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Summsry ¢

Clark Millikan's work on the boundary layer and
skin friction for a figure of revolution is extended, with
particular reference to the completely turbulent boundary
layver, in two ways:

a) His expressions for the completely turbulent regime
are generalised so as to hold for the assumption of a one
n-th power law for the velocity distribution in the boundary
layexr;

b) von Karman's logarithmic velocity distribution is
introduced into the analysis.

b) leads to a practical method by which the
drag of a full-scale dirigible can be predicted from wind
tunnel tests.

Comparison of the theory as gotten from b) with
experiments leads to the conclusion that the present
theory can be safely used to predict drags at large Reynolds'
numbers, whereas drags predictéd on the basis of & one seventh

power law may be from 20% to 30% low.



Introduction:

After experiments had shown that the power law

1) and Prandtlgz for the skin friction on

theory of von Kérman
a pointed flat plate in a two-dimensional flow parallel to the
surface and perpendicular to the leading edge, could be used
satisfactorily in determining the skin friction at the curved
surface of a etreamline body in a two-dimensional flow when the
radius of curvature is large compared to the boundary layer

3) and Dryden and Kuetheé} extended the theory

thickness, Jones
80 as to give an account of the skin friction acting on a
dirigible model in an axial flow. In both these discussions
the dirigible was replaced by an "equivalent flat plate!,
Although Boltzes) had given the equations for the
laxnizxéz' boundary layer for a body with axial symmetry
about an axis in the direétion of flow, and Levi—civitas)
had attacked the general problem of the turbulent boundary
layer for a body of any spape, it remained for Millikan7)
%o give a satisfactory analysis applicable to dirigivle
models,
Millikan derived the approximate form of the
boundary layer equations in the neighborhood of the surface
of a figure of revolution from the Navier-Stokes and
continuity equations for the steady motion of a viscous
incompressible fluid, letting the kinematic viscosity go to
zero and neglecting powers of the square root of the kinematic
viscosity higher than the first. The equations are valid

when the boundary layer thickness is small compared to the



distance from the axis, For the turbulent boundary layer,

Millikan assumed the one-seventh power law for the velocity

profile. However, von Kérwén has showns)’ °)

that the power
law is merely an interpolation of or approximation to the
Logarithmic Law; and experiments, especially those of

Nikuradse:©)

, show that the 1/7-th power does indeed become
a 1/8-th, then a 1/9-th, etc., power, as the Reynolds'®

Number increasses.

7) 11)

Both Millikan‘/ and von Kérmén ~’ have pointed out
the desirability, where the analysis is to be used to predict
drag coefficients at large Reynolds' Numbers, of extending
Millikan's work by the introduction of the Logarithmic Law;
this then is the object of this paper, as is indicated by

the title,


-3-


Notation:

Our notation follows very closely that employed by
12)

& oo

Millikan?) and by von Kédrmdn in his Hamburg paper

X = distance along the surface measured from stagnation

point.
¥ = distance normal to the surface.
8 = axial distance from nose of the airship.
L = length of airship.
To = radius of the airship surface.
Cr = longitudinal radius of curvature of airship surface.

S = boundary layer thickness.
= velocity just outside the boundary layer.

U
Uo = axial velocity of the flow far from the alrship
and relative to it.

jo'g mass density.
7 = kinematic viscosity.

?% = shearing stress at the surface.

u velocity in the boundary layer.

"

ﬁ ;-:.,/1 - ré = cos X< , where r,! = drp/dx and o¢ gives
the inclination of the boundary to the axis.

V. = /2% - the "friction velocity".

* S

K = von Karmén's universal constant of the turbulent
exchange.

1/3
R = Ul/p, R, =(UyV / ) /.

V = volume of the airship.



Preliminary:

Millikan used

u* = 8,74 y*l/? (1.0)
¥ o T 4
wr = wTy v )
which for
1/7 ‘

u/U = (3’/5) (1.1)
gives &

% . 0.0235 052" . (1.2)

f s

von Kérmén showed that (1.0) was only an approximation
to or interpolation of

u* = constant + (1/3?)1988Y* »

which holds near the surface, except in the laminer sublayer,
where
u* = yv%,

As @ first‘step we generalise Millikan's results
for the completely turbulent boundary layer to hold for a
one n~th power law. This was originslly done to get an
estimate of the drag coefficient of the N, P, L. Long Model
at large Reynolds'! Numbers, and thus determine whether or not
it was worth while to go through the analysis using a

logarithmic velocity distribution.

