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Abstract 
  

The studies discussed in this dissertation are aimed at the chemical-scale interactions 

involved in neuroreceptor structure and function.  Unnatural amino acids were 

incorporated into several ligand-gated ion channels.  Two different ionotropic glutamate 

receptors (iGluRs), the N-methyl-D-aspartate (NMDA) receptor and the α–amino-3-

hydroxy-5-methyl- 4-isoxazolepropionic acid (AMPA) receptor were studied, along with 

an acetylcholine receptor - the nicotinic acetylcholine receptor (nAChR), and all were 

analyzed with electrophysiology–an assay of receptor function. 

 In Chapter 2, a highly conserved tryptophan (Trp607) in the ion channel pore of 

the NMDA receptor was investigated for its role during extracellular Mg2+ block.  

Previous studies hypothesized that a cation-π interaction between NR2BW607 and Mg2+ 

contributed to the receptor blockade.   However, our studies suggest that Trp607 is not 

involved in a cation-π interaction with Mg2+, instead it is a structural component of the 

pore.  NR2B Trp607 acts as a steric “plug,” preventing Mg2+ permeation through the ion 

channel.  These studies were the first to incorporate unnatural amino acids into a 

glutamate receptor, extending the scope of nonsense suppression methodology to a new 

class of neuroreceptors. 

 Chapter 3 describes the incorporation of unnatural amino acids into the ligand 

binding domain (LBD) of NMDA and AMPA receptors.  Previous structural studies of 

AMPA receptors established the overall topology of the LBD to be a clamshell, two 

domains clamp down around a central cleft.  Further studies utilizing agonists that induce 

full receptor activation and partial receptor activation demonstrate a relationship between 

cleft closure and agonist efficacy, which is the ability to activate a receptor.  Full agonists 

correlate with more cleft closure than partial agonists, which induce less cleft closure. To 

examine this relationship, we used unnatural amino acid mutagenesis to convert an NR2-

conserved tyrosine to homotyrosine and an NR1 glutamine to homoglutamine, residues 

designed to disrupt clamshell closure by expanding the side chain without altering its 

functionality.    The development of our functional probe demonstrates that the clamshell 

closure mechanism, previously shown for AMPA receptors, likely also applies to NMDA 

receptors, but to different degrees in the NR1 and NR2 subunits. 
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   Finally, in Chapter 4 we use unnatural amino acids, mutagenesis, and 

computational simulations to probe the binding interactions that are involved in agonist 

selectivity at the muscle-type nicotinic acetylcholine receptor.  Acetylcholine (ACh) and 

nicotine, both agonists for nAChRs, have a high potency for neuronal receptors.  

However, nicotine is a weak agonist for the muscle-type nAChRs, yet the amino acids 

that contribute to the binding site remain the same between both types of receptors.    

These studies use mutagenesis and unnatural amino acids to introduce changes in the 

muscle-type receptor to increase nicotine potency.  Although some of the mutations 

increase nicotine potency, none of the mutations result in a muscle-type receptor with 

nicotine potency as great as the neuronal receptors.  A second set of studies generated a 

mouse muscle homology model and used molecular dynamics to simulate movements in 

the receptor with and without agonist bound.  These structures demonstrate the 

importance of a hydrogen-bonding network that contributes to the pre-organization of the 

aromatic box.       
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