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 Abstract 

Our lives are defined by the decisions we make, often involving choices between 

different actions or goods. An important open problem in decision neuroscience is: what 

value signals are used in guiding the different types of choices, where are they stored in 

the brain, and how does the brain compare them to make a choice. We used fMRI in 

human subjects to address these questions in a variety of different choice settings: 

decisions between actions, economic choices, and more complex hierarchical decisions. 

We found evidence for a separate representation of two main forms of value signals in 

the human brain: precursors of choice, such as signals relating to the value of each 

available action or stimulus, and signals reflecting the consequence of the decision 

process by encoding the expected value of the option that is subsequently chosen. On the 

precursor side, we found action value signals in the supplementary motor cortex and 

stimulus value signals in the medial prefrontal cortex. Separate brain regions, most 

prominently the ventromedial prefrontal cortex, were involved in encoding the value of 

the chosen action or stimulus. Importantly, we found value chosen signals in stimulus 

decisions even when no actions were associated with choosing the stimuli, providing 

evidence for the hypothesis that the brain doesn’t need the motor system to make such 

decisions but is capable of making economic choices completely within an abstract 

representation of goods. Furthermore, in action decisions, we found that activity in the 

dorsomedial frontal cortex resembles the output of a decision comparator, implicating 

this region in the computation of the decision itself. In a real world setting where multiple 

stimuli could potentially influence outcomes, an individual may consider a number of 

theories about which features are relevant for giving reward. We found that decision 

variables based on simultaneous integration of all evidences were better able to explain 

subjects’ behavior and activity in the prefrontal cortex than those generated by an 

attention-gated approach, i.e., by first picking the theory that is most likely correct and 

then choosing accordingly. These results demonstrate that the human brain is capable of 

optimally integrating information, similar to an ideal Bayesian observer. 
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Chapter 1. Introduction 

 

Decision making 

Our lives are defined by the decisions we make. Humans evolved eons ago from other 

primates who lived in small groups and spent most of their waking hours foraging for a 

livelihood. When not searching for something to eat or drink, we were protecting 

ourselves from predators, selecting mates, and looking for safe places to live. Our success 

in accomplishing these tasks, crucial for survival, did neither arise due to particularly 

sharp senses nor to especially powerful physical endurance. Instead, we dominate this 

planet today because of our distinctive capacity for good decision-making. This skill has 

allowed us to leave the planet for brief periods of time, but has also permitted us to 

develop technologies and weapons that could render the planet uninhabitable if we make 

a few really bad decisions. As we made it to where we are today, it appears that human 

beings have an exceptional ability to choose appropriate means to achieve their ends.  

Thinking about the question of how this amazing process works is thus one of the 

fascinating problems we need to solve in order to understand ourselves: what are the 

neural correlates underlying our valuation processes and which computations take place 

in our neural machinery when we make decisions. In this thesis I will try to shed light on 

some aspects of how the brain represents values that are used in the decision process and 

how it uses and compares these values in order to form a choice.  
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The decision-making capacity in the brain has been polished through natural selection to 

provide a versatile system that can quickly adapt to our environment and changing 

situations, with bad decisions punished in a dramatic manner. As the philosopher Willard 

Van Orman Quine [1] once commented: “Creatures inveterately wrong in their inductions 

have a pathetic but praiseworthy tendency to die before reproducing their kind”, in other 

words, animals that make bad predictions of the future tend to die before they can pass 

their genes on to the next generation. Thus it is clear that while the mechanism might not 

necessarily be best equipped to solve hypothetical math problems, it was shaped to be 

best adaptive to a variety of daily life situations ranging from foraging strategies to food 

selection. 

Valuations of alternative options and decisions are even more ubiquitous in our modern 

day life. We constantly make choices either between different actions – think about 

playing a match of tennis – or between different goods, such as when shopping for 

groceries. A decision occurs every time when an organism is confronted by several 

discrete options, evaluates the merits of each, and finally selects one to pursue. While 

perceptual decisions, such as discrimination between different objects or detecting the 

motion direction of moving dot patterns, are exclusively based on objective sensory 

characteristic of the options, we were particularly interested in the mechanism of value-

based decisions: those choices that are mandated by the subjective preference and 

experience of the individual. From the perspective of an outside observer, the decision-

making mechanisms in animals or humans can be seen as a black box, mediating the 

sensory perception of available alternatives on the input side and a motor response on the 

output side (Figure 1.1).  
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Models of decision making 

Since the time of the behaviorists [2], scientists have aimed at explaining the processes 

underlying decision making by constructing theoretical models and then testing them on 

animals’ or humans’ behavior. 

Decision making is commonly seen as a two-stage process. A learning process that works 

continuously throughout time and constantly evaluates and updates preferences for the 

available options. Each time we gain new experiences, the values associated with stimuli 

and actions are updated with the new information. The second part of the decision-

making module works at every instance of a choice to select the option which is most 

desirable, i.e., the one that has the highest subjective value. The idea of two separate but 

connected decision modules first appeared in one of Barto’s [3] early reinforcement 

learning papers, in which he showed that learning action-outcome relationships can be 

solved by a computational system with two neuron-like elements. This idea was then later 

developed further into the full Actor/Critic model of action selection. In this model, one 

of the units, the critic element, constructs the evaluation of different states using a 

temporal difference learning rule and the second, the associative search element, selects 

the correct action at each stage. 

Evaluation 

The Rescorla-Wagner rule [4] is one of the most influential model in animal learning. It 

describes how predictive values of currently present conditioned stimuli are updated for 

the future by a discounted difference between the current prediction and the experienced 

outcome. Without doubt, one reason for its popularity is the extreme simplicity of the 

model despite its ability to explain most of the observed behavior during Pavlovian 
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conditioning, such as blocking, overshadowing, or conditioned inhibition. The most 

significant idea of the model is the postulation of a prediction error, i.e., learning occurs 

always when the outcome is different from the expectation. The greater this deviation is 

from the prediction, the bigger the amount of information that is learnt in any instance.  

The Rescorla-Wagner learning rule describes the process of value acquisition in a trial-

by-trial fashion. Over learning, the predictive stimulus acquires value Vi, where i is the i-

th trial. 

€ 

Vi =Vi−1 +αδ  

where 

€ 

α  is the learning rate, and 

€ 

δ = Ri −Vi−1 is the prediction error. 

In this model, the prediction error signal is generated at the time of the expected outcome, 

and influences the value of the cue on the subsequent trial, discounted by the learning 

rate. 

Though the Rescorla-Wagner model is suitable for explaining many basic forms of 

learning, alternative and more complex updating models were developed in later years. 

The most prominent out of these is probably temporal difference learning, which takes 

the expected value of outcomes not only at a single point but at multiple instances in the 

future into account [5].  

While the original Rescorla-Wagner model was originally formulated for Pavlovian-type 

conditioning, it can also be used as an essential element to model goal-directed choice 

behavior. The model creates two decision variables for each stimulus: an expected value 

signal and a deviation of the outcome from the prediction. It is extremely useful to have a 
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representation of expected values for each individual option before an animal engages in 

any actions in order to obtain reward [6]. Consider the case of action decisions, where 

animals or humans learn to associate values with taking each action. The action value Q 

of action a is then 

Q(a) = E(r|a) 

where E is the expected reward given action a. These action values can be learned 

through a mechanism based on difference learning like the RW model described above. If 

action values are available at the time of choice for all possible actions under 

consideration, the obvious choice is to take the action that yields the highest value Q(a). 

Following valuation we then need a second module that selects an action based on a 

comparison of these values. 

Selection 

The best way to select an action is to find the subjectively optimal action out of all 

available alternatives at any given time (based on the individual preferences). This is a 

very difficult problem in the case that actions affect long-term outcomes, which are only 

reached through a cascade of different actions. In this case it is quite complex to 

recognize the causal relationship between action and specific outcome, a problem called 

credit assignment problem [5] in the literature. 

One possible method of value comparison is the calculation of a value difference, a 

computation for which we will propose and test a potential neuronal implementation in 

Chapter 2. 
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The values are used as inputs to the decision process along with information about the 

current state of the individual, such as for instance, hunger. If the animal is satiated, the 

value of a normally very highly regarded food item is discounted and becomes less 

desirable [7]. 

Decision variables 

The trial-by-trial value signals that were predicted by the computational learning model 

can be used as a proxy for the values of the subject’s true internal decision variables 

(Figure 1.2). If the model explains the value representation and states of the subjects’ 

internal computations, we should be able to localize the neural correlates of the subject’s 

decision variables using the traditional correlative techniques of systems neuroscience. 

Action versus Stimulus based decision model 

It is a well-established belief among economists, psychologists, and neuroscientists that 

the brain solves decisions among different goods, such as when choosing between pizza 

and sandwich, much like it does action decisions by also first computing a value for each 

alternative and then selecting the one that has the highest value [5, 6, 8, 9]. However, 

neuroscientists have considered two possible alternative ways for how values might be 

compared to make a choice in these situations: by assigning values to all available goods 

(stimulus values) and then comparing these values directly in the space of stimuli, or 

instead by first transferring these values to the associated actions and then comparing 

those action values in action-space. 

According to the goods-based model, economic choice is an independent cognitive 

module, with the actual neuronal processes underlying the decision taking place in a 
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space where goods are represented as such. This assumes a high level of mental 

abstraction. The available items are represented as objects in a space of goods, which is 

completely independent of representations about the sensory environment and the motor 

actions that would be required to obtain them. Values are then assigned to the individual 

goods. Of course, these values don’t necessarily have to be fixed for each object but 

could also be described as a function of the subjects current mental and physiological 

state and thereby be dependant on the subjects desire for this object. Such abstract values 

do indeed exist in the primate orbitofrontal cortex [10], a prerequisite but not sufficient 

condition for the goods-based model. The key feature of the goods-based model is that 

economic values take place entirely in goods space. Then, once one good is chosen, the 

individual plans and executes a suitable motor action to implement the choice, without 

further valuation. Note that in this model the process of action selection is independent of 

stimulus selection and follows the evaluation between the desirability of the stimuli. It is 

merely an all-or-none process to select an appropriate action that helps to gain the good.  

In contrast, in the action-based model, economic choices are embedded in premotor 

processes of action selection. Several learning models are variations of this idea, with the 

first references dating back to the associative behaviorist learning theories. In these early 

accounts [2], the behavior of the animal is described purely in terms of stimulus response 

associations and the choice problem is reduced to associative learning. During training, 

the animal learns the association between stimuli and rewarded motor response. In a more 

recent model driven by Paul Glimcher [11], values are learned through experience 

through reinforcement learning. Economic choices thus unfold as a process of action 

selection. Brain areas and neuronal populations responsible for action selection (e.g., 
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LIP) represent a common pathway for different types of decision-making. The same 

neural hardware is used to process multiple kinds of valuations, and economic choice 

becomes a fundamental choice between actions. Action-based models have traditionally 

been more prominent among neuroscientists as they are built on theories of reinforcement 

learning, and provide a uniform model for universal problem solving which is flexible 

and adaptable. 

However, planning and controlling movement is computationally very costly, and doing 

it every time even if no action is necessary at a stage would be a rather inefficient 

implementation. In contrast, a modular structure is more efficient because it breaks this 

process down into two separate components: choosing and moving. An important fact 

that favors the goods-based model is that lesions to parietal areas like LIP, areas 

associated with action-based decision making, do not typically influence economic 

choice per se. Parietal lesions rather produce visuo-spatial deficits such as hemi-neglect 

and Balint’s syndrome [12]. However, economic choices are disrupted by OFC lesions, 

suggesting that motor areas are not strictly necessary for making economic choices, 

although they are required for implementing them.  

Though we have proof for abstract representations of goods [10], it has yet not been 

shown that entire choice process takes place in this space. In principle, separating in time 

the choice between goods and the selection of action can test the two models. This is 

what we did in our second experiment. 
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Measuring decision variables with fMRI 

In recent years, learning models have been applied to numerous neurobiological 

problems. One of the pioneers was Wolfram Schultz who used single-unit recording in 

the midbrain of awake monkeys and recorded from dopamine neurons while monkeys 

were trained in Pavlovian conditioning [13].  

The trial-by-trial value signals that were predicted by the computational learning model 

can be used as a proxy for the values of the subject’s true internal decision variables. If 

the model explains the value representation and states of the subject’s internal 

computations, we should be able to localize the neural correlates of the subject’s decision 

variables using the traditional correlative techniques of systems neuroscience. 

 

 

Value signals in the brain 

The very subjective nature of value-based decisions means that different individuals have 

distinctive preferences for a group of available options. These preferences of the decision 

maker, the decision variables, are quantities internal to the subject’s decision process; 

summarizing properties of the available behavioral options relevant to guiding choice. 

Decision variables can be thought of as linked to and guiding the process of option 

evaluation and action selection. There are a number of potential decision variables that 

might be used by animals and humans to form choices. It is now a well-established belief 

among economists, psychologists, and neuroscientists that the brain solves choice 

problems by first computing a value for each alternative and then selecting the one that 
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has the highest value [5, 6, 8, 9]. In addition to value signals there are prediction error 

signals used to update the value signal in future trials [14]. Other variables proposed in 

addition to more sophisticated decisions are risk and ambiguity [15]. 

In order to effectively compare different options and finally settle on a decision among 

them, it is necessary to have several different values represented along this process 

(Figure 1.2). 

Action or stimulus values (together called option values) encode the value of each action 

or stimulus prior to choice and regardless of whether they are subsequently chosen or not. 

This means that individual option values of each action or stimulus need to be 

simultaneously represented in the brain to serve as input into the decision-making process 

[16-18]. These values are then compared in order to generate a choice. Finally, the value 

of the option that is selected, known as the chosen value, is tracked in order to be able to 

do reinforcement learning. In particular, by comparing the value of the outcome 

generated by the decision of the chosen value, the organism can compute a prediction 

error signal that can be used to update the action value of the chosen option. Note that 

while the option values are computed before the decision is made, the chosen value and 

outcome of the comparator process signals are computed afterwards. 

Multiple value representation has already been found in the human and primate brain and 

we will review some evidence for value signals in various brain areas:  

Orbitofrontal and medial prefrontal cortex 

Patients with dementia or lesions in the OFC show impairment in their choices affecting a 

variety of areas. Fronto-temporal dementia can cause eating disorders, as these patients 
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may assign wrong values to appetitive stimuli [19]. In some laboratory tasks, OFC lesion 

patients are impaired in gambling tasks [20, 21], which have been commonly attributed to 

the impairment in judging risk. They also show inconsistencies in preference judgement, 

and they make inconsistent choices [22] and poor choices in the ultimatum game [23]. 

The case of Phineas Gage demonstrates that these impairments also extend to the social 

domain and while they are hardly noticeable in other cognitive standard tests such as IQ 

tests, they have a dramatic influence in the ability to lead a successful life [24].  

While findings from these lesioned patients have demonstrated a contributing role of 

OFC to choice settings, more recent imaging and monkey electrophysiology studies have 

shown that neurons in OFC directly correlate with decision variables. Even without any 

choices, OFC activity encodes subjective preferences, as shown in an imaging 

experiment in which OFC activity was higher in response to direct pleasant 

unconditioned reinforcers such as taste as compared to neutral ones [25], and a 

electrophysiology study in which single cells encoded an amount of juice [26]. More 

interestingly, OFC seems to directly encode values in choice tasks. In an experiment by 

Padoa-Schioppa [10], monkeys choose between two different juices. Given in equal 

amounts, the thirsty monkeys had a strong preference for one juice but if the amount of 

the less-preferred juice was just enough increased then monkeys chose that juice. This 

paradigm allowed calculating the monkeys’ indifference point and inferring their relative 

value of the juices to be used as proxy for the monkeys’ subjective decision variable. 

Neurons that encoded the value of the chosen juice in a trial were frequently found in 

OFC. Interestingly, there were other neurons in OFC that encoded the offer value, a 

neuron that covaried in activity with the value of any one juice irrespective of whether 
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the monkey later chose it or not. Importantly, all neuronal responses were independent of 

visual or motor responses. 

Interestingly, some of the neurons that encoded the offer value of the juice were menu 

invariant, meaning that their activity was not modulated by the other choices that were 

available at any given time [27]. 

Parietal cortex 

The parietal cortex has long been implicated in guiding attention [28] and linking the 

sensory with the motor system [29]. It would make a lot of sense to guide attention by 

valuation because this would allow us attend to those features in the world that are 

important to us. It would therefore be very plausible to find value representations in those 

systems of the brain. Indeed, the parietal cortex was one of the first areas where cells 

encoding value-dependant signals were found in awake monkeys. 

Platt and Glimcher pioneered this research by recording from LIP neurons during a task 

in which they varied the amount of juice that they gave the monkeys. They found signals 

related to expected value during both tasks in which the monkeys were passive receivers 

of juice and not permitted to make any decisions [30] (similar to the study by Wallis in 

OFC), as well as in subsequent experiments in which monkeys were allowed to choose 

freely [31]. In subsequent tasks, the firing frequency of neurons was also similarly 

modulated by value in a foraging task [32] and a matching task [33]. 

However, the value signals that have been found in lateral intraparietal cortex (LIP) 

during saccadic action-based choice [33, 34] are also not pure action values since they are 
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strongly modulated by whether an action is subsequently taken. This suggests that instead 

of serving as inputs to the comparison process, they might reflect its output.  

Midbrain, striatum 

Numerous evidences exist for learning-related signals in the striatum. These include 

value signals [35] for the chosen action as well as action-specific reward values for hand 

[17] and eye movements [36]. Striatum encodes chosen value also in non primates such 

as rats [37]. 

O’Doherty et al. [38] scanned human participants with functional magnetic resonance 

imaging while they engaged in instrumental conditioning. Their results suggest the 

encoding of signals related to predicting future reward in the ventral striatum, and 

information about the rewarding outcomes of actions in dorsal striatum, relating to the 

critic and actor in RL models.  

Electrophysiological studies in non-human primates implicate the phasic firing of 

midbrain dopaminergic neurons in encoding reward-prediction errors [39]. FMRI studies 

of human learning have found evidence of reward-prediction error-related activity in 

known projection sites of dopaminergic cells, especially the ventral striatum, during 

learning with other forms of natural and abstract rewards such as juice or money [38, 40, 

41] or faces [42]. The BOLD signature of the prediction error is more pronounced in 

learners compared to subjects who don’t learn on a task [43], providing evidence that the 

measured brain signal is in fact linked to behavior. 
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Amygdala 

Schoenbaum et al.  [44] examined neural activity in rat orbitofrontal cortex and 

basolateral amygdala during instrumental learning in an olfactory discrimination task. 

Neurons in both regions fired selectively during the anticipation of rewarding or aversive 

outcomes. This selective activity emerged early in training, before the rats had learned 

reliably to avoid the aversive outcome. The results support the concept that the 

basolateral amygdala and orbitofrontal cortex cooperate to encode information that may 

be used to guide goal-directed behavior. 

