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Abstract

This thesis presents results derived from ab initio wavefunctions, leading to new
concepts of ﬁetaﬂic bonding — real-space concepts that do not require “thinking in
reciprical (k) space.” As the first step in this study of metallic bonding, Hartree-
Fock and generalized valence bond wavefunctions are presented for ring clusters com-
posed of monovalent atoms (Cu, Ag, Au, Li, and Na). These results show that one-
dimensional metals need not exhibit Peierls instabilities, charge density waves, or
spin density waves. In addition, magnon spectra calculated using various wavefunc-
tions are compared with each other and with magnon spectra obtained with simple
nearest-neighbor Ising and Heisenberg hamiltonians.

Generalized valence bond wavefunctions for small metal clusters lead to the con-
clusion that, for metallic systems, the valence electrons occupy interstitial regions —
bond midpoints for one-dimensional systems, triangular hollows for two-dimensional
systems, and tetrahedral hollows for three-dimensional systems. The new concepts
of metallic bonding are summarized by a set of rules for the valence sp electrons of
metallic systems. These rules are used to derive the low-lying isomers of small metal
clusters, and are expected to prove useful in predicting the chemistry and catalytic
properties of such systems. Applying these rules to bulk metals leads to a new ex-
planation of the sélubility limits governing alloys of monovalent, divalent, trivalent,
and tetravalent atoms. These rules are expected to prove valuable in describing the

localized states in metals and alloys such as defects or interfaces.
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Thesis Introduction

Valence bond theory! provides a powerful framework for understanding and predict-
ing structures and properties of nonmetallic systems, where the electrons can be
described as being localized into hybridized atomic orbitals, spin-paired to form
bonds and nonbonding lone pairs. This framework is qﬁite useful in describing
molecules, bulk structures, surface structures, and the localized states at defects
and interfaces.>*

However, for metallic systems, simple valence bond theory has been ambiguous
and of little use. For example, each atom in a face-centered cubic monovalent metal
has twelve nearest neighbors but only one valence electron. How does one form a
valence bond description for systems having far too few valence electrons to form
two-center two-electron bonds between all the nearest neighbors?

As a first step in addressing the issue of a valence bond description of metals,
Chapters 1-4 present restricted Hartree-Fock (HF), unrestricted Hartree-Fock (UHF),
and generalized valence bond (GVB) wavefunctions for ring clusters composed of
copper, silver, gold, lithium, and sodium. These systems provide a sensitive test
of the HF, UHF, and GVB wavefunctions because of the importance of electron
correlation effects. For these “qne-dimensional” metals, strong cohesion results from

two-center one-electron (localized) bonding.
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Chapter 5 presents HF, UHF, and GVB wavefunctions for 2D and 3D clusters of
lithium atoms. Chapter 5 leads to a generalized valence bond model of metallic bond-
ing, based on electrons localized into interstitial regions such as bond midpoints (lD),.
triangular hollows (2D), and tetrahedral hollows (3D). Hence, for the n-dimensional
metallic system, the “characteristic” localized orbital is composed of sp hybrid or-
bitals from n + 1 adjacent atoms. Applying this model to bulk metals leads to a new
explanation of solid solubility limits governing the alloys of monovalent, divalent,

trivalent, and tetravalent metals.
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Chapter 1

Charge Density Waves, Spin Density Waves, and
Peierls Distortions in One-Dimensional Metals:

Hartree-Fock Studies of Cu, Ag, Au, Li, and Na

Chapter 1 consists of an article coauthored with William A. Goddard III that has

been accepted for publication in the Journal of Chemical Physics.
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Charge Density Waves, Spin Density Waves, and
Peierls Distortions in One-Dimensional Metals:
I. Hartree-Fock Studies of
Cu, Ag, Ay, Li, and Na

Mark H. McAdon and William A. Goddard III

Contribution No. 6986 from the Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology,

Pasadena, California 91125

(Received June 25, 1987; revised manuscript received August 22, 1987)

Abstract: Ab initio calculations indicate that each of the one-dimensional elemental
metals composed of Cu, Ag, Au, Li ﬁ.nd Na is stable with respect to the Peierls
distortion if spin polarization is allowed [unrestricted Hartree-Fock (UHF)), leading
to a spin density wave. Disallowing spin polarization [restricted Hartree-Fock (HF)]
leads to a half-filled energy band, Peierls insta.bilify and a charge density wave.
For each case, the UHF wavefunction leads to an antiferromagnetic (non-metallic)
ground state, with a spin density wave resulting from electron correlation effects,
consistent with the Mott-Hubbard low-density antiferromagnetic insulator. The UHF
antiferromagnetic (non-metallic) ground states have large cohesive energies resulting
from two-center one-electron bonds (similar to the one-electron bonds of the diatomic

molecular cations).



