Chemical-Scale Studies of Ligand-Gated Ion Channels

Thesis by

Kathryn Anna McMenimen

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

California Institute of Technology Pasadena, CA

2010

(Defended October 30, 2009)

© 2010 Kathryn Anna McMenimen All Rights Reserved Dedicated to my parents:

Dennis and Jean McMenimen

And in memory of Fae Eloise Miller

Acknowledgements

Chemistry is all about getting lucky. -Robert Curl

After working towards the completion of this Ph.D. for more than six years, I have many people to thank. The path was not always clear and for that I thank everyone who contributed to helping me along the way.

My first set of thanks goes to my advisor, Dennis Dougherty. Before my first trip to Caltech for a visit, I was told by some of my chemistry friends to meet with Dennis because he gave such inspiring lectures about his group's work, and happened to be one of the "normal" people at Caltech. Well, I quickly learned that both are true. I am always and will continue to be inspired by the scientific questions that he chooses to tackle and his amazing ability to tell a story. I also greatly appreciate the guidance he has provided over the years, especially for allowing me to pursue many different scientific interests and for allowing me to pursue a somewhat non-standard career path. I am truly grateful for all of his support and guidance over the years.

I would also like to thank Professor Henry Lester and his lab for providing an incredible amount of insight and thought about different aspects of my projects over the years. Henry's insights and questioning always lead to intriguing new ideas and approaches to solving problems. Without him, our "Unnaturals" meetings just wouldn't have been the same. In addition, members of his lab, particularly Fraser Moss, helped me with many molecular biology questions I had along the way, and I appreciate all of their helpful suggestions.

I would also like to thank my committee members, Professors John Bercaw, Peter Dervan, and Dave Tirrell. I am grateful for their advice and guidance over the years.

They have all been very supportive of my future career goals and interested in discussing how I can achieve them.

When I arrived at Caltech and was trying to determine which lab I would join, the ultimate deal breaker were the people in the Dougherty group. They are some of the most amazing and inspiring people I have ever met. Although we didn't overlap for long, Darren Beene, Sarah Monahan May, David Dahan, and Don Elmore all provided helpful advice when I first arrived. I also greatly appreciate all of the help Steve Spronk provided for all things computer related, especially for teaching me how to use the command line. Tingwei Mu and Lori Lee both provided me with advice, particularly about future career plans, and I appreciate their insight and advice. James Petersson was one of my early mentors and collaborator on the NMDA receptor cation- π study. I'll never forget when I first told him I was interested in studying the NMDA receptors. He told me to just start working on the project and then let Dennis know, that way he wouldn't be able to say no. It definitely worked and I'm incredibly grateful for our countless discussions, scientific and otherwise. I wouldn't have been able to get started so quickly in the lab if it hadn't been for Amanda Cashin. She helped me get my feet wet in the Dougherty lab and has continued to be a great friend over the years. I will always appreciate her continued friendship over the years and her enjoyment of all things dog related.

I would also like to thank Joanne Xu, Erik Rodriguez, Amy Eastwood, Jinti Wang, Jai Shanata, Angela Blum, Kay Limapichat, and Kristin Gleitsman for all of the help over the years and contributing to the general enjoyment of being a member of the Dougherty group. I would also like to thank the newer lab members, Sean Kedrowski, Noah Duffy, Maggie Thompson, Kristina McCleary, Ethan Van Arnam, and Ximena Da Silva Tavares Bongoll, for continuing the pursuits of the Dougherty lab. I would also like to thank Mike Torrice, Nyssa Puskar, Ariele Hanek, and Kiowa Bower for not only providing valuable scientific advice, but also for listening to my general discussions and ramblings over the years while in the middle bay.

