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LABSTRACT

PART I. A simple verietionelly-besed method for cel-
culeting electronic wevefunctions of exclted states, the
improved virtuel orbital (IVO) method, is developed in this
work. Calculetions ere présented for H,O0, 02, €0, and N2.
While the IVO method gives limited accurescy in the treat-
ment of velence exclted states, the -description of Rydberg
states is very useful. For O, the theoretical prediétion of 8.70 eV
" ground state to the *r_ (1r_—

g g g
3scg) Rydberg state facilitated discovery of this transition in electron

(v' = 2) for the transition from the °%
impact spectra at 8.65 eV (v/ = 2).

PART II. The N, T, snd V stetes of ethylene hesve been
studied with the Hartree-Fock (H-F) end configurstion inter-
ection (CI) technicues as & function of C-C bond distance
eand the twist angle between methylene groups. The czlcu-
lated rotetionel berrier for the N stete is 67.2 Kcel/mole,
in good sgreement with the experimentelly derived ectivetlion
energy of 65 Keczl/mole for cis~-trans isomerizztion of
1l,2di-deutero ethylene. The meximum in the N stete curve
lies 1.4 Kcel/mole above the minimum of the triplet state (T)
curve. Both H-F snd CI calculetions show thet the V state
of plznar ethylene has a more extended cherge distribution

then the T stete. This cherge distribution contracts as the

methylene grouvs ere twisted from the plener geometry.
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Correletion terms included in the CI celculetions contrect
the cherge distribution consicderebly from its H-F size.
£ modified Frenck-Condon »rincinle for internal rotation
suggests that the mexlimum absorption observed exverimentally
does not correspond to verticel excltation for the N—=>V
transition.

PART III. A Generalized Vslence Bond method combining
the computational trectezbility of the usuzl MO-~SCF approech
with the conceotusl adventages of s velence bond picture is
proposed. The GVE method has been espplied to celculation
of potentlel curves for CH2 in the 381; ¥Al, end lBl states.
These calculetlons predict thst the 3Bl curve may cross the
lAl curve neer the minimum for the lAl stete. A study of
the ring openlng of cyclopropene predicts @ berrier helght
of 61 Kcel/mole for cls-trens isomerizstion, in good agree-
ment with the experimentally determined activation energy
of 65 Kecel/mole for 1,2 di-Geutero cyclopropsne. 4n inves-
tigetion of dietomic hydrides gnd fluorides in the GVB
plcture gives e consistent view of the energy levels and

one-electron energies of these molecules.
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I. INTRODUCTION

In the usual closed shell Hartree-Fock approximationl we solve
the equation

B . = €0, (1)

for the N/2 orbitals ¢; corresponding to the N/2 lowest eigenvalues &-
These occupied orbitals are used to form a Slater determinant wave-
function for the electronic ground state of an N-electron molecule.
This approximation usually gives a good déscription of one-electron

propertiesz’ 3, 4such as dipole moments and of equilibrium geometries.

5
Equation (1) also gives a complete set of orbitals orthogonal to the
occupied orbitals. These unoccupied or virtual orbitals, calléd
regular virtual orbital (RVO) in this work, are often used to construct
excited state wavefunctions in which an occupied orbital is replaced by
a virtual orbital. 1 As is well known? such wavefunctions often lead

to poor approximations for excited state Wavefunctions. However,

the computational convenience and ease of interpretation offered by
this approach are very attractive features. This paper presents an
improved virtual orbital (IVO) method in which the Hartree- Fock
operator in (1) is modified to give variationally correct

virtual orbitals for excited state wavefunctions. 7 Calculations by

this method are no more time consuming than the usual RVO calcula-

tions. We investigate the excited states of H,0, O,, N, and CO.



O. APPROXIMATE EXCITED STATE WAVEFUNCTIONS

The Hartree-Fock (H-F) approximation8 is the basis for many
useful concepts in quantum chemistry. The Hartree-Fock-Roothaan
(HFR) equa.tions1 have extended the application of the H-F method to
quantitative calculations on polyatomic molecules. One-electron

properties are accurately predicted by the H-F description. 2-4

In
addition the H-F wavefunction is a convenient starting point for more
accurate treatments of molecular electronic structure. For these
reasons the H-F wavefunction for the ground state of a molecule
provides a good standard for comparison for an excited state wave-
function.

For a closed shell system with N electrons the H-F wavefunction

is
OB - ALY ()95 (2) - - gy (1) « - g (V)] W

where A is the antisymmetrizer and y, is a one-electron spin orbital

involving spin and space coordinates of electron (i). The spin orbitals

Vi in (1) are eigenfunctions of the operator gHF
HF, _
H™ = €3 @)
with eigenvalues €.., where
ii N
B =h+ ) (- K)) )

j=1



4
The operator h is equal to the kinetic energy (-3 v?) plus nuclear

attraction terms (VN). The coulomb and exchange operators are

defined by

Jj%!/i =] l,U]*(l) 1/r g, IPj(l)dTltlli(Z) (4)
and

K]wl =] l,l/]*(l) 1/1'12 ‘Pi(l)dﬂwj(z) A (5)

The Hamiltonian operator (H) for the many-electron system has been
taken as containing kinetic energy, nuclear attraction and electron-
electron coulomb repulsion terms. The nuclei are assumed to be fixed.
Atomic units are used in the kinetic energy operator defined above.
Equation (2) has not only the N solutions present in (1) but other
unoccupied or virtual solutions. The solutions of (2) form a complete
set of one-electron spin orbitals and the wavefunctions of the form of
(1) constructed using these solutions form a complete set of functions

for description of the wavefunction of an N-electron system. The

ab"

functions like (1) will be described as LET " where orbitals ij« -«

have been replaced by ab - in (1).
We now give two pertinent theorems for closed shell H-F wave-~
functions. For an (N-1) electron system we make the approximation

that orbitals y; for i = 1 to (N-1) inthe wavefunction ¥ (N-1) are un-

HF

changed from ¥~ (for N electrons). The function ¥(N-1) is of the

same form as (1) but involves one less orbital sz. The total energy

HF HF by

E(N-l) of ‘I’(N-l) is related to the energy E™°~ of ¥



E(N"l) = EHF - €NN (6)

where ey is the eigenvalue of the orbital YN removed to form
‘I'(N-l)' This is Koopmans' Theorem.9

10

Brillouin's theorem =~ states that

HF
<'~1r'.j‘ H-Ej¥" ) = [ud* He"Fdar dr, - - -dry- - rdry =0 (7)

for all functions \IJ?. Now we make a perturbation expansion of

the Hamiltonian H as

H=Hy' + (H-Hy)= 70 4 5 (8)

H=) B¥G) + @- Y viF()
i i

HF

where Hy (i) is the H~F Hamiltonian acting on electron i. Then the

exact wavefunction for the system ¥ becomes
¥ = \PHF+\P(1)+ A (9)
If we expand \If(l) as

=Y wdcd+ ¥ cabwff+--- (10)
i, a i>j,a,b
only the Cab coefficients are non-zero. This is because only one
and two-electron operators are present in H and H(l) and because
of (7). One consequence of this theorem is that Hartree-Fock wave-
functions for closed shell systems predict one-electron properties

accurately through first order.
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The spin orbital "Ui may be expressed as a product of a space
orbital ¢j and a spin function 0; = or B. Requiring double
occupation of the orbitals ¢ j leads to the Restricted Hartree-Fock
method (RHF). For open shells we imply the RHF method when
we refer to H-F.

Koopmans' Theorem suggests that the excited state wavefunction

Yex might be constructed by replacing spin orbital ¥ by 1[/& or

Uy = \Iff’ (11)

This is called the virtual orbital method. 1 In order to avoid con-
fusion we will refer to this method as the regular virtual orbital
(RVO) method. The advantage of this method is that it requires very
little effort beyond obtaining the ground state wavefunction. In \If?'

HF is singly occupied. Then,

one space orbital ¢>j(zpi = quoi) from ¥

if \If?‘ has spin projection Ms = O a linear combination of functions

¥ and \If'fl' must be used to give a pure singlet (with plus sign) or
i i

triplet state:

T L (12)

where \Ira; contains y, = qu o and Y, = qbbﬁ and \If?' contains
11/11 = ¢]B and ll/ai = ¢ba'

The energies of the singlet ES and triplet ET excited states relative

to ground state energy EG S are



E -J

T = Egs " i * €aa " Jia
(13)

ES=ET+2 Kia

where
Jia = <”l’a,"lil"l/a) =l Y *I g, dr
Kip = WplK;lwp) =1 w* K v, dr

The RVO method is discussed in Section II of Appendix A.

The excited state wavefunction may be represented as a sum of

terms \If? with coefficients C?‘:

¥y =) % CY (14)

i,a :

The optimum coefficients C? are determined by equations derived
from application of the variational principle. This approach has
been used by Pariser and Pa,rr11 in pi electron treatments of the
spectra of aromatic molecules. We shall refer to this approach as
the single excitation configuration interaction method (SECI).

We may add more terms to the expansion in (14) to produce an
extensive configuration interaction (CI) wavefunction. For con-
sistency a CI calculation is then necessary for the ground state.
This approach has recently been used by several authorslz’ 13 with
good results. However, the CI procedure is rather time-consuming

and complicated for general use.



Another approach would be to calculate a H-F wavefunction for
each excited state separately. This approach is also rather expensive
if a number of states are to be examined. We expect that the orbitals
occupied in the ground state will be only slightly altered in an excited
state wavefunction. The main effect of the SCF procedure should
be to optimize the new orbital ¢ . This suggests that we might keep
all the orbitals from the ground state H-F wavefunction fixed and
solve a variational equation for ¢ a

The orbital qba would satisfy the equation

¢

a2 (15)

IVO, _ ) _
H ¢a—[h+2 (2Jj Kj)+J.1:hKi]¢>a—e
j#i

a

with the restriction that ¢ 3 be orthogonal to all occupied H-F
orbitals. The sign before K, is determined by the spin of the excited
state, plus for a singlet and minus for a triplet. Since HIVO does not

depend on ¢a we solve this equation once and obtain the wavefunctions

v

i These IVO wavefunctions satisfy the conditions.

||y =0
(16)
@?u|e"Fy = 0

The energy of the ground state was divided in (6) into a part €; dependent
on qbiand a part independent of orbital ¢i‘ Similarly the eigenvalue

€ contains all parts of the energy expression for the excited state
involving (Pa’ The total energy of the excited state \I""; is
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HF

a_ -
Ef=E € + € (17)

a

and the excitation energy for this state relative to the ground state

at the same nuclear geometry is

AE =€_ =€, (18)

Using the Hylleraas-Undheim-MacDonald separation theorem, 14

we may show that the Nth IVO solution \If?.gives an energy which is

an upper bound to the exact energy of the Nth state. This insures that

IVO wavefunctions can provide proper representations of excited

states. 15
Equation (16) suggests that we could view the IVO method as a

restricted form of the SECI method in which all replacements \Ifll)

of only one orbital are allowed. If the CI wavefunction is

_© b.b
Tyo =2 G ¥
b

then the IVO orbital is

¢vo =1 C %
b

16 carried out CI calculations on Rydberg

Lefebvre-Brion and Moser
levels in diatomic molecules which were equivalent to the IVO method.
Most of these calculations used a minimum basis set of Slater orbitals.
The one-electron equation (1 5) provides a more efficient computational

method, however.
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In actual calculations a finite basis set is used. The OCBSE

17

method™ " is used to produce solutions of (15) which are orthogonal

to the occupied orbitals. The matrix equation to be solved has

the form

E}VO Q}VO =3 g:\IVO E (19)
where

H,= (X, 15VOx )

and

Sy = Xplx)

are respectively the IVO Hamiltonian matrix and the overlap matrix
over the basis functions used. The virtual orbitals from the solution
of equation (1) in our basis set form a complete set of functions
orthogonal to the occupied orbitals and to each other. Then we trans~
form equation (19) so that it is in terms of the RVO basis. We
diagonalize the transformed Hamiltonian to get the IVO solutions and
transform them back to the original basis. The equations for this

procedure are

- RVO ,IVO ~RVO
H =) Cha Hpy G
137

Elgl = egl

IVO _ RVO
Cve B Z Cva C.;Jc
a
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where indices u and v refer to the original basis and indices a and

b refer to the RVO used.
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III. IONIZATION POTENTIALS FOR IVO

Two methods of calculating excitation energies have been used

in our calculations. The excitation energy is

AE =€, - € (20)

for a transition from orbital ¢i to IVO orbital ¢a. The eigenvalues
€, and €; come from the IVO and ground state SCF calculations
respectively. However ei,the Koopmans' Theorem estimate of the
ionization potential,is often in error. For Rydberg states which
resemble the positive ion with an extra electron at a large distance,
this error would be transferred to the excitation energy. We
may simply correct the excitation energies by using the experimental
value for the ionization potential for €;- The method withthe
Koopmans' Theorem va ue for ei(KIP) will be used for valence
states. |

Experimental ionization potentials (EIP) will be employed for
Rydberg states. In using an experimental ionization potential we
must choose between adiabatic and vertical measurements. For
our purposes the vertical transition values are correct since the
excited state calculations are carried out at the equilibrium
geometry for the ground state. In addition, our purpose is to

18,19

locate the maximum intensity of transitions. The vertical, adiabatic

é,nd calculated ionization potentials needed for our calculations
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are listed in Table I. Since Rydberg states involve an ion-like core,
we investigated construction of the IVO Hamiltonian with orbitals
from the SCF wavefunction for the corresponding positive ion.
Results for Rydberg states were little affected by this change but
valence states were raised in energy since the ion orbitals are
inappropriate for valence excited states. We use ground state orbitals
in all calculations reported in this work.

Several points should be clarified before describing the results
of calculations. The IVO method can be extended easily to cases
where the ground state wavefunction is an open shell HF wavefunction.

- 0 require no modifications in the pro-
IVO

In O, the excitations 17 g

cedure. The expressibns for H and AE are unchanged. For

the excitations 17 “-—6 several ionization limits are possible so that

€; must be replaéed by a correctly computed value for the particular
ionization potential to be used. For ln—7 transitions in all diatomics

IVO

several different states result; a different operator H is used

for each of these states.
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1IV. CALCULATIONAL DETAILS

A number of calculations on various molecules have shown that
the contracted Gaussian basis set denoted [ 4s3pld/2s1p] developed

20 gives very good results for molecular equilibrium

by Dunning
geometries and one-electron properties. This basis uses four s,
three pand oned function on each first row atom (Li-Ne). Two s and
one p function are used on each hydrogen atom. For this work our
main interest centered on Rydberg states; since polarization
functions (d on first row atoms and p on hydrogen with large expo-
nents) are not important for Rydberg orbitals we did not use them
in our calculation.

A good description of Rydberg orbitals does require basis
functions with low eiponents having appreciable amplitude far from
the molecule. Tests on the oxygen atom indicated a simple procedure
for choosing basis functions well enough so that optimization of orbital
exponents could be avoided. From knowledge of typical quantum defects
~1 for ns and 0.5-0. 7 for np, we pick an effective 3s, 3p and 3d Slater
orbital exponent. The 2 term d Gaussian function set was taken to

£it21

a 3d function of exponent { = 1.0 since a quantum defect of 0. 10~
0.0 is typical for d Rydberg levels. Since s and p functions were
already present in the basis set,only the low exponent functions
from an expansion of a 3s or 3p Slater orbital were needed.

The requirement that n = 4 Rydberg orbitals be moderately well |
described complicated the selection of basis functions. The exponénts

of the set of four s and three p functions are given in Table II. The
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energies for the ground state SCF wavefunctions for all molecules
considered are given in Table III. The bw exponent basis functions
were not included for the ground state calculations.

This set of diffuse basis functions was added on each first row
atom. For this reason the basis set is effectively much larger
for N,,CO, and O, than for H,O. The main result is that more
Rydberg states are adequately described for the diatomic molecules.
However, even for H,O the 3s, 4s, 5s, 3p, 4p and 3d orbitals appear
to be adequately described.
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V. RESULTS FOR H,O

All .known22 excited states of H,O are probably Rydberg states;
for this reason we expect good agreement with experimental results.

In the following discussion experimental numbers appear in parentheses
following the theoretical result. Information on low-lying (below

11.5 eV) states is summarized in Table IV. A typical electron impact
spectrum23 is given in Figure I. _

The lowest singlet excited state is JLB1 (lb, —3sa,) at 7.30 (7. 50)
eV. The spectrum shows a broad continuous absorption peaking at
7.50 eV. As expected SCF potential curves calculated by Miller g’c_il_.z5
for this state go smoothly downhill to H(ZS) + OH(ZH).

The next observed singlet state is the 'A;(3a,~3sa,) state at
9.59 (9.75) eV. A long series of bands corresponding to bending in
the upper state are observed.

Walsh's rules26 predict the equilibrium geometry for the upper state

will  be linear or nearly linear. Calculations by Horsley and
Fink27 also predict a linear geometry.

Two singlet states involving 3p orbitals are found near 10 eV.
Both the ‘B, (1b,~3pa,) state at 10.04 (10.00) eV and the 'A,(1b,~3pb,)
state at 10,16 (10.17) eV produce sharp peaks in the optical absorption
and electron impact. spectré,. The equilibrium geometries for these

28

states are probably quite close to that of the ground state. The

'A,(1b,~3ph,) state at 9.04 eV has not been observed experimentally.
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Results for higher states are given in Table V. We note that
the 4s and 3d orbitals are ordered correctly but the excitation energy
of the 1b,~4s state is underestimated by 0.36 eV.

Since triplet states are more difficult to observe experimentally,
calculations may supply important new information about these sfates.
First we discuss the (1b,~3p) triplet states. The A (1b,~3pb,) state
is predicted to be at 9.71 eV while the °B, (1b,~3pa,) state is found
at 9.97 eV. This ordering is reversed from the singlet state because
of the larger exchange integral of the 1b, orbital with the 3pb, orbital
than with 3pa,. Recent electron impact studies by Trajmar, Williams,

and Kuppermann23

have identified a triplet state producing a single
sharp peak at 9. 81 eV similar to the singlet peaks at 10.00 and 10.17
eV. From our result we conclude that this peak may have contri-
butions from both the B, and °A, states. The °A, (1b,~3pa,) state
is located much lower in energy at 8.68 eV. No experimental informa-
tion about this state has been found.

The °A,(3a,~3sa,) state at 8. 69 eV would be difficult to observe
due to the presence of bands from the corresponding singlet state.

SCF calculations on this statez’7

show that its equilibrium geometry
is linear.

The lowest triplet state is calculated to be the 3B1(1b1-~3 sa,) state
at 6.65 eV. The continuous absorption from the corresponding singlet
state would probably prevent observation of this state. SCF calcula-

25

tions“" suggest that the potential curve goes smoothly downhill

toward HCS) + OHPII). This dissociation limit lies 5.5 eV above
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the ground state. The limit HZ(IZ';) +0 (*P) is 5.03 eV above the

23,29,30 jjoong

ground state of H,0. Recent experimental evidence
shows a broad weak absorption peaking at 4.5 eV (onset at 3.8 eV)
with characteristics of a triplet state. No state calculated in this
work is close to this energy region. Further, the state must be
bound with respect to both dissociation limits mentioned. The
experimental procedure eliminates any negative ion as the state
responsible.

Goddard
responsible. Strong hydrogen bonding in the H,O H20+ core might

31 has speculated that transitions of the dimer may be

lower the energy of the (1b,~3sa,). Rydberg state sufficiently

to produce the 4.5 eV triplet state. Several previous theoretical
calculations have been carried out on water. Harada and Murrell32

used the excited states of the neon atom as a starting point for a

33

perturbation treatment. La Paglia® used the oxygen atom as the

basis for a perturbation calculation. In both cases the success of

the calculations was limited. Lin and Duncan34 used a one-center

model in a very approximate calculation. As mentioned above, SCF

calculations have been carried out on the 1B1(1b1->3sa1) state by

25

Miller et al®® and on the 3A1 and ‘A, states from the (3a,~3sa,)

transition by Horsley and Fink. 217
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VI. RESULTS FOR O,

A short list of low-lying states of O, is given in Table VI and

35,36

the electron impact spectrum is given in Figure 2. The

ground state of O, is 32; with the H-F configuration

(Log)*(10,)*(20,)*(20)*Bay) (Lm) (L )’

35

35 +

The A, state at 0.97 eV"" and the 'Z;, state at 1.67 eV°" have the
same H-F configuration. The configuration
3 3
cor (1m P(1m )
i ise to the =, *A_and 'ZT_- 35,36
gilves rise to the 2y y & u states near 6 eV."™? The

*Tu  state from this configuration is responsible for the Schuman-
Runge bands and for part of the broad continuum extending from 7
to 9 eV and peaking near 8.6 eV.35’ 36

The valence states 3"g and lﬂg correspond to the 30g—* 11Tg
transition and are expected to have repulsive potential curves. 87

Since no orbitals unoccupied in the ground state wavefunction
are involved, the IVO method is not appropriate for these valence
states. ‘In the presept study we focus on Rydbert states.

