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ABSTRACT

The simplest orbital wavefunction that adequately describes the
dissociation of the excited states of homonuclear diatomic molecules
must involve a spatial symmetry projection operator. The use of such
a wavefunction has been developed in detail and applied to the excited
states of the hydrogen molecule. It was found that the advantages of
an independent~-particle description are enhanced considerably by
spatial projection. The low-~lying Z states of H, are explained
unambiguously and convincingly in terms of orbital character based
on the model of the one-electron heteronuclear diatomics.

Recent experimental work in electron impact spectroscopy has
illustrated that short-lived negative-ion resonances must play an
important role. In an attempt to show that such resonances form a
natural and complete characterization of the scattering process, the
properties of the resonant states defined by Siegert have been investi-
gated. In specific, a superposition principle for Siegert states was
found, which provides a complete description of any quantum mech-

anical event involving a potential of finite range.
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PART 1

The Projected GI Method and the Excited States of H,




INTRODUCTION

Spatial symmetry has played a dominant role in the study of
quantum mechanical systems. The classification of states according to
the representations of the appropriate group of symmetry transforma-
tions is a fundamental part of any student's introduction to quantum
mechanical problems. The "elementary' illustrations of the hydrogen
atom, hydrogen-molecular-ion, and the simple-harmonic-oscillator
immediately come to mind. And even the stouthearted would falter
before the numerous interesting many -particle problems (say, benzene,
Cr(CO),, crystalline NaCl,...) were it not for the simplification of
classification by symmetry.

Indeed, the first step in the study of the electronic states of simple

molecules is the determination of the term symbols (i.e., spin and
spatial symmetries) of the states. 1 It is not at all surprising that the
molecular symmetry be used to ease the construction of approximate
descriptions of the molecular states. In specific, consider the simplest
molecule, the H; molecular-ion. Its states form the basis of the molec-
ular orbital description of homonuclear diatomics. The many-electron
state is to be built up out of the one-electron orbitals. The result is
called a configuration, as (lag)z(lou)2(20g)2(20u)2(17ru)4(30g)2 for N,.
For polyatomics (such as benzene) a similar aufbau procedure applies,
the model being the one-electron states with the same nuclear arrange-
ment [giving (1a1g)2(lelu)4(1e2g)4(1b1u)2(2a1g)2(2elu)4. .., see Ref. 2].

The Hartree-Fock theory provides a scheme for finding an opti-

mum3 set of orbitals to be used to construct the many-electron



wavefunction. This method is tractable for (what seem at the moment)
relatively large molecules (e.g., benzene4). The degree of success in
explaining basic properties of the molecular states is nothing less than
outstanding. Much of the success and practicability may be attributed
directly to the molecular symmetrv and the use of this symmetry in the
one-electron orbitals. 5 More specifically, the enormous contribution
of molecular orbital theory to the spectroscopic study of electronic
excited states has depended crucially on symmetry.

An alternate scheme of molecular structure places less emphasis
on the nuclear arrangement, and less emphasis on the symmetry of the
states. It corresponds more to the ordinary chemist's view of balls
and sticks. The role of symmetry is mainly incidental. For saturated
systems (say, cyclohexane), the conclusion is that all the bonds are
identical. For unsaturated systems (say, benzene), there is more
difficulty, but the resolution is informative. The simplest ball-and-

stick (valence bond) model of benzene requires the "'resonance’ of two

equivalent Kekulé structures:

+

This scheme of mdecular binding has served chemistry well.
Recently, though, molecular orbital theory has acquired more of a
following among organic chemists, 6 basically for its superior handling
of excited states and symmetry. Correspondingly, theorists have be-

come more interested in generalization of the valence bond techniques, 7



basically for the superior description of bonding atoms into molecules,
i.e., reactions.

Here we discuss a special generalized-valence-bond technique:
spatial projection. 8 This means producing the known many-electron
symmetries not by restrictions on the orbitals (as would be done in HF)
but by adding together the various resonance forms (as for benzene
above). The discussion will be generally restricted, for simplicity, to
point symmetry groups with only nondegenerate representations. The
development and application to two-electron systems and, in specific,
to the excited states of the hydrogen molecule will be discussed in

detail.