V

There are of course many people outside of the lab who contributed to the completion of this thesis. I want to thank all of the friends and students I met while teaching at Pomona College. They convinced me that I love teaching and definitely wanted to pursue my teaching interests. Especially to Matt Sazinsky and Lisa Sharpe Elles, I look forward to our future discussions about teaching at small colleges. I don't think I would have ended up at Caltech if it hadn't been for some great mentors along the way. I want to thank Donnie Cotter, Darren Hamilton, and Jeremy Sanders, and my friends from Mount Holyoke College, who encouraged me to pursue my interests in chemistry. Of course there are many more people who have contributed to this thesis, and I know this doesn't even scratch the surface, but to everyone else that supported me along the way, thank you!

Last, but not least, I want to thank my family. My parents have always supported my endeavors and provided guidance along the way. It hasn't always been the smoothest road, but they were always there to help me find the way. My parents have always encouraged me to pursue my dreams and I couldn't have done this without them. I would also like to thank Amy, Sean, and "Little John" Bailey. They have always supported my scientific interests and remind me of the many non-science related things in the world that I enjoy. This last summer in California wouldn't have been complete without my brother James, who I am secretly turning into a chemist! Thanks for not letting me remain the lone scientist in the family. Finally, to the two best dogs in the world, Hunter and Watson, who have made my life that much more interesting.

Abstract

The studies discussed in this dissertation are aimed at the chemical-scale interactions involved in neuroreceptor structure and function. Unnatural amino acids were incorporated into several ligand-gated ion channels. Two different ionotropic glutamate receptors (iGluRs), the N-methyl-D-aspartate (NMDA) receptor and the α -amino-3-hydroxy-5-methyl- 4-isoxazolepropionic acid (AMPA) receptor were studied, along with an acetylcholine receptor - the nicotinic acetylcholine receptor (nAChR), and all were analyzed with electrophysiology–an assay of receptor function.

In Chapter 2, a highly conserved tryptophan (Trp607) in the ion channel pore of the NMDA receptor was investigated for its role during extracellular Mg^{2+} block. Previous studies hypothesized that a cation- π interaction between NR2BW607 and Mg^{2+} contributed to the receptor blockade. However, our studies suggest that Trp607 is not involved in a cation- π interaction with Mg^{2+} , instead it is a structural component of the pore. NR2B Trp607 acts as a steric "plug," preventing Mg^{2+} permeation through the ion channel. These studies were the first to incorporate unnatural amino acids into a glutamate receptor, extending the scope of nonsense suppression methodology to a new class of neuroreceptors.

Chapter 3 describes the incorporation of unnatural amino acids into the ligand binding domain (LBD) of NMDA and AMPA receptors. Previous structural studies of AMPA receptors established the overall topology of the LBD to be a clamshell, two domains clamp down around a central cleft. Further studies utilizing agonists that induce full receptor activation and partial receptor activation demonstrate a relationship between cleft closure and agonist efficacy, which is the ability to activate a receptor. Full agonists correlate with more cleft closure than partial agonists, which induce less cleft closure. To examine this relationship, we used unnatural amino acid mutagenesis to convert an NR2conserved tyrosine to homotyrosine and an NR1 glutamine to homoglutamine, residues designed to disrupt clamshell closure by expanding the side chain without altering its functionality. The development of our functional probe demonstrates that the clamshell closure mechanism, previously shown for AMPA receptors, likely also applies to NMDA receptors, but to different degrees in the NR1 and NR2 subunits.

vii

Finally, in Chapter 4 we use unnatural amino acids, mutagenesis, and computational simulations to probe the binding interactions that are involved in agonist selectivity at the muscle-type nicotinic acetylcholine receptor. Acetylcholine (ACh) and nicotine, both agonists for nAChRs, have a high potency for neuronal receptors. However, nicotine is a weak agonist for the muscle-type nAChRs, yet the amino acids that contribute to the binding site remain the same between both types of receptors. These studies use mutagenesis and unnatural amino acids to introduce changes in the muscle-type receptor to increase nicotine potency. Although some of the mutations increase nicotine potency, none of the mutations result in a muscle-type receptor with nicotine potency as great as the neuronal receptors. A second set of studies generated a mouse muscle homology model and used molecular dynamics to simulate movements in the receptor with and without agonist bound. These structures demonstrate the importance of a hydrogen-bonding network that contributes to the pre-organization of the aromatic box.

