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ABSTRACT

The simplest orbital wavefunction that adequately describes the
dissociation of the excited states of homonuclear diatomic molecules
must involve a spatial symmetry projection operator. The use of such
a wavefunction has been developed in detail and applied to the excited
states of the hydrogen molecule. It was found that the advantages of
an independent~-particle description are enhanced considerably by
spatial projection. The low-~lying Z states of H, are explained
unambiguously and convincingly in terms of orbital character based
on the model of the one-electron heteronuclear diatomics.

Recent experimental work in electron impact spectroscopy has
illustrated that short-lived negative-ion resonances must play an
important role. In an attempt to show that such resonances form a
natural and complete characterization of the scattering process, the
properties of the resonant states defined by Siegert have been investi-
gated. In specific, a superposition principle for Siegert states was
found, which provides a complete description of any quantum mech-

anical event involving a potential of finite range.



TABLE OF CONTENTS

Part Page
1. THE PROJECTED GI METHOD AND THE
EXCITED STATES OF H, . cveticeeencconecaceonncecasanoos 1
Introduction....c.cievieerenccocenocscncenoocncssnoens 2
The Techniques of Spatial Projection........oeoc0sevcenn 5
Results ~ Hy.ovvneneeneeeernenenesossenacnnceccaonns 22
ImplicationsS. cveeeeeeeeensesessorsscsssasescnssonons 81
References........... cesescsiacens teesescesencecenans 83
AppendiCesS. .. .vveeereoeonssccsscssccssssssscnsscones 89
2. A SUPERPOSITION PRINCIPLE FOR
SIEGERT RESONANT STATES. .. oceeescectscecssnens ....181
Introduction. . .....ccvieeecieernroreresosesnsensnsnsnss 182
Previous Approaches...... cececcasscsssssosscesnsoans 184
The Two-Component Wavefunction....eceeececoccenscs 190
Expansion of the Physical Scattering State.......0veu.n 194
The Phase Shift..... Sesescscsssassarsesrsseensstans 198
The Square Well..... cecsecccacs Ceecesssescsas ceeeessa199
CONCIUSION. s eetteneeteresenssesssasscossosnssansasns 207
References...cceeeeeeesccnsesns cecsens cessenes eess. 208
AppendiCesS.cocoeenesans Cececesesessssseansscsoans . 209



3
© e CBINNEN | [op) (32 > w Do =t
0]

DN N DN DN ke e e e et ed b e e e
W DN = O W O I U B W N = O

vi

Index to Figures for Part 1.

Topic
MO Correlation Diagram
H, Total Energies
H, @y Orbitals
HeH"™ Orbitals
HeH'® Nodal Surfaces
HeH*? and LiH"® Electronic Energies
Energies of H, + Scaled LiH™®

H, ‘=’ Correlation Diagram
2 g

-+
g

H, 1 ‘zg Total Energies

H,2's?t
2 g

~+
g

H, 2 =7
2 g

1.+
3 Z
H, g

H, 3 ‘z; 18 BF Plots

1.+

H, 3 I,
H, 4 1>:; 18 BF Plots

H, 4 IE; Total Energies

. 1+
H, Excited Z g €

H, 1 ‘2; Line Plots

H, 1 ) @ Line Plots

@ Line Plots

H, 2 's* and 3 'z Contour Plots
g %

Total Energies

P Line Plots

Total Energies

Orbital Energies

+
u

H, 1 12; Total Energies

H, 1 =¥ and 2 12:; Contour Plots

H, 2 'z} Line Plots



Figure
24
25
26
27
28
29
30
31
32
33
34
35
36

vii

Topic
H, 2 12:; Total Energies
H, 'Z] ¢, Orbital Energies

H, 1 3zg Line Plots
+

13
H, 3Zg
+
H, 2 Z,

H, 2 “z; 18 BF Plots

Total Energies
Line Plots

3+

H, 3 °Z;

3+

H,2°%
2 g

18 BF Plots
Total Energies

H, 3 Szg Total Energies

+

g
H, 1 °] Line Plots

H, °=7 and 32;’ €, Orbital Energies

H, 2 °Z Total Energies
H, 2 32:; Line Plots



PART 1

The Projected GI Method and the Excited States of H,




INTRODUCTION

Spatial symmetry has played a dominant role in the study of
quantum mechanical systems. The classification of states according to
the representations of the appropriate group of symmetry transforma-
tions is a fundamental part of any student's introduction to quantum
mechanical problems. The "elementary' illustrations of the hydrogen
atom, hydrogen-molecular-ion, and the simple-harmonic-oscillator
immediately come to mind. And even the stouthearted would falter
before the numerous interesting many -particle problems (say, benzene,
Cr(CO),, crystalline NaCl,...) were it not for the simplification of
classification by symmetry.

Indeed, the first step in the study of the electronic states of simple

molecules is the determination of the term symbols (i.e., spin and
spatial symmetries) of the states. 1 It is not at all surprising that the
molecular symmetry be used to ease the construction of approximate
descriptions of the molecular states. In specific, consider the simplest
molecule, the H; molecular-ion. Its states form the basis of the molec-
ular orbital description of homonuclear diatomics. The many-electron
state is to be built up out of the one-electron orbitals. The result is
called a configuration, as (lag)z(lou)2(20g)2(20u)2(17ru)4(30g)2 for N,.
For polyatomics (such as benzene) a similar aufbau procedure applies,
the model being the one-electron states with the same nuclear arrange-
ment [giving (1a1g)2(lelu)4(1e2g)4(1b1u)2(2a1g)2(2elu)4. .., see Ref. 2].

The Hartree-Fock theory provides a scheme for finding an opti-

mum3 set of orbitals to be used to construct the many-electron



wavefunction. This method is tractable for (what seem at the moment)
relatively large molecules (e.g., benzene4). The degree of success in
explaining basic properties of the molecular states is nothing less than
outstanding. Much of the success and practicability may be attributed
directly to the molecular symmetrv and the use of this symmetry in the
one-electron orbitals. 5 More specifically, the enormous contribution
of molecular orbital theory to the spectroscopic study of electronic
excited states has depended crucially on symmetry.

An alternate scheme of molecular structure places less emphasis
on the nuclear arrangement, and less emphasis on the symmetry of the
states. It corresponds more to the ordinary chemist's view of balls
and sticks. The role of symmetry is mainly incidental. For saturated
systems (say, cyclohexane), the conclusion is that all the bonds are
identical. For unsaturated systems (say, benzene), there is more
difficulty, but the resolution is informative. The simplest ball-and-

stick (valence bond) model of benzene requires the "'resonance’ of two

equivalent Kekulé structures:

+

This scheme of mdecular binding has served chemistry well.
Recently, though, molecular orbital theory has acquired more of a
following among organic chemists, 6 basically for its superior handling
of excited states and symmetry. Correspondingly, theorists have be-

come more interested in generalization of the valence bond techniques, 7



basically for the superior description of bonding atoms into molecules,
i.e., reactions.

Here we discuss a special generalized-valence-bond technique:
spatial projection. 8 This means producing the known many-electron
symmetries not by restrictions on the orbitals (as would be done in HF)
but by adding together the various resonance forms (as for benzene
above). The discussion will be generally restricted, for simplicity, to
point symmetry groups with only nondegenerate representations. The
development and application to two-electron systems and, in specific,
to the excited states of the hydrogen molecule will be discussed in

detail.



THE TECHNIQUES OF SPATIAL PROJECTION

A. The form of the wavefunction: The approximate many-electron

wavefunction is chosen to have the following simplified form:

‘I’=P1//11Pz"'1Pn, (1)

where the wi's are individual (perhaps generalized) spin orbitals. The
projection operator is to provide the many-electron wavefunction with
the known spin, spatial, and permutational symmetry.

This projection operator is frequently partitioned into components

P (2)

permutation ’ P

P = Pgrace’ spin
or

P="P P

space ~ spin and permutation’

Examples of combined spin and permutation projectors are provided by
the G%' operators, which are a sum of products. The principal topic of

this chapter will be projected GI wavefunctions,
¥ = Poacelt 9102 @ aBap --- . (3)

Suppose G is the abelian9 point group of the molecule. The pro-

jection operator we want is then the Wigner projection operator10 (onto,

say, the Ath representation):
A -1
Pepace = O = /e RZE;GX ®R™)R, (4)
where g is the order of the group and the XA (R™') is the character of the
th

group operator R™! for the A representation. This projection operator

is to be applied to the product of spatial orbitals, ® = ¢, @, * * Ppe



Direct application would give

e =1/g L x*® )[Ry, ][Re,] - [Re, ]. (5)
ReG

This means keeping track of how to calculate R(p.l and how to take a
matrix element between ® and R®. The following tack may be simpler.
In molecular calculations, the orbitals are usually expanded over

some finite set of basis functions,
B

These basis functions can be chosen to be, or transformed1 1 to be,
symmetry functions without loss of generality, and without much addi-

tional difficulty. This can be written as

¢, = L CEnglu), (7)
8

which means that 773(#) belongs to or transforms according to the uth

representation of the spatial symmetry group G. As a consequence of
this choice, 773(“) is an eigenfunction of the Wigner projectors [see
Eq. (4)]
V - Y
O nglu) = nglw)+s,, . (8)
This suggests that we rewrite the n-electron spatial projector

OA(I -++n) as a sum of products of one-electron projectors. This can

be done through the reciproca112 relation to Eq. (4),
R = L x*®O*, (9)
L

substituting into Eq. (4) this gives
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ori2---n) = 1/g 2 MR THRD)RE) -+ - Rn)
ReG

-1, M M
/g b L X ®RDHx T®RXE®R X (R) (10)
u. ReG i u 0
+0 (1D0"*2):+-0 "(n).
To see how this works, we collect the last n- 1 projectors together:

oM12---n) = 1/g ZV 5 RO R (RIOH(1)0Y(23 - +m),  (11)
M

which can now be rewritten as

ori2-+:n) = ) (A/pr)OH(1)0Y(23 -+ -n). (12)

Ly V

The collected term o“(z 3+++n) can, of course, be broken down itself.
by Eq.(12) if desired. A very important property of this formula (12)
is that the squared Clebsch-Gordan coefficients13 /u v)2 take on only
the values of 0 and 1, and for fixed A and p only one value of v gives
yam V)2 #= 0.

It will be convenient at this point to set up some notation for the

case of two electrons. Factoring out the spin part of the wavefunction

gives14
Space = & L /w00’ [1+ (12)] e e @) (13a)
My ¥
Each of the two orbitals is now broken up into its symmetry components
i
0= Lot =2y . (13b)
K K

So that Eq. (13a) becomes simply
Yoaee = 3L W,V ¥ ¥ 1, (13c)
m Y Y M

space
P T



where Y is the uniquely defined representation that gives (A/ wY, )2 =1
(all others give zero). In the special case that X is the totally sym-

metric representation, Yu = .

B. Density Matrices: The evaluation of the energy of the projected

product approximate wavefunction, and the construction of iterative
equations for its determination, will be much facilitated by the use of
density matrices, defined in the sense of Goddard.7h The density
matrix element Dg{(u) is defined as the coefficient of go.*(j)O”(j)cpk(j) in
the expression > [#*(12:+ )0, @(12:* n)d¥}, where O -0M12--n)
*O;;- Similarly, Dkﬁ(“‘) is the coefficient of the term go*(l)qo*(])O“ (1))

. gak(i)cpl(J). The same technique may be used to define the higher -
order density matrices.

As an example, consider the case of a two-electron singlet state,

with symmetry 'A. The spatial symmetry group is C,.

0, = 3(1+(12)

0® - 11+c,) = [0PW)0A@) + 0B1)0B(@2)]
(14)

*. ;
® 0%0,,9 = 3 #6104 (10%(2) 0,0, + F9’0P(1)0P(2) 0,0,
oA * ¥
200" (1)0%@) 00, + #lG0P(1)0P@) g0, 1.

Therefore

DXA) = 1 ¢,]|0%]g,) D!(B) = +(¢,|0B|0,)

DXA) = 2(¢,|0%| o) DEB) = 4{¢,|0B] o)

l

1

DiA) = £(¢,]0”]0) = [D2(A)]"



D}(B) = 4(¢,]0B| ) = DB

Dll{J,Q(u') = %'(l-ékﬂ)’(l'ﬁij) L,i,k,2=1,2. (15)

C. Expectation values: We are now prepared to calculate the expecta-

tion values of one- and two-electron operators, such as the overlap and
the energy. The self-overlap of the approximate many-electron wave-

function, sometimes called the denominator or DENOM, is calculated

simply as follows:
DENOM = (&[0"0,, | #)
- ), O | @,y D% (u) . 16
k:z;l 1; 2}1 <¢k’ l‘Pﬂ) E(IJ‘) (16)

The energy is to be calculated from the many-electron hamiltonian

(written in atomic units):

= ) ~lg? - 3
H = ZTJ 2V, + i,Z( Z /ri ) + i.;-/j l/ri]. (17a)
or
H= )T + )V, + ) 1/r.. (17b)
L T =

kinetic nuclear electron-
energy attrac- electron
tion repulsion

We need to calculate (& [Hd\Oiilé) /DENOM. Now

(2|HO'O, [®) = ) I;I(q)k(l)[(T1+V1)O“'(1)[cpﬁ(l))D}E(u)
7
’ (18)
Lok kp
%k%’é 9 (102, (2) |~ 0H(12) | 9y(1) g, (2D Dl ()
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D. The Iterative Equations: To find the optimum orbitals to be used

in the approximate many-electron wavefunction Eq. (2) we apply the

ordinary Rayleigh-Ritz-Schrédinger variation condition,
6E = (6¥|H|¥) - E(6¥|¥) =0 . (19)

Since the only variations allowed are changes in the orbitals (or perhaps

spin coupling), this becomes16

SE = <5¢kq>1'(ynopl<1>> - E(Ggok@l'{loplé) = 0. (20)

There are two kinds of techniques to be used in solving Eq. (20) for the

1

optimum orbitals. These are called the 'Hamiltonian' and 'supermatrix
methods (see also Appendix III).
In the Hamiltonian method, each orbital is found as an eigenfunc-

tion of its own effective hamiltonian equation
v =
B = €M% (21)

where Hl‘; is the hamiltonian for orbital P> € is its orbital energy, and

M, is the virtual metric operator for Py (further explanation is in

k
Appendix III). This section will discuss how to construct the various
projected integrals that are needed. For the hamiltonian we need inte~
grals of the form (clf ]HOp ]tbﬁ) , where we have set Op -0t O,; and

cbg means that orbital P has been deleted from the orbital product &

and basis function 9 o has taken its place.

To evaluate these integrals, first define g(12)=1/(n-1)[T,+T,+
V,+V,] +1/r,,. Then
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om0y o) = 5 1 {nge, |80 IngepDig(w)
+<na¢p|g0“|¢an>Dgg(u)}

Lo L A, % |g0“l<p 9. )¢ 0" |nB>ka (X V)
i,V pars

(n,|0" |0g2¢9, wslg0“!¢rnﬁ> qu(ux V)
+<ﬂa|0V,nB><<Pp¢ngO“|<pq<p )Dkkgf(ux:/

+0,%’,upq;stu<n o lc”s><‘P| lnB><<pq . 180" | o 0,)

D‘;ﬁgf(u Xvxo) . (22)

Finally, the virtual metric Mk is made from integrals of the form

(af]o,|ef) - %(nQIO“lankk(u)

) (ng|0%] ¢ )¢ 0, lO“lnﬁ>D (wxv). (23)
U':V p’q

Certain simplifications of these equations obtain in practice, such as
the fact that (na(u)]O ’773(0 OZB uvbvo if the basis functions are
chosen to be orthonormal symmetry functions. These simplifications
will not be discussed in detail here (see also Appendix II).

For the supermatrix technique one needs the very similar inte-
grals: @afHO ]<I>£> (@alHO |®), (d> ]HO |®) and the same
repeated.with the H removed. These are to be calculated with formu-

las along the same lines as those for the hamiltonian method above.
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E. Uniqueness of the orbitals: In solving the Hartree-Fock (HF) equa-

tions, it is well-known that the orbitals are not uniquely determined.

by optimization of the energy alone. In fact, the HF wavefunction
\I’HF = ::)% Pr1P1P2P" " " ¢n/2¢n/2a6aﬁ MR 7¢; (24)

is unchanged (except by a multiplicative factor) for arbitrary linear
transformations of the orbitals amongst themselves. This means that
the optimization of the energy [Eq.(20)] cannot specify which of these
many linear combinations should be used.

The HF technique for unique specification of the orbitals is also
well-known. First the orbitals are chosen to be normalized and mutu-
ally orthogonal. This restricts further linear transformations to be
unitary. Finally the'orbital energy matrix' is diagonalized. So that
the orbitals are now completely determined except for irrelevant phase
factors. The HF procedure will be further discussed below as an
example and special case of the general techniques for removing arbi-
trariness.

The original product of orbitals, &= ¢, ®ps in general, will
not have the desired many-electron symmetry. If it did, the projection
operator (Y\ Oii would be superfluous. This means that projection
o O;;*¢® must necessarily discard some of the original components of

the orbital product. This can be written as

$=200e=Ya., (25)
T T

where the sum over I' is a sum over the representations of G X spin.
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As an example, consider the two-electron case with symmetry group
C,. The representations (I') are then ‘A, A, 'B, °B. Equation (25)

then becomes

@ = 00, = Pyp t Pyp + g+ O - (26)

Now if the desired symmetry is, say, A, then the wavefunction that is
solved for is <1>1A = OLA<I>. The problem of the nonuniqueness of the
orbitals can now be stated. When there exist ways of changing the
orbitals such that the projected wavefunction OAOH<I> is not changed, but
any of the other terms of Eq. (25) are changed,then the orbitals cannot
be specified by optimization of the energy alone.

Consider the even simpler example of solving for a two-electron

triplet state with no spatial symmetry. The product ® = ¢,¢, is

decomposed according to Eq. (25) as

P =7 o))
1+ %s (27)

= %[‘Pl(l)‘Pz(z) + ¢2(1)(P1(2)] + '%[(Pl(l)‘Pz(z) - ,(1) (Pl(z)] .
singlet triplet

The triplet component is the one we are after. Now suppose we try to

change orbital ¢, by adding some ¢2 to it
Q= QL+Z P, (28)
Then Eq. (27) becomes

) 2 [51902 + 902‘51] +3 [61902 - 9929_01]

I

3 [‘P1902 + ¢2¢1 + 22 @@, ]+ %[(Pﬂpz - 902‘P1] . (29)
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So the triplet component did not change but the singlet did; hence the
parameter z must be found by some other criterion: the criterion to
use in this simple case is apparent,; it is built into our intuitions from
repeated application; the orbitals ¢, and ¢, are just chosen to be or-
thogonal. This gives

<¢2|¢1+Z§92> =0

or (30)

T (e , ®z)
(@2} @2)
For a more complicated case, a more general criterion will be needed.

1. Maximizing the denominator: A better focus on the problem can be

had by examining the relative magnitudes of the singlet and triplet com-~

ponents in the above example [Eq. (29)]

triplet (ol @] e) - Koile) |?

singlet ) (¢1'¢1>(¢2|¢2> + |<‘P1'¢z> lz + 22( (,02|<P2><<P1[¢72> +Zz((p2I(p2>
(31)

Suppose we add a lot of ¢, to ¢,, i.e., z is to be very large. That means

that the triplet/singlet ratio will become very small. The orbital product
will be mostly singlet, while the projected wavefunction is to be a triplet.
The projection operator is throwing away most of the orbitals. This is
very bad since we want to interpret the many-electron wavefunction in
terms of the orbitals. The reliability of the orbital scheme of interpre-
tation depends on the closeness of the simple product of the orbitals

®=¢,¢,"** ¢, , and the final many-electron wavefunction ¥ = P®.

z °
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The conclusion is,that the criterion to be used to specify the
orbitals will be,that the overlap (i.e., resemblance) of the orbital
product with the projected wavefunction (#®|P®) be a maximum. This
overlap is just the denominator as defined in Eq. (16), and so the orbital
selection procedure is called maximizing the denominator. This maxi-
mization must, of course, be done while holding the orbital product
(and hence the individual orbitals) to be normalized. So we maximize
(¢|p|®)/(®]|®).

In the simple example above,

(ol @@l 9.) - Kou]@y) 7]

DENOM(z) = . S - (32)
(¢1"P1><¢2|¢2> + 2Z<‘P1|(P2><<P2"Pz> +Z ,<‘P1,‘P2> !

Now maximizing, which is just solving (d/dz)DENOM(z) = 0, gives
exactly Eq. (30).

Actually the problem is not quite solved. Even after the orbitals
are orthogonal, unitary transformations may yet be performed amongst
the orbitals with no change in the many-electron wavefunction and hence
no change in the energy or the denominator. As mentioned before, the
resolution is well-known for the above simple case. The diagonaliza~-
tion of an orbital energy or Lagrange multiplier matrix will produce

completely determined orbitals.

2. Orbital energies: A rather backward-seeming definition of the

orbital energy is used here, but it appears to describe the physical
situation. 17 K00pma.ns18 was one of the first to characterize the

diagonal Hartree-Fock Lagrange multipliers as approximate vertical
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ionization energies. This identification was an important support for
attributing physical significance to the individual orbitals. In this
vein we define the orbital energy € n for the last (highest) orbital through

the calculated vertical ionization energy

e = FE -E

n n n-127 (33)

where E  is the total energy of the full n-electron wavefunction, En-l
is the energy of the n~1 electron wavefunction obtained by merely
deleting @y

Following Koopmans, we seek to make €, as close as possible to
the ionization energy by permitting transformations of the orbitals
amongst themselves that do not change the energy, E n (or the denomi-
nator). This means finding the best approximation to the n-1 electron
state (lowest E n-l) within the allowable rearrangements of the orbitals.
This technique will then define what orbital is to be deleted, i.e., Py
To specify the other orbitals (and orbital energies) we repeat the pro-
cedure for ¢, ; with ¢ fixed. 19

For (closed-shell) Hartree-Fock, this just means that all of the

orbitals should be eigenfunctions of one Hartree-Fock hamiltonian,

Hyp = h + Zl (23, - K;) (34)

Hypo; = 9 - (35)
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3. Two electrons--the Denominator: ''(x,1/x)" transformations.

First consider A to be the totally symmetric representation.

From Eq. (13c)
v =4 Wiy . 36
2%wm% AN (36)
We can easily see that if we make the replacements of

X b 1
wu yxuwM

and (37)

2 2
by 1/x
W, by 1% ¥,
where xu is any number (one for each representation p). Then ¥ is

unchanged,

¥ = g% (e )1 /x W) = (1/x ), W) (x 9) ]

(38)
= ‘I’ -
This transformation is called a ''(x, 1/x)" transformation.
To see what the (x, 1/x) transformation does, we look at the
example of ‘A projection for the group C,. Then
¥ = 3w, + Ypip + ¥avy +¥pvp )
where L L . 2 (39)
¢1=‘PA+¢B: <02='PA+WB-
The transformation to be examined is
' 1 1
P =X ’#A + ‘PB
(40)

@3 1/x ‘PZ‘*‘WZB'

Now if x is chosen to be very large, then each of the orbitals is
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dominated by one of its components

@y ~ Wy
(41)

’

o ~V¥p
The orbital product therefore becomes P ~ z[/kzp]za , which is of B sym-
metry, which is not the symmetry we wanted.

