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the flow of ravefied gases froa a vessel

through an orifice into vacuum is studied here, special

conditions of this study are that the mean Liree patb

of the nclecules is of the swme opder of magnitude as
the hole diameter; Iurthermore the thiekness of the
wall is neglected, dnudsen [1,7] investipatsd this
effusion vroblem for constant conditions throurhout the

ag, asguming baxwellian veloecdity distribution and

[ 51

[

very larpe musap free paths, in the

e

influence of &4 one-dimensional temperature rradient
gxtonding from the wall wretrsan into the ras is ine

vestirated, Forsulae for the messflux and the spatial

E R —" 2 ope b el Taga bt g Y [P YL s IS U . 2o e
intensity distelibution ol the gutflowing nolecules are

caleulateld for steady flow conditions. Finslly the be-

havior corresponding 1o o nonstationsry temperaiure

neatssd or cooled




3 R £ 1
Phnd

TABLL OF CONTEETS

Acknowledgensnts

Abstract

Toble of Gontents

list of Symbols

I Introduction

iI. Impertant Assumtions and Relations

JIis Correction Formulae for the Stationary Case

3ol

3.?*

ean Free “ath as Function of Temperature
Averaging Procedure over Space., Modified
Polsson-Distribution

Derivation of the Basie Integral

Solution for Very Small Temperature (ra-
dients. Zxpansion in Taylor Series
Solution for a ixponential Temp. Gradient
Derivation of an aApproximate (utflux Fore
mula for a Statiomary Temp. Gradient
Comparison of Foymulae 21 and 24 for

a oSpeecial lumerical Case

Uiscussion of Hesults

¥, Zpatial Distribution of the Jutflowing folee

culea for the Case of a Steady Temp. Cradient

iv

ot e

L%

i1
12

15

19



Vo Dizcussion of the Case of a Unsteady Temperature
Gradient at the wall,
5ele The Heat Transfer Lguation for Very Small
Temperature Gradients.
8e2a & Solution for Very Small Unsteady
Temperature (radients,.
5e3, Amother Solution for Very Small Unsteady
Temperature Gradients.
Lelye & Simple Hodel for the Gas Behavior lear
the wall Immediately after the Teumperature
Change at the Wall,
5e Dehavior of a Fawwelliap Cas lear a wall
in the Firgt Homenty after g cudden Tene
perature Rise al the wall, Approximate Cal-
culation of the Gutflux of loleeuwles for the
Piret Two Collision Times after the Temperature

Rise,

Heferences
Appendix 1

Appendix 11

By
B

8
g5

26

29

31

2
141

49
52



€ veloclty of a molecule

ﬁp specific heat at constant pressure
d thermal diffusivity [2f] = ;‘4}.?
£ name of a function

k Boltamann constant

%1,k3 constants

n number of molecules flowing out per unit area and tine
P pressure

r - radius in polar ceordinate systems

¥ tine

u component of the velocity of a molecule in xedir,

v ] 7 # 7 Bow w " e ¥

w5 id ¥ 141 % ¥ i & W B n &

% coordinate normal to the wall

V2 cartesiam cosrdinates in the plane of the wall

A ares
3] diameter of a rigid spherical molecule
& nunber density, number of molecules per unit vol,

P probability distribution

oA zas constant
T abgolute temperature ¥

¥ rolume



oc coefflicient in the exponential temp., distrib,
A beat conduction coeflicient

terms in the Maxwellian velocity distribution function

&
N

collision time
probability fupetion
angle in the wall plamne {(see Fig. 2,p.8)

e dimensionless coefficient
§ thickness of a gas layer

€ dimensionless coefficient
A  mean fres path

M goordinate

Vv coordinate Y= M s d

g density

v

¥

Y

W

sclid angle

§ angle between r and the normal to the wall

0 expectation of eollislons

Subseripts:

¢ "eone"

o  originel state at iafinity
f; ?9%@&?*

w sgtate at the wall

8 Yip direction of f %
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i, ﬁh:@ LDLUTION

Ynudsen [2] derived a2 formula for the oute
flux of wolecules from g vessel throush an orifice inte
vacuum for s very rarefied gas.{rean free path of the
melecules is large coupared to the hole diaseteri. Lhe

5 influsnce

oo

thickness of the wall of the vessel and
on the oulflux were neclected, ‘he state of the pas was
assumed to be constant throughout the container and
caxwellian velocity distribution of the particles was

o

used, For these simplified copditions one obtains the

sow-called cosine-law {{nudsen [2],Clausing (31) for the

spatial intensity distribution nf the outflowing moleculess,
in the vresent gtudy the condition of a

homopeneous pas state throurhout the vessel is onitted.

€
it

?
~

[l

influence of a one-dizensional temperature sradient
extending from the wall inte the pas on the ocutflux of
molecules 1s investigated., & correction formula for the
maseflux for steady flow is obtained, the spatial ine

tengity distrdbution of the sutflowing particles under
tits condition s studied and Cﬁmﬁéfﬁd with Snudsen®s

cosine-law distribution. (he nonstationary case lg dise

cussed later on { according Lo & sudden chanre of the



£1, LorU (BANY ACSUrPTIUNS abl nblaTIONS

in the following study a few basic
assumptions are made:

1. The wall between gas and vacuum extends to infinity
on both sides and is infinitely thin, ‘herefore the
effeet of the thickness of the wall on the rate of
outflux is neglected,

Ze the temperature gradient is norual to the wall, this
vields amessentielly one-dimensional problem, The
temperature is a funciion of x only, where x is the
coordinate normal to the wall,