Table of Contents

Acknowledgements	iv
Abstract	vii
List of Figures	xiv
List of Tables	xviii

Chapter 1: Chemical-Scale Neuroscience

l
l
1
7
7
)
4
6
17

Chapter 2: Exploring the Chemical Nature of theN-methyl-D-aspartate (NMDA) Receptor Pore Blockade20

2.1 Introduction to Learning and Memory	20
2.1.1 Long-term potentiation and Long-term Depression	20
2.1.2 Synaptic Plasticity and iGluRs	22
2.1.3 <i>The LTP Switch: NMDA Receptor Mg</i> ²⁺ <i>Block</i>	27
2.1.4 Glutamate Receptor Structure and Diversity	29
2.1.5 AMPA Receptor Diversity	30
2.1.6 NMDA Receptor Diversity	31
2.1.7 iGluR Subunit Topology	32
2.1.8 NMDA Receptor Mg ²⁺ Block	34

1

2.2 Results	36
2.2.1 Previous Studies of the NMDAR Mg ²⁺ Binding Site	36
2.2.2 Wild type NMDA Receptor Expression	40
2.2.3 Control Experiments	42
2.2.4 Incorporation of F_n -Tryptophans at NR2BW607	45
2.2.5 Calculated Magnesium Binding Energies	48
2.2.6 Mutagenesis studies of Inter-Subunit Contacts	
in the NMDAR Pore	49
2.2.7 Current-Voltage (I-V) Relationships	50
2.2.8 Similarities of the P-Loop of Glutamate Receptors	
and Potassium Channels	52
2.2.9 Asparagine Residues and NMDA Receptor Block	
by Extracellular Cations	55
2.2.10 Additional Studies of NMDA Receptor Blockade	61
2.3 Discussion and Conclusions	64
2.4 Materials and Methods	67
2.4.1 Molecular Biology	67
2.4.2 Electrophysiology	69
2.4.3 Immunolocalization of Wild type and Mutant	
NMDA Receptors	70
2.4.4 Computational Modeling	71
2.5 Cited References	72
Chapter 3: Studies of Partial Agonist Interactions in the	
Binding Site of Glutamate Receptors Using Unnatural	
Amino Acid Mutagenesis	79
3.1 Introduction	79
3.1.1 The Mechanism of Partial Agonist Action on	

Glutamate Receptors

81

3.1.2 Previous Studies of Partial Agonism and Stru	uctural
Evidence for the Clamshell Model of Partial	
Agonism in AMPA-Selective Receptors	88
3.1.3 Structural Studies of NMDA-Selective Recep	otors 94
3.1.4 Previous Studies of Partial Agonism and the	
Clamshell Model of Partial Agonism in NMI	DA
Receptors: The NR1 Glycine-Binding Site	97
3.1.5 Previous Studies of Partial Agonism and the	
Clamshell Model of Partial Agonism in NMI	DA
Receptors: The NR2 Glutamate-Binding Sub	unit 99
3.2 NMDA Receptor Ligand-Binding Domain Studies	101
3.2.1 Project Overview	101
3.2.2 Studies of an Ion-Pair Interaction at the NR2	2B
D1-D2 Interface	101
3.2.3 Homo-tyrosine Incorporation at Y705	105
3.2.4 Inter-domain Contacts and Mutations in the	
Glycine-Binding NR1 Subunit	109
3.2.5 Homo-glutamine Incorporation at NR1 Q40.	3 112
3.2.6 GluR2 Structural Study Correlation	114
3.2.7 Implications for the Functional Study of the	
Clamshell Mechanism of Agonist Action	115
3.3 AMPA Receptor Ligand-Binding Domain Studies	118
3.3.1 Mutational Probe of the GluR2 Clamshell	119
3.3.2 Studies of Ligand Binding Domain Hinge Re	esidues
Involved in Receptor Activation	124
3.4 Conclusions and Future Work	126
3.5 Methods	127
3.5.1 Electrophysiology	127
3.5.2 Mutagenesis and preparation of cRNA and U	Jnnatural
Amino Acid Suppression	128

