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ABSTRACT

Using the generalized valence bond (GVB) wave function, the pi .
electron systeﬁs of ethylene, allyl cation, allyl fadfca], s-trans-1,3-
butadiene and benzene were examined. The results were in good agree-
ment with full configuration interaction calculations demonstrating
‘the quantitative accuracy of the GVB method. The GVB description of
the valence states systems includes a description of resonance and
provides a rigorous quantum mechanical description of resonance in
terms of spin couplings. It was found that the resonance stabiliza-
tion energy is due to two effects, delocalization of orbitals onto
additional centers while still maintaining their basica]]yk]ocaTized
nature, and spin coupling optimization in a manner identical to the
valence bond description of resonance.

It was found that the GVB wave function imposed restrictions
upon the orbitals of excited states. To remove these restrictions
the GVB wave function was generalized by including a spatial projection
operator. The GVB(SP) wave function imposes no restrictions upon
individual orbitals and represents the most general independent
particle wave function as yet presented. The GVB(SP) method was used
to examine allyl radical and butadiene. A1l states were described by
localized orbitals and energies were in exce]]eﬁt agreement with
configuration interaction results. A molecules-in-molecules model us-
ing ethylene pi e]ecfron states was found to provide a qualitative

description of all the states of allyl radical and butadiene examined.
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I.  INTRODUCTION

Here we report the results of ab initio theoretical studies on
the pi electron systems of some small organic molecules. This work was
undertaken with the goal of providing some insight into the phenomenon
of resonance and providing a consistent description of pi electron |
systems. Our calculations were performed using the generalized

valence bond (GVB) method]’2

and the spatially projected GVB method.
The GVB wave function was used because in the GVB wave function all
orbitals are singly occupied and thus include a consistent level of
correlation for ground and excited states. In addition, the GVB wave
function explicitly includes the Pauli principle and correct permuta-
tional symmetry so that all states are eigenfunctions of spin. How-
ever, the GVB wave function retains the independent particle
approximation permitting interpretation of the results and developing
models for systems, while yielding total energies and excitation ener-
gies in good agreement with ab initio full configuration interaction
(CI) results.

The GVB wave function for most ground states includes local-
ized orbitals. However, for the ground state of allyl radical and
most excited states, both valence-like and Rydberg-like, the GVB
wave function included delocalized symmetry orbitals. It was felt
that this was due to restrictions in the GVB wave function. To
eliminate these restrictions, the GVB wave function was generalized by
including a spatial projection operator, thereby eliminating any

restrictions upon the individual orbitals while insuring that the final



state has the correct spatial symmetry. The resulting wave function
is called the spatially projected GVB wave function and denoted
GVB(SP). " It was anticipated that the GVB(Sp) description of all

~ systems would Be in terms of localized orbitals, and this was found
to be the case. .

Pf—e]ectron systems containing two, three, four, and six elec-
trons were examined. The systems are all linear except the six-
electron system which is cyclic. The three, four, and six-electron
systems display resonance in varying degrees. Thus, we have examined
a cross section of the pi electron systems and are’able to compare the
various systems.

The two systems containing two pi electrons examined were
ethylene and allyl cation. The results for these systems are pre-
sented in Appendix I. The GVB(SP) description of the ground and ex-
cited states of these systems includes localized orbitals. The total
ehergies and excitation energies are in good agreement with full CI
calculation. The ethylene pi system will serve as a "building block"
and by combining ethylenic units, we will be able to generate the
states of larger systems3.

The three pi electron system examined was allyl radical. Allyl
radical is the smallest bi electron displaying what is known as
resonance in fﬁe classical valence bond theory. The GVB description
of allyl radical includes resonance. Resonance is introduced into the
GVB wave function through the electron spin coupling. At a specific

spin coupling, the right and left orbitals are equivalent and the
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system dfsp]ays resonance. The GVB results for allyl radical are pre-
sented in Appendix II.

The op;imum GVB description of some states of allyl radical
includes delocalized symmetry orbitals. It was considered that this
resulted from restrictions imposed upon the individual orbitals by the
GVB wave function. To test this hypothesis, the GVB wave function was
éenera]ized by introducing a spatial projection operator. The form of
the resulting wave function, denoted by GVB(SP) is such that the final
wave . function has a definite symmetry, but that the individual orbit-
als need not have a definite symmetry and in general will possess
. components of all possible symmetry types. The GVB(SP) method was
applied to allyl radical with the expectation that all states would be
described by localized orbitals, and, indeed this was the case. The
GVB(SP) description of the ground state of allyl radical also includes
resonance, but the resonance arises from the spatial symmetry of the
s&stem. The GVB(SP) results for allyl radical are presented in
Appendix III.

The four pi electron system examined was s-trans-1,3-butadiene
(henceforth referred to simply as butadiene). The GVB results are con-
tained in Appendix IV. The GVB wave function for three of the states
was in terms of localized orbitals, and these states were We11 des-
cribed by combining ethylenic units. The GVB wave function for the
remaining excited states examined included delocalized symmetry
~orbitals. Application of the GVB(SP) method yielded localized orbital
descriptions. of all states examined. The GVB(SP) descriptions of the

states of butadiene were consistent with the fused ethylene mode13.
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The GVB(SP) results for butadiene'aré contained in Appendix V.

The pi e]ectroh system of benzene was the six pi electron system
examined using the GVB method. These results are contained in Appendix
VI. Only states.with valence-like orbitals were examined. The GVB wave
function provided a localized orbital description of the valence states.
As with allyl radical, resonance is included in the GVB wave function
for the pi electrons of benzene by a specific coupling of the electron
spins. In benzene, the effect of the specific spin coupling is to make
the spin coupling between any two adjacent orbitals the same. We find
the GVB description of resonance in benzene consistent with the valence
bond (VB) description of resonance in benzene and y%e]ding total ener-
gies and excitation energies in good agreement with extensive CI results.

Further, we find that the VB type resonance effect does not account for
all of the stabilization energy relative to an ethylenic type double
bond as in cyclohexene. While maintaining a basically localized nature,
the individual orbitals delocalize and acquire amplitude on all six cen-

ters. This accounts for a great deal of stabilization in the benzene pi

electron system.
In Appendix VII, the GVB(SP) wave function is presented in full

detail. The Variationa] equations, which were used to obtain the opti-
mum wave function, are derived. The GVB(SP) equations for three elec-

trons are presented in full detail and generalized to an arbitrary

number of electrons.

Appendix VIII is a report of some work on generating matrix
representations of SN , the symmetric group on N objects, and is in-
cluded herein to provide a record for posterity's sake. Using a method

developed by Gabriel4, a computer program was developed for obtaining



the generators for a matrix representation of SN . Gabrie]'é method
is outlined and the computer program and the generators for three
representations of 57 are listed. This is the only listing of the
S7 generators known to the author, most probably because there has not
been an overwhelming demand for the S7 geherators.

In Section‘II, some of the results contained in Appendices I
through VI are summarized and the conclusions reached from the total
body of'work are summéfized. In Section III, we discuss the conclu-
sions obtained from the total body of work. Analysis of the individual

systems is contained in the applicable appendix.
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IT. SUMMARY OF RESULTS AND CONCLUSIONS

A. Results

Some of the results contained in Appendices I through VI are
summarized.

1. Table I contains a summary of all the calculated GVB and
GVB(SP) total energies and excitation energies for the states of
ethylene, allyl cation, allyl radical, butadiene, and benzene studied.
In each system, the same basis set was used for the GVB and GVB(SP)
calculations.

2. In Tables II through V, the pi electron energies calculated
from the GVB, GVB(SP) and CI-methods are given. The same basis set was
used for all calculations in each system. The CI calculations were
full or complete within the basis set calculations (except for benzene,
where the calculations were extensive) and thus represent the limit of
the accuracy of the basis set. We see from these tables that the GVB
and GVB(SP) results agree well with the CI results.

3. The ordering of states or the nature of the states differs
in some cases from that expected from Hartree-Fock (HF) or molecular
orbital (MO) considerations. The first excited (ZB]) state of allyl
radical would not be well described by HF theory since this state has
the character of a double excitation state in CI terminology. In the
GVB description the ZB] is a spin excitation state, in that the GVB
wave function includes orbjta]s which are quite similar to the ground

state orbitals, including the orthogonal spin coupling.



-7-

Table I

SUMMARY OF GVB AND GVB(SP) TOTAL ENERGIES AND

EXCITATION ENERGIES

GVB GVB(SP)
Total Excitation @ Total Excitation @
System Energy(h)  Energy (eV) Energy(h) Energy (eV)
Ethyfene
‘ N(]Ag) -78.034134 0.0 ~78.046172 0.0
1B, - - -77.891962  4.20
v('s;,) - - -77.742005 8.2
Allyl Cation
1A, -116.163675 0.0 ~116.172789 0.0
18, - - ~116.062719 3.00
1'8, - - ~115.959400 5.81
1A, - - ~115.898766 7.46
2'A, - - ~115.833770 9.23
Allyl Radical
18, -116.416438 0.0 -116.418612 0.0
1B, -116.297120  3.25 ~116.301432 3.19
2%, -116.237380  4.87 -116.245898 4.70
2%, - - ~116.221249 5.37
3B, ~116.209966  5.61 ~116.217433 5.47
4B, S - ~116.140243 7.58
3, - - ~116.136173 7.69
42A2 - - ~116.135127 7.71

@1 eV = 27.2117 hartrees



-8-

Table I (continued)

Butadiene
1]Ag : -154.93555 0 -154.93575 0
]3Bu -154.80627  3.52  -154.80946 3.44
13Ag -154.74673  5.14 _154.75223 4.99
Z]Ag -154.67881  6.99 -154.68545 6.81
‘ 1]Bu -154.66360  7.40 -154.677778 7.02
23Bu | -154.65961 7.5 -154.67435 7.11
1 |
.04 - -
3'A, 8.0 | |
2‘Bu - - -154.63486 8.19
333u - - -154.63113 8.29
43Bu - - ~154.62991 8.32
Cation(%8,) 154.59576  9.25 -154.59964 9.15
Benzene -
1‘Ag -230.70992 0.0
18, -230.57213  3.75
1
1'8,, -230.51435  5.32
13E -230.50945  5.44
Tu -230.50846  5.48
13 -230.44020  7.34
2g -230.43809  7.40
1‘52 -230.48971  8.90
g -230.38928  8.91
3B]u -230.30293  11.07
3
Aog -230.27345 11.88
3 -230.22773  13.12
Tu -230.21505  13.47
T -230.16552  14.81
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Table II

COMPARISON OF CI AND GVB PI ELECTRON ENERGIES

FOR ETHYLENE AND ALLYL CATION

Pi-Electron Energy(h) Excitation Energy (eV)
System GVB GVB(SP) cIb GVB GVB(SP) CI P
Ethylene
N('Ag) -1.208606 -1.210035 -1.210320 - - 0 0
T(3B]u) - ~1.055720 -1.055729 - 4.20 4.212
V(]B]u) - -0.807247 -0.807335 - 8.27
Allyl Cation
]A] 1.725134 - -1.734248  -1.734879 - 0 0
382 - -1.624178  -1.624184 - 3.00 3.01
182 - -1.520859  -1.520962 - 5.8 5.82
3A] - ~1.460225 -1.460357 - 7.46 7.47
21A - -1.395229  -1.397986 - 9.23 9.17

qExcitation energy includes

bReference 14

changes sigma core energy
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COMPARISON OF GVB AND CI ENERGIES
FOR ALLYL RADICAL

Pi-Electron Energy(h) Excitation Energy (eV)

State GVB GVB(SP) CI GVB  GVB(SP)  CI
12, -1.977897 -1.980071 -1.982548 0 0 0
128, -1.858579 -1.862898 -1.864849  3.25 3.19  3.20
2%, -1.798839  -1.807356 -1.809769  4.87 4.70  4.70
2%, - -1.782708 -1.783648  -.  5.37  5.41
38, 1.771425 -1.778891 -1.781396  5.61 5.47  5.47
4%8, - -1.701702  -1.706583 -  7.52 7.5
3°A, - -1.697631 -1.699438 -  7.69  7.70
42p - ~1.696585 - -7
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Table IV

COMPARISON OF GVB AND CI ENERGIES
- FOR BUTADIENE

Pi Electron Energy (h) _ Excitation Energy (eV)
State GVB GVB(SP) c1® GYB  GVvB(SP)  cI®
1A, -3.273011  -3.293204  -3.29761 0 0 0
1%,  -3.163731 -3.166915 -3.17073 3.52  3.44  3.45
19, -3.104190 -3.109688 -3.11235 5.14 4.99  5.04
Z]Ag -3.036266 -3.042905 -3.04869 6.99 6.81  6.77
1'8,  -3.021058 -3.035235 -3.03839 7.40 7.02  7.05
2%,  -3.017068 -3.031811 -3.03521 7.51 7.11  7.14
2la,  2.999518 - -3.01016 8.04 - 7.82
2'p, - -2.992312  -3.00127 - 819 8.06
3%, - -2.988630  -3.00056 - 829 -
433, - ~2.987370 - - 832 -
Cation -2.943221 -2.957303 - 9.25 9.15 -

aReference 5
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Table V
COMPARISON OF GVB AND CI ENERGIES FOR
BENZENE
Pi-Electron Energy (h) Excitation Energy (eV)

State GVB - c1® GVB cr@
]]A]g -6.426629  -6.44010] 0 0
1%, -6.28841°  -6.299359 3.75 3.83
"B,  -6.231065"  -6.256218 5.32b‘ 5.00
1%, -6.22570 -6.256988 5.44 4.98
23529 -6.155868  -6.172630 7.40 7.28
21529 -6.088204  -6.133961 9.21 8.33
%, -6.019643  -6.032514 11.07 11.09
33AZg -5.990165  -6.025651 11.88 11.28
By -5.938106 - 13.30 -
]A]g -5.882233 - 14.81 -

aRefer‘ence 15

bUsing self-consistent orbitals for the state, the PI-electron energy

is -6.246327h and the excitation energy is 4.90 eV.
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In butadiene, the lowest singlet excited state found is the

'2]Ag state. MO considerations indicate that the first excited state

1 5 1

should be.the verify that the 2'A_ state

g
has the charactéeristics of a double excitation state. This state is

Bu state. CI pa]cu]ations

described as a spin excitation state in the GVB wave function.

For benzene, VB and GVB considerations indicate that the

1
19> | Bay> T'Epq

and Z]A for the singlet states, while MO considerations6 indicate

1g
the symmetries should be ]] 1 1

valence states should have the spatial symmetries 1]A 1]B

Mg 1By 1'Epys 1];29. From GVB and CI
calculations using the GVB orbitals as a basis, additional Tow-lying
states are found in the spectrum of benzene states. Some of these
states are ionic-like, in that these states are tight or valence-like
in spatial extent, but have two orbitals centered about one carbon.
The MO spectrum of gxcited states includes some of these ionic-like

states.
4. Many low-lying excited states have one diffuse orbital and may

be considered as Rydberg-like states. Some examples are the V(182u)
state of ethylene (in the planar geometry) and the ]Bu state of
butadiene.- The Rydberg orbitals may have 3pm, 4pw; 3dm, etc. charac-
ter. Qﬁantum defects were calculated and are consistent with experi-

mentally determined values.

5. Resonance energies for allyl radical, butadiene, and benzene
were calculated by comparing single configuration GVB GI ;
wave function energies with the optimum GVB energies. In Table VI we
summarize these results. We note in general that GVB calculations seem

to underestimate the resonance energy when compared to the conventional
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Table VI

SUMMARY OF RESONANCE ENERGIES

Resonance Energy (Kcal)

System VB GVB GVB(SP) EXPERIMENTAL
Ally1l Radical
12A2 15.9 1.4 14.3 10.02
1231 -61.9 -57.9 -59.2
Butadiene
]]Ag 2.3 0.7 0.8 3.6P
21A\,g -5.3C - 17.6
38, 18.9 9.9 1.9
3Ag - 16.3 27.4 24.0
Benzene
]A]g 13.8 20.9 - 36 Kcal P
1
BZu

aReference 7

bReference 8

“These are destabilization

energies measured relative to (12).
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experimental values. Underestimating o% the resonance energy in the
GVB model is attributed to a difference fn definition of the refer-
ence state between the experimental determination of the resonance
energy and the GVB calculations. This will be examined fully in
.Section III.

| 6. In Appendices II through VI, VB results a%e reported. These
were ab initio VB calculations in that a double zeta basis set was
used for these calculations. Table VII contains a summary of the VB
results, which is probably the most complete set of ab initio VB
results available. Ab initio VB total energies do not agree well with
full CI results. The VB qualitative description of the system is con-
sistent with the CI and GVB descriptions of covalent states. VB exci-

tation energies are in fair agreement with CI results.

7. In allyl radical, butadiene, and benzene, the same spatial
orbitals can be used to describe the valence states within the GVB
model fairly well. The primary difference between valence states
arises from different spin couplings, that is, different ways to com-
bine the individual orbitals to the spin of the final state. Self-
consistent adjustments of the orbitals at the particular spin coupling
results in some differences in the orbitals.

8. With a general enough wavé function, localized orbital
description of states is obtained. The GVB description of excited
states of allyl radical and butadiene included delocalized symmetry
orbitals. Removing restrictions from the wave function by including a
spatial projection operator resulted in a localized orbital description

of all states of allyl radical and butadiene.
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Table VII
SUMMARY OF VALENCE BOND RESULTS

System Total Energy (h) Excitation Energy(eV)

Allyl Radical

1A, ~116.35544 0
1%, ~116.23784 3.20°
Butadiene
]]Ag -154.853622 0
1%, ~154.738538 3.13
13Ag ~154.682475 4.66
Z]Ag ~154.604735 6.77
3%, ~154.571517 7.68
Benzene
' ]]Ag ~230.54931 0.0
18, ~230.46958 2.17
1'8,, ~230.40387 3.96
13 ~230. 38269 4.53
Tu ~230.37514 4,73
136 -230.34708 5.50
29 -230.33456 5.84
11529 -230. 28444 7.21
-230.28366 7.23
13529 ~230.205929 9.34
3, -230.162458 10.53
3 -230.13101 11.38
Tu ~230.10604 12.06
3.1

S'Ag 230.12802 11.46
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B. Conclusions

1. The GVB method provides a quantitatively and qualitatively
useful and accurate description of electronic states. Five pi-electron
systems, within the frozen core approximation, have been examined and
in all cases the results agree with full (or extensive) CI results and
with available experiﬁenta] results. Further, in those cases where
some character of the state has been determined from the CI wavelfunc-

tion, the GVB results are consistent with these results.

2. Generalizing the GVB wave fuhction by including a spatial
projectfon operator results in a localized orbita]’description of all
states and total energies in excellent agreement with full CI results.
The GVB(SP) wave function fdr all states of all systems examined pro-
vides a description of these states in terms of localized orbitals.
Since the GVB(SP) wave function is the most general and most accurate
independent particle wave function, lTocalized orbitals would appear to
represent a more accurate and fundamental description of electron
orbitals. The GVB(SP)wave function imposes no restrictions upon the
individual orbitals. A description of a state of a'system_which is in
terms of delocalized symmetry orbitals arises from restriction inherent

in the wave function.

3. The GVB description of the ground state of allyl radical
and the ground state of benzene is qualitatively the same as the VB
description of these states. The VB theory describes these states as
resonant combinations of VB canonical structures. The GVB description

specifies the same mixture of VB canonical structures, but structures
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represent possible spin couplings of the system. The VB canonical
structures represent in the GVB model the different ways to couple
the electron spins to achieve the final overall spin of the system.
The resonance stabilization energy of benzene Qﬁs examined
and found to result from two effects. Tﬁe standard for the experi-
mental determination of the resonance energy is cyc]ohexenes. The
pi bond in cyclohexene should be similar to the ethylene pi bond.
However, in mythical cyclohexatriene (benzene without resonance), the
orbitals will be delocalized and have amplitude on all six centers,
greatly reducing the energy. The remaining part of the resonance
energy arises from the special spin coupling, which makes all six
centers conneéted by the same permutational symmetry. This part of
the resonance energy corresponds to the classical VB description of
the resonance stabilization of benzene. A similar dissection of the

allyl radical and butadiene resonance energies was also obtained.

4. Using fused ethylenes as a model for the pi-states of
unsaturated organic molecules as originally proposed by Dunm‘ng3 for
butadiene proved to be very successful. In particular, the GVB(SP)
results on allyl radical and butadiene are strictly in accordance with
this model. We expect this model to be applicable directly to linear
polyenes. For cyclic polyenes, e.g., benzene, direct application of
this model wi]i yield more states than in fact there are. Spatial
symmetry considerations indicate the proper combinations of ethylene
groups that should be used and the application of this model will be

more difficult.
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5. Comparing the GVB valence orbitals for the various systems
examined shows that these orbitals are quite similar. As the systems
become larger, individual orbitals become more delocalized by acquir-
ing small amplitude on more centers while retaining their basic
localized nature. The nature of the GVB pi orbitals which are
valence-like at the site about which the orbital is centered.for all
of the systems examined is essentially the same. The GVB valence-1ike
orbitals are atomic 2p-like, but delocalized in a bonding manner on
nearest neighbors. The GVB pi orbitals for the ground states of
ethylene, allyl radical, butadiene, and benzene aré depicted in Figure
1. The GVB pi orbitals for some valence-like states of allyl radical,
butadiene, and benzene are depicted in Figure 2. The similarity of

these orbitals 1is obvious.
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Figure 1
The GVB pi orbitals for the ground states of ethylene, allyl radical,
butadiene, and benzene. A1l orbitals are shown in a plane ].0 A.U.
above and parallel to the molecular plane. In all plots the most
diffuse contour has amplitude of 0.05 and each succeeding contour
increases by 0.05. Nodal lines are represented by dashed lines. A1l
plots are to the same scale. For allyl radical and ethylene all
orbitals are shown: For butadiene one of two identical pairs of
singlet coupled orbitals is shown. For benzene one of six identical

orbitals is shown.
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Figure 2

The GVB pi orbitals for the valence-like excited states of allyl

radical, butadiene, and benzene. The plotting plane, contours, and

scales are identical to Figure 1. All orbitals of the 12

1

B] state
of allyl radical are shown. For the 2 Ag state of butadiene, one
of two identical pairs of triplet coupled orbitals is shown. For
the 3Bu state of butadiene one of the singlet coupled orbitals and

one of the triplet coupled orbitals is shown. For benzene states,

one of six identical orbitals is shown.



-23-

GVB PI ORBITALS
FOR VALENCE-LIKE EXCITED STATES

ALLYL RADICAL
ZBI- PN+ >

BENZENE

By @*@*@

,(1

W e v

5.0




-24-
ITI. CONCLUSIONS

The conclusions resulting from the body of work are presented
in this section. The results in Appendices I through VI form the basis
for these conclusions. The discussion will be general and not
oriented to a particular system. Each particular system is discussed

in detail in the applicable appendix.

A, TheAQuantitative Accuracy of the GVB Method

The GVB method provides quantitative]y accurate results Timited
only by the basis set. Most of the correlation energy is accounted
for by the GVB wave function.

Five different pi electron systems have been examined using the
GVB method. In addition to the ground state of each system, many
excited states of each system were also examined and excitation
energies obtained./>Fu]1 (or complete within the basis set) configura-
tion interaction (CI) results were used to compare the GVB results.
Since these CI results represent the limit of the accuracy of the basis
set and the same basis set was used for the GVB and CI calculations in
all cases for each particular system, the CI results provide a test
of the quantitative atcuracy of the GVB calculations.

Pi-electron energies and excitation energies obtained from GVB,
GVB(SP), and CI calculations are summarized in Tables II through V.
Pi-electron energies are used for this comparison since all calcula-
tions were performed using a frozen Hartree-Fock sigma electron core.
The core energy is an additive constant common to both the CI and GVB

results and only makes the difference between the results appear
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smaller.

From these tables we see in all cases the order of states in
the GVB and GVB(SP) results is identicai to the order of states in
ihe CI resu]ts: Although this does not seem to be a major achieve-
ment, HF or MO calculations in fact would not yield the same spectrum
of states. In allyl radical, the ]281 would not be well described by
‘a HF calculation and be essentially missed entirely. This state is
best described as a spin excitation state from the ground state in
that the same spatial orbitals serve to describe both states but the

orthogonal spin couplings are used. The 12

‘B] has the characteristics
of a double excitation state as is demonstrated in Appendix II and
would not appear in the HF or MO spectrum of states, since these
methods describe only single excitation states.

The GVB spectrum of butadiene includes two states which have

5 1

the characteristics of double excitation states™. The 2 Ag and the

éan'states both display characteristics normally associated with
double excitation states. These states are valence-like states and
will not be found in HF calculations.

Fof benzene the MO and GVB spectrums are very different if only
covalent states are to be studied. Some of the states in the MO
spectrum,are probably ionic in nature and are lower lying than some
valence-like states. In Appendix VI, full minimum basis set CI
calculations using the GVB orbitals as the basis generate a spectrum
of states which includes ionic-like state and poorly described

Rydberg-like states. In this spectrum, even though the basis func-

tions are valence-like and thus better suited to describing valence-
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- like states rather than ionic-like states, ionic-l1ike states are
Tower in energy than some valence-like states. This phenomenon
occurs in both the singlet and triplet spectrums.

Examining Tables II through V in detail indicates that the
GVB and CI results are in good agreement. For allyl radical, the
typical difference between GVB and CI total energies is 0.01h, or
less than 0.3 eV. Excitation energies agree with 0.17 eV. The
GVB(SP) results, as would be anticipated, are in better agreement
with the full CI results, with the maximum disagreément in total
energies of 0.0048h and in excitation energies of 0.04 eV. .

For ethylene and allyl cation, the GVB(SP) results differ from';
the full CI results by less than 0.003h for total energies and 0.06 eV
for excitation ehergies. For butadiene, the difference between the
GVB energies and the full CI energies is less than 0.03h, while the
maximum difference between GVB(SP) and full CI energies is 0.009h
and a more typical difference is 0.004h.

For those states of benzene for which optimum SCF GVB orbit-

1 3

als were found (I]A 1 B,,» and 1°B states) the difference

1g? Tu

between GVB and full CI energies is 0.02h or less. The GVB descrip-
tion of the valence states of benzene used the ground state spatial
orbitals with the spin coupling appropriate for the excited state, so
we expect the difference between the full CI energy and GVB energy to
be typically greater, and it is about 0.04h.

In summary, we find full CI calculations and the GVB (and

GVB(SP)) wave functions yield the same spectrum of state, total
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energies differing by a few hundredths of a hartree or less, and
"excitation energies differing by a few tenths or less of an electron
volt. This should establish the quantitative reliability of the GVB
method and that the GVB wave function includes the important corre-
lation effects in a consistent manner for the ground states and ex-

cited states.

B. Spatial Projection

The GVB wave function was generalized by including a spatial
projection operator. ‘Huestisgearlier had prepared a two-electron
GVB(SP) computer program and performed calculations on Hy. Guberman10
wrote a very specialized four-electron GVB(SP) computer program to
study the excited states of Hez. In both cases, the GVB(SP) method
provided localized orbital descriptions of the subject system and good
agreement with experimental information. In both cases, the GVB(SP)
calculations provided new insight into the nature of these systems.

Since the optimum GVB orbitals for some states of allyl radical
and butadiene were delocalized and it was considered that restrictions
in the GVB wave function caused the orbitals to be delocalized, a
general three and four electron GVB(SP) wave function contains no
restrictions upon the individual orbitals and is the most general
independent particle wave function as-yet presented.

The results of application of the GVB(SP) to allyl radical are
in Appendix III and to butadiene in Appendix V. Examining Figures 3
through 6 we see that all of the orbitals are basically localized,

each about a particular carbon atom. The optimum GVB orbitals for the

ground state of allyl radical (see Figure 7) are delocalized symmetry
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Figure 3

The GVB(SP) pi orbitals for the A, states of allyl radical. The

2

fifst two orbitals are singlet coupled in all cases except the 3°A

2
state in which case the first two orbitals are triplet coupled. The
amplitude of the most diffuse contour is 0.003. The amplitude of

each succeeding contour is a factor of 2.154 greater or a factor of

10 for each three contours.
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Figure 4

The GVB(SP) pi orbitals for the states of allyl radical. The first
two orbitals are singlet coupled in all cases except the 4281 state

in which case the first two orbitals are triplet coupled. The

amplitudes are thg"same as in Figure 3.
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Figure 5

The GVB(SP) pi orbitals for the Qa]ence states of, butadiene. The
ordering of orbitals in each state is such that the first two are
uniquely coupled in the predominate spin coupling. The amplitude
of the most diffuse contour is 0.003. The amplitude of each suc-
ceeding contour is a factor of 2.154 greater or a factor of 10 for

each three contours.
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Figure 6

The GVB(SP) pi orbitals for the Rydberg-like states of butadiene.
The order of orbitals is as in Figure 5. The figure in the upper
right corner indicates the planes in which the orbitals have been

plotted. The amplitudes are identical to those in Figure 5.
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Figure 7

The GYB pi orbitals of various states of allyl radical. The ordering
of orbitals is such that orbitals 1 and 2 are singlet coupled. The
most diffuse contour has an amplitude of 0.003. The amplitude in-

creases by a factor of 2.1544 at each contour corresponding to a fac-

tor of 10 for three contours.
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Figure 7a

The localized GVB p{ orbitals of the ground state of allyl radical.

The amplitudes are the same as Figure 7.
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orbitals, while the GVB(SP) orbitals for the ground state of allyl
radical are localized each about a different carbon atom. Extremely
diffuse Rydberg-]ike orbitals tend to be so large in spatial extent
that these orbitals extend over the entire system. HoweVer, the
GVB(SP) diffuse Rydberg orbitals have a tight part about one particu-
lar center and tend to be slightly more concentrated in one side or
_about one particular center. In the case of butadiene, the GVB
orbitals for the valence-like 13Ag state (see Figure 8) are delocal-
ized symmetry orbitals and the GVB orbitals for the Rydberg-like
states (see Figure 9)are also de]dca]ized symmetry orbitals. However,
the GVB(SP) orbitals for all the states we examined are localized,
although very diffuse Rydberg orbitals tend to extend across the en-
tire system.

As discussed in Section III.A, and as can be seen from Tables
IT through IV, thé/GVB(SP) energies for all the states agree quite
well with full CI energies, the difference in energies being less
than 0.07 Hartrees. Without exception, the GVB(SP) energies are less
than the GVB energies for all of those states in ethylene, allyl
cation, allyl radical and butadiene studied by both methods.

