing and testing such a model.
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METHODS AND DISUCSSION
THE HELIX-BIASED DIFFUSION MODEL

Given the results of our studies in chapters 2-5, it is evident that the most
dominant term in our empirical estimate should represent the process of random,
diffusive sampling to find the native topology. In chapter 2, we used the Generic Protein
model to demonstrate that this diffusive process is represented by a linear dependence
between the log of the folding rate, log(ks), and the length of the protein. Thus, our
empirical rate estimate should have the form:

In(ks) = A + B(Nges), (2)
where N is the number of residues in the protein, A is a positive constant representing
the maximum folding rate, and B is a negative constant so that the rate of folding
Increases as the number of residues increases. This simple equation contains the essence
of a random diffusive search process for the native topology. Figure 6.2 shows a plot of
the log of the experimentally observed rate, In(ks), versus protein length for 21, 2-state
folding proteins (data from Table 6.1). The three predominantly helical proteins are

labeled in the plot by the letter H. There is a strong correlation for the 18 § and o/

proteins (R=0.83).
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Figure 6.2 Experimentally observed In(ks) versus length for 21, 2-state folding proteins.

Each of the three predominantly helical proteins is labeled with an “H.”
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From Figure 6.2, it is evident that proteins with significant helical content fold
faster than a random, diffusive rate-limiting mechanism would suggest. Thus, it will be
necessary to add a term to our empirical estimate if we expect our model to be applicable
to all two-state folding proteiﬁs. We will add a single term to equation (2) above to
accomplish this:

In(k) = A + B(Nres)+C(Nhelix), 3)
where Npeix 1S the number of helical residues in the protein, C isa positive constant so
that the folding rate increases as the proportion of helical residues increases, and Nig, A,
and B are the same as in equation (2). Based on our studies in chapters 2-5, equation (3)
now contains the two most important physical processes that are present in the rate-
limiting step of protein folding. Table 6.1 below shows the experimental In(k¢) rate data
for the 21 two-state folding proteins for which rate data is available. Note that we have
omitted four proteins that are present in the relative contact order plot in Figure 6.1.
Cytochrome bss; was omitted because it contains a heme [6], and apo-myoglobin, villin
and spliceosomal protein Ul A are omitted here but considered below because they
exhibit kinetic “rollover” (slower than expected folding rates at low denaturant

concentrations).
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PDB Nres Nhelical Nsheet Exp. In(ky)
2AIT 74 0 30 4,20
1CSP/1IMIC 68 0 35 6.04
1TUD/INYF 65.5 0 23.5 345
1PKS 84 0 26 -1.05
ITWIT/1TIT 91 0 40 1.94
1FNF/1TEN 91 0 49 0.26
2GBl1 56 13 22 6.26
1COA 64 11 14 3.51
1PBA . 80 20 9 6.80
1ARR 53 26 0 9.27
1UBQ 76 12 24 4.63
2PTL 62 12 24 4.22
1HDN 85 32 26 2.70
1FKB 107 8 41 1.46
1APS 98 18 36 -0.42
1DIV(Cterm) 93 27 35 1.15
1DIV(Nterm) 56 19 11 6.58
1LMB 80 59 0 10.23
2ABD 86 49 0 6.62
1IMQ 86 45 0 7.31
2PDD 43 19 0 9.68

Table 6.1 Experimental Data for 21, two-state folding proteins.

In Figure 6.3, we plot the HBD predicted In(ks) versus experimental In(ky) for the
21 two-state folding proteins. The predicted In(k¢) values predicted by the Helix-Biased-
Diffusion model are determined by equation (3), with A= 13.93, B= — (.14, and C =
0.084. The correlation obtained for the best linear fit is R= 0.87. On average, the

experimental folding rates are predicted within a factor of e'* =~ 3.3,
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Figure 6.3 HBD predicted In(ks) versus experimental In(ky) for the 21 two-state folding

proteins in Table 6.1.
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From Figure 6.3, it is evident that the HBD model fits the known experimental
data very well. The coefficients A, B, and C in equation 3 behave just as expected. The
coefficient B is a negative constant, and C is a positive constant approximately one half
the magnitude of B. Thus. In this simple model, the average “freedom” of a helical
residue is half of that of a non-helical residue.

Given the success of the HBD model, it is also important to ask whether or not a
correction for sheet residues should be included as well. Modifying equation 3 to include
the effects of possible 3-sheet effects yields:

In(ks) = A + B(Nreg)+C(Nhelix)+D(Nsheet)- 4)
Again, the coefiicients A, B, C, and D can be determined by linear regression analysis.
The coeeficients A, B, and C behave as before, with A= 13.84, B= — 0.13, and C =
0.075. The coefficient D is very small in magnitude compared to B and C (D= — 0.015),
suggesting that the presence of sheets in the final folded state is not as important for
determining of folding kinetics. In Figure 6.4, we plot the In(k¢) predicted by equation
(4) versus experimental In(ks) for the 21 two-state folding proteins. The correlation for
the best line through the points is R= 0.88, similar to what was obtained without thé

additional degree of freedom, D.
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Figure 6.4 HBD+Sheet predicted In(k;) versus experimental In(k) for the 21 two-state

folding proteins in Table 6.1.
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Now that we have demonstrated that the physically satisfying HBD model
accurately predicts two-state folding rates, it is important to address why the relative
contact order model can also seemingly be successfully applied to rate prediction. There
are two primary aspects to the HBD model:

(1) folding rate decreases as length increases, and

(i1) folding rate increases with increasing helical content.
The empirical equation for relative contact order accidentally captures both of these
elements. First, since relative contact order is equivalent to the average sequential
distance between contacts in the final folded protein structure, longer proteins naturally
have the possibility of forming longer-range contacts, which steadily drives the relative
contact order lower with increasing protein length, despite the presence of protein length
in the denominator. Second, the i to i+4 hydrogen bonds in helices naturally reduce the
contact order by contributing many terms of AS;; = 4. Because of this, all predominantly
helical proteins will be predicted to fold very quickly by the relative contact order model.