8. The variables of state of the pag are coustant
along lavers parallel o the wall corresponding o
the temperature in the layer. The perfect gas law

p=qRT {1)

avplies,

P

.o Basic relations of kinetic theory derived by means
of the faxwellian velocity distribution law apply
loecally, such that each point in space has its own
raxwellian distribution corresponding to its teélns
regratura, the following relatlons are used:

mean velocity corregponding to sexwellian distre:

~ \’aRT’ {2
c= | ——
w

et



L% 2]

mean free path corresponding to raxwelllan distr.:

o KT
ACENer T e (3)

5, For the stationary case constant pressure is assumed

throughout the gas, the reason for this assuaption
is  that ecuilibriuvs and thus stationary state can
only oecur if the momentus exchange between laysre
of the pas is balanced,

Go The accommodation coeffieient oc =1, "his means that
moleculses hitting the wall attain the same enerpy
level as the wall. But this restriction is not inme
porvant in our case, If an accommodation coeiflelent
smaller than 1 has to be counsidered, only the wall
temperature Ty in the formulae to be given has W
be replaced by oc lwe

7 The noleculss are treated as clastic spheres,

)
‘X

&‘5"{; 3 aﬁd B 4 ek ‘J’J «i‘.{«’k f,{,jau b Gt mE.A «%;«J Tz"izu ‘«:f iidgdﬂu(k b&%s,.«ut

3ele iigan Free_“ath ge Fungtion of Tenpera

b

Averaring [rocesp over Spoge. podified ﬁo igsons

igtribuiion,

The assusption that egeh poiot in space
has its own saxwellisan distribution acecording to it
venperature imelies the existence of a different mean

Iree path A at each point, A is a function of teamperadure.
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It will be necessary for the derivation later on to
caleculate the probability for a wolecule to travel a
cortain distance without collision, rfor homogenecus
conditions in space { temperature, density, pressure
are constants) this probability is simply given by the
Yolsson-distribution

-

e {4}

>Ix

But in our case temperature and depsity
have pradients throurhout the space., 4 molecule starting
ai a c@éﬁaﬁm point ¥y in space has an average expectaw
‘tion of traveling & certain distance without cellision
corresponding to the tLemperature 51 at ?1 { A7) represente
this expectation), But this expectation changes during
the motion of the molecule because the density and teame
nerature of the surrounding of the molecule change. It
is therefore necessary to replace the Folsson-distri-
bution by another expression, which takes care of this
change in expectation or mean free path during the motion,.

Je derive this formuls as follows:

&

4 molecule starts at a point 'y in space [(see Fig, 1)

cP‘
& P.
| ‘ 3 P
| pT T — —
P | !
| o | t Fig-/
| l I :
] ] |
| . L l
- Ax~—
X=mAX ———————|




with mean fresc path expectation A, ana travels a short
distance ax, buring this motion the conditions are thought
to be unchanged. Therefore the probability of moving

-4
over this distance without ccllision is e‘x§. Sudderim
ly the conditions change apd the pean free path expsace
tation changes correspondingly from A, to 2, . the pro-
babilicy of mavxmg from P, to ?E without eollision is

herefore e ., The total probability for the motion
Ax _Ax
from Py to ‘3 becomes then e . e 2, ‘this processg has

0 be reveated until the molecule collides after m steps

8t %X. Therefore we write for the total probabllity:

Y _AXx ~AX _£ ALX
. Az X_,;q =1 A
P(mAx):Q ‘e - = e
-max & 1
=e ™ Et:(n{)

e define now ae an “aversge value of mean values®:

L&y L e
R DNESEETD N -

mAX . ‘

thus:

-

Introducing fniﬁ in our abmv& relation and anproaching

the limit Ax»dx we find: P(max) - P(x)

f (5
{x !
Pb& = 2 '

thnis ie the nodified rolisson-distribution.




3.2, berivation of the bBasic Interral.

we use the above result {5) now in order
to obtalin an expression for the rate of massflux throurh
the orifice under our conditionsg. ¢ deal with & small

volume clement dV of pras in our semi-space (see Fip.<d}.

X
o~
2
6
dA
g
4
r
J Flge £

The averare number ol molecules colliding in ¢V per unit
time i3 equal to the averspe number of molecules in dv
multiplied by the orobability of collision of a molecule
rer unit tim@é

co ’ JV N
The molecules cailxdmmg in 4V are scattersd in random,
The runber of molecules per upnit twe which eollide in dV,
leave dV in direction of dA and reach di withéut'furth@r
collision is then {using {(5)):

S M f;wo (6]
Avg YWV s '

~& get the total nuanber of molecules hitting the area da
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of the wall by integrating over the whole seni-space,
This nusber is equal to the number of molecules Flowe
ing through a hole of area di in a wall of zers thicke
ness, «8 Chooss ¢§ﬁ@r&&dl polar coordinates. Hence we

obtain for unit area

dv= ;ezme 46 dwr»ahe

(e
v %)
4~dej f C(;)led Mwbsbe " dedb
P
Y=0 60 K=o
) 4
1 oo Ia}e
n:2]dﬁw9umedej~:gtﬁﬂ~i- M”
0 r A
e ealls Zix
S - Flo

Using relation (1, and {(2}:

r

F(x) ~ —

w

Compnarison with ¥pudsen's forauls

el

vields finallys

Foo = "WV? - (7)

aeplacing dr by dxfeos U and dintreducing {7) leads to:

L 00 fox
’ \,T ‘ o A& 0
n:anfwo(medef L 2P N @0 Jx (3]
T A Y
in %hiv derivation collisions between molecules

already taken in account. Uorresponding to eguation (6]
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all molecules reaching the orifice are counted after
haviﬁg had their last impact with other particles. lience
the problem that some melecules approaching the hole
might be "knocked"out of their way by other particles
is elimirated.