I. Introduction

The electronic structure of a crystalline solid is usually described in terms of energy
bands involving Bloch functions delocalized over the infinite lattice.">® These energy
bands for crystalline solids [analogous to the molecular orbital (MO) energy levels
of molecules] determine the electronic properties. Metals result when one or more
energy bands are only partially occupied. Insulators (or semiconductors) result when
the valence band and conduction bands are separated by a finite energy gap, so that
the valence band is completely occupied (each orbital occupied with two electrons,
one of each spin), and the conducti'on bands are completely unoccupied.

Peierls! has shown that one-dimensional metals having partially filled energy
bands are susceptible to a distortion leading to an energy band gap at the Fermi
level and hence a metal-to-insulator transition. Consequently, linear metallic chains
with equidistant adjacent atoms (“symmetical” chains) are predicted to distort such
that the distances between adjacent atoms are not all equal.! For a homonuclear
linear chain composed of monovalent atoms, the energy band description leads to a
half-filled band (in the absence of strong electron-electron interactions) and a Peierls
distortion pairing up adjacent atoms to form a diatomic lattice.! The Peierls in-
stability is often associated with a charge density wave having maxima and minima
at alternating bond midpoints (the absence of such a charge density wave does not
preclude a Peierls distortion).

Crystalline solids of the alkali or noble metals are metals whereas the monatomic
gases (infinite interatomic distance) are insulators. Mott? has suggested that a crys-
talline lattice of monovalent atoms should exhibit a sharp metal-to-insulator transi-

tion as the distance a between the atoms is increased. However, the normal energy
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band theory (restricted Hartree-Fock theory) predicts that such a system is a metal
for all a.? This contradiction has been referred to as the Mott paradoz.

The problem with normal energy band theory is that if does not include the elec-
tron correlation effects required to obtain nonmetallic behavior for metallic systems
at large a.* However, the necessary electron correlation effects are included in both
unrestricted Hartree-Fock and generalized valence bond theory.*5

In order to modify normal energy band theory to account for the metal-to-
insulator transition, Hubbard® introduced a hamiltonian for monovalent atoms in-
cluding the normal one-electron terms and in addition, the intra-atomic coulomb

energy
U = (wi(1)wr(2) Iy lwr(Lwi(2))

that tends to prevent two electrons from occupying the same localized Wannier?

orbital w;, where r;

! is the electrostatic interaction between electrons 7 and j (in
atomic units where e = 1). Hubbard showed that this hamiltonian splits thé usual
* half-filled valence band (doubly-occupied orbitals) into two sets of energy bands; for
each spin there is a lower-energy band consisting of singly-occupied orbitals and a

higher-energy band consisting of unoccupied orbitals. These two bands presumably

overlap?® when a is sufficiently small that

B/U > /4/3 ~ 1.15

[where B is the band width for & = 0], leading to a transition from an antiferro-
magnetic insulator®” — with a spin density wave — at large a (“low-density”) to a
metal at small a (“high-density”). However, the critical ratio B/U = 1.15 is based
on an approximate solution of the Hubbard hamiltonian,?® and the exact solution®

of the Hubbard hamiltonian for a one-dimensional lattice of monovalent atoms with
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a single band leads to a transition from antiferromagnetic insulator to metal only in
the limit as B/U approaches infinity.

These ideas of Peierls instability, charge density waves, antiferromagnetic in-
sulators, and spin density waves have proved useful in characterizing pseudo-one-
dimensional inorganic and organic compounds®® such as (z) Nbl,, consisting of
dimerized chains of edge-sharing octahedral complexes (presumably due to Peierls
instability),!? (z7) CuCl; and (CH;3)4NMnCl; antiferromagnetic insulators,!? consist-
ing of symmetric chains, (iii) organic polymers such as polyacetylene,® and (iv)
organic charge transfer salts such as those based on the tetracyanoquinodimethane
(TCNQ) anion.?!? Such pseudo-one-dimensional solids are believed to be likely can-
didates for high-temperature superconductivity.!®

Testing these concepts of Peierls instability, charge density waves, antiferromag-
netic insulators, and spin density waves with high quality ab initio* total energy
calculations for one-dimensional metallic systems should prove valuable in under-
standing the properties of such pseudo-one-dimensional solids.

