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Abstract

Planar laser induced fluorescence (PLIF) is widely used in combustion diagnostics but

has only recently been successfully applied to detonation. The strong spatial varia-

tions in temperature, pressure, and background composition under these conditions

influence the quantitative link between OH-number density and fluorescence intensity

seen on images. Up to now, this has lead to uncertainties in interpreting the features

seen on PLIF images obtained in detonations. A one-dimensional fluorescence model

has been developed, which takes into account light sheet attenuation by absorption,

collisional quenching, and changing absorption line shape. The model predicts the

fluorescence profile based on a one-dimensional distribution in pressure, tempera-

ture, and mixture composition. The fluorescence profiles based on a calculated ZND

detonation profile were found to be in good agreement with experiments.

The PLIF technique is used to study the diffraction process of a self-sustained det-

onation wave into an unconfined space through an abrupt area change. Simultaneous

schlieren images enable direct comparison of shock and reaction fronts. Two mixture

types of different effective activation energy θ are studied in detail, these represent ex-

treme cases in the classification of detonation front instability and cellular regularity.

Striking differences are seen in the failure mechanisms for the very regular H2-O2-Ar

mixture (θ ∼ 4.5) and the highly irregular H2-N2O mixture (θ ∼ 9.4). Detailed image

analysis quantifies the observed differences. Stereoscopic imaging reveals the complex

three-dimensional structure of the transverse detonation and its location with respect

to the shock front. The study is concluded by using the experimentally-obtained

shock and reaction front profiles in a simplified model to examine the decoupling of

the shock from the chemical reaction. The rapid increase in activation energy for the
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H2-O2-Ar mixtures with decreasing shock velocity is proposed as an important new

element in the analysis of diffraction for these mixture.
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Chapter 1

Fundamentals of Detonations

A detonation is a supersonic combustion wave characterized by an exothermic chem-

ical reaction which takes place behind a strong leading shock front. Due to the

increased pressure and temperature behind the shock wave, the reactive material ig-

nites after a short period of time, the induction time τi. The volume expansion caused

by the large increase in temperature during the exothermic reaction drives the shock.

This leads to a coupling between the shock and reaction fronts. The chemical reaction

is shock-induced as opposed to being controlled by heat conduction or diffusion as

observed in ordinary flames. Two simplified one-dimensional detonation models, the

Chapman Jouguet (CJ) and the ZND model, are described in Section 1.1. Detonation

wave cellular structure is discussed in Section 1.2 and 1.3. An introduction to the

diffraction of detonations is given in Sections 1.4.

1.1 Simple Models

The hydrodynamic model of a detonation assumes a steady wave within which reac-

tants are instantaneously converted from reactants to products. The products are in

chemical equilibrium and constrained by the conservation of mass, momentum and

energy to take a specific set of values. The locus of states defined by the conser-

vation laws form a curve known as the detonation adiabat or Hugoniot. The CJ

solution (Chapman, 1899, Jouguet, 1905) is a particular state, the CJ-point, which

is the unique solution observed in the laboratory. The CJ point corresponds to the
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Figure 1.1: ZND-calculated profiles of thermodynamics conditions (a) and species
mole fraction (b) for a detonation wave calculated with the ZND model using the
code of Shepherd (1986). 0.14H2+0.07O2+0.8Ar mixture, T0=300 K, P0=20 kPa.

minimum wave speed and the sonic outflow of the products from the wave. Using

the CJ solution to the hydrodynamic model, the wave speed and the properties of

the products can be uniquely determined. The specific heat capacities of real gases

are temperature-dependent and the exact product composition, also due to dissoci-

ation, is unknown. This makes an iterative calculation of the CJ point necessary.

An overview of iteration methods is given in Kuo (1986). In the present study, the

chemical equilibrium code STANJAN, Reynolds (1986), is used, which is based on

the method of element potentials. Given the mixture composition and initial con-

ditions, the code enables the determination of the CJ detonation velocity. Despite

the simplicity of this model, the CJ detonation velocity agrees to within 2% of the

experimentally measured velocities of fully-developed detonations.

The ZND model (Zel’dovich, 1950, von Neumann, 1942, Döring, 1943) assumes

that the wave travels at the CJ velocity but includes finite reaction rates and therefore

a finite induction time. In a time τi, a fluid particle is convected a distance, the

induction zone length ∆, from the lead shock position. The induction zone behind

the leading shock is usually thermally neutral or slightly endothermic as the fuel

is consumed and the concentration of radicals (e.g., OH) increases (Fig. 1.1). The

conditions at the beginning of the induction zone are the post-shock or von Neumann
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thermodynamic state. At the end of the induction zone, the temperature increases due

to the strongly exothermic recombination reaction of intermediate species and radicals

as they form the primary products. The reaction takes place via many individual

elementary reactions, which can be modeled by a detailed reaction mechanism. When

chemical equilibrium is reached, the reactions terminate, the CJ point is reached, and

the fluid velocity is sonic with respect to the shock wave. There are several ways of

defining the induction zone length. In this study, the distance ∆ is defined from the

lead shock to the point of maximum increase in temperature. Other definitions use

the location of the maximum in thermicity, which usually falls close to the point used

here.

The induction time of a mixture is highly temperature-dependent. Lower temper-

atures lead to longer induction times. The induction time calculation using detailed

chemistry can be simplified when modeling τi by an Arrhenius-type dependence on

the temperature,

τi = Ai exp θ = Ai exp

(
Ea

RTvN

)
, (1.1)

where Ai is a parameter depending on the mixture composition, θ is the effective or

non-dimensional activation energy, Ea is the activation energy, R is the universal gas

constant, and TvN is the temperature at von Neumann conditions. The activation

energy Ea is a measure of how sensitive the induction time is to perturbations in

temperature, or in the case of the post-shock conditions, to perturbations in the

leading shock speed.

1.2 Cellular structure

Detonation waves observed in experiments are intrinsically unstable, as discovered

from optical visualizations by White (1961). Instabilities lead to the development

of a multi-front detonation, which involves a complex three-dimensional shock struc-

ture known as cellular structure of the detonation front. The structure includes a
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a) b)

Figure 1.2: a) Schlieren image of fully-developed detonation in 150 mm square cross
section tube showing transverse waves and segmented lead shock front. b) Soot-foil
showing cellular pattern of detonation. (a) and (b): Image height 150 mm. Mixture:
2H2+O2+17Ar, P0=20 kPa, T0=300 K. Flow direction left to right.

segmented leading shock with transverse waves extending into the reacting gas as ob-

served on schlieren images (Fig. 1.2a). When sooted foils are placed on the side wall

of the tube or channel, the cellular pattern is evident after the detonation wave has

passed over (Fig. 1.2b). This technique was first applied to detonations by Denisov

and Troshin (1959) and Shchelkin and Troshin (1965).

The detonation multi-front wave involves a periodically varying leading shock ve-

locity (Voitsekhovskii et al., 1966). The leading shock is divided into segments of

incident shock and Mach stem, following the nomenclature of a non-reactive three

shock configuration (Fig. 1.3a). Incident shock, Mach stem, and transverse wave meet

at the triple-point. The tracks that are seen on soot-foils describe a diamond-shape

or cellular pattern and seem to closely follow the path of the triple-point, discussed

further below. After the collision of the triple-points, the Mach stem is over-driven,

i.e., travels with a velocity higher than the CJ velocity. The shock velocity decays

further downstream in the cell, and the Mach stem, which has become an incident

wave, travels slower than the CJ velocity. Due to the strong temperature-dependence

of the induction zone length (Fig. 1.3b and c), a keystone shaped region of lower

chemical reaction rate is created behind the incident shock. This can be observed

on planar laser induced fluorescence (PLIF) images, which enable the visualization
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Figure 1.3: a) Schematic of cellular structure of detonation front. b) Induc-
tion zone length calculated with detailed chemical reaction mechanism of Warnatz.
2H2+O2+17Ar, P0=20 kPa, T0=300 K. c) Shock velocity on centerline through one
cellular cycle from two-dimensional numerical simulation, 2H2+O2+7Ar, 6.7 kPa,
Eckett (2000).
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Figure 1.4: PLIF image of detonation (Pintgen et al., 2003b). Flow direction is left
to right. Image height 75 mm. Mixture: 2H2+O2+17Ar, P0=20 kPa, T0=300 K. (a)
and (b) are separate experiments. c) Explanation of features seen in (b).

of the OH radical, an intermediate species in the combustion process (Fig. 1.4). In

detonations, the OH radical functions as a natural marker for chemical reactions tak-

ing place. Higher fluorescence intensity on the PLIF images corresponds to higher

OH concentration. The PLIF technique allows the selective visualization of certain

species concentrations in a thin layer (corresponding to the light sheet plane) within

the flow field and is discussed in more detail in Chapter 3. Behind the Mach stem,

a keystone of higher fluorescence is observed. The keystones sometimes appear to be

bounded on the sides by the shear layer. The shear layer is the dividing line between

particles which have passed through the incident shock and transverse wave, and the

particles which have passed through the Mach stem (Fig. 1.3a). The details in the

corner of the keystone were observed to depend on the mixture type (Pintgen et al.,

2003a).

Note that the cellular structure is three-dimensional and the triple-points shown

in the two-dimensional view shown in Fig. 1.3a are actually triple lines which extend

into the paper plane. Furthermore, a second set of transverse waves traveling in the

direction perpendicular to the paper plane exists. The triple lines do not necessarily

form an orthogonal grid but may have a random phase and orientation. For deto-

nations with a regular cellular structure propagating in a rectangular cross section

channel, the transverse waves are more likely to be aligned parallel to the channel
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walls. This can be observed on soot-foils which are placed on the channel end-plate.

The cell width λ (Fig. 1.3a) is, despite its large uncertainty, the most commonly

used characteristic length scale and is one of the most widely used parameters (Lee,

1984). The cell width can be empirically correlated to the induction zone length as

λ = C∆, whereas the value for the proportionality factor C varies between approxi-

mately 10 and 100. The proportionality is valid only for modest variations in mixture

composition, but nonetheless enables a rough estimate of the cell size λ from ∆.

The induction zone length ∆ can be calculated fairly quickly using the ZND model

whereas a direct reliable cell size calculation is not possible at this point.

The soot-foil technique is the standard experimental technique for determining the

cell size and shock wave configuration of multi-front detonations. While it is clear that

soot gets redistributed or removed by the passing detonation, the physical principle

behind the soot-foil technique is not yet completely understood. It is commonly

supposed that the soot-tracks coincide with the triple point path of the detonation.

As long as the triple line is perpendicular to the wall, the tracks on the soot-foils

allow for an estimation of the transverse wave strength from the track-angle α via a

shock polar analysis. The track-angle is defined as the angle between the main flow

propagation direction and the tracks seen on soot-foils and varies during a cellular

cycle as the triple point configuration changes. The transverse wave Mach number is

(depending on the mixture) on the order of M ∼ 1.3, relatively weak compared to the

Mach number of the incident wave and Mach stem of M ∼ 5. Note that the apparent

track-angle on the soot-foil increases if the triple line is inclined to the wall. This

is because the contact point of the triple line at the wall has an additional velocity

component along the triple line. This effect has to be considered when interpreting

the soot-tracks, especially for geometries like tubes of circular cross section in which

the transverse waves do not have a preferred propagation direction.

In order to illustrate the cellular detonation structure, some results of a study

(Pintgen and Shepherd, 2003) conducted to investigate the correlation between triple-

point location and soot-tracks are shown in this paragraph. The PLIF technique

employing the OH radical was used for an independent visualization of the cellular
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(a) Shot 1651 (b) Shot 1652 (c) Shot 1653 (d) Shot 1654

Figure 1.5: Overlay of soot-foils and PLIF-images, flow direction left to right. The region
of higher fluorescence of the PLIF image is shown in false color. Image height: 85 mm,
2H2+O2+17Ar, P0=20 kPa, T0=294 K.

structure simultaneous to the soot-foil technique. The light sheet for the PLIF visu-

alization was oriented parallel to the soot-foil, at a distance of approximately 1 mm,

which allows for an overlay of the PLIF and soot-foil images (Fig. 1.5). The soot-

tracks for the highly argon-diluted H2-O2-mixture appear as a dividing line between

brighter and darker regions on the soot-foil. The keystones of lower fluorescence cor-

relate well with the “closing” portion of cell patterns, which correspond to the second

half in the cellular cycle, where the bounding soot tracks converge. Keystones of a

higher fluorescence correlate with the “opening” portions of the cell patterns, in the

first half of the cellular cycle. This is a consequence of the higher lead shock velocity

at the beginning of the cell compared to the end of the cell. The triple-point loca-

tion derived from the PLIF images by an idealized triple-point analysis was shifted

approximately 3 mm from the soot track, consistently toward the side of the incident

wave. The influence of viscous effects of the fluid on the detonation and visualization

technique is investigated by considering the boundary layer. A non-reacting similarity

solution behind the shock wave traveling with CJ velocity (1415 m/s) was obtained

by numerically solving the equations of motion. The post-shock velocity of the free

stream is 1087 m/s. The velocity component, which is wall parallel in the lab fixed

coordinate system, is plotted in Fig. 1.6 against the distance to the shock front. Also

shown is the location of the light sheet and the induction zone length for CJ velocity,

UCJ , and 0.9 UCJ . This calculation assumes laminar flow. At Re ≈ 3.5 105 to 106,
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the boundary layer transitions to turbulence; this corresponds to a distance of 10

to 28 mm behind the shock front. Neglecting the influence of transverse waves, the

boundary layer is laminar in the induction zone and does not reach the light sheet.

The location of the distinct OH front seen on the PLIF images is, therefore, not influ-

enced by the boundary layer. This supports the notion that the triple-point location

does not exactly coincide with the soot-foil tracks for this mixture.

For an idealized two-dimensional detonation (Fig. 1.3a), the cell size is equal to the

transverse wave spacing, which is the distance between two transverse waves traveling

in the same direction. The transverse wave spacing, obtained from PLIF images

by measuring the distance between two keystone tips pointing in the same direction

(e.g., Fig. 1.4a), is usually smaller than the cell size obtained from soot-foils (Pintgen,

2000). This is attributed to three-dimensional effects caused by the orientation of the

cellular structure relative to the light sheet plane of the PLIF system. Only if triple

lines are oriented perpendicular to the light sheet plane does the result seen on the

PLIF images correspond to the two-dimensional view shown in Fig. 1.3. Note that

soot-foils are, in a sense, also a two-dimensional cut through the three-dimensional

shock structure, similar to the light sheet. Nevertheless, it seems that the imprints on

the soot-tracks are more pronounced for the triple lines that are almost perpendicular

to the soot-foil. The less distinct triple lines which are approximately parallel to the

soot-foil result in vertical line structures perpendicular to the main flow direction on

the soot-foils. Furthermore, a continuous spectrum of track-angles was not observed
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on soot-foils, even in tubes. This could also be caused by wave interactions at the

boundary. Soot-foils are, in contrast to PLIF, a highly intrusive diagnostic. These

effects could contribute to the range of cell sizes measured from a single soot-foil,

even for regular mixtures. The soot-foil interpretation and definition of a “cell” is

quite subjective, especially for more irregular mixtures, which are discussed in the

next section.

1.3 Regularity of detonations

For highly argon-diluted stoichiometric H2-O2-mixtures, the cellular pattern observed

on the soot-foil is regular, only one dominant length scale is observed, and the vari-

ations in track-angle are small. On the PLIF images, the smooth reaction front is

punctuated with distinct keystones. The degree of regularity depends on the mixture

composition and was classified by Strehlow (1968) into various qualitative categories

(excellent, good, irregular, and poor). For undiluted H2-N2O-mixtures, an example

of highly irregular mixture, sub-structure on a smaller length scale is observed on

soot-foils (Fig. 1.7a). On PLIF images, the keystone-shaped features are not as dis-

tinct and the reaction front appears more subdivided and rough (Fig. 1.7b). Since

all detonations are, to a certain degree, unstable, the more regular mixtures are also

termed “weakly unstable”, whereas the highly irregular mixtures are also termed

“highly unstable”.

Linking system properties to the observed instability has received considerable

attention in theoretical, numerical, and experimental studies (Lee and Stewart, 1990,

Short and Quirk, 1997, Austin, 2003). The normalized heat release, the effective

activation energy, and the lead shock velocity influence the stability. Furthermore,

the thermicity pulse length, a measure of how rapidly the chemical energy is released,

play a role. A figure of merit quantifying the degree of irregularity is the effective

activation energy θ. It can be calculated from the mixture composition and initial

conditions. A method of quantifying the degree of regularity from experimentally

obtained PLIF images is given in Chapter 4. The activation energy θ is calculated
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a) Shot 1643 b) Shot 1607

Figure 1.7: Example of observation in mixtures with irregular structure. Flow direc-
tion left to right. a) Sootfoil, image height: 150 mm, H2-N2O-3N2, P0=20 kPa. b)
PLIF image, image height: 45 mm, H2-N2O-3N2, P0=20 kPa.

by evaluating numerically the induction time τi for a perturbation in TvN assuming

the Arrhenius-type dependence (Eq. 1.1),

θ =
1

TvN

ln τia − ln τib

1/Ta − 1/Tb

, (1.2)

where τia and τib are induction times corresponding to the perturbed temperatures

Ta and Tb, so that Ta/b = TvN ± 0.01TvN . This leads to slightly more accurate

determination of the activation energy than the method of perturbing the shock Mach

number, since the post-shock density is not constant with varying shock velocity. The

choice of the detailed chemical mechanism used for the calculation of the induction

times has the biggest influence on the results. The induction times are calculated

with the zero-dimensional code CV (Shepherd, 1986) that models a constant volume

adiabatic explosion. The perturbation magnitude has to be large enough to avoid the

influence of numerical errors and small enough to reflect a good approximation at the

given thermodynamic condition. Perturbations of smaller than 0.1% and larger than

10% on TvN were found to give erratic results (Pintgen and Shepherd, 2004).

Larger effective activation energies seem to correspond with a higher degree of

irregularity, as confirmed by experimental observations (Pintgen et al., 2003a). This

is motivated by the appearance of the neutral stability boundary in θ versus Mach
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number coordinates (Lee and Stewart, 1990, Austin et al., 2004). Furthermore, the

effective activation energy was found to be the determining parameter in amplification

of small disturbances (Lee and Stewart, 1990, Short and Quirk, 1997). For the highly

argon-diluted mixture shown in Fig. 1.2, θ is calculated to be 5.4 whereas it is 12.4 for

the H2-N2O-N2-mixtures shown in Fig. 1.7. The different values of θ are also evident

in the induction zone length ∆ versus shock velocity computations (Fig. 1.8).

1.4 Detonation diffraction

If a detonation wave, propagating in a rigid tube or channel, suddenly emerges into

an unconfined volume, the planar wave will diffract and transform into an approx-

imately spherical wave (Fig 1.9a). Detonation transition from planar to spherical

geometry may result in detonation failure or initiation, and involves mechanisms of

both unsteadiness and wave curvature (Eckett, 2000, Arienti, 2002). An understand-

ing of this process is of fundamental importance for the combustion community since

it gives insight into the relative role of these mechanisms, which occur simultaneously

during the diffraction process. Depending on the mixture parameters and geometry,
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Figure 1.9: a) Sketch of diffracting detonation wave out of circular tube. b)
Sub-critical outcome, H2+N2O, P0=42.5 kPa. c) Super-critical outcome, H2+N2O,
P0=45 kPa. (b) and (c) Schlieren images, image heights: 125 mm, tube diameter:
38 mm, flow from left to right.

decoupling and re-initiation phenomena occur. The coupling of shock and reaction

fronts is fundamentally different during one cellular cycle for mixtures with differ-

ent degrees of regularity. This is observed in fully-developed detonations traveling

near the CJ velocity (Strehlow, 1968). However, the effects of the degree of regular-

ity on the detonation diffraction process have not been characterized and quantified

rigorously at this point. The goal of the present experimental investigation of the det-

onation diffraction process, is to characterize and quantify the differences observed

for mixtures with a varying degree of regularity.

If the detonation transitions successfully, the shock and reaction zone remain

coupled; this is the super-critical case. If the detonation wave fails, the shock and

reaction zone decouple; this is the sub-critical case. The outcome is determined by

the following parameters: mixture composition and thermodynamic conditions, the

detonation velocity as the detonation exits the tube, and the geometry of the area

expansion and tube cross section. The transition point from the sub- to super-critical

experimental outcome is known as the critical condition. In the literature, these

conditions are quantified as the “critical tube diameter” dc for a given mixture. A

super-critical outcome of the experiment is observed if the tube diameter d, from
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which the detonation wave emerges, is larger than the critical diameter; a sub-critical

outcome is observed if d < dc. From the experimental data collected by previous

researchers, empirical correlations between the cell size λ and dc were derived. The

critical tube diameter dc is 10 to 30 times larger than λ, depending on the mixture

composition (Mitrofanov and Soloukhin, 1965, Knystautas et al., 1982, Shepherd

et al., 1986). An extensive literature review on the critical tube diameter including

modeling can be found in Schultz (2000).

1.5 Goals of this study

The goal of the detonation diffraction experiments conducted for the present study is

to compare and identify the different patterns and mechanisms observed for decou-

pling and recoupling of shock and reaction fronts in mixtures with a varying degree

of regularity. The focus is on the failure and re-ignition phenomena occurring in the

critical regime. In the critical regime, super- and sub-critical experimental outcomes

are possible for nominally identical initial conditions. In this intermediate regime,

the re-ignition and failure processes are very sensitive to small perturbations in ini-

tial conditions, which are beyond experimental control. In the super-critical regime

the experimental outcome is always a successful detonation transition, whereas in the

sub-critical regime, the detonation always fails. Note that there are three regimes

documented, but only two possible experimental outcomes.

Previous work on visualization of the diffraction process was often conducted in

a rectangular high aspect ratio channels, e.g., Edwards et al. (1979), Vasil’ev (1999)

and Pantow et al. (1996), resulting in a cylindrical diffraction process. Soot-foils

and schlieren and open shutter chemiluminescence imaging was used. While this

enables a better interpretation of the images, the detonation structure is still three-

dimensional and the transverse waves reflecting off the side walls could influence

the diffraction process especially in the critical regime. Narrow channel experiments

for fully-developed detonations with a cell size smaller than the channel width have

shown the presence of a small amplitude instability which remains in the narrow
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dimension (Austin, 2003, p. 71). A strictly two-dimensional detonation is apparently

very difficult to achieve experimentally. The present study of detonation diffraction is

carried out in a rotationally symmetric geometry for the area change and no preferred

orientation of the transverse wave structure is given ab initio by the geometry. The

effects of shock reflections off the side walls, which are downstream from the sudden

expansion, are beyond the scope of the present work. The understanding of the exact

mechanisms by which detonations transition or fail through an area expansion is from

the practical point of view, of particular interest to the field of propulsion and safety

analysis.

1.6 Thesis outline

An introduction about the detonation cellular structure and detonation regularity is

given in Chapter 1. Furthermore, the goals of this work are described.

The experimental setup and optical diagnostic techniques used for the experimen-

tal work are explained in Chapter 2. The facilities used for the detonation diffraction

experiments and study of fully-developed detonations are discussed.

In Chapter 3, a detailed description of the PLIF technique is presented together

with a fluorescence model. The model-predicted fluorescence is compared to experi-

mentally obtained fluorescence profiles in fully-developed detonations.

A method for quantifying the degree of regularity of a mixture based on PLIF

images is contained in Chapter 4. Techniques used in fractal analysis are applied to

the edge-detected OH-front, visible on PLIF images.

The results of the detonation diffraction experiments are presented and discussed

in Chapter 5. The focus is on comparing two mixture types, one of them with

a highly regular structure; the other one with a highly irregular structure. The

differences observed on schlieren, PLIF and chemiluminescence images, and pressure

traces are shown. Also the stereoscopic imaging technique and results are described

in Chapter 5.

The results are further analyzed on the basis of a model in Chapter 6. The
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conclusion and future work are given in Chapter 7.
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Chapter 2

Experimental Setup

In this study, two experimental facilities were used: The gaseous detonation tube

(GDT) was used for the investigation of fully developed Chapman Jouguet detona-

tions and the detonation diffraction facility for the study of self-sustaining detonation

waves diffracting from confinement into an unconfined space through an abrupt area

change. The same setup of optical diagnostic techniques including schlieren, planar

laser induced fluorescence (PLIF), and multiple exposure and open shutter chemilu-

minescence imaging was used with both facilities. Pressure history data from trans-

ducers mounted in the tube and test section side walls were recorded in both cases

with a 14 bit digital data acquisition system and a sampling rate of 1 MHz.

2.1 Facilities

The GDT is a 7.6 m long tube with an inner diameter of 280 mm attached with

a “cookie-cutter” to a test section (Fig. 2.1, 2.2) described in more detail in Akbar

(1997). The facility is evacuated prior to each experiment to a pressure level below

4 Pa. The filling procedure is based on the partial pressure method with a filling

gauge accuracy of ±7 Pa. In order to ensure a homogeneous mixture, the entire tube

volume was circulated for five minutes with a bellows pump through a circulation line,

not shown in Fig. 2.1. The detonation is initiated with an exploding wire and a short

section of acetylene-oxygen mixture injected immediately before the wire explosion,

which results in a highly repeatable operation of the initiation phase. The propagating
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Figure 2.1: Schematic of gaseous detonation tube. Courtesy of Tong Wa Chao
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Figure 2.2: Schematic of test section attached to GDT tube. Courtesy of Tong Wa
Chao

detonation is cut at the end of the tube by four plates with sharp edges, the 1 m long

“cookie-cutter”, which form a 150 mm square cross-section channel and transitions

into the 1.8 m long, 150 mm square section of the facility. Experiments conducted

in this facility are discussed in Chapters 3 and 4. Six pressure transducers, three of

them in the test section, were used to obtain the pressure histories and detonation

velocity from time of arrival data of the detonation wave.

The detonation diffraction facility consists of a 1.5 m long tube with an inner

diameter of 38 mm, described in detail in Schultz (2000). The tube is attached to

the 0.8 m long aforementioned test section as shown in Fig. 2.3. The GDT and
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Figure 2.3: Schematic of detonation diffraction tube. Courtesy of Eric Schultz

the detonation diffraction facility use the same test section, Kaneshige (1999), which

could be attached to either facility. The O-ring sealed clamp connection between the

tube and the test section allows for variable positioning of the tube end face with

respect to the window center. For most of the shots, the tube end face was located

50 mm upstream of the window center. The tube end face plate attached to the

diffraction tube inside the test section creates a rotationally symmetric sharp concave

corner of 90 ◦. The corner radius was measured to be less than 0.3 mm. The facility

was evacuated to a pressure of 6 Pa or less, filled with the mixture components by the

method of partial pressures, and, finally, circulated for eight minutes with a bellows

pump to ensure a uniform mixture. The circulation line includes a segment connected

to the small volume behind the tube end face plate. Furthermore, the filling lines

leading to the facility are included in the circulation loop minimizing the filling error

possibly created by unmixed gas volumes. The volume of the filling line not circulated

was 4 cm3 compared to 0.2 m3 of total facility volume. The gauge accuracy used for

the gas filling was ±7 Pa. The detonation is initiated by an electrical spark (total

stored energy of 225 mJ) and a Shchelkin spiral for enhancing the deflagration to

detonation transition. The Shchelkin spiral covers a tube length of 305 mm, has a

wire diameter of 4 mm and a pitch of 12 mm. Pressure histories were recorded by a

total of six pressure transducers equally spaced in the tube and test section.
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2.2 Diagnostics

The test section used for both facilities has three points of optical accesses, two

windows, each 64 mm thick and 150 mm in diameter. These are located opposite

each other, 0.5 m from the end plate. This allows the parallel schlieren light beam to

enter and exit the test section (Fig. 2.2, 2.5). The third window is a UV-transmitting

quartz window in the end plate, which permits the laser light sheet for the PLIF

diagnostics to enter the test section.

2.2.1 Schlieren setup

The schlieren setup is a classical Z-setup with two parabolic mirrors of focal length

1000 mm. The light source is a ruby laser with a pulse length of approximately 50 ns

(Akbar, 1997). The test section volume is imaged onto a 83 × 105 mm black and

white Polaroid 667 (3000 ISO), Fig. 2.4a. An electro-mechanical electronic capping

shutter (3 s open time) and a laser line filter avoid fogging of the film by light in

the room prior to the experiment or by light emission from the reacting flow. The

schlieren system and triggering scheme are shown in Fig.2.7 and described below and,

in more detail, in Pintgen (2000).

2.2.2 Chemiluminescence

For some detonation diffraction experiments, a second camera was used to obtain

chemiluminescence images. A 105 mm f/2.8 Micro Nikkor lens (Nikkon) was used

to acquire an image by the ICCD assembly (Princeton Instruments PI Max) with a

resolution of 512×512 pixel, a 16 bit dynamic range, and a built-in high voltage pulser.

The f-number was increased for experiments with strong chemiluminescence intensity

like mixtures including hydrocarbons. Additionally, depending on the experiment,

the gate width was varied between 50 and 300 ns to employ the full dynamic range of

the ICCD system. The camera position was tilted 8◦ with respect to the horizontal to

avoid interference with the optical path of the schlieren system (Fig. 2.5). The line of
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a) b) c)

Figure 2.4: Examples of images obtained with the optical diagnostics in the diffraction
experiment. The detonation is traveling from left to right and the tube exit plane is
located on the left side on all images. a) Schlieren image, H2+2O2+7Ar, P0=1 bar,
image height 150 mm, shot 71. b) Multiple burst image obtained from a detonation
diffraction experiment. The timing between the 10 burst was set to 3 µs, gate width
300 ns, H2+2O2+6Ar, P0=1 bar, image height 77 mm, shot 148. c) PLIF image,
H2+2O2+7Ar, P0=1 bar, image height 70 mm.

sight of the camera thereby remained perpendicular to the direction of the main flow.

The camera can be operated in multiple gate mode enabling several intensifier gating

pulses before the CCD read-out occurs. The camera system controller unit includes

a pulse timing generator so each trigger in this mode initiates a burst of intensifier

gate pulses. The temporal sequence of events appears overlaid on the image. The

leading reaction front for every gate pulse can be clearly located, as long as they are

spaced sufficiently far apart, Fig. 2.4b. There is a trade-off between the total number

of bursts and their spacing, far apart and how distinct each front is. For the image

height of 109 mm and the mixtures investigated, a temporal spacing between each

pulse of 3 to 6 µs and a total number of up to 15 pulses have been found to produce

good results. From the multiple-pulse images, the average velocity of the leading

luminescence front between gate pulses could be determined.



22

dye laser
beam

cylindrical
lens

spherical
lens

ICCD camera
for PLIF image

filter

parallel light beam
for schlieren techique test section

light sheet

incoming
detonation

wave

quartz
window

schlieren
image

10°

8°

ICCD camera
for multiple exposure

chemiluminescence image

filter

Figure 2.5: Schematic of experimental setup used for detonation diffraction experi-
ment including the camera used to obtain multiple exposure chemiluminescence im-
ages.

2.2.3 Planar laser induced fluorescence

As part of the PLIF system, an excimer pumped tunable dye laser (Scanmate2E,

Lambda Physik) with a frequency doubling unit delivers a pulse of narrow bandwidth

UV-light with a pulse length of approximately 20ns and pulse energy of about 6.5 mJ.

The frequency was tuned to the immediate vicinity of two OH-transition lines close

to 284 nm: A2Σ+ ←X2Πi(1,0) Q2(8) at 284.009 nm and A2Σ+ ←X2Πi(1,0) Q1(9)

at 284.007 nm. A light sheet was formed by the combination of a cylindrical lens

(focal length -25 mm) and a spherical lens (focal length 1000 mm). The light sheet

enters the test section through the quartz window and slit at the end plate of the

test section. The induced fluorescence passes through the UV-transmitting quartz

window and is filtered by a bandpass filter with a centerline of 313 nm and FWHM

10 nm.

The peak fractional transition for the interference transmission bandpass filter

(Andover Cooperation, No. 313FS1-50) is about 0.16. For the pumped transition line

the non-resonant fluorescence, mainly from the (1,1) and (0,0) transition band, occurs

in the wavelength region between 306 nm and approximately 320 nm. Therefore, the

fluorescence range overlaps well with the bandpass filter transition range, blocking
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out all possible sources of noise like elastic scattering and chemiluminescence arising

from the hot reacting flow. For experiments in the detonation diffraction facility,

the fluorescence yield is significantly lower, which is explained by the higher pressure

and correspondingly higher quenching rate (see Chapter 3). Despite the fast optics

used, the fluorescence intensity was at the limit of being detectable over a reasonable

dynamic range (> 4 bits) by the camera. For some of these cases, a UG11 black glass

filter was used instead of the interference filter. The peak fractional transmission

is given as 0.84 at 315 nm. The wavelength transition range reaches from 260 to

380 nm and therefore includes the fluorescence arising from the resonant (1,0) band.

Furthermore, it contains contributions from Raman and Rayleigh scattering. By

tuning the laser 0.02 nm off the pumping transition line, the scattering effects were

isolated and minor compared with the fluorescence signal obtained. This can be

explained by the thin spectral width of the pumping line of the laser, which facilitates

effective pumping while keeping the scattering contributions far below the fluorescence

intensities. In the future, for low fluorescence yield situations, the use of reflection

filter sets should be considered since they provide a higher peak reflectance than the

peak transmission of interference filters.

The fluorescence signal is collected perpendicularly to the light sheet by a 576× 384

pixel 12-bit intensified CCD-Camera (Princeton Instruments ITE/ICCD-576, 22 ×

22 µm pixel size). The camera was gated by a 30 ns pulse of 1000 V, which allows

for a minimization of chemiluminescence as a source of noise. Since the characteristic

quenching time is far smaller than the fluorescence life time, the fluorescence signal

does temporally coincide (discussed in detail in Chapter 3) with the dye laser pulse of

approximately 20 ns length. The image is formed by a 105 mm f/4.5 UV-transmitting

lens (Nikkon UV-Nikkor). The height of the imaged region was between 30 and 80 mm

depending on the particular experiment (Fig. 2.4c). For the simultaneous use of the

PLIF and schlieren system, the camera had to be moved out of the optical path of

the schlieren system. The resulting distortion of the image was corrected by means

of post-processing the PLIF image. The PLIF and schlieren images were obtained

within 80 ns which allows for an overlay of both images with a minimal displace-
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ment (less than 0.48 µm, including the uncertainties in the overlay process) of spatial

features. To ensure alignment of the superimposed images, a set of target images

was used. After the alignment of the optical systems and prior to the experiment, a

transparent target was placed in the plane of the light sheet. An image of the same

target was taken with both the schlieren and PLIF systems. To obtain sufficient sig-

nal strength on the target image of the room light with the PLIF camera, the filter

was removed, the light sheet was blocked, and the exposure time increased. For the

overlay of images obtained in an experiment, identical transformations of target and

experimentally obtained images were performed while matching the targets on the

PLIF and schlieren images. One PLIF image, one schlieren image, and one multiple

exposure chemiluminescence image could be acquired simultaneously per experiment.

The development of the PLIF system is discussed in detail in Pintgen (2000) and

quantitative aspects of the PLIF technique are described on a theoretical basis in

Chapter 3. Here, the triggering of the simultaneous PLIF and schlieren systems is

addressed in detail, since it was modified from the system described in the references

given above and allows for an optimized camera gate width on the order of the dye

laser pulse length.

2.2.4 Triggering of the imaging system

A timing diagram and wiring schematic of the experimental setup is shown in Figs. 2.7

and 2.6. The firing sequence is initiated by the manual triggering of delay genera-

tor A, which immediately sets off the charging sequence of the ruby laser flash lamp

capacitor. The charging of the flash lamp capacitor takes, depending on the voltage

setting, approximately 5 s, and the flash lamp has to be fired within 10 s after the

charging is completed before it discharges automatically. After the flash lamp capac-

itor is fully charged up, delay generator A triggers the spark plug circuit. Following

the deflagration to detonation transition process, the detonation wave reaches, after

a certain period of time, the field of view for the optical system. This period of time,

between the spark firing and the point in time the detonation wave reaches the field
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of view, depends on mixture sensitivity as well as CJ velocity of the specific mixture.

Roughly 1 ms before the detonation wave reaches the field of view, the ruby laser flash

lamp has to be fired. The delay between the spark plug firing and the detonation

wave reaching the field of view is very repeatable and can be estimated for the first

shot with a specific mixture composition from the calculated CJ velocity. Note that

for fast propagating detonations in sensitive mixtures, the delay between ignition and

the point in time when the detonation front reaches the window can be less than

1 ms. In this case, the flash lamp is actually fired before the spark ignition. To

ensure precise timing for the detonation diffraction experiment, the closest pressure

transducer, 298 mm upstream to the tube exit plane, is used for triggering the optical

systems. The pressure transducer signal is “teed” from the data acquisition system

and processed by a latching edge detection trigger circuit. This circuit consists of a

Schmitt-trigger and an AND-gate. The purpose is to inhibit any trigger output for

0.5 ms after the firing signal. This avoids false triggering by noise on the pressure

transducer signal induced by the HV spark plug or exploding wire circuit. The TTL

level output of this circuit is used as input for delay generator B.

A trigger signal is sent from delay generator B to the excimer laser accounting

for the time the detonation front needs to travel from the pressure transducer to the

desired location in the field of view of the schlieren and PLIF system. The light

output of the excimer pumped dye laser occurs approximately 1.2 µs after the trigger

input signal and is afflicted with a jitter of approximately 200 ns. The laser monitor

output signal also shows a shot-to-shot variation of 150 ns between trigger output and

light output as measured by a photo-diode. As a result, triggering of the camera gate

precisely coinciding with the laser light output is not possible in a repeatable fashion

as long as the camera system is triggered based on the laser input trigger or laser

monitor output. To overcome this difficulty, an induction coil was placed inside the

excimer casing to obtain the high frequency noise signal arising from the discharge of

the capacitors of the excimer laser 85 ns prior to the light output. The high frequency

noise was processed with a high speed comparator circuit to obtain a TTL-level signal

70 ns before the light output. The circuit consists of a rectifier, an RC-low-pass filter,
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PLIF setup.
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and an integrated comparator circuit (LM362, National Semiconductor). Tests with

a photo-diode showed that the jitter of the delay between the TTL output signal

of the high speed comparator circuit and the actual light output is 0.3 ns, allowing

a highly repeatable gating of the camera with respect to the laser light pulse. The

delays for the camera gate pulse timing are set on the HV gate generator to coincide

with the light output. The entire PLIF system is, therefore, solely triggered by the

input signal to the excimer laser. The ruby laser system has an inherent delay of

approximately 320 ns from the trigger input signal to the Q-switch to the beginning

of the light pulse of 50 ns length. If the Q-switch were triggered by the inductor coil

signal, the schlieren picture would be consistently taken 250 ns after the PLIF image.

This corresponds to a spatial displacement of 0.5 mm for a detonation traveling at

2000 m/s. In order to decrease the delay between obtaining the PLIF and schlieren

images, the Q-switch is triggered prior to the inductor coil signal by delay generator

B. The disadvantage is that the point in time of the PLIF image being taken is

afflicted with a jitter of 200 ns with respect to the time base on the delay generator.

This required the Q-switch timing to be tested and adjusted prior to each experiment

to compensate for the varying delay between the delay generator B time base and

the PLIF image being taken. This is only possible because the jitter of the excimer

laser drifts only 50 ns over about one minute while, over several minutes, the drift

can be up to 200 ns (Pintgen, 2000). This technique allows for a delay of 20 to 70 ns

at the maximum between acquiring the PLIF and schlieren images, corresponding to

a spatial displacement of 0.14 mm for a front velocity of 2000 m/s, which is on the

order of one pixel resolution in the CCD camera. Since the UG11 filter used for some

experiments in the PLIF system has a second transition band close to the ruby laser

wave length of 694 nm, overlap between the PLIF camera gate and the ruby laser

pulse was avoided. The camera shutter on the Polaroid film for the schlieren image

was actuated by delay generator A prior to the spark ignition and closed after the

ruby laser fired.
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Chapter 3

Quantitative Considerations for
PLIF Signals

Planar laser induced fluorescence (PLIF) of the OH radical has been used to visualize

the distribution of OH concentration in a flow field with locally strongly varying

background composition and thermodynamical conditions in the detonation front.

The quantitative relationship between the PLIF signal intensity and number density of

OH molecules is discussed in this chapter, including the effects of shape and strength

of the absorption line, quenching, and light sheet energy attenuation by absorption.

In the first Section, the general principle of laser induced fluorescence is discussed.

The purpose of the subsequent three Sections in this chapter is to provide a theoretical

spectroscopic background for the PLIF model discussed in Section 3.5. In Section 3.7,

experimentally obtained fluorescence intensities from fully developed detonations are

compared to the model predictions.

3.1 Laser induced fluorescence

Laser induced fluorescence (LIF) techniques are one of the most widely used non-

intrusive techniques for the probing of gases, and it facilitates selective species concen-

tration measurements. The high signal strength often makes it preferable to Rayleigh

and Raman scattering. With PLIF, one can obtain two-dimensional species concen-

tration distributions and slices of the probed volume, which enables the study of

three-dimensional phenomena.
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All LIF techniques rely on properties of the natural fluorescence of the probed

atom or molecule. Since the natural fluorescence occurs from, in general, weakly

populated higher energy levels, natural fluorescence signals are small. The incoming

laser light temporarily populates the higher levels by exciting molecules in the lower

and more densely populated levels. This leads to a much higher signal strength from

the subsequent downward transition. LIF is therefore a two-step process involving

excitation and fluorescence.

Figure 3.1: Energy level scheme of the OH radical.

In Fig. 3.1, the various transition mechanisms that play a role in the LIF tech-

nique are illustrated, each specified by the corresponding rate coefficient. The lower,

X2Π, and upper, A2Σ+, electronic levels of the OH radical are subdivided into vibra-

tional levels denoted by arabic numbers for v′′ and v′, respectively. Each vibrational

level is further subdivided into rotational levels, denoted by N ′′ and N ′, respectively.

The Einstein B coefficient for absorption B12 [cm2/(Js)] represents the absorption of

photons. The emission of a photon can be caused by two processes. In stimulated

emission, the excited molecule transitions, under the influence of the incoming laser

light, to the lower state, represented by the Einstein coefficient for stimulated emis-

sion B21. The emitted photon carries an energy, Ephot = hνlaser, equivalent to that of

the laser radiation, where νlaser is the frequency of the laser. For spontaneous emis-

sion, expressed by the Einstein coefficient for spontaneous emission, A21 [1/s], the
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transition occurs to a lower level, which, in general, is not the initial level. Further-

more, the molecule in the upper state can get de-excited by intermolecular collisional

quenching involving either two electronic states with a quenching rate Q21 [1/s] or

only one electronic state with a quenching rate Qrot,vib [1/s]. Effects of predissocia-

tion denoted by P2 are neglected here since they are negligible for the transition line

pumped in the experiment. The Einstein B absorption coefficients are related to the

corresponding rate constants b in units of 1/s by

b =
BIν

c
, (3.1)

where c is the speed of light and Iν [W/(cm2 cm−1)] is the spectral laser irradiance.

The units of Iν show that the physical quantity represented is an energy amount [J]

per unit time [s] per unit area [cm2] per unit wavenumber [cm−1]. Note that the

units for wavenumber are denoted throughout this chapter as cm−1 as compared to

1/cm. The units are not simplified to allow for a faster physical interpretation of the

physical quantity. For now, Iν is assumed as a simplification to be constant over the

absorption line-shape. In contrast to Q, which is dependent on temperature, pressure,

and background composition, the rate constants for emission and absorption are fixed

quantities for each transition line. Assuming a simple two-level model (Eckbreth,

1996), the rate equations are given as

dN1

dt
= −N1B12 + N2(b21 + A21 + Q21),

dN2

dt
= N1B12 −N2(b21 + A21 + Q21) (3.2)

and lower and upper state population densities N1 and N2 can be written as a function

of time during the laser pulse as

N2(t) =
b12N

0
1

r
(1− exp(−rt)), (3.3)

r = b12 + b21 + A21 + Q21, (3.4)
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where

N1(t) + N2(t) = N0
1 , N2(t = 0) = 0. (3.5)

For t� 1/r, the system reaches a steady state and the upper state population is

N2 =
b12N

0
1

r
. (3.6)

The steady-state number density of molecules in the upper state can also be written

as

N2 = N0
1

B12

B12 + B21

1

1 +
Isat
ν

Iν

, (3.7)

(3.8)

where

Isat
ν = c

A21 + Q21

B12 + B21

(3.9)

is the saturation spectral irradiance. The detected fluorescence signal power, F , is

proportional to the product of the the absolute number of molecules in the upper

state, N2V , and the downward transition rate constant, A21N2, and can be written

as

F = CA21δV N2

= CA21δV N0
1

B12

B12 + B21

1

1 +
Isat
ν

Iν

, (3.10)

where C is a lumped constant containing the collection solid angle, and δV is the laser

irradiated volume from which fluorescence is detected. The volume δV can be pictured

as the intersection of the total light sheet irradiated volume and the conical region

imaged onto the detector, e.g. one pixel of the camera. Light sheet attenuation effects
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are discussed in Section 3.3 but neglected in this Section. Depending on the magnitude

of Isat
ν and Iν , two operational regimes for a PLIF system can be distinguished. For

Iν � Isat
ν , the last term in Eq. 3.10 can be approximated by Iν . The fluorescence

signal power is then proportional to the laser irradiance, and the system is operating

in the linear regime. Note that in this case, F is proportional to IνδV and therefore

independent of the light sheet thickness t. The irradiated volume δV is proportional

to t since δV = At, where A is the projected area of δV . Iν is proportional to 1/t as

for a fixed light sheet height h and fixed laser power. The cross section area of the

light sheet decreases linearly with t. The product IνδV is therefore independent of the

thickness t. Since the detected fluorescence signal gets integrated over the thickness

t, the spatial resolution of the PLIF system is limited by the light sheet thickness.

When reducing the light sheet height h, the volume δV from which fluorescence

emerges is constant while Iν increases proportional to 1/h for a constant magnification

of the imaging system. This leads to a higher fluorescence signal detected and an

increased signal-to-noise ratio as long as the noise is not proportional to Iν . In the

case where the noise arises mainly from elastic scattering processes, no improved

signal-to-noise ratio can be expected, whereas the signal-to-noise ratio will improve

in the case where the noise arises mainly from chemiluminescence, which is obviously

independent of the laser irradiance. Nevertheless, there are limits in decreasing the

light sheet height. If the light sheet height, is smaller than the field of view height the

detected fluorescence power F does not increase for all pixels on the detector, since

the so-called “wings” of the light sheet profile have a lower intensity.

In the case of Iν � Isat
ν , F becomes independent of Iν and Isat

ν and therefore

independent of Q. This LIF technique is known as laser induced saturation fluores-

cence (LISF). The energy transfer into and out of the directly pumped levels is then

controlled by the rates of laser absorption and stimulated emission. The saturation

approach leads to a maximum fluorescence yield and, therefore, maximum species

detectivity. However, it is often due to the magnitude of Isat
ν challenging to achieve

complete saturation over the entire light sheet plane. This is due to the spatial wings

of the laser beam which result in lower intensities in the regions in the outer edges of



34

the light sheet. Furthermore, the condition Iν � Isat
ν might not hold over the entire

laser pulse duration. For the present study, saturation effects are not considered since

Iν ∼ Isat
ν as discussed in Section 3.9. A more detailed discussion about LISF is found

in Eckbreth (1996). The spectral distribution of the laser and absorption line are not

included in this highly simplified fluorescence signal strength description, Eq. 3.10,

and are discussed in the next Section.

3.2 Line shapes

Spectral line-shapes of the laser and the absorption lines have to be considered in order

to determine how much of the laser energy actually goes into exciting the desired

transition line. This is measured by the spectral overlap fraction Γ of the excited

molecular transition line and the laser line. The spectral overlap fraction is also

referred to as the spectral overlap integral or overlap term and describes the spectrally

distributed interaction between the molecular transitions and laser radiation, as there

exists a frequency spread of the absorption by the transition line and of the emission

by the laser line. In the literature concerning this topic (Palma et al., 1998), this

quantity is defined in several ways, sometimes termed g with dimensions of 1/cm−1.

Here, the definition of Partridge and Laurendeau (1995) is followed and the overlap

integral Γ is defined as a dimensionless quantity

Γ =

∫ +∞

−∞
YA(ν)LL(ν) dν (3.11)

where YA(ν) [1/cm−1] is the spectral line-shape function of the absorption line, which

is normalized to unity, and LL(ν) is the dimensionless spectral distribution function

of the laser, normalized to the spectral full width half maximum (FWHM) ∆νL of

the laser:

∫ +∞

−∞
YA(ν)dν = 1, (3.12)∫ +∞

−∞
LL(ν)dν = ∆νL. (3.13)
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The spectral line-shape function describes the absorption and emission strength as

a function of wavelength since there exists a spread in frequency and the energy

levels in atoms and molecules are not infinitely sharp. The overlap integral represents

the fraction in energy of the laser line, which actually gets absorbed by a specific

transition line.

3.2.1 Line shape of absorption line

This discussion is limited to the quantitative calculation of the absorption line-shape

and the influence of two effects, temperature and pressure broadening. Effects such as

natural line broadening are neglected as these effects are, in the present application,

small compared to the ones considered.

3.2.1.1 Temperature broadening

The temperature broadening is caused by the thermal motion of the absorbing species

in the gas and the resulting Doppler effect. The Doppler line-shape function is math-

ematically described as a Gaussian function and can be written (Eckbreth, 1996) in

its normalized form as

YD(ν) =
c

ν0

√
mA

2πkT
exp

(
−4 ln 2

(ν − ν0)
2

∆ν2
D

)
, (3.14)

where k is the Boltzmann constant, c the speed of light, mA the molecular mass of the

absorbing molecule, ν0A the centerline transition frequency, and ∆νD the transition

width. The transition width (FWHM) is given by Fowles (1968) as

∆νD =
2ν0

c

√
2 ln 2kT

mA

. (3.15)

3.2.1.2 Pressure broadening

Pressure broadening occurs when the absorption process of the molecule is inter-

rupted by collisions with other molecules or atoms. These collisions can occur with

different species than the absorbing molecule or the same species, a process called
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self-broadening. The spread in the power spectrum or spread in frequency ∆νC of

the finite wave train absorbed by the molecule is inversely proportional to the aver-

age time τ between collisions of molecules, ∆νC = (πτ)−1. The collision-broadened

line-shape is given by a Lorentzian, Kessler et al. (1993), as

YC(ν) =
∆νC

2π

1

(ν − ν0)2 + (∆νC/2)2
, (3.16)

where ∆νC is the collision width. The collision width is temperature and pressure

dependent and, furthermore, specific to each collisional partner. The collisional line

width is calculated by considering the sum of the contributions of all species present

in the background gas and self-broadening. The contribution of each species can be

modeled to be proportional to the product of the partial pressure Pi and the collisional

broadening coefficient, γi, of each species i, (Rea et al., 1987). The total collisional

line width can be expressed as

∆νC =
∑

i

2 γiPi . (3.17)

The collisional broadening coefficient of intermediate combustion species like OH

has been measured for a variety of broadening species from absorption data obtained

in shock tubes by Rea et al. (1989), water vapor discharge cells by Shirinzadeh et al.