This can be put more precisely through the use of the decomposi-

tion Eq. (26), wherewith

= @l = B, + By, + g+ Py (42)

Now
a = V=¥ = Hu v+ wpth Vv, Vg ) (43a)
Bl = By = 3[WuV) + VRVE - VaVa - Va¥s ) (43b)
and @, op = 3lx(WaWg = Wpvy) + U/xWp¥y  ¥ivp)l . (43¢c)

So that the totally symmetric components & 1,35 are independent of x,
but the antisymmetric components @, sg are not. Maximization of the
denominator will determine the value of x that should be used. This
procedure is described in detail in Appendix IV. After the denominator
is maximized, there are no undetermined unitary transformations.
The orbitals are completely defined.

The maximization as described in Appendix IV gives the following

interesting final result:
1 1 2
AL AERCAL (44)

for the optimum orbitals.
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Again for the group C, we look at a nonsymmetric representation,

say, ‘B
¥ = 0P = Hwy + ¥p¥h) + Wpvh * ¥avp)] )

Now the replacement of ¢, by xv.[/:sx + thlB and ¢, by z[xi +1/x zsz pro-
duces no change in the projected many-electron wavefunction (45). The
optimization of this case is also worked out in Appendix IV. The final
result being
1 1
<‘l/A|¢/A> = <WZB’VB>
Lo 2 (46)
(RDB]WB) = <WA}¢2>
But now this is not the only kind of transformation. So more work is

needed before the orbitals are determined.
""Shape' transformations:

Dunningzo found that for nonsymmetric singlet states [such as

shown in Eq. (45) ] the "'shape' transformation
$1 (Pl‘*'z[‘pz - W%] (47)

does not affect the many-electron wavefunction. The nature of this
transformation is more easily seen by examining the orbitals as follows.
We call ¢, instead gaI; (since it might be mostly on the left of the mole-
cule) and ¢, as gozR (mostly on the right?). Then the natural definition

of gof{ and <sz would be

0290}‘ = Cz[‘l/llg‘ + Wg]

i

o Wy - ¥p

(48)

il

or = Coppt = Gl vl = Wy - v



20

So now the replacement (47) is just transforming the orbitals after

putting them both on the same center,
L L
J; — ¢ tZ2¢, . (47")
The optimization of the parameter z (as further discussed in Appendix

1V) gives

(oP|er') = 0 (49)
for the optimum z. This means that we have orthogonalized the ''shapes"
of the orbitals ¢, and ¢,. In practice, this means, for example in the
case of H,, that when a 12; state dissociates the two orbitals must not
have the same character. An allowed dissociation would be a 1s on the
left hydrogen and a 2p on the right. Their shapes are orthogonal.
Dissociation to two 1s atoms is forbidden since their shapes are identi-

cal. In fact, the many-electron wavefunction for that state vanishes

L R
¥ = [olo + gRol - ool - gloB1 = 0 (50)

if (p{“ = 1s; and qo? = 1sp, so that cpf“ = gozL'.

For the singlet, non-symmetric case, even after the denominator
is maximized both for (x, 1/x) and shape transformations, there remain
"unitary" shape transformations. The final resolution must come from

an orbital energy matrix.

4. Two electrons - the orbital energies: The idea of finding orbital

energies (as explained above) is basically to make the ionization energy

(which is in this case €, = E, -~ E,) as small as possible, which is the
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same as making the core of the n-electron system be as close as possible
to the n-1 electron wavefunction of the ion.

In the 'B case above the transformation that is yet to be defined is

<p}‘—*g—oll‘=coseqpf‘+sin6<pg“
(51)
gp,f2 E? = -sin 6 ¢?+cose csz .

If DENOM has been maximized, then the shapes are already orthogonal
and this transformation (51) leaves the wavefunction, ¥ and DENOM

unchanged. So we write down e,,

€ = Ez - (@%lhh—o}‘>

. 2
&:(6) = E, - cos®0( ¢"|n| ol - sin’0( o¥|n|l) (52)
+ 2 8in 6 cos 6( (p%‘]hl(pf‘} .
The only step remaining is to maximize ¢, with respect to 6, i.e.,
de,/d6 = +sin 26[h,, - h,, ] + 2 cos 20 h,, (53a)
SO
Ctn 29 = (h22 - h:u)/zhlz. (53b)

Now the orbitals are determined. Once again a complete description
of the maximization of the denominator and the diagonalization of the |
orbital energy matrix for two electrons and general abelian groups is
given in Appendix IV. Appendix V discusses this same problem for

spin projection of generalized spin orbitals.
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RESULTS - H,

A. Introduction: The electronic states of the hydrogen molecule form

a simple quantum mechanical system, at least compared with other
molecules. For a molecular model as successful as the molecular-
orbital/Hartree-Fock theory has been, hydrogen should be its most

conspicuous triumph. It is not.

The molecular orbital (MO) theory for H, begins with the orbital
correlation diagram;21 based on the states of H;, as shown in Fig. 1.
The states of H, are formed simply by placing one or two electrons in
the various molecular orbitals. The low-lying Z states would then be

described as follows (in order of increasing energy):

2 1., +
- 1
(log) Eg
loglo, - 1 T, 1z, (54)
lorgzc:rg - 1 3Eg+, 2 12g+,

where the states to be derived from each configuration are listed on the
right. This simple model gives a surprisingly good description of the
character of the states near equilibrium internuclear separation. The
order of the states in Eq. (54) is correctly predicted; the appearance of
the Rydberg series, such as (log)(nog), is explained; and the lowest
triplet is predicted to be unstable. But certain problems remain. Since
we are interested in the electronic structure not only at nuclear equilib-
rium but we also want to construct, analyze, and explain the effective
potentials for nuclear motion. With only the one exception of the lowest

triplet, the simple MO ideas are unable to describe adequately the
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potential curves and dissociation products. This is particularly impor-
tant, since much of molecular spectroscopy is the study of the potential
curves.

First consider the ground state, which was (log)z. The correla-
tion diagram suggests dissociation into ground state atoms, lcrg — lsL +

lsR. This means that the total wavefunction becomes
v — [(lsLlsR +1splsy) + (Isp1sy + lsRlsR)](aB - Ba) (55)
covalent ionic

(ignoring normalization), where lsL and lsR are H 1s orbitals on the
left and right, respectively. The covalent term is the wavefunction that
describes two ground-state hydrogen atoms very far apart. The MO
description, even with self-consistent (Hartree-Fock) optimization of
the orbitals, fails to account correctly for the dissociation, and there-
fore most of the potential curve. The difficulty is the high energy of the
unavoidable ionic term (off by almost 8 eV at large R).

More seriously, excited configurations are predicted to
correlate with the wrong separated-atom limits. For example, at large

R the log and lo " orbitals of H: have the form

lcg = lsL + lsR

IO’u = 1sI_l - lsR .

(56)

Thus the 32; and 12: states constructed from configurations loglou
would be expected to dissociate into hydrogen atoms, each in the ground

state. However, the only two-electron states that can be constructed
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from two ground-state H atoms are the 12; and 32: states. In fact, the
lowest lE:; state dissociates to one H atom in the 1s state and one H
atom in an n = 2 state (2s or 2p).

The types of difficulties and inconsistencies mentioned above occur
quite generally and become even more troublesome for larger molecules.
But in spité of all this, H, should remain a simple system. The attract-
ive idea of putting the electrons in one at a time should be salvagable.
One single aspect of the MO correlation diagram is causing most of the
trouble. The hydrogen molecule is homonuclear. It was more than
natural that the homonuclear ion H; should have been chosen as the
model. The nuclear symmetry was frequently used in the correlation
diagram, and in classifying the one-electron orbitals and the two-
electron states. This symmetry is usually treated as a gift, an obvious
simplification in describing the states. I contend that the symmetry is
a trap.

This brings us back to the start. Since we want to ensure that
our description behaves correctly at large R, we will first examine the
known limiting forms for R = . The lowest states must involve a
hydrogen 1s orbital on the left and right, which yields the spatial wave-

functions,

lsLlsR + lsRlsL (57a)
lsLlsR - 1sRlsL R (57b)

leading to 12; and 32; symmetries respectively when combined with a

spin function and antisymmetrized. We will denote these states as:
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', | sy lsg (58a)
1s
L
R (58b)
u SR

where orbitals in the same row are understood to be symmetrically
combined |as in (58a)] and orbitals in the same column

are understood to be antisymmetrically combined [as in (58b)]. At
large R the other states of the system must involve excited states of
the atoms, the lowest of which would be one H atom in the 1s state and
one in an n =2 state (2s or 2p). Using &, = 2s and &, = ls, we obtain the

following four two-electron wavefunctions:

2" 1% %R | e = [ %%r | * | %aR%L (59a)

2y [200%R] w=%L%r | " | %ar%L (59b)

35 CaL EF—CE; . PaR (590)
%R| ¢ PbR PbL

54 CpaL _ PaL i 3R (590

= ldrlu % PbL) . '

These wavefunctions are just spatially projected orbital products as
described above. Now with one H atom excited, the excitation can be
either on the left or the right, leading to the two terms in each of the
wavefunctions (59). The same procedure applies to the higher excited
states.

The wavefunctions in (58) and {59) were constructed using atomic
orbitals and are the exact molecular states for R = », For finite R the

exact wavefunctions can no longer be written in such simple forms;
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however, we will consider approximate wavefunctions at finite R where
the form of the wavefunction is taken as in (58) or (59) but in which the
orbitals (¢a and ¢>b) are solved for variationally as a function of the
internuclear distance rather than taken as atomic orbitals.

We will find that this projected generalized valence bond technique
will provide a consistent description of the low-lying states of H, .
Further, this method permits and suggests that any state be built up out
of its constituent orbitals, and that these orbitals may be described by

a one-electron model-~that is, an orbital correlation diagram.

B. The Calculations: The original objective when the herein reported

calculations were done was rather limited. It was basically twofold.
The question of what constituted a "'valence'' state was to be investigated.
Specifically, the B "5’ (first '5) state of H, had been called a valence
state since it was to be made out of 1s orbitals, i.e., laglou. Recog-
nizing that the problem in the dissociation of this state could be solved
no more simply than by spatial projection, spatial projection itself be~
came of interest.

The basis set chosen was made from 32 gaussian primitive func-
tions, (10s, 6p), on each center contracted into 16 functions as shown

in Table I.
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TABLE 1. The 16 BF H, basis, (10s, 6p) gaussian primitives, [5s, 3p]

contracted functions on each center.

Orbital Exponent

Contraction Coefficient

82.
12,
2.
0.

4736
3983
83924
81472

.27184

. 09948

. 6935
. 5827
. 0427

.0165

. 44001
. 56748

. 7338
. 1742
. 0557

.0202

0.
0.
0.
0.

1.

00688397
05205669
25325049
76848733

.01716550
. 11769463
. 03642546

. 33711392
. 77640215

.03893322
.26990651
. 78413778

0

first s

second s

third s

fourth s

fifth s

first p

second p

third p
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The first three s functions and the first p function were taken from the

H, calculations of R, C. Ladner. 22 The last two s functions and the

last two p's were taken from Huzinaga'523 expansion of 2s and 2p Slater
functions with orbital exponent of 1/n = 1/2. Since initially only n = 1
and n = 2 H, states were to be studied, this basis should have been (and
was) adequate. For reference, Table II gives a description of the hydro-

gen atom in this basis.

TABLE II. Hydrogen atom in the 16 BF basis (in atomic units).

1s 2s 2p

E -0. 499905 -0.124927 -0. 124956
V/2E 1.000351 -- 1. 000956
C, 0.308373 0.087098 0.001863
C, 0.491603 0.227168 0.676341
C, 0.295503 0.303389 0.415377
C, 0.023548 -0. 443745

C 0.000873 -0. 791773

»

An attempt to describe the 3s and 3p states of hydrogen gave energies

of -0.2754 and -0. 3239, respectively, compared with the correct

-0.05555. The 16 BF basis will be expected to do poorly for n = 3 states.
In this basis optimum projected wavefunctions for the lowest

three ‘=% states, and the lowest two states for each of the symmetries

1Z+ 3E+

3+ . . .
ur Zgo Z,, were found for a variety of internuclear distances from
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R = 0.8 to R = 16 atomic units. The resulting total energies are
reported in Table III, and plotted in Fig. 2. In Table IV we have the
orbital energies €, for the outer orbital. The orbital coefficients are
given in Appendix VI.

As will be more fully illustrated below, H, turned out to be a
more interesting molecule than was originally thought. The higher
states were more complicated than expected. To look at these higher
states and to verify that the highest states reported in Table III
were adequately described, three distances were redone with a
slightly larger basis. The idea was to put in more diffuse
functions to describe n = 3 states as well. A basis of 56 Gaussian
primitives was selected, (11s, 8p, 3d), on each center. The old 16 BF
basis was just increased by adding 1s, 2p, and 3d's on each center.
This was first contracted to 26 functions [6s, 4p, 1d] that gave H-atom
energies of -0.499905, -0.124935, -0.055484, -0.124960, -0.055486,
and -0.055492 for the 1s, 2s, 3s, 2p, 3p, and 3d levels, respectively.
Finally, the basis was further contracted to 18 basis functions. The
tightest contracted function at each of the distances done (R = 2, 3,4 a,)
was taken to be the @y (inner) orbital from the 16 BF calculation on the
2 12; state. The total energies of the higher states are reported in

Table V.
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TABLE V. PGVB H, total energies (in a.u.) for the 18 BF basis.

R 3 125 4 lz; 2 'z} 2 325 3 32;‘ 2°n7

2 -0.65853 -0.65272 -0.66203 -0.65884 -0.65802 -0.68127
3 -0.64628 -0.62686 -0.64407 -0.63647 -0.62859 -0. 66059
4 -0.64342 -0.60092 -0.62722 -0.61455 -0.59503 -0. 63493

The corresponding outer orbital energies, €, are given in Table VI.

TABLE VI. PGVB H, orbital energies, ¢, (in a.u.) for the 18 BF basis.

R 3 lz; 4 ‘zg 2 'z 2 32; 3 32; 2°z]

2 -0.07539 -0.06558 -0.08313 -0.07211 -0.06464 -0.09474
3 -0.13891 -0.08211 -0.10129 -0.07874 -0.06351 -0.10558
4 -0.12887 -0.08638 -0.11737 -0.08825 -0.06147 -0.11406

In Fig. 3 we have plots of the ¢, (inner) orbital for several of the
states at a few distances. The lcg orbitals from H; and the G1 orbital
for the H, ground state are included for comparison. In each H, case,
the ¢, orbital resembles a hydrogen 1s orbital on the left. This orbital
appears relatively unchanged as we proceed from state to state and does
not change much even as R is varied. On the other hand, as shown

below, the other orbital (¢b) differs markedly from state to state and in

some cases changes significantly as R is varied.
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Thus the various low-lying excited states of H, may be described

L
as single excitation (of gbb) from a ground state

as in (3) where ¢, ~ ls;. That is, these states may all be considered

2 Ol g g

This suggests that in studying the states of H, we may concentrate on
the form expected for ¢b'

Since qba is primariiy concentrated near the left proton, we would
expect cpa to effectively shield the left proton from ¢>b. Thus the field
seen by ¢b could be qualitatively viewed as a nearly unshielded proton
on the right and a nearly shielded proton on the left (say, an effective
charge of Z .. ~ 1/5). Then the spectrum of states, {¢>b}, and the
dependence of each state on R would be expected to resemble that of a
one-electron diatomic molecule with charges ZL = Zeff and ZR = 1.
That is, our model for describing the H, excited states will be a one-

electron heteronuclear diatomic molecule.
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C. The One-Electron Model: A few calculations on one-electron

diatomics have been reported in the literature. 24-27 A number of

observations can be made, summarizing these results, that will be
applicable to a description of the states of H,.
A remarkable aspect of the one-electron two-center problem is

the extra symmetry operator28 (in a. u.)
2 2 %
€ =L + R (v2- -522) + 2R(Z,cos8 ©, - Z,c086,) 60)

This extra symmetry is what allows the separation of variables, the
crossing of curves otherwise of the same symmetry, and the classifica-
tion of all the one-electron states by n, £, m quantum numbers just as in
atoms.

In Fig. 4 we see line-plots of the wavefunctions for the lowestfour ¢
states of HeH™ (taken from Ref. 25) as functions of the internuclear
distance. It is to be noted how smoothly each state varies as R changes.
In specific, each state has a characteristic appearance that connects it
to the united atom limit for which it is named. In Fig. 5 we have
further information about the chéracter of each state, the nodal sur-
faces for the first eight o states of HeH™'? (from Ref. 27). As Wilson

27 have observed, the nodal surfaces are always ellipsoids

and Gallup
of revolution,and single sheets of hyperboloids of revolution of two
sheets. The resemblance to the nodal surfaces of the corresponding
united atom states is pronounced and significant.

In Fig. 6 we have plots of the electronic energies of the lowest

eight o states for HeH™ and LiH™ (from Ref. 27).
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Fig. 5. The nodal surfaces for the first eight ¢ states of HeH ™
at R = 2 a.u., from Ref. 27.
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It is to be noticed that some curves show marked bonding effects,
while others are nearly flat. For example, the lso state, which is a
1s orbital at very large and very small R, contributes strongly to bond-
ing for small R. The 2po, 3do, 4fc, etc., states generally lead to
bonding and a minimum at large R. This can be understood by noting
that the overall size and shape of the various orbitals (i.e., states) of
the molecule depend only slightly on the internuclear distance (see Fig.
4), and that each of nfo orbitals with £=n -1 has two principal concen-
trations of charge density along the internuclear axis. The minimum
energy then occurs for R comparable to the distance between these
lobes of charge density. On this basis we expect the maximum bonding
(for a total effective charge of 1) in the above nfo orbitals (with £=n-1)
to occur for R ~ 2n(n-1), i.e., R ~ 4 a, for 2po, R ~ 12a, for 3do,
and R ~ 24a, for 4fc.

An idea associated with this description of bonding is that of ionic
character. We consider the system of LiH*®. Crudely speaking, those
states that have most of amplitude of the wavefunction near the Li
nucleus should have a nearly flat electronic energy curve, dropping
only when the centers are quite close (cf. the 2so state above). The
electron much prefers to be on the center with the most charge (the Li
nucleus). It is relatively uninterested in the smaller center (the proton).
But, if the electron should start out on the hydrogen, then its desire to
move back to the lithium will cause a rapid drop in the energy as the
distance decreases. So states with a large amplitude on both centers

(i.e., 2p, 3d, 4f, etc.) will be expected to be binding.
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To construct a model for the states of H, we need two orbitals,
@y and P The effect on the binding due to the outer orbital, Py is
to be described as above. The inner or core orbital, @y is basically
a 1s orbital as we have seen, slowly becoming an H2+ log orbital as R
is decreased (see Fig. 3 above). We therefore expect the ®, orbital
to contribute to bonding much as would the lorg orbital of H; , which is
a considerable amount. The total binding is the sum of the contribu-
tions of @y and Py In Fig. 7 we have the curves obtained by adding
the electronic energies from the states of Lig™ (scaled to a total
nuclear charge of about 1. 3) to the total energy of the ground state of

H,.

This should give qualitatively accurate energy curves for the vari-
ous Z states of H,.

But we have yet to describe any dependence on spin or spatial
symmetry. The H, states are to be made (to first order) out of P
]‘SL’.. and @ from the scaled states of LiH'". As indicated in Eq. (59),
there are four basic couplings of these orbitals and hence four two-
electron states resulting from these approximate orbitals (of course,
the self-consistent orbitals will not exactly coincide). As shorter and
shorter internuclear distances are considered, the wavefunctions for
even an asymmetrical system such as LiH™ begin to resemble more
closely their united-atom limits. This means, for instance, that the
function labeled 2po becomes a 2p atomic function in Be™ (see Fig. 4
for the similar case of HeH ™ — Li+2). In specific, the model state

1P, will become 1s2p, the g component disappearing as R —0, leaving

only u symmetry.



O R 16

Fig. 7. One-electron model H; and scaled LiH™>,
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At large R the 1so2po configuration generates states lzg, IZJ,
325, *z% [as in Eq.(59)]. The 12:; state would be written as | 1sozpa’g.

If @, retains the 2po character all the way to R = 0, then the united-
atom wavefunction ¢y s gozp would have u spatial symmetry, and the pro-
jected wavefunction would vanish. Thus, we know that the self-consistent
orbital @, must change character before R = 0. For small R, the char-
acter of P is expected to be 2so, which is the lowest excited state in
Fig. 7 that allows 12; symmetry for R = 0. The change of character
should occur mostly around 3 to 4a,; the region in which the n = 2, @,
orbital begins to overlap significantly with the 1s orbital on the other
center (that is, when the wavefunction begins to cancel out).

The 2po orbital is strongly bonding at large R; so the energy of
the 2 12:; state should drop rapidly as R is decreased to ~ 4a,. For
smaller R the 2po character in @ is replaced by 2so character, lead-
ing to an increase in energy. Finally, for smaller R (~ 2.5to 2a,),
the @, orbital contributes to the binding (as in H; ) leading to a second |
energy minimum around 2a, (as in H;). The net result of these effects
should be a double minimum in the energy curve for the 2 IE; state as
indicated in Fig. 8. This double minimum is well known and will be
discussed in greater detail below.

The point of this section is to illustrate how the projection oper-
ator may discard a low-energy piece of the wavefunction because it has
the wrong united-atom symmetry. The loss of a low-energy component
will cause the energy of the state to rise. This will come up repeatedly

in the discussion below of the various H, states. Indeed, this projected-
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Fig. 8. 12; projected correlation diagram.
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out component may be handed from state to state as it rises and crosses

each state in turn as R decreases. We might call it a diabatic state.

This may explain the observed predissociation in the ) o H, states29

and dissociative recombination in He,. 30

D. The States of H,: In this section we will consider individually the

various low-lying = states of H,. Of particular concern will be the
classification of the states according to orbital character, manifested
in the shapes of the orbitals and potential curves. Comparison with

previous theoretical and experimental work will be made.

The 12; States:

+
g
received more attention from theorists than any other molecular state.

The ground state of H,, designated X = or 1 lzjg* , probably has
The outer orbital, Py, as shown in line-plots in Fig. 9, begins as a
hydrogen 1s at large R on the right hand proton and continuously tends

toward the 1s’ outer orbital of the ground state of the helium atom. The X

state is characterized by the configuration lsoLlsoé -g‘ The PGI
energy curve is shown in Fig. 10 along with the G1 curve (from Ref. 31)
and the essentially exact result bf Kolos and Wolniewicz. 32

The first excited 12); state (called E and F) shows a remarkable
double minimum in its potential curve (as has been mentioned before).
The change in orbital character of @, from 2po to 2so is clearly shown
in the line-plots (Fig. 11), and contour plots (Fig. 12a). Compare, in
specific, the line-plots at R = 8 and R = 1 with the HeH ™ plots (Fig. 4)

2po at R = 5 and 2so at R = 1. The potential curves are shown in Fig.