Here we present results of extensive ab initio total energy calculations for various
one-dimensional ring clusters composed of copper, silver, gold, lithium and sodium.
We discuss the electronic structure of the one-dimensional metal from the energy
band point of view, using results of the ab initio calculations to illustrate the concepts.
Section II presents results calculated with single-determinant self-consistent field
wavefunctions [restricted Hartree-Fock (HF, non-spin-polarized) and Unrestricted
Hartree-Fock (UHF, spin-polarized)]. Details of these many-electron wavefunctions
are given in Appendix A.

After submission of this article, a paper appeared in this journal presenting ab

initio HF results for the Lig, Lio, and Liy4 ring clusters and coupled-cluster results
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for Lig.} This study also showed that at the HF level, Lig, Li;o, and Liy4 are each
unstable with respect to dissociation into Li; molecules, and that HF leads to Peierls
instability fpr Liyo and Li;4.28
Here we show that the Peierls instability and lack of cohesion of the one-dimensional

ring clusters composed of Cu, Ag, Au, Li, and Na are artifacts of the HF wavefunc-
tion. Hence, UHF leads to stable one-dimensional structures (no Peierls instability)
for Cu, Ag, Au, Li, and Na. The stabilities of these one-dimensional systems are con-

firmed by the results of generalized valence bond calculations (presented elsewhere).®

II. Results

In the process of exploring the bonding in metal clusters,!” we performed extensive
ab initio calculations on various one-dimensional ring and chain clusters of lithium
atoms up to N = 14, where N is the number of atoms in the cluster, and extrapolated
the various results to infinite N.!® These studies show that the cohesive properties
of the ring clusters converge rather quickly, and that the eight and ten atom ring
clusters are qualitatively correct and fairly accurate as models for the infinite chain
(each are periodic in one dimension). Herein we examine My ring clusters composed
of copper, silver, gold, lithium, and sodium, where the lattice constants (a) for the
undistorted (symxﬁetric) clusters are taken equal to th;a nearest-neighbor distances for
the bulk metals.'® We model the Peierls dimerized chains with ring clusters containing
alternating long and short internuclear separations a+4éa, as shown in Figure 1, where
the average nearest-neighbor distance is equal to that for the symmetric cluster.
We find that the cohesive properties of the one-dimensional alkali and noble

metals are dominated by the valence sp electrons. The standard Mulliken!® orbital
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population analysis for the Mjq ring clusters leads to the average atomic configura-
tions (UHF, see Appendix A.2) 3d®972450-6344p0-40¢ (Cu), 4d97155%-%085p24%1 (Ag),
549-9596,408836,,0-179 (A ), 250494250508 (Ti) and 350649350351 (Na). For the ground
and low-lying excited electronic states of the noble metal clusters, there is minimal
hybridization of the d core orbitals with the sp valence orbitals, and hence the closed-
shell d° configurations are maintained (see Appendix A.2). For both the noble and
alkali metals, sp hybridization is crucial in describing the valence electronic struc-
tures. However, the pr conduction bands are significantly higher in energy than the
valence band for both the alkali metals and the noble metals and hence for the ground

electronic states the pr conduction bands are unoccupied (see Appendix A.2).

A. Energy Band Theory — Non-Interacting Electrons

The normal energy band theory of metals is based on one-electron Bloch functions

(¥m) which for a My symmetric ring cluster can be written as

N
¥ = N3 wjexp(ikR;)

j=1
2mm
kE =
aN
Rj = ja

where m is an integer (|m| < N/2), {w;} is the optimal set of N equivalent real
orthogonal localized (Wannier)® orbitals, k is the wave vector, and R; denotes the
position of w; (going around the circumference). The one-electron energies are given

as
ek = (Y| R [hm) (1)

where AEFF is an effective one-electron hamiltonian including the electronic kinetic

energy and the potential energy [due to both the ion cores and the remaining (n — 1)
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valence electrons]. A given set of Bloch functions can always be combined to give an
equivalent set of real functions (éee Appendix A.6), and we use the real representa-
tions of the Bloch functions except where noted otherwise. The real representatioﬁs
of the Bloch functions are equivalent to molecular orbitals, and the non-interacting
electrons approximation for bulk solids is somewhat analogous to the Hiickel approx-
imation for molecules.?

The Bloch functions for the valence band of each My ring cluster (M = Cu,
Ag, Au, Li and Na) can be written in terms of localized orbitals {w;} centered
symmetrically at the bond midpoints, as shown in Figure 2 for the Agg ring cluster.
It is important to note that the valence Bloch functions for these M. N ring clusters
cannot be written in terms of localized orbitals that are centered symmetrically at
the atoms. This is because the valence band k = 7/a orbital (m = N/2, even N) has
nodes passing through the atomic centers whereas (in each case) the k = 7 /a orbital
with nodes passing through the bond midpoints is much higher in energy (hence part
of a conduction Band).