Suppose we have
u* = a + blog;sy* (b= 2.3/K)
and wish %0 aspproximate to it by

i/n
U.*:Bny’*/,



then we can eliminsate u* and y* and find that

1
[(2.32 /o) - 1
Bn = (bn/2.3) e .
. 13)
Nikuradse concludes from his experiments that

u* = 5,5 5.75 log ®
+ ElOY s

i.e.;, & =25.5and b = 5,75, If we use these values, we
find that B7 = 8,81, But, for consistency in comparing with
Millikan's results, we would like to have B7 = 8,74,

If we impose, then, the further condition that

By = 8.74, it is easy to get a relation between a and b:

7
a="b {3,045 -7 10g10(b/2.8’72)j .

We now try to find a pair of values a, b near a
value of b corresponding to K = 0.40, and such that
Nikuradse's pcints are closely approximated. It is found
that a = 5.86 and b = 5.80 (K = 0.397) are satisfactory,
‘and these indeed seem to fit Nikuradse's points even better
than the values which he selected.

Thus, we use

u* = 5,26 4+ 5.80 1ogloy* (2)

ag our "Base' curve. For the values of a and b which we use

in (2, [(2.086/n) - 1]
En - 23,52 n e .

Taking

/U = (3782

(4.0)



and eliminating wuw from this and from
w =yt (4.1)
we get the well-known expression for the shearing stress -

density ratio:

= Bn

Us

e

-2 1) . 2/(n+1)
2n/(n+ 1) Ug(%y’§ (4.2)

T
f

The equations (4.0) and (4.2) will be used in the
following section, in place of the equations (1.0) and (1.2)
used by Millikan,



Generalisation to the one n-th Power Law:

We start from Milliken's equation (13) governing the
boundary layer thickness, which equation is his extension of

the twoudimensienal von Karman 1ntegral relation:

S[os[«3)]-v % [os[(4]
,, (5)

o~ 2 /_{“ i I
e Mﬁ‘;&(?} —jzﬁz/ggfzm, z

Letting 2 - - ( 4) " then j(z,)ce{ﬁ ) =
P

and ](V/ d( {/ﬁ wrl )

and the equation becomes:
2 Ly L oz..--, N A
At ‘&[ﬁ‘ﬁf) 4/ Y {%j“" ""00( ez J f

Carrying out the differentiations, rearranging, and

substituting “ oa

- +/ ,
=4 0 (75 0'5)
we get | e S =
2 Ede L X Zp
/"" 7 ) o . ,a-"‘?y % 74
A2, P y ; P
L S «ggffzfjw/; (7,5 ra 2 {,/a =(ur)larz) B ()
which can be put in the form B
. nt3 . el PR vy
f ErY] [ ['%«1"5)5”%*2-) Zf Zt3 =2 jj é"“‘ s = 5 /2
5/ L %{%1—1) /s nel 2, | " (@7‘/}
where ‘ -2

@fwé

M %



Introducing the obvious integrating factor,

(h+3)(3k—+2) g3
U %(1@1“} P 1
A J
the equation becomes . (rt3)(3ne2 e 2
o (mr3)(onen)  mes 2 oy )
éru/w,nm',g "=C U & (/17}
2y C *

which can now be integrated. We are interested only in the
"completely turbulent regime,® therefore the limits of x are

taken ae O and x. Thus:
2.

%'_’-—-—*j il ) (6’&+3’)/3’h1'2) ‘,,_;2;—? %43
n+ it ? n(%w) 2241 Soat %‘/
S = (ne2) (3 ez n-l'\? e p .
U ndREe) . ~, et A

Now, we introduce the fact that x = a[/é , and introduce also

the Reynolds' Number, R = UgL/7? , with the result that we find:

’ Cw&d r w3
S - == N(%)

ned

This is Millikan's equation (18), generalised from

ne17t%nsen, but specialised to the completely turbulent

o~

regime, (Our o here is, of course, Millikan's S;).
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Let D, (= dmgturbulent

to the turbulent boundary layer, then

L
= 2 B da .
D‘b—ozﬂ-fj/of

Substituting for {”%;; , this becomes

3 o (2)
= LT ‘ z, 77 S
D e2mp R j U (55
. L
Now, defining Cv = ;‘ ({; vz

S

and making use of the fact that from (8 ),

% =5 S5
Z Bel wed | N (%
i LTC L o2))
A - e T ,, s
? K Turi)in+0
we get
2o
""1 (U el s
2. f -——"} . ____,2
U, .
He o [ ey
G et S ) 2«/3 . - ?’a;-’l
v = R V EN%(/LN’
2% _z
P %43

where H% = ¥ “Zi Ca‘@ |

and /V% is as given in ( 6}.