Fig. 9. ¢, orbitals for the 1 ‘2; state of H,, PGVB.
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Fig. 10. Total energies for the 1 IE; state of H, (called X):

long dashes, G1 (Ref. 31); medium dashes, exact
(Ref. 32); solid line and crosses, present calculation

(16 basis functions).
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_

Fig. 11. ¢, orbitals for the 2 12; state of H,, PGVB (16 basis

functions).
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Fig. 12, @, orbitals for H,, PGVB (16 basis functions)

contours 0, + 0.01, + 0.02, + 0.04, + 0.08.
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13. The present (16 basis function) calculation is compared with the
more complete 32-configuration wavefunction of Davidson33 (the dis-
coverer of the double minimum), and once again the essentially exact
result of Kolos and Wolniewicz. 34

Examination of the line-plots (Fig. 11) for R = 12 to about R =
3.5 shows a considerable amplitude on the proton that already has a 1s
electron. To this sharing of the outer electron, ionic character if you
will, we may attribute the strong binding shown inthe R = 4to R = 12
region. The orbital is 2po-like, the lowest orbital with much ampli-
tude on both centers. An interesting manifestation of this large ionic
component is the large error between the present projected orbital
product energy and the exact energy of Ref. 34 near the outer minimum.
A negative ion state, such as H', is relatively poorly described with-
out angular correlation. The outer electron is weakly bound anyway so
correlation is a large effect. The wavefunction of Kolos and Wolnie-
wicz34 has a complete description of the angular correlation (7, 62,
etc., terms). The present simple orbital product has no angular cor-
relation terms at all.

The standard MO treatment describes the outer minimum as being
due to the doubly excited configuration (1ou)2. This is accurate only to
the extent that it illustrates that the 9y components of the two orbitals
play a significant role. But as Figs. 11 and 12a abundantly show, the
@y orbital retains the diffuseness of a 2s or 2p hydrogenic function at

all internuclear distances; the @, orbital is always 1ls-like in extent

(as shown in Fig. 3); and we therefore conclude that the contribution of
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Fig. 13. Total energies for the 2 12;' state of H, (called E-F): short
dashes, CI (Ref. 33); medium dashes, exact (Ref. 34); solid

line and crosses, present calculation (16 basis functions).
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the (1o u)2 configuration is mainly heuristic.

Less is known about the third 12; state. The state should corre-
late with the 2s + 2p level of H and the 3s state of He at the separated-
and united-atom limits, respectively. This state has therefore been

35 Looking at Fig. 8,

attributed 3s character and has been named H.
we see that indeed 2so character is expected at large R, that the state
should have a double minimum as the 2 IE; state steals the 2so char-
acter, and that for small R the state should be 3dcr-iike. The 3s0
state is the next higher (see also below).

The line-plots (Fig. 14) and contour plots (Fig. 12b) show that
indeed this is what happens. The corresponding plots with the larger
basis are given in Fig. 15. Finally, the energies are given in Fig. 16.

33b (of mediocre quality) and Rothenberg and

The results of Davidson
Davidson36 (of high quality) are shown for comparison. That the 3 12;
state was in fact of 3do character near R = 2 rather than 3so seem$ to
have been first noticed by Wakefield and Davidson. 37 Unravelling the
experimental spectrum for this state still awaits further effort.

Even worse off is the 4 12‘,; state (called G). Figures 7 and 8
predict it to be of 3so character near R =2, of 3do character for
large R, and to have a broad minimum aroﬁnd R = 12. The 18 basis
function projected @ orbitals are shown in Fig. 17, the energies along
with those of Refs. 33b and 36 in Fig. 18.

Finally the excited lzg states are summarized by a plot of their

orbital energies in Fig. 19. We can in fact see the evidence of the

changing of orbitals. The curves rise and fall, nearly crossing as
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Fig. 14.

@, orbitals for the 3 ‘z; state of H,, PGVB (16 basis

functions).
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Fig. 16.  Total energies for the 3 IE; state of H, (called H): circles,
CI (Ref. 33b); short solid arc from R =1.9to R =2.1, CI
(Ref. 36); solid line and crosses, present calculation (16

basis functions); triangles, present calculation (18 basis

functions).
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Fig. 18. Total energies for the 4 12; state of H, (called G): short
dashes, CI (Ref. 33b); short solid arc from R = 1.9 to

R = 2.1, CI (Ref. 36); triangles, present calculation (18

basis functions).
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Fig. 19. PGVB orbital energies, € _, for excited 12; states of H,:

solid line and asterisks, 2 12; (16 basis functions); short
dashes and squares, 3 IE; (16 basis functions); X's, 3 12);

(18 basis functions); triangles, 4 12; (18 basis functions).
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they exchange orbitals. The 2po character will disappear off the top of

the page after crossing every 12; state.

The 12:; States:

The first or B 12; state is famous for its broad potential minimum.
The outer orbital is of 2po character for all internuclear distances, as
illustrated in Figs. 20 and 2la. The broad minimum is due to the strong
binding nature of the 2po orbital (as discussed above). The potential
curves are shown in Fig. 22. Comparison curves from previous calcu-

38-40 are also shown.

lations
The MO description of this state is 1o glou , but once again the
plots of the @ orbital indicate no variation from the diffuse 2p charac-
ter.. This is the prototype "V' valence excited state. Once again the
MO description merely is a guide rather than a characterization. The
state is as diffuse as a 2p Rydberg state at all distances. Indeed the
error between the projected curve and the exact curve in Fig. 22 shows
that angular correlation will play a large role, and that the wavefunc-
tion will tighten up, but not enough to make it a "'valence' state.
Interest has developed in the 2 IZ}; state (called B’ ) concerning

41 This state begins

whether its curve crosses that of the D 'II u state.
as 2so at large R and becomes 3po at small R as the 2so character is
destroyed by the projection operator, as shown in Figs. 23 and 21b.
My potential curve in Fig. 24 shows a very shallow minimum at large
R, a hump around R =5 and a deeper minimum at R = 2. Such a

hump is missing in the RKR experimental curve also shown. Perhaps
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Fig. 20. @, orbitals for the 1 IE; state of H,, PGVB (16 basis

functions).
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Ref. 21. ¢ orbitals for H,, PGVB (16 basis functions) contours
0, +0.01, + 0.02, = 0.04, = 0.08.
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Fig. 22. Total energies for the 1 12: state of H, (called B): long

dashes, limited CI (Ref. 39); short dashes, more complete
CI (Ref. 38); medium dashes, exact (Ref. 40); solid line

and crosses, present calculation (16 basis functions).
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Fig. 23. Py orbitals for the 2 12; state of H,; PGVB (16 basis

functions).
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Fig. 24. Total energies for the 2 12; state of H, (called B'):
medium dashes, HF (Ref. 41); short solid arc R = 1.9 to
R=2.1 CI (Ref. 36); short dashes, RKR (Ref. 42); solid
line and crosses, present calculation (16 basis functions);

triangles, present calculation (18 basis functions).
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this hump will be sufficient to resolve the difficulties with the experi-

mental curve.

The IE: results are summarized in the plot of the orbital energies

shown in Fig. 25.

The 32; States:

The classification of the triplet states according to orbital char-
acter proceeds as smoothly and as informatively as for the singlets
except for one important difference. The outer electron finds the
already occupied proton to be repulsive. No triplet states of H™ are

bound.
+
g

The MO configuration 1so2sc has been asso-

The first significant calculation on the a 3%
43

state of H, was that
of James and Coolidge.
ciated with this state. A glance at the orbital-line-plots in Fig. 26
convinces one of the appropriateness of this description. The potential
curves are given in Fig. 27.
Wakefield and Davidson37 first discussed the characters of the

h "z; and g 322
at very small R, mixed at R = 2 (they cross), and reversed [3do and

states, identifying them respectively as 3sc and 3do

3sc | at larger R. The orbitals are shown in Figs. 28, 29, and 30,
the energies in Figs. 31 and 32, We may think of the hump in the
2 32; curve as being due to a promotional effect, the n = 2 orbital at
large R becoming an n = 3 orbital at small R.

As before, the 32; states are summarized in the plot of orbital

energies, Fig. 33.
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Fig. 25. PGVB orbital energies, € for 12:; states of H,: solid
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Fig. 27. Total energies for the 1 32; state of H, (called a); long |
dashes, limited CI (Ref. 44), medium dashes, exact
(Ref. 40b); solid line and crosses, present calculation

(16 basis functions).
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Fig. 31. Total energies for the 2 s+ state of H, (called h): short

calculation (16 basis functions), triangles, present

calculation (18 basis functions).
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Fig. 32. Total energies for the 3 32; state of H, (called g): short
dashes, CI (Ref. 37); triangles, present calculation

(18 basis functions).
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Fig. 33. PGVB orbital energies, €, for 37 states of H,: solid line
and stars, 1 37_:;; short dashes and squares, 2 12;; long

dashes and x's, 2 32";.
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The b 321’; state was the only one whose dissociation is adequately
described by MO ideas. I prefer to think of this state as coming from

the configuration

lsoL lsoR

u
The wavefunction vanishes at small R unless the outer orbital becomes
more and more antisymmetric. This is illustrated in the orbital-line-
plots (Fig. 34 ). The repulsive energy curves are not shown (except in

31 32

Fig. 2) since the Hartree-Fock, and present projected cal-

exact,
culated curves are visually indistinguishable.

As far as I can find, the e 32:; has received only the limited theo-
retical treatment from R = 1.9 to R = 2.0 a.u. of Rothenberg and

45 and

Davidson. This curve, the experimental RKR curve of Dieke,
the present PGVB curve are shown in Fig. 35. As we can see from
the line-plots in Fig. 36, the @ orbital begins as 2so at large R,

becoming 3po at small R. The orbital energy is shown in Fig. 33.

Summary: This entire description of the low-lying T states of H, is

summarized in Table VII.
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Fig. 35. Total energies for the 2 32; state of H, (called e); short
solid arc from R = 1.9to R = 2.1, CI (Ref. 36); short
dashes, RKR (Ref. 45); solid line and crosses, present
calculation (16 basis functions); triangles, present

calculation (18 basis functions).
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Fig. 36. ¢, orbitals for the 2 °Z] state of H,; PGVB (16 basis

functions).
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TABLE VII. Summary of Orbital Characters.

State “
Large R R~ 2 Features (in a.u.)

1 12; (X) 1so 1so
2 12; (E, F) 2p0 2s0 minima (2, 4. 5), hump (3)
3 12; (H) 2s0 3do minima (2, 3. 5)
4 12; (G) 3do 3so minima (2, 12?)
1 12; (B) 2po 2po broad minimum
2 12; (B’) 2s0 3po shallow outer minimum (8)
1 32; (@) 2s0 250
2 ’z; (h) 3do (n=2) | 3s0+3do | hump (5)
3 32; (g) 3s0 (?) 3do + 3so
1 32:; (b) 1sco 2po
2 32:; (e) 2s0 3po hump (6)
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IMPLICATIONS

We have seen the success with which spatial projection permits
a description of the excited states of H,, in spite of the molecular sym-
metry. This independent-particle model explains the potential curves
without the need for interaction between configurations. Rather, the
various minima and maxima are due to changes in orbital character.
The orbital characters themselves come from the model one-electron
heteronuclear diatomics.

The applicability of orbital character extends far beyond the
states of H,. Recent detailed discussions of the excited states of
LiH, 46 He,, 8k, 30 and LiNa‘y7 may be examined. The outer orbital for
most small diatomics very closely resembles one of the states of the
model one-electron heteronuclear diatomic. One might conclude that
an orbital is an orbital is an orbital.

Symmetry projection has become more attractive for much larger
systems as well. A description of the states of ozone, for example,
would be much clarified by symmetry-projected GVB calculations.

One state of interest involves a lone o electron on one end and a lone
7 electron on the otherf18 The MO theory is rather overwhelmed by
such a state. A similar situation obtains in a discussion of excitations
in solids. With such high symmetry, it seems a shame to let it go to

waste, but the only way I can think of to treat localized excitations

consistently requires a spatial projection operator.



82

It is only after considerable education that group theoretical
ideas become intuitive. At that point the group theory may begin to
overwhelm what old-fashioned physical intuition remains. One should
remember that while group theory and symmetry make the problems
easier, they sometimes make them so easy that we deceive ourselves.
Perhaps we should trust the 'exact' symmetry less and our naive

intuition more, in spite of calculational difficulties.
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APPENDIX I.

Index Sxmmetrz and the Transformation of Two-Electron Integrals

This Appendix discusses the general transformation of two-
electron integrals and in specific the use of the index symmetry of

the arrays of integrals to speed up the transformation.
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INTRODUCTION

The calculation of molecular wavefunctions is often much facili-

tated by the transformation of the fundamental two-electron integrals

Ap ke = 0@ =] vy

[ a1 [ d, o 3, (20, (2) (1)
1 ] r, 'K [}

into the corresponding two electron integrals over a new set of basis

functions
Zag,ys = $SaD8,2) [7=] 61352 ()

where each ¢, is a linear combination of the ¥,'s.

If the number of basis functions in the two sets is N, then
depending on how the Z integrals are calculated in terms of the A
integrals, the number of multiplications (or the OpC [1]) may increase
as rapidly as qNB or as slowly as q'Ns. In addition, the coefficients
q and q' may vary by more than a factor of three depending on the
specific approach chosen.

Herein we will consider in detail the techniques for such
transformations. In particular we note that the array of integrals A
is symmetric in the indices i and j; and the indices k and £; and
in the pairs ij and k¢. This index symmetry can be exploited during
the transformation, in order to minimize the multiplicative coef-

ficient q.
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MATRICES.

First we will consider the simpler case of a given symmetric N
by N matrix X, which is to be transformed to a symmetric M by M

matrix Y, defined as
or (3)
Y = C'XC

Here C is a given NX M transformation matrix.

A. Direct multiplication: An obvious but inefficient method of

accomplishing the transformation (3) would be to calculate the quan-
tity CiaxijCjB for eachi, j, a, and 8. Each of these terms would
then be accumulated in the appropriate YaB' This technique would
require 2N’M” multiplications. Use of the index symmetry of X and

Y reduces the operation count to SN(N+1)M M +1).

B. Intermediate matrix: The direct multiplication method can be

much improved simply by summing over j first, defining an inter-

mediate matrix

(XChip = 24 X;iCyp - @
Then finally
Yo © ? Cia(z}gg)iﬁ . (5)

Now N°M multiplications are required in eq. (4) and 3NM (M+1)
[i.e., @ = 8] in eq. (5) for a total of N°M + 1NM (M+1). This
becomes almost 3/2 N° for N = M > 1 and only N°M for N > M.
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C. Index Symmetry: We notice that any symmetric matrix may be

written as the sum of a matrix and its transpose:

X=L+L'. (6)

This can be accomplished in an arbitrary number of ways. If we
require L to be lower triangular, then ,Idt is upper triangular, and the
decomposition is unique.

Using (6), Y can be written as

Y = c're + cliic
or (7)
t
Y = ¢c'Le + [c're]

(8)

will consume only # N (N+1) M multiplications. The sum over i now
requires NM® multiplications, so that the total OpC is 4 N (N+1)M +
NM®. This reduces to 3/2 N’ for N= M > 1 and to 4 N°M for N > M.
Since N is almost always at least as large as M, it is apparent that

this is the method of choice.

TWO-ELECTRON INTEGRALS

The two electron integrals of equations (1) and (2) are related

ZaByb = i%;d CiaCigAijkeCryCr6 (9)
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where C is the NX M transformation matrix connecting the N functions

{#;} and M functions {¢, }.

A. Direct multiplication: As before the explicit calculation of

CiachAijlek'yClG for each i, j, k, £, a, B, ¥, 6 requires the
largest number of operations, ~ 3 N4M4, if the index symmetry of Z

is used.

B. Density matrices: One method of improving upon direct multipli-

cation is to use density matrices, which are defined by

[Ciacjﬁ + ciﬁcja] i#]
Dij, ap = (10)
CiaCjB i=]
for alli>j, a = B
Then eq. (9) becomes
Zagys = izgj @ D;jap®iikePrays (1)

Considering each pair i, j as a single subscript, ij = i(i-1)/2+j, and
similarly for aB, and setting ms = § M (M+1), ns = § N (N+1), we

obtain

ns ns
. (12)

Zag, v6 = (= 7 D e, 1Pt o
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This is just the conjugation of a symmetric matrix, and therefore
requires at least 3 ns (ms+1) ms + ns (ms)® multiplications. Expand-
ing in terms of N and M, the OpC is 1/16 N (N+1)(N*+N+2)M(M +1) +
IN(N+1)M?*(M+1) or approximately 1/16 N*M® + 1+ N°M* This becomes
3/16 N°if N = M and 1/16 N*M” if N > M (see also Ref. [2]).

C. Intermediate matrices: Just as with the conjugation of matrices,

we can obtain an alternative approach by saving the intermediate
result after each summation
=2 cia_Ecjﬁ§ Cky%A..kQCm (13)

Zaﬁy& " ij

Using no index summetry, this takes N'M + N°M® + N°M® + NM*
multiplications, which leads to dominant terms of 4N° and N*M for

N =M > 1 and N > M, respectively (see also Ref. [3]). Using the
index symmetry of each intermediate result, i.e., never calculating
anything more than once,reduces the OpC to £ N*M + + N°M + L N°M°
+ 1 NM® which reduces to 12 N° and A N*M for N=M >» 1 and N » M,

respectively.

D. Index symmetry: The given problem (9) can be written in sym-

bolic tensor notation

z-ct'®ct-i-c®c . (14)

-~

Let é be any fourth rank tensor, then the possible index permutations

(analogous to matrix transposition) are defined by
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Qe = Q(ijie) (15)

where T is any permutation from S, (the symmetric group in four
objects). For example

-~ (12) by

Qijke = Ve (16)
Now the symmetries of the array of two electron integrals can be

written as
AT-A for Te€T (17)

where T is the subgroup of S, generated by {(12, (34), (13)(24) }.
In analogy to the use of triangular matrix L in (6) for the

conjugation of symmetric matrices, we decompose A as

A=-2 17 (18)
T7€T

uniquely by choosing so that Tijkl = 0 if the indices i, j, k, £ are out

of their standard canonical order [4]. Next it is noticed that
C'®c-Tcocr-c'®@c-i-c®¢c . 9

So if we set

ol
A
&
>

(20)

then
7z =2 BT . (21)
T
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The four successive summations are illustrated in Table 1. All of
the final index symmetry is introduced by the sum over permutations
at the end (21). This means, for instance, that Fij'yé # Fijﬁ'y for
v # 6. Earlier introduction of some of the final index symmetry
reduces the number of operations in steps 3 and 4. See specifically
steps 3’and 4’ in Table 1. Now.

2) A @3)4) ~(2)(13)(24)

Z=V+V 4V LV . (22)

The grand total OpC comes out to be
IN'M+41NM + 2 NM° 4+ ENM (23)

(ignoring terms of less than fifth order, i.e., N, M > 1).
This reduces to 29/24 N° = 1.21 N° for N= M > 1 and £ N'M for
N >M,

Using only the simple symmetries i«—j, k£ in (12) yields
IN'M + 2 N*M + L N°M + 4 NM* which becomes# N° and £ N*M for
N =M and N » M, respectively (see also Ref. [5]).
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PROGRAMMING

Only the salient programming features will be presented here;
a more detailed discussion, with program listings, is available upon
request. A crucial restraint on machine calculations is
array storage. The problem is especially acute for large molecular

calculations, and in particular integral transformations of the type

discussed herein. The method of full index symmetry presented above
requires only a few of the incoming integrals (’I‘) at a time, in the
normal canonical order. Each integral is used completely and not
needed again. This means that the incoming integrals need not neces-
sarily all be in core at once, and that the tape or disk on which they
may reside need not be rewound or reread. Hence the number of
incoming functions (N) is not limited by storage regiments.

The outgoing integrals (2), on the other hand must be referenced
repeatedly. That they should all be in core at once is therefore a dis-
tinct advantage. This is feasible for approximately M < 20 with
moderate sized cores (e.g., 40, 000 words). Larger sets might be
handled using the integral sorting technique reported in Ref. [3], or
dividing the transformation into disjoint spatial symmetry blocks [5],
or as a last resort repeatative access of either the incoming [6] or
outgoing [ 7] integrals.

The program we have in operation at Caltech has array storage
requirements as shown in Table 2. The practical limits are approx-
imately N < 100, M < 20. It is further possible to rearrange the loop
structure within the program to capitalize on either zero transfor-
mation coefficients or zero incoming integrals, for an additional time

savings.
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SUMMARY AND CONCLUSIONS

We have seen that the retention of intermediate results, i.e.,
doing only one summation at a time, reduces the power dependence
of the operation count for the transformation of two electron integrals
from qN8 to q'Ns. Further the use of index symmetry minimizes
the multiplicative coefficient q’. The final formula, using the com-
plete index symmetry is given by eq. (23). The limiting dominant
terms are 29/24 N° and 1 N"M for N=M > 1 and N » M, respectively.
Finally, the input and array storage requirements for the use of the
complete index symmetry are no more restrictive than for previous
N° methods [3,5]. The application of index symmetry to the con-
struction of mixed orbital/basis-function integrals for SCF calculations

will be discussed in a following paper.
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Table 1

Summary of operations by steps for the transformation of two

electron integrals with full index symmetry,

Step Summation Approximate OpC
k
- 1\?
1 Xiiks = El TieCos s N'M
ke <ij
i 2
_ 1N\
2 Fiiyo = kZ=>1 X ik6Cky s N'M
213 s
3 = iy iN°
“igyo = 2 TiveCi = MM
N 4
4 BaByG N i§1 Glﬂyécla NM
i y
’ - 1
’ Yigys = 24 [Figys * Fijoy 038 N
N
’ _ 1
4 Vaﬁ'yé - 1231 YiBybcla z NM
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Table 2
Storage requirements for the transformation of two electron integrals

with full index symmetry

Step Array Storage For N = 60, M = 20
1 T 1 N(N+1) 1, 830
C NM 1, 200
X NM 1, 200
2 F (use 'f) 0
3/ Y 1 M (M+1) 4,200
4’ Z 1 ms(ms+1) 92, 155

[ms = § M (M+1)]

30, 585
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APPENDIX 11

Index &mmetrz and the Construction of
Mixed-Orbital/Basis-Function Integrals

This Appendix discusses the general construction of mixed-orbital/
basis-function integrals for use in Hartree-Fock and Generalized-
Valence-Bond calculations. Also discussed is the construction of
particle/hole integrals. Of special concern is the time savings avail-

able from the use of index symmetry.
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INTRODUCTION

In the calculation of molecular wavefunctions by the Self-
Consistent Field methods [ such as Hartree~Fock (HF) and Gen-
eralized Valence Bond (GVB)], one must compute a variety of mixed
orbital/basis-function integrals. The orbitals {o a} are linear
combinations of the basis functions {y;}, ¢, = z Cio ¥;- The nec-

i

essary mixed integrals are among

AAMM,, , = <wisoyl1/rm 505

ijyé ~

= [d’x, y;(Dy; fdxz— ?,(2)5(2)

1

AMAMin5 = (’101905 ‘E ,(06#/1()

= (Y, 'l’k T I¢B¢5> (1)

1

AMMM; 5 = W0, l5 - |905)

and

1

MMMM, g5 = (9,9, |57 | 9595 -

For HF, only J- and K-like integrals are needed, i.e., AAMMijyy
and AMAMinB. For non-orthogonal GVB, all are required. 1

In the preceding Appendix (hereafter called I), the application of
index symmetry to the transformation of two-electron integrals was
discussed. It would be expected that index symmetry might be of

importance in the construction of mixed-orbital /basis-function
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integrals as well. As in I, a variety of schemes can be imagined.
Once again we will evaluate the various techniques according to their
multiplication counts, 2 (OpC), seeking to reduce both the order of

basis-size dependence and the multiplicative coefficient.
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AAMM and AMAM

The integrals in question are given by

AAMM;q 5 = h AAAA 0 Co C s (2a)
K, 2
i L

The construction of AMMM and MMMM from AAMM is simple:

C.