The first ionization potential for O, at 12. 54 eV involves removal

of anelectron from the ng orbital. Removal of the 7, orbital gives
several ionization potentials,the lowest of which is at 16,93 eV

for the 41ru state of 02+. We consider only Rydberg states corres-

’ponding to transitions from the lng orbital. The lowest of these
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states is the 31rg(111g-—3sog) state at 8.70 eV (8. 62)?’8 Transition to
this state is not allowed by dipole selection rules, but the electron
impact spectrum in Figure 2 shows several sharp peaks superimposed
on the 7 to 9 eV continuum. The vibrational spacing and Franck-
Condon factors obtained from analysis of the spectra agree with those
of the positive ion.

The 30y orbital calculated for the (17 g-—3cru) transition is a
valence orbital. Its excitation energy,‘ 10. 85 eV, is calculated using
the theoretical value for the ionization potential (KIP). CI calcula~

39 and SCF calculations by the author

tion by Schaefer and Miller
indicate that the H-F approximation is poor for this state.

Several states arise from the (1z o 3pn) transition. The 32;
state at 9.91 eV is responsible for tﬁe shafp peak seen at 9.97 eV.
The 32; state at 9. 88 eV is not dipole~allowed but may contribute
to the electron-impact spectra. The °A, state at 9. 81 eV is prob-
ably responsible for the very weak feature recently observed near

39

9.8 eV in electron impact spectra.®” The other states ‘T at 9.73

eV, Ay at 10.01 eV and *Z," at 10.10 eV probably have not been

observed. The °r (I - 3po,) state at 10.45 eV produces the sharp

g
peak at 10.29 eV. The corresponding singlet state JL7ruis calculated

to lie at 10.93 eV.

In Figures 3 and 4 the behavior of the differential cross-~section
as a function of scattering angle from electron impact s’cudies36 is
shown for several transitions. The 9.97 eV feature behaves in a

more complicated way than does the 10.29 peak. Contributions to
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the differential cross section of the 9. 97 peak from the 324{1 state
could explain this difference. Lindholm40 has suggested that the
9.97 eV and 10. 29 eV peaks might both belong to a vibrational
progression for the 32‘{1 state. If that were the case the differential
cross sections for the two peaks should behave in a similar way.

A listing of results for higher states is given in Table VII. We
will not discuss these states in detail.

Calculations using model potentials have been carried out on O,

41

by Betts and McKoy. A discussion of their work on O,, N,, and

CO is deferred until Section VIII.
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VII. RESULTS FOR CO

For CO we examined excitations from the 50 and 17 orbitals to
both valence and Rydberg orbitals. Results for low-lyiﬁg states
are shown in Table VIII. Figure 5 is the electron impact spectrum
of Trajmar et al. 42 _

The valence states of CO are not located as well as the Rydberg
states are. This illustrates the limitations of the simple IVO method.
The lérgest error is 0. 63 eV for the =~ state. The result of these
errors is incorrect ordering of the 1'rr, 32", and °A states. In a

3

CI calculation Lefebvre~Brion et al. 4 obtained better results for

valence states, but results for Rydberg states were not as good. In

44 used a CI method to

a later calculation Lefebvre~-Brion and Moser
get IVO orbitals in a successful study of the 50~no and 5¢--n7
Rydberg states. They concluded that the state at 11.52 eV (exptl)
called E' =" was actually the 'r (50=3pn) state. Our results are

in agreement with this assignrhent as ié the interpretation of experi-
mental results given by Lindholm. 45

Their suggestion that the F'r (50——3d1r)‘ state at 12.37 eV might
be a (bo—~4s0) transition is not in agreem‘ent with Lindholm's ﬁndings45
or our results,

We note that the position of the (50-3d) and (50~4s) states are
reversed in our calculations. This is an example of the general
tendency for states involving s orbitals to have excitation energies
below the experimental value and for those states involving d orbitals

to be overestimated.
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Lindholm?®

has suggested that the (17-3po) and (17-3pn) transi-
tions have an irregular intensity distribution in which the fir-st band
is the strongest. This behavior is ascribed to pre-ionization. In
recording these experimental results in Tables VII and IX, we have
corrected the adiabatic value in the usual way as though the v’=2 band
were really the strongest.

The full listing of results is in Table IX,
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VIII. RESULTS FOR N,

The nitrogen molecule is the largest component of the earth's
atmosphere; its electronically excited states play a major role in the

46,48 Our main

chemistry and physics of the upper atmosphere.
concern here is to provide information on the position of Rydberg
singlet and triplet states. In Figure 6 we show an electron impact
spectrum for N, taken by Trajmar and Brinkman.49A short table of
IVO results for low-lying states appears in Table X while Table XI
contains a complete listing.

For the valence states the IVO method does not work especially
well. The errors made for these states by the IVO description are
not systematic. This result shows the need for a more sophisticated
approach for both N, and CO. However, for Rydberg states the
accuracy of the IVO method is more satisfactory.. In comparison to
the similar calculat‘ions of Lefebvre-Brion and MosersO(LM) the
présent work gives about the same results for n = 3 or n = 4 Rydberg
states, but in contrast to the earlier work higher states seem to be
adequately described in our calculations. The y,, values of LM have
been modified by adding 0. 23 eV for states involving 17 " excitations
to give vertical excitation energies. This permits corﬁparison with
our results,

Carroll and Yoshino52 suggested that several features (the r’,k’,

s’, and h states) are actually vibrational levels of the p’ '=* state.,

From Gilmore's Work53 we see that the potential curve for the valence

-+

1
tate b’
state Z:u

from the excitation (17 u—-lw g) probably crosses the
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o4 at v’ = 2. This perturbation changes the Franck-

3og-—3p curve
Condon factors so that more levels are seen here than were predicted
from the Franck-Condon factors for the ion.

The 30g-» 3p states have been discussed recently by Lindho]m.5 1
The state designated p’ 12; is usually assigned to the band at 12. 94
eV. This would then be the first member of the Rydberg series
(1m e npc”). The corresponding experimentally observed bands are
the Worley-Jenkins series. Recently a peak at 13.21 eV has been

identified as a ‘7 M sta.te52 (from a 30 _—-3p7m M transition). Liﬁdholm

notes that this aésignment is consistegnt with his interpretation of CO
Rydberg states. In addition peaks with an intensity of about 10% of

the v’ = 0 peaks may be found for the v’ =1

vibrational levels of both states as would be expected from the Franck-
Condon factors for the 2'2; state of N2+.

Dressler55 has recently made a deperturbation study of energy
levels in this region of the spectrum. He concludes that both the
1Z)u"'(3(r o 3p0“) and ‘7 U(B Og~ 3pj1 li) states are perturbed by valence
states of the same symmetry. Geiger and Schr'o‘der56 have observed
that the intensity distribution within the vibrational progression of the
valence b’ 12‘,; (1w > in g) state is also irregular. This is shown to
result from homogeneous perturbation by the 12‘1"'(3 Oy~ 3pou) and
by the 1)3: (3o g-—4po u) states.

The final result is that the v’=0 levels for these states from IVO
calculations are predicted to be at 13.04 eV(12.91 eV) for the g

H
(3og-—ep1r) and at 13.17 eV (12.935) for thelzg-3porg——3p0“) state.
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Thus the theoretical ordering is correct but the splitting is over-
estimated. The 11ru (1w u-3scg) state is correctly placed well above
these states at 13.5 eV(13. 345 eV).

Because of the higher ionization potential of the lﬂu orbital, only
the 11ru-—3s and 11ru-— 3p states are below 15 eV in our éalculation.
The svtates arising from the 17 u 3p transition are not seen in absorp-
tion from the ground state but.have been studied in emission. Our
results are not in conflict with the assignrhentssl’ 47 for the ‘A o
'z é, or 'm g although differences between calculated excitation energies
and experimental values are somewhat larger than usual.

47

Mulliken™ " has suggested that the h 12; state at 14,21 eV corres-

p_ohds toa (11ru~ 4dog) transition. Betts and McKoy41 find the first
dau orbital to be bound by 2.70 eV for an excitation energy of 14.22 eV.
However, this corresponds to a quantum defect of 1.75 for a 4d orbital
or 0.75 for a 3d orbital. Such quantum defects seem quite unreason~-
able in comparison to the usual values of 0.1~0.0 encountered. Our

50 predict values

calculations and those of Lefebvre~Brion and Moser
of 15.41 eV and 15. 53 eV for the excitation energy (v’=1) of this state
(i.e., a quantum defect of about 0.0, a more reasonable value). We
note also the suggestion of Carroll and Yoshino52 discussed above

that the h 12; state was a vibrational level of the 12"{1 (30g-— 3pou) state.
We conclude that the result of Betts and McKoy 2! was an artifact of

the simple method employed.
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IX. CONCLUSION

From the discussion above we conclude that the IVO method can
provide useful information about excited states. For O, the results
provided a guide for interpreting several features of the electron impact

spectrum. For CO and N, general agreement was found with the similar
43, 50

41

calculations of Lefebvre-Brion and Moser.
The model calculations of Betts and McKoy™~ appear to give some
useful information about molecular Rydberg states but splittings between
po and pr orbitals are much smaller than those calculated here or
those observed experimentally. Their result that for N, the 4dog
orbital is more bound than the 4po e orbital is more bound than the
4p0’u orbital is probably due to the presence of valence character in
4dog.

The articles of Lindholm¥0s 49 57

present an interpretation of
experimental information about Rydberg states based only on a few
concepts about Rydberg states. Since these concepts are similar to
the ideas used in the IVO method, itisnot surprising that the results
are usually in agreement with his conclusions. We feel that
Lindholm's interpretations would be enhanced by simple IVO calcula~
tions.

Our assessment of the IVO method is that used in conjunction
with experimental evidence, it can be a useful tool in understanding

Rydberg excited states of atoms and molecules.
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Table 1. Ionization Potentials for H,0, O,, N, and CO

Exptl. (eV)? Calculated (eV)d
State 0-0 Vertical KT
H,07(B,) 12.62 12.62 13.78 1b, 1.16
H,0"(CA,) b  14.35° 15.43 3a, 1.08
02+(21rg) 12.08 12.54(n=2)® 14.93 1, 2.39
0" (*r,) 16.12 16.93(v=6)  16.05 1r
N (23 15.59 15,59 17.05 3<}g 1.46
N, Cry) 16.73 16.96(v=1)  16.97 lm .01
Nz 18,78 18.78 21.02 20,  2.24
co"éz™) 14.00 14.00 15.18 50 1.18
co*Cr™) 16.54 16.91(»=2)  17.60 1ir . 69
co*Ez ) 19.65 19.65 21.72 40 2.07
a

All experimental data from D. W. Turner and D. P. May, J. Chem.
Phys., 45, 471 (1966), Ref. 18, except for H,0".

Not observed.
C D. C. Frost and C. A. McDowell, Can. J. Chem.,36,39(1958)Ref. 19,
From the present work (using Koopmans Theorem).

Vibrational Level of ion used.



Table II.

Symmetry

S

X,¥,2

2 2 2
Xy¥Y,%,

Xy, Xz, Yz

34

Basis Set for IVO Calculations

Exponent
Carbon Nitrogen
0.0408 0.059
0.0102 0.015
0.00255 0.0037
0.0006375 0. 00092
0.0255 0.037
0.006375 0. 0092
0.00159 0.0023
0.036358 0.036358
0. 010769 0.010769

Oxygen

.08
.02
.005
.00125

o O O O

o

.05
0.0125
0.003125

0.036358
0.010769
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Table III. Ground State SCF Energies

MOLECULE ENERGY
H,0 ‘A, -176. 0105
0, 32; -149. 5756
N, lz; -108. 8877
co ‘'z* -112. 6969
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Table IV. Low-Lying Excited States of H,O

N Dipole Excitation Energy(eV)

State Transition Allowed Calc Exptl
°B, 1b,~4a, (3s) 6.68

‘B, 1b,—~4a, (3s) Yes 7.30 7.50
3A, 1b,~2b, (3p) 8.68

A, 3a,~4a, (3s) 8. 69

1, 1b,~2b, (3p) 9.04

A, 3a,~4a, (3s) Yes 9.59 9.75
A, 1b,~2b, (3p) 9.70

’B, 1b,~5a, (3p) 9. 96 9. 61"
'B, 1b,~5a, (3p) Yes 10. 04 10.00
‘A, 1b,~2b, (3p) Yes 10.16 10.17
°B, 3a,~2b, (3p) 10.48

3B, 1b,~ 6a, (4s) 10. 51

'B, 1b,~ 62, (4s) Yes 10. 64 11.00
A, 1b,~2b, (3d) 10.79

A, 1b,~3b, (3d) 10. 87

°B, 1b,~Ta, (3d) 11,05

'B, 1b,~7a, (3d) Yes 11,07 11.11
'B, 3a,~2b, (3p) Yes 11.13

A, 1b,~3b, (3d) 11.16

°B, 1b,—~8a, (34) 11.16
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'B, 1b,~ 8a, (3d) Yes 11.17  11.11
A, 1b,~ 3b, (ed) Yes 11.17 11,11
3A, 1b,~ 4D, (4p) 11,18

A, 1b,~4b, (4p) 11.21

°A, 1b,~4b, (4p) 11,32

°B, 1b,~9a, (4p) 11.40

'B, 1b,~9a, (4p) Yes 11,42

1A, 1b,~4b, (4p) Yes 11.48

a

b Reference 23.

Reference 58 except for the 9. 81 eV triplet state.
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Table V. Complete IVO Results for H,O

State Trans KIP EIP Explt
°B, (T) 1b,~4a, 7.84 6.68
1b,~ 5a, 11.12 9.96
1b,~ 6a, 11,67 10. 51
1b,~Ta, 12,21 11,05
1b,~ 8a, 12,32 11,16
1b ,~9a, 12,56 11,40
1b,~10a, 12.78 11,62
1b,~11a, 13.10 11,94
1b,~12a, 13,33 12,17
1b,~13a, 13.170 12,54
'B, (8)  1b,~4a, (4s) 8.46 7.30 7.50
1b,~ 5a, (3p) 11,20 10.04  10.00
1b,~6a, (4s) 11.80 10.64 11,00
1b , ~Ta, (3d) 12,23 11.07 11,11
1b,~ 9a, (4p) 12,58 11.42  11.37
1b,~10a, (5s) 12. 82 11.66  11.75
1b,~11a, 13.16 13.00
1b,~12a, 13.39 12,23
1b,~13a, 13.77 12,61
A, (T) 3a,~4a, 9.717 8.69

3a,~5a, 12. 60 11.52



TA(S)

3a,~6a,
3a,~Ta,
3a,~8a,;
3a;~9a,
3a,~10a
3a,~1la
3a,~12a,
3a,~134a,
3a,~4a,
3a,~ 521.1
3a,~6a,
3a,~Ta,
3a,~8a,
3a,~9a,
3a,-10a,
3a,~11a,
3a,~12a,
1b,~2b,
1b,~3b,
1b,~4b,
1b,- 5b,
1b,~ 6b,
1b,~ 2b,
1b,~3b,
1b,~4b,

39

13.
13.
13.
14.
14,
14.
15.
15.
10.
13.
13.
13.
13.
14.
14.
15.
15.
. 84
11.
12.
12,
13.
10.
12,
12,

40
88
a7
16
46
75
01
34
67
00
59
89
97
30
o4
05
15

95
34
80
61
20
03
37

12,
12,
12,
13.
13.
13.
13.
14,
.59
11,
12,
12,
12,
13.
13.
13.
14,

10,
11.
11.
12,
.04
10,
11,

32
80
89
08
38
67
93
26

92
51
81
89
22
46
97
07

79
18
64
45

87
21

9.75



3B1

1b,- 5b,
1b,~ 6b,
3a,~2b,
3a,—~3b,
3a,~4b,
3a,- b,
3a,~ 6b,
3a,—~2b,
3a;,~3b,
3a,~4hb,
3a,— 5b,
3a,~ 6b,
1b,~2b,
1b,—~3b,
1b,~4b,
1b,—- 5b,
1b,-6b,
1b,~2b, (3p)
1b,~3b, (3d)
1b,~4b, (4p)
1b,~ 5b,
3a,~2b,
3a,~3b,
3a,~4b,
3a,~ 5b,

40

12. 83
13. 64
11.56
13. 54
14.00
14. 44
15.19
12.21
13. 80
14.07
14. 60
15.25
10. 86
12.32
12.48
13.18
13.72
11.32

- 12,33

12.64
13. 52
12,76
13.97
14.21
14,99

11. 67
12.48
10.48
12.46

12,92

13.36
14.11
11.13
12.72
12.99
13. 52
14.17

9.170
11.16
11.32
12.02
12.56
12. 56
11.17
11.48
12.36
11.68
12.89
13.13
13. 89

10.17
11.11
11.49



3a,~6b,
B, 3a,~2b,
3a,~3b,
3a,~4b,
3a,~ 5b,
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15.39
12. 82
13.98
14.24
15.06

14.31
11.74
12,90
13.16
13.98

2 Reference 58.



Table VI. Low-lying Rydberg States of O,

42

o Dipole Excitation Energy

State Transition Allowed Calc Exptl
Sng 11Tg-—40g (3s) 8.70

lng 17 o~ 50g (3s) 8.81
'z, l’fg‘ 2151 (3p) 9.73
sAu lﬂg-— 27, (3p) 9.81
32u+ lﬂg~ 2w, (3p) 9.88
Ty ln,~2m, (3p) Yes 9.91 9,97
lAu 11rg—- 2m (3p) 10.01

RN 1m,~2m, (3p) 10.10
‘7, 17 g-4oru (3p) Yes 10.45 10.29
3 T, 1n e~ 3ou(va1ence) Yes 10.85
e o5
.8 g g :

T, 117g-— 4cu 10.93
i -
R, pye
3zg+ 11rg-. 21fg 11. 07
3>:u' 11}g- 21}g (3p) 11- 07

g g Tu ‘

31( . I’T o~ 60g 11.08
n . ln,~ 6o, 11.09
1Ag Imy~ 2, 11.09
lzg‘f lm =27, 11.11
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11T - 80g

ir -—477u (5p) Yes
17

1
17
in
1w

1r

- 4,51
- 41ru
- G&u Yes
- Gou
- 411u

- 41ru

g9 03 Q. U3 U3 O3 09 O

11T g~ 4’fu
lr-To, (4d) Yes
1r-7 Gu

11}-» 3m, (valence)

11.
11,
11,
11,
11,
11,
11,
11.
11,
11,
11,
11,

74
79
79
79
79
79
80
80
80
87
92
96

Reference 40.
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Table VII. Complete IVO Results for O,

Excit
State Trans KIP EIP Expt1?
l‘n'g (S) 17;g-.40g 11.20 8.81
lr,~50, 13,27 10. 88
la,~ 6o, 13.48 11,09
im~T0, 14.04 11,65
ln,~ 80, 14,13 11.74
lmy~90, 14,51 12,12
, 17y~ 30, (valence) 11,96 9.57
11rg-4ou 13.32 10.93
Im,~50, 13.96 11,57
17~ 60, 14.18 11.79
1z~ 70, 14.31 11,92
17,80, 14.56 12.17
317g ir,~40, 11.09 8.70
lmg=50, 0 13.25 10. 86
17,~60, 13.47 11.08
im~To, 14.03 11.64
im,~ 8o, 14.13 11.74
3 lmy~90, 14.51 12,12
Ty 1T{g- 30, (valence) 10.85 8.46
1m,~40, (3p) 12,84 10.45  10.29
17,~ 50, (3d) 13. 82 11.43



3%

17 ~ 60, (4p)
17 -—7ou (4d)

FERERL)

im_~—~ 80u (5p)

0w

17 -—Zn‘u

=]

17 -—31ru

uQ

17 --41}u

UQ

ir —~ 51ru

9Q

1T -—21T g

lﬁ -~ 37

(=B ]

, g
Img~dmg
17 --21ru

S =]

17 - 3'rru

!