This corresponds to Millikan's eguation (20).

- 10

) be the skin friction due

(7)


10
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The coefficients appearing in the expressions (4.1},

(4.2), (8), and (7) are tabulated belcw for the usual

values of ni=—

. LE m

| " Jz C%J Ftv
7 8.74 0.0325 0.3708 0.3623
8 9.63 0178 . 3163 | .23889
9 10.523 .0145 .8752 . 2359

10 11.42 - .0119 . 3406 . 1937


11
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The Logarithmic Analysis:

The drag coefficient for the N. P. L. Long Model was
calculated by equation (7) for several values of n, and it was
found that abt Reynolds'! Numbers corresponding to full scale,
guite considerable differences in the drag coefficient were
obtained for the various powers. A comparison of the Ov‘versus
Bv curves for the N. P. L. Long Model may be seen in Figure 1,
where, among others, the curves for n = 7 and n = 10 are plotted.
It thus appeared that repitition of the analysis, using the
logarithmic velocity distribution, would indeed be desirable.

We therefore assume that the logarithmic velocity

distribution, as developed by von Kérwdn for the flat plate,

holds also for the boundary layer on the axially symmetric

body.
We remember that von Kirmén showed that
* B #l/n
U* = nY
was merely an interpolation formula holding in a limited range,
and which approximated to
u* = constant + (1/rc)logey*.
The corresponding velocity profile,

wo v (y/s) "

~is then replaced by

ue U= (1/xv2) Vr{loge(g/ﬂ + log Oy - hiy/S)
where

h(i) - log Gge
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In our analysis we will be integrating u and u(U- u)
over y, and it can be shown that for our purpose it suffices

to take

. v
uzﬁwaEloge(S/y). (8)

If this velocity distribution be introduced
directly into Millikan's equation (13) (our equation (5)),
then after a rather lengthy process, equation (@) in the

following paragraph. is obtained.

However, if we go back to Millikan'®s basic

equai?on (10}, .

§ §
é - 'é o, ;a—ax—«— ];0?5’&.
@fazﬁ Ud&[,w?-f- %[[w? /? ¥ y
we find that it may be written in g more convenient form:
z A el (73[&
jf = OUS + %;~«*f;bj4/#{3¢ﬂdaf?2? - o‘“‘?}r
Kow, since

[l8547 2 [55% =<,

we have

ff(w)»fy [ E]

d s v
. éf,i? = 5[?7’ “ﬁii)

whence the following relation comes out immediately:

an

Lot A q,z_\;f_] Vs 40U,
zKW’%ﬁ{&“‘f[«ﬁ [T kv & (e)

M\

Soist
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We have, in addition to equation (8), the relation

'w’{’@"? ’@5 }

13)

(cf. von Karmédn~©/, equation (44)).

It is convenient to write this in the form
wvz L

J

7~

and to introduce the parameter

z =k 2 & (11)
’ T
whence 2 -
- ——e
VN
and o
Ksz'\/-i ; ’
Introducing the parameter z into équation (9),
we getb:
2 ‘ Uv 2 2 * LU
BT TR P A
2> ", | CwyiC K = C JRVZ Ax
o dU’
3
Bt S
77‘ /L

After carrying out the differentiation, this last

can be put in the form:

Nz C #?

/ 2 ;Q:-/ /ch
e et 2 26 F )2 (52

‘W

|4
V :égir e ~ (10)

s
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We now integrate and get:

3 x
_\/%gﬁ/ﬁf# = (- #%+Q@z~é +J/[2 ezj;’?«{fé g/f ’%o &2(0( Ce );?‘4”

2 s
The term -6 comes from an assumption that as a first approx-
imation, 2 = O at x = O. This is true only for the special
case of the flat plate. More will be said on this point later.