In order to integrate expression (£) we ine

troduce o new ﬁuncﬁic&*

ax”Gﬁﬁigﬁi
with the following properties:
X=0 — > ‘fAs f }ﬁgzgs =0
X>0 —> u= DI‘AOSZNB
{because AMcess is bounded. Apg=A(x(M)and ¥ never poes
to 60 for x >oo],
Furthemore:
b= fw) $() (10)
{lonly z@nmﬁiaw of xi]
Therefore:

W’“ )= §(ga) = §(mcood) = Yv) (11
iﬂsernimr all these expressiong in our previous equas
tion {(#) leads to the following f{ora:

x .
n= lnw fzme w1 6de SOQ(PWG) e')* d}L {12}

0
this is our bagic intepral in the form which we shall

use later on,
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aede Solution for Very Small Temperature Cradients,

Expsgeion in Taylor feries,

ihe fumection {(11) %(’pume) describes essen-
tially the form of the temperature gradient, lu order
to solve egquation {10¢ for small temperature pradients
it is convenlient to expand %gumﬂa\ in a Tavlor series
arcund a point at the wall {subscript wj:

“MMGF{; J‘we)"‘k dm g )

m! d (/A- wA0) )LWB’O

or in short notation:

Pipwb)= i;): m_____c.:!e)"“ Pl

Thus:

i .
n=2n, ﬁofmemm‘edeor—%— $(m)(0)e }lo\}k

me2
m  olm
= -2—(0—]- {17
n nw[t+2?wﬁ)] (13,

fouation {13) is the solution for very small tempera-
ture pradients. the quantity n, is the nassflux given
by the Unudsen formula caleulated for the pas conditions

at the wall: -

the derivatives ?”M»in.<133 can be comnputed by means



of the follewing procedure:

P(mpewd)= B(v) ;v = pcomb

| _ T
wwd=v=0:  §io) ?"‘Lo’E“ |

fluces) = §(v) = ?’(x)“‘;
G ¥‘v>=o I? (0)

where J(x) is given by the expression for the tempera-

. .\f’h' <

(14

ture gradient and ¢=M6=¢(x) is given by {10) and (3.

asdee, S0llvion for g wpopential lemperature Gradient,

We assume a teumperature gradient of the
fore:

T=T,e (15)

e ghall solve cur basic intepral (12} after introduce
tion of equation {15). "he choice of this exponential
temporature gradient is wore or less arbitrary. It was
selected as an example bocause of the simple mathemaii»
cal expressions obtained, Neveriteless this exponential
pradient is a pood approximation for many similariy
shaped temperature distributions, This approximation
will be used later on four the discussion of very small
inptationary temperasturs pradients,

The temperature {unction in the form of
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eguation (15} implies T=0 at x>0, But this is no
real difficulty b@éﬂu@@ of the exponential factor in
cquation (&) which suppresses everything far apart from
the wall,
«ikh use of equation (3] formula. {15) vields:
r=n, e T (16)

#elation {9) takes now the form:

dx _ dex-exx
o Ay Ay, e

= \ ( | é‘x,_ ‘) _ | (éxx ‘)
A, @@\ Y WY

/A'=

oAy bu ¢l = e

o X
Tw 7 '
T e ';"VI+O£AWCM9/A- = {(p @) {17)
we introduce {17) in {12) and find:
('

n= 2nwf Memeaew oAy @t e (18)

in order to get a fi?ﬁ% approximation solution of this
integral one can expand the reoot term in a power series

and neglect higher order terms:

'W+kawwﬂ = |+ 05an, wibu
The sccuracy of this approximation iz difficult to esti-

mates A better approximation of the integrand can be
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found if we restirict ourselves to temperature rradients
within the following limits:

= ! xA 1}

for X =21, Tw XM .o {19}

TQw)
For usual gases ranges 4 &t 15°C and lu pressure bet

ween L and 10 em (see A.Guthrie and i,loevinger,[111).
Therefore even with the above restrictive conditions
very strong temperature gradients are included {(almost

too strony for our initial conditionsi. Equation {19}

vields: 2 0.69
e choose: o & ié
w

By means of this restrictions it is possible to find
an approximation for the integrand in formula (18] with
an accuracy of about 4 percent, The caleulations are
carried out in Appendix I. Une obtains the result:
-\ﬁ+uﬂw0a09/u‘ e = (L + 0420y wobu) e M (=0}
for: 0<£ oAy wib < 0.6

Introducing this in eguation (18) we finally get:

¥ o2 -
n=2n, | Memeaej [} +0.42(xhooB)u]e P du
0 0

‘ : S
—any | L +04 WIRTEL
n 2nw[,__+0 zccAwJ Aim B 230 oj e Jp.]

n=n, [} + 028ccAy] (21}
where azkw,éiaé
Thiz is the solution for a steady exponential tewperas

ture gradient.



Jefe bgrivation of apn Approximate Qutflux Formula for
a Bratiopary ¥emperature firadient.

ve have seen in the previous sections
that onlvy & relatively small region near the wall'ia
important for the flow correction corresponding to a
temperature gradient, Let us therefore asgume an aver-
age mean free pﬁthlx within this small region {which
is not specified otherwige) in order to avoid the averw
aping process used to modify the Polsson-distribution
in section 3.l..

“hen we can derive a formula analogously
to section 3.2. for the number of molecules passing

through an orifice of unit area:

Py
B3
——r

T o0
cn (F(072VTw ,opo Boob {
n nw( j x 1T A b e dx 4@

d
Punction iﬁﬁ% is explicitly inteprable for & teuperaw
ture rradient of the following form:
- Tw
T (a4 k)t
Proper cholce of the consvants ky and ky gives a pood

{23

approximation for many temperature pradients. Transe
forming to a new varisble t we get from (221

—::5——-"3* dx = dt T 1D
A b

¥ o -
n=hy 2 [ Fambeen 048] (1 4k T conbt + kB2 p e
0 0

n=ne [ + Ak + k] (24



Hemark: A has not heen caleulated yet. For a rough

estimate we shall replace X by A, later om, because

only a regiom near the wall is important.

