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ABSTRACT

Generalized Valence Bond and Configuration Interaction
calculations using a double zeta basis have been performed for
the vacancy states of diamond and silicon and for the lithium and
boron impurities in silicon. For the vacancy case it was found
that the nature of the low-lying electronic states of the positive,
negative and neutral charge species is easily understood in terms
of simple valence bond concepts. Here the effect of symmetric
distortion of the vacancy was included, but no other distortions
were included. For those cases in which the ordering of the
states .is known, the experimental ordering is reproduced by the
theoretical results. For the impurity case it is found that boron
is strongly bound in a substitutional site whereas lithium is not.
In both cases the states of the system can be predicted from a
simple valence bond analysis. The calculated results are com-
pared with experiment through the use of a dielectric continuum

approximation to correct the energies of charged and ionic states.
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I. INTRODUCTION

The traditional approach to describing defect or impurity
states in semiconductors begins with the energy band structure for the
material. 1 The states are typically classified as shallow, meaning
close to a band edge, or deep, meaning more than 0.1 eV from a band
edge. The usual treatment of shallow levels involves describing the
impurity wavefunction in terms of the energy-band states. 2 This leads
to effective mass type theories. Deep levels have been described
using modifications of effective mass theory, 8 but most calculations
of defects (vacancies) have been some sort of cluster calculation.
That is, the vacancy is treated as a missing atom in a finite cluster of
atoms and the problem is solved as a molecular orbital problem.4’ 5,6
In some cases an attempt is made to relate the calculated states to the
band structure by using large clusters, but this is not always done.

The approach used here is based on the cluster approach,
however no basic distinction is made between shallow and deep levels.
The idea is to study the vacancy or impurity states in terms of rela-
tively simple "‘chemical' ideas about bonds and electron states. A
straightforward qualitative description of the states of interest can be
given based on valence bond concepts. These qualitative ideas are
then tested by performing ab initio Generalized Valence Bond (GVB)7’8
and Configuration Interaction (CI) calculations. The emphasis here
will be on obtaining a consistent localized picture of the various states.
After this is done we will go back and relate the calculated quantities

to the usual band structure picture. The systems that will be discussed



are the vacancy and (111) surface states in diamond and silicon and the

lithium and boron impurity states in silicon.



II. QUALITATIVE DESCRIPTION OF THE STATES

| Since the work of Coulson and Kearsley, 9 the conceptual basis
for vacancies in covalent materials has been the ''defect molecule'.
In this model one removes the atom or atoms to form the vacancy,
breaking the bonds and leaving sufficient electrons to make the system
neutral. For diamond and silicon this means that four tetrahedrally
arranged dangling bond orbitals remain. The usual approach is then
to treat the problem as a molecular orbital probleni, combining the
functions into symmetry orbitals and solving for the states of the
system. This is the approach which has been followed by Coulson and

Kearsley and others. 10

However, if one looked at the same defect
molecule from the Generalized Valence Bond (GVB) viewpoint, a
somewhat more intuitive structure emerges. If one were to solve for
the GVB wavefunction for the defect molecule, one would expect to
find a structure very much like the Coulson Kearsley defect molecule.
That is, we would solve for four singly occupied non-orthogonal
orbitals. These orbitals would be localized on each of the centers.
The overall wavefunction would be an antisymmetric product of these
orbitals and an appropriate spin function. We can start with these
orbitals, call them ¢,, ¢,, ¢,, ¢, on centers 1, 2, 3, 4 respectively,
and construct a qualitative description of the first few states of the
defect. The ground state would be a state in which the orbitals are
coupled into two weak bonds. There are 3 combinations (¢, + ¢,,

¢,+ ¢, or ¢, +¢,) but we know that there will be only 2 proper spin-

eigenfunctions for the singlet case. In Td symmetry this gives rise



to an E state. Suppose we consider one case in which ¢, and ¢, are
bonded. If we look at the system as like two H, molecules, we can

depict this state as

The first excited state is obtained by the excitation of one electron
from the bond pair (¢, +¢,)° into an antibonding orbital. The orbital
form of this state is (¢, +¢,) (¢, - ¢,) which yields ¢; - ¢> as the
singlet component. This is a wavefunction for an ionic state which is
a combination of 2 electrons on center 1 and 2 electrons on center 2.

One ionic structure can be depicted

1@ Oz
3®_®4

There are twelve such diagrams that can be constructed for a tetra-
hedral geometry. A group theoretical analysis of the states resulting
from these diagrams gives A,, E, T, and 2 T,'s. (The procedure used
in this determination is outlined in Appendix A.) The next excited
states would involve ionic states in both bonds and thus would be

quite high in energy.



A triplet state of the vacancy can be obtained by singlet
coupling one bond pair while triplet coupling the other pair of electrons.

The diagram for this state is

OO
|

There are three ways to couple 4 electrons into a triplet and we find
that this gives rise to a T, state. The first excited state of this

structure is a single excitation in the 3-4 bond. The diagram for this

OanO
© O

which gives rise to 12 states. Their symmetries are A,, E, T, and

state is

2 T,'s. There should be no other low-lying triplet states. There is
one quintet state of A, symmetry in which the 4 orbitals are high-spin
coupled.

The symmetry information may now be used with some other
qualitative information to give a reasonable picture of the ordering of
these states. The overlap between the dangling bond orbitals should
be small since the center to center distance in the vacancy is about

1.6 times a normal bond length for the diamond lattice. This would



lead us to expect a small singlet-triplet splitting in any one bond. 11

Thus the predicted order of state is 'E < °T, < °A,, with roughly the
same splittings between the levels in zero order. The excitation
energy to the first excited state for both the singlet and triplet should
be about the same, since it involves the same sort of excitation in one
bond. This picture is given in Figure II-1. Considering the inter-
actions of the states, we obtain the splittings indicated in Figure II-1.
In the singlet case the E ground state is lowered by interaction with the
E excited state. The T, states interact strongly and are split more
than the E states. The A, and T, states are left unchanged. Thus we
expect the first excitation for the vacancy to be E to T,. In the triplet
case only the T, states can interact. Here we expect the ground state
to be lowered slightly and the upper T, states to split apart. The
A,,E and T, remain at about the same energy. The 5A2 state has no
other states to interact with and thus stays fixed.

A similar analysis can be performed for the positive and

negative ion states. The positive ion would be depicted

© O
ONO

while the negative ion would be given by

ONGO
ONO



There are four structures in each case giving rise to 4 quartet and 8
doublet states. The symmetries of these are 4AZ,, T, 2El, ZTI, °T, .
Let us now turn to the case of the boron impurity. The GVB

diagram for the boron atom is

which represents a singly-occupied b, orbital and a s +Py and s - Py
pair of orbitals. 12 The bonding of B can be explained by considering
how other species would bond to this structure. The case of B in Si is

quite simple. Starting with Si vacancy as

O
P Q

a bond could be formed to each of 3 Si lobes giving



Si Si

There are 4 equivalent structures for this complex leading to A, and T,
states. The form of the acceptor which has trapped an electron is

obtained by forming one more Si-B bond to obtain

Sﬁi% Si

@d |

Si Si
The case of lithium is a bit more difficult to visualize. The case of the
ionized Li simply amounts toputting a positive charge in the middle of
the vacancy. Thus we would expect pretty much the same picture as
in the vacancy case but with the orbitals polarized toward the Li some-

what. To obtain the neutral state we must add a singly occupied

orbital which overlaps strongly with each of the singly occupied



orbitals of the vacancy. Diagrammatically we write this

]»b-wl\ao—-sl

where this represents 4 singly occupied orbitals high spin (antisymme-
trically) coupled (quintet state of the vacancy) plus a lithium s orbital.

We could get structures such as

or

QI XY N

N IV QI JCR I NCY T

or recoupling the second structure into

‘n-l:-l.\:v—n

The totally antisymmetric structure is probably fairly high in energy
since it requires 5 orthogonal orbitals in the vacancy. The next struc-
ture (quartet) amounts to forming one totally symmetric doubly occu-

pied orbital or orbital pair and threeorthogonal singly occupied orbitals.



10

The last structure is derived from the second by doublet coupling the
high spin orbitals. The quartet should lead to symmetries A, and T,
while the doublet states would be T,, T,, E. It is not clear whether the
doublet or quartet would be lower.

The foregoing analysis, not only serves to quickly catalog what
states to expect, but also indicates what sort of calculations would be
appropriate for the various complexes studied.

The unreconstructed (111) surface for diamond lattice semi-
conductors is depicted as dangling bond orbitals on each surface atom
pointed perpendicular to the surface. The quantities of interest in this
case are the ionization potential and electron affinity of the surface
orbitals and the geometry of the positive, negative and neutral species.
For this study we assume that the dangling bond orbitals are very
weakly coupled and thus roughly independent. This assumption is based

13 and on the geometrical

on calculations by Redondo and Goddard
argument that the orbitals are widely separated and essentially non-
overlapping., If We choose a cluster consisting of one surface atom
and its three bonded neighbors, we can study the motion of the surface
atom with some confidence and still have a single surface orbital.

The states of interest are then just a dangling bond orbital with zero,

one or two electrons in it. For this picture there will be no orbital

coupling and so there is no analysis to be made as was done for the

vacancy.
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I1I. CALCULATIONAL DETAILS
A. Geometries

Diamond and silicon both occur in the diamond structure, 14
which is a face-centered cubic lattice with two atoms per unit cell.
The calculations in this work involve clusters of atoms that extend only
to the second-nearest-neighbor position. Starting with the atom at the
origin, the nearest-neighbor positions are -i.‘_ 1,1,1), % 1,-1,-1),
2 (-1,1,-1) and g} (-1,-1,1) where a is the cubic lattice constant,

4
The twelve second-nearest-neighbor positions are a (1,+1,0),

—g— *1,0,x1), % (0,+1,x1). The silicon and diamond2 lattice constants
employed were 5.43 A and 3.56 A respectively. 14 In the calculations
reported here, the second-nearest-neighbor atoms were replaced with
hydrogen atoms. The hydrogens were placed along the appropriate
bond directions, but using SiH and CH bond lengths of 1.479A and
1.094 respectively. These structures retained tetrahedral symmetry.
The vacancy and impurity clusters were obtained by deleting the atom
at the origin or replacing it with a B or Li. The (111) surface cluster
was obtained by deleting the atom at _‘Z: (1,1,1) and its bonded
hydrogens. The clusters are shown in Figures MI.1 and I1I.2. The
atoms are labelled for reference throughout later sections. The
coordinates of the atoms are given in Tables ITI.1 and ITI.2 and are
keyed to Figures. In some of the calculations to be discussed later,

some changes in the coordinates will be made. However, the basis

symmetry and labelling of each structure will be retained.
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B. Basis Sets.

Two types of calculations were performed, one type was to
obtain geometries and qualitative information about states, while the
second type was to obtain quantitative descriptions of the states. For
the former a minimum basis set (MBS) was used, while for the latter
a ''valence' double-zeta basis (DZ) was employed. In all cases the
bases were of contracted Cartesian Gaussian functions. For the
diamond calculations the MBS was an STO-4G set for carbon and
hydrogen, while the DZ set was a [3s2p] contraction obtained by

15 from Huzina,ga's16 (9s5p) set. The hydrogen function in

17

Dunning
this case was Dunning's [2s] contracted function™ ' scaled to a Slater
function exponent of 1.2. In the silicon calculations an ab initio
effective potentia118 was used to replace the (1s)? (Zs)2 (2p)° core of
the Si. This potential as well as the MBS and DZ basis set optimized
for use with the potential were calculated by A. Redondo. 19 The basis
set used for boron is the Dunningl'7 [4s2p] contraction of Huzinaga's
(9s5p) basis, while the basis for lithium was obtained from the paper
of Kahn, Hay and Shavitt. 20 The unpublished basis set information is
given in Tables III, 3-III. 5.

C. Wavefunctions

7,8

The GVB wavefunction for a bonding pair of electrons is

represented as
1
g [@.¢, + ¢,9,) (aB - Ba)]

where ¢, and ¢, are allowed to be non-orthogonal. The form for more

than two electrons is
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Q [¢al¢b1¢az¢b2”'x]

where each electron is represented by a non-orthgonal orbital and the
spin function X is a general spin eigenfunction. ( Q. is the antisymme-
trizer.) Self-consistent wavefunctions of this general form are quite
difficult to solve for and hence a more restricted form is generally
used. The constraints made are that orbitals of different pairs are
required to be orthgonal and that the spin function is taken as the
product of singlet spin functions for the pairs of electrons. These
constraints are the strong orthogonality and perfect pairing constraints
respectively, and the wavefunction is referred to as the GVB Perfect
Pairing (GVB-PP) wavefunction. Additionally, rather than solve for
the orbitals of the form (¢, ¢, + ¢, ¢,) it is advantageous to transform

each pair to a natural orbital (NO) representation,
(9102 + b2 01) = Cu 8,8, - Cy 8,8y, (8,10,) = 0,

where qbg and qbu are the first and second natural orbitals. (The ¢, and
¢, are still referred to as GVB orbitals.) Normally the qbg orbital is
very much like a HF bonding molecular orbital, and the coefficient Cg is
large, while (bu resembles a HF antibonding orbital and Cu is small.
Using only the first NO's in each term would give back the HF form of
the wavefunction. Thus the HF and PP forms are quite compatible.

In our calculations we have treated the bonds to the hydrogens and the
core electrons as HF pairs, thus allowing only the valence orbitals

associated with the defect to be correlated.
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As described previously, one could eliminate the PP and SO
restrictions by allowing more general spin functions and non-orthogonal
pairs. While such calculations are tractable for a small number of
electrons, it is computationally easier to remove these constraints by
performing Configuration Interaction (CI) calculations based on the
GVB-PP wavefunction. As in the GVB calculations, the interest is in
the description of the vacancy or impurity, so all core, SiH or CH
orbitals are removed by an appropriate transformation. The remaining
NO's and singly occupied orbitals form the valence space for the CI
calculations. The dominant configuration is usually taken as the one
(ones) in which the first NO's are doubly occupied. The valence space
is usually augmented by an extra set of orthogonal functions which con-
stitute the virtual space. Within this basis, 4 types of CI calculations
are employed here:

GVB-RCI: Double excitations within pairs from the dominant

GVB configuration into the valence space are included in the CI.

GVB-CI: All excitations in the valence space are included in

this case.

POL-CI: All single and double excitations in the full space are

allowed with the restriction that there be at most one singly

occupied orbital in the virtual space.

SD-CI: All single and double excitations from the dominant

configurations into the full space are allowed.

In both the POL-CI and the SD-CI, the GVB-~CI configurations are also

included. The GVB-R(I serves to relax the PP restriction, while the
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GVB-CI relaxes the SO constraint as well as including some other
correlation terms.
D. Programs and Miscellanea

The programs used for these calculations are various parts of
the Caltech MQM program library. The integrals were done using the
Basch-Melius POLYATOM program with the exception of the STO-4G
basis which were done using a modified version of GAUSSIAN 70. The
SCF calculations were done using the Bobrowicz, Wadt, Goddard
program GVB TWO. The CI calculations were done using the Bobrowicz,
Winter, Ladner CI program. Properties were calculated using a version
of the NYU properties program of Moskowitz as modified by Ermler.
Other assorted programs of mixed local heritage were also used. In
the case that POLYATOM was used for integral calculation, a post-
test value of 107® was used. For GAUSS70 this value was set to 107",

All SCF calculations were converged to a SQCDIF of 107°,
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TABLE III.1 Coordinates (in a.u.) for the basic tetrahedral cluster
for diamond and silicon. The centers are numbered
with reference to Figure III. 1.
Cco0 (0.0,0.0,0.0) SI0  (0.0,0.0,0.0)
Cl (-1.6852,-1,6852,1,6852) S11 (-2.5658,-2.5658, 2. 5658)
C2 (1.6852,1,6852,1,6852) S12  (2.5658,2.5658,2. 5658)
C3 (1.6852,-1.6852,-1,6852) SI3  (2.5658,-2,5658, -2, 5658)
C4 (-1.6852,1.6852,-1.6852) SI4  (-2.5658,2,.5658, -2, 5658)
H1  (2.8744,2. 8744, 0.4959) H1  (4.1803,4.1803,0. 9513)
H2  (2.8744,-2.8744,-0.4959) H2 (4.1803,-4.1803,-0.9513)
H3  (-2.8744,2.8744,-0.4959) H3 (-4.1803,4.1803, -0.9513)
H4  (-2.8744,-2.8744,0.4959) H4  (-4.1803,-4.1803, 0. 9513)
H5 (2.8744,0.4959, 2. 8744) H5 (4.1803,0.9513,4.1803)
H6  (-2.8744,0.4959,-2. 8744) H6  (-4.1803,0.9513,-4.1803)
H7 (-2.8744,-0.4959, 2. 8744) H7 (-4.1803,-0.9513,4.1803)
H8  (2.8744,-0.4959,-2. 8744) H8  (4.1803,-0.9513,-4.1803)
H9  (0.4959,2. 8744,28744) H9  (0.9513,4.1803,4.1803)
H10 (-0.4959,-2.8744,2.8744) H10 (-0.9513,-4.1803,4.1803)
H11 (0.4959,-2.8744,-2.8744) H11 (0.9513,-4.1803,-4.1803)
H12 (-0.4959,2.8744,-2, 8744) H12 (-0.9513,4.1803,-4.1803)
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TABLE III.2 Coordinates (in a.u.) for the (111) surface cluster for

diamond and silicon.

The centers are numbered with

reference to FigureIIl. 2.