Since the GVB(SP) wave function will generate an energy closer
to the full CI energy than any other independent particle wave func-
tion (where the basis set is the same for all calculations) the
GVB(SP) description of a system may be considered as the "best" inde-
pendent particle description. Further, since there are no restric-
tions imposed upon individual orbitals in the GVB(SP) wave function,

the GVB(SP) orbitals should be the "best" orbitals. A1l applications
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Figure é
The GVB pﬁ orbitals for the valence states of butadiene. The order-
ing of orbitals in each state is such that the first two are uniquely
coupled in the predominate spin coupling. The amplitude of the most
diffuse contour is 0.003. The amplitude of each succeeding contour

is a factor of 2.154 greater or a factor of 10 for each three con-

tours.
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Figure 9

The GVB pi orbitals for the Rydberg-like states of butadiene. The
order of orbitals is as in Figure 8. The figure in the upper right
corner indicates the planes in which the orbitals have been plotted.

The amplitudes are identical to Figure 8.
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of the GVB(SP) wave function have yielded localized orbitals, par-
ticularly for tight valence-like orbitals. Thus, we conclude that
localized models for systems are to be preferred as these represent
more accurate models. Localized orbital descriptions of systems
appear to be the most fundamental description and should be used in

models of systems.

"C. Resonance

The additional stability of the benzene pi electron system over
that expected from comparison with ethylene pi bonds has long been a
subject of interest and speculation for chemists. ‘There have been
many models and rationales proposed for the additional energy lower-

ing in benzene. Simple MO theory6

attributes the additional stability
of the benzene pi electron system to delocalized pi orbitals extend-
ing uniformly over all six carbon atoms. The additional stability of
the pi electron system is referred to as the delocalization energy.
Simple VB theory]] describes benzene as an equal mixture of the two

Kekule structures

4 J
! (1)

(a) (b)

with a small amount of the three Dewar structures

o S =

This mixing of structures is referred to as resonance and imparts

(2)

additional stability to the pi electron system. The amount of energy
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lowering resulting from the mixing of structures is called thevreson—
ance energy.

Of the pi electron systems examined, allyl radical, butadiene,
and benzene display resonance stabilization. The GVB wave function is
) well suited to describe the stabilization in these systems because the
orbitals are found self-consistently and are not restricted in form,
and mixing of structures as in VB theory may be performed. The orbitals
are free to be delocalized symmetry orbitals, as in MO theory, and
reduce the energy in this manner. (Larger orbitals permit a reduction
of the kinetic energy.) Alternatively the orbitals can be Tocalized
on one center and become atomic-like and reduce the total energy by
mixing of structures as in VB theory. The GVB wave function has the
freedom to adopt either form of some combination of the two. We find
that the GVB wave function contains some delocalization of the indivi-
dual orbitals, while still maintaining their basic localized nature
and a spin coupling corresponding to the VB mixing of states. The GVB
_ results are qualitatively similar to the VB model of these systems, so
the VB model will be used in our discussion,

Resonance in allyl radical results from the mixing of the two
degenerate structures

I\ A
(3)

The VB description of the resonant state is

I~ — A=
(4)
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and the resonance energy is the difference in the energies of (4) and
(3a). The GVB description of the ground (12A2) state of allyl radical
is equivalent to (4) but the mixing of form is described as a mixing

of spin coup]iﬁgs and the orbitals are found self consistently. The

GVB wave function for the 12A2 state of allyl radical may be repre-

sented as

AL
%

(5)

where ¢L.,¢C, and op are pi orbitals localized about the left, center
and right carbon atoms and the vertical box denotes the orbitals are
triplet coupled. The resonance energy is calculated as the difference

in energies of (5) and'the GVB wave function for (3a) which is

- ¢i{. ¢c.
% | i (6)

where the horizontal box denotes the orbitals are singlet coupled, and

the same spatial orbitals are used in both wave functions.

The VB description of the antiresonant (1281) state of allyl

radical is
N A
(7)
The GVB wave function may be represented as
& e
N - (8)

which is the spin coupling orthogonal to (5) (provided 9 and  ¢p
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are identical in shape which is true in these cases). The antireson-
ant energy may then be calculated by comparison with (3a) or (6) as
appropriéte. The resonance and antiresonance energies are contained
in Table Vi.

From Figure 1 we see that the allyl radical ground state pi
orbitals are somewhat delocalized as compared to the ethylene pi
;orbita]s. However, experimental estimates of resonance energy are
based upon ethy]ene7. Further, in VB theory, (3a) is an ethylene pi
bond plus an electron, since atomic orbitals are used throughout in
VB theory. To measure the effect of delocalization of the allyl
radical, we used the GVB ethylene orbitals for ¢ and ¢, and a GVB

methylene 381 state]2

orbital for ¢p in (6). The energy of this
state was 1.01 eV (23.1 Kcal) greater than the energy of (6) with the
optimum orbitals (which are depicted in Figure 1). Two of the three
orbitals have delocalized; the center orbital has delocalized relative
fo the ethylene orbitals and the methylene orbital has delocalized

to be like an ethylene orbital.

Thus, we’have found that in going from an allyl radical, which
is an ethylene pi bond plus a pi electron, to a resonant allyl radical,
two effects take place to reduce the energy. The orbitals spread out
while staying basically localized. This reduces the energy about
23 Kcal ]3. The mixing of the two spin couplings to form (5) reduces
the energy by 11.4 Kcal. The second effect is directly analogous to
the VB picture of resonance.

o s

o 2%
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Resonance in VB description of butadiene arises by a mixture of

the two unequal structures

Uand F"/ | (9)

Since the two structures are not equivalent, the resonance effect is

small. These structures may be denoted as

S ———————

X1R  X2R XoL  X2R

(10)

X2 XL X1 X1IR |

where the X's are atomic orbitals located at various centers. The
optimum VB wave function is basically (10a) with a small mixture of
(10b). The energy lowering due to incorporation of (10b) in the VB
wave function is 2.27 Kcal.

- The GVB wéve function for the pi electrons of butadiene is
formally the same as the VB wave function but the individual orbitals
are found self-consistently and the spin coupling simultaneously
optimized. There are two independent ways to couple four electrons to
a singlet state. These may bé chosen in many ways, such as (10), but

for convenience, we use orthogonal spin functions denoted as

b Oy ()

and
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| ¢a ¢C

&) 'y (12)

The optimum mixture of (11) and (12) is cy= 0.991 and c, = -0.131,
where 1 is the coefficient of (11) and Cy is the coefficient of
(12). The calculated resonance energy found by comparing the energy
of the optimum wave function with the energy of (11), using the
optimum orbitals in both is 0.7 Kcal, while the experimental value is
3.6 Keal 8. |

Since the experimental estimate of the buta&iene resonance
energy is based upon a comparison with ethylene, the optimum GVB
orbitals for ethylene were used in (11). The resulting energy is
0.37 eV (8.47 Kcal) greater than the energy of (11) using the optimum

orbitals. The major part's

of this energy difference is due to the
more localized nature of the ethylene orbitals relative to the butadiene
orbitals.

Resonance in benzene results from the mixing of the five canon-
ical structures, (1) and (2). The Kekule structure constitutes about

11

90% of the VB wave function 'and the dominant part of the VB wave

function of the ground (]A]g) state is

a - J (13)

As can be seen from Table VIII, the GVB wave function for the ]A]g is

almost identical to the VB wave function. The first excited singlet
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Table VIII

SINGLET VALENCE STATES OF BENZENE

States AE(ev) P Spin Coupling

UB States 1(a) 1(b) 2¢ 2a 2b
]A]g 02 0.42  0.42 -0.17 -0.17  -0.17
'8, 3.96 -0.82  0.82  0.00  0.00 0.00
152g 7.21  0.00  0.00  0.20  0.70  -0.90
ey, 7.23  -0.00  0.00  0.92 -0.64  -0.29
Z]A]g 11.46  -1.35  -1.35  -1.04 -1.04  -1.04

GVB States (using 1]A]g originals)
JA]g ‘ 08 0.50  0.50 -0.11 -0.11  =-0.11
'8, 5.3 0.82 -0.82  -0.00 -0.00  -0.00
]Ezga 8.90  0.00  0.00  0.94 -0.44  -0.50
]Ezg 8.91  0.00  0.00 -0.03  0.83  -0.80
Z]A]g 14.81  -1.34  -1.3¢  -1.04 -1.04  -1.04

aCa]cu]ated total energies for the ground state are -230.54931h and

~230.70988h for the VB and GVB(1'A
by hartree = 27.2117 eV

1q orbitals)
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(]BZU) state is the antiresonant state and is described in both the

VB wave function and the GVB wave function as
The standard state used to calculate the resonance energy may

)

Since the VB orbitals for (13), (15), and ethylene. are the same, the

(14)

_be represented as
(15)

calculation is well defined. The GVB wave function for (15) was taken
as the Gl wave function. In this wave function the orbitals are
coupled into three singlet pairs. The optimum orbitals were used in
(15). This led to a resonance energy of 20.9 Kcal.

The experimental estimate of 36 Kcal is foﬁnd by comparing the
heat of hydrogenation of cyclohexene and benzenes. The resonance
energy is the difference between the heat of hydrogenation of benzene
and three times the heat of hydrogenation of cyclohexene. The pi
bond of cyclohexene should be similar to the pi bond of ethylene,
that is, basically a two-center pf bond. However, the GVB orbitals
used to represent (15) are delocalized over all six centers of the
molecule. Delocalization of the orbitals over all six centers should
reduce the energy by reducing the kinetic energy.

To measure the effect of delocalization of the orbitals, we
have performed ca]cu]atiohs using ethylene, allyl radical, and

butadiene orbitals. The GVB wave function-for (15) may be represented
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as
9 92
93ty
(16)
by 0

3

where 93 denotes a pi orbital localized about center 1 . The
results are summarized in Table IX. From this, we see that using
éfhy]ene orbitals in (16) increases the energy by 2.12 eV over the
G1 energy (or 3.02 eV over the optimum GVB energy). Allowing two
orbitals to delocalize onto at least four centers by using one buta-
diene ground state and one ethylene ground state iﬁ (16) reduces the
energy by 0.69 eV or 0.35 eV/orbital. If one assumes that allowing
each orbital to delocalize onto six centers reduces the energy by
0.03-0.04 eV/orbital over the butadiene orbitals, then the full in-
crease of 2.12 eV found in using ethylene orbitals is recovered.

Using the ethylene orbitals or the butadiene orbitals in (12)
introduces some unfavorable interactions that are not present in
cyclohexene. The over]ap of pairs of orbitals is unfavorable and
raises the energy of the system. However, these calculations on
benzene, butadiene and allyl radical demonstrate that delocalization
of the orbitals over more centers results in a significant Towering of
the energy.

The experimentally measured resonance energy can be attributed
tb two effects. Delocalization of individual pi orbitals in benzene
compared to the pi orbitals of cyclohexene contributes a significant
reduction of the energy. Resonance in the'VB sense contributes 20.9

Kcal to the energy reduction. Neither effect is able alone to
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Allyl Radical

Butadiene

Benzene
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Table IX

. Spin Coupling

Optimum

Gl

G1

G1

Gl

Gl

Gl

Optimum
61¢
G1
G1
G1
Gl

Orbitals
Optimum

Optimum

Ethylene and
Methylene

Valence Bond

Optimum

Ethylene

Valence Bond

Optimum
Optimum

Butadiene and
Ethylene

Allyl Radical
Ethylene

Valence Bond

qRefer to equation 6

bRefer to equation 11

_ CRefer to equation 16

E(h)

-116.414975
-116.396808

-116.368228

-116.330115

-154.935750
-154.934441

-154.920969
-154.850013

-230.709915
~230.676690

-230.624443

-230.607156
-230.599031
-230.498620

AE(eV)

1.27

2.31

o

.40

[

.33

~N

.79

w

.02
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account for the energy reduction.

Thus, in the three system examined, the experimentally measured
resonance.energy arises from two effects. Individual orbitals are
delocalized relative to ethylene pi orbitals, but still retain a
" basically localized nature. Mixing of spin couplings in a manner
directly analogous to VB mixing of canonical structures provides ad-
ditional stabilization. Neijther effect alone accounts for the ex-
perimentally measured resonance stabilization (or delocalization)

energy.

D. Fused Ethylene Model

Dunning originally proposed3 a fused ethylene mode for bqtadiene.
This model considered butadiene as two fused ethylenes and the pi
electrons states of butadiene were considered as arising from com-
binations of Pi electron states of the ethylene. We have extended
this model to allyl radical and to a limited degree to benzene. This
model requires a Tocalized orbital description of the pi electron sys-
tem in order to be able to separate the ethylene entities. In Table
X we summarize the states of allyl radical, butadiene, and benzene
that we have been able to analyze using this model. Appendices II
through VI discuss individual states with kespect to the fused ethylene
model.

In general, the fused ethylene model for Tinear polyenes is
fully consistent with GVB or GVB(SP) results and the CI ordering of
states. This model predicts the existence of Tow-lying valence states
not found in the HF spectrum of state. First we will examine the

valence-1ike states.
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 Table X
ANALYSIS OF STATES OF ALLYL RADICAL, BUTADIENE, AND
| BENZENE IN ETHYLENE COMBINATIONS

Allyl Radical Butadiene Benzene

%A N - 2pm 1A NN 11a NNN+NNN
.2 p g 1g

i T - 2pm 1%, NT-TN 1%, NN
2 3 1

2B, N - 3pr 1%g  NTHIN 18, NTT

2 1 - 1.

2h, N - 3dr 2lag 1T ey NTT
A N - dpm 1’8, MR N]A]g NTT
4B, 23B]u—2pﬂ 238,  nag

2 1

3°h, T - 3pr 2's, W
4h, R - 2pm B, T

- 3 3
8, N2

Symbols used:

T4

N - Ethylene ground state 1 g

T - Ethylene lowest triplest state 13B]u
Vv - ]]B]u ethylene state

R - 2!

2 Ag ethylene state
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There are two valence-like states of ethylene, the ground (N)
state and the first triplet (T) state. The excitation energy for the
T state from GVB(SP) result is 4.20 eV. From these states we shall
build up all of the valence states of larger polyenes

There are two valence states of allyl radical. The ground
(ZAZ) state is an N state ethylene plus a pi electron and the first
excited (]ZB]) state is a T state ethylene plus a pi electron. The
GVB(SP) excitation energy of the ZB] state is 3.19 eV. The decrease
in the excitation energy is due to favorable interaction possible in
the ZB] state not possible in T state ethylene, such as overlap of a
T state orbital with the third electron. The N state ethylene orbitals
have unfavorable interactions with the third electron from the Pauli
principle, bringing the two states closer together.

In butadiene there are two singlet valence states and three
triplet valence states. The singlet valence states are the ground
(]A;) state and the 21/\g state. The ground state is two ethylene N
states. The Z]Ag state is two ethylene T states coupled to a singlet.
The GVB(SP) excitation energy of this state is 6.81 eV compared to
8.40 eV for two T states. Favorable interactions across the middle
two carbons account for the reduction in the excitation energy. The
three triplet valence states of butadiene are the 13Bu, 13Aé, and
338u states. These states are,respective]y{%he antisymmetric com-
bination of N and T states ethylenes, the symmetric combination of N
and T states ethylenes, and two T state ethylenes coupled to a trip-
3

Bu and ]3A states should

let. The average excitation energy of the 1 g
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be equal to the T state excitétiqh energy and is found to be 4.21 eV
using the GVB(SP) values. The.excitation energy of the 33Bg state is
8.29 eV compared to 8.40 eV for two ethylene T states.

Tﬁe benzene ground state is the symmetric combination of three -
N state ethy]enes. The ]BZu state can be considered as the antisym-
metric combination of three N state ethylenes. The‘remaining three
ya]ence states are combinations of two ethylene T states coupled to a

singlet and an ethylene N state. The fifth (]Ag) state would be

T e g

7‘

The 1

E29 states would be the orthogonal combinations. The SBlu state
wou]d‘be a T state of ethylene and two N state ethylenes. The other
triplet states are more complicated combinations. The analysis of
benzene pi states in terms of the fused ethylene model has not been
developed or tested and may not prove to be useful.

For Rydberg-like states the analysis is similar to that used
for the valence states. The results are summarized in Table 10. From
Figures 3, 4, and 5, the shapes of the Rydberg-like orbitals are con-
sistent with the designated ethylene state diffuse orbital.

For allyl radical and butadiene, the fused etﬁy]ene mode]l
provides a gobd model for valence-like and Rydberg-like stafes. This

model yields an upper estimate to the excitation energy and a good

qualitative description of the individual orbitals.
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E. GVB Orbitals

VB theory uses atomic orbitals to describe all valence states.
The quantitativg dgreement between valence bond theory and experiment
is quite poor, but the qualitative descriptions of the states of
systems is consistent with GYB and CI results. We will explore the VB
approach of using the same GVB orbitals to describe all valence states
;f a given pi electron system. Only Tocalized orbitals will be con-
sidered as the shape of delocalized symmetry orbitals is deterhined
mainly by the molecular symmetry.

In Figures 1 and 2, the GVB pi orbitals for the ground and some
excited states of ethylene, allyl radical, butadiene, and benzene are
depicted in a plane parallel to and 1 Bohr above the molecular plane.
The minimum amplitude indicated is 0.05. The general shape. of all
the orbitals is quite similar and basically reflects the number of
ngarest neighbors each orbital can interact with in a favorable (bond-
ing) manner. For example, each ethylene orbita] and end orbital 1in
allyl radical and butadiene have only one nearest neighbor. These
orbitals are very similar in shape. The middle orbital in allyl
radical, an inner orbital in butadiene, and the benzene orbitals each
have two nearest neighbors and these orbitals are very similar in
shape.

Although the basis sets used for the calculations differ
slightly, the valence basis functions were the same in all cases. In
Table XI we Tlist the coefficients of the GVB orbitals on the valence

basis functions for valence states described by tocalized orbitals.

The similarity is obvious.
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From Figures 1 and 2, We see the orbitals for the two lowest
states (]ZA2 and 1281) of allyl radical. Using the 1281 state pi

orbitals in the 2A2 state wave function yields an energy only 2.62 Kcal

above the 2A2 energy, while using the 2A2 state pi orbitals in the 2g

2
B

1
state wave function yields an energy only 6.58 Kcal above the 1 -
vSma]] self-consistent adjustments reflecting the differences between
spin couplings are the difference between these two sets of orbitals.

In benzene the energy of the ]BZ state with the ]A state

u 1g
orbitals is only 9.58 Kcal greater than the self-consistent value.
In general, the local nature of GVB pi orbitals is the same in
all systems we have studied. The major change in the orbitals from

state to state and system to system is delocalization onto more cen-

ters.
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APPENDIX I

THE GENERALIZED VALENCE BOND m ORBITALS
OF ETHYLENE AND ALLYL CATION



-68-

- 1. Introduction

Since both the thermal and photochemical reaﬁctions of unsaturated organicm
molecules generally involve the pi~orbitals of the molecules, the pi-electron
systems of unsaturated organic molecules have been the subject of numerous
theoretical studies. The simplest such systems are found in the ethylene

. molecule and the allyl cation, each of which contains two electrons in
7 orbitals. Ethylene, in particular, has been studied extensively as a prototype
of larger non~aromatic, unsaturated molecules.

The usual molecular orbital (MO) or Hartree~Fock (HF) picture of the
pi-orbitals of the ground state of ethylene or allyl catlon 1nvolves a single
doubly~occupied pi-orbital. This orbital transforms according to a particular
irreducible representation of the molecular symmetry group and as a result is
generally delocalized over the whole molecule. The HF picture for the lowest
excited states of the pi electron system involves two singly~occupied pi-
orbitals coupled-to either a singlet or triplet. In the Hartree-Fock description

i of the ground state two electrons move uncorrelated in the same orbital whereas
in the excited states these electrons are in different orbitals. As a result the
excitation energies should be underestimated.

The Generalized Valence Bond (GVB) descrip’cionjL of electronic wavefunctions

-offers the advantage of allowing a different orbital for each electron, thereby
including a more comparable level of electron correlation in all states while
retaining a simple orbital inierpretation. The wavefunctions reported herein
include operators for both spin a,pd spatial projection so that no symmetry
restrictioﬁs need be placed upon the orbitals.

W% —réeport the results of GVB calcu_lations (including spatial
projection) of the w~electron orbitals for ethylene and allyl cation. Ground
states and low-lying excited states for both systems are included, all with

the geometry of the ground state.
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A. The Hartree-Fock and Generalized Valence Bond Wavefunctions

The Hartree-Fock wavefunction for the ground state of ethylene is

of the form:
aloadp ... ¢ ad. 64 ot pl=Cl,¢ o p] (1)

where there are seven doubly~-occupied §-orbitals (orbitals

that are symmetric under the operation of ’reﬂection through the molecular

plane) and one doubly-occupied 7 orbital (orbitals that are antisymmetric

under the operation of reflection through the molecular plane). The many-

electron product @, is used here to represent all of the o-orbitals. Some
) of the important excited states of ethylene are obtained by replacing one 7

orbital in (1) with an excited 7 orbital, ¢ﬂ2' This produces wavefunctions

of the form
triplet:  2le,0, ¢ - ¢ @ )es] - (2)
singlet:  glafe, o +a ¢ )ap] (3)

In the Hartree-Fock procedure, the orbitals of (1), (2), and (3) are

solved for self-consistently. The resulting wavefunctions represent only
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an approxima;ce description of the molecular states, and for example, provide
the correct excitation energies only if similar correlation effects occur in
the various states. In (1), both 7 electrons occupy the same orbital ,
whereas in an exact description, one expects the electrons to correlate
their motions to remain spatially separated. In (2) and (3), each 7 electron
occupies a different orbital and as a result tends to move in different regions
of space. Thus, in this description the ground state has a greater (correla-
tion) error than the excited states, resulting in excitation energies that are
smaller than the experimental values.

In order to obtain a more consistent description of the various states

of ethylene, we replace the doubly-occupied 7 orbital of (1) with
| ((pwa Pub + Pnp (’Dﬂa) (4)

~ (the valence bond description of the w orbitals) and solve for these
(nonorthogonal) orbitals self-consistently. In.this manner,» the same corre-
lation effects that have been included in the excited states are also included
in the description of the n-electrons of the ground state, providing a

more consistent description of the ground and excited states. This method
of allowing certain Hartree-Fock pairs (i.e., doubly-occupied orbitals) to
be described in terms of valence bond pairs [ e.g., equation (4)] which are
solved for self-consistently is called the generalized valence bon&

method. 1

B. 'The Core Hamiltonians

As demonstrated in the appendix,5 the problem of solving for wave-

functions of the form
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QL8 1,98,6, ... N)] (5)
~can be reduced to the two-electron problem of solving for

ale,,a,2)] | (6)

if (i) @, is a product of doubly-occupied orbitals and (ii) if the orbitals of

<I>V ] are taken to be orthogonal to those of @G. In this case the two~-electron

Hamiltonian (called the core Hamiltonian) for (6) becomes:

5(1, 2) = h€OTe(1) + nCOe(z) + L ()
Where /
o q‘ ’ '
h®%T€3\) = h() + ), (23; - K;) (8)
j=1 S ‘

and h is the usual one-electron operator

hG) = 5P ) o2 ©
a “ia A
Althoughthe eigenfunction 2,01 of (7) is a rigorous solution for(5) given a par-

ticular @, the resulting total wavefunction is useful only if fi’U ‘is rela-
tively insgnsitive to changes in q)val' In this case a i)c may be found once
and then used for various types of descriptions of the valence electrons
l.g., Hartree-Fock (HF), GVB, or configuration interaction (CD)]and for the
description of excited states. For ethylene weused ineach case the @ o from an

ab initio HF calculation on the same state so that <I?0 should be well described.

For allyl cation, we used the @, from a self-consistent, ab initio HF
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calculation on the ground state of allyl cation. This ‘130 should be a good
description of the o-orbitals for the GVB and GVB(SP) calculations on the
ground state and valence-like excited states. Higher excited states involving

a relatively diffuse orbital will not be as well described since the corresponding
@, would contract somewhat if solved for self-consistently. Using the grouﬁd
state core for these excited states would tend to résult in an overestimation

of the excitation energies.

C. Spatially Projected Wavefunctions

The simple valence bond (VB) description of the 7 electrons of the

ground state of ethyliene is —

2p;  r2py | = g Spop * Gz 9ay, )(@8 - Be) (10)

X

where the tableau in (10)denotes singlet-paired orbitals. [Note we use the standard
~choice of x as the axis perpendicular to the molecular plane.| To describe a 7
excited state in this model, we might consider exciting one electron from a

pr orbital to.a 3px (or 3dxz) orbital. This results in wavefunctions of the form

.Q2px r3p, (11)
or
£3p, r2p, - (12)

depending on whether the left or right orbital is excited. Neither (11) nor
(12) possesses the correct molecular symmetry, and we expect that a more

appropriate description of the excited states would be
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.QZpX r3pxls = £2pX r3pX + £3pX erX
= (Pyop Gy + o 0.0 Yab - Ba) + (13)
Jz2pX r3pX r3px szx
(Po3p. Gap. + Pron Ppsn )b - Ba)
,231{3X r3pX r2pX .QSpX
or
22pX r3p:X . = £2pX r3pX - QBpX erX (14)

where the subscript S _or a indicates that the Wavefunctions of (11) and (12)
have been recombined into a state which is symmetric (13) or antisymmetric

(14) with respect to the spatial symmetry operation(reflection) interchanging

the ¢ and r centers, 6

We now define a reflection operator which will be usé_d to prov1de a
mathematical formulation of (13) and (14). R is defined as the operator

which tagkes

X—x
y—y

zZ = -z

where the z axis is perpendicular to the reflection plane. Thus

R !ZSpX erX = erX QZpX = £2px r3pX
.and (13) may be written as
£2p, r3p, s = B [£2p +1r3p, (15)
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where
s = (1+R) : (16) ~
Similarly (14) is
QZpX r3pX . = Pa QZpX rSpX‘ (17) |
Where'
P = (1 -R) - ‘ (18)
This is analogous to writing the spatial part of (10) as
(¢ @ + Ppopy, ) = (1 +P,)0e ¢ (19)
!ZZpX erX r2pX JZZpX . 12 | QZpX erX
where P,, interchanges elecﬁrons one and two.
Using spatial projection operators, the spatial parts of the two-
electron wavefunctions (13) and (14) have the form
1+ R)(L+Py,) e, (1)@, (2) , | (20)

i.e., with one orbital for each electron.

In order to provide a more accurate description than the above simple
VB descmptmn but without sacrificing the simple model suggested by (20),
* we will use wavefunctions of the form (20) and solve for each orbital self-
consistently. This is called the generalized valence bond (GVB) approach.l’ 4
To indicate explicitly that a spatial projection bperator has been included, 2-4
the ﬁotation GVB(SP) will be used. As usual the GVB (SP) wavefunction (20) may

be interpreted in terms of one electron in orbital ¢ fa and the other electron

in orbital ¢rb each moving in the average field due to the other electrons.
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- The details of the self-consistent field equations for GVB(SP) wave-

3

functions are presented elsewhere.” Here we merely summarize the

notation to be used. ‘If

R¢£_a = %ra

Rép = P

then the form of the projected wavefunctions are as in Fig. 1 and lead to

the total symmetries indicated in Fig. 1. For example,

q)ﬂa P : :
. =[ (QD_Qa Pb = Prb Qo_ea) - (Qaraﬁo_g_b - (pﬂb ‘pra) Hop+py) - (21)
rb : ‘
a .

D. The Basis and Other Details

- :For each state of ethylene we used the o orbitals from a Hartree~Fock
| (:3.lculad:icn9 on the same state to define the h°T® in (7) for use in |
the m=-electron calculations for this state.  One Hartree-Fock calcu-

lation was performed on allyl cation and the resulting o orbitals used to

. define h®OT€ in (7) for all of the allyl cation 7 electron calculations.

| " The basis set consisted of a (9s 5p) set of Gaussian functions on each
carbon and a (4s) set on each hydrogen, as suggested by Huzinaga.7 This
was contracted (as suggested by DunningB)to a (4.5-3p) on each carbon and (2s)
‘on each hydrogen for ethylene and to 2 double-zeta basis (4s 2p) on each carbon
é.nd (2s) on each hydrogen for allyl. In order to describe Ridberg-

like excited states, it is necessa:ry to also include more diffuse functions,

and consequently, the above basis was supplemented by three additional

diffuse 7 Gaussian functions (orbital exponents of & = 0.0365, 0.0116, and
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0.0037) on each carbon for ethylene and by two additional functions

{2=0.382 and 0.0127) on each carbon for allyl cation. V -

3. Resulis

The GVB orbitals for the 5 orbitals of ethylene are depicted in Figure 1.
Included in this figure are the orbitals for the ground (N) state using both GVB
and GVB(SP) wavefunctions, and the GVB(SP) orbitals for the first triplet (T) state
and the first excited singlet (V) state. The ground state geometry is used for
all three states. Table I contains a summary of the calculated energies
and includes HF resulis for comparison.

The allyl cation GVB 7 orbitals are depicted in Figure 2. This
figure includes the GVB and the GVB(SP) orbitals for the ground (*A,) state
and the GVB(SP) orbitals for the next four states (°B,, 'B,, °A,, 2'A)).

Table I contains a summary of the calculated results.

4., Discussion

A. Ethylene

In the HF (or MO) description, the 7 wavefunctions for the N, T,

and V states have the following form
N: Ty

T: '”g”u -

V: 7rg1zu + ﬂ'u‘n'g

u'g
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where the (occupied) orbitals are (delocalized) symmetry functions.

