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Abstract 

Light scattering poses significant challenges for biomedical optical imaging techniques.  

Diffuse scattering scrambles wavefront information, confounding easy analysis of signals 

reflected from or transmitted through biological tissues.  For optical imaging techniques 

that employ only unscattered light components, the penetration depth is severely limited.  

In this thesis, we develop and discuss two general methods for dealing with large levels of 

light scattering in tissue.  The first involves optimization of the signal-to-noise ratio (SNR) 

of coherence domain optical tomography techniques.  The majority of the signal measured 

in these techniques is singly scattered.  Thus, an improvement in SNR will improve the 

penetration depth of the system by picking out the weak signal contribution from increasing 

depths that would otherwise be buried in noise.  We show that the SNR can be optimized in 

terms of image reconstruction algorithms, and in terms of detection parameters.  An 

important detection parameter, the integration time, determines the dominant noise source 

of the measurement, and can be varied to obtain the maximal SNR.  A second general 

method that will be discussed involves the time-reversal of scattered light components in 

tissues through the process of optical phase conjugation (OPC).  OPC has long been used to 

remove optical aberrations and distortions, but has never before been applied to light 

scattering in tissues.  We show that we are capable of time reversing light scattering in both 

chicken tissue sections and tissue phantoms, and characterize both the amplitude and 

resolution trends of the process.  Finally, we provide the first successful results of OPC in 

living tissues. 
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Chapter 1. Introduction 

1.1 Advantages and Challenges Associated with Optical Imaging 

Optical methods are uniquely suited to biological imaging for several distinct reasons.  The 

non-contact nature of light delivery provides for an extremely non-invasive and non-

destructive imaging modality that can be implemented at relatively low cost.  Second, 

optical techniques are generally capable of providing resolution on the order of the 

wavelength of light.  This provides for high-resolution (sub-micron) cellular and tissue 

level imaging.  Finally, the energy quanta associated with visible and near infrared photons 

are ideal for interacting with biological molecules.  Such molecular interactions provide the 

basis for techniques including fluorescence, multi-photon microscopy, second harmonic 

generation, and Raman spectroscopy, allowing for functional or molecule-specific imaging 

of biological tissues.  Thus, light can provide for non-contact, high-resolution, functional 

imaging of biological features of interest.  

 The advantages of optical techniques are accompanied by significant challenges.  

Some of the above-mentioned techniques rely on a photon being absorbed by a molecule of 

interest.  However, as we will see in the following sections, absorption is dominated in 

tissues by elastic light scattering.  In a biological environment, a photon is hundreds to 

thousands of times more likely to be scattered than absorbed.  This presents a problem for 

biological imaging, even for optical techniques that rely in part on light scattering for 

contrast.  As photon trajectories become increasingly complicated, it becomes impossible 

to extract useful information from that photon about where it has been. 
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1.2 Optical Properties of Tissues 

1.2.1 Absorption  

Absorption occurs when energy is transferred from light to a molecular species.  During 

this process, the molecular species transitions from a lower to a higher energy level, where 

the difference in energy between the two levels, ΔE, is equal to the energy of the photon, 

hυ: 

hυ = ΔE,                      (1.1) 

where h is Planck’s constant (6.626x10-34 Js), and υ is the optical frequency (light is 

defined as the portion of the electromagnetic spectrum with frequencies υ = c/λ = 3x1014 to 

3x1015, where c is the speed of light).  From an excited state, the molecular species can 

release this energy as either heat or in the form of a secondary photon (fluorescence, 

phosphorescence), or transfer the energy to a neighboring molecule.  

 Absorption can be quantified through several parameters.  For a single type of 

absorber, the absorption cross section is defined as: 

 Pa = I0σa ,                           (1.2) 

where Pa is the absorbed power (energy per second) and I0 is the intensity incident on the 

absorber (energy per second per area).  The absorption cross section, σa, is a measure of the 

area of an incident beam that is absorbed by an absorbing particle, and is generally not 

equal to the geometric cross section of the particle.  If many identical particles exist in an 

absorbing medium, that medium can be characterized by an absorption coefficient:   

µa = ρaσa ,                        (1.3) 

where ρa is the number density (number per unit volume) of the absorbers.  The absorption 

coefficient is related to the absorption mean free path, la, as: 
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la = 1/µa ,                      (1.4) 

which is a measure of the average distance an individual photon will travel through the 

medium before being absorbed.  The Beer-Lambert law makes use of the absorption 

coefficient to describe the intensity decay through an absorbing medium (1): 

I(x) = I0exp(-µax),                      (1.5) 

where I0 is the intensity at x=0.   

 There are many important absorbers in tissues including water, hemoglobin, 

melanin, and many others.  Figure 1.1 shows the absorption spectrum of some of these 

important tissue chromophores, as both σa and µa are functions of wavelength.  The 

majority of optical imaging techniques work in the ‘therapeutic window’ from 600 to 1300 

nm (1).  This window is bounded by the large absorption of hemoglobin and water on 

either side.  However, within this window, absorption effects are relatively small compared 

to scattering effects, which we will discuss in the following section.  Absorption is 

diagnostically important for many routine optical techniques such as pulse oximetry and 

angiography. 

 

Figure 1.1. Therapeutic window in the optical absorption spectrum of tissue components 
(Image courtesy of (2)) 
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1.2.2 Scattering 

The second major process by which light interacts with tissues is through light scattering.  

Similar to absorption, a scattering cross section can be defined for a single, spherical 

scatterer as:  

Ps = I0σs ,                                     (1.6) 

where Ps is the power of the light that is spatially redirected through scattering.  Again, σs is 

not necessarily equal to the geometric cross section of the scatterer.  For a uniform medium 

of particles, a scattering coefficient and mean free path can be defined as in Eqs. 1.3 and 

1.4, and Beer’s law holds true as well: 

Iballistic(L) = I0exp(-ρsσsL) = I0exp(-µsL).                   (1.7) 

Instead of the total intensity exiting the medium, the left hand side of Eq. 1.7 is a measure 

of the intensity of the unscattered, or ballistic, light component. 

 If a pulse of light is incident on a scattering medium or slab of tissue, the exiting 

photons can be divided into three main components (illustrated in Fig. 1.2).  The first to 

exit the material is the ballistic component, with intensity given by Eq. 1.7.  These photons 

 

Figure 1.2. Time-resolved light scattering in tissues 
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have traveled straight through the medium.  A second component, consisting of ‘snake’ 

photons, forward scatter through the medium along an approximately straight path.  These 

are the first of the scattered photons to leave the medium.  Finally, the bulk of the light is 

diffusely scattered, having followed a tortuous path through the medium. 

 Due to the phenomenon of multiple scattering, Eq. 1.6 cannot be generalized for a 

medium containing N scatterers except under specific approximations (1).  The total power 

scattered by a scattering media can be written as: 

Ps = AI0(1-exp(-µsL)) ≈ AI0ρsσsL = I0Nσs ,                              (1.8) 

only if µsL << 1.  Thus, for a weakly scattering medium, the scattered power is proportional 

to the number of scatterers.  However, when this approximation breaks down, more 

complicated methods and models must be used to accurately predict the diffuse scattering. 

 Two types of scattering events are possible (3).  The vast majority of scattering 

events are elastic, meaning that no energy is transferred between the light wave and the 

particle; the light is simply redirected spatially.  Alternatively, for a small fraction of 

scattering events (1 in 106 (1)), inelastic or Raman scattering occurs and the scattered wave 

undergoes a frequency shift that is specific to the molecular composition of the scatterer.  

Raman spectroscopy has a wide range of applications through its ability to study molecule-

specific vibrational and rotational modes. 

 A final parameter of interest is the scattering anisotropy factor, g.  This factor, 

defined as the average cosine of the scattering angle (g=<cosθ>), is a measure of the 

angular spread of scattering distribution. A g value close to 1 implies a high level of 

forward scattering, while a g value close to 0 corresponds to a nearly isotropic scattering.  

In general, the scattering anisotropy factor scales with the size of the scattering sphere, such 
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that scatterers on the order of the wavelength or larger have higher g factors than scatterers 

smaller than the wavelength, although the parameter also depends on index contrast.  Along 

with the scattering coefficient and cross section, the anisotropy value is a necessary input 

when light scattering problems are modeled. 

 

1.2.3 Light Scattering Regimes 

Light scattering can be generally divided into three classes based on the relative scale of the 

scattering object with respect to the incident wavelength.  The first, and most simple, is the 

geometric limit, in which case the scattering object is much larger than the incident 

wavelength.  In this case, the scattering cross section is equal to the geometric cross 

section, and the laws of reflection and refraction are sufficient to characterize the 

interaction of the object with the optical wave. 

 A second regime, in which the scatterer is much smaller than the wavelength is 

termed the Rayleigh limit.  In biological tissues, these include membranes and subcellular 

components.  The scattered intensity in this regime can be written in polar coordinates as 

(1, 3, 4): 

€ 

I r,θ( ) = 8π 4nm
4 ns

2 − nm
2

ns
2 + 2nm

2

 

 
 

 

 
 
a6

r2λ4
1+ cos2θ( )I0 ,                               (1.9) 

where nm and ns are the refractive indices of the medium and scatterer, respectively, and a 

is the diameter of the particle.  The scattered intensity scales as 1/λ4.  The preferential 

scattering of shorter wavelengths answers the familiar question of the why the sky appears 

to be blue. 

 Finally, for spheres of intermediate size, the scattering falls in the Mie regime and is 

described by Mie theory.  Classical methods are used construct a complete electromagnetic 
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description of the interaction of an isotropic sphere in a homogeneous medium with a 

monochromatic plane wave (3). A number of numerical simulation codes have been 

developed and made available to the public for these types of computations (5).  Mie theory 

is an important tool that has been used, among other applications, to characterize the size of 

the nucleus as a potential cancer diagnostic (6, 7). 

 

1.2.4 Relative Strength and Values 

The following table shows approximate scattering parameters for various types of tissues.  

Note that scattering is much stronger than absorption throughout the visible spectrum. 

Tissue Type λ µs 

(1/cm) 
g µa 

(1/cm) 
Stratum Corneum 308 2400 0.9 600 

 400 2000 0.9 230 

Epidermis 488 600 0.76 50 

 800 420 0.85 40 

Dermis 488 250 0.76 3.5 

 800 175 0.85 2.3 

White matter 633 532 0.82 2.2 

 1064 469 0.87 3.2 

Gray matter 633 354 0.94 2.7 

 1064 134 .09 5 

Breast —  
Fatty normal 

836 7.27 Not measured 0.11 

Breast —  
Fibrous normal 

836 8.1 Not measured 0.05 

Breast —  
Carcinoma 

836 9.1 Not measured 0.1 

 

Table 1.1.  Scattering and absorption properties of tissues 
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1.3 Typical Methods to Deal with Light Scattering 

Table 1.1 confirms that tissue scattering is quite strong.  Thus, imaging through tissues 

requires effective methods for dealing with light scattering.  In both the Mie and Rayleigh 

regimes, light scatters more strongly at shorter wavelengths.  Therefore, one way to 

minimize scattering is to work at longer wavelengths.  There is a limit, however, since Fig. 

1.1 shows that water begins to absorb strongly for wavelengths longer than ~1300 nm.   

Two broader strategies will be discussed in this section: gating methods and diffuse optical 

methods. 

 

1.3.1 Gating Methods 

  Several optical imaging techniques rely on methods to filter out ‘information 

bearing’ ballistic or singly scattered photons from the large number of multiply scattered 

photons that exit the tissue.  These include time, directional, and coherence gating (as used 

in optical coherence tomography).  Time gating techniques make use of the fact that 

ballistic and snake-like photons exit the scattering media at an earlier time than diffuse 

photons (Fig. 1.2), and can thus be filtered out appropriately.  This can be accomplished 

using fast electronics such as gated optical image intensifiers (8) or holography with 

femtosecond pulses (9).  Additionally, more complex schemes have involved the use of 

nonlinear optical effects (10, 11) or stimulated Raman scattering (12). 

 Alternatively, directional gating rejects light whose propagation direction has been 

sufficiently altered by light scattering.  For example, a confocal microscope detects only 

portions of the transmitted or reflected light that pass through a pinhole.  This not only 

allows for depth selection (since light from planes other than the focal plane will focus to a 
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different position than the pinhole), but also rejects the bulk of the multiply scattered light.  

This type of gating technique is not particularly selective to the ballistic component of the 

light, since the snake-like components travel in approximately the same direction as the 

ballistic component. 

 Finally, another commonly used gating method is coherence gating.  Coherence is 

the property of a wave that allows for interference, and can manifest either temporally or 

spatially.  Perfect coherence implies a constant relative phase between two waves, meaning 

that a perfectly temporally coherent wave is monochromatic.  A source with a given 

spectral bandwidth is said to be partially coherent, since as the waves propagate over time 

or space, the phase relationship between individual frequencies will change.  This is useful 

in an interferometric setting where a sample beam is interfered with a reference beam.  For 

a partially coherent source, a strong interference signal is only seen when the sample and 

reference path lengths are exactly matched, and all frequency components are in phase.  

With the reference path length appropriately set, coherence gating employs a partially 

coherent light source to select for the light component that has traveled straight through the 

sample.  This topic will be discussed in detail in Chapter 2. 

  Since the probability of finding ballistic or singly scattered photons decreases 

exponentially with depth into the sample (Eq. 1.7), these gating techniques suffer from 

limited penetration depths due to scattering.  They rely on systems that operate at very high 

signal to noise ratios (SNRs) to measure the weak signal contribution from within tissue 

samples.  Even with high SNR, these systems are generally limited to a penetration depth 

of a few mm at best. 
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1.3.2 Diffuse Optical Methods 

 An alternate method for imaging into scattering media involves collecting all of the 

diffuse photons shown in Fig. 1.2.  In these methods, wave effects such as polarization and 

interference are neglected, and only energy flow through the medium is tracked.  Radiation 

transport theory provides a model to characterize light energy propagation based on three 

parameters: absorption and scattering coefficients, and a scattering phase function (1).  The 

scattering phase function describes the angular profile of the scattered light.  Several 

approximations exist that are functions of the anisotropy factor, g (13).   In the diffusion 

limit (when absorption is significantly weak), the scattered light disperses in a seemingly 

random fashion throughout the medium, appearing to take a random walk defined by the 

diffusion equation.  Numerically, these types of computations can also be performed using 

Monte Carlo methods in which random numbers are drawn from probability distributions, 

corresponding to average optical properties, to model random walks through a given media 

(14, 15).   

 The above methods can be employed for depth resolved imaging through diffuse 

optical tomography (DOT).  This is a difficult endeavor, because it involves solving an ill-

posed inverse problem to determine the distribution of the optical properties of a sample 

based on the measured scattering.  Typically a pulse of light enters the sample at a 

particular source location, and the scattered light is measured at an array of detectors.  

Then, the source location is moved and the process is repeated.  A great deal of information 

is acquired, and the solution to the forward problem is applied iteratively to an estimate of 

the sample optical property distribution until the output matches the measured data.  Since 

DOT techniques acquire a large number of photons, they can penetrate deeper in tissues 
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than the coherence domain techniques mentioned above (several cm at 700 nm (3)).  

However, in general, DOT is a low-resolution technology with spatial resolution on the 

order of 20% of the penetration depth (3).  DOT has been applied for both breast and brain 

imaging (16–18), but resolution remains a fundamental limitation. 

 

1.4 Goals and Layout of the Thesis 

Taking the above discussion into account, the question remains: how can we optimize 

optical imaging in biological samples?  The work presented in this thesis will describe two 

main approaches.  First, assuming nothing can be done about strong scattering, we can 

optimize our systems to run with a high signal-to-noise ratio (SNR), making it easier to 

pick up the weak signal contribution from light that has scattered deep within the sample.  

Since most of the systems that we will discuss in terms of optimization fall into the 

category of coherence domain systems, the following chapter will provide background 

materials on coherence domain imaging.  Chapters 3, 4, and 5 include experiments and 

results that are adapted from published manuscripts, while Chapter 6 is adapted from an as-

of-yet unpublished manuscript.  Chapter 3 describes SNR optimization based on image 

processing algorithms for an interferometric system based on the phase shifts inherent to a 

3x3 fiber coupler.  Chapter 4 discusses the impact of 1/f noise on the same system, and 

develops a generalized model that accounts for the effects of 1/f noise with the goal of 

allowing a user to select appropriate operating parameters to achieve optimal SNR.  

Chapter 5 discusses the adaptation of that model to direct detection schemes, and finally 

Chapter 6 discusses its application for Fourier domain optical coherence tomography 

(FDOCT).   



 

 

12 

 The thesis changes directions in Chapter 7 to discuss a second approach for 

optimizing optical imaging, a novel technique termed turbidity suppression through optical 

phase conjugation (TSOPC).  Through this technique, we attempt to time reverse the 

process of elastic light scattering in order to recover information about the incident wave.  

Chapter 7 serves as background for the remainder of the thesis, describing the 

fundamentals of phase conjugation as well as preliminary work in applying phase 

conjugation to biological tissues.  Chapter 8 is a stand-alone manuscript that has been 

submitted for publication, which describes a detailed characterization of the TSOPC 

experiment in terms of amplitude and resolution trends.  Chapter 9 discusses a set of results 

concerning TSOPC in living tissues.  Chapter 10 discusses the potential value of our work 

on TSOPC in terms of biomedical applications.  Finally, Chapter 11 will draw brief 

conclusions based on the entire body of work presented in this thesis. 
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Chapter 2. Background on Coherence Domain 

Imaging Systems 
 

This chapter is intended to provide background information for Chapters 3–6, as several of 

the systems that will be discussed fall into the category of coherence domain imaging 

systems. 

 

2.1  Optical Coherence Tomography 

2.1.1 Time Domain OCT 

Optical coherence tomography (OCT) is an increasingly popular imaging modality capable 

of non-invasively providing depth-resolved images of biological structures with micron-

scale resolution in real time (19).  OCT is a form of low coherence interferometry, which is 

based on coherence gating (as briefly described in Section 1.3.1).  

 A standard, fiber-based, Michelson-type interferometer is depicted in Fig. 2.1(a).  

Light entering the interferometer is split into two optical paths at a fiber coupler (the fiber 

equivalent of a beamsplitter).  One light path reflects off of a mirror, while the other probes 

the sample.  The two returning light fields are then recombined and interfere at a 

photodetector.  In a time domain implementation of OCT, the reference arm is scanned in 

time.  Let us, for a moment, discuss the detected signal for the case with a mirror as the 

sample, and a monochromatic light source.  In this case, as the reference arm is scanned, 

the two beams alternately constructively and destructively interfere to form a fringe pattern.  

The detected interferometric signal can be written as: 
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€ 

Pdetetected = PS + PR + 2 PSPR cos 2k xS − xR( )( ),                  (2.1) 

where PS and PR are the powers returning from the sample and reference arm, respectively, 

k is the wavenumber of the light source (k=2π/ λ), and xS and xR are the length of the 

sample and reference arms, respectively. 

 

Figure 2.1. Time domain OCT. a) system schematic. b) diagram of detected signals 

 

 In the case of a low coherence light source, a strong interference signal is only seen 

when the reference path length is matched with the position of a sample reflector.  This is 

the only geometry in which all of the wavelengths are guaranteed to interfere constructively 

with each other.  The above equation is modified as follows (20): 
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Pdetected = PS + PR + 2 PSPR exp −
xS − sR
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where, again, PS and PR are the powers returning from the sample and reference arm, 

respectively, k0 is the center wavenumber of the broadband source, and lc is the coherence 

length of the light source. The value of PS is proportional to the reflectivity of the sample 

reflector, RS (PS=PinRS).  According to the above equation, as the reference mirror is 

scanned, a burst of fringes is detected with amplitude corresponding to the reflectivity of 

each sample reflector (Fig. 2.1(b)).  These fringe bursts are then demodulated and 

subsequent laterally-displaced depth scans are stacked to form an image. 

 Only backscattered sample light that has traveled a distance within a coherence 

length of light returning from the reference arm will interfere.  Therefore, the coherence 

length of the light source sets the axial resolution of the imaging system.  The coherence 

length is inversely proportional to the bandwidth of the light source as follows (20, 21): 

€ 

lc =
2ln 2( )λ02

πΔλ fwhm

=
4 ln 2( )
Δk fwhm

,                                       (2.3) 

where λ0 is the source center wavelength, and Δλfwhm and Δkfwhm give the bandwidth of the 

light source in terms of its full-width at half-maximum (FWHM).  Note that this expression 

assumes a Gaussian source profile.  A heavily researched area in recent years has been the 

development of increasingly broad light sources for superior axial resolution.  In OCT 

systems, the axial resolution is decoupled from the lateral resolution, which is determined 

by the optics used in the sample arm.  The minimum focused beam size incident on the 

sample is given by: 

€ 

w0 =1.22 λ
2NA

=1.22 fλ
D

,                                           (2.4)  
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where NA is the numerical aperture of the focusing and collection optics, f is the focal 

length, and D is the diameter of the collimated beam that is focused onto the sample.  The 

spot size varies with depth into sample as follows: 

€ 

w Δz( ) = w0 1+
λ0Δz
πw0

2

 

 
 

 

 
 ,                                           (2.5) 

where Δz is the axial distance from the minimum beam waist.  A relatively low level of 

focusing is typically employed to limit beam divergence throughout the imaging depth. 

 If the reference arm in a TDOCT system is capable of moving to any arbitrary 

distance, then the maximum imaging depth is limited by scattering based on the SNR of the 

system.  The SNR of these types of systems will be discussed in detail in Section 2.1.3.  

 

2.1.2 Fourier Domain OCT 

Within the last 10 years, the OCT community realized that there is an alternate way of 

acquiring the same information.  Fourier domain implementations of OCT (FDOCT) 

sample the interference pattern as a function of wavenumber (k), with a fixed reference 

path length.  A depth scan into the sample is then obtained by Fourier transformation.  This 

can be accomplished in two ways.  Spectrometer-based FDOCT systems utilize a 

spectrometer to spectrally disperse light in the detection arm of the interferometer over a 

CCD (Fig. 2.2(a)).  Alternately, swept source FDOCT systems use a wavelength swept 

laser source, such that the spectral interferogram is obtained at a single photodetector as a 

function of time.  Spectral encoding can be described in a form similar to Eq. 2.2 as: 

€ 

Pdetected k( ) = ρS k( ) RS + RR + 2 RSRR cos 2k xS − xR( )( )[ ]                    (2.6) 
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where ρ is the detector efficiency (typically assumed to be uniform across k) and S(k) is the 

source power spectral density in units of watts per wavenumber.  Thus, the detected signal 

at the spectrometer is the source spectrum modulated by interference fringes as shown in 

Fig. 2.2(b).  Fourier transformation of this spectrum results in the same depth scan found 

after demodulation of the detected TDOCT signals.  A Fourier domain implementation is 

not only advantageous due to the fact that it does not require a moving reference arm, but it 

also provides an SNR advantage (22–24) due to the fact that information is collected from 

all depths simultaneously (i.e., none of the incident light is wasted). 

 

Figure 2.2. Spectrometer-based Fourier domain OCT. a) system schematic. b) detected 
signal on CCD camera 

 

  In FDOCT systems, the maximum imaging depth is fundamentally limited.  As 

mentioned above, the depth scan of the sample is obtained from a Fourier transform of the 

interferometric portion of the detected signal as a function of wavenumber.  The maximum 

depth is determined by the highest frequency on the spectrum that can be resolved by the 
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system.  For a spectrometer-based system this is a function of the δλ or δk that corresponds 

to one spectrometer pixel.  For a swept-source system, this is determined by the frequency 

step that occurs over a single time step. 

 

2.2 Common Noise Sources and SNR Optimization 

The maximum detected signal in an OCT system, for a single path-length matched 

reflector, is given by: 

€ 

Pdetected,  max = PS + PR + 2 PSPR .                           (2.7) 

The term of interest is the third term, which was the coefficient of the cosine term in Eqs. 

2.2 and 2.6.  It can be isolated through appropriate subtraction of the DC terms, however 

noise from these terms will remain.  In order to achieve high quality images, we are 

interested in how the signal term compares to system noise. 