17 ——41ru

o

Ir_— 5

o

1# - 27

w0

17 ~3%

17

0

~ 47

[ =B ]
uQ

17 -—211.r

17

Q. 0
[~

17 _—~4m,

uQ

lﬁ - 51ru

gQ

17 -2

s}

17 -3
17

17

e

~47

Q@ o Q. 0q
1 o]

~2n

a

45

14.18
14. 26
14. 51
12.27
13.72
14.19
14.58
13.46
14.10
14. 62
12.49
13.79
14.19
14.90
13. 50
14,12
14.67
12.12
13.68
14.18
14.48
13.43
14.09
14. 60
12.20

11.79
11. 87
12.12

11.33
11. 80
12.19
11.07
11.71
12,23
10.10
11.40
11. 80
12.51
11.11
11.73
12. 28

11,29
11.79
12,09
11.04
11.70
12,21

9.81



A

17 --31ru

o

111.’ —-471 U

aQ

ir ~ 51ru

17 —21

(=B ]

1r ~37
17 =4z

17

b=}
g 0 R

2

g
=

17 -—311'u

1

g9

- 41ru

1]

1 ~ 51ru

17

4=}

g~ g
17 »4?g

1r --21ru 3p)
In_~31, (4p)
1r_~4m (5p)
lnj *51?u

1w _—27_ (3d)
17 (4d)
17 (5d)

o

17 _-37

114

-3

g Ug Uy O3 oO U9 Uy 09

g

g

~4
g

46

13.
14,
14,
13.
14,
14,
12,
13,
14,
14,
13.
14,
14,
12,
13.
14,
14,
13.
14,
14.

70
18
53
44
09
61
40
(i
19
78
48
11
65
30
73
18
66
46
10
63

11.31
11.79
12,14
11.05
11.70
12,22
10.01
11.38
11.80
12.39
11.09
11,72
12,26

9.91
11.34
11.79
12,27
11.07
11.71
12.24

9.97

Reference 40
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Table VIII. Low-Lying States of CO

Calc. Excitation Energy

State Transition , Ref. 44 Calc Exptla
K 50— 21 (v) 6.20 5,76 6. 22
sp* 121 (¥) 7.87 7.64 8. 25
A 121 (v) 8.77 8. 54 8.96
' 50— 21 (v) 9.37 9. 04 8.74
> 121 (v) 9. 67 9.43 8. 80
‘A 121 (v) 9.92

st 50~ 60 (38) 10.3 10,11  10.39
'zt 50— 60 (35) 11.0 10.85 10,78
et 50— 60 (3p) | 11.4 11.30 11.42
3 50-37 (3p) 11.4 11,37

Yy 50— 37 (3p) 11.5 11.49  11.52
iyt 50— 70 (3p) 11.5 11.51  11.40
szt 50—~ 80 (45) 12.4 12.35

¥ 50~ 80 (4s) 12.6 12.52  12.58
ot 509 (3d) 12,5 12,55

o 5o-~47 (3d) 12.6 12.56

17 50~ 47 (3d) 12.6 12.56  12.37
n 5090 (3d) 12.5 12. 61

*r 50— 57 (4p) 12.8 12.75

Bt 50100 12.8 12.75

7 5057 (4p) 12.8 12.79  12.81



50— 100 (4p)
S50-110
17—~ 60
N;3ﬂ

50—— ilo (4d)
50-120
50-120 (5s)
50— 6
5067 (4d)
50—~ 711;
50T (5p)
5@»130(5p)
50-130
17—~ 60 (35)
50— 140
50~ 140
50— 150
50— 87

50— 8 (5d)
50150
50-160
50—-160
50~170
50-180

1727

48

12.8

12.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
14,

81
13
15
16
18
20
25
26
217
28
29
29
29
36
41
42
43
46
47
47
60
63
85
95
17

12.81

13.19

13.10

13.31
13.29

13.48

13.44
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References 45,49 and 60,

A 737 14.28

A 737 14.34

5" 73T 14.39

yt 15~27 (3p) 14.47  14.44
r 1710 14. 55 |
by 17~10 (3p) 14,59  14.40
15" 17~ 37 14.68

izt Bo-1T0 14. 92

a



Table IX. Complete IVO Results for CO

50

Excitation Energy (eV)

State Transition KIP EIP Exptl.
E 5021 (V) 9.04 7.86 8.74
5037 (3p) 12. 67 11,49  11.52
5047 (3d) 13.74 12.56  12.37
50— 51 (4p) 13,97 12.79  12.81
50— 67 (4d) 14,45 13.27  13.10
50— "Tr (5p) 14, 47 13.29  13.31
50— 81 (5d) 14. 65 13.47  13.44
*r 5027 (v) 5,76 4.58  6.22
5037 12.55 11.37
50— 41 13.74 12. 56
50~ 57 13.93 12.75
5067 14,44 13.26
50~Tn 14.46 13.28
50— 81 14.64 13.46
=" 1727 14. 86 14,17
17~3m 15.37 14. 68
17~ 4n 16.33 15. 64
177~ 5m 16.47 15.78
17~ 67 16. 86 16. 17
17-Tn 16.91 16.22
1781 17.13 16.44



1r—~27 (3p)
1737 (3d)
1747 (4p)
17— 51 (4d)
17~ 67 (5p)
17—Tr (48)
17— 87 (5d)
T - 21r. W)
#-3ﬂ-
ﬁ-¢4ﬁ
-
5»61.

1 Tw

7~ 87
O
727 (v)
ﬂ-—Sﬁ

T ~47
ﬁ*5ﬂ.
n»6ﬁ

7 ~Tn
ﬂ\~8ﬂ’
91
727 (v)

- 3%

51

15.
15.
16.
16.
16.
16.
17.
.92
15,
17

16

16.
16.
16.
17.
17.
.54
14,
16.
16.
16.
16.
17.
17.
.43
15,

16
97
42
85
89
93
23

03

37
85
87
09
49

97
15
36
85
87
08
44

08

14.
15,
15.
16.
16.
16.
16,
.23
14,
15.
15.
16.
16,
16.
16.
.85
14.
15,
15,
16.
16.
16.
16.

14,

47
28
73
16
20
24
54

34
48
68
16
18
40
80

28
46
67
16
18
39
75

39

14.44
15.20
15. 66
15.99
16.17

16.33

8.96

8.80
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n~5£

7~ 67

w—T7

w-Bﬁ

ﬂ*9ﬁ

11;» 21} (V)
737

ﬂ»4ﬁ

7= 5

#—Sﬂ-

o"Tm

7~ 87

7~ 97

iﬂ-— 60 (3s)
1770 (3p)
1780 (45)
17~ 90 (3d)
17100 (4p)
17110 (55)
17—~ 120 (4d)
1&»130(5p)
1r~140
17150

1~ 160

52

16.
16.
16.
16.
17.
17.

7. 64
14.
16.
16.
16.
16.
17,
17.
14.
15.
15.
16.
16.
16.
16.
16.
16.
17,
17.

18
39
86
88
09
51

85
13
32
85
85
07
38
05
28
94
19
46
70
86
92
99
11
21

15.49

15.
16.
16.
16.
16.

6.
13.
15,
15.
16.
16.
16.
16.
13.
14,
15.
15.
15.
16.
16.
16,
16.
16.
16.

70
17
19
40
82
95
16
44
63
16
16
38
69
36
59
25
50
77
01
17
23
30
42
52

8.25

13.48
14.00
15.35

15.66
16.09

16. 17



1r-160
17+170
1&»60
1r—~T0
1#*80
1#»90

17—~ 100
1r—11c
17120
17~130
17140
17150
1&»160
17170
17180
50~ 60 (35)
50~ Tc (3p)
50 - 8¢ (3d)
50~90 (4s)
50-100 (4p)
50-110 (4d)
50— 120 (58)

50130 (5p)

S50~ 140
50— 150

.21
.38
.84
.24
. 86
.18
.44
. 67
.86
.91
.97
.10
.20
.35
.58
.03
.69
.70
.9
.99
.36
.43
.47
.60
.65

16.
16.
13.
14.
15,
15.
15,
15.
16,
16,
16.
16.
16.
16.
16.
10.
11,
12,
12,
12.
13.
13.
13.
13.
13.

52
69
15
55
17
49
75
98
17
22
28
41
51
66
89
85
51
52
61
81
18
25
29
42
47

10.78
11.40

12,58
12,81

13.19
13.29



50— 160
50-170
50— 60
S50-T0
50— 80
50-90
50-~100
50~110
50~ 120
50 =130
50— 140
50—~ 150
50-160
50-170
50~ 180

54

14.
15.
11.
12.
13.
13.
13.
14,
14,
14,
14.
14,
14,
15,
15.

81
10
29
48
53
73
93
28
38
47
59
61
78
03
13

13.
14.
10.
11,
12,
12,
12,
13.
13.
13.
13.
13.
13.
13.
13.

63
92
11
30
35
55
75
13
20
29
41
43
60
85
95

4 References 45, 59 and 60.
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Table X. Low-lying States of N,.

Excitation Energy

State Transition Calc. Ref. 50 Calec. Exptl®
st g ~lr, W) 6.22 7.6°
u u g
A, Ty~ 27y (V) 7.31  8.08
g 3o~ 1m, ) 7.78 7.9
Ty Ty~ 174 ) 8.38 9.4
1Au T~ lng (v) 9.04 10.4
‘ug 30,~1m, v) 9.70 9.2
3zg+ 30,~40, (35) 11.9 12.04 11,88
lzg*" 30,~40, (35) 12.5 12.35 12.26
1y 36, 2m, (3p) 13.0 13.00  ---
my 30g—— 2w, (3p) 13.1 13.04 12.910
3 + .
12 w 30,~30, (3p) 13.0 13.07 12,84
Zy 30,~30, (3p) 13.1 13.17  12.935
Ty Ty~40, (35) 13.23 13.23  ---
8 Ty~ 40, (35) 13.43 13.50  13.345
> g+ 30,~50, (3d) 13.9 13.94 -
'z g‘* 30,~ 50, (3d) 14.0 13.98  oe-
3zg+ 7 ~2m (3p) 14.10
32g+ 30,~ 60, (45) 14. 14
n 30,27, (3d) | 14.9 14.15

30g-— Zﬂg (3d) 15°0, 14.16



M MBI

e

w

@ | g9 0.

j M M A M A A
£+ &

[
™

30g» 60g (4s)
T~ 211u (3p)
T~ 2m, (3p)
T~ 2m (3p)
30 -—4ou (4p)
30,~3m, (4p)
30~ 31 (4p)
30 -4du (4p)
T,~30, (3p)
T~ 2T, (3p)

Q @@ 0 R

|

m o~ 21 (3p)

¥,~30, (3p)

30 »7ag(4d)
30 -»7og (4d)
3o -—31rg (4d)
30 »80g (5s)
30 -31rg (4d)
30 »8org (5¢)
30,~50, (5p)
30,~50, (5p)
30 -—41ru (5p)
30 4w, (5p)
30 ~60, (41)
3o -60u (4f)

0 U3 gg U3 U3 G’ O3 U2 O gq U3 OQ

56

14,

14,
14.
14,
14,

14.
14,
14,

14,
14.
14,
15.

33

(SIS ) B

43
55
72

9
9
9
0

14.21
14.25
14,31
14,38
14,39
14.39
14.41
14. 42
14,55
14.59
14.60
14,60

14.74
14.78
14.79
14.79
14, 82
14.83
14.84
14.85
14. 86
14.88
14.90

14,57

14.41
14.33

14, 27*
14.38

14.85

14.88
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T 3og-— Sju (5d) 14,98
1 -

Zu LA l'irg (34d) 15.00
1

T, 3 og-— 511u (5d) 15.00

2 Experimental values are taken References 46, 47, 56 and 57.
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Table XI. Complete Results for N,

Excitation Energy (eV)

State Trans KIP EIP Exptl
A . Ty~ 21y 14,26 14,25
m 31, 15.73 15.72
m 4Ty 16.23 . 16.22
™~ 5, 16.33 16.32
3Au 7~ 1m (v) 7.31 7.30
Ty~ 27, 15.53 15. 52
Ty 37, 16.16 16.15
T 41rg 16. 56 16.55
1Ag T~ 2m, 14.32 14.31 14,57
m 37, 15.76 15,75
T-4m, 16.24 16.23
w51, 16.36 16.35
‘a, my= 17, (¥) 9.04 9.03
Ty~ 20, 15,55 15.54
7,37, 16.17 16.16
1ru-41rg 16. 57 16. 56
lzg‘“ m,~2m (3p) 14. 60 14. 59
Ty~ 31ru (4p) 15, 87 15, 86
T ~4T 16.24 16.23
7~ 51 16.55 16. 54
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Ty~ 17

gm 0Q

T~ 2r
T.—~37

T 47

£ @ @0

ju-— 27
T._-37

T~ 47

«

-5
Ty~ om

=

T 17

o=

T, -2

=
uQ

T~ 3r

=]

T 47

o}

-2
Ty em

=]

#u" 3"u
Ty~ 41ru
T 51ru

(v)

T~ 17

o

-2
Ty~ 2

QW

-3
L1

w41

«
= o9

T, 2m

Ty~ 3ju
T~ 41ru
Ta™ 51ru

T~ 17 g (v)

15.
16.
16.
17.
14.
15,
16.
16.
15,
15.
16.
16.
14,
15.
16.
16.
.38
15.
16.
16.
14,
15.
16.
16.

6.

42
10
47
47
61
86
25
52
01
83
27
77
39
7
24
37

56
17
58
11
69
22
30
22

15.
16.
16.
17.
14.
15,
16.
16.
15.
15.
16.
16.
14,
15.
16.
16.

15.
16.
16.
14.
15,
16.
16,

14.27



ﬁu-— 27

T~ 3r

@ o 0

T 4

T, 40_(3s)

T~ 50 (3d)

/@ 0

Ty 60 _ (4s)

T~ 7 Oy (4d)

o

L 80g (5s)
Ta™ 90g (5d)

Ty~ 100g

Ty~ 30,
T~ 4 oy
T, 50u
Ta™ 60u
Ty~ 7 0y
Ty~ 80u

T~ 40

]

Ty~ 60

]

T~ To

7

-8
T~ 80

]

T~ Qog
T 100‘g
Tu™ 30y
Ty 4ou

Ta~ 5ou

60

15.
16.
16.
13.
15.
15,
16.
.19
16.

16.
14,

15.
16.
16.
16.
16.
13.
15.
16.
16.
16.
16.
14.
15.
16.

51
15
95
51
36
57
11

45

62
61

81
23

51
83
33
56
08
18
42
60
56
80
23

15.
16.
16.
13.
15.
15.
16.
16.
16.

16.
14,

15.
16.
16.
16.
16.
13.
15,
16.
16.
16.
16.
14.
15,
16.

50
14
54
50
35
96
10
18
44

61
60

80
22

50
82
32
55
07
17
41
59

55
79

22

13.345
15.24
15.38
16.01
16.06
16.35

14.38



T,~ 60,
T 70u
Ty~ 8a,
30 ~40_(3s)
30 _—~50_ (3d)

g
30-»60g(4s)
30 -»70g (4d)
30 -—80g (5s)
30 »Qog (5d)
3o »IOGg
30 »30ﬁ(3p)
30 ——4ou (4p)

30 »Sou (5p)

g o] BOUQ O Uq 0q 03 O} OQ
e

30 -60u

gQ

30 -—7ou

gQ

30 -—80u

']

30 ~40

ga
09

30 —-b50

oQ
]

30_-~60

V=]
L]

30 -~To

vq
ugQ

30 - 80

U
w

30 --90g

o]

30 _~ 100g

]

30 -—3ou

L]

30 -—40u

uQ

61

16.
16.
16.
13.
15.
15.
16.
16.
16.
16.
14.
15.
16.
16.
16.
16.
13.
15.
15,
16.
16.
16.
16.
14.
15.

27
51
81
81
44
67
20
28
56
69
63
88
30
36
59
90
50
40
60
18
25
52
65
53
85

16.26
16.50
16. 80
12.35
13.98
14.21
14.74
14. 82
15.10
15,23
13.17
14.42
14. 84
14.90

15,13

15.44
12,04
13.94
14.14
14,72
14.79
15.06
15.19
13.07
14.39

12,26

12.94
14.33
14.85



62

30,~50, 16.29 14.83
30,~ 60, 16.34 14, 88
30,~170, 16.58 15.12
30,~80y 16. 81 15.35

S 30,~2m, (3p) 14. 50 13.04 13.21
30,~37, (4p) 15, 87 14.41  14.41
30,~ 47, (5p) 16.32 14.86  14.88
30, 5m, 16.46 15.00

lng 30,~1m, (¥) 9.70 8.24
30,~2m, 15. 62 14.16
30,~31, 16.25 14.79
3og~dmy 16. 65 15.19

1y 30,21, 14.46 13.00
30,~31, 15.85 14.39
30,~4m, 16.31 14.85

| 30,~5m, 16.44 14.98

31rg 30,~ 11; g(v) 7.78 6.32
3og——21rg 15.61 14.15
30,~37, 16.24 14.78
30,~4m, 16. 64 15,18

4 Experimental data is taken from References 46, 47, 56 and 517,
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FIGURE CAPTIONS

Fig. 1 Electron impsct energy loss spectrum of

H20 at 53 eV incident energy at a scatter-

ing engle of 20°. Ref. 23.

Filg. 2 Electron impact energy loss spectrum of
02' Refs. 35’ 36’ 388,.
Filg. 3 Differential cross section of 02 as a

function of scettering engle for impact of

20 eV electrons. Eef. 36.

Fig. 4 Differential cross section of O2 as a
function of scattering angle for impact of

45 eV electirons. Ref. 36.

Figs. 5 Electron impect energy loss srectrum for
CO et 20 eV with a 20° scattering angle.

Ref' 42 .

Flg. 6 Electron impact energy loss spectrum for
N, at 40 eV with & 10° scattering angle.
Ref. 49.
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PART II

An Investigation of the N, T,

and V States of Ethylene
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I. INTRODUCTION

The ethylene molecule has traditionally served as a model
for larger conjugated and aromatic hydrocarbons. Its absorption
spectrum has provided a test case for many theoretical
approaches.1 Most of the interest in ethylene has centered on the
triplet state, denoted T,2 and the singlet state, denoted V. These
states have been described as involving a m - #* orbital excitation
from the ground state, denoted N. The energy relationship between
these three states provides the basic empirical information for
most semi-empirical r-electron theories.1

However, ab initio ca.lculationsz"9 have performed poorly
in accounting for the observed absorption maxima in the spectrum.
The usual result is that the excitation energy for the V state is
overestimated by séveral eV. For exainple, the minimum basis set
calculation by Kaldor and Shavitt8 gives 13.2 eV for the vertical exci-
ta.tion energy of the N,'," V transition 1n contrast to the experimental

value1 of 7.6 eV.10 The calculated value of 4.5 eV for the N - T

transition agrees well with the experimental value of 4.6 eV.ll’ 12
A calculation by Schulman _e;t_a_l.6 using a larger basis set pre-
dicted values of 4.2 eV and 9.3 eV in better agreement with
experiment. Even this calculation left much to be desired, how-
ever.

An earlier calculation by Huzinaga13 predicted values of 4.4
and 7.3 eV, in excellent agreement with experiment. This calcu-
lation optimized the size of the #* orbital, a feature not included

in previous calculations. The result of this optimization was that

the 7* orbital for the V state was much larger in extent than the



T2

#* orbital for the T state. The calculated ionization potential was,
however, 2 eV below the experimental value. The calculation by
Huzinaga was apparently ignored by other workers, since it involved
only the 7 electrons. All electron Hartree-Fock calculations by

14 later demonstrated a similar result.