The one-electron energies for the Agg ring cluster are given in Figure 3, where the
data points representing the discrete levels are joined by a solid curve approximating
the continuous band that would be obtained in the limit as N approaches infinity.
The orbitals and energy levels?! presented in Figures 2-4 are obtained from the HF
valence high-spin state where each Bloch function is occupied with a single electron
(total spin S = 4, see Appendix A).2?

" In the energy band model (with the usual non-interacting electrons approxima-
tion), the ¢ are independent of occupation because two-electron terms are not ex-
plicitly included in the effective hamiltonian (1). Thus, the groﬁnd state for the

one-dimensional metal composed of monovalent atoms consists of a half-filled band
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of doubly-occupied Bloch functions.
In the HF description, the two-electron terms are explicitly included in the hamil-

tonian, and as a result the ¢ are not independent of occupation.??

1. The Peierls Instability

Peierls! showed that the application of band theory to symmetric one-dimensional
metals with partially occupied valence bands leads to instability with respect to
geometric distortions. Thus, for a one-dimensional metal with a partially occupied
valence band, Peierls showed that it is always possible to find a distortion lowering
the energies of the one-electron states below the Fermi level (and raising the energies
of the one-electron states above the Fermi level).

The Peierls instability! for one-dimensional metals is analogous to the Jahn-
Teller?* and pseudo-Jahn-Teller instabilities for open-shell molecules with high sym-
metry.

For a monovalent one-dimensional metal, the Peierls instability leads to a dimer-
ized chain,! as shown in Figure 1b. The valence energy band for the dimerized Agsg
ring cluster is shown in Figure 4. The effect of the dimerization is to produce a band
gap at kr = +7/2a (0.011 eV at §a = 0.10 A). In the usual non-interacting electrons
approximation, this results in a metal-to-insulator transition since the one-electron
states below the band gap are all doubly-occupied and the one-electron states above
the band gap are all unoccupied. The origin of the band gap can be explained in a
qualitative fashion by examining the degenerate |m| = 2 orbitals of the Ags symmet-
ric ring (Figure 2). Each m = 2 orbital has nodes bisecting alternate bond midpoints.
Upon dimerization, the orbital with nodes bisecting the expanded bond midpoints

is stabilized while the orbital with nodes bisecting the compressed bond midpoints
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is destabilized.

We chose the eight-atom cluster as opposed to six- or ten-atom clusters for model-
ing the anticipated Peierls instability, since only clusters where N is divisible by four
have one-electron states at kr = +7/2a (m = 5/2 is not an allowed state for My,).
Hence, with respect to the Peierls instability, N = 41 ring clusters are expected to be
better models of the one-dimensional metal than N = 4i + 2 ring clusters, although
the distinction between N = 47 and N = 41 + 2 is expected to vanish in the limit as

N approaches infinity.?®

B. Hartree-Fock
1. Cohesive Energies

Using HF wavefunctions we calculated cohesive energies of the Cuyo, Age, Ags, Agio,
Auyo, Lig, Liyo, Liys, and Na,o symmetric ring clusters (low-spin) with respect to
atomization

My - NM ' (2)
and dimerization

My — N/2 M, (3)

(dissociation into diatomic molecules). These are reported in Table 1, where the
total cohesive energies have been divided by N. These cohesive energies are cal-
culated using (z) the total energies of low-spin ring clusters at fixed values of the
lattice constant (a), (#2) the total energies of diatomic molecules at their calculated
equilibrium internuclear separations (R.), and (i2:) the total energies of the isolated
atoms. In all cases the HF wavefunctions are optimized with no orbital symmetry

restrictions. [For HF, the orbitals are each occupied with two electrons (except for



14

the isolated atoms where the core orbitals are doubly-occupied and the valence s
orbital is singly-occupied).]?® Further details are given in Appendices A-B.
| At the HF level, Na,p is unstable with respect to atomization, and Li;o and Li;q
are just barely stable with respect to atomization. However, Cu;o, Ags, Ags, Agio,
and Au;o each have large cohesive energies with respect to atomizaton (see Table 1).
A second criterion for stability is cohesion with respect to dissociation into diatomic
molecules.(3) Here, Ags, Lig, Lijg, Li14, and Na,q are unstable while Cu;o, Ag;o, and
Auyg are just barely stable.