From Figure 1, we see that the N state GVB rorbitals are relatively-
localized, much és in the VB description. However, the changes in these
orbitals from the atomic form have increased the overlap from 0.34 (for

atomic orbitals) to 0.59. Thus one can view the GVB orbitals as

P 0 = N[ ¢‘l2p,é * M)zpr]

¢7’r = Nldypp + 2Pgp,]
where 2 is approximately 0.14. If one of the 7 orbitals is ionized, the

remaining orbital becomes completely delocalized
¢1rg = N((‘prﬂ * ‘¢2pr)

just as in the MO description (If readjustments are allowed in the o core for
the ion state and spatial projection is used for the entire wavefunction, a
more localized representation may be obtained). _

| For the excited states, we find that the excited orbital ((Z)r) remains close
enough to one of the nuclei so that the unexcited orbital (¢ ﬁ) is still somewhat
localized (near the other nucleus); the unexcited orbital is, however, much
less localized than in the ground state. Note, in particular, thattheunexcited
orbitalsofthe V and T states of ethylene are very similar, but that the excited
orbital, although possessing the same nodal structure in both states, is far
more diffuse in the V state than in the T state. This same basic character
was found earlier in the HF wavefunctions by Dunning, Hunt, and Goddardg
and has been discussed in detail elsewhere. 10,11

In Figure 1, we show the GVB(SP) orbitals for the N state, which
Should be compared to the GVB orbitals alsoin Figure 1, The GVB(SP) wave-

functions permits the two orbitals to be inequivalent. As a result, one orbital
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becomes tighter but more delocalized while the other becomes more diffuse
but more localized. The resulting more delocalized orbital is quite similar -
in form to the unexcited orbitals in the GVB(SP) description of the T and V
states. | |

B. Allyl Cation

One would expect the allyl cation 7 orbitals to be rather similar to
the ethylene pi orbitals. The major difference in the two systems should
result from the fact that the allyl cation has a net positive charge and con-
sists of three centers. The eiffect of this net positive' charge should be to
reduce the spatial .extent of the orbitals as compared to the analogous
ethylene orbitals. The presence of three centers should result in a delocali-
zation of the orbitals. These expectations are most evident in a comparison
of the 'B, (first excited singlet) state of allyl cation with the V state of
ethylene. In this case both orbitals of the fBZ state of allyl cation are quite
tight, whereas the excited orbital of the ethylene V Stéte is very diffuse |
(see Figures 1 and 2).

Fur%her evidence of the similarity of the pi-electron states of
ethyléne‘and allyl cation is found in the orbital energies and
excitation energies summarized in Tables I and II. The excited states in
both systems may be best described as one-electron excitations from the
ground sté’ce, leaving the other orbitai essentially unchzinged. The excita-
tion energies in the allyl cation system are lower because the net positive
chargeinthis system leadstoa gi‘eater stabilization of the excited orbitals as
compared to the ethylene system. For exé,mple, the excitation energy to the V

state of ethylene was found tobe 8. 27 eV'while the excitation energy of the 'B,
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state of allyl cation was found to be 5.80 eV.

C. Comparison With Other Methods

In Table 3 and 4 the results of GVB(SP) calculations are compared
with those from HF, GVB (without spatial projection), and full configuration
interaction (CI) calculations, all performed with the same basis set and o
core. | |

The agreement between the GVB(SP) and full CI calculations is

| excellent, the largest disagreement being 0. 017ev (0.4 kcal)12 for

the allyl cation ground state. In comparison the HF .energy for this state

is 0. 028h (17.5 keal) above the full CI energy. Thus tiue GVB(SP)

method provides an energy essentially identical to the full CI energy -

while providing orbitals useful for qualitative understanding of the

system and gqualitative extension to.larger molecules. . :

Table 4 contains a comparison of excitation energies for allyl

“cation as calculated by various methods. Peyerimhoff and Buenker13 reported
| CI calculations for allyl cation. They used a [3s1p/1s] basis contracted

from a (10sbp/5s) primitive basis. Our basis is considerably more extensive,
(9s 5p/5s) contracted to [4s2p/2s] plus a diffuse function, and hence should

lead to more reliable excitation energies.

5. Summarg

We find that GVB with spatial projection leads to a wavefunction
with energies very close to the full CI wavefunction (CI within the 7 system).
The GVB (SP) wavefunction also yields a simple interpretation of the wave-

functions for the various states.
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Appendix A. The Core Potential 5

Consider a wavefunction of the form
Ab,09,B,00,8. .. ¢ 09 8¢ ) C (A-1)
The variational equaﬁon for the optimum orbital qbv is
(A-2)

where Hv has the form

H, = h+ ), (23 - K;) o - (A-3)
j=1

if in solving (A-2) we restrict ci)v to be in the space orthogonal to the doubly-

occupied orbitals

14, ,',,¢q} , (A-4)

- Now consider the case of a more complicated N~-electron wavefunction

Q@ ore Boal) - (A-5)
where
®Cdre = ¢1&¢1B¢2a 2B e ¢qa¢qﬁ (A-6)
and q)val is 'some (N* = N - 2q) many-electron function.
Since each orbital in @ is doubly occupied, then in the wavefunction

: core
(A-5) it is no restriction to require that (I)val be orthogonal to each orbital
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of @COI‘ e

a1 (L - N)G@ Pry = 0 (=1,0) (a-1).

'As a result if @val is solved for within the space orthogonal to the core
orbitals (A-4), then the only surviving terms in the energy expression

involving both the core and valence orbitals have the form

(w2 @ -k, (A-8)
J
‘where [ and v are functions belonging to the valence space, i.e., the space
orthogonal to the set (A-4). | ‘
Thus in the many~electron space s’atisfying (A~T), the variational
wavefunction @Val can be obtained by solving for the optimum wavefunction

of the form

using the N’ = N-2q electron Hamiltonian

N N’
3 = ) neoreE) + ), —fl-— | (A-10)
i i>j U

where hcore(i) is given by (A~3). The only restriction made here is that
the core orbitals are not reoptimized to reflect changes in the valence

orbitals.
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However given the (i)c ore the use of (A-9) and (A-10) inﬁfolves no
additional approximations, hcore(i) includes all the proper terms that arise -
from the Pauli Principle. The major advantage of the above procedure is

that the two-electron integrals involving the core orbitals are processed

only once to form the matrices
( ulhcore l )

With these matrices one can carry out varioustypes of calculations(HF, GVB, CI)
onthe various excited stateswhile working with only a small number of electrons,
two in the case of ethylene and allyl cation. In this case the calculations
take no longer than if only two electrons hgd been present. '

The h®°"® forms an effective poteritial for movement of the valence
electrons. This differs from the various pseudopotential methods and the usual
effective potential methods in that we do not approximate the way that the

field terms due to &°FC enter the wavefunction.

9
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Figg\re Cagtions

1.

The GVB(SP) orbitals of ethylene. The nodal line is indicated by long
dashes. Positive contours are indicated by solid lines and negative
contours by dotted lines. The positive contours correspond to amplitudes
of 0.003, 0.00646, 0.0139, 0.03, 0.0646, 0.139 and 0. 3; and similarly

for the negative amplitudes.

The GVB(SP) orbitals of allylcation. The amplitude of the most diffuse
contour is 0.05. Each subsequent contour has an amplitude of 0. 05
greater than the previous line. The orbital amplitudes are shown

in the planes containing the carbon atoms and perpendicular to the
molecular plane. Thus, the two halves of each ﬁlot are bent to an

—

angle of 120°.
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APPENDIX II

THE GENERALIZED VALENCE BOND
DESCRIPTION OF ALLYL RADICAL
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J. Introduction

The pi-orbitals of unsaturated organic compounds are chemically
the most active part of the molecules and as such have been the subject
for much theoretical investigation. In a previous paper, 2 we reported
generalized valence bond (GVB) calculations on ethylene and allyl

cation, including some excited states. In this paper we réport GVB
calculations on the ground and excited states of allyl radical, allowing
simultaneous optimization of both the spatial orbitals and the spin
coupling while generating a spin eigenfunction. 3

The pi electron system of allyl cation is the smallest pi system
displaying what is known in valence bond (VB) theory as resonance., The
GVB approach is well suited to describing resonance as the wavefunction

may be expressed as a linear combination of the two classical resonance
forms; However in fhe GVB approach the shapes of the orbitals are
optimized (rather than assumed to be atomivc—like as in VB). We find

that the ground and first-excited states are well described as the resonant

and antiresonant states,

thus, providing a more rigorous quantum mechanical basis for the

concept of. resonance,
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A. The wavefunctions

a. : Hartree Fock

The Hartree-Fock (HF) wavefunction for the ground state of allyl

radical may be written in the form 4

QA pep B e 00 Bo ap, e, o, o

where for allyl radical there are ten doubly-occupied & orbitals,

one doubly-occupied 7 orbital, and one singly-occupied r orbital

“(here o and 7 indicate orbitals that are symmetric and antisymmetric,
respectively, with respect to reflection through the molecular plane).
Many low-lying excited states involve excitation of an electron from a

7 orbital to a higher # orbital and are described by HF wavefunctions

of the form
12ty oty Boy o] - (29)
|25y 00y POy 0y (26)
- oT |
Alege, avp Py ] | (3)

.’Where @cr denotes fhe produc’c—of alvln 6f the doubiy-occ{xpiéd ‘sigma |
orbitals (including spin terms). The electron correlation errors in

(1) and (2) are expected to be much larger than for (3) due to the presence
of doubly-occupied 7, or m, orbitals in (1) and (2) but not in (3). In fact

we will find that neither (2a) nor (2b) yields a reasonable description of
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the lowest excited state of allyl,

b. The valence bond wavefunction

In the valence bond (VB) wavefunction of allyl there is a
singly-occupied atomic 7 orbital on each carbon atom. We will denote

these orbitals as Xgr Xor and X, a8 indicated in (4)

/\ @

. X%

These orbitals may be coupled into the two different doublet states

indicated in (5) and (6)

~ /\ - il Ye | | ¥, (5)
: T

/\ : ‘Xr Xe - \1,2 (6)
Xy

where orbitals in the same row of the tableau in (5) or (6) are singlet

paired (i.e., paired in a bonding manner). The waveiunctions corres-

bdnding to () and (6) are

U o= QLe(Xy Xe ¥ XeXg) XpaBe ]

al®gxyxexp(aB - pa)a] (72)

A (2 Xy Xy Ko @B - B)]
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J&
0

al®s(x, xg + X Xp) xgefal

i1

e (X, xoxy (@B - Fa)a ] (7h)

= Qleexp Xy X, (Baa -~ cap)]

These wavefunctions have the same energy and are referred to as the
simple VB wavefunctions, It is perhaps important to note that the
structures (5) and (6) differ only in the way that the spinfunctions

are coupled. They involve quite equivalent spatial orbitals.

Allowing the wavefunction for the system to be a superposition

of ¥, and ¥,, leads to an optimum wavefunction of the form

RARE B A RTA (82)
with an energy lower than E, (the energy of ¥, or ¥,),

E

@-< By,

and a second wavefunction

, = A+ (8b)

v a and ¥ g are the antisymmetric and symmetric combinaticns of the

simple VB wavefunctions (5) and (6). The energy change

E_.=E -E

res (9a)

a

resulting from the favorable combinations of the VB states is generally
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called the resonance energy. We will refer to the energy increase

Eantires = ES - B (9b)

occurring in the unfavorable combination \IIS of VB states as the

antiresonance energy.

From (7) the wavefunctions in (8) can both be written as
o= A[2eXpXxy X9y (10)

where the spin functions @i are

@
"

aQ 2o0aB-(aB+Ba)a | (11&)

& - (ap - Ba)a, ' (11b)

]

Thus proceeding from the simple valence bond wavefunction
as in (5) or (6) to the resonance state in (8a) is equivalent to optimizing

the spin function in (10).

¢. The generalized valence bond wavefunction

The generalized valence bond (GVB) wavefunction is formally

the same as the VB wavefunction
al2,9,9,9.61 (13)

but the orbitals ¢, ¢, and ¢ . and the spin coupling & are all
solved for se]f-—consistentlys(rather than using atomic orbitals
as’in the VB wavefunction). Although the GVB orbitals are allowed
to have any shape, we will find that they often are each mainly con-

éentrated near a different carbon atom. In such cases the optimum GVB
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orbitals will be denoted as ¢ 0 Pos Op (indicating the location of
the maximum amplitude of each orbital).

There are two linearly independent ways of coupling three
electrons into a doublet. For example, the spin functions (7a) and (7b)
or alternatively the spin functions in (11) and (12) may be used. We
will find it convenient to use the orthogonal spin functions of (11) and

(12), denoting them as

6, (aB - Ba) a : (14)

6, 2aaB -~ (aB+ Ba)a

referred to as the Gl and G2 (or GF) spin functions3 Note that
electrons 1 and 2 are coupled into a singlet state in g, and into a
triplet state in 6,. The optimum spin function for (13) is given
by o -
& =C,0, + C,6, | S @s)

In discussing such wavefunctions it is often convenient to use the

diagram
Pa qL"lo
(16)
Ye
to indicate the wavefunction [ [¢® o® a gt»b 0] c 6, ] (that is, singlet
coupling of _gba and qbb) and
Pa |Pc

(17)
?5 |
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to indicate the wavefunction (] [@qua@bqﬁcez] (that is, triplet

coupling of ¢ and dﬁb).
In terms of these diagrams the resonant VB state (8a) can

be expressed as

Xl * X X oo X
= - (18)
Xy X Xg
and the antiresonant VB state (8b) can be expressed as
X % X% [ %
*e Xy Xg

[ compare with (10) and (11)].

(19)

' d. The core Hamiltonian

Ag discussed in reference 2, the problem of finding a wave

function of the form
~ a[@core@val]
may be reduced to that of finding the wave function
ate,) | (20)
if (i) the core is a product of doubly-occupied orbitals and (ii) if

the orbitals of (E’va are taken to be orthogonal to those of @co . In

1 re

solving for the valence wavefunction (20) the Hamiltonian will have the form
’ n n A
T T 1 4 :
se= 2o h,G) + 2 — S (21)
i=1 i>j  ij

where n7 is the number of electrons in w-orbitals and

q | |
.Z}' (23’j - Kj) | (22)

hc(i) = h(i) +3=1
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includes the potential due to the q doubly-occupied orbitals of the

sigma core in addition to the usual one electron terms, h(i). This
approach is valid for completely general treatments of the valence
wavefunction, including GVB or CI. For allyl radical, the sigma-
elecj’éron core was formed from an ab initio HF calculation on the ground
state of allyl cation,

e, The basis and other details

The basis set consisted of a (9s, 5p) set of Gaussian functions
on each carbon and a (4s) set on each hydrogen as spggested'by
Huzinaga, %a This was contracted to a double-zeta basis (4s, 2p)
on each carbon and (2s) on each hydrogen, as suggested by Dunning, ob
The above basis was supplemented by two additional pi-Gaussian
functions6 cn each carbon with orbital exponents of 0,382 and 0, 0127,
All calculations used the following geometry:7 RC c= 1 40 z‘i,

R, = 1.08 A, and all bond angles = 120°.

CH
I, Results
In Table I we compare the energies obtained for the ground
state of allyl from various methods. Comparing in each case to the
energy for full CI the energy in the GVB wavefunction is 0.13 eV = 2.9 keal,
the error in the HF waveunction is nine times as great (27. 2 kcal) and
the error in the VB Wévefunction is 14 times as great (41, 2 keal),
The GVB r-orbitals for allyl radical are depicted in Figure 1.
Inc ded in this figure are the orbitals of the ground state (12A,) and

of three excited states (12B,, 22B,, and 3?B,) obtained by the excita-
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tion of a 151 orbital. The energies for these wavefunctions are in
Table Ii.

As can be éeen from Figure 1, the lowest two states involve
only orbitals with the characteristic extent of atomic 2p orbitals, )
hence we refer to them as valence-like states. The other two states
each contain a very diffuse orbital and will be referred to as Rydberg
states,

| The first excited state in Figure 1 contain GVB orbitals -
each of which is localized near one of the centers. For the ground
state, however, the optimuﬁ orbitals are found to be delocalized,
¢,and ¢ are symmetric (b,) and ¢, is antisymmetric (a,). We

shall consider why this ocecurs,

A. Symmetry and delocalized orbitals

The states in Figure 1 all contain an odd number of electrons
in w-orbitals (i.e., orbitals that are antisyinmetric with respect to
reflection on the molecular plane). Thus these states must each
correspond to either the B, or A, representations of the C,
symmetry group of allyl. To determine which we must f‘md how
the wavefunction changes upon reflection in the symmetry plane

interchanging the terminal groups of allyl. Denoting this reflection

‘as 0, then

(23)
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I Mixing the x g and Xp orbitals as

~q)a = ¢osf Xg + sinf Xr

(27)
¢y = -sind Xg ¥ cosf Xy
we find that
¢ql % C[Xg | Xe
L = 2 i 29 28
o (cos®6 + sin?0) Xy (28)

and hence the wavefunction and energy for the resonant state (28)
iSLuhéhangéd by mixing the xﬁand Xe orbitals. Thus even with unsymmetric

orbitals of the form (27), the tétal wavefunction (28) has A, symmetry.
The use of (27) in (26) leads to

¢, Py Xg Xg Xy Xp Xg Xpl!

(29)

- T . . 2 . 2
¢, | = -sin€cos® Xe + sin€cos®© Xe +(cos ©~sin ©) Xe

and hence a real change in the wavefunction and hence in the energy.
However (29) is still of B, symmetry. 4

On the other hand, with a mixture of the two spin couplings

Xp Xp Xyl Xe
Xe - Xy

or



-103-

Pa %o Pal%e .
+ C, , (31)

C, 1o,

we in general get mixtures of B, and A, symmetry. One exception

occurs: if (27) is replaced by

b, = = )
a {z(xi"rxr : (32)
9, = = (-x + X.) '

-then the qba and gbc orbitals are of b, symmetry and ¢>b is of a, symmetry,

*so that both

and
o P
(332) (33D)

are of?A, symmetry. Thus for this particular special choice of
the coefficients in (27), both spin éouplings are allowed without
destroying symmetry. Since the wavefunction (28) leads to the same
énergy for all (nonsingular) choices of the coefficients and since the

choice (32) allows an additional term (33b} of proper symmetry,

qba, ‘Pb ¢a Pe.
¥ = C, + C, (34)
q)c . ¢b . :
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" not allowed for other choices of the coefficienté, we expect the
optiﬁnun wavefunction to involve delocalized orbitals as in (32) and
for small admixtires of the second spin coupling (33b) to occur in (34).
This is precisely what is found in the GVB wavefunction for the ground
state. The orbitals are shown in Figure 1 and the spin coupling
coefficients are C, = 0.118 and C, = -0. 928,

Restricting the GVB wavefunction so that C, = 0 and solving for the

optimum orbitals leads to an increase in the energy of' 0. 91 keal, 8 However

with C, = 0 we can recombine the GVB orbitals into localized orbitals, as

¢y_ (¢a = q?b)/\/’z
' (35)
‘pr = (q’a + ‘Pb)/\[z '

leading to the orbitals in Figure 2, Note the close comparison of these

orbitals with the GVB orbitals of the ﬁrstvexcited state (in Figure 1).
In our qualitative discussions of allyl we will use the localized orbitals
of (35) aithough they yield an energy 0. 91 kecal higher than the optimum

GVB orbitals for the 2A, state.
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JV. Discussion

A. Resonance

As we saw in .section ITA, VB considerations indicate that
there should be two valence-like states of allyl radical, the classical
resonant and antiresonant states, (7) and (8). In accord with the VB -

‘picture the GVB results lead to only two valence-like states.
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The ground and first excited states of allyl can be described as

gaﬂ % qDc % (’Oc <Dr
= - (36)
. ’qor P %
and’
cp'Q (’Or q)c % gac c’Dr ~
= + ' (37)
% | % 0 ,

using for @), ¢, and 2, either the atomic orbitals (i.e. VB) or the
localized orbitals from self consistent GVB calculations on either

the ground or excited states. From (36) we will d;eﬁne the resonance
energy(of the ground state) of allyl as the energy stabi]ization of the

resonant wavefunction (36) as compared to the single configuration

res

wavefunction
% %
" (38)
using the same orbitals, That is
E_=E (//'/\_)‘ - E (TS - oY) (39)

Similarly from (37) we define the antiresonance (of the excited state)

of allyl as the destabilization energy of the antiresonant wavefunction

(37) as compared to the same single configuration wavefunction (38)
E,tires= B (7 S+ 27 ) - E () (40)

Using the atomic # orbitals we find that the resonance energy

is
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Eres = 15,9 kecal

while the antiresonance energy is

E = 57.9 kcal

antires _
With the optimum localized GVB orbitals from the ground state we find
Eres = 11,4 keal

Ea,ntlres = 69,2 kecal
and using the optimum GVB orbitals from the excited state leads to
Eres = 9,4 keal

E, = 61.9keal
(See Table III for a tabulation of the energies). The best estimate of

the resonance energy is that using the ground state orbitals, i.e,

Er« 5= 1{[. 4 keal; we include the other values partly to indicate how
little the resonance energy changes with rather large changes in the
orbitals (for example the VB wavefunction yields a ground state energy
38. 3 keal higher than that of the GVB wavefunction).

This theoretical estimate bf 11, 4 kcal for the resonance energy
is in reasonable agreement with the value of 10 + 1,5 kcai from thermo-
chemical considerations. 9

From Table II we see that the antiresonance energies are
much 1argér than the resonance energies. This arises from the
nonorthogonality of the wavefunctions

AN and X | (41)

- Using (36) and (37) the energies are given as
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E(2A2) :M = H..+ (le I SHu)

148 1 (T +9)
and : ' (42) -
E(ZB,_) - Hn - Hyp = H.. - (sz - SHu)

i-s tOTEs

where Hy, is the energy of (the normalized) wavefunction (38); Sis
the overlap between the two wavefunctions of (41) and H,, is the matrix
element between the wavefunction os (41). From (42) we see that

E

Birss © 18 A
‘The orbitals of the VB, GVB (*4,), and GVB (2B,) wavefunctions lead
to 8= .57, 8.= .72, and S =,71 respectively,

B, The Fused Ethylene Model

An alterna{:ive approach to building up the states of allyl is
to start with the states of ethylene and to examine how these states
are modified byn fusing a third = orbital onto the ethylene. The GVB
description of ethylene2 yields two valence-like states, the ground

(N) state and the first excited triplet (T) state which can be described as

N: [, &, o 49
¢ |

T: L (45)
. |

in terms of localized orbitals on the left and center carbons. These
states are found to be separated by 4.2 eV = 9% kcalg in the GVB

description, Fusing on the qu orbital leads then to zero order
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(doublet) states of the form

(j)ﬁ ¢c -
(46)
¢r
and
qﬁ,@ ¢r
(47)
¢c
Letting the orbitals of (46) and (47) relax we may consider that the
ground state (24,) of allyl arises from (46), being stabilized by the
amount of the resonance energy, 11.4 kcal. The first excited state
of allyl can then be viewed as arising from the excited’ state (47) of
ethylene. Defining the destabilization energy as
Edestab =E (& 7T X)) - E4m) (48)
we find that |
Edestab = 30,1 kecal

(using the excited state orbitals), These. viéws are illustrated in
Figure 3.
In this view the 2A2‘-* 2B, excitation energy of allyl should
be comparable to the N - T excitation energy of ethylene. In fact
the numbers are 3,2 eV for allyl and 4.2 eV for ethyiene. 'The basic
. reason for the decrease in the excitation energy in going from ethylene
to allyl is that (46) involves an antibonding interaction between the
new orbital gbr and the ethylene N state orbitals % and ¢C while

(47) involves bonding interactions between ¢, and the ethylene T state
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orbitals. 1 Thus the energy separation between (46) and (47) is only
2.5 eV. The stabilization and destabilization effects attendent to the
- relaxation of the wavefunctions (46) and (47) to obtain the optimum
wavefunctions then leads to an increase in the energy separation by
0.7 eV yielding the final excitation energy of 3.2 eV,

C. Comparison of GVB and MO descriptions

In the simple MO description of allyl there are three MO's:
1b, is the doubly occupied bonding MO, 1a, is the singly occupied MO
and 2b, is the empty antibonding I)/IO. The ground'state is then
| 2A,: (1b,P(1a,) o T (49)

and excited states areobtained by exciting from 1a, or 1b, o 2b,

or ia,:
— *By: (1b,)(2by) (50)
2B,: (1b,)(1a,)? (51)
24,0 (1by)(12,)(2b,) | (52)

In this description one would exp-ect either (50) or (51) to be the first
excited state, correctly prédicting the symmetry of this state. |
We now want to compare the MO and GVB description,
However since the model in (49) - (52) is clearly only capable of
describing valence excited States, we will compare these methods
using wavefunctions based on just three valenc‘e-like orbitals, 12
1b,, 1a,, and 2b,. The results are indicated in Figure 4 and Table V.
The MO description leads to the (1b,)(1a,)* state at 5.4 eV

excitation energy and the (1b,)?(2b,) state at 6.3 eV, However in the
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GVB-CI description the first 2B, state is at 3.6 eV: while the second
_is at 8.9 eV, The problem here is that to expand the GVB wavefunction
for the antiresonant state (37) in terms of MO's requires both the
(1b,)(ia,)? and (1b,)?(2b,) configurations With roughly equal coefficients.
The first excited state of allyl is simply not described by any one MO
configuration,

As a further test of the MO approach we included the full
basis (12 functions) and carried out a CI calculation allowing all
single excité.tions from (49). This should closely approximate the
HF wavefunctions for the excited states. As shown in Table IV this
does not eliminate the problem with the HF description of the first *
2R, state, This difficulty is intrinsic to the single states determinant
nature of the wavefunction and hence is not overcome by carrying
out HF calculations with a complete basis, |

On the other hand with the GVB description one obtains a
quantitatively accurate description of both. the ground and first excited
state of allyl as simply a recoupling of the spin functions.

As will be reported in later papers we have carried out
similar studies on the lower excited states of butadiene13 and benzene
finding exactly the same situation. The valence excited states involve
essentially a recoupling of the spin functions and are well described

with the GVB wavefunctions but very poorly described with MO's,
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D. Excitation energies

In Table IV we present the results of configuration interaction
(CI) calculations performed on allyl radical using the identical basis
set and sigma-electron core as was used for the GVB calculations.
First, we note that there is good agreement between the results of
the GVB and full CI calculations, For example, for the ground state
the difference between GVB and CI is only 0,00465 h = 0,127 eV. This
close agreement with the full CI wavefunction justifies interpreting
the wavefunction in terms of GVB orbitals.

In Table VI, excitation energies from various sources are
compared. Experimental resudts12 are not definitive, placing the
2A, --2B, vertical excitation energy at 3.04 to 5.0 eV, in reasonable
agreement with our value of 3.2 eV, The best previous theoretical
siiudiesrz used a less extensive valence basis and omitted diffuse
' functions. As a resull they miss the Rydberg excited states and
obtained a 12B; <2A, excitation energy 0.7 eV higher than our value.

- From Figure 1 we see that the 2°B, and 3°B, states each
involve one very diffuse orbital, i. e. a Rydberg orbital, From the
shapes of the orbitals the 2B, state should correspord to an

(2°B,) 1a, =3pb, - (53)
excitation while the 32B, state should correspond to a

(3°B,) 1a, -~ 3db, , (54)
excitation (the dr orbital is in the reflection plane perpendicular to

the molecule), Although we did not solve for the GVB orbitals of the



-113-

2A, Rydberg states we found from our CI calculations that a ?A,
state is0. 006eVlower than the 32B, state. This is consistent with the
description (54) for 32B, since
P (224,) 1a, =3da, | (55)

would be expected to be close to (54).

Our calculated quantum defects are ¢(22B,) = 0.40
and {(3%B,) = -0.29. The value for the 3p orbital is consistent with
the typical value of 0.50 (e.g. §3p = 0.50 for butadienels) for np
Rydberg orbitals., Usual nd Rydberg orbitals have {~ 0, Our
negative value reflects the inadequacy of our basis for ‘describing
d Rydberg states. - | |
V. Summary

The genefalized valence bond description of allyl radical
is qﬁantitativeiy accurate, leading to energies only a few kecal from
full configuration interaction calculations, Qualitatiﬁrely the GVB
wavefunctions lead to a description of the ground and first eﬁcited
states of allyl in close agreemént with the usual valence bond idea .of_
resonating structures.

SRR N

Indeed the calculated resonance energy of 11,4 kcal is in reasonable
agreement with thermochemical estimates of the excilation stabilization

encrgy of allyl radical. These results provide a direct rigorous quantum

mechanical verification of the validity of the concept of resonance.
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Table I: Comparison of Ground State Energies for Allyl

Energy (h) Error (eV) Error (kcal)
VB -116. 35544 1.79 41,2
HF -116,377697 1.18 27.2
GVB-GF ~-116.41497 0.17 3.8
GVB -116,416438 0.13 2.9
-116.421089 0.00 6.0

CI
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(all using the same basis)

Table II. Energy Quantities for the GVB Wavefunctions of Allyl Radical

Total » @) Excitation
State Energy (h) . Spin Couphngc Energy (eV)
¥ 2

1A, -116.416438 0.118° -0.928 0

-116, 41499 0.0° 1.0 (0. 039)
12B, -116, 297120 1,0% 0.0 3,247
22B, ~116, 237380 0.999¢ -0,042 4,872
3°B, ~116. 209966 0.999% 0.030 5,618

(a) Refer to Equation 15.

(b) In this calculation the spin coupling was restricted so that ¢, = 0,

(¢) The orbitals are ordered as ¢£¢r¢c or in terms of Figure 1 as qbacﬁ ccﬁba

. (d) The orbitals are ordered as ¢a¢b¢c‘
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Table III. The Resonance Energies and Related Quantities

for Allyl Radical -

Orbitals Used

. GVB (2A,) : GVB (B,)
Atomic Ground State® _ Excited St‘afte
N -116,33012° -116, 39681 - =116, 39579
P e N -116, 35544 -116, 41499 -116, 41080
N+ X -116,23784 -116, 28663 -116, 26712
Resonance Energy ‘ A :
(®A;) (keal) 15.89 11,40 9,42
Antiresonance Energy .
(B,} (keal) 57.93 69. 16 61,94
b
R | o
" -116,27173° -116. 338301 ~116.34502
C . ' ’
Destabilization Energy
(B,) (kcal) 4 21,27 32.44 30, 07

The orbitals used here are the localized orbitals from the GF spin coupling
(c, = 0 in Eqn. 15). This wavefunction leads to an energy 0. 88 keal above the
optimum energy of the %A, state.

This wavefunction has orbitals qbﬂ and qbc coupled into a triplet state and

then qbr is coupled to yield a doublet,

Using ethylene 7 orbitals for ¢, and ¢c and the methylene (3B,) 7 orbital for
¢. yields energies of -116.36823 and -116.27606 for the G1 and GF coupled

wavefunctions.
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Table V. Excitation Energies for Allyl Radical (all values in eV)

Hirst and Limmett

- Present Work nggrir;léloff (Semi~
State Duenzer . a
GVB Full CI  (Ab initio CI) empirical CI)
: (Ref. T)

%A, 0 0 0 0

’B, 3.25 3.20 3.79 2,42
2°%B, 4.87 4.70 8.0 9.791
2 %A, ——- 5. 41
3°B,  5.62 5. 47

cation 7.04 6.74

2 p. M. Hirst and J. W. Linnett, J. Chem. Soc. 1035 (1962).