3.5.3 Immunolocalization of Wild type and Mutant	
NMDA Receptors	129
3.6 Cited References	130

Chapter 4: Studies of the Binding Site of the Mouse MuscleNicotinic Acetylcholine Receptor134

34
34
37
40
43
43
45
45
51
52
56
60
64
66
66
67

4.4.3 Mouse Muscle Homology Model of D89N Mutant	
Structures	167
4.5 Cited References	169

Appendix A: Studies of Ionotropic Glutamate Receptors in	
Mammalian Cells	174
A.1 Introduction	174
A.2 Results and Discussion	176
A.3 Methods	181
A.4 Cited References	184

List of Figures

Chapter 1

Figure 1.1 Synaptic transmission	2
Figure 1.2 Ligand-gated ion channels	3
Figure 1.3 Two-electrode voltage clamp	5
Figure 1.4 Electrophysiological traces	6
Figure 1.5 The power of unnatural amino acid mutagenesis	9
Figure 1.6 Nonsense suppression	10
Figure 1.7 Semi-synthesis of aminoacyl tRNA	11
Figure 1.8 In vivo nonsense suppression methodology	12
Figure 1.9 Unnatural amino acid side chains	13

Chapter 2

Figure 2.1 LTP and LTD	20
Figure 2.2 Synaptic changes after LTP induction	21
Figure 2.3 iGluR agonists	23
Figure 2.4 Schematic of iGluR classes	24
Figure 2.5 Overview of LTP	26
Figure 2.6 The postsynaptic density	29
Figure 2.7 Topology of iGluR subunits	33
Figure 2.8 NMDA receptor activation	35
Figure 2.9 NMDA P-loop structure	37
Figure 2.10 Cation- <i>π</i> binding	39
Figure 2.11 NMDA receptor Mg ²⁺ Block	41
Figure 2.12 Misincorporation currents	44
Figure 2.13 Wild type recovery IC_{50}	45
Figure 2.14 Electrophysiology traces	46
Figure 2.15 NR2BW607F ₂ -Trp Trace	47
Figure 2.16 Electrostatic potential surfaces of tryptophan derivatives	47
Figure 2.17 Calculated Mg ²⁺ binding energies	48

Figure 2.18 I-V Curves	51
Figure 2.19 Schematic of NMDA receptor pore	53
Figure 2.20 Immunolocalization of NMDA receptors	54
Figure 2.21 Asparagine analogs	56
Figure 2.22 Asparagine site IC ₅₀ curves	59
Figure 2.23 Asparagine site IC ₅₀ curves with memantine	60
Figure 2.24 Percent block for Mg ²⁺ and memantine	61
Figure 2.25 NMDA receptor blockers	62
Figure 2.26 Electrophysiology traces from MK-801	63
Figure 2.27 IC ₅₀ curves for PCP	64
Figure 2.28 NMDA receptor cloning	68
Chapter 3	
Figure 3.1 iGluR families	80
Figure 3.2 iGluR Topology	82
Figure 3.3 GluR2 Ligand binding domain	83
Figure 3.4 iGluR Domain Organization	84
Element 2.5 ClaD an enjate	05

Figure 3.5 iGluR agonists	85
Figure 3.6 iGluR domain closure	87
Figure 3.7 AMPAR antagonists	89