  The typical noise sources considered in OCT imaging are white noise sources, 

which include receiver noise, shot noise, and excess intensity noise (25).  Receiver noise 

generally has both white and colored components.  The white component is due to Johnson 

noise in the system circuitry caused by thermal agitation of charge carriers (26, 27).  Shot 

noise is inherent to any beam of light, and is caused by the Poisson distributed arrival time 

of individual photons.  Finally, excess intensity noise is caused by polarization fluctuations  

in the light source and generally scales with intensity (28).  Figure 2.3, from Ref. (25), plots 

the OCT signal-to-noise ratio (SNR) expected when each of these three noise sources is 

dominant (inversely proportional to the level of noise).  It is typical to optimize OCT 

systems by adjusting the reference arm power to sit in the shot noise limit.  In this case the 

reference  
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Figure 2.3. SNR as a function of reference arm reflectivity.  Nex corresponds to excess 
intensity noise, Nre corresponds to receiver noise, and Nsh corresponds to shot noise.  This 
figure is from Rollins et al. (25). 
 

 

arm power is much greater than the sample arm power, and the dominant term in Eq. 2.7 is 

the second term, PR.  Since shot noise is a Poisson process, its standard deviation is equal to 

the square root of its mean.  Thus, the standard deviation of the dominant source of shot 

noise, in terms of number of photons, is given by: 

€ 

PRτ
hυ

,                                                            (2.8) 

where PR is the detected power returning from the sample arm, τ is the integration time of 

the detection system, h is Planck’s contact, and υ is the optical frequency.  Comparing this 

to our signal we find an SNR given by Eq. 2.9.  We note that the convention in the OCT 

community is to represent SNR as the square of the ratio of signal to noise:  

€ 

SNRshot noise = ε
2τ PR PS

hυ
PRτ

hυ

 

 

 
 
 

 

 

 
 
 

2

= ε
4PSτ
hυ

,                              (2.9) 

where ε is the quantum efficiency, which describes the efficiency of converting photons to 

electrons (η~0.5).  Examining Eq. 2.9, we see that to increase the SNR of the system, either 

the sample arm power or the integration time can be increased.  There are obvious 
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limitations in increasing the power at the sample, since there are standards for living tissue 

to prevent damage to the sample (29).  It is less obvious that there are also limitations on 

increasing the integration time due to the presence of non-white noise sources, specifically 

1/f noise.  We will discuss the effects of these limitations in the following chapters. 

 Briefly, the SNR advantage of FDOCT systems stems from the fact that signal is 

collected from all illuminated depths simultaneously.  For a TDOCT system that collects a 

signal over N depth steps, only a fraction of the light reflected from the sample will be 

capable of interfering with the reference signal and recorded.  This fraction is given by 

PS/N, and would serve to reduce the SNR by a factor of N in Eq. 2.8.   

 

2.3 Extensions of Traditional OCT 

A number of extensions of traditional OCT have been reported.  These include polarization 

sensitive OCT (30, 31), spectroscopic OCT (32, 33), molecular contrast OCT (34–36), 

Doppler OCT (37), endoscopic OCT (38, 39), and phase-resolved OCT (40–42). 

 Here, we will provide a brief conceptual description of a specific extension of OCT 

that will be discussed extensively in this thesis in the context of noise optimization: 3x3 

fiber-coupler based homodyne en face OCT.  First, the term en face refers to imaging in the 

transverse plane, perpendicular to the imaging beam, as opposed to in depth.  En face 

images can be produced from 3D volumetric OCT scans by collecting the data points that 

correspond to a single depth, or, they can be acquired directly.  In the 3x3 system, they will 

be acquired directly.  To produce en face scans, we essentially employ a TDOCT system 

with a stationary reference arm (corresponding to one particular depth place), and scan the 

sample in x and y dimensions by steering the sample beam. 
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 A standard TDOCT system is heterodyne in nature.  A fringe pattern is produced as 

the reference arm is scanned, and AC lock-in detection is performed to isolate the envelope 

of interest.  If the reference mirror is stationary, the system is converted to homodyne 

system, since we no longer acquire full interferometric fringes.  The difficulty in 

performing direct detection of an interferometric signal is that we are unaware of the phase 

of the signal that we are acquiring, making it impossible to determine the amplitude of the 

signal through a single measurement.  This particular system employs a 3x3 fiber coupler, 

as the output of the 3 ports are phase shifted 120° from one another.  By simultaneously 

detecting these three signals, we can determine the amplitude of the OCT signal to form an 

image. 
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Chapter 3. Algorithms for Optimizing SNR 

This chapter is adapted from Ref. (43): E.J. McDowell, M.V. Sarunic, Z. Yaqoob, and C. 

Yang, ‘SNR enhancement through phase dependent signal reconstruction algorithms for 

phase separated interferometric signals,’ Optics Express, 15(16), 10103–10122 (2007). 

 

3.1  Introduction 

There are a number of signal acquisition scenarios that involve the measurement of phase 

separated components, such as quadrature components, that are later recombined in an 

appropriate manner to extract phase and amplitude information. There are several reported 

methods by which this extraction can be performed. Interestingly, the choice of signal 

reconstruction algorithm can have a dramatic impact on the signal-to-noise ratio (SNR) of 

the resulting image or signal. 

 Experimental designs in which phase separated components are detected include 

phase shifting interferometry, optical gyroscopes, harmonic gratings-based free space 

quadrature interferometers, and 3x3 fiber coupler-based homodyne interferometers. Phase 

shifting interferometric techniques introduce small phase delays in the form of 

subwavelength optical path length changes (44, 45).  These phase shifted signals can then 

be used to retrieve phase and amplitude information.  In an optical gyroscope, light beams 

traveling in opposite directions around a rotating path experience slightly different path 

lengths due to the Sagnac effect (46). The intensity and phase retrieved from the resulting 

phase shifted signals can be used to determine the rotation rate (47, 48).   Harmonically 

related gratings pairs have recently been demonstrated to be useful in full field quadrature 
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interferometry (49, 50).  In such setups, the interference patterns between various 

diffraction orders of the two gratings are acquired at multiple detectors. The harmonic 

relationship between the gratings results in phase separation between the detected signals 

that is non-trivial. The sensitivity of each of these techniques can benefit by recombining 

the phase separated components in such a way that the total noise is minimized. 

 In the case of a 3x3 fiber coupler-based system, the intrinsic, nominally 120°, 

phase shifts between ports of the fiber coupler can be used to decouple phase and 

amplitude information (51, 52).  These phase shifts arise due to evanescent coupling 

between fiber waveguides as described by coupled mode theory (53, 54), or more simply 

for 2x2 and 3x3 fiber couplers through conservation of energy (52).  3x3 fiber coupler-

based systems have been employed to construct homodyne en face OCT images of 

biological samples (51) and to remove the complex conjugate ambiguity in swept source 

OCT images of the ocular anterior segment (55, 56).  The simplicity of homodyne systems 

compared to their heterodyne counterparts is a significant implementation advantage.   In 

addition, a properly performed homodyne experiment can provide a 3 dB improvement in 

SNR compared to heterodyne techniques (57–59). 

 Quadrature components are also commonly detected in signal acquisition 

schemes for other biomedical imaging techniques, such as nuclear magnetic resonance 

(NMR), magnetic resonance imaging (MRI), and Doppler ultrasound.  Like the 

abovementioned optical techniques, these signals must also be recombined in order to 

retrieve amplitude and phase information.    NMR spectrometers commonly utilize two 

detectors, acquiring 90° phase shifted signals to allow for improved pulse power efficiency 

and SNR (60).  Likewise, phase shifted signals from multiple coils in MR imaging 
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systems are combined for phase or amplitude imaging.  The MR community is well 

aware that the SNR of the resulting images is affected by the way the image is 

reconstructed (61–63).  Finally, in Doppler ultrasound systems the real and imaginary parts 

of the Doppler shift signals are detected in order to determine amplitude and phase, which 

is necessary to determine Doppler information (64). 

 In this chapter we will report on the SNR advantage that can be achieved by 

recombining phase separated signals in an optimal manner. Our goal in each of the 

reported signal reconstruction algorithms is to determine the amplitude of the signal as 

accurately as possible.  In the process we may or may not determine the phase of the 

signal as well. That said, we find that methods that make use of the phase information 

contained in the measurements perform better than those that do not. In Section 3 .2  we 

will describe our 3x3 fiber coupler-based homodyne OCT system.   We will then describe 

five different image reconstruction algorithms in Section 3.3, including two phase-

dependent methods. We theoretically determine that these algorithms achieve improved 

SNR as compared to the other three reconstruction methods, and find that they are capable 

of achieving comparable SNR to commonly employed heterodyne techniques.  Notably, 

these algorithms are not specific to our 3x3 fiber coupler-based OCT system, but are 

general techniques applicable for use in signal extraction processing wherever phase 

separated components are available.   In Section 3.4 we will describe our experimental 

setup.  In Section 3.5 we compare our experimentally determined SNR values to those 

derived in Section 3.3, and discuss the influence of the five methods on reconstructed 

biological images.  Finally, we state our conclusions in Section 3.6. 
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Figure 3.1. 3x3 fiber-coupler-based homodyne optical coherence tomography. a) 
experimental setup.  SLD: superluminescent diode, Dn: nth photodetector, M: mirror, X-Y: 
x-y scanner, OBJ: 20x microscope objective.  b) In this homodyne system the reference 
mirror (M) is stationary. We can think of the measured signal as a single point (black 
arrow) on the modulated coherence function that would be obtained if the reference arm 
was swept.  c) These points are the projections of a complex value onto axes separated by 
120°. 

 

3.2  3x3 Homodyne OCT Theory 

We will first describe the 3x3 homodyne OCT system for high-resolution en face imaging 

of biological samples (following Ref. (51)).  This scheme has the ability to decouple 

amplitude and phase information without the need for complex rapid scanning optical 

delay mechanisms used in heterodyne systems, or expensive components such as 

spectrometers or swept laser sources.   Figure 3 . 1(a) shows the experimental setup 

utilized in this study.  Broadband light from an SLD (λ0=1300 nm, Δλ=85 nm) enters a 

2x2 fiber coupler. Backscattered light from the sample is mixed with reference light to 
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create an interference pattern at detectors 1–3.   Detector 4 is used to monitor and 

correct for source fluctuations.  Figure 3.1(b,c)  diagrams  the  type of data that we are 

collecting.  Using a stationary reference arm, we are essentially measuring a single point on 

the interferogram (represented by the thick black arrow, Fig. 3 .1(b)).   Thus, we 

measure three interferometric signals that can be thought of as the projections of a 

complex signal onto axes separated by 120º (Fig. 3.1(c)). The optical signal at the jth 

detector is given by 

€ 

Pj z( ) = Pr, j + Ps, j + 2 1
s j( ) α41α4 jα51α5 jPr PS z( ) ⊗ γ z( )( )cos θ z( ) +ϕ j( ) .       (3.1) 

where Pr,j and Ps,j represent the total DC power returning from the reference and sample 

arms, respectively; 1/sj is a scaling factor that accounts for both coupler and detector loss; 

Pr is the returning reference power; Ps(z) is the returning coherent light from a depth 

z within the sample; γ(z) is the source autocorrelation function; θ(z)=2k0z+ψ(z), is the 

phase associated with each depth in the sample, where k0 is the optical wavenumber 

corresponding to the center wavelength of the source and ψ(z) is the intrinsic reflection 

phase shift of the sample at depth z; Finally, ϕj represents the phase shifts between each of 

the three detectors, attributable to the intrinsic phase shifts of the 3x3 fiber coupler. The 

signal of interest, which describes the reflectivity profile of the sample, is the coefficient 

of the cosine term, which can be isolated in several ways following removal of the DC 

terms. Below we describe several techniques to reconstruct the coefficient of the cosine 

term. 

 

3.3 Theoretical SNR Corresponding to Image Reconstruction Algorithms 

In the following analysis we will determine the theoretical SNR for five different image 
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reconstruction algorithms. For comparison, we will also derive the SNR corresponding to 

both optimal and commonly employed homodyne and heterodyne techniques. In each of 

the following derivations we will make the assumption that the signal at each detection 

port in terms of number of detected photons, is given by: 

€ 

Si = 2
n PRPS

ετ
hυ
cos θ +ϕ i( ) ± Ni ,             (3.2) 

where PR and PS are the power returning from the reference and sample arms, 

respectively, n is the number of detection ports (n≥2), ε is the detector quantum 

efficiency, τ is the integration time, h is Planck’s constant, and υ is the optical frequency. 

Ni represents a fluctuating noise term that is zero mean, and assumed to be Gaussian 

distributed with standard deviation as expected given shot noise limited detection: 

 .                                                 (3.3) 

Finally, we assume that the optical power returning from the reference arm is much 

greater than that returning from the sample arm (PR>>PS), which is typical when imaging 

highly scattering biological samples. In Eq. 3.2 we have assumed that the terms Pr,j and 

Ps,j from Eq. 3.1 have been subtracted. This can be accomplished in a practical setting by 

alternately blocking the sample and reference arms to measure their individual 

contributions.   

 In each of these reconstruction methods we wish to isolate a signal that is 

proportional to the power returning from the sample, PS. Thus, our goal is to isolate the 

square of the coefficient of the cosine term in Eq. 3.2. In addition to this signal, we will 

also determine how the reconstruction method affects both the expected value and 

standard deviation of the fluctuating noise. These noise parameters are important factors 
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in image quality. The standard deviation of the noise is related to the SNR, which 

determines the lowest amplitude features that are visible in the image. The expected, or 

mean, value of the noise can add a DC shift to the image, thereby affecting the contrast of 

the image. 

 

Figure 3.2. 2x2 (50/50) interferometric setups utilizing a) homodyne and b) heterodyne 
detection.  In (a) the reference mirror is stationary, while it is translated in (b). The 180° 
phase shifts of the fiber coupler are evident in the acquired signals at the two output ports. 

 

3.3.1 Optimal SNR in Common Interferometric Topologies 

Here we describe the theoretical SNR corresponding to common interferometric setups.  

Figure 3.2 shows schematics of the setups that we will examine, which include 2x2 

(50/50) fiber coupler-based Michelson interferometers employing a) homodyne and b) 

heterodyne detection. The signal and noise at each output port of the coupler can be 

represented by Eqs. 3.2 and 3.3 where n=2 to account for the power splitting ratios of the 

50/50 fiber coupler. 

 The upper limit on SNR can be achieved in a homodyne experiment with perfect 

phase control (57–59). In this type of experiment, the argument of the cosine in Eq. 3.2 
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can be adjusted such that the maximal signal is always detected. By subtracting the 

signals acquired at each port of the coupler in Fig. 3.2(a) (i.e., performing balanced 

detection), the ideal SNR can be determined as: 

€ 

MOptimal = 1
4 S1 − S2( )2,                                  (3.4) 

with reconstructed signal of the form: 

€ 

SigMOptimal
= PRPS

ετ
hυ
 

 
 

 

 
 
2

.                                          (3.5) 

The expected value of the noise is given by: 

€ 

E MOptimal Ni( )[ ] = E 1
4 N1 − N2( )2[ ] = 1

4 E N1
2[ ] + E N2

2[ ]( ) = 1
2σ

2 .             (3.6) 

This expression is expanded and written in terms of E[Ni
2]. For some of the following 

methods we will have terms of the form E[Ni
4] as well. We can evaluate this simplified 

expression based on a knowledge of the variance at a single detection port: E[Ni
2]=σ2 and 

E[Ni
4]=3σ4 (where σ is given by Eq. 3.3). These substitutions can be made since the noise 

at each port is assumed to be Gaussian. The expectation of odd powers of Ni is zero since 

the noise is zero mean. In a similar manner we can now evaluate the variance of this 

method: 

€ 

σMOptimal

2 = E 1
16 N1 − N2( )4[ ] − 1

2σ
2( )
2

= 1
16E N1

4[ ] + 6
16E N1

2[ ]E N2
2[ ] + 1

16E N2
4[ ] − 1

4σ
4

= 3
16σ

4 + 6
16σ

4 + 3
16σ

4 − 1
4σ

4 = 1
2σ

4

.                           (3.7) 

Finally, we can determine the SNR as follows: 

.                           (3.8) 
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 Knowledge of phase can be attained in two ways.  In the first situation, the phase is 

known prior to the measurement. This scenario can conceivably occur in well-controlled 

experiments where the only unknown variable is the signal amplitude.  In the second 

situation, an estimate of the phase can be extracted from the measurement itself, and that 

information is then used in computing the signal amplitude. This type of phase estimation 

is employed in some of the following signal reconstruction algorithms. We note that the 

computation of signal amplitude where phase knowledge is used can be expected to be less 

robust and prone to systematic errors. In Section 3.5.3, we investigate the effect of phase 

error on our signal reconstruction algorithms, and find that they are surprisingly robust. 

 Heterodyne detection is typically accomplished using an AC lock-in amplifier. The 

measured signal is multiplied by a sine and cosine oscillating at the signal frequency, and 

summed over a variable time step, τ. The two outputs of the lock-in provide quadrature 

components for determination of signal amplitude and phase. The amplitude of the signal is 

then computed as the magnitude of the quadrature components. The signal reconstruction 

process can be written as the following, where S is the measured data: 

.            (3.9) 

The time step for each term in the summation is τ/X. In an analog mode lock-in amplifier X 

is effectively infinity and the summation can be replaced by an integration. As we shall see, 

the actual value of X (as long as it is >2) has no impact on the computed SNR. For the 

purpose of comparison, this method and each of the following methods leads to a 

reconstructed signal that is identical to Eq. 3.5. Derivation of the expected value and 

variance of the noise for this and following methods is detailed in Appendix D1. The 

results are given by: 
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€ 

E Mheterodyne Ni( )[ ] = 2Xσ 2                                          (3.10) 

€ 

σ heterodyne
2 = 4X 2σ 4 ,      (3.11) 

which corresponds an SNR of the form: 

€ 

SNRheterodyne =
PRPS

ετ
hυ
 

 
 

 

 
 
2

2X PRετ
2Xhυ

=
PSετ
hυ

.                                   (3.12) 

 Heterodyne detection can also be improved given knowledge of the phase of the 

signal.  In this case, the signal need only be multiplied by one phase matched sinusoidal 

component: 

€ 

Mheterodyne with phase knowledge = Si,1 − Si,2( )cos Δω i + θ( )
i=1

X

∑
 

 
 

 

 
 

2

.              (3.13) 

The use of phase knowledge results in a decrease in noise and corresponding increase in 

SNR. 

       

€ 

E Mheterodyne with phase knowledge[ ] = Xσ 2                          (3.14) 

                                      (3.15) 

€ 

SNRheterodyne with phase knowledge =
PR PS

ετ
hυ
 

 
 

 

 
 
2

2X PRετ
2Xhυ

= 2 PSετ
hυ

.                  (3.16) 

The above expressions will be useful as benchmarks to evaluate the performance of our 

image reconstruction algorithms with respect to optimal SNR, as well as routinely 

achievable SNR performance. 
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3.3.2 Method 1 

Here we begin to discuss methods for image reconstruction given phase separated 

components at the three ports of a 3x3 fiber coupler based OCT system. We assume ideal 

conditions in which the power splitting ratios for the coupler are equivalent (αij=1/3), 

φj=120°, and si=1, and the signal and noise at each point is given by Eqs. 3.2 and 3.3 

where n=3. 

 The most common method to reconstruct an image is to simply square and sum 

the signals from each port of the fiber coupler (51). This processing removes the cosine 

terms, which contribute a factor of 3/2 to the final reconstructed signal.  We define 

method 1 as follows: 

 .                                     (3.17) 

We can determine the mean value and variance of the noise to be: 

€ 

E M1 Ni( )[ ] = 9
2σ

2                                          (3.18) 

€ 

σM 1

2 = 27
2σ

4 ,                                              (3.19) 

and find an SNR of: 

.                          (3.20) 

 

3.3.3 Method 2 

A second method takes advantage of instantaneous quadrature, as described by Choma et 

al. (52).  Taking the signal at port 1 of the coupler, S1, as our real signal, the imaginary 

signal is reconstructed as:  



 

 

33 

€ 

SIM =
S1 cosϕ2 − S2β

sinϕ2
β =

α41α51

α42α52

.                                 (3.21) 

Using the assumptions listed above, namely φi=120° and αij=1/3.  We are then able to 

reconstruct our image as the magnitude of this complex signal, (SRE
2+SIM

2).  We can 

simplify the expression as follows: 

€ 

M2 = 9
4 SRE

2 + SIM
2( ) = 3 S1

2 + S2
2 + S1S2( ).                             (3.22) 

We find noise parameters of the form: 

                                                  (3.23) 

       ,                                                (3.24) 

and corresponding SNR: 

       .                               (3.25) 

 

3.3.4 Method 3 

This method makes use of phase information during signal amplitude computations.  We 

again follow Choma’s method for obtaining instantaneous quadrature, and calculate the 

phase at each point in our image, θ=tan-1(SIM/SRE).  The estimated phase is then used to 

divide out the cosine terms present in Eq. 3.2. Finally, we scale and sum the three signals 

using scaling factors, ai, constrained to sum to 1. In this way, we isolate the desired signal 

as follows: 

€ 

M3 =
9
4

a1S1
cos θ +ϕ1( )

+
a2S2

cos θ +ϕ2( )
+

a3S3
cos θ +ϕ3( )

 

 
 

 

 
 

2

.                  (3.26) 



 

 

34 

Scaling factors, ai, are determined by substituting the measured phases, as well as φi, and 

minimizing the resulting noise.  For example, if the values of θ and φi for a given channel 

produce a cosine value close to zero, then the noise would increase greatly after dividing 

it by this small number.  Hence, this channel would be weighted the least compared to the 

others.  And conversely, maximally interfering signals (large cosine value) are weighted 

more heavily than others.  Since the noise in each channel is equivalent, larger 

interferometric signals should lead to an increase in SNR.  The values of the scaling 

factors can be expressed as a function of the phase as well as the phase shifts between 

subsequent ports: 

€ 

ai = 2
3 cos2 θ +ϕ i( )[ ].                                           (3.27) 

The noise parameters and SNR that correspond to this method are: 

€ 

E M3 Ni[ ][ ] = 3
2σ

2                                               (3.28) 

     

€ 

σM 3

2 = 9
2σ

4                                                    (3.29) 

.                                  (3.30) 

This method can be generalized for an nxn fiber coupler based interferometer. In this 

case, the reconstruction based on Method 3 is given by: 

         ,                                   (3.31) 

where ai is: 

 



 

 

35 

€ 

α i =
2
n
cos2 θ +

2π
n

i −1( )
 

 
 

 

 
 .                                      (3.32) 

As was previously mentioned, the sum over all a values is 1.  The above expressions can 

be used to determine the expected value and variance of the noise for this generalized 

reconstruction method: 

                                         (3.33) 

€ 

σM 3 ,  n ports
2 = 1

2n2σ 4 ,                                      (3.34) 

with SNR determined as: 

€ 

SNRM 3, n ports
=
PRPS

ετ
hυ
 

 
 

 

 
 
2

nPRετ
2nhυ

= 2 PSετ
hυ

.                            (3.35) 

This is expression is the same as that given in Eq. 3.30.  Interestingly, the SNR associated 

with this method is independent of the number of output ports available for signal 

collection. 

 

3.3.5 Methods 4 and 5  

Finally we wish to discuss two additional reconstruction methods that are directly 

analogous to the processing performed by AC lock-in detection, and most easily 

understood in the context of a large number of detection ports (although these techniques 

will work as long as n≥3).  Instead of expressing our interferogram in terms of pathlength 

mismatch, we can write it in terms of phase delay, where each detection port samples a 

different phase delay.  Thus by multiplying the measured signal by sines and cosines 
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phase shifted similarly to each of the output ports, we can estimate the amplitude of the 

signal by averaging the result.  The signal is reconstructed as: 

€ 

M4 = Si cos ϕ i( )
i=1

n

∑
 

 
 

 

 
 

2

+ Si sin ϕ i( )
i=1

n

∑
 

 
 

 

 
 

2

,                             (3.36) 

and the noise is given by: 

                                                  (3.37) 

           .                                              (3.38) 

We find SNR equivalent to the heterodyne case: 

€ 

SNRM 4
=

PRPS
ετ
hυ
 

 
 

 

 
 
2

n PRετ
nhυ

 

 

 
 
 
 

 

 

 
 
 
 

=
PSετ
hυ

.                                  (3.39) 

Likewise, with knowledge of the phase of the signal from quadrature components in 

Section 3.3, the signal can be reconstructed using only one sinusoidal component: 

€ 

M5 = Si cos θ +ϕ i( )
i=1

n

∑
 

 
 

 

 
 

2

                                     (3.40) 

                                              (3.41) 

       .                                           (3.42) 

The noise is reduced by a factor of 2, giving an SNR of: 

.                            (3.43) 
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 The results of these derivations can be found in Table 3.1.  We note that the two 

methods that incorporate phase information, Methods 3 and 5, are predicted to have 

better SNR in comparison with the other methods. It is interesting to note that Methods 3 

and 5 are predicted to have the same SNR.  In fact, as is derived in Appendix D1, a 

substitution of Eq. 3.32 for ai
 converts Method 3 into a form identical to Method 5.  