Dunning, Hunt, and Goddard
In this work the 7* orbitals for the T and V states were very
different, having expectation values of (X®) of 2.7 and 42.1 atomic
units. The conclusion reached in this Work was that the Hartree-
Fock description of C,H, required a more expanded basis set than
formerly used; previous predictions of much higher excitation
energies for the V state were primarily a result of restrictions in
the basis set used. Employing a flexible basis set led to a predic-
tion of 4.22 eV and 8.28 eV for the T and V state excitation
energies.

Traditional idea.s1 about the V state had éuggested that it
did not involve an expanded or Rydberg orbital. Experiments‘l’s’15
on the absorption spectrum of C,H, in liquid or solid rare gases
or in nitrogen gas at high pressure suggested that the V state was
not an expanded or Rydberg state. Under these experimental con-
ditions the N - V transition was little affected (as valence states
usually behaved16) rather than shifted to much higher energy as is

the case for Rydberg states.16

and McKoyl'7 asserted that the extended 7* orbital was an artifact

A later theoretical study by Basch

of the H-F method.
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Recently Buenker, Peyerimhoff and Ka.mmer18 made a study
of excited states of C,H, in which they suggested that the vertical
transition energy may not correspond to the experimental absorp-
tion maximum. They noted that a strong dependence of the elec-
tronic transition moment on molecular geometry would cause this
deviation from the Franck-Condon principle. A more recent paper
by Buenker, Peyerimhoff and Hsu19 suggests that a transition to a
3p Rdeerg state which is not dipole aliowed for planar C,H, plays
an important role for transitions to non-planar ethylene.

The present work was undertaken to achieve several goals.
First the value of the rotational barrier for the ground state N
and the relative position of the T state potential were needed for a
better understanding of cis-trans isomerization processes.20

The second goal was a improved description of the V state
and its potential surface. We wished to explain not just the ver-
tical excitation energy and the form of the V state wavefunction for
the planar molecule but to show what vibrational modes were im-

portant in the observed spectra.

II. COORDINATE SYSTEM AND NOTATION

For planar ethylene we adopt the convention of Merer and
Mulliken3 that the z axis passes through both carbon atoms and
that the x axis is perpendicular to the molecular plane. The 7

orbital ¢, has the form
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¢r N Pxa * Pyp

where p <A is a p function on carbon A and belongs to the symmetry

type by,. The symmetries of various orbitals and states of planar

ethylene are shown in Table I.

When the CH, groups are twisted with respect to each other,
the inversion symmetry is lost and b,, and bZg belong to the same
symmetry type b,. At a twist angle of 90° (perpendicular CH,
groups) the symmetry types b, and b, merge to form an e two-
dimensional irreducible representation of the point group D,q. In
the following we discuss three orbitals, 7, 7*, and 3pCH. As
shown above, the 7 orbital for planar ethylene is a plus combina-
tion of p functions 6n each center. For twisted ethylene we desig-
nate 7 orbitals to be plus combinations of two p functions, each
perpendicular to the CH, group on which it is centered. The 7*
orbital involves a minus combination of the same p orbitals. The
3pCH orbital is a plus combination of p orbitals in the CH, planes.
The notation 3pCH indicates that this orbital is actually a 3p
Rydberg orbital, while CH indicates that the orbital extends beyond
the CH bonds in the CH, plane.

The geometry of the CH, groups was kept fixed with the
HCH angle at 120° and the C-H distance at 1.07 A. For the
ground state equilibrium geometry a C-C distance of 1.35 A was
used. These values were used in several previous calculations.6"7
Three kinds of geometry changes were explored: C-C stretching,

twisting the CH, groups relative to each other, and wagging one
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or both CH, groups. In the latter motion the hydrogen atoms on
one end are rotated about an axis which is parallel to the H-H

line and passes through the carbon atom.

III. EXPERIMENTAL INFORMATION

The observed optical absormption from both the N - T and

3,1,12 &

N - V states shows a long progression of bands.
the N - T transition is spin forbidden, less information has been
obtained about these bands. However, the intervals between the

N - T bands, about 990 cm-l, are now generally accepted to be
due to internal rotation of the CH, groups about the C-C bond.3
The minimum for the T state curve occurs for perpendicular CH,

3 places this minimum about 57 kcal/

groups. A recent estimate
mole above the planar N state energy. Since the N and T states
both have a H-F configuration °-~(2e)2 at the perpendicular geo-
metry, Hund's rule suggests that the T state will lie below the N
state. The distance between the two curves at this geometry may
determine the role of the T state in photosensitized isomerization
reactions. 20
The progression of bands for the N - V transitions has been

21 45 be about 800 cm™* for C.H,

shown by McDiarmid and Charney
and 550 cm~ for C,D,. This isotope ratio, about 1.45, is very
close to the ratio v2 expected for a twisting frequency. Using a
simple harmonic potential for each state, McDiarmid and Cha.rney21

achieve a good description of the overall band structure in terms
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of only a twisting motion. The differences between the spectra of
C,H, and C,D, are not adequately reproduced by this simple model.

23

Wilkinson and Mulliken,” using the resemblance between

the N -~ V bands and the 32;%', ~ *2 Schumann-Runge bands of O,
explained the C,H, bands in terms of C-C bond stretching. A

later discussion by Merer and Mulliken3 revises the model to one
involving coupled twisting and C-C bond stretching. In both papers

the relation24 for bond stretching modes was used to estimate the

r°2‘88w0 = constant

optimum C-C bond length, r, = 1.80 A, for the planar V state,
although the vibrational frequency w, certainly involves some
twisting motion. The fact that O, is isoelectronic with C,H, is also
employed.3 The H-F configuration for the planar V state is shown
to correspond formally to the configuration (11ru)3(11rg)3 of the 32:1
state of 02.25 However, the analogy between the two molecules is
not close, since the ground states have different spin multiplicities.
Very simple calculations on the perpendicular V state made by
Mulliken2® were used to estimate a value of 1.44 & for the C-C
bond length in the perpendicular V state.

The estimates discussed above suggested that the twisting
motion would be coupled to a C-C stretching motion.3 Calculations
were made by Merer and Mulliken3 using a model potential sur-

face. The resulting Franck-Condon factors lead to qualitative

agreement with experiment. The difference between the C,H, and
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C,D, spectra is accounted for adequately. However, the calcula-
tions did not check the assumption that C-C bond stretch was
important.

Ogilviezl7 proposed that wagging of the CH, groups was
responsible for the entire vibrational structure. Merer and
Mulliken3 emphasized that this explanation is quite unsatisfactory.
However, wagging might play a minor role in the spectra. For
example, a combination of wagging and ‘twisting might satisfactorily
explain the observed vibrational structure. We conclude that the
interpretation of the experimental information is at present not
settled. It appears likely that several plausible models might be

proposed.

IV. CALCULATIONS

The calculations all used a double zeta basis of contracted
Gaussian functions augmented by two low exponent Gaussian p
functions with exponents of 0.027 and 0.0084. For planar ethylene
these p functions were added to each atom in the x direction. For
all other geometries both py and Py functions were added on each
atom. The double zeta basis was constructed by contracting the
7 s function Gaussian basis of Whitman and Hornback28 to give
four s-type basis functions on each carbon. The 3 p function
set was used to construct 2 p functions in each direction. The
3 s function expansion of Huzinagat29 for hydrogen was scaled

with an effective Slater exponent of 1.2 and
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contracted to give 2 s basis functions. The ideas discussed by
Dunning30 were used in producing the contracted basis set.

The vertical excitation energies for the T and V states
calculated using H-F wavefunctions for N, T and V states in this
basis differed from the value reported previously with a larger
basis set by less than 0.1 eV. The calculated difference between
the V state energies for planar and perpendicular ethylenes was
equally close in the two basis sets. This justifies using the
smaller basis set even though considerably higher total energies
are calculated. Calculations were run using the integral evaluation
routines from the Polyatom system of programs, as modified by
Basch M?l All SCF calculations were made with programs

developed by the author. A configuration interaction (CI) program

written by P. J. Hay was used in the CI calculations.

V. CALCULATIONS ON THE N AND T STATES

One objective of the present work was an accurate calcula-
tion of the rotational barrier for the N state. Previous studies7'9
have shown that a two configuration wavefunction involving the H-F
term (SIGMA)(n)2 and the additional term (SIGMA)('n*)2 is necessary
to give a consistent description of the ground state for this process.
In fact the two terms become equally important for a twist angle

of 90°. In these earlier cea.lculations7'9

a 2 X 2 configuration -
interaction calculation was carried out using the occupied 7 and

unoccupied 7* orbitals from a Hartree-Fock calculation of the usual
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type. Using a minimum basis set of Slater functions, Kaldor and
Sha.vitt8 calculated a rotational barrier of 83 kcal/mole with the
two configuration wavefunction, Buenker,9 using the fixed group
Gaussian lobe basis of Whitten,32 calculated barrier heights of

126 and 83 kcal/mole for the Hartree-Fock and two configuration
wavefunctions. The agreement of the two calculations is reasonable
in that the basis set used by Buenker9 is only slightly more
flexible than the minimum basis set of ‘Kaldor and Sha.vitt.8 In our
calculation the orbitals in the two configuration wavefunction were
optimized at each geometry. This more consistent procedure plus
the use of a more flexible basis gave an improved value of 67.3
kcal/mole for the barrier height. This is in good agreement with
the experimental activation energy of 65 kcal/mole found for cis-

33

trans isomerization of 1,2 dideutero ethylene. The optimum C-C

bond length at the saddle point is found to be 1.43A.

4-9,13,14,17-19 | .

A large number of calculations
reported for the T state. In most cases the calculated vertical
excitation energies are in goodi agreement with experiment if the
two-term N state wavefunction is used with the H-F wavefunction
for the T state. For example, in our study using the H-F energy
for each state gives an N - T excitation energy of 3.44 eV, while
using the two-term N state energy gives 4.24 eV in good agreement
with the experimental value of 4.6 eV. The energy for the per-

pendicular ethylene geometry has a minimum 65.9 kcal/mole above

the planar ethylene N state for a bond length of 1.43 A. Thus
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for perpendicular ethylene only 1.4 kcal/mole separates the N and
T states.

In Table II we give the calculated energy for the N and T
states as a function of twist angle. The 0° angle corresponds to
a C-C bond length of 1.35 f\, while the other points refer to a
bond length of 1.41 A. The 0° point is to be used as the equili-
brium geometry for the N state. Table III contains the N and T
state energies as a function of C-C disté.nce for a twist angle of
90°. Finally in Table IV we summarize results from several
references for the rotational barrier in the N state and for the

vertical and adiabatic excitation energies of the T state.

VI. SCF CALCULATIONS ON THE V STATE

Several groups of calculations have been run for the V state
of C,H,. In the first set the energy of the open shell H-F wave-
function for this state was calculated as a function of C-C distance
for a planar molecule. These results are given in Table V. The
optimum distance is 1.41 _7&, which is in agreement with the results
of larger basis set calculations by Basch and McKoy.lr7 Next with
a bond distance of 1.41 A open shell H-F calculations were carried
out for twisted C,H, with angles (8) of 30°, 60°, and 90°. These
results are listed in Table III. As expected, the energy of the V
state is lowest at 90°. As pointed out recently by Buenker e_til.{g
the state R(3pCH) from the (sigma)(x)(3pCH) configuration is of the

same symmetry, ‘B, as the (sigma)(r)(z*) configuration for twisted
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ethylene. For planar ethylene the 3pCH orbital is 2b,, and the

state R(3pCH) is 'B Thus the transition moment for the dipole

g
operator is zero for 0°. For twisted ethylene at 30° we find that
the lowest 1B1 SCF solution involves the 3pCH orbital. The second
state uses the 7* orbital. We show contour plots of these orbitals
and the 7 orbital34 in Fig. 2. The plane used for these plots
passes through the two hydrogen atoms in a CH, group and is per-
pendicular to the C-C axis. The in—pléme hydrogen atoms are
marked with crosses, while the position of the hydrogen atoms
below the plane at the other end of the molecule are indicated by
circled crosses. The 7 and w* orbitals are perpendicular to the
CH, plane, while the 3pCH orbital is in the CH, plane. At 6 = 60°
the lowest solution involves the #* orbital, while the second solu-
tion R(3pCH) involves the 3pCH orbital. Contour plots of these
orbitals are also shown in Fig. 2. From these. plots we see that
the 7* orbital is quite Rydberg-like at 30° but is much more
valence-like at 60°. The eigenvalue of the 7* orbital changes
correspondingly from -0.06 hartree at 30° to -0.12 hartree at 60°.
In the next stage of calculations the optimum C-C bond
distance for the V state at 90° was calculated to be 1.35 A. This
series of calculations is reported in Table III under the name V
state (Dzd)' Each H-F orbital was required to transform according
to a particular irreducible representation of the point group D,q.
Another series of calculations investigated geometries |

involving wagging one or both CH, groups. The twist angle was
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fixed at 90° and the C-C bond length at 1.35 A. Since a

geometry which involved wagging both ends by 30°

produced a higher energy for the V state, this mode was abandoned.
Wagging only one end increased the N and T state energies but

lowered the V state energy.35

The optimum wagging angle was
found to be beyond 30°. The energies obtained in this set of cal-
culations are given in Table IV. We note that these energies are
much lower than those for the V state <D2d) energies of Table III.
Extrapolation of these energies back to a wagging angle of 0°
produces a much lower energy than the V state (Dzd) energy at
1.35 A. In fact if the calculation for 0° wagging angle does not
require the orbitals to transform as irreducible representations of
the group D, a solution is found with an energy of -77.73080.

In this solution a doubly occupied pr orbital is localized on the
"wagged' end of the molecule. This orbital has a dipole moment
(measured from the midpoint of the C-C bond) of 1.25 a.u. This
would predict a molecular dipole moment of 2.5 a.u., since the
orbital is doubly occupied, but polarization of the sigma orbitals
reduces the total dipole momeﬁt to 1.5 a.u. The normal V state
(D,q) wavefunction involved a sum of c™—C* and C+—é' terms. But
since the sigma orbitals experienced only a symmetric average‘
potential from the pi orbitals, they were unable to polarize in the
opposite direction to reduce the ionic character. In terms of the
D,q symmetry functions this back polarization by sigma orbitals is
a éorrelation effect involving double replacement configurations of

the form o2g7n* -~ oo*y2 and oo*pr*2,
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Using the low symmetry type solution, the behavior of the
energy as a function of C-C bond length was investigated. A
minimum was found at 1.41 A using the energies shown in Table

III under the title V(low—sym).

VII. CI CALCULATIONS ON THE V STATE

The results of these H-F calculations suggested that o-7
correlation terms might be important in the description of ionic
states such as the V state. The inclusion of such terms might
lead to a significant contraction of the 7* orbital. Several configu-
ration interaction (CI) calculations were made to investigate the
importance of theseé terms. Because of limitations in the capabili-
ties of the CI program, the calculations had to be fairly small in
size. From the arguments below and from the results of a few
more extensive test ca.ses,37 we concluded that a four electron CI
calculation on the two electrons from the sigma bond and the two
pi electrons would best answer the current need. The justification
for this type of calculation and the procedure used in the calcula-
tion are described below,

The C-C bond orbital may polarize without removing charge
from the bond region. In contrast, polarization of the CH bonds
requires charge transfer from one bond to another and is expected
to be less important. Further, we felt that polarization of the
C-C bond could be adequately described by use of one additional

basis function in a CI calculation, an anti-bonding C-C orbital
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localized in the bond region. In order to find a suitable C-C
antibonding orbital we carried out a generalized valence bond
(GVB) calculationS’ on C,H,. In this calculation the C-C bond is

described by a two-electron wavefunction £(1, 2) of the form
Qi(l, 2) = [C1¢1(1)¢1(2) - Cz¢2(1)¢2(2)] X
[@(1)8(2) - B(1)a(2)]

where ¢,(1) and ¢,(1) are bonding and anti-bonding orbitals and
a(1) and B(1) are the usual spin functions. This two-electron func-
tion replaces the doubly occupied orbital ¢i in the H-F wavefunc-
tion. The coefficients C, and C, are optimized in the calculation.
Since we were seeking a valence-like V state wavefunction,

we used an SCF ca.lcula.h’on38

on a valence state as the starting
point. Calculations were carried out for twist angles of 0°, 30°,
60°, and 90°. The 0° calculation involved a C-C bond length of
1.35 A, while a bond length of 1.41 A was used for calculations at
the other twist angles. The GVB orbitals Occe GE.C, 7 and 7*
were calculated for the triplet (T) state at 0°, 30°, and 60°.

Since the 7* for the singlet is different from that for the triplet,
we also used the unoccupied orbitals of the same symmetry as the
m* orbital in the CI calculation to permit optimum adjustment of

this orbital in the CI calculation. Thus for the V state the CI cal-

culation included the configurations . '
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TYPE 1. o2rm*
II. oV
IT1. oo*7?
IvV. ook *2

where V is a virtual orbital of the same symmetry as the #*

orbital. The type II terms change the shape of the zn* orbital,
while terms of type III and IV permit polarization of the sigma
orbitals. For consistency a calculation was run on the N' state

using terms of the form

o 2q2
o2k
o*2g2
g*2p*2

oo*g*

For the 90° twist angle the orbitals for the CI calculation were
taken ﬁ'om a GVB calculation on the V state, since the V state is
valence-like at this geometry. . Since the 7 and #n* orbitals were
optimized for the V state, inclusion of virtual orbitals of n or #*
was not considered to be important.

Results from the CI calculations are shown in Table VI.
The total energy of the N, T and V states is given as well as the
height (in eV) above the energy obtained for the N state at 0°. We
note first that the energy obtained for the CI wavefunction is higher

at 0° than the H-F energy (Table II). This indicates that SCF
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rearrangement effects on the sigma orbitals are about as important as
the correlation effects included in the CI wavefunction. A calculation
was also run using only terms of types I and II as an approximation to
the H-F wavefunction for the V state. From the two CI calculations
we see that the energy is lowered 0. 66 eV by the inclusion of
correlation terms. In addition, as shown in Table VII, the expec-
tation values of x2, y2 and z2 for the four-electron wavefunction are
considerably smaller when correlation ferms are present. Another
interesting point is that the transition moment for the N - V tran-
sition is increased by addition of correlation terms as shown in
Table VIII.

Careful examination of the CI solutions for 30° shows that
the lowest solution (of 'B, symmetry) involves a #* orbital, while
the second involves a 3pCH orbital. The wavefunction (SIGMA)?(r)-

(3pCH) is 'B,. at 0° and has a zero dipole transition moment with

1g
the N state. Thus at 30° and 60° the second solution has a small
transition moment with the N state as expected. The inversion of
the two solutions at 30° relative to the H-F results is caused by
two factors. The correlation terms are far more important for the
n* orbital state than for the 3pCH* orbital state. In addition, the
sigma orbitals from the triplet state are probably more nearly
optimum for the 7w* state than for the R(3pCH) state. However,

from both calculations it is clear that an avoided crossing between

the R(3pCH) state with a small transition morhent for all twist
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angles and the 7* orbital state with a large transition moment
takes place between 0° and 60°.

For 90° the CI energy is slightly below the energy from
the low-symmetry H-F wavefunction. Thus the CI calculation is
probably including the polarization of the sigma orbitals.

In summary, the CI calculations predict a vertical excitation
energy of 8.9 eV and an energy for the V state at 90° about 6.8
eV above the 0° N state. Expectation values of x2, y2? and z2 for
the V state at 0° indicate that the CI wavefunction is still signifi-
cantly more expanded in space than either the N or T state wave-
functions. The transition moment for the 7 - 3pCH state is quite
small, while the moment for the 7 - 7* state is slowly varying

over the range 6 = 0 to 60°.

VIII. DISCUSSION

Basch and McKoy17 have asserted that the results produced
by the Hartree-Fock calculation are artifactual and that a valence-

like solution is produced by the RPA40 approach. However, later

41

calculations using improved RPA methods ™ give 9.3 eV for the

vertical excitation energy rather than 7.6-8.5 eV as reported by

Basch and McKoy.17

18 have recently studied the excited states of

Buenker et al.
C,H, using SCF calculations followed by limited CI calculations.
However, for the 1Blu V state, their calculation actually included

only correlation between the two pi electrons. Earlier work by
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Dunning gt_g._}.M showed these terms to be unimportant for the V
state. For the ground state the effect of CI for the pi electrons
is equivalent to using the two-configuration wavefunction described
above in Section IV. In a later paper Buenker, Peyerimhoff and

Hsu19

interpret the spectra in terms of the R(3pCH) state producing
a strong dependence of the transition moment on twist angle. With
this view the maximum in the absorption spectrum might corres-
pond to non-vertical transitions. Howevér, we find the transition
moment of the R(3pCH) state to be so weak that this state is not
important in the absorption spectra. The transition moment for the
7 - 7* state is a relatively constant function of the twist angle
until 6 is greater than 60°.