W T
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FIGURE CAPTIONS

~The GVB orbitals of various states of allyl radical,

The drderi,ng of orbitals is such that orbitals 1 and 2
are singlet coupled in the first term of Equation (4)
and orbitals 2 and 3 are singlet coupled in the second
term. The most diffuse contour has én amplitude

of 0,003, The ainp]ih;xde increases by a factor of
2.1544 at each/contour cérrequnding to a factor of

10 for three contours,

The GVB orbitals of the ground state of allyl radical
obtained using.c; = 0 iﬁ Equation (34) while ontimizing
th'é orbitals and then traﬁsforming using Equation (35).
The valence states of allyl radical in the VB and

GVB pictures,

The relative energies of the MO, GVB, énd CI
wavefunctions., All energies are relative to the full

CI wavefunction,
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I. Introduction

Previously we reported the generalized valence (GVB) wave-
functions for allyl radical1 and s-trans-1, 3-butadiene, 2 In general,
the total energiés and excitation energies obtained from the GVB wave-
function were in good agreement with full configuration interaction (CI)
results, The GVB Wavefunction3 explicitly includes the permutation symmetry
and spin symmetry so that the total wavefunction will have the proper
symmetries for arbitrary shapes of the orbitals. It was considered that
removing all restrictions on the orbitals (but ensuring that the total
wavefunction have the proper spin symmetry) would result in the
shapes of the orbitals having physical significance and thereby lead
to useful chemical concepts. This has proved to be the case for many
system's; however an examination of the results for allyl radical and
butadiene suggested that the individual orbital shapes were being
restricted in order to obtain total wavefunctions possessing the correct
spatial symmetry. This led us to consider generalizing the GVB wave-
function by including a projection operator that ensures the total
wavefunction has the correct spatial symmetry for an arbitrary set
of spatial orbitals., The resulting wavefunction is denoted as GVB(SP)
where SP indicates spatial projection.

In this paper we present the GVB(SP) wavefunctions for the
various pi-electron states of allyl radical. As anticipated, the

individual orbitals are very different between the GVB and GVB(SP)



~-130-

wavefunctions, indicating that the GVB orbitals were restricted by
spatial symmetry requirements, We find that the GVB(SP) wave-

functions lead to simple chemically reasonable descriptions of the
states of allyl radical.

In section II, we shall develop the GVB(SP) wavefunction by
examining the valence bond (VB) wavefunction and generalizing this
wavefunction while retaining the basic form of VB wavefunction.

Section III presents the results of our calculations. Section IV includes
our interpretations of the results and comparisons with other resulis,

II. Calculational Considerations

In this section, we shall develop the spaﬁally projected
Generalized Valence Bond (GVB(SP)) wavefunction by examining,
in turn, the Valenéé Bond (VB) wavefunction, the Generalized Valence
Bond (GVB) wavefunction, and the GVB(SP) wavefunction to demonstrate
the successive generalization involved in these wavefunctions.
QOur discussion will be limited to three electron systems and oriented
to the pi-electron systems of allyl radical,

A, Valence Bond Wavefunction

The VB wavefunction may be represe.nted as a linear combination
of bonding structures formed using atomic orbitals for each electron,
Considering only the pi electron'system the three electron system
of allyl radical has two equivalent bonding structures usually represented

by the two VB canonical structures
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These two structures correspond to the two independent ways of
coupling three spin orbitals to form a doublet state.

Let- Xps Xgs ’c}lld X Ldenote atomic orbitals located on the
right; center, and left centers respectively. The VB wavefunction

for a threerelectron doublet may be represented as

zl/VB = ¢, ¥, + Cy ¥, ' (2a)
oVB _ . Xe Xg ‘e, X X | (2h)
X Xg

Where'two orbitals in a hor:{zontal box indicates that the orbitals are
singlet coupled. II: the VB method one optimizes the structure
mixing coefficients, ¢, and c,.

In the allyi radical pi-electron system, the two forms are
equivalent] thus the two solutions are

c; = ~C, | \(?;a)

Cy=Ci (3b)

referred to as'the resonant and anti-resonant solutions, respectively.
The wavefunction correspondihg to the individual terms of

(2) are
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Y= A[E (XX, + X, X) X.@Ba] (4a)
= A3, XX X (aB-Ba)e]

Y = a-[@?o.(x;rxc+ X X)X f2Bal | (4b)
= e x.Xx,x[as-Bpa)l
= A [ 2 xX X (aBa-0ap)]

where é% represents the product of all doubly occupied sigma orbitals

and ¢ is the antisymmetrizer. Using (4), Eqn. (2) can be written as

WP=alax ¥X,E] | (5)
where ,
6= c,(apa-Bac) + ¢, (afa-aapf) ~(8)

B. Generalized Valence Bond Wavefunction

The GVB wavefunction is formally the same as the VB

-

wavefunction

ale,e.60.6l | | (7)
except the orbitals by By and @, are solved for self-consistently
(rather than being taken as atomic orbitals as in the VB Wavéfunction)
and the spin coupling ©is simultaneously optimized. .
Although the GVB orbitals are allowed to have any shape, we find
that they typically concentrate each near a different carbon atom..
In such cases, we shall denote the optimum GVB orbitals as ¢, qbc,
¢r indicating the‘location of the maximum ampli’cudé of each orbital.

There are two independent ways of coupling three electrons

into a c'imible’c° We find it convenient to use orthogonal spin functions



-133-
denoting them as
.0, = (aB-Ba)a

(8)
.0, = 20 - (0B+Bd)

referred to as the G1 and G2 (or GF) spinfunctions. Note that
electrons 1 and 2 are singlet coupled in 6, and triplet coupled in 6,

The spin function for (7) is
 O=1¢,0, +¢,0, (9)

It is often convenient to use the diagram

% %|

(10)
%
to represent the wavefunction L[ @(yq)&(pbgac 6,] and the diagram
%] %
(11)

%

to represent the wavefunction a[@cgoacpbgac 6,] .

C. Spatially Projected Generalized Valence Bond Wavefunction |

If in the GVB wavefunction, we have localized orbitals qbr,y
bor Py such that b and @ pare not identical in form, then the two VB

canonical structures are not equivalent

gaﬁ (’oc gor (pc
;ﬁ
gor gaﬂ
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The ground state GVB wavefunction will not be an equal mixture
of these two structures as we expect from VB theory, or conversely
if the ground state is forced to be an equal mixture of these two
structures, the ground state wavefunction will not possess the
correct spatial symmetry. In order that the total wavefunction
posesses the correct spatial symmetry, the individual orbitals must be
delocalized symmetry functions, each individually transforming
according to a particular representation of the molecular symmetry
group. To remove such restrictions upon the shapes of the orbitals
and still generate a wavefunction with the correc‘é spatial symmetry,
we haveintroduced a spatial projection operator into the GVB wave-
function,

‘Let P be an operator which operates only on spatial coordinates
and which generates a state of a definite symmetry. The individual
electron orbitals which constitute this state need not possess any
particular symmetry and will possess components of all symmetries.
The spa,ﬁally projected GVB wavefunction is formed by letting P
operate on the GVB wavefunction |

GVB(SP) N wGVB

v (12)

The spatial projection operator does not affect the spin part of the

wavefunction,
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To determine the affect of introdueing a spatial projection
operator, we will use as a model the allyl pi-electron system and a
spatial symmetry group containing two elements, e the identity and
¢ the reflection through the plane bisecting the system, Generalization
to larger spatial symmetry groups is mathematically straight forward,
but interpretations become more complicated.,

_ Let us first consider the affect of spatial projection upon the
VB wavefunction (2), Since the individual electron orbitals are identi-
cal atomic orbitals, the beha\}ior of the electron orbitals under the

spatial symmetry group is

€Xp = Xp O%e =%

eX, = Xe OX = Xo . (13)
"

S X T Xy TXp =%y

The states that can be formed with these orbitals can be divided into

two groups, those symmetric and those antisymmetric under o.
(Corresponding to B, and A,, respectively, of group C,y of allyl radical.)
The two independent components of the VB wavefunction behave under

the symmetry operator o as

X X Xe Xg
Xﬁ_" Xp

(14a)
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oo X X %
o = (14b)
Xp Xy

By forming linear combinations of these components, we can

generate wavefunctions which are symmetric and antisymmetric under o.

VB o X X
WA = - (15)
Xg X
VB LR X |
Vs = + ' ((16)
Xg X
Defining two spatial projection operators by
P, = e-0 (17)
PS:? e+o - (18)

we see that

' X X
Vo = P, (19)
Xy
X %
u/;’B - P, . (20)
Xy

We note that the antisymmetric spatially projected VB wave-
function (15) or (19) is identical to the resonant state wavefunction

and that the symmetric spatially projected VB wavefunction (16) or (20)
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is identical to the anti-resonant wavefunction. Thus, for a three electron
doublet system, spatial projection of a VB wavefunction is identical in
effect to optimizing the mixing of the two bonding structures.

The GVB(SP) wavefunction is a generalization of the spatially
projected VB wavefunction in the same way the GVB wavefunction is
a generalization of the VB wavefunction; in lieu of atomic orbitals,
the individual electron orbitals are solved for self-consistently.
The GVB(SP) wavefunction for a state of a particular symmetry has
the form

yGVB(SP) _ p,, GVB

7 % Y
=P gpb+cz Rl S (21)

% %

Frequently the orbitals are localized, and in this case, the wave-

function will have the form

\IIGVB(SP) =P ¢ + C, ' (22)

Since @, is not identical in general with Py
TP =P,
as was true for the VB (atomic) orbitals (see (13)). Thus, the
two terms in (22) are not related by a symmetry operation and both

terms must be included in the GVB(SP) wavefunction, For valence

states, we expect @, and Py to be quite similar and one spin *
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coupling comnonent to be the primary component of each wavefunction.

D. The Core Hamiltonian

As discussed previously, 4 the problem of finding a wave

function of the form
al q)core@val] (23)

may be reduced to finding the wave function

ale,,,l (24)
if (i) the core is a product of doubly occupied orbitals and (ii) if the
orbitals of & . are taken to be orthogonal to those of @ . The

val core .
Hamiltonian for the valence orbitals will have the form
2 core T '
=% h@) + B L (25)
i=1 i>j ij
where
core £ ~ ,
h (i) =h()+2 (27, -K.) (26)
i1 J ] ‘
J
includes the potential due to the g doubly occupied orbitals of
the sigma core,
2 Za
h@)=1v., -2 — S (27)
i T,
a ia

in the usual one-electron Hamiltonian, and-n - is the number of pi
electrons. For allyl radical, the sigma-electron core
was formed from an ab-initio ‘H¥ calculation on the ground state

of allyl cation,
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E. The Basis and Other Details

The basis set consisted of a (9s, 5p) set of Gaussian functions
on each carbon and 2 (4s) set on each hydrogen as suggested by
Huzinaga, > This was contracted to a double-zeta basis (4s, 2p)
on each carbon and (2s) on each hydrogen, as suggested by Dunning, 6
The above basis was supplemented by two additional pi-Gaussian
functions on each carbon with orbital exponents of 0.382 and 0.0127,
All calculations used the following geometry: R . & f. 400 A,

cC
RCHZ 1.08° A and all bond angles = 120°.

The lowest four pi-electron states of both A, and B, symmetries
were examined. The total energies, excitation energies, and spin
couplings are summarized in Tablel. Figure 1 depicts the orbitals
for the A, states and Figure 2 the orbitals for ’che B, states. In
Figure 1, the orbitals in the first two columns, 473 and ¢b’ are
singlet coupled except for the 32A, state, for which gba and ¢b are
triplet coupled. In Figure 2, the orbitals in the first two columns
<f>& and qbb are singlet coupled except for the 4°B, state, for which
¢, and ¢ are triplet coupled.

From Figures 1 and 2, we see that there are only two
valence-like states, the 1%°A, and the 1?°B, states, These states
correspond to the resonant and antiresonant states of valence bond

theory. Al of the other states contain one diffuse orbital and are
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designated as Rydberg-like states. We note the similarity between
the orbitals of the 3”A, state and the orbitals of the 2?B; state.
These states are the two possible symmetry combinations out
these three orbitals, analogously to the orbitals of 124, and 12B, states,

which are also formed using the same orbitals.
IV. Discussion

A. Resonance Models

In the GVB(SP) description of allyl radical, there are
two valence-like states, which we have identified as the resonant
and antiresonant states. Examining Figures 1 and 2 we see that
the orbitals for these states are very similar, and from Table I,
these two states have the same spin coupling, both being G1(10).
In the‘ GVB(SP) description, spatial symmetry differentiates
between these two states,

The ground state of allyl radical is of symmetry 24, and is
therefore antisymmetric under reflection through a plane passing
through the center carbon and bisecting the molecule, If in (21)
we imagine that o8 and ¢, are identical in form but are localized
about different centers, then only considering the G1 spin coupling,

the wavefunction for the 12A, state is

P %

(28a)

\If=pA2
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®, ¢ . ¢
S ] B r ¢ (28Db)

q0}:‘ 902

This is the same form as the VB resonance state and the GVB
12A, (resonance) state, 1 Resonance in the GVB(SP) description
arises from the symmetry of the state, To the extent ) and @,
differ, the second tableau in (22) is required, but we see from
Table I, that} C, is very small and the second tableau does not
contribute,

The first excited state of allyl radical has B, symmetry.
Again imagining that @, and @, are identical in form but localized
about different centers and considering only the G1 spin coupling

in (21), the wavefunction for this state is

%, @ |
¥=pg L 'c (292)
1
(’01‘
@, @ ) |
S N £ 151
wr cpﬂ

This is the same form as the VB antiresonant state and the GVB
12B1 (antiresonant) state. 1 Antiresonance arises in the GVB(SP)
description from the symmetry of the state. In general, ®y and’
@, will not have the same form and the second (GF) tableau must
be included in the wavefunction, From Table I, we see that the
GF contribution for this state is small and (29) is the dominant |

part of the wavefunction,
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Let us examine the VB and GVB descriptions of these two
states to compare the different descriptions of resonance, In the - -
VB description there are two valence-like states of allyl radical,
the resonant and antiresonant resonant states. These states are
described as the antisymmetric and symmétric combinations,
respectively, of the VB canonical structures. The GVB resultsi
also indicate that there are only two valence-like states of allyl
radical. In fact, the GVB description of these two states is
identical to the VB description except that self-¢consistant orbitals
are used in lieu of atomic orbitals. The GVB model, however,
describes the resonant state- as the optimum spin coupling
associated with the set of spatial orbitals, and the antiresonant
state is formed using the same spatial orbitals and the orthogonal
spin coupling, However, the optimum GVB description of the 124,
state includes delocalized orbitals, but using localized orbitals,
the GVB combination of tableaux is identical to the VB combination
and only slightly (0. 88 kcal) higher in energy. 1 The GVB combina-~
tion of tableaux for the 12B, state is identical to the VB combination
of bonding :s;'tructmces.j_rL The GVB orbitals for the 12A, and 1°B, states
are not identical, but are quite similar in form.

We have three qualitative descriptions of the 12A, and 12B, states

of allyl radical and have found these to have the same form, essentially
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(28Db) and (29b) respectively, However, the individual ofbitals

" used in these wavefunctions differ, The VB wavefunction uses
atomic orbitals., The GVB wavefunction uses self-consistant
orbitals, but spatial symmetry considerations restrict the individual
orbitals to be delocalized symmetry functions or, if the orbitals
are localized, restrict the spin coupling to the resonant (or anti-
resonant) combinations and require the shapes of @, and @ be

- identical. 1 The GVB(SP) wavefunction without restricting the
shape of the orbitals or the spin coupling generates the resonant
(or antiresonant) combination of structures through a spatial
symmetry operator.

By'comparing the energy of the GVB(SP) wavefunction for the
12A, state with the energy of the GVB G1(10) wavefunction, 1we
obtain the GVB(SP) estimate of the resonance energy. We find
GVB(SP) estimate of the allyl radical resonance energy is
14,3 kcal as compared to 11,4 kca.l1 for the GVB Wavefuﬁcﬁon
and 15,9 k_cal? for the VB wavefunction, using the same basis
set for all coinputationsc, The experimental value for the allyl
radical resonance energy is 10 + 1,5 kecal, 8 The antiresonance
energy found from the GVB(SP) wavefunction for the 12B, state
is 59.2 kecal as compared to 61, 9 kecal for the VB wavefunction

and 57.9kcal for the GVB wavefunction.
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B, The Fused Ethylene Model

Dunning7 has proposed a model for the pi states of buta-
diene that treats these states as arising out of combinations of
ground and excited states of ethylene. In this model, two ethylenes
are fused to form butadiene and the pi states of butadiene are
identified with combinations of ethylene pi states, We found
that this model worked well for the valence states of s-trans-

1, 3-butadiene but were unable to apply this model to Rydberg
states as the orbitals were found to be delocalized. 2 Since the
GVB(SP) description of allyl radical yields logaﬁzed orbitals for
aﬂ states, we can examine the applicability of fused ethylene

to the pi states of allyl radical. Allyl radical in this model is
considered as a combination of ethylene and methylene.

The GVB(SP) description of ethyleneé yields two valence
like states, the ground (N) state and the lowest triplet (T) state,
The 12A, state of allyl radical may be considered as arising from
a combination of a N state of ethylene with a 2p like pi orbital on
the third carbon, i.e. a ®B, methylene. The 1°B; state of allyl’
radical would then be the combination of the T state of ethylene
and the same third orbitals, The excitation energy of the 1°B,
state is 3,.25eV as compared to 4,20 eV for the T state of ethylene.é

The 22A, state may be considered as a combination of an N
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state of ethylene with an excited pi orbital, Because of the diffuse
nature of excited pi orbitals, this third orbital will be almost
orthogonal to the N state ethylene core and the dominant term

in the GVB(SP) wavefunction will be

P10 Poc Pir ‘ch

Par Y

where @y and @, are the ethylene N state orbitals. Since )

is spread over the entire molecule, it must have A, symmetry
and thereforé is a 3dm oi'bital, Similarly the 22i31 state may be
considered as an N state ethylene with a diffuse pi orbifal, wlﬁch
here must have B, symmetry and is therefore a 3pw i
orbital. Since a 3pr orbital is lower than a 3dr orbital, we
expect the 22B, ;tate to be lower in energy than the 224, state.

In the 324, state, the two tight orbitals are triplet coupled
and may be considered as an ethylene T state core. Since the
ethylene T state core has A, éymmetry and the diffuse orbital
is almost orthogonal to the tight orbitals, the diffuse orbital
must have B, symmetry and should be a 3pw orbital, The difference
between the 22B, and the 3%A, states is in the cores, the first being
-an ethyleneAN state and the second an ethylene T state., We note
that the difference in energy between these two states is 2,99 eV

while in allyl cation the excitation energy of the °B, state (correspond-
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ingto the é{hylene T state) over the !'A; (corresponding to the
ethylene N state) is 3.00 eV in excellent agreement.

The 3*B, state may be considered as an ethylene N state
core and a diffuse pi orbital, As discussed earlier for the 2B,
state, the diffuse orbital must have B; symmetry and may be
identified as a 4p7w orbital.-

The 4%A, and 4°B, states are more complicated consisting
of an excited ethylene core combined with a valence-like pi orbital.
In the 42A, state, the first two orbitals are singlet coupled and may
be considered as the ZlAé( state of ethylene orbitals. The third |
orbital should be the same as in the 12A, state. In the 4°B, state,
i‘he first two orbitals are triplet coupled and may be identified as
the 2°B,y. Since one orbital is diffuse the two orbitals can be
orthogonal without the introduction of any nodes.

C. Rydberg Like Excited States

Table II contains a comparison of GVB, GVB(SP), and
full (or complete within the basis set) CI calculations on the
allyl radical pi electron system. All calculations were performed
using the same basis set. The agreement among the three sets
of calculations is quite good both with regard to total energies
and excitation energies. We note that for Rydberg states,
the difference between the GVB and GVB(SP) energies is the

greatest. The GVB(SP) allows an excitation to be localized near
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one center and a description of the state in terms of localized
orbitals, The GVB description is in terms of delocalized symmetry
orbitals for the Rydberg states, The GVB(SP) energy for Rydberg
states is in excellent agreement with the full CI results,
The 2°B,, 3°B; and 224, all have a rather diffuse orbital
and have been described as Rydberg states. To test this
assignment further, the quantum defects, {, for these states were
calculated using
E, = A - R/(n-L)
where En is the energy of the state, A is the energy of the ion'
taken as the GVB(SP) energy from reference 1, and ¢ the quantum
defect., We obtain : o
/ 2°B,: £=0.38 (3pm)
32B,: ¢=0.65 (4pm)
2°A,: ¢=-0.21 (3dw)

For p like Rydberg states, € is typically 0. 50. 9

The 22B, state
corresponds then to a 2pr —8pn excitation and the 32B, state to a
2pr —4p7 excitation. For d and { Iike Rydberg orbitals C is
typically <0.10. From the symmetry of the diffuse orbital we
identify the 22A, state as a Zpz — 3dr excitation. Since our basis

get only includes pr functions, a 3d# orbital is poorly described

accounting for the negative sign of ¢ for the 22A, state.

-~ [N
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The 324, should ionized to the 13B, state of allyl cation
since the two tight are triplet coupled. Using the GVB(SP)
energy for the 13B, state, 1 we obtain a value of 0.39 for the
guantum defect (relative to n = 3). The 3%A, state corresponds
to a 2pr - 3pr excitation. This is the same as the 22B,; state,
the difference between these two states being in the spin
coupling of the core orbitals. The calculated quantum defects
for these states differ by only 0.01.

In the 42B, and 4%A, the nature of the spin coupling is
such that it is not to identify the states of allyl cation that would
result from ionization of the diffues orbital, Thus, quantum
defects cannot be calculated for these states.

Table I contains a comparison with other results,
The GVB(SP) results compare very favorably. The basis set
used by Peyerimhoff and Bt:ieanke:r'}“0 daid not contain diffuse

function accounting for their poor description of the 22B, state.
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Table I, GVB{(SP) Energies for Ground and Excited States of Allyl Radical

116, 172189

State Total Energy(h) Spin Coupling Coefficients
¢y C,
124, -116,418612 1,00 0.00
12B, -116,301432 -0.938 0,345
2B, -116, 2458977 0.999 -0, 027
224, -116,221249 0.999 0. 003
32B, -116,.217433 0.999 -0.032
42B, -116, 140243 0.089 0.996
324, -116,136173 0.858 0.514
_%&.N -116, 135127 0.973 -0.231
Cation® - -

a
Reference 4,



-150-

Table II, Comparison of GVB, GVB(SP), and CI Energies for the Ground and
Excited States of Allyl Radical,

_, Gve®P GVB(SP) | Full 1% "
State Total Energy Excitation 4 Total Energy Excitation 4 Total Energy Excitation d
(hartrees) Energy (eV) (hartrees) Energy (eV) (hartrees) Energy (eV)
12A, -116,416438 0.0 ~-116,418612 6.0 -116,421089 0.0
128, -116,237120 3,249 . ..ﬁmomow%wm 3,188 | -116.303426 - 3.203
2°B, -116,237380 - 4,872 -116, 245897 4,702 -116, 248310 4,702
224, - - _116,221249 5,374 ~116, 222188 5,412
3%B, -116,208066 5,610 | -116, 217433 5,474 -116,219937 5,474
428, - - -116,140243 7,575 -116,145124 1,509
324, - - -116, 136173 7,688 -116, 137979 7,708
£, - - 116135127 7.713 - -
Cation® ..Mmm...mmqmﬁm, ceoee 1,04 - -116,172789% - 6,869 -116, 173420 6. 74
s Reference 1, | D
o All calculations were performed using the same basis set.
© Reference 4.
d

ih = 27,2117 eV



Table III, Excitation m:mnm.wmm for Allyl Radical (All Values in eV)

S . 10
1 1 Peyerimhoff

State GVB(SP) GVB CI and Buenker Semi-Empirical
(Ab initio CI) crtl

2, 0 0 - -0 0 0

’B, 3.19 3,25 3,20 3.79 2.43

2B, 4,70 4,87 4,70 8.0 9,79

224, 5,374 5, 412 11,66 12, 492

3%B, 5,474 5,474 14,35
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324, - 17,686 Y A (1) - o | . 12,942
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The A, states of allyl radical. The first two orbitals are
singlet coupled in all cases except the 3%A, state in which

case the first two orbitals are triplet coupled. The amplitude

of the most diffuse contour is 0.003, The amplitude of each

succeeding contour is a factor of 2, 1544 greater or a factor

of 10 for each three contours.

The B, states of allyl radical, The first two orbitals are
singlet coupled in all cases except the 4B, state in which

case the first two orbitals are triplet coupled, The amplitudes

are the same as in Figure 1,
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ALLYL RADICAL |
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APPENDIX IV

THE GENERALIZED VALENCE BOND
DESCRIPTION OF THE LOW-LYING
ELECTRONIC STATES OF
S-TRANS-1,3 BUTADIENE
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1. INTRODUCTION

The generalized valence bond (GVB) method is a generalization
of the valence bond (VB) method in which each singly occupied orbital
is solved for self-consistently. This is analogous to the Hartree-Fock
procedure except that each doubly occupied orbital of the HF wave-
function is allowed to split into two singly occupied orbitals,

This paper is one of a series examining the GVB wavefunctions
of the ground and excited states of conjugated molecules. Previously
we considered ethylene, 1 allyl cation, 1 and allyl radical2 and now we
turn our attention to s-trans-1, 3-butadiene (hereafter referred to as
butadiene)., As with the other papers in this series only the 7 system
is described in the GVB formalism, the o orbitals are taken as doubly
occupied and obtained from HF calculations,

Details concerning the wavefunctions and calculations are
presented in Section II. Section III presents-the results of the GVB
calculations and a comparison with energies of extensive configuration
interaction (CI) calculations. Here we find that the GVB energies
are quite close to the CI energies, SectionIl also includes our

interpretations of the GVB wavefunctions.

II. THE WAVEFUNCTIONS

A, The Wavefunctions

The Hartree-Fock (HF) description of the ground state of
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butadiene is

ALl ol 0 202 ¢ (aBape--apapap)]. (1)
q w7,
Low-lying excited states are obtained, for example, by exciting an

electron from the 7, orbital of (1) to an empty 7, orbital, obtaining

either a singlet state

oleg9, ¢, (b, ¢, +¢, ¢, Japag]

(2)
= 229, b, & ¢, aplap - pa)]
or a triplet state
Llege, o, @, ¢, - ¢, &, apap]
(3)

21250, ¢y Oy &, aBlap + pa)]

where fi’)a denotes the product of a sigma spin orbitals from (1). In

the HF method all orbitals are solved for self-consistently.

In the valence bond (VB) method, one electron is placed

in an atomic 7 orbitél on each carbon. We will denote these orbitals

as Xip Xgg» Xqpr Xgp» aS indicated in (4)

Xip.

X210 | (4)
r
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These orbitals can be coupled into singlet states as

J X10 %29
7 Lute] T ®

i

1

or as

—/ ! . X9g Xop (6)

fl
fh
R

’ X19 X1y

where orbitals in the same row of the tableaux in (5) and (6) are singlet

paired., For example the wavefunction ¥, can be written as

1l

= 202 (Xq0Xgp + X9 X1 )X 1pXop + Xo X @BaE]

(7
L&, XqgXggX1pXgy (@B - Ba)(aB - Ba)]

The simple VB wavefunction is often taken to be either ¥, of (5)

or the combination
¥WB_ ¢4, 4y, (8)

in which the coefficients C, and C, are optimized.

The wavefunction (8) can be rewritten as

VB
T =A% X X9 X1y X0,O] (9)
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where the spin function © is
© = C,(af - pa)(ap - fa) + C,[pBaa ~ Baap - apBa+ aapp]

For a triplet state there are three linearly independent valence

bond functions, which can be taken as

X190 Xop

(10)

ﬁ\
i

i

e

/4 X1 Xoo.
‘ ir ™27 = ¥, (11)

il

and

°

(12)

it
fil
¥

For example,
Yo 19 KopXgr * XopXa) Wy gXap - XXy Pl
= L[®Xg Xg.X1pX1p (@B = Ba)(aB + pa)]

“The simple VB wavefunction for a triplet state is taken to be either
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any one of the functions (10), (11), or (12), or alternatively as the linear

combination
c wBl g, 40, 4 O, (14)
in which the coefficients C;, C,, and C; are optimized.

C. The generalized valence bond wavefunction

The generalized valence bond (GVB) method®s 4 is a generalization
of the valence bond method in which the electron orbitals are solved for
self -consistently (in 2 manner analogous to that in tﬁe HF method) rather
than taken to be atomic orbitals (as in the VB method).

For a singlet state the GVB wavefunction can be written as

VB 018 0, ,09,09,.91,0] (15)
where |
0= C,0, + C,0,, ‘ - (18)
91; 3 (0p - Ba) (ap - Ba)
and

0, = L [@apB + BBaa ~ 2(aB + pa) (af + Ba)].
V3

' 80 that q and 6, are orthogonal spin functions. In the GVB method the coefficients
C, and C, are referred to as the spin coupling coefficients and are solved

for simultaneously with the optimization of the individual electron orbitals.
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We find that the optimum GVB orbitals are each localized neér a
different carbon atom just as in the VB wavefunction and hence the
orbitals in the GVB wavefunction (15) are denoted in a manner
comparable to that of the VB wavefunction.

If C, = 1 and C, = 0 the wavefunction (15) is said to have GI

spin coupling and is denoted as

P10 Pop

(17)

'_(f)ir ¢2r

If C; = 0and C, = 1 the wavefunction (15) is said to have GF (or G2)

spin coupling and is denoted as

$i0| %1

i
(18)

‘i’z;g sz

r

In (17) orbitals ¢1 9 and ¢, , are coupled into a singlet (bonding) pair,
orbitals th, and ¢2r afe also coupled into a singlet pair and thén the
whole wavefunction is coupled into a singlet state. In (18) orbitals
<,zf>1 ) and c,b'z g are coupled into a triplet pair, orbitals ¢1r and ¢2r are
~ also coupled into a triplet pair and then the whole wavefunction is
coupled into a singlet state.' [Two triplet states (S = 1) combine to

yield S = 2, 1, and O states, that is quintet, triplet, and singlet states. ]
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Using the same orbitals in (17) and in (18) leads to two orthogonal many-
electron wavefunctions, Below we will find that the ground state of
butadiene correspénds closely to (17) while an excited singlet state
corresponds closely to (18).