THE TECHNIQUES OF SPATIAL PROJECTION

A. The form of the wavefunction: The approximate many-electron

wavefunction is chosen to have the following simplified form:

‘I’=P1//11Pz"'1Pn, (1)

where the wi's are individual (perhaps generalized) spin orbitals. The
projection operator is to provide the many-electron wavefunction with
the known spin, spatial, and permutational symmetry.

This projection operator is frequently partitioned into components

P (2)

permutation ’ P

P = Pgrace’ spin
or

P="P P

space ~ spin and permutation’

Examples of combined spin and permutation projectors are provided by
the G%' operators, which are a sum of products. The principal topic of

this chapter will be projected GI wavefunctions,
¥ = Poacelt 9102 @ aBap --- . (3)

Suppose G is the abelian9 point group of the molecule. The pro-

jection operator we want is then the Wigner projection operator10 (onto,

say, the Ath representation):
A -1
Pepace = O = /e RZE;GX ®R™)R, (4)
where g is the order of the group and the XA (R™') is the character of the
th

group operator R™! for the A representation. This projection operator

is to be applied to the product of spatial orbitals, ® = ¢, @, * * Ppe



Direct application would give

e =1/g L x*® )[Ry, ][Re,] - [Re, ]. (5)
ReG

This means keeping track of how to calculate R(p.l and how to take a
matrix element between ® and R®. The following tack may be simpler.
In molecular calculations, the orbitals are usually expanded over

some finite set of basis functions,
B

These basis functions can be chosen to be, or transformed1 1 to be,
symmetry functions without loss of generality, and without much addi-

tional difficulty. This can be written as

¢, = L CEnglu), (7)
8

which means that 773(#) belongs to or transforms according to the uth

representation of the spatial symmetry group G. As a consequence of
this choice, 773(“) is an eigenfunction of the Wigner projectors [see
Eq. (4)]
V - Y
O nglu) = nglw)+s,, . (8)
This suggests that we rewrite the n-electron spatial projector

OA(I -++n) as a sum of products of one-electron projectors. This can

be done through the reciproca112 relation to Eq. (4),
R = L x*®O*, (9)
L

substituting into Eq. (4) this gives
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ori2---n) = 1/g 2 MR THRD)RE) -+ - Rn)
ReG

-1, M M
/g b L X ®RDHx T®RXE®R X (R) (10)
u. ReG i u 0
+0 (1D0"*2):+-0 "(n).
To see how this works, we collect the last n- 1 projectors together:

oM12---n) = 1/g ZV 5 RO R (RIOH(1)0Y(23 - +m),  (11)
M

which can now be rewritten as

ori2-+:n) = ) (A/pr)OH(1)0Y(23 -+ -n). (12)

Ly V

The collected term o“(z 3+++n) can, of course, be broken down itself.
by Eq.(12) if desired. A very important property of this formula (12)
is that the squared Clebsch-Gordan coefficients13 /u v)2 take on only
the values of 0 and 1, and for fixed A and p only one value of v gives
yam V)2 #= 0.

It will be convenient at this point to set up some notation for the

case of two electrons. Factoring out the spin part of the wavefunction

gives14
Space = & L /w00’ [1+ (12)] e e @) (13a)
My ¥
Each of the two orbitals is now broken up into its symmetry components
i
0= Lot =2y . (13b)
K K

So that Eq. (13a) becomes simply
Yoaee = 3L W,V ¥ ¥ 1, (13c)
m Y Y M

space
P T



where Y is the uniquely defined representation that gives (A/ wY, )2 =1
(all others give zero). In the special case that X is the totally sym-

metric representation, Yu = .

B. Density Matrices: The evaluation of the energy of the projected

product approximate wavefunction, and the construction of iterative
equations for its determination, will be much facilitated by the use of
density matrices, defined in the sense of Goddard.7h The density
matrix element Dg{(u) is defined as the coefficient of go.*(j)O”(j)cpk(j) in
the expression > [#*(12:+ )0, @(12:* n)d¥}, where O -0M12--n)
*O;;- Similarly, Dkﬁ(“‘) is the coefficient of the term go*(l)qo*(])O“ (1))

. gak(i)cpl(J). The same technique may be used to define the higher -
order density matrices.