Although the arguments presented by Buenker gi_g_l.lg are
unconvincing, the idea that the maximum in the absorption spectra
corresponds to a non-vertical excitation is very attractive. The CI
calculations performed gave a vertical excitation energy of 8.9 eV.
Earlier calculations indicated that SCF readjustment of the sigma
core was responsible for an energy gain of about 0.6 eV. Using
these figures we estimate that-a CI calculation starting from the
V state SCF orbitals would give a vertical excitation energy of
8.3 eV. Our conclusion is that no appropriate excited state will
be found with a vertical excitation energy of 7.6 eV.

There is an alternate explanation for the maximum absorp-

tion corresponding to a non-vertical transition. The usual applica-

tion of the Franck-Condon princip1e42 is to curves such as that
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shown in Fig. 2. The vertical excitation energy is the vertical
distance from the bottom of the ground state curve to the upper
curve. The upper state vibrational wavefunction with the largest
overlap with the ground state's lowest vibrational level (v" = 0) is
the one with a classical turning point near Re for the grdund state.
This vibrational function decays smoothly near R e SO that no can-
cellations occur in the overlap with the »” = 0 function. Upper
state vibrational functions above the veftical excitational energy
oscillate near Re and suffer cancellations in their overlap with the
lower state vibrational function.

However, for a twisting motion the curves shown in Fig. 3
are quite different. The vertical excitation energy corresponds to
the top of the upper state curve. Since the vibrational wavefunc-
tion at the vertical excitational energy does not have a classical
turning point, it would resemble a free rotor wavefunction with
high energy. In order to get a smoothly decaying vibrational func-
tion, we must go some distance below the top of the barrier. If
we are too close to the top of the curve, the vibrational function
is energetic enough to oscillate all the way through the barrier.

If we are too far below the top, the function decays so fast that
no overlap with the lower vibrational function is produced. The
distance below the top of the curve which produces the largest
Franck-Condon factor is dependent on the details of the two

potential curves.
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This explanation would be pleasing in several respects.
First the inability of ab initio theoretical calculations to predict a
vertical excitation energy near 7.6 eV is explained. A value of
8.0 eV might be reasonable with the modified Franck-Condon argu-
ment presented here. Also the experiments showing that the V
state behaved as a valence state would be compatible with a
moderately diffuse or extended electronA distribution calculated for
the planar V state. The experiments would be showing the valence-
like character of a twisted ethylene.

No theoretical evidence has been found in this work for a
large change in the optimum C-C bond length between planar and
perpendicular ethylene V state, and thus we find no support for
the coupled stretching and twisting model of Merer and Mulliken.3
Some evidence is found for participation in the observed vibrational
structure by a wagging mode. This may account for the observed

differences between the C,H, and C,D, spectra.

IX. CONCLUSIONS

We have presented several sets of calculations for the N,
T, and V states of C,H,. From these calculations we obtained a
simple explanation of the importance of o-7 correlation terms as
polarization of the sigma core by the ionic pi electron system.
The CI calculations also suggested that a substantial contraction of

the electron distribution results from the o-7 correlation, but that
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the V state is still more spatially extended than the N or T states.

The role of a R(3pCH) state in the absorption spectrum was
shown to be small. In addition the electronic transition moment for
the V state was shown to be nearly constant so that the use of
Franck-Condon overlap integrals is appropriate. However, an
examination of the Franck—Condoﬂ principle for internal rotation
potential curves suggests that the maximum absorption intensity
may correspond to a non-vertical excitation. This explains several
contradictions between theory and experiment.

The explanation of the N - V absorption spectrum we
present is rather complex. The vibrational modes responsible for
the complex structure observed appear to be twisting and wagging
of the CH, groups. In addition, the vertical transition energy is
probably near 8 eV. The V state wavefunction at the planar
geometry is likely to be moderately expanded in comparison to that
for the T state. This explanation does rationalize many experimen-
tal and theoretical findings, but it suggests that similar states for
other unsaturated hydrocarbonsAmay also be difficult to explain in

terms of simple models.
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TABLE 1. Symmetry information for C,H,.

Orbital Form? Planar Twisted Perpendicula.rb
or State (6 = 0°) (D) 6 = 45° (D,) D,g
T D, + Py bsu b, e
* Py - Py b2g b, e®
3pCH* Py + Dy by b, e
N oo (m)? "Asg A, 'B,
T co o (m)¥) *Biy °B, A,
\ oo () @*) "By ‘B, ‘B,
-+« (7)(3pCH¥) ‘Big 'B, d

4As the molecule is twisted, the p, orbital becomes a PQ
orbital where Q = x cos 6 + y sin 6. .

bThe usual notation for D,y is discarded for one consistent

with the D, and Dy, forms.

CThe 7 and 7* orbitals become degenerate.

dThe configuration is (le)(2e) so that several states result.
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TABLE II. Energy of C,H, states as a function of twist angle.

Twist Angle

State? 0°P 30° € 60°C 90° ©
N (2 configuration) -77.96898% -77.94836 -77.90195 -77.86173
0.0°
T -77.81300 -77.83906 -77.85615 -TT.86398
, 4.24° 3.54 3.07 2.86
\Y -77.66536  -77.66702 -77.69347 -T7.706765
8.26° 8.22 7.50 7.14
R (3pCH) — -77.68936 —_— _
aSCF wavefunctions were used in these calculations.

bo_c distance is 1.35 A.

Cc-C distance is 1.41 A.

dTota.l energy in atomic units.

®Energy in eV relative to N state energy at 0°.
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TABLE V. N, T, V State energies as a function of wagging angle.

Wagging Anglea

State 0° 15° 22.5° 30°

N -77.85299 -77.85186 b -77.84868
T -77.85556 -77.85474 . b -77.85154
A% -77.73080 -77.3108 -77.73134 -77.73155

20ne CH, group was rotated by the angle given.

bNot calculated.
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TABLE VI. Energies from CI calculations.

Twist Angle

State 002 30°P 60°P 90°P
N -77.9852 -77.9646 -77.9154 d
0.0 evV® 0.56 1.80
T -77.8259 -77.8532 -77.8700 d
4.34 3.59 3.13
v -77. 6602 -77.68110 -77.7039 -77.17334
8.84 8.28 7.66 6.85
R (3pCH) d -77.6619 -77.6479 d
‘ 8.56 9.18

a0-C distance of 1.35 A.

Po_c distance of 1.41 A.

®The lower numbers are the energy in eV relative to the N

state energy from the CI calculation at 0°.

dN ot calculated.
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TABLE VII. Expectation values for CI wavefunctions.
State (x2)? (v?) (z2)
N 7.04 2.82 5.85
T 8.69 2.96 6.28
V (CI) 24.42 A 8.24 22.12
V (no o-1 b
correlation) 38.27 12.87 36.01

AThis is the expectation value for the four electron CI wave-

function. No nuclear contribution is included. Atomic units are

used.

bOnly Type 1 and II terms were included.
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TABLE VIIO. Transition moments for C,H, transitions.

Twist Angle®

State? 0° 30° 60° 90°
1" 1.01 1.05 0.75 0.0¢
V (no o-1 c
terms) 0.76 d d 0.0
R (3pCH) 0.0¢ 0. 05 0.21 d

A¥or transitions from the N state. CI wavefunctions used. Atomic
units were used in calculating the dipole length transition moment.
The oscillator strength { is related to the dipole length transition

moment ﬁNV by the equation

2 > 2
f = $AE|RGy |,
where AE is the excitation energy. The transition moment at 0°
should be used.
bC—C bond distances from Table VI.
CThese values are known to be zero from symmetry arguments.

d Not calculated.
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FIGURE CAPTIONS

The 7, #* and 3pCH orbitals or C,H, twist angles
of 30° and 60° are shown. All figures cover the
range from -10 bohr to +10 bohr in each

direction.

Potential curves for bond stretching. The
amplitudes of the vibrational wavefunction are

plotted on the corresponding energy level.

Potential curves for internal rotation. The
amplitudes of the vibrational wavefunction are

plotted on the corresponding energy level.
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PART III1

DEVELOPMENT AND USE OF A& GENE-ALIZED
VLLEVCE BOND METHOD FOR
ATOMIC AND MOLECULAR WAVEFUNCTIONS
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CEAPTER 3.1 The GVB Method
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Self-Consistent Procedures for Generalized Valence

Bond Wavefunctions and Applications Hy, BH, H,0, C,H, and OQ,, **

w. J. HUNT,T P. J. HAY,i AND W. A. GODDARD II

Arthur Amos Noyes Laboratory of Chemical Physics™

California Institute of Technology

Pasadena, California 91109

Methods of efficiently optimizing the orbitals of
Generalized Valence Bond (GVB) Wavefunctions are dis-
cussed, and applied to LiH, BH, H,, H,0, CiH,, and
0,. . The strong orthogonality and perfect pairing
restrictions are tested for the X 'Z* state of LiH, the
x 'z%, a ’, and A 'I states of BH, and the H, + D =
H + HD exchange reaction. The orbitals of H;O and C,H, |,
naturally localize into OH, CH, and CC bonding pairs. The
nonbonding orbitals of H,O are approximately tetrahedral
but this description is only 2 kcal lower than the optimum
description in terms of symmetry functions. The calculated
rotational barrier for C,H, is 3.1 kcal, in good agreement

with the experimental value.

* Contribution No.
** Partially supported by a grant (GP-15423) from the National Science

Foundation.

i National Defense Education Act predoctoral fellow.

i National Science Foundation predoctoral fellow.
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The description of the O, molecule in the GVB approach
is presented and the results of carrying out CI calcula-
tions using the GVB orbitals is discussed. The GVB
orbitals are found to be a good basis set for configura-
tion interaction calculations. The general features of

GVB orbitals in other molecules are summarized.

I. INTRODUCTION

The electronic structure of molecules is usually described in
terms of either the molecular orbital (MO) or valence bond (VB)
models. In particular, the single-configuration MO (or Hartree-Fock)
wavefunction has proved extremely useful in computing properﬁes of
ground and excited state molecules. Configuration interaction studies
have shown that for typical molecules near the equilibrium geometry
the Hartree-Fock wavefunction is by far the most important configuration
in the "exact" wavefunction. Conceptually, such advances as Walsh
diagrams 1for predicting molecular geometries and the Woodward
Hoffmann rules 2for predicting chemical reactions have their origins
in molecular orbital theory.

There are, however, at least two serious drawbacks to the

Hartree-Fock model:

1. Molecular orbitals do not usually dissociate correctly, so
that one cannot describe bond-breaking processes within this

model.
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2. Molecular orbitals have the full symmetry of the molecule
and bear little resemblance to the expected shapes of bond

orbitals and lone pair orbitals.3

Our objective here is to discuss an improved SCF method
which is tractable and yet removes these serious deficiencies of MO
theory. The emphasis will not be on getting 100% of the correlation
energy. Rather the aim will be to obtain a generally useful orbital

representation for describing molecular bonding and chemical reactions.

II. THE WAVEFUNCTIONS

A. Basic Ag}groach

The Hartree-Fock (HF) wavefunction for (a closed shell) singlet

state has the form

Q[ pad BpapB .- ¢na¢n3] : (1)

with each orbital appea.ing twice (doubly occupied). This

double occupation of the orbitals leads to some of the deficiencies

of the HF procedure, and several approaches (SOGIjla S(‘)-SCF,4b and

BRNO43: have been proposed in which the pair

¢ia ¢1B

is replaced by

IPC LN

to yield the wavefunction

QAlt1291,99.02p X1, (2)



113
where x is allowed to be a general N-electron spinfunction and where
X and the orbitals ¢; are solved for self-consistently. This approach
leads to the proper description of bond breaking5 and leads
directly to localized bonding and nonbonding orbitals (vide infra).

One reason for the simplicity of Hartree-Fock calculations is
that the orbitals of (1) can be taken as orthogonal. Unfortunately this
is not the case for wavefunctions of the form (2) (where x is a
general N-electron spinfunction). This lack of orthogonality leads
to significant computational problems for large systems and
greatly restricts the usefulness of such approaches. Wé
would like to retain the cohceptual usefulness of wave-
functions of the form (2) and yet simplify the calculations so that
reasonably large molecules can be considered. Most of the basic
6,7

restrictions and approaches to be used have been suggested elsewhere,

but are summarized here to clarify our later discussions:

(i) The spin function X is taken to be
xyg = [@(1)BQ2) - (1)a2)][«(3)8(4) - BB3)a(4)] -

where for a state of spin S the last 2S spins are a@. This spin function
is the one used in G18 and simple valence boncl9 wavefunctions. With

restriction (1) the wavefunction (2) can be re-written as
Q12915 * P15912)(P22%2p + $opP2a) "

(éna®nb + PnpPna)@BaB -+ B ] (3)
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where each term in parentheses is said to be singlet paired.

(ii) The various orbitals are required to be orthogonal to each

other unless they are singlet paired, i.e.,
(910550 = O
(¢i|¢j) = 0  otherwise.

This restriction has often been used for wavefunctions and is known

b

1 ‘ 1 < s
as the strong orthogonality 0 or separated pair restriction.

(iii) The orbitals of (3) are solved for self-consistently.

The wavefunction (3) has the form of a simple valence bond
(VB) function, the difference being that in (3) the orbitals are solved for
self-consistently rather than taken as (hybridized) atomic orbitals as in VB.
For this reason we fefer to the wavefunction (3) as the generalized

valence bond (GVB) wavefunction.

Wavefunction (3} is a special case of the strongly orthogonal

geminallz wavefunction

QL1241 2),2,3,4) Xy ] 4)

where each geminal Qi can be expanded in terms of natural orbitals.13

P
Q,(1,2) = ]:Zi Cyy 9511y (2). (5)

The ideas of representing electron pairs in this form were

originally formulated by Hurley, Lennard-Jones and Pople6 (HLJP),

who discussed the strong orthogonality restriction as well as the

representation of pair functions in both the natural orbital (5) and

generalized valence bond (3) forms.
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In terms of natural orbitals, each pé,ir function of (3) has the

form

10 (1)1 (2) + @i (D, (2) = Cpy004.(1)915(2) + Cpi05:(1)95,(2) (6)

that is, only two natural orbitals are used for each pair function.14

Substituting (6) into (3) we find that the expansion of (3) in terms of

those natural orbitals contains only terms of closed shell form. As

discussed below this leads to great simplification in the calculations.
There are many cases in which we will want to keep some pairs

doubly occupied rather than allowing them to be split. In such cases we take

Cy;

1=1andCZi=0

in (6). In addition, for non singlet states of spin S we will usually

take the last 2S orbitals to be unpaired and with the same spin.

B. The Eg uations

As has been shown by HLJP and Kutzelnigg, 7the dependence of the

energy in (3) upon the orbitals of pair i has the form
B = Eg + f13(¢1; | @hegs + Iy5) 6430
+ 1;(90; |@hyge + T I690) + C1iCoi¢e1; [Kpslen? (@
where E(i) is independent of the orbitals in pair i,

h.=h+ 2 f£(2J -K)

and
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fk = 1 for a double occupied orbital

for an open-shell singly occupied orbital

I

1
2
= C;{ for a natural orbital of a split pair as in (6).

Here h off is analogous to the usual Hartree-Fock one-electron Hamiltonian

except that it contains no terms due to either orbital of pair i. For a

nonsinglet state of spin S there will be 2S orbitals corresponding to the

unpaired spins; these orbitals are referred to as open-shell orbitals

(fk = 32). Any number of the pairs can be double occupied (fk = 1).
Separating from Ei the terms involving the other paifs, we

obtain the general expansion

E = % £y + kZ“;l (g Thep * DregKicy) (8)

which has the form appropriate for general HF and many types of
MC-SCF wavefunctions. [In (8) h, = (kvlhlk) and J,, and K, are
the normal Coulomb and exchange integrals. ]

Using the variational principle, one obtains the self-consistent

field equa.tionsa’ 15b

Hedy = [H -

]E;k '])(]lﬁllﬁbk = € B (9)

k=1 2, ...,M,
where H, = f,h + ;',ak & ¢ * P ge g and M is the number of distinct orbitals.

[J and K are the usual Coulomb and exchange operators from HF theory].
In general, there are fewer than M such equations to solve, since all doubly-
occupied orbitals can be taken as eigenfunctions of the same closed-shell

Hamiltonian.
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In the homogeneous approach normally used in solving MC-SCF
equations, 16-19 one explicitly constructs each I—_Ik for a set of trial
functions {¢>‘J? } and solves (9) for the ¢, to use in the next iteration.
We have found this approach to be unsatisfactory and instead
use the method suggested in Ref. 15c. In this method each iteration in
the SCF process consists of three distinct steps:

(1) The Hamiltonian matrices Ek are constructed using the
trial functions {(p(].)} and trial CI coefficients {C(i’} and a new set of
CI coefficients is obtained by solving the 2 X 2 matrix equations for
each pair.

(2) Each Hamiltonian matrix Hy is diagonalized according to the
OCBSE15a procedure. In this approach the eigensolutions of ,IiIk are ob-
tained in the space orthogonal to the vectors of shells k', where k' = Xk,
thereby avoiding the hecessity of using coupling operators in the SCF
equations.

(3) Since this procedure does not permit mixing of occupied
orbitals of shell k with occupied orbitals of other shells, we obtain

this optimum mixing by using the set of old orbitals {qb‘i’} as a basis

for the expansion of the new (unknown) orbitals {qbi}

01 = 97 + 2 ¢y Ay - Lo

0
A.
v>i v<i v

and optimize the mixing of occupied orbitals with each other by solving

for the correction coefficients

{Avi’ v>i, i=1 M}
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as in Ref. 7. Since this procedure optimizes the mixing of natural

orbitals, terms such as
Ci($15025 + 25913

need not appear in the expansion [Eq. (6)] of the GVB pair.

The above iterative procedﬁre insures that when the SCF
equations have converged, one has obtained the optimum set of
orbitals. Although for step (2) the orbitals of shell k are restricted
to be in a space orthogonal to the orbital‘s of other shells, this space
changes from iteration to iteration as the occupied orbitals mix in
virtual orbital components in step (2) and occupied orbital components
in step (3). This differs from some previous strongly orthogonal
geminal calculationszl’zz’ 24 where each geminal was obtained in a

partitioned subspace of the basis, but where the partition was imposed

at the beginning of the calculation and not optimized.

C. Comgarison with Other Methods

We emphasize that, with the exceptions of strongly orthogonal
diatomic 7 19.93
geminal calculations on small/molecules '? =

configuration SCF calculations, 16-19 previous calculations on wave-

and of several multi-

functions of the form (3) have not optimized the orbitals within
a given basis to a level comparable to the degree of convergence
obtained in Hartree-Fock calculations.

The GVB method is related to the multi-configuration SCF
approach except that the form of the GVB wavefunction is more

restricted in order to lead to an orbital type wavefunction (3).
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Several types of calculations have been carried out using strongly

orthogonal geminals as in (4) including approximate treatments by McWeeny

4 on the water molecule and Parks and P:a.rr11

and Ohno2 on formaldehyde.
Silver, Mehler, and Ruedenberg12 obtained fully optimized SOG wavefunctions
for Be, LiH, BH and NH using more than two NO's in each geminal, and
Scarza,favazo carried out similar calculations on H,O. Ahrlichs and Kutzelnigg7’ 23
also used a procedure similar to ours on Be and LiH.

Calculations by Franchini, et al., 21 have employed the procedure
of localizing theh Hartree-Fock orbitals and expanding each geminal in a CI
wavefunction as in (5) with a fixed partition of the basis set. In this séheme,
the orbitals are not fully optimized since the space available to each geminal
was arbitrarily determined before the calculation.