As expected, the series Agg, Ags, Agyo indicates that, at the HF level, the N = 4
clusters are significantly less stable than the N = 47 + 2 ciusters. This is consistent
with the Hiickel model of 47 + 2 aromaticity where the N = 4: + 2 rings have fully
occupied bonding Fermi levels.whereas the N = 4: rings have partially occupied
nonbonding Fermi levels.?® However, the UHF results (see Table 1 and Section C)
exhibit no distinction between N = 47 and N = 41 + 2.

Results for the series Lig, Liyo, Li14, and the series Agg, Ags, Agyo indicate that
the HF cohesive energies decrease with increasing N. Hence, we expect that at the
HF level, the Ag;4 and Au,4 ring clusters would each have a negative cohesive energy
with respect to dissociation into diatomic molecules.

In each case the HF atomization and dimerization energies are substantially
smaller than the respective UHF values (see Table 1). Both the HF and UHF cohesive
energies for the one-dimensional metal clusters (Table 1) are much smaller than the
respective experimental values for the three-dimensional bulk metals (Table 2),26:2%:28

Despite the poor cohesive energies, HF often yields accurate geometries. Thus,
for Na; HF yields a potential well with a reasonably accurate bond length (too long

by 3.8%) and force constant (too small by 4.2%; see Appendix B and Table 10),
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while the cohesive energy for Na; is negative at the HF level (the HF energy of Na,
at the minimum of the well is higher than twice the HF energy of the isolated Na
atom)!

For Lig, Lij, and Liy4, the HF cohesive energies reported here differ somewhat
from those reported by Forner and Seel (FS).!® There are several factors that lead to
these differences (see Table 3): (z) The HF results reported by F'S are for optimized
lattice constants (a. = 3.076 £ .004 A) whereas our results are reported at fixed
lattice constants (a = 3.014 A). However, the force constants (symmetric stretch)
for these systems are small enough that a displacement from the equilibrium lattice
constant by 0.06 A increases the total energy by only 1.5 rr;eV/ atom.!® (iz) FS used
a basis set that has more s flexibility but less p flexibility in comparison to our
basis set (see Appendix A). (iiz) By calculating two sets of HF results with the
same basis set — (a) HF with full Dy, orbital symmetry restrictions and (b) HF
with no orbital symmetry restrictions — it is clear that the results re;;orted by FS
are for the fully symmetric states (see Table 3). Thus, for Lig, Liyo, and Liy4, our
Dpyn HF total energies are higher than those reported by FS by 11.973, 11.701, and
11.429 meV /atom, respectively (note that the increment is exactly 0.272 meV/atom).
Hence, for both Lijo and Liy4, FS did not obtain the lowest energy low spin HF
solution (which has a charge density wave) — although their conclusion that both

Liyo and Liy4 exhibit Peierls instability at the HF level is undoubtedly correct.

2. Charge Density Waves

First, we present results for the My, N = 4i + 2 low-spin symmetric ring clusters,

and then we present results for N = 4i (Ags).

For Cuyo, Age, Ag10, Auyg, and Lig, the HF wavefunction leads to a fully symmet-
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rical electronic charge density (having periodicity a) even if the orbitals are optimized
without symmetry restrictions.

However, for Lijg, Liy4, and Na,o, HF (optimized without symmetry restrictions)
leads to an electronic charge density having periodicity 2a (twice that of the lat-
tice). Since the electronic charge density does not have the same periodicity as the
lattice, each of these systems is said to have a charge density wave (defined by the
difference between the net charge density and the symmetric component of the net
charge density). For these systems, the charge density wave has maxima and min-
ima centered about alternate atoms, as shown for Li,4 in Figure 5, where the seven
doubly-occupied valence orbitals lead to a charge density wa.\;e with maxima centered
about atoms 1, 3, 5, 7, 9, 11, and 13, and minima centered about atoms 2,4, 6, 8,
10, 12, and 14.

Charge density waves can be avoided for the low-spin HF states of the My ring
clusters by optimizing the wavefunctions with full D ~Nh orbital symmetry restrictions;

i.e., restricting the orbitals to be Bloch functions. Hence, for M;, and M4, the states

described by the valence configurations

Mio:  %o(TL¥-2(T%a(TL)d—a(T1)a(T))
My, : Po(TLID-2(TUa(TL)w-a(TL)ba(TL)p-a(T L)ba(T1)

each lead to a fully symmetrical charge density. Orbitals optimized in this fashion

are shown for Liy4 in Figure 6.