As an example, consider the case of a two-electron singlet state,

with symmetry 'A. The spatial symmetry group is C,.

0, = 3(1+(12)

0® - 11+c,) = [0PW)0A@) + 0B1)0B(@2)]
(14)

*. ;
® 0%0,,9 = 3 #6104 (10%(2) 0,0, + F9’0P(1)0P(2) 0,0,
oA * ¥
200" (1)0%@) 00, + #lG0P(1)0P@) g0, 1.

Therefore

DXA) = 1 ¢,]|0%]g,) D!(B) = +(¢,|0B|0,)

DXA) = 2(¢,|0%| o) DEB) = 4{¢,|0B] o)

l

1

DiA) = £(¢,]0”]0) = [D2(A)]"



D}(B) = 4(¢,]0B| ) = DB

Dll{J,Q(u') = %'(l-ékﬂ)’(l'ﬁij) L,i,k,2=1,2. (15)

C. Expectation values: We are now prepared to calculate the expecta-

tion values of one- and two-electron operators, such as the overlap and
the energy. The self-overlap of the approximate many-electron wave-

function, sometimes called the denominator or DENOM, is calculated

simply as follows:
DENOM = (&[0"0,, | #)
- ), O | @,y D% (u) . 16
k:z;l 1; 2}1 <¢k’ l‘Pﬂ) E(IJ‘) (16)

The energy is to be calculated from the many-electron hamiltonian

(written in atomic units):

= ) ~lg? - 3
H = ZTJ 2V, + i,Z( Z /ri ) + i.;-/j l/ri]. (17a)
or
H= )T + )V, + ) 1/r.. (17b)
L T =

kinetic nuclear electron-
energy attrac- electron
tion repulsion

We need to calculate (& [Hd\Oiilé) /DENOM. Now

(2|HO'O, [®) = ) I;I(q)k(l)[(T1+V1)O“'(1)[cpﬁ(l))D}E(u)
7
’ (18)
Lok kp
%k%’é 9 (102, (2) |~ 0H(12) | 9y(1) g, (2D Dl ()
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D. The Iterative Equations: To find the optimum orbitals to be used

in the approximate many-electron wavefunction Eq. (2) we apply the

ordinary Rayleigh-Ritz-Schrédinger variation condition,
6E = (6¥|H|¥) - E(6¥|¥) =0 . (19)

Since the only variations allowed are changes in the orbitals (or perhaps

spin coupling), this becomes16

SE = <5¢kq>1'(ynopl<1>> - E(Ggok@l'{loplé) = 0. (20)

There are two kinds of techniques to be used in solving Eq. (20) for the

1

optimum orbitals. These are called the 'Hamiltonian' and 'supermatrix
methods (see also Appendix III).
In the Hamiltonian method, each orbital is found as an eigenfunc-

tion of its own effective hamiltonian equation
v =
B = €M% (21)

where Hl‘; is the hamiltonian for orbital P> € is its orbital energy, and

M, is the virtual metric operator for Py (further explanation is in

k
Appendix III). This section will discuss how to construct the various
projected integrals that are needed. For the hamiltonian we need inte~
grals of the form (clf ]HOp ]tbﬁ) , where we have set Op -0t O,; and

cbg means that orbital P has been deleted from the orbital product &

and basis function 9 o has taken its place.

To evaluate these integrals, first define g(12)=1/(n-1)[T,+T,+
V,+V,] +1/r,,. Then
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om0y o) = 5 1 {nge, |80 IngepDig(w)
+<na¢p|g0“|¢an>Dgg(u)}

Lo L A, % |g0“l<p 9. )¢ 0" |nB>ka (X V)
i,V pars

(n,|0" |0g2¢9, wslg0“!¢rnﬁ> qu(ux V)
+<ﬂa|0V,nB><<Pp¢ngO“|<pq<p )Dkkgf(ux:/

+0,%’,upq;stu<n o lc”s><‘P| lnB><<pq . 180" | o 0,)

D‘;ﬁgf(u Xvxo) . (22)

Finally, the virtual metric Mk is made from integrals of the form

(af]o,|ef) - %(nQIO“lankk(u)

) (ng|0%] ¢ )¢ 0, lO“lnﬁ>D (wxv). (23)
U':V p’q

Certain simplifications of these equations obtain in practice, such as
the fact that (na(u)]O ’773(0 OZB uvbvo if the basis functions are
chosen to be orthonormal symmetry functions. These simplifications
will not be discussed in detail here (see also Appendix II).