3e6._Comparigon of the Formulae {21 and (24} for a

A an example we choose temperature

x=A, =» 7= 0.8 1y. we compare

gradients such that for
the results obtained when equations {(21) and (24 ) are
applied to this case,

a) suponential sradient,
—0C X
T= TW e ' <Ay = mog=10223

n=n, [\ + 028 0.223]

n=n, |-06%

choose ky=C in our two-parametric exprsssion.

ihen we get, using K== A,
T=Tw[t+hxﬂd ‘ L P S k= 012
' (14l Ag

h:nw -} ‘2
the regult for these two different

rradients shows that the deviation from the Knudsen

nagsfilux based on conditions at the wall is only of

the order of 10/



dele Disgugsion of cesuliss
For the case of coanstant temperature

throughout the semi-space (Tpag= 1y, Knudsen's formus

la vields: Ny S
n=—pr— = fw
T§ t s
sut: N~ —
w qu‘
and hence: M L Tw,
Nya Twi {251
T4
L Fige 3.

' ang)

X
This means that the massflow is inversely proportional
to the temperature of the gas {see Fige.l )

the above simple relation holds for cone
gstant temperature throughout the space. In the ecase
of & negative temperature gradient one has therefore
to expect that the massflow will be larger than the

flow corresvonding to the highest temperature 1, bée

wh
cause rreat parts of the halflspace are at a lowsr teme
perature {see Fig. L

In this study it was always assumed that

the wall was hotter than the gas, This is no necessary



i

restriction. lor the ecase of a cocler wall formulase (1)
T}
TW

Fire 4o

x !

and (24} can be used, but the positive sign has to be
replaced by a nerative sign in forumula {21),

Therefore the results (21) and (24} are
qualitatively correct, because they give vaiue& of
massflow larger than the massflow corresponding to the
highest temperature {({or the cage of & hot wall), But
furthermore these formulae (21}, (24) and the special
values of section 3.6. show that the influenee of the

dominant and that a lewer { or

higher |} teuperature in the semi-gpace does affect the

massflow only by a corpection of about 5420%,
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iV SPATIAL DIS

TofBULION OF THE OUIFLOWING MOLECULES

FOR THE CAsE OF & STEADY TeliPEsATUNE GuaDIENT,

Claueing [ 31 has plotted the angular
distribution pattern of molecules emerging from the
orifice for the siuple cosine-~law of Knudsen, Ve want
to cobtain an expression for the spatial distribution
of particles which passed the orifice according to our
special conditions {t@xzxmmwmngméimt}’ we shall
compare our result with Clausing's diagranm,

We can specialize our formula (21} o

Knudsen's relation by putting oc=03
(4
Y ©
n=2nwo§ nim @ Wsedef I-e ’ud)u.
0

w GeBolis
fnudsen's cosine«law for diffuse ree
fleection states, that the number of molecules reflected
at an angle 6 to the normal of the wall within a golid

angle dw is riven by:
g

where ny is the total number of oucoming or reflected

molecules per unit area, From the conservation of the

equilibrivm in the conditions of the upper semi-sphere

it follows that this law of angular &i%ri“ﬁmﬁiaﬁ also

holds for the arriving molecules. But n, is in our case
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the number of molecules passing through a hole of unit
area, insrefore "tha molecules spread out aeeerding to
the same molecular distributdon after having passed
the orifice.

We use spherical polar coordinates in ore

der to derdive the relation, With Fig.5 it follows:

Fige 5

Corresponding to Knudsen's cosine-law the nunber of
molecules spred within two cones with half-angles ©

and {8+ d8) becomes:

A 026 ) 28
oy

N =2n, AmBd0 - en B (26]

This holds for Knudsen's relation, By comparison with
our formula {18) and dealing only with a cone between
® and {0 48) we obtain:

oo R -
m(_e=2nwm“9'kcm 90f [ f0-41(kaw6)»]e”45 (27)

~
A

the term A in {27) corresponds to Knudsen's cosine-tsrn
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and iz ourdirection factor':
f-=-2

A= b {1 +042 (o Ay oot u] ™ du

0 e0
A= b [€ ¢ 042 Ay caob(-e?Y (po))]
A=cord [ | +0.42 wd yy0a0] (28)

Thug the temperature gradient brings essentially a
c@&gﬁmahawg@ to the inudsen~law,

For the case of a cooler wall equation (28)
reads analogously:

A= oo Bt~ 042 Ay coab] (2da)
we gompare now the simpls Knmﬁgﬁnmfag%@r Ap® €080 and
our factor &. In polar coordinates the curve for cos@
iz a cirele,{See Diagram 1}. The shape of our A-curve
cen be determined in the following way:

Agep =1 +0.42 Ay

A I + 0421 e A
A— = + w @2 wp < (___5_._> = (@59; (29)

-
< |

Therefore our curve is an oveld with its

largest diameter in the direction of the x-axis. {See
Diagram 1, page 22,

Purthermores

‘% = - Mm@[! + o.ln.xlwcodel— w0042 « 2y A b

) -

do
=0
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Diag. 1

Comparison of the spatial distributions of cutflowing mcolecules
for the casesof a temperature gradient at the wall and for uni-

form gas temperature (Knudsen),
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This means that our curve has no sharp tip. In liaw
gram 1 the ecwrve is drawn for the same numerical values
which we used in section 3,043

1;=a8 for x=A4,

Tw

&Aw=0‘223
i A= 00 [| +0.0937 00 0]