We now introduce the axial length L and the length

Reynolds! Number R = UoL/2) , and a = x/C? , with the result

that the above equation can be put in the following dimension-

less form: Ay

vz C ?]”/“’d’%) e #2rg)e’ -

] 4__- U 7,
/;:6/ (@(L})fz L)’ du)i ) 4(}

U, L
For simplicity, we write
%): (28”42 ¥ 6)82 - 8 (13)

and

A
£0)= =4

80 that our final expression is:

(13)

flz)=c nz ?f J*ff@[z?(zf ﬂﬂf[? (e




- 16 -

If we can solve (14) for =z , then from (10) and (11)
it is easily shown that the shearing stress at the surface, and

the boundary layer thickness, are given by the following:

U.L
% ICZ -
2 = z* (18)
f
and Z*
- L
T gelz (§)R (16)
Bimilarly, the turbulent drag coefficient is found to be:
7 2
g . L
L= (5) %
S A A(%) .
¢, el i (17)

As to the two constants, K and 02, appearing in the
above expressions, we have already selected K = 0,397, but
have as yet said nothing about Gg.

For evaluation of Gg, we digress briefly at this point
and consider the special case of the flat plate. wvon Karmén

showed that, approximately,

K2 P ) — L (CJéZ:
Ve ’f/é(ﬂ 7/ b £G (18.0)
where
< = % - local friction coefficient,
¥ ipuU
and P = Uk .

%

{(Note: U = Uy for flat plate).



-17 -

14)

Kenmpf 's measurements of the local friction on
smooth flat plates were used to obtain a value for 08’ and

for K = 0.397, it was found that Cg = 10.84 gave good

agreement with the experimental results. These values of

I and Gy give

1/v8¢ = 4.09mlg(Rxcf) + 1.97 (18.1)

which compares favorably with the expressions given by von
15)

Kdrman and by Schoenherr. The question of the flat plate will
be discussed further in a later section thereon.

Returning to the axially symmetric body: with
H = 0.397 and 02 = 10.84, our equations become:

/L
H(z)=0959R [ SE %)+ /Ee[ (53)-=1(5%) ]d
e )
(}’/(/Z'); [22«’1‘e+6)¢&’5/ €)= C)M>
?3— = dl/é’do —2;'0—:2’
S (19)
ze&
iy , z€
i (%)'R
Z,Z )A ’Z’ 73
C= 98 = | oAl %)
v Ve




Equation (14) is treated by simple iteration, i.e.,

F(z,)= 0957 K- j WJ%(%/L)}

;(2 - $7e,) -FJZC [:2{(?/% _ Uzﬂojpff/ ))

@
che © e« %
Q
®

ro/L and /é? as functions of a/L are known from the
shape of the dirigible, and U/U, as a function of a/L is
obtainable from wind tunnel tests. The integrals are most
conveniently handled by means of a Coradi Integraph. It is
found that as far as the drag coefficient (with which we are
mainly concerned) it is unnecessary to go beyond };ng).

To get 2z from )&(z), a table was made up,
giving 3%/(2) for values of 2z between 7.0 and 30.0, in
steps of O0.1. This table allowed rapid solution of the
transcendental equation, with a maximum variation in z of
+ 0.05, which accuracy could be improved with‘judicious
interpolation.

We saw that the term -6 in

F2) = (8- 42 + 6)e” = 6
was an approximation, exact only if z = O at x = O. However,
at large Reynolds! Numbers, this is practically the case.
The term -6 is the constant of integration, and depends
upon the thickness of the boundary layer at the stagnation

point. But, to calculate the thickness of the boundary layer

-18 -
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it is necessary to know the integration constant. An estimate

of the stagnation S » S- .can be gotten by considering the

s!
behavior of the power law differential equation for ér near

the singular point r,. = 0, assuming that in this region the

o
potential flow is that which would occur near the stagnation
point of a sphere, of radius egual to the radius of curvature
of the nose of the dirigible, in a uniform flow Ug, in a
manner analogous to that used by Millikan in his treatment of
the laminar S\Se The analysis is not of sufficient interest
to be reproduced here. We say only that our calculation of
éﬂ from z as gotten from equation (14) does not hold close to
the stagnation point (nor, of course, near the tail), but that
the larger the Reynolds! Number, the more confidence we can
have in our calculated wvalues of § near the nose,

In the following two sections are given results
of calculations for two models, It might be pointed out

here that, from the standpoint of time and labor, the

calculation of C_ from equations (19) for various Reynolds'

Numbers is easier than that necessary if one were to get an
approximation to the curve of C, versus R, by calculating

for several different power laws from equation (7).
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The N, P, L. Long lodel:

Qur first applications of the relations developed
above are made on the so-called N..P. L. Long Model, a
1/225 size replica of the "H.M.A.-R 33.% The results are
presented in Figure 1. The curve of Gv versus Rv s obtalined

from z, is marked "present theory®, and may be seen to lie

2
well above Millikan's curve, marked "a = 7%, In fact, if we
consider Hv = 108 to be an upper limit for the Rv of this
particular ship, and assume that the logarithmic analysis
gives us the correct value of the drag coefficient, then

the one-seventh power law gives a value 22.4% lowal this K, .