(1985), or from flat-flame burners. The temperature dependence of the collisional

broadening coefficient can be described (Rea et al., 1987) by

2 γ = 2 γ0

(
T

Tref

)n

, (3.18)

where γ0 is the value of the collisional broadening coefficient measured at the reference

temperature Tref . The exponent n is determined from experimental fits for each

species and varies between 0.1 and -1.0. Besides the vibrational band dependence,

γ0 can be a function of the rotational level of the ground state. For example, the

collisional broadening coefficient of the OH radical in the (0,0) band at 2000 K varies

for N2 as a colliding species from 0.051 cm−1atm−1 for a rotational quantum number
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J of 0.5 to 0.038 cm−1atm−1 for J = 9.5 (Rea et al., 1987). However, γ seems to be

fairly independent (2γ ≈ 0.034 cm−1atm−1) of the quantum number for Ar. Besides

the collision-induced broadening, a collision-induced shift νs of the absorption line

can be observed. This shift can be expressed as a fraction of the collisional width νC :

νs = β νC , (3.19)

where β is determined experimentally and varies between 0.1 and 0.3 (Shirinzadeh

et al., 1985). The shift of the centerline frequency can be either negative or positive

depending on the colliding species. Data for the major collision species in combustion

research are available for the (0,0) and (1,0) band of the OH radical in Rea et al.

(1987), Rea et al. (1989), and Kessler et al. (1993).

3.2.1.3 The Voigt profile

If temperature and pressure broadening are both significant, a line-shape combination

of Gaussian and Lorentzian is used, the so-called Voigt profile V (a, x). The absorption

line-shape function γ(ν) is given by

γ(ν) = 2

√
ln 2

π

V (a, x)

∆νD

(3.20)

and the Voigt profile V (a, x) is

V (a, x) ≡ a

π

∞∫
−∞

exp(−y2)

a2 + (x− y)2
dy , (3.21)

where the parameter, x and a are given by

x ≡ 2
√

ln 2
ν − ν0

∆νD

, (3.22)

a ≡
√

ln 2
∆νC

∆νD

. (3.23)
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The parameter a is a measurement of the contribution by the two broadening processes

and can be evaluated with Eq. 3.15 and 3.17.

3.2.2 Determination of the spectral line-shape of the laser
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Figure 3.2: a) PLIF image of test-flame. Image height: 75 mm. b) Fluorescence
intensity as a function of the center excitation wavelength of the dye laser. The
fluorescence is averaged over the entire field of view.

The spectral laser line-shape can be determined from the excitation spectrum,

which is the fluorescence intensity occurring as a function of the center excitation

wavelength ν0L of the laser. The fluorescence intensity is thereby integrated over a

wide range of wavelengths, as a bandpass filter of 10 nm FWHM is placed in front

of the detector, which is the ICCD camera in this setup. Note that the excitation

spectrum is fundamentally different from the fluorescence spectrum, which describes

the fluorescence intensity as a function of wavelength for a fixed excitation frequency.

For the determination of the fluorescence spectrum, a spectrometer is necessary. An

experimentally obtained excitation spectrum over a spectral range including several

transition lines is shown in Fig. 3.2. The dye laser is scanned in frequency over

an absorption line and the total fluorescence from a test-flame is detected. A highly

resolved excitation spectrum of an isolated transition line is ideal for gaining quantita-

tive information about the laser line-shape if the line-shape of the excited transition
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line is known beforehand. An experimentally obtained excitation spectrum of the

P1(4) absorption line of the (1,0) band of the OH radical in the vicinity of 283.4

nm is shown in Fig. 3.3. In this measurement the wavelength increment of the dye

laser is set to its minimum value of 5·10−4nm (≈ 1.86 GHz). The fluorescence was

detected by the ICCD camera broad-band through a bandpass filter with a centerline

of 313 nm and 10 nm FWHM. A source of error is the lack of complete stability of the

flame geometry. Due to small movements of the flame, the cross sectional area of the

reaction zone with the light sheet changes and thus introduces noise to the excitation

spectrum measurement. In order to minimize this and improve the signal-to-noise

ratio, the excitation spectrum of the P1(4) transition line is averaged over 10 shots

for each wavelength. The obtained excitation spectrum I(ν0L) is proportional to the

convolution of the absorption line and the laser line,

I(ν0L) = CLL(ν0L, ν) ∗ YA = C

∞∫
−∞

LL(ν0L, ν)YA(ν)dν , (3.24)

where C is necessary overall scaling constant, since the detected fluorescence signal is

not measured in absolute units so that the convolution integral is in arbitrary units.

There are two ways to determine the spectral line-shape of the laser from the

excitation spectrum. Assuming a priori an analytical expression for the spectral laser

line-shape, only the parameters in this analytical expression need to be determined.

For the Gaussian line-shape assumed here, the Gaussian width ∆νL is the only pa-

rameter to be evaluated. The laser spectral profile can, following Eq. 3.14, be written

as

LL(ν) =

√
4 ln 2

π
exp

(
−4 ln(2)

(
ν − ν0L

∆νL

)2
)

, (3.25)

where ν0L is the centerline frequency of the spectral laser profile. The laser line-

shape is normalized as defined in Eq. 3.13. The line-shape of the P1(4) absorption

line gabs(ν) is approximated as a Voigt profile as discussed in Section 3.2.1.3 with

estimated values for the temperature and collisional broadening coefficients based on

the major species present in the test-flame. The absorption line-shape parameters for
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H2-air flames at atmospheric conditions can also be taken from the literature (Kessler

et al., 1993). Once the absorption line-shape in known, Eq. 3.24 can be evaluated and

∆νL determined by a least-squares fit to the experimentally obtained data points.

A different approach to determining the laser line-shape is to assume a priori no

analytical expression for the spectral laser profile, but fit a Voigt profile Vexp(ν0L) to

the experimentally obtained excitation spectrum I(ν0L). From this, one can obtain

an expression for LL(ν) by Fourier transforming Eq. 3.24:

∞∫
−∞

exp(−ikν0L)I(ν0L) dν0L (3.26)

=

∞∫
−∞

∞∫
−∞

exp(−ikν0L)LL(ν0L − ν) YA(ν) dν dν0L

=

∞∫
−∞

∞∫
−∞

exp(−ik(ν + x))LL(x) YA(ν) dν dx

=

∞∫
−∞

exp(−ikν) LL(x) dν

∞∫
−∞

exp(−ikν) YA(ν) dx.

Equation. 3.26 can be solved numerically for LL by an inverse Fourier transformation.

In the present study, the first approach is followed.

In order to determine the line-shape parameters at the test-flame conditions, the

temperature and background composition have to be specified. The adiabatic flame

temperature for a stoichiometric H2-air flame is calculated to be 2340K. Since it is a

non-premixed diffusion flame, there are regions in the flame with temperatures much

lower than the adiabatic flame temperature. The temperature in the regions where the

OH radical occurs in detectable amounts is assumed to be fairly close to the adiabatic

flame temperature. This is seen in an experimental and computational investigation

of the OH radical field in a two-dimensional, axisymmetric, laminar, methane-air

diffusion flame by Smooke et al. (1992). The adiabatic flame temperature is calculated

to be 2220 K. In the region in which the OH radical was found in amounts larger

than 50% of the peak mole fraction, the temperature was calculated to be between
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Species partial pressure (kPa)
N2 66.0

H2O 31.4
H2 1.3
OH 0.6
O2 0.4
NO 0.2

Table 3.1: Partial pressure of major species from equilibrium calculation for stoichio-
metric H2-air flame at 100kPa total pressure.

approximately 1900 and 2050 K, which is 170 to 320 K below the adiabatic flame

temperature. Non-intrusive flame temperature measurements 10 mm above a 25-mm

diameter burner surface in a premixed stoichiometric H2-air flame (Kessler et al.,

1993) give results in the order of 2050 K. This temperature is about 300 K below the

adiabatic flame temperature. This difference can be explained by the heat transfer

to the large burner surface in that case. In the present study, a H2-air diffusion flame

is used for the calibration. The average flame temperature in the region where OH

radicals are detected is assumed to be 2100 K, which is 240 K below the adiabatic

flame temperature. This simplification does not take into account that there is OH

fluorescence, even though in small amounts, arising from a region colder than this

temperature. In this region the Doppler line width ∆νD is correspondingly smaller.

Note that ∆νD is proportional to the square root of the temperature and the error

introduced by the small uncertainty in the temperature insignificant.

The Doppler line width ∆νD of the absorption line was calculated from the temper-

ature (T = 2100 K) and the molecular weight of the OH radical (mOH = 17.007 amu),

Eq. 3.15, to be 0.28 cm−1. The partial pressures of the major species present in the

diffusion flame are calculated (Reynolds, 1986) by assuming chemical equilibrium and

are given in Table 3.1.

The collision width can be evaluated based on the values given in Table 3.1 and

Eq. 3.17. Only the major species H2O and N2 are considered as colliding species.

Broadening coefficients are available for only a limited number of species in the lit-

erature (Bessler et al., 2003). The vibrational band dependence in the OH system
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Species 2γ (cm−1atm−1) n
N2 0.043 T=2000K 0.83

H2O 0.13 T=2370K 0.66
CO2 0.035 T=2290K 1.2
Ar 0.031T=2000K 0.80

Table 3.2: Values for collisional broadening coefficient for several species of interest.
The values for 2γ and the temperature exponent n are taken from Shirinzadeh et al.
(1985) and Rea et al. (1987) for a rotational level J = 5.5 for the (0,0) band.

2γ(N2) 2γ(H2O) ∆(νC) [1/cm]
P1(4) 0.042 0.124 0.065

Table 3.3: Calculated values for 2γ [cm−1 atm −1] for P1(4) transition line and total
collision width [GHz] for atmospheric H2-air flame.

for the species H2O and N2 is rather weak (Kessler et al., 1993) so the values for the

(0,0) band can be used as a good approximation for the (1,0) band, the case studied

here. The results for calculated collisional width are given in Table 3.3. The transi-

tion lines considered in the test-flame are mainly affected by temperature broadening.

The Voigt a-parameter is evaluated to be

∆νC

∆νD

= 0.234,

a(P1(4)) = 0.195. (3.27)

The calculated values are in good agreement with a best fit Voigt profile to the directly

measured (Kessler et al., 1993) absorption profile of the P1(7) transition in the (1,0)

band near 283 nm, with a reported a-parameter value of a = 0.19.

The experimental data were fitted by the least-squares method to the calculated

excitation spectrum, Eq. 3.24, by optimizing three parameters: The Gaussian width

of the laser line ∆νL, an overall scaling factor C, in order to match the arbitrary

units of the experimental data to the arbitrary units of Iν , Eq. 3.24, and a wavelength

shift parameter ∆νfit. Since the dye laser is not calibrated to absolute wavelength,

the calculated absorption line and, therefore, the excitation spectrum, will be shifted

relative to the nominal wavelength given by the dye laser readout. The wavelength

shift parameter ∆νfit takes this into account. The analytical expression for the laser
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Figure 3.3: a) Experimentally obtained excitation spectrum of the P1(4) (1,0) line
of the OH radical near 284 nm from atmospheric H2-air test-flame. Each data point
is obtained by integrating the total intensity and averaging over ten individual im-
ages obtained for fixed excitation wavelength. The fitted curve shows the predicted
excitation profile based on the laser line parameters determined. Arbitrary units on
ordinate, normalized and centered to maximum experimental fluorescence intensity.
b) Residuum of fitted curve.

line spectral profile is

LL(ν − ν0L, ∆νL, C, ∆νfit) = C

√
4 ln 2

π
exp

(
4 ln(2)

(
ν − ν0L −∆νfit

∆νL

)2
)

.

(3.28)

For the absorption line profile the expression for γ(ν) from Eq. 3.21 was used with

the parameters shown in Eq. 3.27. The objective function E to be minimized in the

least-squares fit can thus be written as

E(∆νL, C, ∆νfit)

=
n∑

p=1

 ∞∫
−∞

LL(ν − νp, ∆νL, C, ∆νf it) · γabs(ν) dν − M(νp)

2

(3.29)

M(νp) is the measured fluorescence for the data point p, which corresponds to a

wavelength of νp as taken from the dye laser display. The experimentally obtained
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profile was normalized and and shifted to the maximum, see Fig. 3.3a squares. The

best fit was found for ∆νL=0.305 cm−1, ∆νfit =-0.012 cm−1, and C =0.985 and is

shown in Fig. 3.3a as a solid line. The corresponding residuum, which describes the

normalized difference in the line-shape between the fitted values and experimentally

obtained values, was at the maximum 4% and is shown in Fig. 3.3b. The laser line

width is for flame conditions close to the line width of the absorption line of 0.32

cm−1, Fig. 3.4. For the test-flame conditions, the overlap integral, Eq. 3.11, was

determined to be Γ=0.60. The assumption of a constant spectral irradiance over

the absorption line used sometimes in quantitative PLIF analysis does not hold true

in this case. In the proceeding analysis, the spectrally resolved interaction between

the absorption and laser line has to be accounted for. The excitation spectrum is

also used to calibrate the laser wavelength, which is based on the known centerline

frequency of a specific absorption line. The excitation spectrum can be obtained

with the simulation tool for spectral analysis, LIFBASE (Luque and Crosley, 1999).

The simulated excitation spectrum was then compared with the experimental one to

evaluate the effective wavelength output corresponding to a specific grating position

of the tunable dye laser. The grating position is the quantity set on the laser control

unit, which determines the output wavelength. The calibration process is described

in detail Pintgen (2000). The calibration process is not affected by the spectral

interaction since the maximum in the convolution integral occurs when the absorption

line center coincides with the centerline of the laser line, regardless of the line width

of both lines. The absorption line-shapes at conditions occurring behind detonation

fronts and their implications for the overlap integral and PLIF signal are discussed

in Section 3.6.

3.3 Absorption

The effect of light sheet energy attenuation by absorption can be divided into absorp-

tion by the distinct transition lines and broadband absorption arising from species

with very dense and overlapping transition lines. The absorption by distinct transition
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Figure 3.4: Comparison of the fitted excitation spectrum (convolution), the absorp-
tion line-shape and the laser line-shape, all normalized to their maximum, for the
conditions in the atmospheric H2-air-flame.

lines of the OH radical and broadband absorption by H2O and CO2 are considered.

The Beer-Lambert law relates the absorption of radiation to the properties of the

material the light is traveling through.

3.3.1 Beer-Lambert law

When monochromatic radiation of frequency ν and incident intensity I0 passes through

an absorbing gas of path length L, the transmitted intensity It can, according to the

Beer-Lambert law, be written as

It = I0 exp (−α(ν)) , (3.30)

where α is the absorbance, defined as the integral over the path length L of the

product of spectral line intensity S [cm/molecule] (Section 3.3.2), number density

n of the absorbing species [molecules/cm3], and spectral line function YA(ν) [cm],

Eq. 3.13:

α(ν) =

L∫
0

S n YA(ν) dν. (3.31)
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In general, S, n, and YA(ν) depend on the thermodynamical properties and gas

composition. If the medium is assumed uniform, Eq. 3.31 simplifies to

α(ν) = S n YA(ν)L = k(ν)L, (3.32)

where k with units of inverse length is often referred to as the absorption coeffi-

cient. Yet another commonly used quantity is the spectral absorption cross section

σ(ν) [cm2/molecule], which describes, from the view point of geometrical optics the

area being blocked by each absorbing molecule. The cross section is related to the

absorption coefficient through the concentration of the absorbing species n by

k(ν) = σ(ν)n. (3.33)

3.3.2 Spectral line intensity

The spectral line intensity for two states of a vibrational-rotational system is defined

(Penner, 1959) as

S =
n′′

n

{
1− n′g′′

g′n′′

}
B12

hν0

c
, (3.34)

and for local thermodynamic equilibrium as

S(T ) = fB(T )
{

1− exp
(
−c2

ν0

T

)}
B12

hν0

c
, (3.35)

where fB is the Boltzmann fraction, c2 [cm K] is the second radiative constant de-

fined as c2 = hc/k, h is the Planck constant, B12 is the Einstein coefficient for induced

absorption and ν0 [1/cm] is the transition frequency between the two states. The pop-

ulations of the lower and upper states, n′′ and n′, respectively, follow at a temperature

T for local thermodynamic equilibrium Boltzmann statistics. The statistical weights

of the states are denoted by g. Boltzmann’s formula relates the ratio of the num-

bers n1 and n2 of molecules occupying the two energy states E1 and E2 [1/cm] in
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thermodynamic equilibrium at a temperature T by

n1

n2

=
g1

g2

exp

(
−c2

(E1 − E2)

T

)
. (3.36)

Therefore, the Boltzmann fraction of the lower level, describing the fraction of molecules

occupying that level, can be written as

fB =

g′′ exp

(
−c2

E ′′

T

)
∞∑
i=0

gi exp

(
−c2

Ei

T

) =

g′′ exp

(
−c2

E ′′

T

)
Q(T )

, (3.37)

where the sum is taken over all possible states, Q(T ) is referred to as the partition

function or state sum, and E ′′ is the lower state energy of the transition. For the

numerical evaluation of Eq. 3.37, Q(T ) is taken from the spectroscopic database

HITRAN (Rothman et al., 2003), which lists Q(T ) for the OH radical up to 3000

K in 1 K increments in T . An example evaluation for fB for the Q2(8) transition

line (E ′′=1368.7216 cm−1) of the OH radical is shown in Fig. 3.5. The temperature

dependence of fB for this transition line between 1000 and 2800 K is rather weak as it

changes by only 16%. The second term in Eq. 3.35 describes the effects of stimulated
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Figure 3.5: Boltzmann fraction fB for Q2(8) transition line of OH radical.

emission, which are minor for the regime of the PLIF system in the experiment
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considered here. The temperature dependence of the line strength arises in this case

mainly from the temperature dependent Boltzmann fraction, since the Einstein B12

coefficient is independent of temperature. The line intensity can be written in other

commonly used units S ′ [cm−2/atm] by using the ideal gas law, p = nkT ,

S ′(T ) = nL
T0

T
S(T ), (3.38)

where nL [molecules/cm] is the Loschmidt constant and T0 = 273.15 K. Using Eq. 3.35,

the knowledge of the line strength S for a reference temperature Tref enables the

calculation of S at any temperature T via

S(T ) = S(Tref )
Q(Tref )

Q(T )

exp

(
−c2

E ′′

T

)
exp

(
−c2

E ′′

Tref

) 1− exp
(
−c2

ν0

T

)
1− exp

(
−c2

ν0

Tref

) . (3.39)

The line strength for the transition lines of the OH radical is tabulated for a refer-

ence temperature of Tref = 293 K in the spectroscopic database HITRAN (Rothman

et al., 2003) which, together with Q(T ) and Eq. 3.39, enables the numerical evalu-

ation of S(T ). The self-absorption of the light sheet intensity by the OH transition

lines is calculated in this fashion together with Eq. 3.30 and 3.31.

In the LIF model subsequently discussed, broadband absorption by H2O and CO2

is considered. Limited data for broadband absorption of UV light by H2O and CO2

at elevated temperatures was available. The ultraviolet absorption spectrum of CO2

shifts significantly to longer wavelengths with increasing temperature (Jensen et al.,

1997). Hildenbrandt and Schulz (2001) and Schulz et al. (2002b) report spectrally

resolved UV absorption cross-sections between 190 and 320 nm in shock-heated CO2

and H2O between 880 and 3050 K. Schulz et al. (2002a) report a fit to the temperature-

dependent absorption spectra measured in the form of an analytical expression and

enabling the estimation of the absorption cross section. A more detailed description

of the model is found in Appendix A. The light sheet attenuation is evaluated by the

analytical expression given in Schulz et al. (2002a) σ and using Eq. 3.32 and 3.33.
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3.4 Quenching

To be able to quantitatively link the fluorescence signal strength and the probed

molecule concentration through Eq. 3.10, the effects of collisional quenching and vi-

brational energy transfer have to be considered. There are LIF techniques which avoid

the effects of quenching on the fluorescence signal strength like LISF or laser induced

predissociation fluorescence (LIPF). However, the PLIF system used in the present

experiment is operating in the linear regime and one has to account for quenching

effects. The quenching rate constant Q for an excited molecule is a function of tem-

perature and pressure and is furthermore dependent on the background composition.

Since these parameters are sometimes difficult to determine and strongly vary within

the probed measurement volume, the determination of Q and correction for quenching

effects is often difficult when operating in the linear LIF regime.

The quenching rate also depends on the rotational and vibrational level of the

excited molecule. Rotational-level-dependent quenching rate data for the OH radical

are available only for a limited number of colliders and rotational states (Jeffries et al.,

1988, Köllner et al., 1990, Beaud et al., 1998, Stepowski and Cottereau, 1981). Rota-

tional energy transfer (RET), a process faster than vibrational energy transfer (VET)

for the upper state of the OH radical, redistributes the rotational state population

within the vibronic state. Eventually, the population within the vibronic state would

equilibrate and the rotational population distribution would reflect the ambient tem-

perature. Therefore, this process is also termed thermalization and the equilibrium

state is termed the thermal distribution. Due to the population of the one specific

rotational level excited during the laser pulse and the constant VET and quenching,

the actual rotational distribution within the vibronic state might be different from

the thermal distribution (Crosley, 1989).

This possibility depends on the timescales the depletion process of the vibronic

state and the redistribution within the vibronic state acts on. The depletion can

take place by quenching of the vibronic state and by vibrational energy transfer,

as transitions to other vibrational level, within the same electronic level take place.
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rate constants [108 1/s]
rotational level

Q1 v10 kL

N ′ = 4 8.9 5.0 57
N ′ = 12 6.0 1.9 30

Table 3.4: Quenching (Q1), VET (v10) and total RET (kL) rate constants for the
OH radical in an atmospheric pressure CH4-air flame measured directly after a 1 ps
excitation pulse of the (v′ = 1, N ′ = 4, 12) level, maximum error 8%, Beaud et al.
(1998).

The corresponding timescales are the quenching rate coefficient Q and the VET-rate

coefficient v. Re-distribution within the rotational level is characterized by the RET

rate coefficient k. If the redistribution process is taking place much faster than the

depletion process, a thermally equilibrated state can be assumed.

No data on the rate coefficient were available for the thermodynamic conditions

which are present behind the detonation fronts studied. The data available (Beaud

et al., 1998) are for atmospheric pressure environments, whereas spectrally and pico-

second time resolved measurements of the fluorescence decay are necessary to deter-

mine the rate coefficients. The pressure behind the investigated detonation fronts

is on the order of 4 bar and are therefore four times higher than the pressure for

the data obtained by Beaud et al. (1998), who investigated a CH4-air flame. The

background composition is apart from the CO2 and CO present in the case of the

CH4-air flame similar to the one behind the detonation front. The rotational-level-

dependent numbers given here are nevertheless only an estimate for the ratio of the

rate constants occurring for the conditions behind the detonation front (Table 3.4).

The RET is found approximately one order of magnitude faster than the VET and

quenching. Note that the numbers given in Table 3.4 are measured directly after the

laser excitation pulse and are not the equilibrium rate constants, which were found to

be in between the values given for N ′ = 4 and N ′ = 12. The exact value of the over-

all quenching rate Q occurring in the experiment depends on the interaction between

the quenching rate for each rotational level and RET and the VET rate constants,

which are not available for the majority of states and colliding species. This would

require a dynamic model describing the energy transfer at experimental conditions, as
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done for flames (Monkhouse and Selle, 1998). Spontaneous emission can be neglected

as a depletion process in this context as it takes place on a much slower timescale

(A21 ∼ 2 · 105 1/s). The rate constant b (corresponding to Einstein B absorption

coefficient) for population of the specific rotational level during the laser pulse was

estimated to be b ∼ 2 · 107 1/s. Therefore a light sheet height of 50 mm, a light sheet

thickness of 0.3 mm, a laser pulse length of 20 ns, and a laser pulse energy of 5 mJ

was assumed. The population of the vibronic state is therefore approximately two

orders of magnitude slower than the redistribution within the vibronic state.

From the considerations and estimation above, it seems a reasonable simplification

to assume thermalization in the vibronic state for the evaluation of Q in the following.

Based on the Boltzmann distribution within a vibronic state, the thermally averaged

quenching rate for the OH radical can be written as (Paul, 1994)

Q =
P

kbT
〈uOH〉

∑
p

χp(1 + mOH/mp)
1/2〈〈σp(T )〉〉 , (3.40)

where the summation is taken over all perturbing species p, χp is the mole fraction

of the perturber p, 〈uOH〉 is the average velocity of the OH radical given as

〈uOH〉 =

(
8kBT

πmOH

)1/2

(3.41)

mOH and mp are the mass of the OH molecule and the perturber, respectively, and

〈〈σp(T )〉〉 is the thermally averaged quenching cross section given as

〈〈σp(T )〉〉 =

∞∫
0

fB(T,N)〈〈σpN(T )〉〉dN , (3.42)

where N is the rotational quantum number and 〈〈σpN(T )〉〉 is the cross section for

the perturber p and a rotational quantum number of N . Two models from the

literature, Paul (1994) and Tamura et al. (1998), are used to evaluate the quenching

cross sections 〈〈σp(T )〉〉 (Appendix B). The models together cover at least 99% of the

perturber species present in the background. Composition and conditions behind the
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investigated detonation waves were calculated from a one-dimensional ZND model.

Experimentally measured quenching cross sections show reasonable agreement with

both models as explained in detail in Appendix B.

3.5 PLIF Model

We use a simple non-transient three-level LIF model to describe in quantitative terms

the fluorescence signal observed. It is based on the model by Bessler et al. (2003) used

for nitric oxide LIF spectra. Models including more levels, e.g. Allen et al. (1995),

often require detailed knowledge regarding rate processes, which are at this point in

time, not available for the regime the PLIF system operates in the experiment.

3.5.1 Three-level model

1

2

3

b12

b21 A21 Q

A23 i

R

Figure 3.6: Three-level diagram showing the energy levels and rate coefficients con-
sidered in the fluorescence model.

The three-level model, Fig. 3.6, assumes equilibrium population of the laser cou-

pled ground state 1. The ground state RET rate constant R between level 1 and

all other levels in the electronic ground states, level 3, is supposed to be fast. The

fluorescence emission occurs from a single laser coupled upper state, level 2, to all

possible rotational and vibrational levels in the electronic ground state, and is ex-

pressed by the Einstein coefficient for spontaneous emission A23i. Levels 1 and 2 are

coupled in the upward direction via the rate constant for absorption, b12, and in the
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downward direction via the rate constant for stimulated and spontaneous emission, b21

and A21, respectively, and the quenching rate constant Q. Predissociation processes

occur significantly for the OH radical in the v′=3 level (Andresen et al., 1988), but

are neglected for the v′=1 level employed here. Since photo-dissociation processes are

also neglected, quenching is the only non-radiative transition from the excited upper

state. Solving the steady-state rate equations system (Eq. 3.2) in the linear regime

for the system considered (Eckbreth, 1996), the fluorescence intensity detected from

one single pumped transition can be written as

F ∼ fB Γ I0
ν Ib NOH B

1

Q

∑
i

Ai. (3.43)

Therefore, fB is the Boltzmann fraction of OH molecules in the ground state (Sec-

tion 3.3.2), Γ is the dimensionless overlap integral (Section 3.2), I0
ν [W/(cm2cm−1)] is

the normalized spectral laser irradiance (Section 3.1), Ib is a dimensionless factor ac-

counting for the light sheet energy broad-band absorption along the direction the light

sheet is traveling in, NOH [1/cm3] is the number density of OH radicals, B [m3/Js2]

and Ai [1/s] the Einstein coefficients (Section 3.1) and Q [1/s] the quenching rate

(Section 3.4). The total fluorescence is calculated by looping over all transitions with

transition energies in the vicinity of the excitation wave number, calculating F via

Eq. 3.43, and adding up the individual contributions. Some factors in Eq. 3.43 depend

on the background composition and thermodynamic conditions. The Boltzmann fac-

tor is purely dependent on the temperature T . Γ is due to the considered temperature

and pressure broadening a function of T , pressure p, the background composition and

the spectral distribution function of the laser. The quenching rate Q as modeled here

is determined by the temperature, pressure, and background composition. In order

to take into account light sheet energy absorption, the thermodynamic conditions

and background composition have to be known as a function of distance along the

light sheet. Given these quantities, the model predicts the one-dimensional fluores-

cence intensity distribution that would be observed. Note that it is not possible to

calculate the OH number density distribution from the experimentally measured in-
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tensity distribution without making the assumptions. To do this, a code based on a

one-dimensional ZND model (Shepherd, 1986) is used to calculate the species mole

fractions, temperature, and pressure as a function of distance behind the shock front

(Section 1.1). The input parameters to the steady-state ZND code are the leading

shock velocity and the mixture composition together with the initial conditions for

temperature and pressure.

3.5.2 Implementation

The CJ detonation velocity was calculated using the STANJAN thermodynamic equi-

librium code, and the results of the ZND code containing temperature, pressure, and

species mole fractions were stored in a text file. The results are given as data points

in approximately 0.02 mm increments behind the leading shock wave. The variables

for the quenching rate model and line broadening parameters from the literature

were stored in ASCII files, as well as the spectroscopic data provided by the HI-

TRAN database (Rothman et al., 2003). This simplifies changing or adding of model

parameters and species. Computationally intensive calculations like the numerical

evaluation of integrals occurring (e.g., for the evaluation of the Voigt profile) were

performed in OCTAVE (Eaton, 1998), a high-level language compatible with MATLAB.

The main program, written in PERL, reads in data from the ZND results file, and the

spectroscopic database files, and the parameter files derived from the literature. Based

on this, a command sequence is created for each step and passed on to OCTAVE, which

evaluates the predicted fluorescence intensity. The spectral distribution of the laser

intensity was discretized and represented by 200 points equally spaced over 1 cm−1.

The product of Γ, I0
ν , and IB was evaluated and numerically evaluated stepwise. The

spectral profile of the laser, modified to account for absorption, is returned by OCTAVE

after each step and used as an input for the next step. The absorption by all discrete

OH absorption lines in the vicinity of the laser line is considered, which can lead to

an asymmetric spectral profile of the laser.

The implementation is far from being optimized, but the run time is fast enough

http://www.octave.org
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for the cases evaluated. A calculation of a fluorescence signal distribution based on

1000 spatial points takes approximately 30 minutes on a 1.5 GHz Pentium CPU.

3.6 Application of model to detonations

The one-dimensional fluorescence intensity distribution was calculated for detonations

in stoichiometric H2-O2, H2-N2O, and hydrocarbon-oxygen mixtures diluted with Ar

or N2. The initial temperature and pressure for all mixtures considered was 300 K

and 20 kPa, respectively. The case considered in most detail is a detonation in a

2H2-O2-5.5N2 mixture at the CJ velocity of 1799 m/s using the detailed chemistry

mechanism by Konnov (2000) for the ZND calculation (Fig 3.7a). The model predicts

the fluorescence intensity in arbitrary units and in order to compare the expected

PLIF intensity with the OH number density, the fluorescence intensity is normalized

to the peak OH number density (Fig. 3.7b). The predicted fluorescence intensity

Fpred shows, as does the OH number density N(OH), a sharp rise at the end of the

induction zone, i.e., the region of radical chain reaction. The maximum of Fpred

and N(OH) are located very close together (Fig 3.8). After reaching a maximum,

the predicted fluorescence intensity falls very rapidly while the OH number density

remains for up to 3 cm behind the leading shock at a level of approximately one-half of

the maximum. The strong decay in fluorescence intensity can be mainly contributed

to the absorption of the incoming light sheet energy by the OH molecules themselves.

Note that the laser beam is assumed to propagate in the opposite direction from the

detonation and corresponds to a light sheet coming in from the left in Fig. 3.7.

The effects on the predicted fluorescence intensity can be divided into three groups:

OH absorption line-shape and the resulting effects in Γ, collisional quenching, and

light sheet energy absorption. Due to the increasing temperature behind the shock

front the Doppler width ∆νD of the pumped absorption line, Q1(9) (1,0), increases

from 0.62 cm−1 at post shock conditions to approximately 0.7 cm−1 far behind the

leading shock wave (Fig 3.9a). Despite the decreasing pressure with increasing dis-

tance behind the leading shock at the end of the induction zone, the collisional width
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Figure 3.7: a) ZND profiles of pressure and temperature for a CJ detonation in 2H2-
O2-5.5N2, T0=300 K, p0=20 kPa. b) ZND profile of OH number density and predicted
fluorescence profile based on model. The abscissa orientation corresponds in all ZND
profile plots in this Section to the detonation traveling from right to left.

∆νC sharply increases by about 10% (Fig 3.9a). This can be explained by the growing

mole fraction of H2O at the beginning of the energy release zone and the large broad-

ening coefficient of H2O, which over-compensates for the decrease in pressure. Once

the water mole fraction is equilibrated, ∆νC decreases slightly with pressure. The

Voigt a-parameter throughout the profile is approximately 0.7, which indicates that

neither pressure nor temperature broadening is dominant. To illustrate the effect

of the changing absorption line-shape effect on the fluorescence signal, the overlap

integral Γ was calculated through the ZND profile neglecting the light sheet absorp-

tion effect (Fig. 3.9a). The abrupt broadening of the absorption line at the end of

the induction zone leads to a decrease of Γ from 0.52 at post shock conditions to a

fairly constant value of 0.44 far behind the front. The predicted fluorescence within

the induction zone is small due to the OH number density being close to zero. The

changing absorption line-shape therefore affects the fluorescence front since the in-

creases in N(OH), ∆νD and ∆νC all approximately coincide. The decrease in Γ leads

to a smaller increase in fluorescence intensity compared to the increase in OH number

density.
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Figure 3.8: Detailed view of sharp OH number density rise and predicted fluorescence
signal.

A higher characteristic quenching rate Q leads to a lower fluorescence signal

(Eq. 3.43). The characteristic quenching time 1/Q is in units of ns in Fig. 3.10a.

The characteristic quenching time shows a sharp dip by a factor of approximately

two at the end of the induction zone. This is seemingly contrary to the linear depen-

dence of Q on p (Eq.3.40) and the pressure decreasing with increasing distance in the

reaction zone. The sharp dip can be attributed to the large quenching cross section

and increasing mole fraction of H2O at this point in the profile. The total quenching

rate can be broken down into the contributions of specific species by examining the

magnitude of each summand in Eq. 3.40. The H2O molecule is clearly the dominant

quenching species behind the induction zone (Fig. 3.10b).

The rapid reduction in characteristic quenching time and overlap integral at the

end of the induction zone results in the constant of proportionality between the flu-

orescence intensity and the OH number density. The decrease in 1/Q and Γ with

increasing distance from the shock leads to a gradually reducing proportionality fac-

tor between Fpred and N(OH) as shown in Fig. 3.8; Fpred is normalized to the maximum

of N(OH). At the maximum in the predicted profile, the fluorescence efficiency is low.

The predicted fluorescence front, defined as the point of 50% rise to maximum and

the point of steepest increase, is therefore shifted towards the shock front by about

0.08 mm and 0.12 mm compared to the N(OH) front, but still occurs as a distinct
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Figure 3.9: a) Absorption line parameters for Q19 (1,0) transition in a CJ detona-
tion in 2H2-O2-5.5N2, T0=300K, p0=20kPa, based on ZND model and corresponding
overlap integral Γ neglecting absorption effects. b) Mole fraction of major species
except N2.

front.

Since the characteristic quenching time is below 1 ns throughout the profile, which

is far below the radiative lifetime of approximately 750 ns of the excited state, the

LIF system is operating in the quenching dominated regime. The effective lifetime

can therefore be assumed to be close to the characteristic quenching time. Since the

laser pulse width of 20 ns is significantly longer than the effective lifetime of the upper

state, the time window in which fluorescence can be observed is comparable to the

laser pulse duration. Neglecting the details of the temporal distribution function of

the laser, the optimum signal-to-noise ratio for the experiment can be expected for

a camera gate width equal to the laser pulse width. The main source of noise on

the PLIF images is chemiluminescence from the hot products which decreases the

signal-to-noise ratio if accumulated on the detector before or after the fluorescence

signal occurs.

In order to analyze the absorption of incoming light sheet intensity, the parameter

I0
νIb is considered (Fig. 3.11a). I0

νIb shows a rapid decrease to 30% of its post shock

value after only 1 cm behind the leading shock front. The light sheet absorption is
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Figure 3.10: a) Characteristic quenching time and OH number density in a CJ deto-
nation in 2H2-O2-5.5N2, T0=300K, p0=20kPa, based on ZND model. b) Contribution
of selected species to total quenching cross section. Plotted are the summands for
each species in Eq. 3.40 which includes the mole fraction as a function of distance
behind the shock front.

caused mainly by the OH molecules. The broad-band absorption by H2O was found

to be negligible. Two OH absorption lines in the vicinity of the laser center frequency

contribute to the absorption process, which leads to an asymmetric spectral laser

intensity distribution (Fig. 3.11b). The absorption of incoming light sheet energy by

OH molecules is predominantly responsible for the stronger decay of the predicted

fluorescence signal in the recombination zone compared to the modest decrease in

OH number density. The absorption process does not influence the sharp rise of the

fluorescence signals at the end of the induction zone since IνIb changes insignificantly

in this region of the profile. The Boltzmann factor is found to be temperature inde-

pendent for both transition lines in the vicinity of the pumping wavelength and has

a negligible effect on the PLIF signal (Fig 3.11a).

3.7 Comparison of model with experiment

In order to compare the model predicted fluorescence with the experimentally ob-

tained fluorescence, a one-dimensional profile of the fluorescence intensity was ex-
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Figure 3.11: a) Lumped parameter I0
νIb, illustrating the effects of incoming light

sheet intensity absorption, OH number density N(OH) and Boltzmann factor fB for
the Q1(9) transition in a CJ detonation in 2H2-O2-5.5N2, T0 = 300 K, p0 = 20kPa,
based on the ZND model. b) Spectral distribution of laser intensity as a function of
distance behind the shock front. Two absorption lines are considered.

tracted from a PLIF image. Due to the limitations discussed below, the comparison

is qualitative rather than quantitative. The experimental fluorescence intensity was

averaged transversely to the flow direction over a 1 cm wide stripe oriented in the

flow direction (Fig. 3.12a). A segment of the incident shock, which does not appear

to be influenced by any three-dimensional effects, was chosen and the leading shock

velocity can be assumed approximately constant over the stripe width at the instant

in time the image is taken (Fig. 3.12a). The shock velocity is oscillating in time due

to the cellular nature of the detonation, which is a key limitation in the comparison

of the steady-state ZND model with experimental data. Steel and Oppenheim (1966)

measured for a marginal detonation in a 2H2-O2-7.1N2 mixture at 13.3 kPa, a lead

shock velocity decay from the CJ value UCJ at the cell center to 0.8 UCJ at the end

of the cell. The portion of the leading shock front in the latter part of the cell is

also denoted as an incident wave in contrast to the Mach-stem in the earlier part of

the cellular cycle (Chapter 1). The leading shock front is divided up into segments

corresponding to either Mach stem or incident wave. For the incident wave the decay

rate appears to be smaller and the lead shock velocity closer to UCJ as compared to
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the Mach stem, which makes incident wave segments of the front more preferable to

compare with the model evaluated at CJ conditions. The experimental fluorescence

profiles obtained from several experiments with the same mixtures were normalized,

aligned using the maximum value, and averaged. Since the exact location of the

shock front can not be derived from the PLIF image, the experimentally obtained

fluorescence profile is normalized and shifted so that the maxima of experimental

and predicted fluorescence profiles coincide (Fig. 3.12b). The case considered shows

good agreement between the rapid fall off in the measured and predicted fluorescence

intensity. The uncertainties and limitations associated with this comparison prevent

a quantitative interpretation of the fluorescence front. From inspections of individ-

ual experiment images, the distance from 10% to 90% of the maximum fluorescence

appears to be on the order of 0.5 mm, which corresponds well with the predictions.
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Figure 3.12: a) Example of horizontal stripe placement on a PLIF image to obtain
a fluorescence profile in a CJ detonation in 2H2-O2-5.5N2, T0=300K, p0=20kPa. b)
Comparison of experimental and predicted fluorescence profile.

3.8 Lead shock strength unsteadiness

The ZND model with a fixed lead shock velocity does not take the oscillations in the

lead shock velocity into account. The induction zone length is significantly shorter
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at the beginning than at the end of the cellular cycle as seen in the overlay of the

schlieren and PLIF images in Pintgen (2000) and Austin et al. (2004). Neglecting

the effects of unsteadiness, the results are confirmed by the computed dependency of

adiabatic explosion time on shock strength (Fig. 3.13a). The effect of unsteadiness

on the reaction can be evaluated by defining a characteristic shock decay time

td =
U

∂U/∂t
, (3.44)

where U is the lead shock velocity (Fig. 3.14). The influence of the unsteadiness

depends strongly on the portion of the cellular cycle under consideration. At the

beginning of the cellular cycle with high lead shock velocity the shock decay rates

large and the induction zone length short. At the end of the cell shock the decay

rates are smaller, but the induction zone length is larger. The effect of unsteadiness

is based on the relative change of the induction zone length within the induction

period. The less the induction zone length changes within an induction period, the

closer conditions are to the steady-state model.

The absolute change in induction zone length ∆ within the induction time can be

written as
∂∆

∂t
τ =

∂∆

∂U

∂U

∂t
τ, (3.45)

where the induction time τ is given by

τ =
∆

w
, (3.46)

and w is the post shock velocity in the shock fixed frame. The change in induction

zone length within the induction time can be rewritten using Eq. 3.44 as

∂∆

∂t
τ =

∂∆

∂U

∆

w

U

td
. (3.47)
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The relative change in ∆ within the induction time can be written as

∂∆

∂t

τ

∆
=

∂∆

∂U

∂U

∂t

1

w

=
∂∆

∂U

U

w

1

td
.

=
T
td

, (3.48)

where T is defined as

T =

[
U

∆

∂∆

∂U

]
τ =

∂∆

∂U

U

w
. (3.49)

Here, the expression T /td is taken as a measure of the influence of the unsteadiness on

the reaction. For large values of T /td, the induction zone length changes significantly

within the induction time, leading to a strong deviation from the steady-state approx-

imation. For significantly small values of T /td, the approximation of a steady-state

solution is reasonable.

In order to numerically evaluate the expressions given above, a series of calcu-

lations with the steady-state ZND code (Shepherd, 1986) for a range of lead shock

velocities U/UCJ from 0.78 to 1.5 in steps of 0.02 were performed. The derivatives

were approximated using finite difference quotients. Three mixtures were investigated:

2H2+O2+17Ar, 2H2+O2+5.5N2, and H2+N2O all at initial conditions of 20 kPa and

300 K. A summary of relevant quantities for these mixtures is shown in Appendix D.

The lead shock velocity through the cell and corresponding shock decay times

td were taken from a two-dimensional numerical simulation by Eckett (2000), who

studied a mixture of 2H2+O2+7Ar at 6.7 kPa (Fig. 3.14). For this estimate, the

normalized lead shock velocity variation in a cell was assumed to be similar to the

2H2+O2+17Ar case discussed here. The shock decay times were scaled according to

the induction zone length of 1.3 mm for the numerical case and 1.4 mm for the ex-

perimental case. According to the results of the numerical simulation, the normalized

shock velocity U/UCJ varies from 1.3 at the beginning of the cell to 0.9 at the end of

the cell and the shock decay times vary correspondingly from approximately 10−5 s
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Figure 3.13: a) Change of induction zone length with normalized lead shock velocity
(primary ordinate) and induction time τ (secondary ordinate). b) Absolute change
in induction time with relative change in U , T (primary ordinate).

to 10−3 s (Fig. 3.14). The results of the evaluation are summarized for U/UCJ of 1.3

and 0.9 in Table 3.8.
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Figure 3.14: a) Normalized lead shock velocity through one cellular cycle, Eckett
(2000), 2H2+O2+7Ar at 6.7 kPa. b) Corresponding leading shock decay rate td.

The induction time is about 30 times longer at the end of the cell than at the

beginning, whereas the dimensionless change in induction zone length with lead shock

velocity stays approximately constant. This leads to values of T which are approx-

imately 30 times larger at the end of the cell than at the beginning. The values for
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U/UCJ −∂∆/∂U U/∆ τ [s] T [s] td [s] ∂∆/∂t τ/∆
1.3 8 3.7 10−7 3 10−6 10−5 0.3
0.9 10 1 10−5 10−4 10−3 0.1

Table 3.5: Summary of calculated quantities at beginning and end of cellular cycle,
2H2+O2+17Ar, 20 kPa, 300 K, Konnov mechanism.

∂∆/∂t τ/∆ are obtained to be 0.3 and 0.1 at the beginning and end of the cell cycle,

respectively. This suggests that the steady-state induction zone length increases by

only 10% within the induction time at the end of the cell cycle. At the beginning of

the cell cycle, the induction zone length increases by 30% within the induction time,

which is due to the faster decay rate of the lead shock wave. Based on this criterion,

the details of the induction zone are better approximated by the steady-state ZND

model at the end of the cellular cycle. Eckett (2000) developed a critical decay rate

model, which provides the shock velocity decay rate at which decoupling of the re-

action front from the shock front occurs. As the present model assumes a coupled

reaction front, the shock decay rate has to be below the critical decay rate. Further-

more, the induction time has to be significantly shorter than the cellular cycle time,

as the shock velocity increases at the beginning of the next cell after the transverse

wave collision. Both criteria are met for the example considered. For other mixtures,

like H2-N2O mixtures, as shown in Appendix D, this is due to the large induction time

for lower lead shock velocities. Shock decay time data for mixtures different than the

case considered are needed to estimate the influence of the decaying shock wave for

these mixtures.

3.9 Limitations of the model

The limitations of this model and the comparison of predicted and measured fluores-

cence can be divided into three groups: uncertainties within the model in predicting

the fluorescence intensity based on the ZND calculation, errors arising from applying

the predicted fluorescence to the three-dimensional cellular detonation, and experi-

mental uncertainties.
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PLIF model limitations:

• The steady-state model assumes that the laser excitation rate is less than the

total de-excitation rate. Estimates of the spectral irradiance based on a light

sheet thickness of 0.25 mm and a light sheet height of 80 mm show that the

system is operating close to, but below, the saturation regime. The assumption

is valid.

• Thermally averaged quenching rates were used for the model evaluation. The

RET-rates in the A-state were measured to be slightly faster than the quenching

rate (Beaud et al., 1998) which limits the error introduced by this assumption,

especially since the total fluorescence is detected. The lack of inclusion of RET

seems to be less important for determining the total PLIF signal intensity, since

the dominating (0,0) and (1,1) transitions are both included in the broadband

imaging. The RET rates in the v”=0 and both v’=0 and v’=1 levels were found

to be comparable (Zizak et al., 1991, Kliner and Farrow, 1999), but not large

enough such that hole burning could be ruled out. The assumed Boltzmann

distribution in the ground state could introduce a significant error.

Restrictions in applying the ZND model:

• The decaying leading shock velocity through a cellular cycle is not taken into

account in the steady-state ZND model, which assumes a constant CJ detona-

tion velocity. To overcome this drawback, two- or three-dimensional, unsteady

numerical simulations are needed. Estimates shown in the previous Section for

the H2-O2-Ar system indicate that the details of the induction zone are for that

particular case reasonably approximated by the steady-state ZND model at the

end of the cellular cycle. For other mixture types, this might change. It is

clear that the error arising from applying the steady-state model is increasing

with distance behind the leading shock front, especially behind the induction

zone. The good agreement with the experimental profile can be explained by

the rapid decay in fluorescence intensity which is fairly insensitive to the details

in the recombination zone.
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• The ZND model is purely one-dimensional and the effects of transverse waves,

which can have velocity components orthogonal to the light sheet plane, are not

considered. These effects are clearly observed on the experimentally obtained

fluorescence profile.

Experimental uncertainties:

• The fluorescence signal emitted from the light sheet plane will be absorbed on

its way out of the test section. Since absorption is expected to occur mainly

by OH molecules, which are non-uniformly distributed behind the detonation

front, the magnitude of absorption will fluctuate. This could cause some error

in the fluorescence profile obtained experimentally. For a methanol-air flame

investigated by Deasgroux et al. (1995) the trapping was found negligible for

the same excitation scheme which was used in the present study.

• The overlap integral and absorption depends on shifts in laser centerline fre-

quency relative to the OH absorption line, which can arise from uncertainties

when setting the dye-laser frequency. To investigate that effect, a laser center-

line shift by 0.06 cm−1, the step width of the dye laser grating, was assumed.

The predicted fluorescence profile does not alter significantly (Fig. 3.15).

• Uncertainties in determining the spectral width of the laser were neglected.

3.10 Conclusions on model and comparison

Given the approximations in applying the steady ZND model to the detonations

and the lack of absolute calibration in terms of OH number density, the comparison

of experiments and model is limited to a qualitative interpretation of the features

observed in both profiles. Two important conclusions can be drawn:

• The distinct fluorescence front seen on PLIF images correlates well with the

sharp rise in OH number density. Due to the rapid change in the quenching
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Figure 3.15: a) The effect of shifting the laser centerline frequency by 0.06cm −1

on predicted fluorescence profile is found to be minor. Mixture is 2H2-O2-5.5N2,
T0=300 K, p0=20 kPa.

rate, an apparent shift of the fluorescence front up to 0.1 mm was found for the

mixtures considered (see Appendix C). The direction and magnitude of the shift

depends on the details of the species mole fraction at the end of the induction

zone and which, in turn, were found to depend on the mixture composition.

• The experimentally observed rapid fluorescence decay seems predominantly due

to absorption of incoming light sheet energy by OH molecules.

These conclusions are important for the interpretation of the PLIF images obtained

and hold true for a variety of mixtures investigated including H2-O2-Ar, H2-N2O-N2

and nitrogen-diluted hydrocarbon-oxygen mixtures. Evaluations of CJ detonations

for these mixtures used are shown in Appendix C. To obtain a detailed qualita-

tive comparison of the experimental and predicted fluorescence intensity, a fluo-

rescence intensity model would have to be applied to a detonation profile from a

multi-dimensional detonation simulation. Furthermore, an experimentally obtained,

spectrally resolved, one-dimensional profile of the detonation could be useful in ob-

taining information on the thermodynamic conditions. To minimize the influence of

the out-of-plane transverse waves, this should be done in a high-aspect-ratio facility.
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Chapter 4

Quantifying the Degree of
Regularity

In the last chapter, it was shown that the OH-front coincides with the fluorescence

front seen on PLIF images despite the large local variations in thermodynamic con-

ditions and background composition. In this chapter, a quantitative analysis of the

PLIF images is given, taking into consideration the performance of the imaging sys-

tem. The aim of the analysis is to quantify the degree of regularity of a mixture by

analyzing the reaction front geometry.