Conclusion:

A nepative temperature gradient bas a "directing” effect
on the massflux, The molecules do not spread out in

all directions in the same way as for homogeneous gas
conditions, The total massflux increases, However both
effects {spatial distribution and total outflux correce
tions) are relatively small,

For a positive temperature gradient {wall
cooler than the gas) the above statenants hold analow
gously. Thus the total ocutflux in this case ls sumaller
than for a constant gas state throughout the semi-space,
In this cass the molecules sprsad more to the sides

than norwal to the wall,



GuaADIERT AT THE WALL,

Sede.The Heay Jrangfer Fauation for Yery Small Teme
peragure_Gradients,

e deal with the same physical srrangee
ment as in the previous sections with the omly difference
that the wall is now suddenly heated or cooled. Theree
fore the temperature gradlent changed with time corres-
ponding to the heat flux into the halfspace.

T = T(x,t) (30)
The coefficlient of heat conductlivity and the dengity
change with temperaturs. lience the differential equa~

tion for the heat transfer must be written as follows:

T d I
9f =d e v Ix  Ix (31)
d= _,é___—__. = function of T
« §(M

Equation {31) is a partial differential equation,and
the solution would be relatively complicatsd. Butv for
small gradients we can simplify the relation in the
following manner:

In the previous section we have already
seen that only the state of a thin layer next to the
wall 45 really important for the ealculation. But
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this thin layer will be heated or cooled very soon
after the imstant in which the temperature of the

wall ie suddenly raised or lowered. Therefore the

ﬁaymﬁ-gé— and ar can be assumed as relatively small

x Ix
in this laver, Their product can be neglected in a
firet order approximation {(this certainly does not
hold for the very firdt moment after increase or de-

grease ﬁf the wall tsmperature). Thus we get:

_AD T _ ATl T (32)
gJ Ix*  S0gt).cp  Ix?
“tharm@r we assume by the saﬂ@ reasoning as above

{small layer near the wall) that

A(D o
S(T)“' d(T) A(Tw“u) = gBJi

d 48 the aawcallad thermal diffusivity.

In that way we have finally reduced equation (31} to
the usual heat %?aﬁ&f@r equation for solid bodies:

ET =dy 99’: {34)

Jhe @aluziaﬂ of this rela %iam is well known. the

boundary conditions for our speecial problem are:

3] ¢ ; % 51l ?&.‘?Q
TO,e)=1T, ;3 Tix,0l=1, ; >0 {35)

The ﬂaluti@u takes the form:

T-
Tw“To i -M?Hdw ' (36)
where @4(9),2_, j e §d§

tguation {36) is the ransi@wt one-dimensional heat
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flow solution for conduction from a surface at conw
stant temperature I, into a semiinfinite medium inw
itially at T,. Actually this approximation turns out

to be very good as shown experimentally by w.C.Criffith [ 5]

5.2 A_Solution for Yery_spall Upsteady lemperature
Gradients.

We want to obtain a formula for the mass.
flux as a function of time according to the temperature
change with time, If we introduee relation (36) in
{12) and integrate by graphical or numerical methods
our problem is prinecipally sdved. But the errop-func-
tion cannot be used explicitly for analytic integrae
tional operations which we want o make with function
{36) in order to show the general bshaviour, Using
another function as an approximation for (36]) enables
us Lo integrate explicitly, f@ take

;;;21 = ebhgﬁﬁ;? (37)
ag the approximate function. Curves of functions {36)

and (37) are plotted in Diagram 2 (p. 27).
For our special example we asswne furthere
nare that the initlal temperature is very low
Tg=0
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)
G

Then repeating the procegs of section 3.4,
~1.8 x -8

T . A
Lol — -
" $x

)A,"' gdx ’g e‘*dwf
—_—d X

o M@0 0 Ay, b

-8x

mwhwmy ¢l = eudw

and
%

n=2 ffwe w0dp gwnwv |+ chy, @by e du
0 ¢ |

where: i.8

Vaat”

in erder to be able to muke the same approximation
ag in section 3,4. we have to restriet ourselves to

sertain valuves of ¢

0.b
c £

Aw
For exanmple:
Ay = 5 0 em at 1 ‘u pregsure and 15°% for common
gasest

V____, [ZL-] = o = 05[]
Therefore the resultant formuls after integration
does not hold for very small t, that means it does
not hold for the first moment after the temperature
increase at the wall, But this is essentially the
same restriction as for the validity of equation (32)

as stated there,
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Applylus relation (21} properly vields then:

.8
n=n l +0-2-8 A
w [» 4’dwt w']

n= nw[i +0-15'1-i!——] 138}

Vdy t'

ihe properties of the massflow described by this fore

mula are esgentially the same as in 20C8i00 Teleeli=
quation {38) shows that for increasing time the masse
flux approaches the Knudsen value, as it was to be exe

pagted.

Zede Apothgr Solution for Yery Small Unsyeady feme
perafure (radients,
helation (34) yi@%ﬁ@ after integration:
T o omk 2 o “Fagt (39)
then we m&k@a; é@fingggig {see ldepmann and Hoshko,
[12], p.315): .
g(o,é) Y =°f§ dx ;) §= g—};— {LO)
— S=Vwd t' ’ {£1)
thus we replaced the actual temperature distribution
by a discontinous one. § is a layer, in which the
gr&@iant-%% ig comstant and has the same value as at
the wall, The thickness of the laver incresses with
time, The remaining part of the gas is atAaﬁngtaﬁt

temperature, {See Fig, ¢). Using this ag an approxi-
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mation leads to the following:
T T
Tw

To

Azdy-px for 0=x=£§

A=A, for xz§
Usding our relation {(12) properly yields:
= | - -dl= L Aw .
WV = ?[zﬂ\lw ﬂm(kw 3")]’ y fn ( Aw—ﬁc") {62}
for 0 <£x< §