AMMM;; 5 = § AAMM;; 5 Cig

’ 3)

MMMM g5 = ) AMMM;g C; .
i

These two steps require only about 3 NZM3 and %— NMm* operations res-

pectively and will be considered further below only for N =M.

A. Direct Multiplication: From I we expect that this technique will

be inefficient, but we include it for completeness. The products

AAAAijk ﬁckycﬂé and AAAijk !ZCi BCM must be calculated. Even using

index symmetry, this requires {N*N+1)M(M +1) + N°M(NM + 1) multi-

2

plications, or about 3/2 N*M” for M > 1. This can be reduced to N*M
by saving AAAAiijC,QG and using it twice. The OpC becomes 2N” for
M=1.
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B. Density Matrices: As in paper I. we define the density matrices

[Ciacjﬁ + Ciﬁcja] iz ]
= (4)

D..
ij,af

for alli =j, a = £.

Then equation (2) becomes

ns
AAMM;. 5= ) AAAA Dy) g (5a)
k¢=1
n n
AMAM; g, ; = Zl Zl AAAA;u 9 Dig g6 (5b)
j: 0=

where ns = %—N(N+l), ms = %-M(M+1). The OpC then is (ns)’ms +
%NaM(NM+1) or (%— +-;—)N4M2 = -g- N*M® for M > 1 and% N* for M = 1.
Some savings may be had by using more index symmetry in con-
structing AMAM, i.e.,
ns
AMAM, g, = D {MAAHM + AAAAukj} D, g6 (5b")
je=1 '

for a total OpC of% N4M2 for M >»1 and —;— N* for M = 1. The use of
density matrices saves a factor of 4 over direct multiplication, but

does not change the order, which is 4 + 2 = 6.
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C. Intermediate Matrices: As for the transformation of two-electron

integrals in I,

we save the intermediate result after the first

summation, i.e.,

N

AAAM 5= ) AAAA ( Crs - (6)
2=1

This step takes (ns)N°M or i N®M multiplications. Then AAMM and

AMAM are easily calculated

N

AAMM;, 5 = ) AAAM 5 Cp (7a)
k=1
N

(Tb)

AMAM; g = ?1 AAAM;q.5 Cip

for N (ns)(ms) ——i— N’M(M+1) -—;]1‘- NME M > 1 and% N°M(NM+1) -

1 N®MZ? multiplications respectively. The total OpC for equations (6)

2
and (7) is then

% N'M + ?i' N°M® for M > 1. The approach of saving
the intermediate matrix AAAM is therefore superior to that of density

matrices for M > 1. We note that this technique lowers the order to

4 +1-=05.
D. Index Symmetry: InI we found that the use of index symmetry
reduced the multiplicative coefficient in the expression for the OpC.

Such a savings is possible in the present case; it is not quite so large;

and the procedure is quite a bit more complicated. The basic idea is
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to consider transforming all the two-electron integrals from the basis
set {¥;} to a combined basis set {v,, <pa} or schematically A— A + M.
The kinds of integrals expected would be (A +M)* = AAAA, AMAM,

AAMM, AMMM, MMMM, and others. For transformation, we would

use the expanded N by (N +M) transformation matrix,

C T

L i¢ —1[
| 4
e N - Mo}

This matrix is to be (symbolically) fed into a twe-electron integral

Mes
H

- —— —— . a— -

transformation program (i.e., the one discussed in I.). Each step
of the transformation is to be analyzed, and superfluous operations
eliminated.
1. First step: From I. we have
k
Xigp = 2 Tijes Egpr (8)
£=1
k#<ij
If we suppress the subscripts i and j for the moment, the k,p part of

the X array can be represented by the matrix below. 3
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N
=

Sy

R

7

o e —— o—

o

e

where
AA = AA + (aA)Y, AM = (Ma)!
i
AM, s = AM, s+ MA, ;s = AM, s + )" AAg Cs (12)

=k
i

1
MM, 5 = Z‘I{AM] j Ciey + AM,, Cpst = 1;1 AMy5 Cy,
k= =

= Fiiys * Fijoy.

3. Third Step: From I. we have

] E. . (13)

Yipar = 2 [Fijgr * Fijrgl Fip

i }
HM -

]

Even if the subscript i is understood we now run out of pictures, but

we expect terms of the following types:

AAA, AAM, MAA, AMM, MAM, and MMM. (14)
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The terms AAA and MMM need not be calculated--they cannot be used
in constructing AAMM and AMAM. The terms AAM and AMM involve
no new work--they are just AM and MM of step two, i.e., éAMjkG =
éMké(j) (the j was understood). This leaves MAA and MAM, which
are given by '
i
MAAg, ) = ) AALG) Cig
=1
(15)
i
MAMg 5 = ?1 AM () Cig-
j=

4. Fourth Step: The final step, which calculates only AAMM

and AMAM comes from

Zpqrs ~ F [Yiqrs Eip * Yiprs Fig * Yispq Fir * Yirpq Eigl. (1)
This becomes
N
+ ) {MAAGij(t) Cy, + MAA,yi].(t) Cta} (17a)
t=1

N
+ ) {AAMy (1) Cyg + AAM4(t) C . (17b)
t=i, k
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It is to be remembered that

_M_AMépﬁ(q) = éMMwé(q) =0 for p > q. (18)

5. Analysis: The OpC can be worked out by steps (N > 1), and is
given in Table I. Including the calculation of AMMM and MMMM the

OpC becomes (for N, M > 1).
%N4M £ NM + %—NZMs N %NM‘*. (19)

It is informative to compare the OpC for the leading terms
above (% N*M « N°M°) with the corresponding OpC for the full trans-
formation of two-electron integrals (% N'M + él—Nst). The ratio of
coefficients is exactly 3 to 1. This factor is explained by the fact
that in transforming the two-electron integrals we form only one type
of integral with three A's and one M, i.e., AAAM, while for orbital/
basis-function integrals we need and form three of the possible four

types, AAAM, AAMA, and AMAA, each at a cost of $N°M. Hence there

is a factor of three in the OpC. Each of the final integrals contains at

least two M's. Any M put in the left-most location (MAAA) can always
be chosen to be the second of the two M's (e.g., MAMA). This is why
MAAA is not needed. There are three ways of putting on the second

M for a factor of three in that step as well. With the intermediate
matrix method, all four terms with only one M are needed, explaining
the dependence of %N‘;M. The second step is faster in the intermediate
matrix method because the index symmetry that is used is introduced

earlier.
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This comparison with the OpC for just using intermediate
matrices without using all the index symmetry is disheartening. For
all that work we gain only 25% ( N*M vs. 1 N4M) for N >M. Worse
yet, for M — N we lose 10% (for the first two steps: 1 %N vs. 1 i N°,
7% overall: 2N° vs. 1 %N ). The two methods have the same OpC
for M = N/2. Also if M = N we should not do worse than just trans-

29

forming to a new set of basis functions (as in I) with an OpC of 5+ 24

These difficulties are resolved by the following maneuver.

6. Change of Basis: We notice that any linearly independent combina-

tion of the old basis functions would be a suitable basis for the next
SCF iteration. In specific, consider the set in which the last M func-
tions are the old occupied orbitals and the first N-M functions are the
old basis functions with the least overlap with the occupied orbitals.
We call these the M's and A's, respectively. The integrals needed are
AAMM, AMAM, AMMM, and MMMM. As above, we consider trans-

forming A— A + M with the expanded transformation matrix.
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A similar procedure of symbolic transformation with the deletion of
superfluous operations yields a method whose OpC reduces to % N'M
for N > M and g]% N°® for N =M, and is always faster than any of the
above discussed methods. Its derivation is, however, even more

complicated and will not be reproduced here.
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HARTREE-FOCK J ANBD K OPERATORS

For Hartree-Fock calculations one needs integrals of the

form AAMMi]. v
operators are defined as

5 and AMAMi-ij’ but only for ¥y = 6. The J and K

N N
T TPT)
J ) AAAqukQ Cy Cly
k=1 ¢=1
(20)
N N
b [Ty}
Kpg Zl 121 AAAA ., CCy
j=1 g=

A. Density Matrices: Defining the density matrices much as before

K _ (oL Mol
Dy, = (-8, ,) CLCH (21)
then
ns
T
J Y AAAA DE,
k¢=1
(22)
ns
b1 AAAA .
Kpa=3 L | pige + AAAAY 4;1Df

and the OpC is (4l + i—) N*M = % N*M. For closed shells we wish to

calculate the sum

- TR
Hy, = % (2Jpq qu). (23)
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To do this, we define a total density matrix

Do = 7 DH (24)
1L
then4
ns
Hy, = k%_l [2(AAAA) o f - %"(AAAA)pkqﬂ - 'zl‘(AAAA)p!lqk]Dk!Z' (25)

So the total OpC is 41- N’ for all closed shells and -;— N'M for the M open

shells,

B. Index Symmetry for Open Shells: One cannot expect to compete

with the OpC for the closed shell hamiltonian but some progress can
be made on the open shells. By following the procedure of full index
symmetry discussed above we merely apply the restriction that
4 3

5 N3M or just 3 N'M

if N »1. This is a savings of 25% with only a slight increase in

y = 6 (or B = 6). This gives an OpC of%N4M .

complexity, no extra work, almost no extra storage, and we need not

symmetrize in integrals in advance (as for K above).
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PARTICLE/HOLE INTEGRALS

In the Equations-of-Motion method of approximating molecular
excited states certain occupied/virtual or particle/hole integrals are

needed. In the special cases of the Tamm-Dancoff and Random-Phase

5 only the two-particle/two-hole integrals are needed.

6

Approximations
Higher approximations” require in addition the three-particle/one-hole and
one-particlethree-hole integrals. Representing the particlesby V and
the holes by M,the necessary integrals are VVMM, VMVM, VMMM,
and VVVM. We discuss below possible approaches for their con-
struction.

A. VVVM and VMMM: The transformation to be accomplished is A—

V + M with superfluous operations eliminated. The need for both
the VMMM and VVVM integrals reduces the amount of index sym-
metry which may be profitably used. The method of choice is then
basically just that of intermediate-matrices. We let the smaller
of the two sets (V and M) be represented by P(p functions), and

the larger by Q (q functions). The flow chart of the transformation

with the OpC for each step is shown in Figure 1. The total OpC is

1 1 1
$N'p+2Np (a +2p) + Npa @ + 3B) + Noa (G p° + 34" +3pa). (26)
. | _1 _3 . ,
The special cases ofp—q—:Z-Nandp-ZN, q—ZNgweOpCsof
:Z .734 N° andl%%%N 48N respectively. Asp -0, g =N

the OpC decreases as ng. This is to be compared with %Z; N° =

1. 21 N°® which would be necessary for the complete transformation of

A-V+Masinl.
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B. VVMM and VMVM: When only the VVMM and VMVM integrals

are needed more of the index symmetry can be used (and hence time

can be saved).

1. Intermediate Matrices: Figure 2 shows the flow chart for con-

struction of VVMM and VMVM analogous to Fig. 1. This illustrates a

method without using any additional index symmetry. The total OpC is

1 ) 1 3 2 3 2 2
s NP+ Np@+sp) +SNpa+INpd. (27)
. 43 5 _ 5 303 5 _ 5 R §
This becomes6—4N =.672 N andl——-024N =,296 N forp=gq 2N
andp=i—N, q=%Nrespective1y. As p -0, q - N that OpC decreases

as N4p.
2. Index Symmetry: The technique is to transform to AAPP

and APAP with full index symmetry as above. This has an OpC of
%N"p + N%%. The final transformation to QQPP and QPQP gives the
OpC of 3 N°p’q + 3 Np%q®. The grand total OpC is

%N4p+1\13p2+%N2P2q+%NP2q2- (28)

This reduces to 3 N° = . 625 N5 and 125
3 8 512

p = %—N, p=zN, respectively. A p—0, gq— N, the OpC decreases as

N5=.244N5forp=q=—;—Nand

g—N4p.
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PROGRAMMING

As could be expected the cases which have the largest OpC's
also have the largest storage requirements, due to the large number
of basis functions. The two aspects must be considered together,
especially since a faster, more complicated approach may require
more storage. But when the basis set is so large that neither the
incoming integrals nor the outgoing integrals can be all in core atonce,
repetitive processing of some kind must be used, and the specific
storage requirements of the transformation scheme become less
important. See also the comments in 1.

We consider here the case of construction of AAMM and
AMAM with full index symmefry. . This transformation can
conveniently be arranged to capitalize on zero-coefficients, zero-
integrals, or spatial symmetry. The program structure is simplest
if the incoming integrals are in canonical order and all the outgoing
integrals are in cose. The storage for such a program is shown in
TableIl. The example of N = 24, M = 6 will fit in a moderate sized
core (40,000 words)., This example is larger than any case for which
the method has been used, since for this many basis functions and
non~-orthogonal orbitals the rest of the GVB calculation becomes very
expensive. In any case we see that the scratch space needed (AA,

AAM, and MAA in Tablell) accounts for only 22% of the total storage
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requirement. For open~shell Hartree-Fock we may use the same
table, just set ms = M, and forget AMMM and MMMM. The practical
limits are then about N = 30, M = 12 (open-shell orbitals). The
method is essentially unlimited if each open-shell orbital is handled

individually.
SUMMARY

We have found through the use of intermediate matrices and
the maximum use of index symmetry, what appear to be the fastest
techniques for the construction of mixed orbital /basis~-function
integrals. A crucial aspect of transformations with index symmetry
is that the intermediate results need not have the correct final index

symmetry.
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AAAA
1
NP
5 N*
v
AAAP
1 Na/\l 3 2
= =N
/2 Pa P P
AAQP AAPP
l 1 ‘
N°pq 2 N[p L
APQP AQPP
122 l ? 3 2
5 qu 2 N p“q
QPQP QQPP

Fig. 2. Flow chart for the construction of VVMM and VMVM particle /

hole integrals.
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Table I. Summary of operations by steps for the construction of orbital/

basis-function integrals using full index symmetry.

Step To Construct Approximate OpC
1 AM ENM
2 MA (or AM) 21;— N‘M
MM LNM(M + 1)
3 MAA EN'M
MAM TN
4 AMAM PNV

AAMM %NaM(M +1)
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Table II. Storage requirements for the construction of AAMM,

AMAWM, AMMM, MMMM with full index symmetry.

Array Storage for N=24, M=6

C NM 144

AA FN(N + 1) = ns® 300

AAM N'M 3456

MAA (ns)M 1800

AAMM (ns)(ms) 6300

AMAM 2+ NM(NM+1) 10440

AMMM NM(ms) 3024

MMMM 3(ms)(ms+1) 231
25695

& ns = IN(N+1), ms = IM(M+1).
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B 1
AAAA;y (= AAAA , (1 - 26, I(1
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APPENDIX III.

Supermatrix Methods for Pedestrians

A. The Variational Condition-Iterative Solution: The most basic tool

in bound state molecular quantum mechanics is the Rayleigh-Ritz~
Schrddinger variational principle. 1 The principal states that a param-
eterized approximate wavefunction, ¥(A,,x,, - -+), may be optimized
with respect to these parameters by requiring that the average energy,
E = (¥|% [¥ /(¥ |¥), be stationary with respect to variation of these
parameters, i.e., dE/ax; = 0.

The kind of approximate wavefunction we have in mind is a pro-
jected orbital product, P®= Py, ¢, Pp? the parameters are the linear
coefficients describing the orbitals in terms of the basis functions,

@ = Z Cg nB. The variational condition then becomes
a

®|icp|o 3% -E)P|®
SE 5 (®]3cp | @) -2Re<k[( )P | %) o "

- b

Jo i acy  (@|P|®) (®|P|®)

where <I>§’ is the original orbital product with orbital A replaced by

basis function . For real orbitals, this is rewritten as
na b

(87| Gc-E)P[@) =0 . (1)

Equation (1’) is to be solved iteratively. A trial set of orbitals, rI>(0),
is selected and from them, and somehow using Eq.(1’), a new set <I>(1)
is found. The process is to be continued until the orbitals no longer
change, i.e., until (1’) is satisfied. This Appendix discusses s.ome

recent developments on the two basic techniques of iteration: The
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hamiltonian-matrix and the super-matrix methods.

B. The Hamiltonian-Matrix: The essence of the hamiltonian method is

selection of an eigenvalue equation for each orbital based on the factor-
ization of Eq. (1), such as (&2]@-E)P|#) = ), (82| (- E)P|3L) Cp.
Three such methods will be mentioned here.

2, 3.

1. Constrained Variation™ “: While solving for the optimum

orbitals, we know certain relations that the final orbitals will satisfy.
These relations include normalization of the orbitals, and perhaps
mutual orthogonality (as in Hartree-Fock). These relations can be
ensured throughout the iteration scheme by the method of Lagrange
multipliers (or orbital energies). Tue idea is to consider variations of

a modified functional, such as

I=E-Zeﬁ[<(pk[<pk)—1] : (2)
k

It is important to note that due to the Lagrange constraint terms,
€ [(qok! @) - 1] in Eq. (2), we are free to choose (cpkl @) =1inany
expression in which it occurs. It is not to be varied in the differentia-

tion

a1 _ JE , Aolg)
a a %k a 0 (3)
ac?  ac? ac?

except within the constraint term itself. Equation (3) can now be written

as

%(@?!(&C-E)Fl@ﬁ)lcﬁ - §€f<<"a”7y>ci (4)
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or
L _
Hi o = 5@ » (5)
1 -~ a _ B\ L1 _ .
where (Hk)aﬁ = <<I>k | (3c E)P!¢k> , SaB = (na[nﬁ>. The superscript
L indicates that all the constraints are satisfied and were not varied.
As an example, consider the case of two-electron singlet G1. Then (as

in Ref. 4) P = 4[1 +(12)] and

(HéL)aB = %{<77a!h[776> +(nafhffp1><¢1[ﬂ3> +<ﬂa[¢1><¢1fhfnﬁ>

+ (M@ |1/ ] m502) + (ny @ 1/r | oimg) (6)
- E(ng e eilng) |-

The iterative scheme proceeds simply as follows:
a) choose the initial orbitals [<p1({0) ]
b)  construct the effective hamiltonian for each orbital [Hl({u) ]

c) diagonalize to find the new orbitals

[H1(<V)('Dl(<v+1) _ 6‘l,{(u+1)s (/ZIE:HI)]

d) unless converged, go back to step (b).
The technique converges rather quickly for Hartree-Fock, and quite

slowly for GI.

5,6

2. Unconstrained Variation”’ ~: For awhile it was thought that

the convergence of the GI equations could be accelerated by an iteration
scheme based directly on Eq.(1’). The orbital hamiltonian was to be
given by

(Hy) o5 = (27| GC-E)P|S) | (7)
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with the self-variation terms retained (this is the same as not using

orbital energies). The eigenvalue equation would then be something like
0 —
Hk (pk = Bkﬁpk - (8)
The eigenvalue 8, would be the change in the orbital energy [El,{ of Eq.
(5)] from one iteration to the next. At convergence g,_= 0.

For the two-electron singlet G1 example as above, the hamiltonian

for orbital @, is
M) o = 3 Unglhlngd (ol @) + (nylnl @) Coilng)

+ (gl o0 Coulh[ng) +(my lng) Coulh] )

+ (g 1|1/ nges) + (n @i | 1/r | oumg)

- E(ng l@) (@ilng) +Cmgy Ingd o] 1}

The convergence of this method turned out to be even worse.

6,

3. The Hamiltonian-Virtual-Metric~: This highly successful

method gives not only rapid convergence but also a rigorous interpreta-
tion for virtuals and excited states. The hamiltonian is based once
again on Eq. (1’ ) with self-variation terms retained. But Eq.(1’) is

first partitioned in a special way
T BveB - g Y (a2 YyoY
%(@k 5P| @y cf = E%(@kleék)Ck : (9)

Now Eq. (9) is to be solved directly for {cﬁ } with the total energy E as

the eigenvalue. This can be rewritten as
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(Hy) g5 = (a2 [sep | &f) (10a)
(M) o5 = (oF |P|2f) (10b)
H g =EMag . (10c)

The hamiltonian for orbital , H' ., and the corresponding metric
(pk k) p o

My

@ygs ¢ #k. This means that each solution to Eq. (10c) [i.e., @, and the

does not depend on the orbital @ itself, only on the other orbitals,

virtuals] is a variationally optimum orbital with the restriction that the
other orbitals remain frozen. This is why the convergence is good.
The conclusions that result about excited states and upper bounds are
presented somewhat later below.

The solution to Eq. (10c) proceeds by the standard techniques
[notice the formal similarity to Eq. (5)]. One finds a matrix Wk such
that WM, W, = 1, then WLH'W, is diagonalized to find the eigenvalues
and eigenvectors. An exception to this procedure, and an important
aspect of this Hamiltonian-Virtual-Metric (HVM) method, is that
orthogonalities and orbital restrictions due to the projection operator
(P) are automatically guaranteed by the metric on the right-hand side
of Eq. (10c).

To see what happens we examine the case of a two-electron triplet,

HX %{h<‘P1'§01> +<‘P1|hf¢1> - "P1><¢1Ih' - hl¢1><§01’ +J1'K1}
(11)
M,

: Lol - IRICARE

From this we notice



132

Hy ¢, = M, ¢, = 0. (12)

This means that M is singular and that no matrix W can be found such

that WtMW:l as was required. So instead we find a new matrix U such

that U'M,U = 1 - |¢,) (@, | (M is already in this form for the simple

two-electron example above). Then we find the eigenvectors and eigen-

t

values from U'H'U. The solutions will already be orthogonal to ¢,

since the operator U projects onto the space orthogonal to ¢,. This
orthogonality is just what was required for a triplet.

6, 8.

C. The Supermatrix ’ °: One may consider Eq. (1’) directly as a sys-

tem of nonlinear equa’cions9 for the coefficients. This is the motivation

of the modified Newton-Raphson or supermatrix method.

1. Formalism: The collection of coefficients are to be assembled

into one column vector, called the coefﬁcient-supervector10

A supervector consisting of a single orbital is written as



g - | O (14)

We sometimes refer to an element of a supervector as Gi“ = C{L and
sometimes as Gk. When only one subscript appears, it may be thought
of as a supersubscript, a combination of the orbital-index (i) and the
basis function-index (u) for which it stands.

We now rewrite Eq. (1) as

(8! |@e-E)P| )
.= iF—:- = 2Re L =0. 15
Fip act! (e|p|@) )

The supermatrix is defined by

oxX, X,
By = = — (16a)
I %, 20,
] 1
or
2
- _90E (16b)

B. =
iv, ka [T
’ aci ack

2 .

- — 2 [(3*|P|®)Re (Y &
TS [(2{|P|®)Re (& |Op|2)

+ <¢§[P|<1>>Re<q>{‘|0pf<1>>] },
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where Op = (- E)P and @iia is ¢ with orbitals ¢, and ¢, both removed
and replaced by basis functions nu and U respectively. In most work,
B and X are multiplied by the inconsequential factor (&|P [®) /2.
Further, in some discussions and in some computer programs, only
the (&, |Op | %) and <‘I’ﬁ{a!0p]<1>) (1-6y;) terms are included in B.