Gottfried et al. [45] used reinforcer devaluation while measuring neural activity with 

functional magnetic resonance imaging in human subjects. They found that in the 

amygdala and orbitofrontal cortex, responses evoked by a predictive target stimulus were 

decreased after devaluation, whereas responses to the nondevalued stimulus were 

maintained. Thus, differential activity in the amygdala encodes the current value of 

reward representations accessible to predictive cues. Paton et al. [46] recorded the 

activity of individual amygdala neurons in monkeys while abstract images acquired either 

positive or negative value through conditioning. After monkeys had learned the initial 

associations, they reversed image value assignments and examined neural responses in 

relation to these reversals in order to estimate the relative contribution to neural activity 

of the sensory properties of images and their conditioned values. They show that changes 

in the values of images modulate neural activity, and that this modulation occurs rapidly 

enough to account for, and correlate with, monkeys' learning. Furthermore, distinct 

populations of neurons encoded the positive and negative values of visual stimuli.  
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A number of studies point to the direction that amygdala and OFC are tightly linked in 

the function of expected reward presentation. In a further study Schoenbaum [47] 

provides direct neurophysiological evidence of this cooperative function. They recorded 

from OFC in intact and ABL-lesioned rats learning odor discrimination problems. As rats 

learned these problems, they found that lesioned rats exhibited marked changes in the 

information represented in OFC during odor cue sampling. Lesioned rats had fewer cue-

selective neurons in OFC after learning; the cue-selective population in lesioned rats did 

not include neurons that were also responsive in anticipation of the predicted outcome; 

and the cue-activated representations that remained in lesioned rats were less associative 

and more often bound to cue identity.  
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Figure 1.1 Model of decision making 

Decision-making models describe the computational mechanism that links the sensory 

inputs with motor outputs. Commonly, the process of decision-making is divided into two 

stages, the first one being the valuation of the available alternative options and the second 

one the selection of the best action or stimulus. 

Sensory
processing

Valuation Selection
Motor
control

Decision making
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Figure 1.2 Decision variables 

A simplified decision-making model based on reinforcement learning. Decision variables 

encode subjective states and values about individual preferences and are used in guiding 

the choice process. Values represent the desirability of the various available options. 

Together with motivational and contextual factors the stimulus or action values drive the 

decision towards the alternative with the highest subjective attractiveness. After the 

subject chooses an appropriate action, the outcome of the decision is compared to the 

expected outcome (chosen value) and any deviation is used to update future values 

through the predication error (PE). Since action and stimulus values are necessary to 

make a choice they are considered as inputs to the decision process. In contrast, value 

chosen signals are a consequence of the decision and thus regarded as output signal of the 

choice process. 

Available
options

Valuation Selection
Chosen
action

Decision variables

Outcome

Chosen

value

Stimulus

values
! PE

Action

values

Decision model

External factors: motivation, context
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Chapter 2. Action-based decision makingi 

 

Action-based decision making involves choices between different physical actions in 

order to obtain rewards. To make such decisions the brain needs to assign a value to 

each action and then compare them to make a choice. Using fMRI in human subjects we 

found evidence for action value signals in supplementary motor cortex. Separate brain 

regions, most prominently ventromedial prefrontal cortex, were involved in encoding the 

expected value of the action that was ultimately taken. These findings differentiate two 

main forms of value signals in the human brain: those relating to the value of each 

available action, likely reflecting signals that are a precursor of choice, and those 

corresponding to the expected value of the action that is subsequently chosen, and 

therefore reflecting the consequence of the decision process. Furthermore, we also found 

signals in the dorsomedial frontal cortex that resemble the output of a decision 

comparator, which implicates this region in the computation of the decision itself. 

                                                
i Adapted with permission from Klaus Wunderlich, Antonio Rangel, John P O’Doherty, 
“Neural computations underlying action based decision making in the human brain”, 
Proceedings of the National Academy of Sciences, PNAS 106: 17199-17204 (2009). 
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Introduction 

Consider a goalkeeper trying to stop a soccer ball during a penalty kick. Within a brief 

amount of time he needs to choose between jumping to the left or right goal posts. 

Repeated play against the same opponents allows him to learn about their scoring 

tendencies, which can be used to compute the values of a left and a right jump prior to 

making a decision. It is a long established view in economics, psychology, and 

computational neuroscience that the brain makes choices among actions by first 

computing a value for each possible action, and then selecting one of them on the basis of 

those values [5, 8, 9]. This raises two fundamental questions in decision neuroscience: (1) 

Where in the brain are the values of different types of actions encoded? and (2) How and 

where does the brain compare those values to generate a choice? 

An emerging theme in decision neuroscience is that organisms need to make a number of 

value related computations in order to make even simple choices [6]. Consider the case of 

action-based choice exemplified by the goalkeeper’s problem. First, he needs to assign a 

value to each action under consideration. These signals, known as action values, encode 

the value of each action prior to choice and regardless of whether it is subsequently 

chosen or not, which allows them to serve as inputs into the decision making process [16-

18]. Second, these action values are compared in order to generate a choice. Third, the 

value of the option that is selected, known as the chosen value, is tracked in order to be 

able to do reinforcement learning. In particular, by comparing the value of the outcome 

generated by the decision to the chosen value, the organism can compute a prediction 

error signal that can be used to update the action value of the chosen option. Note that 
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while the action values are computed before the decision is made, the chosen value and 

outcome of the comparator process signals are computed afterwards. 

Although a rapidly growing number of studies have found neural responses that are 

correlated with some form of value signals, little is known about how the brain encodes 

action values or about how it compares them. This is central to understanding how the 

brain makes action-based choices. For example, a number of chosen value signals have 

been found in the orbital and medial prefrontal cortex [48, 49] and amygdala [46, 50]. 

Note that these signals are quite distinct from action values, and are not precursors to 

choice, because they reflect the value of the actions that were selected in the decision. For 

similar reasons, the value signals that have been found in lateral intraparietal cortex (LIP) 

during saccadic action-based choice [33, 34] are also not pure action values since they are 

strongly modulated by whether an action is subsequently taken. This suggests that instead 

of serving as inputs to the comparison process, they reflect its output. Several studies 

found orbitofrontal cortex to encode the value of different goals [10, 51, 52]. Though 

these signals are precursors of choice, they are not instances of action values since they 

are stimulus-based and independent of the action required to obtain them. To date only 

three monkey electrophysiology studies have found evidence for the presence of action-

value signals for hand and eye movements in the striatum during simple decision making 

tasks [16-18]. This study extends their findings in three directions. First, as of yet no 

evidence has been presented for the existence of action value signals in the human brain. 

Second, by using fMRI we are able to look for action-value signals in the entire brain, 

whereas the previous electrophysiology studies have limited their attention to the 

striatum. As a result, no previous study has looked for action value signals in the cortex. 
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This is important because, as discussed below, there are a-priori reasons to believe that 

action value signals might be found in the motor and supplementary motor cortices. 

Finally, we investigate how such signals might get compared in order to actually compute 

the decision itself and where neuronal correlates of the output of this decision process are 

represented, an issue about which very little is known. 

We studied these questions using fMRI in humans while subjects performed a variant of a 

two armed bandit task in order to obtain probabilistically delivered monetary rewards 

(Figure 2.1A). A critical feature of the task was that they had to select a motor response 

in one of two distinct response modalities: in every trial they could choose to make either 

a saccade to the right of a fixation cross, or to press a button with the right hand. This 

design allowed us to exploit the fact that different regions of the cortex are involved in 

the planning of eye and hand movements [53]. We hypothesized that value 

representations for the two actions would be separable within these cortical areas at the 

spatial resolution available to fMRI. The probability of being rewarded on each of the 

two actions drifted randomly over time and was independent of the probability of being 

rewarded on the other (Figure 2.1B). This characteristic ensured that value estimates for 

eye and hand movements were uncorrelated, which gave us maximum sensitivity with 

which to dissociate the neural representations of the two action values.  

In order to look for neural correlates of action values we had to estimate the value of 

taking each action in every trial. We calculated the action values using a computational 

reinforcement-learning (RL) model in which the value of each action, Veye and Vhand, was 

updated in proportion to a prediction error on each trial (see Table 2.1 for a summary of 

how the different types of value signals relate to the components of the experiment). The 
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model also assumed that action selection in every trial followed a soft-max probability 

rule based on the difference of the estimated action values [48]. To test for the presence 

of action value signals in the brain we took the model predicted trial-by-trial estimates of 

the two action values and entered these into a regression analysis against the fMRI data. 

In addition to a whole brain screening for the presence of action value signals, we 

specifically looked for them in areas known to be involved in the planning of motor 

actions, including supplementary motor cortex [54-57] and lateral parietal cortex [58, 59]. 

Given that both of these areas have previously been shown to contain value related 

signals for movements in nonhuman primates, and that they are closely interconnected 

with the area of motor cortex involved in carrying out motor actions [60-62], we 

considered these areas prime candidates for containing action-value representations that 

could then be used to guide action-based choices. It is important to emphasize, however, 

that the tasks used in previous studies did not make it possible to determine if the value 

signals identified were chosen values or action values. 

We also looked for areas that are involved in comparing the action values to make a 

choice. Two areas of a-priori interest were the anterior cingulate cortex (ACC) and the 

dorsal striatum. ACC has been previously implicated in action-based choice, both in the 

context of a human imaging study reporting activity in this area during a task involving 

choices between different actions compared to a situation involving responses guided by 

instruction [63], and in a monkey lesion study where ACC lesions produced an 

impairment in action-outcome based choice but not in mediating changes in responses 

following errors [64]. Dorsal striatum has been implicated in both goal-directed and 

habitual instrumental responding for reward in rodents [65, 66]. Moreover, human fMRI 
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studies reveal increased activity in both of these regions when subjects make choices in 

order to obtain reward compared to an otherwise analogous situation in which the 

rewards are obtained without the need to make a choice [38, 67-69].  

The most simple type of comparison process would be to compute a difference between 

the two action values. We tested for such a difference, but as we had no a priori 

hypothesis about the directionality of the computation, we tested for both the difference 

between the value of the action chosen and the value of action not chosen (Vchosen - 

Vunchosen), and one involving the opposite difference (Vunchosen  - Vchosen). As we found 

evidence for such an action value comparison signal in the brain, we then proposed a 

simple computational model to provide a conceptual explanation as to how such a signal 

could reflect the output of a computationally plausible decision mechanism.  

Results 

RL model fits to behavioral choice data 

A comparison of the choice probabilities predicted by the RL model and the soft-max 

procedure to subjects’ actual behavior suggests that the model matches subjects behavior 

well. Figure 2.1C compares both variables for a typical subject. Figure 2.1D compares 

the predicted choice probability (binned) against the actual choice probabilities for the 

group. A similar linear regression analysis at the individual level generated an average R2 

across subjects of 0.83 and regression coefficients that were significant at p<0.001 in 

each subject.  
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Action values 

We found neural activity correlating with the action values for making a hand movement 

in left supplementary motor area (SMA; Figure 2.2A, Table S2). A region of interest 

(ROI) analysis showed that activity in this area satisfied the properties of a hand action 

value: it was sensitive to the value of hand movements, and it showed no response 

selectivity to the value of eye movements (Figure 2.2B). Activity in lateral parietal 

cortex, anterior cingulate cortex and right dorsal putamen also correlated with hand 

action values. In contrast, activity in a region of left supplementary motor cortex anterior 

to the SMA (pre-supplementary eye fields, preSEF, Figure 2.2A, Table S2) correlated 

with action values for eye movements. A similar ROI analysis showed that the area 

satisfied the properties of an eye action value: it was sensitive to the value of eye 

movements, but showed no sensitivity to the value of hand movements (Figure 2.2B). We 

tested this by performing a 2-way ANOVA with the factors of area (SEF vs. SMA) and 

action value (eye vs. hand). There was no significant main effect for either area or action 

value but the interaction was significant at p=0.03 (F=5.6, df=1). Another important 

feature of an action value signal is that, since it is a precursor of choice, it should not 

depend on which action is actually chosen. We tested for this property by computing the 

following two voxel-wise interaction contrasts (Ve|eye – Ve|hand) ≠ 0 and (Vh|hand – 

Vh|eye)  ≠ 0. We found no significant interaction between action value and chosen action 

in either SMA or preSEF at p<0.05 uncorrected. A post-hoc plot of the average percent 

signal change within each cluster plotted as a function of high and low action values are 

shown in Figure S 2.2.  
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One potential explanation for these correlations is that activity in the SEF and SMA 

reflect motor preparation. To help exclude the possibility we carried out two additional 

analyses. First, we estimated a model that used reaction times (RT) as a proxy index of 

the degree of motor preparation on a given trial and found hand and eye RTs did not 

show the same pattern of differential correlations in SMA and SEF as exhibited by our 

action-value regressors. Second, we estimated a version of our main general linear model 

in which the RTs were included as a covariate of no interest alongside our action-value 

signals, and found the action-value results in SMA and SEF still survived at p<0.005 

uncorrected. Both results suggest that simple motor preparation is unlikely to account for 

the correlations with action values identified above. 

Another alternative potential explanation for the correlations between activity in 

SMA/pre-SEF and action-values is that signal fluctuations in these areas depend on the 

degree to which subjects currently choose those motor actions. For example when the 

value of a hand movement is high, the subject may tend to choose hand actions more 

often, and therefore activity in SMA may be increased as a result of enhanced overall 

motor excitability. We tested for this possible confound by regressing BOLD signals 

against the degree to which subjects’ favored one or another action in the recent past. We 

found activation most prominently within the occipital lobe, primary motor cortex, 

cerebellum, and dorsal medial frontal gyrus. However, we did not find any significant 

correlation within our previously identified action value areas, ruling out this possible 

explanation for the action-value signals in SMA, SEF and elsewhere (see Table 2.2 and 

Figure S 2.3). 



 26 

Chosen values 

We then looked for correlates of the value of the action that is chosen on a particular trial, 

irrespective of its modality. Consistent with previous findings [48, 49], we found chosen 

value modulated activity in a number of brain areas, most prominently the ventromedial 

prefrontal cortex extending onto the medial orbital surface (Figure 2.3A, Table S2). The 

parietal cortex, including bilateral IPS and right LIP, were also activated by this contrast. 

We also tested for areas correlating with the chosen value only on occasions when the 

action chosen was a hand movement, and for areas correlating with chosen value only on 

trials in which the eye movement was chosen. Intriguingly, we found evidence for a 

topographical arrangement of action specific chosen value signals in vmPFC along the 

anterior-posterior axis, whereby a mid-vmPFC region correlated with hand values only 

when hand movements were selected, and a region of more posterior vmPFC correlated 

with the value of eye movements only on trials when eye movements were selected. 

These two action specific representations were both located caudal to the value chosen 

signal reported above (Figure 2.3B).  

Action value comparison: decision computation 

The most straightforward decision process to compare the action values is to compute the 

value difference and choose the one with the higher value. We looked for areas in which 

BOLD activity was correlated with the value difference between the two action values. 

As any difference in values can be computed by subtracting the lower from the higher 

value and also by subtracting the higher value from the lower value, and we had no a 

priori hypothesis for the directionality of the computation, we tested for correlates of 

both. We did not find any areas where activity was correlated with Vchosen – Vunchosen at 
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our omnibus statistical threshold of p<0.001 uncorrected. However, we found a strong 

correlation with Vunchosen – Vchosen in anterior cingulate cortex, extending dorsally into 

Brodmann area 9 (dmFC; Figure 2.4A, Table 2.2). 

 

In order to provide a conceptual explanation as to how the brain might implement the 

value difference computation, we constructed a computational model called the 

Competition Difference Model (CDM). This model is a simple neural network that 

carries out value comparisons by stochastic mutual inhibition between two populations of 

neurons: one encoding the value of a hand movement, and one encoding the value of an 

eye movement. The model takes into account the stochasticity that leads to non-optimal 

choices in a proportion of the trials, consistent with actual behavior choices. It produces 

an output that closely resembles but is not identical to, the value comparison regressor 

used above (See Figure S 2.6 for details). In order to validate the model behaviorally, we 

compared the performance of the model on subjects’ actual choice behavior and found 

that the model predicted subjects’ actual choices as well as the soft-max procedure used 

with reinforcement learning (Table 2.3). We then used the output of this model as a 

parametric regressor in our fMRI analysis instead of the value difference. This model was 

found to correlate robustly with activity in the same anterior cingulate cortex region 

identified as correlating with the value difference (Figure 2.4B). Thus, the model 

proposed here provides a possible description of the output of a decision comparator, and 

captures activity related to such a comparison process in anterior cingulate cortex.  

 

An important question is the relationship between our suggested role for dmFC/ACC in 
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the decision comparison process and prior findings implicating this area in error 

monitoring [70]. An error-monitoring signal would be strongest on trials where subjects 

chose the lower valued action and in which there is a large difference between the values 

of the two available actions (as on those trials it should be most clear to the subjects that 

they have erroneously chosen the “wrong” action). However, we still find significant 

correlations between the dmFC signal and our decision model when we restrict the 

analysis to trials in which the value of the chosen action largely exceeded the value of the 

unchosen action (Figure 2.4C). Another possibility is that subjects were deliberately 

choosing the lower value action in some trials to explore and anticipated in those 

deliberate “error” trials a negative outcome. We therefore also looked for regions that had 

stronger activity during the choice period on trials that were subsequently not rewarded 

compared to subsequently rewarded trials. Activity in the frontal poles showed such a 

pattern but not activity in dmFC/rostral ACC. Together this suggests that the decision 

signal is unlikely to be accounted solely as a side effect of error monitoring. 

 

Another pertinent issue is the extent to which the activity in dmFC/ACC is related to 

conflict monitoring, another cognitive function that has been attributed to this area [71]. 

In order to compare these explanations we constructed a measure of decision conflict by 

testing for areas showing a maximal response when the action values are the same, and a 

minimal response when they are maximally different. We found that activity in rostral 

dmFC is significantly better explained by the decision signal than by this simple decision 

conflict signal (Figure 2.4D), and this is true even if the measure of decision conflict 

includes subject specific biases to either eye or hand movements. To further address this 
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point, we also tested for correlations of reaction time with decision difficulty, but did not 

observe any such influences (r = 0.01 across all subjects). 

Discussion 

Action based decision-making involves different kinds of value signals that play specific 

roles in the various stages of the decision process (Figure 2.4E). Action values are by 

definition precursors of choice that are used to guide the decision process. Here we 

provide evidence that action-values for different physical actions are present in the 

supplementary motor area. These value signals are not modulated by choice, i.e., they are 

present for a given action on trials when that action is chosen and on trials when that 

action is not chosen. We found neural correlates for action-values in supplementary 

motor cortex, an area traditionally associated with motor planning [72]. This finding 

supports the hypothesis that during decisions involving motor actions, action-value 

signals are encoded in brain regions directly connected with, and involved in, the 

generation of motor output [73]. This finding is broadly consistent with  a number of 

previous studies that have investigated the role of the motor system in decision making. 

For example, two studies [61, 62] have found monkey medial premotor cortex involved 

in the entire discrimination process between haptic stimuli, and the findings of another 

study [60] suggest that formation of the decision and formation of the behavioral 

response share a common level of neural organization.  