However similar, we note that these methods differ in the case where the phase shifts at 

the ports of the fiber coupler are not equally spaced (i.e., φi ≠ 2π(i-1)/n).  In this case, the 

ais can be determined through a minimization, and the method will produce an image 

with a different SNR than that derived above.  Method 5 requires that the phase shifts be 

equally spaced, and will not perform well under these conditions. 

 Finally, we note that although we have assumed shot noise limited detection in 

these derivations, the five methods will perform the same with respect to one another so 

long as the dominant noise source is white.   

 

Table 3.1. Comparison of theoretical and experimental results.  Notably, the phase 
dependent methods (3 and 5) show superior SNR  and noise performance with respect to 
the others. 
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3.4  Experimental Methods 

The system depicted in Fig. 3.1 was calibrated to determine accurate values for φi and si.  

In order to make SNR measurements, a mirror was placed in the sample arm to serve as 

an ideal reflector, which was attenuated (-70 dB) such that sample arm shot noise was 

negligible compared to that from the reference arm. A beam chopper was used to 

alternate measurements of signal and background noise.  In order to assure that we were 

using our homodyne system to acquire shot noise limited data, as opposed to dominant 

1/f noise, we sampled quickly, at 800 kHz, and limited our data averaging time (~0.65 

ms) following the results of Ref. (65). Both signal and noise data were reconstructed 

using the five methods described above, and the SNR was determined as the mean signal 

divided by the standard deviation of the noise.  The methods were also compared based 

on the mean value of the reconstructed noise. 

We then used the 3x3 homodyne OCT system to acquire several images.  Our system 

resolution has been measured to be approximately 14 µm in the axial direction, and 9.4 

µm in the lateral direction.  First, we imaged a highly attenuated Air Force test target (-50 

dB) in order to visualize the relative performance of the three methods in a low signal 

situation.  We then imaged stage 54 Xenopus laevis tadpoles. Each data set was processed 

using the five image reconstruction algorithms described above, and displayed on 

equivalent color scales.  The improved image contrast obtained using reconstruction 

Methods 3 and 5 confirms our theoretical findings in biological samples. 
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Figure 3.3. a) Reconstructed signals from an attenuated mirror.  A beam chopper was 
used to make measurements of both signal and background noise, which were used to 
experimentally determine the SNR of the five methods. b) A magnified view of the noise 
from (a) depicting experimentally determined values for the mean and variance of the 
noise. 

 

3.5  Results and Discussion 

3.5.1  Experimental SNR Results 

We evaluated our reconstruction methods based on data acquired with an attenuated mirror 

in the sample arm.  Figure 3.3 displays a typical reconstructed trace, showing alternating 

signal and noise measurements as the sample beam was chopped. The SNR of the 

reconstructed signals were determined, as well as the mean value of the noise. Both 

calculations were made using the data depicted in Fig. 3.3. The results can be seen in Table 
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1, showing that Methods 3 and 5, which take advantage of the known phase in order to 

minimize the noise, perform significantly better than the other methods in terms of SNR. In 

close agreement with our theoretical predictions, we found an SNR enhancement of up to 

5.4 dB over the phase independent methods.  These two methods also leave the smallest 

remaining DC noise after signal reconstruction.  However, we note that these two methods 

do not match theoretical predictions for mean noise as closely as the other three methods.  

It is reassuring that Methods 3 and 5 vary from theory in a comparable manner, since they 

perform very similar processing; however, the exact cause of this discrepancy is unclear to 

the authors at this time. 

 

Figure 3.4. These images show a portion of a highly attenuated Air Force test target, 
representing a very low signal situation.  The three images were reconstructed from a single 
data set and reconstructed using Methods 1–5 (described above).  Methods 3 and 5 clearly 
perform better than the others, showing a notable increase in contrast between the bars of 
the test target and the background. 
 

3.5.2 Imaging Results 

The SNR improvement noted in the previous section is quite dramatic in our 

reconstructed images. Figure 3.4 shows a portion of an Air Force test target.  The 

resolution target was highly attenuated (-50 dB) such that the optical power returning 
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through the sample arm was very low.  Each of the images shown in Fig. 3.4 was 

reconstructed from the same raw data using Methods 1–5 described above.  Additionally, 

each image is displayed on the same color scale.  We see that for the image reconstructed 

using Method 2 the bars on the test target can barely be discriminated from the 

background.  The image reconstructed using Method 1 is better, but there is still 

relatively little contrast between the bars and the background noise.  As predicted by the 

theoretical sensitivity analysis, Methods 3 and 5 produce images with a marked increase 

in contrast compared to the others.  The bars of the Air Force test target are clearly 

distinguishable in panels (3) and (5) of Fig 3.4.  

  Our reconstruction algorithms were also tested on data from biological images.  

Fig. 3.5 (first column) shows an image of structures in the anterior, medial portion of a 

stage 54 Xenopus laevis tadpole.  Again, Methods 3 and 5 produced images that more 

clearly distinguish biological structure from background noise.  The nuclei of the cellular 

structures at the bottom of the image are more visible. The ability to achieve superior 

SNR based only on reconstruction algorithm implies that, to achieve the same SNR as 

through commonly used reconstruction algorithms, the optical power incident on fragile 

biological tissues can be reduced.  In Fig. 3.5 (second column) we have subtracted the 

DC value of the noise in each image in order to compare the noise variance between 

images.  When a portion of the background noise is magnified (Fig. 3.5, column 3), there 

is significantly more background fluctuation in images corresponding to Methods 1 and 2 

than in the other images.   

  We have seen in the above experimental results that Methods 3 and 5 are capable 

of producing images with the highest SNR.  In these methods, knowledge of the phase at  
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Figure 3.5. In the first column the image reconstruction algorithms were evaluated on 
images from a stage 54 Xenopus tadpole.  Again, Methods 3 and 5 produced images with 
improved SNR, more clearly distinguishing biological features such as cell nuclei from 
background noise. In the second column of images the DC noise has been subtracted from 
the image.  The increase noise variance is now visible in the background of the images 
corresponding to Methods 1 and 2 in a blown up portion of the background (third column) 
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each point in the image was used to minimize the noise at that point.  In essence, these 

algorithms utilize more of the available information than the other methods. 

 

3.5.3 Robustness to Phase Error 

The performance of each of the signal reconstruction methods depends on appropriate 

calibration of the 3x3 homodyne OCT system. However, Methods 3 and 5 are strongly 

dependent on correct calculation of the phase. Determination of the phase depends on 

exact knowledge of the loss scaling coefficients, si, and the angles between adjacent ports 

of the fiber coupler, φij. Uncertainty in these values leads to uncertainly in the phase at 

various points in the image, and additionally leads to an improper choice of noise 

minimization coefficients, ai, in Method 3. To reduce the effects of this potential 

problem, we calibrated the 3x3 system immediately before image acquisition, making the 

assumption that drifts in the system calibration parameters are slow. 

 

Figure 3.6. SNR is plotted versus phase error for the five reconstruction methods.  Only 
Methods 3 and 5 are phase dependent.  Here, we see that these methods are relatively robust 
to phase error, only dropping below the other methods for fairly large errors in phase. 
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 Additionally, we investigated the impact of phase error on the SNR of the 

reconstruction methods. To do this, we computed the SNR corresponding to each method 

using a phase Θ+dθ, where dθ is a phase error that varies from 0 through π/2. The results 

are plotted in Fig. 3.6 in terms of the SNR coefficient (i.e., the coefficient of PSετ/hυ). 

The computation shows that Method 3 and 5 are surprisingly robust in the presence of 

phase error. Very large phase errors may be incorporated before these methods drop 

below the others in terms of SNR. These results imply that the phase-dependent methods 

not only provide improved SNR, but are relatively insensitive to errors in system 

calibration. 

 

3.6  Conclusions 

In conclusion, we have demonstrated the effect of image reconstruction algorithm on the 

SNR when phase separated components are detected.   We compared five potential 

methods for reconstructing an image from the three outputs of a 3x3 fiber coupler-based 

homodyne OCT system, and demonstrated that algorithms which use knowledge of the 

phase at each point in the image to minimize noise perform significantly better than the 

others in terms of SNR. This holds true for both homodyne and heterodyne techniques.  

The algorithms showed an SNR increase of up to 5 dB over the other methods, and were 

found to perform better than the most commonly used forms of heterodyne detection. This 

increase in SNR was evident as improved contrast, as well as overall image quality, in 

images from both an Air Force test target as well as biological samples.  Additionally, we 

found that these phase-dependent methods are relatively robust in terms of phase error. 

Finally, we note that our analysis is not restricted to 3x3 homodyne OCT, but can be 
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applied to any situation in which phase separated components are combined to decouple 

phase and amplitude information. 
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Chapter 4. Modeling the Effects of 1/f Noise 

This chapter is adapted from Ref (65): E.J. McDowell, X. Cui, Z. Yaqoob, and C. Yang, ‘A 

generalized noise variance model and its applications to the characterization of 1/f noise,’ 

Optics Express, 15(7), 3833–3848 (2007). 

 

4.1  Introduction 

1/f noise, alternately referred to as pink or flicker noise, is found in a wide range of 

physical systems (66–69), from carbon resistors and semiconductors (70), to heartbeat 

dynamics (71) and traffic flow (72). In general, 1/f noise has a power spectral density that 

follows the form 1/fα, where α commonly ranges from 0.5 to 1.5 (73). Despite significant 

effort in describing a universal model for the origin of 1/f noise (74), no single model is 

currently accepted, and the origins of 1/f noise have only been well characterized in very 

specific circumstances. For example, 1/f noise in vacuum tubes is commonly modeled as 

a superposition of relaxation rates that characterize the release of electrons from cathode 

surface trapping sites (73, 75, 76).  Additionally, the 1/f noise measured in cellular ion 

currents has been attributed to the stochastic nature of the opening and closing 

mechanisms of voltage gated ion channels (77). 

 The presence of 1/f noise in optical detection can significantly degrade the 

effective precision and sensitivity of the optical technique. In interferometric methods, 

including time domain optical coherence tomography (OCT) (19), a typical strategy for 

avoiding 1/f noise involves the use of heterodyne detection in which the signal of interest 
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is modulated and shifted into a frequency band in which 1/f noise is small compared to 

other sources of noise. Under these circumstances, we typically consider only white noise 

processes, which include receiver noise, shot noise, and excess intensity noise (25). 

 Homodyne methods are advantageous in their simplicity. By directly detecting the 

interferometric signal, there is no need for scanning mechanisms or lock-in detection. In 

addition, a properly performed homodyne experiment can provide a 3 dB improvement in 

SNR compared to heterodyne techniques (57–59). Homodyne interferometric methods 

have long been used to measure displacements (78, 79) and vibrations (80, 81), and have 

been adapted to a variety of other applications including the detection of trace gasses 

(82). In addition, there has been a recent rise in homodyne interferometric methods for 

biomedical applications (51, 52, 83, 84). We also note that most of the spectrometer-

based OCT systems reported thus far, which have an improved SNR over time domain 

techniques (22–24), are homodyne in nature. An understanding of the impact of 1/f noise 

can guide better detection scheme design, and direct the selection of operating 

parameters.   

 The issue of 1/f noise in homodyne detection, and optical detection in general, is 

an understudied problem. In an optical system, we expect 1/f noise to be generated by the 

broadband source (85), as well as the photodetector circuitry (86). The complex nature of 

the light detection process makes it difficult to directly identify the specific noise 

generating sources in the light detection chain. More importantly, even if the 1/f noise 

characteristics of a given system can be empirically determined, there is a need for a 

suitable theoretical model that can be used to characterize the impact of 1/f noise on the 

sensitivity of a detection system.   
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 In Section 4.2, we present a novel time domain approach to determine the SNR 

behavior of an optical system in the presence of 1/f noise. To our knowledge, this 

approach has not been previously reported. Using this model, we examine the impact of 

the noise exponent, α, (Section 4.2.1) as well as the total experimental time frame, T 

(Section 4.2.2). Two findings are particularly noteworthy. 1) The noise model shows that 

for α>1, the 1/f noise variance is proportional to the square of the integration time (τ). 

This implies that for measurements that are dominated by 1/f noise, the SNR cannot be 

improved by increasing the integration time of the measurement. 2) The noise model also 

predicts the existence of a characteristic time (τwhite-to-1/f) at which 1/f noise begins to 

dominate over white noise, such as shot noise. In Section 4.3, we describe our 3x3 fiber 

coupler based homodyne interferometer, as well as the experiments that were conducted 

to characterize 1/f noise in that system. In Section 4.4, we compare our theoretical results 

to experimental findings from the homodyne interferometer.  In addition to validating our 

theoretical results, we also find that the 1/f noise characteristics are detector dependent. 

Finally, we summarize our findings in Section 4.5. 

 
4.2  Theoretical Noise Model 

In the following analysis we will consider a generalized noise source with known power 

spectral density. It is a well-known fact that SNR in the limit of dominant white noise, 

such as shot noise, increases linearly with integration time (τ). (In keeping with 

interferometry convention, we define SNR as the ratio of the square of the signal count to 

the noise variance.)  However, we do not expect this trend in the case of dominant 1/f 

noise. The presence of 1/f noise implies that the amplitude of noise fluctuations will 

increase on longer time scales. The following model allows us to examine the 
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dependence of both 1/f noise and white noise on integration time, and determine the 

appropriate detection parameters to obtain the optimal SNR for a given optical system. 

 In order to determine the contribution of 1/f noise to the SNR of an optical 

system, we would like to determine the variance of the 1/f noise amplitude distribution as 

a function of the integration time of the detection system. The following derivation 

presents a method for determining this variance using the power spectral density of the 

noise to construct a time series that can then be ensemble averaged appropriately. This is, 

to the best of our knowledge, a new approach that is useful for analyzing any generalized 

noise sources for which the power spectral density is known. For the sake of clarity, we 

choose to quantify our signal in terms of photon count rate and photon counts. We note 

that through appropriate scaling these expressions can be converted to quantities of 

energy and power. 

 We can describe the signal time trace as a combination of a DC term, representing 

the mean signal, and a time varying, zero mean term that represents the noise. The noise 

term can be expressed as a summation of frequency dependent contributions, each 

weighted by the power spectral density of the noise distribution: 

€ 

x t( ) = x0 + Δx t( )

= x0 + 2S fi( )Δf cos 2πf it + δi( )
i=1

∞

∑
  .                              (4.1) 

Here, x0 is the mean signal (photon count rate), S(fi) is the power spectral density 

corresponding to the frequency fi, and δi is a random phase shift that varies uniformly on 

the interval [0, 2π]. The phase shifts between fi and fi+1 are uncorrelated, producing the 

desired noise source. The exact definition of the power spectral density, S(f), can vary 

from community to community. The power spectral density employed here is given by 
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the Fourier transform of autocorrelation function of the measured signal. This results in a 

symmetrically distributed power spectrum. S(f) in Eq. 4.1 is a single-sided power 

spectrum, which contains double the original value for each positive frequency. The 

power contained in each frequency step, Δf, is given by S(f)Δf. Thus, to obtain the total 

signal in each frequency step we must include the discretization within the square root in 

Eq. 4.1. We briefly verify our representation of the signal in Eq. 4.1 by noting that for a 

signal of the form Acos(2πf0t), the single sided power spectrum is given by S(f) = 

(A2/2)δ(f-f0). As such, the factor √(2S(f)Δf) yields the correct weight of A in the frequency 

step containing f0. 

 An actual measurement of the signal count, which necessitates the collection of 

signal photons over a finite measurement time window, τ, will yield two terms. The first 

term simply integrates over τ to give an expected value of X(τ )=x0τ. For the second term 

we have the following: 

                                               (4.2a) 

€ 

E ΔX τ( )( ) = 0,                                                 (4.2b) 

where the expected value of the noise fluctuations is zero. Thus, the variance of the noise 

is given by the second moment of ΔX(τ): 
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σX
2 τ( ) = E ΔX τ( )2( ) = E 2S fi( )Δf cos 2πf it + δi( )
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We can then rewrite the product, 

 

€ 

σX
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noting that since δi and δj are uncorrelated for i ≠ j, the expectation will vanish unless i=j. 

€ 

σX
2 τ( ) = E 2S fi( )Δf cos 2πf it + δi( )dt
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The expectation can then be evaluated by taking an ensemble average where δi is varied 

in the interval [0, 2π]. 

€ 

σX
2 =

1
2π

S fi( )Δf
2 πf i( )2

sin2 2πf iτ + δi( ) − 2sin 2πf iτ + δi( )sin δi( ) + sin2 δi( )[ ]
i=1

∞

∑
 

 
  

 

 
  dδi

o

2π

∫         (4.6) 

Finally, we decrease the spacing between subsequent elements in the infinite sum, and 

rewrite the variance in integral form: 
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σX
2 τ( ) =

S f( )
2 πf( )2

1− cos 2πfτ( )[ ]df
0

∞

∫ .                                     (4.7) 

This expression is useful and generalized. It can be used with any noise power spectral 

density to derive the noise variance. 

 To verify our result, we begin by considering the situation where white noise 

dominates (i.e., S(f)=Awhite). In this situation, Eq. 4.7 can be rewritten as: 

€ 

σX,  white
2 τ( ) =

Awhite

2 πf( )2
1− cos 2πfτ( )[ ]df

0

∞

∫                               (4.8) 

.                                                (4.9) 

Here, we can immediately recognize this form as the variance of white noise. For an 
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idealized photon flow that is shot noise limited, the coefficient Awhite is given by 2x0. This 

leads to σ2
X, shot noise (τ) = x0τ; a result that is consistent with the Poissonian nature of shot 

noise. 

 If we instead substitute the power spectral density that we expect for 1/f noise, 

S(f) = Apink / f α, we obtain Eq. 4.10. However, this integral diverges at f=0. By integrating 

from a minimum frequency, fmin, we can effectively cap the function and force the 

integral to converge. As we will show in Section 4.2.1, this truncation is valid under 

certain experimental conditions, and fmin is directly related to the total time frame of the 

experiment (T). The variance is then given by: 

 

€ 

σX,  pink
2 τ, fmin( ) =

Apink

2π 2 f α+2 1− cos 2πfτ( )[ ]df
fmin

∞

∫ .                        (4.10) 

In the following sections we analyze Eq. 4.10 in terms of its dependence on both fmin and 

α.  Additionally, since there is no straightforward analytical solution to Eq. 4.10, we 

approximate the solution in order to show the form of the dependence on integration time 

(τ). 

 

4.2.1 Choice of fmin  

In our analysis, we choose fmin=1/T, where T is the total experimental time frame. This is 

different from the integration time τ, which gives the time step over which the signal is 

sampled. The difference between these two time constants can be better appreciated in 

the following scenario. Suppose we have a light source with a known 1/f noise power 

spectrum, S(f), which we decide to amplitude modulate in order to send a message. The 

message length is T in its entirety. The message is analog in nature but is band limited 

such that it does not contain frequency components beyond fsignal. The message can be 
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received, with no information loss, by measuring the light intensity over a time frame of 

T and choosing a time step of τ=2/fsignal for signal integration. Intuitively, we can 

appreciate that this time step integration is useful for suppressing high frequency 

(f>fsignal) noise contributions in our measurements. The noise variance for this experiment 

can be calculated using Eq. 4.10 based on the abovementioned parameters. We can see 

that the message length T is relevant for noise variance consideration; as the length of T is 

increased, more low frequency noise components will be incorporated, and the SNR will 

correspondingly deteriorate. Noise components of frequency lower than fmin are present in 

the collected signal trace. However, these components manifest as a net DC shift in the 

entire collected signal, and have no impact on the content of the sent message (see Fig. 

4.1). 

 

Figure 4.1. The total time frame of an experiment, T, determines the lowest frequency noise 
components that are incorporated into a measured signal.  The upper panel depicts the raw 
signal, or amplitude modulated ‘message’ that is encoded on a 1/f noise dominated light 
source (see Section 2.1).   If the message is band limited such that it does not contain 
frequency components beyond fsignal, the message can be optimally collected by integrating 
the collected signal in times steps of τ=2/fsignal.  In the left panel, low frequency noise 
(f<fmin) in the light source causes a net DC shift in the acquired signal.  As T is increased 
(right panel) the same low frequency noise dramatically impacts the measured noise 
variance between subsequent time steps (τ), which can lead to a degradation in the SNR of 
the collected message. 
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 There is an additional scenario in which a minimum frequency may be imposed 

on Eq. 4.10. In certain situations the power law behavior of 1/f noise breaks down for 

very low frequencies (73). This imposes a natural cap on Eq. 4.10, which is 

approximately constant across these low frequencies, implying that fluctuations do not 

become infinitely large. In this case, however, we cannot approximate Eq. 4.10 by simply 

integrating from the corner frequency through infinity. We must also consider the area 

under the constant portion of the power spectrum in determining the total noise variance 

(so long as these frequencies fall above the fmin imposed by the detection system). In 

reality, this type of natural capping has only been seen in very few experimental 

situations (87, 88). Most often, 1/f behavior can be seen down to the lower frequency 

bound of the measurement. In fact, 1/f noise has been measured over 6 frequency decades 

(89), and has been shown to display the familiar trend at frequencies as low as 1/(3 

weeks) in MOSFETs (90) and even 1/(300 years) for weather data (91). 

 

4.2.2 Influence of the Noise Exponent, α  

The value of α can dramatically influence the 1/f noise variance characteristics. To 

motivate our discussion, we will first present numerical solutions to Eq. 4.10, allowing 

for an empirical determination of the dependence on integration time. For verification, we 

will more rigorously demonstrate the τ dependence by deriving an approximation to Eq. 

4.10, which clearly reveals the role of τ. 

 Equation 4.10 is numerically approximated (MATLAB), and the standard 

deviation of the noise fluctuations (square root of Eq. 4.10) is plotted in Fig. 4.2 for 

various values of α. These curves are solely intended for the purpose of examining the 

dependence of the noise on integration time. The individual curves plotted in Fig. 4.2 

have arbitrary amplitudes relative to one another, as the units of Apink will change as α is 
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varied. An fmin of 1.6 mHz, corresponding to a relatively long experimental time frame, 

was used in these simulations. 

 As we expect, the white noise curve, α=0 in Figs. 4.2 (a) and (b) show a 

dependence on the square root of the integration time. As α varies from 0 to 1 (Fig. 

4.2(a)), the standard deviation appears to transition from a square root–type dependence 

towards a linear dependence. This response demonstrates the gradual transition from 

white noise to 1/f noise as α is increased.  Interestingly, for α>1 (Fig. 4.2(b)), the 

standard deviation appears to increase linearly with integration time. This suggests the 

fact that, under conditions where 1/f noise is dominant, the total noise increases in 

proportion with the signal. Additionally, we note that the white noise curve tapers faster 

than all curves for which α≠0. Thus, each of the 1/f noise curves necessarily crosses the 

shot noise curve at some point. This fact implies the existence of a characteristic time 

(τwhite-to-1/f) at which 1/f noise begins to dominate over white noise. 

  
Figure 4.2. Theoretical results for noise standard deviation versus integration time, square 
root of Eqs. 4.9 and 4.10 for white noise and 1/f noise, respectively.  The 1/f noise 
transitions from the square-root dependence of white noise (α=0) to a linear dependence 
as α increases from 0 to 1, and maintains a linear dependence on integration time for α>1. 

 

 SNR traces corresponding to the same α values as Fig. 2 are plotted in Fig. 4.3. 

Here, we define SNR as (X/σ)2 [37], where X is the total number of photon counts, which 

increases linearly with τ, and σ is the standard deviation of the noise. As expected, the 

theoretical shot noise limited SNR increases linearly with integration time. For 0<α<1, 
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the SNR transitions from a curve that is approximately linear (similar to white noise), to a 

curve that appears to taper towards a constant value. The linear dependence of the 1/f 

noise standard deviation in Fig. 4.2(b) implies that the corresponding SNR will be 

constant, since the total signal also increases linearly with increasing integration time. 

Figure 4.3(b) shows that this appears to be empirically true. 

 

Figure 4.3. Theoretical results for SNR versus integration time. As expected, the white 
noise limited SNR increases linearly with integration time.  In the case of dominant 1/f 
noise, the SNR increases with decreasing slope for 0<α<1, and tapers to a constant value 
for α>1. 