22,25 have carried out minimum

McWeeny and Klessinger
basis self-consistent group calculations on many molecules by starting
with a set of symmetrically orthogonalized hybridized atomic orbitals
and carrying out a two by two CI calculation on each geminal. Since the
energy was optimized as a function of only one hybridization parameter per
atom, the resulting orbitals were not completely optimurﬁ. For several
molecules this has resulted in very poor descriptions of the barriers to
internal rotation. 22b (e.g. ethane is calculated to have a barrier of 5.1 keal
with the eclipsed configuration lower). V

Although several authors have discussed ways of relaxing ortho-~

27,28 47

gonality constraints, the complications involved are excessive. Hinze
has developed an approach for general MC-SCF wavefunctions in which the
mixings of occupied orbitals with each other is optimized through successive
2 x 2 rotations. This procedure leads to fully optimized orbitals.Hinze has

applied this method to various states of LiH47

and White, Dunning, Pitzer, and
Matthews have applied Hinze's program to a series of calculations on various

states of CF. 48
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Harrison and Allenzshave used VB configurations with orbitals based on

atomic HF calculations but donot solve for the optimum orbitals. Multi-configuration
techniques for diatomic molecules using elliptic basis functions were discussed
by Taylor and Harris. 29 VB-CI methods have also been used on LiH and BeH" by

3oamd on He, potential curves byKlein31and Gupta and Matsen. 32

Miller etal.
III. TESTS OF STRONG ORTHOGONALITY AND "PERFECT PAIRING"

In order to test the validity of the restrictions involved in GVB calculations,
we will compare the results of GVB and SOGI calculations for several systems.
This forms a useful test of both the strong orthogonality and perfect pairing
restrictions, since neither restriction is made in the SOGI method.

A. LiH and BH (‘2"
For a four-electron singlet system, we can write the GVB and SOGI wave~

functions as ' .
Yove = UAb1201pP22%20%1]

Ygogr = Alo1,81pP9,99p(c0s 6x; + sin 6x2)]

where x,; and X, are the two linearly independent spin functions
X1 = (a8 - Ba)ap - Ba)

Xs = J—:l,)_— [20088 +288aa - (0B +Ba)ap +Ba)).

In GVB the pair [¢1a’ ¢1b] is constrained to be orthogonal to pair

[¢2a‘, ¢qp,] and the second spin function X, is not used.

2,33

SOGI calculations on the ground states of LiH®°° and BH®

have

shown that contributions from spin functions other than x, are
negligible. Thus comparing SOGI and GVB for these systems is
primarily a test of the strong orthogonality restriction. From Table

I we see that for LiH at R, EGVB is 0.0296 h lower than EHF
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and only 0.0008 h higher than ESOGI' Similar results were also
obtained for BH at Re where EGVB was only 0.0018 h greater
while 0.045 h lower than E

than E In comparing the GVB

SOGI HF"
and SOGI orbitals of these systems (see Fig. 1 for BH), we find
that the main effect involves orthogonality of the GVB valence orbital to
the core orbitals, the GVB valence orbitals have a node in the core region.
Otherwise the relative relationships between the valence orbitals are
quite similar fox; these two methods. Thus we conclude that at least
for these two systems the orbitals and energies are not greatly
modified by the strong orthogonal restrictions.

We also carried out calculations in which the ls orbitals of the
LiH and BH were forced to be doubly occupied (but solved for self-
consistently). Although in each case the energy is lowered about 0.012 h
upon splitting the core orbitals, we find that this core splitting leads to
a negligible modification in the valence orbitals. Thus, in the following
calculations we ill keep the 1s core orbitals paired [fk = 1 in (10)],

but we will < »~ them self-consistently with the valence orbitals.

B. H,+D~H + HD

A more significant test of the GVB approach is the description

of the reactibn
H, + D-H + HD

where SOGI calculations have shown4athat the spin coupling changes
from having singlet-coupled electron pair on the H, for the reactants

to a singlet-coupled electron pair on the HD for the products. Thus
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in the linear transition state with RHH = RHD’ \I’SOGI contains equal
contributions from the two spin couplings. GVB calculations at RHH =

Ryp = 1. 8 bohr using Ladner's4abasis set yielded an energy 13 kcal/

H
mole (0.021 a.u.) higher than EsoGr (see Table II). This error in

the GVB result is quite significant, being as large as for Hartree-Fock.
(The calculated barrier height from the SOGI calculation Wés 16. 9 kcal/
mole). However, the GVB orbitals have shapes somewhat similar to

those of the SOGI orbitals as shovn in Fig. 3. The GVB wavefunction

has the form

4 [(gg’ + g'g)uasal]

where all orbitals have the full D wh symmetry of the molecule (g or u).
An alternative description of the 22:; state, Z[ (ab + ba)uaBa] with a
and b symmetrically related by mirror plane feflections but solved
for self-consistently yielded an even higher energy.

| To determine whether one can improve upon the GVB results
for H, without a great deal of effort, we used the three GVB orbitals
as a basis set and carried out a SOGI calculation. This is
equivalent to a three basis function, three electron CI calculation
using all configurations. We find that this accounts for 69% of the
error between GVB and SOGI, leading to a barrier 4 kcal greater
than the SOGI barrier.

C. BH 'Il and °N States
Recent SOGI ca,lculations34 have shown that the lowest "I and

*Il states of BH also involve significant changes in spin-coupling as
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the internuclear distance (R) is decreased from « to Ry. Thus, this

system serves as another good test case of the limitations of GVB.
In the “P state of B, ¥y p has the form®

@ {[s*][sz, sz] 2p, apapa}

where sz and sz have the form
Sz = ¢ + 7\¢»pz
52= 65" Aoy,

that is, these functions are sp-like hybridized orbitals polarized along

the z axis.
In contrast to .the 12 state, where the 1s hydrogen orbital is
singlet-coupled to the px orbital, the II states arise from breaking up

the nonbonding pair to form the BH bond: 34

°mn: Yovp = A {[1s?][sz, h] sZ px afafac}
Ik YovB = a {[1s2]{sz, h][sZ, pz] apaBas}

Here we refer to the orbitals with symbols (sz, sz, px, h) to denote

their basic shapes, although each orbital is solved for self-consistently.

From . [
the results at R = 2.25 and R = 4.0 in Table II, it is seen that the
GVB wavefunction is higher in energy than "IJSOGI by amounts ranginkg
from 0.0046 a.u. for the ‘I state (R = 2.25) to 0.0198 a.u. for the
(R = 2.25).
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The description of the 'II sltate is rather poor and so we examined
the improvements to be obtained by solving for the CI wavefunction using
the four GVB orbitals as the basis. At R = 2.25 a, this accounted for ,56%
of the error between GVB and SOGI but still led to an energy 0.0088

greater than Egngy- Another difficult case occurs in the “1I state of CH

for large R. At R = o the C atom 1is in the °P state and hence two valence
orbitals are coupled antisymmetrically. Coupling the H orbital symmetrically
to the carbon p-orbital is thus incérrect at large R. As a result the GVB
wavefunction for CH at large R is 0.35 eVAabove the limit of C(3P) + H(ZS).
However, ’Bobrowicz49 has shown that starting with the GVB orbitals and
carrying out a three-basis function CI (or SOGI) calculation leads to a

proper description of the wavefunction at large R.

D, Summary

From reflections on these studies we have concluded that

(1) The GVB approach should lead to an adequate description
of the ground state of most molecules that can be described
in terms of one covalent VB structure,

(2) this method also should lead to an adequate description of
bond breaking and bond formation when spin ¢coupling
changes are not important (thus, biradicals should be
well described),

(3) however, the GVB approach may be of less quantitative
use in describing reactions invblving extensive spin
coupling changes. In such cases a simple CI calculation
using the GVB naturax_l orbitals may be satisfactory.

Further implications for CI calculations will be discussed later.

IV. THE WATER MOLECULE

The optimum GVB orbitals of the ground state of H,O lead to a
description having two equivalent bonding pairs, two equivalent non-

bonding pairs, and an oxygen ls core pair:
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Yovp = £{[1s,, 1sp1lby,, by Mg s Dopll o 2310095, Lo 1x
This description is not forced upon the system by any arbitrary
symmetry requirements, but rather is obtained by solving for the
optimum ten GVB orbitals. The orbitals for the equilibrium geometry

33 of contracted

of the H,O molecule were obtained using a basis set
Gaussian functions including 3d oxygen polarization functions. We

see from Table IV that the major improvement bver the Hartree-Fock
wavefunction is in the description of the bonding pairs, where an

energy lowering of 13 kcal/mole for each bond is obtained.

In Fig. 2 we see that each orbital of a bonding pair (¢2a and ¢2b)
is localized on a different center. The qu a orbital, localized on the
oxygen atom, has some s character but is mainly (81.9%) p-like
(corresponding to sp 4.7 bonding). Similarly, the ¢y orbital remains
essentially a hydrogenic 1s orbital, delocalized onto the oxygen atom

(indicating some ionic character in the bond).

1.46) and are

The nonbonding pairs have 59% p-character (sp
bent back from the oxygen in the plane perpendicular to the molecular
plane. Each pair consists of two orbitals (¢4, and ¢, in Fig. 2)
oriented in the same direction but having different radial dependencies,
i.e., one being more diffuse than the other. This description is not
equivalent to the case where we require the lone-pair functions to have
a, and b, symmetry (i.e., symmetric and antisymmetric with the
molecular plane), which in fact (see Table III) leads to an energy only

0.0031 h (2 kcal/mole) higher.
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The above results generally agree with previous GVB‘-like calcula-

tions on H,O by other investigators. Klessingerzza has carried out a
group function calculation on the OH bonds in H,0 where he obtained an
energy lowering of each OH bond of 0.0142 h compared with our value

of 0.0209 h. The uv form of Scarzafava's separated-pair wavefunctionzo
and The group functions of Franchini, Moccia and ZandomeneghiZI are
roughly equivalent in sophistication to our GVB approach, but lead to
slightly worse energies because their method does not achieve full optimi-
zation. Scarza;fava20 obtained full orbital optimization and his uv wave-
function is comparable in energy to ours; hé also obtained more general
separated pair and CI wavefunctions for H,O. A recent strongly orthogonal

36

geminal calculation by Shull and coworkers™ "~ demonstrated the transfera-

bility of geminals from H,O to H,O,.
V. THE ETHANE MOLECULE

The ethane molecule is a good test case of the GVB approach
since a highly restricted wavefunction might not lead to a proper descrip-
tion of the small (2.9 kcal/mole) rotational barrier.

For the ethane molecule, we solved for the GVB orbitals in the
STO-4G minimum basis set of contracted Gaussian functions developed

43 We obtain six equivalent C~-H bond pairs, one of which is

by Pople.
shown in Fig. 3 (orbitals ¢2 a and ¢2b)' In contrast to the delocalized
molecular orbital, we see that one of the GVB orbitals is an essentially
unchanged hydrogen 1s orbital and the other is a hybrid orbital (68.5%

2. 17) on the C oriented toward the H. Each C-H

p-character, hence sp
bond is lowered 0.0157 h (10 kcal) relative to the HF description. The

C-C bond
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orbitals (orbitals ¢1 a and qblb in Fig. 3) have a smaller energy lowering

(0.0139 h or 9 kcal) and a higher overlap than the C~H bond orbitals (0, 835
vs 0. 826) but dissociate continuously into the p-orbitals of two methyl
radicals as the groups are pulled apart.

We find that GVB leads to a rotational barrier of 3.1 kcal (with
the staggered configuration lower) in good agreement with the HF results
(3.3 kcpm) and with experiment (2.9 kepm). This constrast with the
barrier of -5.1 keal (eclipsed from lower) found by Klessinger using
partially optimized orbitals.

VI. THE OXYGEN MOLECULE
The failure to predict a triplet ground state for the O, molecule was

37 It is therefore

one of the major difficulties of valence bond theory.
of interest to examine 'O2 in the GVB description, which is a synthesis

of the MO and VB methods. The wavefunction for the 32;}, state is

wGVB = a {[ GA, GB] [ ”i{u] [ ﬂ;fu] [Wxgﬂygx}

(where the 1 and 2 orbitals have been taken to be doubly occupied and
are not shown). Little improvement in energy (0.001 h) is obtained by
allowing the L orbitals to split or to become asymmetric. Thus
YGVB differs' from "DHF by the presence of two sigma orbitals [ o A’

O’B] that are related to the 3og and 30, natural orbitals.

From Table V we see that the HF and GVB results both predict

the correct qualitative relation of the 32", A, and 'zt states.38

g g’ g
In using the GVB natural orbitals as a basis set for a small con-

figuration interaction (CI) calculation, effectively relaxes both
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The strong orthogonality and the spin-coupling restrictions as well as including

the correlation terms involving only valence-like orbitals. (internal correlation).

The importance of these terms has been emphasized in the theory of

Silverstone and S'mamoglu40

41

and by the first-order wavefunction calcu-
lations of Schaefer.
The calculated dissociation energy from the GVB-CI calculation
is in much better agreement with the experimental results and with the
more extensive calculation by Schaefer. 4la Calculations on other
states using the natural orbitals from the ground state GVB wavefunc-
tion are also reported in Table V, where the results are in génera,l

agreement with experiment. 42

VII. GENERAL CHARACTERISTICS OF THE GVB APPROACH TO
MOLECULES

The previous discussions of H,O, C,H¢, and O, illustrated some
specific aspects of the GVB method; in this section we will summarize
some of the results obtained for other molecules. These will be dis-
cussed more fully in future publications.

The basis sets used are MBS (minimum basis set; Pople's STO-
4G basis with standard moleculai' exponents)43 and POL (the [4s2p]
DZ set35 augumented by one set of d-type uncontracted Gaussian func-
tions on each of the B, C, N, O, and F atoms).

In Table VI we see that the two orbitals making up a sigma bond |

have high overlap: for C-H bonds it is 0.82-0.87 and for sigma bonds

involving two first-row atoms, 0.85-0.93. Thus, at
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the equilibrium distance, HF should yield a relatively good description
since the energy gain in the GVB method is only 0.005-0.015 a.u. for
each bond. However, pi bonds are not so well described by HF, as
the GVB overlap is only 0. 57-0.73 and the increase in bond energy
in GVB is 0.03-0.045 a.u. (0.8-1.2 eV). Thus 7 bonds are much
closer to the dissociated bond limit than is the cé.se for sigma bonds.
The most drastic improvement can be noted in cases where
there are two molecular orbitals--one occupied and one virtual--
which are nearly degenerate. Such situations arise in biradicals

45 the

such aé éinglet CH,, the trimethylene biradical, 44 benzenes,
C; molecule and cases where a bond is broken. In the last case,
thw two nonbonding electrons are especially poorly described by a
single 2ou orbital as in HF [ The GVB orbitals have small overlap
(0.33) and the pair splitting energy is 63 kcal]. This leads to a dis-
sociation energy for C, of -22.1 kcal/mole in HF as compared with
72.7 for GVB and the experimental value of 144,

We conclude that the wavefunction leads to useful wavefunctions

and remove many difficulties and inconsistencies of the Hartree-Fock

method.
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FIGURE CAPTIONS

FIG. 1. Comparison of the SOGI and GVB orbitals for BH ('27).
¢2a is one of the two symmetrically related nonbonding orbitals.

qb3a and bg, are the bonding orbitals.

FIG. 2. The GVB orbitals for the H,O molecule. ¢2a and ¢2b repre-
sent the orbitals of one of the two equivalent lone pairs. ¢ 4a and ¢4,

represent the orbitals of one of the two equivalent OH bonds.

FIG. 3. The GVB orbitals for the CC bond (¢1a and qblb) and a CH
bond (¢Za and ¢>2b) in ethane.
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TABLE I. Comparison of HF GVB and SOGI calculations on

ground states of LiH (R = 3.015 a;) and BH (R = 2.336 a,).

Energy (Hartree) Energy Lowering
R = R R = De (V) Pair | AE. (Hartree)
€ 1
LiH
HF? -7.98326 | -7.93123 | 1.42 — —
GvB
l-pair | -8.00054 | -7.93123 | 1.89 | bond -0.01728
2-pair | -8.01289 | -7.94336 | 1.89 | bond -0.01710
| core -0. 01249
soa™ 8.01369 | -7.94435 | 1.89 | — —
Exp° 2.52
BH
HF? -25.12820 | -25.01790 | 2.73 | — _
Gve®
2-pair |-25.16542 | -25.04735 | 3.21 | bond -0. 01443
lone -0. 02279
3-pair |-25.17769 | -25.0599 3.21 | bond -0.01436
lone -0.02276
core -0.01236
socr%s  |-25.18014 | -25.06119 | 3.24 — —
Expe 3.56
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TABLE 1. Continued

2 Cade and Huo [J. Chem. Phys. 47, 614 (1967)] using a more
extensive basis obtain E = -7.9873 and De = 1.49 for LiH and E =
-25.13137 and D, = 2.77 for BH.

b palke and Goddard [J. Chem. Phys. 50,4524(1969), using a more
extensive basis obtain E = -8.0173 and De = 1.90.

€ G. Herzberg, Spectra of Diatomic Molecules, (D. VanNostrand Co.,

Princeton, N.J., 1950); R. Velasco, Can. J. Phys. 35, 1204 (1957).
d Blint and Goddard (Ref. 5b).

© p. G. Wilkinson, Astrophys. J. 138, 614 (1967).

f Using a double zeta plus polarization for (DZP) basis consisting of

€ Using the DZP basis from Ref. 5b.

h The energy lowering due to splitting the one pair.
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TABLE II. Comparison of GVB and SOGI calculations for (a) the

transition state of the H, + D = H + HD reaction at R;, = Ry; =

1.8 a, and (b) the °m and 'm states of BH.

Energy (Hartree)
Barrier height
Ry, = Ry; = 1.8 a H, + D (kcal/mole)

HF -1.5930 -1.6335 25
GVB

rouP ~1.5936 | -1.6517 36

gg’ uP ~1.6035 ~1.6517 30
GVB-CI (3 BF)® -1.6178 -1.6517 21
sogtd -1. 6240 ~1.6517 17
cr® ( -1.6521 -1.6696 11

Energy (Hartree)
R =2.25 3, R =4.0 a3,

BH °n1

HF -25.11333 -25. 01847

GVB -25.12413 -25. 03240

GVB-CI (4 BF) -25.12800 -25. 03742

soGr -25.12874 -25. 04170
BH I

HF -25. 03375 -25. 02459

GVB -25. 04307 -25. 03987

GVB-CI (4 BF) -25. 05400 . -25.04964

soGr' _25. 06285 ~25. 05242
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TABLE M. Continued

4 Energy of saddle point (R;; = R,; = 1.8 a,) relative to
H + HD.

b rfu and gg’'u refer to the two possible orbital configurations;

see text for further discussion.

¢ Complete CI using the GVB orthogonal orbitals.

dy adner and Goddard (Ref. 4a).

€1 Shavitt, R. M. Stevens, F. L. Minn and M. Karplus,
J. Chem. Phys. 48, 2700 (1968).

f Blint and Goddard (Ref. 34).
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TABLE III. Calculations on the ground state of the water molecule?

Pair Information

Method Energy Pair AX .
Energy, Lowering
This work

HF ~76. 0377 — —

GVB. -76. 0988 bond(2) -0. 0207

4 pairs (on) lone-o ~0. 0086
lone-7 -0.0118

GVB. -76. 1019 bond(2) -0.0209

4 pairs (lobes) lone(2) -0. 0115

GVB. -76.1118 band(2) -0.0209

5 pairs (lobes) lone(2) ~0.0114
core(l) -0.0100

Scarzafava (Ref. 20)
HF -76. 038

Separated pair _
(uv form) - 5 pairs 76.1100

Klessinger (Ref. 22c)

HF -75.6807
Group function - .
~'2 pairs 75.7139

Franchini, et al. (Ref. 21)
HF -76. 0374

Group function
- 4 pairs ~76. 0997
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TABLE IHI. Continued

Pair Information

Method Energy Pair AZ

Other calculations

HF -76. 059

HF® -76.0630
c1® -76.1422
cd _76. 2205

2 The geometry is that used by Dunning (Ref. 35b).

b D. Neuman and J. W. Moskowitz, J. Chem. Phys. 49, 2056
(1968).

CR. P. Hosteny, R. R. Gilman, T. H. Dunning, A. Pipano and
I. Shavitt, Chem. Phys. Letters 7, 325 (1970).

d ¢, Bender and H. F. Schaeffer, to be published.