The solution to Eq. (15) and hence the determination of the optimum
orbitals proceeds as follows:

a) choose the initial orbitals (@Y ]

b) construct the supermatrix, BY, and the error vector, X"
b

c¢) the new orbitals satisfy the equation, 6,8

BY - B'[eY*! -eY] - -x" (17a)
so that formally
e'tl _eY+5 -0V - [BY] 'x” (17b)

d) unless converged (]6] = |X]| =0), go back to step (b).

This technique is found to work fantastically well. The method con-
verges quadratically [ f6V+1, = |6¥|?% if it converges at all]. There is

one important but soluble difficulty. Equation (17b) requires the inver-
sion of the supermatrix; it is found that near convergence B is singular;
that is, the inverse does not exist.

2. Zeros: As mentioned above in Sec.B. 1., there are a number
of relations that the orbitals may be chosen to obey, such as normaliza-
tion and perhaps mutual orthogonality. We notice in specific that the
average energy is independent of the normalization of each of the orbit-

als. So that all derivatives of the energy with respect to the normalization
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vanish. Hence the B-matrix, which is the matrix of second derivatives,
has a zero eigenvalue, and is therefore singular.

Now while iterating with the supermatrix method we recognize
that there are certain types of changes in the orbitals that we do not
want to make, i.e., those changes that do not affect the energy. For
the example of the two-electron triplet, there are four such changes:

a) adding A ¢, to ¢, (renormalization),

[:2] + A [qgl] (18a)

b) adding A ¢, to @, (again renormalization)

@, [0 |
]:%] +A [%j' (18b)

¢) adding A @, to ¢, (exchange)

[2] + A [8&] (18c)

d) finally, adding A ¢, to ¢,

@, 0
l:(pz_] + A [¢1:] (18d)

The space spanned by these irrelevant change vectors is called the
space of invariants. As the iteration scheme converges, there will be
several eigenvalues (four in the above case) of the supermatrix that
become very small. Each of these vanishing eigenvalues is called a
zero. There is one for each way of changing the orbitals without chang-
ing the energy. A summary of the situation for a few simple cases is

presented in Table I.
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TABLE I. Zeros of the Supermatrix.

] No. of a

NX Spin P ZErOS Type

2 0 Gl 2 N

2 1 Gl 4 N, E

3 1/2 G1 or SOGI 3 N

3 1/2 GF 5 N, E

3 3/2 Gl 9 N, E

4 0 Gl or SOGI 4 N

4 0 GF 8 N, E

4 1 Gl 6 N, E

4 1 GF 10 N, E

4 1 SOGI 4 N

5 1/2 Gl or SOGI 5 N

2 1z 3 N, R

2 1 322 7 N, E,R

2 0,1 Legt 5 N,E,R

1

2 0,1 L 9 N,E, R

a

N = normalization, E = exchange, R = reflection.

The general rule for counting the number of zeros is to take the sum of
the squares of the numbers of electrons antisymmetrically coupled to-

gether. Thus, for four-electron triplet GF we get 32 +1= 10, as in

Table I.
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3. Projection: The solution to the problem of the nearly-zero

eigenvalues and singularity of B is to project the problem [Eqgs. (17a)

and (17b)] out of the space of invariants. For this there are two tech-

niques at present.

a) Explicit projection: For simple cases, all the vectors

in the space of invariants can be identified as combinations of the orbit-
als (or, in the case of spatial projection, as pieces of the orbitals).

A resolution of the singularity of the B matrix can then be obtained by
explicitly projecting that matrix onto the subspace of all possible varia-
tions orthogonal to the space of invariants, or simply said, projecting
out the unwanted variations. Suppose {.‘;i }igl is an orthonormal basis
for the space of invariants constructed from the (current, not necess-

arily converged) orbitals. If we define

R- I~ (5] (19a)
and
B'= RBR, X'=RX. (19b)
Then
B'6 = -X (19¢)

can be solved for the changes desired.

When B’ is diagonalized we will get q exactly zero eigenvalues.
The corresponding eigenvectors are the § i's (or linear combinations of
them). We then may follow the technique of deleting the "'zeros'; they
have the desirable quality of being exactly zero and are therefore identi-

fiable. This procedure seems to work very well and the SCF almost
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always converges. Since the zeros are zero, we could even use the
faster technique of Gaussian elimination with maximal pivots. When
the largest pivot is zero, we just forget the rest of the matrix, since it

must all be in the space of invariants.

Qu\rgplwwmmm Lev'm11 and Goddard 8 discovered
that the matrix
= o B
Ay, ip = (2 |P[2]) (20)

has as its null space exactly the space of invariants as constructed
from the current orbitals, less the current coefficient supervector

itself. Consider the previous example of a two-electron triplet,

- ~— -— -

A 0 [(2i|Pleve)| |0
¢ |(®|Pleien| |0]
. (o] [(@1[Pleen]  [0] o
__0 i L<‘I’£[P’¢2(P2>~ LOJ
f— p—
a7 (21 [P|or@z) - (21 [Plosg)| |0
o2 (23 |Pleen) - (2 [Peig,) 0

so the diagonalization of A is a way of finding the space of invariants,

and the eigenvectors can be used to transform B as was done above.

D. Excited States: The principal difficulty in solving for excited state

wavefunctions is not getting the wavefunction but rather showing that it

approximates the excited state one had in mind. To do this we need an

upper bound principle.
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1. Upper bounds - HVM: For wavefunctions constructed from

configuration interaction (CI) the variational principle itself provides

h th

the rule that the k' state. For

eigenvalue is an upper bound to the k
orbital product wavefunctions the situation is usually much more com-
plicated. The HVM method provides a clear upper bound rule based
itself on an interaction of configurations.

Suppose we have converged to a set of orbitals with each orbital
the lowest solution of its own HVM equation, except the last orbital

th

(gon), which is the k™ solution. Now consider a CI on all configurations

of the form wﬁlj)él'l (i.e., cpr(lj), the jth eigenfunction of HX , replaces
%)), The CI hamiltonian is
G ) P (2) ./
Kip = oy 2|5 P o Vo))
) 7| (0 (222)
v
= oy 'Hnl(pn )
and the CI overlap matrix is
- 1) g (2 _ ¢ .3 (£
’/jﬁ - Wx(l] &, |Plo; )<I>;1> = (ol M, |0 )y, (22b)

but now comparison with Eq. (10c) and a little manipulation gives

(23)

The CI problem is already diagonal, with the same eigenvalues as Eq.

(10c). This gives the important result that the energies E(j) are rigor-

th

ous upper bounds: E(j) = E for the j state.

exact
2. Supermatrix eigenvalues - the ground state: The eigenvalues

of the supermatrix at convergence also give information about the
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wavefunction. First, consider the following theorem from Fleming. 12

Given a twice differentiable function of n variables

fx) = f(xl’XZ’x3) . "xn):

Then we define

— ¢ of of of
vix°®) = S &
v’ = (28, 2 B
A (0 [ % o ot |
Q:f(x ) = P c e
0x; 0X,;0X; 0X,0Xp,
% 24
2
—8xnaxl 0Xp Jx=x°

Note that V produces a vector, Q a matrix.
Theorem: suppose yf(xo) =0, then
é:f(x") is positive semi-definite

implies that f has a relative minimum at x°
Q:£(x°) is negative semi-definite

implies a relative maximum at x°
Q:1(x°) is positive (negative) definite

implies a strict relative minimum (maximum) at x°
Q:1(x°) is indefinite

implies that x° is a saddle point.
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Now consider the case when

f = E(®) the energy
vfi = X(@) theX vector
Q:f = B(@) the supermatrix.

For the ground state of the system we know independently
that E is a relative minimum. Hence B must have no nega-
tive eigenvalues. So if the supermatrix approach converged
with one or more negative eigenvalues, we know that it did
not convert to the lowest energy solution of that symmetry.

3. Excited states and the supermatrix: Having found in the pre-

vious section that the B matrix should have no negative eigenvalues,
and viewing the eigenvectors as the various ways of changing the orbit-
als, we might hope that for excited states the number of negative eigen-
values would be equal to the number of lower states. This would make
sense since the only way to lower the energy of a converged excited
state is to add a piece of a lower state. Unfortunately a rigorous dem-
onstration of the principle does not, at the moment, exist, but the use-
fulness and plausibility of the idea will be illustrated below.

Suppose we have converged an excited state wavefunction as before
with all the orbitals the lowest solution of their own HVM equation,

th

except the last orbital (¢,), which is the k™" solution. Then, according

to the HVM upper bound rule, the calculated energy of this wavefunction

th

is an upper bound to the energy of the k™ state. Define all single exci-

tations from this state by



142

(0 - Dl .. 0,0 .. ) j#n (24)

(pgl) was replaced by <pj(£). In the case of j = n, we have tbu) = <p§1)

él)l @, ). The original excited state wavefunction is <I>(k)
We note that {®. } gives n times m linearly independent
j=1,n

vectors, and hence a complete basis for the supermatrix. We now propose
to estimate the supermatrix in this basis. Let @j(i) be the supervector
corresponding to @Jgﬂ). To evaluate B we need to calculate the second
derivatives of the energy with respect to the possible changes. So let

6 -0 creld) . c"eJ§1"). Then we must calculate E(8)

j j
?, = (1+C'+ C”)cpi i#j (25a)
’ n
¢j _ [(pj(ﬁ) el (pj(ﬂ ) +Cn(pj(£ )] (25b)
(2|HP|®) = (1+C'+ )" UH], + cr2H),, + €2 H, pu ] (25¢)
and
(3|P|®) = (1+C’+C")" [M +C'2MM,+C"2 2"1”] . (25d)

The cross terms vanish since these are HVM solutions (another virtue

thereof). Now

72 12
" - Hj, + C H£’2’+C' g

E(C’,C (26)
M}m +C'2M}M, + C”ZM%,,Q,,
Further ( ) ( )
_ )1 _ i AN
E(0, 0) = E[ej }=Hy, /My, = & (27)

Some manipulation gives
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2

I:O aC aC C’:O
CII:O CII:O
and . _
. i | j
?E | _ My |Hre | Bp
72 ] ) ]
CII
omi, ,
- X rp[o\0) ] - E[6lY) ]} (29)
Mg, . J

v
= —-—.---ZME"Q’ ['eu') - e.(ﬁ) ]
J J J
Mgy
The conclusion from all this is that if the supermatrix at converg-

ence is expressed in the basis of HVM single excitations, then it has

the form



>
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| A
m )
A 1 ] v
Al | -
L, 1 ! ¢ X
| | | /
o ;
Aia . ! ,
i I S R SRR
0 ) ,
i e e
{ 0 *.\Al; . e o
2 . -
e L i | R4 _‘/_/:.,.__-_
i 'A d/ /
¢ 0, -
1 \/ J ‘
, !
/‘/ '_,.f(,, 0
‘ = | ,x"w 0 At
. m e - P f.) -.4«1‘-31{..-.—---
' .j/{é ! An
. £ f 0
A~ !
£ ! i
- ."_,./ ' , 0 ‘
) j : ' A].
\»Jr“‘ ' ! n.J
where g ir () () :
A = My, le:” ' ~ € #=n
. ol i : ] j

Af: = M&[e(f’) - e(rlf)]
and we have taken £ =1 in Eq. (29) and taken out the factor 2/ ML =
2/DENOM from each term.
To examine the signs and magnitudes of these diagonal values,

we rely on the following observations.
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=0 j#n

c) Mh will be zero for as many values of £ as the number of

orbitals with which (,0]. is antisymmetrically coupled.
d) Since all the orbitals except gol(lk) are the lowest solution to
their HVM equation, then

L _ M () _ (1)]20 for j# n
A]. MM[Gj ej J

and especially

A‘fl = Myﬂ[eﬁlﬁ) - eék)] =0 2=k
Aﬁ = M&[el(f) - el(lk)] <0 >k

For this we can conclude
a) The number of zero diagonal values is exactly the number
of zero eigenvalues predicted from renormalization and
antisymmetry.
b) The number of negative diagonal values is exactly the num-
ber of lower states predicted by the HVM upper bound rule.
c) Further, suppose we are solving for a single excitation state.

Then all of the negative diagonal values will be in the same

orbital block, i.e., the n™! one, like
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Then we consider expanding this block to include the whole
B matrix, one row and column at a time, so:

. - "

13

MacDonald's theorem ™" says that the new eigenvalues

are partitioned by the old eigenvalues, and in specific the

pth lowest eigenvalue for m rows and columns is always

greater than (or equal to) the pth lowest eigenvalue for any

larger number of rows and columns. This means that for

single excitation states the number of negative eigenvalues

of the entire B matrix is always at least as large as the

number of lower states as predicted by the HVM upper

bound rule.

We have seen that if the HVM method and the supermatrix method

agree on the number of lower states one can confidently bet his oatmeal

cookies that he has the optimum excited state wavefunction. But what

if they don't agree?
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a) The supermatrix method will always predict the larger number
of the lower states.

b) It may still be a decent excited state wavefunction if there is a
lower, double excitation state [as in Be atom (2p)® vs 2s2p]. No one
has proved that the states are now rigorously placed in an upper bound
ladder. It would be very interesting to know of what help the super-

matrix can be here.
c) If there is more than one extra negative eigenvalue, one is
probably in trouble. Omne might try changing the spin coupling, making

(or unmaking) symmetry functions, or basically starting over.
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APPENDIX IV.

Unique Orbitals for Two Electrons and a
General One-Dimensional Representation

As explained in the preceding chapter, the spatial part of the wave-

function is written

Yy ace = 30 0 [uvYolo¥1 + (12)] (1))
W, v
1 (1)
- %[wuwyuwy“wu] :

where yl/L = O @i s and 'y“ is the uniquely defined representation (one for
each ) that satisfies (A l M’u)z = 1 for fixed given A . The purpose of

this appendix will be to deseribe the "nonuniqueness’ transformations
that change the orbitals but not the energy and to illustrate how one

solves for the optimum (''unique') orbitals through these transformations.

A. The Denominator:

1. Singlet Symmetric: The wavefunction is

1 1
= . 2
¥ % v, ¥, + vy, ] (2)
The only nonuniqueness transformation is of the (x, 1/x) type.
9—91 = 1/N, ZX Wl ’ ¢, = 1/N, Z(l/x )Wz . (3)
L RTH v TR

The terms N, and N, are just normalization factors to keep the new

orbitals normalized:
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1 1 2 92
N} =« %x“w“@x,,w,) - %xusu (4a)
N2 = (kNS (4b)
TR

where SE = (zp; Wﬁil) . Now we are ready to evaluate the denominator,

which is the quantity to be maximized to evaluate the XU'S'

R —— AR
(@, 9,|P|9,9,) = DENOM = 2 _ DENOM
N21N2 NiN;

The criterion maximizing DENOM is 3 DENOM/3x s 0. This is the
same as minimizing the product R = N2 NZ? since the term DENOM is
fixed. So the equations

a[NINZ ]

R - =0 (6)

X
ax“ d i

provide g (the order of the group and the number of representations)
equations in g unknowns, but with zero data. Hence there is an extra
(unspecified) degree of freedom in the solution of these equations. We
could set x, = 1 and solve for the rest, or we could minimize R with
some constraint. A convenient constraint is Ng = 1. The variational

condition (6) then becomes

5 N> ON:
S [R-fN2-1)]= —-f—=0. (6")

ax‘l ox " 0xX U

Comparing with Eq. (4), this yields

Y 3yqR2 _
2ana £( 2/xa)Sa =0 (7a)

4 _ _oq22 /gl
x,= -18,/8, - (Tb)
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To eliminate f we notice that it is just a scale factor, multiplying the

entire orbital ¢, by -f and ¢, by -1/f. Specifically, using (7b) and (4)

N; = (-f)3 %(suszj)'z' (8a)
N; = (-)? }g(sus“)f. (8b)

Hence R is independent of f, so we arbitrarily set f = -1 and forget it.

The final result is now

x, = (82/s4)1 . (9)

2. Triplet Symmetric: For this case there are two types of

transformations, (x,1/x) and orbital shape. The wavefunction is
¥ = 1,2 2.1 . 10
%[w“wu A (10)
The (x, 1/x) transformation gives
@, = /N, 1x ¢ Go = 1/N, ), (1/x WP . (11)
KoK, (P
m m
Finally, ¢, can be added to ¢, in pieces (or vice versa)

§= UN, Llx ¥ vz g2l (117)

W
iR

2
"
The values of the xu's and zu's are to be found through Eq. (6" ) as

before. Now

N2l = %[XIJSM + zuSu + ZX“ZLLS“] (12a)
N; = %(1/::“)51 , (12b)
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The variation of Z gives

2/0z, [N - N7 ] =22 S5 + 2x 8% = 0 (13)
or

Zg = -xaslj/SZ; . (14)

Substituting into Eq. (12a) gives

N = ), x°[sM - (sP)/s™]. (15)
T TR

Finally, Eq.(6") with f = -1 gives

W=

S22 2
X = (a) . (16)

o 12z 12,2
SeSa (Sa)

3. Singlet and Triplet Nonsymmetric: The situation now becomes

slightly more complicated. The wavefunction is given by Eq. (1) with

x“ # 1, The (x,1/x) transformation appears as
¢, = 1/N, EX“'J/;, @, = 1/N, Z(l/xu)‘p; . (17)
M m u

To accomplish the shape-orbital transformations, we rearrange the
representations such that y= g/2 implies that yu > g/2. Then define
w = 1 if the state is a triplet and -1 if it is a singlet. The shape-orbital

transformation is now given by

g/2

o, = 1/N{ %Xu¢u+£lzu[(1/xy“)¢u + (w/xu)wyu]} . (18)
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Now g/2
Iﬁ::%x“%1+ élhuﬂﬂ/gﬁ)+$n3]

+2z [ /x )82+ (x /x )wS?]}
wETR Ty e Ty TRy

NZ is given by Eq. (4b) as before.

The z, differentiation as in Eq. (13) gives

x2 8% + wx® 82 )x x
a o Yo Yo & Yy

Z = s

o 2 22 2 22
X" S8 +x* S
%oSa + %, Sy )

So now
g/2 [xitsi +wx 82 ]2
N = Datst - ), T Y
1 u B — 2 22 2 422
M p=l [x*s*%*+x° 87 ]
T

Finally, if we set

_ 2 12 2 12
A, = [x S, + wxyasya] a= g/2

- [xz S22+x2 S22 ] ,
Ba a o Yo 701

Then

d 2 a 1 12
T [N: - f(N; - 1)] = 2x S - 4x S2 A, /B,

22 2 2 3 22
+ zxasa A a/Ba + (2f/x a)sya

and

P 2 : 1 12
= [N f(N2 - 1)] = ZXYaSYa 4wxyaSYaAa/B o

o

22 .2 /2 3 Q22 _
+ 2XY S_y Aa/Ba + (2f/xy )Sa = 0.

a‘a a

b4

=0,

(19)

(20)

(21)

(22)

(23a)

(23b)
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Now Egs. (23a) and (23b) may be solved simultaneously for X, and x

Ya

after setting f = -1. The two equations are coupled fourth-degree

polynomials in xix and x; and appear to be best solved numerically.
a

B. The Orbital Energies

1. Singlet Symmetric: For this simple case there are no trans-

formations left after maximizing the denominator. The only thing to be
done is to be sure that for each symmetry (u) the lowest energy piece

(either xp; or w;) be used for ¢, and the highest for ¢,.

2. Triplet Symmetric: After the denominator is maximized, we

have S =0 and S*' = Sif . The further unitary transformation that

changes neither the denominator nor the energy is

’ 1 . 2
@ = %[cos 6,4, +sin B“v,bu]
(24)
I 2 —ai 1 2
@Y, = Z[ sin 9“1,0“ + cos Ouwu] .

L

Evaluation of the various overlaps gives (S:f)' =0, (S::)’ =8" = (s*) = 5% s0

! U
that the denominator is maximized for any values of the 6 p"s. This was
just to check that the denominator is independent of the Bu's.

To specify the eu's we construct the orbital energy of ¢, ,

€ =E2‘E1=E'<‘Pi,h"/"1> (25)

E - ) [cos? H™ +sin6 H*® + 2cos@ sin§ HZ
%[ Tl! [T u u u]’

where HB = <ap; |h|¢L>. Now €, is to be the best possible approxima-

tion to the vertical ionization energy, hence it is to be maximized:
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D€, /aea = 0. This gives
2H
tan 20a = m—z—z— . (26)
a a
To insure that €, is a maximum (rather than a minimum), 6“ is replaced

by (Gu +m/2) if cos 29u~ (H::— ij) > 0.

3. Singlet and Triplet Nonsymmetric: Once again the situation

is more complicated. After the denominator is maximized, the unitary

transformation that remains is

g/2
@, = MZ=1 {cos 0, [tl/; + ll/;“] + sin 9“[‘PZ + w‘l’;u] }

2 (27)
o = uZ;l {-stne, [ + ww;u] +cos 6 [y + tl/;u 1}

One may verify that the denominator and energy are independent of the
Gu's. To find the optimum Ou's the same procedure is adopted as in the

previous case. First the orbital energy is defined:

g/2
& =E-{(¢,|h|e}) =E- ), {coszeu[H;:+ H;/l]
u=l w (28)

.2 22 22 . 12 12
2 cos 8
+ sin eu[Hu+Hyu] + 2 sin Gu “[H“+wH7u]}

Then aee/aolf 0 yields

2 12 12
tan 20 = [H“ ’ me] (29)
[Hn+ H' - H?- H® ]
T A

in @ is chosen such that cos 26 -« [H" + HY - H- H2 ] <0.
Once again 9, u " [ pt By - H, Yu]
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C. Ilustration: As has been emphasized repeatedly, the energy is

determined by the many-electron wavefunction and therefore only
indirectly by the orbitals. The role of this Appendix is to illustrate
how the orbitals are found after the wavefunction is known.

Consider the case of ‘A wavefunction for the point group C, writ-

ten in terms of natural orbitals1

¥ = [nZA2 - n‘?A,A’2 + n;}B2 - ng, B’?]. (30)

We now decompose this into orbitals

¥ = %[1 +(12)]{(nyA +n,,A")(n A - a A ]

(31)
+ (nBB + nB, B’ )(DBB - nB; B’ )}

@, = (nAA+nA,A’)+(nBB+nB,B’)

@, (nAA - nA,A") +(nBB - nB,B’) .

The decomposition chosen makes the two orbitals have the same per-
centage A character and the same percentage B character. We may

check to see that the denominator is maximized for this choice [cf.

Eq. (9)]. _
(nz + nZ,) B . 32)

X =
A (nZ + nzA,)

and similarly for the B components. Dividing the wavefunction equally

between the two orbitals (as we have just done) makes the orbitals as

representative of the wavefunction as possible. A very similar analysis

applies to the other possible symmetries.
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References
1. The orthonormal natural orbitals are A, A’ and B,B’ of A and B
symmetry, respectively. The coefficients (e.g., nZ) are the

occupation numbers.
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APPENDIX V.

Nonunigueness for §Rin-Projected Generalized Sgin Orbitals

Lunell1 discusses the use of spin-projected generalized spin

orbitals to describe the ground states of H, He, Li+, and Be*". The
essence of the technique is that each orbital is assigned an up-spin and

down-spin component:
Q1 = Y,a+ YLB

2 2 (1)
0, = YV,a+y¥Y B .