 

In contrast to the supplementary motor cortex, activity in both the ventromedial 

prefrontal cortex and intraparietal sulcus pertained predominantly to the value of the 

action that is chosen. Such signals are a consequence of the decision process, emerging 
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after the subject has decided which action will ultimately be taken. We suggest that the 

functional contribution of such signals to the decision process is likely not in guiding 

choice directly, but rather in learning the action values. Reinforcement learning theory 

stipulates that updating of action-values occurs via a prediction error, which computes the 

difference between actual and expected outcomes [5, 39, 74]. A major function of the 

chosen value signals in these areas could be to facilitate the generation of a prediction 

error signal that can then be used to update future action values. It is notable that the two 

signals required to compute a prediction error, namely the actual outcome and the 

expected outcome (of the chosen action) are both represented in ventromedial prefrontal 

cortex [48, 49, 75, 76]. Therefore this region is ideally placed to facilitate computation of 

the prediction error signal that could then be transferred on to dopaminergic neurons in 

the midbrain for subsequent broadcast [77, 78]. Another intriguing feature of our results 

is that we observed a number of different types of chosen value signals within vmPFC. 

While one region of vmPFC was responsive to the value of the chosen action irrespective 

of whether that action was a hand or an eye, distinct regions more posterior within 

vmPFC appear to be sensitive to action specific chosen values. These findings provide 

evidence that values of different types of movement might be represented separately 

within ventromedial prefrontal cortex, adding further support to the suggestion that this 

region plays a role in encoding the value of chosen actions, as well as possibly 

contributing to encoding stimulus-values [79]. The apparent topographical arrangement 

of action modality specific value signals within vmPFC may relate to distinct cortico-

striatal loops concerned with processing hand and eye movements [80]. 
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Our results also suggest that the dmFC/ACC plays a role in the decision process. 

Interestingly, this area has been previously implicated in action-based choice in the 

context of a human neuroimaging study reporting activity in this area during a task 

involving choices between different actions compared to a situation involving responses 

guided by instruction [63], and single neuron recordings have shown that cells in this area 

were activated only by particular action-reward combinations [81]. Another study 

suggests that this region plays a part in processing the reward information for motor 

selection [82]. Consistent with our findings, Seo and Lee [58] found neural signals 

resembling the difference between action values in this region. In addition, ACC lesions 

have been shown to produce an impairment in action-outcome based choice, but not in 

mediating changes in responses following errors [64, 83]. Our results provide evidence 

that these deficits might be the results of impairments in the mechanisms in ACC/dmFC 

responsible for comparing action values. Heekeren et al. [84, 85] (see also [86]) have 

used fMRI to look for regions that might be involved in computing perceptual decisions. 

They found evidence that activity in left dorso-lateral PFC encodes a value signal that is 

proportional to the absolute value difference between the two signals, while our value 

difference related signal is represented in dorso-medial PFC. The specific form of the 

comparison signal we found in ACC was well captured by a simple network model which 

we called the Competition Difference Model. This model relies on a mutual inhibitory 

competition between distinct populations of neurons representing eye and hand 

movements in order to generate a decision. Although it bears a conceptual relationship to 

many other models used to generate decisions such as the drift diffusion model (DDM) 

[87-89], the predictions of the CDM and the DDM model are in fact very different (see 
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supplementary materials for more details). Indeed, while the CDM model provides a 

good account for the comparison signal we observed in ACC, the DDM model fails to 

capture such an output. Because our study was not designed to address the presence of 

DDM-related signals we cannot rule out the contribution of such computations to the 

decision process. However, it is worth noting that while there is now considerable 

evidence concerning the applicability of the DDM model to the neural mechanisms 

underlying decision making in the perceptual domain [90, 91], to our knowledge very 

little evidence exists regarding the applicability of such a model to value-based decision 

making. Thus, it is possible that these two different types of decisions rely on distinct 

computational processes. 

Interestingly, the signal reflecting the output of the action value comparator represented 

the difference between the action not chosen and the action chosen, instead of the more 

intuitive difference given by the action chosen minus the action not chosen. A speculative 

interpretation for this finding is that the outcome of the comparator process is used to 

inhibit the opposite action, instead of exciting the motor plan that it represents. 

Interestingly, our activation pattern looks very similar to one found in a study of 

volitional motor inhibition [92]. Such a mechanism based on pre-innervation and 

inhibition could provide a better execution speed after the values become available 

compared to a mechanism where the motor response is planned only after the decision 

has been made. Though we cannot distinguish between excitatory and inhibitory 

processes based on the measured BOLD [93], our hypothesis resonates with previous 

findings that pre-innervation and inhibition play an important role in motor execution and 

volitional action initiation [94, 95]. 
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Since activity in ACC/dmFC has been associated with error monitoring and conflict 

detection in previous studies, we carried out several controls to help exclude the 

possibility that the activity we observed in this area can be explained by these alternative 

computations. We emphasize that our results don’t rule out a contribution of ACC to 

either conflict or error monitoring, but rather suggest that these explanations are unlikely 

to account fully for the results we observe here. Instead we provide a mechanistic account 

for how action comparison signals in ACC/dmFC could form an integrated part of the 

decision process. Note that because of limitations in the spatial and temporal resolution of 

our fMRI signal it is not possible to determine whether the signal we observe reflects 

solely the output of a decision comparator or whether the dmFC/ACC is involved in the 

comparison process itself. Therefore the possibility exists that the actual computation of 

the decision is carried out elsewhere and the output then transferred to dmFC/ACC. 

Choices between different physical actions, such as those studied here, represent a large 

subset of the decisions made by humans and other animals. The present study has 

identified neural mechanisms involved in these types of choices and provides insight into 

the general neural mechanism that might be involved in action-based decision-making. 

An important question for future studies is whether similar mechanisms are at play when 

goal directed decisions are made between more abstract choices not tied to specific 

physical actions. 
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Methods 

Subjects 

23 healthy subjects (10 female; 18–29 years old; right-handed, assessed by self-report 

with an adapted version of the Edinburgh handedness inventory [96]) with no history of 

neurological or psychiatric illness participated in the study. The study was approved by 

the Institutional Review Board of the California Institute of Technology. 

Experimental design and task 

The task is a variant of a two-armed bandit problem in which subjects chose between two 

actions: a button press with the right index finger, and a saccade from a central fixation 

cross to a target located at 10 degrees of visual angle in the right hemifield. In every trial 

each action yielded either a prize of ten cents, or nothing. We did not reveal the exact 

reward per trial to subjects before the experiment but instead instructed them only that 

they will get a small amount of money for each rewarded trial. At the end of the 

experiment subjects were paid their accumulated earnings in addition to a flat amount of 

25$.  

 

The probability (Qi,t) of action i being rewarded in trial t evolved over time as a decaying 

Gaussian random walk process, with Qi,t+1 = max(0, min(1,λ Qi,t + (1 - λ)θ + ν)); where 

the decay parameter λ was 0.79836, the decay center θ was .50, and the diffusion noise ν 

was zero-mean Gaussian with standard deviation σ
d
 = .208.  Five different probability 

trajectories were generated using this method and were assigned across subjects 

randomly. The task consisted of two sessions of 150 trials separated by a short break. 
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There were three trial types. In free-choice trials (150 trials) the subject had to choose one 

of the two actions and both were rewarded according to their current reward schedule. 

Free-choice trials were pseudo-randomly interspersed with forced-choice trials (50 eye 

trials and 50 hand trials) and null-choice trials (50 trials). Subjects were instructed that in 

forced trials only the displayed action would be rewarded with its current probability, 

while the other action would lead to a zero prize with certainty. Subjects did not get a 

prize in null-trials, but were still required to make a choice.  

 

The task was presented via back projection on a translucent screen, viewable through a 

headcoil mounted mirror. Subjects chose the hand action by pressing a button on a button 

box with their right index finger. Eye positions were monitored at 120 Hz with a long-

range infrared eye-tracking device (ASL Model L6 with control unit ASL 6000, Applied 

Science Laboratories, Bedford, MA). An eye action during the choice period was 

registered when the median horizontal eye coordinate during the past 200 msec exceeded 

8 degrees of visual angle to the right from fixation. Subjects were instructed to maintain 

fixation during the entire experiment when not deliberately making a saccade.  

Reinforcement Learning (RL) model 

A RL model was used to estimate the value that the brain assigned to the two actions on 

the basis of trial-by-trial experience. In this study we used a version of RL called Q-

learning, where action values are updated using a simple Rescorla-Wagner rule (see 

supplementary methods for details). 

Computational model of the choice process (decision model) 

We were also interested in identifying brain regions involved in comparing the action 
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values in order to make decisions. The most basic value comparison process that one 

could consider involves calculating the difference between the action values in order to 

identify and select the largest one. A problem with such a model is that it does not 

account for the choice stochasticity that is observed in the data, and thus it cannot explain 

behavior in those trials where subjects chose the action with the lower action value. We 

therefore constructed an extremely simple neural network type model that characterizes 

the properties of aggregate activity that identify putative decision making regions. We 

then use these trial-by-trial predictions as parametric regressors in our fMRI analysis to 

identify areas where the value comparison computation might be carried out (see 

supplementary methods for details).  

 

FMRI data acquisition and analysis 

Data were acquired with a 3T scanner (Trio, Siemens, Erlangen, Germany) using an 

eight-channel phased array head coil (see supplementary methods for details).  

We estimated two different general linear models with AR(1) for each individual subject 

(see the supplementary methods for details). In each case we computed contrasts of 

interest at the individual level using linear combinations of the regressors and, to enable 

inference at the group level, we calculated second-level group contrasts using a one-

sample t-test.  

Whole brain inference was carried out at p<0.001 uncorrected. We also computed small 

volume correction (SVC) for multiple comparisons at the p<0.05 level in areas of a-priori 

interest (supplementary methods).  
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The structural T1 images were co-registered to the mean functional EPI images for each 

subject and normalized using the parameters derived from the EPI images. Anatomical 

localization was carried out by overlaying the t-maps on a normalized structural image 

averaged across subjects, and with reference to an anatomical atlas [97].  

In order to insure the independence of the effect size analysis in Figure 2.2 and Figure 2.3 

we randomly divided the data into two halves: the first half was used to define an ROI, 

the second half was used to measure the effect sizes (see the supplementary materials for 

details). 
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Figure 2.1 Experimental Design and Behavior 

(A) Subjects were presented with a choice cue after which they had to respond within 

2.5s by performing a saccade to the red target circle or a right handed button press. Once 

a response was registered the screen was immediately cleared for a short delay and 

subsequently the outcome was revealed (6 s after trial onset) indicating either receipt of 

reward or no reward. Inter-trial-intervals varied between 1 and 8 seconds. (B) Example 

reward probabilities for saccades and button presses as a function of the trial number. The 

probability of being rewarded following choice of either the hand or eye movement was 

varied across the experiment independently for each movement. (C) Fitted model choice 

probability (red) and actual choice behavior (blue) shown for a single subject. (D) Actual 

choice behavior versus model predicted choice probability. Data is pooled across 

subjects, the regression slope is shown as a line, vertical bars represent s.e.m. 
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Figure 2.2 Action values 

(A) Region of supplementary motor area showing correlations with action-values for 

hand movement (Vh/green) and a region of pre-SEF showing correlations with action-

values for eye movements (Ve/red). T-maps are shown from a whole brain analysis 

thresholded at p<0.001 uncorrected (see Figure S 2.1 for a version with colorbars relating 

to t-stats). (B) Average effect sizes of Ve (red) and Vh (green) extracted from SEF and 

SMA. The effects shown here were calculated from trials independent of those used to 

functionally identify the ROI. Note that only Ve but not Vh modulate the signal in 

preSEF, and that activity in SMA shows the opposite pattern. Vertical lines depict s.e.m.  
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Figure 2.3 Chosen values 

(A) Brain regions showing significant correlations with the value of the action chosen. 

Areas shown include vmPFC, intra-parietal sulcus and posterior cingulate cortex.  

Threshold is set at p<0.001. (B) Distinct forms of the value chosen signal are present 

within vmPFC.  The area depicted in yellow indicates voxels that correlate with the value 

of the chosen action irrespective of whether the action taken is a hand or an eye 

movement. The area depicted in green correlates only with the value chosen on trials 

when the hand movement is chosen but not when the eye movement is chosen. Finally 

the area depicted in red indicates voxels correlating with value chosen only on trials when 

the eye movement is selected but not the hand movement. The results suggest an anterior 

to posterior trend in the selectivity of voxels to these different types of value chosen 

signals. Barplots show effect sizes averaged across subjects for the action specific value 

chosen signals in the three areas (left: red area, middle: green area, right: yellow area). 

Bars shown in chromatic color are significantly different from zero (t-test, p<0.05). 

Similar to barplots in Figure 2.2B, effects were calculated from a data sample 

independent of the one used to functionally identify the ROI. Vertical lines denote s.e.m.
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Figure 2.4 Value comparison 

(A) Region of dmFC and adjacent ACC showing significant correlations with the Vunchosen  

- Vchosen value difference contrast. Additional areas correlating with this comparison 

signal are bilateral anterior insula and left dlFC. (B) Output of our stochastic decision 

model for the value comparison showing correlations with activity in the same brain 

regions. (C) The model explains activity in dmFC even on a subset of trials where 

subjects clearly choose the “correct” and not “erroneous” choice (where Vchosen – 

Vunchosen > 0.2). This suggests that the result in (B) cannot be fully explained by error 

monitoring. (D) Average beta values in the random effects analysis of the model 

described in the text showing that neural activity in dmFC/ACC is explained better by the 
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output of our decision model than by a decision difficulty based index of decision conflict 

(p<10-7). The vertical lines represent the s.e.m. (E) Illustration of the different stages 

involved in action based decision-making: action-based decision-making requires the 

computation of distinct value representations for both choice alternatives (purple box). 

These action values are compared against each other in a decision comparator (yellow 

box) in order to decide on a particular action.  Such a comparator could yield a signal that 

approximately resembles the difference in the action values of the two actions. The 

output from this comparator could then be passed through a nonlinear function to inhibit 

a response of the unchosen action in primary motor areas (green box). The value of the 

chosen action is used to update future action values on the basis of experience, and to 

generate prediction errors (red box). 
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Supplementary Methods 

Reinforcement Learning Model 

Reinforcement Learning (RL) is concerned with learning the value of taking particular 

actions in different states of the world in which subjects do not have complete knowledge 

about the underlying reward generating process. Thus, it is ideally suited to model how 

subjects learn the value of taking different actions over time. 

We used a version of RL called Q-learning, where action values are updated using a 

simple Rescorla-Wagner rule. If an action is not selected in a trial its value is not updated. 

In contrast, if action a is selected on trial t, its value is updated via a prediction error, d, 

as follows: 

€ 

Va (t +1) =Va (t) +ηδ(t), where  is a learning rate between 0 and 1. The 

prediction error d(t) is calculated by comparing the actual reward received, r(t), with the 

reward that the subject expected to receive from that action in that trial; that is, 

€ 

δ(t) = r(t) −Va (t). Probabilistic rewards were delivered in free choice and forced choice 

trials and these trials were included in updating the value predictions. In null trials, 

subjects neither expected nor got any reward; hence no learning occurred and values were 

not updated.  

To generate choices, we first used a soft-max procedure wherein every trial, the 

probability (P) of choosing action a is given by: 

€ 

Pa,t =σ (β(Va (t) −Vb (t)) −α , where  

€ 

σ(z) =1/(1+ e−z)  is the Luce choice rule or logistic sigmoid, 

€ 

α=0 denotes the indecision 

point (at which both actions are selected with equal probability), and 

€ 

β  determines the 
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degree of stochasticity involved in making decisions. In the paper we refer to Ve as the 

action value of the eye movement and Vh as the action value of the button press.  

The model decision probabilities Pe and Ph were fitted against the discrete behavioral 

data Be and Bh in order to estimate the free parameters (

€ 

η and 

€ 

β ). This was done using 

maximum likelihood estimation and a log likelihood function given by:  

€ 

logL =
ΣBe logPe

Ne

+
ΣBh logPh

Nh

, 

where Ne and Nh denote, respectively, the number of trials in which eye and hand were 

chosen, and Be (Bh) equals one if eye (hand) was chosen in that trial, and zero otherwise.  

We also fitted a model with an additional parameter that allowed the unchosen value to 

decay towards 0.5. However, we found that in our rather simple task with only two 

choice options the BIC corrected fit of this model was not significantly better than that of 

our simple learning rule. 

The Competition Difference Model of the decision process  

Based on our finding of a robust correlation between activity in the anterior cingulated 

cortex and a variable equal to the difference between the value of the unchosen and 

chosen actions, we propose a simple conceptual model for how this value difference 

might be implemented in the brain in order to guide value-based choice. 

Importantly, the model that we propose has two key properties: (1) it leads to stochastic 

choices, and (2) its output is sensitive to both the choice that is made and to the action 

values of the two alternatives.  
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The model consists of a neural network with N ‘neurons’. Each neuron could take on 

either an ON or OFF state at every particular instant. These neurons were split into two 

discrete populations of N/2 neurons each: one population was associated with the value 

of an eye movement, the other with the value of a finger movement. In each trial the 

comparison process is initialized by turning ON a fraction of neurons in each population 

that is proportional to the action value of the associated action. Thus, for example, if 

Ve=0.56 and N=200, then 56 out of the 100 eye neurons were set to the ON state (see 

Figure S 2.4 for an illustration).  

The network was then allowed to evolve in discrete steps as follows: 

1. In every step every active neuron for one of the two actions is paired with a randomly 

chosen neuron (with replacement) for the other action. Once the assignment is made 

for all neurons the following rule is implemented: if the matching unit is ON, the 

neuron is switched OFF, otherwise no change is made on the state of the neuron. 

(Note: this rule is implemented simultaneously for all of the neurons, so there are no 

order effects). 

2. Noise is injected after every iteration as follows: the state of every unit in the network 

is flipped to its opposite state with a probability that is given by the product of a noise 

parameter  and the number of active units encoding the value of the same action.  

 

The basic idea behind the CDM is that the decision process works by virtue of a 

stochastic mutual inhibitory competition between the two distinct populations of neurons 

encoding the value of the two actions. A “winner” is declared when one of the two 



 46 

populations reaches zero. At this point the population that has a positive number of ON 

neurons is declared the winner. Note that the model incorporates two desirable features: 

(1) higher value actions have a higher chance to win the competition process, which 

means that the better action is chosen with higher probability; and (2) the change in 

activity in every step scales with the amount of existing activity in the network.  

We then added an additional layer (with constant positive input from which the previous 

result is subtracted) to the model to invert the output to the value difference between the 

action not chosen and the action chosen. 