In Section 4.1, the motivation for this analysis is given. In Section 4.2, the mixtures

investigated are characterized. In Section 4.3, a detailed analysis of the imaging

system is presented. In Sections 4.4 and 4.5, the results of the analysis are discussed.

The experimental results analyzed in this chapter are from experiments in the GDT

facility described in Chapter 2.

4.1 Motivation

Detonation structure exhibits a varying degree of regularity in different mixtures.

The classification of mixtures can be made through experimental observations and

mixture property calculations. A large number of experimental, and more recently

numerical, studies were performed to characterize detonation front structure and the

nature of the combustion process within the reaction zone. In experimental stud-

ies, the soot-foil technique is used extensively in order to classify the regularity as
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excellent, good, poor, or irregular (Strehlow, 1968). Here, a method for quantify-

ing the regularity based on the OH-front geometry as obtained from PLIF images is

presented. The geometric complexity of the reaction front is characterized both in

terms of the effective reaction front length and an effective dimensionality. In order

to demonstrate the concept, a total of 68 detonation experiments with varying regu-

larity was processed and the results correlated with a numerically calculated mixture

property, the reduced activation energy θ, as computed from detailed chemical reac-

tion mechanisms. The mixtures studied vary in the degree of cellular regularity from

“regular” to “highly irregular”, corresponding to effective reduced activation energies

θ between 5.2 and 12.4.

Previous observations (Pintgen et al., 2003b, Pintgen, 2000) of the detonation

reaction zone structure show that mixtures with very regular cellular patterns have

smooth reaction fronts as visualized by PLIF images of the OH radical. Mixtures with

more irregular cellular structure exhibit (Pintgen et al., 2003a, Austin, 2003) shear

flow instabilities and fine scale wrinkling of the reaction front. The reaction front

geometries visualized in Ar- and N2-diluted mixtures of H2-O2 and H2-N2O show a

broad spectrum of geometric complexity (Fig. 4.1). The extent of geometric com-

plexity is an important issue (Singh et al., 2003) in determining the relative role of

chemical reaction due to shock compression as compared to diffusive transport from

the hotter into the cooler regions. At the present stage of development, only prelim-

inary conclusions can be drawn from the image processing. A systematic parametric

study is necessary to allow for more general statements about the role of diffusive

transport for detonation propagation.

4.2 Characterization of mixtures

Stoichiometric H2-O2 and H2-N2O mixtures diluted with Ar or N2 at initial condi-

tions of 20 kPa and 20◦C were investigated. One PLIF image is obtained from each

experiment. The distinct fluorescence front seen in all PLIF images indicates the

location of the sharp rise in the OH concentration at the end of the induction zone
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Figure 4.1: Three examples of PLIF images. a) Shot 1653, 2H2+O2+17Ar, image
height: 40 mm, cell size: 47 mm, θ = 5.6 ; b) Shot 1619, 2H2+O2+6N2, image
height: 30 mm, largest cell size observed on soot-foil 80 mm, θ = 7.8; c) Shot 1591,
H2+N2O+3N2, image height 30 mm, largest cell size observed on soot-foil: 120 mm,
θ = 12.4.

(see Chapter 3). The exponential rise in OH concentration coincides approximately

with the most rapid temperature increase (Fig. 4.2). In the present study, we will

refer to the leading edge of the OH fluorescence front simply as the “reaction front”.
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Figure 4.2: ZND profiles of temperature and OH number density for CJ detonation.
a) 18H2+9O2+73N2, P0 = 320kPa, θ = 7.9, b) 25H2+25N2O+50N2, P0 = 30 kPa, θ
= 11.5.
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The induction zone length was calculated with the one-dimensional ZND model

(Shepherd, 1986) together with the validated detailed chemical kinetics mechanism

of Mueller et al. (2000) and the gas phase chemistry library of Kee et al. (1989). The

location of the sharpest increase in OH concentration behind the leading shock wave

is found to be within 3% of the location of the steepest temperature increase. The

reaction zone length at CJ conditions varies from 0.8 to 7.5 mm (Table 4.1). The cell

sizes ranged from 22 to 110 mm as measured with soot-foils placed on the side wall

of the test section. It was difficult to assign a cell size S for the marginal mixtures,

S ≥ 80 mm, since a whole range of cell sizes was present. For these cases, the largest

cell size observed on the soot-foils is given.

Mixture θ (dT/dx)max (dn(OH)/dx)max S
[mm] [mm] [mm]

13.3H2+6.6O2+80Ar 5.2 0.7 0.68 22
10H2+5O2+85Ar 5.6 1.4 1.3 46
22H2+112+67N2 6.8 2.2 2.1 73
18H2+9O2+73N2 7.9 3.9 3.8 104
16.6H2+8.3O2+75N2 8.8 6.2 6 not measured
25H2+25N2O+50N2 11.5 2.9 2.9 54
20H2+20N2O+60N2 12.4 7.4 7.6 110

Table 4.1: Reduced activation energy θ, reaction zone length based on the maximum
temperature gradient and OH number density gradient, and cell size.

The reduced activation energy θ was calculated by numerically evaluating the

derivative of the induction time ti with respect to the post shock temperature at the

von Neumann state (subscript vN)

θ ==

(
T

ti

∂ti
∂T

)
vN

, (4.1)

as described in Section 1.3. Considering the reaction process as being modeled by a

one-step reaction with an activation energy Ea, we can show that θ = Ea/RTvN , which

is one of the key parameters controlling the instability of detonations to perturbations

and by extension, the nonlinear evolution of highly unstable propagating waves. For

the 2H2-O2-βAr mixtures, θ varies from 5.2 to 5.6 (β = 12 to 17), and for the most



73

irregular mixtures of H2-N2O-βN2, θ reaches values up to 12.4 for β = 3. Intermediate

values of θ were found for the N2-diluted mixtures of H2-N2O and H2-O2.

The usual subjective interpretation of the degree of regularity observed on soot-

foils, classified as “regular”, “irregular” and “highly irregular”, correlates well (Pint-

gen et al., 2003a) with the magnitude of θ. Mixtures with higher values of θ exhibit

a more irregular cellular pattern on soot-foils. The H2-O2-Ar mixture represents a

mixture with a very regular cellular structure. The N2-diluted H2-O2 mixture is an

example of a more irregular mixture, whereas the H2-N2O mixture diluted with N2 is

highly irregular. Cellular substructure has been observed previously (Libouton et al.,

1981) in the H2-N2O system . The irregularity and substructure seems to be a general

feature of mixtures with high activation energy and has been shown (Austin, 2003)

to also apply to hydrocarbon fuels.

4.3 Analysis of the imaging system

It is obvious from visual examination of the PLIF images (Fig. 4.1) that the reaction

fronts of mixtures classified as “irregular” have a much greater geometric complexity

than those of the “regular” mixtures. However, to go beyond this simple observation

and make a quantitative analysis of the reaction front geometry requires an evaluation

of the imaging system. The key issues of motion blur, modulation transfer function,

light sheet thickness, and image processing are discussed in this Section.

The motion blur induced by the time span for which fluorescence is emitted was

estimated to be, at the most, 33 µm at CJ conditions, which corresponds to 0.5 pixel

for an image height of 45 mm. Here, a fluorescence time in the order of the laser pulse

duration of 20 ns was assumed since the PLIF system is operating in the quenching

dominated regime.

For an ideal imaging system, the image height of 30 to 75 mm corresponds to

a nominal resolution of 50 to 130 µm/pixel. Due to aberrations occurring for the

low f -number optics and the non-ideal modulation transfer function (MTF) of the

ICCD-assembly, the point spread function (PSF) is known (Clemens, 2002) to have a
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broader profile than the diffraction limited blur spot diameter. In the present study

the f -number was 4.5 for all images. The diffraction limited blur spot diameter was

calculated to be 7 µm for an image height of 45 mm.

camera

UV-filter

knife edge on
translation stage 

back illuminated
frosted glass

Figure 4.3: Experimental setup used for determining the line spread function.
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Figure 4.4: a) Measured SRF and LSF derived from the error function curve fit for
the camera system used; object height: 45 mm. b) Modulation transfer function
inferred from the LSF.

The line spread function (LSF), the one-dimensional analog to the PSF, was de-

termined by imaging a knife edge moving across the object plane in steps of 10 µm in

front of back-illuminated frosted glass (Fig. 4.3). The camera is thereby focused on

the knife edge. Note that the LSF data points are obtained by considering the signal

on a particular pixel, as a function of the knife edge position as obtained from several
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images, and not the intensity distribution transverse to the knife edge as obtained

from several pixels. This procedure allows for determination of the PSF with a sub-

pixel resolution, limited only by the precision of the micrometer on the translational

stage. In the present case, this allowed for a 7-times sub-pixel resolution. The image

height was set to 45 mm, which corresponds to a magnification m of 0.28. Since the

MTF depends on m, we used the same setup as in the experiments except for the

gate width, which had to be set to 3 ms in order to use the full dynamic range of

the camera just as in the experiment. The 10 nm spectral line filter was placed in

front of the lens in order to ensure the same amount of chromatic aberration as in

the experiment.

The step response function (SRF), where LSF(x)=dSRF(x)/dx, was averaged over

ten images and is shown in Fig. 4.4. In order to reduce the noise and enable the

differentiation of the SRF, an error function was fitted least-squares to the SRF.

The LSF has a 1/e2 full width of 350 µm, which corresponds to 5 pixel at this

magnification. The MTF is the Fourier transform of the LSF and measures the

contrast transfer as a function of the spatial frequency intensity modulation. For

the MTF (Fig.4.4b), sine wave structures with a wavelength of 0.5 mm in the object

plane will be imaged with only 30% of their original contrast. For the signal-to-noise

ratio observed in the majority of the images, the cut-off frequency for a minimum

visibility corresponding to a contrast ratio of 10% was estimated to be approximately

4.5 pixel. The knowledge of the MTF enables simulating the imaging characteristics

of the camera system. An example of applying this to a model fractal, the Koch

curve, is shown in Fig. 4.5a and b.

In order to obtain curves from the fluorescence images, the following procedure

was used. The images were low-pass filtered before being down-sampled to half the

resolution with bi-cubic interpolation. The images were then edge detected with a

second-order edge detector (Laplacian of Gaussian, σ=2, filter size: 13×13 pixel) and

the threshold for the Laplacian was set manually for each image. Due to fluorescence

intensity fluctuations caused by the non-uniform light sheet intensity over the image

height, each image had to be processed individually. The smallest feature size resolved
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a) b) c) d)

Figure 4.5: a) Filled segment of Koch curve b) Measured modulation transfer function
of imaging system applied on Koch curve. c) Filtered and down-sampled image d)
edge detected image.

with this technique was 6-7 pixel as determined by processing test images like the

Koch curve. The test images were degraded with the MTF and processed in the same

fashion as the actual images (Fig. 4.5). For an image height of 45 mm (m=0.28), the

determined effective resolution corresponds to 410 µm in the object plane.

The light sheet thickness at the focal point was estimated to be 140 µm FWHM by

measuring the expanded spatial profile of the laser output beam and assuming ideal

focusing optics. For a Gaussian profile of the beam, 75% of the energy is within that

thickness. Measurements of test burns on thermal paper indicate a larger thickness of

300µm; this might be caused by the high sensitivity of the thermal paper, which does

not resolve the full range of the irradiance intensities. For m = 0.28, the light sheet

thickness corresponds to 2 or 4.5 pixels depending on the thickness derived from the

expanded beam profile or test burns. The distance over which the beam diameter

does not exceed 1.4 times the value at the beam waist was estimated to be 15 cm.

Therefore, the change in light sheet thickness in the region of interest is considered

to be minimal.

After considering the effects of MTF, light sheet thickness, and motion blur, one

can conclude that the resolution is not limited by the digital nature of the ICCD but

rather by the illumination technique and the degradation of the image due to the con-

trast reduction resulting from the lens, the intensifier, and other optical components.
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a) θ = 5.6 b) θ = 7.8 c) θ = 12.4

Figure 4.6: Three examples of original PLIF and edge detected images. a) Shot 1653,
2H2+O2+17Ar, image height: 40 mm, cell size: 47 mm; b) Shot 1619, 2H2+O2+6N2,
image height: 30 mm, largest cell size observed on soot-foil 80 mm; c) Shot 1591,
H2+N2O+3N2, image height 30 mm, largest cell size observed on soot-foil: 120 mm

A further reduction in the smallest feature detectable arises from the image process-

ing technique. The smallest resolvable scale depends on the image height (Table 4.2)

and ranges for images between 30 to 70 mm high from 0.5 to 1.0 mm. This estimate

is based on summing up the separate influences of the MTF, light sheet thickness,

and motion blur. The MTF was measured only for m = 0.28 and approximated as

constant for the range of magnifications used. The quoted resolution is in terms of

actual physical dimensions of the object. Comparing the values in Tables 4.1 and

4.2, we see that we can resolve features that are, in the best cases, one order of mag-

nitude smaller than the ZND-CJ reaction zone length and two orders of magnitude

than the cell size. In the worst cases, the resolution is comparable with the ZND-CJ

reaction zone length. Fortuitously, due to the larger cell size, the resolution is best for

the irregular cases where it is most interesting to resolve the largest range of scales

possible.
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4.4 Normalized reaction front length

Three examples of edge detected images for θ = 5.3, 7.8, and 12.4 are shown in Fig. 4.6.

One measure describing the front geometry is the total edge length normalized by the

image height. The minimum normalized edge length l is by construction one. Note

that isolated regions of reacting and unreacting fluid increase the total edge length.

The edge is, in some cases, not a continuous line, but made up of several segments

(Fig. 4.6b and c), which are either closed (islands or lakes) or begin and end at the

image edge. The total edge length is calculated by piecewise-linear approximations,

counting all 4-connected pixel pairs of the edge as length 1 pixel and diagonally

connected pixel pairs as length
√

2 pixel.

4.4.1 Results

The normalized edge lengths measured for the “regular” mixtures (Ar-diluted H2-O2)

range from a minimum of 1 up to 1.8. This is small when compared with the other

mixtures studied (Fig. 4.7). For higher reduced activation energies θ, the maximum

normalized edge length and observed range of values increases. Mixtures with θ ≈ 8

reach values of normalized edge length up to 4.2. The minimum normalized edge

length appears independent of θ and close to 1. For the “highly irregular” mixtures

with θ = 12.4, values of normalized edge length up to 7.5 are measured. The current

analysis does not allow for a comprehensive statistical characterization, but the results

clearly quantitatively show the increasing complexity of the reaction front for mixtures

with increasing θ.

image height (mm) 30 45 70
magnification m 0.42 0.28 0.18
MTF and edge detection (mm) 0.36 0.54 0.85
light sheet and motion blur (mm) 0.14 0.14 0.14
smallest scale total resolvable (mm) 0.50 0.68 0.99

Table 4.2: Overview of smallest resolvable scale for various image heights considering
the effects of the MTF and the edge detection process, motion blur, and light sheet
thickness. The MTF itself was assumed to be constant for all magnifications.
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Figure 4.7: Total edge length as a function of the reduced activation energy θ. Symbol
size scales with height of field of view.

4.4.2 Discussion

The key limitation of this and all other techniques based on light sheet illumination

is the lack of out-of-plane information. Due to the high-speed nature of the flow and

the apparatus we are using, we are also unable to obtain more than one realization

per experiment. Based on our experience (Pintgen et al., 2003b) with more regular

mixtures, we can identify several effects that these limitations can mask, which can

lead to misconceptions when interpreting these images.

One of the most significant issues is that three-dimensional effects caused by the

orientation of the cellular structure to the light sheet could not be resolved. This can

lead to separated islands of higher and lower fluorescence regions, which significantly

contribute to a larger normalized edge length. The orientation of the transverse wave

system with respect to the light sheet is a stochastic process which contributes to the

large range of normalized edge length measured. For irregular mixtures with sub-

structure, this effect is more pronounced, since it is more likely that the light sheet
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intersects a reaction front structure arising from transverse wave-like disturbances

traveling perpendicular to the imaging plane. This partially accounts for the large

range of normalized edge lengths measured for the N2-H2-O2 mixtures. The image

height and cell size are variables in this analysis which influence the probability of

capturing images influenced by three-dimensional effects. The number of shots an-

alyzed for one specific mixture, corresponding to one cell size, is too small to make

a statement about the correlation between normalized edge length and image height

or resolution. For the mixture 2H2+O2+8.1N2, θ = 7.8, 14 shots have been analyzed

with image heights of 40, 50 and 57 mm, and no trend of edge length dependence on

image height can be seen (Fig 4.7).

Another effect is more noticeable if the image height is smaller than the cell size:

due to the seemingly random variations in the phasing of the transverse waves, the

field of view can correspond to different arrangements of the transverse waves and

phases of the cellular cycle. The phase close to the end of a cellular cycle is known

to exhibit, for more regular mixtures, a large-scale keystone-shaped region of lower

fluorescence, which leads to a much larger edge length. In contrast, if the region in

the middle of the cell cycle is captured, the reaction front is known to be smooth for

Ar-diluted H2-O2 mixtures and the normalized edge length is close to its minimum

value of one. These effects also contribute to the large range of observed edge lengths.

4.5 Box counting analysis on the reaction front

In a second approach to quantitatively describing the geometry of the reaction front,

analysis commonly used for fractal-like objects (Catrakis and Dimotakis, 1996) was

conducted on the edge detected images. The edge detected reaction front describes

a convoluted curve with a scale-dependent length. Note that we do not claim that

the edge detected OH-PLIF images are fractals, but simply are applying techniques

used in fractal analysis to quantitatively describe the geometric complexity. The

edge detected PLIF images describe curves whose topological dimension is one and

embedding dimension is two. A variety of methods, all based on multiple resolution
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analysis, are used to determine the dimension D of empirical curves. The key idea

is to use the functional dependence of the curve length L on the scale λ to define D.

The most common approaches are the yard stick and the box-coverage method, which

will be applied here. The coverage length L is defined in terms of the box-coverage

count N(λ), the number of non overlapping boxes needed to cover the curve, and the

box-size λ, here defined as the square-root of the box area.

L(λ) = λ N(λ) (4.2)

D(λ) = −d log N(λ)
d log λ

(4.3)

By plotting log N(λ) versus log λ, the dimension D can be visualized as the neg-

ative slope of this graph. If the slope is not constant the curve may be referred to

as a scale-dependent fractal for which the dimension depends on the scale λ. The

minimum dimension of a curve like object is the topological dimension 1, which cor-

responds to a straight line. For empirical fractals, a power law dependence typically

occurs only over a range of scales εi ≤ λ ≤ εo, where εi and εo are the inner and

outer cut-off, respectively. In the case of PLIF images, the fractal analysis could be

applied only over a limited range of scales, bounded on the upper side by the field of

view, and on the lower side by the resolution of the optical system.

Two sets of box or tile sizes were used. One set was chosen such that the image

could be covered for every tile size in an integer number of tiles, which resulted in

tiles of size 2×2, 4×4, 8×8, 16×16, 32×32, 96×96, and 288×192 pixel. The other set

was chosen with dimensions 2n×2n with n = 0.8, which describes even horizontal and

vertical subdivision of each tile in successive steps. When using the latter set of tile

sizes, in some cases only fractions of tiles covered the image. This leads to coverage

lengths L(λ) which over-predict the true length since some tiles extend outside the

image. This could be corrected by averaging the coverage counts for a specific tile

size over several starting positions for the first tile. This approach led to very similar

results. Here, only data from the tile set mentioned first were used.

Another effect, illustrated easiest by means of an example, arises from dividing
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the tile size by two in the horizontal and three in the vertical direction when changing

the tile size from 288×192 to 96×96; assume a straight vertical line in the right half

of the image. For the tile size 288×192 N = 1 and λ = L = 235 and for the tile size

96×96 N = 3, λ = 96 and L = 288, which shows the unwanted effect of increasing

coverage length for a one-dimensional object. To avoid this effect, the largest tile size

was set to 288×288 and all tiles were square.

4.5.1 Results

Coverage counts N for six representative PLIF images, including the ones from

Fig. 4.6, are shown in Fig. 4.8a as a function of the normalized tile size λ/λ0, where

λ0 is the largest tile size used. The coverage count is a monotonically increasing

function with decreasing tile size and the slope decreases slightly with decreasing λ.

The H2-O2-Ar mixtures have the lowest slope, close to one, which indicates the least

complexity in reaction front geometry. The trends for the coverage length, Fig. 4.8b,

are consistent with the intuitive evaluation of the images and the range of total edge

lengths shown in Fig. 4.7.
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Figure 4.8: (a) Box-coverage count N(λ) as a function of normalized scale for six rep-
resentative images. (b) Normalized box coverage length L as a function of normalized
scale.
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The coverage length is almost independent of the tile size for the two lower ac-

tivation energy mixtures and Lmax/λ0 < 1.25, indicating that these fronts are very

smooth and made up of only a few line segments. For the higher activation energy

cases, the normalized coverage length L/λ0 increases rapidly with decreasing λ/λ0.

The coverage length appears to reach a limiting value at the smallest values of λ/λ0

corresponding to tiles smaller than 8×8 pixel, which corresponds to object height of

1.25 mm for an image height of 45 mm. The limiting value of L/λ0 is an increasing

function of the reduced activation energy. For θ = 12.4, the limiting value of L/λ0 =

5.6, which is consistent with the maximum value of 7.5 from Fig. 4.7. The phenomena

of a limiting value for L/λ0 is, in part, caused by the continuously decreasing contrast

ratio for higher spatial frequencies as described by the MTF, discussed further below.
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Figure 4.9: Dimension obtained from least-square linear fit as a function of the re-
duced activation energy θ. Symbol size scales with height of field of view.

The dimension (Fig. 4.9) was found for each image using a linear least-squares fit
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to determine D in the relationship

log(N/λ0) = −D log(λ/λ0) + constant (4.4)

for the range -2.1 ≤ log(λ/λ0) ≤ -0.5, corresponding to tile sizes from 4×4 to 96×96.

The choice of the inner cut-off for this fit is motivated by the previous considerations

involving the MTF of the imaging system resolution. The inner cut-off scale corre-

sponds to the smallest feature size that can be visualized according to our analysis of

the imaging system. The upper bound was taken one size smaller than the 288×288

tile, which is larger than the image. The cut-off scales are somewhat arbitrary but

similar results for the dimension were obtained by changing the cut-off scales by one

tile size up or down.

As for the normalized edge length, a range of dimensions is obtained for each

θ. For θ ≤ 6, the spread is small and the dimensions range from 1.05 up to 1.15.

For intermediate values of θ, the dimensions range between 1.05 and 1.4 and for the

highest value of θ = 12.4, the maximum dimension of 1.5 is obtained. The larger

maximum values of the dimensions obtained for higher values of θ are quantitative

evidence for the increasing degree of corrugation of the reaction front for higher values

of θ.

4.5.2 Discussion

The large range of dimensions obtained for θ > 6 can be ascribed in part to the same

effects that were discussed earlier in connection with the spread in values measured

for the lengths shown in Fig. 4.7.

Additionally, the pixelation of the image and the edge representation affects the

box counting method. The box count will vary depending on the edge orientation

with respect to the pixel grid. For example, a straight line is represented as a straight

line on all scales only if it is horizontal, vertical, or inclined to the pixel grid at 45◦.

When the box size approaches the pixel size, the inferred dimension will decrease

towards one, which is to be expected, since the effective dimension at the pixel scale
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must always be one. Analysis of synthetic images of the Koch curve show a decrease

in dlog L(λ)/dlog λ with decreasing λ, for λ ≤ 4 pixel. With the box counting tech-

nique, d log L(λ)/d log λ does not approach zero in a smooth fashion, a consequence

of the pixel representation itself. A bounding box partition method (Catrakis and

Dimotakis, 1996) based on the idea of representing the boundary outline as B-splines

and subsequently subdividing the bounding box in both dimensions in each step,

is shown to remove several difficulties based on pixel-based schemes. However, this

technique is limited in its application with regard to the images processed here, since

the bounding box has a high aspect ratio. This leads to a sub-pixel resolution in the

horizontal direction after a few subdividing steps.

Another reason for the continuous decrease in the slope of d log N(λ)/d log λ with

decreasing λ is the steep fall-off in the MTF for low frequencies. The increasing blur

for smaller features results in a smoother edge detected front at smaller scales, and,

consequently, a decrease in d log N(λ)/d log λ and d log L(λ)/d log λ. In addition,

one has to consider the light sheet thickness, which further reduces the resolvable

scale but at smaller scales. We can conclude that the decrease in dimension observed

for some images of N2-diluted H2-O2 and H2-N2O mixtures for scale sizes on the order

of 1 mm is not likely to have been caused by the absence of smaller scale features in

the flow, but rather from an effect arising from the box-counting technique applied

here and the imaging system and technique.

4.5.3 Implications for possible diffusive transport phenom-

ena

For the assumed cut-off scales and fractal dimensions fractal geometry concepts have

been shown to provide estimates of the turbulent flame velocity in combustion research

(Gouldin, 1987). The ratio of turbulent burning velocity ST to laminar burning

velocity SL was first suggested by Damköhler (1940) to be proportional to the ratio

of wrinkled flame surface area Aw to the flow cross section area A0. Here, this concept

is applied to investigate the possible contribution of a diffusion-controlled combustion
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mode to detonation propagation, which, in the classical models, is considered to be

due only to shock-induced reaction with no diffusive transport.

The surface area of the reaction front is estimated from the fractal dimension.

From the PLIF images, we obtain only a two-dimensional cross section of the three

dimensionally corrugated reaction front surface. Assuming fractal isotropy the fractal

dimension D3 of an object in three dimensions is, due to self-similarity, one greater

than the fractal dimension D2 of a two dimensional cross section of the same object

(Smallwood et al., 1995). The fractal dimensions D2 obtained from the PLIF images

were at maximum 1.5, so, for the cases considered, D3 is, at most, approximately 2.5.

In order to compute the three-dimensional surface area from the fractal dimension,

the following relationship used in low-speed turbulent combustion research (Gouldin,

1987) has been applied:

Aw

A0

= A

(
εo

εi

)D3−2

, (4.5)

where A is a model constant on the order of one. For a model constant A=1, this leads

to a value for Aw/A0 of 4.8, using for the inner and outer cut-off 4 and 96, respectively.

Based on mass conservation considerations, the ratio Aw/A0 has to be on the order of

w/SL for a diffusion-dominated adiabatic flame to contribute to the combustion. w is

the post shock velocity in the shock fixed frame, and SL is the adiabatic flame speed

for post shock conditions. The computation of the adiabatic burning velocity SL at

post shock conditions was performed with a numerical solution of the one-dimensional

steady reactive Navier-Stokes equation with the detailed chemical reaction mechanism

as described in Singh et al. (2003). The post shock conditions were evaluated for a

detonation traveling with U/UCJ = 0.95 in a mixture of 2H2+O2+8.1N2 (P0 = 20 kPa,

T0 = 300 K) to be Pps = 0.39 MPa and Tps = 1195 K. The corresponding adiabatic

burning velocity was calculated to be 30.4 m/s. The post shock velocity is 320 m/s at

these conditions, which leads to criterion of Aw/A0 ≈ 10.5 for an adiabatic burning

process contributing significantly to the combustion mode. This is a factor of two

smaller than the surface area increase predicted from the fractal geometry approach.

A better resolution of the PLIF images could allow for a smaller inner cut-off εi and
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larger values for Aw/A0, possibly larger than the criterion mentioned above. In the

current analysis, the range of scales necessary to meet this criterion could not be

resolved.
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Chapter 5

Results of Detonation Diffraction
Experiments

The results of the diffraction experiments are presented in this chapter together with

a simplified model for the diffraction process. A characterization of the mixtures stud-

ied is given in Section 5.1. The data obtained from the pressure transducer traces

are shown in Section 5.2. The diffraction process is described in Section 5.3 together

with Skews’ model for a diffracting wave. Even though this section is more an anal-

ysis than a result, it leads to a better understanding of the features seen on images

presented in the following sections. The critical, sub-, and super-critical diffraction

regime is documented in Section 5.4 on the basis of representative examples of the

experimentally obtained PLIF, schlieren, and chemiluminescence images. To gain fur-

ther insight into the complex three-dimensional combustion process, a stereoscopic

image of a critical diffraction experiment was constructed, which is described in Sec-

tion 5.5. In Sections 5.6 and 5.7, quantitative measurements of the distance from

the shock to the reaction front and the axial velocity profile of both are presented.

The data were derived from edge detected images, which are described in Section

5.8. Furthermore, the evolution of the shape of the diffracting wave and the velocity

profile are discussed for sub-critical cases.
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5.1 Mixture characterization

All mixtures investigated were at stoichiometric composition and the initial tempera-

ture was between 294 and 301 K. Within a series of experiments, the facility temper-

ature increased with time due to the energy release by the combustion taking place,

leading to a slightly higher temperature than the room temperature of 294 K. The

experiments can be divided up with respect to their composition and initial pressure

into six series, which are given in Table 5.1.

mixture composition P0 diluent mole nomenclature number
[kPa] fraction of of

total mixture shots
1 2 H2 + O2 + β Ar 100 50–72% Ar dilution series 77
2 2 H2 + O2 + 3 Ar 45–100 - Ar pressure series 19
3 2 H2 + O2 + β N2 100 19–25% N2 series 14
4 H2 + N2O 40–80 - N2O series 71
5 CH4 + 2 O2 50–125 - CH4 series 19
6 C2H6 + 3.5 O2 30–45 - C2H6 series 35

Table 5.1: Summary of series of experiments conducted with the detonation diffrac-
tion experiment with respect to mixture composition and initial pressure.

A more detailed presentation of mixture parameters for all experiments is given in

Appendix F. The amount of diluent was varied only for series 1–3, i.e., the Ar- and

N2-diluted H2-O2 mixtures. The mixture composition was fixed for all other series

and the initial pressure was changed. Each experimental series ranges from the sub-

to the super-critical detonation diffraction regime. Most of the 229 total experiments

are conducted for the argon pressure and dilution series and the N2O series. The

focus in the following analysis is on three experimental series, two Ar-diluted. The

argon diluted H2-O2 mixtures (series 1 and 2) served as an example of mixtures with

regular cellular structure while the H2-N2O mixtures (series 3) represented those

exhibiting irregular cell structure. Experiments indicate that mixtures with higher

values of θ exhibit a more unstable and more irregular structure. Within one series of

experiments, θ was changed little in comparison to ∆, the induction zone length. This

allows the study of a mixture with a fixed degree of regularity in the sub- and super-
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Figure 5.1: Contour plots of induction zone length, ∆, and reduced activation energy,
θ, as function of initial pressure and dilution amount for the Ar and N2O series.
Open square symbols represent the conditions of experiments. Multiple experiments
are conducted for identical conditions, so the number of squares does not reflect the
number of experiments.
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critical diffraction regime. The induction zone length of a fuel-oxidizer-diluent system

can be changed by various means, including stoichiometry, diluent mole fraction,

and initial temperature and pressure. For the mixtures studied, the diluent amount

and initial pressure were found to be parameters that could be changed easily in

the experiment while keeping θ constant within one experimental series (Fig. 5.1).

Contour plots of ∆ and θ for all mixtures experimentally investigated are shown in

Appendix H. For the argon pressure and dilution series, θ ranged from 4.5 to 4.9

while ∆ varied from 0.05 to 0.12 mm. For the N2O series, θ varied from 9.4 to 9.5

compared to ∆ varying from 0.1 to 0.18 mm.

5.2 Pressure traces

Determination of whether an experiment was super-critical or sub-critical was made

based on the pressure histories acquired. The three pressure transducers (P1, P2,

and P3) mounted in the detonation tube section (Fig. 2.5) were used to monitor

the velocity of the incoming detonation wave by analyzing time of arrival data. An

example of a set of pressure traces obtained from experiments of the Ar pressure

series is shown in Fig. 5.2. The pressure histories of all experiments are shown in

Appendix K. The time of arrival was defined as the time of the first data point for

which the pressure is larger than one-half the peak pressure. The normalized velocity

U/UCJ was between 0.97 and 1.03 and the detonation wave was traveling close to CJ

conditions before reaching the area change (Fig. 5.3).

The CJ velocity UCJ was calculated with the thermodynamic equilibrium code

STANJAN (Reynolds, 1986). In general, there is a slight decrease in detonation ve-

locity while the detonation is traveling down the tube. The velocity U12, measured

between transducer P1 (0.4 m from ignition point) and P2 (0.8 m), is, for most ex-

periments, larger than U23, corresponding to the velocity derived from the pressure

histories of transducers P2 and P3 (1.2m). This could be caused by P1 being located

directly after the Shchelkin spiral section. The deflagration to detonation transition

(DDT) is enhanced by the section including the Shchelkin spiral and is presumably
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Figure 5.2: Pressure traces. a) Sub-critical experimental outcome. Shot 32, 0.213 H2

+ 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K. b) Super-critical experimental out-
come. Shot 44, 0.233 H2 + 0.117 O2 + 0.65 Ar, P0=100 kPa, T0=296 K.

taking place within that section of the tube. The DDT event itself is known to in-

volve a “localized explosion” event and a detonation wave velocity above CJ condition

directly after the event. The uncertainty in detonation velocity, obtained experimen-

tally from pressure histories, was found to be ±3%. This includes the effect of finite

sampling rate of the data acquisition system, the averaging effects arising from the

4 mm in diameter large active surface of the pressure transducer, and uncertainties

in the spacing of the pressure transducers.

The discrete spacing in values obtained for U/UCJ (Fig. 5.3) arises from the finite

sampling rate of the data acquisition system. As UCJ varies as a function of Ar-

dilution and initial pressure, the data points obtained from individual experiments

line up as curves.
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Figure 5.3: Normalized velocity U/UCJ as a function of (a) argon diluent amount for
the Ar dilution series and (b) of initial pressure for the N2O series. U is derived from
pressure histories and corresponding detonation wave time of arrival data.

The normalized CJ velocity was found to be independent of the initial pressure or

diluent amount in all of the experimental series. This indicates that for all mixture

compositions investigated, the detonation tube was operated in normal propagation

regimes and a self-sustained stable detonation wave traveling close to CJ conditions

was present at the tube exit plane.
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Figure 5.4: Maximum pressure measured within 100 µs at pressure transducer P4

normalized by the pressure corresponding to the calculated CJ velocity versus D/∆.
D is the tube diameter (18 mm) and ∆ the calculated induction zone length.

The pressure histories obtained from transducers (P4, P5, and P6) mounted in the
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critical conditions
mixture composition P0 diluent mole fraction

[kPa] of total mixture
D/∆

1 2 H2 + O2 + β Ar 100 67% 537
2 2 H2 + O2 + 3 Ar 55 - 417
3 2 H2 + O2 + β N2 100 24% 494
4 H2 + N2O 43.75 - 232
5 CH4 + 2 O2 120 - 235
6 C2H6 + 3.5 O2 37.25 - 353

Table 5.2: Summary of critical conditions for all series of experiments conducted.
For the CH4-O2 mixtures, the critical conditions were determined upon inspection of
the schlieren and multiple gates chemiluminescence images and for all other mixtures
upon the maximum pressure measured at transducer P4 as described in the text.

test section were used to determine whether the detonation successfully transitioned

into the test section or detonation failure occurred. Two sets of pressure traces

representative of the sub-critical and super-critical regime are shown in Fig. 5.2. In

the sub-critical case, the pressure transducer in the test section registered a much

lower pressure rise than the peak pressure in the detonation tube, which was found

to be close to the calculated CJ pressure. The weaker shock wave can reflect off the

side and end walls of the test section and can re-initiate a detonation wave (Murray

and Lee, 1983, Thomas et al., 1986). In the present study, confinement influence is

not investigated. The pressure signals from experiments in the super-critical regime

show, for the pressure transducers in the test section, a peak pressure close to the

one measured in the tube section (Fig. 5.2b). This indicates successful detonation

transmission into the test section. The determination of the regime was based on the

pressure trace of transducer P4, the first pressure transducer in the test section. The

maximum pressure within 100 µs after the first pressure rise was determined for each

experiment and is denoted in the following as maximum pressure Pmax. Note that

Pmax is not the overall maximum pressure from a pressure trace. The value for Pmax,

obtained from each experiment, was then normalized by the calculated CJ pressure,

PCJ , for the specific mixture and experimental conditions (Fig. 5.4).

For pressure transducers P5 and P6, which are located further downstream, nor-

malized peak pressures larger than unity were detected for experiments with a smaller
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Figure 5.5: Maximum pressure measured within 100 µs at pressure transducer P5 (a)
and P6 (b) normalized by the calculated CJ velocity versus D/∆.

value for D/∆ than was detected at P4 (Fig. 5.5). For the most insensitive mixture,

Pmax(P4)/PCJ was measured to be larger than unity when D/∆ >520 compared to

a D/∆ >475 for Pmax(P6)/PCJ . This indicates that diffracting detonation waves in

mixtures close to the critical regime do, in fact, re-ignite further downstream. The

shift towards smaller values of D/∆ for re-initiation was observed for most experi-

mental series as shown in the complete set of plots shown in Appendix I. The highest

values for Pmax/PCJ were measured for pressure transducers P4. This could arise

from phenomena like oblique reflections and Mach stems, less likely to occur further

downstream, since the detonation or shock wave has traveled a substantial distance

in the test section.

If Pmax(P4)/PCJ was found to be smaller than unity, the experiment was consid-

ered sub-critical, otherwise it was considered super-critical. For some pressure traces,

a high overall maximum pressure was observed at P4. This could arise from a reflected

shock wave of the test section side or end wall, which triggered a re-initiation event.

This overall maximum pressure was often observed long after the first pressure rise

was detected on P4. Possible misinterpretation of these cases was avoided by taking

the maximum pressure within 100 µs after the initial pressure rise. The magnitude

of the pressure signal measured at P4 can also be influenced by the fact that the
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diffracting detonation wave is not traveling perpendicular to the top wall of the test

section. Regardless of whether a re-initiation event is taking place, the leading shock

wave will be reflected obliquely by the wall. The detected pressure will be different

than for a wave perpendicular to the surface.

Schlieren and sequences of chemiluminescence images were taken along with the

pressure traces to aid the interpretation of pressure histories. The determination of

the critical conditions is not significantly influenced by reflection phenomena as they

occur only for a narrow range of mixtures. Critical conditions given in Table 5.2 are

defined as the average of the values bounding the critical regime. For experiments

conducted in the critical regime, both sub-critical and super-critical outcomes were

observed for a given mixture. The re-initiation process is a stochastic process in the

critical diffraction regime and is apparently very sensitive to small, uncontrollable

variations in initial conditions. These include the random variations in the phasing

of the transverse waves within the cellular structure of the detonation front.

5.3 Disturbance propagation

In the following section, the diffraction process is discussed in a simplified manner

using a model originally developed for unreactive shock waves. The detonation is

assumed to travel at CJ conditions in the tube of diameter D towards the unconfined

space. The tube and unconfined space are both occupied by the same mixture. The

area change is described by the angle of divergence δ between the initial detonation

propagation direction and the wall of the unconfined half space, an angle δ = 90◦ is

shown on Fig. 5.6. In the case of the present experiments, δ was always 90 deg.

When the detonation wave reaches the corner, a disturbance created by the flow

around the corner propagates with a finite transverse velocity component into the

undisturbed part of the detonation front. For a constant transverse velocity, the

point of interaction between the main wave and the disturbance defines a cone at

angle α to the tube wall. The tip of the cone is located on the tube axis at a distance

xc from the tube end plate. The tip is the point at which the corner signals sent
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Figure 5.6: Sketch of diffracting detonation wave showing the cone of the corner
disturbance signal.

out from points along the rotationally symmetric corner collide. The distance xc

and the time of collision tc depend on the transverse disturbance propagation speed,

the CJ velocity, and the tube diameter. Until that point in time, the detonation is

undisturbed inside the cone described by the corner signal (Fig, 5.7).

The thermodynamic conditions normal to the detonation vary strongly, tempo-

rally as well as spatially. Furthermore, variations along the front arise from the

cellular structure of the detonation. This makes it difficult to determine the effec-

tive transverse velocity component v with which the corner signal propagates into

the undisturbed front. For a non-reacting shock wave with an uniform flow behind,

the problem is much simpler and the transverse velocity is well defined. Using the

geometric construction of Skews (1967) for non-reacting diffracting shocks v depends

on the post-shock sound speed c and post-shock velocity in the lab frame u (Fig. 5.7).

The corner disturbance signal is traveling radially into the shocked material at

the local sound speed c while being convected downstream with the velocity u, the

post-shock velocity in the lab frame. The angle α is found by a Huygens’ construction



98

a

Dt US

Dt u

Dt c

head of
corner signal

Dt v

diffracted
shock

undisturbed
shock

Figure 5.7: Skews’ construction of disturbance propagation angle.

and, from the geometry shown, is

tan α =
v

US

=

√
c2 − (US − u)2

US

=

√
c2 − w2

US

, (5.1)

where w is the fluid velocity behind the shock in the shock fixed frame. The distance

xc and time tc at which the disturbance signal reaches the tube axis can be written

as

xc =
D

2α
, (5.2)

tc =
D

2αUS

. (5.3)

Skews’ model can be adapted to the case of a diffracting detonation traveling at CJ

conditions by assuming an incoming shock velocity equal to the CJ velocity and an

appropriate choice for c and u. Previous researchers used the post-shock conditions

at CJ conditions (Schultz, 2000), neglecting the details of the reaction zone and the

oscillating strength of the lead shock wave, both discussed here. In order to calculate

c and u, the details of the reaction front are simplified to an one-dimensional steady

profile described by the ZND model. The sound speed and post-shock velocity are

then a function of the distance to the lead shock only (Fig. 5.8). The sound speed
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c is fairly constant within the induction zone and its rise at the beginning of the

recombination zone is mainly due to the temperature increase. The reacting gas

begins to expand at this point in the detonation profile, leading to a lower fluid

density and a higher relative velocity w. After recombination is complete, a plateau

in all properties is observed. The length of the reaction zone, which can vary from

mixture to mixture, determines when the plateau in both properties is reached.

Transverse acoustic channels of different sound speeds c exist in the undisturbed

part of the detonation. These depend, in the one-dimensional ZND model, on the

distance to the lead shock front only. The post-shock velocity is also changing as a

function of distance behind the shock. The disturbance propagation angle α has to

be calculated with corresponding c and w as a function of distance behind the shock

in order to determine the maximum in α (Fig. 5.8). The maximum in α gives a lower

bound for tc and xt, the time and distance at which the acoustic disturbance signal

reaches the tube axis. The quantity (c2−w2)1/2 is proportional to tan α (Eq. 5.1) and

is also shown in Fig. 5.8. The details of the rise in c and w determine the existence

and location of a local maximum in α. For the H2-O2-Ar mixtures, the maximum

in α is very broad and the post-shock values of properties are a good approximation

to the maximum values. For the H2-N2O mixtures, c increases slightly earlier than

w, leading to a more pronounced maximum in α. Using post-shock conditions to

calculate α can introduce significant error in this case. The maximum in α was

identified for all mixtures to occur within 1 mm behind the lead shock front. Note

that the choice of detailed chemical reaction mechanism can influence the profiles of

c and w and therefore influence the maximum value of α.

The angle α was calculated for post-shock conditions for all mixtures experimen-

tally investigated. A complete set of results for all mixtures is plotted in Appendix J.

The maximum in α for the ZND profile, corresponding to the minimum in xc, was

determined (Fig. 5.9). The distances are plotted versus the D/∆ parameter. Larger

values of D/∆ correspond to mixtures with smaller induction zone length ∆, which

in the present study, means higher initial pressure. For the dilution series, the more

diluted mixtures correspond to smaller values of D/∆. The distance xc is fairly in-
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Figure 5.8: Local sound speed and fluid velocity as a function of distance behind
the lead shock wave. Calculations with the ZND model and reaction mechanisms of
Warnatz and Mueller. The quantity (c2 − w2)1/2 is proportional to tan α, the local
disturbance propagation angle.
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dependent of the initial pressure for a fixed mixture composition. This observation

is valid for all mixtures investigated in this study. The smallest xc was found to be

40 mm for the Ar-diluted H2-O2 mixtures. For all other mixtures investigated, the

minimum xc was found near 45 mm. For the dilution series, 50–72% Ar-diluted H2-O2

mixtures, the distance xc for the smallest dilution is 5% higher than for the highest

dilution. Neither the initial pressure nor the amount of diluent significantly influence

the distance xc for the Ar-diluted mixtures.

The model of a steady state ZND profile with a lead shock traveling at CJ condi-

tions for the detonation front is highly simplified. The lead shock velocity is known

to oscillate during a cellular cycle between 0.9 and up to 1.5 times the CJ velocity,

depending on the mixture. In order to address this issue, ZND profiles were calculated

for steady lead shock velocities in the range of US/UCJ = 0.9 to 1.5. For each value of

US/UCJ , the maximum in α was found and compared to the value at CJ conditions.

Even though this method does not include the unsteadiness of the front directly, it

gives a good estimate of how much the transverse propagation speed of the corner

signal at CJ conditions is influenced by a higher or lower lead shock velocity. Two

mixtures are discussed here in detail: 0.223H2+0.117O2+0.65Ar at P0 = 100 kPa and

0.5H2+0.5N2O at P0 = 45 kPa, both at T0 = 300 K.

Larger values for US/UCJ result in a higher post-shock temperature and post-

shock sound speed (Fig. 5.10a and b). The absolute temperature rise in the reaction

zone is smaller, since dissociation of the products is more significant at larger US/UCJ .

The absolute increase in sound speed c is also smaller for larger US/UCJ . The fluid

velocity demonstrates a similar trend for larger values of US/UCJ (Fig. 5.10c and

d). Despite the significantly higher sound speed for higher US/UCJ , the angle α at

post-shock conditions and the maximum in α varies insignificantly (Fig. 5.11).

This can be explained by the fact that the higher transverse propagation speed

of the corner signal is associated with a higher leading shock velocity US. The larger

value of US compensates for the increasing c (Eq. 5.1), changing α only by a small

amount. For the Ar-diluted H2-O2 mixture, the minimum distance xc increases from

40 mm for US/UCJ = 1 monotonically up to 41.5 mm for US/UCJ = 1.4 (Fig. 5.12a).
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Figure 5.10: Profiles of sound speed, c, and fluid velocity in shock frame, w, calculated
with the ZND code for several lead shock velocities.
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Figure 5.11: Disturbance propagation angle α calculated with flow properties from
ZND code for several lead shock velocities.

In contrast, the time tc decreases for the same range of US/UCJ from 23 µs to 17 µs.

This decrease in tc is due to the simultaneous increase in the transverse and horizontal

velocity component of the interaction point of the corner disturbance signal with the

undisturbed detonation front. The range of variation in xc for 0.9≤ US/UCJ ≤1.4 is

3 mm (Fig. 5.12b). The change in slope of xc and tc as a function of US/UCJ observed

for US/UCJ = 1.095 can be explained by examining α for two cases of US/UCJ , the

abrupt change in slope. The profile of α as a function of distance behind the shock

wave is shown for US/UCJ = 1.09 and 1.1 in Fig. 5.13. For each profile, two local

maxima in α exist. For the case of US/UCJ = 1.09, the absolute maximum corresponds

to the local maximum closest to the lead shock front. For US/UCJ >1.1, the absolute

maximum is found at the local maximum furthest behind the front. Since the overall

maximum in α is used for the calculation of the minimum in xc, xc as a function of

US/UCJ appears continuous but not smooth.

5.4 Qualitative observations

In this section, the characteristic features observed on the schlieren, PLIF, and chemi-

luminescence images are described. Note that the features seen on the PLIF images
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Figure 5.12: Minimum distance xc and corresponding time tc for corner disturbance
signal to reach the tube axis as a function of lead shock velocity.
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Figure 5.13: Disturbance propagation angle α calculated with flow properties from
ZND code for two lead shock velocities.

correspond to a vertical cut through the flow field whereas the schlieren and chemi-

luminescence techniques integrate over the flow field in the direction of the optical

axis of the system. Effects to be considered for the interpretation of multiple gates

chemiluminescence images are discussed in Section 5.7. This section is divided up

into experiments with H2-O2-Ar mixtures and experiments with H2-N2O mixtures.

In each section, the observations for the sub-critical experiments are discussed first,

followed by the observations for the super-critical experiments.

5.4.1 H2-O2-Ar mixtures

Note that a critical experiment per se does not exist. An experiment is classified as

either sub- or super-critical. Nevertheless, the range of mixture parameters for which

sub-critical and super-critical experimental outcomes are both possible is denoted as

the critical diffraction regime. Most of the experiments in this study are conducted

within the critical diffraction regime.

5.4.1.1 Sub-critical regime

In the sub-critical regime, schlieren images for the H2-O2-Ar mixtures show a planar

detonation front directly after the detonation exits the tube. The diameter of the
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Figure 5.14: Schlieren images obtained from 10 separate experiments using the same
0.2H2+0.1O2+0.7Ar mixture and initial conditions of P0 = 100 kPa. The time incre-
ment between the point in time at which the schlieren image was taken is 6 µs. The
shot numbers in the order shown are: 74, 73, 64, 65, 66, 67, 68, 69, 70, 71.
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Figure 5.15: a) Schlieren image of lead shock front, image height 30 mm,
0.2H2+0.1O2+0.7Ar, P0 = 100 kPa, shot 64. b) Keystone features on PLIF image ob-
served close to tube axis, image height 50 mm, 0.33H2+0.17O2+0.5Ar, P0 = 50 kPa,
shot 156. c) Sketch of schlieren system light beam deflections at shock and reaction
front close to the wall, view along tube axis.
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planar part of the shock front centered on the tube axis decreases with increasing

time (Fig. 5.14). On a scale of about 1 mm, the planar part of the lead detonation

front appears slightly corrugated and is not absolutely flat (Fig. 5.15a). Since the cell

size at CJ conditions is approximately on that length scale, this corrugation might

arise from the cellular structure of the detonation, as the kinks in lead shock occur

where Mach stem and incident shock join. After the lead shock has reached a distance

of approximately 70 mm, the lead shock is very smooth and without any kinks. The

curvature along the front appears to be continuous and changing slowly. A clear

separation between the leading shock and the following reaction front located behind

the shock has taken place over the entire shock. The separation takes place gradually

as the reaction front close to the wall decouples first and the region close to the axis

decouples last. The wall shock appears at all times smooth on all scales resolved

by the schlieren image. For times at which both coupled parts on the tube axis and

decoupled parts at the wall exist, the lead shock in the intermediate region shows kinks

along the outline at length approximately 5–10 times larger than the cell size at CJ

conditions (Fig. 5.15a). Despite the integrating character of the schlieren images, this

indicates a three-shock configuration and the existence of transverse waves and shear

layers, which can be identified on some images. Weak transverse wave structures are

also seen in schlieren images after the shock has clearly decoupled from the reaction

front (Fig. 5.16a and b). They appear as darker lines or regions, branching off of the

main shock into the shocked gas. Since the transverse waves are traveling away from

the tube axis, the density gradient is oriented towards the tube axis and they are

better visualized on the top half of the diffracting shock for reasons discussed in the

next paragraph.