For the supermatrix technique one needs the very similar inte-
grals: @afHO ]<I>£> (@alHO |®), (d> ]HO |®) and the same
repeated.with the H removed. These are to be calculated with formu-

las along the same lines as those for the hamiltonian method above.
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E. Uniqueness of the orbitals: In solving the Hartree-Fock (HF) equa-

tions, it is well-known that the orbitals are not uniquely determined.

by optimization of the energy alone. In fact, the HF wavefunction
\I’HF = ::)% Pr1P1P2P" " " ¢n/2¢n/2a6aﬁ MR 7¢; (24)

is unchanged (except by a multiplicative factor) for arbitrary linear
transformations of the orbitals amongst themselves. This means that
the optimization of the energy [Eq.(20)] cannot specify which of these
many linear combinations should be used.

The HF technique for unique specification of the orbitals is also
well-known. First the orbitals are chosen to be normalized and mutu-
ally orthogonal. This restricts further linear transformations to be
unitary. Finally the'orbital energy matrix' is diagonalized. So that
the orbitals are now completely determined except for irrelevant phase
factors. The HF procedure will be further discussed below as an
example and special case of the general techniques for removing arbi-
trariness.

The original product of orbitals, &= ¢, ®ps in general, will
not have the desired many-electron symmetry. If it did, the projection
operator (Y\ Oii would be superfluous. This means that projection
o O;;*¢® must necessarily discard some of the original components of

the orbital product. This can be written as

$=200e=Ya., (25)
T T

where the sum over I' is a sum over the representations of G X spin.
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As an example, consider the two-electron case with symmetry group
C,. The representations (I') are then ‘A, A, 'B, °B. Equation (25)

then becomes

@ = 00, = Pyp t Pyp + g+ O - (26)

Now if the desired symmetry is, say, A, then the wavefunction that is
solved for is <1>1A = OLA<I>. The problem of the nonuniqueness of the
orbitals can now be stated. When there exist ways of changing the
orbitals such that the projected wavefunction OAOH<I> is not changed, but
any of the other terms of Eq. (25) are changed,then the orbitals cannot
be specified by optimization of the energy alone.

Consider the even simpler example of solving for a two-electron

triplet state with no spatial symmetry. The product ® = ¢,¢, is

decomposed according to Eq. (25) as

P =7 o))
1+ %s (27)

= %[‘Pl(l)‘Pz(z) + ¢2(1)(P1(2)] + '%[(Pl(l)‘Pz(z) - ,(1) (Pl(z)] .
singlet triplet

The triplet component is the one we are after. Now suppose we try to

change orbital ¢, by adding some ¢2 to it
Q= QL+Z P, (28)
Then Eq. (27) becomes

) 2 [51902 + 902‘51] +3 [61902 - 9929_01]

I

3 [‘P1902 + ¢2¢1 + 22 @@, ]+ %[(Pﬂpz - 902‘P1] . (29)
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So the triplet component did not change but the singlet did; hence the
parameter z must be found by some other criterion: the criterion to
use in this simple case is apparent,; it is built into our intuitions from
repeated application; the orbitals ¢, and ¢, are just chosen to be or-
thogonal. This gives

<¢2|¢1+Z§92> =0

or (30)

T (e , ®z)
(@2} @2)
For a more complicated case, a more general criterion will be needed.

1. Maximizing the denominator: A better focus on the problem can be

had by examining the relative magnitudes of the singlet and triplet com-~

ponents in the above example [Eq. (29)]

triplet (ol @] e) - Koile) |?

singlet ) (¢1'¢1>(¢2|¢2> + |<‘P1'¢z> lz + 22( (,02|<P2><<P1[¢72> +Zz((p2I(p2>
(31)

Suppose we add a lot of ¢, to ¢,, i.e., z is to be very large. That means

that the triplet/singlet ratio will become very small. The orbital product
will be mostly singlet, while the projected wavefunction is to be a triplet.
The projection operator is throwing away most of the orbitals. This is
very bad since we want to interpret the many-electron wavefunction in
terms of the orbitals. The reliability of the orbital scheme of interpre-
tation depends on the closeness of the simple product of the orbitals