 

We simulated the model using a population of N=200 as follows. First, we simulated the 

stochastic comparison process 1000 times for each possible value difference between the 

two actions. Second, after the model converged in each simulation (which always 

occurred in less than 50 steps) we computed the number of ON units in the population 

that won the competition. Note that, since the model is stochastic, in some simulations it 

converged to the action with the larger value, but in others it converged towards the 

action with the smaller value. Third, we averaged the 1000 simulations for each possible 

action value difference in order to estimate a reference output value for later use in the 

comparison regressor in the general linear models of the fMRI data described below. As 

depicted in Figure S 2.6, the averaging was done conditional on whether the optimal 

choice was made or not. We constructed a trial-by-trial parametric modulator by 

retrieving the stored values from this analysis in each trial for the current value difference 

and dependant on whether the subject chose optimally (action with the higher action 
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value) or the action with the lower action value from either the red or blue curve in 

Figure S 2.6. 

To validate our model behaviorally, we determined for each possible value difference 

(Ve – Vh) in 1000 model runs the fraction of runs in which the model settled on the eye 

choice. For this purpose, a noise parameter  was estimated for each subject using the 

maximum likelihood procedure described in the RL section above. The resulting 

psychometric choice functions (probability of the model to choose eye dependant on Ve-

Vh) are compatible with subjects’ observed behavior and model performance is very 

similar to the reinforcement learning soft-max procedure (Table S3).  

Note a few things about the model. First, it leads to stochastic choices, consistent with the 

behavior in Figure 2.1D. Second, unlike other models such as the drift diffusion model 

(see the discussion in the next section), the output signal depends on the action value 

difference when the best item is chosen (and is constant otherwise).  

The Drift Diffusion Model of the decision process 

A very popular model of how the comparison is made is called the Drift Diffusion Model 

(DDM, sometimes also called race-to-barrier model) [87-89]. This model has proven 

extremely useful in explaining the psychophysics of perceptual choice as well as some 

aspects of neural activity in areas such as LIP during perceptual decision tasks [90, 91].  

The basic idea of the model, as applied to value-based decision-making, is illustrated in 

Figure S 2.5. The process computes a net value signal (say Vh – Ve) that fluctuates 

between two barriers until a decision is made. A decision is reached when the net value 

signal crosses either of the two barriers. If the top barrier is crossed the hand action is 
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chosen. If the bottom barrier is crossed the eye action is chosen. The net value signal 

climbs to the hand barrier with a slope proportional to Vh – Ve, but it is also affected by 

white Gaussian noise. In the simple version of the model the net value signal commences 

the integration process mid-way between the two barriers, which implies that there is no 

bias between the two options (i.e., when Vh = Ve both options are chosen with equal 

probability). 

Note that this is a “high-level” computational model, which is silent about how the brain 

might implement these computations. This question needs to be answered to be able to 

make predictions about how to identify areas that might implement this process using 

fMRI. Consider an extremely simple neural implementation of the DDM. There are two 

populations of neurons: one encodes for the net value of a hand movement (Vh – Ve), the 

other encodes for the net value of an eye movement (Ve – Vh). Both populations encode a 

signal with a dynamic range 0 to M. Both signals begin the competition process at M/2 

and the decision process stops when one of the signals reaches M. The signal in the two 

populations evolves in discrete time until a choice is made. Each of the populations is 

connected to an output signal that encodes the selected motor movement, triggered once 

the integration threshold M is reached. Note a few interesting properties of the neural 

implementation of the DDM. First, the sum of activity in all neurons at every instant 

during the comparison equals M. Second, the sum of activity in both output signals is 

also equal to a constant, call it B, independent of Ve and Vh.  

These properties imply that an area implementing the comparison should have a level of 

neural activity equal to M (independent of Ve and Vh) from the onset of the trial until a 

choice is made. They also imply that the output of the process is characterized by a 
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constant level of activity B (again, independent of Ve and Vh) that is on from the moment 

the decision is made to the time the motor output is executed. 

These properties mean that the comparator activity of the DDM should be modeled in the 

general linear models of BOLD activity described below as an unmodulated regressor 

that begins with the onset of a free trial and ends with the deployment of one of the two 

actions (i.e., it has a duration equal to the reaction time). In contrast, the output activity 

should be modeled as an unmodulated regressor at the time of (either) action execution 

with a duration of 0 seconds. 

Although these regressors provide a full characterization of the neural activity associated 

with the DDM, and they are easily incorporated in the general linear models described 

below, they present a major problem for fMRI. Consider, for example, the regressor for 

the comparator process. The activity for this process is perfectly correlated with those of 

other processes that come on-line during the evaluation process, that are also 

unmodulated by value, and that also last until a choice is made. Given that a large number 

of such processes are likely to exist (and in fact a large number of distinct areas are 

robustly activated by this type of contrast in decision-making tasks) it is difficult to 

isolate the location of the DDM comparator process using fMRI, particularly for the 

range of reaction times taken for decisions in a standard fast-paced decision task such as 

the one featured here. A similar problem holds for the output signal of the DDM, since it 

is perfectly correlated with motor activity that is not modulated by action values.  

Given these issues, we concluded that the neural signatures of the DDM cannot be 

identified using the fMRI methods deployed in the present study. It is important to 
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emphasize that these measurement problems are not present in single-unit 

electrophysiology since this technique permits the independent measurement of neural 

activity in a putative decision region with sufficiently high spatial and temporal 

resolution. Moreover, the output of the model does not resemble the value difference 

signal we observed in anterior cingulate cortex in the present study. Thus, while we 

cannot assess the relevance of the DDM model to value-based decision making in the 

present study, it is the case that such a model does not provide a good account for the 

value comparison signal we observed in anterior cingulate cortex. 

FMRI data acquisition 

Functional images were taken with a gradient echo T2*-weighted echo-planar sequence 

(TR = 2.65 s, flip angle = 90°, TE = 30 ms, 64 × 64 matrix). Whole brain coverage was 

achieved by taking 45 slices (3 mm thickness, no gap, in-plane resolution 3 × 3 mm), 

tilted in an oblique orientation at 30deg to the AC-PC line to minimize signal dropout in 

OFC. Subjects’ head was restrained with foam pads to limit head movement during 

acquisition. Functional imaging data were acquired in two separate 568-volume runs, 

each lasting about 24 min. A high-resolution T1-weighted anatomical scan of the whole 

brain (MPRAGE sequence, 1x1x1 mm resolution) was also acquired for each subject. 

 

FMRI data analysis 

Image analysis was performed using SPM5 (Wellcome Department of Imaging 

Neuroscience, Institute of Neurology, London, U.K.). Images were first slice time 

corrected to TR/2, realigned to the first volume to correct for subject motion, spatially 



 51 

normalized to a standard T2* template with a voxel size of 3 mm, and spatially smoothed 

with a Gaussian kernel of 8 mm FWHM. Intensity normalization and high pass temporal 

filtering (using a filter width of 128 s) were also applied to the data. 

We estimated several general linear models (GLM) for each individual. 

 

GLM 1. Two events were modeled in each trial: the time of the choice cue, parametrically 

modulated by the trial-by-trial action values Ve and Vh, and the time of the presentation 

of the outcome, modulated by the prediction error d. Trials in which subjects chose the 

eye action and trials in which subjects chose the hand action were modeled as separate 

regressors. Trials were further split to build separate regressors for each trial type: free 

choice, forced choice and null trials. Choice and forced trials were modulated by the 

estimated action values to find neural representations of those signals. In null trials there 

were no modulators. The model also included an orthogonalized version of the 

parametric action value modulators described in the previous paragraph during the inter-

trial interval. The rationale behind this last set of regressors was to allow for the 

possibility that participants might already be considering which option to choose next 

after receiving the feedback on the previous trial. In such a case, the ITI window would 

be part of the decision process. However, we did not find any correlates of value related 

signals during the ITI, which led us to focus our analysis on the time of the choice cue. 

All regressors were convolved with the canonical hemodynamic response function. In 

addition, the 6 scan-to-scan motion parameters produced during realignment and two 

session constants were included as additional regressors of no interest. We then computed 
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contrasts of interest at the individual level using linear combinations of the regressors: 

Value chosen: Ve|eye_chosen + Vh|hand_chosen; Value difference (Vunchosen – Vchosen): 

Ve|hand_chosen + Vh|eye_chosen – Ve|eye_chosen – Vh|hand_chosen. This model was 

used to generate the statistics reported in Figures 2.2, 2.3 and 2.4A. 

GLM 2. This model was identical to the first GLM except for the addition of following 

two regressors: 

1. A Dirac delta function 700 ms into every trial (which is equal to the average response 

across subjects) modulated by the estimated output signal of the DCM model given the 

values of Vh and Ve and the optimality of the choice made. The values of these 

modulators are depicted in Figure S 2.6, dependant on the action value difference and 

whether the subject chose optimally (red curve) or non optimally (blue curve).  

2. An indicator for the time of cue presentation modulated by a decision difficulty 

measure given by 

€ 

− |Ve −Vh |. Note that this modulator takes a maximum value when 

Ve=Vh. We also tested alternatively for subject specific conflict by taking into account 

individual choice biases in calculating the value difference 

€ 

− |Ve −Vh −α |. For example, 

if a participant had a slight overall bias towards saccading, the difficulty would be 

centered on this subject’s individual point of equilibrium. For this purpose we estimated a 

subject specific indecision point 

€ 

α  by fitting the RL model with a third free parameter 

that allowed for horizontal shifts of the sigmoidal choice function. 

As before, note that the value of the output signal of the CDM model used in every trial 

computed is obtained by averaging over 1000 simulations, and that, due to the 

stochasticity of the CDM, it is a noisy measure of the actual activity during the trial. 
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The goal of this second GLM was to look for regions in which activity correlated with the 

output signal of the DCM. The results of this second GLM were used to generate the 

statistics reported in Figure 2.4B and 2.4C. 

GLM 3 & 4. We carried out two further analyses to rule out the possibility that action-

value signals observed in SMA and pre-SEF could be attributed to motor preparation. In 

the first such additional analysis we estimated a GLM in which trials involving hand or 

eye movements were entered as separate indicator variables, and reaction times (RTs) for 

those hand and eye movements were used as parametric modulators around those 

indicator variables. We then tested for areas correlating separately with RTs for eye and 

hand movements (as a proxy for motor preparation).  

In a fourth GLM we re-ran the same analysis as in GLM 1, except this time with the 

inclusion of additional parametric modulators of RTs for hand and eye movements, in 

order to establish whether motor preparation as indexed by RTs could account even in 

part for the regions found to correlate with action-values. 

To enable inference at the group level, we calculated second-level group contrasts using a 

one-sample t-test. Results are reported at p<0.001 uncorrected in the entire brain and 

tested in areas of interest at p<0.05 after small volume correction (SVC) for multiple 

comparisons.  

ROI analyses. The effect size plots in Fig 2.2B were computed by averaging GLM’s beta 

values across subjects. In order to ensure the independence of the data used to compute 

the effect sizes from the data used to select the ROI we performed the following steps. 

First, for each subject we randomly selected half of the choice trials across the entire 
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experiment and then created a new design matrix in which we modeled the selected 50% 

of the trials (T1) and the remaining 50% of the trials (T2) as separate regressors. Similar 

to the GLM 1 (described above), regressors T1 and T2 each consisted of an onset time 

regressor and parametric modulators for Ve and Vh. Second, to define our ROIs we 

performed a whole-brain SPM analysis similar to the one shown in Fig 2.1A, but this 

time restricted to the T1 trials only. Note that the activation map produced by this step 

(with a threshold set at p<0.005 unc.) looks very similar to the one shown in Fig 2.2A. 

Third, we defined the SMA/preSEF ROIs using a 6 mm sphere around the individual 

subject peak voxel within the activated cluster for T1. Finally, we extracted average 

effect sizes within these spheres from the remaining T2 regressor. Very similar results 

were obtained if instead of splitting the data into two groups of trials within subject, data 

from 50% of the subjects were used to define the ROIs, while data from the remaining 

50% were used for extracting the effect sizes (from the co-ordinates defined in the first 

group of subjects). The effect size plots for vmPFC shown in Fig 2.3B were calculated 

using an identical procedure. 

Small volume corrections. Seed region coordinates for small volume correction were 

defined by two alternative methods: Firstly, we used an anatomical definition for 

supplementary motor cortex provided by the AAL human brain atlas [98], and we 

corrected for small volume within the entire area of supplementary motor cortex defined 

by this atlas (comprising both SEF and SMA), superimposed on the normalized average 

structural scan from our study. Secondly, we took the average peak co-ordinate from 16 

previous fMRI studies identifying activation in SMA and defined a sphere of 12 mm 

around that averaged peak co-ordinate in which to perform the small volume correction 
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[55, 99, 100]. The size of the sphere in the functionally defined seed region was set to 1.5 

times the size of the smoothing kernel used during preprocessing of the fMRI dataset. 

Using each and every one of these criteria our effects survived correction for small 

volume with family wise error at p<0.05.  

The structural T1 images were co-registered to the mean functional EPI images for each 

subject and normalized using the parameters derived from the EPI images. Anatomical 

localization was carried out by overlaying the t-maps on a normalized structural image 

averaged across subjects, and with reference to an anatomical atlas [97].  
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 Table 2.1 Different types of value signals  

Characteristics of each value signal type in terms of the specific variable that activity in a 

given region should be correlated with as a function of the action performed (choice 

taken): 

 
 Action performed 
Value signal categories Eye chosen Hand chosen 

Action_value: eye Veye Veye 

Action_value: hand Vhand Vhand 

Value_chosen Veye Vhand 
Value_chosen: eye only Veye - 

Value_chosen: hand only - Vhand 
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Table 2.2 Activated regions  

Locations of significant correlation with parametric contrasts in the fMRI analysis 

(threshold p<0.001) MNI coordinates denote the group peak voxel of each cluster.  

* p<0.05 SVC corrected.  

 

Vh (Fig 2.2A): 
 x y Z T # voxels  

01: -21 -90 -18 6.29 46 left occipital cortex 

02: 57 -54 -09 5.68 65 right inferior temporal gyrus 

03: -30 -24 75 5.58 59 left postcentral sulcus 

04: 00 -12 78 4.61 33 SMA* 

05: 39 -78 39 4.34 32 left intraparietal sulcus 

 
Ve (Fig 2.2A): 

01: 27 15 -03 4.27 5 ventral striatum 

02: -06 09 60 4.16 4 preSMA* 

 
Vchosen (Fig 2.3A): 

01  -39    -36  69    6.37   142  Left postcentral gyrus 

02  21    -48  60    5.84   133  Right postcentral sulcus 

03  36    -21  39    5.59   24  Right central sulcus 

04  -15    -36  45    5.37   34  Left cingulate sulcus 

05  -48    -15  51    5.19   50  Left central sulcus 

06  06    45  -18    4.76   51  Ventromedial prefrontal cortex* 

07  -60    -09  -06    4.72   38  Sup. Temporal sulcus 

08  -54    -30  03    4.43   64 Planum temporale 

 
Vunchosen-Vchosen (Fig 2.4A): 

01: -27 24 00 8.02 249 Left anterior insula 

02: 36 24 06 7.0 176 Right anterior insula 

03: 03 24 51 5.64 268 Dorsomedial frontal cortex  
& anterior cingulate* 

04: -33 -54 42 5.47 48 Intraparietal sulcus 

05: -48 12 36 5.1 214 Inferior frontal sulcus 
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Hand bias (Fig S 2.3): 

 x y z T # voxels  
01: -39 -21 51 7.61 558 Left precentral gyrus 

02: 21 -45 -30 6.4 144 Right cerebellum 

03: 06 21 66 6.16 158 Right dorsal medial frontal cortex 

04: -39 -66 -39 6.02 168 Left cerebellum 

05: 66 -27 -21 5.93 132 Right temporal lobe 

06: 21 -39 60 5.76 32 Right central sulcus 

07: -39 -66 57 5.54 83 Left superior parietal gyrus 

08: 48 -51 54 5.26 320 Right superior parietal gyrus 

09: 30 15 45 5.02 58 Right middle frontal gyrus 

10: 33 -27 69 4.92 30 Right precentral gyrus 

11: -12 -42 30 4.57 126 Left posterior cingulated gyrus 

12: 45 -72 -33 4.56 44 Right cerebellum 

 
Eye bias (Fig S 2.3): 

01: 12 -72 12 7.76 2734 Occipital lobe (bilateral) 

02: -27 12 00 5.26 25 Left striatum 

03: 24 -42 45 5.08 20 Right parietal cortex 
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Table 2.3 Model performance 

Model performance in predicting individual subject choices of the soft-max model and 

the CDM model 

 soft-max model  CDM model 

Subject R2 p<  R2 p< 

1 0.57 0.000  0.54 0.000 

2 0.65 0.000  0.65 0.000 

3 0.20 0.000  0.15 0.000 

4 0.20 0.000  0.20 0.000 

5 0.18 0.000  0.15 0.000 

6 0.04 0.019  0.02 0.118 

7 0.13 0.000  0.11 0.000 

8 0.54 0.000  0.54 0.000 

9 0.04 0.011  0.05 0.009 

10 0.18 0.000  0.17 0.000 

11 0.64 0.000  0.62 0.000 

12 0.06 0.003  0.05 0.004 

13 0.36 0.000  0.35 0.000 

14 0.25 0.000  0.22 0.000 

15 0.56 0.000  0.53 0.000 

16 0.58 0.000  0.57 0.000 

17 0.31 0.000  0.27 0.000 

18 0.38 0.000  0.39 0.000 

19 0.46 0.000  0.44 0.000 

20 0.56 0.000  0.57 0.000 

21 0.61 0.000  0.62 0.000 

22 0.19 0.000  0.18 0.000 

23 0.06 0.003  0.06 0.004 

 0.34   0.32  
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Figure S 2.1 Activations by action values with T-stats coloring 

A region of pre-SEF showing correlations with action-values for eye movements (Ve, 

top) and a region of supplementary motor area showing correlations with action-values 

for hand movement (Vh, bottom). T-maps are shown from a whole brain analysis 

thresholded at p<0.001 uncorrected. The color bars indicate the magnitude of the t-scores. 

These same two contrasts are also shown combined in Figure 2.2A. 
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Figure S 2.2 Post-hoc effect sizes 

Post-hoc plots of effect sizes (expressed as percent signal change) averaged across all 

voxels in the activated clusters at the group level for each subject and then averaged 

across subjects separately for the pre-SEF (shown in A) and SMA (shown in B). (A) The 

graph on the left hand shows average % signal change extracted from pre-SEF separately 

for trials in which the action value of the eye movement is low (Veye <= 0.5 percentile) 

and high (Veye > 0.5 percentile), further separated by trials in which either the eye 

movement or hand movement was actually chosen. As expected (given this area 

correlates with action-values for eye movements), the % change plots discriminate high 

and low eye values irrespective of whether that action is chosen on that trial. Importantly 
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however, when activity within the same area is plotted as a function of the action value 

for the hand movement (shown on the right hand side), the signal change on high and low 

hand value trials does not discriminate between high and low hand values. Although for 

eye_chosen trials the value hand signal does appear to separate in the direction of high 

and low hand values, this difference is not statistically significant (paired t-test t=1.8; 

p<0.08; note this post-hoc comparison for the value of hand is independent of the 

parametric contrast used to select the voxels (value_eye)). (B) Similar plot for SMA 

showing that this region distinguishes high and low action_values for hand movements 

irrespective of whether that action is chosen, but does not distinguish the value of eye 

movements. 
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Figure S 2.3 Local predominance bias 

(A) Correlations with eye action value Veye (red, same as in Figure 2.2A) don’t overlap 

with correlations of the local predominant choice bias for eye (blue). Areas in blue 

indicate regions that are significantly more active during periods in which the subject 

predominantly chooses eye. (B) Similarly, the correlation with hand action value Vhand in 

SMA (green, same as displayed in Figure 2.2A) is not overlapping with areas that are 

significantly more active at times when the subject predominantly chooses hand actions 

(blue). 
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Figure S 2.4 Illustration of the competition difference model 

The decision process was modeled as an iterative algorithm of mutual competition 

between the neuronal populations associated with the valuation of eye and hand actions. 