 

 The above simulations provide some initial intuition into the dependence of 

integration time on SNR in the limit dominant 1/f noise. It is possible to derive an 

approximate solution to Eq. 4.10 that shows the explicit dependency of the noise variance 

on integration time, τ, for a wide class of experimental situations. Specifically, if 

τ<<1/fmin, Eq. 4.10 can be easily simplified. In the context of the thought experiment 

described above (Section 4.2.1), this constraint corresponds to a situation in which the 

message is long (fmin small) and the maximum signal frequency is high (τ=2/fsignal is small) 

— a signal that can be expected to describe an overwhelmingly large fraction of practical 

situations. Under these conditions, we arrive at the following expressions for the noise 

variance: 
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where Г(α) is the mathematical gamma function defined as ∫ tα-1e-t dt over the interval 

[0,∞] for α>0. Ζ+ refers to the set of positive integers. Equation 4.11 shows that, for 

small fmin and increasing τ, two distinct regimes exist. In these regimes, the SNR depends 

on τ as follows: 

€ 

SNR τ( ) ~ O τ1−α( ) 0 <α <1

~ O τ 0( ) α >1

except when α ∈ Z +

.

                                  (4.12) 

For 0<α<1 Eq. 4.11 shows a dependence of the variance on τα+1. This confirms our 

intuition of a transition from white noise to 1/f noise, as the SNR moves from a function 

with τ dependence to a function of constant value. This dependence implies that the SNR 

can still increase after crossing the characteristic integration time (τwhite-to-1/f) at which 1/f 

noise begins to dominate, although the gain in SNR from further increases in τ occurs 

with diminishing returns as α approaches 1. 

 For α>1 we find a τ2 dependence. These approximations confirm our observations 

from Figs. 4.2 and 4.3 that, for α>1, the SNR should reach a constant value when 1/f 

noise is the dominant noise process. This is quite a remarkable fact, implying that once 

the integration time is increased past τwhite-to-1/f, there will be no further significant 

improvements in SNR.  The τ dependence of Eq. 4.10 and Eq. 4.11 is plotted in Fig. 4.4 

versus the 1/f exponent, α. For integer values of α, Eq. 4.10 cannot be easily solved, and 

these locations are represented by open circles. 
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Figure 4.4. The τ dependence of the 1/f noise variance is dependent on the 1/f exponent, 
α.  For α>2, this dependence is given by τ2.  Open circles represent α values that cannot 
be simply approximated by Eq. 4.11.  

 
 
4.3  Experimental Methods 

The model described in Section 4.2 is widely applicable. In particular, it is very 

appropriate for determining the noise characteristics that are influential in homodyne 

interferometry. In the next two sections, we describe our findings for this specific 

application area. A 3x3 fiber coupler based homodyne optical coherence tomography 

system first described by Yaqoob et al. [25] was used to study 1/f noise and its impact in 

homodyne interferometry. This type of system was chosen because of its ability to 

instantaneously decouple phase and amplitude information [24]. Additionally, the system 

sensitivity does not depend on maintaining a phase difference of exactly 90°. A 

calibration procedure, accompanied by appropriate processing, allows us to relax the 

requirement for stringent phase control in order to use the inherent phase shifts of the 

fiber coupler. 

  The experimental setup used here was the same as that described in Chapter 3, 

diagrammed in Fig. 3.1, and described by Eq. 3.1.  For this experiment, the amplitude of 

the interferometric signal was determined by squaring and summing the signals from the 

three ports (equivalent to Method 1 in Chapter 3). 
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 The system depicted in Fig. 3.1 was built and calibrated, with phase shifts 

measured as φ1=116.6 ± 1.2°, φ2=120.7 ± 0.9°, φ3=122.5 ± 0.8°. The objective lens was a 

20x, 0.4 NA IR lens, allowing for a measured lateral resolution of 9.4 µm. The broadband 

SLD source provided a measured axial resolution of 14 µm. A sample arm power of 

approximately 30 µW, measured at a single detector, was used in all following 

experiments. In order to experimentally measure the SNR of the homodyne 

interferometer, time traces of the OCT signal were acquired with a mirror in the sample 

arm. To measure the noise contribution, the sample arm was blocked. Varying integration 

times were used to bin the measured signal into integrated ‘blocks’. These ‘blocks’ are 

represented in Fig. 4.1 by dashed lines with spacing τ, and the integrated signal is 

proportional to the total number of photons detected over this time interval. The power 

spectrum of the noise was determined using only the integrated noise signal. The SNR 

was determined by taking the square of the mean value of the integrated signal divided by 

the standard deviation of the integrated noise signal 

 To set a baseline for the evaluation of the effects of 1/f noise on the homodyne 

system, a heterodyne system was constructed and evaluated as well. The reference mirror 

labeled in Fig. 3.1 was mounted on a voice coil to allow for modulation of the reference 

arm optical path length. The interferometric signal was detected at a single port of the 

fiber coupler, and the envelope of the interferogram was acquired using a lock-in 

amplifier set at the Doppler shift frequency created by the velocity of the moving 

reference mirror. Instead of visualizing only a single point, we acquired the entire 

coherence function in depth as we scanned the reference arm. To measure the SNR we 

integrated over the central portion of the peak, defined by the full width at half maximum 
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(FWHM), as well as over the same number of points in an area distant to the peak. The 

integration time was set by the width of the peak, determined by the speed at which the 

reference arm was scanned. By changing the scan speed, and locking in on the 

appropriate carrier frequency, we were able to determine the dependence of the SNR on 

integration time. 

 Finally, we were interested in investigating the source of 1/f noise in our 

homodyne interferometer. In order to examine the contribution of detector 1/f noise, we 

replaced our initial detectors (NewFocus, #2011) with new detectors (Thorlabs, 

#DET10C). We acquired homodyne data as described above, and compared the data sets 

in terms of the 1/f noise characteristics.   

 One potential problem that was necessary to address involved the discrete 

sampling of the photodetectors. We wanted to acquire data points that represented the 

mean signal over the time between subsequent samples, but photodiodes do not integrate 

over this time period.  There was the potential for high frequency noise to skew the data 

as we integrated over various amounts of time in post processing. To solve this problem, 

we set the low pass cutoff frequency on the photodetectors to match our sampling rate in 

all experiments. Thus, fluctuations were smoothed out on the scale of the sampling time. 

We note that the power spectral density remains constant with or without filtering since 

the cutoff frequency is found at twice the maximum frequency displayed in the power 

spectrum. 
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4.4  Results and Discussion 

4.4.1 Measured Power Spectrum 

We begin our investigation of 1/f noise by displaying the power spectrum of our 

measured homodyne noise signal averaged over 85 data sets (Fig. 4.5). No capping of the 

1/f noise at low frequencies can be seen over our measurement range. By fitting to the 

linear portion of the curve, we found an exponent of α=1.39±0.1. The results of the fit 

also gave us a value for Apink, used in the above derivation. The constant value of the 

white noise determined Awhite.  Additionally, we note that the frequency at which white 

noise processes, shot noise in this case, became dominant was approximately 70 Hz. 

 
 

Fig. 4.5.  Power spectral density of the interferometric noise, measured with the sample 
arm blocked.  The data were averaged over 85 data sets, and sampled at 30 kHz.  The 
initial portion of the curve was fit, and an exponent of α=1.39 was determined.  The 1/f to 
white noise corner can be seen at approximately 70 Hz.  

 
 
4.4.2 Experimental SNR Versus Integration Time 

After measuring the SNR of the homodyne system as described above, we plotted SNR 

versus integration time averaged over 65 data sets in Fig. 4.6. Notably, for short 
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integration times the curve was approximately linear, while for long integration times the 

curve was flat. This implies that white noise was initially dominant, and that 1/f noise 

became increasingly prominent as the integration time was increased. This behavior 

agrees well with the analysis described above and plotted in Figs. 4.2 and 4.3. By fitting 

to the linear and constant portions of the data in Fig. 4.6 we experimentally determined 

the integration time at which 1/f noise began to dominate as τwhite-to-1/f =2.1 ms. The curve 

was almost completely constant after several 10s of ms, and any further increase in 

integration time did not significantly increase the SNR. We next compared this result 

with those from the corresponding heterodyne system, which were collected and analyzed 

as described in Section 4.3. The use of a carrier frequency shifted our desired signal away 

from the baseband and out of the 1/f regime. This form of detection is the standard 

method employed for minimizing the contribution of 1/f noise when making electronic 

measurements. The stable range of voice coil frequencies, approximately 1–20 Hz,  

 
 
Figure 4.6.  SNR of the homodyne interferometric signal plotted versus integration time.  
The initial portion of the curve displays a linear trend, indicative of dominant white noise 
processes.  The final portion of the curve is constant with increasing integration time, in 
agreement with the theoretical 1/f noise variance derived above. 
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Figure 4.7.  A comparison of homodyne (blue) and heterodyne (red) SNR versus 
integration time.  The black curve represents the upper limit on SNR for shot noise 
limited signals.  A line drawn through the initial portion of the homodyne curve intersects 
the heterodyne data (dashed line).  This implies that the homodyne data is white noise 
limited for short integration times, after which 1/f noise becomes dominant. 

 

imposed the range of modulation frequencies that we were able to utilize, approximately 

5–20 kHz. The voice coil frequency, directly related to the scan speed, set the width of 

the coherence envelope as well as the integration time of the measurement. 

 Figure 4.7 displays both heterodyne and homodyne SNR plotted on a log-log 

scale versus integration time. The homodyne data were averaged over 65 data sets. It is 

clear that the initial portion of the homodyne data falls along a line that intersects the 

heterodyne data at longer integration times. This is evidence confirming that the 

homodyne system is white noise limited for short integration times. The theoretical upper 

limit on SNR, when white noise is dominant, is plotted in black in Fig. 4.7. This upper 

shot noise limit assumes perfect constructive interference of the detected signal (i.e., the 

cosine term in Eq. 3.1 is always equal to 1) and the absence of other white noise sources. 
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In principle, it is possible to reach this upper limit in homodyne detection when 

maintaining perfect phase control. In contrast, due to the nature of its time modulation, it 

is not possible to reach using heterodyne detection since we always detect the coherence 

function modulated by a fringe pattern. 

 

4.4.3 Characteristic Time 

Using the noise model described in Section 4.2, we were able to theoretically predict the 

characteristic integration time at which 1/f noise began to dominate. However, this 

calculation required fmin. To verify our choice of fmin =1/T, we fit the data in Fig. 4.6, 

sampled at 30 kHz for 1 second to an expression for SNR, including both 1/f and shot 

noise terms: 

.                                          (4.13) 

Here, σ2
X,pink and σ2

X,white are given by Eq. 4.9 and Eq. 4.10, respectively. Amplitude 

values contained in these equations, Awhite and Apink, were obtained from the power 

spectrum, as described in Section 4.1. The only free variables in Eq. 4.13 are the total 

photon count rate, x0, and fmin, contained in σ2
X,pink. The fit can be seen in blue in Fig. 4.6. 

From this fit we determined a fmin of 1.1 Hz, which is approximately equal to 1/(T=1s). 

This result helps to confirm the validity of our model for making predictions about 

experimental results.   

 With confidence in our value of fmin, we used the theoretical noise model to 

predict the characteristic integration time at which 1/f noise became dominant. This time 

was determined as the time at which white noise and 1/f noise give an equivalent noise 

variance, and the following equation holds: 
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∫ .                               (4.14) 

We calculated this characteristic time to be τwhite-to-1/f =1.65 ms, and note that the SNR of 

the measurement should begin to be affected at shorter times when 1/f noise is less than, 

but not negligible compared to white noise. This time agrees fairly well with our 

experimentally determined time of 2.1 ms. 

 

 
4.4.4 1/f Noise Power Dependence 

In the initial analysis we arrived at an expression for the variance of the noise amplitude 

distribution in terms of constants Apink and Awhite. For shot noise, the constant can be 

determined using knowledge of Poisson statistics. One question that arises concerns the  

 

Figure 4.8.  The form of the 1/f noise amplitude (Apink in Eq. 4.10) is unknown, although 
we might expect it to depend on the reference arm power in some fashion.  The blue dots 
represent experimental measurements and the black line is a linear fit to the data.  The 
amplitude was found to follow a linear trend versus reference arm power, similarly to the 
shot noise amplitude. 
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form of the constant for 1/f noise, Apink. Figure 4.8 shows the dependence of 1/f noise on 

reference arm power. These noise values were computed using an integration time of 

τ=10 ms, which falls well above the point at which 1/f noise becomes dominant in Figs. 

4.6 and 4.7. The linear trend in Fig. 4.8 makes intuitive sense; like shot noise, the 1/f 

noise is directly proportional to the number of detected photons. 

 
4.4.5 Sources of 1/f Noise 

Finally, we examined the contribution of the photodetectors to 1/f noise in the 

interferometric system. We expect a different set of photodetectors to have different 1/f 

characteristics, and possibly different exponents, α. The initial detectors (New Focus 

#2011) showed a linear trend of α=1.40, while the replacement detectors (Thorlabs 

#DET10C) displayed an increase to α=2.17. The power spectra are plotted in Figs. 4.9 (a) 

and (b). We expect the shot noise limited SNR curve to be similar between both sets of 

detectors since the photon count rate remained the same. Using the results of our 

theoretical analysis plotted in Figs. 4.2 and 4.3, we expect that 1/f noise with a higher 

exponent will intersect the shot noise curve at a shorter integration time. These 

expectations are verified by comparing the experimental SNR versus integration time for 

the two sets of detectors. Although the two curves look very similar in the shot noise 

regime, the signals from Thorlabs detectors begin to shift from a linear shot noise curve 

to a flat 1/f noise curve almost an order of magnitude earlier than those of the New Focus 

photodetectors. These results emphasize the importance of careful detector selection in 

minimizing 1/f noise for optical systems. 

 In addition to detector noise, there is a component of the 1/f noise that arises from 

the light source. A portion of the noise was removed by subtracting the detected signal at 
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D4 from the signals at the other three ports. When this subtraction was not performed, we 

found a difference in SNR similar to that displayed in Fig. 4.9(c) where 1/f noise caused 

the SNR curve to flatten out at shorter integration times. This result was less dramatic 

than that in Fig. 4.9(c), with a maximum difference of approximately 3 dB between the 

data that had and had not been corrected using the signal from D4. We note that this type 

of correction, commonly used to reduce excess intensity noise [14], is also an important 

factor in reducing 1/f noise. 

 
Figure 4.9.  Power spectra of initial detectors (a), and replacement detectors (b), showing 
a notable increase in the 1/f noise exponent, α.  c) SNR versus integration time for both 
sets of detectors.  The larger 1/f exponent of the Thorlabs detectors (TL #DET10C) 
caused 1/f noise to become a dominant process for shorter integration times than was 
seen in the New Focus detectors (NF #2011).   

 

4.5  Conclusions 

In conclusion, we have presented what is, to the best of our knowledge, a novel time 

domain method for analysis of the dependence of the noise variance on the integration 

time of the detection system. While we used this model to investigate 1/f noise in a 

homodyne interferometry system, it is applicable for any optical detection scheme in 

(a) 

(b) 
(c) 
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which the power spectrum of the noise fluctuations is known. We confirmed the validity 

of our model by demonstrating that our results are consistent with the well known 

dependence of white noise on integration time. The solutions to our model were found to 

be dependent on a minimum frequency, fmin, which was inversely related to the total time 

frame of the experiment. By restricting this total time frame it is possible to exclude large 

amplitude, low frequency components from the acquired signal. Our analysis revealed 

that the variance of the 1/f noise amplitude distribution shows two distinct regimes. For 

0<α<1, the noise variance is dependent on τα+1, representing a transition from white noise 

to 1/f noise. However, for α>1, the noise variance is dependent on τ2, implying that when 

the dominant noise processes display a 1/f characteristic, the SNR of the measurement is 

constant versus integration time.  The presence of both white and 1/f noise sources 

suggests the existence of a characteristic integration time, beyond which 1/f noise 

dominates and the SNR can no longer be significantly improved by increasing integration 

time. 

 We experimentally characterized the 1/f noise of our homodyne interferometer, 

finding a 1/f exponent of α=1.39±0.1 and a 1/f noise corner of approximately 70 Hz. 

Experimental data confirmed our theoretical results, showing that the measured SNR 

tapers to a constant value in the 1/f dominated regime. For short integration times, white 

noise processes were dominant.  We have established white noise limited detection for 

short integration times by comparing our homodyne SNR to the SNR of the 

corresponding heterodyne interferometer, as well as to theory. Our experimental results 

demonstrated a characteristic integration time for our homodyne OCT interferometer, of 

τwhite-to-1/f =2.1 ms, beyond which increases in integration time did not produce 
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corresponding increases in SNR. This time agrees fairly well with the theoretically 

determined value of τwhite-to-1/f =1.65 ms based on the measured power spectral 

characteristics of system. This characteristic time depends on the 1/f characteristics of the 

optical system, and is both system and detector dependent. Finally, we note that careful 

photodetector selection and characterization is important in order to minimize 1/f noise in 

homodyne detection. 
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Chapter 5. Dark 1/f Noise in Direct Detection 

Schemes 

This chapter is adapted from Ref (92): E.J. McDowell, J. Ren, and C. Yang, ‘Fundamental 

sensitivity limit imposed by dark 1/f noise in the low optical signal detection regime,’ 

Optics Express, 16(10), 6822–6832 (2008). 

 

5.1  Introduction 

The ability to detect very low amplitude optical signals is important and relevant in a 

variety of measurement scenarios. The detection of light from a distant star is an example. 

Additionally, many biomedical imaging techniques depend on measuring very weak optical 

signals, including second harmonic generation, Raman scattering, and single molecule 

fluorescence.  For an ideal measurement system that contains only white noise sources, it is 

possible to measure any arbitrarily small signal by simply increasing the integration time of 

the detection system.  However, this may not be possible in certain situations due to the 

presence of 1/f noise. In this chapter, we will theoretically determine the detection limit 

imposed by 1/f noise, specifically dark 1/f noise, in direct low optical signal detection 

schemes.  

 In order to enable the detection of weak signals, it is common to use highly 

sensitive detectors such as photomultiplier tubes (PMTs) or avalanche photodiodes 

(APDs). PMTs utilize a combination of high gain, low noise, high frequency response, and 
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large collection area (93) to achieve high sensitivity. APDs can be thought of as the 

semiconductor analog to a PMT.  

 Noise in optical detection is a combination of the intrinsic noise associated with a 

flow of photons, as well as noise associated with the detector.  In the shot noise limit, noise 

related to the discrete arrival time of photons dominates all other noise processes.  This 

limit represents an optical system functioning in an optimal manner, as the total noise of the 

detection process can never be reduced below the intrinsic shot noise level (without 

resorting to manipulation of the photon statistics).  It is also possible for an optical system 

to operate such that detector noise is dominant.  In broad terms, detector noise can be 

divided into two categories: dark noise and bright noise.  Bright noise can arise as 

multiplicative noise caused by gain fluctuations and randomness in the carrier 

multiplication process of the PMT or APD (94), among other possible sources.  In other 

words, if put N photons on a detector, the count we receive will fluctuate around the mean 

value of eN (e is the detector efficiency) due to randomness in the signal conversion 

process; this fluctuation comprises bright noise.  Dark noise describes the random signal 

count from a detector that is blocked from receiving any optical signals.  Among other 

causes, this can arise from thermally induced fluctuations and other additive noise sources 

in the detector.  In the presence of a weak or absent input light field, bright noise can be 

neglected and dark noise dominates.  As the focus of this study is centered on scenarios 

where the input light field is weak, we are primarily interested in the detector dark noise, 

specifically the dark 1/f noise. 

 Interestingly, the typical noise characteristics specified for high sensitivity optical 

detectors, including the noise equivalent power / bandwidth (NEP, NEB), reflect only the 
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white noise portion of the dark noise.  We note that such a characterization is incomplete, 

as the detector circuitry, among other potential sources, necessarily contributes dark 1/f 

noise.  In the presence of dark 1/f noise, such devices will deviate from their predicted 

performance in which only dark white noise is accounted for.  Our goal in this chapter is to 

quantify this deviation.  In particular, we will study the impact of dark 1/f noise on the 

fundamental sensitivity limit imposed by the detector that, to our knowledge, has never 

been studied or analyzed.  This analysis is distinct from and complementary to our previous 

study (65) of the impact of 1/f noise in homodyne interferometric systems where 1) bright, 

rather than dark, detector noise was dominant, and 2) the noise analysis focused on the 

correct reception of a time varying signal trace rather than a confirmation of the existence 

of a signal source. 

 In this chapter we first give a general description of 1/f noise, as well as several 

relevant studies of its effect in detection systems.  We then define the specific problem that 

we are considering in this work.  Next, we demonstrate the relevance of this analysis by 

experimentally showing that dark 1/f noise exists in practical detectors.  The remainder of 

the chapter is intended to be purely theoretical.  We derive an expression for the SNR of the 

measurement of interest.  We then show the results of our analysis and discuss the 

application of these results to experimental scenarios.  We conclude by placing these results 

in context with our previous study (65), and provide a generalized guide for characterizing 

1/f noise that is useful for a broad range of optical detection applications. 
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5.2  Background 

1/f noise, alternately referred to as pink or flicker noise, can be found in a wide range of 

physical systems (66-68). Generally, 1/f noise is represented by a power spectral density 

(PSD) that follows the form 1/fα, where α commonly ranges from 0.5 to 1.5 (73). The 

origins of 1/f noise sources are not well understood. In fact, a 1/f power spectrum can 

arise from very different time traces (sharp bursts versus slower baseline drifts of the 

system). The origins of these noise sources are not the focus of this work. In the context 

of our analysis of detection sensitivity, it is sufficient to quantitatively characterize 1/f 

noise based on empirical data without seeking the exact nature of the noise source. 

 For white noise sources, we expect the deviation in the signal (or noise) count to 

scale as the square root of the signal (or noise) count. It is this deviation, rather than the 

noise count itself, that limits detector sensitivity. This point will be more explicitly 

clarified later, but an intuitive understanding of this issue is not hard to grasp through the 

following example. Suppose we have a unity efficiency detector that is known to have an 

average dark white noise count rate of x photon/s. This implies that if we want to detect 

the presence of a weak light source (photon rate of y photon/s) with this detector in a 

measurement made over T seconds, we must make sure that the total signal count (yT) 

exceeds the noise deviation term (

€ 

xT ) rather than the total expected dark count (xT).   

 1/f noise differs from white noise in two distinct ways. First, 1/f noise differs in 

its dependence on the integration time of the detection system, which we will derive in 

this chapter. Secondly, 1/f noise is dependent on an additional intrinsic factor, the noise 

exponent, α, which can vary from noise source to noise source.  
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 Several published works have attempted to characterize the effects of 1/f noise on 

detection systems. Allan (95) has shown that there is a relationship between the PSD of 

the fluctuating phase of an atomic frequency standard and the variance of its frequency 

deviation.  To derive this relationship, the variance of the frequency deviation is written 

in terms of the autocorrelation function of the phase, which can be related to the PSD of 

the phase using the Wiener-Khinchin Theorem. Allan’s work illustrates a way to 

characterize the PSD of a random process through a statistically measurable quantity — 

the variance of a group of samples, where each sample is the time averaged value of the 

random variable over a given time period.  The relationship between the variance and the 

PSD derived by Allan depends on the averaging time period, the dead time between 

samples, and the number of samples within the group.  In a later work (96), the model 

was further generalized, and an analytical expression for the relationship was strictly 

proved.   

 More recently, we have described and verified a quantitative noise model to study 

the effect of 1/f noise in homodyne interferometers (65), as described in Chapter 4.  Our 

goal in doing so was essentially the opposite of Allan’s.  Our aim was to use the PSD of a 

noise source (which is measurable) to find the noise variance of a specific measurement 

we wish to make. In doing so we are then able to predict the signal-to-noise ratio (SNR) 

of the measurement. This quantitative noise model represents the noise in the system in a 

time domain format as a sum over all possible frequencies. Each frequency is represented 

by a sinusoidally varying term, weighted by the value of the PSD at that frequency.  The 

phase of each term is random with respect to that of all other frequencies, essentially 

representing any and all possible time traces that can result from a superposition of those 
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frequencies. Using this time domain representation, we were able to evaluate the noise 

variance that we would expect given the PSD of the noise source.   

 We further note that the 1/f noise studied in Ref. (65) was bright in nature rather 

than dark, as the reference beam of the homodyne interferometer was always incident on 

the detector. This strong light field precluded any significant dark noise contributions in 

that scenario. 