© T. H. Dunning and R. N. Pitzer, to be published.



141

i

"(896T) 296 ‘8% ‘'sAug ‘weyd ‘f ‘roxeT ‘D pue sS1OM 'S

NN

‘o q

"(€961) G661 ‘68 'sfuq
‘way) Cf ‘quodsdiT N ‘M pu® J9Z)J ‘N Y Aq pasn jey) aq 0} udye} Sem pasn Arjowosad oyl -

€67 onwmxm
1°6- 8810 °6L- | T1¥96 8L~ JD08S
g'er 0TS6 8L~ | €966 "8L- dH
Q.Hmwﬁmmwum
9280 9¢8°0 8G10 "0~ LST0 0~ | PUOq HO
9¢8°0 Ges’'o 6€T10 0~ 6€10°0- | PUcq 0O I°¢+ I¥96 "8L- | 1696 "8L- gAD
g€°¢t GGG8'8L- [ 8098 8L~ dH
oM SIUJ,
pasdijon | poasaddeig| pasdijoq | paxodsde)s Ired (oTowr/TROY) | posdifoy | paxadde)g
Jatraeqg

deriaAQ 1811QI0

durromo A3xouqg

UOTYRUWLIOIU] JTBd

(edayaey) A3I9uy

‘9INO9IOW QUBY}e 9Y} U0 suonenofe? jo uostredwio) ‘Al ATV



TABLE V. Oxygen Molecule (R = 2.282 a,)
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3 Zé state
E D,
HF -149. 6331 0.95
GVB (one pair) -149. 6595 1.68
GVB-CI -149.7315 3.64
cr? -149. 7944 4.72
Exp° — 5.21
Excitation Energies
State HF GVB GVB-CI Exp
3 -
) — —_ — —_
g
lAg 1.43 1.28 0.91 0.98
ot 2.37 2.23 1.69 1.63
s — — 5.91 6.1
3 c
A, — — 6.16 6.1
3t C
Z, — — 6.31 6.1

2 H. F. Schaeffer III,

b Reference 39.

¢ Broad unresolved féature, Reference 42.
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TABLE VI. Characteristics of GVB electron pairs in bonds

Pair Information
Energy Lowering
Pair Relative to HF
Type | System-State | Basis | Pair | Overlap (Hartrees)
Sigma | CH “n POL 0.8264 0.0173
bond _
CH *z POL 0.8640 0. 0104
CH, POL 0.8342 0.0153
C,H, 12; MBS | CH | 0.8413 0.0138
cc | 0.9289 0. 0045
C,H, lAJLg MBS | CH | 0.8388 0.0142
CcC | 0.8930 0.0078
C,H, ‘A, MBS | CH | 0.8259 0.0157
cc | 0.8354 0.0139
BeO 'zt MBS 0. 8618 0. 0085
BeO °I MBS 0.9117 0.0046
H,O ‘A, POL | OH | 0.8247 0. 0209
pi CH, ‘=5 | MBS 0.6639 0. 0329
bond 1 g
CH, A, MBS 0.5782 0. 0462
co ‘=7 MBS 0.7366 0.0308
BeO ‘=7 MBS 0. 6662 0. 0313
Lone H,0 ‘A, POL 0.0115 0.0115
Pair
CH, ‘A, POL 0. 6827 0.0214
C, lz; MBS 0.3313 0.1013
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CHAPTER 3.2 The Application of the GVB

Method to Ring Opening of Cyclopropane
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The Orbital Description of the Ring Opening of Cyclopropane
P. J. Hay,* W. J. Hunt,f AND W. A. GODDARD III, ¥

Arthur Amos Noyes Laboratory of Chemical Physics, 1

California Institute of Technology, Pasadena, California 91109

Summar

A theoretical study or the ring opehing of cyclopropane
through use of the ab initio generalized valence bond method is
reported, including plots of the self-consistent GVB orbitals for
several configurations. As first discovered by Jean and Salem,
we find that face-to~face trimethylene is significantly stabilized

by allowing the terminal groups to cant toward each other.

* National Science Foundation Predoctoral Fellow.
¥ Alfred P. Sloan Foundation Fellow.

i NDEA Fellow.
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2~4

Only recently” - have theoretical calculations been reported on

the simplest diradical, trimethylene

é

5, C;/ \ cH, 1)
The major reason for the lack of theoretical treatments of such bi-
radicals is the inadequacy of the molecular orbital (or Hartree-Fock)
model in treating the breaking of a bond. ‘In order to avoid this diffi~
culty, we use the ab initio generalized valence bond (GVB) method® in
which a doubly-occupied pair ¢ ia(1)¢ib(2) + qblb(l)qbia(Z) and then all
orbitals (for all 24 electrons) are solved for self consistently, allowing
each orbital to use all functions in the basis.

For equilateral cyclopropane (6 = 60°) we carried out minimum
basis set6 GVB calculations allowing either one C-C pair or all three
C-C pairs to be split. These calculations led to essentially equivalent
descriptions of the C-C bonding pairs, one of which is shown in Figure
1a. We see that this bond is quite aptly described as a bent bond (the
hybridization in each orbital is found to be 82% p-character), in good
qualitative agreement with the VB results of Coulson and Hurley. T

Similar calculations (with one pair split) were performed for
several configurations of face-to-face trimethylene8 (the terminal CH,
groups perpendicular to the CCC plane, just as in cyclopropane). As
shown in Figure 2a, the energy increases monotonically as 6 (the CCC

angle) is increased from 60° to 130°. As reported by Salem? for large

0 the terminal groups are not planar but are canted in such a way that
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the terminal CH bonds are staggered with respect to the bonds of the
central C. The energy curves for the symmetrical canting of the
terminal groups are shown in Figure 2b. For 6 = 110°, the optimum
angle (1) is about 30° for the singlet state and the energy drops 5.1
kcal over that for planar terminal groups (for the triplet state n ~ 24°
and the energy grop is about 1.2 kcal). For 6 = 120°, the energy
drop is 4.0 kecal (1.1 kcal for the triplet state) and for 6 = 130°, the
optimum 7 for the singlet state is about 25°. The nonbonded interactions
normally favoring staggering of neighboring groups lead to 0.5 kcal
energy lowering (with respect to a planar terminal group) in ethyl
ra.dical9 and should lead to about 1 kcal energy lowering in trimethylene.
This is about the energy lowering observed in the triplet state at
6 = 110° and 120°; however, the singlet states drop several times as
much.

The orbitals for the '"broken bond' of trimethylene (6 = 110°)
are shown in Figure 1bc for the cases of n = 0° and 7 = 30°. Here we
see that the canting of terminal groups towards each other leads the
orbitals to rehybridize such as to point away from each other (the
hybridizations for the orbital pairs in Figure labc of these orbitals
are 82%p, 100%p, and 91% p, respectively). As indicated by the
dotted lines aa’ and bb’, the canting also leads to a rotation of the
orbital axes towards each other (15° between aa’ and bb’). For 6 = 110°
and = -15°, 0°, 15°, 30°, and 45°, the orbital overlaps are 0.108,
0.140, 0.164, 0.178, and 0.192, respectively (the orbitals have an
overlap of 0.790 at § = 60° and an overlap of 0.073 for 6 = 130° and

7 = 30°).
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FIGURE CAPTIONS

Figure 1. The GVB orbitals of (a) one C-C bonding pair of cyclopro-
pane; (b) the pair or orbitals describing the broken bond of trimethylene
for 6 = 110° but planar terminal groups; (c) the same as (b) except that
the terminal groups are canted inward by 30°. The location of each
carbon nucleus is indicated by +. The nodal line is indicated by long

dashes and the contour intervals are 0.1 (in atomic units).

Figure 2. (a) The energy curve for the ring opening of cyclopropane.
(90, 90) indicates that the terminal groups are taken as planar (n = 0°)
for 6 = 100°, (900, 90,) indicates that the terminal groups have been
canted (n = 30°) for 8 =100°. (b) The energy cﬁrve for the symmetrical

canting of the terminal groups in trimethylene.
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CHAPTER 3.3 A GVB Study of Low-Lying

States of kethylene
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We report here the results of Generalized Valence Bond (GVB)
calculations on the 1Al, 3B1 and 1Bl states of the CH, molecule. In
Section I we discuss the procedures involved in the GVB method, which
is an extension of the Hartree-Fock molecular orbital approach. In

Section II we present the results for CH,.
1., METHOD

In the GVB approachl we replace the orbitals ¢i which are

doubly occupied in the Hartree-Fock (HF) wavefunction:

Vg = AL .06 0,08+ ¢ 286] ®
by singlet coupled pairs of orbitals:
Vove = AL(01291p * P1p912) (922020 * P2pP2s) @)
e (902800 + Ppptng) @BeB .- p]

For a state of spin S the last 2S orbitals are singly occupied with
open ¢ as in HF. The wavefunction (2) has the form of a simple
valence bond (VB) function, 2 the difference being that in (2) the
orbitals are solved self-consistently rather than taken as atomic
orbitals in VB. In addition to giving an energy lower than HF the
GVB approach leads to proper treatment of the breaking of bonds and
offers the conceptual advantage of leading to localized orbitals in
close correspondence to the qualitative ideas of bonding and non-

bonding pairs of molecules.
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As was originally shown by Hurley, Lennard-Jones, and
Pople, 3 each pair in (2) can be represented in terms of two natural
orbitals (NO's).

) @ ® e a 3

@ )y @ (¢4
b0 Pip * PipPia = C11%1i P11 + CaiP2:i P2 (3)

Coulson and Fischer4 had also discussed GVB-like descriptions

for H,. In this representation GVB is seen to be a special case of

8-10

the separated pair, 51 strongly orthogonal geminal, self-consistent

group, 11 ond multi~configuration scrl3-16

17

wavefunctions where, in
general more than 2 NO's are used.
In GVB as in these other methods the strong orthogonality
constraint18 is imposed, i.e., the NO's of pair i are taken to be
orthogonal to each other as well as to the NO's of the other pairs.

This means that the GVB orbitals satisfy the relations

(95,1000 = 0

. (4)
(¢i| ¢j> =0 otherwise.

Relaxation of the orthogonality constraints makes GVB equivalent to
the G1 method. 19
As has been shown by Kutzelnigg’7 and Silver, Mehler and
Ruedenberg, 6 the total electronic energy has the form
E=) fiy + ) Apdi,+b K, (5)
k k, £
where by = (k|h|ky, J,, and K} , are the usual Coulomb and

exchangé integrals, and fk is the occupation number][ fk will be 2 for
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doubly occupied orbitals, 1 for singly occupied open shell orbitals,
and C; for GVB NO's. ]

Using the variational principle, one obtains the self-consistent
field equations

[ - 2 |0 <alE] oy = by (6)
j#k

where N is the number of distinct orbitals. With the exceptions of

- a few strongly orthogonal geminal calculations on small diatomic
molecules and several multi-configuration SCF calculations, pre-

vious calculations have not fully optimized the orbitals since each
function was obtained within a fixed partition of the basis. As discussed

20 the method uséd here leads to correct

by Hunt, Dunning and Goddard,
mixing of all occupied orbitals with each other and with the virtual
orbitals.

In particular, lack of full optimization has led to poor descrip-
tions of rotational barriers in self-consistent group function calcula-
tions, [e.g.; the rotational barrier in ethane was calculated to be -5. 1
kecal (the eclipsed form lower)], 12 whereas good descriptions are
obtained in HF and GVB [in ethane we found the eclipsed form to be

higher by 3.1 kepm in good agreement with HF and experiment (3.3
and 2.9 kepm, respectively)].
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2. THE METHYLENE MOLECULE

21,22

Several recent experimental®™’ 23-26

and theoretical
studies on the electronic structure of CH,, the methylene molecule,
have examined various aspects of the 3B1 ground state and the low-
lying ‘A, and 1B1 excited states. Because of the important implica~
tions for singlet and triplet carbene chemistry, 7 it is surprising
that little quantitative information is known about these states.
Spectroscopic evidence indicated that the triplet ground state 'was
linear and that the "A, and 'B, band angles were 104.2° and ~ 140°,
respectively. Although the ab-initio calculations predicted correct
geometries for the singlet states, they all showed a relatively flat
potential curve with a minimum at a bond angle of ~ 135° for the

triplet state. Recent experimental data28-30

have since confirmed
a bent geometry in agreement with the theoretical predictions.

The 0-0 1B1 - 1A1 transition, while not observed directly,
has been extrapolated to occur at about 0. 88 eV (the lowest observed
transition length at 1.34eV) and an upper limit of 1.0 eV has been
assigned to the 0-0 'A, - °B, transition. 21,22

To date the best theoretical values for these transitions,
0.97 and 0.96 eV, respectively, have been obtained by O'Neil,
Schaeffer and Bender (OSB)26 from electronic configuration inter-
action calculations.

The GVB function for these states has the form
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A=Ay B (0128 1p + P1pP1a) B2aP0p + Pop®an)($3,85p + Pap3,)

YByiw=A61315(91,01n + P1p®1a)(P2,89n + PapPan) (3,83 + P3p3,)

where the orbitals are all optimized for the three states subject to the
strong orthogonality constraints between pairs.

The calculations were performed at four HCH angles (90, 105,
135 and 180 degrees), each with a CH bond distance of 2.1 a,. A bond
angle of 105° nearly corresponds to the minimum of the 1A1 potential
curve, and a bond angle of 135° corresponds to the approximate
minimum for the 3B1 and 1B1 curves. The basis sets employed were

a double zeta contracted gaussian basis31’ 32

and the same set aug-
mented by a set of uncontracted d functions on the carbon atom with
an exponent of 0. 532.

As shown in Fig. 1, the bonding pairs [¢1a~, ¢1b] and [¢2a¢2b]
GVB pairs are qualitatively similar for all states in that each pair
consists of a hybridized orbital on the carbon oriented towards one
of the hydrogen and an essentially hydrogenic orbital delocalized
somewhat onto the carbon. For the B, states the [¢3 a2’ ¢3b] orbitals
may be taken to be a, and b, symmetry orbitals wit hout restriction.
For the 1A1 state we obtain a pair of sp hybridized lobe type orbitals
pointed above and below the molecular plane and bent back from the
hydrogen. The splitting in this latter pair results in a significant
lowering of the energy (.0214 a.u.) relative to the Hartree-Fock

description. As has been pointed out, the poor description of this

pair by HF arises from the near degeneracy of the 3a, and 1b, orbitals.
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In Table I we compare the energies of the GVB wavefunctions
at the lowest calculated points for each state [ in the GVB 1-pair cal-
culation, the 1B1 and 3B1 states were treated és in open-shell
Hartree-Fock theory and the 1Al was treated by splitting only the
sp pair]. We note that the I-pair GVB description is a reasonably
consistent description for all states in that each state dropped approxi-
mately the same amount (. 0221, .0227, and .0274 a.u.) in energy

“when the CH bonding pairs were split. The two configuration wave-
functions of OSB in the table are equivalent to the 1-pair GVB calcula-
tion although we used a larger basis set.

We also performed a configuration interaction calculation .
(doubled as GVB-CI) at each point using the six orthogonal GVB
natural orbitals as a basis (keeping the 1s pair doubly occupied).

As indicated in Table I this led to an improvement in energy of . 0115,
.0052, and .0080 a.u. for the respective “B,, ‘A, and 'B, states.

OSB obtain a much larger improvement in energy in their CI calcula-
tions (see Table I) as they also include excitations not involving
valence orbitals (semi-external correlation).

As shown in Fig. 2, the 3Bl state remains the ground state
for all 6<180° until § reaches approximately 100°, where the
curve crosses the 1Al state (6 is the HCH angle). The 3B1 and 'B,
states exhibit shallow minima at approximately 6 = 135° with energies
0.39eVand 0.28eVbelow the energies of the respective 328 and

'Ag linear configurations.
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From the GVB-CI results we predict the 0-0 °B, - 'A,
transition (see Table II) to occur at 0.50 eV and the 0-0 1A1 - 1B1
transition to occur at 1.40 eV. This is in conflict with both the
CI calculations of OSB and the experimental estimates for these
quantities. However, the CI calculations did not use any 3d
polarization functions which we find to be important for the 1A1 state.
Indeed when we repeated the calculations using essentially the same
basis as OSB, we obtain 0.97 and 1.11 eV in good agreement with
the values of 0.96 and 0.97 eV from the more extensive CI calcula-
tion for the respective 0-0 transitions. Inasmuch as the lowest -
observed 1A1 - 1Bl transactions was observed by Herzberg and Johns22
to be at 1.34. If we assume this b to the 0-0 transition inverting
for zero point energies we calculate an experimental energy of
1.41eVin good agreement with the theoretical value. Instead, Herzberg
and Johns estimated that the transition was (000)~(060) and extra-
polated a value of 0. 88 eV for 0-0. We find the 3B1 - 1B1 splitting
tobe 1.88 eV at 135° and 1.77eV at 180°. This splitting is essentially
twice the exchange integral of the ¢ and 7 compared ¢ and m orbitals
and would be expected to be comparable in size to the splitfings in
C where the *P - 0 splitting is 1.26 V. (In C the unpaired orbitals
are both p orbitals).
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Table 1

GVB Energies for the States of CHza‘

Energy (a.u.)

Reference Method B,(135°) | 'A,(105°) | 'B,(135°)
Chis work HF -38.9202 -38.8821 | -38.8544

GVB-1 pair -38.9202 -38.9035 . 8544

GVB-3 pair -38.9483" | -38.9362 . 8818

GVB-CI -38.9598 -38.9414 . 8898
)'Neil, Bender &
schaeffer(Ref. 26) HF -38.9136 -38. 8620 . 8452

1 pair -38. 8772

CI -38.9826 -38.9472 .9114
}{agfz:isé%r)l and Allen HF -38. 893 -38.843 . 822

VB-CI -38.915 -38. 864 . 833
?I‘?esft.exé :;a)nd Boys

! The energies reported from Refs. 23,25 and 26 are the calculated minima

for each state.
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Table 2

CH, Excitation Energies (eV)

B~ A, 'A,~'B, | 'A,~'B,
References Method (0-0) (0-0) (vert)
T'his work GVB 1 pair (0.45) (1.34) 1.91
GVB 3 pair (o. 32) 1.49 2.06
GVB-CI? 0.50 1.40 1.88
(0.97) (1.11) (1. 69)
J)'Neill, Bender, CI 0.96 0.97 1.56
Schaeffer (Ref. 26)
Harrison and Allen VB-CI 1.39 0.84 1.52
(Ref. 25)
Foster and Boys 1.06 1.55.
(Ref. 23)
Experimental
(extrapolated) <1.0 0.88
(Ref. 22)

4 The quantities in parentheses were obtained by using a DZ basis essentially

identical to that used in Ref. 26.
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FICURE CAPTIONS

GVE orbitels for GH, in the lAl state.

(four pages)

Potentiel energy curves for the 3Bl,

lBl, and lAl states. The GVB curves
are in solid lines; the CI curves are

in dashed lines.
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CHAPTER 3.4 Diatomlc Hydrides end Fluorides

- A GVB View
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I. ISTRODUCTION

One of the gosls of cuantum chemistry haes been quanti-
tative prediction of chemicel phenomena. Success in this
goal 1s being achieved slowly; Unfortunstely, the expense
of the cslculations neéessary for quantitative prediction
will orobsbly prevent thelr use on any but the smallest
chemicel systems. The more important goal, however, is to
provide & theoreticel fremework for interpreting experi-
mentel information. The valence bond (VB) theory has been
a fertile source of conceots about bonds and lone palrs in
molecules."+

In the molecular orbital (MO) theory, symmetry has
pleyed a major part in predicting the equilibrium geometries
of molecules5 and the courses of chemical reactions.6 One
of the early successes of the MO theory was the construction
end use of orbitel correlation diegrems for dlatomic mole-
cules-7’8 The concept of an aufbau principle using bonding
end entibonding orbitels allows & lerge number of experi-
mental observations to be rationalized.9 The stresightfor-
werd prediction of the ground state of the O, molecule as a
triplet state 1llustrated the power of the correlation
diagram.ll Of course the MO theory hes well-knowvn limita-
tions as & cualitative model. The most serious of these

faults 1s its inability to descrlbe bond breaking as a
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continuous process-12 Thus the 10 correlation alagram pro-
vides 1little informstion about the dissoclation llmits for
molecular states.