For a triplet state the GVB wavefunction has the form

GVB ]
= a2,91499099,91,°] (19)
where
8 = Cf; +Cyb, + Cf, (20)
0, = L (af - Ba)ao
V2

Q .
il

i
2 g%[aﬁﬁ - 3B + Ba)ala

05

1l

\%‘-[aaa'ﬁ - %w(wﬁozﬁ + afa + Baa)a)

6,, 0, and 0, are mutually orthogonal spin functions. Special cases

of (20) are: the G1 wavefunction

110 %2’

by . (21)

r

¢1r

(C, =1, C,= C; = 0)in which orbitals ¢4 and ¢, are coupled into
-a singlet state while orbitals ¢1r and ¢2r are coupled into a triplet

state; the G2 wavefunction
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27

Poy

R

r

(22)

(C, =1, C; = C; = 0)in which ¢4, and ¢, , are coupled into a triplet

state; and the GF or G3 wavefunction

¢ir

(23)

(C; =1, C; = C, = 0) in which orbitals b1 o b s ¢2r are coupled into

g

a quartet state.

None of the wavefunctions (21) - (23) corresponds to a state analdgous

to (18)-[ where the two S = 1 pairs were coﬁpled into an overall S = 0 state]

in which orbitals ¢1 Qand .'qbz g are coupled into a triplet state, orbitals qbl’r

and ¢2r are coupled into a triplet state, and then the whole wavefunction

| coupled into a triplet many-electron state, This would require a .spin

function of the form

@ = Y aalap + Ba) - (aB + ﬁa)oza]

1, F
V3 3

il

6

2

(24)
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D. The Sigma Core

-

As discussed elsewherei’ g the problem of finding-a’

wavefunction of the form

a[ gT“’core évall (25)

may be reduced to that of finding the wavefunction

Al &y ] ' (26)

if (i) the core is a product of doubly-occupied orbitals and (ii) if the |

core

<

orhitals of (I)va‘i are taken to be orthogenal to those of @ . The
result is a four-electron Hamiltonian for the pi-electron system of

butadiene having the form

Ry Bg

g = ), h®TCE) + ) 1/r.. @
. s 1J
=1 i>j

where nﬂ is the number of electrons in w orbitals and the one-electron

operator
q N .
here3E) = n@) + ) (23; - K;) (28)
j=1 |

contains both the usual kinetic energy and nuclear attraction terms

Z

& (29)

=
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plus the Coulomb and exchange terms due to the interation with the g
doubly-occupied core orbitals,

The si‘gma.‘ core for butadiene was obtained from an ab initio
HF calculation on the ground state, 0 This core should provide a good
description of the groun;i state and valence-like excited states.
Excited states involving a diffuse orbital may not be as well described
since the core orbitals would be expected to cbn‘cract when solved for
seli~consistently. Using the ground state core for these excited

states should result in an overestimation of excitation energies,

The geometrical parameters used are the same as used in
= 1.08°A, R

; 5,6 .
other work™ =~ and were : =1.337°A, Ro.o=

Ren C=C C

1,438%, Y HCH = 120° and ¥ CCC = 120°.

The basis set used in these calculations consisted of a
(9s, 5p) set of primitive Gaussian functions on each carbon and a
(4s) set on each hydrogen as determined by Huzinaga. 7 This was
contracted to a double-zeta basis (4s, 2p) on each carbon and (28) on
each hydrogen as suggested by Dunning. 8 To permit the description’
of Rydberg-like excited states, it is necessary to also include diffuse
basis functions and consequently the above basis was supplemented by
two additional diffuse pr~Gaussian functions on each carbon (orbital

exponents of 0,03477 and 0,01075 were used),
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I, RESULTS AND DISCUSSION

In the VB-d:escription of butadiene, there is one electron in
the atomic 7 orbital centered on each carbon. Pairing these orbitals
in different ways leads to two singlet states, three triplet states,
and one quintet state. The singlet states would be linear combinations
~of ¥ and %, in (5) and (6) and the triplet states linear combinations
of ¥, ¥, and Y in (10) ~ (12). Any other excited state formed
using only atomic 7 orbitals would contain doub1y~oécupied orbitals
corresponding to ionic-like configurations. States consisting mainly
of such ionic configurations should bé at higher energies than the
covalent valence states of (5), (6), (10) - (12). Thus among the low-
lying v states butadiene, thefe should be two valence-like singlet
states, three triplet states, and one quin‘tgt state,

Other excited covalent states of the 7 electron system must
have dominant configurations corresponding to exciting an electron from
2p7 orbital to 3pw, 3dx or higher-lying # orbitals, Thoée states ‘should
lead to Rydberg series and will be referred to as Rydberg states.

1. Valence singlet states

From the GVB calculations we find two valence-like singlet
states as anticipated from the VB analysis. Extensive CI calcula’alons5

.confirm this.
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2. The X'A state
W\/\ﬁz\/\w

The GVB'orbitals for the ground state of butadiene are
shown in Figure‘i; The energy and spin-coupling coefficients are
given in Table I, Ag indicated in Table I, the GVB wavefunction has
an energy only 3 keal (0.0046 h) higher then the full CI energy for
this basis set, while the GVB energy is 36,7 kcal below the HF
energy (with the same basis set).,5 Thus the GVB wavefunction
includes 93% of the w correlation error in the HF wave-
function. Since the GVB energy is so near the exact (full CI) energy,
it is reasonable to assume that the GVB wavefunction iﬁcludes all
important bonding ‘effects involving the 7 system and that nature of
the states may be understood on.the basis of interpretation of the
GVB orbitals,

From Figure 1, we see that the orbitals for the ground’(XIAg>
state are each localized near a different carbon atom, qualitatively
similar to simple VB orbitals., However, each GVB orbital has
delocalized onto neighboring centers. A similar delocalization of
- GVB orbitals has been seen for numerous system, for example Hz,g
.ethylene, 1 and- ozone, 9 and is associated with the formation of
. covalent bonds,

In the simplest VB picture the bonding in butadiene would

be represented by the single configuration

//-~// | )
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However allowing the long-bond structure (8) to mix with (5) as in (8)

leads to
C;=1.074 and C,=-0,170

and an energy lowerin'g of 0,0036h (2,2 keal), [Note that (5) and-(6) are not
orthogonal so that CI2 and C,” are not the relative contributions of
(5) and (8). ]

In the GVB description we make use of orthogonal configuration

as in (15) - (18), Here we find that the configuration corresponding

P

contributes about 98% of the wavefunction. The difference in energy

to

between the optimum wavefunction of the form (5) and the full GVB
wavefunction is 0. 63 kcal. The incorporation of this other spin-coupling
can be considered as arisingfrom the incorporation of some bonding

between orbitals ¢2 I and qbzr (carbons 2 and 3)

o~
— ‘\.

-~ Nyl
/
, /:.:—:/
in addition to the bonding between carbons 1 and 2 and carbons 3 and 4.

- The delocalization of orbital ¢2 ) onto carbon 3 and ¢2r onto carbon 2

also6 indicates 7 bonding between carbons 2 and 3.
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It has been noted that the heat of formation of butadiene
is slightly lower than would be expected on the basis of two CC

double bonds and one CC single bond as in

H

Hz C: C /C: Cz
H

The extra stability is estimated as about 3,6 kcaiifa?nd is often referred

to as the resonance stabilization energy [due to incorporation of

(6)]. We calculate the energy lowering due to incorporation of (6)

to be 2,27 keal for the VB wavefunction and the corresponding energy

lowering due to incorporation of (18) into (17) to be 0.7 kcal. {(see Table II). Thu
these theoretical estimates of the resonance stabilization are in fair

agreement with the experi mentally based estimates,

3. The 2 'A_ state
AN\IW\\/:/.\IVV\E/\/W\/\

Taking the ground state of butadiene as

‘ X1p Xop | . -
//\ﬁ//:.m 2 | 5)

, Xir Xor

then the orthogonal excited state wavefunction would be
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ISTRARST: '
| ; (29)

Xog | Xor

The 7 orbitals of (5) are just the same as if two ethylene molecules

each in the ground electronic state »Xi g Xog and X1p Xop

has been fused together, Similarly (29) can be considered as the

fusion of two ethylene molecules each in its triplet excited states

X1y Xqp
and

Xzﬂ Xop

For this reason we denote these states as NN for (5) and T'T for (29)
where N and T refer to the ground and lowest triplet states of ethylene.
Neglecting any interactions between 'these ethylene groups, we would
expect the NN and TT states to be separated by about twice the Nto T
excitation energy, i.e., by about 8,4 eV. The VB wavefunctions (5) and
(29) are actually separated by much less (6,44 eV) since the ethylene-
ethylene interactions in (5) are repulsive while those in (29) are

attractive,}iAHowing (5) and (29) to mix in the VB description leads to
5= 0.989 Cyo = -0, 147
mrmex4Agﬁmemm

Co = +0.147 Cyo +0.989
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for the 2 1Ag state with an energy separation of 6,77 eV, Solving

for the orbitals s;e}f—consistently, we find the 2 1Ag state to be 6;96 eV
above the X 'A o sfafte with spin-coupling coefficients as in Table I.
From Figure 1 we see that the orbitals of the T'T state have modified
from those of the ground state reflecting the presence in the TT
wavefunction of antibonding character in the terminal CC pi

bonds and bonding character in the central pi bond.

The extensive CI calculations of Dunning et al. 5 show quite
clearly the valence character of the 2 1Ag state expécted from the TT
description and indeed Dunningm suggested the T'T interpretation of
this state before the GVB calcu]_a’cions‘ were carried ou’ci13 This state
cannot be described as a linear combination of singly-—éxcited configu-
rations from the ground HF wavefuncfion. 5 The CI wavefunctions

for the ZIAg include numercous important doubly-occupied configurations.

3. The valence triplet states

Based on the results of the previous section we would

expect three valence triplet states., In zeroth order

o xy, X .
wr: | = (30)




and

%Xir Xor /___/
TN: | = .

v

TT:

[l
.
ey
Y
ps
s

‘would be at about 8.8 eV, Indeed from VB calculations we find the -
TT triplet state at 7,22 eV, Of course, NT and TN are degenerate
and the optimum wavefunctions for these states would be the

combinations,
o

B : NT - TN
u

2

3Ag: NT + TN

or in terms of tableaux

%y Py %y %y :

3 '

BU_ QDZr - Py {0 (31)
cpj‘l‘ 9012 i
and

902_(2 @ I %I‘ 9011-

3p (32)

Ag (gr " qg,ﬂ .
(/{r (gﬂ
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The optimum spin coupling of the 3}3u state (see Table I) may be reexpressed as

@zCA‘ //—/ +/__//) +Cy f_:/

where the coefficients are C =0.363and Cy = -0. 318. Fach term
individually possesses the correct spatial symmetry,

The GVB orbitals of the 3Bu state afe localized on different
centers much as in the VB descriptién except that orbitals delocalize
somewhat onto neighboring centers, The SBu state orbitals are
essentially identical to the ground state as can be seen in Figure 1, It
éheuld be noted that the orbitals are reoro’.eréd in the 3Bu state sé that
in the G1 tableaux {21) the orbitals localized near the center carbon
atoms are coupled tb a singlet, We find that the orbitals for the 3Ag
states are, however, symmetry orbitals and cannot be readily analyzed
by a model of fused ethylenes. The avera,;cge (calculated) vertical
excitatidn energies of the SAg and 3Bu states is 4.33 eV while the N— T
vertical excitation energy of ethylene is calculated to be 4.2 eV . 1
These results are consistent with the‘ simple model assumed in (31)

: a.ﬁd (32). The stabilization of the 3Bu states by 0,43 eV (9.9 keal/mole)

with respect to the energy of (30) may be considered as the resonance

stabilization energy for this state.



-176-

There shbuld be another valence excited state, the state formed
by coupling two T state ethylenes to a triplet state giving a 3Bu state,
We anticipate that this state will have an excitation energy of about

8.4 eV,

All of thé states depicted in Figure 2 involve one orbital -
with diffuse Rydberg-like character. As the orbitals are quite
delocalized, it is not easy or useful to delineate the origin of these

“states in terms of ethylene states. We have written a version of

the GVB program which determines the optimum orbital for a spatially
projected GVB wavefunction and are presently in the process of
calculating the pi st&yites of ’butadiene.' This wavefunction should
generate'funy localized orbitals and thereby permit analysis of the
Rydberg states in terms of couplled ethylene-like states,

Included in Table 1 arethe energies from full CI calculations on the
pi-orbitals of butadiene using the identical basis set. The GVB energies are
in -good = agreement with the CI results, the largest error being ’

0.018 hartree or 0.50 eV,

TableIl summarizes various theoretical and experimental
results for the excitation energies of the pi-electron states of
butadiene, For the Rydberg states, the -discrepancies between_ the

’GVB and expérimental results are larger than for the valence states. Allowing
the sigma core to relax for Rydberg states would reduce the excitation energy
by 0.5 to 1 eV bringing these states into reasonable agreement with

experimental results,
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To further test the designation of the states as Rydberg-like,
we have calculated the quantum defect, {, using the orbital energies
for the diffuse orbital. GVB orbital energies must be used with care
because removel-of an orbital can lead ‘to states without a well defined

spin. For example for four electron triplets removing ¢, from
T P g ir

(22) and (23) leads to

Prg| Por

(33)
P90
P10
2 (34)
g921" |

respectively a doublet and a quartet state, For four electron singlets
no such problems arifse and we find
11Bu: ¢=0.50 (3pm)
31Ag; £ =0.03 ‘(3d'n’) |
For the 28Bu, the small coefficient of the GF tableau (23) results in a
negligible quartet state contamination and we find |
23Bu: ¢ =0.41 (3pm)
;I‘ypicai experimental values for the quantum defect for butadiene are

0.50 for 3p like orbitals and 0. 10 for d like orbitals, 0
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Table III,. Resonance Energies

Orbitals Used

Atomic GVB(1'A,) GVB(ZlAg)
P [
12 24 2154, 85001 | -154. 934442 ~154. 90082
Pir Doy ‘
P | Pip X
o o -154, 61317 | -154. 603975 ~154. 71352
21 2r
14, ~154.85362 | -154.93555 -154.,90488
21Ag ~154.60474 | -154.60042 -154, 67994
Excitation Energy(eV) 6.77 9,11 6.12
Resonance Energy
(11A) (keal) 9. 217 0.7 2.55
Destabilization Energy
5,29 . 2.23 21,08

(Zng) (kcal)

a Using ethylene orbitals for the Gi and GF configurations leads to

energies of -154.92097 and -154, 60977, respectively,
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The Valence States of Butadiene. The ordering of orbitals in each
state is such that the first two are uniquely»coupled in the predominate
spin coupling. The amplitude of the most diffuse contour is 0,003,

The amplitude of each succeeding contour is a factor of 2.1544 greater

~ora factor of 10 for each three contours.

The Rydberg-like States of Butadiene. The order of orbitals is as in
Figure 1. The figure in the upper right corner indicates the planes
in which the orbitals have been plotted, The amplitudes are identical

to those in Figure 1.
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APPENDIX V

THE SPATIALLY PROJECTED GENERALIZED VALENCE
BOND DESCRIPTION OF THE PI ELECTRONIC STATES OF
S-TRANS-1,3-BUTADIENE



-187-

Previouslylwe reported the generalized valence bond (GVB) wave-

functions for the ground and excited pi-electron states of s-trans-1, 3-

butadiene (hereafter referred to as butadiene), The GVB wavefunctions
provided total energies and excitation energies in good agreement with
full CI results, Although the individual orbitals which constitute the
wavefunctions for the lowest two singlet (lAg and ZlAg) states and the
lowest ‘triplet (SBu;) state were localized, the orbitals for all other
| states, both valence-like and Rydberg-like were delocalized. The GVB
wavefunction includes self-consistent orbitals obtained at a particular
spin coupling, and in some cases, this fact may impose restrictions
upon the individual orbitals in the wavefunction. These restrictions were
considered to be the reason that the optimum GVB description for the
higher excited states involved delocalized orbitals, rather than being
localized as, for example, were the GVB ground state orbitals.

The GVB wavefunction includes an operator which generates a
spin eigenfunction and which explicitly builds in the Pauli principle. 2
To further generalize the GVB wavefunction, a spatial projection operator
was incorporated into the GVB xvavefupction(with the orbitals optimized
after projection). The resulting wavefunction, called the spatially pro-
jected GVB wavefunction (denoted as GVB(SP)), imposes no restrictions
upon the shapes of the individual orbitals. Previously, we have found

that for the allyl radical pi electron system, states described by delo-



-188-

calized orbitals in the GVB wavefunction3 were described by localized
orbitals in the GVB(SP) Wavefunction.4 The GVB(SP) method was
applied to the pi-electron system of butadiene with the expectation
that all states would be described by localized orbitals, and indeed we
found this to be the case.

In Section II we shall develop the GVB(SP) wavefunction by
examining the valence bond (VB) wavefunction and generalizing this
wavefunction. Section I presents the results of our calculations.
Section 1V includes our analysis of the results,

1. Calculational Considerations

In this section we shall develop the GVB(SP) wavefunction by
examining the valence bond (VB) wavefunction, the GVB wavefunction,
and the GVB(SP) wavefunction to explicitly indicate the successive
generalizations. Our discussion will be directed to the ‘four pi electron
system of butadiene. The other details of the calculations are also
included in this section. |

A. The Valence Bond Wavefunction

The VB wavefunction may be represented as a linear combination
of canonical structures each formed using an atomic orbital for each
electron. Considering only the pi electrons, the singlet four electron

system of butadiene has two inequivalent canonical structures usually

represented as @
7 W

(a) (b)
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The two canonical structures are equivalent‘to the two independent
ways of coupling four electrons to form a singlet state and are not

orthogonal.

Let Xipr Xgpo X190 Xag denote atomic orbitals located as indicated

in (2). X
: 12 .
X ‘
f“—/ X240 (2)
Xir

The VB wavefunction for a four electron singlet may be represented as

VB

t‘bs = Cy Yy +Cy Y, ' (3a)
Xir X Xr Xog

z[/ZB =c, r r o+ G L (3v)
Xi9g *gg X0 Xyg

where the orbitals within horizontal boxes are singiet coupled. The
optimum VB description of the ground state is found by optimizing ¢,
and c,.

The wavefunctions corresponding to the individual terms in (3) are

U= QLS Hgp + XopXyp) (g X + XggXy o) @BB] (42)
= a {i)c‘xirx.?;rxuxm (059 - BOZ) (aﬁ "5&') ] o ’ (éb)

Yo = QL L% Xgp + Xg pXop) (Xy Xy p + Xy pXqy) @BB] | (52)
= L8, Xy, X9 Xg g Xy 4 (@BaB+Bapa- cafp < phad)] (5b)

where (L is the antisymmetrizer and <I)o_ is the product of all the doubly

occupied sigma orbitals, including spin terms. Then (3) is equivalent to
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VB -

s a'[®0x1rX2rX2£X1£ o]

eS = ci’[(QB - Ba) (ap "ﬁa)] + 02[ apaf+paBa-caf - 3160501]

The four atomic pi electrons of butadiene can also be coupled

{o form a triplet state. The three equivalent VB canonical structures

for the four pi electron triplet are usually taken as

Ld

VA
LI

oy
e

/7

4

V'e

/.
/

J

The three canonical structures are equivalent to the three ways of

coupling four electrons to form a triplet state. (These three structures

‘are not mutually orthogonal, )

- Using the basis functions indicated in (2), the VB wavefunction

for the four electron triplet state may be represented as

('/

K. K
vB 1r 22
zsbt = Cg

Xig

Xog

where the two orbitals within vertical boxes are triplet coupled. The-

optimum VB wavefunction is found by optimizing c;, c4, and cg.

+ Cy

VB '
‘Q{ = Cgi/s + 04‘4’4 + C5‘1/5

XZr

X0

X1
X190

(6)
()

(8)

(9

(9b)

The wavefunctions corresponding to the individual terms of (9) are

V= AL [éc(xirXZr + Xerir) Xl!ZXZr ochwe]

= A% Xy X Ko gXg g (@B~ Be) aa].

Vo= (L [9(XorXag + X Xar) XqXg g @]

(10a)
(10b)

(11a)
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= A [écxlrxzrxuxu(aaﬁa+ afaa)] (11b)

i

Vo= L 195 (xy %9 + X g1 g) Xyr oy (@8- B) ] (12a)

1l

a [(pcxererzﬁxlﬂ (- acBa+aaaB)] (i?.b)

Then (9) may be written as

VB
¥ = A [8XqpXorXo X1 Ot - (13)
where
©, = ¢, [(aB-Ba)aa] +c,[-aaBa+afaal +c;[-aafa+ aaap] (14)

t

B. The Generalized Valence Bond Wavefunction

The form of the GVB wavefunction is the same as the VB wave-
function except that orbitals are solved fo_r self-consistently (rather
than being taken as atomic orbitals as in the VB wavefunction) and
simultaneously the spin function ©is optimized.

For a four pi electron system, the GVB wavefunction is

GVB

Yo = A2 %% 4O ] | (15)

Although the GVB orbitals are allowed to have any form, frequently
we find that each orbital is mainly concentrated near a particular carbon,
In such cases, we shall indicate the location of each optimum GVB orbital
with a label in accordance with (2).

There are two linear independent ways to couple four electrons
into a singlet, There are many choices that may be used, for example

(5b) and (6b), but we find it convenient to use the orthogonal spin functions
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. = (aB - Ba)(ap - Bo) (16)
0, = (2acpB + 2pBaa -~ afap - appa - Baof - Bafa) 17
referred to as the G1 and G2 (or GF) spinfunctions. The spinfunction
in (15) for singlet states is
E=1¢,0,+c,0,

It is convenient to use the diagram

% (18)

@ | @
al.c - (19)

'(’Qb %

to represent (7| CRRX R 0,]. (18) denotes that the orbitals are coupled

into two singlet pairs, which are then coupled to a singlet. This is
* jdentical to the VB perfect pairing form (4). (19) denotes that two
triplet coupled pairs are coupled to a singlet,

For a four electron triplet, there are three linear independent

ways to couple the electron. We use orthogonal spinfunctions

8, = i/ga—(aﬁ - Bo)aa ' (20)
0, .:\/:66{2&0160: - afoa - Baaa) (21)
0, :‘%(3&(2&3 - aafa - cfaa - Baao) (22)

referred to as the G1, G2, and G3 (or GF) spinfunctions, The spinfunction-

for (15) for triplet states is
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©=1¢c;0; +¢c,0, +c¢, 0, : (23)
Again the spinfunctions be represented by diagrams, which are
corresponding to (20), (21), and (22)

“2 %

A ~ (24)

% - | , - (25)

@, - (26)

| C. The Spatially Projeéted Generalized Valence Bond Wavefunction

Let P denote a projection operator which operates only on
spatial coordinates and which generates a state of a particular symmetry.
The individual orbitals comprising this state need not possess any parti~
cular symmetry and in general will possess components of all possible
symmetries, The GVB(SP) wavefunction is formed by operating with P
on the GVB wavefunction

oCVB(SP) _ ,,GVB e

To determine the effect of including a spatial projection opératorr

in the wavefunction we will examine the four pi electron system of



-194-

butadiene and a spatial symmetry group consisting of two elelﬁents,
the identity and the reflection in the plane which is perpendicular to
the molecule and which bisects the molecule. We first cc;nsider the
effects of spatial projection on the VB wavefunction (3). Since the

individual electron orbitals in (3) are identical atomic orbitals, the

effect of the spatial reflection operator on the individual orbitals is

TX1r = X190
OXor = X9p
(28)
OXap = Xop
X190 = X1

and, of course, the identity operator leaves all orbitals unchanged.
The states which can be formed with these orbitals fall into
two groups, those which are symmetric and those which are antisymmetric

with respect to ¢ (corresponding to A_ and B,, respectively of the

g
molecular symmetry group of butadiene).
Examining the behavior of the two components of the singlet

wavefunction, (4) and (5), under o, we find6

o Lr %rl X Kagl | | Kir Xor

TIIRCY: Xir  Xor X1g  Xog
(29)

o L2r Yol X Kar| _ |Yer  Xao

X1r X1 X1 Xy Xir X1y
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The spatial projection operator does not introduce any new features
into the VB singlet wavefunciion.
Similarly the three components of the triplet wavefunction

(10), (11), and (12), behave under ¢ as7

o Xir XZr _ Xiﬁ X990
Xig Xir
X349 Xor
X X X X X X
L T e T O B . 1 ol (30)
Ky X190 Xip
Xip Xip X1y
s (e Rl o Hie Mo ,
Xy o Xip
Xop | Xa0

%

linear combination of ¢,, ¢,, and Y, can be symmetric or antisymmetric

under ¢, Defining two spatial projection operators

P,=e-0¢ | - (31)

P =e + o B . (32)
using (30), we see that

P = Vst | (33)

Pa(%***%) =y - ‘Ps + tr,/4 - \lﬂ; (34)



and we have generated wavefunctions each with a specific and different

spatial symmetry.

Now we apply the same analysis to the GVB wavefunction (15).

 For the singlet case, the GVB(SP) wavefunction may be represented as

T
¥=DP|cy

Ingeneral, cj)aand ¢ 3 OF q5b and qﬁc are not related by the symmetry
operator. The projection operators will form linear combinations of
orbitals and their projected form (not necessarily with the same
coefficients) to form wavefunctions with a specific fotal symmetry.
However, if the individual orbitals are localized and qba and ¢ q and

% and qbc have the same form, the GVB wavefunction will behave under
spatial projection in the same manner as the VB wavefunction. We find

that this occurs for the lowest singlet (1Ag) state and we expect

-196~

% %
¢c ¢d

+ Cy

¢a
%

¢

c

%

spatial projection to have very little effect,

For the triplet wavefunction the GVB(SP) wavefunction may be

written

¥=P |cg

%

.

For the triplet wavefunction, if the individual orbitals are localized

each about a different carbon atom, the spatial projection operator

¢a
%

%a

-

¢

a

4,
4,

%

(35)

(36)
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introduces new features in the wavefunction so that the GVB(SP)
description of the triplet states will be different than the GVB description.

For example, the GVB description of the 3Bu state is

Piy Pl (P2 % Por Py
Cl 4 - C2

%0 | Por Pig

%110 Pipl Yir

where ¢, = 0,363 and ¢, = -0,318, All three tableaux are required in
order for the state to have the correct spatial symmetry. The GVB(SP)

descrip’cion is predominately

B0 Popl

PB 12 20
u gDZ}:‘
Y1y

where the spatial projeétion operator ensures that the state has the
. correct spatial symmetry.

D. The Core Hamilionian

As discussed elsewhere, 5 the problem of finding a wave-

function of the form

a [ <z’core ®m1] (37)
may be reduced to finding the wavefunction

ale, ] - (38)

if (i) the core is a product of doubly occupied orbitals and (ii) if the
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orbitals of ® , are taken to be orthogonal to thuse of @ . The
val core
Hamiltonian for the valence orbitals will have the form
n_ n, .
i core N
5=20 h{) + 0 ;L (39)
i=1 =1 7ij :
where
core g\
h (i) =h{)+27 (27,-K.)
=1 )

includes the potential due to the g doubly occupied orbitals of the sigma core,
o LT 7 .
h@) =32 -4 %/ (40)
a ia : .
is the usual one-electron Hamiltonian, and nﬂ_ is the number of electrons
in 7 orbitals. For butadiene, the sigma electron core was formed from
an ab initio Hartree-Fock calculation on the ground state,

FE. The Basis and Other Details

The basis set consisted of a (s, 5p) set of Gauséian functions on
each carbon and a (4s) set on each hydrogen as suggested by Huzinaga. 8
This was con’;racted to a double-zeta basis (4s, 2p) on each carbon and
(2s) on each hydrogen, as suggested by Dunning. gv To permit the descrip- -
tion of Rydberg-like excited states, it is necessary to include more |
-diffuse functions and consequently the above basis was supplemented by
two additional diffuse pi-Gaussian functions on each carbon with orbital
exponents of 0,03477 and 0, 010'75.3 All calculations used the following
ggometry: RCICZZ Rcsg4= 1.337°A; RC2C3= 1.438°A; Rpop= 1.08°A and

all bond angles, 120°,
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IOI. Results
The two singlet valence states, the three triplet valence states, -

the cation, and several Rydberg-like excited states were examined,

Table I contains a summary of the total energies, excitation energies,

and spin coupling for these states. Figure 1 depicts the orbitals for the valence

states and Figure 2 the orbitals for the cation and the Rydberg-1like states.
From Figures 1 and 2, we see that all of the orbitals are

basically localized about a specific carbon atom, Tight orbitals are

basically 2pr atomic-like, but somewhat delocalized onto neighboring

carbon atoms in a bonding manner. All states depicted in Figure 1

consist of entirely of tight 2p-~like orbitals and thus are described as

valence states, Each state depicted in Figure 2 has one diffuse orbital

and is described as a Rydberg-like state,

IV. Discussion

A, The Fused Ethvlene Model of Butadiene

Dunning10 proposed a model for the pi-electron states of butadiene
based upon constructing the states of butadiene by fusing two pi~electron
states of ethylene, 1 Previously1 we had associated the éround state
(A g) of butadiene as two ethylene ground (N) state, the lowest triplet
(B, ) state as a fused ethylene N state with an efhylene lowest triplet
(T) state, and the first excited singlet (21Ag ) state as two fused ethyiene
T states. However, since the GVBA orbitals for all other states were

delocalized, it was not possible to identify other states with combinations
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of ethylene states. Since the GVB(SP) orbitals for the sfates of butadiene
are localized, we should be able to identify the states of butadiene with |
combinations of ethylene states,

1. kValence«like states

There are only two valence states of ethylene5 so all of the
valence stateé of butadiene should be describable as combinations
of these two states. The ground (lAg) state should be two fused ethylene
N states, The spin coupling would be predominately G1 (18). Our
results are fully consistant with this model, and the GVB description. 1

The only other possible singlet state is obtained by coupling
two ethylene T states to a singlet, In this case, the spin coupling
is predominately GF (19). The excitation energy of the T state of
ethylene is 4.20 eV, ‘5 “The first excited (ZlAg,) state has predominately
GF spin coupling and an excitation energy of 6,81 eV. Thus, the
21A._g state can be considered as two coupled ethylene T states, with
the energy lowering resulting from delocalization of the orbitals.