 

5.3  Problem Statement 

Suppose we wish to confirm the existence of a weak light source, using a detector with 

dark noise power spectral density S(f), determined a priori, and a mean dark noise count 

rate xnoise. For the sake of clarity, we choose to quantify our signal in terms of photon count 

rate (x) and photon counts (X). We can assign a signal count rate of xsignal, attributed to the 

presence of the weak light source; in the weak source regime, xnoise >> xsignal. If we are 

given a time frame of T to detect the presence of the weak light source, we can perform an 

experiment by first blocking the detector and measuring the dark noise count (Xnoise(τ)) for 

a time period of τ= T/2, then exposing the detector to the weak light source and measuring 

the combination of dark noise and signal for an equivalent time period (Xsignal+noise(τ=T/2)). 

Our goal is to determine, based on the PSD of the noise, whether or not it is possible to 

discriminate the presence of xsignal from this measurement. 

 Experimentally, the power spectrum, S(f), of the detector noise can be determined a 

priori by 1) acquiring a measurement trace from the detector in the dark (where the time 

duration of the trace is much longer than any experiments we wish to perform), 2) 

computing the autocorrelation function, and 3) finding the Fourier transform of the 
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autocorrelation function. A realistic model for an optical detector involves modeling S(f) as 

a sum of mutually independent white and 1/f noise. By relating the variance of a 

measurement, X(τ), to the power spectrum of the detector, S(f), we can assess the impact of 

1/f noise. 

 
 
 

Figure 5.1.  A comparison between the measurement schemes in Chapter 3 (Scenario A) 
and the current work (Scenario B).  In Scenario A, an amplitude modulated message is 
transmitted in steps of duration τ over a total time T.  In this work, we simply wish to 
confirm the presence of the light source in an experiment where both signal and noise are 
measured for equivalent time periods. 

 

 It is evident that our measurement scenario is quite different from that analyzed in 

our previous noise study (Ref. (65)) for a homodyne interferometer.  In that study, a strict 

assumption was made regarding the relationship between the integration time (τ) and the 

total time frame of the experiment (T).  This assumption, τ<<T, is relevant in certain 

scenarios; for example, the case in which a transmitter is transmitting a message of 



 

 

77 

duration T, where the signal varies over each time step, τ. (Fig. 5.1(a)).  The experimental 

scenario examined in the current study is different in that our signal collection time frame 

is comparable to the total experimental time frame. A naïve extension of the result of Ref. 

(65) will not achieve the correct result for this particular detection scheme.  Here, instead 

of receiving an amplitude modulated message, we simply wish to find the limit in which 

we can detect the presence of the transmitter in the first place.  Experimentally, this 

corresponds to data obtained by alternate measurements of signal and noise (Fig. 5.1(b)), 

as we have described above.   

 
 

Figure 5.2. Power spectral density of the dark noise count of a photon counting APD. 1/f 
noise is visible at and below frequencies in the mHz range.  This averaged trace displays an 
α value of 1.6. 

 

5.4  Experimental Verification 

To confirm that dark 1/f noise does indeed exist in sensitive optical detectors, we 

measured the power spectral density of the dark count of an APD (Perkin-Elmer, SPCM-

A2R15) over approximately 3 hours and plotted the result, averaged over 6 traces, in Fig. 
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5.2. We see that the noise spectrum can be well described as a combination of dark white 

and 1/f noise, with 1/f noise visible at and below frequencies in the mHz range.  

 Figure 5.2 shows that an α value of 1.6 was measured from the PSD of this 

particular APD. As our results in Ref. (65) showed that the noise exponent factor is 

highly device dependent for bright 1/f noise, it is possible that the α value for dark 1/f 

noise may vary significantly from device to device. The model that we present in this 

here is applicable for any system with α>0. We advise readers who intend to use our 

model in their respective applications to characterize their detectors via the above 

approach and calculate the corresponding α values. 

 
5.5  Theory 

Given a measurement of the PSD of our detector dark noise, it is possible to derive the 

expected SNR of future measurements made with this detector. Our noisy signal can be 

described, in terms of photon count rate, as: 

                                                            

€ 

x t( ) = xsignal + Δx t( ) ,                                               (5.1) 

where Δx(t) represents the fluctuating noise.  In our experiment, we make measurements of 

the signal and noise photon count over a time period, τ: 

                                                         

€ 

Xnoise τ( ) = Δx t( )dt
0

τ

∫ ,                                              (5.2) 

                                            

€ 

Xsignal + noise τ( ) = xsignal + Δx t( )( )dt
τ

2τ

∫ .                              (5.3) 

In the context of this thought experiment, we wish to determine when the difference 

between the measurements described above gives a statistically significant result. 
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Explicitly, we want to know when the difference between the mean signal and noise values 

is greater than the standard deviation of the measurement: 

                 

€ 

E Xsignal + noise τ( ) − Xnoise τ( )[ ] >σ Xsignal + noise τ( ) − Xnoise τ( )[ ].                  (5.4) 

The expected value of the left hand side of Eq. 5.4 is simply given by xsignalτ.  We can 

derive an expression for the variance of this measurement, the square of the right hand side 

of Eq. 5.4, as follows: 

          

€ 

σ 2 Xsignal + noise τ( ) − Xnoise τ( )[ ] = E Δx t( )dt
τ

2τ

∫ − Δx t( )dt
0

τ

∫
 

 
 

 

 
 

2 

 
 
 

 

 
 
 
.                   (5.5) 

It can be seen from Eq. 5.5 that very low frequency components of Δx, which will 

essentially contribute the same number of photons to each integral, will cancel each other 

out.  Thus, there is no dependence on the minimum measurable frequency, or alternately 

the total time frame of the experiment. We can combine the two integrals by making a 

change of variables: 

    .                            (5.6) 

This expression can be rewritten as: 

  (5.7) 

where R(t’) is the autocorrelation function and can be related to the PSD through the 

Wiener-Khinchin theorem as follows: 

€ 

R t'( ) = S f( )cos 2πft'( )df
0

∞

∫ , for a single-sided 
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power spectrum, S(f). For readers that are more familiar with a double-sided power 

spectrum, we note that the single sided power spectrum simply folds the negative side of 

the even double sided power spectrum onto the positive frequency axis. 

 Eq. 5.7 can be evaluated as: 

€ 

σ 2 Xsignal+noise − Xnoise( )

= 2Re S( f )ei2πf (t1− t2 )dfdt1dt2
0

τ

∫
0

τ

∫
0

∞

∫ − S( f )ei2πf ( t1− t2 +τ )dfdt1dt2
0

τ

∫
0

τ

∫
0

∞

∫
 

 
 

 

 
 

= 2Re S( f )ei2πf (t1− t2 ) 1− ei2πfτ( )dfdt1dt2
0

τ

∫
0

τ

∫
0

∞

∫
 

 
 

 

 
 

= 2Re S( f ) 1− ei2πfτ( ) ei2πft1dt1
0

τ

∫
 

 
 

 

 
 e−i2πft2dt2

0

τ

∫
 

 
 

 

 
 df

0

∞

∫
 

 
 

 

 
 

= 2Re S( f ) 1− ei2πfτ( ) 1
2πf( )2

ei2πfτ −1( ) e−i2πfτ −1( )df
0

∞

∫
 

 
 
 

 

 
 
 

= 2Re S( f ) 1− ei2πfτ( ) 1
πf( )2

sin2 πfτ( )df
0

∞

∫
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 
 

 

 
 
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= 2Re S( f )eiπfτ e− iπfτ − eiπfτ( ) 1
πf( )2

sin2 πfτ( )df
0

∞

∫
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= 2Re S( f )eiπfτ −2i( ) 1
πf( )2

sin3 πfτ( )df
0

∞
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€ 

= 2Re S f( ) cos πfτ( ) + isin πfτ( )( ) −2i( ) 1
πf( )2

sin3 πfτ( )df
0

∞

∫
 

 
 
 

 

 
 
 

= 4
S f( )
πf( )2

sin4 πfτ( )df
0

∞

∫
.

                 (5.8)  

 
 From here, the power spectral density of the dominant noise source can be used to 

determine the expected noise variance, as well as the expected SNR of a measurement 

given knowledge of the signal amplitude.  For dominant dark white noise, S(f) is a constant, 

Awhite.  The resulting noise variance and corresponding SNR are determined (using Eq. 

3.822.12 and 3.828.13 of Ref. (97)) to be: 
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€ 

σwhite
2 τ( ) =

4Awhite

π 2 f 2
sin4 πfτ( )df = Awhiteτ

0

∞

∫ ,                                 (5.9) 

        .                                              (5.10) 

We can see that for a dark white noise limited signal, any arbitrarily small xsignal can be 

detected using a sufficiently long collection time, τ.  

 As we alluded to previously in this chapter, the same is not true for the case of 

dominant dark 1/f noise. Here, we substitute a power spectrum of the form: , 

and find a noise variance of the form: 

             

€ 

σ1/ f
2 τ( ) =

4A1/ f
π 2 f 2+α

0

∞

∫ sin4 πfτ( )df .                                   (5.11) 

This result can be reduced to the following form: 

      

€ 

σ1/ f
2 τ( ) = A1/ f Cτ

1+α ,                                             (5.12)        

€ 

C = 22+α − 21+2α( )πα−1Γ −1−α( )sin απ
2

 

 
 

 

 
 α > 0, α ∉ Z , 

                

€ 

SNR1/ f =
xsignalτ

A1/ f Cτ
1+α

=
xsignalτ

1−α( ) / 2

A1/ f C
.                                   (5.13) 

Here, Γ represents the Gamma function. The derivation required for simplifying Eq. 5.11 

makes use of known integral forms, including Eq. 3.756.4 and 3.756.9 in Ref. (97). This 

solution holds for any non-integer value of α that is greater than zero. We can clearly see 

the dependence of the noise variance on the integration time, τ.  Interestingly, we see from 

the SNR expression that for α>1 we actually expect the SNR to decrease as a function of 

integration time. 
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 Thus far, we have derived expressions for the noise variance given either white or 

1/f noise.  Since these two noise sources are independent of one another, we can describe 

the total noise variance as the sum of the individual variances, allowing us to examine the 

SNR that we might expect from a realistic optical system: 

    

€ 

σ total
2 τ( ) = Awhiteτ + A1/ f Cτ

1+α ,                                      (5.14) 

giving a combined SNR of:  

   

€ 

SNR =
xsignalτ

Awhiteτ + A1/ f Cτ
1+α

=
xsignal τ

Awhite + A1/ f Cτ
α

.                      (5.15) 

This expression combines two competing terms: white noise dominated SNR, which will 

improve with increasing integration time, and 1/f noise dominated SNR, which will 

decrease (for α>1).  The combination of these two noise sources suggests that the SNR will 

increase to a maximum value before beginning to decrease with integration time. More 

importantly, the presence of this maximal SNR value implies that there is a limit on the 

smallest xsignal that can be detected with such a system.  The integration time at which the 

maximal SNR is achieved can be determined by solving for the time at which the derivative 

of the SNR expression is equal to zero. This results in an expression for τ of the following 

form: 

                   

€ 

τ opt =
A1/ f C
Awhite

−1+ 2α( )
 

 
 

 

 
 

−1/α

,                                      (5.16) 

where we can clearly see that the optimal integration time is a function of the relative 

amplitudes of dark 1/f and white noise in the system. 
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5.6  Results 

In the following paragraphs we will examine the behavior of the SNR expression in Eq. 

5.15 as a function of α, as well as the relative amplitudes of white and 1/f noise.  Figure 5.3 

shows the SNR as a function of integration time for α values ranging from 0.4 to 1.6. We 

chose to fix the relative amplitudes of white and 1/f noise at A1/f/Awhite=0.01 for the purpose 

of this illustration. For α<1, the SNR steadily increases as a function of integration time, 

however at a slower slope as α nears 1.  For α>1, the SNR curve reaches a maximum value 

and begins to decrease as a function of integration time.   

 
 
Figure 5.3. SNR versus integration time for a combination of white noise and 1/f noise with 
α values ranging from 0.4 to 1.6 (A1/f/Awhite=0.01).  The slope of the SNR trace decreases 
with increasing α.  For α > 1, the SNR reaches a peak value and begins to decrease with 
increasing integration time.  The existence of a peak SNR value implies that there is a limit 
on the smallest signal that the system is capable of measuring.  

 

 The location of the maximal SNR value is dependent on the relative amplitudes of 

white and 1/f noise (Eq. 5.16).  Figure 5.4 shows SNR traces for a fixed α value of 1.6.  As 
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A1/f /Awhite is increased, we see the location of the maximal SNR (indicated by stars) moving 

toward shorter integration times. The dashed curve in Fig. 5.4 corresponds to an SNR trace 

that we might expect from the photon counting APD described above.  The power 

spectrum in Fig. 5.2 was used to determine noise amplitude values (A1/f/Awhite=3.03x10-4).   

This curve shows that the optimal integration time for the APD is approximately 50 s.  Any 

further increase in integration time beyond this point will no longer improve the SNR. 

 

Figure 5.4.  The location of the peak SNR value is dependent on the relative amplitudes of 
white and 1/f noise.  As A1/f/Awhite is increased (for fixed α=1.6), the location of the 
maximum SNR, denoted by stars, moves towards shorter integration times.  Curve fitting to 
the data shown in Fig. 5.2 we find A1/f/Awhite = 3.03x10-4 for the photon counting APD 
described.  The dashed curve shows an SNR trace corresponding to this value, with an 
optimal integration time of ~50 seconds. 
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5.7  Discussion 

5.7.1 Summary of Analysis 

With the exception of Ref. (65), none of the studies mentioned above have applied their 

results to fundamental detection sensitivity in optical systems. The progression of our 

analysis (in terms of photon counts) and form of our solutions (in terms of SNR) are of 

direct and practical relevance for optical engineering. To our knowledge, this is the first 

study of the impact of 1/f noise in low optical signal direct detection schemes where dark 

noise dominates over other noise sources. We reinforce the fact that the thought experiment 

described here is different in implementation from the homodyne detection experiment in 

Ref. (65), as described in detail above. Although the two analyses give similar results for 

white noise dominated signals, the results in the presence of 1/f noise differ significantly. 

Ref. (65) showed that the SNR corresponding to Scenario A of Fig. 1 increased with 

increasing integration times before tapering to a constant value. In the current work, we 

have found that the SNR corresponding to Scenario B of Fig. 1 increases to a maximum 

before beginning to decrease with increasing integration times (for α > 1).    

 The results of this analysis speak to the importance of careful photodetector 

selection.  It is preferable to choose a detector with as small an α as possible.  If α is less 

than 1, the detector is still capable of offering improved SNR with increasing integration 

time.  If α is greater than one, there is a fundamental sensitivity limit associated with the 

detector that cannot be improved by increasing the signal integration time. Nevertheless, 

it is still desirable to aim for as small an α value as possible, as this will result in a 

broader peak in the SNR versus integration time curve. A broader peak implies that there 

is a broader range of integration times at which a high SNR can be obtained.  In 
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summary, the selection of a detector with a small α value is an important consideration 

when designing a weak signal detection system. 

 

5.7.2  Application of Analysis 

The present work and our previous work (Ref. (65)) are complementary and widely 

applicable for noise characterization of detection schemes. The present work analyzes the 

fundamental detection limit in the context of dominant dark white and 1/f noise, but can  
 

 

Table 51. A comparison of the important equations in both Chapter 4 (Scenario A) and the 
current study (Scenario B).  The white noise variance is almost identical, regardless of the 
measurement scheme employed. In contrast, the 1/f noise variance differs in both its 
dependence on the integration time (τ), as well as its dependence on the total time frame of 
the experiment (in Scenario A only). The constant of proportionality, B is given by: 
(2π)α/(2α(α+1)Γ(α)cos(απ/2)), and C can be found in Eq. 5.12 above.   
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also be used in scenarios where bright white and 1/f noise dominate (such as in homodyne 

or heterodyne detection). Our previous work (Ref. (65)), focused on the detection of a 

signal stream, was performed in the context where bright white and 1/f noise dominate, but, 

likewise, can be adapted for use in scenarios where dark white and 1/f noise dominate. 

Table 5.1 outlines the major results from the two analyses. 

 This sub-section aims to provide a recipe for choosing between the two analyses 

and appropriately applying them to specific detection scenarios. The steps are as follows: 

 Step 1: Determine if you are a) trying to confirm the existence of a light source or b) 

trying to receive a signal stream. Figure 1 can aid in your judgment. 

 Step 2: Obtain a detector time trace. This consists of acquiring a measurement trace 

from the detector with no useful optical signal incident on the detector. If you expect your 

experiment to be dominated by dark noise, this implies blocking all light from reaching the 

detector. If you expect your experiment to be dominated by bright noise, this implies only 

permitting background light power to reach the detector (such as the reference power in a 

heterodyne or homodyne interferometric system). The time duration for the trace should be 

much longer than the time frame of any experiments you wish to perform with the detector.  

 Step 3: Calculate the noise PSD by computing the autocorrelation function of the time 

trace, then finding the Fourier transform of the autocorrelation function. 

 Step 4: Extract the white and 1/f noise components from the noise PSD curve. The 

amplitudes of the two noise terms, as well as the α value of the 1/f noise term, should be 

determined. 

 Step 5: Compute the noise variances. For scenario A, you need the values calculated in 

Step 4, the detection integration time associated with each signal time step, t, and the time 
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frame of the experiment, T. Use Eq. 9 and 10 of Ref. (65) (Eqs. 4.9 and 4.10 of this thesis).  

For scenario B, you need the values calculated in Step 4 and the detection integration time, 

t. Use Eq. 5.9 and 5.11 of this work.  

 Step 6: Calculate the associated SNR value. For scenario A, use Eq. 14 of Ref. (65) 

(Eq. 4.13 of this thesis). For scenario B, use Eq. 5.15 of this work.  

 

5.8  Conclusions 

In conclusion, we have shown that there exists a theoretical fundamental sensitivity limit 

due to the presence of 1/f noise in low signal optical detection. We derive the signal to 

noise ratio that corresponds to a simple thought experiment, designed to detect the 

presence of a small signal buried in detector noise. For white noise dominated signals, 

our results are similar to those in Ref. (65). However, they are quite different for the case 

in which 1/f noise dominates. This subtle point is particularly important and relevant to 

weak signal detection schemes, as the type of detection scheme involved can lead to 

different SNR characteristics. For the detection scenario discussed in this chapter, our 

results show that for a combination of white noise and 1/f noise the SNR is continually 

increased with increasing integration times for α < 1.  However, for α > 1, the SNR peaks 

and begins to decrease with integration time. This result implies a fundamental limit on 

the sensitivity of detection systems that operate in the presence of 1/f noise (α > 1). 

Depending on the strength of the small signal and the 1/f noise characteristics, the 

optimal SNR may not be sufficient to enable weak signal detection regardless of the 

integration time involved. 
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 On an intuitive level, the results make good sense, as we can expect to observe 

strong 1/f noise contributions corresponding to low frequencies when collecting signals 

over relatively long time scales. The lower the frequency of a particular 1/f noise 

component, the wider the integration window needs to be to observe its net effect. The 

overall behavior of the SNR will degrade as a function of the integration time when the 

linear signal strength increase (with respect to the integration time) is unable to 

compensate for the increased noise associated with the stronger low 1/f noise frequency 

components for (α > 1). Purely white noise dominated systems do not face this issue 

because the linear increase in signal strength is always more rapid than the increase in 

white noise.   
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Chapter 6. 1/f in FDOCT  

 This chapter is adapted from an as-of-yet unpublished manuscript: E.J. McDowell, M.V. 

Sarunic, and C. Yang, ‘1/f noise in spectrometer-based Fourier domain optical coherence 

tomography.’  

 

6.1 Introduction 

In recent years, we have seen rapid development of so-called Fourier domain detection 

systems in the research field of optical coherence tomography (OCT) (22–24). Significant 

efforts into characterizing the sensitivity of this technique have been made. However, one 

important area has remained understudied — the effect of 1/f noise on spectrometer-based 

FDOCT (sFDOCT) systems. 1/f noise manifests as fluctuations with power spectral density 

of the form 1/fα, where α commonly ranges from 0.5 to 1.5. In this chapter, we present 

experimental findings that document the effect of 1/f noise on the detection sensitivity of 

such systems. 

  The presence of 1/f noise in optical detection can significantly degrade the 

effective precision and sensitivity.  In interferometric detection methods, including time 

domain OCT (19), a common strategy for avoiding 1/f noise involves the use of 

heterodyne detection, in which the signal is frequency shifted into a band where 1/f noise 

is insignificant. Under these circumstances, we typically consider only white noise 

processes, including receiver noise, shot noise, and excess intensity noise (25).  In 

previous analyses of FDOCT sensitivity, only these noise sources were considered to be 
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significant.  However, sFDOCT systems employ homodyne detection and are thus 

susceptible to 1/f noise in the base band.   

  The signal to noise ratio (SNR) of a white noise limited OCT system is linearly 

proportional to the detection integration time (τ). This suggests that the SNR of the 

system can be increased to measure arbitrarily small signals by simply increasing τ. 

However, a large τ value leads to a significant contribution of 1/f noise, disrupting the 

linear SNR dependency on τ.  

  Chapters 4 and 5 established a generalized 1/f noise analysis protocol for simple 

detection scenarios (65, 92). Here, we will adapt the approach in (65) to accommodate for 

the nature of the sFDOCT signal (i.e., derived from multiple detectors) and determine the 

impact of 1/f noise on sFDOCT SNR. 

 The effect of multiple detectors on noise in a sFDOCT system deserves some 

elaboration. In the case of a homodyne interferometer (65), the noise analysis can be 

performed directly on the measured output of the interferometer. For a sFDOCT system, 

performing noise analysis on a particular spectrometer channel is not helpful, as we are 

primarily interested in the noise characteristics of the appropriately transformed depth (or 

spatial domain) scan. In the presence of 1/f noise, a direct relationship between the noise in 

a given spectrometer channel and the noise associated with the depth scan cannot be 

expressed without further information. Although it is reasonable to expect the signal from 

one detector channel to exhibit 1/f noise, it is not intuitively clear that when signals from 

multiple detector channels are combined in a Fourier transform summation that the 

resulting signal will have similar 1/f noise characteristics. We also note that 1/f noise 

between detector channels is correlated to some extent, which further complicates the 
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analysis. Fortunately, the black-box noise analysis approach in (65) allows us to perform 

the noise analysis directly on the depth scan, as long as we can experimentally establish 

that the noise in the derived depth scan is a combination of 1/f and white noise. 

 

Figure 6.1. System schematic for the common path FDOCT system employed in this study.  
Noise acquired by individual spectrometer channels in the spectral domain is transformed 
into the spatial domain and can be measured as a function of time at a single point (M-scan) 
or across the depth scan. 

 

6.2  1/f Noise in M-mode Data 

To determine the impact of 1/f noise on sFDOCT systems, we employed the common path 

interferometer depicted in Fig. 6.1.  Light from a Superlum SLD (centered at 826 nm, 72 

nm FWHM) passed through an 80/20 fiber coupler and was focused onto a sample.  Light 

reflected from the surface of a coverslip above the sample interfered with light scattered 

from other depths in the sample and was spectrally dispersed onto a DALSA Spyder 3 
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linescan CCD camera. A phase stable common path interferometer was chosen to suppress 

additional noise terms due to interferometer drift. 

  In order to examine the background noise inherent in our sFDOCT system, we 

employed a single mirror as our sample.  Thus, we detected only a reference beam and 

recorded a spectrum that was not modulated by signal fringes.  Background data were 

collected using a 2 ms integration time for a total of 2000 seconds.  The spectra were 

resampled linearly in wavenumber and Fourier transformed to produce depth scans 

representing the noise floor across the entire imaging depth. The noise power spectrum was 

measured from long time traces at individual depths in the A-scan as the Fourier transform 

of the autocorrelation function of the time trace. This processing requires the signal to be 

wide-sense stationary — a reasonable assumption as we do not expect the system 

performance to vary in time.  Power spectra from multiple depths were then averaged to 

display the cumulative noise characteristics shown in Fig. 6.2. We find that even through  

 

 
Figure 6.2. Power spectrum of the noise in the system. Values for the noise amplitude and 
exponent factor are found by fitting to this curve. 

 



 

 

94 

the sFDOCT computations, including resampling and Fourier transformation, 1/f noise 

continues to manifest at all depth locations. Two regimes can be distinctly observed in the 

power spectrum; above ~0.05Hz the noise is white, while 1/f noise dominates for lower 

frequencies. The noise amplitude and the 1/f noise exponent factor can be extracted from 

Fig. 6.2. For this case, α=2.14.   