However, the optimum HF symmetric state is higher in energy than the opti-

mum HF charge density wave state by 5.99 meV/atom, 23.22 meV/atom, and 0.70

meV /atom for Liyo, Li14, and Nay,, respectively (see Table 3). For each of these

cases, allowing the HF wavefunction to break symmetry — leading to a charge den-
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sity wave — reduces the total electron-electron repulsion energy (two-electron energy;
see Table 3). However, this is countered by one electron terms (such as the electronic
kinetic energy) favoring the fully delocalized (smooth) orbitals (see Table 3).

The charge density wave states of these ring clusters can each be characterized
by the Dy symmetry-projection of their canonical orbitals (having in each case
D, symmetry where n = N/2). In each case, the D, real canonical orbitals can
be combined to give complex D,; functions {¢!,, 0 < |m| < N/4} that can be

decomposed into Dy Bloch functions {¢m, 0 < |m| < N/2} as

")b:n = c‘md)m + cn—m¢n-—m~

Summing up the squares of the coefficients ¢,, gives populations p,, of the Bloch
(Dnn) energy levels above and below the Fermi level (|mp| = N/4). These pop-
ulations are given in Table 4, and, for tim and Liy4, are plotted as a function of
wave vector in Figure 7. The magnitude of the charge density wave increases as the
populations of energy levels above mp increases. Note that in each case the sum
Pm + Pn_m is an integer and is independent of the magnitude of the charge density
wave.

At the HF level, charge density waves are enhanced by (i) a narrow, partially
occupied energy band (low overlap, low density) and (i7) a large density of states
immediately above and below the Fermi level.?? These properties enhance the orbital
mixings required in order for the orbitals to break symmetry (and form the charge
density wave) by minimizing the concomitant one-electron energy penalty. For M,
the valence band widths follow the trend Cu > Au > Ag > Na > Li (see Appendix
C). Hence, (z) the charge density wave for Liyo is greater than that for Naq (see

Tables 3-4), and (22) Cujo, Ag10, and Auyo do not have charge density waves because
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their valence bands are too wide.
This is also consistent with the increase in charge density wave magnitude with

increasing NV for the series Lig, Lijo, Liz4 (HF does not lead to a charge density wave

for Lig). The full band width, defined as
B = |4A3,

where h{, is the one-electron nearest-neighbor hopping integral (see Appendix C; h¥,
is closely related to the Hiickel 3 parameter),?® actually decreases substantially with
increasing N (B = 3.999, 2.838, and 2.334 eV for Lig, Lijo, and Li;4, respectively;
see Appendix C). Also, the number of one-electron states i;l the valence band is N,
and hence, the energy gap between the occupied and empty one-electron states at

the Fermi level

dep ~ Bsinw/N for N =41 + 2

decreases dramatically with increasing N (bep = 1.397, 0.792, and 0.544 eV for Lig,
Liyo, and Liy4, respectively).?? Based on these results for the series Lig, Lijo, and Lijg,
we cannot rule out charge density waves for the HF low-spin states of the N = 41 +2
Cuy, Agy, and Auy clusters for N > 10.

The effects that control the charge density waves for the N = 4¢ + 2 ring clusters
are also important for the N = 41 rings. However, unlike the N = 4z + 2 rings, for
N = 4i the Fermi level is partially occupied; hence, for N = 4z, charge density wave
states can always be obtained from the symmetry-restricted HF state by mixing the
orbitals at the Fermi level (this does not raise the total one-electron energy). The
orbitals below the Fermi level respond to this perturbation by breaking symmetry,
further enhancing the charge density wave. Therefore, at the HF level, a N = 4

cluster can have a charge density wave even if the neighboring N = 4i £ 2 clusters
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do not have charge density waves (this is true for the series Ags, Agg, and Agyo)-

As an example, for the Mg symmetrical ring, the two Dy, HF states

Po(TLb-a(TL)a(TL)p_a (L)

Do(TL)¥-1 (T (T L) 5(T1)

are degenerate and both lead to a fully symmetrical charge density (see Appendix
A.6). However, combining the complex orbitals ¥_s and 9, to form the real orbitals
¥_, and ¥,, and forming the analogous configurations in terms of these real orbitals
leads to states having charge density waves.

For low-spin Agg, the HF fully symmetrical state (opt‘imized with Dgy orbital
symmetry restrictions) has a to'(a.l energy higher than that of the lowest energy HF
state by 27.8 meV/atom (see Tables 3-4 and Figure 8a). For low-spin Ags, the lowest
energy HF wavefunction leads to a charge density wave having maxima and minima
centered about alternate atoms (see Figure 8a). The orbital population analysis for
this state (Table 4) indicates that the three HF valence orbitals below the Fermi
level break symmetry, whereas the fourth orbital at the Fermi level has the same
symmetry as Eﬂ.