®=¢,¢,"** ¢, , and the final many-electron wavefunction ¥ = P®.

z °
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The conclusion is,that the criterion to be used to specify the
orbitals will be,that the overlap (i.e., resemblance) of the orbital
product with the projected wavefunction (#®|P®) be a maximum. This
overlap is just the denominator as defined in Eq. (16), and so the orbital
selection procedure is called maximizing the denominator. This maxi-
mization must, of course, be done while holding the orbital product
(and hence the individual orbitals) to be normalized. So we maximize
(¢|p|®)/(®]|®).

In the simple example above,

(ol @@l 9.) - Kou]@y) 7]

DENOM(z) = . S - (32)
(¢1"P1><¢2|¢2> + 2Z<‘P1|(P2><<P2"Pz> +Z ,<‘P1,‘P2> !

Now maximizing, which is just solving (d/dz)DENOM(z) = 0, gives
exactly Eq. (30).

Actually the problem is not quite solved. Even after the orbitals
are orthogonal, unitary transformations may yet be performed amongst
the orbitals with no change in the many-electron wavefunction and hence
no change in the energy or the denominator. As mentioned before, the
resolution is well-known for the above simple case. The diagonaliza~-
tion of an orbital energy or Lagrange multiplier matrix will produce

completely determined orbitals.

2. Orbital energies: A rather backward-seeming definition of the

orbital energy is used here, but it appears to describe the physical
situation. 17 K00pma.ns18 was one of the first to characterize the

diagonal Hartree-Fock Lagrange multipliers as approximate vertical
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ionization energies. This identification was an important support for
attributing physical significance to the individual orbitals. In this
vein we define the orbital energy € n for the last (highest) orbital through

the calculated vertical ionization energy

e = FE -E

n n n-127 (33)

where E  is the total energy of the full n-electron wavefunction, En-l
is the energy of the n~1 electron wavefunction obtained by merely
deleting @y

Following Koopmans, we seek to make €, as close as possible to
the ionization energy by permitting transformations of the orbitals
amongst themselves that do not change the energy, E n (or the denomi-
nator). This means finding the best approximation to the n-1 electron
state (lowest E n-l) within the allowable rearrangements of the orbitals.
This technique will then define what orbital is to be deleted, i.e., Py
To specify the other orbitals (and orbital energies) we repeat the pro-
cedure for ¢, ; with ¢ fixed. 19

For (closed-shell) Hartree-Fock, this just means that all of the

orbitals should be eigenfunctions of one Hartree-Fock hamiltonian,

Hyp = h + Zl (23, - K;) (34)

Hypo; = 9 - (35)
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3. Two electrons--the Denominator: ''(x,1/x)" transformations.

First consider A to be the totally symmetric representation.

From Eq. (13c)
v =4 Wiy . 36
2%wm% AN (36)
We can easily see that if we make the replacements of

X b 1
wu yxuwM

and (37)

2 2
by 1/x
W, by 1% ¥,
where xu is any number (one for each representation p). Then ¥ is

unchanged,

¥ = g% (e )1 /x W) = (1/x ), W) (x 9) ]

(38)
= ‘I’ -
This transformation is called a ''(x, 1/x)" transformation.
To see what the (x, 1/x) transformation does, we look at the
example of ‘A projection for the group C,. Then
¥ = 3w, + Ypip + ¥avy +¥pvp )
where L L . 2 (39)
¢1=‘PA+¢B: <02='PA+WB-
The transformation to be examined is
' 1 1
P =X ’#A + ‘PB
(40)

@3 1/x ‘PZ‘*‘WZB'

Now if x is chosen to be very large, then each of the orbitals is
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dominated by one of its components

@y ~ Wy
(41)

’

o ~V¥p
The orbital product therefore becomes P ~ z[/kzp]za , which is of B sym-
metry, which is not the symmetry we wanted.