The wall shock on the top appears thicker and with more contrast than on the

bottom. This is due to the horizontal schlieren knife edge placed on the bottom.

Light deflections towards the bottom are therefore detected with more contrast. The

parallel light beam passing the top wall shock is deflected downwards, since the wall

shock creates a cylindrical region of higher optical density close to the wall. The

bottom shock is also detected since the light ray deflection is so strong that lens
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holders and the finite mirror extension block the deflected part of the light beam.

Note that the opposite effect is observed for the reaction front close to the wall. The

reaction front on the bottom appears with more contrast than the one on the top,

which indicates that the optical density in the shocked but unburned gas is larger

than in the hot gas. For gases of fixed composition, the optical refraction index n is a

linearly increasing function of density. The density for the burned gas is significantly

lower than the unburned gas at the same pressure. The light beam crossing the edge

of the reaction front is less influenced by the density gradient of the shock since the

angle α between the density gradient and the incoming light beam is not as close to

90◦ as for the visible portion of the leading shock (Fig. 5.15c). Since the radius R

of light beam curvature is given 1/R = (sin α∇n)/n (Schardin, 1934) the amount of

light beam deflection is larger the closer the angle α is to 90◦. Furthermore, the total

deflection increases with the distance the light beam is traveling through the region

with a refraction index gradient.

In contrast to the very distinct smooth front of the lead shock seen on the schlieren

images, the reaction front appears fuzzy. The simultaneous PLIF image and the over-

lay with the schlieren image reveals the exact location and detailed structure of the

reaction front (Fig. 5.16). The signal-to-noise ratio on the OH fluorescence images

with lower pressure, Fig. 5.16c, is better due to the lower quenching coefficient. Close

to the tube axis, the reaction front appears to be fairly flat. In some experiments,

keystone-shaped features are observed, similar to those in fully developed detonations

traveling at CJ velocity. The keystones of higher fluorescence are pointing in both

directions with respect to the tube axis. Further away from the tube axis, the re-

action front more closely resembles a saw tooth geometry, where the teeth of higher

fluorescence are, in general, pointing away from the tube axis and are slightly inclined

towards the wall direction (Fig. 5.17). The length scale of the largest features is about

10 mm, which corresponds to approximately 5–10 times the cell size at CJ conditions.

The large scale features appear with a smooth front in some cases and corrugated

in others. The orientation of saw tooth-like features away from the tube axis is also

observed on the schlieren images. The PLIF reaction front location corresponds well
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schlieren images, full field of view, red rectangle indicates region used for overlay.

schlieren images, cropped region used for overlay.

PLIF images.

overlay of PLIF and schlieren images, PLIF layer in false color.

a) 0.2H2+0.1O2+0.7Ar, b) 0.2H2+0.1O2+0.7Ar, c) 0.333H2+0.167O2+0.5Ar
P0 = 100 kPa, shot 69. P0 = 100 kPa, shot 72. P0 = 47.5 kPa, shot 157.

Figure 5.16: Observations in the sub-critical regime for Ar-diluted mixture.
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saw tooth geometry

key stone

geometry

Figure 5.17: Illustration of saw tooth geometry observed for off-axis OH front. PLIF
image in background is from shot 69, see Fig. 5.16a.

with the fuzzy front seen on the schlieren images. As long as the flow field is axially

symmetric, the leading reaction front seen on schlieren images must be close to that

seen in the light sheet plane. The geometry of the reaction front in the schlieren

images can be clearly matched with the PLIF image for regions in which the inte-

grating effect of the schlieren system is minor. For some experiments, the assumed

reaction front seen on schlieren images appears ahead of the reaction front obtained

from the PLIF images. This could be attributed to non-axially symmetric flow and

parts of the reaction front outside the light sheet plane. The transverse waves seen

on some schlieren images were, in most cases, located close to a tip of the reaction

front geometry (Fig. 5.16).

On multiple exposure chemiluminescence images for sub-critical conditions, the

leading front appears comparatively bright and flat immediately after the detonation

exits the tube (Fig. 5.18). All chemiluminescence images are shown, as well as the

PLIF images, normalized but not intensity clipped. By doing so, the full range of

intensities is preserved and the lowest intensity corresponds to complete black and

the highest to complete white. The grey scale is a linear representation of the counts

registered by the camera for each pixel. The luminescence intensity of the front

decays rapidly as the detonation travels further from the tube axis. At distances

of approximately 50 mm from the tube exit plane, the front is hardly detectable

by the camera system. The gain and exposure time settings on the 16 bit camera

system were configured to utilize the full dynamic range of the camera. Since it

was not possible to predict the brightness accurately prior to the experiment, some
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a) b) c)

Figure 5.18: Multiple exposure chemiluminescence images. Image height 109 mm.
a) Shot 156, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=45 kPa, T0=296 K. Multiple ex-
posure timing: 9×6µs. b) Shot 157, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=47.5 kPa,
T0=296 K. Multiple exposure timing: 11×6µs. c) Shot 128, 0.2 H2 + 0.1 O2 + 0.7 Ar,
P0=100 kPa, T0=295 K. Multiple exposure timing: 6×6µs.

images are overexposed in areas close to the tube exit plane. The intensities of a

non-detectable front are approximately three orders of magnitude smaller than the

maximum intensity observed. The intensity of the image is both highest and most

persistent close to the tube axis. The region of higher luminescence can be bounded

by a conical region in some cases, in others more by a frustum-like geometry. In

general, a decrease in both brightness and extent of the leading front is observed

as the wave propagates away from the tube. Due to the integrating nature of the

chemiluminescence images one can not conclude a lower temperature or local energy

release rate from a lower luminescence intensity. As long as the front is comparatively

flat and parallel to the optical axis, the intensity is integrated over the depth as the

plane is projected on a line. Assuming axial symmetry of the reaction front, luminous

fronts with a larger vertical extent are brighter than those with a smaller extent. The

diffuse edges of the conical region could be attributed in part to this effect.

The intensity distribution along the reaction front during a 6 µs exposure gate was

obtained by averaging horizontally over a 15-pixel wide vertical stripe (Fig. 5.19a).

Also shown is the intensity distribution from a disk of uniform local luminosity pro-
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Figure 5.19: a) Solid line: Experimentally obtained vertical intensity distribution
along the chemiluminescence front for the third exposure gate (t = 6 µs), shot 128
(see Fig. 5.18c); 23 mm from tube exit plane. Averaged horizontally over 15 pixel.
Dashed line: Ideal intensity distribution arising from a disk with an uniform intensity
distribution, projected onto a line. b) Bright spots indicated by white arrows causing
spatial modulation in reaction front intensity, Shot 128, 0.2 H2 + 0.1 O2 + 0.7 Ar,
P0=100 kPa, T0=295 K. Multiple exposure timing: 6×6µs.

jected onto a line to the experimental profile. The profile shows two symmetric

“wings” of higher intensity at distances beyond 17 mm from the tube axis. Other-

wise, the idealized and experimental intensity profiles are in reasonable agreement.

The chemiluminescence front, especially for later times in the diffraction process,

appears folded. Furthermore bright spots appear along the reaction front, causing

the modulation in intensity as seen in Fig. 5.19. For later times in the diffraction

process the number of bright spots close to the tube axis is decreasing (Fig. 5.19b).

In some images, bright streaks close to the tube exit were observed. Possible

explanations include hot particles, e.g. from previous soot foil experiments, which

follow the flow behind the detonation wave and exit the tube close to the tube wall.

5.4.1.2 Critical regime

In the critical regime the amount of argon dilution is decreased or the initial pres-

sure increased compared to the mixtures in the sub-critical regime. In this section,
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experiments without a re-initiation event are described.

For experiments in the critical regime with a sub-critical outcome, the shock

and reaction front appear coupled close to the tube axis for much larger distances

than in the sub-critical regime. The coupling is evident on the schlieren images by

the corrugated lead shock front and on the simultaneous PLIF images by the close

relation between OH front and shock (Fig. 5.23). On some images, the reaction front

appears to be coupled up to 86 mm from the tube exit plane (Fig. 5.21). The wall

shock is clearly decoupled, and the distance between the shock and reaction front

appears to gradually decrease as one approaches the tube axis. Weak transverse

wave structures and, more pronounced, the corresponding shear-layers are present on

schlieren images in the decoupled regions in the sub-critical regime (Fig. 5.20a). The

shear-layers join the lead shock in a weak triple point, which is indicative to the three

shock structure. In some cases the optical density gradient across the transverse wave

is too weak to be visualized by the schlieren system. The shear-layer structure bounds

the saw tooth geometry of the OH-front. This indicates that the saw tooth geometry

have the same origin as the keystone-shaped geometry observed for fully developed

detonations (Fig. 1.4c). In case of the diffracting wave the transverse waves are in

the decoupled region observed to travel only towards the wall as no new transverse

waves are regenerated in this region. This results in saw tooth geometries pointing

in the off-axis direction.

The geometry of the lead shock outline is altered compared to the sub-critical

regime only in the region close to the tube axis. It appears further ahead, indicative

of a larger propagation velocity of the coupled region close to the tube axis. The strict

axial symmetry observed in the sub-critical regime is not seen in the critical regime.

For later times in the diffraction process, the leading shock is sometimes asymmetric

close to the tube axis. The asymmetry can also be observed on the chemiluminescence

images (Fig. 5.22).

On the PLIF images, the saw tooth-like geometries appear as in the sub-critical

regime in the off axis regions. The reaction front in the coupled region exhibits

keystone-shaped elements, which appear more frequent and distinct than in the sub-
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a) b)

Figure 5.20: a) Shear layers and kinks in lead shock front as seen on schlieren images
indicative to weak transverse wave structures , shot 202 (see Fig. 5.21). b) Schematic
of weak triple point configuration and corresponding saw tooth geometry observed on
PLIF images.

critical regime. On the schlieren-PLIF overlay images, the geometry of keystones of

higher fluorescence can be clearly matched to the curved outline of the lead shock

(Fig. 5.21).

The chemiluminescence images show that the front luminosity persists for larger

distances than in the sub-critical regime. The cone-like region of higher luminescence

appears to have a shallower angle and the intensity seems to drop rather abruptly for

larger distances from the end plate. For these distances, only a few bright regions of

higher intensity along the reaction front are seen.

5.4.1.3 Super-critical experiments

All super-critical experiments within the critical regime are marked by a re-initiation

event. The term itself is misleading since no failure of the entire detonation need

precede the re-initiation. It is more a local re-coupling of shock and reaction front.

Prior to a re-ignition event, the shocked but unburned reactants are located in a

region best described as a thick spherical shell. The inner radius corresponds to the

distance from the tube exit plane center to the reaction front, the outer radius to the

distance to the lead shock front. The shell thickness varies and is largest close to the
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Figure 5.21: Keystones of higher fluorescence are observed where reaction front is
coupled to shock front, see also Fig. 5.22b. Shot 202, 0.22 H2 + 0.11 O2 + 0.67 Ar,
P0=100 kPa, T0=294 K. Schlieren image height: 125 mm. Cropped region height:
80 mm. PLIF image height 70 mm.

a) b) c) d)

Figure 5.22: Asymmetric diffraction process. a) and b) Shot 135, 0.217 H2 + 0.108 O2

+ 0.675 Ar, P0=100 kPa, T0=294 K. Schlieren image height: 125 mm. Chemilumi-
nescence image height: 109 mm. c) and d) Shot 149, 0.22 H2 + 0.11 O2 + 0.67 Ar,
P0=100 kPa, T0=295 K. Schlieren image height: 125 mm. Chemiluminescence image
height: 109 mm.

wall. Both radii increase with time since shock and reaction front are progressing

outward. In a re-initiation event, a detonation advances transversely through the

shocked reactants in the azimuthal and polar direction and completes the reaction in

the shell-like region (Fig. 5.25b, schlieren image). A growing mushroom-like region

of the re-coupled leading shock is created (Fig. 5.24).

On schlieren images, the transverse detonation resulting from a re-initiation event

is best visualized if located on the very top or bottom, since the three-dimensional

masking effect is then smallest. The outline of the lead shock changes at the point of

the transverse detonation from very smooth in the still decoupled part to corrugated
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shocked but

unreacted gas

gas at

initial conditions

decoupled

reaction front

wall mushroom-like region

of recoupled shock

decoupled

shock

coupled shock

and reaction front

transverse

detonation

Figure 5.24: Re-initiation event and detailed view of transverse detonation, Shot 143,
0.5 H2 + 0.5 N2O, P0=45 kPa, see also Fig. 5.31a.

in the re-initiated part (Fig. 5.24). An inflection point appears in the lead shock at

the location of the transverse detonation. Multiple re-ignition events were observed

to occur simultaneously at different locations (Fig. 5.26).

On chemiluminescence images, the transverse detonations appear, due to their

high energy release rate, as bright bands comparable in intensity to the reaction front

on the tube axis close to the tube exit plane. The intensity is lower in the early

stages of the transverse detonation development, and it is difficult to locate exactly

the origin of re-initiation. The location in the out of plane direction can only be

inferred indirectly from a simultaneous schlieren image assuming axial symmetry,

clearly an over-idealization in many cases.

For a large number of experiments the transverse detonation starts close to the

edge of the coupled region at the leading reaction front and develops from there

backward towards the wall (Fig. 5.23). For some experiments, the re-initiation event

seems to take place closer to the wall and further off the tube axis. The transverse

detonation spreads in a radial fashion, propagating into the shocked reactants towards

the wall and also towards the leading front (Fig 5.26).
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On the PLIF images the transverse detonation appears as a clear step in the re-

action front, as the reaction of shocked reactants get rapidly completed. For the case

of the transverse detonation moving towards the wall this step is downwards when

following the reaction front outline towards the wall. This can be seen in the PLIF

image despite the low fluorescence intensity in the wings of the light sheet profile,

Fig. 5.23a in the very top left corner. For the case of the transverse detonation prop-

agating away from the wall, the step in the reaction front outline is correspondingly

upwards, which can be seen in the PLIF image of Fig. 5.26a in the top left corner.

high OH

concentration

transverse

detonation

leading

shock

high OH

concentration

transverse

detonation

leading

shock

a) b)

Figure 5.27: Depending on the direction of the transverse detonation the step in the
OH-front is downwards (a) or upwards (b). The clipped PLIF images are enhanced
in contrast to clearly show the step in the reaction front. a) Shot 136 (see also
Fig. 5.25a), b) Shot 137, (see also Fig. 5.26a).

Keystone-shaped structures of the leading reaction front are observed in most

cases. The keystone of lower fluorescence seen on the PLIF image in Fig. 5.25b

indicates two transverse waves traveling in opposite directions (Fig. 5.28). For the

likely constellation of the corresponding triple-lines not being close to parallel the

transverse waves have collided in a plane outside the light sheet plane, leading to a

locally increased energy release rate. On the chemiluminescence image a very bright

spot is observed which spatially correlates well with the keystone of lower fluorescence.

This indicates that the previously mentioned spatial modulation in intensity along the

reaction front observed on chemiluminescence images arises from the cellular structure
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of the front.

Figure 5.28: Collision of transverse wave at key-stone of lower fluorescence on the
OH PLIF image (left). Out of the light sheet plane the transverse wave have collided
as seen on the simultaneous chemiluminescence image (right). Shot 166, see also
Fig. 5.25b.

5.4.2 H2-N2O mixtures

5.4.2.1 Sub-critical regime

The lead shock appears on schlieren images as a smooth front for regions distant

from the tube axis just as for the Ar-diluted mixtures. The reaction front decouples

from the shock in the area close to the wall right after the detonation exits the tube

and appears to stay coupled longest close to the tube axis. For later times, the

shock is, aside from the parts at the wall, close to a hemispherical shape (Section 5.8

and Fig 5.29). The reaction front is smoother close to the axis than in the case of

the Ar-diluted mixtures. The keystone-like geometries are observed only for early

stages in the diffraction process. Saw tooth-like geometries of the reaction front seen,

have rounder tips than in the case of the more regular Ar-diluted mixture. The

chemiluminescence images show a very bright planer reaction front right after the

tube exit, which decreases in radial extent and intensity fairly quickly. About 40 mm

from the tube end plate, it is indistinguishable from the silhouette of the decoupled
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Figure 5.29: Schlieren images obtained from nine separate experiments using the same
0.5H2+0.5N2O mixture and initial conditions of P0 = 40 kPa. The time increment
between the point in time at which the schlieren image was taken is 6 µs. The shot
numbers in the order shown are: 87, 86, 89, 84, 88, 82, 81, 80, 79.

reaction front.

5.4.2.2 Critical regime

The lead shock is less smooth than in the sub-critical regime. Shock kinks and small

bumps are seen on the schlieren images. At the bumps, the reaction front loca-

tion is more closely coupled to the shock than elsewhere on the shock outline (see

Fig. 5.30b top right). For mixtures closer to the super-critical regime, the detona-

tion front remains coupled slightly longer on the center line. This can be seen from

the chemiluminescence images for a series of experiments with increasing pressure

(Fig. 5.30).

5.4.2.3 Super-critical experiments

The re-ignition events observed for the H2-N2O mixtures appear to be similar to

the ones for the Ar-diluted mixtures. Single and multiple re-initiation locations are
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a) Shot 144, 0.5 H2 + 0.5 N2O, P0=40 kPa, multiple gates delay: 10×3µs.

b) Shot 145, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, multiple gates delay: 9×3µs.

c) Shot 171, 0.5 H2 + 0.5 N2O, P0=45 kPa, multiple gates delay: 11×3µs.

d) Shot 146, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, multiple gates delay: 9×3µs.

Figure 5.30: Series of images of sub-critical experiments for increasing initial pressure.
Image heights from left: Schlieren 110 mm, cropped schlieren 80 mm, overlay 80 mm,
PLIF 70 mm, Chemiluminescence 109 mm.
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Figure 5.32: Collision process of transverse detonations resulting in very bright regions
and kinks in the transverse detonation outline, schlieren image (left) and multiple ex-
posure chemiluminescence image (right). Shot 150, 0.223 H2 + 0.112 O2 + 0.665 Ar,
P0=100 kPa, T0=295 K. Schlieren image timing: tTEP =48.5 µs. Multiple exposure
image timing: tTEP =0.6 µs, 10×6µs. Schlieren image height 127 mm, Chemilumines-
cence image height 109 mm (same scale). The schlieren image is taken simultaneously
with the 9th exposure gate of the chemiluminescence, approximately 6µs before the
transverse detonation collision. Marked on both images are the outlines and propa-
gation direction of the transverse detonation. On the chemiluminescence image the
outline of the tenth exposure gate is marked, coinciding with the collision process.
Red and blue outlines are most likely on opposite sides of the diffracting shock. For
three-dimensionality of diffraction process see Section. 5.5.
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observed. In the case of multiple re-ignition, the collision point of transverse det-

onations appeared very clearly on chemiluminescence images (Fig. 5.32). For most

experiments the transverse detonations originated from the point where the reaction

front is being just decoupled. This can be best observed on the chemiluminescence

images (Fig. 5.31). In some cases the transverse detonation seems to develop and fail

again, e.g., shot 143, Fig. 5.31a, and Fig. 5.33a and b. On the top half of the chemilu-

minescence image the coupled bright part of the reaction front is seen to decrease in

diameter for the first 15 µs. Since the first gate is set to approximately 3 µs after the

detonation has exited the tube, this corresponds to the first five exposure gates, which

form the cone-shaped outline of the higher fluorescence region. For the next 12 µs

(four exposure gates), a transverse detonation develops on the top half of Fig. 5.33a.

This is visible on the chemiluminescence image as a bright contour moving upwards

and on the schlieren image as a kink and change in roughness of the shock outline.

The schlieren image is taken simultaneously with the ninth exposure gate. On the

last exposure gate, the brightness of the transverse detonation drops dramatically in

intensity, indicating failure of the transverse detonation. The intensity is so low that

it is hard to observe on the normalized image.

In Fig. 5.33b, the contrast of the image is enhanced to show the possible failure

of the transverse detonation. The location of the leading reaction front is indicated

in Fig. 5.33a and b by small line segments, identical on both images. The reaction

front was detected manually through appropriate setting of the contrast level. The

transverse detonation does not, on close inspection of the schlieren image shortly

before failure, appear to be perpendicular to the decoupled shock. Contrast this

with the transverse detonation seen on the bottom of the image in Fig. 5.31b. The

failing transverse detonation in Fig. 5.31b is inclined such that the part closer to

the decoupled shock is ahead. The chemiluminescence profile after the detonation

failure shows a very low-luminosity but strikingly large-scale single saw tooth-shaped

feature, which could be the remnant of the transverse detonation.

The phenomena of a failing transverse detonation is also observed for shot 102

(Fig. 5.33c and d). The detonation appears to fail between 36 and 40 µs after exiting
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Figure 5.33: Chemiluminescence images indicating a possibly failing transverse det-
onation. Line segments mark the reaction front at different times. The numbers are
the corresponding times in micro seconds from the detonation exiting the tube. a)
and b): Shot 143, 0.5 H2 + 0.5 N2O, P0=45 kPa, Multiple gates delay: 10×3µs. c)
and d): Shot 102, 0.5 H2 + 0.5 N2O, P0=45 kPa, Multiple gates delay: 7×6µs.
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the tube, and the chemiluminescence image shows, on the last exposure, a large-

scale saw tooth. The bright region seen left of the failed transverse detonation on

the last exposure could be a second transverse detonation traveling in the other

direction. Transverse detonations were found in other cases to also propagate towards

the tube axis, e.g. shot 116, Fig. M.92, Appendix M. Further experimental studies are

necessary to prove conclusively that the observed phenomena is a failing transverse

detonation. It was observed only for the two experiments discussed here.

5.5 Three-dimensional image construction of trans-

verse detonation

In order to obtain further insight into the transverse detonation and its position with

respect to the shock, a stereoscopic image construction of the transverse detonation

was performed. This is discussed in the next section.

A few general considerations about stereoscopic imaging are given at the beginning

of the section since they are crucial for an understanding of the limitations of this

imaging technique. In order to reconstruct the three-dimensional (3-D) position of a

single particle, the images of two cameras are sufficient, as long as their line of sight

is not collinear. Neglecting the issues of blurring and digitization of the image, a 3-D

ray pair corresponding to the particle images can be assigned to each image. The

ray pair intersects in the ideal case, and the intersection point determines the 3-D

particle location. Due to the digital nature of the image and errors in the camera

parameters and calibration, the calculated ray pair does not intersect. Instead, the

ray pair is skew (Fig. 5.34a). In this case, the closest point E to both rays is often

taken as the reconstructed 3-D position. This point is located half-way between the

line describing the shortest distance d between both rays. Sub-pixel resolution and

careful calibration can minimize that distance. This is analog to assigning a certain

diameter to each ray, such that the cylindrical thereafter rays intersect. The minimum

diameter is d in which case the cylinders are just touching.
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Figure 5.34: a) Illustration of skew ray pair from camera A and B at a distance
d apart and location of center point E. b) Principle of stereoscopic imaging of two
particle located at A and C and their corresponding ghost images located at B and D.
The shaded area corresponds to the possible location of all points 3-D reconstructed
from both cameras imaging a line between A and C.

If two ideal point particles are in the field of view and both ray pairs assigned

to each particle are within one plane, the ray pairs intersect more than twice. This

leads to ghost particles in the reconstruction process (Fig. 5.34). The principal rays

of both cameras are at an angle α to each other. Assuming the actual positions of the

particles are at point A and C, ghost particles occur during the image reconstruction

at positions B and D. In this case, it is not possible to retrieve the actual 3-D position

with two cameras, and the particles could be either located at A and C or B and D. If

an ideal line connecting points A and C is imaged, the possible line locations, besides

the correct one, which are reconstructed from the ray tracing, are not just the straight

line connecting B and D. Any line or 2-D object within the tetragon ABCD could

result in the same set of images as long as each tetragon side is in contact with the

object at least once, as indicated by the ellipse fitted in the shaded region (Fig 5.34).

The region describing the possible locations of the imaged object has a large extent

in the direction of the principle rays for both small α and α close to 180◦.

This 3-D reconstruction technique is used to visualize the transverse detonation

as defined by the volume in space with high luminosity. We do not attempt to
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resolve the spatial variations, since for a complex geometry, this is not possible with

only two cameras. Instead, the 3-D location is reconstructed of those points with

chemiluminescence exceeding a certain level. The reconstruction technique is based

on gradients, in contrast to the techniques based on target points as used, for example,

in 3-D particle image velocimetry (Nishino et al., 1989). This is advantageous in the

present case since the transverse detonation appears as a relatively thin band, limiting

the possible error in the depth of scene. As shown in Fig 5.34, a large distance

between points A and C results in a very large distance between B and C. This issue

is addressed further below as an actual example of 3-D reconstruction is discussed,

illustrating the limitations and step-by-step reconstruction procedure.

5.5.1 Experimental setup

The ICCD camera B previously used for multiple gates chemiluminescence images

was positioned horizontally at a 15◦ angle to the optical axis of the schlieren system.

Camera A, previously used for the detecting the laser induced fluorescence signal,

was placed in a 25◦ angle to camera B at the same distance of 1350 mm from the

tube center axis (Fig. 5.35). The angle of 25◦ was the maximum that could be

achieved without blocking the field of view by the frame of the test section window.

The height of the field of view was 125 mm for both cameras and 105 mm camera

lenses were used, as described in Chapter 2. A WG305-UV high pass filter was

placed in front of each camera, since the camera lenses used on both cameras had

significantly different transmission characteristics in the ultraviolet. This ensures a

similar spectral response of both camera systems. The chemiluminescence intensity

is wavelength dependent and the different spectral camera responses could lead to

different imaging characteristics of both cameras. The wavelength range detected by

both cameras was from 305 nm to approximately 800 nm. Both cameras were gated

simultaneously (within 5 ns); the gate width for most images was set to 200 ns, and

the aperture f-numbers was varied between 16 and 32. The excimer laser was not

used in these experiments and the schlieren image was obtained 50 ns after the ICCD
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Figure 5.35: Experimental setup for stereoscopic imaging.

camera gates were closed.

5.5.2 Camera calibration

The purpose of the camera calibration is to determine the 3-D ray which corresponds

to a specific pixel coordinate on the camera image. Two images of a calibration

target were taken for each camera (Fig. 5.36). The plane checkerboard target with a

pattern length of 10 mm was placed vertically close to the test section side wall facing

the cameras. These images correspond to Fig. 5.36a and c. The plane in which the

target is placed corresponds to z = −60 mm in the coordinate system. The coordinate

system origin is at the center point of the exit plane, and the x axis coincides with the

tube axis (Fig. 5.35 and 5.37a). The second target position corresponds to z = 60 mm,

at the rear of the volume of interest (Fig. 5.36b and d). The general idea about the 3-

D ray construction method applied here is the following: the 3-D ray corresponding to

a specific pixel of a camera image is found by reconstructing the absolute coordinates

of the points corresponding to that pixel in both target planes. Only the x and y

coordinates within the target plane have to be determined since the z coordinate is

already given by the target plane itself. The ray is then described by the absolute

coordinates of two points, one of them in each target plane. This calibration process

is done for both cameras independently.
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a) Camera B, b) Camera B, c) Camera A, d) Camera A,
z = 60 mm. z = −60 mm. z = 60 mm. z = −60 mm.

Figure 5.36: Normalized calibration images for left (camera B) and right (camera A)
view. The variable z is the distance of the checkerboard target plane from the tube
axis, whereas negative values for z indicate the target being placed between camera
and tube axis.
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Figure 5.37: a) Corner detected image of target placed in z = 60 mm plane. Units
of the photographic coordinate system (X,Y ) are pixels. The absolute coordinate
system axis are denoted x, y and z. The tube exit is indicated by the dashed ellipse
b) Enlarged section of corner detected image to show sub-pixel accuracy of corner
finding method.

In order to obtain the absolute coordinates, a point P (x,y) corresponding to any

photographic coordinate (X,Y ) on the images, a transformation function has to be
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determined. Here, the formulas given in Nishino et al. (1989) are used:

x = (c1 + c2X + c3Y )/(1 + c7X + c8Y ),

y = (c4 + c5X + c6Y )/(1 + c7X + c8Y ). (5.4)

The eight camera parameters ci are valid for only one camera and one target position.

The total calibration of the stereoscopic system consists of four sets of ci parameters.

Each set of calibration parameters was determined by a least squares fit of 66 pattern

corner points for which the absolute coordinates (x,y) and photographic coordinates

(X,Y ) were known. The absolute coordinates of the corner points are directly given

by the pattern of the checkerboard whereas the corresponding X and Y were found

by digital image processing of the target image. A routine based on the Harris corner

finding method, Harris and Stephens (1988), was used to extract the corner location

for the set of 66 points (Fig. 5.37a). The corner finding method treats the pattern

as a digitized saddle-point in intensity and detects the corner pattern (Fig.5.37b)

with sub-pixel accuracy. Each set of ci parameters together with Eqs. 5.4 defines the

transformation of photographic coordinates into absolute coordinates for a specific

set of target positions and camera location. The set of found parameters was saved

in two 2×8 matrices CA and CB, corresponding to camera A and B. The accuracy of

the functional fit of Eqs. 5.4, can be tested by re-projection of the corner coordinates.

For this calculation, Eqs. 5.4 is inverted and the set of 66 absolute (x,y)-coordinates

of the pattern corners is mathematically projected onto the image plane. The inverse

transformation is given by

X =
(c4c8 − c6)x + (c3 − c8c1)y + (c6c1 − c4c3)

(c7c6 − c8c5)x + (c2c8 − c3c7)y − (c2c6 − c3c5)
,

Y =
(c5 − c7c4)x + (c1c7 − c2)y − (c1c5 − c2c4)

(c7c6 − c8c5)x + (c2c8 − c3c7)y − (c2c6 − c3c5)
. (5.5)

The corner location in the image plane is then compared to the locations which were

previously obtained from the image with the corner finding method. The distance

in pixels between the calculated and corner extracted location is the re-projection
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Figure 5.38: Re-projection error for camera target at z = −60 mm location.

a) Camera B b) Camera A

Figure 5.39: Chemiluminescence images of camera A and B for shot 223, C2H6 +
3.5 O2, P0=42.5 kPa. Flow direction is right to left. Tube end plate is located to the
right.

error (Fig. 5.38) and has an X and Y component. The maximum re-projection error

is one pixel. The error can be attributed to lens aberrations and refraction through

the thick glass window. Imperfections in the target and errors in the digital corner

finding method represent additional possible error sources.
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a) threshold: 0.72. b) threshold: 0.84. c) edge detected d) final

Figure 5.40: a) and b) Thresholded chemiluminescence images for two different thresh-
old values. The images were prior to thresholding blurred by a Gaussian filter with a
radius of 2 pixel. c) Laplacian of Gaussian edge detected image, which was blurred
with a median filter prior to processing. d) Processed and filled edge detected image
used for 3-D image reconstruction.

5.5.3 Image processing

The images for the stereoscopic reconstruction were obtained from a diffraction ex-

periment with a C2H4-O2 mixture, since the chemiluminescence intensity for this

mixture type was highest among the mixtures studied. This enabled a short camera

gate width and a small lens aperture, leading to a large depth of field of the imaging

system. The transverse detonation appears as a bright band on the chemilumines-

cence images of Fig. 5.39. The purpose of the image processing is to make a 3-D

representation of the transverse detonation. In order to do this, the transverse det-

onation must be extracted from the other features in the image. One possibility is

to threshold the image, leading to a monochromatic (black and white) image. The

white pixels would correspond to the transverse detonation. This technique did not

isolate the bright band sufficiently from the background over the entire image, since

the chemiluminescence intensity of the band was varying and a different threshold for

different regions of the image would have been necessary. For lower threshold values

(Fig.5.40a) the details of the brighter region on the image top were not resolved; for

higher threshold values (Fig. 5.40b), the transverse detonation on the bottom was not

fully detected. Blurring before the thresholding of the image did improve the results

but another image processing method was needed to clearly extract the transverse

detonation.
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Since the transverse wave appears as a local intensity gradient on the images,

this suggested using an edge detection routine in conjunction with the thresholded

images. The image was filtered by a 5×5 pixel median filter prior the edge detection.

The median filter is more appropriate than a Gaussian filter for edge detection. The

median filter suppresses impulse noise while preserving strong gradients. The blurred

image was then edge detected with the zero-crossing edge detector, also known as

the Laplacian of Gaussian edge detector (LoG). The edge detector threshold was set

manually. The edge-detected image included, besides the edges along the transverse

detonation, the edges of the overall leading flame front and other undesired structures,

seen in Fig. 5.40c. To minimize the manual deletion of these edges, the edge-detected

image was multiplied pixel by pixel by the thresholded image. In a further step,

end-points of edge segments with a distance smaller than 8 pixels were connected

by straight lines in order to obtain a closed edge line enclosing the bright region.

For some small regions, the outline had to be manually traced before the last step,

the binary flood-fill operation, was performed. The final result (Fig. 5.40d) was an

image that contained only information from the transverse detonation. In the 3-D

reconstruction process, the transverse detonation location corresponds to the set of

white pixels on the processed image.

5.5.4 Reconstruction process

The set of photographic coordinates X and Y corresponding to the white pixels of

the processed images of camera A and B were stored in two separate matrices PA

(5127×2) and PB (6345×2). The absolute coordinates of the points in the front and

back target plane corresponding to PA can be calculated via Eqs. 5.4 and the set

of camera parameters CA. For the image taken by camera A this results in a set of

5127×6 coordinates representing the (x,y,z)-coordinates in the front and back target

planes. The z-coordinate is either −60 mm or 60 mm, the location of the target

planes. This set of point pair coordinates defines the 3-D ray to each white pixel

and is stored for image A in RA (5127×6) and, correspondingly for image B, in RB
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Figure 5.41: Closely spaced ray bundles lead in the reconstruction process to a point
cloud.

(6345×6). The rays are saved in the two-point form as two points define a straight

ray, which is represented parametrically through the test section. Up to this point,

the data from both camera images were processed independently.

In order to decide which ray of RA correlates with which ray of RB, the distance

d (Fig. 5.34a) between every possible ray pair, one ray each from RA and RB, was

calculated and stored in a matrix D (5127×6345). Ideally, rays which correspond

exactly to a single point in space would intersect, but do not because of various

sources of errors and the digital nature of the images. All rays were found to be

skew for the calculation precision of 16 significant digits used. This is referred to

as “skewness” and is inevitably in 3-D image reconstruction from real 2-D images.

The distance d between rays is a measure of both the correction to a given point in

space and the skew errors. The maximum d calculated was 74 mm, which shows a

very large, error and the two rays are very unlikely to arise from the same region of

chemiluminescence. This ray pair is actually one ray on the very top of the image

A and one from the very bottom of image B. The smallest distance d found was

calculated to be 3 nm, which indicates that it is almost certain that these two rays

arise from the same location in the test section. Note that even if d = 0 the rays do

not have to arise from the same location in the test section, since, e.g., the ray from

camera A could arise from point A and the ray from camera B arise from point C

and both intersect ideally in point D (Fig. 5.41). The decision regarding which ray

pairs are considered as correlating can be based on the distance matrix D. All ray

pairs for which d is below a certain threshold are correlated but may not necessarily
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correspond to the same location in space. One ray from image A can be correlated

with multiple rays of image B since the chemiluminescence intensity of the imaged

volume is integrated over the line of sight of each camera and the intensity information

is lost by the edge detection processes of the image. This is similar to the situation

in particle tracking for which several particles are aligned and appear on one camera

as a single point but multiple points on the other camera. For the example given at

the beginning of this section, this means that the particle positions are reconstructed

at all four locations, A, B, C, and D.

This effect influences the reconstruction process on two levels, depending on the

distance between the ambiguous points. The case of a large distance between am-

biguous points A and C is shown on Fig. 5.42. The transverse detonation image

crosses the horizontal plane described by the cameras’ principle rays more than once.

From the context, it is obvious which section of the transverse detonation on image

A corresponds to which one on image B. For the dashed plane shown in Fig. 5.42,

it is clear that the left branch seen by camera B corresponds to the left branch seen

by camera A. In the reconstruction, Fig. 5.42 right, the correct location is A and C

- not B and D. If the locations were D and B, corresponding branches would occur

on opposite sides on the images. To overcome this problem in the automated image

reconstruction, the entire transverse detonation band was divided up on both images

into three slightly overlapping segments (Fig. 5.43), which, by visual inspection, cor-

respond to each other. The distance d between rays of different segments was set to

a large number to avoid triggering spurious reconstruction points.

If the ambiguous points are close together (Fig. 5.41), a bundle of dense rays from

one camera is detected to correlate with a bundle of rays from the other camera. The

reconstructed locations will, in this case, correspond to a point cloud. The underlying

effect is the same as discussed in the previous paragraph in the context of segmenting

of the image, just on a smaller scale. The volume of the point cloud gets created

in the reconstruction process regardless of whether the detected intensity arises from

a plane or a volume. This effect is observed as the band of higher intensity that is

several pixels wide.
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Figure 5.42: Effect of multiple intersections of the transverse detonation geometry
with the camera plane. From the image context, it is obvious that the correct 3-D
positions are A and C and not B and D as shown on the right.
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Figure 5.43: a) and b): Manual sectioning of corresponding branches on both images.
c) Regions in which the horizontal extent of detected pixel is large.

During the calculation of the distance matrix D, the absolute coordinates (x,y,z)

of the center point E of the shortest line segment (Fig. 5.41a) between all rays from

image A and all rays from image B were stored in a matrix E (5127×6345×3). The

matrix E can be thought of as a look-up table for the locations of a chemiluminescence

“event”, given a specific ray pair. Together with D, this enables the plotting of point

clouds which correspond to a certain maximum distance derr. However, point clouds

are difficult to interpret in 3-D plots. Iso-surfaces that correspond to a certain distance

derr are easier to view and interpret. In order to create iso-surfaces, the data has to

be projected on an orthogonal grid.

The iso-surface is a closed surface for which all points inside this surface correspond
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a) Camera B b) Camera A c) Side

d) Back e) Top

Figure 5.44: Reconstructed 3-D iso-surface corresponding to different view points.

to d < derr. An orthogonal equidistant grid of vertex length 0.5 mm was introduced to

cover the volume of interest (70 mm×120 mm×120 mm) in the test section. To each

vertex point (x,y,z), the scalar value of d is attached. Initially, all vertices are set to

a large value of d = 100 mm. Subsequently for all points of the unstructured point

cloud, the value of d of that point was compared to the value of d at the closest vertex

corner. If the d value of the point was smaller than the one at the vertex corner, the

vertex corner value was overwritten by the point value. This process gives the 3-D

distribution of the minimum d found within the cubic volume around the vertex on

an orthogonal grid. The iso-surface for derr = 0.1 mm was found to give reliable

results. The thickness of the reconstructed region (Fig. 5.44) corresponds visually to
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the thickness of the bright region of the transverse detonation seen on the original

images (Fig. 5.39). Iso-surfaces for a much smaller value of d appeared punctured

with openings while, for larger values of d, the extent in the field of view direction

becomes very large. The 3-D image was manually post-processed in regions in which

the horizontal extent of detected pixel was large (Fig. 5.43c). In these regions, the

iso-surface extended a large amount in the depth of scene direction and was cropped

manually. A larger angle between the two cameras or a third camera would minimize

this limitation.

On the top view of the reconstructed transverse detonation, one can identify the

manually cropped regions as the boundary is very straight, e.g. (x,y,z)=(50mm,-

15mm,40mm). In the regions where the band of higher luminosity on the chemilumi-

nescence images is close to being horizontal, one can observe the larger extent in the

z direction, which corresponds to the viewing direction of the cameras (Fig. 5.44d).

5.5.5 Reconstruction of shock surface

In order to allow for a determination of the transverse detonation location with respect

to the leading shock, the simultaneously obtained schlieren image was edge detected.

Thereby, only the region of the completely decoupled shock, which was assumed to be

axisymmetric, was edge detected (Fig. 5.45a). The derived shock surface is therefore

not closed but open in the very front where no axis symmetry could be assumed.

The shock surface was then plotted on the same coordinate system, which enabled

to locate the position of the transverse detonation location with respect to the shock

surface shown as grid, Fig. 5.45b, c and d.

Discounting some artifacts arising from the relatively small angle between the cam-

eras, the transverse detonation can be clearly located just below the decoupled shock.

In some locations, the reconstructed iso-surface of the transverse detonation is found

outside the reconstructed shock surface, which can probably be explained by the large

uncertainty of the iso-surface in the z direction. Other possible error sources include

those mentioned earlier with regard to the calibration process and image processing.
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The reconstructed transverse detonation is divided into two discontiguous parts. The

upper part of the transverse detonations has two kinks at (x, y, z)=(40,5,-40) and

(15,-45,-15) (see Fig. 5.44c). These kinks indicate that at these points transverse

detonations join, which originated from different re-ignition points (Fig. 5.32). Three

independent points of re-ignition seem to have caused the geometry of the upper part

of the transverse detonation. The lower part of the transverse detonation seems to

originate from a single re-ignition event as it appears smooth.

The image 3-D re-construction process clearly revealed the three-dimensional na-

ture of the transverse detonation. The transverse detonation progresses into the

shocked but unreacted fluid, which is located under the decoupled shock wave. To

allow for smaller errors in the re-constructed transverse detonation geometry, espe-

cially in the z-direction, a larger angle in between the two cameras or a third camera

is needed. If only one camera is available and the optical access is large enough a

mirror could be used to allow for a second image from point B’ besides the one from

point B (Fig. 5.46). As the path length to the imaged object varies, probably a small

f -number is needed with this setup for both images to be in focus. The back window

in the current setup reflects some of the chemiluminescence intensity (Fig. 5.47), but

the optical access is too small and the reflected light intensity is too low to allow for

a 3-D re-construction based on these reflections.
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a) b)

c) d)

Figure 5.45: a) Edge-detected leading shock and assumed axis of symmetry. Flow
direction left to right. b) View from rear of the wave through the tube exit plane.
c) View corresponding to camera B. d) View corresponding to camera A, tube exit
plane located on the right.
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Figure 5.46: Possible setup for 3-D image re-construction by using a mirror to obtain
a second image from point B’.

Figure 5.47: Reflections of chemiluminescence in back windows. Shot 217, 0.222 C2H6

+ 0.778 O2, P0=42.5 kPa, T0=295 K. Left: Intensity normalized image. Right: High
contrast version of same image to allow for illustrations of low intensity reflections.
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5.6 Distance between shock and reaction front

The PLIF schlieren overlay images were used to obtain the distance between the

leading shock front seen on the schlieren images and the reaction front close to the

tube axis. The data presented in the following paragraphs are acquired within 10 mm

above and below the tube axis. Note that the distance between the shock and reaction

front seen on the overlay images does not necessarily correspond to the induction zone

length for the shock velocity at the instant the images were taken, since the process

is transient and the reaction front is convected with the flow. Due to the cellular

structure of the reaction front seen on the PLIF images and the slightly curved front

on the schlieren images, the distance between both is not constant but varies along

the front. The points detected along the reaction front were spaced approximately

1 mm; the points detected along the shock front were spaced approximately 0.25 mm.

The smallest distance between a specific edge point of the reaction front and all points

of the shock front was calculated. The dataset for one processed image consists of

the average distance over the approximately 20 data points along with the minimum

and maximum distance. A total of 80 images from experiments in Ar-diluted H2-O2

mixtures and H2-N2O mixtures was processed in this fashion.

The distance appearing on the overlay is a projected distance, as the leading

shock front seen as the dark line on the schlieren images could arise from a different

plane than the light sheet and consequently the PLIF image. As long as the shock

is axisymmetric, the leading shock is close to the light sheet plane, which is oriented

vertically through the tube axis. In case of re-ignition events where the lead shock is

highly asymmetric, the error introduced is much larger. Images for which the leading

shock appeared highly asymmetric on the schlieren images were not processed. In

these cases the PLIF images showed a lower signal-to-noise ratio and were often not

suited for edge detection.

The error corresponding to the maximum time delay of 80 ns between acquiring

the PLIF and schlieren image results in a spatial uncertainty of 180 µm for the

fastest CJ detonation velocities. The error in the overlay process was estimated
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Figure 5.48: Normalized distances between shock and reaction front as measured
from schlieren-PLIF overlays as a function of distance to tube end plate. a) H2-O2-
Ar mixtures, b) H2-O2 mixtures.

to be 300 µm and the error in the reaction front detection was estimated to be

240 µm, which corresponds to two pixels. The total uncertainty for each data point

measured is calculated by adding up the individual errors mentioned and amounts to

approximately 0.7 mm.

The average distance measured between the shock and reaction front for both

mixture types is shown as a distance xTEP of the lead shock from the tube exit plane

in Fig. 5.48; each data point corresponds to one experiment. The measured distance is

normalized by the induction zone length at CJ conditions to allow for a comparison

between experiments. The error bars shown do not correspond to the uncertainty

of 0.7 mm in the measurement technique but to the minimum and maximum in

distance measured for that specific overlay image. The CJ induction zone length

for the Ar-diluted mixtures is approximately 0.1 mm and, for the H2-N2O mixtures,

approximately 0.15 mm. The uncertainty of 0.7 mm corresponds on the plots shown

to an uncertainty of about 7 and 4.5, respectively.

For both mixtures, the distance between the shock and reaction front is small –

less than 3 ∆CJ for xTEP < 45 mm in all experiments. Note that these distances

are smaller than the uncertainty in the measurement technique. For xTEP > 50 mm,
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the maximum distances measured for sub-critical experiments in H2-O2-Ar mixtures

increase quickly with distance up to 100 ∆CJ for xTEP = 80 mm. There is a large

spread in measured distances; the smallest distance measured for xTEP = 80 mm was

20 ∆CJ . The distances measured for the super-critical cases were smaller and increase

from 5 ∆CJ at xTEP = 60 mm to about 20 ∆CJ at xTEP = 80 mm.

For the sub-critical cases in the N2-O2 mixtures, the distance between the shock

and reaction front increased slightly faster with distances than in the Ar-diluted

mixtures. A smaller spread in values is observed for a fixed xTEP in N2O mixtures

compared to the Ar-diluted cases. Only a few distances in the super-critical cases

could be measured. In general they were smaller than the sub-critical cases – less

than 10 ∆CJ . The distance between the shock and reaction front is connected to the

lead shock velocity. When the reaction is close to the coupled shock, this leads to

a higher velocity. Results of reaction front velocity measurements are shown in the

next section.

5.7 Axial velocity decay

The velocity of the shock and reaction front is a good discriminant for them being

coupled or not. In case of decoupling, the energy release rate is decreased, leading to

an increase in induction zone length and a decrease in the velocity. Multiple exposure

chemiluminescence images were used to determine x-t diagrams and velocity profiles

of the leading front of the diffracting detonation. Comparison of PLIF and chemilu-

minescence images show that the leading front appearing in the chemiluminescence

images coincides with the reaction front. The reaction front is trailing close to the

wall and is not perpendicular to the wall, which can be seen on chemiluminescence

and schlieren images (Fig.5.49). This is a consequence of the flow-field close to the

tube exit and wall as a vortex structure gets formed, which reduces the flow speed at

the wall close to the tube exit (Arienti (2002)). The lead shock is not strong enough

to produce detectable luminescence. The reaction front is quenching close to the wall

due to the strong expansion right after passing the sharp corner.
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a) b) c)

Figure 5.49: a) Multiple gates chemiluminescence image in sub-critical regime. 0.5 H2

+ 0.5 N2O, P0 = 40 kPa. Multiple gates delay: 14×3µs. Shot 151. The chemilumi-
nescence image is overexposed and shown to illustrate the kink in the reaction front
close to the wall, which can be also seen on the schlieren image. b) Detail of (a) as
marked. c) Corresponding schlieren image of same experiment.

The shock front is always times perpendicular to the wall as seen on the corre-

sponding schlieren image (Fig.5.49c). This is due to the requirement that the flow

adjacent to the wall moves parallel to the wall. The chemiluminescence emission is

much lower in the regions where the shock has separated from the reaction zone than

where the shock and reaction zone are coupled. The region behind the planar part

of the detonation front (Fig. 5.50a) is a strong source of chemiluminescence emission.

Re-ignition events can be clearly localized since they are also characterized by high

emission intensity (Fig. 5.50b and c). Note that the intensity on each pixel is accu-

mulated over successive exposure gates and some regions may appear brighter than

they would in a single exposure image.

The bright isolated regions of chemiluminescence on the tube axis clearly define

the motion of the reaction behind the shock and can be used to determine the axial

velocity. In order to derive the axial velocity, a 20-pixel-wide horizontal stripe, cen-

tered on the tube axis, was extracted from each chemiluminescence image (Fig.5.51).

The stripe width corresponds to 4.5 to 5 mm, depending on the field of view of the

camera (118 or 109 mm). The pixel counts were then averaged in the vertical di-

rection to obtain an one-dimensional intensity profile (Fig.5.51). The averaging is
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a) b) c)

Figure 5.50: Multiple gates chemiluminescence images. a) 0.22 H2 + 0.11 O2 +
0.67 Ar, P0=100 kPa, multiple gates delay: 10×3µs, shot 148. b) 0.5 H2 + 0.5 N2O,
P0=47.5 kPa, multiple gates delay: 6×6µs, shot 172. c) 0.333 CH4 + 0.667 O2,
P0=120 kPa, multiple gates delay: 7×6µs, shot 195.

necessary in order to obtain a smoother intensity profile. The intensity profile clearly

shows the local intensity fall-offs, which correspond to the chemiluminescence front

location at each camera gate. In order to determine the position of the front, the

intensity profile was differentiated with respect to distance by taking the difference

quotient of adjacent data points. The location of the maximum negative gradient

was taken as the location of the chemiluminescence front. Using the time delay ∆t

between gates, an x-t diagram of the axial chemiluminescence front and a velocity

profile are obtained (Fig. 5.52). The derived velocity is an average in between con-

secutive camera gates. The distance coordinate of a velocity data point was set to

the center position between the distance coordinates of the corresponding x-t data

point pair. The error bars are shown on the x-t diagrams but are hardly visible and

correspond to an uncertainty in location for the shock front of ± one pixel. For the

velocity plots, this leads to a total uncertainty in ∆x of four pixels. This corresponds

to an uncertainty of ±150 m/s for the smallest ∆t of 3 µ used. For larger values

of ∆t, the uncertainty decreases correspondingly. A summary of x-t diagrams and

velocity profiles of all experiments is shown in Appendix L.