Model inputs were action-values for eye and hand movements.  The evolution of the 

model output over time within a trial is illustrated in a hypothetical case with action-

values of Vh=0.8 and Ve=0.5 at the time of model initialization (left), during competition 

between populations (middle), and after convergence (right). The model includes an 

additional final layer (with constant positive input from which the previous result is 

subtracted) that inverts the output of the network to compute the value difference 

between the action not chosen and the action chosen. 

Vh = .80       Ve = .50
V* = Ve + Vh = 1.3

V*  = Vh - Ve = 0.3converse active nodes 
cancel each other out.

initialization race convergence

= neuron associated with hand action = neuron associated with eye action

inversion

O = C - 0.3

baseline input C
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Figure S 2.5 Illustration of the Drift Diffusion Model 

During the decision making process the model computes a net value signal (say Vh – Ve) 

that fluctuates between two barriers. A decision is reached when the net value signal 

crosses either of the two barriers. If the top barrier is crossed the hand action is chosen. If 

the bottom barrier is crossed the eye action is chosen. The net value signal climbs to the 

hand barrier with a slope proportional to Vh – Ve, but it is also affected by white Gaussian 

noise. In the case depicted in the figure, Vh > Ve so that hand is the correct choice. 

0

a

Drift Rate (v)

Correct Response

Error Response

Drift Time >Starting
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Figure S 2.6 CDM steady state output 

Average steady state output of the computational decision model of the choice process as 

a function of value difference between the two action values. The remaining number of 

ON units after 50 iterations was averaged across 1000 model runs. The red curve displays 

the average remaining total ON units in the model in trial that the model converged 

towards the action with the larger action value. In contrast, the blue curve displays the 

same statistic for trials in which the model selected the action with the lower action value. 
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Chapter 3. Economic choicesii 

 

Decision-making often involves choices between different goods, each of which is 

associated with a different physical action. A growing consensus suggests that the brain 

makes such decisions by assigning a value to each available option and then comparing 

them to make a choice. An open question in decision neuroscience is whether the brain 

computes these choices by comparing the stimulus values directly (goods space) or by 

assigning values to the associated actions and then comparing those action values 

(action-space). We used a novel fMRI experimental design in which human subjects made 

choices between different stimuli before and after knowing which actions were required 

to obtain the different stimuli. We found neural correlates of the value of the stimulus that 

is chosen in a trial (a post-decision signal) in vmPFC before the action pairing was 

revealed. These findings provide strong evidence for the hypothesis that the brain is 

capable of making choices completely within an abstract representation of stimuli.  

                                                
ii Adapted with permission from Klaus Wunderlich, Antonio Rangel, John P O’Doherty, 
“Economic choices can be made using only stimulus values”, (manuscript under review). 
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Introduction 

Imagine that you are thirsty and walk up to a vending machine that is serving a variety of 

soft drink beverages. On the machine you see the brand marks of the offered beverages, 

and since you had previously sampled them, you easily assign values to each drink based 

on their taste. In order to get the desired beverage you press the button that is 

distinctively associated with the preferred option. This situation exemplifies many of the 

decisions that humans and animals make in daily life. It is a well-established belief 

among economists, psychologists, and neuroscientists that the brain solves such choice 

problems by first computing a value for each alternative and then selecting the one that 

has the highest value [5, 6, 8, 9]. Neuroscientists have considered two possible alternative 

ways for how values might be compared to make a choice in these situations: 

In the action-based model, choices are embedded in premotor processes of action 

selection: the values of goods are passed as action values to the motor plans required to 

obtain them and the decision is then made within the action space [17, 36, 101]. Several 

variants of this approach have been proposed [11, 102-104]. For example, Glimcher 

extended this theory to values that are acquired through experience by a reinforcement 

learning mechanism such that a value is attached to each possible course of action. 

Evidence for this view comes from the finding of action-value signals in several regions 

of the brain including the caudate nucleus [17, 36], supplementary motor cortex [105], 

and action-related value signals in lateral intraparietal cortex [31, 33]. 

In contrast, in the stimulus-based model, values of the available goods are compared to 

make a choice in the absence of any action information (i.e., the choice takes place in 
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stimulus-value space), and only after a stimulus is chosen are the necessary motor plans 

identified and executed. Thus, this view proposes a sequential choice process in which 

action selection is temporally separated from the actual process of choice. Support for 

this model comes from studies showing abstract value representations in the orbitofrontal 

cortex [10, 51, 52], and from lesion studies indicating double dissociations between 

lesions of orbitofrontal cortex and anterior cingulate cortex on learning of stimulus-

reward and action-reward associations respectively [106, 107]. However, while there is 

considerable evidence for stimulus-values and stimulus-based learning, it is as yet 

unknown whether such signals can be actually used to compute choices, or whether by 

contrast such signals need to be converted into action space before choice signals can be 

computed. 

The aim of the present study was to directly address this question. For this we used fMRI 

in human subjects while they performed a variant of a two-armed bandit task in order to 

obtain probabilistically delivered monetary rewards (Figure 3.1A). In every trial, subjects 

made a choice between two stimuli and selected one by executing the action that was 

randomly paired with the chosen stimulus (either button press or saccade). A critical 

feature of the task was that in half of the trials (stimulus condition, SC), subjects were 

first presented with the two stimuli alone in a horizontal arrangement that did not contain 

any information about the actions required to obtain them. The actions were only 

revealed after a variable interval by randomly flipping the stimuli in vertical alignment. 

At this stage subjects could choose the upper stimulus by making a saccade to a target in 

the right hemifield, and the lower stimulus by pressing a button with their right hand. In 

the other half of the trials (action condition, AC) the first screen was not shown and 
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instead the stimuli appeared immediately in the vertical action-pairing position. To avert 

the possibility that subjects had already formed a decision in the preceding inter-trial-

interval, subjects were in each trial presented with a choice between two out of three 

possible stimuli (triangle, square, and circle) in pseudo-random appearance so that that 

they did not know until the trial onset which pair of stimuli would be presented. The 

probability of being rewarded on selecting each of the three stimuli drifted randomly over 

time and was independent of the probability of being rewarded on the others (Figure 

3.1B). We estimated the value of taking each stimulus in every trial by calculating the 

stimulus values using a computational reinforcement-learning (RL) model in which the 

value of each stimulus, Vtriangle, Vsquare, and Vcircle, was updated in proportion to a 

prediction error on each trial. The model also assumed that stimulus selection in every 

trial followed a soft-max probability rule based on the difference of the estimated values, 

which provided a good description of behavior (Figure 3.1C).  

We reasoned that if choices can be computed in stimulus space, we would observe 

signals corresponding to the value of the option that was subsequently chosen in SC trials 

at the time of stimulus presentation, but before any action-related information was made 

available to the subjects, so that the choice could be implemented. This hypothesis is 

important because, if correct, it provides evidence that the brain can compute choices in 

stimulus-space. We also speculated that subjects would respond faster in SC trials than in 

AC trials because the time necessary to make a decision between the desired stimuli had 

already been provided before the action pairing. 
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Results 

Consistent with the reaction time hypothesis, we found that subjects responded 

significantly faster (paired t-test; p<10-11) in the SC than the AC condition (Figure 3.1D).  

In order to look for neural correlates of value signals we entered the trial-by-trial 

estimates of the values of the two stimuli under consideration into a regression analysis 

against the fMRI data. We focused our search for decision related value signals on the 

ventromedial prefrontal cortex (vmPFC), a region that has been found to encode the value 

of the chosen stimulus or action. We found that in SC trials neural activity in vmPFC 

(x=-3, y=27, z=-9; T=3.73) correlated with the value of the stimulus that  is 

subsequently  chosen  already  before  the  stimulus‐action  pairing  was  revealed 

(Figure 2.2A, Table 3.1).  Importantly, we also tested for a value chosen signal  in SC 

trials at the time of action‐pairing but did not find any significant correlation for this 

contrast.  In  AC  trials  the  vmPFC  (x=‐6,  y=39,  z=‐12;  T=5.55)  also  correlated 

significantly with  the value  chosen  signal. Although  the peak of  the area encoding 

the  chosen  value  in  AC  trials  was  found  to  be  located  slightly more  anterior  and 

ventral  than  the  peak  in  SC  trials  (Figure 3.2A,  Table 3.2),  we  did  not  find  any 

significant  activated  area  for  the  difference  contrasts  “SC  value_chosen  during 

stimulus presentation – AC value chosen” at a liberal threshold of 0.01 uncorrected. 

Effect size plots (Figure 3.2B) and timecourse plots (Figure 3.2C) in the overlapping area 

(center at x=-9, y=42, z=-3) confirmed that in SC trials activity in vmPFC was correlated 

with the chosen value only at the time of stimulus presentation but not at the succeeding 

time of stimulus-action pairing. All reported activations are significant at a height 
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threshold of p<0.005 and a cluster extent threshold of p<0.05 corrected for multiple 

comparisons estimated using alpha-sim. Note that the data used to calculate effect sizes 

were independent of the data used in the functional definition of the region-of-interest 

(see Supplementary Materials for details). Timecourses were averaged separately for 

trials in which the chosen value was large and small. Again, timecourses separate 

according to the value signal in SC trials already at the time of the stimulus presentation, 

which precedes the action-pairing screen by 3-5 seconds. 

We also looked for representations of the individual stimulus values, because clearly such 

signals should be a precursor of choice in that these values need to be compared in order 

to work out which option is ultimately chosen. Due to spatial limitations of fMRI we 

assumed that it would likely not be possible to detect activity patterns encoding the value 

of the individual stimuli. Instead, we assumed that neurons encoding such values would 

be spatially intermixed within the same region, and that such intermixed neural signals 

would be reflected at the level of the BOLD signal as an average of the values of the two 

stimuli under consideration on a given trial. Consistent with our hypothesis, we found 

such an averaged stimulus-value signal in SC trials within a sub-region of vmPFC (x=-9, 

y=48, z=-3, T=4.41) (Figure 3.3, Table 3.3). Furthermore, consistent with the notion that 

such individual stimulus-values only need to be used by the brain at the time of decision 

making, we only found evidence for such an averaged stimulus-value signal at the time of 

stimulus presentation (and not once the action pairings were presented). 
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Discussion 

We used a novel fMRI experimental design in which human subjects made choices 

between different stimuli before and after knowing which actions were required to obtain 

the different stimuli. We found neural correlates of a post-decision signal, the value of the 

stimulus that is chosen in a trial, in vmPFC before the action pairing was revealed. These 

findings indicate that the brain is capable of computing choices completely within an 

abstract representation of stimuli. 

One possible alternative explanation of our findings is that in the stimulus condition (at 

the time of presentation of the stimuli but before the action pairings are revealed), 

subjects make decisions by assigning temporary action pairings to the stimuli, and then 

comparing the temporary action pairings. These temporary action pairings could then be 

substituted for the real action assignments at the time of action presentation. Although we 

cannot completely rule out these explanations on the basis of our data alone, there are 

several reasons why this type of explanation is unlikely to account for our results. First, 

when subjects are in a situation where it is necessary to make decisions over actions (i.e. 

where there is no unique stimulus information to discriminate between different options), 

regions of the brain known to be involved in motor planning and initiation such as 

supplementary motor cortex, lateral intraparietal cortex, and anterior cingulate cortex 

have been found to contain action-related value signals in prior imaging studies [79, 105]. 

However, these regions did not show significant correlations with value signals in the 

present paradigm even at a liberal uncorrected threshold (p<0.01), suggesting that neural 

systems involved directly in action representations were not directly engaged during the 

decision process in the present study. Secondly, on a more conceptual level, while 
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encoding of conditional action pairings might be feasible in the present simplified 

experimental paradigm, such a mechanism is unlikely to scale well in many real-world 

sequential decision problems with large numbers of sequential conditional action 

pairings, because decisions in such contexts would require encoding of long strings of 

conditional action pairings that could rapidly become computationally intractable. By 

contrast, the parsimonious alternative proposed here whereby in such contexts a decision 

is made between the stimuli would not suffer from the same scaling problem. 

Our findings provide the first direct evidence that the brain is capable of computing 

choices completely within an abstract representation of stimuli. It is important to 

emphasize that our data does not show that all decisions are made in stimulus-space, but 

rather that the brain is capable of computing a decision purely in stimulus space when 

action pairings are not available. There is ample experimental evidence that behavioral 

decisions can be and are made over actions in many contexts [7, 79, 105, 108-110]. 

Given the results in this paper, plus the presence of action value signals in caudate [17, 

36] and supplementary motor system [105] it is natural to conjecture that both 

mechanisms may co-exist during certain types of choices, or that some types of choice 

may be better computed in stimulus-space and others in action-space. The current study 

provides direct evidence that the brain is capable of computing decisions in stimulus 

space even when the actions required to implement the choices are not available. 

 



 75 

Methods 

Subjects  

24 healthy subjects (18–31 years old; right-handed, assessed by self-report with an 

adapted version of the Edinburgh handedness inventory [96]) with no history of 

neurological or psychiatric illness participated in the study. The Institutional Review 

Panel of the California Institute of Technology approved the study.  

Task  

The task is a variant of a 2-armed bandit problem in which subjects make pair wise 

choices between subsets of two stimuli that were pseudo-randomly selected out of three 

stimuli used in the experiment: a green triangle, a blue square, and a yellow circle.  

 

There were two conditions. In the first one (stimulus condition, SC), subjects were first 

presented with the stimuli in horizontal arrangement without the information of what 

action they had to perform to choose the stimuli. After a variable time (3, 4, or 5 seconds, 

uniform distribution) the stimuli flipped to vertical position that indicated the action 

associated with each stimulus. The assignment of stimuli to actions was made randomly 

in every trial. At this stage, subjects could press a button with their right index finger to 

choose the bottom stimulus or perform a saccade from a central fixation cross to a target 

located at 10 degrees of visual angle in the right hemifield to choose the top stimulus.  
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In the second condition (action condition, AC) the trials were identical except that the 

first screen was not shown and subjects were immediately presented with the stimuli in 

vertical arrangement at the beginning of the trial.  

 

The probability (Qi,t) of stimulus i being rewarded in trial t evolved over time as a 

decaying Gaussian random walk process, with Qi,t+1 = max(0, min(1,λ Qi,t + (1 - λ)θ + 

ν)); where the decay parameter λ was 0.79836, the decay center θ was .50, and the 

diffusion noise ν was zero-mean Gaussian with standard deviation σ
d
 = .208.  Five 

different probability trajectories were generated using this method and were assigned 

across subjects randomly. Figure 3.1B depicts one of the five probability paths used in 

the experiment. An important feature of this design is that the probability of being 

rewarded on one of the three stimuli is independent of the probability of being rewarded 

on the others. This feature is useful because it implies that the reinforcement learning-

based estimates of the stimulus values are uncorrelated with each other, which increases 

our ability to dissociate the neural correlates.  

 

The task consisted of four sessions of 75 trials each separated by a short break. Subjects 

had to choose between two actions within 2.5 seconds after onset of the stimulus-action 

pairing screen; otherwise the trial was counted as an invalid missed trial. Subjects very 

rarely failed to make a response within this time window: none of the subjects had more 

than two such events during the entire experiment, and most subjects did not miss any 

trials at all. After the response was registered the screen changed to a fixation cross until 

six seconds after trial onset. At this time the outcome was displayed for one second by 
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showing either an image of a dollar bill in rewarded trials, or a scrambled dollar bill in 

non-rewarded trials. Trials were separated by a fixation cross that lasted between 1 and 8 

seconds (uniform distribution).  

 

Prior to the experiment subjects received full instructions about the task and the two 

conditions, they were informed that the probabilities of being rewarded on each stimulus 

changed as a continuous function over time (but were not given details about the 

underlying stochastic process), and they were instructed to try to maximize their earnings 

which were paid to them at the end of the experiment. Subjects accumulated 25 cents in 

each rewarded trial. We did not reveal the exact reward per trial to subjects before the 

experiment but instead instructed them only that they would get a small amount of money 

for each rewarded trial. At the end of the experiment subjects were paid their 

accumulated earnings in addition to a flat amount of 20$.  

 

The task was presented to the subjects via back projection on a translucent screen, 

viewable through a headcoil mounted mirror. Subjects chose the hand action by pressing 

a button on a button box with their right index finger. Eye positions were monitored at 

120 Hz with a long-range infrared eye-tracking device (ASL Model L6 with control unit 

ASL 6000, Applied Science Laboratories, Bedford, MA). An eye action during the choice 

period was registered when the median horizontal eye coordinate during the past 200 

msec exceeded 8 degrees of visual angle to the right from fixation. Subjects were 

instructed to maintain central fixation during the entire experiment when not deliberately 

making a saccade.  
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Reinforcement Learning (RL) model 

RL is concerned with learning the value of taking particular actions in different states of 

the world in a model-free environment in which subjects do not have complete 

knowledge about the underlying reward generating process. Thus, it is ideally suited to 

model how subjects learn the value of taking the different actions over time.  

 

In this study we used Q-learning, where action values are updated using a simple 

Rescorla-Wagner rule. If a stimulus is not selected in a trial its value is not updated. In 

contrast, if stimuli s1 and s2 are shown and s1 is selected on trial t, its value is updated via 

a prediction error, δ, as follows:  

€ 

Vs1(t +1) =Vs1(t) +ηδ(t), 

where  is a learning rate between 0 and 1. The prediction error is given by  

€ 

δ(t) = r(t) −Vs1(t). 

Probabilistic rewards were delivered in free choice and forced choice trials and these 

trials were included in updating value prediction in the RL-model. The value of the 

stimulus that was not presented in a trial (s3) was not updated. 

To generate choices, we first used a soft-max procedure where in every trial, the 

probability (P) of choosing stimulus s is given by:  

€ 

Ps1,t =σ(β(Vs1(t) −Vs2(t))−α  
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where  is the Luce choice rule or logistic sigmoid, =0 denotes the 

indecision point (at which both actions are selected with equal probability), and  

determines the degree of stochasticity involved in making decisions.  

The model decision probabilities Ps1 and Ps2 were fitted against the discrete behavioral 

data Bs1 and Bs2 in order to estimate the free parameters ( and ). This was done using 

maximum likelihood estimation and a log likelihood function given by:  

€ 

logL =
ΣBs1 logPs1

Ns1

+
ΣBs2 logPs2

Ns2

, 

where Ns1 and Ns2 denote, respectively, the number of trials in which s1 and s2 were 

chosen, and Bs1 (Bs2) equals one if s1 (s2) was chosen in that trial, and zero otherwise.  