For low-spin Agg, we also solved for a higher energy HF wavefunction leading
to a charge density wave having maxima and minima centered about alternate bond
midpoints (see Figure 8b); hence, the charge density wave of this excited state is
“phase-shifted” from that of the lowest energy state (Figure 8a) by a/2. This excited
charge density wave HF state (Figure 8b) was optimized self-consistently by imposing
Dy orbital symmetry restrictions, leading to four orbitals that are Dy, symmetry
combinations of four two-center, two-electron bonds (similar to the bond of Agz).

Neither of these low-spin Ags HF states leads to cohesion with respect to disso-
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ciation into Ag; molecules (see Table 3). The energy splitting of these two distinct
low-lying charge density wave states is 14.9 meV/atom for the Ags symmetric ring
cluster. If the lack of cohesion (with respect to diatomic molecules), and the charge
density waves were directly related, one would expect that the charge density wave
state having maxima and minima centered about alternate bond midpoints (Figure
8b) — consistent with the superposition of two-center two-electron bonds — would
be the lowest in energy. However, for Ags, the lowest energy charge density wave
state is the one having maxima and minima centered about alternate atoms (Figure
8a).

For Ags, the HF triplet state described by the valence configuration

Bo(T L (TL)Ba(T L)—a(T)a(1)

leads to a fully symmetrical charge density and an energy lower than that of the
low-spin charge density wave state (Figure 8a) by 33.6 meV/atom. However, the
lowest energy Ags HF triplet state leads to both charge and spin density waves and
a total energy lower than that of the singlet charge density wave state (Figure 8a)
by 38.7 meV/atom. Nevertheless, even the lowest energy Agg HF triplet state is
unstable with respect to the limit of four low-spin Ag; molecules by 4.5 meV/atom.

Further details of the Ags HF triplet states are given in Appendix E.

3. Peierls Instability

We chose Agg for modeling the anticipated Peierls instability. The two charge density
wave states (Figures 8a-b) for the low-spin Agg symmetric ring cluster are each
doubly degenerate. In each case, “translating” the valence orbitals by e (or rotating

by 27 /8) results in an equivalent but different charge density wave state. All four
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charge density wave states are invariant to translations by integral multiples of 2a.

The HF energy of low-spin Ags as a function of the Peierls distortion (§a) is shown
in Figure 9. As predicted by Peierls! the optimum geometry is a distorted (Dys)
structure. The HF wavefunctions optimized without orbital symmetry restrictions
lead to an adiabatic potential energy curve having the correct symmetry [E(8a) =
E(—éa); the solid curve in Figure 9]. The HF wavefunctions optimized with Dy
orbital symmetry restrictions lead to a set of diabatic potential energy curves crossing
at 6a = 0 (the dashed curves in Figure 9) The Dy orbital symmetry restrictions
ensure that the valence charge density has maxima centered on a particular set of
four alternating bond midpoints, as in Figure 8b.

The Peierls distortion breaks the degeneracy of the two states having charge den-
sity wave maxima centered at alternate bond midpoints (as in Figure 8b). Numbering
the bond midpoints 1 through 8, the Peierls distortion compressing bonds 2, 4, 6,
and 8 (and expanding bonds 1, 3, 5, and 7) lowers the energy of the state having
charge density wave maxima centered at bond midpoints 2, 4, 6, and 8, and raises the
energy of the state having charge density wave maxima centered at bond midpoints
1, 3, 5, and 7 (for small distortions §a). Hence, Peierls instability results for the
low-spin states having charge density wave maxima centered at bond midpoints.

For small éa, the energy splitting is approximately equal to twice the band gap
at k = 7/2a (as defined by the valence high-spin state; see Appendix A). Thus,
the band gap and total energy splitting are 0.121 eV and 0.257 eV, respectively, for
6a = 0.04 A, and 0.301 eV and 0.641 eV, respectively, for §a = 0.10 A [the ratio of
band gap to total energy splitting is 0.4705 and 0.4698 for §a = 0.04 A and §a = 0.10
A, respectively].