The particular method of obtaining the velocity profile does, however, have several

limitations:

• The spatial resolution of the velocity profile is limited by the fact that using a
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Figure 5.51: Example of chemiluminescence image analysis to determine front loca-
tion, shot 148. Top: Extracted 20-pixel-wide stripe, Bottom: Averaged normalized
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Figure 5.52: a) x-t diagram obtained from multiple exposure chemiluminescence im-
age. b) Corresponding velocity profile.
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small ∆t may lead to regions on the image being over-exposed. Over-exposed

regions can lead to an error in determining the front location, since the lumi-

nosity gradients are not fully resolved. For smaller ∆t, the uncertainty in the

derived velocity also increases. With a streak camera, a higher spatial resolution

of the velocity profile could be achieved. With a burst image, the accumula-

tion of intensity limits the total number of gates. Regions close to the tube

exit plane tend to get over-exposed, while the dynamic range in low-intensity

regions is insufficient. The chemiluminescence intensity of failing detonation

waves far from the tube exit plane tends to be very low and is sometimes diffi-

cult to detect. This could be compensated for by increasing the gate width for

later camera gates. On the other hand, that would distort the qualitative link

between energy release luminescence intensity, which is useful in interpreting

the diffraction process from those images. For all experiments, the gate width

within one burst series was kept constant.

• The integrating effect of the chemiluminescence technique has to be considered

when interpreting the images. For the planar part of the diffracting detonation

just exiting the tube, the intensity arising from the reaction front within that

plane is integrated over the entire depth of the field. The leading front of a

curved surface with a similar local luminescence would appear less bright. A

large radius of curvature leads to a more distinct luminosity front. In return, this

effect can be used to judge how planar the front is, as long as it is approximately

aligned with the optical axis.

• The vertical averaging over the stripe can influence the determination of the

front location for a curved front. For an ideal front of curvature radius 15 mm,

the maximum horizontal displacement of the front location is 0.21 mm, which

corresponds to one pixel. This assumes that the curvature center is on the

center line of the stripe. For a curvature radius larger than 15 mm, the stripe is

thin enough that the displacement is smaller than 1 pixel. The radius necessary

for a horizontal displacement of one pixel is very sensitive to the location of
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the curvature center. Assuming that the curvature center is on the stripe top

or bottom, the curvature radius which corresponds to one pixel displacement is

59 mm.

• In case of a re-initiation event, the transverse detonation propagates sideways

and backward into the shocked reactants. The luminosity of the transverse det-

onation is superposed on the regions containing the information about the front

location from previous exposure gates (Fig. 5.50b). It is difficult, sometimes

impossible, to unambiguously identify the origin of the luminosity, since the

image contains no direct information about the chronology of the event. Events

in which the luminosity front changes direction are difficult to interpret on mul-

tiple exposure images. A re-coupling event can also lead to a luminescence

front that is not propagating along the tube axis. It can cross the horizontal

averaging stripe at an angle. This leads to difficulties in locating the steepest

gradient as described previously in the context of curvature. This results in

erratic larger front velocities, since the velocity is not measured normal to the

front. For this reason velocity profiles of re-ignition events are difficult to obtain

with this technique. To avoid this, the camera timing parameters set prior to

the experiment were chosen to stop recording shortly after a re-ignition. Since

the re-ignition event is stochastic in nature, this is difficult to achieve. Using

a narrow channel and studying cylindrical diffraction as done by previous re-

searchers would overcome this problem since events are staggered spatially with

respect to their chronology. To overcome this problem for the case of spherical

diffraction, separate images have to be obtained with a high-speed camera or a

streak camera.

• The lens distortion in the horizontal direction was measured by placing a target

with equidistant stripes on the tube axis and was found to be less than one

pixel over the field of view for the camera lens used for the chemiluminescence

images. Lens distortion effects are therefore negligible.

• If the camera is placed at a distance dcam (1.5 m) from the tube axis, the ray
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defining the extremity of the front makes a varying angle β with respect to the

tube axis (Fig. 5.53). The distance to the tube end plate xcam is 25 mm, whereas

the field of view is 109 mm for most experiments. As shown in Fig. 5.53, the

image of the leading luminescence front can arise from a region behind or in

front of the actual intercept of the front with the tube axis. Assuming that the

leading luminosity arises from near the tube axis can lead to a displacement d

between the apparent and actual location. The displacement is largest on the

left and right edge of the field of view and is always positive, meaning that the

distance to the tube end plate appears larger. The size of the error depends on

the specific geometry of the imaged object and dcam. Large planar regions of

the front, occurring right after the detonation exits the tube, introduce a much

larger error than fronts which are curved on the tube axis. In order to keep the

angle β in the region up to approximately 50 mm from the tube end plate as

close as possible to 90◦, the camera was actually tilted by 1◦ with respect to the

perpendicular of the tube axis. As an estimate, the displacement de in the tube

exit plane was calculated to be 0.3 mm (1.5 pixel). Note that the displacement

d changes gradually from the tube exit plane towards 0 at 25 mm distance

from the tube exit plane. At this distance, the rays collected by the camera

are perpendicular to the tube axis. The error this displacement introduces

into velocity measurements has to be calculated by taking the difference in d

between two exposure gates. This effect influences the determination of the

absolute position of the front much more strongly than the determination of

the velocity. Assuming, for example, a linear decrease in d with time and the

wave velocity and camera settings as in shot 148, Fig. 5.52, the error in velocity

measurements is only 38 m/s.

Several facts further decrease the influence of this effect. The steepest gradient

in luminosity, used for determining the front location, seldom coincides with

the leading point in luminosity. This is due to the integrating nature of the

chemiluminescence images as the most intensity is collected from rays crossing

close to the intersection of the reaction front and the tube axis. Also, the camera
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Figure 5.53: Sketch of apparent displacement between actual luminescence front on
tube axis and leading luminescence front on image. Sketch is not drawn to scale.

aperture is finite, which blurs the luminescence gradients detected from outside

the focal plane, which was set to be close to the tube axis. In summary, the

oblique nature of the front has small effect on the velocity calculation. The

detonation velocity will be slightly under-predicted for distances up to 25 mm

from the tube end plate and over-predicted after that point.

Immediately after the detonation wave exits the tube, the detonation front on the tube

axis is not influenced by the abrupt area change. The acoustic corner disturbance

signal reaches the tube axis for the mixtures considered at a distance xTEP from

the tube exit plane of at least 39–45 mm, depending on the mixture composition

(Section 5.3). On the basis of this calculation, the reaction front velocity on the tube

center line is therefore expected to be close to the value for the detonation traveling

inside the tube. This was measured by pressure transducer time of arrival data to be

within 3% of the calculated CJ velocity (Section 5.2). Despite the previously discussed

uncertainties, the velocity of the reaction front derived from multiple burst images was

within 5% of the calculated CJ velocity for xTEP <29 mm in all experiments conducted

(Fig 5.54). For detonation velocities close to the CJ velocity, the reaction front

virtually coincides with the leading shock front. This is due to the small induction

zone length compared to the image resolution.
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Figure 5.54: Summary plots of all reaction front velocities obtained from multiple
burst images as a function of distance from tube exit plane for H2-O2-Ar mixtures.

The size of the symbols shown in Fig. 5.54 scales with the size of the induction

zone length at CJ conditions. Velocity measurements obtained from experiments with

less sensitive mixtures correspond to larger symbols.

For the sub-critical cases of the H2-O2-Ar diluent series, the axial velocity is decay-

ing slowly for xTEP <44 mm and is greater than 90% of UCJ . The measured velocities

are found within a band of width 0.07 UCJ . In the region 44 mm<xTEP <56 mm, a

large spread in velocity is observed. The velocity decays fairly rapidly down to ap-

proximately 0.5 UCJ for some experiments while remaining at values close to 0.9 UCJ

for others. The most rapid decay is observed for the mixtures with the largest in-
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Figure 5.55: Summary plots of all reaction front velocities obtained from multiple
burst images as a function of distance from tube exit plane for H2-N2O mixtures.

duction zone length. For the sub-critical cases of the Ar dilution series, conducted

at higher pressure than the Ar pressure series, the inital slow decay rate is similar

to the pressure series, but lasts longer in terms of distance from the tube exit plane.

Velocities measured are above 0.8 UCJ up to a distance of over 60 mm. Within 20 mm

from that distance, the velocity declines to 50-60% of its CJ value.

For the super-critical cases of the Ar series, the velocity is up to 52 mm larger than

0.9 UCJ . The spread in velocities measured is very small for the argon dilution series

and within 0.05 UCJ . For larger distances, velocities of 0.7–1 UCJ are measured. The

velocity data obtained at large distances from the tube end plate are not close to the

CJ value since the re-initiation event has happened off axis or the last exposure took

place before the re-ignition event in order to avoid overlay issues. One must also keep

in mind the fact that the velocity data are averages. A time delay between gates of

3 µs corresponds to a distance of 7 mm for the fastest CJ velocities of approximately

2400 m/s measured for a N2-O2 mixture. The velocity is averaged in this case over a

region from 3.5 mm behind to 7 mm ahead of the location shown on the plots.

The sub-critical cases of the N2O series show a slow decay in reaction front velocity

up to a distance of 34 mm for which the minimum velocity measured was 0.94 UCJ .

After that distance, a drastic fall-off in velocity for all sub-critical shots is measured.
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Within 17 mm, the reaction front slows down to 0.25–0.55 UCJ . Compared to the

decays observed for the Ar-diluted mixtures, the spread in velocities measured within

the strong fall-off is remarkably small. For the super-critical cases of the N2O series,

the velocity profiles for xTEP < 32 mm are essentially unaltered from the sub-critical

cases. The temporary decrease in velocity for xTEP > 34 mm is inconsistent for the

super-critical mixtures. The two points appearing for U/UCJ<0.7 could be identified

as cases where the re-initiation has taken place off the tube axis. The lowest data

point corresponds to the last exposure of shot 172 (Fig. 5.8b). This illustrates the

limitations of the center line velocity analysis to capture re-initiation events such as

in Fig. 5.50b. Subsequently, the velocity increases and was measured to be up to

1.05 UCJ at xTEP = 70 mm. The dip in velocity for 30 mm < xTEP < 60 mm is

observed for individual velocity profiles, e.g., shots 124 and 107, and is not just an

effect of the presentation of many shots together.

5.8 Shape of diffracting detonation wave

Due to the strongly varying intensity along the luminescence front, it was not possible

to accurately track the front over the entire outline. Instead, the schlieren images were

used to locate the shock front location. This was done by an edge-tracking routine

written in MATLAB. The accuracy was on the order of one pixel (0.06 mm), based

on the steepest local gradient on the schlieren image. A sub-critical mixture was

used to obtain a coherent time series of the diffracting detonation wave. Repeated

experiments with identical mixture composition and a varying delay of the schlieren

image trigger had to be conducted since only one schlieren image could be obtained

per experiment. It was not possible to construct a coherent time series of diffraction

experiments in the super-critical regime since the re-initiation location varies from

shot to shot. One time series was obtained for 2H2+O2+7Ar mixture at P0 = 1 bar

and one for H2+N2O at P0 = 0.4 bar. The sequence of derived shock shapes is

shown in Fig. 5.56. The planar part of the front persists for the Ar-diluted mixture

until approximately 40 mm from the tube exit plane. The curvature on the tube
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axis seems to increase for larger distances more gradually for the Ar-diluted mixtures

than for the H2-N2O mixture. For the H2-N2O mixture, the planar part of the shock

front disappeared completely for xTEP > 30 mm. It is tempting to try to use these

outlines to examine propagation of the corner signal along the front. To do this, we

need to consider determining the location of the interaction point through the front

curvature variations. Defining the point on the shock outline at which the planar

part of the front ends was found to be highly subjective as one can see from visual

inspection of Fig. 5.56. For that reason, attempts were not made to quantify the

disturbance propagation angle based on the location of the interaction point between

the undisturbed front and acoustic corner signal.

In the case of the H2-O2-Ar mixture, the curvature near the tube axis appears

stronger for xTEP > 50 mm than in the regions 20–45 mm off the tube axis. For the

H2-N2O mixture, the curvature varies little along the shock and the outline tends to

resemble a half-circle. In the vicinity of the tube end plate, the shock was found to

be perpendicular to the wall for all mixtures.

5.8.1 Shock and OH front velocities at wall and on tube axis

In order to illustrate the evolution of shock front geometry, the shock outlines were

normalized by the wall shock location (Fig. 5.57). This shows that the shape of

the shock is close to being self-similar for times larger than 42 µs for the Ar-diluted

mixture and 29 µs for the H2-N2O mixture.

For most of the schlieren images used to construct the shock outlines simultaneous

PLIF images where acquired. Shock and reaction front location were determined

(Fig. 5.58, 5.59) along the tube axis and along the wall. This allows for determining

simultaneously the lead shock location and the reaction front location. Due to the

low fluorescence signal intensity close to the wall, the PLIF images could be used

to determine only the reaction front location close to the tube axis. In order to

detect the reaction front close to the wall, the reaction front was manually traced

from the schlieren images. Close to the wall, the reaction front is, for most images,
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Figure 5.56: Edge-detected leading shock front from multiple schlieren images taken
at various points in time. The time given in the legend is measured from the point in
time at which the detonation reached the tube exit plane. It is calculated from the
delay between the detonation wave reaching pressure transducer P3 to the point in
time the image was taken, which was set prior to the experiment, and the assumption
of CJ velocity within the tube.

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

6µs
12µs
18µs
24µs
30µs
36µs
42µs
48µs
54µs
60µs
66µs

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

5µs
11µs
17µs
23µs
29µs
35µs
41µs
47µs
53µs

a) 2H2+O2+7Ar, P0 = 1 bar b) H2+N2O, P0 = 0.4 bar.

Figure 5.57: Edge-detected leading shock front from multiple schlieren images taken
at various times normalized to the shock location at the wall. The time given in
the legend is measured from the point in time at which the detonation reached the
tube exit plane. It is calculated from the delay between the detonation wave reaching
pressure transducer P3 to the point in time the image was taken, which was set prior
to the experiment, and the assumption of CJ velocity within the tube.
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Figure 5.58: Location of the shock and reaction front on tube axis and corresponding
velocity profile.
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sufficiently spatially separated from the wall shock to be detected. Schlieren-PLIF

overlay images of decoupled shock waves and reaction fronts taken close to the tube

axis showed structures on the schlieren images which are identical to those seen close

to the wall. This gives confidence in the manually-tracked reaction front close to the

wall from schlieren images alone. The location of the shock and reaction front were

determined by averaging the location of the edge-detected points within a 5-mm wide

stripe. The stripe was either centered on the tube axis or oriented vertically close to

the wall. For the front location at the wall, the average between the top part and

bottom portion is presented. Note that due to the cellular structure, a large spread

in the reaction front location is observed. This was discussed above (Section 5.6)

in the context of measured shock-reaction front distance. The uncertainty in shock

location due to the curvature of the shock within the stripe which was averaged over,

was found to be at maximum 0.2 mm. The larger error in the presented x-t diagrams

and velocity profiles for both shock and reaction front arises from the fact that the

images were obtained from multiple experiments.

The time delay is based on the time of arrival of the detonation wave at pres-

sure transducer P3, located 298 mm upstream from the tube exit plane. Velocity

measurements indicate a shot-to-shot variation of the detonation velocity of approx-

imately 1%. The uncertainty caused by the spatial extent of the pressure transducer

is neglected since this effect on the pressure trace is assumed to be the same for det-

onations in the same mixture. The shot-to-shot variation over all the experiments

was measured to be 2.5% (Fig. 5.3). Since the experiments within one series were

conducted consecutively within 30 minutes of one another, the facility temperature

and the initial mixture temperature measured varied by only 2◦C compared to a 6◦C

variation over all experiments. This could contribute to the smaller shot-to-shot vari-

ations within a consecutive series. A change in detonation velocity of 1% corresponds,

for the Ar-diluted mixture, to a variation in time for the wave propagating from P3

to the tube exit plane of 1.8 µs. In terms of the computed front velocities, this would

translate to an error of 29%.

The small differences in detonation velocity and other fluctuations in initial con-
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ditions to the diffraction process may be amplified during the diffraction process and

increase the shot-to-shot variations. These variations are nearly impossible to quan-

tify and are also evident from the asymmetry of some shock outlines, Fig. 5.56b,

t = 23µs. The error bars on data shown in the plots of Fig. 5.58 and 5.59 reflect

the uncertainties in location arising from the tracking process of the front and the

error in time based on the discussion above of 1% perturbation in velocity within the

detonation tube. The shot-to-shot uncertainty results in the large error bars for the

velocities.

The x-t diagrams on the tube axis (Fig. 5.58a and c) indicate coupling between

shock and reaction front location until a distance of xTEP ≈ 60 mm for the Ar-diluted

mixture and xTEP ≈ 40 mm in the case of the H2-N2O mixture. The velocity close

to the tube exit plane is within 6% of the calculated CJ velocity and then decreases

with distance as the shock decouples. In the plots for the velocity profiles, the center

position between two front locations is used. Due to the time increments of 6 µs

used in both series and the larger CJ velocity in the case of the H2-N2O mixture, the

spatial resolution was smaller for that case.

The x-t diagrams for the wall shock and reaction front suggest a decoupling for

both cases at the first obtained data point, 5 mm from the sharp corner the detonation

wave diffracted around (Fig. 5.59a and c). The distance between the shock and

reaction front appears to increase with distance from the tube axis in a stronger

than linear fashion, an effect also observed on the velocity profiles. While the shock

velocity is close to 0.4 UCJ for both mixtures and drops by only 15% over 30 mm,

the reaction front velocity seems to decrease much more strongly from approximately

0.35 close to the corner to approximately 0.2 UCJ at a distance of 50 mm from the

tube axis.

5.8.2 Local shock and OH front velocities

Shock trajectories are rays, which are perpendicular to the shock surface at each

instant in time, as the local propagation direction is normal to the shock. The deter-
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mination of the exact local lead shock velocity at points distant from the tube axis

and wall is challenging as the shock trajectories are not straight lines, but curved

(Fig. 5.60). The distance over which the shock front travels corresponds in a given

time instant to the length of the curved shock trajectory. All methods discussed here

for deriving the shock velocity are based on determining a distance d between two

shock outlines for each point along the shock outline. The rays are approximated

as piecewise linear segments between the shock outlines. The time delay ∆t = 6 µs

between adjacent shock outlines and the velocity can be determined.

One possible method of constructing the rays is to obtain the direction of the

ray as the normal to the shock outline. The ray is then linearly extended in the

propagation direction of the shock until the intersection with the next shock outline.

The length of each ray segment is taken as the distance d. This method is labeled

as “forward” normal in Fig. 5.60a. The boundary condition of the ray being normal

to the shock outline is not necessarily matched at the outer shock surface. Simi-

larly, constructing the ray segments as normals to the shock outline opposite to the

propagation direction of the shock does not necessarily lead to the ray segment being

normal to the inner shock outline (see “backward” normal in Fig. 5.60a). Another

approach closely related to using the normals to the shock outline is using the “clos-

est point method”. The ray segment length d is approximated as the distance to the

closest point of the next shock outline. Note that in the case of the “normal” method,

a forward and backward tracing is possible (Fig. 5.60a and b). The closest point on

outline B to point PA is point PB (Fig. 5.60b). It is not PA but a different point QB

that is the closest point on the outline A to point PB. Since the circle of radius d and

center Qb for the “closest point” method are tangent to the smoothed outline A, the

ray segment is approximately normal to the outline A. The “backward closest point”

method is therefore equivalent to the “forward normal” method. Correspondingly the

“forward closest point” method is identical to the “backward normal” method. For

constructing the ray normals to experimentally obtained data, smoothing and aver-

aging over several adjacent points is necessary. Depending on the smoothing method

and number of points used for the averaging, the actual result with corresponding
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Figure 5.60: a) Sketch illustrating different techniques for obtaining the local shock
velocity from a time sequence of shock outlines. The outlines correspond to the
ones shown in Fig. 5.56a. b) Detail of closest point approximation for forward and
backward tracking.

closest point and normal method can differ slightly. The closest point method was

found to lead to less noise in the resulting velocity profiles.

The difference between the results obtained from the forward and backward closest

point method is largest for the front portions with a large change in shock curvature.

In these regions, the expansion wave is interacting with the detonation front. When

plotting the results as a function of the angle β to the tube axis, the difference between

the forward and backward closest point method was found for the Ar-diluted mixture

to be at the shift in β by 5◦ (Fig. 5.61a). In the remaining plots the forward closest

point method is used. The data shown in Fig. 5.61a are averaged over an angle

segment of 3◦ assuming axial symmetry. The original data set before the smoothing

process is shown in Fig. 5.61c. The point in time given in the plots for each velocity

profile is halfway between the points in time at which the two corresponding shock

outlines were obtained. The velocity is the average velocity between the two points

in time at which the schlieren images were taken.

In the case of the H2-O2-Ar mixture, the shock velocity profile shows a plateau

corresponding to the CJ value close to the tube axis. As time progresses, the width of

the plateau decreases since the expansion head is moving towards the tube axis. The
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shock velocity decays for the early times almost linearly with the angle β from the CJ

value right at the expansion head to approximately 0.4 UCJ at the wall (β=90◦). For

times later than 20 µs, a strong fall-off in shock velocity is observed with increasing

angle β. The velocity decreases from 0.9 UCJ on the tube axis to 0.55 UCJ at β = 30◦.

For angles of β > 30◦, the fall-off in shock velocity is modest. The velocity is below

0.6 UCJ over the entire shock surface for times later than 40 µs.

In the case of the H2-N2O mixture, the plateau observed for early times is not as

flat as in the Ar-diluted case. This could arise from the fact that the shock outlines

used for the velocity determination are from separate experiments. The details of

the shock outline close to the expansion head might vary slightly from shot to shot

leading to errors in the velocity profiles. Furthermore, the values obtained for the

shock velocity might also be influenced by the closest point approximation, especially

close to the expansion head. In these positions of the front, the changes in curvature

are large, the ideal shock trajectory ray significantly curved, and the errors introduced

by the linear segment approximation substantial. The closest point approximation

leads to the smallest value of d and, correspondingly, to a smaller velocity than a

more realistic curved ray segment approximation. For this reason, shock velocities

larger than UCJ are more likely explained by the shot-to-shot variations. Up to 14 µs,

the shock velocity is decreasing approximately linearly with β outside the plateau,

reaching approximately 0.4 UCJ at the wall. After the expansion head has reached

the tube axis, the velocity on the tube axis is decreasing but the linearity in the

decrease with the angle persists. For times later than 26 µs, the shock velocity is

below 0.6 UCJ over the entire shock surface.

For the sub-critical cases, a clear contact surface between shocked but unreacted

material on one side and reacting or reacted gas on the other side can be observed

on the schlieren images. The simultaneously obtained PLIF images show that the

contact surface seen on schlieren images coincides with the front of OH radicals. The

term “reaction front” is, at this point inappropriate, since it would imply chemical

reaction taking place. This is not necessarily the case since, as will be shown in

Chapter 6, the OH-front can also be convected along without a strong exothermic
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Figure 5.61: a) Averaged velocity profiles assuming axis symmetry for forward and
backward closest point method, 2H2+O2+7Ar, P0 = 1 bar. Legend gives point in
time after detonation exited the tube. b) Averaged velocity profiles assuming axis
symmetry for forward and backward closest point method, H2+N2O P0 = 0.4 bar.
Legend gives point in time after detonation exited the tube. c) Normalized velocity
obtained with forward closest point technique for 2H2+O2+7Ar, P0 = 1 bar, from
shock outlines shown in Fig. 5.56a. d) Normalized velocity obtained with forward
closest point technique for H2+N2O P0 = 0.4 bar, from shock outlines shown in
Fig. 5.56b.
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Figure 5.62: Distance between shock and OH front for several times instances.

reaction taking place. The distance between the contact surface seen on schlieren

images and leading shock front is, therefore, close to the distance between the OH-

front and the lead shock. By obtaining the closest point on the lead shock outline

to each point on the contact surface, the distance between the shock and the OH

front was determined over the angle β. In order to achieve a smoother profile of the

distance xOH between the shock and the OH front, the data are averaged over an

angle of 3◦ (Fig. 5.62). The plateau regions with lead shock velocities close to the CJ

value seen in Fig. 5.61a and b correspond to the plateau region of very small values

of xOH , which were measured to be below 0.4 mm. For these regions, the values

given for xOH are an upper bound for the actual distance between the shock and the

reaction front since the length scales are below the resolution of the system. Outside

the plateau region, the distance xOH is increasing with increasing β.
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Chapter 6

Comparison of Induction Time and
Residence Time

For an understanding of the diffraction process, it is important to know the induction

time τi, of a shocked fluid particle since that determines when the chemical energy

release will take place. The induction time is a strong function of shock velocity

which, in turn, is a function of time after the detonation exits the tube and of the

location on the shock front. By comparing τi to the residence time τr of the unreacted

fluid particle just ahead of the OH-front, we can estimate the extent of reaction in

the region between the shock and the OH-front. The residence time is the time that

has elapsed since a given fluid particle passed through the shock wave. In order to

compute the induction and residence time, we take a simplified quasi-one-dimensional

view of the fluid motion and neglect the influence of transverse waves.

If the induction time of a particle at the OH-front is much longer than its residence

time, this particle will not react within the observable time scale of the diffraction

process and the OH-front is just convected with the post-shock fluid velocity. In

this case, the shock wave has decoupled from the reaction, and the energy release

rate behind the shock has decreased almost to zero. Unreacted fluid will accumulate

behind a decaying leading shock wave. If the residence time of a particle at the

OH-front is equal to or smaller than the induction time, significant chemical energy

is released in the vicinity of the OH-front. From the experimental data, both low-

and high-energy release rate regimes are mapped for the two mixtures discussed in



171

10-2

10-1

100

101

102

103

104

105

 0.6  0.8  1  1.2  1.4

In
du

ct
io

n 
tim

e 
τ i 

 [µ
s]

U/UCJ 

2H2+O2+7Ar, Warnatz
H2+N2O, Mueller

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.4  0.6  0.8  1  1.2  1.4

P
os

t s
ho

ck
 v

el
oc

ity
 (l

ab
 fr

am
e)

 u
ps

 [m
/s

]

U/UCJ 

2H2+O2+7Ar
H2+N2O

a) b)

Figure 6.1: (a) Induction time τi and (b) post-shock fluid velocity in lab frame as a
function of normalized shock velocity for two mixtures: 2H2+O2+7Ar, P0 = 1 bar
and H2-N2O P0 = 0.4 bar.

Section 5.8.2: 2H2+O2+7Ar, P0 = 1 bar and H2+N2O P0 = 0.4 bar.

The induction time τi was calculated as a function of shock velocity by first deter-

mining the post-shock conditions via solving the shock jump conditions assuming a

frozen mixture composition. Second, the induction time was determined as the adi-

abatic constant volume explosion time at post-shock conditions using the CV-code

(Shepherd, 1986). The chemical reaction mechanisms of Konnov and Warnatz for the

H2-O2-Ar mixtures gave similar results. In the following, the Warnatz mechanism is

used for the H2-O2-Ar mixture and the Mueller mechanism for the H2-N2O mixture

(Fig. 6.1a).

In Section 6.1, the Taylor-Sedov blast solution is used to estimate the error in

the simplified calculation of the residence time. In Section 6.2, the induction time

τi for particles at the OH-front is derived. The time scales τi and τr are compared

in Section 6.3 in order to estimate where the adiabatic explosion at the OH-front is

taking place.
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6.1 Residence time

The shock velocity and distance between the shock and OH-front xOH were measured

experimentally over the shock outline in 6 µs time increments (Section 5.8.2). In

order to calculate the residence time of a particle at the OH-front from xOH , the

velocity history of the particle has to be known. We use the Taylor-Sedov similarity

solution for a spherical blast wave to estimate the particle path behind the decaying

shock wave. The Taylor-Sedov blast solution is a non-reactive similarity solution

of a strong spherical shock wave resulting from an instantaneous release of a large

amount of energy E at time t = 0 and radius r = 0. The perfect gas in which

the wave is propagating is initially uniform and at rest. In the strong shock limit

((Ushk/c)
2 � 1), the post-shock conditions are a function of the ratio of heat capacities

γ only. The fluid velocity u(r) is, in its normalized form u/ups, only a function of

the dimensionless distance behind the shock front r/R, where R is the position of the

shock front (Fig. 6.2a). The velocity gradient for r/R > 0.85 is approximately twice

that for r/R < 0.85, and approximately constant for both intervals. The Taylor-Sedov

solution parameters E and ρ0 were chosen such that the velocity decay rate matches,

as well as possible, the experimentally measured one (Fig. 6.2b). The experimentally

measured velocity decay rate was slightly smaller than the Taylor-Sedov value. This

is due to the non-spherical geometry of the diffracting wave. In the experiment, the

leading shock is also influenced by the chemical reaction, which is neglected in the

Taylor-Sedov solution. Furthermore, the Taylor-Sedov solution uses the strong shock

approximation for the jump conditions. For the wall shock Mach number of Ma ≈ 2,

this introduces further errors.

The particle paths for five particles initially located equidistant between r =

0.04 m and 0.08 m were calculated based on the Taylor-Sedov velocity field behind

the shock wave (Fig. 6.3a). With increasing time, particles are convected further

behind the shock and the velocity is decreasing, as seen from the steeper slope of

the particle path in the x-t diagram. The corresponding velocity history shows that

the particle travels at the post-shock velocity immediately behind the shock wave



173

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

N
or

m
al

iz
ed

 fl
ow

 c
on

di
tio

ns
 in

 b
la

st
 w

av
e

Normalized distance from center (r/R)

γ=1.4u/ups
ρ/ρps
P/Pps

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  500  1000  1500  2000

tim
e 

[µ
s]

velocity [m/s]

Taylor-Sedov Ushk
60 deg
80 deg

a) b)

Figure 6.2: a) Taylor-Sedov blast solution in similarity coordinates of velocity profile
behind spherically expanding shock wave. The parameter γ = 1.4 corresponds to the
2H2+O2+7Ar case. R is the location of the shock front, the velocity u, density ρ,
and pressure P are normalized by their post-shock values. b) Shock velocity vs. time
from Taylor-Sedov blast solution (solid line) and experimentally measured velocities
(squares) for different angles β to tube axis (Fig. 5.60), H2-O2-Ar case.

(Fig. 6.3b). The velocity of a given fluid particle decreases faster with time than the

post-shock velocity. The velocity of particle 1, which was processed by a shock wave

traveling close to the CJ-velocity (1693 m/s), is for any given point in time at most

110 m/s smaller than the post-shock velocity ups (Fig. 6.3b). The lowest lead shock

velocity of U/UCJ ≈ 0.4 was measured in the diffraction experiment close to the

wall. The corresponding lowest post-shock velocity ups, in the case of the H2-O2-Ar

mixture, is 400 m/s without the strong shock assumption (Fig. 6.1b). Approximating

the particle velocity uP at all times with the post-shock velocity ups would lead to an

error of approximately 25% at most. The approximation is better for times close to

the point in time when the particle passed through the shock wave, as the uP departs

gradually from ups for larger times (Fig. 6.4a).

At time t2, the distance xP between the shock front and a particle P can be

written as (Fig. 6.4b)

xP =

t2∫
t1

(Ushk − uP ) dt, (6.1)
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Figure 6.3: a) Particle path in x-t diagram for five particles, initially located between
r = 0.04 m and r = 0.08 m, based on Taylor-Sedov solution shown in Fig. 6.2. b)
Velocity of five particles shown in (a) as a function of time.

where t1 is the time the particle passed through the shock wave and the residence

time τr = t2−t1. Approximating the particle velocity uP (t) by the post-shock velocity

ups(t) leads to

xP =

t2∫
t1

(Ushk − ups) dt

=

t2∫
t1

wps dt . (6.2)

This is equivalent to transforming to shock-fixed coordinates and approximating the

particle velocity wP with the post-shock velocity wps. The approximation of wP (t) ≈

wps(t) introduces, in the shock-fixed frame, an error larger than the 25% mentioned

above for uP (t) ≈ ups(t) in the lab fixed frame. In the shock-fixed frame, the post-

shock velocity wps is 290 m/s for U/UCJ ≈ 0.4 (Fig. 6.5a). The difference between the

particle and post-shock velocity is, nevertheless, the same in both frames as ups−uP =

wps − wP ≈ 110 m/s (Fig. 6.5a). The error in the approximation wP (t) ≈ wps(t) for

calculating xP via Eq. 6.2 is, at most, 38% (Fig. 6.4a). The error introduced is
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smallest for short time intervals t2-t1. Since wps(t) < wP (t), the particle velocity wP

is underestimated by this approximation.

The post-shock velocity wps depends on the shock strength in the range of lead

shock velocities of interest (Fig 6.5). For the Ar-diluted mixture, wps decreases from

400 m/s at CJ conditions to 290 m/s at U/UCJ = 0.4. For the H2-N2O mixture, the

corresponding decrease in post-shock velocity is 10%. Neglecting this variation and

assuming a steady state post-shock velocity wps, the residence time can be written as

τr(t2) = xP (t2)/wps(t2). (6.3)

Note that the steady state assumption causes a smaller error for wps than it

would for ups (Fig. 6.5). The residence time of a particle at the OH-front can be

approximated using this simplified formula by setting xP = xOH , the distance from

the OH-front to the lead shock front. With the approximations wps ≈ ups and ups(t) ≈

ups(t2), the residence time calculated via Eq. 6.3 is an upper bound for the actual

particle residence time. The particle velocity for the Taylor-Sedov solution, wps(t2)

is, for the duration of the diffraction experiment, at most 45% smaller than wP (t).
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Figure 6.5: Post-shock fluid velocity wps in shock-fixed frame (a) and lab fixed frame
(b) as a function of normalized shock velocity for two mixtures: 2H2+O2+7Ar,
P0 = 1 bar and H2-N2O P0 = 0.4 bar.

The estimated residence time of a particle (Eq. 6.3) is at most a factor of 1.8 larger

than the actual residence time based on the Taylor-Sedov blast solution. In order

to determine the flow field in the diffraction experiment precisely, either a numerical

simulation is necessary or a quantitative experimental measurement of the density

profile between shock and reaction front is necessary. This was done with a Mach-

Zehnder interferometer for a cylindrical blast wave by Edwards et al. (1981). For the

current analysis, the estimation of τr via Eq. 6.3 is sufficient as it is compared to τi,

which changes by four orders of magnitude as a function of the angle β (Section 6.2).

The region where τr � τi is well defined irrespective of the errors in the approximation

of τr.

To calculate τr, the post-shock velocity and the distance between the shock and

OH-front have to be known for the same instant in time. The time passed since the

detonation wave exited the tube is denoted as tTEP and is given in the legend of all

plots of experimental data in this chapter.

The shock velocities for an angle β, as described in Section 5.8.2, are average

velocities defined in between measurements of the shock location. The time associ-

ated with each average velocity measurement is assumed to be the midpoint between
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Figure 6.6: Distance xOH between shock and OH-front for several times tTEP in the
diffraction process measured from the time after the detonation has exited the tube.
xOH is interpolated to match the times of the velocity measurement.

the two times corresponding to the two shock outlines. In order to determine the

distance xOH between the shock and the OH-front for these intermediate times, the

xOH-profiles shown in Fig. 5.62 were linearly interpolated in time for each angle β

(Fig. 5.60). Using the interpolated xOH-profiles and the post-shock velocities cor-

responding to the momentary shock velocity, the residence time was calculated via

Eq. 6.3 (Fig. 6.7). The increase of xOH with β (Fig. 6.7) for the Ar-diluted mix-

ture shows that, near the tube axis, the OH-front stays coupled to the shock front

for a longer time than near the wall. This has also been observed when comparing

the shape of the shock outlines (Section 5.8) and is a direct consequence of the low

activation energy of the Ar-diluted mixtures.

The residence time profiles are qualitatively similar to the xOH-profiles, as the

post-shock velocity does not change by more than 30% over the range of lead shock

velocities. At early times tTEP , the values of τr are fairly constant close to the tube

axis. This region corresponds to the plateau observed in the profiles of the shock

velocity and xOH . Note that the values for τr < 1 µs are derived from values

for xOH which are close to the resolution of the distance measurements. Therefore,

τr = 1 µs represents an upper bound for the actual residence time of these values.



178

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  10  20  30  40  50  60  70  80  90

R
es

id
en

ce
 ti

m
e 

τ r
 o

f p
ar

tic
le

 a
t O

H
-fr

on
t [

µs
]

Angle from exit plane center to tube axis [deg]

9µs
15µs
21µs
27µs
33µs
39µs
45µs
51µs
57µs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  10  20  30  40  50  60  70  80  90

R
es

id
en

ce
 ti

m
e 

τ r
 o

f p
ar

tic
le

 a
t O

H
-fr

on
t [

µs
]

Angle from exit plane center to tube axis [deg]

8µs
14µs
20µs
26µs
32µs
38µs
44µs
50µs

a) 2H2+O2+7Ar, P0 = 1 bar. b) H2-N2O P0 = 0.4 bar.

Figure 6.7: Residence time τr of particle at the OH-front assuming steady post-shock
velocity corresponding to the instantaneous lead shock velocity. The instantaneous
shock velocity is the shock velocity determined at the specific point in time given in
the legend.

For both mixtures studied, the residence times are increasing approximately linearly

with the angle β for late times at which no plateau region is observed.

For fluid particles at the OH-front closest to the wall, τr is for all times approxi-

mately 0.6 tTEP (Fig. 6.7). If the reaction front close to the wall decoupled completely

from the shock immediately after exiting the tube and the OH-front did not progress

relative to the surrounding fluid, then τr would be approximately tTEP . The particle

processed by the wall shock right at the tube exit has an extremely large induction

time (Fig. 6.1a) and will not react.

One possibility is that the fluid particles at the OH-front do not react in an

adiabatic explosion process, but the reaction front propagates as a flame behind the

shock front. This would lead to a shorter distance between the shock and the OH-

front and correspondingly smaller values of τr as the flame progresses into the shocked

but unreacted fluid. To investigate this possibility, the OH-front velocity in the lab

frame uOH was determined in the same fashion as the shock velocity (Fig. 6.8a). The

OH-front velocity profile is wrinkled and less smooth than the shock velocity profile

and was averaged over an angle of β =3◦. For early times and near the tube axis,
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the OH-front velocity uOH has a plateau with values close to the CJ-velocity. In this

region the distance between the shock and the OH-front is small (Fig. 5.60a).

If uOH is larger than the velocity uP of a particle at the OH-front, particles

pass through the OH-front. In this case, the OH-front is progressing relative to the

surrounding fluid and is not just convected passively. From the Taylor-Sedov blast

wave solution, the post-shock velocity ups is at all times an upper bound for the

particle velocity uP (Fig. 6.3b). It follows that if uOH > ups, uOH > uP is also true

for all particles behind the front, specifically those at the OH-front. To compare both

velocities, the velocity uOH − ups is shown for the Ar-diluted case in Fig. 6.8b. The

velocity uOH − uP is the relative velocity with which a particle passes through the

OH-front, uOH − ups is a lower bound for this velocity. Whenever uOH − ups > 0,

particles pass through the OH-front implying that combustion is taking place at the

front.

Near the tube axis at early times, the particles pass through the OH-front with

a relative velocity of approximately 400 m/s (Fig. 6.8b). This is equal to wps for

ushk/UCJ = 1 (Fig. 6.5a), as uOH ≈ ushk in this region. The oscillations in the

obtained velocity profile of uOH − ups are caused by the wrinkled geometry of the

OH-front. Despite the oscillations in the velocity profile, it is clear that close to

the wall and times up to 40 µs, particles are passing through the OH-front with a

velocity of at least 100 m/s. Note that the velocity plotted in Fig. 6.8b is a lower

bound for the velocity with which a particle passes through the OH-front. For later

times, the uOH − ups is smaller but slightly positive when averaged over β over a

10◦ interval. Only for these very late times in the diffraction process the chemical

reaction is possibly entirely quenched. For earlier times, the OH-front progresses with

a velocity of at least 100 m/s into the shocked but unreacted fluid.

6.2 Induction time

A particle passing through the diffracting shock wave experiences a temperature in-

crease which corresponds to the shock strength at the instant the particle passes
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Figure 6.8: a) Velocity of OH-front uOH as a function of angle to the tube center
axis for several time instances after the detonation exited the tube, 2H2+O2+7Ar,
P0 = 1 bar. b) Comparison of uOH and ups. The quantity uOH −ups is a lower bound
for the relative velocity of a particle passing through the OH-front.

through the shock wave. After passing through the shock, the particle convects away

from the shock wave. Although the shock wave decays further, in the frame of ref-

erence of the particle, the temperature remains approximately constant as shown in

Fig. 6.9a. The plateau in temperature is also seen in two-dimensional numerical simu-

lations of the diffraction process (Fig. 6.10). The temperature of the fluid particles is

approximately constant until the chemical energy is released, causing a rapid increase

in temperature.

Fluid particles which pass through the shock wave at a later point in time ex-

perience a lower temperature increase (particle B in Fig. 6.9a), since the shock is

decaying. From an Eulerian viewpoint, the temperature increases with increasing

distance from the shock wave. The particles shocked earlier have a longer residence

time and are convected further from the shock (Fig. 6.9b). However, the temperature

profile of a fluid particle (Lagrangian viewpoint) is what is relevant to determining the

combustion time. Consider the unreacted fluid element just ahead of the OH-front.

In order to estimate the induction time of this particle, the temperature history is

needed. Assuming that the particle is at a constant temperature after passing through

the shock until it reaches the OH-front, the induction time corresponds to the shock
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Figure 6.9: Sketch of temperature profiles for Lagrangian (a) and Eulerian (b) view
for decaying shock wave. The four particles A-D are placed in line, whereas A is
closest to the incoming shock wave, the sketch in (a).

strength at the particular time when the particle passed through the shock. Since the

shock strength varies with time and over the shock surface, the initial location and

the particle path must be known.

The time since a particle at the OH-front passed through the shock wave is equal

to its residence time τr, as discussed in Section 6.1. We assume that the particle path

is at all times perpendicular to the shock outline and is approximated as linear rays

originating from the tube exit center. Each particle path corresponds to a specific

value of β. In view of Fig. 5.60a, this seems to be a reasonable assumption. From the

normalized shock velocity profiles (Fig. 5.61a and c), the time history of the velocity

profile corresponding to each β was obtained as a spline fit. From the spline fits

U(t) for each β, the shock velocities for the time when the particle got shocked could

be determined as U(tTEP − τr) (Fig. 6.11). The velocity U(tTEP − τr) is the shock

velocity when the particle which is momentarily (at time tTEP ) at the OH-front has

passed through the shock wave. The difference between U(tTEP − τr) and U(tTEP ),

the momentary shock velocity, is an increasing function of the local shock decay rate

and the residence time.

The induction time τi (Fig. 6.12) for the particles at the OH-front is calculated
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a) b)

c) d)

e) f)

g) h)

Figure 6.10: Simulation (Arienti, 2002) of detonation diffraction under sub-critical
condition, showing density contours (a-d) at four times and the temperature profiles
(e-h) of four particles, placed initially off axis as shown in (a). The temperature and
time given in the plots are non-dimensionalized.
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Figure 6.11: Shock velocity at the time when the particle currently at OH-front passed
through the shock wave.

from the shock velocity profiles (Fig. 6.11) and the steady flow induction time as a

function of shock velocity (Fig. 6.1a). The induction time τi increases for the Ar-

diluted mixture by three orders of magnitude within 10◦ for a specific angle β, which

depends on tTEP . For the H2-N2O mixture, the increase is less rapid over the angle β.

In order to estimate where particles along the OH-front react and where the reaction

is quenched, we must compare τi to τr for particles at the OH-front. This is done in

the next section.

6.3 Comparison of induction time and residence

time

The calculated residence times and induction times are shown in Fig. 6.13. Physically,

the residence time for an unreacted fluid element cannot be longer than the induction

time. Within the resolution of the measurement, this is the case. The induction time

is rapidly increasing with angle enabling an accurate determination of the points at

which τi� τr, irrespective of the uncertainty in τr. The comparison of τi and τr

indicates when complete reaction is occurring. This estimate neglects possible effects

of mass diffusion and heat conduction.



184

10-1

100

101

102

103

104

 0  10  20  30  40  50  60  70  80  90In
du

ct
io

n 
tim

e 
of

 p
ar

tic
le

 a
t O

H
-fr

on
t τ

i O
H

 [µ
s]

Angle from exit plane center to tube axis [deg]

time from
tube exit

9µs
15µs
21µs
27µs
33µs
39µs
45µs

10-1

100

101

102

103

104

 0  10  20  30  40  50  60  70  80  90In
du

ct
io

n 
tim

e 
of

 p
ar

tic
le

 a
t O

H
-fr

on
t τ

i O
H

 [µ
s]

Angle from exit plane center to tube axis [deg]

time from
tube exit

8µs
14µs
20µs
26µs
32µs
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Figure 6.12: Induction time of particle at OH-front.

For the Ar-diluted case, the reaction appears to be quenched for angles larger

than approximately 50◦ up to tTEP∼ 15µs. For tTEP = 20µs, this angle decreased to

21◦, and for tTEP = 27µs, only particles at the OH-front close to the tube axis react

completely. At tTEP = 33µs, the reaction appears to be quenched over the entire

shock outline. For the H2-N2O mixture, the reaction is quenched at tTEP =8µs for

β >45◦. Shortly after tTEP =14µs, the reaction appears quenched over the entire OH-

front since τi is at least one order of magnitude larger than τr. These results agree

well with the observations presented in Chapter 5. For the Ar-diluted mixture with

low activation energy, the reaction is quenched at a later point in time than for the

higher activation energy mixture. The activation energy at the CJ-point seems to be

the controlling quantity.

Once the shock velocity has decreased significantly, the activation energy θ for

the Ar-diluted mixture rapidly increases (Fig. 6.14a) as the slow three-body reac-

tions become dominant in the consumption of H atoms over the fast chain branching

reaction (Shepherd, 1986). For the H2-N2O mixture, the increase in θ is more mod-

est with decreasing lead shock velocity (Fig. 6.14a). The activation energy θ for

0.7 < U/UCJ < 0.82 is actually larger for the Ar-diluted mixture than for the H2-

N2O mixture. This indicates a fast decoupling process of shock and reaction front
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Figure 6.13: Comparison of induction time and residence time of particle at OH-front.
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Figure 6.14: a) Activation energy θ as function of normalized lead shock velocity. b)
Shock velocity profile for 2H2+O2+7Ar, P0=1 bar.

for decaying waves in this velocity range. This agrees with the shock velocity profiles

(Fig. 6.14b) which show the shock velocity decaying very quickly for the velocity range

of 0.6 < U/UCJ < 0.8, most strikingly for tTEP =21 µs and 27 µs. The decoupling

process appears to be very localized, as the induction time increases faster once the

wave velocity is below approximately U/UCJ ∼ 0.8. For the H2-N2O mixture, the

velocity profile is approximately linear with β (Fig. 5.61c) for all times. In this case,

the decoupling close to the tube axis happens earlier as the activation energy at CJ

conditions is higher than for the Ar-diluted mixture at CJ conditions. The quenching

process of the reaction is less localized in space, and the dividing line between the

coupled and decoupled region is “fuzzier”.
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Chapter 7

Conclusions

The present study consists of two parts. In the first part, a planar laser induced fluo-

rescence (PLIF) model for detonations is developed and compared to experimentally

obtained fluorescence profiles of fully developed detonations. In the second part, det-

onation diffraction by an abrupt area change was studied, revealing the quantitative

differences between mixtures of various activation energies.

PLIF of the OH radical has only recently been successfully applied to visualizing

the OH distribution in detonations. Up to now, the results have only been qualitative

due to the challenges in linking the OH radical concentration to the fluorescence

signal. For the conclusive interpretation of the experimentally obtained PLIF images,

two key questions were outstanding, both of which were answered by the model: Does

the location of the fluorescence front seen on PLIF images coincide with the actual

OH-concentration front? What is responsible for the strong decay in fluorescence

intensity behind the detonation front? The one-dimensional PLIF model predicts the

fluorescence intensity profile for a given distribution of thermodynamic conditions

and background composition, which were computed with the one-dimensional ZND

model. The predicted fluorescence profile was found to be in good agreement with

the experimental results. The three-level model takes into account light sheet energy

absorption (self-absorption by OH and broad band by H2O and CO2), broadening

and shifting effects on the pumped absorption line, and collisional quenching.

The self-absorption of light sheet energy by OH was identified to be responsible

for the strong decrease in fluorescence intensity behind the front. This implies that
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the strong fall-off in fluorescence intensity further behind the front will persist for

higher laser output intensities as long as the system operates in the linear fluores-

cence regime. The absorption effects can be reduced by choosing a weaker transition

line for the excitation. This leads to a lower fluorescence signal but a more uniform

proportionality constant between fluorescence signal and OH-concentration over the

profile. For the current system, this was not achievable since a higher peak fluores-

cence signal is needed to overcome the noise arising from chemiluminescence.

Depending on the mixture, a shift of up to 0.1 mm between the OH-front and the

fluorescence front is predicted by the model. This is caused by the strong increase of

the collisional quenching during the sharp rise in OH-concentration. For the current

work, the results are not affected by this as the scale of the observed structures is

larger and the OH-front virtually coincides with the fluorescence front seen on the

PLIF images. For future work, care has to be taken when interpreting fluorescence

structures at smaller spatial scales since the imaging system performance also has to

be considered. As shown in this study, the effective resolution is not only limited

by the digital nature of the ICCD but also the modulation transfer function of the

imaging system.

In the detonation diffraction experiment, two mixture types, highly diluted H2-O2-

Ar and H2-N2O, were studied in the sub-critical, critical, and super-critical regimes.

The mixtures have normalized effective activation energies at CJ conditions of θ = 4.5

and 9.4 respectively, and represent extreme cases in classification of cellular regularity.

Different modes have been identified and quantified. Most striking (Fig. 7.1) were

the sub-critical and critical regime, for which the detonation wave fails to transition

into the unconfined half-space. For the first time, the reaction front has been directly

visualized for a diffracting detonation using PLIF of the OH radical, clearly showing

the details of the reaction front.