We compared the choice probabilities predicted by the RL model using the soft-max 

procedure to subjects’ behavior by binning Ps1 into 10 bins (bin size=0.1) and calculating 

for each bin the fraction of trials in which subjects chose s1. To test the fit between the 

model and the behavioral data we performed a linear regression subject-by-subject of the 

fraction of choices on the binned choice probability versus the predicted bin. Overall, the 

regression results suggest that the model captures actual action value estimation and 

choice behavior well (Figure 2.1C).  

 

The results presented in the paper are based on analyses in which all subjects’ behavior 

was restricted to be generated by a single learning rate for all subjects, but in which 

subject-specific heterogeneity was allowed in fitting the parameter β for controlling 
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choice stochasticity. We also performed the same analyses using a version of the model 

with fully individualized parameter fits. Although these alternative results support the 

same general conclusions, we focus on the case of a shared learning rate for several 

reasons. First, the examination of estimated Hessians of the likelihood at the optima 

suggested that the parameters were better identified in the restricted case. Second, the 

action values estimated using the fully individualized model correlated less strongly with 

fMRI measurements, an effect that has also been observed in a number of previous 

model-based fMRI studies, suggesting that individual subject parameter fits are prone to 

being over-fitted to individual behavior [38, 48, 49, 111]. 

 

FMRI data acquisition  

Data were acquired with a 3T scanner (Trio, Siemens, Erlangen, Germany) using an eight 

channel phased array head coil. Functional images were taken with a gradient echo T2*-

weighted echo-planar sequence (TR = 2.65 s, flip angle = 90°, TE = 30 ms, 64 × 64 

matrix). Whole brain coverage was achieved by taking 45 slices (3 mm thickness, no gap, 

in-plane resolution 3 × 3 mm), tilted in an oblique orientation at 30 deg to the AC-PC line 

to minimize signal dropout in OFC. Subject’s head was restrained with foam pads to limit 

head movement during acquisition. Functional imaging data were acquired in four 

separate 370-volume runs, each lasting about 16 min.  A high-resolution T1-weighted 

anatomical scan of the whole brain (MPRAGE sequence, 1x1x1 mm resolution) was also 

acquired for each subject. 
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FMRI data analysis 

Image analysis was performed using SPM5 (Wellcome Department of Imaging 

Neuroscience, Institute of Neurology, London, U.K.). Images were first slice time 

corrected to TR/2, realigned to the first volume to correct for subject motion, spatially 

normalized to a standard T2* template with a voxel size of 3 mm, and spatially smoothed 

with a Gaussian kernel of 8 mm FWHM. Intensity normalization and high pass temporal 

filtering (using a filter width of 128 s) were also applied to the data.   

First, we estimated a GLM with AR(1) for each individual subject. The following events 

were modeled in each trial:  

- The time of the stimulus presentation in SC trials, parametrically modulated by the trial-

by-trial stimulus values Vs1 and Vs2 

- The time of the stimulus-action pairing in SC trials, parametrically modulated by the 

trial-by-trial stimulus values Vs1 and Vs2 

- The time of the stimulus-action pairing in AC trials, parametrically modulated by the 

trial-by-trial stimulus values Vs1 and Vs2 

- The time of the presentation of the outcome, modulated by the prediction error δ and a 

binary function encoding whether a reward was given or not.  

 

Trials in which subjects chose the eye action and trials in which subjects chose the hand 

action were modeled in separate regressors. All regressors were convolved with the 

canonical hemodynamic response function. In addition, the 6 scan-to-scan motion 
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parameters produced during realignment and two session constants were included as 

additional regressors of no interest.  

Second, we computed contrasts of interest at the individual level using linear 

combinations of the regressors described above. Finally, to enable inference at the group 

level, we calculated second-level group contrasts using a one-sample t-test. 

The activated voxels of all reported results are statistically significant at a threshold of 

p<0.05, corrected for multiple comparisons, as stipulated by Monte Carlo simulations 

(AlphaSim within AFNI)[112]. AlphaSim generates an estimate of overall cluster size 

significance level by iteration of the process of random image generation, Gaussian 

filtering to simulate voxel correlation, thresholding, image masking, and tabulation of 

cluster size frequencies. In our simulation we generated a series of 10.000 random 

images, each having N (number of voxels in masked epi images) spatially uncorrelated 

voxels by filling the masked brain volume with independent normal random numbers. 

The effect of voxel correlation was simulated by convolving the random image with a 

Gaussian function of the size of our smoothing kernel (8 mm FWHM). The image was 

then scaled to provide our individual voxel probability threshold pthr=0.005 by 

determining the value zthr such that approximately pthr*N voxels have intensity greater 

than zthr. The thresholding was then accomplished by setting those voxels with intensity 

greater zthr to 1 (activated voxels), voxels with intensity less than zthr to 0. Finally, 

AlphaSim determined which activated voxels belong to clusters. Once all clusters had 

been found, the size of each cluster in voxels was recorded in a frequency table. This 

simulation estimated that in a 3D volume (entire brain as masked by the real epi-images) 
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a cluster size of > 51 contiguous activated voxels would occur by chance with a 

probability of less than 0.05.  

For visualization, results are reported in the figures at p<0.005 uncorrected in the entire 

brain.  

The structural T1 images were co-registered to the mean functional EPI images for each 

subject and normalized using the parameters derived from the EPI images. Anatomical 

localization was carried out by overlaying the t-maps on a normalized structural image 

averaged across subjects, and with reference to an anatomical atlas [97].  

The effect size / timecourse plots in Figure 3.2B, Figure 3.2C, and Figure 3.3B were 

computed by averaging the GLM’s beta values / timecourse data across subjects. In order 

to ensure the independence of the data that we used to compute the effect sizes from the 

data used to select the ROI, we performed the following leave-one-out (LOO) analysis. 

First, we looped through all subjects and computed group averages for all but one subject. 

We then extracted the beta value from the LOO-group peak voxel of the subject that was 

excluded in this LOO-group. Finally, we averaged all extracted data. 
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Figure 3.1 Experimental Design and Behavior 

(A) Subjects were presented with two stimuli (in every trial pseudo-randomly selected 

out of 3 possible stimuli) in horizontal arrangement (screen 1, for a variable time between 

3-5 s). Stimuli then flipped to a vertical arrangement indicating the actions required to 

obtain each stimulus (making a saccade or by pressing a button, screen 2). Once a 

response was registered the screen was immediately cleared for a short delay and 

subsequently the outcome was revealed (screen 4 at 6 s after screen 2), indicating either 

receipt of reward or no reward. There were two conditions: a stimulus condition (SC) as 

just described and action condition (AC), in which the first screen was not shown and 

subjects immediately saw the stimulus-action pairing. (B) Example reward probability 

paths for the 3 stimuli as a function of the trial number. The probabilities of being 

rewarded following choice fluctuated slowly and independently for each stimulus across 

the experiment. (C) Actual choice probability plotted against fitted model choice 

probability (binned in .1 wide), averaged across subjects (lines represents s.e.m.). (D) 

Reaction time (after the action pairing is revealed in screen 2) is significantly lower in SC 

trials than in AC trials (paired t-test, p<10-11, vertical lines represent s.e.m.).
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Figure 3.2 Neural correlates of chosen value 

(A) Activity in vmPFC showed significant correlation with the value of the stimulus that 

was subsequently chosen before the stimulus-action pairing was revealed (SC trials, red). 

The value chosen signal in AC trials was represented slightly more ventrally (green). 

Activations survive correction for multiple comparisons as described in the methods. For 

visualization the threshold in this figure is set to p<0.005 unc. (B) A comparison of effect 
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size at the overlapping region confirms that in SC trials the value chosen is represented 

only at the time of the stimulus screen (red) but not at the time of the following stimulus-

action pairing (cyan). In AC trials the value chosen is represented at the coinciding 

stimulus/action screen (green). Bars indicate standard error (C) Event-related BOLD 

responses in SC trials time locked to the stimulus presentation (left), the stimulus-action 

pairing (middle), and in AC trials time locked to the coinciding stimulus/action pairing 

(right). Time courses are plotted separately for trials in which the chosen values were 

small (dashed, V < 0.5) and large (solid, V > 0.5). Note that consistent with the effect 

sizes shown in (B), timecourses split in SC trials after stimulus presentation (Ts, left) but 

already approximately 4 s before the action-pairing (Ta, middle). 
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Figure 3.3 Neural correlates of stimulus value 

(A) Activity in vmPFC showed significant correlation with the average value of the two 

stimuli that were presented in SC trials at the time of screen 1 (red). Activations survive 

correction for multiple comparisons as described in the methods. For visualization the 

threshold in this figure is set to p<0.005 unc. (B) Comparison of effect sizes at the peak 

region between conditions. Neural activity in this region correlated with stimulus values 

in SC trials but not in AC trials. Bars indicate standard errors. 
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Table 3.1 Activated regions value chosen SC 

Locations of significant correlation with chosen value in SC trials during the stimulus 

screen (threshold p<0.05 corrected for multiple comparisons). MNI coordinates denote 

the group peak voxel of each cluster. 

 x y Z T # voxels  

01: 51 -3 -
3 

4.91 71 Right posterior insula cortex 

02: -
36 

6 6 4.87 110 Left posterior insula cortex 

03: -3 27 -
9 

3.73 112 Rostral ACC 

 

Table 3.2 Activated regions value chosen AC 

Locations of significant correlation with chosen value in AC condition during the 

stimulus/action screen (threshold p<0.05 corrected for multiple comparisons). MNI 

coordinates denote the group peak voxel of each cluster. 

 x y z T # voxels  

01: -
6 

39 -
12 

5.55 105 vmPFC 

02: -
2
4 

-
48 

24 4.23 128  

 

Table 3.3 Activated regions stimulus values 

Locations of significant correlation with the average stimulus value during the stimulus 

screen of the SC condition (threshold p<0.05 corrected for multiple comparisons). MNI 

coordinates denote the group peak voxel of each cluster. 

 x y z T # voxels  

01: -
9 

48 -
3 

4.41 53 vmPFC 
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Chapter 4. Optimal integration of 
multiple evidences.iii 

When trying to understand the causal nature of events in the world, an individual may 

consider a number of candidate theories, yet optimal decisions depend crucially on 

identifying the correct theory. Here, we present behavioral and neuroimaging evidence 

that humans tend to solve such problems not by first picking the theory that is most likely 

correct and then choosing accordingly (the “attention-gated” approach), but by 

considering all possible explanations simultaneously. We used model-based fMRI 

analysis in a hierarchical reversal decision task and found that decision variables based 

on the integrated approach were better able to explain activity in prefrontal cortex than 

those generated by the attention-gated approach. Furthermore, between-subject variance 

in the degree to which subjects’ deployed an integration strategy was correlated with the 

strength of the integration decision variables in prefrontal cortex. Our results 

demonstrate that the human brain and the prefrontal cortex in particular is capable of 

integrating information in an optimal manner, similar to that of an ideal Bayesian 

observer. 

                                                
iii Adapted with permission from Klaus Wunderlich, Ulrik Beierholm, Peter Bossaerts, 
John P O’Doherty, “The human prefrontal cortex mediates optimal integration during 
inference about multiple causes”, (manuscript under review). 
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Report 

In numerous real-life situations we face unknown causal relationships and have to find 

out which of multiple, and sometimes contradictory, causes explain the observed 

phenomena. One solution to deal with this problem is to first choose the most likely 

explanation and handle the situation accordingly until enough evidence accumulates to 

reject the theory as invalid. This approach has been the core of scientific deductive 

reasoning and formalized in hypothesis testing of classical statistics. By looking at many 

real life situations across a large variety of fields from medical practice to economics to 

monetary policy making, one observes that humans often follow an "attention-gated" 

approach of classical hypothesis testing, in that at any one time, attention is focused on 

one possible explanation to the relative exclusion of all others. Also at a much higher 

level, most dogmas in religions are only occasionally revised and scientific theories are 

accepted until proven false, even if there are concurrent observationally equivalent 

propositions – "science as falsification", as Karl Popper puts it [113].  

However, an alternative problem-solving strategy is to simultaneously consider multiple 

theories and use a weighting of all the possible causes. No theory, even the least likely, is 

thereby ever excluded. Such an integrative approach is the mathematically optimal 

strategy and typifies Bayesian analysis [114]. 

Using a hierarchical reversal learning task, we tested whether humans indeed follow an 

attention-gated approach to problem solving or rather the integrative procedure whereby 

less likely explanations for observed phenomena still influence decisions. We did so in 

two ways: first, we studied to what extent participants' choices revealed sensitivity to 
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more than one theory at a time; second, using fMRI, we analyzed brain activation, to 

verify and localize neural correlates of decision variables that are needed to implement 

the attention or integration model.  

To study these questions we used a variant of a hierarchical reversal learning task with 

two stimulus dimensions. The task is a modified version of classical neuropsychological 

tests of hierarchical decision making, such as the Wisconsin-Card-Sorting Task [115] and 

its modern variants such as the Intra-Extra Dimensional Set Shift Task [116]. In these 

tasks, only one stimulus dimension out of several is causally linked to reinforcement in 

any given trial, and subjects are rewarded if they select the correct exemplar based on the 

currently relevant dimension. The task is rendered more difficult because the 

contingencies at each level of the hierarchy change frequently and subjects have to 

constantly relearn the correct response in order to achieve rewards.  

The ability to select actions in relation to internal goals is a cardinal function of the 

prefrontal cortex [117]. Lesions of prefrontal cortex in both humans and other animals are 

known to dramatically impair performance on such hierarchical decision tasks [118-121], 

and imaging studies have revealed activity in a number of different regions of prefrontal 

cortex during performance of such tasks in healthy volunteers [122, 123]. It should be 

emphasized, however, that such studies have as of yet neither addressed the 

computational mechanisms underlying the process of solving this type of problem, nor 

their encoding in the brain. 

Here, subjects had to choose between two compound stimuli that were presented 

simultaneously on the screen (Figure 4.1A). Each stimulus had two dimensions (color 
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and motion) and within each dimension there were two exemplars of each stimulus 

category (either red or green for color and leftward or rightward for motion). The 

exemplars for the upper stimulus were assigned pseudo-randomly in each trial and 

converse exemplars were assigned to the lower stimulus. A constraint ensured that 

identical pairings did not occur more than two times in a row. Only one dimension was 

relevant for determining reward at any given time and within that dimension a particular 

exemplar was correct. Choosing the stimulus that contained the correct exemplar resulted 

in a high reward probability (80%) while choosing the other stimulus resulted in a low 

reward probability (20%). For example, at a given time “color” may be the relevant 

dimension and within color, “green” may be the correct exemplar. In our illustration in 

Figure 4.1A, choice of the upper stimulus is correct and will lead to a reward with 80% 

probability. After subjects consistently chose the stimulus with the correct exemplar three 

times in a row (indicating that they had formed a hypothesis about the relevant dimension 

and correct exemplar) the correct exemplar switched in each further trial with a 50% 

probability. Furthermore, after a variable number of such within-dimension switches 

(between 2 and 4), the relevant dimension switched. 

As in many real-life problems, participants in our experiment have more than one theory 

(“which is the relevant dimension?”) to go by in any trial, and corresponding 

characteristics (“which is the correct exemplar?”) on which to base their decisions 

between the upper or lower stimulus. It is important to note that participants never got 

direct feedback about whether their theory was currently correct, but only whether their 

choice proved successful or not. 
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To analyze subjects’ behavior, we developed two alternative computational models that 

could be used to guide choice in our task, corresponding to the two generic strategies. (1) 

A model implementing the “gated-attention” strategy, and (2) a model based on evidence 

integration. The first model computes a decision in a two-step procedure by first 

evaluating which dimension is currently relevant before subsequently working out which 

exemplar within that dimensional category is currently reinforced (Figure 4.1B). It 

thereby allocates attention to only that dimension which is deemed relevant. The second 

model integrates information based on weights that reflect the likelihood that each 

dimension is relevant (Figure 4.1C). This model fully integrates over all of the available 

probabilistic information: even if, say, color is deemed highly likely to be the relevant 

dimension, the model not only takes into account the probability that red or green is 

correct, but to a lesser degree also uses the information it has from the motion dimension 

for which movement direction would indicate the correct choice.  

 

We used standard reinforcement learning [5] to model subjects’ learning process, 

combined with the gated-attention or integration model to generate model-predicted 

estimates for subjects’ choices.  

Overall, we found behavioral evidence that our subjects tend to rely more on the 

mathematically optimal integration strategy than on attention-gating when solving our 

task. The BIC corrected log-likelihood fit was better for the integration model than the 

gated-attention model in all subjects (Figure 4.1D). We further compared the fitted β-

parameters for the two models in individual subjects and found that β-parameters of the 
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integration model were significantly larger than the β-parameters of the attention model 

(one-sided paired t-test, p<10-7). The β-parameter is also an indicator for the behavioral 

fit of the model as a high  β indicates a steep softmax decision function, accommodating 

behavior even when the data are best described by a nearly perfect mapping from 

desirability to choice. Altogether, this suggests that subjects tended to utilize information 

from the characteristics of both dimensions, rather than the alternative of concentrating 

only on the dimension most likely to be correct and then choosing accordingly. 

In order to identify neural correlates of the valuation process we separately regressed 

neural activity onto trial-by-trial value signals for the attention-gating and integration 

model. Specifically, we were most interested in the full-value signal on each trial as this 

is the key output variable of the decision making process. In the case of the attention 

model, this value corresponds to the RL-value of selecting the better stimulus within the 

dimension that the model predicts is currently relevant. In the integration model, this 

value is a linear combination of RL-values for the color and motion exemplars, weighted 

by the model predicted across dimension likelihood. We also tested for correlations 

between confidence signals of the exemplars across and within each dimension and the 

fMRI data. The across-dimension confidence reflects how likely it is that one of the 

complementary dimensions is the correct one. The within-dimensions confidence 

measures the likelihood that one gets the exemplars for the two dimensions right.  

We found BOLD correlates of decision variables for the integration model in specific 

sub-regions of prefrontal cortex. The full value signal correlated most strongly with 

activity in vmPFC extending dorsally and medially along PFC (Figure 4.2A). This region 

was previously found to encode expected value signals of the actions or stimuli that were 
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chosen on a trial [124], a signal correlated to but not identical with our full value 

(R2=0.50 across subjects). We also found value chosen signals in vmPFC (Figure S 4.1), 

though the effect size of the full value was higher than that of the value chosen signal at 

the peak of the activation. The within dimension certainty also correlated with activity 

located in mPFC (Figure 4.2B). We found a negative correlation with the within-

dimension confidence in the anterior cingulate cortex and bilaterally in the frontal poles 

(Figure 4.2C). No significant correlation was found between the BOLD signal and our 

measure of confidence across dimensions at p<0.001 uncorrected. A full list of all 

activated regions is shown in Table 4.3. 