The curve for the one-tenth power law (marked
n = 10%) and the curve cslculated by Dryden and Kuethe
(marked "D, & K.") are shown for comparison.

The circles in Figure 1 are experimental points
obtained in the N, A, C., A. Variable Density Wind Tunnelle},
and it is interesting to note that these points cross over
and above both Dryden and Kuethe's and Millikan's curves, and
follow the curve for the present theory, with the exception
of the one point at the highest Reynolds' Number. This
last point ies marked with a question mark in the figure, and

16)

was neglected by Higgins himself in plotting up his results.
It is inconcéivable that this poiﬁt may be explained by a
roughness effect. 1In this connection, the crosses in the
figure represent experimental points in the same wind tunnel
on the . P. L. SBhort Hodel, a similar model, and it is

seen that these points follow those of the Long Model,and

follow the curve for the present theory, but without an
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upward slope at the last point. The general agreement of
the present theory with the experimental points leads one to
conclude that the logarithmic analysis gives a quite accurate
method for predicting full-scale drag coefficients from wind
tunnel tests.

In Figure 2 are plotted boundary layver thickness
in percent axial length for the N. P, L. Long Model, calculated
under various assumptions. An examination of equations (16)

and (17) will show that the boundary layer thickness is much

more éusceptible to variations in gz than is the drag
coefficient; this fact is brought out in Figure 2. We

have plotted here, for Rv = 108, the thicknesses based on
the one-seventh and on the one-tenth power laws, and also
that obtained by the second approximation in the logarithmic

2nalysis, 9 _ - Te &, 1s not plotted, but is not much
2 1

different from 5\2 except near the nose and near the tail.
2

Plotted also is what we will call 5;2 ; gotten from a very
'O

rough approximation to z, namely, from

AL

a B oo, & )
Zz e = 4.73’7/ 7’{[1_)'

[

It is seen from the figure that, while this very rough
approximation givee a drag coefficient not very different
from the second approximation, it gives an entirely erroneous
picture of the developeument of the boundary layer alcng the

body. Thue, if one is interested mainly in calculating the



R= 108

v

N.PL. LONG MODEL,
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boundary layer thickness, one must be careful to get a good
appreximation to 2z . However, the drag coefficlent is the
main point of interest, and here even a rough approximation
tc z gives a good approximation to Gv. In our c¢alculations,
we hgve carried out the approximation to Zo in getting points
for the curves marked "present theory® in PFigures 1 and 3.
The corrections change the boundary layer thicknesses from

the first spproximations hardly at all in the middle half

of the body, but decrease them somewhat near the nose and
increase them at the tail.

It is interesting‘ta note iﬁ Figure 2 the decided

decrease in boundary layer thickness as obtained from Zg,
as the nose is apocroached. In fact, the thickness approaches
the order of thickness of the laminar thickness. From this
we might infer that sudden jumps in boundary layer thickness
in transition from laminar to turbulent, as postulated by

Dryden and Kuethe and by Millikan, are not to be expected,
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The Akron Model:

A very interesting application of the theory is

afforded ue by the Akron. The drag coefficient curve ae

obtained by the present theory is shown for this ship in

Figured, and is compared with Millikan's curve. Experimental
points for several models are also plotted: thosel?) from

the propeller research tunnel (P,R.T.) and the variable

density tunnel (V.D.T.), and from the Guggenheim Aeronautics
Laboratory of the California Institute of Technology (G.A.L.C.I.T.)
tunnellg). The general agreenent of the trend of the points

with the present theory ies quite satisfactory, notably instanced
in the caﬁe of the points for the wooden model in the variable

density tunnel.
For the full-scale Akron with Ug = 80 miles per hour,

R=5.7x 108, Rv = 1.4 x 108, and for this BV’ we see that

the curve based on theﬂééventh—power law gives. C, = 0.0090,

whereag the curve based on the logarithmic law gives
Oy = 0.0137, i.e., 29.1% low,

There is sufficient data available for the Akron
to allow us to make a rough estimate of the full-scale

egulvalent parasite area®* and thus check the accuracy of our
theory. For the full-scale ship, Vz/s = 3530 square meters,
so that our curve gives, for the full-scale Akron at 80 miles
per hour, an eguivalent parasite area for the hull of 44,8
sguare metere, whereas Millikan's curve gives only 31.8 square

e ese w65 wme emm  gmy GSP man o wew  O0F o wed et oM wam maw W ST mea  ome W wmw TS gme