In the sub-critical case, sawtooth-like geometries in the OH-front are observed

where the shock wave decoupled from the reaction front. These are remnants of

keystone-shaped features characteristic of the cellular structure of fully developed

detonations, present before the detonation reaches the abrupt area change. In the sub-



189

a) b) c)

d) e) f)

Schlieren image PLIF image false color overlay

Figure 7.1: Observations for sub-critical experimental outcome in the critical regime.
a),b), and c) 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, θ = 4.5, shot 202. d),
e), and f) 0.5 H2+ 0.5N2O, P0=40 kPa, θ = 9.4, shot 80. (a) and (d) are schlieren
images (150 mm height), (b) and (d) are the simultaneously obtained corresponding
OH PLIF images, (c) and (f) are false color overlays as indicated by boxed region in
schlieren images.

critical case, these structures are passive and much larger in scale than in propagating

detonations. In the critical case, the keystone-shaped structures are regenerated by

localized explosions. In the super-critical case, the keystones persist and are active

as the cellular structure evolves.

For the low-activation-energy mixture and sub-critical outcomes, the reaction front

velocity on the center line decays slower than in the high-activation-energy case. In

some sub-critical cases, the reaction front was attached to the lead shock up to 2.3 tube

diameters from the tube end plate (Fig. 7.1c). The reaction front velocity was above

0.8 UCJ up to approximately 1.5 tube diameters (d) from the end plate. For the H2-
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N2O mixture, the reaction front velocity decreased to approximately 0.6 UCJ after a

distance of 1.1 d. The whole reaction front decoupled rapidly for the H2-N2O mixtures,

leading shortly after the tube exit to a self-similar shock shape (Fig. 7.1d). The rapid

decay of the reaction front velocity can be attributed to the higher activation energy

of the H2-N2O mixture, which leads to large changes in the induction time for small

changes in lead shock strength.

A simplified analysis comparing the residence time and the induction time of

particles at the OH-front showed that the reaction in the sub-critical case is rapidly

quenched with increasing distance from the tube axis. The decoupling is due to rapid

increase of induction time relative to residence time as the wave decays. The sawtooth

geometries of the OH-front are convected along with the post-shock flow field, but

the energy release rate must be comparatively small at the OH-front in these regions.

Measurements of the OH-front velocity and shock velocity in the sub-critical case

indicate that fluid particles are slowly passing through the OH-front during most of

the diffraction event. The reaction at the OH-front seems entirely quenched close

to the wall only and for late times in the diffraction process (tTEP > 40µs for the

H2-O2-Ar mixture).

The shock velocity for the Ar-diluted case decreases more rapidly than in the

H2-N2O case once the lead shock velocity has reached a velocity below 0.8 UCJ . A

sudden decrease is observed for the sub-critical H2-O2-Ar case when the lead shock

drops below 0.8 UCJ . This can be explained by the rapid increase in the normalized

activation energy with decreasing shock velocity for the Ar-diluted mixture. At Ushk =

0.8UCJ , the normalized activation energy for the Ar-diluted mixture is 35, much higher

than the value of θ = 16 for the H2-N2O mixture. Clearly, it is important to consider

the variation of activation energy with shock velocity and not just the value at CJ

conditions.

To reveal the three-dimensional structure of the transverse detonations in the

super-critical regime, a stereoscopic image of the high-luminosity region was con-

structed. This clearly showed the location of the transverse detonation just below the

shock surface, which corresponds to the region of high chemiluminescence and high



191

energy release as the transverse detonation travels into the shocked but unreacted

gas.

Skews’ construction for the propagation of the corner signal into the front was

found to be applicable only for the higher activation energy mixture in the sub-

critical case. In these cases, the predicted distance at which the corner disturbance

signals collide on the tube axis correlates well with the distance at which the reaction

front velocity drops significantly. This is due to the fact that, for the higher activation

energy the reaction front decouples very quickly outside the conical area which is not

influenced by the corner signal. For the mixture with a lower activation energy, the

coupling of reaction front and shock persists longer as changes in the shock velocity

have a weaker influence on the induction time.

Future work

In the case of a re-ignition event, the transverse detonation was found in some cases

to propagate both toward the wall and toward the tube axis. If the re-ignition “bub-

ble” originated from the interaction point of the coupled and uncoupled region, the

transverse detonation wave would always be found propagating toward the wall. The

evolution leading to the re-ignition event was difficult to capture with the diagnos-

tics used in this experiment as it occurs at varying locations. To understand the

phenomena that lead to the re-ignition event, a high-speed, high-resolution image

sequence would be helpful. Multiple gate chemiluminescence images indicated that

the transverse detonation can fail in rare cases. Possible failure mechanisms are not

clear at this point. From the practical viewpoint of safety and hazard analysis, it is

important to examine the mechanisms of re-ignition and failure and the influence of

confinement geometry and wave interactions.
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Appendix A

Model for UV Absorption by CO2
and H2O

The calculation of light sheet attenuation by CO2 and H2O is based on the absorption

cross sections from the analytical expressions given in Schulz et al. (2002a). The

analytical expression given below results in an optimum fit error of less than 10% to

the absorption data measured in shock-heated CO2 and H2O at temperatures ranging

from 900 to 3050 K, Schulz et al. (2002a).

The absorption cross section, σ(λ, T ), is given is units of 10−19 cm2, the temper-

ature, T , in 1000 K, and the wavelength, λ, in 100 nm

ln σ(λ, T ) = a + bλ, (A.1)

a = c1 + c2T + c3/T, (A.2)

b = d1 + d2T + d3/T. (A.3)

The parameters for the wavelength region 200 - 320 nm are given in the Table A.

Parameters for lower wavelength regions can be found in Schulz et al. (2002a).
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CO2 H2O
c1 17.2456 40.5890
c2 -3.1813 -7.1598
c3 0.8836 -4.4701
d1 -7.0094 -20.4788
d2 1.6142 4.0009
d3 -3.1777 0.4555

Table A.1: Parameters for analytical expression of absorption cross section function,
Schulz et al. (2002a)
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Appendix B

Quenching Models for the OH
Radical

Two temperature dependent models and empirical expression from the literature are

used to evaluate the quenching coefficients of the OH radical; the “harpooned model”

by Paul (1994) and the empirical model by Tamura et al. (1998). Both supply an

analytical expression to evaluate the quenching cross section of OH A2-Σ+ (v’=0)

for a variety of collision partners. Experimental measurements of the quenching cross

section of OH A2-Σ+ (v’=0) and (v’=1) (Paul, 1995) showed that the quenching cross

section for both vibrational levels is for most colliders within 20%, which makes it a

reasonable estimation to use the quenching cross section for the v’=1 case. Note that

the quenching cross sections measured vary up to 15% for the same vibrational level

depending on the researcher measuring it and the measuring technique (Paul, 1995),

Tamura et al. (1998).
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B.1 Harpooned model

Based on the harpooned model Paul (1994) suggests the following analytical expres-

sion for the absorption cross section OH A2-Σ+ (v’=0):

σ(T ) = PAC0

{(
(1 + hc) exp(−hc)

)
+
(
C1(hc

2/α)γ(2− 2/α, hc)
)}

, (B.1)

hc = C2 300/T, (B.2)

where the temperature T is in units of K, Pa, C0 in units of Å2, C1, C2 and α are

curve fit constants given in Table B.1 and γ is the lower incomplete gamma function

defined as

γ(a, x) =

x∫
0

ta−1etdt. (B.3)

colliding species PA C0 C1 C2 α
KR 0.238 14.641 1.501 5.572 6.00
XE 0.698 18.686 1.515 4.013 6.00
H 1.038 13.743 1.347 1.399 4.00
O 1 13.959 1.451 2.064 5.20
CO 0.846 14.536 1.664 6.206 4.60
H2 0.330 12.848 1.350 3.079 3.50
O2 0.537 14.892 1.327 3.866 3.95
NO 1.003 27.157 1.800 1.269 3.90
CO2 0.770 15.418 1.391 8.205 3.22
H2O 1.120 15.955 2.251 4.302 3.12
N2O 1.026 16.490 1.677 6.815 4.60
NH3 1.285 30.244 2.632 1.320 3.90
CH4 0.826 16.561 1.109 3.591 3.050
C2H2 1.620 20.267 1.656 3.866 4.510
C2H4 1.809 23.769 0.833 2.706 2.205
C2H6 1.560 17.210 1.083 6.070 3.105
C3H6 1.850 32.362 1.716 1.291 4.405

Table B.1: Parameters for analytical expression of collisional cross section of OH
A2-Σ+ for harpooned model, Paul (1994).
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B.2 Empirical expression for quenching cross sec-

tion by Tamura

Tamura et al. (1998) gives the following two-parameter expression for the collisional

quenching cross section σ:

σ(T ) = σ∞ exp(ε/kT ), (B.4)

where the units of temperature T are in K and the fitting parameter ε/k for each

colliding species is given in Table B.2. Lin et al. (1979) developed this functional form

based on two theoretical concepts correlating the rate constants and cross sections for

a number of colliding gases. For the LIF model suggested here, only the quenching

rates for the colliders N2 and OH itself are evaluated with Eq. B.4 and all other with

Eq. B.2.

colliding species σ∞ [Å2] ε/k [K]
N2 0.4 624
O2 8 243
H2O 20 434
H2 4,5 224
CO2 11 488
CO 12 397
CH4 11 320
H 14.5 84
OH 20 384

Table B.2: Parameters for analytical expression given in Eq. B.4 of collisional cross
section of OH A2-Σ+ from Tamura et al. (1998).
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Appendix C

Example Evaluations of PLIF
Model for a Variety of Mixtures

In this Chapter the plots of predicted fluorescence profiles and quenching rates are

given for a variety of mixtures. They are based on the PLIF model and one dimen-

sional ZND-model as discussed in detail in Chapter 3. The initial temperature and

pressure for all mixtures presented is 300 K and 20 kPa respectively. All plots corre-

spond to a detonation wave at CJ conditions. The predicted fluorescence is plotted

in arbitrary units, normalized to the peak OH number density. For the mixtures

considered, the Konnov (Konnov, 2000) and GRI (Smith et al., 2004) mechanisms

gave similar results.
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Figure C.1: a) Thermodynamic conditions b) Characteristic quenching time and OH
mole fraction. c) OH number density and predicted fluorescence profile. d) Close
up of the OH number density and predicted fluorescence profile at the end of the
induction zone. 2H2-O2-12Ar, T0=300 K, p0=20 kPa, Konnov mechanism
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Figure C.2: a) Thermodynamic conditions b) Characteristic quenching time and OH
mole fraction. c) OH number density and predicted fluorescence profile. d) Close
up of the OH number density and predicted fluorescence profile at the end of the
induction zone. 2H2-O2-17Ar, T0=300 K, p0=20 kPa, Konnov mechanism
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C.3 2H2-O2-5.5N2
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Figure C.3: a) Thermodynamic conditions b) Characteristic quenching time and OH
mole fraction. c) OH number density and predicted fluorescence profile. d) Close
up of the OH number density and predicted fluorescence profile at the end of the
induction zone. 2H2-O2-5.5N2, T0=300 K, p0=20 kPa, Konnov mechanism
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C.4 CH4-2O2
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Figure C.4: a) Thermodynamic conditions b) Characteristic quenching time and OH
mole fraction. c) OH number density and predicted fluorescence profile. d) Close
up of the OH number density and predicted fluorescence profile at the end of the
induction zone. CH4-2O2, T0=300 K, p0=20 kPa, Konnov mechanism
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Figure C.5: a) Thermodynamic conditions b) Characteristic quenching time and OH
mole fraction. c) OH number density and predicted fluorescence profile. d) Close
up of the OH number density and predicted fluorescence profile at the end of the
induction zone. CH4-2O2-3N2, T0=300 K, p0=20 kPa, Konnov mechanism
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C.6 C2H4-3O2-8N2
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Figure C.6: a) Thermodynamic conditions b) Characteristic quenching time and OH
mole fraction. c) OH number density and predicted fluorescence profile. d) Close
up of the OH number density and predicted fluorescence profile at the end of the
induction zone. C2H4-3O2-8N2, T0=300 K, p0=20 kPa, Konnov mechanism
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C.7 C3H8-5O2-9N2
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Figure C.7: a) Thermodynamic conditions b) Characteristic quenching time and OH
mole fraction. c) OH number density and predicted fluorescence profile. d) Close
up of the OH number density and predicted fluorescence profile at the end of the
induction zone. C3H8-5O2-9N2, T0=300 K, p0=20 kPa, Konnov mechanism
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C.8 N2O-O2-2N2
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Figure C.8: a) Thermodynamic conditions b) Characteristic quenching time and OH
mole fraction. c) OH number density and predicted fluorescence profile. d) Close
up of the OH number density and predicted fluorescence profile at the end of the
induction zone. N2O-O2-2N2, T0=300 K, p0=20 kPa, Dryer mechanism
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Appendix D

Evaluation of Mixture Properties
for Shock Strength Unsteadiness
Based on ZND model

The properties relevant to the shock decay considerations of Section 3.8 are evaluated

for three types of mixtures, standing as examples on the scale of regularity. The shock

decay time td through the cell cycle is needed as an input in order to estimate the

effects of the decaying lead shock on the induction zone, as done for the Ar- diluted

mixture in Section 3.8.
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Figure D.1: Post shock conditions
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Figure D.3: U/∆ ∂∆/∂U (y1 axis) and induction time τ (y2 axis).
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Appendix E

Overview of Experiments from
Detonation Diffraction Experiment
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E.1 H2-O2-Ar mixtures

shot mixture composition P0 T0 img.hght.(mm) burst ∆tTEP (µs) gate (ns) f# fil-
no. by mol fraction (kPa) (K) P S C para. P S C P C P C ter

1 0.333H2+0.167O2+0.500Ar 100 295 - - - - - - - 0 0 0 0 -
2 0.267H2+0.133O2+0.600Ar 100 295 - - - - - - - 0 0 0 0 -
3 0.233H2+0.117O2+0.650Ar 100 295 - - - - - - - 0 0 0 0 -
4 0.200H2+0.100O2+0.700Ar 100 295 - - - - - - - 0 0 0 0 -
5 0.167H2+0.083O2+0.750Ar 100 295 - - - - - - - 0 0 0 0 -
6 0.187H2+0.093O2+0.720Ar 100 295 - - - - - - - 0 0 0 0 -
7 0.173H2+0.087O2+0.740Ar 100 295 - - - - - - - 0 0 0 0 -
8 0.160H2+0.080O2+0.760Ar 100 295 - - - - - - - 0 0 0 0 -

16 0.182H2+0.091O2+0.727Ar 100 297 50 - - - 13.5 - - 50 0 4.5 0 313
17 0.187H2+0.093O2+0.720Ar 100 297 50 - - - 14.5 - - 60 0 4.5 0 313
18 0.187H2+0.093O2+0.720Ar 100 296 48 - - - 21.5 - - 60 0 4.5 0 313
19 0.187H2+0.093O2+0.720Ar 100 297 48 - - - 21.5 - - 60 0 4.5 0 313
20 0.187H2+0.093O2+0.720Ar 100 296 48 - - - 21.5 - - 70 0 4.5 0 313
21 0.200H2+0.100O2+0.700Ar 100 297 48 - - - 24.2 - - 60 0 4.5 0 313
22 0.200H2+0.100O2+0.700Ar 100 298 48 - - - 30.2 - - 60 0 4.5 0 313
23 0.200H2+0.100O2+0.700Ar 100 298 48 - - - 36.2 - - 60 0 4.5 0 313
24 0.200H2+0.100O2+0.700Ar 100 298 48 - - - 42.2 - - 60 0 4.5 0 313
25 0.200H2+0.100O2+0.700Ar 100 298 48 - - - 48.2 - - 60 0 4.5 0 313
26 0.200H2+0.100O2+0.700Ar 100 298 48 - - - 54.2 - - 60 0 4.5 0 313
27 0.200H2+0.100O2+0.700Ar 100 298 48 - - - 14.2 - - 60 0 4.5 0 313
28 0.200H2+0.100O2+0.700Ar 100 298 48 - - - 11.2 - - 60 0 4.5 0 313
29 0.213H2+0.107O2+0.680Ar 100 295 - - - - - - - 60 0 4.5 0 -
30 0.213H2+0.107O2+0.680Ar 100 296 50 150 - - 34.6 34.6 - 60 0 4.5 0 313
31 0.213H2+0.107O2+0.680Ar 100 296 50 150 - - 43.7 44.4 - 60 0 4.5 0 313
32 0.213H2+0.107O2+0.680Ar 100 296 50 150 - - 53.7 54.4 - 50 0 4.5 0 313

Table E.1: H2-O2-Ar mixtures. Experimental set up parameters for Detonation diffraction experiments.
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shot mixture composition P0 T0 img.hght.(mm) burst ∆tTEP (µs) gate (ns) f# fil-
no. by mol fraction (kPa) (K) P S C para. P S C P C P C ter
33 0.213H2+0.107O2+0.680Ar 100 296 50 - - - 53.7 - - 50 0 16 0 UG5
34 0.213H2+0.107O2+0.680Ar 100 297 50 - - - 53.7 - - 50 0 22 0 UG5
35 0.227H2+0.113O2+0.660Ar 100 294 50 150 - - 56.1 56.1 - 50 0 8.5 0 313
36 0.227H2+0.113O2+0.660Ar 100 294 50 150 - - 56.1 56.1 - 50 0 8 0 313
37 0.227H2+0.113O2+0.660Ar 100 295 50 150 - - 56.1 56.1 - 40 0 22 0 UG5
38 0.227H2+0.113O2+0.660Ar 100 295 50 150 - - 61.1 62.1 - 40 0 22 0 UG5
39 0.227H2+0.113O2+0.660Ar 100 295 50 150 - - 61.1 61.1 - 40 0 22 0 UG5
40 0.227H2+0.113O2+0.660Ar 100 295 50 150 - - 61.1 61.1 - 40 0 22 0 UG5
41 0.233H2+0.117O2+0.650Ar 100 296 50 - - - 62.2 - - 40 0 22 0 UG5
42 0.227H2+0.113O2+0.660Ar 100 296 50 150 - - 61.1 61.9 - 40 0 22 0 UG5
43 0.227H2+0.113O2+0.660Ar 100 296 50 150 - - 61.1 61.9 - 40 0 22 0 UG5
44 0.233H2+0.117O2+0.650Ar 100 296 50 - - - 62.2 - - 40 0 22 0 UG5
45 0.230H2+0.115O2+0.655Ar 100 296 50 150 - - 61.7 61.7 - 40 0 22 0 UG5
46 0.227H2+0.113O2+0.660Ar 100 293 - - - - - - - 0 0 0 0 -
47 0.227H2+0.113O2+0.660Ar 100 294 - - - - - - - 0 0 0 0 -
62 0.200H2+0.100O2+0.700Ar 100 294 - - - - - - - 0 0 0 0 -
63 0.200H2+0.100O2+0.700Ar 100 294 - - - - - - - 0 0 0 0 -
64 0.200H2+0.100O2+0.700Ar 100 294 50 150 - - 14.2 15.3 - 40 0 4.5 0 313
65 0.200H2+0.100O2+0.700Ar 100 295 50 150 - - 20.2 21.3 - 40 0 22 0 UG11
66 0.200H2+0.100O2+0.700Ar 100 294 - 150 - - - 27.3 - 0 0 0 0 -
67 0.200H2+0.100O2+0.700Ar 100 295 50 150 - - 32.2 32.3 - 30 0 22 0 UG11
68 0.200H2+0.100O2+0.700Ar 100 295 50 150 - - 38.2 38.3 - 30 0 22 0 UG11
69 0.200H2+0.100O2+0.700Ar 100 295 50 150 - - 44.2 44.3 - 30 0 16 0 UG11
70 0.200H2+0.100O2+0.700Ar 100 296 50 150 - - 50.2 50.3 - 30 0 16 0 UG11
71 0.200H2+0.100O2+0.700Ar 100 296 50 150 - - 56.2 56.3 - 30 0 16 0 UG11

Table E.2: H2-O2-Ar mixtures. Experimental set up parameters for Detonation diffraction experiments.
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shot mixture composition P0 T0 img.hght.(mm) burst ∆tTEP (µs) gate (ns) f# fil-
no. by mol fraction (kPa) (K) P S C para. P S C P C P C ter
72 0.200H2+0.100O2+0.700Ar 100 296 50 150 - - 62.2 62.3 - 30 0 16 0 UG11
73 0.200H2+0.100O2+0.700Ar 100 296 50 150 - - 8.2 8.3 - 30 0 16 0 UG11
74 0.200H2+0.100O2+0.700Ar 100 296 50 150 - - 2.2 2.3 - 30 0 16 0 UG11

126 0.200H2+0.100O2+0.700Ar 100 294 70 150 109 1×6µs 38.2 38.3 2.3 40 200 5.6 8 313
127 0.200H2+0.100O2+0.700Ar 100 294 70 150 109 6×7µs 32.2 32.3 -3.7 40 300 16 2.8 UG11
128 0.200H2+0.100O2+0.700Ar 100 295 70 150 109 6×6µs 26.2 26.3 -3.7 40 300 16 2.8 UG11
129 0.200H2+0.100O2+0.700Ar 100 295 70 150 109 9×6µs 26.2 26.3 -3.7 40 300 16 2.8 UG11
130 0.213H2+0.107O2+0.680Ar 100 295 70 - 109 9×6µs 28.7 - -1.2 40 300 16 2.8 UG11
131 0.213H2+0.107O2+0.680Ar 100 296 - - 109 9×6µs - - -1.2 0 300 0 2.8 -
132 0.213H2+0.107O2+0.680Ar 100 296 70 150 109 9×6µs 28.7 28.8 -1.2 40 300 16 2.8 UG11
133 0.217H2+0.108O2+0.675Ar 100 296 70 150 109 9×6µs 29.3 29.4 -0.6 40 300 16 2.8 UG11
134 0.217H2+0.108O2+0.675Ar 100 296 70 150 109 9×6µs 29.3 29.3 -0.6 40 300 16 2.8 UG11
135 0.217H2+0.108O2+0.675Ar 100 294 70 150 109 9×6µs 35.3 35.3 -0.6 40 300 22 2.8 UG11
136 0.220H2+0.110O2+0.670Ar 100 295 70 150 109 9×6µs 35.9 36.0 0.0 40 300 16 2.8 UG11
137 0.220H2+0.110O2+0.670Ar 100 295 70 150 109 9×6µs 35.9 36.0 0.0 40 300 16 2.8 UG11
138 0.223H2+0.112O2+0.665Ar 100 296 70 150 109 8×6µs 45.5 45.5 0.6 40 300 16 2.8 UG11
139 0.223H2+0.112O2+0.665Ar 100 296 70 150 109 9×6µs 36.5 36.5 0.6 40 300 16 2.8 UG11
140 0.227H2+0.113O2+0.660Ar 100 296 70 150 109 9×6µs 37.1 37.2 1.2 40 300 22 2.8 UG11
141 0.233H2+0.117O2+0.650Ar 100 296 70 - 109 7×6µs 38.2 - 2.3 40 250 22 2.8 UG11
142 0.240H2+0.120O2+0.640Ar 100 296 70 150 109 7×6µs 39.3 39.4 3.5 30 250 16 2.8 UG11
148 0.220H2+0.110O2+0.670Ar 100 295 70 150 109 10×3µs 41.9 42.0 0.0 30 300 22 2.8 UG11
149 0.220H2+0.110O2+0.670Ar 100 295 70 150 109 19×3µs 44.9 45.0 0.0 30 300 22 2.8 UG11
150 0.223H2+0.112O2+0.665Ar 100 295 70 150 109 10×6µs 48.5 48.5 0.6 30 250 22 2.8 UG11
154 0.333H2+0.167O2+0.500Ar 55 296 70 - 109 9×6µs 42.5 - 0.7 30 300 22 2.8 UG11
155 0.333H2+0.167O2+0.500Ar 45 296 - - - - - - - 0 0 0 0 -

Table E.3: H2-O2-Ar mixtures. Experimental set up parameters for Detonation diffraction experiments.
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shot mixture composition P0 T0 img.hght.(mm) burst ∆tTEP (µs) gate (ns) f# fil-
no. by mol fraction (kPa) (K) P S C para. P S C P C P C ter
156 0.333H2+0.167O2+0.500Ar 45 296 70 150 109 9×6µs 41.9 42.0 0.0 30 300 22 2.8 UG11
157 0.333H2+0.167O2+0.500Ar 47.5 296 70 150 109 11×6µs 48.1 48.1 0.2 30 350 22 2.8 UG11
158 0.333H2+0.167O2+0.500Ar 50 296 70 - 109 11×6µs 48.3 - 0.4 30 350 22 2.8 UG11
159 0.333H2+0.167O2+0.500Ar 50 296 - - - - - - - 0 0 0 0 -
160 0.333H2+0.167O2+0.500Ar 50 295 70 150 109 10×6µs 42.3 42.3 0.4 35 400 22 2.8 UG11
161 0.333H2+0.167O2+0.500Ar 52.5 295 70 150 109 10×6µs 42.4 42.5 0.5 35 150 32 2.8 UG11
162 0.333H2+0.167O2+0.500Ar 53.75 296 70 150 109 10×6µs 42.5 42.5 0.6 35 0 32 2.8 UG11
163 0.333H2+0.167O2+0.500Ar 55 296 70 150 109 10×6µs 42.5 42.6 0.7 35 0 22 2.8 UG11
164 0.333H2+0.167O2+0.500Ar 55 296 70 150 109 10×6µs 42.5 42.6 0.7 35 300 22 2.8 UG11
165 0.333H2+0.167O2+0.500Ar 57.5 296 70 150 109 10×6µs 42.7 42.7 0.8 35 300 22 2.8 UG11
166 0.333H2+0.167O2+0.500Ar 57.5 296 70 150 109 7×6µs 36.7 36.7 0.8 35 300 22 2.8 UG11
167 0.333H2+0.167O2+0.500Ar 60 297 70 150 109 7×6µs 30.8 30.9 0.9 35 300 16 2.8 UG11
168 0.333H2+0.167O2+0.500Ar 62.5 296 70 150 109 6×6µs 30.9 31.0 1.1 35 300 16 2.8 UG11
169 0.333H2+0.167O2+0.500Ar 65 296 70 150 109 7×6µs 31.1 31.1 1.2 35 300 16 2.8 UG11
170 0.333H2+0.167O2+0.500Ar 70 296 70 150 109 6×6µs 31.3 31.4 1.4 35 300 16 2.8 UG11
200 0.220H2+0.110O2+0.670Ar 100 293 - 150 109 2×43µs - 42.0 0.0 0 0 0 16 -
201 0.220H2+0.110O2+0.670Ar 100 294 70 150 109 80×1µs 41.9 42.0 0.0 30 200 22 2.8 UG11
202 0.220H2+0.110O2+0.670Ar 100 294 70 150 109 1×0µs 47.9 48.0 0.0 30 48000 16 16 UG11
203 0.220H2+0.110O2+0.670Ar 100 294 70 150 109 1×0µs 59.9 60.0 6.0 30 54000 16 16 UG11

Table E.4: H2-O2-Ar mixtures. Experimental set up parameters for Detonation diffraction experiments.
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E.2 H2-O2-N2mixtures

shot mixture composition P0 T0 img.hght.(mm) burst ∆tTEP (µs) gate (ns) f# fil-
no. by mol fraction (kPa) (K) P S C para. P S C P C P C ter
14 0.500H2+0.250O2+0.250N2 100 296 - - - - - - - 0 0 0 0 -
15 0.500H2+0.250O2+0.250N2 100 296 - - - - - - - 0 0 0 0 -
48 0.540H2+0.270O2+0.190N2 100 294 - - - - - - - 0 0 0 0 -
49 0.540H2+0.270O2+0.190N2 100 295 - 150 - - - 62.5 - 0 0 0 0 -
50 0.527H2+0.263O2+0.210N2 100 295 50 150 - - 29.0 29.0 - 40 0 22 0 UG11
51 0.527H2+0.263O2+0.210N2 100 295 50 150 - - 39.0 39.0 - 40 0 22 0 UG11
52 0.520H2+0.260O2+0.220N2 100 296 50 150 - - 38.2 38.2 - 40 0 22 0 UG11
53 0.520H2+0.260O2+0.220N2 100 295 50 150 - - 38.2 38.2 - 40 0 22 0 UG11
54 0.507H2+0.253O2+0.240N2 100 297 50 150 - - 36.7 36.7 - 40 0 22 0 UG11
55 0.507H2+0.253O2+0.240N2 100 294 50 150 - - 36.7 36.7 - 40 0 4.5 0 313
56 0.507H2+0.253O2+0.240N2 100 295 50 150 - - 36.7 36.7 - 40 0 16 0 UG11
57 0.507H2+0.253O2+0.240N2 100 296 50 150 - - 31.7 31.6 - 40 0 16 0 UG11
58 0.520H2+0.260O2+0.220N2 100 296 50 150 - - 38.2 38.2 - 40 0 16 0 UG11

Table E.5: H2-O2-N2mixtures. Experimental set up parameters for Detonation diffraction experiments.
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E.3 H2-N2Omixtures

shot mixture composition P0 T0 img.hght.(mm) burst ∆tTEP (µs) gate (ns) f# fil-
no. by mol fraction (kPa) (K) P S C para. P S C P C P C ter
59 0.500H2+0.500N2O 70 296 150 150 - - 34.8 34.9 - 40 0 16 0 UG11
60 0.500H2+0.500N2O 40 296 50 150 - - 33.5 33.6 - 40 0 16 0 UG11
61 0.500H2+0.500N2O 55 296 50 150 - - 34.3 35.3 - 40 0 16 0 UG11
75 0.500H2+0.500N2O 45 294 73 150 - - 39.8 39.9 - 40 0 4.5 0 313
76 0.500H2+0.500N2O 45 295 73 150 - - 27.8 27.9 - 40 0 4.5 0 313
77 0.500H2+0.500N2O 45 295 73 150 - - 15.8 15.9 - 40 0 4.5 0 313
78 0.500H2+0.500N2O 40 295 73 150 - - 39.5 39.6 - 40 0 4.5 0 313
79 0.500H2+0.500N2O 40 295 73 150 - - 51.5 51.7 - 40 0 16 0 UG11
80 0.500H2+0.500N2O 40 296 73 150 - - 45.5 45.7 - 40 0 16 0 UG11
81 0.500H2+0.500N2O 40 296 73 150 - - 39.5 39.6 - 40 0 16 0 UG11
82 0.500H2+0.500N2O 40 296 73 150 - - 33.5 33.6 - 50 0 16 0 UG11
83 0.500H2+0.500N2O 40 296 73 150 - - 27.5 27.6 - 40 0 16 0 UG11
84 0.500H2+0.500N2O 40 296 73 150 - - 21.5 21.6 - 40 0 16 0 UG11
85 0.500H2+0.500N2O 40 296 73 150 - - 15.5 15.5 - 40 0 11 0 UG11
86 0.500H2+0.500N2O 40 296 73 150 - - 9.5 9.5 - 40 0 11 0 UG11
87 0.500H2+0.500N2O 40 296 - 150 - - - 3.5 - 0 0 0 0 -
88 0.500H2+0.500N2O 40 296 73 150 - - 27.5 27.4 - 40 0 16 0 UG11
89 0.500H2+0.500N2O 40 296 73 150 - - 15.5 15.4 - 40 0 16 0 UG11
90 0.500H2+0.500N2O 40 294 - - 118 3×10µs - - 9.6 0 59 0 22 -
91 0.500H2+0.500N2O 40 294 - - - - - - - 0 0 0 0 -
92 0.500H2+0.500N2O 40 294 - - 118 1×0µs - - 3.6 0 400 0 8 -
93 0.500H2+0.500N2O 40 294 - - 118 4×12µs - - 9.6 0 400 0 8 -
94 0.500H2+0.500N2O 40 295 - - - 9×6µs - - - 0 300 0 8 -
95 0.500H2+0.500N2O 40 295 - - - - - - - 0 0 0 0 -
96 0.500H2+0.500N2O 40 295 - - 118 3×6µs - - 0.6 0 200 0 22 -

Table E.6: H2-N2Omixtures. Experimental set up parameters for Detonation diffraction experiments.
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shot mixture composition P0 T0 img.hght.(mm) burst ∆tTEP (µs) gate (ns) f# fil-
no. by mol fraction (kPa) (K) P S C para. P S C P C P C ter
97 0.500H2+0.500N2O 40 295 - - 118 7×3µs - - 0.6 0 130 0 8 -
98 0.500H2+0.500N2O 42.5 295 - - 118 9×3µs - - 0.8 0 180 0 8 -
99 0.500H2+0.500N2O 42.5 295 - - 118 9×6µs - - 3.8 0 220 0 5.6 -

100 0.500H2+0.500N2O 45 295 - - 118 7×3µs - - 0.9 0 130 0 8 -
101 0.500H2+0.500N2O 45 295 - - 118 9×6µs - - 3.9 0 220 0 5.6 -
102 0.500H2+0.500N2O 45 296 - - 118 7×6µs - - 3.9 0 100 0 8 -
103 0.500H2+0.500N2O 47.5 296 - - 118 7×6µs - - 4.0 0 220 0 5.6 -
104 0.500H2+0.500N2O 47.5 296 - - 118 7×3µs - - 1.0 0 130 0 8 -
105 0.500H2+0.500N2O 47.5 296 - - 118 7×3µs - - 1.0 0 200 0 8 -
106 0.500H2+0.500N2O 45 294 - 150 109 7×3µs - 21.8 0.9 0 130 0 8 -
107 0.500H2+0.500N2O 45 294 - 150 109 8×3µs - 24.8 0.9 0 130 0 5.6 -
108 0.500H2+0.500N2O 45 295 - 150 109 8×3µs - 24.8 0.9 0 200 0 5.6 -
109 0.500H2+0.500N2O 45 295 - 150 109 8×3µs - 24.8 0.9 0 200 0 5.6 -
110 0.500H2+0.500N2O 45 295 - 150 109 9×3µs - 21.8 0.9 0 200 0 5.6 -
111 0.500H2+0.500N2O 45 295 - 150 109 8×3µs - 21.8 0.9 0 200 0 5.6 -
112 0.500H2+0.500N2O 47.5 296 - 150 109 7×3µs - 19.0 1.0 0 200 0 5.6 -
113 0.500H2+0.500N2O 47.5 296 - 150 109 7×3µs - 19.0 1.0 0 200 0 5.6 -
114 0.500H2+0.500N2O 50 296 - 150 109 7×3µs - 19.1 1.1 0 200 0 5.6 -
115 0.500H2+0.500N2O 50 296 - 150 109 7×3µs - 19.1 1.1 0 200 0 5.6 -
116 0.500H2+0.500N2O 55 296 - 150 109 7×3µs - 19.3 1.4 0 200 0 5.6 -
117 0.500H2+0.500N2O 55 296 - 150 109 7×3µs - 19.3 1.4 0 180 0 5.6 -
118 0.500H2+0.500N2O 60 296 - 150 109 7×3µs - 19.5 1.6 0 150 0 5.6 -
119 0.500H2+0.500N2O 60 296 - 150 109 6×3µs - 16.5 1.6 0 150 0 5.6 -
120 0.500H2+0.500N2O 65 297 - 150 - - - 13.8 - 0 0 0 0 -
121 0.500H2+0.500N2O 65 297 - 150 109 5×3µs - 13.7 1.7 0 200 0 8 -

Table E.7: H2-N2Omixtures. Experimental set up parameters for Detonation diffraction experiments.
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shot mixture composition P0 T0 img.hght.(mm) burst ∆tTEP (µs) gate (ns) f# fil-
no. by mol fraction (kPa) (K) P S C para. P S C P C P C ter
122 0.500H2+0.500N2O 65 297 - 150 109 6×3µs - 16.7 1.7 0 200 0 8 -
123 0.500H2+0.500N2O 70 297 - 150 109 5×3µs - 13.8 1.9 0 200 0 8 -
124 0.500H2+0.500N2O 70 297 - 150 109 5×6µs - 25.8 1.9 0 200 0 8 -
125 0.500H2+0.500N2O 80 297 - 150 109 4×3µs - 11.1 2.2 0 200 0 8 -
143 0.500H2+0.500N2O 45 296 70 150 109 10×3µs 24.8 24.8 0.9 30 200 16 5.6 UG11
144 0.500H2+0.500N2O 40 296 70 150 109 10×3µs 24.5 24.6 0.7 30 200 16 5.6 UG11
145 0.500H2+0.500N2O 42.5 296 70 150 109 9×3µs 24.7 24.7 0.8 30 200 22 5.6 UG11
146 0.500H2+0.500N2O 47.5 297 70 150 109 9×3µs 24.9 25.0 1.1 30 200 22 5.6 UG11
147 0.500H2+0.500N2O 50 297 70 150 109 9×3µs 25.1 25.1 1.2 30 200 22 5.6 UG11
151 0.500H2+0.500N2O 40 295 70 150 109 14×3µs 33.5 33.6 0.7 30 200 16 4 UG11
152 0.500H2+0.500N2O 42.5 295 70 150 109 9×6µs 36.7 36.7 0.8 30 200 16 5.6 UG11
153 0.500H2+0.500N2O 43.75 296 70 150 109 9×6µs 36.8 36.8 0.9 30 200 22 5.6 UG11
171 0.500H2+0.500N2O 45 297 70 150 109 11×3µs 27.8 27.9 0.9 35 150 16 5.6 UG11
172 0.500H2+0.500N2O 47.5 297 70 150 109 6×6µs 27.9 28.0 1.1 35 150 16 0 UG11
173 0.500H2+0.500N2O 47.5 297 70 150 109 6×6µs 30.9 31.0 1.1 35 150 22 0 UG11
174 0.500H2+0.500N2O 46.25 297 70 150 109 11×3µs 30.9 31.0 1.0 35 150 4.5 0 313
204 0.500H2+0.500N2O 47.5 295 70 150 109 1×0µs 42.9 43.0 1.1 30 42000 16 32 UG11
205 0.500H2+0.500N2O 47.5 295 - 150 109 1×0µs - 43.0 1.1 0 42000 0 32 -
206 0.500H2+0.500N2O 45 295 70 150 109 1×0µs 42.8 42.8 0.9 25 42000 16 32 UG11
207 0.500H2+0.500N2O 47.5 296 70 150 109 1×0µs 42.9 42.9 1.1 25 42000 16 32 UG11

Table E.8: H2-N2Omixtures. Experimental set up parameters for Detonation diffraction experiments.
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E.4 CH4-O2mixtures

shot mixture composition P0 T0 img.hght.(mm) burst ∆tTEP (µs) gate (ns) f# fil-
no. by mol fraction (kPa) (K) P S C para. P S C P C P C ter

9 0.333CH4+0.667O2 100 295 - - - - - - - 0 0 0 0 -
10 0.333CH4+0.667O2 50 294 - - - - - - - 0 0 0 0 -
11 0.333CH4+0.667O2 50 295 - - - - - - - 0 0 0 0 -
12 0.333CH4+0.667O2 60 295 - - - - - - - 0 0 0 0 -
13 0.333CH4+0.667O2 50 295 - - - - - - - 0 0 0 0 -

187 0.333CH4+0.667O2 50 294 70 150 109 7×6µs 31.0 31.0 1.1 35 130 22 16 UG11
188 0.333CH4+0.667O2 55 295 70 150 109 8×6µs 31.2 31.2 1.3 20 180 16 16 UG11
189 0.333CH4+0.667O2 60 296 70 150 109 8×6µs 31.4 31.4 1.5 20 180 4.5 16 313
190 0.333CH4+0.667O2 65 296 70 - 109 8×6µs 31.6 - 1.7 75 180 16 16 UG11
191 0.333CH4+0.667O2 70 297 70 150 109 8×6µs 31.8 31.8 1.9 20 180 16 16 UG11
192 0.333CH4+0.667O2 80 298 0 - 109 8×6µs -10.0 - -9.8 0 180 0 22 313
193 0.333CH4+0.667O2 90 298 70 - 109 8×6µs 32.4 - 2.5 20 180 16 22 UG11
194 0.333CH4+0.667O2 100 299 70 150 109 8×6µs 32.6 32.6 2.7 20 130 16 16 UG11
195 0.333CH4+0.667O2 120 299 70 150 109 7×6µs 33.0 33.1 3.2 20 130 16 16 UG11
196 0.333CH4+0.667O2 110 299 70 150 109 6×6µs 32.8 32.9 3.0 20 130 16 16 UG11
197 0.333CH4+0.667O2 115 300 - 150 109 6×6µs - 32.9 3.1 0 130 0 16 -
198 0.333CH4+0.667O2 120 298 - 150 109 6×6µs - 33.1 3.2 0 130 0 16 -
199 0.333CH4+0.667O2 125 301 - 150 109 6×6µs - 33.2 3.2 0 130 0 16 -

Table E.9: CH4-O2mixtures. Experimental set up parameters for Detonation diffraction experiments.
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E.5 C2H6-O2mixtures

shot mixture composition P0 T0 img.hght.(mm) burst ∆tTEP (µs) gate (ns) f# fil-
no. by mol fraction (kPa) (K) P S C para. P S C P C P C ter
175 0.222C2H6+0.778O2 30 297 70 150 109 6×6µs 31.6 31.6 -1.3 35 150 22 16 UG11
176 0.222C2H6+0.778O2 32.5 297 70 150 109 14×3µs 31.8 31.8 -1.1 35 150 22 11 UG11
177 0.222C2H6+0.778O2 35 297 70 150 109 7×6µs 32.0 32.0 2.1 30 200 22 16 UG11
178 0.222C2H6+0.778O2 40 297 70 150 109 7×6µs 32.3 32.3 2.4 30 200 22 16 UG11
179 0.222C2H6+0.778O2 37.5 298 70 150 109 7×6µs 26.1 26.1 2.2 30 200 22 16 UG11
180 0.222C2H6+0.778O2 37.5 297 70 150 109 11×6µs 26.1 26.2 2.2 30 200 22 16 UG11
181 0.222C2H6+0.778O2 36.25 297 70 150 109 11×6µs 32.0 32.1 2.2 30 200 22 16 UG11
182 0.222C2H6+0.778O2 36.25 298 70 150 109 9×6µs 32.1 32.1 2.2 20 200 4.5 16 313
183 0.222C2H6+0.778O2 37.5 298 70 150 109 9×6µs 32.1 32.2 2.2 20 180 4.5 16 313
184 0.222C2H6+0.778O2 38.25 298 70 150 109 9×6µs 32.2 32.2 2.3 20 180 4.5 16 313
185 0.222C2H6+0.778O2 42.5 298 70 150 109 9×6µs 32.4 32.5 2.6 20 180 4.5 16 313
186 0.222C2H6+0.778O2 45 299 70 150 109 10×3µs 32.6 32.6 2.7 20 180 4.5 16 313
208 0.222C2H6+0.778O2 40 295 - 150 - - - 62.3 - 50 200 16 16 -
209 0.222C2H6+0.778O2 40 296 140 150 140 - 20.4 20.2 20.4 30 200 32 16 313
210 0.222C2H6+0.778O2 42.5 296 140 150 140 - 26.9 26.4 25.9 150 200 32 16 313
211 0.222C2H6+0.778O2 42.5 297 140 150 140 - 29.9 29.4 28.9 200 200 32 16 313
212 0.222C2H6+0.778O2 42.5 297 140 150 140 - 27.9 27.4 26.9 200 200 32 16 313
213 0.222C2H6+0.778O2 42.5 298 140 150 140 - 28.9 28.4 27.9 200 200 32 16 313
214 0.222C2H6+0.778O2 42.5 298 140 150 140 - 28.9 28.4 27.9 200 200 32 16 313
215 0.222C2H6+0.778O2 42.5 294 140 150 140 - 28.6 28.4 28.6 200 200 32 16 313
216 0.222C2H6+0.778O2 42.5 295 140 150 140 - 28.6 28.4 28.6 200 200 32 16 313
217 0.222C2H6+0.778O2 42.5 295 140 150 140 - 28.6 28.4 28.6 200 200 32 16 313
218 0.222C2H6+0.778O2 42.5 296 140 150 140 - 28.6 28.4 28.6 200 200 32 16 313
219 0.222C2H6+0.778O2 42.5 296 140 150 140 - 28.6 28.4 28.6 200 200 32 16 313
220 0.222C2H6+0.778O2 42.5 297 140 150 140 - 28.6 28.4 28.6 200 200 32 16 313

Table E.10: C2H6-O2mixtures. Experimental set up parameters for Detonation diffraction experiments.
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shot mixture composition P0 T0 img.hght.(mm) burst ∆tTEP (µs) gate (ns) f# fil-
no. by mol fraction (kPa) (K) P S C para. P S C P C P C ter
221 0.222C2H6+0.778O2 42.5 297 140 150 140 - 28.6 28.4 28.6 200 200 32 16 313
222 0.222C2H6+0.778O2 42.5 297 140 150 140 - 30.6 30.4 28.6 200 200 32 16 313
223 0.222C2H6+0.778O2 42.5 298 140 150 140 - 33.6 33.4 28.6 200 200 32 16 313
224 0.222C2H6+0.778O2 42.5 298 140 150 140 - 32.6 32.4 28.6 200 200 32 16 313
225 0.222C2H6+0.778O2 42.5 297 - - - - - - - 0 0 0 0 -
226 0.222C2H6+0.778O2 42.5 297 140 150 140 2×5µs 28.6 28.4 28.6 200 200 32 16 313
227 0.222C2H6+0.778O2 42.5 298 140 150 140 - 32.6 32.4 28.6 200 200 32 16 313
228 0.222C2H6+0.778O2 42.5 298 140 150 140 3×2µs 32.6 28.4 28.6 200 200 32 16 313
229 0.222C2H6+0.778O2 42.5 298 140 150 140 3×3µs 32.6 26.4 26.6 200 200 32 16 313

Table E.11: C2H6-O2mixtures. Experimental set up parameters for Detonation diffraction experiments.
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Appendix F

Mixture Parameters
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F.1 H2-O2-Ar mixtures, pressure series

Mixture P0 UCJ PCJ TCJ w PvN TvN cvN ∆ D/∆ θ
[kPa] [m/s] [MPa] [K] [m/s] [MPa] [K] [m/s] [mm] [-] [-]

0.333H2+0.167O2+0.500Ar 45 1895.1 0.800 3265 412 1.36 1975 948 0.114 334 4.6
0.333H2+0.167O2+0.500Ar 47.5 1897.2 0.847 3273 412 1.44 1978 948 0.107 355 4.6
0.333H2+0.167O2+0.500Ar 50 1899.1 0.893 3280 413 1.52 1982 949 0.101 376 4.6
0.333H2+0.167O2+0.500Ar 52.5 1900.9 0.939 3287 413 1.60 1985 950 0.096 397 4.6
0.333H2+0.167O2+0.500Ar 53.75 1901.8 0.962 3290 413 1.64 1986 950 0.093 407 4.6
0.333H2+0.167O2+0.500Ar 55 1902.7 0.985 3294 413 1.68 1988 950 0.091 417 4.6
0.333H2+0.167O2+0.500Ar 57.5 1904.3 1.031 3300 413 1.76 1990 951 0.087 438 4.6
0.333H2+0.167O2+0.500Ar 60 1905.9 1.078 3306 414 1.84 1993 952 0.083 460 4.6
0.333H2+0.167O2+0.500Ar 62.5 1907.5 1.124 3312 414 1.92 1996 952 0.079 480 4.6
0.333H2+0.167O2+0.500Ar 65 1909.0 1.171 3318 414 2.00 1998 953 0.076 502 4.6
0.333H2+0.167O2+0.500Ar 70 1911.7 1.264 3328 414 2.16 2003 954 0.070 543 4.6
0.333H2+0.167O2+0.500Ar 100 1925.1 1.827 3380 416 3.13 2026 959 0.048 798 4.9

Table F.1:
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F.2 H2-O2-Ar mixtures, dilution series

Mixture P0 UCJ PCJ TCJ w PvN TvN cvN ∆ D/∆ θ
[kPa] [m/s] [MPa] [K] [m/s] [MPa] [K] [m/s] [mm] [-] [-]

0.267H2+0.133O2+0.600Ar 100 1810.7 1.775 3261 411 3.02 2058 929 0.057 663 4.8
0.240H2+0.120O2+0.640Ar 100 1765.1 1.744 3199 409 2.97 2063 918 0.064 593 4.5
0.233H2+0.117O2+0.650Ar 100 1753.6 1.734 3182 409 2.95 2064 915 0.066 575 4.5
0.230H2+0.115O2+0.655Ar 100 1747.7 1.730 3173 408 2.94 2064 913 0.067 566 4.8
0.227H2+0.113O2+0.660Ar 100 1741.9 1.724 3164 408 2.94 2064 912 0.068 556 4.5
0.223H2+0.112O2+0.665Ar 100 1736.0 1.719 3154 408 2.93 2063 910 0.070 546 4.5
0.220H2+0.110O2+0.670Ar 100 1730.1 1.714 3144 408 2.92 2063 909 0.071 537 4.6
0.217H2+0.108O2+0.675Ar 100 1724.1 1.708 3134 407 2.91 2062 907 0.072 527 4.5
0.213H2+0.107O2+0.680Ar 100 1718.1 1.702 3124 407 2.90 2062 906 0.074 516 4.5
0.200H2+0.100O2+0.700Ar 100 1693.6 1.677 3080 406 2.86 2057 899 0.080 473 4.5
0.187H2+0.093O2+0.720Ar 100 1668.1 1.647 3029 405 2.81 2049 892 0.089 429 4.9
0.182H2+0.091O2+0.727Ar 100 1658.5 1.635 3009 404 2.80 2045 890 0.092 413 4.9
0.173H2+0.087O2+0.740Ar 100 1641.2 1.612 2972 404 2.76 2037 885 0.099 383 4.9
0.167H2+0.083O2+0.750Ar 100 1627.0 1.592 2940 403 2.73 2029 881 0.106 360 4.9
0.160H2+0.080O2+0.760Ar 100 1612.3 1.571 2905 402 2.70 2019 876 0.113 336 4.9

Table F.2:
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F.3 H2-O2-N2 mixtures

Mixture P0 UCJ PCJ TCJ w PvN TvN cvN ∆ D/∆ θ
[kPa] [m/s] [MPa] [K] [m/s] [MPa] [K] [m/s] [mm] [-] [-]

0.540H2+0.270O2+0.190N2 100 2489.6 1.802 3511 449 3.17 1714 1116 0.070 543 6.8
0.527H2+0.263O2+0.210N2 100 2458.5 1.794 3491 444 3.15 1708 1102 0.072 528 6.8
0.520H2+0.260O2+0.220N2 100 2443.0 1.790 3481 441 3.14 1704 1096 0.074 514 6.9
0.507H2+0.253O2+0.240N2 100 2412.7 1.782 3460 436 3.13 1698 1082 0.077 494 6.9
0.500H2+0.250O2+0.250N2 100 2397.6 1.777 3449 434 3.12 1695 1076 0.078 487 6.9

Table F.3:

F.4 H2-N2O mixtures

Mixture P0 UCJ PCJ TCJ w PvN TvN cvN ∆ D/∆ θ
[kPa] [m/s] [MPa] [K] [m/s] [MPa] [K] [m/s] [mm] [-] [-]

0.500H2+0.500N2O 40 2353.4 0.975 3478 309 1.82 1789 887 0.178 213 9.4
0.500H2+0.500N2O 42.5 2356.0 1.038 3488 309 1.93 1792 888 0.168 226 9.4
0.500H2+0.500N2O 43.75 2357.3 1.070 3492 310 1.99 1794 888 0.164 232 9.4
0.500H2+0.500N2O 45 2358.5 1.102 3497 310 2.05 1795 889 0.160 238 9.4
0.500H2+0.500N2O 46.25 2359.7 1.133 3501 310 2.11 1796 889 0.155 245 9.4
0.500H2+0.500N2O 47.5 2360.8 1.165 3506 310 2.17 1798 889 0.152 250 9.4
0.500H2+0.500N2O 50 2363.1 1.228 3514 310 2.29 1800 890 0.145 262 9.5
0.500H2+0.500N2O 55 2367.2 1.355 3529 310 2.53 1805 891 0.133 286 9.5
0.500H2+0.500N2O 60 2371.0 1.483 3543 310 2.77 1810 892 0.122 311 9.5
0.500H2+0.500N2O 65 2374.4 1.611 3557 311 3.00 1814 893 0.114 333 9.5
0.500H2+0.500N2O 70 2377.6 1.739 3569 311 3.24 1817 894 0.107 355 9.6
0.500H2+0.500N2O 80 2383.4 1.996 3591 311 3.73 1824 896 0.095 400 9.6

Table F.4:
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F.5 CH4-O2 mixtures

Mixture P0 UCJ PCJ TCJ w PvN TvN cvN ∆ D/∆ θ
[kPa] [m/s] [MPa] [K] [m/s] [MPa] [K] [m/s] [mm] [-] [-]

0.333CH4+0.667O2 50 2361.6 1.426 3598 274 2.69 1872 828 0.436 87 11.0
0.333CH4+0.667O2 55 2365.8 1.573 3615 274 2.97 1877 829 0.391 97 11.0
0.333CH4+0.667O2 60 2369.7 1.722 3630 275 3.25 1881 830 0.354 107 11.0
0.333CH4+0.667O2 65 2373.3 1.870 3645 275 3.53 1885 830 0.323 118 10.9
0.333CH4+0.667O2 70 2376.6 2.019 3658 275 3.81 1889 831 0.297 128 10.9
0.333CH4+0.667O2 80 2382.6 2.318 3683 275 4.38 1896 833 0.255 149 10.8
0.333CH4+0.667O2 90 2387.8 2.619 3705 275 4.95 1901 834 0.224 170 10.7
0.333CH4+0.667O2 100 2392.6 2.920 3724 276 5.52 1907 835 0.198 192 10.7
0.333CH4+0.667O2 110 2396.8 3.223 3742 276 6.09 1912 836 0.178 213 10.6
0.333CH4+0.667O2 115 2398.8 3.374 3750 276 6.38 1914 837 0.169 225 10.6
0.333CH4+0.667O2 120 2400.7 3.526 3758 276 6.67 1916 837 0.162 235 10.6
0.333CH4+0.667O2 125 2402.5 3.678 3766 276 6.96 1918 838 0.154 247 10.5

Table F.5:
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F.6 C2H6-O2 mixtures

Mixture P0 UCJ PCJ TCJ w PvN TvN cvN ∆ D/∆ θ
[kPa] [m/s] [MPa] [K] [m/s] [MPa] [K] [m/s] [mm] [-] [-]

0.222C2H6+0.778O2 30 2317.4 0.972 3574 233 1.86 1871 753 0.131 290 10.1
0.222C2H6+0.778O2 32.5 2321.0 1.056 3588 233 2.03 1875 754 0.122 311 10.1
0.222C2H6+0.778O2 35 2324.3 1.141 3602 233 2.19 1879 754 0.114 333 10.2
0.222C2H6+0.778O2 36.25 2325.9 1.183 3608 233 2.27 1880 755 0.110 345 10.2
0.222C2H6+0.778O2 37.5 2327.4 1.225 3614 233 2.35 1882 755 0.107 355 10.2
0.222C2H6+0.778O2 38.25 2328.3 1.251 3618 233 2.40 1883 755 0.105 362 10.2
0.222C2H6+0.778O2 40 2330.3 1.310 3626 233 2.51 1885 756 0.100 380 10.2
0.222C2H6+0.778O2 42.5 2333.1 1.395 3637 233 2.68 1889 756 0.095 400 10.2
0.222C2H6+0.778O2 45 2335.6 1.480 3648 233 2.84 1891 757 0.090 422 10.3

Table F.6:
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Appendix G

Plots of Mixture Parameters
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Figure G.1: 2H2+O2+βAr; Induction
zone length [mm], Warnatz mechanism.
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Figure G.2: 2H2+O2+βAr; Effective ac-
tivation energy, Warnatz mechanism.
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Figure G.3: 2H2+O2+βN2; Induction
zone length [mm], Konnov mechanism
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Figure G.4: 2H2+O2+βN2; Effective ac-
tivation energy, Konnov mechanism.
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Figure G.5: H2+N2O+βN2; Induction
zone length [mm], Mueller mechanism
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Figure G.6: H2+N2O+βN2; Effective ac-
tivation energy, Mueller mechanism.
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Figure G.7: C2H4+3O2+βN2; Induction
zone length [mm], Konnov mechanism
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Figure G.8: C2H4+3O2+βN2; Effective
activation energy, Konnov mechanism.
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Figure G.9: C2H6+3.5O2+βN2; Induc-
tion zone length [mm], Konnov mecha-
nism
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tive activation energy, Konnov mecha-
nism.
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Figure G.11: C3H8+5O2+βN2; Induc-
tion zone length [mm], Konnov mecha-
nism
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Appendix H

Mixture Regime Documentation

Contour plots of induction zone length ∆ and reduced activation energy θ for all mix-

tures investigated experimentally. Open square symmbols represents the conditions

of experiments. Multiple experiments are contucted for identical conditions, so the

number of squares does not reflect the number of experiments.
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Figure H.1: 2H2+O2+βAR, Warnatz mechnism. a) Induction zone length ∆ [mm].
b) Reduced activation energy θ.
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Reduced activation energy θ.
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Figure H.4: CH4+2O2+βN2, GRI mechnism. a) Induction zone length ∆ [mm]. b)
Reduced activation energy θ.
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Figure H.5: C2H6+3.5O2+βN2, GRI mechnism. a) Induction zone length ∆ [mm].
b) Reduced activation energy θ.
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Appendix I

Maximum Pressure

The maximum pressure Pmax plotted below, was derived from the pressure histories

of pressure transducers P4, P5 and P6, all located in the test section. The pressure

Pmax is defined as the largest pressure within 100 µs after the first pressure rise and

is not the over all maximum pressure.
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Figure I.1: Maximum pressure at P4, Ar
dilution series.
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Figure I.2: Maximum pressure at P4, Ar
pressure series.
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Figure I.3: Maximum pressure at P5, Ar
dilution series.
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Figure I.4: Maximum pressure at P5, Ar
pressure series.
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Figure I.5: Maximum pressure at P6, Ar
dilution series.
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Figure I.6: Maximum pressure at P6, Ar
pressure series.
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N2O series.
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Figure I.8: Maximum pressure at P4,
N2 series.
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Figure I.9: Maximum pressure at P5,
N2O series.
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Figure I.10: Maximum pressure at P5,
N2 series.
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Figure I.11: Maximum pressure at P6,
N2O series.
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Figure I.12: Maximum pressure at P6,
N2 series.
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C2H6 series.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 50  100  150  200  250

P
m

ax
(P

4)
 / 

P
C

J 
[-]

D/∆ [-]
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Figure I.15: Maximum pressure at P5,
C2H6 series.
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Figure I.16: Maximum pressure at P5,
CH4 series.
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C2H6 series.
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Appendix J

Corner Signal Propagation

The distance xc from the tube exit plane to the point at which the acoustic signal

of the corner disturbance reaches the tube axis is here calculated for the diameter

tube D =38 mm as in the experiment. The disturbance propagation angle α can be

calculated from that via 2 tan α = D/xc. The distance xc was calculated in two

ways as described in Chapter 5:

• Using the post shock (von Neumann) conditions at CJ conditions. In the plots

labeled as ”post shock”.

• Using the conditions at that distance behind the shock, which lead to the min-

imum distance xc, as calculated from a one dimensional ZND profile of the

detonation front at CJ conditions. In the plots these data-points are labeled as

”minimum”.
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Appendix K

Pressure Traces from Detonation
Diffraction Experiments

In this Chapter the pressure traces of the detonation diffraction experiments are

shown. Six PCB 113A26 piezoelectric pressure transducers were mounted in the top

side of the detonation tube and test section. The position of the pressure transducers

with respect to the spark plug position are given in Table K.1. Transducer P1, P2

and P3 are in the detonation tube. Transducer P4, P5 and P6 are in the test-section,

Fig. 2.3. The apparent pressure spikes seen in some pressure histories are erratic and

caused by loose pressure transducer cables, e.g. shot 108, P2, at 2.2 ms.

transducer location (m)
number shot 1–54 shot 55–61 shot 62–228

P1 0.400 0.400 0.400
P2 0.800 0.800 0.800
P3 1.200 1.200 1.200
P4 1.540 1.510 1.500
P5 1.754 1.724 1.714
P6 2.015 1.975 1.965

Table K.1: Position of the pressure transducers with respect to the spark-plug. Since
the test section location was varied with respect to the detonation tube the location
of pressure transducers P4, P5 and P6 depends on the shot number.
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Figure K.1: Shot 1, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 0.985, U(P2-P3)/UCJ = 0.980.
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Figure K.2: Shot 2, 0.267 H2 + 0.133 O2 + 0.6 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.000, U(P2-P3)/UCJ = 0.991.
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Figure K.3: Shot 3, 0.233 H2 + 0.117 O2 + 0.65 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 0.996, U(P2-P3)/UCJ = 0.988.
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Figure K.4: Shot 4, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. U(P1-P2)/UCJ

= 0.992, U(P2-P3)/UCJ = 0.984.
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Figure K.5: Shot 5, 0.167 H2 + 0.083 O2 + 0.75 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 0.411, U(P2-P3)/UCJ = 0.347.
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Figure K.6: Shot 6, 0.187 H2 + 0.093 O2 + 0.72 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.987.
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Figure K.7: Shot 7, 0.173 H2 + 0.087 O2 + 0.74 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.007, U(P2-P3)/UCJ = 0.991.
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Figure K.8: Shot 8, 0.16 H2 + 0.08 O2 + 0.76 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 0.429, U(P2-P3)/UCJ = 0.352.
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Figure K.9: Shot 9, 0.333 CH4 + 0.667 O2, P0=100 kPa, T0=295 K. U(P1-P2)/UCJ

= 1.001, U(P2-P3)/UCJ = 1.013.
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Figure K.10: Shot 10, 0.333 CH4 + 0.667 O2, P0=50 kPa, T0=294 K. U(P1-P2)/UCJ

= 1.008, U(P2-P3)/UCJ = 1.168.
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Figure K.11: Shot 11, 0.333 CH4 + 0.667 O2, P0=50 kPa, T0=295 K. U(P1-P2)/UCJ

= 0.743, U(P2-P3)/UCJ = 0.001.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2

P
re

ss
ur

e 
[M

P
a]

time [ms]

P1
P2
P3
P4
P5
P6

Figure K.12: Shot 12, 0.333 CH4 + 0.667 O2, P0=60 kPa, T0=295 K. U(P1-P2)/UCJ

= 1.005, U(P2-P3)/UCJ = 0.987.
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Figure K.13: Shot 13, 0.333 CH4 + 0.667 O2, P0=50 kPa, T0=295 K. U(P1-P2)/UCJ

= 1.002, U(P2-P3)/UCJ = 0.991.
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Figure K.14: Shot 14, 0.5 H2 + 0.25 O2 + 0.25 N2, P0=100 kPa, T0=296 K. U(P1-
P2)/UCJ = 0.993, U(P2-P3)/UCJ = 0.981.
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Figure K.15: Shot 15, 0.5 H2 + 0.25 O2 + 0.25 N2, P0=100 kPa, T0=296 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.993.
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Figure K.16: Shot 16, 0.182 H2 + 0.091 O2 + 0.727 Ar, P0=100 kPa, T0=297 K.
U(P1-P2)/UCJ = 0.988, U(P2-P3)/UCJ = 0.973.
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Figure K.17: Shot 17, 0.187 H2 + 0.093 O2 + 0.72 Ar, P0=100 kPa, T0=297 K.
U(P1-P2)/UCJ = 1.085, U(P2-P3)/UCJ = 1.070.
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Figure K.18: Shot 18, 0.187 H2 + 0.093 O2 + 0.72 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.008, U(P2-P3)/UCJ = 0.991.
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Figure K.19: Shot 19, 0.187 H2 + 0.093 O2 + 0.72 Ar, P0=100 kPa, T0=297 K.
U(P1-P2)/UCJ = 0.999, U(P2-P3)/UCJ = 0.995.
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Figure K.20: Shot 20, 0.187 H2 + 0.093 O2 + 0.72 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.991.
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Figure K.21: Shot 21, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=297 K. U(P1-
P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.992.
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Figure K.22: Shot 22, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.992.
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Figure K.23: Shot 23, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.988.
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Figure K.24: Shot 24, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.992.
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Figure K.25: Shot 25, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.001, U(P2-P3)/UCJ = 0.992.
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Figure K.26: Shot 26, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.988.
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Figure K.27: Shot 27, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.001, U(P2-P3)/UCJ = 0.992.
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Figure K.28: Shot 28, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.992.
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Figure K.29: Shot 29, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 0.999, U(P2-P3)/UCJ = 0.991.
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Figure K.30: Shot 30, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.008, U(P2-P3)/UCJ = 0.991.
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Figure K.31: Shot 31, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 0.999, U(P2-P3)/UCJ = 0.991.
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Figure K.32: Shot 32, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.991.
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Figure K.33: Shot 33, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 0.999, U(P2-P3)/UCJ = 0.991.
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Figure K.34: Shot 34, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=297 K.
U(P1-P2)/UCJ = 0.999, U(P2-P3)/UCJ = 0.991.
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Figure K.35: Shot 35, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=294 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.990.
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Figure K.36: Shot 36, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=294 K.
U(P1-P2)/UCJ = 0.998, U(P2-P3)/UCJ = 0.990.
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Figure K.37: Shot 37, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 0.998, U(P2-P3)/UCJ = 0.990.
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Figure K.38: Shot 38, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.990.
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Figure K.39: Shot 39, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.990.
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Figure K.40: Shot 40, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.990.
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Figure K.41: Shot 41, 0.233 H2 + 0.117 O2 + 0.65 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.988.
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Figure K.42: Shot 42, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.990.
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Figure K.43: Shot 43, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.990.
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Figure K.44: Shot 44, 0.233 H2 + 0.117 O2 + 0.65 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.001, U(P2-P3)/UCJ = 0.992.
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Figure K.45: Shot 45, 0.23 H2 + 0.115 O2 + 0.655 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.004, U(P2-P3)/UCJ = 0.991.
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Figure K.46: Shot 46, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=293 K.
U(P1-P2)/UCJ = 1.007, U(P2-P3)/UCJ = 0.002.
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Figure K.47: Shot 47, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=294 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.990.
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Figure K.48: Shot 48, 0.54 H2 + 0.27 O2 + 0.19 N2, P0=100 kPa, T0=294 K. U(P1-
P2)/UCJ = 1.004, U(P2-P3)/UCJ = 0.998.
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Figure K.49: Shot 49, 0.54 H2 + 0.27 O2 + 0.19 N2, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.010, U(P2-P3)/UCJ = 0.998.
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Figure K.50: Shot 50, 0.527 H2 + 0.263 O2 + 0.21 N2, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 0.992, U(P2-P3)/UCJ = 0.992.
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Figure K.51: Shot 51, 0.527 H2 + 0.263 O2 + 0.21 N2, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 1.011, U(P2-P3)/UCJ = 0.998.
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Figure K.52: Shot 52, 0.52 H2 + 0.26 O2 + 0.22 N2, P0=100 kPa, T0=296 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.998.
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Figure K.53: Shot 53, 0.52 H2 + 0.26 O2 + 0.22 N2, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.011, U(P2-P3)/UCJ = 0.998.
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Figure K.54: Shot 54, 0.507 H2 + 0.253 O2 + 0.24 N2, P0=100 kPa, T0=297 K.
U(P1-P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.999.
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Figure K.55: Shot 55, 0.507 H2 + 0.253 O2 + 0.24 N2, P0=100 kPa, T0=294 K.
U(P1-P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.999.
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Figure K.56: Shot 56, 0.507 H2 + 0.253 O2 + 0.24 N2, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.999.
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Figure K.57: Shot 57, 0.507 H2 + 0.253 O2 + 0.24 N2, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.999.



274

 0

 1

 2

 3

 4

 5

 6

 7

 0.6  0.8  1  1.2  1.4  1.6  1.8

P
re

ss
ur

e 
[M

P
a]

time [ms]

P1

P2

P3

P4

P5

P6

Figure K.58: Shot 58, 0.52 H2 + 0.26 O2 + 0.22 N2, P0=100 kPa, T0=296 K. U(P1-
P2)/UCJ = 1.011, U(P2-P3)/UCJ = 0.998.
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Figure K.59: Shot 59, 0.5 H2 + 0.5 N2O, P0=70 kPa, T0=296 K. U(P1-P2)/UCJ =
0.990, U(P2-P3)/UCJ = 0.990.
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Figure K.60: Shot 60, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. U(P1-P2)/UCJ =
0.994, U(P2-P3)/UCJ = 0.994.
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Figure K.61: Shot 61, 0.5 H2 + 0.5 N2O, P0=55 kPa, T0=296 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.988.
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Figure K.62: Shot 62, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=294 K. U(P1-
P2)/UCJ = 1.001, U(P2-P3)/UCJ = 0.984.
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Figure K.63: Shot 63, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=294 K. U(P1-
P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.992.



276

 0

 1

 2

 3

 4

 5

 6

 3.5  4  4.5  5  5.5

P
re

ss
ur

e 
[M

P
a]

time [ms]

P1

P2

P3

P4

P5

P6

Figure K.64: Shot 64, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=294 K. U(P1-
P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.992.
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Figure K.65: Shot 65, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.992.
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Figure K.66: Shot 66, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=294 K. U(P1-
P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.992.
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Figure K.67: Shot 67, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.992.
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Figure K.68: Shot 68, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.992.
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Figure K.69: Shot 69, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.997.



278

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 3.5  4  4.5  5  5.5

P
re

ss
ur

e 
[M

P
a]

time [ms]

P1
P2
P3
P4
P5
P6

Figure K.70: Shot 70, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=296 K. U(P1-
P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.992.
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Figure K.71: Shot 71, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=296 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.992.
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Figure K.72: Shot 72, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=296 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.992.
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Figure K.73: Shot 73, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=296 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.992.
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Figure K.74: Shot 74, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=296 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.992.
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Figure K.75: Shot 75, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=294 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.980.
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Figure K.76: Shot 76, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.986.

 0

 1

 2

 3

 4

 5

 6

 7

 0.8  1  1.2  1.4  1.6  1.8  2

P
re

ss
ur

e 
[M

P
a]

time [ms]

P1

P2

P3

P4

P5

P6

Figure K.77: Shot 77, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.986.
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Figure K.78: Shot 78, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.988.
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Figure K.79: Shot 79, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K. U(P1-P2)/UCJ =
0.994, U(P2-P3)/UCJ = 0.982.
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Figure K.80: Shot 80, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.988.
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Figure K.81: Shot 81, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.982.
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Figure K.82: Shot 82, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.982.
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Figure K.83: Shot 83, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.988.
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Figure K.84: Shot 84, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. U(P1-P2)/UCJ =
0.994, U(P2-P3)/UCJ = 0.988.
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Figure K.85: Shot 85, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.982.
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Figure K.86: Shot 86, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. U(P1-P2)/UCJ =
0.994, U(P2-P3)/UCJ = 0.988.
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Figure K.87: Shot 87, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. U(P1-P2)/UCJ =
0.994, U(P2-P3)/UCJ = 0.988.
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Figure K.88: Shot 88, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.988.
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Figure K.89: Shot 89, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.988.
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Figure K.90: Shot 90, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=294 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.982.
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Figure K.91: Shot 91, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=294 K. U(P1-P2)/UCJ =
0.994, U(P2-P3)/UCJ = 0.988.
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Figure K.92: Shot 92, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=294 K. U(P1-P2)/UCJ =
0.994, U(P2-P3)/UCJ = 0.988.
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Figure K.93: Shot 93, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=294 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.982.
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Figure K.94: Shot 94, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.982.
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Figure K.95: Shot 95, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.982.
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Figure K.96: Shot 96, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.982.
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Figure K.97: Shot 97, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.982.
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Figure K.98: Shot 98, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, T0=295 K. U(P1-P2)/UCJ =
0.999, U(P2-P3)/UCJ = 0.987.
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Figure K.99: Shot 99, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, T0=295 K. U(P1-P2)/UCJ =
0.999, U(P2-P3)/UCJ = 0.987.
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Figure K.100: Shot 100, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.986.
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Figure K.101: Shot 101, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.986.
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Figure K.102: Shot 102, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=296 K. U(P1-P2)/UCJ =
0.992, U(P2-P3)/UCJ = 0.986.
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Figure K.103: Shot 103, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K. U(P1-P2)/UCJ

= 0.997, U(P2-P3)/UCJ = 0.985.
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Figure K.104: Shot 104, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K. U(P1-P2)/UCJ

= 0.997, U(P2-P3)/UCJ = 0.985.
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Figure K.105: Shot 105, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K. U(P1-P2)/UCJ

= 0.997, U(P2-P3)/UCJ = 0.985.
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Figure K.106: Shot 106, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=294 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.986.
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Figure K.107: Shot 107, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=294 K. U(P1-P2)/UCJ =
0.992, U(P2-P3)/UCJ = 0.986.
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Figure K.108: Shot 108, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.986.
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Figure K.109: Shot 109, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.986.
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Figure K.110: Shot 110, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.992.
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Figure K.111: Shot 111, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.986.



292

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4

P
re

ss
ur

e 
[M

P
a]

time [ms]

P1
P2
P3
P4
P5
P6

Figure K.112: Shot 112, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K. U(P1-P2)/UCJ

= 0.997, U(P2-P3)/UCJ = 0.991.
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Figure K.113: Shot 113, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K. U(P1-P2)/UCJ

= 0.997, U(P2-P3)/UCJ = 0.991.
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Figure K.114: Shot 114, 0.5 H2 + 0.5 N2O, P0=50 kPa, T0=296 K. U(P1-P2)/UCJ =
0.996, U(P2-P3)/UCJ = 0.984.
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Figure K.115: Shot 115, 0.5 H2 + 0.5 N2O, P0=50 kPa, T0=296 K. U(P1-P2)/UCJ =
0.996, U(P2-P3)/UCJ = 0.990.
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Figure K.116: Shot 116, 0.5 H2 + 0.5 N2O, P0=55 kPa, T0=296 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.988.
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Figure K.117: Shot 117, 0.5 H2 + 0.5 N2O, P0=55 kPa, T0=296 K. U(P1-P2)/UCJ =
0.994, U(P2-P3)/UCJ = 0.988.
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Figure K.118: Shot 118, 0.5 H2 + 0.5 N2O, P0=60 kPa, T0=296 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.992.
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Figure K.119: Shot 119, 0.5 H2 + 0.5 N2O, P0=60 kPa, T0=296 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.992.
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Figure K.120: Shot 120, 0.5 H2 + 0.5 N2O, P0=65 kPa, T0=297 K. U(P1-P2)/UCJ =
0.997, U(P2-P3)/UCJ = 0.991.
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Figure K.121: Shot 121, 0.5 H2 + 0.5 N2O, P0=65 kPa, T0=297 K. U(P1-P2)/UCJ =
0.997, U(P2-P3)/UCJ = 0.991.
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Figure K.122: Shot 122, 0.5 H2 + 0.5 N2O, P0=65 kPa, T0=297 K. U(P1-P2)/UCJ =
0.997, U(P2-P3)/UCJ = 0.991.
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Figure K.123: Shot 123, 0.5 H2 + 0.5 N2O, P0=70 kPa, T0=297 K. U(P1-P2)/UCJ =
0.995, U(P2-P3)/UCJ = 0.990.
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Figure K.124: Shot 124, 0.5 H2 + 0.5 N2O, P0=70 kPa, T0=297 K. U(P1-P2)/UCJ =
0.995, U(P2-P3)/UCJ = 0.990.
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Figure K.125: Shot 125, 0.5 H2 + 0.5 N2O, P0=80 kPa, T0=297 K. U(P1-P2)/UCJ =
0.999, U(P2-P3)/UCJ = 0.987.
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Figure K.126: Shot 126, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=294 K. U(P1-
P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.992.
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Figure K.127: Shot 128, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.997.
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Figure K.128: Shot 129, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.992.
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Figure K.129: Shot 130, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 1.008, U(P2-P3)/UCJ = 0.991.
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Figure K.130: Shot 131, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.008, U(P2-P3)/UCJ = 0.995.
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Figure K.131: Shot 132, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.008, U(P2-P3)/UCJ = 0.991.
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Figure K.132: Shot 133, 0.217 H2 + 0.108 O2 + 0.675 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.991.
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Figure K.133: Shot 134, 0.217 H2 + 0.108 O2 + 0.675 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.004, U(P2-P3)/UCJ = 0.996.
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Figure K.134: Shot 135, 0.217 H2 + 0.108 O2 + 0.675 Ar, P0=100 kPa, T0=294 K.
U(P1-P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.991.
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Figure K.135: Shot 136, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 1.010, U(P2-P3)/UCJ = 0.988.
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Figure K.136: Shot 137, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 1.010, U(P2-P3)/UCJ = 0.992.
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Figure K.137: Shot 138, 0.223 H2 + 0.112 O2 + 0.665 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.006, U(P2-P3)/UCJ = 0.993.
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Figure K.138: Shot 139, 0.223 H2 + 0.112 O2 + 0.665 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.006, U(P2-P3)/UCJ = 0.989.
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Figure K.139: Shot 140, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.007, U(P2-P3)/UCJ = 0.994.
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Figure K.140: Shot 141, 0.233 H2 + 0.117 O2 + 0.65 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.009, U(P2-P3)/UCJ = 0.992.
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Figure K.141: Shot 142, 0.24 H2 + 0.12 O2 + 0.64 Ar, P0=100 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.007, U(P2-P3)/UCJ = 0.990.
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Figure K.142: Shot 143, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=296 K. U(P1-P2)/UCJ =
1.004, U(P2-P3)/UCJ = 0.986.
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Figure K.143: Shot 144, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.982.
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Figure K.144: Shot 145, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, T0=296 K. U(P1-P2)/UCJ

= 0.999, U(P2-P3)/UCJ = 0.993.
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Figure K.145: Shot 146, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=297 K. U(P1-P2)/UCJ

= 0.997, U(P2-P3)/UCJ = 0.991.
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Figure K.146: Shot 147, 0.5 H2 + 0.5 N2O, P0=50 kPa, T0=297 K. U(P1-P2)/UCJ =
1.002, U(P2-P3)/UCJ = 0.984.
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Figure K.147: Shot 148, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 1.010, U(P2-P3)/UCJ = 0.992.
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Figure K.148: Shot 149, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 1.010, U(P2-P3)/UCJ = 0.992.
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Figure K.149: Shot 150, 0.223 H2 + 0.112 O2 + 0.665 Ar, P0=100 kPa, T0=295 K.
U(P1-P2)/UCJ = 1.006, U(P2-P3)/UCJ = 0.993.
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Figure K.150: Shot 151, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K. U(P1-P2)/UCJ =
1.000, U(P2-P3)/UCJ = 0.988.
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Figure K.151: Shot 152, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, T0=295 K. U(P1-P2)/UCJ

= 0.999, U(P2-P3)/UCJ = 0.987.
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Figure K.152: Shot 153, 0.5 H2 + 0.5 N2O, P0=43.75 kPa, T0=296 K. U(P1-P2)/UCJ

= 0.998, U(P2-P3)/UCJ = 0.987.

 0

 1

 2

 3

 4

 5

 6

 7

 1.6  1.8  2  2.2  2.4  2.6  2.8

P
re

ss
ur

e 
[M

P
a]

time [ms]

P1

P2

P3

P4

P5

P6

Figure K.153: Shot 154, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=55 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.001, U(P2-P3)/UCJ = 0.992.
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Figure K.154: Shot 155, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=45 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.000, U(P2-P3)/UCJ = 0.986.
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Figure K.155: Shot 156, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=45 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.000, U(P2-P3)/UCJ = 0.991.
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Figure K.156: Shot 157, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=47.5 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.004, U(P2-P3)/UCJ = 0.990.
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Figure K.157: Shot 158, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=50 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.989.
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Figure K.158: Shot 159, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=50 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.989.
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Figure K.159: Shot 160, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=50 kPa, T0=295 K.
U(P1-P2)/UCJ = 0.998, U(P2-P3)/UCJ = 0.994.
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Figure K.160: Shot 161, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=52.5 kPa, T0=295 K.
U(P1-P2)/UCJ = 1.002, U(P2-P3)/UCJ = 0.993.
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Figure K.161: Shot 162, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=53.75 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.002, U(P2-P3)/UCJ = 0.992.

 0

 1

 2

 3

 4

 5

 6

 1.6  1.8  2  2.2  2.4  2.6  2.8  3  3.2

P
re

ss
ur

e 
[M

P
a]

time [ms]

P1

P2

P3

P4

P5

P6

Figure K.162: Shot 163, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=55 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.006, U(P2-P3)/UCJ = 0.992.
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Figure K.163: Shot 164, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=55 kPa, T0=296 K.
U(P1-P2)/UCJ = 0.996, U(P2-P3)/UCJ = 0.987.
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Figure K.164: Shot 165, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=57.5 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.000, U(P2-P3)/UCJ = 0.995.
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Figure K.165: Shot 166, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=57.5 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.991.
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Figure K.166: Shot 167, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=60 kPa, T0=297 K.
U(P1-P2)/UCJ = 0.999, U(P2-P3)/UCJ = 0.995.
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Figure K.167: Shot 168, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=62.5 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.989.
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Figure K.168: Shot 169, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=65 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.993.
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Figure K.169: Shot 170, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=70 kPa, T0=296 K.
U(P1-P2)/UCJ = 1.001, U(P2-P3)/UCJ = 0.992.
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Figure K.170: Shot 171, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=297 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.992.
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Figure K.171: Shot 172, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=297 K. U(P1-P2)/UCJ

= 1.085, U(P2-P3)/UCJ = 0.956.
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Figure K.172: Shot 173, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=297 K. U(P1-P2)/UCJ

= 0.997, U(P2-P3)/UCJ = 0.985.
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Figure K.173: Shot 174, 0.5 H2 + 0.5 N2O, P0=46.25 kPa, T0=297 K. U(P1-P2)/UCJ

= 0.997, U(P2-P3)/UCJ = 0.986.
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Figure K.174: Shot 175, 0.222 C2H6 + 0.778 O2, P0=30 kPa, T0=297 K. U(P1-
P2)/UCJ = 0.998, U(P2-P3)/UCJ = 0.986.
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Figure K.175: Shot 176, 0.222 C2H6 + 0.778 O2, P0=32.5 kPa, T0=297 K. U(P1-
P2)/UCJ = 0.996, U(P2-P3)/UCJ = 0.985.
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Figure K.176: Shot 177, 0.222 C2H6 + 0.778 O2, P0=35 kPa, T0=297 K. U(P1-
P2)/UCJ = 0.989, U(P2-P3)/UCJ = 0.978.
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Figure K.177: Shot 178, 0.222 C2H6 + 0.778 O2, P0=40 kPa, T0=297 K. U(P1-
P2)/UCJ = 1.004, U(P2-P3)/UCJ = 0.992.
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Figure K.178: Shot 179, 0.222 C2H6 + 0.778 O2, P0=37.5 kPa, T0=298 K. U(P1-
P2)/UCJ = 0.999, U(P2-P3)/UCJ = 0.988.
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Figure K.179: Shot 180, 0.222 C2H6 + 0.778 O2, P0=37.5 kPa, T0=297 K. U(P1-
P2)/UCJ = 0.999, U(P2-P3)/UCJ = 0.993.
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Figure K.180: Shot 181, 0.222 C2H6 + 0.778 O2, P0=36.25 kPa, T0=297 K. U(P1-
P2)/UCJ = 1.006, U(P2-P3)/UCJ = 0.994.
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Figure K.181: Shot 182, 0.222 C2H6 + 0.778 O2, P0=36.25 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.006, U(P2-P3)/UCJ = 0.988.
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Figure K.182: Shot 183, 0.222 C2H6 + 0.778 O2, P0=37.5 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.993.
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Figure K.183: Shot 184, 0.222 C2H6 + 0.778 O2, P0=38.25 kPa, T0=298 K. U(P1-
P2)/UCJ = 0.999, U(P2-P3)/UCJ = 0.999.
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Figure K.184: Shot 185, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.997.
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Figure K.185: Shot 186, 0.222 C2H6 + 0.778 O2, P0=45 kPa, T0=299 K. U(P1-
P2)/UCJ = 1.002, U(P2-P3)/UCJ = 0.996.
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Figure K.186: Shot 187, 0.333 CH4 + 0.667 O2, P0=50 kPa, T0=294 K. U(P1-P2)/UCJ

= 1.008, U(P2-P3)/UCJ = 0.991.
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Figure K.187: Shot 188, 0.333 CH4 + 0.667 O2, P0=55 kPa, T0=295 K. U(P1-P2)/UCJ

= 1.000, U(P2-P3)/UCJ = 0.995.
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Figure K.188: Shot 189, 0.333 CH4 + 0.667 O2, P0=60 kPa, T0=296 K. U(P1-P2)/UCJ

= 0.999, U(P2-P3)/UCJ = 0.987.
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Figure K.189: Shot 190, 0.333 CH4 + 0.667 O2, P0=65 kPa, T0=296 K. U(P1-P2)/UCJ

= 1.003, U(P2-P3)/UCJ = 0.991.
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Figure K.190: Shot 191, 0.333 CH4 + 0.667 O2, P0=70 kPa, T0=297 K. U(P1-P2)/UCJ

= 0.996, U(P2-P3)/UCJ = 1.026.
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Figure K.191: Shot 192, 0.333 CH4 + 0.667 O2, P0=80 kPa, T0=298 K. U(P1-P2)/UCJ

= 0.999, U(P2-P3)/UCJ = 0.976.
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Figure K.192: Shot 193, 0.333 CH4 + 0.667 O2, P0=90 kPa, T0=298 K. U(P1-P2)/UCJ

= 1.003, U(P2-P3)/UCJ = 0.974.
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Figure K.193: Shot 194, 0.333 CH4 + 0.667 O2, P0=100 kPa, T0=299 K. U(P1-
P2)/UCJ = 1.001, U(P2-P3)/UCJ = 0.995.
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Figure K.194: Shot 195, 0.333 CH4 + 0.667 O2, P0=120 kPa, T0=299 K. U(P1-
P2)/UCJ = 1.004, U(P2-P3)/UCJ = 0.992.
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Figure K.195: Shot 196, 0.333 CH4 + 0.667 O2, P0=110 kPa, T0=299 K. U(P1-
P2)/UCJ = 0.999, U(P2-P3)/UCJ = 0.993.
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Figure K.196: Shot 197, 0.333 CH4 + 0.667 O2, P0=115 kPa, T0=300 K. U(P1-
P2)/UCJ = 0.998, U(P2-P3)/UCJ = 0.964.
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Figure K.197: Shot 198, 0.333 CH4 + 0.667 O2, P0=120 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.157, U(P2-P3)/UCJ = 0.872.
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Figure K.198: Shot 199, 0.333 CH4 + 0.667 O2, P0=125 kPa, T0=301 K. U(P1-
P2)/UCJ = 1.074, U(P2-P3)/UCJ = 0.930.
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Figure K.199: Shot 200, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=293 K.
U(P1-P2)/UCJ = 1.010, U(P2-P3)/UCJ = 0.992.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 2.8  3  3.2  3.4  3.6  3.8  4  4.2

P
re

ss
ur

e 
[M

P
a]

time [ms]

P1
P2
P3
P4
P5
P6

Figure K.200: Shot 201, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=294 K.
U(P1-P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.992.
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Figure K.201: Shot 202, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=294 K.
U(P1-P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.992.
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Figure K.202: Shot 203, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=294 K.
U(P1-P2)/UCJ = 1.005, U(P2-P3)/UCJ = 0.992.

 0

 1

 2

 3

 4

 5

 6

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6

P
re

ss
ur

e 
[M

P
a]

time [ms]

P1

P2

P3

P4

P5

P6

Figure K.203: Shot 204, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=295 K. U(P1-P2)/UCJ

= 1.021, U(P2-P3)/UCJ = 1.003.
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Figure K.204: Shot 205, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=295 K. U(P1-P2)/UCJ

= 0.997, U(P2-P3)/UCJ = 0.985.
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Figure K.205: Shot 206, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. U(P1-P2)/UCJ =
0.998, U(P2-P3)/UCJ = 0.992.
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Figure K.206: Shot 207, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K. U(P1-P2)/UCJ

= 0.997, U(P2-P3)/UCJ = 0.991.
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Figure K.207: Shot 208, 0.222 C2H6 + 0.778 O2, P0=40 kPa, T0=295 K. U(P1-
P2)/UCJ = 0.998, U(P2-P3)/UCJ = 0.981.
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Figure K.208: Shot 209, 0.222 C2H6 + 0.778 O2, P0=40 kPa, T0=296 K. U(P1-
P2)/UCJ = 1.004, U(P2-P3)/UCJ = 0.992.
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Figure K.209: Shot 210, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=296 K. U(P1-
P2)/UCJ = 0.997, U(P2-P3)/UCJ = 0.985.
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Figure K.210: Shot 211, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. U(P1-
P2)/UCJ = 1.008, U(P2-P3)/UCJ = 0.997.
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Figure K.211: Shot 212, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. U(P1-
P2)/UCJ = 1.008, U(P2-P3)/UCJ = 0.991.
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Figure K.212: Shot 213, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.997.
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Figure K.213: Shot 214, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.008, U(P2-P3)/UCJ = 0.991.
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Figure K.214: Shot 215, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=294 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.997.
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Figure K.215: Shot 216, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.997.
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Figure K.216: Shot 217, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=295 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.991.



327

 0

 1

 2

 3

 4

 5

 6

 7

 0.6  0.8  1  1.2  1.4  1.6  1.8

P
re

ss
ur

e 
[M

P
a]

time [ms]

P1

P2

P3

P4

P5

P6

Figure K.217: Shot 218, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=296 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.997.
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Figure K.218: Shot 219, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=296 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.997.
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Figure K.219: Shot 220, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.997.
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Figure K.220: Shot 221, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.997.
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Figure K.221: Shot 222, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.997.
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Figure K.222: Shot 223, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.008, U(P2-P3)/UCJ = 0.991.



329

 0

 1

 2

 3

 4

 5

 6

 7

 0.6  0.8  1  1.2  1.4  1.6  1.8

P
re

ss
ur

e 
[M

P
a]

time [ms]

P1

P2

P3

P4

P5

P6

Figure K.223: Shot 224, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.997.
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Figure K.224: Shot 225, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. U(P1-
P2)/UCJ = 1.008, U(P2-P3)/UCJ = 0.991.
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Figure K.225: Shot 226, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.997.
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Figure K.226: Shot 227, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.997.
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Figure K.227: Shot 228, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. U(P1-
P2)/UCJ = 1.003, U(P2-P3)/UCJ = 0.991.
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Figure K.228: Shot 229, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. U(P1-
P2)/UCJ = 0.000, U(P2-P3)/UCJ = 0.000.
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Appendix L

Multiple Exposure Image Analysis
from Detonation Diffraction
Experiments

The x -t diagrams and velocity profiles of the fluorescence front on the centerline

are shown. They are obtained from the multiple exposure images as described in

Chapter 5. The x-t diagram is shown for each shot on the left and the corresponding

velocity profile on the right.
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Figure L.1: Velocity profile. Shot 93, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=294 K.
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Figure L.2: Velocity profile. Shot 94, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K.

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35

tim
e 

(µ
s)

Distance from tube exit plane (mm)

 2150

 2200

 2250

 2300

 2350

 2400

 2450

 2500

 2  4  6  8  10  12  14  16  18

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

fro
nt

 v
el

oc
ity

, U
ch

em
 fr

on
t (

m
/s

)

 U
ch

em
 fr

on
t/U

C
J

Distance from tube exit plane (mm)

Figure L.3: Velocity profile. Shot 96, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K.
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Figure L.4: Velocity profile. Shot 97, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K.
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Figure L.5: Velocity profile. Shot 98, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, T0=295 K.
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Figure L.6: Velocity profile. Shot 99, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, T0=295 K.
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Figure L.7: Velocity profile. Shot 101, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K.
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Figure L.8: Velocity profile. Shot 102, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=296 K.
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Figure L.9: Velocity profile. Shot 103, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K.
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Figure L.10: Velocity profile. Shot 104, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K.
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Figure L.11: Velocity profile. Shot 105, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K.
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Figure L.12: Velocity profile. Shot 106, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=294 K.
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Figure L.13: Velocity profile. Shot 107, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=294 K.
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Figure L.14: Velocity profile. Shot 109, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K.

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30  35  40  45  50

tim
e 

(µ
s)

Distance from tube exit plane (mm)

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0  5  10  15  20  25  30  35  40  45

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

fro
nt

 v
el

oc
ity

, U
ch

em
 fr

on
t (

m
/s

)

 U
ch

em
 fr

on
t/U

C
J

Distance from tube exit plane (mm)

Figure L.15: Velocity profile. Shot 110, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K.
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Figure L.16: Velocity profile. Shot 111, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K.
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Figure L.17: Velocity profile. Shot 112, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K.
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Figure L.18: Velocity profile. Shot 113, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K.
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Figure L.19: Velocity profile. Shot 114, 0.5 H2 + 0.5 N2O, P0=50 kPa, T0=296 K.
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Figure L.20: Velocity profile. Shot 115, 0.5 H2 + 0.5 N2O, P0=50 kPa, T0=296 K.
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Figure L.21: Velocity profile. Shot 116, 0.5 H2 + 0.5 N2O, P0=55 kPa, T0=296 K.
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Figure L.22: Velocity profile. Shot 117, 0.5 H2 + 0.5 N2O, P0=55 kPa, T0=296 K.
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Figure L.23: Velocity profile. Shot 118, 0.5 H2 + 0.5 N2O, P0=60 kPa, T0=296 K.
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Figure L.24: Velocity profile. Shot 119, 0.5 H2 + 0.5 N2O, P0=60 kPa, T0=296 K.
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Figure L.25: Velocity profile. Shot 121, 0.5 H2 + 0.5 N2O, P0=65 kPa, T0=297 K.
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Figure L.26: Velocity profile. Shot 122, 0.5 H2 + 0.5 N2O, P0=65 kPa, T0=297 K.
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Figure L.27: Velocity profile. Shot 123, 0.5 H2 + 0.5 N2O, P0=70 kPa, T0=297 K.
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Figure L.28: Velocity profile. Shot 124, 0.5 H2 + 0.5 N2O, P0=70 kPa, T0=297 K.
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Figure L.29: Velocity profile. Shot 125, 0.5 H2 + 0.5 N2O, P0=80 kPa, T0=297 K.
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Figure L.30: Velocity profile. Shot 128, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa,
T0=295 K.
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Figure L.31: Velocity profile. Shot 129, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa,
T0=295 K.
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Figure L.32: Velocity profile. Shot 130, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa,
T0=295 K.
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Figure L.33: Velocity profile. Shot 131, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa,
T0=296 K.
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Figure L.34: Velocity profile. Shot 132, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa,
T0=296 K.
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Figure L.35: Velocity profile. Shot 133, 0.217 H2 + 0.108 O2 + 0.675 Ar, P0=100 kPa,
T0=296 K.
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Figure L.36: Velocity profile. Shot 134, 0.217 H2 + 0.108 O2 + 0.675 Ar, P0=100 kPa,
T0=296 K.
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Figure L.37: Velocity profile. Shot 135, 0.217 H2 + 0.108 O2 + 0.675 Ar, P0=100 kPa,
T0=294 K.
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Figure L.38: Velocity profile. Shot 136, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa,
T0=295 K.
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Figure L.39: Velocity profile. Shot 137, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa,
T0=295 K.
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Figure L.40: Velocity profile. Shot 138, 0.223 H2 + 0.112 O2 + 0.665 Ar, P0=100 kPa,
T0=296 K.
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Figure L.41: Velocity profile. Shot 139, 0.223 H2 + 0.112 O2 + 0.665 Ar, P0=100 kPa,
T0=296 K.
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Figure L.42: Velocity profile. Shot 140, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa,
T0=296 K.
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Figure L.43: Velocity profile. Shot 141, 0.233 H2 + 0.117 O2 + 0.65 Ar, P0=100 kPa,
T0=296 K.
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Figure L.44: Velocity profile. Shot 142, 0.24 H2 + 0.12 O2 + 0.64 Ar, P0=100 kPa,
T0=296 K.
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Figure L.45: Velocity profile. Shot 143, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=296 K.
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Figure L.46: Velocity profile. Shot 144, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K.
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Figure L.47: Velocity profile. Shot 145, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, T0=296 K.
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Figure L.48: Velocity profile. Shot 146, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=297 K.



348

 0

 5

 10

 15

 20

 25

 0  10  20  30  40  50  60

tim
e 

(µ
s)

Distance from tube exit plane (mm)

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 5  10  15  20  25  30  35  40  45  50  55

 0.6

 0.7

 0.8

 0.9

 1

 1.1

fro
nt

 v
el

oc
ity

, U
ch

em
 fr

on
t (

m
/s

)

 U
ch

em
 fr

on
t/U

C
J

Distance from tube exit plane (mm)

Figure L.49: Velocity profile. Shot 147, 0.5 H2 + 0.5 N2O, P0=50 kPa, T0=297 K.
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Figure L.50: Velocity profile. Shot 148, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa,
T0=295 K.
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Figure L.51: Velocity profile. Shot 149, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa,
T0=295 K.
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Figure L.52: Velocity profile. Shot 150, 0.223 H2 + 0.112 O2 + 0.665 Ar, P0=100 kPa,
T0=295 K.
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Figure L.53: Velocity profile. Shot 151, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K.
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Figure L.54: Velocity profile. Shot 152, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, T0=295 K.
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Figure L.55: Velocity profile. Shot 154, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=55 kPa,
T0=296 K.

 0

 5

 10

 15

 20

 25

 30

 5  10  15  20  25  30  35  40  45  50  55

tim
e 

(µ
s)

Distance from tube exit plane (mm)

 1000

 1200

 1400

 1600

 1800

 2000

 5  10  15  20  25  30  35  40  45  50

 0.6

 0.7

 0.8

 0.9

 1

fro
nt

 v
el

oc
ity

, U
ch

em
 fr

on
t (

m
/s

)

 U
ch

em
 fr

on
t/U

C
J

Distance from tube exit plane (mm)

Figure L.56: Velocity profile. Shot 156, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=45 kPa,
T0=296 K.
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Figure L.57: Velocity profile. Shot 157, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=47.5 kPa,
T0=296 K.
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Figure L.58: Velocity profile. Shot 158, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=50 kPa,
T0=296 K.
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Figure L.59: Velocity profile. Shot 160, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=50 kPa,
T0=295 K.
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Figure L.60: Velocity profile. Shot 161, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=52.5 kPa,
T0=295 K.
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Figure L.61: Velocity profile. Shot 162, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=53.75 kPa,
T0=296 K.
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Figure L.62: Velocity profile. Shot 163, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=55 kPa,
T0=296 K.
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Figure L.63: Velocity profile. Shot 164, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=55 kPa,
T0=296 K.
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Figure L.64: Velocity profile. Shot 165, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=57.5 kPa,
T0=296 K.
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Figure L.65: Velocity profile. Shot 166, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=57.5 kPa,
T0=296 K.
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Figure L.66: Velocity profile. Shot 167, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=60 kPa,
T0=297 K.
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Figure L.67: Velocity profile. Shot 168, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=62.5 kPa,
T0=296 K.
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Figure L.68: Velocity profile. Shot 169, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=65 kPa,
T0=296 K.
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Figure L.69: Velocity profile. Shot 170, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=70 kPa,
T0=296 K.
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Figure L.70: Velocity profile. Shot 171, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=297 K.
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Figure L.71: Velocity profile. Shot 172, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=297 K.
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Figure L.72: Velocity profile. Shot 173, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=297 K.
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Figure L.73: Velocity profile. Shot 174, 0.5 H2 + 0.5 N2O, P0=46.25 kPa, T0=297 K.
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Figure L.74: Velocity profile. Shot 175, 0.222 C2H6 + 0.778 O2, P0=30 kPa,
T0=297 K.
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Figure L.75: Velocity profile. Shot 176, 0.222 C2H6 + 0.778 O2, P0=32.5 kPa,
T0=297 K.
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Figure L.76: Velocity profile. Shot 177, 0.222 C2H6 + 0.778 O2, P0=35 kPa,
T0=297 K.

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60  70

tim
e 

(µ
s)

Distance from tube exit plane (mm)

 1400

 1600

 1800

 2000

 2200

 2400

 5  10  15  20  25  30  35  40  45  50  55  60

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05
fro

nt
 v

el
oc

ity
, U

ch
em

 fr
on

t (
m

/s
)

 U
ch

em
 fr

on
t/U

C
J

Distance from tube exit plane (mm)

Figure L.77: Velocity profile. Shot 178, 0.222 C2H6 + 0.778 O2, P0=40 kPa,
T0=297 K.