C1
C2
C3
C4
H1
H2
H3
H4
H5
H6
HT
HS8
H9

(0.0,0.0,0.0)

(1.6852,-1.6852, -1, 6852)
(-1.6852,1.6852, -1. 6852)
(-1.6852,-1.6852, 1, 6852)
(-2.8744,-2. 8744, 0. 4959)
(-2.8744,0.4959, -2, 8744)
(0.4959, -2. 8744, -2, 8744)
(2.8744,-2. 8744, -0.4959)
(-2.8744,2. 8744, -0. 4959)
(-2. 8744, -0.4959, 2, 8744)
(2.8744,-0.4959, -2. 8744)
(-0.4959, -2. 8744, 2. 8744)
(-0.4959,2. 8744, -2, 8744)

S1l
S12
S13
S14
H1
H2
H3
H4
H5
H6
H7
H8
HI9

(0.0,0.0,0.0)

(2.5658, -2. 5658, -2.
(-2.5658,2.5658, -2.
(-2.5658, -2, 5658, 2.
(-4.1803,-4.1803, 0.
(-4.1803, 0. 9513, -4.
(0. 9513, -4.1803, -4.
(4.1803, -4.1803, -0.
(-4.1803,4.1803, -0.
(-4.1803,-0. 9513, 4.
(4.1803, -0. 9513, -4.
(-0.9513,-4.1803, 4.
(-0.9513,4.1803, -4.

5658)
5658)
5658)
9513)
1803)
1803)
9513

9513)
1803)
1803)
1803)
1803)
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TABLE III.3 Contracted Cartesian Gaussian Valence Double Zeta

Basis for Carbon15

Function Exponent Coefficient
1s 4233.0 .001220
634.9 . 009342

146.1 . 045452

42.5 .154657

14.19 .358866

5.148 .438632

1,967 .145918

2s 5.148 -.168367
.4962 1.060091

3s .1533 1.0

1p 18.16 - .018539
3.986 .115436

1,143 .386188

.3594 .640114

2p .1146 1.0




TABLE 1I1.4 Ab initio Effective Potentiala for Si. 19 The form of the

potential is Vﬁ(r) =2;C

i T

n.-2 -q@.re
i%e i

Term

o ~ ofr

a4
.1570859
3.5641009

1.8478285

. 9686443
4.0620237
. 2389864

. 0991736
. 290009
3.2105169

¢

. 24891789
30.
. 0800434

31756200

. 86954814
36.
.45326622

58557100

.0118962
.07889166
. 5910011

a) See Reference 18(a) for computational details with regard to

this form of effective potential.
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TABLE II.5 Cartesian Gaussian Basis Set for Si and H. 12 The
minimum basis set is obtained by using the first function
of each type, the double zeta basis by using both. Only

a minimum basis for hydrogen was used in either case.

Function Exponent Coefficient

Silicon 1s 4.051 .0436619
1.484 -.2748724

L2704 .4527114

. 09932 .42417582

28 L2704 -.2004077

. 09932 .4247582

1p 4.185 -.00471173

1.483 -.0365421

.335 .3147023

. 09699 .1447246

2p .335 -.0307358

. 09699 . 14417246

Hydrogen 1s 5.663728 .0871988
. 857387 .5046466

.190504 . 8087388




Figure III.1.

Figure II1. 2.
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FIGURE CAPTIONS

Vacancy and Impurity Cluster for diamond and

silicon as viewed from the [001] direction.

Surface complex for the (111) surface as viewed
from the [111] direction. The dashed circles
indicate a hydrogen directly behind a silicon or

carbon.
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IV. DIAMOND VACANCY AND SURFACE STATES

The qualitative description of the vacancy states was given in
section II. In order to provide a test of those ideas, a calculation of the
quartet state of the vacancy was carried out using the STO-4G basis.
This resulted in four singly occupied orbitals, all symmetry functions
for the T4 point group. These four orbitals were recombined to form
four equivalent (orthogonal) orbitals centered on the four carbon sites
(see Figure I1.1). Using these four orbitals we carried out full CI
calculations for the singlet, triplet and quintet states. This yielded a
'E ground state for the vacancy, a low-lying (0.44 eV) 3T1 state and
an excited singlet of 'T, symmetry. The °A, state was found to be
1.77 eV above the ground state. Thus even at a very simple level,
computationally, the qualitative predictions of section II prove to be
correct.

Given that an adequate description of the system could be
obtained, the next task was to obtain a reasonable geometry for the
vacancy. Removing the center atom to leave 4 dangling bond orbitals
can give rise to two major types of distortions.

(i) Each first neighbor of the vacancy is bonded to three
second neighbors. In this circumstance the C-C bonds
are expected to shorten slightly, leading to a movement
of the first neighbor about 0. 08 from the center of the
vacancy.

(ii) To whatever extent the dangling bond orbitals of the

different first neighbors overlap (~.04), weak bonding
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between them could lead to additional distortions. Thus

one component of the 'E state has bonding of the form

and hence should lead to D,y distortions as indicated by .
the arrows.
Experimentally the ground state of the neutral vacancy in diamond is
believed to be tetrahedral?! which may be taken as support for (i) as
being dominant.

To calculate the distortions in (i) we considered each first
neighbor C to be bonded to three tetrahedral CH, groups. The carbons
were all positioned at the appropriate locations of the diamond lattice.
The position of the first carbon along its [111] axis was then optimized.
Thus this calculation corresponds directly to the (111) surface model
as discussed in sections II and III.

The calculations were performed on the C,Hy cluster using an
STO-4G basis for various distances of the center atom along the [111]
direction. C,, symmetry was used leading to a °A, state. The
resulting values of the total energy are tabulated in Table IV.1. The

minimum was found by a parabolic fit to the three points closest to the
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minimum. The minimum point was also calculated. A cubic spline
fit to the data is given in Figure IV.1, The minimum point is at
-0.1812a.u. = -.096 A along the [111] axis. This corresponds to
a bond length of 1.515 A as opposed to a diamond bond length of

1,5445 A. This bond length is in good agreement with C-C bond

22

lengths calculated for organic radicals using a similar basis. The

distance between the surface (111) plane and the second (111) plane is
one third of the bond length for the unrelaxed geometry. Thus the
relaxation "'into' the crystal is 18.6 % of this distance.

This information was next used to construct a model for the
relaxed vacancy. The appropriate point to note in the C ,Hy calculation
is that only C1 (Figure III.2) moved. The analogous thing in the
vacancy case is to move the nearest-neighbor shell outward but to fix
the second nearest neighbor shell. However the second shell is the
one we wish to replace with hydrogens. The consistent choice in this
case is to preserve the bond angles to the center carbon as obtained
from the CJH, calculation but to replace the C-C bonds with C-H
bonds. The carbon positions for the vacancy become (1.7898, 1.7898,
1.7898) (in a.u.) plus equivalent locations while the hydrogen positions
are (2.9268, 2.9268, 0.5023) plus equivalent locations.

Using this geometry and the valence double zeta basis, GVB-PP
calculations were performed on the 'E ground state and the lT1
excited state. In actuality the states solved for were the structures
indicated in section II. The ground state was treated as GVB(2-PP)

wavefunction for the vacancy orbitals and a HF treatment of the
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remainder of the cluster. The bonds were chosen to be between
centers 1 and 2 and between 3 and 4 by employing C,,, symmetry with
the C, axis along the z axis of the cluster. For the first excited
state we expect a form of the wavefunction which is (¢, + ¢,) (¢, - ¢,) =
¢, %, - ¢, d, in one bond region and a GVB pair in the other. The
form used was to singly occupy and singlet couple the first and second
natural orbitals of one bond pair while leaving the second bond un-
changed from the ground state calculation. The results of these
calculations are given in Table IV.2. The orbitals for the vacancy
states are given in Figures IV.2 and IV.3.

The ground state is much as had been predicted. The GVB
orbitals overlap about .25 while for a strong bond an overlap of .7
would be typical. In Figure IV.2 we can see that the orbitals have
delocalized slightly toward each other but are basically tetrahedral
dangling bond orbitals in nature. Comparing the GVB calculation
with the HF quintet calculation, the total splitting between singlet and

quintet is . 938 eV.

The nature of the 1T2 state can be seen in Figure IV.3 with
some help from Table IV.2. The GVB orbitals in Figure IV.3 are
no longer dangling bond orbitals. Instead they are quite similar in
the bond region (between 3 and 4) but are delocalized back onto centers
1 and 2, with one orbital delocalized toward each center. The anti-

symmetric (¢,~¢,) singlet orbital is in the 3-4 bond region as well,
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while the symmetric singlet orbital is between centers 1 and 2.

The net effect is that the (¢,—¢,) orbital represents the transfer

of an electron from one bond to the other while the delocalization

of the GVB orbitals represents some '"back transfer.” From Table
IV.2 we can learn a little more about the GVB orbitals. The energy
lowering is small and the contribution of the first NO is almost all
of the orbital. This indicates that the GVB pair is nearly a doubly
occupied orbital. The large overlap of the GVB orbitals also
indicates that the GVB orbitals are occupying the same region of
space. The effect of polarization in the CH bonds is significant

as well. If we divide the cluster in half with a plane perpendicular
to the z axis (between bonds 1-2 and 3-4) we see from the Mulliken
populations that there is ~1. 8 electron transferred from the 1-2
side to the 3-4 side. The carbon contribution to this is only

~0. 8 electron so that ~1,0 electron shift comes from the CH bonds.
The excitation energy to this state from the 'E is 5.66 eV.

Next we wish to investigate the spectrum of states predicted
by the VB analysis of section II. This is done via a CI calculation
based on the GVB orbitals. The valence space was chosen as the
four vacancy NO's from the GVB(2-PP) calculation. A set of virtual
functions was obtained in the following manner. Using outermost
(smallest exponent) s function and p functions on each center,

4 s-like and 4 p-like symmetry functions were constructed. In the
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case of the p functions, a lobe directed at the origin from each center
was used in constructing the symmetry functions. The resulting 8
functions were orthogonalized to all of the occupied functions in the
ground state GVB calculation. A SD-CI was done over the 12 basis
function space using all members of the GVB-CI as dominant con-
figurations. The configurations were classified by C,y symmetry and
the CT calculations were done for each of the four irreducible represen-
tations. In this manner the singlet and triplet states of the neutral
vacancy were calculated along with the doublet and quartet states of
the positive and negative vacancy. These results are presented in
Tables IV.3 and IV.4. The degeneracies of the C,, states are not
exactly correct due to the fact that the NO's are not exactly combina-

tions of tetrahedral orbitals.
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Overall one can see that the ordering of the singlet and triplet
states is that predicted by the simple VB analysis. In Table IV.3 we
report all of the states predicted by the VB analysis plus the next
highest singlet and triplet states. The last states are the ones corre-
sponding to the excitations in each structure and are at relatively high
energy as predicted. One disconcerting fact is that the 'E to 1T2
excitation energy is larger for the CI calculation than for the SCF
calculations. Comparing the SCF and CI calculations we see that the
energy of the 'E state is 17 millihartree (1 mh = .027 eV = . 628 kcal)
lower for the CI calculation, while the 1T2 CI energy is only 2 mh
below the SCF value. The key to this difference is that in the SCF
calculation the C~H bonds were allowed to readjust while in the CT
calculations the bonds were fixed as those from the 'E SCF calculation.
For comparison, an SCF calculation was performed on the sz state
using the 12 basis function space used for the CI calculations. In this
way the CH bonds were fixed as those for the 'E state and only the 4
vacancy orbitals were solved for. This result is given in Table IV.2
['T, 12BF)]. We see that the energy for this constrained calculation
is 30 mh higher. Some of this differences is undoubtedly due to there
being less variational freedom in the 12 basis function space for
describing the vacancy orbitals. Thus while this value should be taken
as the maximum effect due to charge rearrangement in the CH bonds,

it does indicate that such effects may be significant in the excited

states.
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In Tables IV.5 to IV. 8 we present the dominant terms in the
CI wavefunctions for the low-lying states of the various calculations.
While the CI calculations were not done using the GVB orbitals as a
basis, the NO basis that was used is a basis of localized functions.
This allows us to interpret the CI wavefunctions in terms of valence
bond structures as well as determining the origin of various
correlation effects.

The singlet states are very much like their GVB description.
In Table IV.5 we see that for the A, component of the 'E state, the
first four configurations are just the GVB configurations. The next
two configurations are terms which serve to change the shapes of the
bonding orbitals.

To interpret the lT2 states it is helpful to expand the wave-
functions to obtain the appropriate components. The first two con-

figurations of the A, component of the 'T, state give

2 , 23
(u, - uz) g1 82

which corresponds roughly to structures like

O

O
O ©
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The second two configurations can be expanded to give a form
(L1, + 1, L)) (£§ + r§) - (Lyry, + 1, 0,) (2% + %)

which corresponds to structures such as

The first configuration of the B, component of the sz state corresponds

to a structure like

@—®+@—@
O O O ©

which can be interpreted as being like a He;r in one bond coupled to an

24

H7 in the other. The second two configurations are just a bond pair

coupled with an ionic bond such as

® 0 OO
-0 00O
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What this points out, in effect, is what we missed in the original
analysis. That is, by forming a state such as g°u = (¢4r - rr{) in one
bond we get what amounts to the bonding state for He;L on one side.
While this state is definitely above the H, state (r + r{, it is below the
¢°- r® jonic state of H,. The point that should be made is that the
form of the wavefunction employed makes it possible to use such inter-
pretations and that the structure of the states can still be understood
in terms of simple bonding concepts.

In the initial VB analysis of section II, the considerations used
were relatively simple. The states were taken as well defined com-
binations of singlet and triplet states in two well defined bonds. In the
GVB calculations the orientations of the bonds was fixed so that in
doing the CI calculations, the resulting states are not as easily inter-
preted as if we were using truly localized functions. There are also
some states which arise from considering more complicated sorts of
spin couplings. For instance, given the low-lying triplet state of one
bond, we could consider taking two triplets, one in each bond, and
recoupling them. This line of reasoning was used to get the quintet
state, but it also gives rise to a singlet and triplet state. The singlet
state is the A, component of the 'E state. The triplet state is the A,
component of the 13T1 state. The CI wavefunction for the 1°T, as given
in Table IV. 6 gives the coefficients for the spin eigenfunctions for the
orbital ordering o, 0,0} 0 (re’fer to Table IV. 4 for notation). If one
changes the ordering to o, 0;" o, o:, then the spin eigenfunction is given

by .079 X, - .802 X, + .484 X,. If the state were purely the triplet
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state obtained from coupling two triplets, the spin eigenfunction would
be -.816 X, + .577 X,, however, this is the major component of the
state. This state gives the same energy as the B, components of the
13T1 which is simply a GVB pair in one bond and a triplet in the other.
For the 2°T, state, we again have to reorder the orbitals in the
A, component. Doing so we obtain a spin eigenfunction for the first
configuration which is .512 X, - .043 X, - . 597 X,. The X, term
leads to an ionic singlet state coupled to a covalent triplet while in X,

the singlet and triplet are interchanged. This could be depicted

-0 -0l PO 06
@ 0 006 |00 6o

The B, component of the 23T1 correspondé to an He; state triplet
coupled to a single electron in the other bond. If we write He] as
£,2,r and o, = £, + r,, then the wavefunction is
[0,0,(r, 2, + r,1,) af(aB + Ba)] which is a state triplet coupled
""across'' the vacancy relative to our usual sense. Such states would
be depicted
© O © O
,/ and !
& O O O
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which is just another orientation for the A, state.

As an alternative way of viewing the positive and negative ion
states, it is helpful to look at the states of He:, H, and H; In He;r
the VB ground state is Q [(£¢r - rr¢)afa] which is equivalent to the
MO wavefunction Q[gguaBa], where g=0+r, u=0-r, and andr
may be thought of as atomic orbitals on the left and right centers. In
the case of He; the first excited state is Q [uugwBa]. The energy

splitting between these two states has a dependence on overlap which is

S
1-g2
the splitting between the g and u states. For H,, however, the first

=~ s, for small s, S = (ﬁlr) . Hj hs the same dependence for

two statesare fr + rf and {r - r{, which represent a éinglet and a
triplet respectively. The singlet-triplet splitting has an overlap
dependence which is —i_i:-z— = Sz, for small s. In the region of low
overlap, the splitting between the H, states will be less than the
splitting between the states of either He;r or H; . Thus we should build
up the positive and negative ion states by starting with the lowest state
of H; and He;r respectively, and then coupling these states with the
singlet and triplet states of H, to form our picture. Both He; and H;’
are doublet states, so combining the doublet with thé H, singlet gives
only a doublet, but combining the doublet and triplet we can expect to
get both doublet and quartet wavefunctions.