The lowest triplet states should be the symmetric and antisymmetric
combinations of an ethylene N state and ethylene T state. We expect -
the antisymmetric coupling to be lower in energy by analogy with |
allyl radical, 4 Applying the antisymmetric spatial projection operator
to the G1 wavefunction (24) where we use localized orbitals since all

the GVB(SP) orbitals for the 3B , State are localized, we obtain
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3 [Z @ [Z @ @ @
PB ir 2r _ ir 2r _ 1L 20 (41)
M 1P Py Piy ’
oy Pag Por

This is identical to the anti-symmetric combination of an ethylene
N state and an ethylene T state. Applying the symmetric spatial

projection operator we obtain

@ @ @ @ @ @y
PA ir 2r _ ir 2r + 1¢ 247 (42)
A NLZY) P19 Pir
P10 P Por |

which is the symmetric combination of an ethylene N state and an

ethylene T state. From Table I the spin coupling for the °B;

g
tation energy of these states is 4.215 eV in good agreement with exei-

and %A . states is predominantly G1 as expected and the average exci-
tation energy 4.20 eV of the ethylene T state,

The remaining possibility for forming a valence‘ state of
butadiene is coupling two ethylene triplet states to a triplet. The 3°B,
state is identified as two triplet ethylenes coﬁpled‘ to a triplet with an
excitation energy of 8.29 eV about twice that of the ethylene T state. ’
2. Rydberg-like states |

The 1'p, state may be considered as the antisymmetric combi-
nation of an ethylene N state and a ZiAg (R) state ethylene. In accordance

-with this model the spin coupling should be predominately G1 (18) as
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was found and the diffuse orbital should be 3pr like as it is (see
‘Figure 2), The excitation of the R state is 8,55 eV12 while the 1'Bu
state excitation found is 7.>02 eV; the decrease resulting from
‘delocalization of the tight orbitals. , ol e S

The ZIB'u state may be considered as the symmefric combination
of an ethylene N state and an éthylene V state. The spin coupling is
mainly G1 (18) as would be expected. The V state excitation energy .
is 8.91 eV12 as compared to 8,19 eV for 2'B state. From Figure 2
we see that the diffuse orbital has acquired some 4pr character in
addiﬁon to the 3dr character associated with the ethylene V state
diffuse orbital, 5 We find the quantum defect for this orbital (see
Secﬁon D below) is between the values typically associated with P é,nd D
orbitals, —

| The 23Bu state may be considered as the antisymmetric combina-

‘tion of an N state ethylene and a 13Ag state ethylene, The spin coupling
is G1 (18) and the diffuse orbital 3pr like as expected. The excitation

energy of the 13A | state of ethylene is 8,38 eV12 as compared to 7.11

g
for the 2°B,, state of butadiene.

The 4°B,, state may be considered as the symmetric combination
of a state ethylene and a 23B,y state ethylene. As can be seen from
Figure 2, the diffuse orbital is for a 3dx like, The excitation energy of

the 23By, state of ethylene is 9,33 eV12 as compared to 8. 32 eV for the

4°B state,
u
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B. Resonance

Since the two singlet VB canonical structures are not identical,
the Jong bond form (16) being much less favored, resonance effects
should be small for the singlet states of butadiene., The GVB and GVB(SP)
resonance energies arve 0.71and 0.8 kecal respectively, in fair agreement
with the thermochemical estimate of 3.6 keal. 13
| From our discussion of the GVB(SP) wavefunction for triplet
states, we expect there to be a significant mixing of states and thus 2

‘significant resonance energy.  The lowest 13Bu state is described by
: d

(41) which is equivalent to

” /\/é————é/\_// ‘ 3 (43)

By comparing the energy of this state with the GVB wavefunction

(asing optimized orbitals in each case) for

Piy Py

?10 | (44)

Y

we obtain an estimate of the resonance energy of 11.9kcal. The anti-
resonant state is the 13Ag state with a wavefunction given by (42). We
obtain an estimate of antiresonance energy of 23.9 kc'al., The 3313.u

state is also a valence-like state with a wavefunction
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Prr | Y2p “1r | %2 ?12 | %r

PA = - (45)
(’92r 9021‘ ' (pZﬁ -
P10 P19 P1r

C. Comparison With Other Calculations and Experiments

In Table I, we have included for comparative purposes t':he
GVB, and full (or complete within the‘basis set) CI total energies,
all calculations having been performed with the same basis set, In
general, there is good agreement among the three results, The GVB(SP) |
total energies are lower than GVB total energies and less than 0,003 h
gréater than the CI energies. The ground state GVB wavefunction
(with localized orbitals)possessed the éorrect spatial symmetry so that
the spatial projection operator has Iittle effect for this state.

Table II compares the excitation energies obtained from the
GVB(SP) calculations with other theoretical and experimental results, -
The GVB(SP), CI, and experimental values are in good agreement.

The frozen sigma core approximation is suitable for describing
valence-like excited states, but is not as appropriate for Rydberg-like
states. For example, in ethylene SCF relaxation of the sigma core
lowered the calculated excitation energies of Rydberg states by about
0.6 eV, 14 Thus the calculated vertical excitati'on energies for Rydberg-
like states of butadiene, (e.g. 1*Bu), should be too high by 0.5 - 1.0 eV.

because the sigma core is not allowed to relax,
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D. Rydberg-Like States

From Figure 2, we see that of the states reported herein,
four have one diffuse orbital and may be described as Rydberg-like
states, The GVB(SP) orbitals for these states are localized, with
even the diffuse orbital associated primarily with one center. To test
the designation of these states as Rydberg-like, we have calculated
the quantum defects, ¢, for these states using
En=A—]‘:€/(n-§)2

‘where E is the energy of the state and A the GVB(SP) energy of the
cation. We obtain '

1'Bu: €= 0,47 (3p7w)

. 2'Bu: €= 0.23 (ddr-4pr)
2B ¢ _ 40,413 (3pr)

4°Bu: ¢ = -0,06 (4dw)
Since our basis set contains only pr functions, a 4dw orbital may not be
well described, accounting for thé negative quantum defect for the 4°Bu state.
Experimental values for quantum defects arle 0. 50 for p orbitals and

0.10 for d orbitals, 15
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LIST OF FIGURES

The Valence States of Butadiene. The ordering of orbitals in each
state is such that the first two are uniquely coupled in the predominate
spin coupling. The amplitude of the most diffuse contour is 0. 003.
The amplitude of each succeeding confour is a factor of 2. 1544 greater
or a factor of 10 for each three contours, )

The Rydberg-like States of Butadiene. The order of orbitals is as in
Figure 1. The figure in the upper right corner indicates the planes

in which the orbitals have been plotted. The amplitudes are identical

to those in Figure 1.
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APPENDIX VI

THE GENERALIZED VALENCE BOND
DESCRIPTION OF THE ELECTRONIC STATES
OF BENZENE '
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1. Introductién

Previously, we reported the generalized valence bond (GVB) ’
description of the pi-electron systems of ethylene, 1 allyl cation,
allyl radical, 2 and s-trans-1, 3-butadiene, 3 We found that the
GVB method generated energies for ground and excited states in
good agreement with fulll configuration interaction (CI) calculations
and provided a chemically useful description of the pi-electron
systems leading for example to a descriptiqn of resonance in close
correspondence to chemical intuition. In this paper we consider
the classic case of benzene,

According to VB theory, 4 benzene has five valence-like
singlet states usually represented as a linear combination of the
two Kekule aﬁd the three Dewar structures. We find the GVB
description of the valence singlet states of benzene to‘be qualitatively
similar to the VB description and total energies é.nd excitation in
good agre-em;ent with full CI resulis. VB theory predicts that
there are nine valence-like triplet states, and again the GVB results
are consistent with this model. | |

In the VB description, the valence states are described in
terms of 2 linear combination of canonical structures, wherein
each structure involves electrons in orbitals on the various centers.
The GVB description is quite similar. In place of the five canonical

valence bond structures for the six electron singlet states, we use
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a set of five ofthogonal spin couplings of six electrons. In lieu of
the atomic orbitals of VB theory, the GVB method involves optimi-
zation of each orbital, This allows for important delocalization
effects, However, the optimum orbitals are found to each be mainly
concentrated on one center, much as for the atomic orbitals.
The self-consistent orbitals found for the ground state are quite
similar to the self-consistent orbitals for the valence excited states.
Thus the resulting description of the electronic structure is quite
close to that of the VB wavefunction.

In Section II, we develop the GVB Wavefunétion for the
benzene pi electron system. Section III presents our results.
In Section IV, we present our interpretatic;n of the results and
compare the results With other results and experimental data.
II. The Wavefunctions

As a basis for the discussion of the GVB wavefunction, we

will first review the VB description of benzene.

A. The Valence Bond Wavefunction
The VB wavefunction for the pi electrons of singlet benzene
is well known. 4 The wavefunction consists of a linear combination

of the five canonical structures, specifically the two Kekule

g O -
I II ‘ '

structures
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and the three Dewar structures

(1b)
I v
For example the 7 system of I is described as
AL X1 X2 Xs Xa Xs X (2B-Ba)(aB-Ba)(aB-pa)] (2)

where the X, arep atomic orbitals on the various carbons and
x‘1 and ¥, are paired into a singlet pair, X; and X, into a singlet
pair and X, and X, into a singlet pair. Each structure in (1a)
and (1b) has a form like that in (2) with the same product of orbitals;
the only differences are in the spin functions. |
The optimum VB wavefunction is that combination of the
VB canonicai structures (1a) and (1b) giving the lowest energy. :
There are five VB canonical structures, and hence five valence-
like states for singlet benzene. According to the theory of the
symmetric group, ° there are five linearly independent ways to
combine six spin 1 particles to achieve a spin zero state, aﬁd
the VB canonical structures are one particular choice for the five
basis states. The‘ VB canonical structures are not orthogonal and
as a result are not the most convenient choice for calculational
purposes.
Let X3, Xz, Xs» Xa» X5, Xg denote atomic pi orbitals

centered on the six carbon atoms. The VB canonicalAstructures
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(1a) - (1b) may be represented as

X1 Xe
&= (Xe  Xs | ()
Xse  Xs
X1 Xa
81 = [Xs  Xa ) (4)
Xs _ Xe
X1 Xe
S = | Xe. Xs (5)
Xs X |
X: X4
Sy =X Xs o (6)
» Ixs  Xe
X1 Xz
& F|Xs  Xe (7)
Xs _ Xs | B

where a horizontal box denotes that the two orbitals within are
singlet coupled. The valence bond wavefunction for the singlet

states of benzene is then

VB _ |
Yy =Cif+Cp%y+ Cpylpy+ Cryfy + Oy (8
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The wavefunctions associated with the five VB canonical

structures are given in Table I. Then (8) can be written as

VB

¥ = a[ Xg. Xa Xs X4 X5 X6 6] - (9)
where ©is
- C.0 6 c_0 6 0
O=Cir+ O+ O’ m * Civ'iv * Oy v (10)

Optimizing the mixing of the VB canonical structures is equivalenf
to optimizing the spin function.(IO) in (9).

Similarly for the triplet states of benzene, the VB wave-
functions are described in terms of nine nonorthogonal structures.
Thus there should be nine valence-like triplet states for benzene.
Just as for the singlet wavefunction, the VB triplet wavefunction
for benzene may be written in the form (9) with the spin function
(10) replaced by an appropriate spin function for a six electron
triplet wavefunction.

B. The Generalized Valence Bond Method

The GVB Wavefunctions’ 7 has the same form as the VB
Wavéfunction but the individual electron orbitals are found self-
consistently rather than being taken as atomic orbitals. 'Althoqgh the
GVB orbitals are allowed to be of any shape, we find that for the
ground state of benzene they are each mainly concentrated near a

single carbon atom. Thus we will denote the GVB orbitals as ¢,,
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©y V3, Psy Ps, OT @, indicating the location of the maximum
amplitude.

‘The GVB wavefunction is
vIVB-ale 0.0.0.00.6,6] | (11)
where @0' is the frozen Hartree-Fock wavefunction describing the
sigma core; @ By Y Py Yo and @ are general self consistent
GVB orbitals and ©is a linear combination of spin function analogous
~to (10). Howevei', it'is convenient to use orthogonal spin function

rather than the VB canonical structures, (3) - (7). The five orthogonal

spin functions used in the GVB wavefunction may be represented as

“2 %

6 1= (pc qod ’ (12)
% % |
o | %

6 =14 | % o (13)
% %
2 %

93"‘" QDC 90d (14)
vtpe qpf .
goa (pC

6,= % % (15)
Al %




q)a qDd .
6, = % | % (i6) i
% | %

where orbitals contained in vertical boxes are coupled in a triplet
“manner, l.e. antisymmetrically for spatial orbitals, Then

O=c,0, +c,0, +c0, +c,0, +c0; - (17)

subject to the requirement
Cy® + €7 + g% + ¢ % + ¢gP -1 (18)

for norAmalization purposes. g |

The optimum GVB wavefunction is found by optimizing
the orbital in (11) for a given spin function and then optimizing the
spin function (17) for the spatial orbitals.

The tripigt wavefunction also has the form (11) with an
appropriate spin function replacing (17). There are nine orthogonal

spin functions for a six electron triplet state.

C. The Core Hamiltonian

As discussed in reference 1, the problem of finding a

wavefunction of the form
a[ écoreéval] (19)

may be reduced to finding the wavefunction

ats.l -~ (20)
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if (i) the core is a product of doubly-occupied orbitals and (ii) if

the orbitals of @val are taken to be orthogonal to those of @cor o

The Hamiltonian for the valence orbitals will have the form

nw core n7r i
¥=Zh (@) +2 .7/ (21)
i=1 i>j  Tij
where
core g
h () =h@G)+ > (23.-K.) (22)
=1 1]

includes the potential due to the g doubly-occupied orbitals of

the sigma core,
z

h@)=1v2 -3 -2 (23)
i T,
a ‘ia :
is the usual one-electron Hamiltonian, and n is the number of
electrons in pi orbitals. For benzene, the sigma-electron core
was formed from an ab-initio Hartree-Fock (HF) calculation on

the ground state.

D. The Basis and Other Details

The basis ‘set consisted of a (9s, 5p) set of Gaussian functions
on each carbon and a (4s) set on each hydrogen as suggested by
Huzinaga. 8 This was contracted to a double-zeta basis (4s, 2p)
on each carbon and (2s) on each hydrogen as suggested by Dunning.

All calculations used the same geometry as Steven, et al, 10
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I1I. Resulis

Table II summarizes the result of VB and GVB calculations
of singlet valence states. The wavefunction is expressed more in
terms" of the VB canonical basis. The GVB results in Table II
were obtained by solving for the optimum spin couplings, €
in (11) using the optimum GVB orbitals from the ground (1Ag)
state of benzene. The results of self-consistent GVB calculations

on the A, and !B, states are summarized in Table III. One of

1g
the six identical GVB orbitals for each of these states is‘ depicted
in Figure 1.

The résults of VB and GVB calculations on benzene triplet
states are contained in Table IV. The GVB results were obtained
in a similar manner as for the singlet states, but using the self-
consistent GVB orbitals for the lowest (®B,) triplet state. One of
the six identical ®B, state GVB orbitals is depicted in Figure 1,

From Figure 1, we see that the orbitals for the three different
states are very similar and all quite localized. Since each state
involves similar orbitals the differing spatial symmetries obtained
for the various statels arise from the different spin couplings ©,
Examining the orbitals for the lAlg, 1B,y and 3By, states in
Figure 1 we see that the slight differences in these orbitals are

manifested mainly in the nodal structure.
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In Table V we compare the energies of the lowest lAg,
By, and °By, states as obtained from various types of calculations.
For the ground state wavefunction the energy drops 0.0698 h (1.90 eV)
in going from HF to GVB, indicating the importance of allowing
each electron to be described by a different orbital. The drop in
energy is 0,1606 h (4.37 eV) in going from VB to GVB. This large
) energy lowering is primarily due to delocalization of the orbitals
as can be seen in Table VI where the orbital coefficients of different
wavefunctions are compared. /Carrying out a full CI among the
six GVB orbitals (denoted as GVB-CI), then leads to an additional
drop of only 0.0169 h (0.46 eV). The GVB-CI wavefunction is
essentially the best wavefunction that can be formed with just
six orbitals (in any combination). In the usual VB terminology
the GVB-CI includes all the ionic terms, i.e. wavefunctions in which
the orbital product of (11) contains one or more orbitals twice,
The small drop in energy from such terms indicates that the
wavefunction can be accurately visualized in terms of a product )
of (GVB) orbitals.

In the double zeta basis there are 12 pi basis functions.
Taking linear combinations to obtain the six GVB orbitals leaves a

total of six additional orbitals that we will refer to as virtual

orbitals. We carried out CI calculations within this larger set by
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adding to the GVB-CI all configurations obtained by triple excitation
from the ground state but restricted so that only single excifations
to the virtual space are allowed, From Table V we see that this
leads to a drop of 0,0061 h (0,17 eV) in the energy from the GVB-CI,
an energy that is only . 0005 h (0.01 eV) above the energy of the
‘extensive CI calculations of Hay and Shavitt using an extended

basis set.

IV. Discussion

A, VB and GVB Models

-

For singlet benzene, the VB and GVB wavefunction spaces
are each five dimensional, and as a result we expect there to be
five valence-like singlet states, Since 9611’ the gspatial symmeiry

group of benzene, is a subgroup of S,, the symmetric group on

6’

six objects, we can determine the representations of D6h in the

VB wavefunction by analyzing the behavior of the VB wavefunction

under those operations of S6 corresponding to elements of QSh‘

- Using the representation of S, corresponding to a singlet state,

6
we find the symmetries of the states appearing in the VB wavefunction

lEZ g’ 2 g

For triplet benzene, there are nine VB states and using the repre-

to be A B

rgr Beys and ZlAig, (The E

state is doubly degenerate. )

sentation of SG corresponding to a triplet state, we find the symmetry

of the states in the VB wavefunction to be 3A2g, 1¥By,, 2°Byy,, °E, @
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1°E,,, and 2°E,,. (The °E,, and °E,, states are doubly degenerate. )

2g
Since the GVB wavefunction has the same form as the valence
bond wavefunction and in fact our six GVB orbitals are identical,

the GVB wavefunction contains the same symmetries as the VB
Wavefuhction.

Analysis of the two Kekuie structures (I and II) indicates
that the wavefunction for these forms includes summetries 1Alg
and !B,,,. The wavefunction for the Dewar structures (>, 1V,

and V) includes symmetries 1Alg and 'E, From symmetry

g
considerations, we expect two 1Alg states involving all five VB

canonical forms, one 'B,, state constructed out of the Kekule

structures, and one !E,  state constructed out of the Dewar

2g
structures.
From Table I, we see that the VB states are as anticipated

and further that the VB and GVB descriptions of the 1*'A,,, 1'B,,

1 gai

and 2!'A, states are essentially identical. The two descriptions

g
of the E2g state differ, but since these states are degenerate
mixing of them can occur and the description is not unique. The
components of all states are in accordance with our analysis of
the symmeiries above.

In Table V we compare the GVB results with some CI

results. 11 The agreement between the two sets of results is quite
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good, The GVB wavefunction provides a good quantitative description
of the pi-excited states of benzene. The agreement between
the GVB results and the CI results indicates that the GVB wavefunction
includes the important correlation effects,

The quantitative agreement between the GVB resulis and the
CI results and the qualitative agreement between the VB description
of benzene and the GVB description of benzene allows us to conclude
that the VB resonance model for benzene provides an accurate and
reasonable model for bénzené/. The similarity of the GVB pi
orbitals of two singlet states and of a triplet state indicates further
that the VB approach of using the same pi orbital for all valence
states is basically correct. However, atomic orbitals are too
localized and do not in any way reflect the fact that other centers
are present. Localized orbitals which have overlap with both
nearest neighbor centers in a bondirig manner are required,
For example, the ground (1A1g) state GVB orbitals have an overlap
of 0.524 with each nearest GVB orbital. In other pi electron -
systems, the overlap between neighboring GVB orbitals is typically
greater, being 0,67 in ethylene, 0.642 in each pi-bond of the
lAg state of butadiene, and 0. 58 in allyl radical. However only
the center orbital of allyl radical has two équal nearest neighbors

as does benzene,
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B. Resonance

One of the main features of the VB description of benzene
is resonance, Experimentally, the resonance energy of bgnzene
is found ﬁy comparing the heat of hydrogenation of cyclohexene
with heat of hydrogenation of benzene using the assumption that

three times the heat of hydrogenatibn of cyclohexene would be

- the heat of hydrogenation of the mythical cyclohexatriene (benzene

with frozen bonds). The value typically cited is 36 kcal. 12

From VB calculations using (I)II (4) as the wavefunction for cyclo-
hexatriene, we obtain a value of 31, 82 kcal for the resonance energy.
Since the spatial orbitals for the VB wavefunctions for cyclohexene,
cyclohexatriene, and benzene are the same,all being atomic orbitals,

there is no ambiguity in this calculation. ‘

With the GVB method there is more than one choice for the
wavefunction of the cyclohexatriene wavefunction. The form of the
wavefunction to be used is the G1 (12) wavefunction since in this
wavefunction the orbitals are coupled into three singlet pairs corresponding
to three pi bonds. We will use the optimum ground (1A1g) state orbitals
in (12) so that the resonance energy will correspond to the decrease
in energy associated with changing the spin coupling from the G1 (12)
spin coupling to the optimum spin coupling without changing the orbitals.
This is directly analogous to the VB definition of resonance energy.

In this manner, we obtain a value of 20. 98 kcal for the resonance

energy of benzene.
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One of six identical GVB pi orbitals for the A, state is
depicted in Figure 1. We see that this orbital is rather delocalized,
and in fact has amplitude on all six centers. However, the pi bond
in cyclohexene, the basis for the experimental value of the resonance
energy, should be more localized and he similar to the ethylene pi bond.
Using the ethylene GVB orbitalsl in the GVB G1 wavefunction (12),
yields an energy 3.02 eV (69. 7 kcal) above the optimum GVB energy.
Allowing two orbitals to delocalize slightly by using the localized GVB
orbitals for the ground, state of allyl radicalz and a spin coupling so
that in the two allyl radicals two orbitals were singly coupled, lowered
the energy 0.21 eV (4. 8 kcal). Allowing two orbitals to be delocalized
f:urther,by using four GVB butadiene orbita153 and twé ethylene orbii:als1
in the G1 wavefunction (12) iowered the energy 0.47 eV (10. 8 keal)
further. Thus allowing two of six orbitals to delocalize from GVB
-ethylene pi orbitalslto GVB butadiene pi orbitals lowered the energy
0.68 eV (15.6 kcal). Allowing all six orbitals to delocalize over four
centers then lowers the energy 2.04 eV (46. 8 kcal). If allowing all
six orbitals to delocalize ovér two additional centers reduces the
energy by 0.18%&V - orabout 0,03 eV per ori)ital, the
energy of the system would be reduced to the G1 energy.

From these calculations, we conclude that there is a large -
energy difference between pi electron orbitals of cyclohexene and
cyclohexatriene. This energy difference results from additional
delocalization of the orbitals in cyciohexatriene and the associated
reduction in kinetic energy. The experimentally measured resonance
energy can be attributed to two factors, delocalization of the orbitals

" from mainly two to six centers and the spin coupling optimization,



-229-

which is direc‘tly analogous to the VB description of resonance.

C. TFused Ethylene Model

Previously we have discussed 2,3 a model for the pi-electron
states proposed for butadiene by Dunningm, in which the pi-electron
states are formed by fusing ethylene molecules (in various states)
together. Both allyl radica12 and s-trans-1, 3-butadiene3 were
well described by this model. The ground (llAlg) state of benzene
would be described as the symmetric combination of three ethylene
ground (N) states. The first excited or antiresonant (1'B,,) state
may be considered as the anti-symmetrié .combina‘tion of three N
state ethylenes, or equivalently as the anti-symmetric combination
of three T state ethylenes, or equivalently as threé lowest triplet (T)
states ethylenes across the long bonds, that is orbitals ¢, and ¢, are
triplet coupled as are orbitals ¢, and ¢; and ¢; and ¢, and the triplet
entities coupled into a singlet. Since the triplet couplings are
across the long bonds, there should be a small overlap between
the triplet pairs, which is a favorable interaction. We find for
the ground state orbitals, the 1-4 overlap is -0. 17; the 1-4 overlap
is reduced slightly to -0. 15 for the self-consistent  orbitals for
the antiresonant (*Byy) state. The 'E,y state is a linear combination
of two ethylene T states coupled to a singlet and an ethylene N state.

There are unique three choices for the NTT states
T

(27)
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The ZlAlg will be a symmetric combinatio.n of three T state ethylene
plus a component of the symmetric sum of the three NTT states.

The benzene triplet state may also be analyzed in the same
manner. For example the lowest triplet (13B,,) state is the anti-
symmetric combination of two N state ethylenes and a T state ethylene.
The 1®E,; and 1°E o are the antisymmetric and symmetric combinations
of an N state ethylene and two T state ethylenes, coupled to a triplet
with appropriate considerations with regard to spatial symmetry as
in (27).

D. Comparison with Other Results

Using orthogonal symmetry orbitals formed from the GVB

orbitals for the 1'A,; state, we performed full minimum basis set

CI calculations on the singlet and triplet manifolds of states. Table V
summarizes these results. We see in Table V that there is very little
decrease in the energy in the CI calculations, a further indication

that the GVB wavefunction includes the important correlation effects.
In Table V \;ze compare the GVB, and GVB-CI total energies with

full CI calculations usihg the same basis set.

We see in Table V that not all of the low energy singlet and ~
friplet states correspond to the GVB states and are therefore valence
like. Since our basis set does not include any diffuse basis functio’ns,
- all of the states in Table V are described using tight or valence like
orbitals. Those states which were present in CI calculations, but
which do not correspond to states described in the GVB calculations
must be ionic-like states or poorly described Rydberg states,

The spatial extent of the pi-orbitals of these states should be slightly

greater than for true valence states. From Table V and reference 11
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we can identify the 13B,, and 1'B,, as ionic like states.

In Table VI, we compare excitation energies from VB, GVB,
GVB-CI, and other calculations and experimental values. For the
low-lying valence states the agreement is good. The higher valence states

are not reported by others,



-232-

*(L) udnoay) (g) xneslqe) ay) Wim pue (qr) pue (ey) ur sweaderp Jowny Jo SULIBQUINU YIIM JUSJSISUOD ST UOTIOUNJOABM Y} JO SurIaqunyu 8y, -

.

voddod +ogogdod - dogdond - ddovnd +vodddo - ododdo + godogo + ggondo-
vgdond + gogong - ndodod - doodod +nddodo - gogogo +ogdddon + dogddoo-
pooddd +oogdodd - ndogod - nddong + dooddo - gogogdo + ggogon + gigono-
ogogod - ogoddo +nddond +oddndo - doodod + googdo - gogong - gogogo
vogogdd - ngongd - oogddod +ogogod - gogdodo + dgpogn - dogdoo - gdodon

XEX 4 SXPX)(EXPXN + PXEXY(FXEX + EXTX)
EXEX +OXEX)EXEX + SXFX) (XX 4 PXTX)

EXPX + PXEX)EXEX + SXEX)(TXOX + °XTX)

(EXPX + OXSN) XX + PXEX)(FXZX + FXTX)
CXOX + IXPNEXEX + SXFX)(FXPX + OXTYX)

A
>H6
Ty
Iy
.%e ‘

[To°X X*XEXEXX] = [dogodo's]

SUOI}OUNjaAEM puOg BOUS[EA °T SIQE],

s

|



Table II. The Singlet Valence States of Benzene

Spin Coupling

State AR AmSU I I I v v
VB States
A 0* 0. 42 0.42 -0.17 -0.17 -0.17
1B,y 3,96 -0.82 0. 82 0. 00 0. 00 0.00
'Eog 7.21 “0.00 0.00 0. 20 0.70 -0. 90
Esy 7. mm_ | -0.00 0.00 0.92 -0. 64 -0. 29
2'A,q ' 11. 46 -1.35 -1.35 -1.04 1,04 -1. 04
GVB States .
(Using 1A, Orbitals)
*Asg \ 02 0.50 0.50 -0.11 -0.11 -0.11
1By, 5. 32 0. 82 -0. 82 -0, 00 -0.00 -0.00
*Egg 8. 90 . 0.00 0.00 0.94 -0. 44 -0.50
pmmm 8. 91 0. 00 0.00 -0.03 0. 83 -0. 80
2'Aq 14, 81 -1.34 -1.34 1,04 -1.04 -1.04

@ Calculated total energies for the ground state are ~230. 54931 h and -230.70988 h for the VB and
GVB (1'A,g orbitals).

b 4 hartree = 27,2117 eV,
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Table III. Self Consistent GVB Results

State ‘Total Energy (h) Excitation Energy (eV)
IlAlg -230.70992 )

13B, ~230.57213 3.749

1By, -230.52961 4,901
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Table IV. Valence Triplet States of Benzene

' VB GVB (3B,; Orbitals)
State Excitation Energy (eV)? ExcitatioﬁuEnergy (ev)?
3By, 2,170 3. 749"

3 4,534 5.444
1w 4.739 5. 481
- 5.503 7.339
2g 5. 844 7.396
By, 9.344 11,074
SAzg 10. 527 11. 876
E 11,383 13.120
w 12. 062 13,465

2 With respect the ground state

b The total energy for the 5B, state is -230,46958 for VB and -230.57213

for GVB. ,
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Table V. Comparison of Energies for Different Types of Wavefunctions

1A, 1'B, 13B,,
HF? ~230. 64001 ~230. 37326 ~230. 46506
VB -230. 54931 ~230. 40387 ~230. 46958
GVB('4, orbitals) -230.70992  -230.51435 -
GVB (opt. orbitals) ~230.70992 -230. 52961 -230. 57213
GVB - CI %7 ¢ -230. 71677 ~230.51766 -230. 56373
CI - Valence Basis® -230. 72287 ~230. 54006 ~230. 580508
CI - Full Basis® -230. 72339 -230. 53950 -230. 58265
a

The HYF calculations used ay,, €1z, €2y, and b1g orbitals from symmetrizing
the GV B orbitals of the ground state. The excited states were then obtained
by exciting one eiectron from €1g to e,;-and combining pairs of configurations
to obtain the proper symmetry. The exact HF energy for the 1A1g state is
-230. 6410 from reference 11.

Using orbitals for the ground state.

A full CI among the six GVB orbitals using the orbitals from the 11Ag state.
In adding to the configurations of GVB-CI, we included all configurations
obtained by up to triple excitations from the ground state but restricted to
only one excitation outside the GVB space (to the six virtual functions).

Hay and Shavitt (reference 11). In addition to the DZ valence basis, two

diffuse functions per center were included.
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Comparison of Orbital Coefficients for GVB Calculations

- Nuclear Center?