  Employing the model described in (65), we used the power spectrum in Fig. 6.2 to 

predict the SNR of the FDOCT system. Specifically, the SNR behavior of this system was 

determined by the noise variance, which is given by: 

   

€ 

σ 2 τ,T( ) =
Awhiteτ
2

+
A1/ f

2π 2 f α+2 1− cos 2πfτ( )[ ]
1/T

∞

∫ df ,                      (6.1) 

where Awhite and A1/f are the white and 1/f noise amplitudes, and T is the total experimental 

time frame. We can also express the SNR: 

     

€ 

SNR τ,T( ) =
xsignal
2 τ

Awhite

2
+
A1/ fτT

α−1

α −1( )

, 

€ 

α >1,   α ∉ Z+,                        (6.2) 

where xsignal is the photon count rate associated with the signal of interest.  The expression 

in Eq. 6.1 has been simplified according to (65).   

  Figure 6.3 (solid curve) shows the SNR trend predicted from the power spectrum, 

where we observed that the SNR increases linearly with τ (white noise dominant) before 

tapering to a constant value after times longer than ~1 second (1/f noise dominant). In fact, 

a deviation from linear behavior occurs as early as tenths of seconds.   

  To validate our SNR predictions, we processed the same background data set to 

experimentally determine the SNR dependency on τ. We generated the data we would 

expect from an experiment in which τ was physically tuned over several orders of 
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magnitude by summing sequential spectra. Following summation, each integrated spectrum 

was resampled and Fourier transformed to yield depth scans. The noise associated with 

each depth was then found by examining the fluctuations over the integrated spectra. The 

process was repeated for τ ranging from 2 ms to 40 s. These experimental noise values 

were then used (along with an arbitrary linearly increasing signal) to compute the 

experimental SNR.  Figure 6.3 shows reasonable agreement between theoretical predictions 

and experimental results.  The SNR cap shows that there is a limitation set by 1/f noise on 

the smallest signals that can be measured with our FDOCT system regardless of the 

measurement time involved. For scattering samples, this also implies that the penetration 

depth of a sFDOCT system is fundamentally limited as well.   

 

Figure 6.3. M-mode SNR as a function of integration time.  The solid curve shows the 
theoretical SNR as determined from the noise power spectrum.  Circular points represent 
experimental data averaged over multiple depths in the FDOCT depth scan.  
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  The SNR measurement described in the paragraphs above relates the total signal to 

the time varying noise in the sFDOCT depth scan (i.e., noise in an M-mode scan). A more 

common way to define the SNR is to relate the signal to the noise across the depth scan. To 

distinguish the two definitions, we shall refer the first as M-mode SNR and the second as 

image SNR. The approach used to predict M-mode SNR is not applicable to image SNR. 

While these two SNR metrics measure the same quantity in the context of uncorrelated 

white noise, it is unclear how 1/f noise factors into the image SNR metric.  

 

6.3  1/f Noise in FDOCT Images 

To demonstrate the existence of a 1/f noise imposed limitation in image SNR, as well as a 

corresponding limit in penetration depth, we constructed a tissue phantom composed of 1 

µm latex beads embedded in polydimethylsiloxane (PDMS). The PDMS mixture was 

poured over a slanted opal diffuser, covered with a No. 2 coverslip, and allowed to cure 

overnight. A schematic of the phantom is shown in Fig. 6.4(a). M-mode data were taken at 

10 µm increments over 2 mm in the direction denoted by the black arrow in Fig. 6.4(a). At 

each lateral location depth scans were acquired at a 2 ms integration time for 100 seconds. 

As before, spectra were summed in post-processing to display images corresponding to a 

range of τ values. The image SNR was determined as the square of the peak signal 

magnitude (at the opal diffuser) divided by the variance of the noise in a selected area 

below the diffuser removed from any signal peak.   

  For the scattering phantom, we expected to see the slope of the opal diffuser at 

increasing depths as τ is increased. A montage of images obtained from this sample at 

different τ values is shown in Fig. 6.4(a).  For longer τ, an improvement in contrast can be 
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observed, and, as predicted, the depth penetration improved as well. However, in the 

regime where 1/f noise is dominant, the image quality no longer improves with increasing τ 

and the maximum imaging depth reaches a limit. An image SNR curve similar to that 

presented earlier for the M-mode SNR was obtained from these images and plotted in Fig. 

6.4(b).   

 

Figure 6.4. a) Image montage for increasing integration times. The scale bars are 200 µm. 
As the image SNR tapers to a constant value, the image quality becomes fixed. b) SNR 
curve extracted from the image sequence.  The signal was measured at the opal diffuser and 
the noise was measured at a location below the diffuser removed from any signal. 

 

  Noise across the depth scan (image noise) represents uneven weighting of noise 

frequency components in the sFDOCT interferogram. The means by which this uneven 

weighting acquires a 1/f type dependence is unclear and deserves further study. Regardless, 
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we find that these two SNR definitions share a similar trend with respect to τ, implying that 

the dominant noise sources are likely similar in both cases.     

  We note that the noise across the depth scan, represented by the image SNR curve 

in Fig. 6.4(b), can easily be masked by other noise sources.  If spectral calibration is not 

carefully conducted to remove the source spectrum, static variations across the source 

spectrum can create static noise patterns across the depth scan. We took care to remove this 

noise contribution by appropriately subtracting out these static variations. 

  Finally, we have found in previous work (Chapter 4) that 1/f characteristics, 

including the noise amplitude and exponent factor, are highly system dependent (65).  This 

implies that sFDOCT systems should be characterized on an individual basis in order to 

determine the sensitivity limit associated with the particular system components.   

 

6.4  Conclusions 

In conclusion, we have shown evidence of SNR degradation caused by 1/f noise in 

sFDOCT systems.  This SNR limit described above for both M-mode and image SNR 

metrics is a fundamental limitation of sFDOCT systems when operating in otherwise ideal 

conditions. The SNR of such systems increases linearly with integration time in white noise 

dominated regimes, and tapers to a constant as 1/f noise begins to dominate.  This occurs 

for τ greater than ~ 1 second for SNR as defined by either time-varying noise (M-mode 

SNR), or noise across the depth scan (image SNR). This finding points to a fundamental 

sensitivity limit for low signal measurements that require long acquisition times.  



 

 

99 

 

 

Chapter 7. Turbidity Suppression Through 

Optical Phase Conjugation 

At this point in the thesis, we switch gears to discuss a second, more novel, potential 

method for dealing with light scattering.  As mentioned in Chapter 1, the remainder of this 

document will detail our attempts to time-reverse the process of light scattering. Here, we 

will describe the fundamental physics behind such attempts. This chapter is intended to 

provide background information for Chapters 8–10. 

 

7.1  Optical Phase Conjugation   

The concept of phase conjugation is quite old. Although the applications to biological 

tissues are new, it was shown over 40 years ago that optical phase conjugation (OPC) could 

reverse light scattering through a ground glass slide (98). Phase conjugation was also 

proven to be useful for removing aberrations associated with optical components for high-

resolution imaging (99) and for the optimization of laser cavities (100, 101). 

 Before proceeding with a mathematical description of the holographic 

underpinnings, we will first discuss a conceptual view of phase conjugation.  OPC is based 

on a device called a phase conjugate mirror (PCM).  As compared to a conventional mirror, 

which is used to reverse the propagation direction of an incoming beam, a PCM reverses 

both the propagation direction and phase (Fig. 7.1).  This causes an incoming beam to 

retrace its path back to the light source.  If a distorting medium is placed between the light 
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source and the PCM, the phase conjugate beam will ‘un-distort’ itself on its path back to 

the light source.  The novelty in our work on phase conjugation is that the technique has 

never before been used to remove the distortions caused by biological scatterers. 

 

Figure 7.1. A conventional mirror compared to a phase conjugate mirror 

 

7.1.1 OPC Based on Static Holography 

We will first discuss OPC based on static holography, as employed in our experiments.  In 

static holographic methods, a hologram is written into a holographic recording medium and 

read out at a later time.   

 The holographic recording medium used extensively in our work is Fe-doped 

lithium niobate (LiNbO3), a photorefractive material.  The Fe dopant creates defects in the 

material that trap charges (102).  During the recording process a laser is passed through a 

scattering media, and the scattered wavefront interferes with a reference beam inside of the 

photorefractive crystal (Fig. 7.2).  The interference pattern sets up an intensity grating 

within the crystal.  The trapped charges become mobile in the presence of light, and 

positive charges migrate away from areas of high intensity.  The intensity grating has now 

become a charge grating.  The charge grating sets up a static electric field, which alters the 

Phase Conjugate Mirror Conventional Mirror 
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refractive index of the crystalline material through the linear electro-optic effect, otherwise 

known as the Pockels effect (103).  In this manner, the interference pattern created between 

the scattered light and a reference beam is written as a refractive index pattern in the 

photorefractive crystal. 

 

Figure 7.2. OPC through static holography 

 The refractive index pattern written into the crystal now acts like a diffraction 

grating.  Playback with the same reference beam will recreate the scattered wavefront 

propagating in its initial direction, while a counter-propagating reference beam will phase 

conjugate the scattered field, essentially time-reversing the light scattering.  The grating 

will remain in the photorefractive material until it is erased, either through high intensity 

uniform illumination or by heating the material. 

 A general description of holography may be helpful in understanding this process.  

Holography addresses the problem of recording both the amplitude and phase of an optical 

wave, in order to reconstruct that wavefront at a later time (104).  The amplitude of a wave 

is easy to record using a photodetector, however a recording of phase is much more 

difficult.  Typically this is accomplished by converting phase information to amplitude 
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information through interferometry, where a reference wavefront is added to the unknown 

sample wavefront.  We can define the sample and reference waves as follows: 

€ 

a x,y( ) = a x,y( ) exp jφ x,y( )[ ]
A x,y( ) = A x,y( ) exp jψ x,y( )[ ]

,                                         (7.1) 

where a is the sample wave and A represents the reference wave.  When these waves 

interfere, the resulting intensity distribution is given by: 

€ 

I x,y( ) = A x,y( )
2

+ a x,y( )
2

+ 2 A x,y( ) a x,y( ) cos ψ(x,y) −φ x,y( )[ ] .           (7.2) 

This form should be familiar from the discussion in Chapter 2.  This pattern is then written 

into a recording media (in our case a photorefractive crystal as described above).  

Assuming the recording process is linear, the following amplitude transmittance pattern is 

written into the recording material (104): 

€ 

tA x,y( ) = tb + β ' a 2 + A*a + Aa*( ).                                  (7.3) 

We assume the intensity of the reference wave, |A|2 , is uniform, leading to a uniform bias 

transmittance, tb.  β’ is the slope of the tA vs. exposure curve of the recording material at the 

exposure time used in the experiment.  The asterisk denotes the complex conjugate.   

 A coherent reconstruction wave then illuminates the pattern formed in the recording 

media.  The light transmitted upon illumination is given by the product of the 

reconstruction wave, B(x,y), with the transmittance function (104): 

  

€ 

B x,y( )tA x,y( ) = tbB + β 'aa*B + β 'A*Ba+ β 'ABa*

=U1 +U2 +U3 +U4 .
                         (7.4) 

From Eq. 7.4 we can see that if the hologram is read out with the original reference beam 

(B=A), then the third term of the equation is an exact replica of the sample wavefront up to 

a multiplicative constant: 
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€ 

U3 x,y( ) = β ' A 2a x,y( ) .                                              (7.5) 

Alternatively, if a conjugate reference beam is used (B=A*) then the fourth term becomes 

proportional to the conjugate of the sample wavefront: 

€ 

U4 x,y( ) = β ' A 2a* x,y( ) .                                            (7.6) 

Note that the useful portions of the reconstruction are accompanied by additional light field 

components.  It was a major breakthrough by Leith and Upatnieks in 1962 (105) that 

brought about the usage of an off-axis reference beam to angularly separate the far field 

components in Eq. 7.4. 

 

7.1.2 OPC Based on Dynamic Holography Through Degenerate Four-Wave Mixing 

OPC can also be performed in real-time through dynamic holography, most commonly in a 

process called degenerate four-wave mixing (DFWM) (106-109).  Dynamic holography 

means that two beams are instantaneously interacting to form a dynamic grating, which 

deflects a third light field in real-time.   

 Four-wave mixing is an important process in nonlinear optics, where three light 

fields interact to produce a fourth that is given by some linear combination (sum 

/difference) of the initial angular frequencies.  The process requires a material with a 

nonzero third-order nonlinear optical susceptibility (

€ 

χ (3)).  The same LiNbO3 

photorefractive material described in the above section can be used to create this effect.  

OPC is dependent on degenerate FWM, meaning that all of the light fields are of the same 

wavelength.  For 4 light fields (j=1,2,3,4) of the form: 

€ 

E j x, t( ) = E j x( ) exp i ω j t − kx( )[ ] .                                    (7.7) 
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Let E1 and E2 be pump beams that counter-propagate in a nonlinear medium. E3 is the 

signal beam and E4 is the beam that is generated through FWM.  Without starting from 

scratch in nonlinear optics, phase matching requires that 

€ 

ω4 =ω1 +ω2 −ω3, and that 

€ 

k4 = k1 + k2 − k3.  Since the pump beams counter-propagate (k1=-k2), this means that the 

signal and generated beams will counter-propagate as well (k4=-k3).  It can further be 

shown that the electric field amplitude of the conjugate beam can be approximated by:  

€ 

E4 =
iωl
2nc

χ (3) E1 E2 E3
* ,                                            (7.8) 

in a medium of index n over an interaction length of l, where c is the speed of light.  Thus 

the generated beam is proportional to the conjugate of the signal beam, |E3
*|.  One 

advantage of real-time OPC over static holography is the potential for amplification of the 

phase conjugate beam.  

 Additional methods exist, such as stimulated Brillouin scattering, to produce real-

time phase conjugation.  This, however, is beyond the scope of the current work.  

 

7.2 Previous Work 

The previous work from our group that has been conducted using OPC to time reverse 

scattering in tissues can be found in Yaqoob et al. (110).  This work employed the static 

holography approach discussed above to take the first OPC measurements in tissues.  The 

system described in the following chapters operates on the same principles, and will be 

described in detail in Chapter 8. 

 The most important result detailed in (110) is the proof-of-concept experiment 

shown in Fig. 7.3.  A US Air Force target was used to apply an amplitude pattern to an 

incoming beam.  If viewed through a transparent sample, such as agarose, as in Fig. 7.3(a), 
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the target pattern was clearly visible.  However, if viewed through a piece of tissue (Fig. 

7.3(b)), the information was scrambled and the image appeared cloudy.  Figure 7.3(c) 

represents the static holographic recording of the scattered wavefront, which was played 

back through the sample in Fig. 7.3(d).  Note that upon playback the target had been  

 

 

Figure 7.3. Proof-of-concept TSOPC experiment 

 
physically removed from the system, but appeared in focus at the image plane of the 

system.  Figure 7.3(e) conveys the sensitivity of the system to the position of the scattering 

media.   We found it was essential for the scatterers to be in the same location during the 

playback process as they were during recording.  When the scattering media was shifted, 

the signal began to decay quickly. 

 In addition to the above experiment, Ref. (110) demonstrated a signal through 

chicken breast tissues up to 0.67 mm in thickness.  A interesting finding was also noted, 

which will be examined more thoroughly in Chapter 8, that the resolution of the 
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reconstructed image appeared to be constant regardless of the level of scattering.  This 

initial paper laid the groundwork for the chapters to come. 
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Chapter 8. TSOPC System Characterization 

This chapter is adapted from a recently submitted manuscript: E.J. McDowell, M. Cui, I.M. 

Vellekoop, V. Senekerimyan, Z. Yaqoob, and C. Yang, ‘Turbidity suppression from the 

ballistic to the diffuse regime in biological tissues using optical phase conjugation,’ 

Proceedings of the National Academy of Sciences, (Submitted, 2009). 

 

8.1  Introduction 

Elastic light scattering can significantly confound structural and functional information 

when biological samples are probed with light. Our recently published experimental 

technique utilizing optical phase conjugation (OPC) (110) has shown promise in dealing 

with the problem of light scattering. This method, termed turbidity suppression through 

optical phase conjugation (TSOPC), employs static holography to force a scattered light 

field to retrace its path through a highly scattering medium, effectively ‘time reversing’ the 

light scattering process. In this chapter, we will investigate both the fraction and shape of 

the light field reconstructed through a variety of samples, with scattering that spans both 

the ballistic and diffusive regimes.   

 Most of the previous studies of OPC in scattering media were conducted on sheets 

of textured plastic (111) or sheets of polyethylene or polypropylene (112). Our work 

employs both sections of chicken breast tissue of varying thickness and tissues phantoms of 

varying scattering coefficients in order to analyze the TSOPC process as the level of 
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scattering events is increased. We then fit these results to a theoretical model in which the 

contributions of ballistic and diffuse components are tracked. In doing so we uncovered 

several interesting facts. First, we will show that the TSOPC signal amplitude falls off at a 

slow rate compared to the ballistic (or unscattered) light component, which is inferred to be 

relatively insignificant in TSOPC signal generation. We also will also show that 

reconstruction of the incident wavefront can occur using only a very small fraction of the 

scattered light field (as little as 0.02%), provided the sample is highly scattering. Finally, 

we will discuss the non-intuitive finding that the quality of the reconstruction improves as 

the level of scattering increases, implying that, for the most highly scattering samples we 

examined, all information needed for reconstruction is included in the 0.02% of the light 

collected. 

 It is worth discussing where TSOPC falls in the context of standard optical methods 

that deal with the challenge of light scattering. Many techniques that acquire depth resolved 

information from tissues, such as optical coherence tomography (OCT) (19), selectively 

gate out and process only ‘information bearing’ ballistic or singly scattered components 

through coherent detection mechanisms. Alternatively, diffuse optical methods gather 

information from multiply scattered, or diffuse, photons exiting a biological material (16, 

113). This leads to an increase in penetration depth, but a reduction in resolution (113). 

Techniques such as OCT exploit the wave nature of light, while diffuse optical methods 

model the photons as particles that diffuse through tissue. Our TSOPC technique falls at 

junction of these fields, attempting to extract coherent information from the bulk of the 

multiply scattered light. Here, we will show a TSOPC signal, dependent on coherent 
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detection and playback mechanisms, for light fields that have experienced over 200 

scattering events. 

 Our specific methods involve two main steps: 1) collection and 2) ‘time reversal’ of 

scattered light components. Note that the phrase ‘time reversal’ is intended to help the 

reader envision the experiment. This process is not a true time reversal for two reasons.  

First, the collection area is of finite size, and the uncollected information is missing from 

playback.  Second, even if the collection area was very large, collection in the far field 

means that the evanescent component of the scattered light field cannot be collected, and is 

missing as well. Current research efforts in which a shaped input beam is used to optimize 

transmission through a scattering medium (114, 115) are complementary to the second step 

of our process. 

 In this chapter we will 1) describe our TSOPC setup, 2) determine the TSOPC 

signal amplitude trend for an increasing average number of scattering events in both tissue 

and tissue phantoms with varying angular scattering properties, 3) examine the TSOPC 

resolution as the level of scattering increases, and 4) model and discuss the origin of the 

amplitude trend based on other measurable signals in our system. 

 

8.2 Materials and Methods 

The TSOPC system shown in Fig. 8.1 employed a 532 nm CW solid state laser in a Mach-

Zehnder type interferometry scheme. Light scattered on transmission through the sample 

(20 mW incident power, 2 mm collimated beam) interfered with a reference beam (10 mW) 

as depicted in Fig. 8.1(a). This interference pattern was written into an iron-doped LiNbO3 

photorefractive crystal (PrC) over a time period of 20 seconds. A phase conjugate reference 
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beam (2 mW), approaching the PrC from the opposite direction, was used to playback the 

‘time reversed’ wavefront as seen in Fig. 8.1(b).  The phase conjugate wavefront retraced 

its path through the sample, reconstructing the incident light field. The reconstructed 

collimated beam was focused by a lens (f=10 cm), and the TSOPC signal was then 

measured at a CCD camera over a variable integration time (0.25 ms–1 s). 

 

Figure 8.1. a) System setup for the recording process. Light scattered on transmission 
through a sample interfered with a reference beam in a photorefractive crystal (PrC) over 
tens of seconds. A transmission measurement was made at the location indicated. b) System 
setup for the playback process. A conjugate reference beam arrived at the PrC from the 
opposite direction and diffracted a conjugate beam toward the sample, retracing its path 
through the scattering material. The reconstructed beam was then focused to a spot and 
recorded at a CCD. A measurement of the phase conjugate power (OPC signal) was made 
at the location indicated. 

a) 

b) 
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 Several measurements were made during this process: direct transmission through 

the sample over the collection area of the crystal (PTmeas); power exiting the photorefractive 

crystal before returning to the sample (POPC); and finally the TSOPC signal amplitude.   

 TSOPC measurements were made using two types of samples. The first 

corresponded to sections of chicken breast tissue ranging from 0.25 mm to 7 mm. The 

scattering coefficient was measured interferometrically using a standard Mach Zehnder 

interferometer. We also performed measurements on tissue phantoms composed of 

polystyrene microspheres embedded in polyacrylamide. The concentrations of 

microspheres were chosen to obtain scattering coefficients that varied between 0.1 and 15 

mm-1 based on Mie theory calculations. The phantom samples were 3.5 mm in thickness. In 

addition to varying the scattering coefficient, the anisotropy factor was also varied by 

creating phantoms using 4 different sphere sizes (1003 nm, 433 nm, 157 nm, and 80.9 nm 

diameter) corresponding to anisotropy factors of g=0.93, 0.83, 0.28, and 0.07, respectively. 

The average sphere size was measured in a scanning electron microscope. The ballistic 

transmission through the phantoms was measured very far (~6 m) from the sample. Only 

those samples whose measured scattering coefficient matched the intended scattering 

coefficient to within 10% were used for measurements. 

 For the above measurements, a collimated sample beam was incident on the 

scattering sample.  Such measurements were repeated for resolution studies in a slightly 

modified scheme in which the sample beam (10 mW) was focused onto the front face of 

the scattering sample (as shown later in Fig. 8.5) using a 6.24 mm focal length lens, and the 

scattered light pattern was written into the PrC upon interference with a reference beam (40 

mW). In this manner, the reconstructed light field formed by a1.5 mW conjugate reference 
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beam, formed a spot that was then imaged onto the CCD camera with a magnification of 

~69 (given by the ratio of the focal lengths of the two lenses, where the lens in front of the 

CCD had a focal length of 43 cm).  The PrC was placed 25 cm from the focused beam 

waist such that, in the absence of a scattering medium, the beam had diverged significantly 

(by a factor of ~4) upon reaching the reference beam (Fig. 8.5).  The width of the measured 

spot, as determined through Gaussian fitting in two orthogonal directions, was then used to 

investigate the resolution of the TSOPC system.  

 

Figure 8.2. a) Representative 0.25, 0.5, 1, 3, 5, and 7 mm thick chicken breast sections 
placed above text. As the thickness increases, light scattering makes it impossible to read 
the text below. b) A 3.5 mm diameter beam of 532 nm light scattering through a 
representative 7 mm section of chicken breast tissue. For reference, the black plastic spacer 
is 30 mm x 24 mm. 

 
 

8.3  Results 

8.3.1 Chicken Breast Tissue Experiments 

We will first examine results from chicken tissue samples of varying thickness. Figure 

8.2(a) shows representative samples indicating that the thickest tissue samples used in this 

study were by no means transparent. Figure 8.2(b) shows the large extent of light scattering 

experienced by a green incident beam (λ=532 nm).  

(a) 

(b) 

0.25 mm 0.5 mm 1.0 mm 

7.0 mm 5.0 mm 3.0 mm 
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 We determined the scattering coefficient of the chicken breast tissue to be µs=30.3 

mm-1. The following data will be reported as a function of the average number of scattering 

events experienced by a photon tracing an approximately straight path through the sample, 

quantified by µsL (L is the sample thickness). Although most photons take longer paths 

through the scattering material, scattering more than µsL times, this is a simple reference 

quantity for turbidity estimation. In general the ballistic, or unscattered, component of the 

transmission decays exponentially with depth into a scattering medium, Tball = exp(-µsL). 

All data are normalized with respect to a non-scattering sample. 

 The total signal contained in the reconstructed focused spot, as measured on the 

CCD in Fig. 8.1(b), was indicative of the amount of light that had returned to its original 

configuration. For simplicity, this metric can be replaced by the amplitude, or peak 

intensity, of the focused spot, shown explicitly in Fig. 8.3(b) and 8.3(c). This is possible 

because the full-width at half-maximum (FWHM) of the reconstructed spot did not change 

as a function of scattering strength (a phenomenon that will be discussed in detail later in 

the chapter). The red curve in Figure 8.3(a) displays the TSOPC amplitude as a function of 

µsL.  Error bars correspond to the standard error from measurements made over different 

sample locations (i.e., different random configurations of scatterers). Although the TSOPC 

amplitude initially dropped off quickly, the slope began to taper off more slowly as µsL 

increased. This limited decrease is particularly noteworthy when compared to the dramatic 

decay of the ballistic component (blue curve, Fig. 8.3(a)).   