This can be put more precisely through the use of the decomposi-

tion Eq. (26), wherewith

= @l = B, + By, + g+ Py (42)

Now
a = V=¥ = Hu v+ wpth Vv, Vg ) (43a)
Bl = By = 3[WuV) + VRVE - VaVa - Va¥s ) (43b)
and @, op = 3lx(WaWg = Wpvy) + U/xWp¥y  ¥ivp)l . (43¢c)

So that the totally symmetric components & 1,35 are independent of x,
but the antisymmetric components @, sg are not. Maximization of the
denominator will determine the value of x that should be used. This
procedure is described in detail in Appendix IV. After the denominator
is maximized, there are no undetermined unitary transformations.
The orbitals are completely defined.

The maximization as described in Appendix IV gives the following

interesting final result:
1 1 2
AL AERCAL (44)

for the optimum orbitals.
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Again for the group C, we look at a nonsymmetric representation,

say, ‘B
¥ = 0P = Hwy + ¥p¥h) + Wpvh * ¥avp)] )

Now the replacement of ¢, by xv.[/:sx + thlB and ¢, by z[xi +1/x zsz pro-
duces no change in the projected many-electron wavefunction (45). The
optimization of this case is also worked out in Appendix IV. The final
result being
1 1
<‘l/A|¢/A> = <WZB’VB>
Lo 2 (46)
(RDB]WB) = <WA}¢2>
But now this is not the only kind of transformation. So more work is

needed before the orbitals are determined.
""Shape' transformations:

Dunningzo found that for nonsymmetric singlet states [such as

shown in Eq. (45) ] the "'shape' transformation
$1 (Pl‘*'z[‘pz - W%] (47)

does not affect the many-electron wavefunction. The nature of this
transformation is more easily seen by examining the orbitals as follows.
We call ¢, instead gaI; (since it might be mostly on the left of the mole-
cule) and ¢, as gozR (mostly on the right?). Then the natural definition

of gof{ and <sz would be

0290}‘ = Cz[‘l/llg‘ + Wg]

i

o Wy - ¥p

(48)

il

or = Coppt = Gl vl = Wy - v
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So now the replacement (47) is just transforming the orbitals after

putting them both on the same center,
L L
J; — ¢ tZ2¢, . (47")
The optimization of the parameter z (as further discussed in Appendix

1V) gives

(oP|er') = 0 (49)
for the optimum z. This means that we have orthogonalized the ''shapes"
of the orbitals ¢, and ¢,. In practice, this means, for example in the
case of H,, that when a 12; state dissociates the two orbitals must not
have the same character. An allowed dissociation would be a 1s on the
left hydrogen and a 2p on the right. Their shapes are orthogonal.
Dissociation to two 1s atoms is forbidden since their shapes are identi-

cal. In fact, the many-electron wavefunction for that state vanishes

L R
¥ = [olo + gRol - ool - gloB1 = 0 (50)

if (p{“ = 1s; and qo? = 1sp, so that cpf“ = gozL'.

For the singlet, non-symmetric case, even after the denominator
is maximized both for (x, 1/x) and shape transformations, there remain
"unitary" shape transformations. The final resolution must come from

an orbital energy matrix.

4. Two electrons - the orbital energies: The idea of finding orbital

energies (as explained above) is basically to make the ionization energy

(which is in this case €, = E, -~ E,) as small as possible, which is the
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same as making the core of the n-electron system be as close as possible
to the n-1 electron wavefunction of the ion.

In the 'B case above the transformation that is yet to be defined is

<p}‘—*g—oll‘=coseqpf‘+sin6<pg“
(51)
gp,f2 E? = -sin 6 ¢?+cose csz .

If DENOM has been maximized, then the shapes are already orthogonal
and this transformation (51) leaves the wavefunction, ¥ and DENOM

unchanged. So we write down e,,

€ = Ez - (@%lhh—o}‘>

. 2
&:(6) = E, - cos®0( ¢"|n| ol - sin’0( o¥|n|l) (52)
+ 2 8in 6 cos 6( (p%‘]hl(pf‘} .
The only step remaining is to maximize ¢, with respect to 6, i.e.,
de,/d6 = +sin 26[h,, - h,, ] + 2 cos 20 h,, (53a)
SO
Ctn 29 = (h22 - h:u)/zhlz. (53b)

Now the orbitals are determined. Once again a complete description
of the maximization of the denominator and the diagonalization of the |
orbital energy matrix for two electrons and general abelian groups is
given in Appendix IV. Appendix V discusses this same problem for

spin projection of generalized spin orbitals.
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RESULTS - H,

A. Introduction: The electronic states of the hydrogen molecule form

a simple quantum mechanical system, at least compared with other
molecules. For a molecular model as successful as the molecular-
orbital/Hartree-Fock theory has been, hydrogen should be its most

conspicuous triumph. It is not.