In earlier papers of this series, we developed the
generalized valence bond (GVB) method and applied 1t to
several problems. Since the GVB method 1s a generalization
of both the MO and VB theories, it offers a new end improved
persvective for 2 cualitative study of distomic molecules.
In this paper we exesmine the hydrides and fluorides of first
row atoms. Although the results of celculstlons zre pre-
gsented, the emphasis will be placed on new concepts based

on the GVE method.

II. THE CVB METHOD

In the VE theory~c ezch bond is described by a two-

electron wevefunciion of the form
$u(Lg(2)fer(1)p(2) - B(L)ex(2)] (1)

where% and ¢B are atomic orbitazls from stoms A and B, end
& =zna IB are the usual spin functions. Since ¢A end ¢p are
not varistionally ovtimized, severzl problems erise. The
choice of ztomic orbitals 1s hot elways cleer. For example
In methane the cholice of sp3 hybrid orbltals would be cleer,
but in CHzF the choice would not be obvious. The form (1)
given ebove 1s appropriszte for a covalent bond. We mighg

also have used ionic terams of the form ﬁyﬁA and ¢E¢B‘
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A more general VB calculestion would include these terms in
addition to (1). The advantege of the VB approach is that

a correct description of bond breszking 1s bullt into the
wavefunction. The weakness of this approacn is that it
forms the wavefunction for a molecule in en arbitrary
fashion; the quelity of the resulting description 1ls strong-
ly cdependent on the intuition of the user of the method.

12

The MO theory represents a bond by a function of the

form.

$.0( 1), (2[x(1)8(2) - p2)ex1)]

The orbitel @ hes the form

@0 = CaPs * ¢y

where the coefficlents Cy end CB are optimized. Since only
one orbitzl 1s used, the bond breeking proéess cannot be
described correctly. The MO theory uses a simple form which
is variationally optimized. This mekes 1t useful for mole-
cules neer thelr equilibrium geometry.

Considering the molecule as a whole, we emphaslze that
the VB theory requlres zn erbltrery assignment of the atomic
functions ¢A end ¢B to each tond while MO theory optimizes
the entire cholce of the orbitals ¢MO' | Thus the VB approach
is not es well cefined 2 procedure as MO theory. An obvious

improvement on the two methods would be to use the VB

form (1) but optimize the orbitals ¢A end ¢B-l4 The result
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would be & well-defined theory combining the sdvantages of
both older methods. In order to faclilitate calculations,
we reculre the orbitals describing different electron palrs
to be orthogonal. In practlce we usually find this
restriction to be unimportant.l5’ 16

Mogt of the states we will discuss heve unpalired
electrons. We may include these in a manner besicelly like
thet of open shell Hartree-Fock theory. These open shell

orbitals are requlired to be orthogonal to each other and to

211l other orbitsls.

IITI. CAICULATIONS

£11 calculstions in this study used the STO-4G basis
described by Poplel7 with the standard moleculszr exponents
he recommends. Thls basis set has been shown to be an
efficient method of cerrying out minimum basls set calcula-
tlons for polyatomliec molecules. Integrzl evaluation was
accomplished with the Polyatom program as modifled by Basch
et g;.18 SCF cealculetions used programs written by the
author.l9

Nuclear geometries used were those determined experi-
mentallylo’zo for the ground states of the molecules con-

sidered. 4 listlng of these values appears in Teble I.
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IV. THE CVB DESCRIPTION OF ATOMS

We dlscussed the relation of VB, MO, and GVB methods
in the descripntlon of bonds, but eny doubly occuplied molec=-
ular orbitzl mey be "split" to give two GVB orbitsls. In
atoms we find one very important splitting. The Hartree-

Fock description of the beryllium atom in the 1ls ground
21

stete has the electron conflgurstion
(1s)%(2s)2.

The 1ls orbitsl of first row atoms plsys no active role in
the process of molecule formetion. We will omit this orbi-
tal from further dlscussion; in the GVB caslculation it
remzins a doubly occupled Hertree-Fock orbitel. But the
description of the two valence electrons is quite cifferent
in & GVB picture.22 The two electrons in the 2s orbital
heve {00 much repulsion between them. The energy of the

wevefunction 1s substentially lowered if the orbitels polar-

ize in opposite directions.22 The two GVB orbitals become

Ba = Fos ~Aop,
$5 = @os +A¢2pz
These hybridized orbitals still heve high overlap with each

other (about 0.69), but they now heve directionel charecter.

We represent one of these orbitals as
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@)

where the two lines connect points with equal amplitude.

The two lobes have opposlte sign. The Be atom 1s drewn as

O QD [s0%,5p7]

where we dlsplece the two orbitals for clerity. The box
indicates that the two orbltels are coupled together to glve
a2 singlet state. We refer to the two hybridized orbitals as

spz end spz.

To form the boron atom in the 2p state, we add a py

orbitzl. The resulting picture 1is

(@) OD [sp'z', SPZ] sPy

where the p orbital is slong the y-axis.

The cerbon atom in the 3p stete becomes
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J
X
Z——@o OD [sp'i, spz] sPys Py

where the p orbitels point z2long the x and y axes.
For the nitrogen atom in the 4s state, the Hartree-

Fock configuration 1s
*e o 2
(2s)=(2py) (2py) (2p,) -

Since 2ll three p orbitals are already occupied, no empty
direction exlsts in which the (28)2 electron peir mey split.
Thus for the ground states of nitrogen, oxygen, end fluorine,
the GVB description is qualitztively equivalent to the
Hertree~Fock Dicture.

The effect we described in the GVB method hes been

24

emphasized earlier by Sinanoglu and by Schaefer-25 In a

more methematical view this effect ls caused by strong

mixing of a configuration
with the Hzriree-Fock confilguration

ces (25)2(2p)N-2,

The quantitative effect of thls second configuration on

energy differences between states of the atom24 end on
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one-electron prOpertie825 hes been the primery concern
previously. Our interest here 1ls in the new cquelitatlve

picture the GVE method suggests for bond formatlon.



184

V. GVB WAVZFUNCTIONS FOR_EeH AND EeF

Sterting with the GVB description for the Be atom, we
can eeslly understand the ?8* ground state of the BeH mole-
cule. At R =00, the two Re orbltels of the 1ls state are

singlet coupled. At R = Rg, we represent the wevefunction

| @o Og_b [s02,5], sz

The line connecting spz snd H indicates singlet coupling.

g8

Tow the wevefunction clesrly must chenge form between R =00
end R = Re. A similer chenge in form must occur in re-

actionszg such a8 the exchange process
Ho + D -> HD + H.

In such reactions potential energy barrlers exlst along the
reaction psth. By snelogy we would expect a potential
energy maximum to occur a2t some distence grester then Re’
Although configurstion interesc¢tion celculestions by Chen and
Davidson26 did not find such o berrier between K, and

5.0 bohr, & recent multiconfiguretion self consistent fleld

(MG-SCF) caleulstion2® by Dunningz8 shows that a potentlal
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meximum does exlst neer 5.75 bohr. These potentlal energy
humos ere expectedBo for many moleculer states whose
formetion involves spln recoupling.

We mey also get a low-lylng state of 2x symmetry using
the 3@ stete of the Be atom. Both the GVB and Hartree-
Fock descrintions for this state have the configuratlon
(2s)L(2p)t. ToO get e 2% state, we use the 2p, orblitel and
get the following description.

[S,H}’py

Since bond formation in this state 1nvolves previously un-
peired orbitals, we expect no hump in the potentlal curve.
Another consequence is that the excltation energy for the
A27T &« X2}3+ transition should be slightly lox-}er then the
corresponding excltation energy for the 3p <« ls trensition
in the Be atom. The exverimental velues of 2.510’30 and
2.731 eV support this argument. The approximate calcula-
tions carried out with the GVB method also shpw thls result.
Since the calculations allow only one spin coupling, the identity of the
paired orbitals for the =™ state must change as a function of R. The

application of the variational principle minimizes the effects of the

restriction, however.
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For fluorides we expect aun ionic single bond to be
formed. To achlieve trls, we »oint the singly occupled
Cat
fluorine orbital towerd the Be atom. The “& state of ReF

ls pictured

d
!
GO

The errow from the doubly cccupled F orbltel py indicates

thet it and the p, orbital (not shown in the flgure for

clerity) delocelize into the empty p_ and b, orbitels on

¥
the Be stom. As expected, the sigma bond is shown by cal-
culations to be cuite ionic. The fluorine-centered orbital
is neerly unchenged from the atom, whllie the Be-centered
orbitel hzs traensferred e large part of lts amplitude to

the F atom. In the X state the oresence of a A orbital on
the Be atom should hamper delocelizetion of the F 4r orbltals.
Because of thls the 2% state of BeF ls 4.1 eV ebove the -8

10 The delocalization of the F & orbitals is

ground state.
a wegk form of w-bonding. We would expect that the Be
orbital would be en entibonding orbital end the F #»
orbitals bonding orbitzls. Since the A-bonding is weaker in
the excited %ﬁ stete, the R, velue should be longer in the
ground state as shown in Table II. Similerly, the force:

constant for the excited state 1s smzller than for the

Lot
&2 State, as expected.
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The exverimental and theoreticel informstlon necessary
for these comperisons 1s glven in Table II. The calculated
velues for dipole moments esre cleerly not useful for gbso-
lute values of dipole moments. The way in which théy“ere
useful is to show the differences between states of the
seme moOlecule., For example, the dipole wmoments of the %g*
stetes of BeH and BeF ere cuite smell. But the 2ﬂ'states
both heve sizable moments in the direction B¥X . One elec-
tron has been transferred from the spZ orbltal centered
1.14 bohr behind the Be atom to the Ee Py orbital centered
0.16 bohr toward the F atom. Thus a large zmount of
exnerimental and celculaeted information is understood in
terms of the GVB »nicture. To use this picture, we did not
need to carry out calculations. The overall description of
Bell and BeF could be predicted from knowledge of the atomie
wavefunctions. The purpose of the ceslculations was to
provide additionsl information and to test the ideas

predicted by the etomic wevefunctions.
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VI. BH and BF

In forming BH, we heve a cholce between pelring the
hydrogen orbltel with & p orbitel or an spz orbltel. To
get the 12* ground stete of BH, we point the boron p

orbitel at the E orbital 2s shown below.

The zrrows indicate thet the sp orbltels bend teckz awey
from the bond.

In the 37\’ gtate the spz orbltel polnts towerd the H
atom. Bonding reculres a change in the spin coupling. As
for the 25* state of BeH, we expect a hump in the potential
curve. However, we may couple the & end o singly occupied
orbitels to give either a 37)' or 171' stete. For the 2
stete this coupling produces en energy contribution of
~Kgq+ This energy-lowering lnterection will reduce the

1

slze of the potentiel maximuan. In the "7 state a +{gy term

increases the size of the hump in the energy curve.
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The schematic diecrem for the 39 end lﬂ'stetes is

showvn bhelow.

O 09 d [SPZ,H] »9DZ, Dy

Since the trensition from the %ﬁ* stete to the 37Tor lﬁ'

state involves revlscing 2 sigme orbital centered behind

the B a2tom by a & orbitzl centered near the boron atom, we
expect the dipole moment for the excited stete to be changed
towerd BYH™. This trend is supported by the soproximate

22,32 o

celculetions reported nere and those of Harrison.
velues given in Teble II indicate that the 2bsoclute values
we calculate zre not relieble but that the trends between
stetes probpably ere velid.

For fluorides the viciure is similer to thet for BeF.
The # orbitels cn the fluorine etom deloczlize in 2 bonding
manner. In the ?ﬁ and lﬂ’excited stetes the singly occupled
B 7v orbital 1s entibonding. Thus in BF the W excited states
ere loceted much higher in energy then in BH. In addition
the velues of the spectroscopic constants Rg and.a@ change
much more in BF for the B’Iﬂ’é-lz* trensition then they do

for BH. The dipole moment of BF behaves similerly to that

of BH. This information 1s tebulzsted in Table II. '
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VII. CE AXD CF

Since the CH 2nd CF molecules are the most interesting
of the series consicdered here, we Ddresent contour plots33
of the orbitals for seversl stetes. The diegram for the

2% state of CH would be

\)
QO [SPY’SP?] ’[pz’H]’px
Q

where we omit the singly occuvled p, orbital for clerity.

In Figure 1 we show a spy orbitel for CH. As we pointed out
for the boron stom, in the ground state these orbitzls bend
back away from the bond. The bond orbltaels from C and H

are shovn in Figures 2 and 3. We note thet the hydrogen
orbital is little altered Dy bond formatlon while the carbon
P orbitel is somewhat hybridized toward the hydrogen atom.
The ﬁk orbital 1s not shown since it remeins essentially an
etomic~like p orbital centered on the cerbon atom.

In the “9~ state the spz orbitezl of the carbon atom

polnts towerd H 2s shown below.
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GApE) &t

The carbon bonéd orbitel for this state shown in Flgure 4 1is

somewhét Gifferent from the % orbital. The spZ orbitsl is
shown in Figure 5.

The three orthogonesl oven shell orbitels spZ, Dy, and
py could be used to form other stetes of the symmetries
en-, %A, and “it.  we mey pull these states apart to see
what their dissoclstion limits ere. In the 22' state the
Py end py orbitels ere triplet coupled. Thus the 3p state
of carbon is the dissocletion 1limit of this stzte. 3Similer-
1y the “A(XY) 2nd PA(X2 - Y°) states dissociste to the
1p(xy) and 1D(X? - Y?) states of carbon. Finally, the Igt*

state, which is like px2

1p (222 - X2 - Y2) state of carbon.

- pyz, dissocletes to the
34

£11 these states except the ground stete involve spin
recoupling. Recent zccureste ceslculations by Bobrowic235
indicete thet in the 42" state the exchange integrazls Kgx
which enter the energy expression with a minué sign effec-
tively cancel the spin recoupling terms. The result is a

potential curve with no hump. On the other hend, for the
2a-
&~ stete these exchange integrals rslse the energy and

increase the size of the potentlal energy hump.
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Herzberg end John536 recently concluded that a small
meximum (grester than 500 em™ 1) exists for the 2% stete of
CH. The orblitels obtalned for this stete show an lnterest-
ing difference from those for other states. TFarller we
commented thet bond formation involving spin recoupling
forced the orbitals to chenge form as a functlon of R.

In Figure 6 we show the cerbon spz bonding orbital.

It actuslly hes a2 more atomic-like form than the corres-
ponding orbital in the 4p- stete. The orbital with which
1t is paired, shown in Flgure 7, 1ls primarily a hydrogen s
orbital with some spz character. At larger values of R, we
expect the amount of spz cheracter to increase until at

R = e only spz chafacter is left. The unvaired orbital in
Figure 8 is an entisymmetric combination of spZ and H
character. This keeps the orbital orthogonal to the bond
orbltals. Even in calculetions where all spin couplings
ere included end no orthogonality restriction 1s imposed,
no orbltal has a sizable overlap with more thsn two other
orbitals.?? The unpailred orbital is chengling from a H
orbital at R =0 to 2 spZ orbital at smell R. In the A
and °f* states the Kpy interactions are esgain favorable so
that the humps for these states will be small or nonexistent.

For CF we first show in Figure 9 the F bond orbitel
for the °# state. It is little changed from the stomic
orbitel. In contrast, the C bond orbital in Figure 10 heas

trensferred a large amount of amplitude to the fluorine



193

atom. This charge trensfer is counterzcéted by the F #&
ortitels in Figure 1l whicr gre centered ebout 0.2 bohr
from the F stom towerd the C a2tom. The spy end spi cerbon
orbitels ere forced to accoulre entibonding py cheracter on
the F atom in order to remein orthogonel to the delocallzed
F 9 orbitals. The spy orbitel is shown in Figure 1l2.

In the %2' state the C bond orbital resembles those of
the 27 state since it involves a lerge zmount of fluorine
p, cheracter. The 29~ statell produces a set of sigma
orbitels like those in CH. The bond orbltals and the carbon
spZ orbitsl are shown in Figures 13, 14, and 15.

From Teble II we see that the ground end excited states
of CH 2ll have simliler values of @, and R . For CF no
experimental informetion 1s avelleble for ay and Rg.

In addition the excltation energles for CF'are much larger
than for CH. This follows the trend esteblished for Be and
B. Also of interest is the grouping of dipole moments for

the 2h’and " states and for the 42’, 2A, snd 22? states.

VIII. CONCLUSIONS

We heve used the GVB method to dlscuss BeH, BeF, BH,
RF, CH, end CF. A sinple expleanetion for trends in dipole
moments, ecuilibrium bond distences, and force constants
heas been offered. The stralghtforward wey in which

dissocietion processes may be considered by the GVB
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aporoach 1s very useful in relating the cheracterlstlcs

of the molecule to those of the atoms it conteins. The
results of the present study suggest thet the GVB method
will ke & useful tool for investigatling the chemlstry of
more combliceted molecules such as Bez, B2, Co, BN, and
BeO. Calculations on these snd other systems are currently

in progress.
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TABLE I. Egullibrium Geometries

Molecule Rea
BeH 2.938°
BeF 2.57°
BH 2.33P
BF 2.38P
CH 2.1P
CF 2.402°

aAtomic units eare used.'

bﬁeference 10.

Creference 20.
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TAELE II. Properties of Llatomlc Hydrides end Fluorides
Stete Txecitetion w & R & Dipole Mo;zentb
__Energy (eV) # fl\ f ‘
this other ca”T)  (A) this  other
work celc. expe» - work cale. €xp.
BeH 28t 0.0 0.0 0.0 2058 1.343 -0.003 =-0.181°
2F =.1 2.5 2087 1.333 -2.18
BeF 28* 0.0 0.0 1173 1.361 0.106
2F 5.4 4.1 1266 1.394 =2.60
g 1 0.0 0.0 0.0 2366 1.232 1.02 1.619°
3% 0.35 1,064 1.201 -0.378 0.15%
17 5.7 2.71% 2.9 2344 1.226 0.47  0.704%
g ¥ 0.0 0.0 1400 1.262 1.24  1.04°
37 2.9 | ~0.402
1% 6.8 6.3 1271 1.304  0.0369
CH 2/ 0.0 0.0 0.0 2862 1.120 1.04  1.577 1.468
“8- 0.12 0.023 -
2A 4.1 2.7f 2.9 2021 1.105 0.423 0.91f
5" 3.37 3.2 2542 1.186 1.27  1.54%
25t 5.1 4.0 2824 1.113 0.423  0.94T
cF 2W 0.0 0.0 0.0 0.463 0.48% 0.65%
- 2.9 2.74) -0.887
24 6.6 6G.64) —0.446
°5" 8.5 8.96) 1.02
ot 8.4 8.0614 -0.356
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sign meens AYE™ or aTFT. All values are quoted in Debyes.
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FICGURE CAPTIONS

Fig. 1 An spy carbon orbitel iln CE for the 2
stete. The cerbon etom 1s locested at
the left cross end the hydrogen stom at

the right cross.

Fig. 2 A cerbon D bond orbltel for CE(%%) .

Flg. 3 A hydrogen ls orbital for cu(5) .

Fig. 4 A carbon SPZ bond orbital in CH(%S-)-

Flg. 5 A cerbon spz non-bonding orbitel in CH(4§TW.

Fig. 6 4 cerbon spz bond orbitel in CH(ZS™).

Fig. 7 The hydrogen bonding orbital in CH(®S™).

Fig. 8 The carbon spZ non-bonding orbitzl in
cH(Z9) .

Fig. 9 The F bond orbital in CF(2ﬁ7. The left

cross merks the cerbon atom gnd the right

cross maerks the fluorine atom.
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The C bond orbital in CF(T).

The F 4 orbltal from the 5" stste of GF.
(This orbital is besically a fluorine p
orbitel with & smell amount of carbon p

&

cheracter for all states of CF.)

The spy orbitzl ofAcerbon in CF(Z) .
Fluorine bond orbital in CF(%z').
Carbon bond orbital in cF(28).

Carbon spz non-bonding orbital in

CF(°7).

Carbon 77 orbital for the %2’ state of CF.
Note thet the orbital hes 2 lerge out-of-

phase component on the fluorine atom.
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CH DOUBLET PI - LONE PRIR ORBITAL
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CH DOUBLET PI - H BOND GRBITAL
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