1 2 6 3 5 4
VB 0.7926 0.0 0.0 0.0 0.0 0.0
0.3174 0.0 0.0 0.0 0.0 0.0
GVB (1'A,,) 0.7025 0. 1323 0.1323  -0.0047 -0.0051 -0.0530
g 0.299%4 0.0345 0.0345 -0,0279 -0.0281 -0.0462
u 0.3648 -0.0240 -0.0209 -0.01488 -0.0201 0.0247
GVB (11B,,) 0.6775 0.1559 0. 1553 0. 0039 0.0035 -0.0851
2u 0. 3696 -0.01988 -0.0203 -0.0231 -0.0232 -0.0166

2 Tn each center there are two basis functions, the upper one refers to the

tighter of the two.

e
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Table VII, Comparison of Benzene Excitation Energies

Current Work

Other CI Calculations

- HF® VB GVB GVB-CI N b .
State Fixed Optimum us®* pB® BwWeP® ExP
Orbitals  Orbitals

1A, 0 0 T 0 0 0 0 0 0 0
1°B,,  4.76 217 375 375  4.16 3.87  3.83 4.21 3.98 3.9
1!B,, 17.26  3.96 5.32° 490 5.42 4.97 5,00 5.27 5,26 4.80%
15g,,  5.88  4.63 5. 46 5. 55 5,00  4.98 521 539 4,79
19E,;  10.30  5.62 7,37 7,72 7.24 7,28 17.65 7.48 m” mmw

*B,, 7.03 - - '8.16 \ 7,26 7.00 - 7.28 7.76 5.4P
IE,, 12.85 7.22 . 8.90 8. 91 8.23  8.33 8.60 862 7,24
1B,  8.41 - - 9. 44 8.00  7.63 8,09 9.48 6,169

g, 10.94 - - 10. 60 9.11

B,y 9.34  11.07 11,73 10. 99

sy 10.53  11.88 12. 20 11,12

Ay 11.46 14, 81 12. 86 11,40

g - - 13.15 11,52

ol 11,72 13.24 13. 90 12, 87
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Reference 11,

Reference 14.

Reference 15.

Reference 16.

Using self-consistent orbitals from 1Ag for singlet states and from
3B, for triplet states.
References 17 and 18.
References 17 and 19.

Shoulder in band in reference 16.
References 18 and 20.

See footnote a of Table V.

See footnote d of Table V.
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Figure Captions

Figure 1 - One of the six equivalent GVB pi orbitals of benzene is shown for
(2) the optimum GVB description of the 1A,g state, b) the
antiresonant !B, state, and (c) the lowest triplet (°B,,) state.

In all plots, the most diffuse contour has an amplitude of 0. 05
and each succeeding contour increases by 0. 05. ﬁodal lines

are represented by dashed lines.
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APPENDIX VII

THE SPATIALLY PROJECTED GENERALIZED
VALENCE BOND METHOD
AND CALCULATIONAL DETAILS
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I. GENERAL DISCUSSION

The goal of the spatially projected generalized valence bond
(GVB(SP)) method is to generate a wave function that is an eigenfunc-
~ tion of spin and that also possesses the correct spatial symmetry
without restricting the individual orbitals to be symmetry functions.
The spin coupling is optimized among all possible spin couplings for
the particular number of electrons and the multiplicity. The spatial
orbitals are also optimized self-consistently.

The calculations are performed by optimiziqg the spatial orbit-
als . with the spin coupling fixed. The spin coupling is then
optimized using the initial spatial orbitals. The orbitals and the
spin are then changed for the next iteration. Both spin coupling
coefficients and the spatial orbitals are changed concurrently without
permitting any direct interaction between the two. These operations
are treated separately for reasons of convenience. It has been found
that the spatial nature of the orbitals and the spin coupling can and
do affect each other so one must be sure that the optimum description

has been obtained, rather than a local minimum.

A. Spatial Solution

The GVB(SP) wave function is based upon the GVB wave function
of Ladner and Goddard]’z. The Ladner-Goddard version of the GVB wave
function solves for an eigenfunction of the spin operator without any
restrictions except that the form of the wave function is the indepen-

dent partit]e type. This wave function has the general form
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Z
ﬁ?} - ;;i e, Gag (f?g.... ﬁgq7g. eee) (1)

where f, 1s the number of possible spin couplings for n electrons
of spin s

denotes the particular spin coupling
Gy are the spin coupling coefficients
Q¥ 1s an operator which creates an eigenfunction of spin cor-

responding to the o th spin coupling and incorporates the
Pauli principle directly into the wave function

Previous calculations have indicated that this method generates excel-
lent independent particle wave functions.

Certain systems, typically excited states, are not correctly
described by this wave function. One of the simplest systems for which
this GVB description is not adequate is Heg . This system may be des-

cribed by either of two equivalent pictures

He - He™ He' - He
I IT

as there is no a priori_ reason to choose either. The standard GVB or
Hartree-Fock method will only describe such a system by using
delocalized symmetry functions so that these wave functions will no%
properly describe such a system at all internuclear distances. In
addition, localized orbital descriptions of systems should be Tower in
energy as more correlation effects are included.

In order to properly describe such a system and not restrict

the individual orbitals to symmetry functions, a spatial projection



-247

operator, denoted as P , was added to the wave function of (1) giving
4
&7/_“‘ ;%7@{(?9....%%....)

This wave function has the following characteristics:
(1) It is an eigenfunction of the spin operator and explicitly
includes the Pauli principle.

(2) It has the correct spatial symmetry without restricting the
individual orbitals to being symmetry functions.

(3) A localized orbital description is usually obtained.

Using this wave function, variational conditions for the mini-
mization of the energy can be derived. Three different equations are
derived resulting from the consideration of first and second order
changes in the wave function and the resulting first and second order
changes in the energy.

The first equation to be considered results from a consideration
of the first order variations in the wave functions and examining the
resulting first order change in the energy. The condition that first
order change in the energy be zero, i.e., that the state be stable

with respect to first order changes in the wave function, is

- ' =0
a A ] A ~s =
jﬁ@k |7]F7-E<ZL/P7 =2

Py LR
where H 1is the hamiltonian, Q?L denotes that orbital k 1s varied,

NBF is the number of basis functions, and A] is the appropriate
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metric3 for the space under consideration. In (3) the definitions of
H and A] have been inserted. (The metric will be discussed more
fully Tater.) 1In the GVB(SP) method, there is one hamiltonian for
each electron. A1l of the hamiltonians may be diagonalized simultane-
ously changing all of the orbitals at once. Alternatively, a single
hamiltonian for orbital k may be formed, diagonalized, and a new
orbital k found. This new orbital is substituted into the wave
function and the next hamiltonian formed, etc. This process is re-
peated until a new orbital has been found for each‘electron.

The second method of solutions results from examination of tﬁe
second order change in the energy resulting from a‘first order change
in the wave function. This condition insures that the state found
which is stable under first order changes in the energy is in fact a
true minimum rather than a Stationary point. The equation derived for
this condition is

(B'—cr?) 4 =-X
Z (<0187 — = (<ELRIT7< T/ Pl 7
/
— <BL (T P<E) B> ) — £ <L VL >) Ay

= e <’@f/,é§~"ﬁ‘/§7 (4)

where B' s the matrix of second order changes in the energy

A2

is the correct metric for this space
X 1is the vector of the first order changes in the wave function
A is the change in the wave function

and the new wave function is found by:
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I = PP A (5)

where i denotes the iteration number.

The third condition is derived by considering the second order
change in the energy resulting from a second order change in the wave
function. The resulting equation is

(B~ rA')A=—X
Z‘({Q“/,ﬁ [FS >+ <P )P 7 (= pe) —
F<FL | P =) - 2z (<2 y--&‘/f?@é’"/iy?")

—E<PL T ) Do =~ < ZL 1A/ E7 (6)

Again A is the change in the wave function for iteration i , and
EX indicates orbitals k and & are changed. The new wave function
is found using (5).

The metrics in equations (3), (4), and (6) project out those
changés in the wave function which do not change the energy for the
particular variational condition. The first order change in the energy
is considered in (3). In this case, a typical example of a trivial

change in the wave function which does not change the energy is the

addition of two triplet coupled orbitals. If the spin coupling is

Y3 ?"j

adding any part of orbital d to orbital ¢ will not change the
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energy, since orbitals ¢ and d are triplet coupled. Diagonalizing
A] will yield all positive eigenva1ues except for those changes in the
wave function which do not change the energy. There will be a zero
eigenvalue for each trivial change in the wave function. Transforming
H to the space of nonzero eigenvalues of A] will project away the
trivial changes in the wave function leaving only the real changes 1in
the wave function. |

Equation (4) is the condition for the second order change in
the energy associated with a first order change in the wave function.
An example of a trivial change to the wave function in this case is
changing the norm of any orbital. The metric is used in an identical
manner as Al discussed above.

The metric used for the second order change in the energy
associated with a second order change in the wave function is the same
as used in (4). This metric is used because the first order changes
in the wave function are considered most important and the elimination
of the trivial first order changes in the wave function is most impor-

tant.

B. Spin Variation

The spin coupling optimization is performed by a configuration
interaction type procedure. Letting {%& denote the set of spin
eigenfunctions for the same set of fixed spatial orbitals, the optimal

wave function is

L= ﬁ"—"fﬁ (7)
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where the C., are such that (7) gives the minimum energy. This is

found by solving

;,(
y J<BIRIE 7 £ ) E =

e ons

C. Excited States

One-electron excited states may be found by the hamiltonian
methods. Since there is a separate hamiltonian for each electron, a
state that can be described as a single electron excitation may be
found by selecting an excited‘solution for a particular hamiltonian.
This method will converge toward a particular, one-electron excited
state.

The matrix of second order changes in the energy will contain
one negative eigenvalue for each possible path for lowering the
energy. Thus, in solving for the ground state, this matrix should
have no negative eigenvalues. The first excited state will have at
least one (hopefully no more) negative eigenvalue. Using those
methods based upon the second order change in the energy, one may con-
verge to a double excitation state (in theory) if the trial guess is
good enough and one selects the correct number of negative eigenvalues.

For spatially projected states, the Towest state of each
symmetry type will have zero negative eigenvalues. Each symmetry type

will behave as a separate spectrum of states.
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Another possible type of excited state is obtained by choosing
a higher solution from the spin optimization, configuration interaction
matrix. This type of situation arises when two states can be des-
cribed by the same spatial orbitals, but with different spin couplings.
Such excited states may display the characteristics of double excita-

tion states.

II. DERIVATION OF EQUATIONS

A historical discussion and derivation of GVB equations is
presented in Appendix I of Reference 1. Our derivations will parallel
this presentation. It is recommended that the interested reader
become familiar with Appendix I, Reference 1, as in many ways‘our
derivations are identical with those, but are further complicated by
the addition of spatial symmetry considerations. It is also instruc-
tive to see the additional complications introduced by the spatial
symmetry operator.

The energy for the GVB(SP) wave function is

e <E/H/E7 »
S <FIFT
(9)

~
where H 1is the hamiltonian of the system

H'= f(A(A')+ élﬁ/ﬂ )

ATl

(10)
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k(i) ds a one-electron operator and ¢(i,j) a two-electron operator.

g?'is the final wave function. NX s the number of electrons.

Let i?(i) denote a specific order of the variation of the
wave function. 3?(0) represents the zero order wave funbtion or
the present best guess at the wave function. ﬁp(]) represents the

first order change in 2?(0). Expanding 4 in (9), we get

L P, P B JH PO FET D
<~/§m} ~ f")‘f‘ gyw. . /gﬂa%,_{?u)*_ g(y. . 7

Er:

(11)

By keeping terms through various orders in the variations in (11), we

obtain different equations for finding the optimum GVB(SP) wave function.

A. The Energy

If only }?(O) is retained, we get
o Pl
<Z i I L >

£ =

This is the energy of the system with the trial wave function.

B. First Order Eguation

Keeping terms which contain up to first order variation in the

wave function and have a total first order variation, we obtain

(.(E(o) / _ﬁ@m’7 (]2)
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(13)

Since we will only allow real wave functions, (13) is

ST | B 7+ 2<F Y 1P >
<:Eg;rqi/égj(g%:7 2 <(£Z;(Qi/52717{;;

(14)
Examining the denominator of (14),
-/
J<z gy vz FYF7] =
-/
za«:é?*“ﬂﬁ%”ﬁﬁ?;7

-y T
< TP Z T LTS

(15)

We assume §¢©’>>£?(]), i.e., that the first order changes in the wave

function are small. Then we can approximate (15) by

</
[cF) 25 - 2<FUE7] T =

<&"YTs 7;“

2 <F L7
{ffw/gjm)?r (16)

where we have retained only first order terms. Substituting (16) in
(14)

£ = jgégvﬁ@glﬁgﬁg;71*2?<3§?%4;/£??1>' . 2< T Ty
<EF /POy BT T

(17)

Expanding and keeping terms only first order and using (12) we obtain



-255-

2<BIRIE> <Y T >
L= é‘o + <§@/§“"7 ZE&, <!Z7&ui/_£5‘47

(18)

Then, the first order change in the energy due to first order change

in the wave function is
. <(g§“%0ﬁ/§?f”>>"_ = <Cé;@i/£?md;7
A& = -4 = <5 F o <F T

(19)

The condition for convergence is AE = 0 giving

CFUA] Ty - E<TYT7 =0

(20)

Equation (20) is a homogeneous, first order equation for Aj?rﬁq
The rate of convergence is proportional to the difference between the
trial solution and the final solution so that as the solution is ap-
proached the rate of convergence decreases. Theoretically, (20) re-
quires an infinite number of iterations to converge to the exact

solution.

C. Second Order Energy Variation

In order to improve the rate of convergence, higher order ap-
proximations are used. If we allow up to second order changes in the
energy, but restrict the wave function to first order changes, we

obtain from (11)
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<P w FP )] P FOT

EF TG Bl pes
(21)
<TG IE S - 2 <FWHE 4 <FYHIT7
(Q«{s} / ‘g;‘(ol\,? DL g{a}/ ‘g;w;, -~ <'5:§”" / g:;'a}7
(22)

where we have incorporated the real nature of one wave function in

(22). The denominator of (22) may be written as

o [ L EZSEVTOZ <FY P
<TUE [ TGy s

and may be approximated in a similar manner to (16) by

-/
g |, 2<PYEC7 _ <BYLSS
<EE7 [/ <B BV 7 B E

(24)

Substituting (24) in (22) and keeping only second order terms gives

£ =&t Gupgay EVE-a/Z207
o SEYIEIT | g T Yy T TIE T

{d“?m’/ gfé}?? <§,97E(a;.7<gzo)/§(w7 (25)

which may be written as



-257-

as= = s [k g ag]

(26)
where we have defined
= <F/4-£/F"7
L= <Y £ o
Y/ T < TV
‘ ) A ) iy AL I D T

sE= < FY TS | (29)

X is the first order change in the energy as can be seen by comparing

1

(27) with (19). A% s the metric, and B’ is the matrix of second

order changes in E caused by first order changes in the wave function.

At convergence AE = 0 giving

/ #
—24 = (E(-'é;ﬁ).’é (30)

which is solved for A . The new wave function is found using (5).

D. Second Order Variation in the Wave Function .

We now consider second order variations in the wave function.

Keeping terms through second order in (1) gives
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<'§mi’a ga}_ﬁh gra;/g/fw)#_g-w#gyw?
<F I B P By B BV

£ =

T HE w2 B WY TS BURIF S
<§("/£}‘9’7 # 2 (&“Z;e'ﬁ/gfa}? -+ {kﬁwj/ 323(1)7

& =

z <;£§($/%?/C§§&#:7
2 <PC/FC s

(31)

where we have used the fact that only real wave functions are used in
(31). Expanding the denominator and keeping terms through second order

gives

/ ¥4 .t
Ag <§€W/gt’@7 [‘“‘ J"“’

(32)
where y » . 5
22 = <FYD)TT # mlr~ L)< BOYRIF >
- 4 ca) f 7% ccth el e}
<P ik, (FTLEY PV
<EYL7
- 2B (=)L P TP (33)
As before, at convergence AE = 0 and our equation becomes
Pt I
—zX= (B*-£4') 4 -

which we solve for A, the change in the wave function, and find the

new wave function from (5).
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ITI. SOLUTION OF EQUATION

A. Definitions and Notation

The GVB(SP) equations are solved using a basis set expansion.
Letting é%%} be the set of basis functions (Greek letters will be
used throughout to index basis functions), gﬁk and é@ék becomes

%

ABE

:Ei ;%;, G;wéé
ey (35)

i

HEE

Sh =2 Kulr . (36)

Atz
We will expand the GVB(SP) equations in terms of molecular in-
tegrals. To facilitate notation we define various quantities (being

consistent with Reference 1). Define

L = L ;éiiﬁ:éé.
‘@ “s (ww—7) (37)
where hi = %—V? + Vnuc]ear(i)' Then the molecular integrals we need
are

/Mm—f@z/&&y}'w} = f K, g@‘;ﬂry L, X, ) Zﬁm a7

RPTIR (4 712, ts) = f 0, érz;jw V. gg. DT (39)

LRI 14 Card 4y g0 #5) = / Zocthe Ble)y Vbt ‘ff () &7 (40)

A1 Cal (i 0= [l §e, e g ety D
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Xrtr 1 (5 jlonn i ws) = [0 Bl Vo e Food T

where LS = MSxNS and the symmetries not indicated on the right side
o% each integral indicate that a sum over all allowed symmetries on
the right has been performed.

We define here the various density matrices. The basic defi-

nitions and indexing scheme are in Reference 1. The density matrices

are as follows:

(i) DENOM = <& /T 5>

There is one such term of each symmetry type.

(i1) DONE's are the coefficients of the one-electron terms.

These will be denoted by DTE » where k and & are the electron
numbers involved in the one-electron operator. Since there are NX
choices for k and for & and each orbital has NSYM symmetry types,
there are (NX)x (NX)x (NSYM) different DI% . The indexing is as
described in Reference 1 for each block of a given symmetry.

(ii1) DTWO'sAare the coefficients of two electron terms. These
will be denoted as DZEZ s 0253 or ngg » where k and £ will always .
denote excited orbitals and upper indices bra electrons. There are
NX choices for the first upper (or lower) index, NX— 1 choices for
the second upper (or Tower) indéx, and NSYM choices for the symmetry
%

of the D2's. Thus, there are NX NX—])2/2! NSYM D2's, since the
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order of electrons is immaterial.

(iv) DTHREE's are the coefficients of three electron terms.
For three electrons there are 6 D3's and these are simply numbers.
For four electrons there are ((42)(32)(22)/3!)NSYM, or 96 D3's of

each symmetry type.

(v) DFOUR's are the coefficients of four electron terms.

There are 24 D4's for four electrons and they are simply numbers.

B. Characteristics of Our Example Problem

In general we shall examine the various expressions which have
been formally derived to display the full detail and complexity of
these expressions. To avoid some unenlightening complexities, we
shall use as an example the simplest possible choices, a three-electron
system, G1 spin coupling, and two-symmetry types.

For three electrons there are two independent possible ways to
couple the spins to a doublet state. We choose the orthogonal spin

coupHngs2

= E (-

S ALY
p

SN
N

i

¢: ?é: (Zepp= g o)

The most general spin coupling for a three-electron doublet is some
linear combination of G1 and GF. To simplify some expressions, only

the G1 spin coupling will be used.
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The GVB(SP) computer program may be used only for Abelian
spatial groups. In general, non-Abelian spatial groups have multi-
dimensional representations and the Kronecker product of two irredu-
cible representatjons may be two or more irreducible representations
and is therefore not precisely defined. For Abelian groups, the
product of two irreducible representations is always a single irre-
ducible representation. We will use in our example the simplest
Abelian group consisting of two elements with a group representation

multiplication table

12
111 2
2 {2 1

1 will denote the totally symmetric representation.
Our final expressions will be fully general and be suitable for

any spin coupling and any Abelian group.

C. The Energy Expression

The zero order energy expression (12) after substituting (2)

and cancelling spin functions is

<POlh BB PoTcdd b7
P A& POl cd b ) 7 (43)

where 27 denotes a particular spin eigenfunction (G1 for gyr example)

and 011 is the Wigner projection operator which generates the appro-

priate spatial functionz. P is the spatial projection operator.



-263-

Using the "turnover rule"za,

SHh h)idIPOT S hd) >
SGhd /P LA > (44)

£, =

The denominator is DENOM and is equal to

By= 2 b/ b7 <h! bt <d/h>,. 4 (15)

I'iié“g

Litke
PP
ASy ST A5

Psm LSX IS XN

The numerator is

7 SEGIL/B 87, <ds Idz, 4 cr)

aé% ot 397 (46)

'é’ﬁ‘fwﬁ
AS; £75

e LY A

Generally Py
yar 7 Z Eﬂﬂ’ﬁf/ﬁ%é/emﬁ Ls) Dz ffwj‘, o

Ee*‘ﬂx, b ‘C e

- ;é_ Mrtrtr7la, bl ,Af'j pjgjg;{(ﬂ‘j /e 7‘,%—7
a<. e
(47)

X Cufe /Z /zw/w'msj
where the product of the symmetries in the numerator is restricted to

be PS.
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D. First Order Variation in the Energy

Substituting (2) in (20), cancelling spin functions, and using

the turnover rule, we get

SHAEL I PGTIL By bove ) 7 — <o)l Y & o)
= O é”::-/, dy F (48)

and k+1 and k+2 are taken MOD 3 . Substituting (35) and (36), we
generate a NBF x NBF matrix equation for each value of k (i.e., for

each electron)
LR

¥, |
;Ei: E b < Za %éﬂ %é% /%?/’;95% (229»9§vv f%va)4;?

AL¥sy

= £7 Cute < Gy Bz 17075 By hos) 7 = 0
kel 22 | (49)

These equations are solved by diagonalizing the coefficient of
E , which is the metric for this space3. Any possible trivial changes
in the wave function, i.é., changes which do not change the energy,
will be manifest by zero eigenvalues of this matrix. These are removed
by reducing the dimensionality of the space and then transformed to the
space where the metric is the unit matrix. The transformed matrix is
diagonalized, generating the spectrum of energies and eigenfunction.
One-electron excited states may be generated by choosing a higher eigen-
value for a particular hamiltonian.

A1l hamiltonians may be diagonalized simultaneously, generating

one new orbital for each electron. This process is reasonably
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efficient, but is not guaranteed to converge as the lower bound prin-

ciple does not hold.

The first term in (49) is (ignoring Cuk)

7
Z 214 1m b <did v i 4
T
e X
bfadk
e sl

&
CX VNN IR VA R
S%telGbdh o <dht p70s 4] ) +
bl |57 <t h g ) +

S d/is/ &k g<2 /%7470 f

(50)
The coefficient of E, in (49) is
I, [<tsnz <de ne < /45 aice
bk
extast
otk bt ‘ »
Ll By Tk B ) B e S Vg T el ) (51)

Generalizing, this equation becomes
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kb
7 7 7 :’:  Sarerirt (g blad as) D2 (#s) .
s btk e d#C Zr e

A

#
Lalb
T T Xt (a8l F oy a) s Carel 195) DIEIS) o gy ]

L

a<h HpE
e
e | Y i
e £ T S(ufeits) DL, = O
&
(52)
where
S(alaiss) = <K /B, (53)

and the product of the symmetries is restricted to be PS, the symmetry
of the state. It should be noted that for three electrons, D3 will be

U¥1(T), a number, and be totally symmetric necessarily.

E. Second Order Energy Variation

Substituting (2) in (32), cancelling spin functions, and using

the turnover rule, we get

~z [<HhAb 181707 4, 40> ~
%{é%%/?@f?{fﬁé— é’ﬁ/?%,s#)?] =

<G borstoa 1719055 4, 4., ) 7
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— # L, .
CAhdIrofchd bz [‘l’é% % /b2, ) 78] IE b, 4.0

X<Ih B b 1SRRI | —

| s
£.<dé &, Feva / 0, I8 Sy ) 7
(54)

where k and £ are summed over all electrons and are taken MOD 3 .
Substituting (36) we generate a NBx NB matrix equation where

s fe)
NB = (NX)x (NBF). Letting ‘gk denote F with Sék replaced by
A

s B8 7 = Lt [EI 1T -
2 e ¥ ) -
o P [F < Ep [P

- (55)
£y <’£€é /_%’_f‘)?].d.yj

or 5/&“&/!(

T 7 Ly [@g% AT @,)7_7 =

LT

HAE MK -

ZZ Aﬁé%&%ﬁ/%ﬁ&/g/ﬁg/ (Zf’ﬁg%, %3)74341%
PIVEVE VLY

- B X b B |PdgbdT X

DESCH ARy I o (]

<hdd)-m)Pol g, $.)T Dur
—&, </3;: é‘«f/ é‘?‘z / 7, 3“/ %-#/ é.,%) 7'A'Pf]

(56)
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Expanding O]] and H will generate a series of terms similar to
those developed in the previous sect1on for the first order equation.

The genera1 form of (56) is

? Mé -&’é’ |
A;%i -‘%«A?ézz; (ﬁglua - £ fzai ‘)Jﬁzufzz ”"‘ijggkéf;ng%

(57)

where we define

)g;A% = ;Ei; :?: jzf: Z/;éﬁﬁﬁﬂ*f62¢4§/e;&{f;idj/l%&cOqujéfi

S¥muariies €  bpk
de

. ab
1#»2{_ j?f XﬁkﬁﬁfV“f(QﬁA4/if¢?£€)¢ﬁﬁ%ﬁ¢//V%VZMﬂﬁﬂﬁéfizaijz
a<é 7(;,&5?
b

y2
— &, ] Slale; L5) DL (+75)]
&

(58)

A""’i Z [5@,;4'4{) ,zquf #

M Srpqurnar foa
A 7‘ Stfsins) S (1) a; tes) PRGIS) /] (59)

Z;/,«ué [{n;zif Zﬁéﬁﬁﬂﬁffdéy%é/sy AL{jZQZC?V@ij =

4 5?%%%@72%&? S

&
b AP0 B a5 45) 22675 5 o+
) é A
Z 2 Z,;w,s—w' (e, d 157 ) L5) S(# 1) p15) o E1
b#a ¢
s :;

ab
S Attt (ot e b 4o5) S Cals) 25) D) © i
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b abd
o+ WM (o, blgt; L5 )astalsy' rs) DI 4 4+

bald
Ry Aggfyggﬁfgzac/@éa@3é4745Zﬁ73?/%&8/:ﬁAQVQ%%M€f29%5@5{ﬂ;igbj-;?;i
a;;ii éﬁ:ﬁ

whk o/

¥4
_ 2 7 zZ jf: Z?;fﬁﬁﬁﬂﬁfzaygé/ggﬁxzﬂg} D2As), 4
pewert bl e e

| L4
LT 7 Keteertla b)Ed 45) S Lefel #ts) 22v3)] @/j]
TG

X [ g:: Stecli y a5) ;@zwf}j’ ] |

(60)

and the sum over symmetries is restricted so that the product of the
symmetries is equal to PS, the symmetry of the state.
Equation (57) must hold for each independent value of éiﬁw%;
by comparing coefficients of Ai%é we obtain
v 2 ek
5'— ﬁ‘ TN et
Z, (/Aa( £o /Q&gf Ay = ’x:uéé

gl (61)

Equation (61) is solved for 4,¢ and the new wave function is
given by
c<p-/) ¢4}
jz? = 5%7 + A,

y24 | we (62)
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Equation (6]) is solved by first diagonalizing A2 to yield the
space of unique changes to the wave function as discussed in Section I.
B! and X .are transformed to the space where A2 is diagonal and has
only positive, nonzero eigenvalues. B] is then inverted to find A .

~

F. Second Order Orbital Variation

Equation (33) will be herein expanded into full detail. This
equation is developed by examining the second order change in the
energy resulting from second order changes in the wave function. Equa-
tion (33) is analogous to Newton's method for solving differential
equations. |

Substituting (2) in (33), cancelling spin functions and employ-

ing the rollover rule leads to
~2<44 & 171, (IE 4 b) > —
Eo< bk 1P S B ) > =
Il Bon Ghon B 120751 8., ) > +
(G )<H b B/ £, [ PSS 8 du) 7

— - I, |00 (5%, '
<bd d1Po7gd é?)}{?ég‘é"/% £, /P (e By Fove)

X<IG By a1 PO CH A A —

£, <fd?éé,ﬁévv Prua. / 79‘%?1f2{%é 9?%/ f@?zu}:;7

(63)
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Substituting (36) and using the notation introduced prior to

(55), (63) becomes

— 2 4. <§‘”//5-g/ﬁf> = Z 44 )Z
<ILIE 5 Ay 7 (g ]EV-5/ T > g
i L <E Y | B 7 <E /T D

— £ ; <Z1E A—Vf]

(64)

where .?j denotes f(o with ék replaced by ;,2; and ?5( re-
placed by Z» . Since (64) is similar to (55), when expanded it will

be similar to (56). For n electrons (64) becomes

< £ 2 pA
,ff)‘,é‘df“fé‘% (’5;??; — %Ay «ﬁyf‘”’”“;&z«z%&%
‘ ’ A

where A% s given by (59), X by (58), and B2 is

4 ‘ i
B;& e Z Zé: Z;?/?’l?ﬁfé% a/iysyLs) ﬂz/ffsjf_:’

Ry b prisian

sl

fe
- RATAE (o) L) PEHS) o g -

££
<?;?é?}/QQ$ffyﬁ?(ﬁayéi/ﬁg¢ﬁ5;ALJT}2933/7¥37CTBL e AE;.fzﬁx/332£{7J7¢b4%;/%ﬁ:)

£ a
X2, +5£. g{ [ AITF127 (et b /5y L57)

bl EHL
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X SCotas 1) 23 () E : +

RITIFr1 (0 &)y b 5 £5) Safs ) ris) ‘@35@’5):%;5 7

ettt 235

Undys ) [t 020001 i b J53 6 15) 50 s 1) D 3005) & L&

Rotrirg (B 5] e, €, A4S) SCu/s; MS)D3Ms) &6 v

5 ad

gé’ %:; . Z:%’%Mﬁf’/éc/é%lfl STt i) S i) Dotess £ A 4

& AL
& gom o
et &L

(=g ) ¥ it AT (g G te, 1eS) St 5, 11S) s o, rs) 2, Jé L8 ,:7]

sa t
“

—_ = £ 4
Py % ? g& [;&MM@, ble,djss) DECHS),

a<b Fic ¢ df

| baf
b T D KA fehl ) ) St ) 23 (0 77
avdl o

‘. £
X ; STt /4, L) DL (775

(65)
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Equation (65) must hold for all ¢§%é as these are linear independent.