The molecular orbital (MO) theory for H, begins with the orbital
correlation diagram;21 based on the states of H;, as shown in Fig. 1.
The states of H, are formed simply by placing one or two electrons in
the various molecular orbitals. The low-lying Z states would then be

described as follows (in order of increasing energy):

2 1., +
- 1
(log) Eg
loglo, - 1 T, 1z, (54)
lorgzc:rg - 1 3Eg+, 2 12g+,

where the states to be derived from each configuration are listed on the
right. This simple model gives a surprisingly good description of the
character of the states near equilibrium internuclear separation. The
order of the states in Eq. (54) is correctly predicted; the appearance of
the Rydberg series, such as (log)(nog), is explained; and the lowest
triplet is predicted to be unstable. But certain problems remain. Since
we are interested in the electronic structure not only at nuclear equilib-
rium but we also want to construct, analyze, and explain the effective
potentials for nuclear motion. With only the one exception of the lowest

triplet, the simple MO ideas are unable to describe adequately the
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potential curves and dissociation products. This is particularly impor-
tant, since much of molecular spectroscopy is the study of the potential
curves.

First consider the ground state, which was (log)z. The correla-
tion diagram suggests dissociation into ground state atoms, lcrg — lsL +

lsR. This means that the total wavefunction becomes
v — [(lsLlsR +1splsy) + (Isp1sy + lsRlsR)](aB - Ba) (55)
covalent ionic

(ignoring normalization), where lsL and lsR are H 1s orbitals on the
left and right, respectively. The covalent term is the wavefunction that
describes two ground-state hydrogen atoms very far apart. The MO
description, even with self-consistent (Hartree-Fock) optimization of
the orbitals, fails to account correctly for the dissociation, and there-
fore most of the potential curve. The difficulty is the high energy of the
unavoidable ionic term (off by almost 8 eV at large R).

More seriously, excited configurations are predicted to
correlate with the wrong separated-atom limits. For example, at large

R the log and lo " orbitals of H: have the form

lcg = lsL + lsR

IO’u = 1sI_l - lsR .

(56)

Thus the 32; and 12: states constructed from configurations loglou
would be expected to dissociate into hydrogen atoms, each in the ground

state. However, the only two-electron states that can be constructed
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from two ground-state H atoms are the 12; and 32: states. In fact, the
lowest lE:; state dissociates to one H atom in the 1s state and one H
atom in an n = 2 state (2s or 2p).

The types of difficulties and inconsistencies mentioned above occur
quite generally and become even more troublesome for larger molecules.
But in spité of all this, H, should remain a simple system. The attract-
ive idea of putting the electrons in one at a time should be salvagable.
One single aspect of the MO correlation diagram is causing most of the
trouble. The hydrogen molecule is homonuclear. It was more than
natural that the homonuclear ion H; should have been chosen as the
model. The nuclear symmetry was frequently used in the correlation
diagram, and in classifying the one-electron orbitals and the two-
electron states. This symmetry is usually treated as a gift, an obvious
simplification in describing the states. I contend that the symmetry is
a trap.

This brings us back to the start. Since we want to ensure that
our description behaves correctly at large R, we will first examine the
known limiting forms for R = . The lowest states must involve a
hydrogen 1s orbital on the left and right, which yields the spatial wave-

functions,

lsLlsR + lsRlsL (57a)
lsLlsR - 1sRlsL R (57b)

leading to 12; and 32; symmetries respectively when combined with a

spin function and antisymmetrized. We will denote these states as:
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', | sy lsg (58a)
1s
L
R (58b)
u SR

where orbitals in the same row are understood to be symmetrically
combined |as in (58a)] and orbitals in the same column

are understood to be antisymmetrically combined [as in (58b)]. At
large R the other states of the system must involve excited states of
the atoms, the lowest of which would be one H atom in the 1s stat