ﬂ«(iﬂ——)*r—";g— for $=x  (43)

=41
O Bl VR S A
Furthernore: T. T
T\'Vz'rw-&x 0 £x £ § Lh )
W
T To
Aw eyr"lw
t=x<§: (43) > x = — (46)
T ! Y
Pun: 2= TR P < P(v) = §nwnb)
Tw ¥ edv

Observing that the integrrand dies out rapidly for ine

x|
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ereasing x (x2§) and using the Taylor-expansion prow

cedure given im section 3.3. leads to:

n=n, [1 +3 Uy-To)  Aw vl [_______(T.,—T,) _&!]1]

3T, $ 2 T, )

$= 6 (1)

Hemark: Helatlon (47) is not valid for very short times

{473

after the temperature increase at the wall (Very steep

temperature gradients occur then})

2ok Gimple Fodel for the Gps Bgbaviop Hear the wall
dmmedlately after a Temperature Chenge al the Walle

Up to this point, very short timea after a
sudden temperature change at the wall had to be exclue-
ded in our calculations. Before we consider the effects
whiech occur immediately after the temperature increase
{or decrease ) at the wall, a very siuple and imstruce
tive model for the zas behavior at this moments shall
be descrided.

In & real gas the molecules collide freguent
1y with each other and exchange their momsntum, energy
and direction of motion., The sudden energy input at
the wall when the temperature is raised is carried
away by reflected molecules., These particles collide

and exchange thelr higher energy to other moleculss
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very soon. Therefore this energy spreads away from

the wall in a verv complicated manner (in "sigeszag”

curves). To illustrate the overall effect of a sudden-
ly raised wall temperature we asswse the following:

a) The space above the wall is filled with righd
spherical molecules moving only im a direction
normal %o the wall,

b} All particles have the same veloclity,

¢) The partieles are reflected normal to the wall
and obtain a speed in the opposite direction,

d) The speed of the reflected molecules corresponds

to to the temperature of the wall,

@)} The particles 4o not collide with each other.

nder these assumptions we can draw a simple model

for the gas motion near the wall, Diagram 3 on page 33

{lilustrates the change of the particle motion vhen

the wall temperature is suddenly raised,

FProm these figures it is easy to see that
after the inecrease of temperature a layer of low
density occurs next to the wall, The thickness of
this layer increases with ¢ime, Moving sway {rom the
wall is another layer of high density (similar to a
shoek fromt). The thi&kn@sﬁ‘af this layer also increases

with time.
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One cem write {see Diagram 3, p. 33):

et w golmel)® condensation
layer thickness . for a sud-
“ denly heated (48]
cylmel) ® ‘rarefaction . wall
layer thickness |

ig the time between 2 impacts of molecules at the wall.
ﬂ» iﬁ{i@?&l 1,2,3;&01-6.'-:?5
Coing to the limit €+ U

leg =~ goit condensation layer
thickness {42a)
Cob rarefaction layer
This model shows the behavior of a real gas for very
short times after the temperature ralse, The higher
momentum of the reflected particles "pushes" the one
coming molecules away ané the condensation and raree
faction layers are created. But because of the compli-
cated interactions of the molecules is this effect not
as sharp as in our model and the distinetion between
this layvers gets weaker and weaker with increasing
time{ the energy exchange between "slow" and "fast®
nolecules smoothens the effect with increasing time]).
4n analogous model can be set up for

the ease of a sudden temperature drop at the wall,
Then a condensation layer cecours next to the mall and

a rarefaction wave spreads into the space.
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dede Pohavior of 8 Vaxyellien Jag lear a Wall in the
Eirst [bmeptg after s Sudden Temperature Rige at

e W WA N e NG OERG KRN

after the lemperature Rise,

in order to study the unsteady behavior of

2 gas near a wall corresponding to the boundary conditions
the veloeity distribution fumction has to be known, This
distribution function {(a function of the macroscopic
variables of sztate, of space and of time}has to satig-
fy the Haxwell-Beltzmann equation, This problem was ree
cently treated by fichiro Takao (7] who split the dise
tribution function in two parts (arriving and reflected
particles) and was thus able to match the boundary cone
ditions at a wall and to satisfly the Haxwell-Boltzmann
equation, He obtains a2 system of partial differential
equations for the macroscoplic variables of state and
the velocity components in analogy to the equations of
motion in continuvum theory. ‘hese equations have to be
solved in order %o study the complete behavior of a gas
with space and time. |

. We are interested im the gas behavior for
very short Ume after the wall temperature has been in-
creased or decreased, For the time when the first high

enerygy moleculses collide for the liprst tlme after their
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impaect with the suddenly heated wall {this means for
one collision time after the tempersture zrise of the
wall) the density distribution of the gas in the senie
space can be computed in a much simpler way than the one
mentioned above, Unce the density distribution is known
we gan easily caleulate the approximate outflux for
very short time by using the fact that omly a thin
laver of the thickness of & mean free path is of ime
portance for the outilux,

e procesd now in caleulating the density
distribution for one cellision tige aflter the temperature
change of the wall, Assuming that in this very first
moment the reflected molecules have also a Maxwellian
velocity distribution but an energy level according to
thé temperature of the wall we can write for this dise
tribution: |

pA e (49)
The reflected molecules have ounly positive u-somponsnts

v+ w?)

of velocity. Therefores in order to normalize the dis-
tribution function we have to integrate between the
following limits:

]‘*ﬁw A e%' (Weview?)