Then the two-electron wavefunction is obtained by spin and permutation
project’lon2

¥ =3[ + ) + (WA + W) (e - Ba) . (2)
Let us examine the nonuniqueness transformations that exist for this

type of wavefunction.

The (x,1 /x) transformation is easy to describe
-— 1
¢, = XY a + ‘Piﬂ
@, = Via+ (1/xW.8.
The shape transformation is simply
o= o+ z[ia - Y2B] . (4)

After (3) and (4) are resolved by maximizing the denominator, there

remains the unitary shape transformation,

A
[
i

" = cos 8 ¢, +sin B[wia - ¢#8]

1 1 (5)
-sin 6[y @ -~ Y.8] +cos 8 ¢, .

ASE
It
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The mixing angle 8 is to be determined from the orbital energy.

Lunell noticed that there are three degrees of freedom in the
orbitals: Eqs. (3), (4), (5). But he had not identified the procedure of
maximizing the denominator as the way of removing most of the arbi-
trariness in the orbitals. He tried to do the entire task with the orbital
energies. It is easy to see how he obtained his admittedly nonsensical
orbitals.

The orbital energy technique, as explained in the preceding
Appendix (IV), attempts to make €, as high as possible and therefore
(¢,|h|@,) as low as possible. Suppose (wilh[g{/i) gave the lowest
value of the choices (Wi , ¢li, v, " ) and the same-spin linear combina-
tions. The orbital energy procedure would then set x = © in Eq. (3), and

after renormalization
2
o=V, @g=ya,  ¥=0 (6)

The procedure of maximizing the denominator will avoid this meaning-

less result, and allow a comprehensible description of the orbitals.
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References

1. S. Lunell, Phys. Rev. A 1, 360 (1970).

2. Lunell uses the form
1
¥ =3 ) - WY+ V) (08 - Ba).
The sign between the two sets of spatial terms is irrelevant. The

plus sign is chosen here [Eq.(2)] to make the projection operator

resemble more the work in the previous Appendix:

Popace = O (107(2) +07(1)07(2) .

The change in sign from Eq. (2) can be accomplished by a change

2

in sign of either y_ or ¥_ .
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APPENDIX VI

Coefficients of the PGVB orbitals for the various Z

states of H, in terms of the 16 basis function set as

described in Table I of Part 1.
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PART 2

A SuRerRosition Princigle for Siegert Resonant States
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INTRODUCTION,

Since the very early days of the quantum theory of scattering,
metastable states have been used to explain structure in the cross sec-
tion. Nuclear scattering in particular showed many examples of sharp
resonance features. Of more recent interest is the dominance of low
energy electron impact spectroscopy by resonant compound states.
Breit and Wig:ner1 gave a very simple model formula that describes

the cross section near a resonance,

T L (1)

0 >~ — ’

k° (E -Eres)2 + 1?2

where T' is the width of the resonance and 1/T is the lifetime of the
resonant state. This important one-level formula is a more than satis-
factory description when the resonance widths {r'} are narrow com-
pared with the energy separation between the resonances.

The objective here is more than just to describe the shape of the
scattering cross section in terms of a simple formula such as (1). The
basic idea is that the resonances are compound states of the target and
projectile, that the incoming particle has some amplitude to populate
each of these states, and that what is observed is the decay of these

resonant states:
¥in > ), a¥n  * Yout
n

resonances  unscattered. (2)

|

decay
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The problem at hand is the characterization of the resonance energies
and resonant states as manifestations of the potential, then a descrip-

tion of the scattering process as mediated by the resonances.
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PREVIOUS APPROACHES

Kapur and Peierls2 suggested that the eigenvalue problem,
2
= Eﬁ‘r;l‘ @ﬁ(r) + V(r)e(r) = En<pn(r) 0=r=r,
(3)
9, (0) = 0 Q. (xy) = ik (ro)

for a potential V(r) of finite range r,, would provide the s-wave reso-
nance energies as eigenvalues En = Eres + zll". The resulting eigen-
functions {¢ n} are called the Kapur-Peierls states. From these states

a many -level resonance expansion formula for the cross section was

derived:

_ K® -ikr, n@o) 1 -ikr,
T = 2 E & - En)N . sin krye , (4)

where Nn is the normalization integral Nn = f Fo cp;(r)dr.

This model has attracted attention for t\;o reasons. First, it
appears to offer a technique for finding the resonances for a variety of
potentials, even for problems with many particles (see, for example,
Ref. 3). Second, the expansion (4) over a complete4 set of resonant
states appears to provide a description of all of the structure in the
scattering process in terms of the resonances.

But there is one principal difficulty. The Kapur-Peierls formula
(4) predicts that the S-matrix should have poles at the Kapur-Peierls
energies. Although they may in some cases be close to the actual poles,
they do not coincide. The poles of the S-matrix are characteristic of

the potential and hence are independent of the incoming momentum k,
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whereas the Kapur-Peierls energies do depend on k. In addition, the
Kapur-Peierls energies depend on the choice of ry, even when r, is
outside the region of the potential.

Siegert5 noticed this difficulty and suggested an alternate eigen-

value problem:

2

i, _ i° .2 _
'z—n—l(pn+v¢n*En¢n ﬁkn“En
(5)
¢n(0) = 0, (PI'1 (ro) = u{nfpn(ro) .

We call this the Siegert eigenvalue problem; the eigenvalues are called
the Siegert energies or Siegert poles, and the eigenvectors are called

5 that the Siegert energies are the

the Siegert states. One can show
poles of the S-matrix, that they are independent of the actual scattering
energy and the joining radius as long as it is chosen outside the actual
potential, and finally that the bound states are just special solutions of
the Siegert equations (5).

Siegert also provided a one-level formula that gives the correct
residue of the S-matrix at the resonance-pole and reduces to the Breit-
Wigner formula when the width I" is small. But he was unable to pro-
vide a complete description of the scattering due to the lack of any
many -level formula, i.e., an expansion of some kind over the resonant
states. Any attempt to remedy this situation is complicated by the

nonorthogonality of the Siegert states, and the rather slow convergence

of the residues.
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Humblet6 in a general study of the Siegert energies found several
important relations (see also Nussenzvieg, 7 Regge, 8 and Newtong).
There are three kinds of Siegert poles, called a, b, and ¢c. The b-poles
are the bound states, with kb along the positive imaginary axis, kb =
ilkb|. The a-poles, sometimes called antibound or virtual states, lie
on the negative imaginary axis, k, = -i,ka’. Some of the a-poles move
up the imaginary axis and become bound states as the potential is
strengthened. The c-poles are sometimes called radioactive states.
They are distributed in the lower half of the complex plane, symmetric-
ally about the imaginary axis.

Humblet showed that for potentials of finite strength and finite
range there are only a finite number of a- and b-poles. The c-poles
constitute a denumerably infinite set. For large n, the c-poles in the

right half of the complex plane are given approximately by

Re k = ’%}% + 0(1/n)
(6)

Im'kn = -(g—r"'gllnn+0(1/n),
0

where r, is the actual radius of the potential and o is the order of the
lowest term in the expansion of V(r) about r =r,, V(r) ~ (r-r,)°.
He went on to describe a Mittag-Leffler expansion of the S-matrix

of the form

— m Rn
Stk) = C (k) + ; (/i)™ — o (7)

th

The term Rn is the Siegert residue at the n™ pole. The value of m to
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be used is arbitrary, as long as the series converges. In specific,
Humblet found that it must be one or larger. The term Cm(k) is sup-
posed to be a smooth function of k, and is included to correct for the
spurious (k/kn)m dependence of the series. Although this formula (6)
may be useful in deriving dispersion relations, it is less than satis-
factory as a calculational device. The function C m(k) is unknown or
difficult to determine. Further, the dependence on m is assuredly
unphysical. We may also notice that neither Humblet's expression (7)
nor that of Kapur-Peierls (4) nor even that of Breit-Wigner seem to
illustrate the unitarity of the S-matrix.

with Reagge8 (see also Newton9 and Nussenzvieglo) we have more
hope. He examined the properties of the Jost function, which is just
the coefficient of the incoming wave in the expression for the scattering

wavefunction,
Y = - L W 4 L (welkT (8)
(see also Ref. 9, p. 340). The S-matrix is then just

_ 26 _ Z (-k)
S = = ) 9
e Z® (9)

Regge was able to show that the Jost function, and therefore the S-
matrix, can be written in a Weierstrass-Hadamard infinite product

over the resonances:
_ ikr
Z (k) = J(0)e™Te I (1 - k/k)

_2ikr, . ¥, +K)
k) = oq B
S( ) € n (kn - k) b
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where r, is the actual radius of the potential. These products converge
very slowly, but the convergence can be extrapolated (see Appendix I),
and the formulas remain useful.

Regge's formula (10) gives an expansion over the resonances from
the purely mathematical properties of the S-matrix, but this is not
enough. In Regge's formulas we rather lose track of the physically
appealing view of the resonances as transient intermediates for the
scattering process.

7,10,11 approached the scattering problem in nearly

Nussenzvieg
that way. He said that what we are really interested in is the time-
evolution of the incoming wave packet ‘Pm' If there were no potential,
there would be no resonances, and win would become 'Pout with no

~scattering. This is described by the zero-order evolution operator
Uo(t-t'). Nussenzvieg then defines a resonance evolution operator (or
resonance propagator) for each resonance, U n(t-t’ ). This resonance

propagator describes the excitation of the resonance by ‘Pin’ and the

subsequent decay. The total evolution operator is the sum of these:
U=U,+), U . (11)
n
n
All of this led me to believe that it should be possible to use the
Siegert states as a complete discrete basis for describing quantum

mechanical events. In particular, I needed to develop some kind of

superposition principle for Siegert states,

tpgiven = %an(pn : (12)
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This would presumably illustrate that once a given wavefunction is
expanded over the Siegert states, any property can be written in terms

of the simpler and decoupled properties of the resonant states,

property [wgiven] <—— properties [gan] . (13)

Such a superposition principle we now set out to find.
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THE TWO-COMPONENT WAVEFUNCTION

We first rewrite the Siegert s-wave eigenvalue problem in a

dimensionless form,

" +Up =Ko @(0) =0 ¢ (ry) = kelry)
: : » (14)
k" = (2m/h°)E U = 2m/K?)V.

The literature of such problems with the eigenvalue in the boundary

conditions is meager. However, Friedma.n12 discusses two similar
problems:
-¢" =K @(0) = 0 ¢ (1) = K1)
" 2 ’ (15)
-¢" = K¢ ®(0) =0 ¢ (1) = ko(1) .

A further description of these two and other related systems can be
found in Appendix II.

The important result of the work shown in Appendix II is that we
consider writing the solutions to Eq. (14) as two-component wavefunc-

tions,

— 7
¢,(,1)(r)
& = (16)

n ¢Ig2) (r)

Then the eigenvalue problem is rewritten as

_ , -
<Pr(12) (r)
Ld = - ik ® (17a)
n 14 ro nn
Qor(ll) (r) + 4 U(x)rpt(ll) (x)dx

o
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with the boundary conditions

1 1

Doy =0, oBixy) = gPixy). (17b)
The upper component <pr(11)(r) from a solution & of Eq. (17) can be seen
to be a solution to (14) by differentiation of the lower components of (17a):

oD - uell) = ik N acgl) (18)

In this two-component space we define the inner product by

(5, 0y = [ LWl - D@ (19)
where
zP(l) ' <p(1)
= @ =
t,,(2) (p(Z)

With the boundary conditions (17b) and the inner product (19) we can find

the adjoint operator L™

o) - ute) [ o P)ax
L*® = ° (20)

1 ’
qo( )
This defines a new set of adjoint eigenvectors (with the old eigenvalues)

o+ +
L $, = lkn(bn . (21)

We notice further that if the boundary conditions (17b) are satis-

fied, then
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W7 (1) i
2 (pn U<0n 2
L <I>n = = -kn <I>n
” Ty ’
o2+ [ oo (x)ax
r -
~ e 1 1 (22)
(p;( )" Ug,;( )
L+2¢+ _ - _k2 q)+
n N n n

" r
¢;(2) - U(pr':(z)_ U’(r)f q,r':(z)

0
L. —_

Equations (17), (20), and (22) show that the upper components of {fbn}
and {@;} can be chosen to be the same and that this function, ?, =
(pl(ll) = 90;(1), is the physical Siegert resonant wavefunction. The lower
components are yet without physical interpretation.

Toward the goal of a superposition principle, it will be necessary
to evaluate the inner product of <I>;: with @ g9 The choice of the form of
the inner product and the relation of L™ to L make this especially simple.

The two vectors obey
+xt . + _
L <I>n - lkn‘pn =0 . (23b)

Taking the inner product of @; with Eq. (23a) and <I>2 with (23b) and sub-

tracting yields

. + _ +2 + _ +
ik, -k, )&, @2) =(L"®_, @) (@, L&)

(&, Le,) - (&), L&) (24)

=0.
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So that either (d)g, Qﬂ) =0, or k, =k . The solutions are in general

nondegenerate,7 so we have

+ - 4
(@, %) = N©_, (24')

where Gn ¢ is the Kronecker delta and N g may be considered the (not
necessarily real) norm of the state. As is customary in quantum mech-
anics, the normalization constant could be absorbed in to the wavefunc-
tion, yielding N 9= 1, except that a Siegert state could possibly have a
norm of zero. This is because the '"'norm' calculated from the inner
product is not positive definite.

Now we have our superposition principle. To expand a given two-

component vector

(D)
= —_— e 25
i £(2) %;a“ n (29)
we only need to calculate
@ = (8, F) = ﬁ-l— [ WD) L 1225, (26)

J 0
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EXPANSION OF THE PHYSICAL SCATTERING STATE

For any energy there exists a function Wk satisfying
-y + Uy, = k"‘wk, % (0) = 0. (27)

This (Wk) is the exact scattering wavefunction. The principal goal of

this work is to find a set of coefficients aﬁ(k) such that
Y ) = L a, k) ¢ (r); (28)
n

that is, to express tl/k as a superposition of Siegert resonances.
The function wk gives only the upper component of the vector to be

expanded:

¥, = ﬁk - %:an(k)tbn . (29)
At this point it does not seem too important what lower component is
used. Physically, we are only interested in the upper component, at
least for now. There are two difficulties. First, even though the upper
component of \Ifk seems independent of the lower one, the expansion
coefficients will depend on both components through Eq. (26). This is
the same as saying that there are many sequences of coefficients {an}
that give the same expanded upper component. The series (28) will not
converge at all if the lower component is poorly chosen. Poor converg-
ence results from a mediocre choice. Second, the expansion (28) will

be essentially a waste of time if we actually have to evaluate integrals

involving yl/k. If the Siegert states are really a natural basis for the
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scattering problem, the stationary wavefunction, zpk, whould be express-~
able directly. That is what Kapur and Peierls did.

A little experimentation with Fourier series convinces one that
the attempt to expand a function that does not satisfy the same boundary
conditions as the basis set produces slow and nonuniform convergence
(see also Appendix II). The problem is at its worst when expanding in
Siegert states. The Siegert states, even when normalized to unity [see
Eq.(24)] are not bounded with respect to k,- The point in the interval
at which convergence will be the most difficult to obtain will be r = r,
since there the Siegert states will in general be the largest.

It was found (see also Appendix II) that an expansion over Siegert
states [Eq. (25)] will not converge at all unless at least three conditions
are met,

1 Do) =0
2 e, = P, (30)
) Wy = 1y,

For the problem at hand, the expansion of the physical state :[/k , the
lower component of \Ilk, which we have complete freedom to specify,

is uniquely defined if \Itk is required to satisfy the very useful relation

L'y = 2 (31)

This equation is a relatively natural choice since its upper component
is identical to Eq. (27).
All of this gives
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4"
v, = _ (32)
k afxwk+bfxlpk+c
where Elg satisfies
- U = K Y, ¥’(0) = 0, (33)

and a, b, and c are constants to be determined. Having chosen \I'k we

need only evaluate
an(k) = 1/Nn (<I>n, \Irk) . (34)
To evaluate o, we use a trick much like that used by Kapur and

Peierls: From (21) we have

L7 +k* 4+
pr=="1X % (35)
n ('Lkn)2+k2 n’
so that
1 2/ 2+ 42, +
a, = —————{K*(® , ¥ ) +(L70 ,¥ )}. (36)
n 2 2 n “k n’ °k
(k -kn)Nn
But now

To
(L*8}, %) = (L*8], L) - [[L*«b;; 1Dy® - [L*én](z’wl‘{”] )

= (L+<I>;,L‘I'k> +0 . (37a)
Next

Ty
<L+<1>;, Ly, ) = (&), L'y ) - [(p;(l)[L\Ifk](z) - ¢;(2)[L\Fk](1)]
= (8], L) - b3 0 P0) . (37b)

Finally, using (36) and (31)
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+(2) :
. wk PR() _ %0 (©)

n (38)
- k2 )N (K - k‘:‘I)Nn( -ik, )

Now the term -b»,—bk(O) is unknown until after we have solved for the
exact scattering wavefunction. But it is independent of n, so it will be
replaced by A(k) and treated as a normalization constant to be deter-
mined later (or even ignored). So that the expansion formula is

@n(0)
(k -k2) (i N,

W(r) = AL ?,x) - (39)
Let us stop and analyze this formula. It specifies how the plane-

wave-like stationary state gl/k is to be expanded over the Siegert reso-~

nant states Pne Aside from the common normalization factor A(k), the

coefficients have a very simple dependence on k

1
a (k) ~ (40)

We note as well that the nonphysical lower components of both \Ilk and
@n have disappeared from the formula. Having this principle of super-
position, we now proceed to calculate the best known property of I,Uk ,

the phase shift.
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THE PHASE SHIFT

According to Wu and Ohmura (page 64 of Ref. 13), if the exact

scattering wavefunction is normalized such that
wk(r) = sin kr + tan 6 cos kr for r=r,, (41)
then z,(/k satisfies the Lippman-Schwinger equation

Y (r) = sinkr - fr G(r,r’ )U(r’) Y (r’)dr’ . (42)

0

Comparing (39) and (42) for r =r,, we get

B
A(k)z —21—1—2<pn(r0) = sin kro
n k -k

n | (43)

Pn

Ty
—A(k)c_os_l{_r;"_ —2——1—(—2— f sinkr’ U(r" ) o, (r")dr’ ,
- 0

k n k n
where
B = ¢ 0)/(-k N ).
The uniform convergence of Eq. (39) has been assumed. Equation (43)
provides the value of A(k).

Finally we solve for the phase shift

B
) i—r‘l—z"‘wn(ro)
n k -kn
ctn & = -ctn kr, (44)

B r
sin kr, ), —5—5—5—- f ’sin kr’ U(r’ ), (x" )@, (r')dr’
n k - kn 0 a

and the S-matrix

e2'16 _ctnd + i
ctnd - i
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THE SQUARE WELL

The above description of the scattering process is not an attempt
to give yet another dispersion formula. It was hoped that the Siegert
states would provide a practical, discrete (to a good approximation
finite), and calculable basis with which to describe scattering events.
On this line it is necessary to consider an example. In fact, the example
has been the fulcrum of the theory.

Specifically we consider

-z 0=r =r,=1
Ulr) = (45)
0 r>r,

This is a rather weak potential; the resonances are far from the real

axis; and therefore the theory should be hard pressed. The Siegert

states are
[ sin k/r ]
® = (46a)
kn kn kr’l
—i—;—cos ’r+i(——-———)cosk;l
4
i kn kn kn _
- . k’ -
sink r
ég = " (46b)
-1 2 cos k;lr
| kn "

where k’nz = k; ~-U = k; + 4. The resonance eigenvalues satisfy [from
Eq. (17b)]

I4 ’ — 3 4 I4 \
kl cosk =ik sink , (47)
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which can be solved by Newton's method or as in Ref. 7.

A few of the calculated Siegert resonance eigenvalues are given

in Table I.

TABLE 1. Some Siegert S-wave eigenvalues for the finite square well

depth U = -3, radiusr, = 1.

n? Re k Im k| Re k!, Im k!

0 0.0 -1. 6506 0.0 -1. 4914
1 4.0993 -2. 6555 4.1423 -2. 6279
2 7.4268 -3. 1404 7. 4553 -3.1284
3 10. 661 -3. 4642 10. 682 -3.4573
4. 13. 859 -3.7083 13. 876 -3.7038
5. 17.040 -3.9044 17. 054 -3.9012
6 20.210 ~4,0684 20. 222 -4.0660
7 23. 373 -4, 2094 23. 384 -4.2075

*

2 The corresponding resonances with n < 0 satisfy k, = -k~ n’

Figure 1 shows these eigenvalues plotted in the complex k plane.
The x's are the Siegert eigenvalues (poles of the S-matrix), the O's are

the negatives of these (the zeros of the S-matrix).
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18.0
RESONANCES FOR SQUARE WELL U=-0.5. RO=I
12.0 —
6.0 — zeroes
&% 0.0
£ X X
- e X X X X X X X X X x X
-6.0 — poles
-12.0 —
-18.0 | I | I | ] [
-24.0 -18.0 -12.0 ~-8.0 0.0 6.0 12.0 18.0 24.0
REALCK)

Fig.1 Siegert poles.

In Fig. 2 we see plots of the real and imaginary parts of <p(nl)(r) and

gor(lz) for some of the first few resonances.
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Reldn) iml )] Rel¢ar) LX)

20

Fig. 2 Siegert resonant states for a square well
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To accomplish the expansion as in Eq. (37), we will need to know

+ .
the norm, N_ = (@, ®) =1+ i /kn2 and cp;l(O) =k . So

Al k,
YD) = AR Y L

I sink! r. (48)
n k -k ikn(1+'1/kn)

n

Comparisons of partial expansions of this uniformly convergent series
with the known wavefunctions are shown in Figs. 3 and 4. The correct
value of A(k) was used in each case.

As a final illustration, we have in Fig. 5 plots of the phase shift,
8o, calculated from Eqgs. (48) and (44) along with the cross section,
Oy = 7/k° sin® 0y, for various numbers of expansion terms. The exact

result is shown for comparison. We note the excellent agreement.
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0O r 1

Fig3 Expansion \}/k(r)=_gan¢>n(r) over square well Siegert
states for k= 8.
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1.5
EXPANSION K=0,4,8
1.0 l’-\‘ = -
D \
\ N\
\‘ N\
0.5 |- 3
\ -
\k//
/
—
0.0 — \
-0.5
-1.0 — \\\7"
i | | | 1
0.0 0.2 0.4 0.6 0.8 1.0
R

Fig.4 Siegert expansion ton=+6.



=0

CROSS SECTION, L

206

0.6 0.2
O S-WAVE. SQUARE WELL. U=-0.5, RO=1
0.5
exact
80 ton: 0 — ——
ton= 3 ——————
0.4 ton=¢6 —--"-""""-
\ ’\
0.3 — \ —0.1 80
\ M
/ 1
\ b
0.2 / \ \ ¥
0.1 / \ \\\ ':‘-
\\ \ \\A
T \\I
0.0 | S | ] ! 1 0.0
0.0 1.0 2.0 3.0 4.0 5.0 8.0 7.0 8.0
K

Fig.5 Siegert expansion of 80 and 0.
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CONCLUSION

This chapter has discussed a uniformly convergent expansion of
the scattering wavefunction over the Siegert resonant states. This is
not to be viewed as the derivation of a dispersion formula but rather as
the beginning of a calculational device. If the Siegert states turn out to
resemble the bound states as much as it now appears that they do, then
all of the powerful and successful techniques that have been used in
bound state quantum mechanics may then be used for scattering states.
The scattering problem is just an expansion over the bound-like Siegert
states.