By comparing coefficients of li%é we obtain
2 #ﬁA? — 2 ,mdéf}
;5;: (%?9%’ o f?éz ‘éiaf = ""'égé?

This is solved identically to (61) for giwﬁ which are the changes in

the wave function given by (62).
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APPENDIX VIII

THE GENERATION OF IRREDUCIBLE MATRIX REPRESENTATIONS
OF THE SYMMETRIC GROUP ON N OBJECTS
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I. INTRODUCTION

The symmetric group on n objects (denoted throughout by
Sn) is intimately involved in some calculation techniques of molecular
quantum mechanics. GI and spin optimized GI (SOGI) methods in-
corporate all n! elements of Sn‘ The configuration interaction (CI)
method using an orthogonal basis of spin eigenfunctions requires the
matrices representing all transpositions, i.e., an interchange of two
objects. |

It is well known that an entire representation of Sn is charac-
terized by the n-1 generators, P(1,2), P(1,3) --- P(1,n). Further,

these generators can be found by
P(1,L) = P(L, L-1) P(l, L-1) P(L, L-1) (1)

so that it is sufficient to generate the matrices f’epresentmg adjacent
interchanges. If an entire representation is required, it may be
calculated from the generators by not more than N matrix multipli-
cations. 1 | |

Gabrielz has developed a method for calculating the matrices’
representing adjacent interchanges of Sn' This method is suitable to
programming on a digital computer. In section I, Gabriel's method
will be outlined. The computer program incorporating this method

is listed in section III and an example reported in section IV.
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1I. THEORETICAL DISCUSSION

Let M be the total number of electrons and k the number of
beta (or down) spin electrons. S (M, k) will denote a particular
Young's shape3 and (M, k) a particular representation.

Let (N, k) be an irreducible, unitary representation of SN'

Because SN contains SN--1 as a subgroup, the basis space S (N, k)

affords a representation of S This is either irreducible or

N-1°
completely reducible since the representation is unitary; S(N, k) is

N
mutually orthogonal irreducible subspaces with respect to SN—1‘

either reducible with respect to S _i or it can be subdivided into

Let us chocse the particular subgroup of SN which leaves N untouched.
Similarly, the subspaces which are irreducible with respect to SN~1
are either irreducible with respect to S;_o or can be further sub-
divided into irreducible subspaces with respect to SN-Z' It follows,
that there exists a basis for an irreducible, unitary representation of
S S

S

N in which the matrix representations of the subgroups SN, N-1°

N-9s
It has been proved2 that S (M, k) is reducible into S(M-1, k~1)"

S2 appear fully reduced. y

and S(M-1, k) with respect to Syp-1 unless (1) k=0, when S(M, 0) =

S(M-1,0) or (2) M is even and k = 3 M when S(M, M) = S(M-1, 3 M~-1).
The successive reduction of the representations S;_y, Sy_o * -

in (N, k) and the corresponding subdivision of S (N, k) can be displayed

in a family tree. An example is shown in Figure 1. The order of the
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k-value in each generation is fixed by constructing the tree so that

the two descendants of a general k-value at level M are written in
order k-1, k at level M-1 and by requiring that descendants or pairs
of descendants at level M-1 appear in the same order as their parents
at level M. This ensures that blocks of terms at level 2 which are .
descendants of individual terms at level M appear consecutively in

the same order as their ancestors and that blocks at level 2 descended
from terms at level M having the same k-value are identical.

For example, for M = 6 and k = 2, the sequence of terms is

in Table 1.2
| TABLE 1
Level k-sequence

6 A 2
5 2,1
4 2,1,1,0
3 1,1,0,1,0,0
2 1,0,1,0,0,1,0,0,0

To calculate the representation of P(M, M-1) in S(N, k), we
need to know the dimension of all the spaces S (M, ki) that appear in
the family tree of k-sequences. Since the space S (M, k) can be divided

into two parts, it follows

D (M, k) = D(M-1, k-1) + D(M-1, k) (2)

except for
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k=0; D(M,0)=D(M-1,0) (3)

k=3M(Mgye,); DM, 3 M) = D(M-1, 3 M-1) (4)

Since D(1, 0) = 1, all other cases can be calculated using (2)-(4).
For example S, has two irreducible representations (2, 1) and (2, 0).

(2,1) has k=3 M and M so D(2,1) =D(1,0)=1. (2,0) has

even’
k=0soD(2,0)=D(1,0) =1, Sq has two irreducible representations

(3,0) and (3,1). D(3,0)=D(2,0)=1. Using (2)

D(3,1)=D(2,0) +D(2,1) =2

Since all representations of So are one-dimensional, we may
take the base vectors € of our representations to be the one-dimensional
spaces S (2, ki) given as an ordered set by the k~sequence at level 2.
Doing this ensures that the matrix representative of an element of SN
in 8 (N, k) has its representatives in the spaces S (M, ki) arranged down
the diagonals of the matrices in the order given by the k-sequence at
level M, where M < N and k < k.

The details of the calculation of P (M, M~-1) are given in refer-
ence 2. Here only the results are given. |

If S(M, k;) is subdivided according to its descendants at level
M-2 and the matrix partitioned accordingly, the matrix appears in the
form of Figure 2.4t The corresponding k-tree is also shown to the
right of the matrix. For certain k-values, some of the subspaces at
level M~2 are excluded because of the special k-values discussed

above. Table 2 summarizes these results.
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TABLE 2
M k Excluded spaces
any 0 ‘s (M~2, k-2)
S; (M-2, k-1)
Sy (M-2, k-2)
any 1 S (M-2, k-2)
even M/2 Sg (M~2, k-1)
ES(M-I, k)
odd M/2 S (M-2, k)

The values of pand A in Figure 2 are given by

A = L | (5)
M-2k1+1
po= V1 -7 (6)

!
For illustrative purpose, two examples will be 'worked,

P (5, 6) and P(4,5) in S(6, 2).
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1) P (5,6) in S(6, 2) y
Since the space S(6, 2) is the smallest space invariant under P(5, 6),

the results in Figure 2 apply. The family tree is

/(6 ,2) \

5,1 (5, 2)
/N VAR
4,0 4,1 4,1 4,2

b4 >

There is only one term in the k-sequence M =6, k = 2 and

A = 1 -1
M-2k+1
L= V1i-2" = V8/9

The dimensions are

JE

D(4,0) = 1
D(4,1) = 3
D(4,2) = 2
Thus
-
S4,2) -1 o© 7
A 0 -1 _ -
"’""lf'-g—"'o"’o"\'/a’g 00 0 '
S5(4,1) [0 -3 0 l‘o V8/9 0
P(5, 6) (0 0-% 0 0 '8/9'
S(4,1) Vvirs oo | Im 7o o !
o ve/9 o ‘0 1 o |
:O_O_Je_/_? 0o 0 _“%_L
s(4,00 | " 1_J

where the matfix has been written in block form and all not shown, elements

are zero.
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2) P(4,5) of S(6,2)
There are two terms in the k-sequence at level 5, S(5,1) and S(5, 2).

The family trees are

(5,2) (5,1)
“ /X
(4,1) (4,2) (4,0) (4,1)
Y Y N

6,00 (6,1) (3,1) (3,0 3,00 (,1)

The representations of (4,5) in these subspaces are calculated as

A (5,2) = 3

F)
L = V3/2 ‘
. t . | j
S(3,1) | -3 0o ' v3/2 0 :
P@4,5) = 0 -3 , 0  V3/2
S(5,2) —_— e — — - = — ,
s(3,1)[v3/2 0 : L |
0 \/—3/2 I 0 % [
ss,00f ~ T T T T T 7 -1
7\(531) = ‘;—;
po=%V5 -
S(3,1) r—é V5
P(4,5)= W 1
S(5,1) 31 - — -
S -
Sr o
{
S(3P) ] e

The final matrix is assembled in the order S(5,2) S(5, 1).
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' [II. THE COMPUTER PROGRAM

A, Outline:

The program essentially duplicates the theory. First the dimensions
of all possible subspaces are calculated and stored in the array D. The
dimension of S(M, K) is stored in location D(M,K + 1).

The family tree is calculated and the k values stored in K CASE linearly.
The corresponding M values are stored in I CASE linearly. NTM holds the
number of K CASE entries associated with each I CASE entry. MTM holds the
(starting point-1) of the K CASE entries for each I CASE entry.

The matrices for M up to and including 4 are intérnally included and
are entered as appropriate without calculations. The actual calculations are

performed as outlined in section II.

B. Input:

The input is simple, only 2 cards.

1) Title in format (10A8)

2) M, K, ISTOP in format (3IS)
M is the number of electrons
K is the number of beta spin electrons
ISTOP = O final data |

# 0 read another data set

C. The program:



0001
0002
D003
0004
€005
0006

0007

0008
0009
0010
00Ll
Q012
0013
0014
0015
0016
0017
0018
0019
6020
0021
0022

0023
0024
0025
0026
00z7
0028
0029
0030
0031
6032
0033
0034
€035
0036
0037
0038

OOANOAN0

L

i0

18
L7

25
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PROGRAM TO CALCULATE MATRIX REPRESENTATIONS FOR ADAJACENT
INTERCHANGES
IMPLICIT REAL#B{A~H 0-L}
REAL%8 LAMBDANMU
INTEGER%2 D(1CG: 6o ICASE L0} o KCASELLOO) oNTHILOE o RTRELOD
DIMENS ION U{52)
DIMENSION UT{2000}
DIMENSION TITLE(10)
DIMENSIONS REQUIREDS
DiMoKeL) )
ICASE(M-~1]}
UT{{DH&22 % {NM~-1)}
KCASEL Le242%% 2400 o 2%8H¥~1]}
WHERE M IS THE NUMBER OF ELECTRONS, K IS THE NUMBER OF BETA
SPIN ELECTRONSe AND DM IS THE DIMENSION OF THE REPRESENTATION
OF S{M3
DATA Uf2%-1.0D00:1.0000+2%0,0000¢~1.0D00¢-0.5000,
#2¢0.866025403784439D00,
£0.5D00,3%-1.0D00;1.0D000,3%0,0D00,~1.0000¢3%0,.0D000,-1.0000,-0.5D000¢
£0.-8660254037884439D00+s0.0D0050.866025403788443900040.5D00,3%0.0000 .
£2%-1,0000,3%0.0000,-0.333333333333333000,0.9428090461582063000,
£0.0D00+,0.942803041582063000,0.333333333333333D00+1.0D000,2%0.0D00»
1~1.00004~0.5000,2%0.866025403784439000:+0.500051.000052%0.0000,
#-1.0D007
READIS.1100) (TITLELIloI=1o20} . .
READES:10008 KeK.ISTOP : L ) . -
KMZ = K -2 . .
N s H L. ) [ ¢ .
fTERM = 1
DO 10 I=2.HK
ICASESITERHME = H
N=HN-1 . - . e
ITERK = ITERN ¢ 1 N
CONTINUE .
ITERM = ITERH -1
WRITE(6¢1200) (TITLE(I)} IslelO}
HRITE(6,1001% MsK.ITERHY
ITERMZ = ITERH#ITERR
KPL = K ¢ |
CALCULATE DIMENSIONS OF EACH S{MyK} BLOCLK
00 17 I=1.H
DO 18 J=1,KPL i .
D(IQJ) = O N
CONTINUE oo .. b —— o)
CONTE NUE .
Di2e1) =% R, ‘ -
D{2.2} = § . . :
DO 20 I=3.M o
DE{Ic¢td = L
IM} = § -1 - e e ..
102 = 172 . . .
DO 25 J=2,KPL : '
JHL = J-1
IF tJMl .GT. 102) GO YO 25
DE€EeJ) = DIIMI.JHL) & D(INlod} .
CONTINUE
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Q039 20 CONTINUE
C DIMENSION OF S{H K} STORED IN OiMK&LD
[vd
c CALCULATE THE BRANCHING TREE
0040 DO 22 i=l¢10Q :
00%1 NTH{E: = O
0042 KTM{L} = O
0043 22 CONTINUE
0044 D0 23 I=1,100 .
0045 23 KCASE(L} = =}
0046 _ HTERM = §
0047 NTERK=]
0048 E=}
0049 KCASELL} = K
0050 L = H ,
0051 MTHLL! = O
0052 NTH €18 = §
0053 T8 CONTINUE
005% : LHL = L -3
0055 _ LO2 = LMis2 , o
0056 1 =1 4%}
0057 - : HT = HKTERH
0058 DD 35 J=1¢HNTERM
0059 Jd = § & HT : )
0060 : JJD2 = JJ4/2 . -
0061 LL = KCASELJJIOZ} ] e
0662 IF fLL oLE. LO2) KCASE{JSJ} = LL - C,
0063 " IF (LL oGV« 0} KCASEEJSS#LY = L& =1
0064 MT = HT ¢}
0065 35 CONTEINUE
0066 HTHII} = MTERH
0067 NTERM = 2&NTERH : ) ) L
0068 MTERK = MTERH ¢ NTERK . N
0069 NYM{I} = NTERH : :
Q070 L=t ~1
0071 IF (L «6T. 2§ GO Y0 78
c NOW CALCULATE THE U MATRICES IN ASCENDING ORDER .
0072 ND = GiM¢Kel} ) : )
0073 ND2 = NDeND
0074 KHl = B ~1
0075 NUT = NDZeMH1 )
co6 DO 80 I=1,.NUT : /
0077 80 UT(I} = 0.0000
0078 LSTARY = | o !
0079 NN = ICASELITERM} )
0080 ° MTERM = MTM{ITERM}
0081 NTERH = NTMLEITERM)
0082 DO 90 JJ=1,NTERH
0083 M = JJ + MTERHM :
008% IF (KCASE{JH) .LT. O) GO TO 90. R
0085 ' "LAMBDA = 1.0DCO )
0086 IF (KCASE(JM} .EQ. 0! LAMBDA = - LANEDA
o087 UTELSTARTE = LAMBDA
0088 LSTART = LSTART ¢ ND & 1
0089 90 CONTINUE

¢ WE HAVE HOW CALCULATED uUfl.2)
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¢
. c HE NOW PROCEDE TO THE OVHER PERMUTATIONS
0050 KK = ITERM = 1
009t ©9 NN = ICASE{KK}
) c PERMUTATION IS {NN-1 RN}
0092 , LSTARY = (NN=-2)3KD2
0093 NYERM = NTH{KK)
0094 MYERM = MTHMIKK}) i
0095 IF (NN olLTe 5} GO TO @8
0096 NTK =NTRIKKe2I /NTERH
c0S7 MTK » MTM{HKe2}
0098 : HKHZ = NN-2
: c MTERM IS THE LOCATION-1 I KCASE WHERE THE K VALUES ARE STORED
c NTERM IS THE NUMBER OF SUCH TERHS APPLICABLE YO MN
0099 ISTART = )
0100 1ST0P = NTK
0101 LSTART = LSTARY ¢ 3
0102 : DO 100 11=1 NTERH
0103 INDX = FI ¢ WTERH
0104 L = KCASE{INDX? N
0105 IF {L oLTo 0} GO YO 103
0106 . LHZ2 58 L =2
o107 [SMI=ISTART=1
0108 DO 105 IJ=I1START.ISTOP :
0109 LL = KCASE{ZIJEHTKD L . 2 :
0110, IFf (LL oLTe 0) GO YO 105 - _ .
G111 HDL u DINNM2 LL+1E
c NDL IS THE DIMENSION OF THIS BLOCK OF THE U RATRIX
0112 LAMBDA = — 1.0D0C
0113 KU = 0.0D0O , .
0114 IF {LL oEQe L oOR. LU .EQ. LK2} GO TO L1G .
0115 TEWP = DFLOATENN~2%L ¢ 1} : o o
0116 LAMBDA = — 1.0DOO/TENP \
0117 MU = DSQRTE1.0D00 ~ LAMBDASLAKBDA}
0118 NSTEP = NDL
0119 LLE=KCASE( E -1 MTKY
0120 IF (LLL oEQ. LL) LAKBDA=-L AKBDA
o121 IF (LAMBDA .GTo 0.00003 NSTEP = - NSTEP
0122 IF § (IJ-ISM1} 6T NTK/2 AKDe LLL oEQ. =1} LAMBDA=-LAHMBDA
0122 DO 115 LN=} NDL !
0124 LNDX = LSTARTY ‘ .
0125  LHMU = LKDX ¢ ND®NSTEP : |
0126 UT{LNDX} = LAMBDA N
0127 UT{LHAU} = KU ' K
o128 - 115 LSTART = LSTARY ¢ NO & L
0129 G0 YO 105 -
0130 110 DO 120 LN=1,NOL : ‘
0131 LNDX = LSTART S A -
0132 UTI{LNDX) = LAKBDA - : .
0133 120 LSTART = LSTART ¢ KD ¢ 1 o
0134 105 CONTINUE .
0135 © 103 1STARYT=ISTOP2L ..
0136 ISTOP = ISTOP ¢ HTK
0137 100 CONTINUE
0138 G0 TO 102

C139 98 CONTINUE



0140
0141
0142
0143
0le4
0145
0146
0L47
0148
0149
0150
0151
c152
0153
0154
0155
0156
0157
0158
0159
0160
0l6l

0162

0163
0164
D165
0166

0167
0168
0169
0170
0LT1
0174
6173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
ciLas
Q186
0187

o168
o189
0190
gicl
oigs2

oM

132
133

131
134

101
Lge

5000

160

151

170
5001
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DO 101 JK=1,HNTERH

JNDX = JK ¢ MTERHN

L = KCASELJINDX)

IF (L oL7. O} GG TO 101

NDL = D{KNsL41}

NDLZ = NDL®NDL

NSTART = {(NN-3}%10

IF {L -EQ. 0O} GO YO 133

DO 132 LS=1¢L :

NND = DINN,LS}GE2

NSTART = NSTARY ¢ {HN-LD)GRND

CONT ENUE

CONTT NUE

NSTART = NSTART ¢ {NN-2JENDLZ
ML = 0 . .

00 1346 MK=1l,KDL

DO 131 MM=RoNDL

ML = ML ¢+ 1

UTEKHeLSTART) = U{NSTARTeHLY

CONT INUE :

LSTART = LSTART ¢ ND

CONTINUE

LSYART = LSTART ¢ NDL

CORTI HUE

CONTINUE :

KK = KR -1 ) ot . , .
IF (KK -GTo 0! GO YO 29 »

FINISHED-NOW HRITE OUT RESWLTS

FORMAT (1M1 D

HRITE( 6, 5000} . oo
WRITE(621200) (TITLE(I)oI=1,10} B AV
HSTART = @ N ‘
KML = BE-1 i :
DO 150 I=1lcHHL

IPL = [ ¢ %

URITEL G, L1503 F.1P3

DO 160 J=1:ND , e, .
JSTART = J ¢ HSTARY

JSTOP = ND2 - KD # JSTARY ’
WRITE(6,1160) {UTEKEK=JSTART (ISTOP(NDS

CONTINUE i . o
MSTART = MSTART ¢ HD2 .
CHI = 0.0000 . e ot

NST = {I-1}%ND2Z ‘

DO 151 LG=leND -
LLG = LG¢ NST

CHI = CHI <« UT{LLGH
NST = NST ¢ ND
CONTINUE

HRITE{6,1300} CHI

IF (ND «GT. 10} GO YO 170

IF {I oFQu 1 <ORe 1 oEQo 3 oORe I <EQ. S) GO 7O 150
HRITEE6,5000%

BRITE(6,500L 8 e
FORBRATE/F/7457) s T Lol

Y T R IR R T T S



0193
0194
0195

0L96
0197
0198
0199
0200
0201
0202
0203
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150 CONTIRUE :
IF {ISYOP LNE. G} GO TO
1001 FORMAT(?0°® (1 O0X,*CASE REQUESTED HAS®,15¢° ELECTRONS WITH®9I5:° BETA
& SPINS®/LIXeI5,% TOYVAL CASES ARE INVOLVED®}
LO00 FORMAT (315}
1100 FORMATEL0ABY
1150 FORMATE®0%,30K, *PERMUTATION 156%12¢%¢%¢12,%50}
1160 FORMAT{IQK TFLI5.10/15X,TF15.108 ,
L1200 FORMATLC0%o5X010ABS
1300 FORMAT(°0%0R0K,*TRACE OF THIS MATRIX [5 o IPULB.D)
sTop '
END ’

. . . .. . Ceagy e e -
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SEVENR ELECTYRON HEXVEY

1. 0000000000
0.0
0.0
* g.0
0.0
6.0

~0.5000000000
0.8660254038
0.0
0.0
0.0
0.0

~1.0000000000
0.0
0.0
0.0
0.0
0.0

~1.0000000000
0.0
C-0
0.0
G0
00

-1. 0000000000
0.0
0.0
0.0
0.0
0.0

~1.0000000000
0.0
0.0
[+ 29+]
0.0
0.0
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s

PERKUTATION IS{ 1, 2%

0.0 0.0 0.0
-1.0000000000 0.0 9.0
0.0 -1. oooooooooo 0.0
6.0 0.0 ~1.0000000000
6.0 0.0 0.0
-0.0 0.0 0.0
PERKMUTATION IS{ 2, 3}
0.8660254038 0.0 0.0
~ 0.5000000000 0.0 0.0
0.0 -1.0000000000 0.0
0.0 0.0 ~1.00006000000
0.0 0.0 0.0
0.0 0.0 0.0
PERMUTATION 1S{ 3, &}
0.0 0.0 . 0.0
-0.3333333333 0.9428090416 0.0
0.9428090416 0.3333333333 0.0 -
0.0 0.0 ~1.0000000000
C.0 0.0 0.0
G0 0.0 0.0
PERMUTATION ISC &» 53
0.0 ¢.0 0.
-1.0000000000 0.0 0.0
0.0 ~0.2500000000 0.96624583866
0.0 0.9682458366 0.2500000000
0.0 0.0 0.0
0.0 G.0 0.0
‘!'
-
PERMUTATION IS( 5 6}
0.0 . 0.0 0.0
-1.0000000000 0.0 0.0
0.0 -1.0000000006 0.0
0.0 0.0 -0.2000000000
0.0 0.G 0.9797958971
0.0 0.0 0.0
PERMUTATION IS{ 6. T)
0.0 0.0 6.0
«1.0000000000 0.0 0.0
0.0 ~1.0000000000 0.0
0.0 0.0 ~1.0000000000
0.0 0.0 0.0
0.0 0.0 0.0

000000000

0.0
~1.0000000000
0.0

-1.0000000000
0.0

r

C.C

0.0

v.0

0.0
-1.0000000000

0.0

0.0
0.0
0.0
0.97979589T1
0.2000000000

0.0 *
~0.1666666667
0.9860132972

000000000

0000000092

D—OOOOO

«0
0
-0
-0
«Q
-0

000000000

L0
0.0
0.C
6.0
0.0

-1.0000000000

0.0

0.0

0.0

0.0

0.0 "
~1. OOOOOOOOOO

0.0
0.0
0.0
6.0
0.9860132972
0.166660666567
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1.0000000G00 GCa0 0.0 0.0 6.0 0.0 0.0 -
0.0 0.0 0.0 0.0 0.0 048G 0.0
0.0 -1.0000000000 0.0 0.0 0.0 0.0 Q.07
0.0 C.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.00000000G0 0.0 0.0 0.0 0.0
GoC . Co 0 [ 28] 0.0 0.0 0.0 0.0
0.0 Q.0 6.0 ~1.,0000000000 0.0 0.0 0.0
G0 G.0 . G0 0.0 0.0 0.0 0.0
¢.0 0.0 0.0 G0 ~«1.0000000008 0.0 0.0
C.0 0.0 0.0 0.0 0.0 0.0 0.0
.0 0.0 6.0 G.0 0.0 1.0000000000 0.0
G0 0.0 Q.0 00 Q.0 0.0 0.0
G0 G.0 G.0 0.0 ’ C.0 0.0 ~1. 0000000000
0.0 0.0 0.0 0.0 ' 0.G. 0.0 Q.0
0.0 6.0 0.0 0.0 0.0 0.0 0.0
—~1.0000000000 0.0 0.0 0.0 0.0 0.0 .0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.6 ~1.0000000000 0.0 0.0 C.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 C.0 0.0
G.0 0.0 1.0000000000 0.0 0.0 0.0 0.0
0.0 0.0 G.0 0.0 0.0 0.0 0.0
0.0 G0 0.0 ~1.0000000000 0.0 0.0 0.0 ’
0.0 C.0 0.0 ¢.0 0.0 0.0 0.0
0.0 G.0 G.0 6.0 -1.00000600000 6.0 Q.0C
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 -1.0000000000 0.0
0.0 0.0 - 0.0 0.0 0.0 ' 0.0 0.0
0.0 C.0 0.0 0.0 0.0 0.0 ~1.0000600000
’
’
-+ e <" -
PERMUTATION IS 2, 3% - .
~8.500C0C0000 08660254038 0.0 G.0 6.0 0.0 C. 0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.8660254038 0.5000000000 0.0 0.0 0.0 0.0 6.0
0.0 0.0 ’ 0.0 0.0 0.0 0.0 0.0
0.0 0.0 ~0.5000000000 0. 86560254038 ¢.0 0.0 0.0
0.0 6.0 0.0 0.0 0.0 0.0 G.0
0.0 G.0 0.8660254038 0.5000000000 C.0 0.0 0.0
GG 0.0 Q.0 0.0 0.0 0.0 G.0
0.0 0.0 0.0 0.0 -1.0000000068 0.0 0.0
0.0 0.0 - 0.0 0.0 0.0 ) 0.0 .0.0
0.0 . 6.0 0.0 0.0 0.0 -0.5000000000 0.86560254G38
0.0 0.0 0.0 0.0 0.0 0.0 0o 0
G.0 0.0 0.0 0.0 0.0 0.8660254038 0.5000000008
Cu @ 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 C.0 c.0 0.0 0.0
-1.0000000000 0.0 C.0 0.0 0.0 0.0 ) 0.0
0.0 0.0 6.0 0.0 0.0 0.0 0.0
0.0 ~1.0000000000 0.0 0.0 0.0 0.0 0.0
G0 0.0 0.0 0.0 0.0 G0 0.0
0.0 0.0 -0.5000000000 0.8660254038 0.0 0.0 0.0
0.0 G.0 0.0 0.0 .0 0.0 0.0
6.0 0.0 0.8660254038 0.5000000000 C.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
G.0 0.0 0.0 0.0 -1.0000000000 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 ~1.0000000000 0.0
0.0 0.0 6.0 C.0 0.0 0.0 0.0
0.0 G0 0.0 0.0 0.0 C.0 -1.0000000000

s



#
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PERKMUTATION ISE 3¢ %)

1.0000000006 0.0 0.0 (] 0.0 0.6 0.0
0.0 0.0 0.0 0.0 c.0 0.0 0.0
0.0 -1.0000000000 0.0 0.0 0.0 0.0 . 0.0
0.0 0.0 0.0 6.0 0.0 0.0 ) 6.0
0.0 0.0 ~1.0000000000 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
[ 0.0 0.0 ~0.3333333333  0.9428090416 0.0 6.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.9428090416  0.3333333333 0.0 0.0
0.0 .0 0.0 0.0 0.0 0.0 . 0.0
0.0 0.0 0.0 0.0 0.0 ~1.0000000000 0.0
0.0 . 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 ¢.0 0.0 -0.3333333333
0.94268090416 0.0 GO 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.9428090416
0.3333333333 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 .0 0.0 0.0 0.0 0.0
0.0 ~1.0000000000 0.0 0.0 0.0 0.0 0.0
0.0 0.6 0.0 [ON] " 0.0 0.0 0.0
0.0 0.0 ~1.000000000C 0.0 0.0 6.0 0.0
0.0 0.0 0.0 0.0 0.0 .0 0.0
0.0 0.0, 0.0 ~0.3333333333 0.9428090416 0.0 GoO
0.0 0.0 0.0 0.0 0.0 0.0 6.0
0.0 0.0 0.0 0.94280904616  0.3333333333 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 , ~1.0000000060 .0
¢.0 6.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 6.0 ~1.0000000000
>
PERMUTATION ISE 4, 5)..
~0.5000000000 0.0 0.8660254038 0.0 6.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 -0.5000000000 0.0 0.8660254038 0.0 0.0 0.0
c.o0 0.0 0.0 0.0 0.0 0.0 ¢.0
0.B660254038 0.0 0.5000000000 0.0 0.0 .0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.8660254038 0.0 0.5000000000 0.0 0.0 0.0
C.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 ~1.0000000000 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
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0.0 0.0 0.0 0.0 0.0 ~1.00000000600

0.0



-294-

PERMUTATION IS5{ S¢ &1 0.0 0.0 0.0
-1+ 0000000000 0.0 0.0 0.0 - < -
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0.0 0.0 0.0 0.0 0.0 0.0 0.0
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0,0 0.0 c.0 0.0 0.0 0.0 0.0
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000 0.0 0.0 ¢.0 0.0 0.0 0.0
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0.0 0.0 0.0 0.0 0.0 -0.5000000000 0.8660254038
0.0 0.0 6.0 0.0 0.0 0.0 . .0 -
6.0 0.0 0.0 0.0 0.0 . . 0.8660254038  0.5000C00000
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0.0 0.0 0.0 0.0 0.0 0.0 0.0
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6.0 0.0 0.0 0.0 ~1.0000000008 0.0 0.0
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0.5000000000 0.0 0.0 0.0 0.0 0.0 0.0
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0.0 0.5000000000 0.0 0.0 0.0 0.0 : 6.0
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0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 -1.0000000000 0.0 0.0 6.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
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0.0 C.0 0.0 0.0 ~1.0000000000 0.0 C.0
0.0 0.0 C.0 0.0 . 0.0 0.0 0.0
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0.0 0.0 G.0 0.0 0.0 0.0 0.0
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0.0 0.0 0.0 0.0 c.0 0.0 0.0
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0.0 0.0 (2] 0.0 0.0 0.0 G.0¢
0.94268090616 0.0 0.0 0.3333333333 0.0 0.0 G.0
¢.0 0.0 0.0 0.0 0.0 0.0 0.0
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0.86602540386 .0 0.0 G.0 . 0.0 0.5000000000 0.0
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The conjugate representation is generated by reversing the order of the
k-sequence at each level and multiplying the diagonal matrix elements
by -1. It should be noted that our development is for the representation

conjugate to C:‘rabrnel's.2