In Tables IV.T7 and IV. 8 we give the dominant terms in the CI
wavefunctions for the positive and negative ion states. Consider first
the negative ion states. The dominant configurations of the first two
states ('A, and A, component of °T,) are the same. They both

correspond to structures



where @—@ is the He] ground state while @@ is the

H, triplet state. For the ground state of the negative ion the coupling
between the two structures is ''triplet' so that the quartet state -
emerges as the ground state. The excited state corresponds to the
same two structures ’'singlet' coupled to give a doublet state. The
first configuration of the “T, (A,) is Qfo?0,0} o) (.516 X, - .429 X,)].
If we permute the order of the electrons, then we obtain an expansion
Q.[o} 0,05 of (\113 X, - .662 X,)]. X, corresponds to the third and
fourth electrons triplet coupled with the last electron coupled to form
a doublet. Thus the dominant terms in the two states correspond
directly with the structures given. The B, component of the le state

corresponds to the structure
where @—@ is just the singlet H, state. The B, component

(not given in the Table) is the same but with the bonds interchanged



OO
0

In the case of the positive ion, the relevant states are those of
H, and H;. The A, component of the °T, state is a combination of

structures such as

The B, component of the *T, state is a combination of ionic H, states

with the H: g or u function to give structures such as

O—0O
O O O O,

which is just He; back again. The quartet states of the positive

O

O
O

vacancy arise from the various combinations of 3 electrons on the 4

centers high spin coupled.
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One point which remains is the overall ordering of the positive
and negative ion states of the vacancy. In the two cases the states are
ordered almost exactly oppositely. A relatively straightforward
analysis of these states is given in Appendix B. Here we will just give
the results. First consider the quartet states of the positive ion.
Suppose we construct the states from 4 equivalent localized orbitals,
one on each center. We will label the orbitals a, b, ¢, d. If we start
with one wavefunction, say Q.(bcd aaa), then on appropriate rotation
we produce the wavefunctions QJadcaaa), Q(dabaaa), Q.(chacaa).
These four wavefunctions can be used as the basis for a CI calculation
which gives the result

E = A -
4Az 1-30

. T
E4T1 = A +

where o = (a|b) and 7 = {a|h|b) - o{alh|a), in which h is the one
electron part of the Hamiltonian. As explained in the Appendix, 7 is
expected to be negative while 0 is of course positive. Thus the
ordering of the states is 4A2 above 4T1. For the negative ion quartets,
the wavefunctions are of the form Q_(a’bcd afaaa). The effect of the
additional two functions is to cause a sign change in the matrix
elements which lead to the 7 and ¢ terms, thus the energy expressions

become



’ 3T
E = A
‘A, " 13730
E4T1 = AT 17-0

where ¢ and 7 have the same definition as above. Therefore the
negative ion quartet states order 4A2 below 4T1. For the positive ion
doublet states each spatial configuration (e.g., cdb) leads to two spin
eigenfunctions resulting in eight wavefunctions. For the case of the
spatial configuration cdb the two wavefunctions are of the form
Q.[cdb (@Ba - Bae)] and (. [cdb (2aep - aBa -Baa)], that is, singlet
paired cd and triplet paired cd respectively. These two functions
can be appropriately rotated as in the quartet case to give the eight
wavefunctions. Going through the same process of evaluating matrix
elements, constructing symmetry functions and evaluating the energy

expression, one obtains

21
Ezp. = A .
’T, T 1720
EzE = A
_ _ 27
Ele = A T35

Thus given that 7 is negative the states are ordered 2T2 <*E < 2Tl.
What is even more interesting is that the overall order for the positive

ion states

o1, <'T, < ’E < ’T, < *A,

is produced, and that is in the same order as found in the SD-CI
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calculation. For the negative ion doublets we expect a sign change in
the v terms just as we found in going from positive ion quartets to

negative ion quartets. The energy expressions one would expect are

27
E = A’ -
2Tz 1-2¢0
EzE = A
7 2T
E = A
°T, T 1%

and thus the ordering of the states would invert relative to the positive
ion. Therefore the expected overall ordering of the negative ion

states is
‘A, < 'T, < *E < T, < T, .

This is the calculated (SD-CI) order for the first three states, but the
°T, state is 0.5 eV below the T,.

In the negative ion case we simply argued about the form of the
energy expressions. We might expect to find extra exchange terms
in the doublet states which would raise them relative to the quartet
states. If we assume o = 0.2 then we find that 7 = -. 56 eV for the
doublets and 1 = -. 86 for the quartets using the SD-CT energy
differences, which supports the assumption that there are additional
positive terms entering into 7 for the doublets.

The crucial step in the analysis is the fact that 7 is negative,
which we get from a simple VB analysis of the states of H: Thus we

again find that relatively simple ideas about bonding can lead directly
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to information such as the ordering of states in more complicated
systems.

Calculations on the (111) surface complex using the DZ were
performed using the minimum point geometry obtained from the STO-4G
calculations. The energies obtained are reported in Table IV.9.

These calculations give a vertical ionization potential of 7.32 eV and an
electron affinity of -2.56 eV. The effect of correlating the lone pair in
the negative ion would be expected to be 0.66 eV by comparison with
CH, and CH,. Also by comparison with CH,, the outer C on the positive
ion would tend to move even further into the plane while the negative
ion would tend to move back out toward tetrahedral. We will use these

calculations later to relate to the infinite crystal.
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TABLE IV.1. Total energy of the diamond (111) surface complex as
a function of the distance of the surface atom from the
origin. The distance is in a.u. measured in the [111]

direction. The energy is in a.u.

Distance Energy
+0.1 -155.920295
0.0 -155.928168
-0.1 -155. 932563
-0.1812 ~-155,933658
-0.2 -155.933607

-0.4 -155. 926549
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TABLEIV.5 Dominant Terms in the Configuration Interaction Wave-
functions for the First Singlet States of the Neutral Vacancy in Diamond.
The term in parentheses by the state designation is the C,;, symmetry.
The configurations are given in occupation number notation.

The energy lowering AE is in millihartree (1 mh = .0272 eV).

Energy
State Configurationa Coeificient Lowering
o, 0, Of of v, v, Vv, v, cx,?  ox, AE®
'EA) 2 2 0 0 0 0 0 O . 695 - 222.9
0o 2 2 0 0 0 0 O -.448 - 109.0
2 0 0 2 o0 0 o0 O -.448 - 109.0
o 0 2 2 0 0 o0 O .259 - 45,2
11 2 0 0 0 0 O -.1438 - 10.1
1 1 0 2 0 0 0 O -.1438 - 10.1
'T,oa) 1 1 2 0 0 0 0 0 -. 492 - 71.9
1 1 0 2 0 0 0 O .492 - 71.9
2 0 0 2 o 0 0 0 .432 - 48.2
0o 2 2 0 0 0 0 O -.432 - 48.2
1 1 1 0 0 0 1 o0 -.150 -.049 20.1
1 1 0 1 0 0 o0 1 .150 -.049 20.1
2 0 2 0 0 0 0 O -.129 - 10.0
0o 2 0 2 0 0 0 0 .129 - 10.0
+ 16 configurations involving excitations to the virtuals 39.2
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TABLE 1V.5 Continued

o, 0, of of v, v, v, v, Cx, CX, AE
'T,B,) 2 1 1 0 0 0 0 O . 790 --  187.7
1 2 1 0 0 0 0 o -.485 -- 90. 7
1 0 1.2 0 0 0 O .217 -- 24.2
1 1 1 0 1 0 0 O -.137  .057 19.9
2 1 0 0 0 0 1 o .136 -- 13.5
1 2 0 0 0 0 1 o0 -.115 -- 0.3
+ 8 configurations involving excitations to virtuals 23.0

a) The following notation is used for the functions
0;, 0, GVB 1st NO's corresponding to 1+2 and 3 +4 respectively.
of,0Ff GVB 2nd NO's corresponding to 1 -2 and 3 - 4 respectively.
vy, V, p-like virtual functions of types 1 +2 and 3 +4 respectively.
Vg, Vv, p-like virtual functions of types 1 -2 and 3 - 4 respectively.
The C,y symmetries of the functions are, in order, a,a, bb,a,a, b, b,.

b) Coefficients of the configuration by spin-eigenfunction. Doubly
occupied orbitals are singlet coupled. The two electron singlet

spin eigenfunction is 1 (@B - Ba). The two 4 electron spin eigen-

V2

3 (@B aB - aBPa + Ba Ba)
7}.2_ Qaag - Bafa - afaf + 288 aa - Ba afB)

functions are
X,

Il

Xz

il

¢) The energy lowering is defined as the amount the energy would
increase by deleting the configuration without adjusting the coeffi-
cients of the other configurations.
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TABLE 1V.6 Dominant terms in the configuration interaction wavefunc-

tions for the first triplet states of the neutral vacancy in

diamond. The table headings are explained in Table IV.5.

State Configuration Coefficient
o, 0, of of v, v, v, v, Cx,° cCx, CXx, AE
'T,(A) 1 1 11 00 0 0 -.736 -.332 -.470 400.1
2 0 11 0 0 00O .242 -- -- 25.2
0 2 1.1 00 00 .242 -- -- 25.2
i1 01 00 1 0 .037 .005 -.018 1.5
11 1.0 0 0 01 .037 .015 -.011 1.5
*r,B,) 1 2 1 0 00 0 0 .83  -- -~ 306.1
1 0 1.2 0 0 0 O .481 -- -- 99.5
21 1.0 0 0 0 O .251 -- -- 21.4
01 1.2 00 0O .083 -- -- 3.6
11 1.0 01 0 0 . 005 .027 -.016 1.1
2’T/(A,) 1 1 1 1 0 0 0 O .203 -.422 -.597  44.8
2 0 11 0 0 00O .388 -- -- 27.0
0 2 1.1 00 0O .388 -- -- 27.0
11 01 00 1 0 . 079 .083 -.016 7.9
11 1.0 0 0 01 . 079 .012  -.083 7.6
01 11 1 0 00 . 061 .069 -.019 6.6
10 11 01 0 0O . 059 .044 -.009 5.3
+ 10 configurations 26.2
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TABLE IV.6 Continued

o, 0, 0f 0F v, v, v, v, CX, CX, CX, AE

2°T/(B,) 2 1 1 0 0 0 0 0 .845 137.2
1 01 1 0 0 0 -.042 .139  .086 21.9

1 0 12 00 0 O -.449 .116 -.158 16.6

21 00 00 1 0 -- -- -- 8.7

+ 4 configurations 18.9

a) The 4 electron triplet spin eigenfunctions are

_ 1 -
X, = T3 (@Baa - Baaa)
1
= - e (2 - -
X, 7o CaaBa - aBaa - Baoa)

X
P Y12

1 BaaaB - aaBa - aBaa - Baca)
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TABLE IV.8 Dominant terms in the CI wavefunctions for selected
states of the positive charge states of the vacancy in

diamond. The table headings are explained in Table IV. 5.

State Configuration Coefficients
o, 0, 0f O v, v, Vv, V, cx,t ox, AE
T,(A) 2 1 0 0 0 0 0 0 . 635 - 124.2
1 2 0 0 0 0 0 O -.635 - 124.2
1 0 02 0 0 0 O .302 - 38.9
01 2 0 0 0 0 O -.302 - 38.9
01 02 0 0 0 0 -. 052 - 15.9
1 0 2 0 0 0 0 O -. 052 - 15.9
) 1 1 1 0 0 O O O -.759  -.311  300.0
02 1 0 0 0 0 O -.485 - 82.9
2 0 1 0 0 0 0 O -.231 - 25.8
0 0 1 2 0 0 0 O +.175 - 14.9
‘Ta,) 1 0 1 1 0 0 0 O .706 - 89.1
01 1.1 0 0 0 0 . 706 - 89.1
‘8 1 1 1 0 0 O 0 O . 997 - 8217. 4

a) The three electron doublet spin eigenfunctions are

X, = ~— (aBa - Baa)

V2
X, == -\-[-1—6— Caap - aBa - Baa)
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TABLE 1V.9. Hartree-Fock calculations for the positive, negative

and neutral charge states of the diamond surface

cluster.
Total Energy € AE
CH, -156. 619345 -. 358464 0.0
CH; -156. 350446 -- 0.268899
c.H, (1)? -156. 494034 +.096708 0.125311
CH, (2)2 -156.5252178 +.030258 0.094067

a) The negative ion calculation (1) used fixed CH bonds and carbon (1s)

core while calculation (2) allowed full variational freedom.
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Figure IV.2.1.
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FIGURE CAPTIONS

Total Energy of the (111) surface complex for
diamond as a function of displacement of the
apical carbon along the [111] direction.

Positive distances are away from the surface.

The GVB orbitals for the 'E state of the neutral
vacancy in diamond. The spacing of the contour
levels is .05 a.u. with dashed lines being
negative. This spacing is used for all of the
diamond orbitals. The centers are labelled

according to Table III.1.

The natural orbitals of one bond pair of the 'E

state of the neutral vacancy in diamond.

The GVB orbitals for the 'T, state of the neutral

vacancy in diamond.

A GVB orbital for the T, state of the neutral
vacancy in diamond displayed in three planes.
This shows the delocalization of this orbital

onto a third center.
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V. SILICON VACANCY STATES

The states of the silicon vacancy were calculated in much the
same way as the diamond vacancy states. In general we find that the
description of these systems is the same. In fact, the only real
difference is that in silicon the sz state of the positive ion is slightly
above the 4T1 while in diamond it was slightly below. Due to this
similarity, the description here will parallel that of section IV and
unless otherwise states, the basic considerations in doing the calcula-
tions are the same.

In the study of silicon it was decided to first obtain the optimum
geometry by doing the Si ,Hj calculations and then to look at the vacancy.
Although the neutral vacancy in silicon is not observed experimentally,
it is known that the positive and negative charge states of the vacancy

2

exhibit Jahn-Teller distortion. 6 On the basis of a simple molecular

orbital model Watkins argues that the neutral should exhibit a distor-

26

tion to D,y symmetry as well. With our model complex we cannot

accurately include such distortions without going to a valence force

21 Instead we

field model such as used by Larkins and Stoneham.
decided to solve for the symmetric outward distortion as before and to
ignore other distortions as somewhat smaller. This set of calcula-
tions was done using the minimum basis set for silicon moving the
surface atom along the [111] axis of the (111) surface complex as
before. The results of this calculation are given in Table V.1 and in

Figure V.1. The minimum was found to be at -0.159 a.u. along the

[111] direction. Since the distance between (111) planes in the case of
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silicon is 1.481 a.u., this represents a 10. 8% relaxation into the
crystal. Proceeding as before to calculate the ''relaxed' positions we
find that the silicon positions are given by (2.65775, 2. 65775,
2.65775) in a.u. plus equivalent positions while the hydrogen positions
are (4.23229, 4.23229, 0.96614) plus equivalent positions.

For the vacancy, an initial calculation was performed using the
minimum basis set. The state solved for was the °A,. In this calcu-
lation the four dangling bond orbitals are quite distinct from the SiH
bonds. The vectors for the SiH bonds were subsequently used in the
calculations using the DZ basis. Since the inner function on the Si in
the DZ basis is the same function as used in the MBS, and since a
MBS hydrogen function was used in each case, the SiH vectors can
simply be used without modification in the DZ calculation. Computa-
tionally this means that in the DZ calculation the SiH vectors were
constrained to rotate among themselves (i.e., put into their own
pseudo-symmetry class). At first the DZ calculations were performed
with the SiH bonds "'fixed.' Later they were allowed full variational
freedom in certain calculations.

In Tables V.2 and V.3 we present the results for a number of
calculations on the vacancy. In addition to the 'E and T, states, we
calculated self-consistent wavefunctions for the 1°T,, the 2T2 of the
positive ion and the T, state of the negative vacancy. For the 'E
ground state three calculations were performed. The calculation was
performed for both fixed and free SiH bonds as discussed above. In

addition we calculated the 'E state using the original (Table III. 1)
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geometry. This last calculation indicates that the energy change is
quite small (.13 eV) in going from this geometry to the outwardly
relaxed geometry. The effect of allowing the orbitals of the SiH bonds
to readjust is a relatively large (~ .5 eV) effect. In Table V.3 we see
that in the fixed SiH bond case the hydrogens each have 0.12 extra
electron while for the free SiH case there is 0.09 extra electron on
each hydrogen. Thus we see that the bonds are slightly ionic, which
might affect the calculations of the other states. The GVB orbitals
and the natural orbitals for the 'E state are given in Figure V.2. The
GVB orbitals are dangling bond orbitals polarized along the bond
direction as in diamond.

In the case of the sz state, four different calculations were
performed. Using the fixed SiH bonds we solved for this state as a
GVB pair plus two singly occupied (orthogonal) singlet coupled orbitals.
Comparing Tables IV.2 and V.2 we see that the description of the 1T2
state is quite similar in diamond and silicon. Since the first NO of
the GVB pair is essentially doubly occupied, the GVB pair was re-
placed by a doubly occupied HF orbital. The effect was to raise the
energy only 2.5 mh = .07 eV. Thus viewing the state as a HF doubly
occupied orbital (plus the two singlet orbitals) is quite reasonable.

If the state is forced to be a covalent bond on one side and an ionic
bond on the other, i.e., our first VB description, we find that the
energy is raised by 54 mh = 1,47 eV. While this structure did con-
tribute to the CT description of the sz state, it clearly is not a major

component. In diamond we saw that the CH bond polarization of the
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sz state amounted to ~ 1.0 eV due to electron transfer in the system.
In the silicon case allowing the SiH bonds to rearrange gave a 25 mh =
.68 eV energy lowering. From Table V.3 we see that there is ~1.5
electron transfer from the 1-2 bond to the 3-4 bond if we make the same
division we did in diamond. In this case however we find that almost
all of this effect (~ 1.4 electron) is due to the silicon. This is to be
expected since the hydrogen basis is only a minimum basis description
and thus will not allow for much polarization.

The orbitals for the sz state are given in Figure V.3. The
orbitals are quite similar to the diamond case. Comparing the sym-
metric and anti-symmetric (g and u) singlet orbitals with the first and
second NO's of the 'E state, we see that the g orbital is slightly more
diffuse than the second NO. This is to be expected since in the first
case there is approximately one electron between the two centers
(1 and 2) while in the second there are three electrons. The GVB
orbitals are bonding orbitals between centers 3 and 4 but somewhat
delocalized onto centers >1 or 2 as in the diamond case.