The sense of accomplishment that might be expected must be
deflated by one important observation. All of the results of this chap-
ter apply, as yet, only to potentials of finite range (dying faster than
any exponential). No physical problem has a potential of such short
range. But resonances are still observed. The experience gained in
this research indicates (to me at least) that the work now in progress
on Siegert states for long-range potentials will bring very similar
results. At that point the theory will have come to the motivation:

electron-molecule scattering.
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APPENDIX 1

The Regge Formula

An unfortunate difficulty with some formal expressions in theoretical
physics is the failure of these expressions to survive even simple test

cases. Such is almost true of Regge's expansion formulal’ 2

) =)™ o m (1-Kk/k ) . (1)
n

For the simple case of the square well (see also the last part of the
preceding chapter) it took considerable strain to make it work. Even
after fifty terms it showed no threat of converging, and in specific not

to the correct answer, which is

Z &) = eETo[cos k' 1, - ik/k’ sink’r,]

k’ \/‘Z-U

]
o

So I went back a few steps: basically the product

/k

. k
Tk = 20 Fna-ki)e O (3)
n

converges beautifully. The constant ¢ can be seen to be the scattering

length from the logarithmic derivative

Z (k) =ic+2[i- 1
Z (k) n K ok (1-k/k))
(4)
. R 1
—1c+rzl,[kn lq_-_l—(_] ,

so that
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% - i5(0) = ic . 5)

What happened is that Regge rearranged Eq. (3) into Eq. (1) by
using the relation (which he proved) that

ro=c¢-i) lk_ . (6)
n

The cause of the slow convergence of (1) is the slow convergence of (6).
The convergence of (6) can be accelerated, and hence c calculated from
r,, by an extrapolation as follows.

Due to the symmetric placement of the poles about the imaginary
axis (that is, -kr"; is a pole if k, is), we find that

Im(kn)

I

Using Eq.(5) of the preceding chapter, we approximate for large n,

i) Lk, = - Im(l/k) = ) (7)
n

Im(kn) g Im(kn) oA fm n (8)
2 2 nz
Ik, | [Re(k )]
Now having summed the first m terms
m 0
. Im(k ) = 2Im(k_)
———~—n7 , the remainder Z_, —-—-——29———
n=-m ’kn’ n=m+1 lkn,
can be estimated through the relation
0 . ©
f &n_l_dy < n n < @_Ldy . (9)
m+2 y2 n=m+l n’ m+1 y2

When this is done, the scattering length can be calculated through
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Eq. (6) to an accuracy of about three decimal places using about twenty
resonance pairs (k , -k;). The total error in c is then about the size
of the last term included.

The conclusion is that Regge's expansion can be a practical calcu-
lational device provided it is used in the form specified in Eq.(3) and

that the scattering length must be calculated in advance.
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1. T. Regge, Nuovo Cimento 8, 671 (1958).
2. R. G. Newton, Scattering Theory of Waves and Particles (McGraw-~

Hill Book Co., Inc., New York, 1966); see especially Secs.
12.1.2, 12.1.3, and 12.1.4.
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APPENDIX TI

Eigenvalue Problems Similar to Siegert's.

This Appendix contains a brief description of a progression of
eigenvalue problems culminating in that of Siegert. Of special concern
will be the convergence of expansions over the eigenvectors from these

sy stems.

A.  The first problem (mostly from Friedman, 1 pp. 205-207) is
- 9" = Ko, @(0) = 0, ¢'(1) = K1) . (1)
The solution is written in the form

px) sin k_x
& = = _ n (2)
P, sink
with the boundary conditions ¢(0) = 0, ¢(1) = ¢,. The eigenvalue equa-

tion is then

- ¢p %)

Ld = = X0 (3)
! o (1) !
The inner product is
(2, %] = [ o) ¥&) + 0,9, . (4)

The eigenvalues to this self-adjoint problem are given by ctn(k) = k.

To expand a given vector

f(x)
F = : — ;anq’n , (5)
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(2, F] fol sin k xf(x) + sink f,
@ = — T - . (6)

n .
[’I)n’ (bn] [1 + sin® kn]/Z

We may ask: if the same f(x) will be obtained in the expansion (5)
for every value of f,, what effect does f, have? Alternately, if we know

f(x), how should we choose f? These questions can be answered by the

following: N
1) Consider some finite series Za P . Now smce @, (1) = @n, 1
N N n
for each n, then Z ancpn Z ancpn 1> as well as Iél_l_,noo Z angon(l)

n
I\%E»noo E @, ¢y 1 (if they converge at all). But now Zangon 1 =11, so

that if f(l) # f, the Z ancpn(x) will not converge to f(x) at x=1. This
n

nonuniform convergence near x =1 means slower convergence on the

rest of the interval. This problem is illustrated by a comparison of

X X
the expansions of F =[0] and G =.[1] in Figs. 1la and 1b.

0
2) Next consider expanding a vector of the form H =[1]

The formula (6) gives

sin kn
a, = - . (7
[1+sin°k ]/2

A plot of the expansion Z a, x) is shown in Fig. 1lc. This almost-
everywhere-zero (called null) expansion is what is causing the converg-
ence difficulty shown in Fig. 1a,

| X X 0
[ ] = e ’ (8)
0 1 1

-
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(a) F={x:0]

25

(b)

G={x:1]

©

H=[0:1]

25

Fig.1

o

g,‘ ap sin(kyx)

ctn(k,) = k,
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so that all we can do to get rapid convergence is to make sure that the
null expansion is eliminated. This is done by choosing f, = £(1).
B. The second problem is the same as the first except that there is

a potential:
-9"(x) + Ux) ¢x) = kK ¢x) , @(0) = 0, o (1) = kzga(l) . (9)
The same two-component form for the solution

@(x) (10)

2

with the same boundary conditions and inner product. The operator is

different, of course,
“¢n tUe,
L® = = Ko . (11)
? @, (1) n

The problem is self-adjoint (for real U) and for y(x) =U,. The eigen~
values are given by k’ ctn k’ = kz, k’ = vi2_y . Expansions are to be
done in the same way as in Sec. A: the same convergence difficulties
arise; no examples will be given,
C. The third problem discussed here (the second of Friedman) is

much like the first but with a different right-hand boundary condition,
2
-¢"=kK¢, 90 =0, ¢ (1) =kol) . (12)

This time the two-component solution is made from two functions,

(1)
_ | %n (%) 13)

<P1(12) (x)
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The boundary conditions are qor(ll)(O) =0, ga_[(ll)(l) = - gor(lz)(l). The eigen-

value equation is then written (following Friedman)
2 ’
o

Le = =kd . 14
n ) (1)/ n ( )

From this equation we see that (pr(xl) is a solution to the original eigen-
value problem (12). A little experimentation shows that the inner

product
{o,9} = ['[oDylD 4 oBy2)] (15)

makes the eigenvalue problem (14) self-adjoint. The eigenvalues are
givenbyctnk=1ork=Mm~+3)7r, n=0,+1,£2, ---

To expand a given vector,

F = - ) a® (16)
@) n R
we take
{® ,F} L
= o gD BB (1)

o =
T {e .}

where the eigenfunction has been chosen such that cp(l)

h = Sin knx,

¢r(12) = -cos k X, so that {<I>n, @ }=1. Once again, given the function
f(l)(x), the f(z) (x) that should be used is not apparent. This time there

is just one number to be determined but a function over the entire

interval [0, 1]. There are now many "null" functions 0 .
£2)(x)
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An attack on this difficulty can be made by looking at other eigen-

value problems with the same eigenvectors. The first of these is
-¢" =K ¢, ¢(0) = 0, @2 =0, (18)

whose space of eigensolutions is the same as that made from those solu-

tions of the second
-¢" =K@, o0y =0 , o4) = 0, (19)

which are even about x = 2. Expansion over the eigenfunctions of (19)
is just a Fourier series problem.

The values of the eigenfunctions of (19) between 0 =x =1 are just
the same as that of the upper components of (13), gol(ll)(x) =sink x. So
that the Fourier expansion of some given function over the solutions to

(19) in the region 0 =x =1 will be just the same as the expansion

Z o, cpfll)(x). Now suppose we wish to expand
n

X
| %ancbn. | (20)

This will be the same as expanding

X 0=x=1
f(x) = ?? l<x<3 (21)
4-x 3=x=4

which is illustrated below
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The idea is that we choose a function to connect from x =1tox =3 so
that the expansion converges as smoéthly as possible between 0 =x =1,
A first, and it turns out satisfactory, choice on how to extend the
function to be expanded from x =1 — x = 2 would be through analytic
continuation. We just calculate the power series at x = 1 and extend it

to x = 2. This is just matching the function and all of its derivatives at

x = 1. In the above simple case this gives:

A

1 1 |

v
~
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The expansion of this function converges uniformly at least for 0 =x = 1.

Hence we have obtained smooth convergence of Z oznqogl)(x).
' n

Having chosen this power series technique, we proceed to evaluate

the expansion coefficients:

4 -
N —;;fo f(x) sin k_x

R
I

(22)

1l

2 .
fo f(x) sin k x

We notice the following interesting, useful, but not accidental result

sink X = cos kn(z - X). (23)
So now
o, = fol f(x) sink x + f: f(x) cos k(2 - x) (24a)
- f " £(x) sin k xdx + f "1(2 - y) cos k_ydy. (24b)

The resemblence of Eq. (24b) to Eq. (17) suggests the following conclu-
sion. Given £x) we take f(2)(x) = -f(2 - x), where a power series
is used to ! calculate f(y) for 1 =y = 2.

When working on more complicated two-component eigenvalue
systems, such as that of Siegert, equivalent eigenvalue problems may
be difficult to find, and an interpretation and transposition of the lower
component may be intractable. Some way of applying a power series
method to calculate f(z) from f(l) is still needed. This is obtained by

examining the application of the operator of the problem, L, to the

vector to be expanded, that is, LF.
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For the eigenvalue problem now under discussion [Eq.(14)], this

is ,
f(l)(x) f(l) (2 -x)
LF = L = ) . (25)
D2 -x) 40 )

We see that LF necessarily satisfies the right-hand boundary condition,
and in fact LAF satisfies that condition for any q. The general rule to be
adopted in the future is that given f(l) (x) then f(z)(x) will be chosen so
that LAF will satisfy the right-hand boundary condition for all q. This
will completely specify f(z) by some kind of power series about x =1
(or the right-hand boundary).

D. Next we consider problem C with a potential
-¢"+Up = Ko, @0) =0, ¢ (1) = ke(1) . (26)

This gives the same form of the solutions, the same boundary conditions,
and inner product. Finding the right form for the operator is a little

tricky; the one chosen is
L od

2 ’

o

L@n = | = kn‘Dn (27)

- ¢f,2) - fx 1 U(y)qo(f)(y) dy

The eigenvalue problem is no longer self-adjoint. The adjoint operator

is given by _ -
’ X
77 - ue [ ¢*(y) ay
L*cpg = = kncb; . (28)
+1)’
-~ gon
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The eigenvalues for U = U, = const are given by k' ctn k" =k,

k' = Vvk2-U, - The eigenvectors are

[ sink_x ]
® = (29a)
n "k kn kl
Neosk’x +(— - —)cosk’
’ n kl k
lﬂm n n
o -
sin knx
+ _
e, = K (29b)
—= cos X
" Ky
L n A

The orthogonality condition is

cos 2k’
n

+ = —
{(I)n,CDI} - Nn6n2 - [1 - —'—E———n ]5n2 .

The expansion formula, F — Z an@n , works similarly to that of
n

problem C, except that
{e,,F}

30
n T 5,8} 0

The chosen condition for finding f(z) from f(l), namely, that LIF satis-
fy the right-hand boundary condition, produces good convergence. The
lower component f(z) is still related to f(l) by a power-series-like
relation, but it is no longer a simple reflection.

E. The Siegert problem was solved through the techniques developed
in the study of the previous four problems. The principal difficulty was

not finding expansion coefficients, but making the expansion converge.
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The condition that LAF must satisfy the right-hand boundary condition

was the crucial development.
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PROPOSITIONS
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PROPOSITION 1

Vibrational Excitation bx Electron Imgact-Raman SRectroscogg

It is proposed that vibrational excitation by electron
impact be considered in the formalism of Raman spec-
troscopy. In specific, that one may thereby show that
the 22 eV vibrational excitation structure observed in N,
is mediated by the resonances associated with the grand-

parent D ’II  state of N: .

g

There has been recent experimental interest in vibrational excita-
tion of the ground electronic state of diatomic molecules by electron
impact. In specific, it was found that the excitation amplitude shows
broad maxima around 22 eV in N, (Ref. 1), 20 eV in CO (Ref. 2),
and 8-15 eV in O, (Ref. 3). Pavolic et al. (Ref. 1) have proposed a
heuristic explanation of the 22 eV structure in the N, cross section.
Heuristic it has been indeed, in the dictionary sense, 4 to stimulate me
to come up with an alternative.

The energy of the first vibrational transition of N, is only some
290 mV. As Pavlovic et al. rightly suggest, a strong enhancement near
22 eV (almost a hundred-fold energy excess) should be mediated by an
unstable intermediate state--a resonance (i.e., one or more). But the
statistical model of multiply excited resonances of Pavlovic et al. lacks
the cutting edge necessary to make it convincing.

It is suggested herein that the 22 eV structure is probably due to
only the intermediate N, states found by attaching two Rydberg electrons

to the D °1I g grandparent ion of N; , and that the broadness of the structure
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is due to the short life of the negative-ion state and to the steepness of
its potential curve.

Sanche and Schulz 5 have discussed in detail how the various excited
negative-ion resonances may be described as two Rydberg electrons
attached to a positive-ion grandparent core, and that the lowest of reso-
nances appears at 4.0 to 4.1 eV below the grandparent. To examine
the possible N;r grandparent ions we can look at the paper by Gilmore. 6
The likely candidates for 22 eV structure are the C 22; and D 11 g
which are both about 25-26 eV above the ground state of N, in its Franck-
Condon (F.-C.) region. I have empirically selected the D 2Hg state as
the victim since it alone is repulsive or on the repulsive wall in the
Franck-Condon region.

There is another type of spectroscopy in which a particle impinges
with far more energy than necessary for the transition of interest. One
then looks at the energy loss spectrum. That would be Raman spectros-
copy. The theory of Raman spectroscopy, as discussed by Ting, 7 relies

on a virtual transition to an intermediate state. Ignoring the angular

dependence, the matrix element reads something like

, 1
Ty = ;MonMno{gwf'nkxnk!ow'[ (€ = €0t ~B)

e ioﬁE} S
The letter n labels the intermediate rotational-electronic state, the letter
o the initial and final rotational-electronic states. The letters k, i, and £

similarly label the vibrational subcomponents of these states. The dipole

transition operator has disappeared into the electronic matrix elements.

The ( Ink) are just Franck-Condon factors. Following Albrecht8 for the
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resonance-Raman effect, introducing Afk = €1 " Sk and Aki = €k~ €oi
the damping term iy, and restricting the summation (1) to only one

intermediate electronic state, we have

1 1
Tg = MonMno%@f’nk)(nk’Oi).[ Bp - E+iy " E- Ay iy @

Now we suppose that E =~ Aki and keep only the second term. Since the
intermediate state [nk) is a vibrational continuum we need to evaluate

( of |nk) (nk | of)

M d(4a, . . 3
on nof (Akl) (E-Ak~1+iy) (3)

Te. = M

fi
To evaluate the integral (3) we first examine the Franck-Condon
delta function reflection pr 'mciple9 for continuous initial or final states.,
Let B be the excitation energy of the D 2Hg (N7 ) state above the X 12;
(N, ) state at the equilibrium distance (Re) of the latter, and let A be the

slope of the D zng (N7 ) curve at that point. Then we may evaluate

[e0]
% (5[Aki +A(R-Re) - B]y;(R)dR

= Wyi[Re + (B - 4 )/Al/A

(nk,oi)
(4)

and similarly for (oflnk). Finally if we set 9 = [B - Aki]/A’ then

of[Re +7 ]#xoi[Re +7]dn

: ’ (5)
(E-B+iy)/A +17

Y
Ty =QFf

where Q is a constant without vibrational dependence.
Even replacing the vibrational wavefunctions by harmonic oscillator

solutions leaves the integral (5) still too difficult to work out analytically.
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But the general form may be imagined. When E - B is small, then the
denominator will be smallest for n ~ 0, i.e., the center of the F.-C.
region, the numerator is generally the largest in that region as well.
So it should be expected that Tﬁ(E) have its maximum near the vertical
excitation energy, B. We may evaluate the maximum value of T ﬁ(E)
as follows.

Set E - B to zero; then

 edn ey

Since the principal portion of the integral is to come from the vicinity

of n =0, we try the asymptotic expansion

Ty (max) = T f ¢f<n)¢l(n)dn2 -/ Gy /A" %
Y

and keep the first term that survives. This gives

f
To(max) = Q(-1) Vi (8)
(/A (2072

where a is the scaling constant of the oscillator o = mw/l. Finally,

T;o(max) | = Q'(A/y)
<2a)f

At this point it is time to compare with experiment.

First we consider the position of the maximum. Pavlovic et al.
find the maximum in all three channels 0 — 1, 0 — 2, 0 — 3 of N, to be

around 22 eV. According to the empirical rule of Sanche and Schultz,
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which says that the first (i.e., 3so) resonance is 4.1 eV below the
grandparent. The D I g (N;' ) based resonance. should have about 25, 5-
4,1 =21.4 eV as its vertical excitation energy. Some contribution of
the 3po resonance that should occur at 25.5~3.4 = 22.1 eV could also
be present. In any case, the present theory is in complete accord with
the experiment concerning the peak position.

A second test of the theory is available from the relative intensities

of the 0 — 1, 0 — 2, 0 — 3 transitions. Equation (9) gives

,  (A/¥)2 ,
]TZO/T10| = —“Z‘—"‘ = GI/CA(A/)’) (10a)
2a)
| Tso/Tao |* = (A/¥)%(6/2)(1/20) = (3/20)(A/y)° (10b)
SO
IT30,2’T10'2 3
=3/2 . (11)
|Tz0 |

Examination of the experimental results of Pavlovic et al. gives

Ty |% = 12.5 X 107, [T, |" = 2.75 x 107, and | Ty |* = 1.05 x 107",
Evaluation of the ratio as in Eq. (11) gives 1. 74, which is easily within
the experimental error (signal-to-noise 3-1, see Ref.1) of the predicted
value of 1.5.

Finally we look at the dependence on E. Suppose E - B in Eq. (5)
is large. The principal portion of the integral will still come from the
F.-C. region, n ~0. So we expand

n

(E) ~ Q/[(E-B)/A (mdy L [——1 . 12
T4 (E) ~ Q/[E-B)/A] [ gmgy(man L [ =17 ~] (12)
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This gives
Q- vt viT
TfO(E) ~ (13a)
[(E - B)/A] T 2e) /2
or

2 1
T, (E)|° ~ 13b
l fo( )l [E_B’z(f+1) ( )
T (E)]* ~ —(—;1—]; (13c)
| Ty (B) | ~ (?_1—]—3—);— (13d)
| To(E)|* ~ ?E'I'B? (13e)

Comparison with the curves of Pavlovic et al. shows indeed that the
tails seem to get sharper as f increases.

The change over from E - B small to E - B large will depend in
general on the size of the F.-C. region (i.e., a), the energy spread
(i.e., the slope of the upper curve A), and the decay width (y). Indeed
the validity of Egs. (9) and (13) depends on these same factors.

It is proposed that the single grandparent state, D ZHg(N: )s pro-
vides the explanation of the 22 eV structure observed in the vibrational
excitation spectrum observed by Pavlovic et al. The formalism of
Raman spectroscopy will provide an avenue for the numerical descrip-
tion of the process. A specific observation of importance is that the

intermediate state is either repulsive or on the repulsive wall in the
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Franck-Condon region of the ground state. A similar procedure should

work for vibrational excitation in other molecules, in specific, CO and

0,.
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PROPOSITION II

The Princess and the Monster

It is proposed that the optimum strategies for pursuit
games with no information may be found merely by
using the fact that capture has not yet occurred.

The princess and the monster1 are locked in a dark room. The
monster searches for the princess, moving with simple motion (arbi-
trary curvature ) at a known speed. The princess seeks to avoid cap-
ture, with complete freedom of locomotion. How should the monster
proceed? How long can the princess avoid capture ?

Such is a pursuit game with no information. Herein is presented
the solution to the similar but much simpler problem in which the
antagonists are confined to a simple closed curve. This game is simple
enough to be solvable by more classical game-theoretic techniques, 2
but is here solved through the proposed procedure of gaining information
from the fact that the game has not yet finished. The solution of the
original game above, to be played in a room of arbitrary shape awaits
the fuller development of the ideas presented.

We begin the discrete version of this game. The players each
occupy one of n (= 3) points on the circumference of a circle with equi-
probable relative distribution. They move simultaneously, the monster
transferring his position to either of the adjacent points, the princess
standing still or taking one or more steps either to the left or right.
Capture occurs when both players occupy the same point or attempt to
pass through each other. The payoff to the monster is the chance of

catching the princess in the present turn. Alternately, the game
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continues until capture with the payoff to the princess being the number
of turns she lasted.

The first turn is easy to work out. The monster has two pure
strategies available: to move left (L) or to more right (R). The prin-
cess has several: to remain stationary (S), one step left or right (L or

R), on k steps left or right (k- L or k*R). This is represented in the

game ma.trix?”4
PlIl s L R k- L k-R
M
1 2 k-1 k +1
L ||——— 0
(n - 1) m-1) | m-1) | a-1)
1 2 k+1 k-1
R : 0
(n -1) (n-1) (n-1) (n-1)

The entires are the payoffs, i.e., the chance of capture if the princess
and monster adopt the strategies indicated. For example, if the prin-
cess is stationary, the monster searches one of her n -~ 1 possible
starting positions by moving either L or R.

Let us first examine the possibility of the princess moving more
than one step, say k* L. Examination of the payoffs above shows that
for k > 1 the princess is always more likely to be captured regardless
of what the monster does than if she had chosen just L. Hence her
optimum strategy is to move no faster than the monster.

Next we see that the monster can have no preference between L

and R. To keep the princess confused he flips a coin: 50% L + 50% R.
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This means also that the princess has no directional preference. We

rewrite the matrix including all this

P
M S Lor R

1 1
m-1) | n-1)

Lor R

The optimum strategies for the first turn are
monster = 3L + 3R
princess = P-S+(1-P)-($L +3R).

Any mixture of movement and inertia is acceptable to the princess.
The value of the game (chance of capture)is 1/(n - 1). We now specify
without loss of generality that the princess and monster will each take
one step each turn.

The second turn is a great deal more complicated. Determina-
tion of the optimum strategies requires a complete description of the
principle that is proposed. The strategies are specified by two
parameters for each player, pr and Qps which give the probability of
changing or repeating the direction, respectively. The only pieces of
information available to the two opponents are the knowledge of their
own previous movements and the fact that capture has not yet occurred.