Despite the accidental similarity between relative contact order and the HBD
model, there is one class of protein where the models will produce decidedly different
results: long heiical proteins. As noted above, the relative contact order model predicts
that such proteins will fold quickly. However, if the proteins are long enough, the HBD
model predicts that they will eventually begin to fold slower, despite the high helical
content. Since most two-state folding proteins are reasonably short, there are no helical
proteins in the set that are long enough to fold relatively slowly. Plaxco et al. [4] include
deoxymyoglobin is included in their set, but the presence of the heme prevents the

experiment from starting from an unfolded state [7]. Recently, Cavagnero and Wright
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have shown that apomyoglobin folds much more slowly [8], at a rate that is closely
determined by the HBD model.

Given the success of the HBD model for predicting two-state folding rates, it is
important to ask whether or not the model can predict the folding rates in three-state
folding systems. Such systems are often characterized by “roll-over” in their plots of
folding rate versus denaturant concentration as the concentration approaches zero. Thus,
the two-state extrapolation to zero denaturant concentration in these systems will
overestimate the actual folding rate of these systems. However, for many three-state
systems, the error due to roll-over is not significant and is less than the average error of
the HBD and relativ¢ contact order predictions. Thus, we expect that if the large three-
state protein are folding by the same overall mechanism as the small, two-state folders,
the HBD model should be able to predict their folding rates as well.

In order to accurately predict the folding rate for proteins that exhibit roll-over in
their chevron plots, it is necessary to define the concept of a rate-limiting folding unit
(RLFU):

The rate limiting folding unit in a protein consists of the regions of

sequence expected to compete during the folding process for hydrophobic

burial in the native structure’s largest hydrophobic core.

Consider the example of a 150-residue protein comprised of two independent
domains, where the first domain is 100 residues, and the second domain is only 50
residues. The 100-domain protein will naturally have the larger hydrophobic core. Since

the 50 residues in the separate domain are not expected to compete for the larger
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hydrophobic core, the number of residues competing for this core is expected to be 100
and not 150, the RLFU for this protein is 100 residues.

In order to apply the HBD model to multi-domain proteins and proteins with
modest levels of roll-over in their chevron plots, we will replace the total number of
residues in the protein N with the number of residues in the RLFU, Nripy. Table 2
shows experimental rate data along with the HBD predictions for 16 multi-domain or
three-state folding proteins. Figures 6.5 and 6.6 show the native structures of the 12

proteins with an RLFU that is smaller than the entire protein (NrrLy < Nies).

PDB Nrrry Nhetical Niheet Exp. In(kg)
1URN/IRIS 65 14.5 27.5 5.73
2VIK 82 26 25.0 6.80
1BTA 89 37 16 4.61
1HNG 98 0 54 2.22
1BNI 85 12 29 2.56
1HEL 102 33 8 1.32
1JON 100 42 26 0.83
2RN2 123 41 44 -0.51
1PHPN 109 34 19 -0.65
1PHPC 156 66 25 -3.51
3CHY 129 58 22 0.99
1BKS 113 56 16 1.83
1IET 80 6 6 3.00
1ENF9/10 76 0 42 2.06
IMBC 156 113 0 1.67
IADW 93 0 44 0.69

Table 6.2 Experimental data for 16 multi-domain and three-state folding proteins who

exhibit modest rollover in their chevron plots.
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Figure 6.5 The rate-limiting folding units from 6 of the 12 proteins in Table 6.2 with

Nriru< Nres. (A) IADW. (B) 1BKS. (C) 1BNI. (D) 1FNF10. (E) IHEL. (F) 11ET.
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Figure 6.6 The rate-limiting folding units from 6 of the 12 proteins in Table 6.2 with

Nriru< Nps. (A) 1JON. (B) 1IPHPC. (C) 1IPHPN. (D) IRIS. (E) 2RN2. (F) 2VIK.
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Now that we have assigned the RLFU’s, we can add the 16 new proteins to our
previous set of 21 smaller, two-state folding proteins. In Figure 6.7, we plot the HBD
predicted In(ks) versus experimental lh(kf) for the entire 37 protein set. The correlation
obtained for the best line fit is R= 0.88. These results suggest that the HBD model
coupled with the concept of rate-limiting folding units capably predict the folding rates of

three-state and multi-domain proteins.
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Figure 6.7 HBD predicted In(ks) versus experimental In(ks) for the 37 two- and three-

state folding proteins considered in Tables 6.1 and 6.2.
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CONCLUSION

We have demonstrated that the Helix-Biased Diffusion model can predict the
folding rates for all known two-state folding proteins‘, as well as three-state folding
proteins with only modest rollover in their experimental chevron plots. By introducing
the concept of rate-limiting folding units, we have successfully extended the Helix-
Biased Diffusion folding model to large, multi-domain proteins. This represents the first
successful treatment of folding rates in these larger systems and the first model

generalized to include all classes of proteins.
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