The excitation energy from 'E to 'T, is 4.09 eV for the calcu-
lations using the fixed SiH bonds and 3. 82 eV for the free SiH bonds.
The difference is primarily due to the extra energy lowering in the
'T, state upon freeing the SiH bonds.

The °T, state is an interesting contrast to the 'T, state. In this
case, as can be seen in Figure V.4, the GVB pair is relatively un-
affected by the presence of the triplet orbitals. The triplet orbitals
themselves are simply the first and second natural orbitals of a GVB

pair in bond 3-4. The difference is that they are triplet coupled and
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each singly occupied. Thus we see that in this case the original VB
analysis was quite reasonable. In Table V.3 we see that the differ-
ences in the pair CI coefficients and overlap between the 'E pairs and
the °T, pair are small. The excitation energy of the °T, state relative
to the 'E is 0.18 eV. We also find that the °A, state is 0.44 eV above
the ground state.

For the positive ion we simply removed an electron from one
of the bond pairs. This gives one of the two VB structures which
constitute the A, component of the 2T2 state. The orbitals from this
calculation are given in Figure V.5. The singly occupied orbital is
like the first NO of a vacancy bond pair but is slightly more contracted.
The orbitals of the bond pair are slightly delocalized toward the singly
occupied orbital as well as along the bond direction. From Table V.2
we can see that the GVB orbitals are pointed more into the vacancy by
the increase in the overlap, which is 0.42 for the positive ion bond
pair as opposed to 0.23 for the vacancy bond pair. We find that the
vertical ionization potential for the vacancy is 8.49 eV,

For the negative ion case we want to add an electron to the
vacancy. Given that each bond is basically a g” configuration, we
want a state which is g” in one and g?u in the other. What was done
computationally was to add an antisymmetric (b,) orbital along the
1-2 bond. The orbitals for this state ( B, component of the °T,) are
given in Figure V.6. We see that in the bond where the b, orbital was
added the GVB orbitals move toward each other. At the same time
the b, orbital delocalizes back onto the hydrogens (only one of which

is shown) out of the bond region. This effect can be seen in the
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increased overlap (Sab = 0.31) for the 1-2 bond. The second bond pair
is relatively unaffected by the presence of the b, orbital. From
Table V.2 we see that its overlap, CI coefficients and energy lowering
are about the same as for a normal vacancy pair. We find that the
electron affinity of the vacancy is negative with the value -7.56 eV,
(We will find later that this is an excited state of the negative ion.)

The overall picture of the low-lying vacancy states in silicon,
then, is (i) very much like the picture for diamond and (ii) well
described qualitatively by the arguments given in sections II and IV.
Our next task, then, is to explore the spectrum of states for the
silicon vacancy. As in diamond, we performed SD-CI calculations
over a 12 basis function space constructed exactly as in the diamond
case. The GVB calculation from which the CI basis was derived used
the fixed SiH bonds. In the SCF calculations we saw that using the
fixed SiH bonds caused a 0.2 eV larger excitation energy for 'E to 'T,
than if the bonds were allowed to adjust. Thus for charge transfer
types of excited states, we might expect these sorts of errors in the
calculations. Since the GVB NO's used to construct the CI basis are
C,v symmetry functions and not T d symmetry functions, the degenera-
cies for the T d states will not be exact, as also happened in diamond.
The SD-CI was done over the 12 basis function space using all
members of the GVB-RCI as basic configurations.

The total energies for the singlet, triplet and quintet states
from the SD-CI calculations are given in Table V.4. The overall

structure predicted in Figure II.1 is maintained, but the ordering of
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the 3T2, °E and °A, states is different between diamond and silicon.
In diamond these three states are within a 0.12 eV energy range while
for silicon they are ordered oppositely from diamond and occur in a
0.3 eV energy range. The splitting between the 'E and 3Tl states is
0.18 eV, which is the same as the SCF results. The energy difference
between the 'E and 5A2 state is 0.60 eV, which is 0.16 eV more than in
the SCF calculation. Comparing Tables V.4 and V.2 we see that the
total CI energy lowering is the same for the 'E, 'T, and >T, states,
0.27 eV, while for the °A, it is 0.11 eV. Thus the excitation energy
from 'E to 'T, is the same as the SCF value (for fixed SiH bonds).

The dominant terms in the CI wavefunctions for the first two
singlet states are given in Table V.5. If we compare this with
Table IV. 5 we find that the CI description for diamond and silicon are
very similar. The A, component of the 'E state is just the GVB
description with small terms that serve to change the shape of the
orbitals. For the A, component we find that reordering the orbitals
of the first configuration to give o, 0,0, 0,", one obtains the spin-
eigenfunction -0.04 X, + .94 X,. Thus this state is a triplet in each
bond coupled into a singlet state.

The A, and B, components of the 'T, state are the same as we
found in diamond. If we consider the A;, B, and B, components at
+

once, then what we have are three of the ways we can combine and He,

state with an H; state. The B, and B, components are



68

00

primarily while the A, state is a combination of structures such as

00

Each of these structures is corrected with the appropriate ionic

structure such as

® O
O—0O

in the case of the B, component.

As described in section IV, the low-lying states of the vacancy
derive in part from considering the states that can be constructed from
two triplet coupled bonds. We saw previously that the A, component

of the 'E state is the singlet state arising from this combination.
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If we reorder the orbitals for the A, component of the first triplet
state (as given in Table V. 6) to the order o, 0," 0,0,", then the spin
eigenfunction becomes -.07 X, + .809 X, - .486 X,, where Xx,, X, and
X, are given in the table. If the state were a pure mixture of two
triplets constituting a triplet, the spin eigenfunction would be

V2 x,-VLx,=.816 X, - .57T7 X,. We can see, however, that this
last spin coupling is the major component of the spin eigenfunction.

The B, state is just the VB structure

O—O
OO

containing a bond pair and a triplet coupled pair. In the B, state we
would find the same thing with the sides reversed.

In the case of the A, component of the 23T1 state it is also
helpful to reorder the orbitals as done above. The resulting spin
eigenfunction is -.520 X, -.071 X, +.587 X,. The X, terms leads,
as in the diamond case, to a state which is a combination of an ionic
singlet in one bond and a covalent triplet in the other, while the X,
term has the sides interchanged. That is, the state is a combination

of structures of the form
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OO
O

The B, component of the 23T1 state can be viewed as a He; triplet

®

coupled to a H;L This sort of state can be depicted

© ©
!

O O

The calculated energies for the positive and negative ion
states of the vacancy are given in Table V.7. Comparing the SCF
calculation for the °T, state of the positive ion with the CI result, we
see that the energy is lowered by 33 mh = .91 eV. In the negative ion
case the effect is 286 mh = 7.78 eV. This last result is quite sur-
prising at first and will be discussed later.

In Table V.7 we see that ordering of the positive and negative
ion states is just as predicted by the analysis given in Appendix B.
The difference between silicon and diamond is that in silicon the 4T1
of the negative ion is below the sz while in diamond it is not. In

deriving the formulas obtained in Appendix B we made several quali-

tative arguments about the dependence of the integrals involved. The
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difference in ordering is probably more an indication of the limits of
the qualitative argument than anything else. One might attempt to
argue on the basis of a difference in size of appropriate exchange
integrals, however for the 2T2 state there are 0.5 eV of energy
lowerings due to excitation to the virtual orbitals, which is of the
order of the differences involved.

Now we will consider the large energy difference between the
SCF and CI wavefunctions. From the dominant terms in the B, com-
ponent of the 2T2 state (Table V. 8) we see that the major contribution

comes from a wavefunction of the form
012 01* (C, 022 - G, 02*2) = g? u, (C, gg - Czuz)

which is the He] ground state in one bond and a GVB pair in the other

bond. The selfconsistent calculation was for a state of the form
(Cyof - Cyo*?) (Clof - Cloj2) v,

which is an excited state (v, being a b, symmetry virtual). The large
energy difference, then, is due to the fact that we were not really
comparing the same states.

Examining the other states given in Table V. 8 we see that the

A, components of the 4A2 and °T, states both arise from the structures
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where in the quartet case the doublet (He, structure) and triplet are
high spin coupled while in the doublet case they are ''singlet" coupled
to give a doublet. If we reorder the orbitals for the first configura-
tion of the °T, state we obtain the transformed spin eigenfunction
-.111 X, -.692 X, which is just like the description found in the
diamond case for the corresponding state.

The CI wavefunctions for the positive ion states are given in
Table V.9. Once again we see that the A, component of the *T, state

is the resonant combination

OmONNO=0

O—0O OO0
which is a GVB pair in one bond and a singly occupied orbital in the
other. The GVB calculation for this state was a calculation for just
one of two structures in the wavefunction. Since the dominant terms
(> 1 mh) are simply the two GVB structures, we could say that the
.91 eV energy difference between the SCF and CI calculations is
stabilization due to allowing both structures, i.e., the resonance
energy. The B, component of the “T, state can be viewed as a triplet
in one bond coupled to a single electron in the other. The positive
ion quartets are simply the possible combinations of three electrons

in four orbitals high spin coupled.

Thus we find that the vacancy states in diamond and silicon
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are very similar. The differences that do occur are small and
probably arise from minor differences in overlaps and interaction
integrals. Overall we find that the use of relatively simple VB
arguments leads to explanations of the form of the wavefunctions for
the various states and provides a reasonable idea of the ordering of

the energy levels.
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TABLE V.1. Total energy of the Si (111) surface complex as a
function of the position of the surface atom taken in
the [111] direction. The origin is for tetrahedral
bond angles, positive is away from the surface.

All quantities are in Hartree atomic units.

Distance in [111] Energy
0.2 -19. 909681
0.0 -19. 915003
-0.2 -19.916103
-0.4 -19.913491
-0.159% -19. 916200

a) The calculated minimum.
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TABLE V.3. Mulliken Populations for some of the GVB calculations
in Table V.2, The numbers on the left refer to the
appropriate row of Table V.2. The center numbers

are with reference to Table III.1.

State Sil,z Si3’4 Hl 4 H5’7’9,10 H2 3 H6,8,11,12

) y

IE 3.632 3.632  1.120 1,124  1.120 1.124
g 3.623 3.623  1.122  1.127  1.122  1.127
‘g 3.710  3.710 1.096 1.097  1.096  1.097
'T 3.245 4,009 1.118 1,125 1.129 1,125

2

=J O W DN

gy 3.351 4,071 1.077 1. 092 1.115 1.101

2
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TABLE V.5. Dominant terms in the Configuration Interaction wave-
functions for the lower singlet states of the neutral
vacancy in Silicon. The term inparentheses by the state
designation isthe C,y symmetryused. The configurations
are given in occupation number formalism. The energy
lowering, AE, is in millihartree (1 mh = .0272 eV).

State Conﬁgurationa1 Coefficientb L%:fé‘le;
'E@A) o 0, of of v, v, v, v, Cx, Cx, AE
2 2 0 O 0 0 0 O . 682 - 134.0
0 2 2 0 0 0 0 O -.456 - 68.9
2 0 0 2 0 o 0 O -.456 - 68.9
0 O 2 2 0 O 0 O L2717 - 31.0
1 1 0 2 0 0 0 O -.140 - 5.4
1 1 2 0 0 0O 0 O -.140 - 5 4
'B@a) 11 1 1 0 0 0 0 -.830  .433 411.1
0 2 1 1 0 O 0 0O -.245 - 16.5
2 0 1 1 0 O 0 O -.244 ~ 16.5
'T,4) 1 1 0 2 0 0 0 0 .505 - 39.9
1 1 2 0 0 0 0 O -.505 - 39.9
0 2 2 0 0 0 0 0 -.449 - 28.4
2 0 0 2 0 o 0 0 . 449 - 28.4
0 2 0 2 0 o 0 o .124 - 5.4
2 0 2 0 0 o0 0 0 -.124 - 5.3
1 1 0 1 0 0 0 1 -.083 -. 022 5.3
1 1 1 0 0 0 1 0 -.083 -.022 5.3
+ 12 configurationsd 18.0
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TABLE V.5. Continued

o, 0, of of v, v, v, v, Cy, Cy, AE
'T,B) 2 1 1 0 0 O 0 0 -.806 - 108.2
1 2 1 0 0 0O 0 O .487 - 52.8
1 0o 1 2 0 O 0 O -.333 - 16.0
1 1 1 0 1 0 0 O 098  -.040 8.4
2 1 0o 0 o0 o0 1 o0 -.077 - 4.0
+ 6 configurationsd 15.5

a) The followin notation is used for the functions

d)

0,,0, GVB lst NO's corresponding to 1+2 and 3+4 respectively
01*,02* GVB 2nd NO's corresponding to 1-2 and 3-4 respectively

v,, vV, p-like virtual functions of types 1+2 and 3+4

v,, vV, p-like virtual functions of types 1-2 and 3-4

The C,y symmetries of the functions are, in order, a,a b,b,a,a,b,b.,.

The actual orbital ordering used in the CI is 0,0,0,%0,"v,v,v,v, so
the coefficients of spin eigenfunctions refer to this ordering.
Coefficients of the configuration by spin eigenfunction. Doubly-
occupied orbitals are singlet coupled. The two four electron
singlet spin eigenfunctions are

X, = 3 (@BaB - apBa - BaaB + BaBa)
X, = ﬁé (2aaBB - BaBa - aBBa + 2BBaa - Baaf - aBaf)

The energy lowering is defined as the amount the energy would

increase by deleting the configuration without adjusting the

coefficients of the other configurations.
These configurations involve excitations from the dominant con-
figurations, usually a single excitation to the virtual of the same

symmetry, which serve to modify the shapes of the orbitals slightly.
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TABLE V.6. Dominant terms in the Configuration Interaction wave-
functions for the triplet states of the neutral vacancy in
silicon. The table headings are explained in Table V.5.

State Configuration Coefficient? L%I\;eel;gﬁ’lg
* %k
o, 0, O, 0, V, V, V, V, C C C AE
. Xy X, X3

°’r,a) 1 1 1 1 0 0 0 0 .736 -.344 -.486 246.5

02 11 00 00 .225 - - 13.3
2 0 1.1 00 0 0 .225 - - 13.3
'r,B,) 1 2 1 0 0 0 0 0 .826 - - 183.6
1 0 12 00 0 0 -.504 - - 66.3
21 1.0 00 0 0 -.229 - - 11.1
01 1.2 00 0 0 -.088 - - 2.4
2°T,(4,) 1 1 1 1 0 0 0 0 -.322 .415 .587 18.8
2 0 11 00 0 0 .407 - - 17.0
02 11 00 0 0 .407 - - 17.0
01 11 1 0 0 0 -.029 -.011 .Q76 3.9
1 0 11 01 00 -.016 -.009 .084 3.9
2°’T,®,) 2 1 1 0 00 0 0 -.811 - - 67.1
1 0 1.2 00 0 0 .485 - - 9.2
01 12 00 0 0 .228 - - 7.9
11 10 00 00 -.019 .02 .1lo1 7.5
a) The 4 electron triplet spin eigenfunctions are
X, = 71‘2— (aBaa - Baaa)

>
i

9 = - 71—6- Caapa - afaa - Baaa)

s
NGT)

>
1l

BaaaB - aafa - afaa - Bacw)
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TABLE V.8. Dominant terms in the Configuration Interaction wave-
functions for selected states of the negatively charged
vacancy. The table headings are explained in Table V. 5.

State  Configuration Coefficients® L‘E@‘Zﬁ%g
0, 0, o{‘o; v, V, V.V, C’Xl CXZ ng C‘Xa AE
‘A,(A) 12 11 00 00 .695 - - - 68. 1
21 11 00 00 -.695 - - - 68.0
11 1110 00 .015 -,021 -,014 .08 5.1
11 11 01 00 -.019 .012 .028 .063 3.7
12 10 00 01 -,059 - - - 2.4
21 01 00 10 .059 - - - 2.4
"T,(A,) 21 11 00 00 -.543 -.441 - - 92.7
12 11 00 00 .111  .692 - - 41.8
12 10 00 01 -.006 -.071 - - 3.2
21 01 00 10 -.006 -.071 - - 3.2
T(B,)) 22 10 00 00 .696 - - - 108.5
2012 00 00 -.552 - - - 96. 2
11 12 00 00 -.385  .140 - - 34.5
12 10 10 00 +.0l0 .092 - - 6.3
1012 10 00 -.008 -.065 - - 3.7

a) The three electron doublet spin eigenfunctions are
1
XI = 7—2—- (aBoz - Baa)
1
X, = - 2 - -
5 76 CaaB - afa - Baa)

The five electron quartet spin eigenfunctions are
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TABLE V.8. Continued

X, = 7%— (cafaaa - Baaoa)
1
V6

X, = QuaBaa - aBfaaa - Baaaa)
X, = —‘7—11—2— BacaBa - aaBaa - aBaaa - Baaxa)
X, = 1 (daaaaB - acafa - acBaa - apaaa - Baaaw)

V20
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TABLE V.9. Dominant terms in the Configuration Interaction wave-
functions for selected states of the positively charged
vacancy in silicon. The table headings are explained

in Table V.5.