U= v w=-0

du dv dw = |

3
A =2(é)" {50}
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~ We determine 4 in the usual way:

oD 400 by 2
T AV | du
. =0 V(W=°OO
F- L
24,
o0 +o0 2 ]
— AW tvi e w )
vi= A f vl 7 du dv dw
us
e L analogously: QﬁzzzL
1ﬁ| ﬁ‘
- = - 3 {51}
= ot 2 Lo e et —
U 4 v W 2/5/
But a basiec relation of kinetic theory states that
—_ [
T _ = — 2
< = 3RT, = A= {52)

The probability of finding a molecule with an absoluts
velocity between ¢ and de regardless of its dirction
of motion is found now; using {L9),(50),(52):

3

{
~2 = (2 2.2
gl:Z(ZﬁRT/) > < ZRT|(M VW )o\udv dw

The"volume slement” dudvdw in the "veloelty space®™ can
be replaced by <"dydbsmbde. This is just a transcription
fron Cartesian to spherical polar coordinates., Thus:

C_l
2 2 - 2RT .
= — ' )
! Grer) ©© Ain © dB dyde
hences . ,___C_ZT.
' 2 e *RT
@= |d A0 dO - de
7 f Y‘f (mRT‘)% ¢
-— (.,2'
4-“ Ze 2RT, de

Y ©° (arr ) € (53)
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Using {53) we obtain for the mean velogity:

- . 4’ 8RT,
< j ‘«’)(C)d —',;:"

: 0
After thesepreliminery remarks about the

distribution function of the reflectsd molecules imme~
diately afver the change in wall temperature we shall
make the following considerations:

We know the number of particles hitting

unit surface before the wall temperature was changed?

Therefore immediately after the instant in which the
temperature has been raised (analogous arguments hold for
a cooled wall) ﬂ@ molecules per unit surface are moving
upwards with higher energy. This means that two lase
wellian sases of different energy levels are mixing.
This statement is only true until the reflected molew
cules have collided onece after thelr impact with the
wall because then they exchange energy and the veloe
city distribution is no longer Maxwellian,Thus the
following caleulations hold only for one collisien
time after the temperature change of the wall; but
they give & eimple method of computing the number den-
sity distribution of the gas for this moment,

fiow we shall make use of formulase and
relations givaﬁ in the book of Kenngrd (8]. In order
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to save space we do not copy the derivation but give
only the final results stated there:

Total expectation of collisions per second
between a ray molecule with veleeity ¢y and Maxwellian

distributed gas molecules (Xemnard [ &1, p. 108, equn.103al;
7
Al 'x2 V/’ﬁ:-]_
R, Ly +QH¢)J6%%] (5
0

where:

|
e T

Combining (53) and (54) we can compute & mean expecia-

tion of collisions for our reflected moleculss:
3
No /’Tol 4‘(7 7 s < 1 _:_i_
W ~[%0 %o 287,
\ )j.e P < d‘:o]c'le d"

= . {e /5"‘.‘,(2«/50‘1*"
ot Vﬂﬁo 2% RT\ 26RT, a’s

C‘= 0

Q

2

a 2N, 0" o2 el “TRY, {55)
e+ (25.¢, Yie dee c“e ‘ dc'
et [SA ‘f[ (2 *c.)of ]
The ﬁn%&wrati@n proecedure of this equation (55) is given
in Kennard, pe. 111. It is briefly outlined in Appendix II.

The final result is:

For the time %@ﬁ@r@ the wall temperature has changed
is ¢y = ¢yt

=wNDO {56a)
" This is the well known result for one gas of baxwellian

digtribution,
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The ﬁéllisiaﬁ time {time between two subsequent collie
slons) is then simply:

_ ! A
T =2 [Gﬂiﬂw] {57}
< ¢
Therefore we obtain for the mean frese pathi
J A .

30 far we arrived at an expression for the
“mean free path of the reflected "wall molecules”, which
holds only for very short time after the temperature change.
in this ealculation only encounters between "fast® wall
particles and particles in the undisturbed &@miwspaee
have been counted, Collisions between two “fasi™ molew
cules have been noglected as rare compared to the first
kiﬂﬁ. ¥e shall now proeeed to ealeulate the number of
first collisions of the reflected molecules after they
left the wall as a function of space, These "firgi" cole
lisions oceur one collision time T after the wall has
been suddenly heated, Therefore the collision distri.
bution to be caleulated will hold for this time instany:
Mo & particles hit the wall per unit time

4
and surface before the change in wall temperature., Theree

fore A%fB partieles leave unit surface of the wall with
& higher energy at the moment when the wall temperature
is raised. According to Fig.7 and using Enudsen’s cosinoe

law we can therefore say:
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Humber of*fast”molecules leaving unit surface per unit
solid angle:
2w Y Y AT ambapae
From thls number & pard collides between r and drs
o= %ﬁ 02 ® YAV dY A © 40 ;é‘ e_% dre
Hlenve number of collisions at r and 6 per uvnlt volume

AmBd0dy dae 3
-2

n = mOYc\Yo\Y = f e X {59)
Then total %%ﬁb@r’&f collisions per unit volume at x:
X GV
j‘ fo b YaYaY o ie—%
K X
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=2 .2.‘. __(/ _,\, - X
Ht noj )e)edQRl xe :Zno (.K_.__)j‘ eL dﬁ
X b X
V x?— y2
Meona:  waBs X YR -Y' ad gtz x4 Y
X
—= YdY = xdr
we ol :@:i
K
20 -2
- - X e _
Y‘{“ZHO(I>(~Z ) ndz
PR
A

Introducing a modified Knudsen number ¥ = %2
20 _3
no= 2, - = K S_E_. d= (60)
x % 2%

This integral is of the general form {OrobunersHofreiter,
Integraltafel, Wiem 1949, p.lo8):