]
equivalent parasite area, f = D/%j’ﬁog - GD?Z/sa
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~meters, From G.A.L.C.I.T. wind tunnel testsle), the increment

in drag coefficient added by teh hbods, control car with bumping
ball, and bumping ball on the lower tail surface, is 00,0014, and
is constant with Reynolds' Number. This gives a parasite of
4,9 square meters. From the same teste, the increment added

by the tall surfaces, corrected to full scale (tail surfaces

considered as flat plates), is about 0.0018, giving a parasite

19)

area of 4.2 square meters. Other GA.L.C.I.T. tests give

a full-scale parasite area of 20.3 square nmeters for the

eight Akron propulsive unite with no propellers, and 39.7 square
meters for the same with staticnary vropellers.

Fromvthe above data, an estimate of the full-scsale
parasite area of the Akron gives between 75 and 84 square
meters, based-on ouritheodry, whereas an estimate based on
the seventh-power law gives only between Sl_and 70 square
meters, It is known that the actual equivalent parasite
area for the Akron was about 80 square meters, ae determined
from deceleration tests., We thus have a very nice check on
our theory. (The author is obtaining more accurate;and

further data from the Goodyear-Zeppelin Co., in order to
make a closer check, but at the time of writing, this

material is not available).

In Figure 4 is plotted the boundary laver thickness

in inches for the Akron model tested by Freemanl7> at

Ev £ 3.8 x 106, as calculated by our theory from Zo, and
compared with Freeman's measured thicknesses.The point shown
nearest the noée is 8 1éminar point (Freeman's tests were in
the transition range) and does not concern us. The agreement

with the other points is fairly good, but not as good as the
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agreement found by Freeman between his points and thicknesses
calculated from the one-seventh power law, This fact is,
however, not at all disconcerting, since one can really only
speak of the boundary layer thickness in terme of order

of magnitude. The crux of the matter lies in the wvelocity

distribution curve. This was calculated from equation (8)
be
for Freeman's cases, and the agreement was found to,perfect.

There is coneiderable latitude allowable in the choice of the
boundary layer thickness from the measured velocity

distribution curve, and in fact, Freeman's measurements could
be made tc fit our calculated boundary layer thicknesses just

as well as he made them fit the ene-seventh power calculations.

(Note: the curves in Figures 1 and 3 are run out to the

exceedingly high Rv's of 109 because it is felt that future

alrships will have larger full-scale Reynolds! ﬁumbers than
at present, due to probable increase in both size and speed;

| the larger the Rv, the more pronounced the difference between

ane

the present logarithmic theory and the , seventh-power theory. )
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The Flat Plate:

For the special case of the flat plate, U = Ug,

Ty = 00 roE = 0, and our equation (14) reduces to

' & W %
CAik R = 0959 R = (x7- ¥2+0)e —C = Flz) (20)
where %1 = -

This was originally obtained by von Kérman, However,

he then approximated to this by

=

C:f}f;cg/? = =2
X

from which comes his equation, _
e _ M?ii_>
=405 (v2

(cf. equations (18.0), (18.1)).
We, however, having already constructed a table for
?V(z), can use this table to get more refined vslues of
u,” § , and o, for the flat plate. The velocity distribution

is of course as in eguation (8), and

2.3/6
2.3/6
F o=
and =

x
S = 0. /8¢ /‘?'“Z‘e'
p 4

4

We find that the refinemenﬁ does not affect the
local friction coefficient to any extent, except slightly

at low Reynolds'® Numbers. The exact boundary layer thicknesses
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are all higher than those calculated by von Kéiman“s
approximation, the difference of course being more pronounced
at the lower Revnolds' Numbers, §:°s calculated by the

14
z-method for the experiments of Kempf ) were all rather

considerably larger than the values announced by Kempf--—

however, here again, the crux of the matter lies in the
velocity profile. Logarithmic veleccity profiles calculated by
the z-method fitted Kempf's points beautifully. {(Dr. Xempf

kindly furnished Professcor von Kérmén with his original data).

Here again the selection from the measured points of a definite

distance as a o 1is quite elastic,
Thus the z-method used in this paper is not so
Afyaluagle for flat plates, as von Kérman's approximation is
sufficient. The main value is in its application %o the
prediction of drag of full-scale airshipe from wind tunnel

tests,
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