State Configuration Coefficient? Energy ‘
. % I owering

o, 0, 0, G, V, V, V, V, CXl sz AE

T,(A) 1 2 0 0 0 0 0 0 . 629 - 76. 1

21 00 00 0 0 -.629 - 76. 0

1 0 02 O0O0 0 O -.313 - 25.1

01 2 0 00 00 .313 - 25.1

,8,) 1 1 1 0 0 0 0 0 .759 -.318 182.17

02 10 00 00 .482 - 51.1

2 0 1.0 00 00 .220 - 14.5

0 0 12 00 00 -.185 - 10.0

‘T,A,) 0 1 1 1 0 0 0 0 719 - 63. 7

1.0 1 1 0 0 0 O . 686 - 52. 8

0 0 11 1 0 00 .539 - 2.0

00 11 01 00 .499 - 1.9

‘T,B) 1 1 1 0 00 0 0 . 997 - 574. 8

a) The three electron doublet spin eigenfunctions are
1
X, = ——— (aBa - Baa
1T (aBa - Baa)

11

X, (eaB - aBa - Baa)

L
- V6



Figure V.1,

Figure V.2.1,

Figure V.2.2.

Figure V.3.1,

Figure V.3.2,

Figure V.4,

Figure V.5.
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FIGURE CAPTIONS

Total Energy of the (111) surface complex for
silicon as a function of displacement of the apical
silicon along the [111] direction. Positive

distances are away from the surface.

The GVB orbitals for the 'E state of the neutral
vacancy in silicon. The spacing of the contour
lines is .03 a.u. with dashed lines being negative.
This spacing is used for all of the silicon orbitals.

The centers are labelled according to Table II1.1.

The natural orbitals of one bond pair of the 'E

state of neutral vacancy in silicon.

The GVB orbitals of the 'T, state of the neutral

vacancy in silicon.

A GVB orbital for the 1T2 state of the neutral
vacancy in silicon displayed in three planes,
This shows the delocalization of this orbital onto

a third center.

The GVB orbitals of the T, state of the neutral

vacancy in silicon.

The GVB orbitals of the °T, state of the silicon

vacancy positive ion.
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FIGURE CAPTIONS (continued)

Figure V.6.  The GVB orbitals of the T, state of the silicon

vacancy negative ion.
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VI. SILICON SURFACE STATES

The study of the silicon (111) surface states grew out of using
the Si,H, model for finding the equilibrium positions for the vacancy.
The work also ties in with other studies of the Si surface being per-
formed by Antonio Redondo of this research group.

The calculations on the positive and negative ion states were
carried out using the Si MBS and using a HF description for the states.
Both the use of the MBS and of the HF approximation are worst for the
negative ion and the resulting bond lengths should be too long in that
case. The calculations were performed for several positions of the
surface Si along the [111] direction, as was done for C and Si in
sections IV and V. The results of these calculations are given in
Table VI.1. A cubic spline fit to these results for the positive and
negative ions is shown in Figure VI.1. The curve for the neutral case
was given in Figure V 1,

We find that the minimum point for the positive ion is
0.582 a.u. = 0.308 A below the undistorted (tetrahedral) position
(that is, shorter bonds) while the negative ion is 0.415 a.u. = 0.219A
above the undistorted position. This means that the positive ion will
move 39% of the interplanar distance into the surface while the negative
ion distorts 28% away from the surface. The corresponding Si—Si
bond lengths are 2.26A, 2.32 4 and 2.43 A for the positive ion, neutral

and negative ion respectively, compared with a 2.35A bond length in

the crystal.
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The calculations were repeated using a fﬁll DZ basis by
Redondo28 leading to minima at -, 683 a.u., -.152 a.u. and +.400 a.u.
for the positive, neutral and negative ions respectively. The error in
going from MBS to DZ is worst for the positive ion where it is
~.la.u = .053A.

The DZ calculations on the positive ion and the neutral repre-
sent a reasonable level of calculation for these species. However,
for the negative ion the HF description does not allow for correlations
between the two electrons in the dangling bond orbital and hence will
lead to an extra error. In order to obtain some quantitative idea of
the importance of such correlation effects, we decided to study SiH,
as a prototype.

For this study a tetrahedral SiH, was used with a SiH bond
length of 1.48 A. The basis was a DZ basis (including the hydrogens)
augmented with diffuse sp functions. The Si core was again replaced
by an effective potential. Calculations were performed using both this
sp basis and the same basis augmented with d functions. The basis
set information is given in Table VI.2. Hartree Fock calculations
were performed on the neutral and negative ion as well as GVB
calculations for the negative ion.

In performing the GVB calculations on SiH: , a slightly more
general form of the NO expansion was used. The deficiency of the
HF calculation is that the two lone pair electrons are described by
one doubly occupied orbital. A GVB (1-PP) calculation remedies this

to a certain extent by allowing the electrons to be radially correlated
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(one electron farther from the Si than the other). (See SectionIi.C.)

In our calculations we have also allowed angular correlation. Thus

the GVB pair is replaced
G Pp+ Pp®y ™ Cror + Copf+ -+ C O

In this case we use a four-term expansion and denote the wavefunction
GVB (1/4-PP). For SiHs- the first NO is much like the HF orbital,
the second NO is of the same symmetry but contains an extra radial
node, the third and fourth NO's are 7 functions perpendicular to the
direction of the lone pair (first NO). Thus this form of the wave-
function allows simultaneous radial, in-out and angular correlation

of the pair,

The results of the HF and GVB calculations for SiH, and SiH,
are given in Table VI.3. We find that while the sp basis HF calcula-
tions yield an electron affinity of SiH, of 0.042 eV, the GVB calculation
gives an electron affinity of 0.351 eV. In going from the sp basis to
the spd basis the energy of the neutral drops 0.60 eV but the electron
affinity only changes slightly to 0.381 eV. The conclusion drawn from
this calculation is that the correlation effects of the GVB (1/4) wave-
function dominate the electron affinity and that the inclusion of d-
functions is of little importance.

On the basis of these results it was decided to recalculate the
negative ion DZ potential curve adding diffuse functions to the center

atom (SI 1 in Table III.2) and using the GVB (1/4-PP) wavefunction.
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The results of these calculations are given in Table VI.4. The
minimum point was found to be 0.442 a.u. in the [111] direction
(slightly farther from the surface). In Table VI.4 we also present
the results of the DZ calculations by Redondo for certain points.

We find that the inclusion of diffuse functions lowers the energy of

the neutral 5.7 mh = .15 eV and lowers the energy of the positive ion
4.7 mh = .13 eV for the equilibrium neutral geometry. In the case

of the negative ion the comparison is between a HF calculation and

a GVB calculation. The effects of the diffuse functions is estimated29
as 10 mh at the -.152 a.u. distance.

The calculated vertical ionization potential and electron
affinity (from Table VI.5) are 7.69 eV and 0. 71 eV respectively.
The adiabatic electron affinity is 1.02 eV. The adiabatic ionization
potential must be estimated by assuming that the effect of the
additional basis functions is constant. In the case the adiabatic
ionization potential is 7.43 eV. The DZ results of Redondo gave
vertical and adiabatic ionization potentials of 7.66 and 7.41 respec-
tively, hence the above assumption of a constant correction seems
reasonable. The DZ calculations also give vertical and adiabatic
electron affinities of 0.35 eV and 0.62 eV respectively. Thus we

find that there is a fairly constant correction of 0.4 eV in this case

as well.
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TABLE VI.1. Total Energy of the MBS-HF calculations for the Si
(111) surface complex as a function of the position
of the surface atom along the [111] direction. All
quantities are in Hartree atomic units. The + direction

is away from the surface.

Distance Negative Ion Neutral Positive Ion
0.6 -19, 834027 -- -
0.4 -19, 835600 -- --
0.2 -19. 833479 -19. 909681 -19.657557
0.0 -19. 828207 -19.915003 -19. 669642
-0.2 -19. 820352 -19.916103 -19.677884
-0.4 -19. 810416 -19.913491 -19.682500
-0.6 - -- ~-19.683783
-0.8 -- -- -19.682070

minimum distance 0.415 -0.159 -0.

582
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TABLE VI.2. Additional basis set information {or the SiH, and SiH,
calculations. The first two functions for silicon of each
symmetry are those of Table II1.5. The 2p basis is ob-
tained by adding the 3s and 3p functionon silicon while the
spd basis is obtained by adding the d function as well.

Function Exponent Coefficient
SILICON 352 0.03648 1.0
3p? 0.02808 1.0
14 1.32201 0.35875
0.391571 0.76147
HYDROGEN 1sP 5.663728 0.0871988
0. 857387 0.5046466
2P 0.190504 1.0

a) Obtained from the DZ basis (Table III.5) by scaling the outermost
function of that basis by the ratio of the last two functions.

b) Obtained from A. Redondo.
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TABLE VI.3. HF and GVB Calculations for SiH, and SiH, . The basis
sets refer to Table ViI.2. The total energy is in hartrees,

the energy lowering is in millihartrees,

Calculation Mulliken
a Populations
Species Basis Type Total Energy AE (mh) Si H
SiH, Sp HF -5.393299 -- 3.66 1.11
SiH, Sp HF -5.394858 -- 4,48 1.17
SiH, Sp GVB(1/4-PP) -5.406191 11.51 4,47 1.18
SiH, spd HF -5.428304 -- 3.82 1.06

SiH, spd  GVB(1/4-PP) -5.442423 17.82  4.63 1.12

a) The amount that the energy would increase upon deleting the second
third and fourth NO's with the coefficients of the other orbitals

held constant.
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TABLE VI.5. Electron Affinity and Ionization Potential for the Si H,
complex. The calculations are given in Table VI.4.

All quantities are in electron volts.

Basis® Vertical” Adiabatic
Electron Affinity DZ 0.352 .620°
DZR 0. 707 1.018
Tonization Potential DZ 7.661 7.405°
DZR 7.688 7. 4324

a) DZ: Full double zeta basis. These calculations are from
A. Redondo, Reference 28.
DZR: Full double zeta basis plus 3s and 3p functions of Table VI. 2
on Sil (Table III. 2).
b) At the equilibrium point for the neutral found using the DZ basis.
c) Obtained by a cubic spline fit to the calculated points.
d) Estimated from the DZ results.



Figure VI.1,
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FIGURE CAPTIONS

Total Energy of the positive and negative ions of the
silicon (111) surface complex as a function of dis-
placement of the apical silicon in the [111] direction.

The positive direction is away from the surface.
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VII. LITHIUM AND BORON IMPURITIES IN SILICON

The motivation for studying these two systems is two~fold.

The first is that the method used here should make no real distinction
between shallow and deep levels and so any differences between shallow
and deep levels should "occur naturally' in the calculations. We are
implicitly assuming that a localized picture of the shallow impurities
can be used, hence the first reason is a test of these ideas. The
second motivation is to obtain a way to relate the vacancy levels to the
band edges. The shallow levels should "pin down' the valence and
conduction band edges so that the position of the various vacancy

states within the band gap can be determined.

Before discussing the calculations, we should enlarge slightly
on the comments made in section II on these systems. OQur interest is
in boron as an acceptor and lithium as a donor so we want to look at
B, B7, Liand Li" all in the SiH,, cluster. For B™, we can form
four bonds to the dangling bond orbitals of the cluster. This complex
should not have any low-lying excited states since one must break a
bond, in effect, to form one. 1In the case of B, we have already found
that there should be 2A1 and 2T2 states. A quick analysis such as in
Appendix B leads to the 2T2 being the lower state. The energy sepa-
ration will be ~471, 7 = h,y, - oh,,, as before, and thus will not be
small (say 3 eV). Inthe Li' case, we should obtain just the energy
level structure of the vacancy with the levels shifted somewhat due to
the presence of the positive ion. Perhaps the best way to view the Li

impurity is to consider it as a Lit ion in the negative ion state of the

vacancy. Thus we would expect a 4A2 ground state with a low-lying
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T, excited state.

Another point to note is that Li" in Silicon is thought to occupy
an interstitial rather than a substitutional position. 30 Our argument
is that the Li (unionized) is probably substitutional and that after the
Lit is formed it has a low activation energy for migration, the Li" ion
being quite small.

For each case discussed above we performed a GVB calculation
for the lowest state except for the Li case in which both the 4A2 and
2T1 were calculated. In each case the impurity atom was placed at the
origin (Table III.1) and the bulk Si sitances were used. The individual
calculations will be discussed as the results are presented.

In Table VII.1 the results of the SCF calculations for the
various impurity complexes are given while in Table VII.2 the
Mulliken populations from the calculations are presented. The corre-
sponding vacancy calculation is number 2 in Table V.2. For the
neutral B, the system was treated as three Si-B bond pairs and one
silicon dangling bond orbital. The B~ case was treated as four Si-B
bond pairs. Comparing the calculations it is fairly obvious that the
Si-B bonds in the two systems are very similar. The overlaps indicate
that these are normal bonding orbitals. In Figures VII.1 and VII.2
representative orbitals for the B and B~ cases are shown. For the B
complex, one of the three equivalent bonds is presented, as well as the
singly occupied orbital. For B~ we show two of the four equivalent
bond pairs. The main difference is that the GVB orbital on Si in the

Si—-B bond delocalized toward the singly occupied orbital in the neutral
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case. For the most part the bonding orbitals are quite similar. The
electron affinity of (SiH,),-B is 3.12 eV from the GVB calculations.

For the Li complex we find that the ground state is the “A,
state with the T, state (2B1 component) 0.51 eV higher. The quartet
state was solved for using a HF wavefunction. In Figure VII. 3 the
orbitals of the 4A2 state are shown in two perpendicular Si-Li-Si planes.
We see that the doubly occupied orbital is symmetric while the singly
occupied orbitals are each antisymmetric although one is the anti-
symmetric combination of two bond orbitals. In Figure VII.4 the
orbitals for the 2T1 state are shown. This state is a bond pair in one
bond and a He, -like state (g2u) in the other bond. This is just the
description found previously for 2T1 state of the negative vacancy.
Comparing the overlap of the bond pair in this case with the Li" calcu-
lation (Table VII.1) with the corresponding vacancy calculation (row 2,
Table V.2), we see that the Li" case overlaps slightly less than the
vacancy, while the GVB pair in the 2T1 state overlaps much less than
either. In Figure VII.5 the orbitals for the Li' calculation are shown.
The major difference between this calculation and the vacancy is the
nodal surface near the Li*. The ionization potentials for the two
lithium states are 6.214 for the “T, and 6. 528 for the “A,.

As before, CT calculations based on the NO's of the GVB calcu-
lation were performed to include the major correlation effects which
are absent in the GVB-PP wavefunction. First consider the case of
(SiH,),-B complex. From the neutral GVB-PP calculation there are

seven NO's while from the negative ion there are eight (ignoring the
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B(ls)2 core and the SiH bonds). To obtain a complete GVB space it is
necessary to add a second NO in the region of the singly occupied
orbital. This orbital was obtained by orthogonalizing the second NO
from the corresponding bond in the B~ calculation to the other orbitals
of the B calculation. This yields an eight function GVB space for
(SiH,),-B. For the negative ion, just the NO's of the GVB calculation
were used for the CI calculations. It should be noted that for the
(SiH,),-B CI basis the SiH bonds were those from the GVB calculation.
Since that calculation was for a C,y field, the CI solutions using the
orbitals from the neutral calculation will display that symmetry. In
the negative ion case, the solutions have full Td symmetry. In both
cases the CI calculations were SD-CI's in the GVB space. The calcu-
lation for the states of the neutral were done using both sets of orbitals
(neutral and negative ion), primarily as a check on the symmetry of
the states, The results of the CI calculations are presented in
Table VII. 3.

The total CI effect is approximately the same in the two systems,
.012 mh for the neutral and .014 mh for the negative ion. The ordering
of the states of (SiH,),-B is asg predicted. The calculated energy
difference between the average of the >T, levels and the “A, level for
the neutral basis is 6.04 eV as compared with 5. 92 eV for the negative
ion basis. For the negative ion, the first excited state is 12.8 eV
above the ground state, also as predicted. The electron affinity for
(SiH,),-B is 2.91 eV from the CI calculations. In Table VII. 4 the

dominant energy contributions of the CI calculations are presented.
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In each case, the relaxation of the perfect pairing restriction is the
dominant effect. Thus a full GVB calculation would include some non-
singlet spin character in the bond pairs. In addition in the neutral case
there is also an orbital rearrangement effect. This derives mostly
from the orbitals not having T q symmetry.