At net vt n-t
e . _MS 2 v A Gt .
£ e g(’""i"/"') f“’v— Q"“)" ( ) {E’ﬁl)
Henece for our case A\=-1; w=2 1
oo -2 . o
- ( -
f € = [. e —_ . 1 + g_\.). b(’é)l
K ¥ Gi-1j) 2! K
w
because: (m, ,o\‘r)zd‘fr(;*') (: ‘r‘g\n)
I F(g -v+ U )
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Jhus Tinally:

Y\+=2n°- -{-ﬁ-[e'v(*\' K&L(_—K)] {@2)

This 48 the pumber of molecules leaving unit surface
at time t-0 and colliding for the first time at ¢-T
at a distance x from the wall, The expression
gl e KelK] (63)
san be tabulated or plotted, 3ee Dlagram L,page &h.
Thus: |
WS T (64

In order to obtain the change of density
from the original homogenecus state for the time
after the temperature increase at the wall, we argue
as follows:

During the original state f%gi particles
were reflescted from unit surface per unit time, These
nolecules had their first collisions after they left
the wall at a certain distance x from the wall, In ore
der to caleulate the number of collidimg reflected
molecules at x for the original state we use exactly
the same formulae as above, e §&%/6,=/% in this case
(€= &) and compute Dyge

The only change in the state of the gas
in the semi-space above the wall at one collision time

after the temperature rise can come from the wall,
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beeause no high energy molecules are going towards the
wall yvet. Therefore we can write for the change of
number density at the time T ¢

i 65)
AN‘”/t”"ot (65
As an oxample the following case was c¢alculated numerie
gally:

Ty= 300°K Ty = GOO°K

R=26,7 10° [erg/er degl
Using formmlae we obtained:

" el | T we Ll
. 026 om o 0.228
! lvO 02 [m&‘l AOH No Dl [ Eﬁ]
Cheerve:

T, < T } for suddenly heated wall,
A, > A,

Then ny, and n,, were computed as functions of x. The
difference A B is plotted in Diagram 5 on page 40.

This diagram {whieh retalns its general form also for
aifferent numerical values) shows very clear the effect
of the sudden temperature raise of the wall as predicted
by means of our simple model in section 5S.h..h raree
faction layar securs nexd to the wall and e compression
layer separates this low density layer Irom the undise

turbed part,






iz & last step we can use this information
about the number density at time T to obtain an
approximate expression for the outflux of molecules
through a small orifice in the wall, In the collisions
which occured at time T all "fast” molecules had velo-
¢city components away {rom the wall, Therefore the prow
bability that"fast" molecules are going towards the
wall after colliision is very small, Thus we say t&é
only change of the gtate of ths g&ﬁ‘whieh iz important
for the outflux at time 27 (see remark below) is the
deviation of the number density. lemembering that only
the state of a layver of thickness A is important for the
outflow {(shown earlierl) we calculate a mean value of

the number density in this laver:

M and
N =N - ot ANdx 4 {(66]
T 0 -

Thus outflux at time 27T

"o Mos (67)

Hemark:

The outflux does not change in the time interval 0->7T
because the “fast" reflected molecules had no collision
and did therefore not affect the state of the gas in
the aamﬁmsp&ﬁé yet, The effect occurs first at time T
when the affected molecules reach the wall,
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g want to find an approximation for the

fanetion:

=1| +ocl.wm0}&' '3.}‘

YWe restriet ourselves to the following values of o @
od *9—%fb

Cdngsidering the Lfunction J we can therefore replace
the term «A, w0 by a, where a is bounded between
0 and 0.6,

o Aytodl =a =0p
Plotting the integrand J=Vitop! e for cur maximal
value of a 0,6 ome finds, that the function approaches

zevo very rapidly because of the term @7

+ See llge
gram 6, page 50, Diagram & shows that for w=6 the
integrand J is practically zero {with an acecuracy of
about 0.5%}. We deal therefore with the important
reogion O=p=06 and try %o find an approximation of
Yivap ' in terme of a linear function of p in order

to be able to integrate our relation (18), We write:
b b
ST vop dp ={(‘+Qn/u)0\/}—
0

l+-qp gl )L+-F—15-]

0
This vields:

3
2

lt+60)1% -1] - 9o

2% o?

K=



&0
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%ﬁ'-?ok = 0.5 { by d'Hospital's rule )
The funetion k is plotted in Diagram ¥, page 50, The
slope of the k-curve is relatively smooth and we
approximate this curve therefore by a functlon k, = const
for our region 0%a 20,6, Zvaluation of k, yieldas
k,=0.42,(the areas underneath the curves are equall.
In this way we get an approximate constant k, valld
T for all a=ody,wh in the region 0£a%0,6. Further-

more ouy integrand J takes the form:

Vie cry @00 e (14 042, wobp) e

for 0 £ echy,wd £ 0b



APPLEELEL i1

we would like to integrate the following

expressions
G 2 c?
- 2N°L j , ~foco - .
a = e P pe ) e dolle 2RIy (55}
Gt RT, “T/To{c { (/[l .ol 1 ‘ o

Instead of integrating ¢p from O to cy and them ¢y from
0 to oo we invert the order of integration and integrate
first ey from <, to oo and then ¢y, from 00 oo 3

Thus for the seeond part of the iﬁt&gral {55) we write:
oo

c=‘£ <2—V—[$_°1 (j‘ /S O\CO) © L&T d

:ﬁ A éo*'}:é' N éoé, \
R )@

The first part can be integrated without inverting the

order of integrating:

”— ug */")C.dc-._r:‘,.—-——(———- b )
ik CE (B epod *
The total integral (553 iz the sum of {a) and (b

ﬁé/ﬁ {7Z——_—7

hence:

NP Y (56)
0 /Q‘ = NOD o +T,
Vo :