The criterion of an optimum strategy is basically as follows.
When the monster uses his optimum strategy, even if the princess
knows that strategy (that means the probabilities) there is nothing she

can do to improve her position. 5 Whatever she does will produce a
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payoff the same as or worse than the value of the game. Finding the
optimum strategy will mean having each player adjust his strategy
(choose his parameters QApr and aR) so that it does not matter what his
opponent does.

In specific, we presume that the princess knows the monster’s
best strategy, and knows that he is following it. If the monster followed
his 50/50 best strategy in turn one, then (presuming she was not cap-
tured), the princess can estimate the chance of his having gone in the

same or opposite direction as she did. This results in the "weight"

matrix
MP L R
L 1§n—1§ _;_(n-32
m-2) | (-2
R %(n-—3 _%(n—l)
(n - 2) (n - 2)

which was obtained by taking the monster's 50/50 strategy, reducing
the likelihood of their moving in opposite directions due to the chance of
capture, and normalizing the columns to unity.

Now we must calculate the capture amplitude matrix for the
second turn. This is just a cross-listing of the probability of capture

on the second turn presuming that the princess was not captured in

turn one.
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il || LL LR RL RR
LL 0 2 0 2
(n - 1) (n - 3)
LR 2 0 0 0
(n - 1)
RL 0 0 0 2
(n - 1)
RR 2 0 2 0
(n ~ 3) (n - 1)

Now suppose the princess went L in turn one. The chance that
the monster also went L is %(—(n—i—lzl)- . If she goes L again, the only
n-

way he can catch her is by going R. The chance of catching her in this

The monster has a probability of o of changing

case is
(n - 1)

direction after turn one. So the total payoff or capture amplitude is

1-1 2 L, . M
-2 @-1 M (-2

Similarly, princess LL vs monster R? gives

1-3) 2 . _ “r
‘m-2 @-3) T @-2)

Princess LR vs monster L? gives

1{n-1) 2 o = R
*m-2 m-1 B (@-2)

Finally, princess LR vs R? gives zero since there would be no way
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for the monster to get her.

All of this is summarized in the following matrix

P
M L R

(aM + aR) ap
(n - 2) (n - 2)

By the min-max principle the monster wishes to choose his parameters
to make the payoffs equal for the princess. Hence he chooses oap = 1,
Qpp = 0. That is, the monster always takes two steps in the same
direction. By continuing this process into the third and subsequent
turns we find that the monster continues to travel toward the other side
of the circle--until he gets there.

When enough time has elapsed for the monster to get to the oppo-
site side of the circle, the princess can figure out which direction he is
going (a plus for her). Continuing the game to the next move, we find
that the best strategy for the monster is to confuse the princess. He
pretends that this is now the first turn. He flips a coin to choose the
direction and rushes to the opposite side of the circle again. Each
time the monster goes to the opposite side he has a one-half chance of
catching the princess.

The point of this long-winded discussion was to illustrate specif-
ically how information can be gained from the lack of capture. It is
expected that this idea will be instrumental in the solution of more

complicated games of pursuit. A plausible solution to the original
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princess and the monster problem is that the monster randomly chooses
a way to search half (or at least some fraction) of the room, and when

he is done with that search he randomly guesses again.
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PROPOSITION 1T
The Schwinger Variational Princigle

It is proposed that certain simplifications including finite-
basis-set-expansion and a suitable and convenient approxi-
mation of the necessary Green's function will permit the
efficient use of the Schwinger variational method for des-
cribing electron~-atom and electron-molecule scattering.

The Schwinger variational principle has been around for some
time1 but its expected application to electron-atom and electron-molecule
scattering has failed to materialize. This result is probably due to the
apparent complexity of the method. It is against this complexity that an
effort is to be made.

We first examine the Schwinger variational method and the solu-
tion to the variational equations in some detail. The Schwinger form is

o ve e v

’ (1)

ba ~
<\I't()’), W - vavye')
a
where @, is the initial given plane-wave state

Py is the final given plane-wave state

\If(_) is the outgoing wave corresponding to P

\IIE(;L) is the incoming wave corresponding to @,

V is the scattering potential

G is the resolvent, "Green's Function, ' or propa.gatorz for
the zero-order Hamiltonian.

T, . is the transition matrix element between initial state @,

ba
and final state By
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To illustrate the variational nature of the method, and to find the

optimum \Iré:’), we examine the variation of Tba’ 6T, due to G\Ifl()-).

o), Ve (Ve wD)

- b a
b
: <'I'é'), (V- VGV)\If(; )

oT

(2)
(o), (v-vav)elh)

b :
) (¥, (v -vavyel)
Setting 5Tba = 0 gives
6r), [V, ) (o, Vil -1 (v-vavElh T -0 . @)

If 6T, = 0 for any G\I'é'), then
[|[Ve (V] - T, (v-ven) el = 0. (4)
We divide \Ifz(:) into two parts, one parallel to qub and one perpendicu-~

lar to Vgob s

‘I';J’) = lve, +al, (q, Veg) = 0, (5)

where g is an arbitrary constant to make the normalization come out

right. Then
Vo, ) (Vs Vo )8 - Ty, (V-VevE = 0 (62)
or (V v >
Py VO
(V-VGV)\Iré’“) = [-——l,i,——i—ﬁlwa- (6b)
ba

Now we assume V is invertible, set 8 = Tba/( Vo, V(pb), and get
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\1:;‘“) = @, + qur;*) , (7)

which is the integral equation for scattering, exactly equivalent to

Schridinger's equation.

The Schwinger method has several advantages that make it attract-
ive.

1. The Schwinger form above is homogeneous of order zero in the
trial functions. Hence this method is independent of normaliza-
tion, unlike the Kohn and Hulthén methods. 3

2. There is no need to worry about the boundary conditions since the
presence of the potential V in each integral emphasizes the region
of interaction, which is what we are really interested in anyway.
The Kohn and Hulthén methods are based on precisely these bound-
ary conditions. 3

3. The method is direct and unambiguous. There are no choices of
conditions, spurious singularities (as in the Kohn method3) or
ad hoc assumptions (as in the Harris method3).

4. Finally, the Schwinger method allows the application of the same
consistent formalism to elastic, resonance, and inelastic scatter-
ing.

For electron-atom and electron-molecule scattering, the princi-
pal difficulty revolves about the difficulty of the VGV integral-~the
integral needed for the seldom-used Second-Born approximation. 45
That is,

1. We need to evaluate complicated integrals involving Green's

functions.



241

2. For systems more complicated that e~ - H, we do not even know
the Green's functions.

Several suggestions are to be made that should help to remove
these problems. These suggestions will be illustrated in the context of
electron-hydrogen atom scattering. The total Hamiltonian (in atomic
units) is

H=-4vi-L4vi-1/r,-1/r, +1/r,. (8)

We seth, = -3V: - 1/r,, h,=-4V2, and V= -1/r, + 1/r,,. The zero-
order Hamiltonian is to be

Hyo = h, +h,. (9)

We need to construct the Green's function for H, called G,(E). Follow-

ing Dawydov6 G, (E) can be written as

Go(E) = ), GolE - )% (¥ _| (10)
n

where G, is the Green's function for h, and \Ifn's are the eigenstates of h,

with energies € Equivalently,

3
Go(®) = [ LK G,E - k*/2) [ )0 | (11)
(2m) X R
ik-r
where @ =e ~ Tand G, is the Green's function for h,.

Now we are to find an approximation to G,. Ignoring for the
moment permutational symmetry and spin, and choosing a finite set of
one-electron basis functions {17.1 }, we intend to diagonalize h, in this
basis and try to construct an approximate Green's function. The only

question is what eigenvalue to assign to vectors outside the finite basis
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{n.}. Suppose we select the number a. This defines a new Hamiltonian,
i
h® = Ph,P + a(l - P), (12)

where P = Z !ni)(n.lI is the projection onto the finite basis. Now let
{¢, }and {Eki be the eigenfunctions and eigenvalues of h, in the basis

{77]-} . The exact Green's function for h¥ is then

GYE) = _a-» Z lgj)(gj’ (13)

-E +1 i € ~E +i
o + 16 Je] + 18

where 6 is to go to zero in the usual sense.6 A considerable simplifica-

tion will result if we let a be very large. This gives

¢ =) Ejmi’ (14)
j §-E+io

The Green's function for h,, G,(E) has a sequence of poles, at
E = ¢ <0, and a branch line, E = k?/2m > 0. G (E) has a similar set
of poles, E = _e—] ; but no branch line. If E is close to one of the poles of
G,(E), say E = € » then we expect the behavior to be dominated by that
pole, or at least the closest two or three. If Gio has nearly the same
poles as G,(E) near € and nearly the same residue at each as G,(E),
then G?(E) should be a very good approximation to G,(E) in the vicinity
of € The contribution from the other poles and the branch line should
be smoothly approximated by the other poles of G§°(E) not necessarily
close to those of G,(E), and with residues not necessarily close to those

of G,(E). The approximation will improve as more basis functions (ni's)

are added. It is very important to note that all of the eigenvalues {Ei}
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are to be included, even those that are very poor approximations to the
bound states of h;. Only in this way can the continuum contributions to
G, be approximated.

Now consider expanding \IIS) and \Ifk()') in terms of the two-electron
basis {ni"j }i,j . This corresponds to the insertion of projection oper-

ators in the Schwinger form as

_— (P¥), vg, M(Ve,, PE)

T (15)
ba R
(pe!), (v - vav)pel)
Variation yields
@éj) = [P(V - VGV)P]"qu;a
(16)

Ty, = (Ve,, P[P(V - VGV)P] 'PVg,)

The only complicated part will come in expressing P(V - VGV)P. To do
that we note that we only need integrals of the form (ninj IVlnkn o) and
<77i77j lVGo (E)V| nkn2> . These are first- and second-Born integrals.
The whole point in the approximation of the Green's function for h, above

is that now
(g [VGSE)V [ myemy) = §;<ninj!vcrzm-‘e‘m)lem><smfv;m{n£>, (17)

since the gm's are linear combinations of the ni's. This expression
reduces to just a sum of one-electron-like second~-Born integrals that
are definitely tractable. All of the complexity of the bound-part Green's

function has disappeared.
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Further, it turns out that by making the replacement of G, by G?o
and h, by hio, the scattering problem expressed in this basis, with the
zero-order Hamiltonian hOf + h, has been solved exactly. But, since the
scattering perturbation would not be V + hio - h,;, we might expect
spurious scattering due to hﬁo - h;. One can show that no troubles will
occur. The inclusion of permutational, spin, and spatial symmetries
merely becomes a symmetrization of the matrix <77i77j |V-VGV| MeMg?
after construction and before inversion.

It is to be noticed in passing that if the two-electron basis {n]- P },
where the nj's are some of the exact H-atom bound states and the gok:;;
are plane waves, is chosen, the Schwinger principle and use of the h
above Green's function produces the close-coupling method as a special
case.

It is proposed that the expression of the Schwinger variational
principle over a finite, conveniently chosen basis-set, a special choice
of the zero-order Hamiltonian so that it has a simple and convenient
Green's function, and the final application of the symmetries of the
problem will allow consistent and convenient application of the principle
to electron-atom and electron-molecule scattering. The Schwinger

method should become at least as efficient as the close-~-coupling method.
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PROPOSITION IV

Charge Extrapolation, Resonances, and Local Potentials

It is proposed that a study of atomic states and configura-

tions as functions of nuclear charge will provide

1) approximation wavefunctions and energies of and a

characterization of shape resonances of the type
(1s)(ns), (1s)(np) of H™ and (1s)°(ns), (1s)*(np) of
He , etc., and

2) local potentials for unbound states for use in scat-

tering or molecular-bound-state calculations.

The wavefunction for an electron moving near a hydrogen atom is
conveniently thought of as resembling the diffuse orbital of H™. The
vicinity of a helium atom is more difficult to describe. No bound states
of He™ exist so there are no orbitals as fixtures for the imagination.
One might hope nonetheless to be able to find a simple expression of
the attractive and repulsive forces seen by an electron near the He
atom.

In the case of H those same forces can be easily and fairly accu-

rately represented by a local potential. 1 This local potential can be

obtained by solving the equation (in a.u.)
[%V2+V]‘P2 =@, or V=¢+1/2¢, vz‘ﬂz (1)

for V, given ¢, and €, from a Gl calculation. According to the current

formalism, this potential should only be used for the s-wave portion of

2

an orbital since it came from an s-orbital in the first place.”™ To find

this local potential we must first solve for the lowest bound state.
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This is possible for 'S Li~, but for most of the other simple ionic states
it fails, e.g., 3, 'PH, %S, *P He”, 'P Li". Now we ask, is there a
state of %S He™ from which a local potential can be obtained? There is no
such bound state, but there may be an almost bound state--a resonance.

A resonance state is really very close to what is needed. It is
understood to be concentrated near the atom. For a short distance out
from the nucleus the wavefunction should look just as He  would be
expected to look, say, like the configuration (1s)(1s’)(2s). Asymptotic-
ally, it is a plane wave, being an unbound state. Although the outer
orbital from this state, concentrated mostly near the atom, would seem
to be a good candidate, it is unavailable. The normal SCF methods do
not work for unbound states or resonances. We will instead try to
approximate this state and the local potential by extrapolation from the
isoelectronic series with the same configuration.

As an indication of the plausibility of this procedure we will try
to measure the smoothness with which the orbitals change from one
nuclear charge to the other. This is done by making graphs of the
ionization potentials of the various species. Naturally, the ionization

+3

potential of the outer electron in the series Li, Be*, B™, c*3, etc.,

will become larger due to the increased charge of the nucleus. More
useful would be a measure of the changing effect of the inner electrons.
An estimate of the ionization potential of Li would be 2—1? (3- 2)2 =

0.125 a.u. or %}—2(2 -Z where n is the principal quantum number

)2
core’?

of the outer orbital and Z is the number of underlying electrons.

core

So we plot A(Z) =IP(Z) - (1/2n')Z ~ Z )®. As an example, a plot of

core
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A(Z) for the (1s)(1s’ )(ns) series is shown in Fig. 1.

For this and the similar 2, 3, and 4 electron isoelectronic series,
the points are incredibly close to being collinear. Apparently what
changes from one charge to the other does so very smoothly. The
limiting values, found by parabolic fit to the last three points, are
) = A(Z

shown in Table I. We note that IP(Z ) < 0 implies

core core
instability. As expected, the lowest 'S states of H™ and Li~ are pre-
dicted to be stable. Far more remarkable is the appearance of the
(1s)(1s")(28) 23 resonance of He™ near 0.5 eV. These extrapolations
further predict that no others will be found in e -He or e -Li scattering.
We see from Table I that the lower s-wave resonances should be too
close together and too close to zero to be separable or detectable. The
p-wave resonances will be very hard to detect since o, ~ k> ~ E for
small momentum k or energy E. The expected resonance cross section
should be swamped by the factor of k® since the resonance energy is so
small. These successes in extrapolation build our confidence in the
idea.

It is remarkable that the curves and the predicted energies of the
resonances are all out of order. The least stable is the 2p, then the
3p, then the 4p, and so on. The configurations crossed each other and
inverted their order. This is at first surprising but becomes less so
after some thought. A 2p resonance would be one that has an outer
orbital with no radial nodes near the nucleus and is generally the same

shape as a bound 2p orbital. A 3p resonance should have one radial

node and be more diffuse than a 2p. We would say that the 2p should
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Fig. 1. He 23, (1s)(1s’)(ns) series, extrapolation of the
2

correction to the ionization potential.

from Refs. 3-5.

Data taken
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TABLE I. Predicted resonance energies from isoelectronic charge

extrapolation. a

Ion State E = -1.P.
cm ev a.u
H” 1s 's -6100 -0.755 -0.0278
2s °s +2400 +0. 30 +0.011
He~ 2s %S 4252 0.53 0.019
3s 1378 0.17 0.0063
4s 588 0.073 0.0028
58 53 0.006 0. 0002
2p °P 1550 0.19 0.0071
3p 493 0.061 0.0023
4p 214 0.026 0.0010
5p 108 0.013 0. 0005
Li~ 28 'S -3049 -0.378 -0.014
3s + 525 +0.065 +0.0024
2p P 6809 0.85 0.031
3p 4144 0.51 0.019

2 Pata taken from Refs. 3-5.
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have a lower energy since it has fewer nodes. This logic no longer
applies because far from the nucleus both the 2p and 3p resonance
orbitals behave as plane waves, the real part of which has infinitely
many nodes. No comparison on the basis of nodes is possible. The 2p
is expected to be tighter than the 3p. It appears that the potentials they
see are mostly repulsive at short range (no bound state exists). The 2p
being tighter could be concentrated in a region of higher repulsive poten-
tial than the 3p; hence it would have a higher energy.

A comment should now be made on the observations of Gerjuoy6

7

and Kaplan and Kleiner. ' These observations showed that if He™ °P is

Z-3 2p ig stable for any Z > 2. We can see that this is

unstable then Z
true for say Z =2 + €, € > 0. For sufficiently large r the potential
seen by the outer electron will be just -e/r. This is enough to bind the
electron no matter how small € is. But as € becomes smaller and
smaller, the np configurations cross each other. The most stable
state should nearly follow the most stable configuration at each €. The
character of the lowest state just changes from 2p to 3p to 4p to ... to
wop as € —0.

We have seen that the ionization potential extrapolates very
smoothly and should give good resonance energies. It is claimed that
the outer orbital of approximate wavefunctions for these states will
extrapolate just as smoothly. It is proposed that we obtain approximate
resonance wavefunctions by just this extrapolation of the orbitals. We

would like a local potential to describe the region near the atom. It is

proposed that we take the orbitals describing the lowest, tightest bound
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state--which extrapolates to the highest, tightest resonance--then con-
struct the local potentials for the bound states and extrapolate to get

the local potential for the resonance.
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PROPOSITION V

A Valence Bond View of Solids1

The idea of viewing conduction in solids as resonating
valence bond structures has been around for some time.
But it has been in disrepute due to the calculational
successes of band theory. It is proposed that the abil-
ity to think in chemical terms will make the valence
bond view worth the effort.

Over the years the Hartree-Fock approximation and group theory
have made enormous strides in the understanding of the electronic struc-
ture of periodic solids. Implicitly the electronic structure becomes a
bulk property of the periodic lattice; the individual orbitals are then
completely delocalized Block states. 2 Theoretically, the study
of solids would consist mostly in finding the effective potential that the
conducting electrons see and computing the band structure therefrom.

There are a number of reasons to think that the present band-
theoretic techniques are near their apex, and that one might look next
in other directions. To me the most important of these reasons is |
chemistry. A solid is just an immense molecule. The atoms do not
just set up an effective potential, they form bonds to each other.
Valence should dominate. The second reason is symmetry. The band
theory depends crucially on the fact that the solid is periodic. The
predicted structure changes drastically when the symmetry is reduced
(e.g., in doped or amorphous solids). Intuitively and experimentally we

know that a small amount of impurity usually produces a small effect.
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The conclusion then is to look for an alternate description in which
the chemical and short-range effects are given prominence. It is there-
fore proposed that the valence bond view of solids be resurrected.

How this may work and some of its implications are illustrated below.

Basically we are going to make a chemist's ball-and-stick model

of solids. We begin with a simple 2 X n planar lattice of monovalent

balls
® . . ° o ° ™ v
N~ PO N e
L o ® [ [} ) . [
and connect them with sticks
® ® ——— o . . ( S -
hd ® . . *— *—

Each of the several ways to connect the atoms represents a possible
wavefunction for the electronic ground state of the solid. These all
should have the same energy, and they are not in general symmetry
functions for the translation symmetry group of the solid. The actual
wavefunction may be a linear combination of these ''resonance' struc-
tures. The degeneracy of the individual structures is lifted by their
interactions. We may think of this as producing a narrow band of

many-electron states

ég Solid

dm*ﬂ“c T

Let us now classify the various types of solids by this model of

resonating bonding structures:
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Metals typically have many equivalent nearest neighbors, so that
they will have insufficient valence to form bonds with all of them simul-
taneously. This means that there will be many degenerate bonding
structures depending on which of its neighbors each atom bonds to.

Semiconductors such as silicon typically have exactly as many

nearest neighbors as covalent bonds. There is only one bonding struc-
ture in the absence of excitations or impurities.

Molecular solids such as solid hydrogen similarly have nondegen-

erate bonding structure.

Ionic solids have no bonds at all.

What I am getting at is the nature of conduction. An interesting
illustration of what is going on is given by a comparison of diamond and
graphite. Diamond with only one structure is an insulator. Graphite,
which has many equivalent resonating structures, is a conductor. I

propose to look at conduction as the flipping of bonds

[ [ TSN, Y *—

R fh/ 2 1} .b N

the change from one resonating structure to another.

To see whether I am on the right track, I would like to evaluate
numerically from scratch the resistance of some solid. This desire is
thwarted by a number of conceptual difficulties. Principal among these
is the fact that the resistance of metals is dominated by interactions of
the electrons with the vibrations of the lattice. A simpler problem
would be to look at the effect on conduction due to individual atoms.

That leads us to look at the increased resistivity in dilute alloys with
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noble metal hosts, which is a rather well-studied area experimentally.

Linde3 in his studies of dilute alloys found a very interesting
dependence on the valence of the impurity atom. Elements that lie to
the right of copper (Ag, Au) in the periodic chart, when dissolved in
copper (Ag, Au) produce an increased resistance proportional to the
square of their distance to the right (see Fig. 1). That means that the
resistance is proportional to the square of the difference in valence.
Now above we said that the conduction was due to the interchangeability
of the equivalent resonance forms. The bonds flip in the direction of
conduction. An impurity atom with a valence greater than that of the
host will tie down several of the bonds that were to have been used in
making resonance structures. More importantly, when the bonds are
flipping during conduction, the bonds forms by the impurity will elimi-
nate certain of the conduction paths that otherwise could have been used.
The dependence on valence is now natural. That it should be quadratic
is not surprising (but I have not yet explained it completely).

The transition metals are more stubborn. As we can see from
Fig. 1, they do not give such a simple quadratic behavior. The solution
must be that the effective valence is not given merely by the distance
away from copper. Of course the number of electrons available for
bonding changes by one for each step removed from copper. Some of
these electrons are involved in bonds with the host copper. Some
remain localized on the transition metal atom. These nonbonding 3d
electrons may be magnetic and could be counted in that way.

To find the number of nonbonding electrons we would look at the
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Fig. 1.

Increase in the resistance of copper due to one
atomic per cent of various metals in solid solution.
N denotes the number of electrons outside an inert

gas shell; z denotes (N - 11), from Ref. 4.
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magnetic moment of dilute paramagnetic alloys. This is complicated by
a number of difficult effects. Among them are temperature-dependent
interactions between the localized magnetic moments and the conduction
electrons, and crystal-field spin-orbit effects. But the magnetic data
available (such as that of H'lldebrands) seem to indicate, for instance,
that manganese has most of its electrons involved in its localized
moment, few left for bonding, and hence has a small effect on the
resistance. The opposite is true for iron.

This much recommends at least a more complete study of the
literature to (1) verify and to characterize the valence dependence of
resistivities, (2) to explain in terms of valence the magnetic properties
of alloys, such as the Kondo effect, and (3) develop the implications of
the valence bond view of solids to the properties such as specific heat,
thermoelectric power, and magnetoresistance. Of practical interest
will be the applications to semiconductors and superconductors, both
of which seem to me to be conspicuously susceptible to a valence bond
treatment. Of course there are many calculational details to work out,

but they will yield.
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