For the CI calculations on the Li complex, a somewhat different
choice of the CI basis was made. For the positive ion the four NO's
from the GVB calculation were augmented with the valence s and three
valence p functions on Li to make an eight basis function space. For
the neutral the basis was chosen starting with the *A, orbitals. To
these we added the valence s and p lithium functions as for the positive
ion plus a set of s and directed p functions on Si as was done for the
vacancy (see section V). This gives a 16 function space for the neutral
case. For the positive ion a full SD-CI was performed, while for the
neutral the calculation was a GVB-CI over the HF orbitals plus a SD-CI
using the dominant “A, configuration as the basic configuration. The
results of these calculations are given in Table VII.5. We find that
the ordering of the states is as we predicted. The excitation energy
for the positive ion is 3.78 eV which is 0.3 eV less than in the silicon
vacancy. This should be expected since the Li" in the vacancy can
help stabilize the charge transfer sz states. A comparison of the
vacancy and Li-vacancy states is shown in Figure VII.6. For the case
of the neutral we find a spectrum of states very much like the silicon
vacancy negative ion, as is also shown in Figure VII. 6.‘ In this case as

well the spectrum of states is ""compressed' relative to the vacancy.
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The energy difference between the GVB and CI descriptions is smail
(~ 8 mh) for the ground state in both cases. The *T, state of the
neutral is 0.59 eV above the ground state as compared with 0.51 eV
for the GVB calculation. The ionization potential of the 4A2 changes
from 6.53 eV for the GVB calculation to 6. 66 for the CI, while the
ionization potential for the 2T1 state changes from 6.21 eV to 6.07.
In Table VII. 6 we present the dominant energy contributions for the
CI calculations on the lithium complex. For the positive ion we find
that there is only a small rearrangement effect after the GVB con-
figurations. In the case of the neutral for the 4A2 state the only CI
effects come from changing the shape of the doubly occupied orbital
using the p virtuals. For the 2T1 state the CI effect is to change the
shape of the second a, orbital,

While we have not related the states solved for in these calcu-
lations to ''true crystal states' per se, we have found that the impurity
atoms bond to vacancy orbitals in an easily explained manner.
Furthermore we find that the bonds formed in these cases are normal
chemical bonds. Our next task is to see how these calculations relate

to the observed properties of real materials.
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TABLE VII.3 CI Calculations for the (SiH,),-B complex

B Basis?® B~ BasisP

State  Energy (a.u.) AE(eV) Energy(a.u.) AE (eV)

(SiH,),-B -46.349046 0.0 -46.313465 0.0
2T1 -46.305924 1.173 -46.313464 0.0
-46.305916 1.174 -46.313462 0.0

2A2 -46.098369 6. 821 -46. 095922 5.919

(GVB) T,  -46.326959

(SiH,),-B~ ‘A, - -46. 455688 0.0
T, - -45.984235  12.829
(GVB) ‘A, - -46.441449

a) CI basis derived from NO's from (SiH,),-B GVB(3-PP) calculation.
b) CI basis derived from NO's from (SiH,),-B~ GVB(4-PP) calculation.
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TABLE VII.4 Dominant contributions to the Configuration Interaction

energy for the lowest states of the (SiH,),-B complex.

Number of Ene rgyb

Calculation Conﬁgurationa Equivalent  Lowering
o, of o, o) o, 0 o, o} Cases (mh)
. 2
(SiH,).-B T, 2 0 2 0 2 0 1 O 1 -
B Basis 02 2 0 2 0 1 0O 3 30.51
2 0 1 1 1 1 1 0 3 6. 60
2 0 2 0 1 1 01 3 4,33
SiH,),-B~ A, 2 0 2 0 2 0 2 0 1 .
B~ Basis 02 2 0 2 0 2 0 4 42.31
11 11 2 0 2 O 6 12,61
0 2 02 2 0 2 0 6 1.79
a) For the B~ basis the functions ¢ and ¢* are the NO's for the 4 bonds.

. s s * * * .
For the B basis this is also true for o, o,, 0,, 0,0, , 0, , while o,

is the singly occupied orbital on Si and 04* is a virtual similar to the
B~ o *orbitals in the direction of the singly occupied orbital.

The amount the energy would increase if the configuration were
deleted with the coefficients of the other configurations held constant,
in millihartrees. The contributions of all equivalent cases are

added together.
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TABLE VII.5 CI Calculations for the (SiH,),-Li complex.

(SiH,),-Li* (SiH,),-Li
State Energy (a.u.) AE (eV) State Energy(a.u.) E—E4A a E-EzT
2 1

-28. 777019 A, -29.022767 0.0 --
'E 0.0 -
-28. 773091 -28. 942064
-28. 637193 ‘T,  -28.941836 2.218 --
'T  -28.637192  3.788 -28. 941102
-28. 633166
-29. 001506
T,  -29.001381 0.594 0.0
-28. 999973
-28. 964879
R 1.593  0.999
-28. 963591
-28. 945773

T, -28. 948502 2.061 1.467
-28.946801

a) Energy differences are between the average value for the states,

in eV.
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TABLE VII.6 Dominant contributions to the Configuration Interaction
energy for the lowest states of the (SiH,),-Li complex.

Calculation Configuration® LEci ‘1;21;‘ g1¥1 Z
(SiH,),-Li" o, o, o o (mh)
'E 2 2 0 O 126.24
2 2 0 2 61.27
0 2 2 0 61.27
0 0 2 2 28.34
1 1 2 0 3.75
1 1 0 2 3.75
(SiH,),-Li a, a b, b, p, P, P, b,
A, 2 1 1 1 0 0 0 0 717.28
1 1 1 1 1 0 0 O 1.44
1 1 1 1 o0 1 0 0 0.96
1 1 1 1 0 o0 1 o0 0. 90
1 1 1 1 o o o0 1 0.69
°T, 2 2 1 0 0 0 0 0 66.98
2 0 1 2 0 0 0 0 64.11
1 1 1 2 0 0 0 0O 26.39
2 1 1 0 1 0 0 0 1.28
2 1 1 0 0 1 0 0 0.84

a) For Li*, ¢,0,*0,0,* are the NO's of the GVB calculation, for Li
a,a, b b, are the HF orbitals of the "A, state while p, p, p, p, are
inwardly directed p functions on centers 1, 2, 3, 4, as in the silicon
vacancy.

b) The amount the energy would increase if the configuration were
deleted with the coefficients of the other configurations held constant
in millihartrees.
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FIGURE CAPTIONS

Figure VII.1. The GVB orbitals for the 2T1 state of boron in silicon
[(SiH,),-B]. The spacing of the contour levels is
.03 a.u. with dashed lines representing negative
amplitudes. The same spacing is used for all

subsequent plots in this section.

Figure VII.2. The GVB orbitals for the 1A1 state of negatively
charged boron in silicon [ (SiH,),-B"].

Figure VII.3. The HF orbitals for the “A, state of lithium in
silicon [(SiH,),-Li] .

Figure VII.4. The GVB orbitals for the B, component of the 2T1
state of lithium in silicon [(SiH,),-Li].

Figure VII.5. The GVB orbitals for the 'E state of positively

charged lithium in silicon [(SiH,),-Li"].
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VIII. DISCUSSION

The calculations performed in this work have included the domi-
nant many body effects present in the clusters and thus should give
excitation energies correct to a few tenths of an electron volt. Keeping
in mind that distortions have not been allowed, we would expect the
methods employed to give a good description of localized states in
solids such as the ones studied herein. However, there are cases in
which the states are charged or in which the states have dipole or
higher moments. In these cases there will be long-range polarization
effects that no finite cluster can reproduce. In order to discuss these
situations, we have attempted to correct for the polarization effects
using a dielectric continuum approximation. The general procedure is
as follows: within the cluster the effect of polarization is included
since the calculations are self-consistent field calculations. The
cluster itself is considered to be a spherical hole in an infinite dielec-
tric. The charge of the cluster or appropriate moments of the charge
distribution of the cluster are obtained from the calculation. The
energy of interaction of the charge distribution with the medium is then
calculated classically and the results are used to correct the calculated
energies. The exact formulation of this procedure is given in
Appendix C.

One point which has been implied throughout this study is that one
must consider the correct many electron states of the system rather
than one electron states or molecular orbitals. The usual picture of

defects is based on some molecular orbital model whether it is a band
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20 or a cluster calculation. 6 While the molecular orbital

structure
(MQ) approach does provide conceptually simple means of viewing
impurity states, it can give misleading or incorrect information, as

we shall see.

Consider first the covalent states of the vacancy, that is, lE, °T,,
5A2. In section IT we used simple valence bond arguments about the
nature of these states which proved to be correct on detailed calcula-
tion. For diamond we found the *T, state 0.33 eV above the 'E while
the °A, state was 1,20 eV above the 'E. 1In silicon the *T, was found to
be 0.18 eV above the E while the °A, was 0.60 eV above the 'E.
Experimentally the ground state of the neutral vacancy has been shown
to be a 'E state by thorough piezospectroscopic studies of the GR1
absorption line in irradiated diamonds. 31 In addition there is some
evidence for a weakly spin orbit split triplet state with one component
0.008 eV above the 'E state. The spectral features are consistent with
this being a comyponent of a 3Tl state. 81 By comparison virtually every
MO calculation based on the Coulson-Kearsley model predicts the 3T1

9,32 With the inclusion of ''configuration inter-

to be the ground state.
action” effects, which ambunts to allowing the terms present in the
GVB wavefunction, the 'E usually becomes the ground state. In
attempting to explore the effect of many electron effects, Messmer
concluded that the average singlet-triplet splitting goes to zero as the
cluster size is increased. 33 Unfortunately in using the MO picture he
was forced to calculate the average energy of the IE, 1T2, lAl and 3T2

states to obtain the average singlet energy while the 3T2 energy was
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calculated properly. The result of this is illustrated below using our

CI results for diamond.

.14 —————— A,
1
6.06 — T,
3.53—— __ =avg, singlet
0.33_— T, 0.33———°T, = triplet
0.00 —— _'E
Diamond "Average'
CI

The problem is that in the MO description one has a triply degenerate
t, orbital which is doubly occupied, (t2)2, which gives rise to the states
'E, 'T,, ‘A,, *T,. However, from the valence bond picture we know
that i) the sz and 1A1 states are ionic excited states and ii) the ITZ
being a charge transfer state will polarize the cluster and thus its
energy will depend on cluster size while the other states will have no
such dependence. However, in the MO approach such points are
totally lost. In fact our conclusion is that the correct singlet-triplet
splitting can be obtaihed only by the proper inclusion of many-body
effects. For instance, the energy lowering in the 'E state of diamond
(GVB calculation) is 3. 00 eV per pair, thus a HF description of the 'E
state would be ~ 6 eV above the current calculation. However, the °A,
state (for which one must use a HF calculation) is only 0. 94 eV above
the GVB calculation for the 'E state: Thus we would not predict a 1E

ground state had we used a MO description.
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The calculations of the covalent states alsc allow us to calculate
a formation energy for the vacancy. To do this one needs the energies
of the ""basic units' of the complex. In this case w¢ need the energy of
a tetrahedral SiH, using the same basis as used in the vacancy calcula-
tion. This calculation was performed and the energy is given in
Table VIII.1. The binding energy of the vacancy orbitals is quite small,
1. 176 kcal/mole, as compared with 53. 93 kcal/mole (Table VIII. 1)
for each Si-Si bond. Thus we find that the vacancy formation energy
is endothermic by 213. 96 kcal = 9.28 eV. This is only part of the
displacement energy which is the energy required to form a vacancy
by electron impact, for instance. The displacement energy includes
"getting over" whatever barrier is involved in moving the displaced
atom from its bonded tetrahedral position. Typical values of the

34

displacement energy are about 13 eV. Thus the '"barrier' energy

is 3.72 eV.

In performing the polarization corrections of the calculated
energies, it is advantageous to start with a few cases for which the
experimental results are fairly well established so that the correction
can be ''calibrated.' That is, we would like to understand how well or
poorly the method works so that its predictive value can be assessed.
For the surface case we consider the cluster to make a hemispherical
hole in the surface and that the charge resides at the center of the ""hole"

for positive and negative ion states:
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O
dielectric ~\_ ‘\/ﬁ

X

The polarization energy is given by (Appendix C):

e-1 1

(in atomic units)
e+l 1,

U - -

Do)t

where ¢ is the dielectric constant of the medium (e = 12 for Si,
€ = 5.7 for C).

The best material to begin the comparison is silicon in this case.
Photoemission studies of the silicon surface indicate that the (111)
surface states corresponding to one electron per dangling bond lie

35,36 This corresponds to a

0.5-0.8 eV below the valence band edge.
state 5.6-5.9 eV below the vacuum. Thus our calculated ionization
potential (IP) should correspond to this number. The electron affinity
of the surface per se has not been measured, however, the bulk electron
affinity is defined as the bulk IP minus the band gap energy. For silicon
this value is 4.0 eV.

The silicon surface calculations presented in section VI gave a
vertical IP of 7.69 eV and a vertical electron affinity (EA) of 0.71 eV,

Using a sphere radius of 5. 99 bohr, which is the distance from the

center Si to the hydrogens in the undistorted case, one obtains a
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polarization correction of 1,92 eV. The resulting corrected value of
the surface IP is 5. 77 eV while the corrected surface EA is 2.63 eV,
The IP is in very good agreemeant with experimeat while the EA is
1.4 eV low. This could be attributable to: i) an inadequate description
of the surface negative ion, ii) using a localized description for an
essentially delocalized state, iii) the conduction band actually being
1.4 eV ""downhill" from the negative ion surface state.

In the case of diamond, there are no data on surface states such
as in the silicon case. The best experimental photoemission data for

31 et al,. They obtain an ionization potential

diamond is that of Cavell
from the top of the valence band of 6.7+ 0.3 eV, which also gives an
electron affinity of 1.3 eV for diamond.

In section IV, we calculated an ionization potential of 7.32 eV and
an electron affinity of -2.56 eV. The electron affinity calculation was
done using a HF description of the lone pair of the negative ion with no
diffuse functions in the basis. Using a similar sp basis augmented with
d functions, Kari and Csizmadia found the electron affinity of methyl
(CH,) to be -1.6 eV. Using a larger basis including diffuse s and p
functions as well as d functions, and performing CI calculations, we
found the electron affinity of methyl to be -0. 49.44 Thus the value of
-2.56 eV from the surface calculation is quite high.

In diamond the radius for the dielectric correction seems to be in
the range of distances between the hydrogen position and the second-

nearest-neighbor position. (We will discuss the rationale for this

later.) For the surface complex these distances are 4.095 and
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4,766 bohr. The corresponding corrections are 2.33 eV and 2.00 eV.
Hence the ionization potential is in the range 4.99 to 5.32 eV while the
electron affinity ranges between -.23 eV and -.56 eV. The correlation
effects such as found in CH, could lower these values by ~1.1 eV.
This would make the EA 0.5-1.0 eV low while the IP would be 1.0 eV
low. The implication is i) the positive ion has too low an energy by

1 eV while the negative ion (including correlation) has too high an
energy by 1 eV or ii)the measured IP istoo large by ~1 eV. Given
that the sample in the diamond case is insulating and thus could be
subject to surface charge problems in the photoelectron experiment
ii) is a viable explanation. 38

Another case in which there is good experimental information is
the optical absorption associated with the neutral vacancy in diamond.31
The experimental study of this spectral feature (the GR1 feature in
electron irradiated diamonds) is relatively complete and corresponds
to a transition at a tetrahedral site from an E state to a T, state.
The zero phonon line of the spectrum is at 1. 673 eV.

As has been noted previously, the sz state is a charge transfer
state and hence can be expected to have sizable polarization corrections.
It is instructive to examine the form of the charge distribution before
looking at the moments calculated from the wavefunction. We noted in
section IV that the 1T2 state is a charge transfer state in which one
electron is moved from the 1-2 bond region to the 3-4 bond region.

Assuming that one-half an electron is transferred from or to each

dangling bond orbital, one obtains the picture



3.58 au

If the ;e charge is placed at each corner the dipole moment is 3.58 a.u.
while the quadrupole moment is QXy = 9.61 a.u. Comparing this with
moments calculated from the GVB wavefunction as given in Table VIII.2,
one finds the quadrupole term to be correct but the dipole moment is
only 2.45 a.u. Thus there appears to be some deviation from the tetra-
hedral arrangement given above. One can obtain the necessary in-
formation from the Mulliken populations in Table IV.2. The charge
transfer between the carbon centers is 0.6 electron which would give a
2.15 a.u. dipole moment. The charge transfer on the hydrogens in the
1,2,3,4 positions is significant, giving rise to the following field source:

H2 H4
-.06 O O +.08

+.08 O O -.06
H1 H3

which is predominantly Xy quadrupole in nature. Thus we find that
there is significant polarization in the CH bonds leading to large higher
moments in the diamond cluster case. By comparison, the silicon
hydrogens in the same positions exhibit charge transfers of only .02

electron, mainly due to the lack of flexibility in the minimum basis set
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description used for them. Thus we might expect the dipole correction
which employs a sphere radius which goes to the hydrogens to be too
large. In fact the result is that for that distance (4.17 bohr) the
correction is 6.63 eV. Using the choice of the second nearest neighbor
sphere (r, = 4.76 bohr) gives a correction of 3.28. Obviously if we
wished to match experiment we should use a distance intermediate
between these two.

We can now return to the point we mentioned in doing the diamond
surface calculation. The polarizability of the CH bonds is fairly large
and tends to "overcompensate' for the charge transfer. Perhaps some
sphere radius ""just outside’ the cluster radius is more correct,
however, the choice is not clear. The values of the 'E - 'T, excitation
energy for reasonable values of the sphere radius are given in Table
VIO.3. For r, in the range 4.5-4.7 bohr we obtain excitation energies
in the range 1.07-2.00 eV, which represents about the expected accuracy
of such calculations.

As has already been mentioned, the SiH bonds are less polarizable
than the CH bonds. Hence the sphere radius can be expected to be
somewhat shorter. Here the radius should be between } and % the
distance from the hydrogens to the second-nearest-neighbor position.
The resulting radii are 6.35-6. 65 bohr which lead to excitation energies
in the range 0.97-1,57 eV.

The neutral vacancy excitation in silicon is not observed or at
least has not been identified. That result makes it plausible that the

excitation energy for the neutral vacancy in silicon is of the same size
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as the band gap energy. However, the vacancies in silicon are quite
mobile to low temperature, tending to form divacancies rather
readily, 39 which might tend to increase the difficulty of observing the
transition experimentally.

For the charge states of the vacancy, the experimental situation
is somewhat different than in the neutral vacancy case. In this case
there is very little evidence for the existence of the charged states in

40 while there have been numerous studies of them in silicon.4'1

diamond
The primary method used in the study of these species is electron
paramagnetic (or spin) resonance. No electronic transitions associated
with the positive and negative charge states of the vacancy have been
reported, but information is available with regard to the position of
these defects in relation to the band edges.