We found a similar activation pattern correlating with decision variables of the attention-

gated model, though with a weaker effect size and smaller extent. Neural activity that 

correlated significantly with each contrast of the attention model was located at 

approximately the same location as neural activity correlating with the same contrast of 

the integration model (see supplementary materials for more details). 

In particular, neural activity in medial prefrontal cortex, averaged across all subjects, 

correlated both with the full value of the attention and the integration decision model. 

The area activated by the attention gated model was thereby entirely contained within the 

larger area activated by the integration model at a threshold of p<0.001 uncorrected 

(Figure 4.3A).  

In order to quantitatively compare the value signals from both models within vmPFC we 

determined the relative probability for the models to explain the measured neural signal 

in every subject by means of a Bayesian model comparison approach [125] (see 
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supplementary methods for details). Consistent with our behavioral results, we found that 

overall the integrating model was more likely to be the underlying cause of the neural 

variability in vmPFC (Dirichlet alpha = 13.34 integration vs. 4.66 attention; posterior 

probability = 0.74, exceedance probability = 0.98; Figure 4.3B). 

We also looked at posterior model probabilities for individual subjects in this area and 

compared them to a measure of the extent to which the integration model explained each 

individual’s behavior better than the attention model. We found a significant correlation 

between the posterior probability for the integration model and the difference in softmax 

β-parameters between the integration and attention model (βintegration - βattention). This 

allowed us to measure inter-subject differences in the strategy that a subject employed 

and differentiate those subjects that are high integrators from those that lean more 

towards a gated attention strategy. We found a significant positive correlation (r=0.58, 

p<0.02) implying that subjects who behave closer to the integrating ideal had activity in 

vmPFC that also conformed closer to the value function from such a model (Figure 

4.3C). 

 

Here we investigated whether humans approach decision problems by first determining 

the most likely theory that explains how rewards are tied to stimuli and then choose on 

the basis of that theory, or by deciding on the basis of all possible explanations and 

weighing each by the likelihood that it is correct. Overall, the integration decision model 

explained choices better than the attention-gated model. Neural activity in vmPFC 

correlated more strongly with trial-by-trial valuations according to the integration model 
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than the attention-gated model. We also found neural signals correlating with key 

computational components, such as the confidence that one has identified the right choice 

for all theories simultaneously, while signals irrelevant to the integrating model, such as 

the confidence that one has identified the right theory, were absent. 

In the integration approach, trust in one’s decision is best measured by our within-

dimension confidence measure, which combines the likelihood that one has identified the 

right exemplar for both color and motion dimensions. Accordingly, we discovered strong 

positive correlations between the within-dimension confidence measure and activation in 

PFC, and a negative correlation (in which case the activation reflected lack of trust, or 

risk) in the frontal poles. This means that the frontal poles are more active in those trials 

in which subjects are unsure about the correct choice, supporting the suggestion that the 

frontopolar cortex is associated with exploring multiple behavioral alternatives in search 

of optimal behavior [126]. Across-dimension confidence, the trust that one has identified 

the right dimension, is irrelevant in the integration approach, because both dimensions 

will be taken into account in the final decision anyways. It is, however, a crucial variable 

in the gated-attention approach, because one dimension will be chosen to guide the final 

decision, and hence, trust in that decision depends critically on the confidence that one is 

following the correct dimension.  

Both our behavioral and neuroimaging data support the idea that humans are able to solve 

complex hierarchical decision problems in an integrated way, whereas the usual 

description of those problems, in terms of a hierarchy, suggests a two-step procedure. In 

the integration approach, even the least likely explanation of observed phenomena is 

taken into account in order to generate a decision and its weight is commensurate with its 
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likelihood. Such integration by likelihood has been formalized in Bayesian analysis and 

is equivalent to the issue of how to treat hyper-parameters in the machine learning 

literature [127]. Therefore, our evidence underscores the utility of framing human 

cognitive processes, whether at the perceptual level [128-130], at the level of cognition 

[131], or at the level of action selection [132, 133], in a Bayesian framework. Although 

fully Bayesian approaches have recently been promoted as a mechanism to account for 

some human learning processes such as causal inference [134, 135], our evidence 

suggests that integration of the possible explanations of observed phenomena may be the 

key ingredient. Indeed, notice that our decision models do not differ at the learning level: 

both use the same reinforcement learning principles. This ensured that gated-attention 

and integration approaches to decision making were compared in a clean fashion. When 

we fit a fully Bayesian model (which combines integration with Bayesian learning of 

likelihoods) to behavioral and brain data, results were marginally inferior, although the 

fully Bayesian model still performed notably better than the gated-attention model.  

There is prior evidence indicating that prefrontal cortex plays a critical role in 

hierarchical decision making [116, 118-121, 136-138]. Our results indicate that at the 

level of inference – when working out what choice to take next – the prefrontal cortex 

uses probability information in an integrated fashion, and this is reflected in actual 

choices. It remains possible, that if humans are faced with a hierarchical problem of 

sufficient complexity (for example requiring integration over many more than two 

dimensions), keeping track of all theories simultaneously becomes both cognitively too 

challenging and normatively ill-advised [139]. In those instances, subjects might switch 

to a simpler strategy like attention gating, which employs fewer resources. Nevertheless, 
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our results indicate that at least for some classes of decision problem, the human brain 

and the prefrontal cortex in particular, is capable of integrating information in an optimal 

manner, similar to that of an ideal Bayesian observer.  
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Figure 4.1 Task and Behavior 

(A)  Subjects choose one of two items, of which each had a color (red or green) and a 

motion (left or rightwards moving dots) attribute. The features were randomly assigned to 

both items. Once the subject selects an item, a box is placed around the target and 

remains on the screen until 2 s after stimulus onset. After a 3 s delay they either received 

a 25 cent reward or a subtraction of 25 cents from their payout. One feature is designated 

the correct feature, and the choice of the item carrying that feature leads to a reward on 

80% of the occasions and a loss 20% of the time. Consequently, by choosing this correct 

item subjects accumulate monetary gain. The other item is incorrect, and choosing it 

leads to a reward 20% of the time and a punishment 80% of the time, leading to a 

cumulative monetary loss. After subjects choose the correct item on four consecutive 

occasions, the contingencies reversed with a probability of 50% in every consecutive 

trial. After two to four of such within-dimension reversals the relevant dimension 

changed (extra-dimensional switch). The inter-trial-interval was variable. (B) 
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Hierarchical decision model based on attentional-shifts. Stimulus-outcome associations 

are learned for color (C) and motion direction (M). Subjects first form a hypothesis (H) 

about which dimension is relevant (either C or M) and then base their reward expectation 

($) and choice exclusively on the information learnt about that dimension. (C) In the 

integration model, the available information from both dimensions (C and M) is 

integrated as a weighted sum and the decision is based on a linear combination of 

evidence from both dimensions. Subjects form a hypothesis (H) about the likelihoods that 

each dimension is relevant, corresponding to weights in the linear combination. Weights 

are updated on every trial. (D) Behavioral fit (BIC) of the two decision models. Smaller 

values indicate a better fit. The integration model fits better to subjects’ behavior in every 

single subject. The variability in BIC across subjects is mainly due to the variable number 

of trials per subject (BIC depends on n). 
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Figure 4.2 Activity reflecting the Integration model 

(A) BOLD responses in mPFC correlate significantly with the full-value signal from the 

integration model. (B) BOLD responses in a sub-cluster of medial PFC correlate 

significantly with the within-dimension certainty (averaged across color and motion) 

from the integration model. (C) The frontal poles and anterior cingulate show negative 

correlations with the within-dimension certainty (thus indicating a positive correlation 

with risk). All data are shown at a height threshold of p<0.001 and corrected for multiple 

comparisons at the cluster level (AlphaSim extent threshold p< 0.001). 
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Figure 4.3 Bayesian model comparison 

(A) Neural activity in vmPFC correlates with the trial-by-trial full value signal. Shown is 

the area that is commonly activated by both the integration and the attention-gated model 

at p<0.001. (B) We used a Bayesian model comparison to identify the model that can 

better explain neural activity in this area. Overall, the integration model explains activity 

in this vmPFC area better than the attention-gated model (exceedance probability for the 

integration model is 0.98). The exceedance probability is the probability that one model 

is more likely than the other one, i.e., that the posterior probability for the integration 

model is larger than 0.5. (C) Within vmPFC, posterior model probability of individual 

subjects correlate with the softmax beta parameter difference between the integration and 

attention-gated model (r=0.58, p=0.02). 
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Supplementary Materials 

Optimal decision making 

The optimal decision strategy for an ideal observer in our task would be to follow a 

generative Bayesian model, which has the following properties:  

A certain stimulus stimt is always considered to be the correct one, as determined by the 

following algorithm: 

1. Draw from a binomial distribution (with parameter φ), whether to change 

modality, modalt. 

2. Given the modality, draw from a binomial distribution (with parameter ϕ) , 

whether to change stimulus, stimt. 

3. Once a subject makes a choice, if the choice includes stimt, reward with 80 

percent probability, otherwise by 20 percent. 

 

The goal for an optimal observer is to maximize his discounted expected utility at each 

round [114], but as each round can be considered independent the observer merely needs 

to maximize the expected utility in the current round. 

In order to do this the subject needs to calculate which of the two options (UP or DOWN) 

is most likely to generate a payout, i.e., whether the relevant characteristic is most likely 

to be one of the two stimuli in the UP option or the two in the DOWN option. 

The probability of UP having the relevant characteristic (stimt) is 
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P(UP is rel)=P(UPstim1 =stimt|modalt =colour)*P(modalt =colour)+ P(UPstim2  =stimt| 

modalt =motion)*P(modalt =motion) 

Notice, it is here optimal to take a weighted average of the two stimuli (marginalize over 

P(modalt)). That is, probabilities of the stimuli are integrated across the two modalities. 

A different (suboptimal) approach would be to first determine which modality is likely to 

be correct, and then determine within that modality which stimuli is more likely (i.e. take 

the maximum over P(modalt)). In this alternative approach, attention is gated to the most 

likely modality. 

 

Given the learned probabilities, P(modalt)), P(stim1 |colour) and P(stim2 |motion) each of 

these two approaches lead to a prediction about which outcome should be chosen. The 

actual learning of the probabilities can be done either using standard Bayesian inference 

or through reinforcement learning (used in this study and described in the Methods). 

Neural activity correlating with the attention-gated model 

After lowering our threshold to 0.001 uncorrected, we found BOLD correlates of decision 

variables for the attention-gated model in the same areas as those of the corresponding 

signals of the integration model. As anticipated by the inferior behavioral fit of the 

attention-gated model, the effect size of attention-gated modulated activity was also 

smaller than that of the corresponding contrast of the integration model (see the main text 

for a quantitative Bayesian model comparison in this region).  

The full value signal correlated with activity in vmPFC, extending dorsally and medially 

along PFC (Figure S 4.2A). The within dimension certainty also correlated with activity 
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located in mPFC (Figure S 4.2B) and negatively with the frontal poles bilaterally (Figure 

S 4.2C). Interestingly, we found an additional area in ventral-medial OFC correlating 

with the across dimension certainty of the attention model. Across-dimension confidence, 

the trust that one has identified the right dimension, is irrelevant in the integration 

approach because both dimensions will be taken into account in the final decision 

anyways. It is, however, a crucial variable in the gated-attention approach, because one 

dimension will be chosen to guide the final decision, and hence, trust in that decision 

depends critically on the confidence that one is following the correct dimension. Though 

we identified neural activity correlating with the across dimension certainty of the 

attention-gated model only at p<0.001 uncorrected, we did not find any such correlates 

with the integration model at the same threshold. 

We ran a Bayesian model comparison on the across dimension effect, similar to the 

model comparison of the full value described in the main text. Not surprisingly, activity 

in this area can be explained exclusively by the attention model (exceedance probability 

0.99, Figure S 4.3A/B). We observed a negative correlation (r=-0.47, p=0.055) of 

individual subjects’ posterior probability in this area and the beta parameter difference 

(Figure S 4.3C). Interestingly, those subjects who scored high on integration posterior-

probability in vmPFC (Figure 4.3C), did indeed score low on attention posterior-

probability in OFC and vice versa (r=-.74, p=0.001). These results suggest that, though 

subjects tend to rely in general in our study more on the integration approach, inter-

subject differences exist in the employed strategies and some people are better integrators 

than others.  
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Methods 

Subjects 

16 healthy subjects (6 female; 18–28 years old; right-handed) with no history of 

neurological or psychiatric illness participated in the study. The study was approved by 

the Institutional Review Board of the California Institute of Technology.  

 

Experimental design and task 

The task is a variant of an intra/extra-dimensional (ID/ED) shift task. In every trial, 

subjects chose between two stimuli that were presented simultaneously on the screen. 

Each stimulus had two dimensions (color and motion) and within each dimension there 

were two exemplars of each stimulus category (either red or green for color and leftward 

or rightward for motion). The exemplars for the upper stimulus were assigned pseudo-

randomly in each trial and converse exemplars were assigned to the lower stimulus. We 

implemented a constraint that identical pairings did not occur more than two times in a 

row to avoid trials in which subjects cannot associate the outcome unambiguously to a 

chosen motion or color exemplar. At any given time, one dimension was “relevant”, and 

within that dimension a particular exemplar was correct. For example, “color” may be the 

relevant dimension and within color, “green” may be correct. Choice of the stimulus that 

has the correct exemplar will yield monetary rewards on a probabilistic basis with 80% 

probability, whereas selection of the other stimulus will yield reward with only 20% 

probability. After subjects chose the stimulus with the correct exemplar three times in a 

row (indicating that they learned the relevant dimension and correct exemplar) the correct 
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exemplar will switch with a 50% probability in each further trial. Furthermore, after a 

variable number of such within-category switches (2, 3, or 4; rectangular distribution), 

the relevant dimension is also switched. This design imposes a hierarchical structure on 

the task with exemplar reversals occurring on a faster timescale than the dimensional 

switches. The total number of trials varied across subjects due to the above described 

rules; however one experiment always contained 9 dimensional switches (5 motion & 5 

color blocks). Rewarded trials yielded a prize of 25 cents, while unrewarded trials 

resulted in a loss of 25 cents. At the end of the experiment subjects were paid their 

accumulated earnings in addition to a flat amount of $25.  

 

The task was presented via back projection on a translucent screen, viewable through a 

head-coil mounted mirror. Subjects chose the upper or lower stimulus by pressing one of 

two distinct buttons on a button box with their right thumb. Eye positions were monitored 

at 120 Hz with a long-range infrared eye-tracking device (ASL Model L6 with control 

unit ASL 6000, Applied Science Laboratories, Bedford, MA).  

 

Reinforcement Learning (RL) model 

For modeling the data we assumed that subjects learned the relevant values assigned to 

the two actions on the basis of trial-by-trial experience using a simplified version of Q-

learning, the Rescorla-Wagner rule [5]. Our implementation of this rule can be seen as an 

approximation to the full Bayesian approach (described below) and generates choices and 

values highly correlated with the Bayesian model in this task. 
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If action a is selected on trial t, its value is updated via a prediction error, δ, as follows: 

€ 

Va (t +1) =Va (t) +ηδ(t), where  is a learning rate between 0 and 1. The prediction error 

δ(t) is calculated by comparing the actual reward received, r(t), with the reward that the 

subject expected to receive from that action in that trial; that is,  

Specifically for this task, three variables had to be learned and updated in each round: 

Vgreen, Vright and Vcolour, keeping track, respectively, of the value of the green stimulus 

(versus red stimulus), rightwards motion stimulus (versus left stimulus) and the color vs 

motion modality. We assume that Vred = - Vgreen, Vleft = - Vright, and Vmotion= - Vcolour. 

Hence, the updating of a value can be done with the inverse prediction error (– δ(t)) if the 

complementary action is chosen. 

 

In each round, a subject chooses either UP or DOWN, and thus selects a combination of 

one color (red or green) and one motion (left or right). The values of these ‘intermodality’ 

choices are updated in each round using the following standard RL scheme: 

 where i=red (green) if red (green) was chosen. 

 where j=right (left) if right (left) was chosen. 

The extramodality value is updated according to: 

 with  where γ is the learning rate for the 

extramodal value. The extramodal value is increased if the difference in expected value 

for each of the two modalities was larger than the expected extramodality value. In terms 
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of the typical Rescorla-Wagner model the extramodal signal is tracking the ability of one 

modality to predict reward, relative to the other. 

 

Using these learned values we compared two ways to generate the choices: 

1. Gated-attention: Determine which modality has the highest expected value, VC or 

VM =-VC. For that modality choose which of the two stimuli has the highest value 

Vi. Given choice between UP={Vi1,Vj1} and DOWN={Vi2,Vj2} calculate VUP=Vk1 

and VDOWN=Vk2, where k=argmax(VC,VM). Or VUP=Vi1*H(VC)+ Vj1*H(-VC) where 

H is the Heaviside operator, H(+)=1, H(-)=0. Choose action a=argmax(VUP, 

VDOWN). 

2. Integration: Calculate (similar to the marginalizing example for Bayesian model) 

the value for UP as VUP=Vi1* P(color ) +Vj1* P(motion) where 

, P(motion)=1-P(color) and PO=(VC+1)/2). 

Choose action a=argmax(VUP, VDOWN). 

 

 

We used a soft-max procedure to generate choices, where in every trial, the probability 

(P) of choosing action a ∈{UP,DOWN} over b is given by: , where 

 

€ 

σ(z) =1/(1+ e−z)  is the Luce choice rule or logistic sigmoid, and  determines the 

degree of stochasticity involved in making decisions. We fit the parameters (learning 
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rates η, γ, soft-max , and κ for the integrating model) such that the model best 

explained subjects’ choices (maximum likelihood). 

 

Behavioral model comparison 

Given the learned variables, we have specified two ways to generate choices. One is 

based on focusing on the most likely modality, the other on optimally integrating the 

evidence for each modality. To compare the values for models with higher complexity we 

report the Bayesian Information Criterion (BIC) [140] in Table S1, which corrects for the 

number of parameters, k, in a model based on the number of data points n: BIC=-

2*log(Ps)+k*log(n). The model with the lower BIC explains the subjects’ behavior better. 

Comparing the two RL models we find that the integrating RL model performs better for 

all subjects.  

 

The attention-gated model can be seen as a special case of the integrated model (i.e. a 

nested model). This happens when the transformation from value to probability 

approximates a Heaviside function (when κ->∞), as implemented in the attention-gated 

model. The fitted parameter κ is shown in Figure S 4.4 for all subjects. Notice that the 

function is very far from being a Heaviside for most subjects. Although the extra 

parameter gives more flexibility in fitting for the integrating model, the BIC correction 

takes this into account. 
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Alternatively we can compare the models through cross validation, by which the data is 

split in two halves, the model parameters are fitted on the first half (training data), and the 

models are then compared on the second half of the data (test data). This method 

confirms the above analysis in that the integrating model performs better on the log-

likelihood of the test data-set (see Table 4.2). 