Figure 3.8 Willardiine structures	91
Figure 3.9 AMPAR agonist induced domain closure	92
Figure 3.10 iGluR domain closure and channel activation	94
Figure 3.11 NMDA heterodimer structure	95
Figure 3.12 NMDAR agonist binding site	96
Figure 3.13 NR1 partial agonists	97
Figure 3.14 NR1 domain closure	98
Figure 3.15 NR2 Ligand binding domain	100

	100
Figure 3.16 Tyrosine analogs	102
Figure 3.17 NR2 agonists and amino acid analogs	104

Figure 3.19 NR2 relationship between activity and efficacy	108
Figure 3.20 TIRF images of wild type and mutant NMDARs	109
Figure 3.21 NR1 ligand binding domain amino acid analogs	110
Figure 3.22 NMDA receptor shifts for mutations in the LBD	113
Figure 3.23 Functional probe of the clamshell	114
Figure 3.24 GluR2 domain closure distances	115
Figure 3.25 Side chain geometries for Tyr and hTyr	117
Figure 3.26 Wild type GluR2 dose-response relationship	119
Figure 3.27 GluR2 EC ₅₀ shifts for LBD mutations	123
Figure 3.28 GluR2 Y483 4-MeO-Phe dose response curve	125

Chapter 4

Figure 4.1 Muscle nAChR Structure	135
Figure 4.2 nAChR subunit topology	136
Figure 4.3 nAChR agonist binding site	137
Figure 4.4 EC ₅₀ shifts for F_n -Trps at α 149 in muscle nAChR	138
Figure 4.5 AChBP structure	139
Figure 4.6 ACh and Nicotine binding to α Trp149 muscle nAChR	141
Figure 4.7 Cation- π interactions at α Trp149	142
Figure 4.8 nAChR sequence alignment	145
Figure 4.9 Electrophysiology traces of α T196 mutation	147
Figure 4.10 Ratio of EC ₅₀ shifts for nAChR outer shell mutations	149
Figure 4.11 AChBP binding site with nicotine bound	150
Figure 4.12 nAChR β 9- β 10 loop surrounding the conserved aromatic box	151
Figure 4.13 α W86 and α D89 hydrogen bonding	153
Figure 4.14 α 86 EC ₅₀ shifts for wild type and mutant receptor	154
Figure 4.15 Torpedo α subunit alignment with α 1 from mouse muscle	157
Figure 4.16 Charges generated for CCh and Nicotine	159
Figure 4.17 αD89 and Loop B interactions	161
Figure 4.18 Mouse muscle binding site, CCh bound and agonist free structures	162
Figure 4.19 Hydrogen bonding between aD89 and loop B	163

Appendix A

A.1 Wild type NMDAR expression on Flexstation	178
A.2 Wild type 5-HT ₃ A Receptors on the Flexstation	179
A.3 5HT ₃ A S183TAG Lah-THG-73 mutant responses	180
A.4 Untransfected HEK293 cels on the Flexstation	181
A.5 HEK cells transfected with Lah-THG-73 only	181

List of Tables

Table 2.1 IC ₅₀ data for Wild type and Mutant NMDA Receptors	50
Table 2.2 IC ₅₀ values for N and N+1 site mutations	58
Table 3.1 NR2B D1-D2 interface mutations with glutamate and NMDA	103
Table 3.2 NR2B D1-D2 interface mutations with HQA and QA	107
Table 3.3 NR1a D1-D2 interface mutations with glycine and ACPC	111
Table 3.4 NR1a D1-D2 interface mutations with ACBC and D-CS	111
Table 3.5 Data for GluR2 receptors with glutamate	120
Table 3.6 Data for GluR2 receptors with the willardiines	122
Table 3.7 EC ₅₀ values of glutamate for GluR2Y483 mutations	125
Table 4.1 EC ₅₀ values of ACh, Nicotine, and Epibatidine at wild type nAChRs	144
Table 4.2 Outer shell mutation EC ₅₀ values	148
Table 4.3 α 151 and α 21 muscle nAChR data	155
Table 4.4 Hydrogen bonding distances calculated from MD simulations	164