In actuality, the positive (V') and negative (V") vacancy states in
silicon should be considered along with the lithium and boron states as
donor and acceptor levels in silicon. To facilitate the discussion we
have presented the experiment information on the levels in Figure
VIII.1. The boron and lithium levels are very well characterized.
Watkins gives two values for the V* position, he places the position
of the level at .039 eV above the valence band, but finds that the barrier
to release the hole of the V" state to the valence band is .057 eV. The
position of V~ is known only to be more than 0.1 eV from the band
edges. The V is generated by shining light of energy equal to the band

gap on electron irradiated p-type silicon. V™ is also generated by

electron irradiation of n-type silicon, otherwise its position is unknown.
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To relate our calculations to the experimental quantities, we
have to consider just what the level diagram of Figure VIII.1 means.
The calculations give state energies while the level structure is based
on an MO picture and as such gives one electron energies which, via
Koopmans' Theorem relate to ionization potentials. Thus we need to
interpret the figure in terms of ionization potentials. For instance,
we would say that the experimental IP of Li in silicon is 4.03 eV while
that of B™ is 5.05 eV. In Table VIII. 4 the calculated and experimental
values for the IP's of the various levels are given.

There are a few comments to be made here. The first is that
while the IP's of the neutral levels are very similar, that of the negative
ions is quite different. The second is that if a simple charge correction
is used the energy correction for all cases is 3.8 eV for a radius of
6.06 bohr. This value is correct only for the V~ case. Finally, in
terms of the previous calculations, the B™ case is something of an
anomaly. (Its energy difference is quite small.) There is also the
point that the calculated ground state of the negative ion is a quartet
while the epr spectrum is of a doublet state.

Fortunately, the last point is fairly easy to see, the 4A2 state is
non-degenerate and thus will exhibit no distortion. The B, and B,
components of the 2T1 state will distort and result in much lower
energies. Watkins41 has estimated an energy lowering on distortion of
2.1 eV based on stress relaxation studies. We have used the “A, energy
as an upper bound of the V™ energy.

In attempting to '"correct' the calculated energies for polarization
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effects, we have not really considered the effects of using hydrogens
to truncate the cluster. The implicit assumption is that the CH bonds
will behave like CC bonds (or like the rest of the crystal). Simply
examining the Pauling electronegativities43 of the atoms we find that
the values are H =2.1, C=2.5, S, =1.8. Examining the Mulliken
populations for the neutral states ('E vacancy), one finds that the
populations follow the electronegativities. That is, the carbons have
0.5 extra electrons each while the silicons are each deficient by
0.4 electrons. Hence we might expect there to be a differential effect
between positive and negative ion states for a given type of cluster.
For instance, the diamond negative ion states have been uniformly too
high in energy. The same argument would imply that the silicon
positive ion states are too high in energy, while the vt and Li* calcula-
tions might be slightly low if one believes the dielectric correction.

The boron case stands in contrast to all of the other calculations
in that in the other cases we found deviations from the dielectric
correction of ~1 eV. For all of those states we were dealing with
weakly bound or weakly interacting systems. In the case of B the bonds
formed are normal chemical bonds as can be seen from Table VIII. 1.
Note that the boron impurity ""costs' only 20 kcal to form as opposed
to over 200 kcal for a vacancy. The implication is that the boron
system is basically different from the vacancy cases and from the
lithium impurity which interacts weakly with the vacancy.

The point of this discussion has not been to make the calculations

agree with experiment or explain away the difference. We have sought
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to use a fairly simple model to try to understand the kinds of long-
range effects which should be included in relating cluster calculations
to the infinite solid. We have found that the nature of the states has a
definite effect on the charge distribution away from the defect. The
inclusion of the hydrogens to "'tie off"' the bonds to the cluster may
build in differential effects so that all states are not really treated
equally. Above all, the polarization corrections always work in such

a way as to move the calculated value in the direction of better agree-

ment with experiment although going too far in some cases.

The final point concerns the binding of the lithium and boron
impurities. From Table VIII.1 we find that the formation of a boron
impurity requires 20 kcal/mole while the lithium impurity requires
211 keal/mole. Clearly the boron is forming strong chemical bonds
to the silicons since the bond energy for the boron is nearly that of a
silicon. The lithium however, is a different matter. In section VII
the statement was made that lithium probably formed a substitutional
impurity but was an interstitial as the positive ion. The basis for this

43

was that the covalent radius of silicon is 1.17A*° while the metallic

43 Thus lithium "fits" into the substitutional

radius of Li is 1.22 A.
site and a priori the supposition was that there would be sufficient bond
energy to stabilize the substitutional placement. On the basis of this
calculation, however, it seems clear that the lithium occupies the tetra-
hedral interstitial site, which is the same size as the substitutional site.
A lithium atom or lithium ion would stabilize a vacancy, and thus might

bind at very low temperatures, but would be displaced by mobile silicon

atoms (interstitials) at higher temperatures.
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TABLE VIII.1 Formation Energies of Various Silicon Clusters.

Basic Energiesa (hartree)

SiH,: -5.372197

B -24.526415

Li -7.43237

Li* : -7.23620

27-GVB
2> = Sum of Basic Energies (h) GVB Energy (h) eV) (kcal)
4 (SiH,) = -21.488788 -21.491605 0. 0766 1.76
4(SiH,) + B = -46.015203 -46. 326959 8.4834  195.63
4(SiH,) + Li = -28.921158 -29. 017010 0.2241 5.17
4(SiH,) + Li* = -28.724988 -28. 769749 1.2180  28.09°
b

Si-Si Bond Energy: 53.93 kcal/mole

Formation Energies (kcal)

Si - Vacancy -213.96
B - Impurity -20.09
Li - Impurity -210.55
Li* - Impurity -187.63€

a) SiH, calculation was performed using the same basis and geometry

as one SiH, unit of the vacancy. B and Li energies are from

references 17 and 20 respectively.

b) Reference 42.

c) Polarization corrections not included.
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TABLE VIII.2 Multipole Moments of the GVB wavefunctions for the

Ionic excited states (1T2) of silicon and diamond.

All values are in atomic units.

Dipole Moment Quadrupole Momentsa’b

P Qxy Qz’
Diamond 2.4515 9.5978 -0.424"7
Silicon 3.3119 16.2183 -0. 8268

Octapole Momentsb

z° X’z = y’z XyZ
Diamond 26.6183 17.8322 8.6825
Silicon 58.2829 41,5843 19.7764

a) Qaﬁ :%(3ra rg - rzéaB)

b) Only the significant moments are given, all others

are less than 0,01,
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TABLE VII.3. Dielectric corrections for the excitation energies of
the 'E - 'T, transition in diamond and silicon as a
function of sphere radius, The corrections are

explained in detail in Appendix C.

Diamond Silicon
r, (bohr) AE (eV) r, (bohr) AE (eV)
4.17* 6. 63 6.06% 3.59
4.50 4.59 6.35 2.85
4. 60 4.09 6.45 2. 63
4.70 3.66 6. 55 2.43
b b (6.65 2.25
4.76 3.28 7.25 1.48

a) radius to outer hydrogen position.

b) radius to second-nearest-neighbor position.
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TABLE VIII.4. Ionization Potentials of the donor and acceptor com-
plexes in silicon and diamond. All values are in

electron volts.

Species Calculated 1P? Experimental IP Difference
Silicon
Vv° 7.83 5.06 2,717
\'a 0.59 4.1 3.5
B~ 3.12 5.07 1.95
Li 6. 73 4.03 2.173
Diamond
Ve 8.49 - -
\'a -1.72 - -

a) Vacancy IP's are based on SD-CI calculations, the B and Li IP's

are from the GVB calculations.
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Figure VIII.1. Positions of the donor and acceptor levels
in Silicon. The positions of the levels are given in eV from
the nearest band edge. The values for boron and lithium
are from reference 2¢, while those for the positive (V) and

negative (V') vacancy states are from reference 41.
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IX. CONCLUSION

Throughout this work, the attempt has been to use methods which
are based on fairly simple concepts with regard to how and why mole-
cules bond. The calculations have been done to expand the application
of such methods to localized states in solids, i.e., those states which
can be treated as molecular in nature. The result is that by the use of
valence bond concepts the nature of the states can be understood before
the calculations are performed and the results can be interpreted in the
same terms afterwards.

In general we find that the lowest states are the covalent states
which can be constructed by forming the appropriate number of bonds
in the system. The excited states are found from the covalent states by
either forming excited states of individual bonds or forming charge
transfer (excitation between bonds) states. The ordering of the theore-
tically determined states agrees with the experiment ordering in the
cases studied. In addition we have pointed out that cluster approaches
based on MO methods can lead to serious errors in the ordering of
states and that these errors stem from not considering the many-electron
nature of the states involved.

In comparing the cluster results with experimental quantities, the
necessity of including corrections for the ''rest of the solid' has been
indicated. We find that while simple models for these corrections do
not always lead to agreement with experiment, they do include the
essential physics of the situation by always correcting in the proper

direction.
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All of the calculations performed here have included only sym-
metric relaxations. The actual systems probably do distort and thus
methods such as these could be employed to study this question. In
addition, with the wealth of epr data on vacancy and impurity systems,
one could calculate hyperfine interactions to compare with experiment,
even though that is generally a very difficult task unless a different
basis is used. Finally, it would be of interest to consider other donor
and acceptor systems, specifically aluminum, phosphorous, and
perhaps sulfur to obtain a better understanding of the chemical nature

of these impurities.
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APPENDIX A. Determining the symmetry for the vacancy states.

The starting point for any determination of symmetry is, of

course, the structure of the species. If we picture the vacancy as

2
Ca,S4

9

which we will represent as
| 2
O O
O O

then it is fairly easy to see the effect of the symmetry operations.

The symmetry points group is Td which consists of two-fold rotation
axes along x, y and z, four-fold rotary inversions along x, y and z,
three-fold rotations along each (x +y + z) = (1,1,1) direction and
diagonal mirror planes denoted by the crystallographic planes [1,1,0],

[1,1,0]. The character table for T4 is
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A, 1 1 1 1 1
A, 1 1 1 -1 -1
E 2 -1 2 0 0
T, 3 0o -1 1 -1
T, 3 0o -1 -1 1

V]

We start with four equivalent orbitals, one on each center. For the
case of the singlet states, we can construct two covalent structures

which correspond to two singlet spin eigenfunctions:

l

X; = 3 (aB - Ba) (aB - Ba)

|

1 :
Xz = o [2(aaBB + BBaa) - (@B + Ba) (@B + Ba))

for which the structures are

O—0O -0
X

" O-0O

where (\)—(*) represents singlet coupling while > represents

triplet coupling. Thus we can readily see that the character under C,

X,

is 2 while under S, and o4 it is zero [for o4, the orbital structure X,
is character 1 while X, is character -1]. Unfortunately that means
that C, characterizes the state. We have to rotate X, and X, and solve
for the rotated X's in terms of the original X's. This is done for a

simpler case later, in this case the result in a character of -1 for C,.
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Thus the state is an E state. [Using properties of the symmetric
group make this seemingly difficult process quite easy, see for

instance M. Hamermesh, Group Theory, Addison-Wesley Publishing

Co., Reading, Mass., Chapter 7. ]

The case of an ionic state in one bond and a covalent state in

the other bond leads to twelve structures of the general form

If we consider just the symmetry elements indicated in the figure
operating on the twelve structures, we can see that only the ¢ d leaves

the two structures

© O O ©
OO0 O—0

unchanged, thus the characters for these twelve structures are

E 8C, 3C, 63, 6oy
X 12 0 0 0 2

This reduces to give the representations A,, E, T,, 2T,, accounting for
1+2+3+2x3 =12 states. Thus the singlet states are 'A,, 2'E,
‘T, 2'T,.

For the triplet case we can start with three triplet spin

eigenfunctions:
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1

Y (aB - Ba) aa

X, = :f-l-z—aa(aﬁ - Ba)

X, = (aB + Ba)aa - aa(ap + fa)

which correspond to three triplet structures as follows:

@—-@ G} - -0

G} © @—@ -0
Under interchange of the two centers a @-@ is even (character +1)
while a @-@ is odd (character -1), since they represent singlet and
triplet coupling of the two orbitals respectively. Thus we find under
C, the character is -1 = -1 -1 + 1, and similarly for o, the character
is -1 = -1 +1 -1. Under S,, X, and X, interchange while X, goes into
itself with two sign changes giving a net character of +1. The C,

operation transforms the three spin eigenfunctions into each other

giving a character of zero. Thus the overall character is

E 8C, 3C, 6S, 6oy
X 3 0 -1 1 -1

which corresponds to a T; representation.
The excited triplet states of the vacancy arise from a covalent
triplet bond and an ionic singlet bond. This again leads to twelve

structures of the general form
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Working out the character for these twelve states, one finds that only

04 leaves the structures unchanged, but now it gives a minus sign as

discussed above. Thus we obtain

E 8C, 3C, 65, 6o
X 12 o0 0 0 -2

This can be reduced to the representations A,, E, 2T,, T,.
For the positive and negative ions the structures we need to

consider are basically the same

Negative Ion @ @ Positive Ion O @
OMO OO

since the doubly occupied orbital and the vacant orbital will have the

same transformation properties. Consider first the four quartet

®» O
© O

Note that under cyclic permutation of the three singly occupied orbitals

structures of the form

the quartet spatial function is even, while under interchange of just two

of the orbitals it is odd. Thus the character for the four structures is
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E 8C, 3C, 6S, 6o,
X 4 1 o0 o0 -2

which reduces to A, and T, representations. The doublet states are
not quite so straightforward. For each of the above four structures
there are two doublet spin eigenfunctions. Two of these could be

represented as

@0 00
OO

where (\)—(*) signifies orbitals 3 and 4 singlet coupled and (*)--*)
signifies orbitals 3 and 4 triplet coupled. Note that @—@ will go
into plus itself under interchange of 3 and 4 while @——G_will go into
minus itself. Thus under the o q ve will find a net character of zero
(1 +1-1-1). The only other problem is working out what happens
to the spin functions under a three-fold rotation. The two spin

eigenfunctions are

-1 -
X, = 7 (aBa - Baa)
-1 , -
X, = 76 (Qaap - aBa - Baa)

Under a three-fold rotation (cyclic permutation) we obtain
/ 1
X; = G X, = 77 (aap - aBa)

Xy =

|
N
>
N
i

1
76 (2Baa - aBa - aaB) .
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Solving for X; and X; in terms of X, and X, we obtain the matrix

3
X -3 +‘[T X1
3
X}, _‘[T_%’ X,

and thus the character for C, is -1. Thus we obtain the character

for the doublets is

E 8C, 3C, 6S, 6o
X 8 -1 0 0 0

which reduces to the representations E, T, and T,.

The states of Li* and Li in the vacancy can be considered as
adding a Li* to the neutral vacancy state or the negative ion state.
Thus we would expect to get the same symmetries in the corresponding
cases. Inthe B~ case all of the bonds are doubly occupied and thus

the state must be A;,. For the B impurity state we have a structure

O O
®» ©

which leads to four equivalent structures. One of these structures

like

transforms into itself under C; while two do under o leading to the

character
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E 8C, 3C, 6S, 604
X 4 1 0 0 2

This may be reduced to the representations A, and T,.
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APPENDIX B. Simple CI Wavefunctions for the Pgsitive and Negative

Ion States of the Vacancy.

In order to obtain a qualitative description of the positive and
negative ion states we will consider the system to be composed of four
equivalent dangling bond orbitals pointing in. at the vacancy. 9 Denoting
the four centers around the vacancy a,b, c,d, we will label the orbitals
as ¢, Py qbc, P4 respectively, and will usually use their subscripts,

a,b,c,d, to denote the orbitals

Bl. Positive Ion Quartet States

First we consider the quartet states. There are four positive
ion wavefunctions differing by which orbital of the four is deleted

(i.e., which is the hole). The wavefunctions are

Y, = Q (bcdaca)

'PB = ((adcaoa) = Cox ¥y,

Yy = (A (dabaaa) = Cyy,

Vs = Q (cbacaa) = Cyzy,, (B.1)

where C,x is a two-fold rotation about the x axis, and so forth,
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1

and where Q is the antisymmetrizer Q. = ot 2 ¢ 7, each 7

being a permutation operator and the §T its parity.

In T4 symmetry, these four functions lead to A, and T, symmetries,

the A, function having the form

‘I’A2 = (1+sz+czy+czz)¢a = wa+w)3+'l/-y+’~//5

and one component of the T, having the form

‘I’T = (1+C2X'C2y‘ sz)wa :%[/a"“‘-PB 'W,}‘/”‘ W@

1

Now we want to construct the CI matrix

(w; HIyy)
for the states of (B.1). Here H is given by (in atomic units)
> 3 1
= hi v —_
H=gh@® et )

ij

where
h(i) = -5V; + Vg @) + Ve ()

contains, in addition to the usual kinetic energy and nuclear

(B. 2)

(B.3)

attraction (VN) terms, the average potential VC ore) due to the other

bonds and core electrons of the system. ILetting

A= (¢/a|H'¢,a>
B =y, [H|yy)

(B.4)
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we can express the other matrix elements in terms of A and B as

follows (remember that H is invariant under the operations of Td ):
gl ) =(Caxy 1B Cog ) =y, B Cox Cax ) = (3, [H Ly,
and similarly for the diagonal elements involving 1117 and zpé;
(z,by'lea) = (G, W.),IH!CS "Da> = Q(dbcaaa)!H! Q. (cadaaa))
where C, takes a into b, b into ¢, c into a and d into itself. Since
Qdbcaaa) = +y,

(that is, C, represents an even permutation) we find that
W lH 7)) =<walHlxpB> - B.