 The signals in Fig. 8.3(a) were measured in tissue sections that ranged from 0.25 to 

7 mm in thickness, the thickest of which corresponding to a ‘time reversal’ of more than 

200 scattering events. This is by no means trivial. Transmission through the 7 mm tissue  
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Figure 8.3. a) The TSOPC amplitude (red data), ballistic transmission (blue line), total 
transmission (black curve), and OPC signal (green curve) as levels of scattering were 
increased. The square of the transmission (dashed curve) approximated the TSOPC 
amplitude in trend. Error bars represent the standard error over N ranging from 3–7 
measurements. b) The TSOPC amplitude was measured as the height of the focused spot 
after the background signal was subtracted. c) The signal from the 7 mm chicken breast 
sample was clearly visible above the noise in the system. 
 

 

sample would result in a ballistic component at -91 on the scale shown in Fig. 8.3(a), or an 

attenuation of -910 dB.  

 The solid black curve in Fig. 8.3(a) represents the direct transmission through the 

chicken breast samples measured over the collection area of the PrC, Tmeas (recorded at the 

location denoted in Fig. 8.1(a)). The green curve shows a similar trend and represents the 

power that exited the PrC upon playback, denoted POPC and recorded where indicated in 

Fig 8.1(b). The dependence of the TSOPC amplitude on these measured signals will be 

discussed and modeled in the Discussion section. 
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Figure 8.4. a) TSOPC amplitude trend for tissue phantoms composed of polyacrylamide 
(n=1.346) with embedded polystyrene microspheres (n=1.6). a) The amplitude signals fell 
off more dramatically for smaller spheres with a lower anisotropy factor. The black curve 
represents the ballistic transmission through the samples, and the dashed curve represents 
the ballistic transmission through a sample twice as thick. b) The TSOPC amplitude curves 
were compared to the square of the transmission and show that they agree in trend for the 
various sphere sizes. 

 

8.3.2 Tissue Phantom Experiments 

In order to examine the dependence of our system on the angular scattering properties of 

the sample, we conducted experiments on tissue phantoms composed of polystyrene 

spheres embedded in polyacrylamide. By varying the size of the spheres, the anisotropy 

factor, g, of the scattering media can be altered. A measure of the angular spread of the 
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scattered light, g is defined as the average cosine of the scattering angle (g=<cos(θ>).  

Figure 8.4(a) shows the TSOPC amplitude as a function of µsL for four types of phantoms 

from highly forward scattering (g=0.93) to nearly isotropic (g=0.07). We found that the 

more forward scattering samples resulted in a larger TSOPC signal for the same µsL. The 

solid line superimposed on the data in Fig. 8.4(a) shows the decay of the ballistic 

component of the transmission, while the dashed line shows the decay of the ballistic 

component through a sample twice as thick (2L). Except for the case of the highly forward 

scattering samples, the TSOPC amplitude initially decayed along the dashed line.  

 

 

Figure 8.5. a) With no sample present, the light diverging from a focused beam expands on 
its path to the photorefractive crystal. Using a reference beam of fixed width, angular 
components of the diverging beam are better captured along one axis. a) side view. b) front 
view 

 

8.3.3 Resolution Trends 

To study the resolution of our TSOPC experiment, we employed a modified system in 

which the sample beam was focused onto the front face of the sample (Fig. 8.5(a)). The 

remainder of the system is as described in Fig. 8.1, and phase conjugation was used to 

reconstruct this spot at the front face of the sample. An imaging system formed between the 

lens shown in Fig. 8.5(a) and that in front of the CCD in Fig. 8.1(b) was used to relay and 
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magnify the reconstructed spot onto the camera for detection. The spot sizes described in 

the following results refer to the spot size at the sample. 

 We found that with no scattering sample present, the measured spot was narrow in 

the horizontal dimension, but spread over a large range vertically (top left panel of Fig. 

8.6(a)).  However, this effect could be mitigated through the presence of strong scattering 

in the sample.  Figure 8.6(b) shows the full-width at half-maximum (FWHM) of the 

reconstructed spot in both X and Y directions for increasing thicknesses of chicken breast 

samples.  Both values tapered to tight (1.5 µm), nearly diffraction limited (calculated to be  

 

Figure 8.6. Resolution data for chicken samples. a) The top left panel shows that with no 
sample present the reconstructed signal forms a stripe rather than a spot. The other panels 
show that as the scattering is increased, the stripe is reduced to a near diffraction limited 
spot.  b) The reduction in the size of the focused spot in the x and y directions.  The 
diffraction limited in this setup was calculated to be 1.2 µm. Error bars represent the 
standard error of the full-width at half-maximum (FWHM) made over N=3 measurements.  
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1.2 µm) spots, although the FWHM in the X direction tapered more quickly.  The same 

trend can be seen with tissue phantoms in Fig. 8.7. 

 

Figure 8.7. Resolution data for tissue phantoms. a) The top left panel shows that with no 
sample present the reconstructed signal forms a stripe rather than a spot. The other panels 
show that as the scattering is increased, the stripe is reduced to a near diffraction limited 
spot.  b) The reduction in the size of the focused spot in the x and y directions.  The 
diffraction limited in this setup was calculated to be 1.2 µm. Error bars represent the 
standard error of the full-width at half-maximum (FWHM) made over N=3 measurements.  

 

8.4  Discussion 

8.4.1 Amplitude Trends in Tissue Samples 

To understand the TSOPC amplitude trend, we observed the corresponding trends for other 

measureable quantities in the system, including the transmission and OPC signals plotted in 

Fig. 8.3(a). As the thickness of the chicken sections were increased, both the transmission 

and OPC signal decayed in a similar manner. If we liken our holographic process to a four-

wave-mixing scheme in terms of power dependence, the power exiting the crystal, POPC, 
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should be proportional to the product of the power in the sample, recording, and readout 

beams: POPC PsamplePrecordingPreadout. Thus, for fixed power in the recording and readout 

beams, we expect the OPC signal to follow the transmission. Although we indeed saw the 

transmission and OPC signals fall off in a similar manner, we saw a large discrepancy 

between these and the TSOPC amplitude (red curve). The origins of this trend will be 

discussed and modeled later in this section. 

 The signal we measure through the thickest chicken tissue sample is worth 

additional discussion. One might expect that efficient ‘time reversal’ would be dependent 

on the collection of the entire scattered wavefront. However, a measurement of the total 

transmission through a 7 mm chicken breast sample over the collection area of the PrC 

shows that only ~0.02% of the power incident on the sample is scattered into the collection 

region. This implies that at most 0.02% of the incident power is used to record the 

hologram for phase conjugation, and is important because it show that the TSOPC process 

is capable of ‘time reversal’ even when only a small portion of the scattered wavefront is 

captured. The 7 mm thickness of chicken breast tissue does not represent a hard limitation 

on the capabilities of our system. It was simply the thickest sample that we measured in this 

study. 

 To cast our results in a slightly different light, consider an OCT system centered at 

532 nm with 120 dB of SNR.  If we tried to image these chicken samples with such a 

system, we would find that our depth penetration is limited by scattering to ~0.5 mm, or 

µSL~15.  Although we are not imaging, our measured TSOPC signal through 7 mm of 

highly scattering tissues is noteworthy in the context of current biomedical imaging 

standards.   
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8.4.2 Amplitude Trends in Tissue Phantoms 

The amplitude signals recorded using tissues phantoms were shown to depend on the g 

factor of the sample. This is due to the limited collection angle of the PrC. Forward 

scattering events were more likely to direct a photon towards the PrC, while isotropic 

scattering events were likely to direct a photon away from it. Thus, the final measured 

signal for isotropically scattering samples was less than that for forward scattering samples. 

 It is interesting that the measured signals in Fig. 8.4(a) fall off along the dashed 

line, corresponding to the ballistic component of light transmitted through a sample of 

double thickness. A measured TSOPC amplitude close to the dashed line implies no 

advantage is gained by performing the TSOPC experiment. However, as µSL increased, the 

TSOPC amplitude began to diverge from the dashed line, meaning that we started to see an 

increased signal through TSOPC. The ballistic component of the scattered light was 

initially much stronger than the TSOPC signal, which became visible only after the ballistic 

component decayed significantly. In sum, Fig. 8.4(a) shows that we can efficiently collect 

forward scattered light, and implies that the majority of the signal we measure in tissues is 

related to forward directed scattering events as opposed to isotropically directed scattering 

events. 

 

8.4.3  Origins of Amplitude Trends 

A simple predictor of the TSOPC amplitude is square of Tmeas, shown as a dashed black 

curve in Fig. 8.3(a) and dashed curves in Fig. 8.4(b). This finding is in agreement with 

literature results in which phase conjugation was studied (112, 116). Gu and Yeh (116) 
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invoked the reciprocity theorem and conservation of energy to show that under ideal 

circumstances (specifically in the absence of absorption and backscattering), the fidelity of 

the process, equivalent to our amplitude measure, scales as the square of the fraction of 

light intercepted by the phase conjugating device. This was experimentally verified using 

scattering sheets of polyprolene and polyethylene (112). Our samples are by no means 

ideal, most notably in terms of non-negligible absorption and backscattering of the tissue 

samples.  The agreement of our TSOPC amplitude (red curve) with the square of the 

transmission (dashed black curve), at least in terms of trend, confirms that these predictions 

hold true for the case of tissue scattering as well. Our results serve to validate this 

theoretical prediction for a broader range of applications. 

 This finding deserves some additional discussion. We can describe the total ‘time 

reversed’ transmission as the product of the power leaving the PrC and the transmission of 

the phase conjugated beam: PTSOPC=TOPCPOPC. One may argue that if each photon 

trajectory is perfectly phase conjugated and efficiently ‘time reversed’, TOPC would trend 

towards a value of 1, and all power directed into the sample would be effectively 

transmitted. The flaw in this argument is that fundamentally, our experiment cannot be 

described by a photon picture. If we think of the sample as a black box, and monitor only 

the fraction of the input light that exits one side of the box, we can make an interesting 

comparison. If the box contains a 50/50 beamsplitter, we would expect 50% of the input 

power to exit. If we phase conjugated the exiting light, we would expect a second decrease 

of 50% on the way back. Although this may appear to be a very different scenario, in 

reality it is quite similar. In our TSOPC experiment, we can think of dividing the scattered 

wave into groups that have passed through channels with a particular transmission 
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coefficient (as in (115)).  The bulk of the incident light is diffusely reflected, so the 

majority of the channels possess very small transmission coefficients.  However, a small set 

of these channels transmits light in fairly efficient manner.  Each of these channels can be 

likened to a beamsplitter with a fixed transmission coefficient.  When the light is phase 

conjugated back along these paths, they again transmit the same fraction of light.  Thus, in 

reality, the TOPC is equivalent to the transmission of an incident plane wave through the 

sample.    

 In our current setup, where POPC scales with Tmeas, the above argument confirms the 

Tmeas
2 dependence predicted by Gu and Yeh. The amplitude of the transmitted light is the 

same as that expected by a double pass through the sample. The advantage, however, is that 

instead of the diffuse transmission that would result if a conventional mirror was used to 

reflect light back through the sample, we see the phase conjugate beam regain spatial 

coherence to reconstruct the incident light field. If a digital version of this experiment was 

employed, by recording the interference of the scattered field with a reference beam on a 

camera and playing back the phase conjugate field with a spatial light modulator, then POPC 

could be increased arbitrarily and enhanced transmission may be possible. 

 Although the Tmeas
2 curves agree with our data in trend, they do not provide a very 

close fit, especially for the tissue phantom results. Although the properties of the sample 

are accounted for, the properties of the phase conjugation are not. In Appendix D2, we 

formulate a model that includes both Tmeas and POPC values to describe the crossover from 

ballistic to diffusive regimes.  The result is as follows: 

€ 

PTSOPC
PNorm

= Tballistic + X POPC
PNorm

− Tballistic
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where PNorm is the measured OPC power with no sample present. If we make the 

assumption that the aperture of the PrC is sharp, X2 represents the ratio of the active 

area/responsivity of the PrC to the active area/repsonsivity of the photodetector used to 

measure the transmission. This assumption is not valid in reality since the aperture of the 

PrC is determined by the size of the Gaussian reference beam, but the trend of the X2 values 

is still illuminating. 

 Figure 8.8 shows fits of this model to both the tissue (Fig. 8.8(a)) and phantom data 

(Fig. 8.8(b)).  The fits are significantly better than the Tmeas
2 fits for all types of samples 

since information about both the sample and the phase conjugation are taken into account. 

If we examine the X2 values from fits to the phantom data (Fig. 8.8(a)) we see that X2 

decreases with the anisotropy factor, g.  This is attributable to the fact that the responsivity 

of the PrC is diminished when scatterered light enters the active area at increasing angles 

with respect to the incident beam. This serves to reduce the amplitude of the interference 

pattern written into the PrC, and results in the same outcome as the case of a PrC with 

optimal responsivity that shrinks in size as the g factor decreases. Since tissues are highly 

forward scattering, we might expect that a fit to the chicken tissues sections would result in 

a similar X2 as the 1 µm beads.  However, we found a much smaller X2 value. We expect 

that this occurred because the chicken sections are non-ideal scattering samples. The 

speckle pattern formed by the scattered light is not stationary due to diffusion of particles 

within the tissues. This implies that the particular channels that existed throughout the 

recording process do not necessarily exist or possess the same transmission coefficient 

upon playback. Thus, even if a strong pattern is formed at the PrC, it may not exactly 

correspond to the scattering structure of the tissue upon playback. A faster holographic 
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medium or a digital implementation of this experiment may diminish this effect in the 

future. 

 

Figure 8.8. Model fits to the experimental chicken tissue results (a) and the experimental 
tissues phantom results (b).  A model that includes information about both the sample and 
the phase conjugation performs significantly better than the T2 predictor in both cases. 

 

8.4.4  Resolution Trends 

One might expect that the resolution of the TSOPC system would degrade as scattering 

becomes more prominent.  However, we found that scattering can be beneficial in terms of 

resolution when a limited collection angle is employed. This experiment represented a low 
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collection efficiency situation because the PrC was placed far from the sample plane. With 

no scattering sample in place, Fig. 8.5(a) shows that the sample beam had diverged 

significantly upon reaching the PrC, and only portions of the sample beam that overlapped 

with the reference beam were recorded. From a Fourier optics perspective, the large angle 

components of the diverging beam carried information about high spatial frequencies at the 

focus. Thus, by losing these components we could no longer expect to reconstruct a 

diffraction-limited spot.  As the sample and reference beams were orthogonally oriented in 

the crystal (Fig. 8.5(b)), the effective recording area for the sample beam had a width of 3.5 

mm (FWHM of the collimated reference beam) and length of 10.0 mm (length of the 

crystal).  This explains the shape of the spots shown in Fig. 8.6(a) and 8.7(a). Since the 

collection region was oblong, diverging angular components were better captured along 

one axis, leading to a smaller reconstructed spot along that dimension. As the samples 

became more highly scattering, more of the angular components were directed into the PrC, 

and the spot size was improved. The tapering of the FWHM to a constant value implies that 

beyond a scattering threshold the angular components incident on the sample were 

effectively randomized such that efficient collection could be obtained over any small 

portion of the scattered wavefront. This finding has been demonstrated previously for 

plastic sheet aberrators and etched glass phase screens (111), confirming theory and 

simulations on thin, random phase screen aberrators (117, 118), but has never been 

demonstrated in extended scattering samples or biological materials. Our work serves to 

extend these finding into the realm of realistic biological materials. 

 We mentioned previously in discussing our amplitude results that the peak of the 

detected signal was a useful metric only if the width of the spot remained constant.  There 
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were two significant differences in system geometry between the amplitude experiments 

and the resolution experiments described immediately above. First, the sample beam was 

collimated as opposed to focused on the sample. This reduced the beam divergence towards 

the crystal. Second, the PrC was placed as close as possible to the sample plane. Both of 

these geometrical factors allowed for efficient collection regardless of the level of 

scattering. Thus, for the amplitude experiments described above, the FWHM of the 

measured spot was fixed for all measurements. Our amplitude studies showed that we 

could reconstruct a signal with only a small portion of the scattered wavefront, and our 

resolution studies provided us with evidence to claim that all relevant information was 

contained in this reconstruction. 

 

8.4.5  Significance and Future Work 

It should be pointed out that our results, in both tissues and tissue phantoms, contrast the 

common misconception that light loses its coherence upon scattering. While a tight pulse of 

light spreads as scattering occurs and spatial coherence is certainly lost, individual portions 

of the wavefront traveling on various trajectories through the scattering media retain 

relative coherence and thus are still capable of interference. We have shown a signal, 

dependent on coherent recording and playback mechanisms, for light that has scattered 

over 200 times on average. However, polarization shifts can accrue during scattering and, 

in the case where the scattered light is sufficiently diffuse, the light field no longer 

possesses a preferred polarization state.  As light of an orthogonal polarization cannot 

interfere with the reference beam, we can expect to record only half of the available 

information in this situation. We believe that future technological developments of TSOPC 
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systems should include the capability for recording the scattered wavefront using two 

orthogonal polarizations, demonstrated to be useful in a related system in Ref (115). 

 

8.5  Conclusions 

In conclusion, we have demonstrated that we can efficiently suppress elastic light scattering 

in tissues and tissue phantoms using optical phase conjugation.  We examined the decay of 

the reconstructed TSOPC amplitude as a function of µSL and found that, after an initial 

sharp drop, the signal decreased slowly compared to the decrease in ballistic transmission. 

This amplitude trend roughly scaled as the square of the transmission through the samples, 

and was modeled more accurately using measurements that included both sample and 

phase conjugation effects. TSOPC signals were measured through up to 7 mm of chicken 

breast tissue, displaying effective reconstruction through coherent mechanisms after an 

average of over 200 scattering events. Additionally, we showed that as little of 0.02% of 

the scattered wavefront was sufficient for a TSOPC reconstruction. Measurements on tissue 

phantoms confirmed the amplitude trends, and showed that more highly forward scattering 

samples lead to larger TSOPC amplitude values as more scattered components were 

directed into the collection region of the PrC. Finally, increased scattering in both tissues 

and tissue phantoms was found to improve the resolution of the detected signals by 

improving the overall angular collection efficiency of the system.   
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Chapter 9. TSOPC in Living Tissues 

Over the past two years, we have attempted several studies of TSOPC in living tissues.  

There are several mechanism that make TSOPC measurements more difficult in living 

tissues, including various sources of sample motion and absorption due to the presence of 

blood flow.  Our initial experiments were designed to separate these two effects, 

questioning whether the combination would prove insurmountable for the current 

implementation of our system.  The first experiment involved measurements on freshly 

excised portions of lobster tissues.  The idea being that the tissue was still alive and 

functioning, although the blood flow was cut off.  A second set of experiments involved in 

vitro tissue cultures, thin layers of epithelial tissues grown in petri dishes and nourished 

purely by diffusion;  again, difficulties with blood flow would be avoided.  Unfortunately, 

unexpected sources of error crept into both of these experiments.  The slick lobsters tissues 

slipped within coverglasses during the experiments.  As such, dead tissues appeared to be 

just as ‘alive’ as living tissues.  The tissue cultures required a horizontally-mounted sample 

stand, which made the tissues more susceptible to air currents in the room, causing 

vibrations that masked active motion in the samples.  These failures prompted us to move 

ahead with experiments on living tissue in the presence of blood flow.  The remainder of 

this chapter is adapted from a manuscript in preparation by M. Cui, E. J. McDowell, and C. 

Yang entitled ‘An in vivo study of turbidity suppression by optical phase conjugation 

(TSOPC) on rabbit ear’.  
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9.1 Introduction 

Biological tissues are highly heterogeneous. Optical wave propagation in such media is 

dominated by elastic scattering (1), which presents significant challenges for tissue optics. 

Elastic scattering can randomize the optical wavefront, preventing direct imaging through 

tissues. The multiple scattering events cause strong backscattering, limiting optical 

measurement to superficial depths. The elastic scattering of an optical wave is nevertheless 

deterministic and time reversible. Optical phase conjugation (OPC) is known to be able to 

time reverse the scattering process and ‘heal’ the wavefront distortion. Despite the fact that 

OPC has been an active field since the 1970s (119–123), its application to tissue optics 

remains largely unexplored. Recently, we demonstrated that holographic recording of the 

transmission of a single mode laser through chicken tissue, followed by a phase conjugate 

playback, can allow the optical wave to retrace its scattering path (110). We found that this 

process termed turbidity suppression through optical phase conjugation (TSOPC) is 

surprisingly robust. To date we have been able to perform TSOPC through 7 mm thick 

dead chicken tissue sections. While such a technique holds great promise in tissue optics, 

living tissues pose additional challenges.  

These challenges can be divided into two main categories: sample motion and 

sample absorption. Our technique is a two-step process, holographic recording of the 

scattered wavefront followed by playback. The applicability of our technique for in vivo 

work depends on the relative time scales between the optical realization of TSOPC and 

tissue variations that can perturb the time reversal process. Motion of the scatterers 

during and after the recording time serves to reduce the portion of the optical wave that is 

efficiently time reversed. Sample motion arises in living tissues from a variety of sources: 
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microscale active motion due to molecular motors and metabolic processes, bulk motion 

caused by muscle contractions including the pulse of the animal, as well as diffusive or 

Brownian motion of particles in the fluid environment of the tissue. 

Additionally, the blood present in living tissues is highly absorptive. Unlike 

scattering, tissue absorption is an irreversible process. In recent work, we have found that 

as little as 0.02% of the scattered wavefront can be used for reconstruction, provided the 

sample is highly scattering [8]. Therefore, we anticipate that absorption can be grouped 

into a category of generalized loss mechanisms (such as backscattering). This work will 

mainly focus on the first topic, sample motion.  However, we note that sample absorption 

is a surmountable problem from the simple fact that we were able to record the following 

results.  In this chapter, we will show that the TSOPC experiment is capable of 

reconstructing an incident wavefront through a living rabbit ear.   

 Tissue motion has been studied for a number of reasons, and has formed the basis 

of several emerging imaging techniques.  Recent publications have shown that tissue 

motion can be a potential metric of the cellular response to anti-cancer drugs [9].  We are 

interested in both the effect of tissue motion on our system, and the ability to distinguish 

viable tissues from non-viable tissues based on our measurements. 

 

9.2 Experimental Methods 

As mentioned above, in the first step of the experiment a collimated laser beam 

was used to illuminate the ear of a rabbit, and the transmitted light was recorded in a 

hologram. In step two, the phase conjugate of the transmitted light was read out from the 

hologram and back-propagated through the ear. The reconstructed signal was recorded in 
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time and analysis of the signal decay yielded the time scale of the in vivo tissue 

perturbation. We repeated the measurement 0.5, 1, 2, 3, and 24 hours after the ear was 

excised, which revealed several perturbation mechanisms of different time scales. 

A system similar to that described in Chapter 8 and shown in Fig. 8.1 was used in 

this experiment. The power of the signal, writing and reading beams were 48 mW, 48 

mW, and 4.8 mW, respectively. A five second recording time was used throughout the 

experiments, since the reading process in photorefractive materials can erase the stored 

hologram. Using a power ratio of 1:10 between the read and write beams ensured a 

hologram lifetime of ~6 min. The ear of a New Zealand rabbit under deep anesthesia was 

gently held between two glass slides and mounted onto the sample holder as shown in Fig 

9.1. 

 

Figure 9.1. The ear of a New Zealand rabbit mounted in the TSOPC system 
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9.3 Results and Discussion 

Figure 9.2 shows TSOPC spots reconstructed through the ear of the rabbit when it was 

alive (i, ii), 30 mins after euthanasia (iii), and through a tissue phantom of comparable 

scattering properties (iv). The signal reconstructed through the ear of the euthanized 

rabbit (iii) and the tissue phantom (iv) led to similar round spots, ~68 micron in diameter 

as expected from the 1.5 mm input beam diameter and the 150mm lens in front of the 

camera. The signal reconstructed through the living rabbit ear, however, deviated from 

the expected round spot (i, ii), indicating that the scattering structures in the tissue had 

moved during the recording process (5 sec) and distorted the hologram. 