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60  70

tim
e 

(µ
s)

Distance from tube exit plane (mm)

 1400

 1600

 1800

 2000

 2200

 2400

 0  10  20  30  40  50  60

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

fro
nt

 v
el

oc
ity

, U
ch

em
 fr

on
t (

m
/s

)

 U
ch

em
 fr

on
t/U

C
J

Distance from tube exit plane (mm)

Figure L.78: Velocity profile. Shot 179, 0.222 C2H6 + 0.778 O2, P0=37.5 kPa,
T0=298 K.
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Figure L.79: Velocity profile. Shot 180, 0.222 C2H6 + 0.778 O2, P0=37.5 kPa,
T0=297 K.
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Figure L.80: Velocity profile. Shot 182, 0.222 C2H6 + 0.778 O2, P0=36.25 kPa,
T0=298 K.
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Figure L.81: Velocity profile. Shot 183, 0.222 C2H6 + 0.778 O2, P0=37.5 kPa,
T0=298 K.
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Figure L.82: Velocity profile. Shot 184, 0.222 C2H6 + 0.778 O2, P0=38.25 kPa,
T0=298 K.
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Figure L.83: Velocity profile. Shot 185, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa,
T0=298 K.
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Figure L.84: Velocity profile. Shot 186, 0.222 C2H6 + 0.778 O2, P0=45 kPa,
T0=299 K.
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Figure L.85: Velocity profile. Shot 187, 0.333 CH4 + 0.667 O2, P0=50 kPa, T0=294 K.
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Figure L.86: Velocity profile. Shot 188, 0.333 CH4 + 0.667 O2, P0=55 kPa, T0=295 K.
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Figure L.87: Velocity profile. Shot 189, 0.333 CH4 + 0.667 O2, P0=60 kPa, T0=296 K.
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Figure L.88: Velocity profile. Shot 190, 0.333 CH4 + 0.667 O2, P0=65 kPa, T0=296 K.
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Figure L.89: Velocity profile. Shot 191, 0.333 CH4 + 0.667 O2, P0=70 kPa, T0=297 K.
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Figure L.90: Velocity profile. Shot 192, 0.333 CH4 + 0.667 O2, P0=80 kPa, T0=298 K.
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Figure L.91: Velocity profile. Shot 193, 0.333 CH4 + 0.667 O2, P0=90 kPa, T0=298 K.
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Figure L.92: Velocity profile. Shot 194, 0.333 CH4 + 0.667 O2, P0=100 kPa,
T0=299 K.
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Figure L.93: Velocity profile. Shot 195, 0.333 CH4 + 0.667 O2, P0=120 kPa,
T0=299 K.
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Figure L.94: Velocity profile. Shot 196, 0.333 CH4 + 0.667 O2, P0=110 kPa,
T0=299 K.
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Figure L.95: Velocity profile. Shot 197, 0.333 CH4 + 0.667 O2, P0=115 kPa,
T0=300 K.
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Figure L.96: Velocity profile. Shot 198, 0.333 CH4 + 0.667 O2, P0=120 kPa,
T0=298 K.
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Figure L.97: Velocity profile. Shot 199, 0.333 CH4 + 0.667 O2, P0=125 kPa,
T0=301 K.
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Appendix M

Overview of Images from
Detonation Diffraction
Experiments

In this chapter an overview of the experimentally obtained images is given. The

timing parameters and mixture compositions are given in the image caption.

∆ t(P3–PLIF), is the time delay from point in time, the detonation is detected at

pressure transducer P3 to the point in time the PLIF image is taken. ∆ t(TEP–PLIF)

is the time delay from detonation reaching tube exit plane (TEP) to the point in time

the PLIF image is taken, assuming CJ velocity between P3 and tube exit plane.
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Figure M.1: Shot 16, 0.182 H2 + 0.091 O2 + 0.727 Ar, P0=100 kPa, T0=297 K.
Delays: ∆t(P3-PLIF) 193.17 µs; ∆t(TEP-PLIF) 13.49 µs. PLIF image height 50 mm.

Figure M.2: Shot 17, 0.187 H2 + 0.093 O2 + 0.72 Ar, P0=100 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 193.16 µs; ∆t(TEP-PLIF) 14.51 µs. PLIF image height 50 mm.

Figure M.3: Shot 18, 0.187 H2 + 0.093 O2 + 0.72 Ar, P0=100 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 200.16 µs; ∆t(TEP-PLIF) 21.51 µs. PLIF image height 48 mm.
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Figure M.4: Shot 19, 0.187 H2 + 0.093 O2 + 0.72 Ar, P0=100 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 200.16 µs; ∆t(TEP-PLIF) 21.51 µs. PLIF image height 48 mm.

Figure M.5: Shot 20, 0.187 H2 + 0.093 O2 + 0.72 Ar, P0=100 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 200.167 µs; ∆t(TEP-PLIF) 21.52 µs. PLIF image height 48 mm.

Figure M.6: Shot 21, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 200.167 µs; ∆t(TEP-PLIF) 24.21 µs. PLIF image height 48 mm.
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Figure M.7: Shot 22, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 206.167 µs; ∆t(TEP-PLIF) 30.21 µs. PLIF image height 48 mm.

Figure M.8: Shot 23, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 212.167 µs; ∆t(TEP-PLIF) 36.21 µs. PLIF image height 48 mm.

Figure M.9: Shot 24, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 218.167 µs; ∆t(TEP-PLIF) 42.21 µs. PLIF image height 48 mm.
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Figure M.10: Shot 25, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 224.167 µs; ∆t(TEP-PLIF) 48.21 µs. PLIF image height 48 mm.

Figure M.11: Shot 26, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 230.167 µs; ∆t(TEP-PLIF) 54.21 µs. PLIF image height 48 mm.

Figure M.12: Shot 27, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 190.167 µs; ∆t(TEP-PLIF) 14.21 µs. PLIF image height 48 mm.
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Figure M.13: Shot 28, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 187.167 µs; ∆t(TEP-PLIF) 11.21 µs. PLIF image height 48 mm.

Figure M.14: Shot 30, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 208.057 µs; ∆t(TEP-PLIF) 34.61 µs. Schlieren image height
150 mm, PLIF image height 50 mm.
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Figure M.15: Shot 31, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 217.157 µs; ∆t(TEP-PLIF) 43.71 µs. Schlieren image height
150 mm, PLIF image height 50 mm.
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Figure M.16: Shot 32, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 227.167 µs; ∆t(TEP-PLIF) 53.72 µs. Schlieren image height
150 mm, PLIF image height 50 mm.

Figure M.17: Shot 33, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K. De-
lays: ∆t(P3-PLIF) 227.167 µs; ∆t(TEP-PLIF) 53.72 µs. PLIF image height 50 mm.
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Figure M.18: Shot 34, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=297 K. De-
lays: ∆t(P3-PLIF) 227.167 µs; ∆t(TEP-PLIF) 53.72 µs. PLIF image height 50 mm.

Figure M.19: Shot 35, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=294 K.
Delays: ∆t(P3-PLIF) 227.167 µs; ∆t(TEP-PLIF) 56.08 µs. Schlieren image height
150 mm, PLIF image height 50 mm.
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Figure M.20: Shot 36, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=294 K.
Delays: ∆t(P3-PLIF) 227.167 µs; ∆t(TEP-PLIF) 56.08 µs. Schlieren image height
150 mm, PLIF image height 50 mm.
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Figure M.21: Shot 37, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 227.167 µs; ∆t(TEP-PLIF) 56.08 µs. Schlieren image height
150 mm, PLIF image height 50 mm.
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Figure M.22: Shot 38, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 232.167 µs; ∆t(TEP-PLIF) 61.08 µs. Schlieren image height
150 mm, PLIF image height 50 mm.
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Figure M.23: Shot 39, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 232.167 µs; ∆t(TEP-PLIF) 61.08 µs. Schlieren image height
150 mm, PLIF image height 50 mm.
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Figure M.24: Shot 40, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 232.167 µs; ∆t(TEP-PLIF) 61.08 µs. Schlieren image height
150 mm, PLIF image height 50 mm.

Figure M.25: Shot 41, 0.233 H2 + 0.117 O2 + 0.65 Ar, P0=100 kPa, T0=296 K. De-
lays: ∆t(P3-PLIF) 232.167 µs; ∆t(TEP-PLIF) 62.22 µs. PLIF image height 50 mm.
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Figure M.26: Shot 42, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 232.167 µs; ∆t(TEP-PLIF) 61.08 µs. Schlieren image height
150 mm, PLIF image height 50 mm.
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Figure M.27: Shot 43, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 232.167 µs; ∆t(TEP-PLIF) 61.08 µs. Schlieren image height
150 mm, PLIF image height 50 mm.

Figure M.28: Shot 44, 0.233 H2 + 0.117 O2 + 0.65 Ar, P0=100 kPa, T0=296 K. De-
lays: ∆t(P3-PLIF) 232.167 µs; ∆t(TEP-PLIF) 62.22 µs. Chemiluminescence image
1 height 50 mm.
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Figure M.29: Shot 45, 0.23 H2 + 0.115 O2 + 0.655 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 232.167 µs; ∆t(TEP-PLIF) 61.66 µs. Schlieren image height
150 mm, PLIF image height 50 mm.

Figure M.30: Shot 49, 0.54 H2 + 0.27 O2 + 0.19 N2, P0=100 kPa, T0=295 K. Delays:
∆t(P3-schl) 182.22 µs; ∆t(TEP-schl) 62.52 µs. Schlieren image height 150 mm.



382

Figure M.31: Shot 50, 0.527 H2 + 0.263 O2 + 0.21 N2, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 150.167 µs; ∆t(TEP-PLIF) 28.95 µs. Schlieren image height
150 mm, Chemiluminescence image 1 height 50 mm.
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Figure M.32: Shot 51, 0.527 H2 + 0.263 O2 + 0.21 N2, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 160.167 µs; ∆t(TEP-PLIF) 38.95 µs. Schlieren image height
150 mm, Chemiluminescence image 1 height 50 mm.
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Figure M.33: Shot 52, 0.52 H2 + 0.26 O2 + 0.22 N2, P0=100 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 160.167 µs; ∆t(TEP-PLIF) 38.19 µs. Schlieren image height 150 mm,
PLIF image height 50 mm.

Figure M.34: Shot 53, 0.52 H2 + 0.26 O2 + 0.22 N2, P0=100 kPa, T0=295 K. De-
lays: ∆t(P3-schl) 160.22 µs; ∆t(TEP-schl) 38.24 µs. Delays: ∆t(P3-chem) 7.21 µs;
∆t(TEP-chem) -114.77 µs. Schlieren image height 150 mm, PLIF image height
50 mm.
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Figure M.35: Shot 54, 0.507 H2 + 0.253 O2 + 0.24 N2, P0=100 kPa, T0=297 K.
Delays: ∆t(P3-PLIF) 160.167 µs; ∆t(TEP-PLIF) 36.65 µs. Schlieren image height
150 mm, Chemiluminescence image 1 height 50 mm.
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Figure M.36: Shot 55, 0.507 H2 + 0.253 O2 + 0.24 N2, P0=100 kPa, T0=294 K.
Delays: ∆t(P3-PLIF) 160.167 µs; ∆t(TEP-PLIF) 36.65 µs. Schlieren image height
150 mm, PLIF image height 50 mm.
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Figure M.37: Shot 56, 0.507 H2 + 0.253 O2 + 0.24 N2, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 160.167 µs; ∆t(TEP-PLIF) 36.65 µs. Schlieren image height
150 mm, PLIF image height 50 mm.
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Figure M.38: Shot 57, 0.507 H2 + 0.253 O2 + 0.24 N2, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 155.167 µs; ∆t(TEP-PLIF) 31.65 µs. Schlieren image height
150 mm, PLIF image height 50 mm.

Figure M.39: Shot 58, 0.52 H2 + 0.26 O2 + 0.22 N2, P0=100 kPa, T0=296 K. De-
lays: ∆t(P3-schl) 160.19 µs; ∆t(TEP-schl) 38.21 µs. Delays: ∆t(P3-chem) 7.21 µs;
∆t(TEP-chem) -114.77 µs. Schlieren image height 150 mm, Chemiluminescence im-
age 1 height 50 mm.
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Figure M.40: Shot 59, 0.5 H2 + 0.5 N2O, P0=70 kPa, T0=296 K. Delays: ∆t(P3-
schl) 160.19 µs; ∆t(TEP-schl) 34.85 µs. Delays: ∆t(P3-chem) 7.21 µs; ∆t(TEP-
chem) -118.13 µs. Schlieren image height 150 mm, Chemiluminescence image 1 height
150 mm.

Figure M.41: Shot 60, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 160.167 µs; ∆t(TEP-PLIF) 33.54 µs. Schlieren image height 150 mm, PLIF
image height 50 mm.
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Figure M.42: Shot 61, 0.5 H2 + 0.5 N2O, P0=55 kPa, T0=296 K. Delays: ∆t(P3-schl)
161.22 µs; ∆t(TEP-schl) 35.33 µs. Delays: ∆t(P3-chem) 7.21 µs; ∆t(TEP-chem) -
118.68 µs. Schlieren image height 150 mm, Chemiluminescence image 1 height 50 mm.

Figure M.43: Shot 64, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=294 K. De-
lays: ∆t(P3-schl) 191.26 µs; ∆t(TEP-schl) 15.30 µs. Delays: ∆t(P3-chem) 7.21 µs;
∆t(TEP-chem) -168.75 µs. Schlieren image height 150 mm, Chemiluminescence im-
age 1 height 50 mm.

Figure M.44: Shot 65, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. De-
lays: ∆t(P3-schl) 197.28 µs; ∆t(TEP-schl) 21.32 µs. Delays: ∆t(P3-chem) 7.21 µs;
∆t(TEP-chem) -168.75 µs. Schlieren image height 150 mm, Chemiluminescence im-
age 1 height 50 mm.
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Figure M.45: Shot 66, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=294 K. Delays:
∆t(P3-schl) 203.23 µs; ∆t(TEP-schl) 27.27 µs. Schlieren image height 150 mm.
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Figure M.46: Shot 67, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. Delays:
∆t(P3-PLIF) 208.167 µs; ∆t(TEP-PLIF) 32.21 µs. Schlieren image height 150 mm,
PLIF image height 50 mm.
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Figure M.47: Shot 68, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. Delays:
∆t(P3-PLIF) 214.167 µs; ∆t(TEP-PLIF) 38.21 µs. Schlieren image height 150 mm,
PLIF image height 50 mm.
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Figure M.48: Shot 69, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. Delays:
∆t(P3-PLIF) 220.167 µs; ∆t(TEP-PLIF) 44.21 µs. Schlieren image height 150 mm,
PLIF image height 50 mm.
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Figure M.49: Shot 70, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 226.167 µs; ∆t(TEP-PLIF) 50.21 µs. Schlieren image height 150 mm,
PLIF image height 50 mm.
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Figure M.50: Shot 71, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 232.167 µs; ∆t(TEP-PLIF) 56.21 µs. Schlieren image height 150 mm,
PLIF image height 50 mm.
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Figure M.51: Shot 72, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 238.167 µs; ∆t(TEP-PLIF) 62.21 µs. Schlieren image height 150 mm,
PLIF image height 50 mm.
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Figure M.52: Shot 73, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 184.167 µs; ∆t(TEP-PLIF) 8.21 µs. Schlieren image height 150 mm,
PLIF image height 50 mm.

Figure M.53: Shot 74, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=296 K. De-
lays: ∆t(P3-schl) 178.28 µs; ∆t(TEP-schl) 2.32 µs. Delays: ∆t(P3-chem) 7.21 µs;
∆t(TEP-chem) -168.75 µs. Schlieren image height 150 mm, PLIF image height
50 mm.
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Figure M.54: Shot 75, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=294 K. Delays: ∆t(P3-schl)
166.23 µs; ∆t(TEP-schl) 39.88 µs. Delays: ∆t(P3-chem) 7.21 µs; ∆t(TEP-chem) -
119.14 µs. Schlieren image height 150 mm, Chemiluminescence image 1 height 73 mm.

Figure M.55: Shot 76, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. Delays: ∆t(P3-schl)
154.23 µs; ∆t(TEP-schl) 27.88 µs. Delays: ∆t(P3-chem) 7.21 µs; ∆t(TEP-chem) -
119.14 µs. Schlieren image height 150 mm, Chemiluminescence image 1 height 73 mm.

Figure M.56: Shot 77, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. Delays: ∆t(P3-schl)
142.23 µs; ∆t(TEP-schl) 15.88 µs. Delays: ∆t(P3-chem) 7.21 µs; ∆t(TEP-chem) -
119.14 µs. Schlieren image height 150 mm, Chemiluminescence image 1 height 73 mm.
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Figure M.57: Shot 78, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K. Delays: ∆t(P3-
PLIF) 166.135 µs; ∆t(TEP-PLIF) 39.51 µs. Schlieren image height 150 mm, PLIF
image height 73 mm.



401

Figure M.58: Shot 79, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K. Delays: ∆t(P3-
PLIF) 178.135 µs; ∆t(TEP-PLIF) 51.51 µs. Schlieren image height 150 mm, PLIF
image height 73 mm.
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Figure M.59: Shot 80, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 172.135 µs; ∆t(TEP-PLIF) 45.51 µs. Schlieren image height 150 mm, PLIF
image height 73 mm.
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Figure M.60: Shot 81, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 166.135 µs; ∆t(TEP-PLIF) 39.51 µs. Schlieren image height 150 mm, PLIF
image height 73 mm.
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Figure M.61: Shot 82, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 160.135 µs; ∆t(TEP-PLIF) 33.51 µs. Schlieren image height 150 mm, PLIF
image height 73 mm.
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Figure M.62: Shot 83, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 154.135 µs; ∆t(TEP-PLIF) 27.51 µs. Schlieren image height 150 mm, PLIF
image height 73 mm.
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Figure M.63: Shot 84, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 148.135 µs; ∆t(TEP-PLIF) 21.51 µs. Schlieren image height 150 mm, PLIF
image height 73 mm.
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Figure M.64: Shot 85, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 142.135 µs; ∆t(TEP-PLIF) 15.51 µs. Schlieren image height 150 mm, PLIF
image height 73 mm.
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Figure M.65: Shot 86, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 136.135 µs; ∆t(TEP-PLIF) 9.51 µs. Schlieren image height 150 mm, PLIF
image height 73 mm.

Figure M.66: Shot 87, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. Delays: ∆t(P3-schl)
130.15 µs; ∆t(TEP-schl) 3.52 µs. Schlieren image height 150 mm.
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Figure M.67: Shot 88, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 154.135 µs; ∆t(TEP-PLIF) 27.51 µs. Schlieren image height 150 mm, PLIF
image height 73 mm.
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Figure M.68: Shot 89, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 142.135 µs; ∆t(TEP-PLIF) 15.51 µs. Schlieren image height 150 mm, PLIF
image height 73 mm.

Figure M.69: Shot 90, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=294 K. Delays: ∆t(P3-
chem) 136.245 µs; ∆t(TEP-chem) 9.62 µs. Multiple exposure timing: 3×10µs.
Chemiluminescence image height 118 mm.
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Figure M.70: Shot 92, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=294 K. Delays: ∆t(P3-
chem) 130.245 µs; ∆t(TEP-chem) 3.62 µs. Chemiluminescence image height 118 mm.

Figure M.71: Shot 93, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=294 K. Delays: ∆t(P3-
chem) 136.245 µs; ∆t(TEP-chem) 9.62 µs. Multiple exposure timing: 4×12µs.
Chemiluminescence image height 118 mm.
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Figure M.72: Shot 96, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K. Delays: ∆t(P3-
chem) 127.245 µs; ∆t(TEP-chem) 0.62 µs. Multiple exposure timing: 3×6µs. Chemi-
luminescence image height 118 mm.

Figure M.73: Shot 97, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K. Delays: ∆t(P3-
chem) 127.245 µs; ∆t(TEP-chem) 0.62 µs. Multiple exposure timing: 7×3µs. Chemi-
luminescence image height 118 mm.
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Figure M.74: Shot 98, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, T0=295 K. Delays: ∆t(P3-
chem) 127.245 µs; ∆t(TEP-chem) 0.76 µs. Multiple exposure timing: 9×3µs. Chemi-
luminescence image height 118 mm.

Figure M.75: Shot 99, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, T0=295 K. Delays: ∆t(P3-
chem) 130.245 µs; ∆t(TEP-chem) 3.76 µs. Multiple exposure timing: 9×6µs. Chemi-
luminescence image height 118 mm.
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Figure M.76: Shot 100, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. Delays: ∆t(P3-
chem) 127.245 µs; ∆t(TEP-chem) 0.89 µs. Multiple exposure timing: 7×3µs. Chemi-
luminescence image height 118 mm.

Figure M.77: Shot 101, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. Delays: ∆t(P3-
chem) 130.245 µs; ∆t(TEP-chem) 3.89 µs. Multiple exposure timing: 9×6µs. Chemi-
luminescence image height 118 mm.



415

Figure M.78: Shot 102, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=296 K. Delays: ∆t(P3-
chem) 130.245 µs; ∆t(TEP-chem) 3.89 µs. Multiple exposure timing: 7×6µs. Chemi-
luminescence image height 118 mm.

Figure M.79: Shot 103, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K. Delays: ∆t(P3-
chem) 130.245 µs; ∆t(TEP-chem) 4.02 µs. Multiple exposure timing: 7×6µs. Chemi-
luminescence image height 118 mm.



416

Figure M.80: Shot 104, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K. Delays: ∆t(P3-
chem) 127.245 µs; ∆t(TEP-chem) 1.02 µs. Multiple exposure timing: 7×3µs. Chemi-
luminescence image height 118 mm.

Figure M.81: Shot 105, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K. Delays: ∆t(P3-
chem) 127.245 µs; ∆t(TEP-chem) 1.02 µs. Multiple exposure timing: 7×3µs. Chemi-
luminescence image height 118 mm.
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Figure M.82: Shot 106, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=294 K. Delays: ∆t(P3-
schl) 148.18 µs; ∆t(TEP-schl) 21.83 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 0.89 µs. Multiple exposure timing: 7×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.

Figure M.83: Shot 107, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=294 K. Delays: ∆t(P3-
schl) 151.18 µs; ∆t(TEP-schl) 24.83 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 0.89 µs. Multiple exposure timing: 8×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.
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Figure M.84: Shot 108, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. Delays: ∆t(P3-
schl) 151.18 µs; ∆t(TEP-schl) 24.83 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 0.89 µs. Multiple exposure timing: 8×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.

Figure M.85: Shot 109, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. Delays: ∆t(P3-
schl) 151.18 µs; ∆t(TEP-schl) 24.83 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 0.89 µs. Multiple exposure timing: 8×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.
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Figure M.86: Shot 110, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. Delays: ∆t(P3-
schl) 148.18 µs; ∆t(TEP-schl) 21.83 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 0.89 µs. Multiple exposure timing: 9×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.

Figure M.87: Shot 111, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. Delays: ∆t(P3-
schl) 148.18 µs; ∆t(TEP-schl) 21.83 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 0.89 µs. Multiple exposure timing: 8×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.
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Figure M.88: Shot 112, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K. Delays: ∆t(P3-
schl) 145.18 µs; ∆t(TEP-schl) 18.95 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 1.02 µs. Multiple exposure timing: 7×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.

Figure M.89: Shot 113, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K. Delays: ∆t(P3-
schl) 145.18 µs; ∆t(TEP-schl) 18.95 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 1.02 µs. Multiple exposure timing: 7×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.
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Figure M.90: Shot 114, 0.5 H2 + 0.5 N2O, P0=50 kPa, T0=296 K. Delays: ∆t(P3-
schl) 145.18 µs; ∆t(TEP-schl) 19.07 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 1.14 µs. Multiple exposure timing: 7×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.
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Figure M.91: Shot 115, 0.5 H2 + 0.5 N2O, P0=50 kPa, T0=296 K. Delays: ∆t(P3-
schl) 145.18 µs; ∆t(TEP-schl) 19.07 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 1.14 µs. Multiple exposure timing: 7×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.

Figure M.92: Shot 116, 0.5 H2 + 0.5 N2O, P0=55 kPa, T0=296 K. Delays: ∆t(P3-
schl) 145.18 µs; ∆t(TEP-schl) 19.29 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 1.36 µs. Multiple exposure timing: 7×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.
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Figure M.93: Shot 117, 0.5 H2 + 0.5 N2O, P0=55 kPa, T0=296 K. Delays: ∆t(P3-
schl) 145.18 µs; ∆t(TEP-schl) 19.29 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 1.36 µs. Multiple exposure timing: 7×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.

Figure M.94: Shot 118, 0.5 H2 + 0.5 N2O, P0=60 kPa, T0=296 K. Delays: ∆t(P3-
schl) 145.18 µs; ∆t(TEP-schl) 19.49 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 1.56 µs. Multiple exposure timing: 7×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.
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Figure M.95: Shot 119, 0.5 H2 + 0.5 N2O, P0=60 kPa, T0=296 K. Delays: ∆t(P3-
schl) 142.18 µs; ∆t(TEP-schl) 16.49 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 1.56 µs. Multiple exposure timing: 6×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.

Figure M.96: Shot 120, 0.5 H2 + 0.5 N2O, P0=65 kPa, T0=297 K. Delays: ∆t(P3-
schl) 139.28 µs; ∆t(TEP-schl) 13.77 µs. Schlieren image height 150 mm.

Figure M.97: Shot 121, 0.5 H2 + 0.5 N2O, P0=65 kPa, T0=297 K. Delays: ∆t(P3-
schl) 139.18 µs; ∆t(TEP-schl) 13.67 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 1.74 µs. Multiple exposure timing: 5×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.
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Figure M.98: Shot 122, 0.5 H2 + 0.5 N2O, P0=65 kPa, T0=297 K. Delays: ∆t(P3-
schl) 142.18 µs; ∆t(TEP-schl) 16.67 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 1.74 µs. Multiple exposure timing: 6×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.

Figure M.99: Shot 123, 0.5 H2 + 0.5 N2O, P0=70 kPa, T0=297 K. Delays: ∆t(P3-
schl) 139.18 µs; ∆t(TEP-schl) 13.84 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 1.91 µs. Multiple exposure timing: 5×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.
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Figure M.100: Shot 124, 0.5 H2 + 0.5 N2O, P0=70 kPa, T0=297 K. Delays: ∆t(P3-
schl) 151.18 µs; ∆t(TEP-schl) 25.84 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 1.91 µs. Multiple exposure timing: 5×6µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.

Figure M.101: Shot 125, 0.5 H2 + 0.5 N2O, P0=80 kPa, T0=297 K. Delays: ∆t(P3-
schl) 136.18 µs; ∆t(TEP-schl) 11.15 µs. Delays: ∆t(P3-chem) 127.245 µs; ∆t(TEP-
chem) 2.21 µs. Multiple exposure timing: 4×3µs. Schlieren image height 150 mm,
Chemiluminescence image height 109 mm.
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Figure M.102: Shot 126, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=294 K. Delays:
∆t(P3-PLIF) 214.167 µs; ∆t(TEP-PLIF) 38.21 µs. Delays: ∆t(P3-chem) 178.285 µs;
∆t(TEP-chem) 2.33 µs. Multiple exposure timing: 1×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.103: Shot 127, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=294 K. Delays:
∆t(P3-PLIF) 208.167 µs; ∆t(TEP-PLIF) 32.21 µs. Delays: ∆t(P3-chem) 172.285 µs;
∆t(TEP-chem) -3.67 µs. Multiple exposure timing: 6×7µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.104: Shot 128, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. Delays:
∆t(P3-PLIF) 202.167 µs; ∆t(TEP-PLIF) 26.21 µs. Delays: ∆t(P3-chem) 172.285 µs;
∆t(TEP-chem) -3.67 µs. Multiple exposure timing: 6×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.105: Shot 129, 0.2 H2 + 0.1 O2 + 0.7 Ar, P0=100 kPa, T0=295 K. Delays:
∆t(P3-PLIF) 202.167 µs; ∆t(TEP-PLIF) 26.21 µs. Delays: ∆t(P3-chem) 172.285 µs;
∆t(TEP-chem) -3.67 µs. Multiple exposure timing: 9×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.106: Shot 130, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-chem) 172.285 µs; ∆t(TEP-chem) -1.16 µs. Multiple exposure timing:
9×6µs. PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.107: Shot 131, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-chem) 172.285 µs; ∆t(TEP-chem) -1.16 µs. Multiple exposure timing:
9×6µs. Chemiluminescence image height 109 mm.



432

Figure M.108: Shot 132, 0.213 H2 + 0.107 O2 + 0.68 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 202.167 µs; ∆t(TEP-PLIF) 28.72 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) -1.16 µs. Multiple exposure timing: 9×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.109: Shot 133, 0.217 H2 + 0.108 O2 + 0.675 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 202.167 µs; ∆t(TEP-PLIF) 29.32 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) -0.56 µs. Multiple exposure timing: 9×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.110: Shot 134, 0.217 H2 + 0.108 O2 + 0.675 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 202.167 µs; ∆t(TEP-PLIF) 29.32 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) -0.56 µs. Multiple exposure timing: 9×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.111: Shot 135, 0.217 H2 + 0.108 O2 + 0.675 Ar, P0=100 kPa, T0=294 K.
Delays: ∆t(P3-PLIF) 208.167 µs; ∆t(TEP-PLIF) 35.32 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) -0.56 µs. Multiple exposure timing: 9×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.112: Shot 136, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 208.167 µs; ∆t(TEP-PLIF) 35.92 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) 0.04 µs. Multiple exposure timing: 9×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.113: Shot 137, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 208.167 µs; ∆t(TEP-PLIF) 35.92 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) 0.04 µs. Multiple exposure timing: 9×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.114: Shot 138, 0.223 H2 + 0.112 O2 + 0.665 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 208.167 µs; ∆t(TEP-PLIF) 36.51 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) 0.63 µs. Multiple exposure timing: 8×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.115: Shot 139, 0.223 H2 + 0.112 O2 + 0.665 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 208.167 µs; ∆t(TEP-PLIF) 36.51 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) 0.63 µs. Multiple exposure timing: 9×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.116: Shot 140, 0.227 H2 + 0.113 O2 + 0.66 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 208.167 µs; ∆t(TEP-PLIF) 37.09 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) 1.21 µs. Multiple exposure timing: 9×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.

Figure M.117: Shot 141, 0.233 H2 + 0.117 O2 + 0.65 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-chem) 172.285 µs; ∆t(TEP-chem) 2.35 µs. Multiple exposure timing:
7×6µs. PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.118: Shot 142, 0.24 H2 + 0.12 O2 + 0.64 Ar, P0=100 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 208.167 µs; ∆t(TEP-PLIF) 39.34 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) 3.46 µs. Multiple exposure timing: 7×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.



442

Figure M.119: Shot 143, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 151.167 µs; ∆t(TEP-PLIF) 24.82 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 0.93 µs. Multiple exposure timing: 10×3µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.120: Shot 144, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 151.167 µs; ∆t(TEP-PLIF) 24.54 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 0.66 µs. Multiple exposure timing: 10×3µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.121: Shot 145, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 151.167 µs; ∆t(TEP-PLIF) 24.68 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 0.80 µs. Multiple exposure timing: 9×3µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.122: Shot 146, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=297 K. Delays: ∆t(P3-
PLIF) 151.167 µs; ∆t(TEP-PLIF) 24.94 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 1.06 µs. Multiple exposure timing: 9×3µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.123: Shot 147, 0.5 H2 + 0.5 N2O, P0=50 kPa, T0=297 K. Delays: ∆t(P3-
PLIF) 151.167 µs; ∆t(TEP-PLIF) 25.06 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 1.18 µs. Multiple exposure timing: 9×3µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.124: Shot 148, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 214.167 µs; ∆t(TEP-PLIF) 41.92 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) 0.04 µs. Multiple exposure timing: 10×3µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.125: Shot 149, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 217.167 µs; ∆t(TEP-PLIF) 44.92 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) 0.04 µs. Multiple exposure timing: 19×3µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.

Figure M.126: Shot 150, 0.223 H2 + 0.112 O2 + 0.665 Ar, P0=100 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 220.167 µs; ∆t(TEP-PLIF) 48.51 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) 0.63 µs. Multiple exposure timing: 10×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.127: Shot 151, 0.5 H2 + 0.5 N2O, P0=40 kPa, T0=295 K. Delays: ∆t(P3-
PLIF) 160.167 µs; ∆t(TEP-PLIF) 33.54 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 0.66 µs. Multiple exposure timing: 14×3µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.128: Shot 152, 0.5 H2 + 0.5 N2O, P0=42.5 kPa, T0=295 K. Delays: ∆t(P3-
PLIF) 163.167 µs; ∆t(TEP-PLIF) 36.68 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 0.80 µs. Multiple exposure timing: 9×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.129: Shot 153, 0.5 H2 + 0.5 N2O, P0=43.75 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 163.167 µs; ∆t(TEP-PLIF) 36.75 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 0.87 µs. Multiple exposure timing: 9×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.130: Shot 154, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=55 kPa, T0=296 K.
Delays: ∆t(P3-chem) 157.285 µs; ∆t(TEP-chem) 0.67 µs. Multiple exposure timing:
9×6µs. PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.131: Shot 156, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=45 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 199.167 µs; ∆t(TEP-PLIF) 41.92 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 0.04 µs. Multiple exposure timing: 9×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.132: Shot 157, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=47.5 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 205.167 µs; ∆t(TEP-PLIF) 48.09 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 0.21 µs. Multiple exposure timing: 11×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.

Figure M.133: Shot 158, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=50 kPa, T0=296 K.
Delays: ∆t(P3-chem) 157.285 µs; ∆t(TEP-chem) 0.37 µs. Multiple exposure timing:
11×6µs. PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.134: Shot 160, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=50 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 199.167 µs; ∆t(TEP-PLIF) 42.25 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 0.37 µs. Multiple exposure timing: 10×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.135: Shot 161, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=52.5 kPa, T0=295 K.
Delays: ∆t(P3-PLIF) 199.167 µs; ∆t(TEP-PLIF) 42.40 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 0.52 µs. Multiple exposure timing: 10×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.136: Shot 162, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=53.75 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 199.167 µs; ∆t(TEP-PLIF) 42.47 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 0.59 µs. Multiple exposure timing: 10×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.137: Shot 163, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=55 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 199.167 µs; ∆t(TEP-PLIF) 42.55 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 0.67 µs. Multiple exposure timing: 10×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.138: Shot 164, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=55 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 199.167 µs; ∆t(TEP-PLIF) 42.55 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 0.67 µs. Multiple exposure timing: 10×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.139: Shot 165, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=57.5 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 199.167 µs; ∆t(TEP-PLIF) 42.68 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 0.80 µs. Multiple exposure timing: 10×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.140: Shot 166, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=57.5 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 193.167 µs; ∆t(TEP-PLIF) 36.68 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 0.80 µs. Multiple exposure timing: 7×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.141: Shot 167, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=60 kPa, T0=297 K.
Delays: ∆t(P3-PLIF) 187.167 µs; ∆t(TEP-PLIF) 30.81 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 0.93 µs. Multiple exposure timing: 7×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.142: Shot 168, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=62.5 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 187.167 µs; ∆t(TEP-PLIF) 30.94 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 1.06 µs. Multiple exposure timing: 6×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.143: Shot 169, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=65 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 187.167 µs; ∆t(TEP-PLIF) 31.06 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 1.18 µs. Multiple exposure timing: 7×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.

Figure M.144: Shot 170, 0.333 H2 + 0.167 O2 + 0.5 Ar, P0=70 kPa, T0=296 K.
Delays: ∆t(P3-PLIF) 187.167 µs; ∆t(TEP-PLIF) 31.28 µs. Delays: ∆t(P3-chem)
157.285 µs; ∆t(TEP-chem) 1.40 µs. Multiple exposure timing: 6×6µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.145: Shot 171, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=297 K. Delays: ∆t(P3-
PLIF) 154.167 µs; ∆t(TEP-PLIF) 27.82 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 0.93 µs. Multiple exposure timing: 11×3µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.146: Shot 172, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=297 K. Delays: ∆t(P3-
PLIF) 154.167 µs; ∆t(TEP-PLIF) 27.94 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 1.06 µs. Multiple exposure timing: 6×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.147: Shot 173, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=297 K. Delays: ∆t(P3-
PLIF) 157.167 µs; ∆t(TEP-PLIF) 30.94 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 1.06 µs. Multiple exposure timing: 6×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.148: Shot 174, 0.5 H2 + 0.5 N2O, P0=46.25 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 157.167 µs; ∆t(TEP-PLIF) 30.88 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 1.00 µs. Multiple exposure timing: 11×3µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.149: Shot 175, 0.222 C2H6 + 0.778 O2, P0=30 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 160.167 µs; ∆t(TEP-PLIF) 31.57 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) -1.31 µs. Multiple exposure timing: 6×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.



465

Figure M.150: Shot 176, 0.222 C2H6 + 0.778 O2, P0=32.5 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 160.167 µs; ∆t(TEP-PLIF) 31.77 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) -1.11 µs. Multiple exposure timing: 14×3µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.151: Shot 177, 0.222 C2H6 + 0.778 O2, P0=35 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 160.167 µs; ∆t(TEP-PLIF) 31.96 µs. Delays: ∆t(P3-chem) 130.285 µs;
∆t(TEP-chem) 2.07 µs. Multiple exposure timing: 7×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.152: Shot 178, 0.222 C2H6 + 0.778 O2, P0=40 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 160.167 µs; ∆t(TEP-PLIF) 32.29 µs. Delays: ∆t(P3-chem) 130.285 µs;
∆t(TEP-chem) 2.40 µs. Multiple exposure timing: 7×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.153: Shot 179, 0.222 C2H6 + 0.778 O2, P0=37.5 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 154.167 µs; ∆t(TEP-PLIF) 26.13 µs. Delays: ∆t(P3-chem) 130.285 µs;
∆t(TEP-chem) 2.25 µs. Multiple exposure timing: 7×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.154: Shot 180, 0.222 C2H6 + 0.778 O2, P0=37.5 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 154.167 µs; ∆t(TEP-PLIF) 26.13 µs. Delays: ∆t(P3-chem) 130.285 µs;
∆t(TEP-chem) 2.25 µs. Multiple exposure timing: 11×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.155: Shot 181, 0.222 C2H6 + 0.778 O2, P0=36.25 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 160.167 µs; ∆t(TEP-PLIF) 32.04 µs. Delays: ∆t(P3-chem) 130.285 µs;
∆t(TEP-chem) 2.16 µs. Multiple exposure timing: 11×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.156: Shot 182, 0.222 C2H6 + 0.778 O2, P0=36.25 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 160.175 µs; ∆t(TEP-PLIF) 32.05 µs. Delays: ∆t(P3-chem) 130.285 µs;
∆t(TEP-chem) 2.16 µs. Multiple exposure timing: 9×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.157: Shot 183, 0.222 C2H6 + 0.778 O2, P0=37.5 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 160.175 µs; ∆t(TEP-PLIF) 32.14 µs. Delays: ∆t(P3-chem) 130.285 µs;
∆t(TEP-chem) 2.25 µs. Multiple exposure timing: 9×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.158: Shot 184, 0.222 C2H6 + 0.778 O2, P0=38.25 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 160.175 µs; ∆t(TEP-PLIF) 32.18 µs. Delays: ∆t(P3-chem) 130.285 µs;
∆t(TEP-chem) 2.29 µs. Multiple exposure timing: 9×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.159: Shot 185, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 160.175 µs; ∆t(TEP-PLIF) 32.45 µs. Delays: ∆t(P3-chem) 130.285 µs;
∆t(TEP-chem) 2.56 µs. Multiple exposure timing: 9×6µs. Schlieren image height
150 mm, Chemiluminescence image 1 height 70 mm, Chemiluminescence image 2
height 109 mm.
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Figure M.160: Shot 186, 0.222 C2H6 + 0.778 O2, P0=45 kPa, T0=299 K. Delays:
∆t(P3-PLIF) 160.175 µs; ∆t(TEP-PLIF) 32.58 µs. Delays: ∆t(P3-chem) 130.285 µs;
∆t(TEP-chem) 2.69 µs. Multiple exposure timing: 10×3µs. Schlieren image height
150 mm, Chemiluminescence image 1 height 70 mm, Chemiluminescence image 2
height 109 mm.

Figure M.161: Shot 187, 0.333 CH4 + 0.667 O2, P0=50 kPa, T0=294 K. Delays:
∆t(P3-PLIF) 157.167 µs; ∆t(TEP-PLIF) 30.98 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 1.10 µs. Multiple exposure timing: 7×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.162: Shot 188, 0.333 CH4 + 0.667 O2, P0=55 kPa, T0=295 K. Delays:
∆t(P3-PLIF) 157.167 µs; ∆t(TEP-PLIF) 31.21 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 1.32 µs. Multiple exposure timing: 8×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.163: Shot 189, 0.333 CH4 + 0.667 O2, P0=60 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 157.175 µs; ∆t(TEP-PLIF) 31.42 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 1.53 µs. Multiple exposure timing: 8×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.164: Shot 190, 0.333 CH4 + 0.667 O2, P0=65 kPa, T0=296 K. Delays:
∆t(P3-chem) 127.285 µs; ∆t(TEP-chem) 1.72 µs. Multiple exposure timing: 8×6µs.
PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.165: Shot 191, 0.333 CH4 + 0.667 O2, P0=70 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 157.175 µs; ∆t(TEP-PLIF) 31.79 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 1.90 µs. Multiple exposure timing: 8×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.166: Shot 192, 0.333 CH4 + 0.667 O2, P0=80 kPa, T0=298 K. Delays:
∆t(P3-chem) 115.285 µs; ∆t(TEP-chem) -9.79 µs. Multiple exposure timing: 8×6µs.
PLIF image height 0 mm, Chemiluminescence image height 109 mm.

Figure M.167: Shot 193, 0.333 CH4 + 0.667 O2, P0=90 kPa, T0=298 K. Delays:
∆t(P3-chem) 127.285 µs; ∆t(TEP-chem) 2.48 µs. Multiple exposure timing: 8×6µs.
PLIF image height 70 mm, Chemiluminescence image height 109 mm.

Figure M.168: Shot 194, 0.333 CH4 + 0.667 O2, P0=100 kPa, T0=299 K. Delays:
∆t(P3-PLIF) 157.175 µs; ∆t(TEP-PLIF) 32.62 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 2.73 µs. Multiple exposure timing: 8×6µs. Schlieren image height
150 mm, PLIF image height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.169: Shot 195, 0.333 CH4 + 0.667 O2, P0=120 kPa, T0=299 K. Delays:
∆t(P3-PLIF) 157.175 µs; ∆t(TEP-PLIF) 33.04 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 3.15 µs. Multiple exposure timing: 7×6µs. Schlieren image height
150 mm, Chemiluminescence image 1 height 70 mm, Chemiluminescence image 2
height 109 mm.

Figure M.170: Shot 196, 0.333 CH4 + 0.667 O2, P0=110 kPa, T0=299 K. Delays:
∆t(P3-PLIF) 157.175 µs; ∆t(TEP-PLIF) 32.84 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 2.95 µs. Multiple exposure timing: 6×6µs. Schlieren image height
150 mm, Chemiluminescence image 1 height 70 mm, Chemiluminescence image 2
height 109 mm.
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Figure M.171: Shot 197, 0.333 CH4 + 0.667 O2, P0=115 kPa, T0=300 K. Delays:
∆t(P3-schl) 157.17 µs; ∆t(TEP-schl) 32.94 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 3.06 µs. Multiple exposure timing: 6×6µs. Schlieren image height
150 mm, Chemiluminescence image height 109 mm.

Figure M.172: Shot 198, 0.333 CH4 + 0.667 O2, P0=120 kPa, T0=298 K. Delays:
∆t(P3-schl) 157.2 µs; ∆t(TEP-schl) 33.07 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 3.15 µs. Multiple exposure timing: 6×6µs. Schlieren image height
150 mm, Chemiluminescence image height 109 mm.
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Figure M.173: Shot 199, 0.333 CH4 + 0.667 O2, P0=125 kPa, T0=301 K. Delays:
∆t(P3-schl) 157.23 µs; ∆t(TEP-schl) 33.19 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 3.25 µs. Multiple exposure timing: 6×6µs. Schlieren image height
150 mm, Chemiluminescence image height 109 mm.

Figure M.174: Shot 200, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=293 K. De-
lays: ∆t(P3-schl) 214.2 µs; ∆t(TEP-schl) 41.96 µs. Delays: ∆t(P3-chem) 172.285 µs;
∆t(TEP-chem) 0.04 µs. Multiple exposure timing: 2×43µs. Schlieren image height
150 mm, Chemiluminescence image height 109 mm.
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Figure M.175: Shot 201, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=294 K.
Delays: ∆t(P3-PLIF) 214.167 µs; ∆t(TEP-PLIF) 41.92 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) 0.04 µs. Multiple exposure timing: 80×1µs. Schlieren
image height 150 mm, PLIF image height 70 mm, Chemiluminescence image height
109 mm.
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Figure M.176: Shot 202, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=294 K.
Delays: ∆t(P3-PLIF) 220.167 µs; ∆t(TEP-PLIF) 47.92 µs. Delays: ∆t(P3-chem)
172.285 µs; ∆t(TEP-chem) 0.04 µs. Schlieren image height 150 mm, PLIF image
height 70 mm, Chemiluminescence image height 109 mm.
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Figure M.177: Shot 203, 0.22 H2 + 0.11 O2 + 0.67 Ar, P0=100 kPa, T0=294 K.
Delays: ∆t(P3-PLIF) 232.167 µs; ∆t(TEP-PLIF) 59.92 µs. Delays: ∆t(P3-chem)
178.285 µs; ∆t(TEP-chem) 6.04 µs. Schlieren image height 150 mm, PLIF image
height 70 mm, Chemiluminescence image height 109 mm.

Figure M.178: Shot 204, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=295 K. Delays: ∆t(P3-
PLIF) 169.167 µs; ∆t(TEP-PLIF) 42.94 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 1.06 µs. Schlieren image height 150 mm, PLIF image height 70 mm,
Chemiluminescence image height 109 mm.
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Figure M.179: Shot 205, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=295 K. Delays: ∆t(P3-
schl) 169.2 µs; ∆t(TEP-schl) 42.97 µs. Delays: ∆t(P3-chem) 127.285 µs; ∆t(TEP-
chem) 1.06 µs. Schlieren image height 150 mm, Chemiluminescence image height
109 mm.

Figure M.180: Shot 206, 0.5 H2 + 0.5 N2O, P0=45 kPa, T0=295 K. Delays: ∆t(P3-
PLIF) 169.175 µs; ∆t(TEP-PLIF) 42.82 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 0.93 µs. Schlieren image height 150 mm, PLIF image height 70 mm,
Chemiluminescence image height 109 mm.
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Figure M.181: Shot 207, 0.5 H2 + 0.5 N2O, P0=47.5 kPa, T0=296 K. Delays: ∆t(P3-
PLIF) 169.175 µs; ∆t(TEP-PLIF) 42.95 µs. Delays: ∆t(P3-chem) 127.285 µs;
∆t(TEP-chem) 1.06 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 70 mm, Chemiluminescence image 2 height 109 mm.

Figure M.182: Shot 208, 0.222 C2H6 + 0.778 O2, P0=40 kPa, T0=295 K. Delays:
∆t(P3-schl) 190.2 µs; ∆t(TEP-schl) 62.32 µs. Schlieren image height 150 mm.

Figure M.183: Shot 209, 0.222 C2H6 + 0.778 O2, P0=40 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 148.3 µs; ∆t(TEP-PLIF) 20.42 µs. Delays: ∆t(P3-chem) 148.3 µs;
∆t(TEP-chem) 20.42 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.
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Figure M.184: Shot 210, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 154.6 µs; ∆t(TEP-PLIF) 26.87 µs. Delays: ∆t(P3-chem) 153.6 µs;
∆t(TEP-chem) 25.87 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.

Figure M.185: Shot 211, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 157.6 µs; ∆t(TEP-PLIF) 29.87 µs. Delays: ∆t(P3-chem) 156.6 µs;
∆t(TEP-chem) 28.87 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.
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Figure M.186: Shot 212, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 155.6 µs; ∆t(TEP-PLIF) 27.87 µs. Delays: ∆t(P3-chem) 154.6 µs;
∆t(TEP-chem) 26.87 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.

Figure M.187: Shot 213, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 156.6 µs; ∆t(TEP-PLIF) 28.87 µs. Delays: ∆t(P3-chem) 155.6 µs;
∆t(TEP-chem) 27.87 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.
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Figure M.188: Shot 214, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 156.6 µs; ∆t(TEP-PLIF) 28.87 µs. Delays: ∆t(P3-chem) 155.6 µs;
∆t(TEP-chem) 27.87 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.

Figure M.189: Shot 215, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=294 K. Delays:
∆t(P3-PLIF) 156.36 µs; ∆t(TEP-PLIF) 28.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.
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Figure M.190: Shot 216, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=295 K. Delays:
∆t(P3-PLIF) 156.36 µs; ∆t(TEP-PLIF) 28.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.

Figure M.191: Shot 217, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=295 K. Delays:
∆t(P3-PLIF) 156.36 µs; ∆t(TEP-PLIF) 28.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.
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Figure M.192: Shot 218, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 156.36 µs; ∆t(TEP-PLIF) 28.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.

Figure M.193: Shot 219, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=296 K. Delays:
∆t(P3-PLIF) 156.36 µs; ∆t(TEP-PLIF) 28.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.
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Figure M.194: Shot 220, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 156.36 µs; ∆t(TEP-PLIF) 28.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.

Figure M.195: Shot 221, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 156.36 µs; ∆t(TEP-PLIF) 28.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.



489

Figure M.196: Shot 222, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 158.36 µs; ∆t(TEP-PLIF) 30.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.

Figure M.197: Shot 223, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 161.36 µs; ∆t(TEP-PLIF) 33.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.
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Figure M.198: Shot 224, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 160.36 µs; ∆t(TEP-PLIF) 32.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.

Figure M.199: Shot 226, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=297 K. Delays:
∆t(P3-PLIF) 156.36 µs; ∆t(TEP-PLIF) 28.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Multiple exposure timing: 2×5µs. Schlieren image height
150 mm, Chemiluminescence image 1 height 140 mm, Chemiluminescence image 2
height 140 mm.
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Figure M.200: Shot 227, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 160.36 µs; ∆t(TEP-PLIF) 32.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Schlieren image height 150 mm, Chemiluminescence image
1 height 140 mm, Chemiluminescence image 2 height 140 mm.

Figure M.201: Shot 228, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 160.36 µs; ∆t(TEP-PLIF) 32.63 µs. Delays: ∆t(P3-chem) 156.36 µs;
∆t(TEP-chem) 28.63 µs. Multiple exposure timing: 3×2µs. Schlieren image height
150 mm, Chemiluminescence image 1 height 140 mm, Chemiluminescence image 2
height 140 mm.
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Figure M.202: Shot 229, 0.222 C2H6 + 0.778 O2, P0=42.5 kPa, T0=298 K. Delays:
∆t(P3-PLIF) 160.36 µs; ∆t(TEP-PLIF) 32.63 µs. Delays: ∆t(P3-chem) 154.36 µs;
∆t(TEP-chem) 26.63 µs. Multiple exposure timing: 3×3µs. Schlieren image height
150 mm, Chemiluminescence image 1 height 140 mm, Chemiluminescence image 2
height 140 mm.
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