Applying the same C, one more time leads to
(wglH|w,, ) = B.

Using a different C, axis, one finds that the same relationships hold

for transforming ;,U,y into 5 . We can consider the matrix element
(wellly, ) =48,y IS, v,
using the S, whichis a—d, d — b, b > c, ¢ — a, to give

(S, g [HIS, ¥, ) = (Q (acdaaa)|H| Q(bdeaaa)) = (-yglH|-y, ) = B.

The resulting CI Hamiltonian matrix is
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(B.5)

oW >
W w e
w > W w
> oW

A similar analysis can be performed for the overlap matrix to give

I SSS
SIS S
2= lsst1s (B.6)
S S ST
where I =y lug)
S = (Y lug) (B.7)

From (B. 2) the energies of the A, and T, states are obtained

by applying the vectors |1 | and % respectively to (B.5) and (B. 6).

1
1 -1
1 -1

The resulting energies are

A+3B _ , . 3(B-SA)

E. = -
A, " 1+3S 1+3S
A-B (B -SA)
E = = A [ .
T, I-S I-S (B. 8)

Now we want to consider the form of the various terms in
order to get some idea of the ordering of the states. Looking first

at the overlap terms we have
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(Q (bcdaozoz)! Qubcdaaa))

11

1 =<y, ly,)
VN1 (bedaaa | Qubcdaaa))

il

1-30%+ 203 (B.9)

1l

where ¢ = (qbal cf)b) is the overlap between the one electron orbitals.

Similarly

{ Q. (adcaaa)| QA (bedaaa))

H

S = <‘Pa’WB>

i

- VN1 {acdaaa | Q (bcdaaa))

- (0 -20%+ 0% (B.10)

1l

Neglecting the diagonal terms in the H matrix explicitly

containing ¢ we obtain

A = VNI (bcdaaa|H| Q (bedaaa))
= 3(b|n|b) + 3(a(1)b(2)lF11—2—la(1)b(2)> ; 3(a(1)b(2){-1;1]-2—!b(1)a(2)>
= 3ha2l + 3Jab - 3Kab

= 3hyy + Jap - Kyp) (B.11)

In the case of the B term we want to keep terms containing o,

B = -\fN!(acdaaalH] Q(bcdaaa))

= _{(b}hla>+20(c|hlc>+(bc{ 1 lac) -(bc[_foca>

r12
+(bd I}—ll;]ad) -(bd]rilzldao +o{cd lr_L.l cd) - <cdlrimldc>}

= - (hap + 275, - 2K, ) - 0 Rhyy + T - Ko ) (B.12)
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Rather than simply substitute the appropriate terms into (B. 8)
it is perhaps more instructive to examine the difference in energy
between the two states. From (B. 8) we have

E, A4 3(B-5A) _ A 37
2 1+3S I+3S

E_ - A-B-SA) _ A_ _T

T, I-S I-S

_ 8T T _ 471
A, T, I1+3S I-S (I+3S)(I-9)

47/(1 + 28 - 88%/1) (B.13)

Il

Thus the ordering of the states is simply determined by the sign of 7.

The form of T is

T = (B-SA) = - by, -0h, ) - @Iy - 2Kape - 200,y + 20K 1)
(B. 14)
We can get some idea of the sign of the first term by con-
sidering H: Starting with 1s orbitals on each center, ¢a and ¢b’

we obtain two states

\Ilg=a+b, \Ifu=a-b-

Going through the same arguments as above, we obtain the following

energy expressions
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E - hag * Bap ho o+ hap - Thay
g 140 1+0
E - Do - Dy - h - hop - 9haa
u 1-0 1-0
E -E = —_0 where 1, = -0
g u - 1 _g¢2 o ~ “ab haa

In H;L T, is large and negative. Thus the g state of H, is the ground

state,

In the case of the positive vacancy we need to worry about the

J and K terms. Using the Mulliken approximation for J,p. we find
(ab[—l—)ac>~lc{(abli{ab)+(acfilac)} ~ J,..0 (B.15)
Ty -2 ISP Ty = “ab )

so that the terms 2J,,. - 20J,;, approximately cancel. The remain-
ing K terms are small, K, goes as 0?/R where F is the separation
between centers, while using the Mulliken approximation for Kabe

gives

K

1R

2 .
abe = 707 Jgq +375p) (B.16)

so that the exchange terms in 7 could be expected to nearly cancel.
The result is that the ordering of the states will be determined by the
one-electron quantities, which in turn are just as in H. The result
is that T should be positive (~ -h,;, h,) < 0) and thus the 4Tl state
should be below the “A,. Indeed we find this to be the case, the

separation in diamond being 4.75 eV.
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B2. Negative Jon Quartet States

For the negative ion, we can take the wavefunctions (B.1) and

simply ''add" the missing doubly occupied orbital. The wavefunctions

are, then,
Yy = CL(azbcdaBaaa) = Q(aabcdaBaaa)
Yg = Q (b’adcapaaa) = Cox ¥,
zp,y = Q(c’dabaBaaa) = Cay ¥y
Yy = QUd’chanpaaa) = Cuy, (B.17)

We can rearrange the wavefunctions wﬁ, zp,y, Vs into

zpB = Q (abbcdaBaaa)
z,l/,y = (Q(acbcdapaaa)
Vg = Q(adbcdaBaaa)

so that the ""odd" orbital is always second and no sign changes occur.
Evaluating the matrix elements as was done for the positive ion one

obtains

A" =y, [H|y,) = 5hgy + Jpq + 91, - 6Kyp, (B.18)

B’ = (y, [H |¢B> = gy, + 20 g3 + 2Tgpe + O(dhyy + 635 - 6Kap)

where J.

aab = (a]Ja]b> . We can form the same functions as in (B. 2)

and (B.3). The Hamiltonian matrix has the same form as (B.5)
simply replacing A by A’ and B by B’. The overlap matrix is also the
same with I’ and S’ being given by
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S'=<¢/a|zp6> =0 -50° + O(c?)

I'= (Y, ly,) = 1 - 507+ 0(c?) (B.19)

We can now substitute the appropriate terms into equations (B.13).
The term we want to examine againis 7 = (B’ - S’A’). Substituting

B.18 and B.19 into the expression for v we obtain

T = hab + ZJaab + 2Jabc + 0(4haa + GJ'ab - 6Kab)
-0 (Shaa +dgq + 9J‘ab - 6Kab)

i

hab - Uhab + ZJaab + 2Jabc - O'Jaa - 30Ja,b (B.ZO)

Again using the Mulliken approximation for Jaab we find that

2Jqap = 3720 ({(aalaa) + (ab|ab))

= O'(Jaa_ + Jab)

thus, using (B.15) we find that all of the J terms cancel to give
T = hgy - 0hy,. We now have back the case of H;L once more.
T is dominated by h,p, which is negative so that we find the 4A2 state

below the 4T1 state for the negative ion. This ordering is opposite

from the ordering in the positive ion and results from B’ > 0 while

B < 0.

The difference in the ordering of the states in the two cases
is similar to the difference between H, and He,. The positive ion

wavefunctions could be written in the form

Yy * Vg = Ql@ + b)cdaBa] (B. 21)



162

while the negative ion is
Y, +¥g = A [@% + b’a) cd aBaaa]. (B.22)

In this form the similarity between (B.21) and H] and between

(B.22) and He;’ is apparent.

If we consider He,, as in the case of H, we start with a
1s orbital on each center, cpa and qbb from which we can construct

two functions

ale, ¢, o, abal
aley, ¢, ¢, aBal (B.23)

Yy
Vg

which we can use to construct symmetry functions

Vg = Vo T ¥
Vo =¥ - z,UB. (B. 24)
We can evaluate the Hamiltonian and overlap matrices as we have done

before to obtain the energy expressions. The key term is

B = <¢a|Hi¢B> - ( Q.(aabaBa) |H| Q (bbacBa))
= ( O.(aabaBa) |H|- Q.(abbaBa))

- (hab + ZJabb + °2haa + 0dgp - oKab)
-0 +0° (B. 25)

i

S = <§[/a‘wg>

If we evaluate the energy expressions we find that



E :A-}-B-SA :A" T
g 1+8 l1-0
B - SA T
_ - _ .26
Eu A S5 A+1+0 (B. 26)

<
H

hab - Ohaa - 0dap -

Here we expect the 7 term to be dominated by h,}, and to be negative.
Thus we find that the u states is favored in He; and that relative to

H; the ordering is inverted.

B3. DPositive Ton Doublet States

The wavefunctions for the doublet states are constructed from
the same set of orbital products as used in (B.1), except that in the

doublet case there are two possible spin eigenfunctions:

X, = 712— (aBa - Baw)
X, = % (xaB - aBa - Baa) . (B.27)

Thus rather than the four configurations obtained in (B. 1) there will
be eight in this case. Constructing symmetry functions for one

component each of T,, T, and E, we find that

le = QcdbX,) + Q(decaX,) - 0O(abdX,) - Q(bacX,)
"PTZ = QfedbX,;) + Q(dcaX,;) - Q(abdX,) - Q(acX,)
Yg = Q(cdbX,) + Q. (dca X,) + Q(abd X,) + Q.(bacX,).

(B.29)
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Rather than construct the entire 8 X 8 matrix, it is only necessary to
calculate certain matrix elements. We will retain only those terms
in the off-diagonal matrix elements which are first order in overlap
of the form oh,,, 0Jy4, 0J,1, and 0K,y- Any other terms involving
o would have an overall dependence of ¢? or higher. The matrix

elements that we need in the energy expressions are given below.

( Q(cdbX,)|H| QedbX,)) = 3y, + Jap) = A + 3Ky,
( Q(cdb Xl)'H, Q. (dcax,)) = hap + 295pc = Kape + 0 (2h,, + Jap *+ Kap)

B+ Kabc + O'(Zhaa + Jab + Kab)
- (B + BKabC) - 0(2haa + Jab - Kab)

1l

( Q (cdbX,)|H| A (deaX,))
( Q(edbX,) [H| Q(abd X,)) = -4 (B + 4Ky ) - 0(2hy, + Jpp - 2K,)

(a (cdbx,)|H|a (bac x,))

il

1l

2B +30 (2hy, + J,p + 2K,p)
( Q(cdbx,) [H| @ bac X,)) (B. 30)

( Q (cdbX,)|H| Q(abdx,))

i1

where A and B are given by (B.11) and (B.12) respectively and

(Q (cdbX,)| Q(cdb X,)) =1 + 0 (c?)

{Q (cdbx,)| Q(dcax,)) = 0 +0(c?

( Q(cdbX,)|A(decax,)) = -0+ 0(c?)

{ Q(cdbX,)| @fabdX,)) =-30 =(q (edbX,)| Q(abdX,))

( Qu(cdb X,)| QL(abd X,)) = -Lo ={Q. (cdb X,)| @ (abd X,)} (B.31)

The appropriate energy expressions are constructed as before and

are given by
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2B+ 5Kabc + 0(4haa + 2Jab - Kab) -20(A + 3Kab)

E =A+3K,_, +
Tz ab 1+ 20
E. = A+3K,, - 2B + 3K pe + O(4hgy +2J5p - Kap) - 20(A +3Kyp)
T1 B ab
1-20
EE = A + 3Kab - 3KabC + 30'Kab (B. 32)

The first two expressions can be reduced considerably using (B.16)

after expanding the A and B terms to give

z(hab - ohaa) + 3Kabc - OKab

ET =A+3K +
2 1 +20
2th_,. -oh__)+K + 0K
E. -A+3K - ab ~ aa’ =~ abe ab (B. 33)
1 1-20

Again we have the situation in which the splitting of the energy levels
is determined by a 'r-like'' term. In (B.16) it was shown that

K., ~ 0°, furthermore, K,; goes as 0°/R,, , so that the K terms

abc
should all be smaller than the one electron quantities. As before
(hab - ohaa) can be expected to be large and negative. The ordering

of the states is, then

E, <E, <E,

2T ’g T,

2

If we go back to (B.13) and (B.14) and make the substitution

(B.15), we obtain
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3(hab - Uhaa) + 20Kab - 2Kabc

E, =A-
A, 1-30
(h., -oh_ )+ 20K, - 2K
E, -A+ ab aa ab abe (B. 34)
T, 1+0

At this point we would argue that the overall ordering of the states
of the positive vacancy are determined by the term (h,, - ohaa).

If we redefine T,
and ignore the K terms, we obtain

- 2T
E2T2 ~ A+ 95

T, l+0
E ~ A
°E
27
E o
le 1-20
Esy, =~A - 5T (B. 36)
A, 1-3c

where we have listed the terms in order of increasing energy going

down the page. This is the calculated ordering found for both diamond

and silicon.
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B4. Negative Ion Doublet States

At this point it should be possible to infer from section B2
what to expect in the case of the negative ion doublet states. In the
discussion of He;r we saw that the off-diagonal Hamiltonian matrix
elements changed sign from H; to He. That is, the addition of the
doubly-occupied pair in the He: wavefunctions caused an extra sign
change in evaluating these matrix elements. For the negative ion
doublets, then, we have wavefunctions of the form Q.[a’cdb(aBaBa -

aBBaa)] and expect the same behavior. We have already calculated

~ ’ 3T
EZA2 = A+ 1+30

~ 14 _ T \
E4T1 ~ A o (B.37)

If we simply start with (B.36) and reverse the signs of all the 7 and ¢
terms we should obtain the appropriate result. Doing so and reorder-

ing the ascending order we obtain

E ~ A+ ———
1A, T 1130

Al o+

b
[
12

AI

R

&
0
»
1
-3

A - 2T (B.38)

t=
I
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Thus for the negative ion, the sign change in the 7 and ¢ terms cause
an ordering of states which is the reverse of the positive ion. This is

the case in silicon and is correct except for the “T, and T, states of

diamond.



169

APPENDIX C. DIELECTRIC CORRECTIONS

The inclusion of polarization effects in the description of
localized states is not a new idea. For instance, a classical electro-
static calculation of the polarization of an alkali halide lattice due to

45

an extra charge was used by Mott and Littleton™" in describing electro-

lytic conduction in solid salts. The energy correction formulae were
later used by Fowler?6 to study the effect of polarization on the spectra
of alkali halide crystals.

In this case we will first describe the general problem and its
solution and then will give a few more specific examples. The starting
point is a cavity in an infinite dielectric. The calculated molecular
cluster resides inside the cavity and gives rise to a multipole field.
The approach is to find the energy of interaction of the field with the

medium. The solution is by the method of images. Consider the

geometry

where V, is the source potential and V, is the image potential. In

region I the potential gbI is
1 (T) = Vy(T) + V,(F)

while in region II
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1

oy (F) = = Vi (T)

where we have defined

Vi(T) = CVy(T)
V,(T) = CV,(T) .

Using the boundary conditions at the sphere we find that
h-D,-D)=0=> 1-C=¢C

1~
¢I:¢II = 1+C:—€—C

Thus one obtains

_ 2
4 € +1
a1 2 ~
¢II(r)— 'E‘ €+1 Vl(r)
_ 2 >
= T i1 V,(r)

We wish to find the energy density in region II, U where

II
1‘3:—}—(-]3——15) D=ckE
47 ’
:>—f):€_1—E‘:.
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We now use the relations

E,

I

]
<
S
Nt.'-l'.l

i

1
<
<

=

thus obtaining

4 e+ 1
>U=--L €21 [Ty, .- Tv,av
4 €+1II 1 !

We now use Green's Theorem to obtain

[Tv,-VVv,ar= [V,VV,-dA- [ V,V'V,dr.
i 5 i

However, in region II vzvl =0, thus the second term is zero.

Note now that dA points inward in the ¢ direction, thus we have
— - 2
dA = -rr,ysinfdod¢

for a sphere of radius r,. Consequently only the r term in V will
contribute to the integral. We now take V, to be a general multipole

potential,

Yim@©@,9)
—ap L m
V1 4T[£m 22+1 qﬁm —I‘_rﬂ_*_

where Dy = |/ Yﬂ*m (8',9") r’ﬁp(r')d'f‘ .
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Thus 0.0
ov _ _ ﬁm
v,V V, =V, S f VE (ﬁ+1) T Yem T

-(24+1
U= - 15 5 (£+1) fr(+)

4” €+1 fm ¢'m’

Qym 9’ m’ Ykm Yﬁ m’ d§

-(2£+1) 2m'

1 e-1 .
TS gl 27 (£+1) fr Qpm Lp'm’ D) Yy Yoy A2

1 -1 0+1 2 *
. €+1E r 20+ 1 (zg 7) Qg ) -

If we take p(T) to be a point charge, e, we obtain

If we define the quadrupole moment as

5@r r, - r’sap)

Qup = B

then the energy correction is



173

-1{(Q’xx ny +4(Qxy"LQXZ“LQyz r

U

N
5 €+
Higher order corrections are easily obtained in terms of the q Im

or using real spherical harmonics (x, y, z etc.).

For a charge q on the surface we use the geometry

N

N
dielectric fo
AN\ %

The energy expression becomes

_ € -1 q
U-=- 41: —1 J & aF

where the integral is over the dielectric, thus one obtains

2 2r @ o 2
q e€-1 r .
U=~ =7 [ [ X~ singdgdedr
dr € 0 w2 r, T
2 m ) 2
.9 e-1 _1y® g e-1 1
2 e+1 [coso]ﬂ/z [ I‘]ro 2 (e+1)r )

This is one half the result for a charge in a cavity as one might have

expected.
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