 

Other alternative models  

In the analysis above we assumed that subjects base their decisions on the values learned 

through a two-layered RL model. RL models had been shown to closely mimic the type 

of behavior elicited by human subjects for a large number of similar learning tasks [38, 

48]. In many of these tasks the RL models can be seen as approximations to the optimally 

Bayesian model ([114, 141]), which are often too computationally cumbersome to 

actually implement. However, for completeness we tested whether subjects would better 

follow the behavior predicted by a fully optimal Bayesian model. We implemented such a 

model (for details see section Bayesian model below) and compared the BIC values with 

those of our RL models. The fully Bayesian model did not describe subjects’ 

performance as well as the integrating RL model (BIC values of all models are shown in 

Table 4.1).  

On the other hand, we also tested whether the two-layer RL models would perhaps be too 

complex for our subjects to follow. We created two simpler one-layer variants of the RL 

model: (1) a one-layer version of the model above where VC is always kept at 0 and hence 

there is never any information with regard to which modality is more likely to be correct, 
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as well as (2) a 4-option model where each of the 4 options (red, green, left, right) are 

treated as a separate options for the RL model to learn about (i.e., Vred  and Vgreen are not 

assumed anti-correlated) and furthermore VC  is also kept at 0. When comparing the 

likelihood of the subject responses we again find that the Integrating RL model does 

much better at describing subjects’ performance, even after taking into account the lower 

complexity of the 1-layer models (2 instead of 4 parameters) (Table 4.1). 

 

Bayesian model  

We will refer to the dimension as D={color,motion}, color as C={red,green}, and motion 

as M={left,right}. Assume that UP={green, left} and DOWN={red,right}. Our goal is to 

be able to calculate the probability of the monetary reward being given for the Up versus 

DOWN option, given the previous reward history rew1:t: 

 

Hence we need to know , , and 

.  

After a reward at time t+1, the updating of each of these is done according to Bayes rule: 

 where Z 

stands for normalization and where 
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.  

 is 0.8 for a positive reward, 0.2 for a 

punishment, and ϕ and φ represent the probability of a switch happening within, and 

across modality, respectively. 

Hence the posterior for round t+1 can be expressed in terms of the posteriors from the 

previous round t. Similarly for . 

 

For across dimensions: 

, where 

 if Dt=color 

 if Dt=motion 

and . 

Hence, . 
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FMRI data acquisition  

Data were acquired with a 3T scanner (Trio, Siemens, Erlangen, Germany) using an 

eight-channel phased array head coil. Functional images were taken with a gradient echo 

T2*-weighted echo-planar sequence (TR = 2.65 s, flip angle = 90°, TE = 30 ms, 64 × 64 

matrix). Whole brain coverage was achieved by taking 45 slices (3 mm thickness, no gap, 

in-plane resolution 3 × 3 mm), tilted in an oblique orientation at 30 deg to the AC-PC line 

to minimize signal dropout in OFC. Subject’s head was restrained with foam pads to limit 

head movement during acquisition. A high-resolution T1-weighted anatomical scan of 

the whole brain (MPRAGE sequence, 1x1x1 mm resolution) was also acquired for each 

subject. 

 

FMRI data analysis 

Image analysis was performed using SPM5 (Wellcome Trust Centre for Neuroimaging, 

Institute of Neurology, London, U.K.). Images were first slice time corrected to TR/2, 

realigned to the first volume to correct for subject motion, spatially normalized to a 

standard T2* template with a voxel size of 3 mm, and spatially smoothed with a Gaussian 

kernel of 8 mm FWHM. Intensity normalization and high pass temporal filtering (using a 

filter width of 128 s) were also applied to the data.   

 

First, we estimated for each individual subject a GLM for the attention-gated model and 

separately another GLM for the integration model, differing only in the model-predicted 

parametric modulator values. Two events were modeled in each trial: the time of the 
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stimulus presentation, parametrically modulated by four variables Mx, and the time of the 

presentation of the outcome, modulated by the binary outcome (+1/-1).  

The four parametric modulators contained values from the respective model (attention / 

integration): 

M1: Full Integrated value of the model (argmax(VUP, VDOWN)) 

M2: Intradimensional confidence for color (argmax(Vred, Vgreen)) 

M3: Intradimensional confidence for motion (argmax(Vright, Vleft)) 

M4: Extradimensional confidence (argmax(PMOTION, PCOLOR)) 

GLMs were with AR(1). All regressors were convolved with the canonical hemodynamic 

response function. In addition, the 6 scan-to-scan motion parameters produced during 

realignment and a session constant were included as additional regressors of no interest.  

 

Second, we computed contrasts of interest at the individual level using the regressors 

described above. The within-dimension confidence contrast shown in Figure 4.2B and 

Figure 4.2C are an equally weighted linear combination of within-dimension confidence 

regressors M2 and M3. We also looked at correlations with M2 and M3 separately and 

found that areas activated by M2 and M3 overlap and are both exclusively located at the 

same region as the combined contrast shown in Figure 4.2.  
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To enable inference at the group level, we calculated second-level group contrasts using a 

one-sample t-test. The structural T1 images were co-registered to the mean functional 

EPI images for each subject and normalized using the parameters derived from the EPI 

images. Anatomical localization was carried out by overlaying the t-maps on a 

normalized structural image averaged across subjects, and with reference to an 

anatomical atlas [97]. 

 

The activated voxels of all reported results are statistically significant at a threshold of 

p<0.001, corrected for multiple comparisons, as stipulated by Monte Carlo simulations 

(AlphaSim within AFNI)[112]. AlphaSim generates an estimate of overall cluster size 

significance level by iteration of the process of random image generation, Gaussian 

filtering to simulate voxel correlation, thresholding, image masking, and tabulation of 

cluster size frequencies. In our simulation we generated a series of 10,000 random 

images, each having N (number of voxels in masked epi images) spatially uncorrelated 

voxels by filling the masked brain volume with independent normal random numbers. 

The effect of voxel correlation was simulated by convolving the random image with a 

Gaussian function of the size of our smoothing kernel (8 mm FWHM). The image was 

then scaled to provide our individual voxel probability threshold pthr = 0.001 by 

determining the value zthr such that approximately pthr * N voxels have intensity greater 

than zthr. The thresholding was then accomplished by setting those voxels with intensity 

greater zthr to 1 (activated voxels), voxels with intensity less than zthr to 0. Finally, 

AlphaSim determined which activated voxels belong to clusters. Once all clusters had 

been found, the size of each cluster in voxels was recorded in a frequency table. This 
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simulation estimated that in a 3D volume (entire brain as masked by the real epi-images) 

a cluster size of >38 contiguous activated voxels would occur by chance with a 

probability of less than 0.001.  

 

We used a Bayesian model comparison [125] to determine which model (GLM_attention 

or GLM_integration) better explained the neural activity in vmPFC. First, we extracted 

and averaged effect sizes of the full value regressor (beta values) from within a 12mm 

sphere (1.5x smoothing kernel size) in vmpFC. Since the attention model activated 

cluster was completely contained by the integration model activated area, we centered the 

sphere on the group peak of the weaker attention-gated model (any selection bias towards 

the stronger correlating model would then be working against us). Next, we calculated 

posterior model probabilities in this region for every subject and the group of subjects. In 

brief, the procedure by Stephan et al. rests on treating the model as a random variable and 

estimating the parameters of a Dirichlet distribution, which describes the probabilities for 

all models considered. These probabilities then define a multinominal distribution over 

model space, allowing one to compute how likely it is that a model generated the 

subjects’ data. To decide which model is more likely, we use the conditional model 

probabilities to quantify an exceedance probability, i.e. a belief that a particular model is 

more likely than the other model, given the group data. 
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Table 4.1 BIC model fit 

Model comparison with BIC corrected model fit 

 

Subject RL Attention RL Integrate Bayes RL 1-layer RL 4-options 

01: 237.73 223.63 235.61 261.30 349.25 

02: 272.61 260.82 275.77 285.10 409.36 

03: 446.46 407.10 395.42 460.37 557.49 

04: 350.66 345.12 335.02 350.85 381.59 

05: 267.80 263.36 270.01 267.77 436.69 

06: 289.44 280.19 276.16 298.83 346.96 

07: 299.04 276.91 331.02 339.86 408.95 

08: 411.40 380.72 380.00 417.91 556.94 

09: 263.44 252.34 299.14 302.12 413.76 

10: 351.56 343.00 337.25 343.41 374.46 

11: 309.42 302.49 303.31 314.34 375.98 

12: 297.55 276.77 279.34 309.81 361.27 

13: 325.14 309.76 308.10 323.34 430.55 

14: 185.31 178.00 186.34 189.28 272.15 

15: 218.25 176.91 224.69 262.44 389.75 

16: 159.97 158.40 157.46 164.09 226.97 

Mean 292.87 277.23 287.16 305.68 393.26 
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Table 4.2 Model cross-validation 

Model comparison with cross-validation, given in log-likelihoods. The smaller the 

number the better the fit. 

 

Subject RL Attention RL Integrate 

01: 69.41 52.32 

02: 74.55 68.26 

03: 109.75 99.30 

04: 90.23 85.82 

05: 67.96 64.92 

06: 67.40 66.33 

07: 86.28 82.28 

08: 95.18 88.68 

09: 75.10 69.14 

10: 81.65 80.95 

11: 80.11 78.39 

12: 76.14 68.26 

13: 80.86 71.31 

14: 46.49 39.77 

15: 45.65 31.47 

16: 46.56 46.15 

Mean 74.58 68.33 
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Table 4.3 Activated regions 

Locations of significant correlation with value signals of the integration model (threshold 

p<0.001 corrected for multiple comparisons). MNI coordinates denote the group peak 

voxel of each cluster. 

 

Full-value signal: 

 x y z Z # voxels  

01: 0 48 -3 4.71 1069 Medial PFC 

02: 0 -39 54 4.50 1133 Posterior CG 

03: -54 -63 -6 4.44 92 Left inf. temporal sulcus 

04: 45 -3 -18 4.24 35 Right circ insular sulcus 

05: 42 -78 27 4.14 165 Right angular gyrus 

06: -48 -66 30 4.02 111 Left angular gyrus 

07: -60 -12 -27 3.89 51 Left inf tempral sulcus 

08: 63 -54 -3 3.83 92 Right inf temporal sulcus 

09: 24 -45 -15 3.79 87  Hippocampus 

 

Intra-certainty: 

 x y z Z # voxels  

01: -3 57 0 3.84 101 Medial PFC 

 

Neg. intra-certainty: 

 x y z Z # voxels  

01: 51 15 45 5.30 537 Right inf frontal sulcus 

02: 33 51 15 4.65 213 Right frontal pole 

03: 3 21 48 4.64 43 Anterior cingulated cortex 

04: 48 -48 51 4.50 340 Right Intraparietal sulcus 

05: -42 45 12 4.41 169 Left frontal pole 

06: -48 24 36 4.10 131 Left inf frontal sulcus 

07: -42 -51 54 3.86 118 Left Intraparietal sulcus 
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Figure S 4.1 Value chosen of the integration model 

We estimated an additional GLM for the integration model in which we replaced the full 

value (Figure 4.2A) regressor with a value chosen regressor. Shown are areas that 

correlate with the value chosen in a trial (threshold p<0.001 corrected). Value chosen and 

full value are highly correlated and the activated areas are similar (the full value contrast 

has a larger extent in mPFC).  
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Figure S 4.2 Activity modulated by the attention-gated model  

(A) Neural activity in mPFC correlate with the full-value signal of the integration model. 

(B) Neural activity in a sub-cluster of medial PFC correlate with the within-dimension 

certainty (averaged across color and motion). (C) The frontal poles and anterior cingulate 

correlate negatively with the within-dimension certainty. All data are shown at a 

threshold of p<0.001 uncorrected. 
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Figure S 4.3 Across-dimension certainty signal of the attention model 

(A) Activity in ventral-medial OFC correlates with the trial-by-trial across-dimension 

certainty signal. (B) Activity in this area is exclusively explained by the attention-gated 

model (as compared to the integration model), shown by an exceedance probability of 

0.99 in the subject group. (C) Posterior model probability of individual subjects correlate 

negatively with the softmax beta parameter difference between the integration and 

attention-gated model (r = 0.47, p=0.055). 
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Figure S 4.4 Value – probability transformation 

The transformation from value Vc to probability Pc, as found by fitting the hybrid 

function. Solid lines indicate the fitted function shape with dotted lines indicating error 

bars as found through a Laplace approximation [142].  
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Chapter 5. Summary 

Action Decisions 

In our first study we addressed two very fundamental issues in the neural basis of 

decision making that have remained largely unaddressed to date. 

(1) While there is considerable consensus that most decisions between actions are 

computed by taking into account the expected future reward (or utility) of the available 

actions, typically neural signals that have been found in the brain correspond to the value 

of the action that is ultimately chosen. These signals are therefore post-choice, and by 

definition cannot contribute to the choice process itself. The key signals necessary for 

guiding subsequent choice are so-called action-values, signals that code separately for the 

value of each available action in the choice set, independently of what action is ultimately 

taken. Although there is preliminary evidence of action-value like signals in the striatum 

in monkeys, such signals have never been found in humans, nor reported at all in the 

cortex. A problem with trying to find such signals in humans using techniques such as 

fMRI is that limits in the spatial resolution of this technique preclude detecting such 

signals if they are mediated by separate but spatially intermingled neuronal populations. 

Here we use a novel experimental procedure to allow us to detect action values in spite of 

this problem: instead of having subjects make choices between actions in the same 

modality (such as between finger or hand movements, or between left or right eye 

movements, as is typically done), here subjects are making choices between different 

physical action modalities. That is, they choose to either make a hand movement or an 

eye movement.  Using this method, we have uncovered evidence of separate spatially 
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distinct action-value signals for the two movements in a region of supplementary motor 

cortex. Thus, we show for the first time the existence of signals in the human brain that 

are the likely precursors of choice, rather than merely representing the consequences of 

choice as has been shown before in human imaging studies. 

(2) An even more critical question that has not been addressed at all in the area of value-

based decision making is: how are action-values for different actions ultimately 

compared against each other in order to decide what action to take, and where in the brain 

does this comparison process take place? This is the core of the decision process, but as 

of yet direct evidence for such a mechanism in the brain has proved elusive. Here we take 

a simple computational model of how such a process might take place (by mutual 

inhibitory competition), and test for brain regions exhibiting neural responses consistent 

with such a model. Using this approach we provide evidence to implicate the anterior 

cingulate cortex in mediating this function. Intriguingly, this area appears to mediate the 

decision process via an inhibitory rather than an excitatory mechanism. We further show 

that our decision model signal captures activity in this region better than does a decision 

conflict signal per se, ruling out that potential alternative explanation for our data. Thus, 

we have identified for the first time a possible locus for the actual decision-making 

process itself and also advanced a putative computational model for this function. 

 

Economic choices 

Another fundamental debate in the neuroscience of decision-making is whether all 

decisions are computed by making comparisons between the physical actions required to 

obtain particular outcomes, such as by choosing between the hand movements necessary 
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to obtain different stimuli, or whether they can be made over abstract stimuli associated 

with those goals. In other words, if faced with a decision to go for dinner, does the brain 

make a choice between the available options, such as sushi or pizza, and then implement 

the motor output necessary to obtain the chosen stimulus? Or does it instead compare 

directly the physical actions needed to obtain the food (i.e., drive to the next town to 

one’s favorite Sushi bar vs. walk down the road to the neighborhood Italian)? While the 

latter way of making decisions may seem strange and convoluted, in fact this is the 

predominant view among many decision neuroscientists who have found value signals in 

areas of the brain known to be involved in representing and planning movements such as 

lateral parietal and pre-motor cortices, and have therefore concluded that decisions are 

computed by comparing between actions not goals or stimuli. 

We addressed this question in our second study by dissociating the process of making a 

decision over stimuli from the selection of the actions that are needed to implement the 

decision. Human volunteers were scanned with fMRI while they were presented with 

pairs of stimuli associated with different levels of reward. The key manipulation is that in 

half of the trials the stimuli were initially paired with the actions required to achieve them 

(as is the case in most existing experiments), but in the other half of the trials the 

concomitant actions were not shown until later in the trail, which precluded the subjects 

from initially making choices by comparing motor plans. In spite of this dissociation 

between stimulus presentation and action choice, we found neural signals at the time of 

stimulus presentation pertaining to the choice that was ultimately taken, providing 

evidence that the decision itself was taken at the point of stimulus presentation rather than 

at the point of action presentation.  
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It is important to note that while previous studies have shown evidence for stimulus-

related values in the brain, no human or animal study to date has shown that decisions 

can be computed before the actions associated with the options are known. Thus, our 

findings indicate for the first time that at least some types of decisions are made entirely 

in stimulus space and not in action space. 

The separate representation of action and stimulus values in different areas of the brain 

and the finding that the brain can compute stimulus decisions based only on stimulus 

values suggest that two separate brain systems are involved in making decisions among 

actions and stimuli. This resonates with previous findings that lesions in different parts of 

frontal cortex specifically impair learning about stimuli and actions.[64, 83] 

Optimal integration 

In the real world, causal relationships between multiple possible predictors and outcomes 

are often not at all obvious. In our third study, we addressed the question of how the 

human brain tests and evaluates hypotheses about the underlying causal state of events in 

the world. One solution to deal with this problem is to first choose the most likely 

explanation and use this hypothesis until enough evidence accumulates to reject the 

theory as invalid. This approach has been the core of scientific deductive reasoning and 

formalized in hypothesis testing of classical statistics. However, an alternative problem 

solving strategy is to simultaneously consider multiple theories and use a weighting of all 

the possible causes. No theory, even the least likely, is thereby ever excluded. Such an 

integrative approach is the mathematically optimal strategy and typifies Bayesian 

analysis.  
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The question we asked in this study is how do humans actually solve causal inference 

problems – do they use an optimal integration approach (as would a full Bayesian), or 

instead do they focus only on the most likely solution to the exclusion of all others (an 

attentionally focused account). Current notions based on neuropsychology studies of 

human patients with prefrontal lesions support the idea that humans are attentionally 

focused hypothesis testers – that is they choose one possible cause and focus all of their 

attention on that until an alternative cause beckons. Using a combination of 

computational modeling with fMRI and behavioral data we show that in contrast to 

existing notions, human prefrontal cortex in fact acts as an optimal integrator – that is 

every possible cause is taken into account weighted by its likelihood and this cumulative 

information is then used to choose optimally. This shows for the first time that the human 

brain and prefrontal cortex in particular uses a mathematically optimal strategy for 

driving decisions rather then the less computationally intensive but sub-optimal 

attentionally gated approach.  
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Figure 5.1 Summary of value signals in the human brain 

We found various types of value signals in the human brain. Pre-choice value signals: 

action values for hand and eye movements are encoded in the supplementary motor 

system. Stimulus values were found in medial prefrontal cortex. Post-choice value 

signals: the value of the chosen action or stimulus was found in ventromedial prefrontal 

cortex. Anterior cingulate cortex / dorsomedial frontal cortex encoded a signal based on 

the value difference between the two available actions (a signal potentially relating to the 

output of a value comparison process). Finally, the prediction error signal was found in 

striatum. 
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