 

 

Figure 9.2. Reconstructed spots through a living rabbit ear (i) and (ii), a dead rabbit ear (iii), 
and tissue phantom of comparable properties (iv) 

 

We were interested in measuring the sensitivity of the reconstructed TSOPC 

signal to tissue variations. To investigate the minimum length scale of the TSOPC 

perturbation, we mounted a 1.6 mm thick tissue phantom composed of polystyrene 

microsphere (1 micron in diameter, weight concentration 1.77%) suspended in a 

polyacrylamide hydrogel with µsL=130 on a translational stage driven by a piezo 

actuator. A laboratory-built laser fringe tracking system was employed to monitor the 

(i) 
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stage position with better than 30 nm accuracy. After the holographic recording 

(experimental step one), we displaced the sample and monitored the TSOPC signal 

decay. Figure 9.3 shows the experimentally measured TSOPC signal as a function of 

sample displacement during TSOPC playback. Gaussian fitting (red line) yielded a 

FWHM of 523 nm. 

 

 
Figure 9.3. TSOPC signal versus sample displacement during playback. The data is fitted 
with a Gaussian function (red line). 
 

The actual structural variations occurring inside the tissues are nevertheless 

different from the translational motion. First, the heart beat causes tissue vibration and 

bulk motion, which can move the tissue on a much greater length scale than the optical 

wavelength. Second, the cells within the tissue are undergoing active processes, and they 

vary their shape, size, and location over time. Third, living tissues are not solid like the 

hydrogel tissue phantoms. Figure 9.4 is a microscope image of a histology slide of the ear 

of the rabbit, showing complex structures in a fluidic environment. The Brownian motion 
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of the suspended particles can alter the tissue scattering. All of these factors can 

significantly perturb the time reversal process, and each has its own time scale. 

 

Figure 9.4. Histology of a cross section of the rabbit ear stained with hematoxylin and 
eosin.  The vertical structure towards the right side of the image is cartilage.  The circular 
structures on the left side of the image are blood vessels. 
 

Figure 9.5 shows the TSOPC signal decay curves measured when the rabbit was 

alive, as well as 0.5, 1, 2, 3, and 24 hours after the ear was excised. An exponential 

function a·exp(-t/τ) was used to fit the decay and yield the decay constant τ. As we 

predicted from Fig. 9.2 (i, ii), the perturbation of a living rabbit ear (Fig. 9.5 (a) τ=1.5 

sec) was indeed faster than the holographic recording time (5 sec). After the excision, the 

decay time quickly increased and then gradually reached a plateau (τ= 0.5 min). To 

separate the decay caused by the tissue variation from the hologram decay and laser  
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Figure 9.5 (a–f) TSOPC signal decay measured when the rabbit was alive and 0.5, 1, 2, 3, 
24 hours after the ear is excised. The data is fitted with an exponential function (red line). 
(g) shows the decay rate variation as a function of the measurement time. The signal decay 
rate associated with the laser and mechanical instability is subtracted from the data. 

 

and mechanical instabilities, we performed the TSOPC experiment without a scattering  

medium present, from which we identified a hologram life time of 6 min. We then 

measured the TSOPC signal decay as a function of time for a polyacrylamide tissue 

phantom with µSL comparable to the ear of the rabbit. The measured decay time (τ=2 

min) is due to the laser and mechanical instabilities. In Fig. 3 (g), we plotted the decay 
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rate (1/τ) as a function of the measurement time and subtracted 1/(2 min) to account for 

the instabilities of the system. After the excision, the bulk motion due to muscle 

contractions no longer affected the ear, leading to the initial fast drop of the decay rate in 

Fig. 3 (g). The cells in the tissue, however, were still initially alive and gradually stopped 

their functioning. In ~ 2 hours, the decay rate reached a plateau that was still much faster 

than the decay rate of the tissue phantom. We attribute this effect to the fluidic 

environment inside the tissues and associated Brownian motion.  

 

9.4 Conclusions 

In conclusion, we performed in vivo TSOPC experiment on a living rabbit ear and 

monitored the signal decay as a function of time. We repeated the measurement after the 

ear was excised and identified three different mechanisms: heart beat, microscale cellular 

motion, and Brownian motion in the fluidic environment. In living tissues, bulk motion 

due to the heart beat and associated muscle contractions seem to be the dominant 

perturbation mechanism with the shortest decay time. Even so, the experimentally 

measured 1.5 second decay time showed that TSOPC is promising for in vivo 

applications.  This time can be improved with a faster time reversal process such as four-

wave mixing (FWM) or Brillouin scattering.  
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Chapter 10. Potential Applications and Future 

Work for TSOPC 

10.1 Potential Applications 

The preceding chapters describe proof-of-concept and characterization experiments for 

TSOPC.  The ultimate goal of this work is to lay the groundwork for high-resolution deep 

tissue optical imaging.  This is a significant challenge, however, and we have not yet 

formulated any reasonable methods to accomplish this feat.  The following sub-sections 

will describe several preliminary scenarios in which TSOPC may prove to be useful in a 

biological setting.  These experiments have not yet been attempted in the laboratory. 

 

10.1.1 Light Concentrating Applications 

An initial application involves the ability to focus light at specific locations within a 

scattering media or piece of tissue.  Consider the experiment depicted in Fig. 10.1, noting 

that this experiment functions in a backscattering mode as opposed to the transmission 

mode experiments we have discussed thus far.  The details of how a backscattering 

geometry may be experimentally implemented are described in the following Future Work  

 
 

Figure 10.1.  Diagram depicting potential light concentrating experiments 
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section.  The experiment begins with a piece of tissue containing strong scatterers, such as 

gold nano-particles, injected into the region of interest.  These particles scatter much more 

strongly than the background tissue scattering.  A weak beam is used to illuminate the 

tissue (step 1), and the backscattering is recorded in a hologram or otherwise reflected off 

of a phase conjugate mirror (step 2).  Upon playback (step 3), the phase conjugate beam 

must retrace its path through the sample, encountering each of the scatterers that the 

original incident beam encountered.  The playback process will essentially focus light back 

to the strong scatterers in the sample.   

 We think the above scenario could potentially be useful in two types of situations.  

First, this may be useful for photodynamic therapy (PDT).  We can envision coating strong 

scatterers with a dye, or other photoactivatable PDT agent, and optimizing our current 

system such that it is possible to replay the stored information at a high power.  Thus, we 

could use weak illumination to probe the sample and encode the location of the strong 

scatterers, then play back a strong beam in order to release PDT agents or otherwise destroy 

the tissue locally.  This would spare the remaining tissue a high dose of optical power.  A 

variation on this idea is to use TSOPC to charge implantable photovoltaics.  Through a 

similar scheme it should be possible to probe a tissue, determine the location of an 

implanted photovoltaic, then replay a strong beam directed to that area for charging 

purposes.  This could potentially allow for implanted devices, such as pacemakers, to be 

charged internally. 

  In order to demonstrate that these applications are possible, we have several 

experiments in mind.  The initial experiments will likely involve stationary tissue 

phantoms.  One idea is to use a tissue phantom composed of strong scatterers tagged with 
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fluorescent molecules.  If light is indeed preferentially focused back to these locations, the 

fluorophores should photobleach more quickly when illuminated with a phase conjugate 

beam than with plane wave illumination of the same power.  By monitoring the fluorescent 

signal we can indirectly measure how much light is returning to the strong scatterers.  

Additionally, we would like to run the simple experiment of embedding a photodiode 

within a tissue phantom, and trying to determine whether it is possible to measure an 

increased signal using a phase conjugate beam as opposed to plane wave illumination.  

Success in these two experiments would mean that the applications described above are 

feasible in living tissues. 

  

  

10.1.2 Absorption Amplification Applications 

An additional application of TSOPC that we think may be useful in the short term involves 

the potential ability to highlight weak absorbers buried in a scattering medium.  This would 

require our TSOPC experiment to be performed iteratively, as diagrammed in Fig. 10.2.  

For this application we revert back to the transmission mode experiment that we have been 

performing in previous work.  In an iterative implementation of TSOPC, elastic scattering  

                     Figure 10.2.  Diagram depicting potential absorption amplification experiments 
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would be time reversed on each round trip through the sample.  However, absorption would 

occur during each pass.  Thus, with each additional round trip, absorption in the sample 

would be amplified with respect to scattering. This could potentially allow for sensitive 

measurements of absorbers such as glucose through a non-invasive measurement.  

Although this measurement would be performed in transmission, there are several areas of 

the body that can be targeted for such a measurement, including the ear lobes and webbing 

between the fingers.  Although conceptually simple, this may be a technically challenging 

experiment to implement as the phase conjugating devices must be appropriately 

synchronized in time. 

 

10.1.3 Wavelength tuning for light selection 

This sub-section details one of the few entirely independent ideas that I have had during my 

graduate career.  The idea is to couple TSOPC to an imaging technique such as OCT, to 

increase the SNR and depth penetration. 

 The potential experiment is diagrammed in Fig. 10.3.  Here, we will again be 

working in backscattering mode.  We first probe the sample with an incident beam (Fig. 

10.3(1)), and record the backscattering in a hologram (Fig. 10.3(2)).  Then, as the scattered 

wavefront is played back into the tissue, the wavelength is slightly changed (shown as 

orange in Fig. 10.3(3)).  The idea is that for tortuous paths through the sample, phase errors 

will add up, and the incident beam will not be reconstructed.  However, the relatively 

straight paths through the sample will be largely unaffected by the wavelength change.  The 

beam reconstructed by the shifted wavelength is split off by a beamsplitter and recorded in 

a second hologram (Fig. 10.3(3)).  This hologram contains information about only the 
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relatively straight paths through the sample.  The second hologram can then be played out 

and used for OCT imaging in which the majority of the incident power is directed into 

singly scattered paths.  This could serve to dramatically increase the SNR and penetration 

depth of the OCT system. 

 

Figure 10.3.  Diagram depicting wavelength tuning experiments 
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10.2   Future Work 

Our proof-of-concept and characterizations experiments leave significant room for 

improvement.  This section will describe some of the future work that we have planned in 

the context of the TSOPC experiment described in the preceding chapters. 

 An initial goal that we would like to accomplish is to build a TSOPC setup that 

functions in reflection mode.  For these types of systems to be useful in realistic setting 

(and for human use), we would like to collect and replay light that has backscattered from 

the sample.  This way our light delivery and collection optics can be located on one side of 

the sample, making experiments more practical.  We would like our photorefractive crystal 

(or other holographic material) to be as close to the face of the sample as possible, in order 

to collect the maximum amount of light.  This is difficult, however, because the crystal 

must share the same space as the light delivery optics.  A separate beamsplitter and 

photorefractive crystal would require that the crystal be placed a distance equal to the size 

of the beamsplitter from the sample (similar to the setup shown in Fig. 10.3).  One possible 

alternative solution is diagrammed in Fig. 10.4.  Here, a holographic material is 

sandwiched between two glass prisms, effectively creating a beamsplitter.  A portion of the 

incident beam is reflected towards the tissue, which interferes upon backscattering with the  

   

 
 

Figure 10.4.  A potential experimental implementation of a reflection mode TSOPC system 
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light that had passed straight through the prisms.  Playback of the phase conjugate field 

occurs as before, by reversing the direction of the reference beam. 

 A second major improvement that we would like to implement is the development 

of a digital version of the TSOPC experiment.  The photorefractive crystal would be 

replaced by a CCD camera, used to record the interference fringes between the scattered 

and reference light field.  A spatial light modulator (SLM) would be used to play back the 

phase conjugate field.  The advantage over our current implementation is that we would be 

able to arbitrarily increase the power of the phase conjugate field, which is currently 

limited by erasure in the crystal.  The challenge would be to adequately sample the 

interference pattern, which is essentially a speckle pattern for the case of a strongly 

scattering sample, and to replay the time reversed field with sufficient resolution.  Our 

ability to succeed in this respect may be strongly linked to the state-of-the-art in SLM 

technology. 

 Additional improvements that we would like to integrate include faster holographic 

methods, such as photorefractive polymers, or real-time OPC methods, made possible 

through four-wave mixing or stimulated Brillouin scattering.  The incorporation of reading 

and playback in two orthogonal polarization may also help us to increase the efficiency of 

our TSOPC experiment. 
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Chapter 11. Conclusions 
 
In conclusion, we have tied together a relatively disparate set of experiments through the 

context of light scattering.  Each individual experiment in this thesis is intended to help a 

reader contend with the challenge of light scattering in optical imaging experiments. 

 In the first half of this thesis, we pointed out several methods by which the SNR of 

a coherence domain imaging system can be optimized.  This could be achieved by 

choosing optimal algorithms for signal reconstruction, making use of phase knowledge.  

Alternatively, these types of systems could be optimized by choosing appropriate detection 

parameters (specifically integration time) to limit the influence of 1/f noise.  We gave the 

reader an outline in Chapter 5 for applying the various analyses to their own work. 

 In the second half of the document, we presented several experiments that we hope 

will lay the groundwork for high-resolution deep tissue optical imaging.  We fully 

characterized our system to suppress turbidity in biological samples using optical phase 

conjugation, in terms of both amplitude and resolution trends.  We found that our system is 

quite robust, and that high levels of scattering are actually beneficial in terms of signal 

collection.  Finally, we showed the first set of results detailing time reversal in living 

tissues.   

 We hope that this work is generally useful for biophotonics researchers, and look 

forward to exciting results from the potential future experiments listed in Chapter 10.  
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Appendix D1: Chapter 3 Derivations 

D1.1 Derivation of Variance for Heterodyne Detection 

  

 

 

where E[(Ni,1-Ni,2)4]=12σ4 and E[(Ni,1-Ni,2)2]=4σ4. 
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D1.2 Derivation of Variance for Heterodyne Detection with Phase Knowledge 
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D1.3 Derivation of Variance for Method 1 
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where E[(Ni)4]=3σ4 and E[(Ni,)2]=σ2 

€ 

= 9
4 3E Ni

4[ ] + 6E Ni
2[ ]E Ni

2[ ]( ) = 81
4σ

4 + 54
4σ

4 = 135
4σ

4  

€ 

σM 1

2 = 135
4σ

4 − 81
4σ

4 = 27
2σ

4  

 

D1.4 Derivation of Variance for Method 2 
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D1.5 Derivation of Variance for Method 3 

In order to derive the variance for Method 3 we will, for simplicity, choose θ=0 (although 

any value of θ will give an equivalent solution), setting a1=2/3, a2=1/6, a3=1/6. 
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D1.6 Derivation of Variance for Method 3, n Ports 
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This equation is of the same form as the heterodyne detection method described in 

Section D1.2, and can be solved in a similar manner 

 

D1.7 Derivation of variance for Methods 4 and 5 

Beginning with the reconstruction methods defined in Eqs. 3.36 and 3.40, as well as the 

signal and noise at each port given by Eqs. 3.2 and 3.3 where n=3, the expected value and 

variance of the noise for these methods can be determined following the analysis in 

section D1.1 and D1.2. 
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Appendix D2: Chapter 8 Derivation and Model 

This derivation and model was developed by Ivo M. Vellekoop, a collaborator from the 

Physics Institute at the University of Zurich. 

 

TSOPC Amplitude Derivation and Model 

We consider the situation in which a phase conjugate mirror (PCM) is placed behind a 

scattering medium. The PCM can be any phase conjugating device including the 

holographic setup employing a photorefractive crystal described in this thesis. Light that 

propagates through the medium is phase conjugated and retraces its path back through the 

scattering medium to refocus at its origin. This section describes the trend of the intensity 

of the refocused light, for samples ranging from thin (transmission is mostly ballistic) to 

optically thick (transmitted light is completely diffuse). We assume that light propagation 

in the medium is reciprocal and that there are no nonlinear effects. We make no 

assumptions about absorption, efficiency of the PCM, light propagation, etc., unless 

explicitly stated. 

Following the conventions of Gu and Yeh (116), we define the incident field E1, the 

transmitted field E2, the phase conjugated field E3 and the field that has been transmitted 

back through the sample E4. Scattering in the sample is described by the scattering 

function, h, such that: 

€ 

E2 x',y '( ) = E1 x,y( )h x,y,x',y '( )dxdy∫∫ ,                          (D2.1) 

with input coordinates (x,y) and output coordinates (x’,y’). Because of reciprocity, 

propagation back is described by: 
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.                          (D2.2) 

For simplicity, we take the incident field to be a delta function1 with amplitude 

€ 

EIn ≡ PIn , 

where PIn is the total incident power.  

 The fields propagating toward the PCM are now given by: 

€ 

E1 x,y( ) = EInδ x,y( ),                                           (D2.3) 

.                                  (D2.4) 

At the PCM, the field is reflected and phase conjugated. Since the PCM is not perfect, the 

reflected field has a certain envelope αρ(x’,y’), where ρ(0,0)=1 and α is the overall 

reflection coefficient of the phase conjugation2. If the PCM reflects the field with exactly 

the same amplitude, α=1.  

€ 

E3 x',y '( ) =αρ x',y '( )E2
* x',y '( ) .                              (D2.5) 

For the reconstructed field E4, we are only interested in the part that overlaps with the 

incident field. The total power in this overlapping portion is given by: 

€ 

PTSOPC ≡ δ x,y( ) E4 x,y( )
2
dxdy∫∫ = E4 0,0( )

2
,                    (D2.6) 

with 

€ 

E4 0,0( ) ≡αEIn ρ x ',y'( ) h 0,0,x',y '( )
2
dx 'dy'∫∫ ,                    (D2.7) 

where (D2.2), (D2.4), and (D2.5) were used. 

                                                
1 In reality the incident field will not be a delta function. Regardless of the actual shape of 

the incident field, we are free to choose a coordinate system where the incident field 
corresponds to a delta function by applying an arbitrary unitary transform. Therefore, the 
results derived here are generally valid. 

2 In practice, α is not exactly constant over different experiments due to a number of 
reasons including the non-uniformity of the PCM, power fluctuations of the laser, and 
experimental human error from run to run. These fluctuations are visible in the data 
shown in this manuscript. 
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 Two other important quantities in the experiment are the total transmitted power, PT 

(P2), and the total power exiting the PCM, POPC (P3). These can be described as follows: 

€ 

PT = E2 x ',y'( )
2
dx'dy '∫∫

= PIn h 0,0,x ',y'( )
2
dx'dy '∫∫

= PInT

,                                      (D2.8) 

where T is the total (angle integrated) transmission. To simplify this notation we define: 

€ 

h 0,0,x ' y'( )
2
≡ TF x ',y'( ) ,                                       (D2.9) 

where F is the intensity profile of the transmitted light, normalized such that 

€ 

F x',y '( )dx'dxy ≡1∫∫ . Using this notation, the power exiting the PCM is given by: 

€ 

POPC = E3 x',y '( )
2
dx 'dy'∫∫

=α 2PIn ρ2 x',y '( ) h 0,0,x ',y'( )
2
dx'dy '∫∫

=α 2PInTC3

,                      (D2.10) 

where 

€ 

C3 ≡ ρ2 x',y '( )F x',y '( )dx'dy '∫∫ .                                 (D2.11) 

C3 describes the fraction of light that is ‘seen’ by the PCM. In Gu and Yeh, C3 is 

approximated as a/A, where a is the surface area of the PCM and A is the total surface area 

of the diffuse light. 

 Using the same notation, Eq. D2.6 can be rewritten as: 

€ 

PTSOPC =α 2PInT
2C4

2 ,                                       (D2.12) 

where 

€ 

C4 ≡ ρ x',y '( )F x',y '( )dx'dy '∫∫ .                                 (D2.13) 

Note that C3≠C4.  C3 describes the fraction of the intensity that is reflected, while C4 can be 

thought of as the fraction of the amplitude. In the special case described by Gu and Yeh, 
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which includes a sharp aperture and uniform phase conjugation (i.e., ρ=1 or ρ=0), C3=C4.  

In general, however, they are different. 

 We can now predict the trend of the TSOPC power by combining (D2.11) and 

(D2.13): 

€ 

PTSOPC = POPCT
C4
2

C3

.                                           (D2.14) 

The difficulty with this form is that a measurement of the total transmission, T, is very 

hard. In our experiments, the transmission is measured over a defined aperture associated 

with the photodetector, chosen to be approximately the same shape as the reference beam 

in the photorefractive crystal. The transmission measured in this manner, Tmeas, is related to 

the total transmission, T, according to: 

€ 

Tmeas =
1
PIn

ρmeas
2 x ',y'( ) E2 x',y '( )

2
dx 'dy'∫∫ = TC2 ,                   (D2.15) 

where 

€ 

ρmeas
2  is the (intensity) profile of the aperture over which the transmission is 

measured and: 

€ 

C2 ≡ ρmeas
2 x',y '( )F x',y '( )dx'dy '∫∫ .                            (D2.16) 

Finally, we can write the TSOPC amplitude trend as a function of the measured values, 

Tmeas and POPC: 

€ 

PTSOPC = POPCTmeas
C4
2

C2C3

.                                (D2.17) 

The constant C4
2/C2C3 must be determined experimentally. 

 In the diffuse regime, we can use Eq. D2.17 to predict the trend of the TSOPC 

amplitude. However, when the samples are so thin that the ballistic contribution becomes 

visible, the distribution of the transmitted intensity, F, will be different than in the diffuse 
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case. As a result, the constants above will depend on the thickness of the samples. To deal 

with this complication, we introduce a simple model. We assume that there are only two 

contributions to the transmission: completely ballistic and completely diffuse. Thus, we can 

write: 

€ 

TF x',y '( ) = Tballδ x',y '( ) + Tdiff Fdiff x ',y'( ) ,                            (D2.18)  

where Fdiff(x’,y’) is the normalized profile of the diffuse transmission: 

€ 

Fdiff x',y '( )dx'dxy ≡1∫∫ . For thick samples, F→Fdiff. The Beer-Lambert law gives us the 

transmission coefficient for the ballistic component, and the transmission for the diffusive 

component follows from our assumptions above: 

€ 

Tball ≡ exp −µSL( ),                                            (D2.19) 

€ 

Tdiff ≡ T −Tball .                                               (D2.20) 

Through this model, the total transmission remains equal to T. The values for C2, C3, and 

C4 follow by inserting the model (D2.18) into their respective definitions: 

€ 

TC2 = Tball + TdiffC'2 ,                                             (D2.21) 

€ 

TC3 = Tball + TdiffC'3 ,                                            (D2.22) 

€ 

TC4 = Tball + TdiffC'4 ,                                          (D2.23) 

where the ballistic component is always completely detected/reflected since ρ(0,0)= 

ρmeas(0,0)=1. The constant C’2 is defined as: 

€ 

C'2 = ρmeas
2∫∫ x ',y'( )Fd x ',y'( )dx 'dy' ,                               (D2.24) 

analogous to Eq. D2.16, and similarly for C’3 and C’4. These constant are calculated for the 

only diffuse portion of the distribution and therefore do not depend on the sample 

thickness.  
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 To predict the trend of the TSOPC power, we use the following procedure to 

process the measurements. First, we take the measured OPC power (POPC), 

€ 

POPC = PInα
2 Tball + TdiffC'3[ ],                                       (D2.25) 

and normalize it by the OPC power when no sample is present (Pnorm=PInα0
2) where α0 is 

the value of α for the first measurement in the series (i.e., no sample). We then subtract the 

ballistic transmission to arrive at: 

€ 

POPC
Pnorm

−Tball =
α 2

α0
2 −1

 

 
 

 

 
 Tball +

α 2

α0
2 TdiffC'3 ≈

α 2

α0
2 TdiffC'3 .                     (D2.26) 

We must assume here that α does not fluctuate too wildly (α≈α0) so that the ballistic 

component can be removed. We do the same for the measured transmission, Tmeas (no 

normalization required): 

€ 

Tmeas −Tball = TdiffC'2 .                                       (D2.27) 

We now multiply (D2.26) and (D2.27) before taking the square root such that the resulting 

value scales linearly with α and Tdiff: 

€ 

POPC
Pnorm

−Tball
 

 
 

 

 
 Tmeas −Tball( ) =

α
α0

Tdiff C'2C'3 .                    (D2.28) 

Our equation for the TSOPC power reads as follows after substituting (D2.23) into 

(D2.12): 

€ 

PTSOPC = PInα
2 Tball + TdiffC'4[ ]

2
.                             (D2.29) 

We can determine this value by multiplying (D2.28) by 

€ 

X ≡ C'4 / C'2C'3 , adding Tball and 

taking the square: 
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Pnorm
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TdC'4
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 
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2

≈ Tball + TdC'4[ ]2

=
PTSOPC
α 2PIn

=
PTSOPC
Pnorm

.           (D2.30) 

The left hand side of this equation is fit to our data in Chapter 8, and the value of X is fit. X 

scales the contribution of the diffuse light based on the various aperture functions described 

in this derivation. If the aperture of the PCM is sharp, then C’3 and C’4 are equal. In this 

case, X2 is the ratio of the active area of the PCM to the active area of the photodetector. 

 