Although small Peierls distortions do not break the degeneracy of the two states
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having charge density wave maxima centered at alternate atoms (as in Figure 8a),
these states also lead to Peierls instability. For the small distortion of §a = 0.04 A,
the Peierls distortion causes the charge density wave maxima to slide towards the
compressed bond midpoints and the charge density wave minima to slide towards
the expanded bond midpoints, resulting in a net stabilization of the total energy.
For §a > 0.10 A, the charge density wave maxima and minima are located at the
exact centers of alternate bond midpoints (as in Figure 8b).

The optimum value of the Peierls distortion §a.p = 0.189 A, leads to alternating
internuclear separations of 2.700. and 3.078 A. The optimum value of the compressed
bond length is somewhat smaller than the 2.724 A equilibriﬁm bond length calculated -
for Ag; at the HF level (see Appendix B and Table 10), indicating that the interaction
between dimers in the distorted ring cluster is repulsive. This is consistent with the
observation that the Agg ring cluster with 8a,, = 0.189 A is higher in total energy
than four Ag, molecules (R. = 2.72 A) by 0.143 eV (17.9 meV/atom).

C. Unrestricted Hartree-Fock
1. Cohesive Energies

Using UHF wavefunctions we calculated cohesive energies of the Cuyo, Ags, Ags,
Agio, Auyg, Lig, Lilo, Liy4, and Nayo symmetric ring clusters (low-spin) with respect
to atomization (2) and dimerization (3). These are reported in Table 1, where
the total cohesive energies have been divided by N. These cohesive energies are
calculated using () the total‘energies of low-spin ring clusters at fixed values of the
lattice constant (a), (¢2) the total energies of diatomic molecules at their calculated

equilibrium internuclear separations (R.), and (iiz) the total energies of the isolated
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atoms. In all cases the UHF wavefunctions are optimized with no orbital symmetry
restrictions. The UHF total energies are lower than the HF total energies in all cases
except for Au; and the isolated atoms, where the UHF and HF total energies are
equal. Further details are given in Appendices A-B.

The results given in Table 1 indicate that at the UHF level the symmetric ring
clusters are all quite stable with respect to dissociation into both atoms and diatomic
molecules. In contrast with HF, for UHF the cohesive energy per atom increases with
increasing V.

Comparison of the UHF cohesive energies calculated for the Mo ring clusters with
the experimental cohesive energies for the three-dimension.al bulk metals (given in
Table 2) indicates that the trend in the cohesive energy with respect to dimerization
differs dramatically for the one-dimensional (Ag > Cu > Au) and three-dimensional
(Au > Cu > Ag) noble metals. However, the experimental and calculated atomiza-
tion energies for the diatomic molecules both follow the trend Au > Cu > Ag (see
Appendix B). Thi’s could indicate a fundamental difference in the bonding for the

one-dimensional and three-dimensional systems.

2. Spin Density Waves

The UHF wavefunction contains a separate orbital for each valence electron, where
the orbitals occupied with up-spin electrons (T or a) are allowed to overlap the
orbitals occupied with down-spin electrons (| or 8). For each of the Cuyq, Agg, Ags,
Agio, Auy, Lig, Liyo, Lizg, and Na;o symmetric ring clusters, the UHF ground state
optimized without orbital symmetry restrictions is low spin and lgads to valence
orbitals having maximum absolute amplitudes centered at the bond midpoints, as

shown in Figure 10 for Ags.
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By imposing orbital symmetry restrictions, we solved self-consistently for low-
spin “excited” states having valence orbitals with maximum absolute amplitudes
| centered at the atoms (as shown in Figure 11 for Agg), leading to significantly higher
total energies [for Ags, the UHF energy for the atom-centered state is higher than
that of the ground state (bond-centered) by 109.6 meV/atom; further details of these
atom-centered (excited) UHF states are given in Appendix D].

In each case, the a-spin orbitals and 3-spin orbitals optimized without symmetry
restrictions for the low-spin ground state break symmetry in such a manner that
(2) the total valence a-spin density has maxima and minima on alternating sets of
bond midpoints (periodicity 2a), (i7) the total valence 3-spin density is phase-shifted
from the total total valence a-spin density by a such that the maxima (and minima)
of the valence a-spin and (-spin densities are staggered, leading to a spin density
(defined by the difference between the a-spin density and the ﬁ-épin density) with
periodicity 2a, and (#ii) the total valence electronic charge density (disregarding
spin) is fully symmetric (with periodicity ¢). Hence, for each of the low-spin Cu,o,
Agg, Ags, Agio, Auyo, Lig, Lijg, Liy4, and Na,o symmetric ring clusters, UHF leads
to an antiferromagnetic description having a charge density with periodicity ¢ and
spin dénsity with periodicity 2a. The local description of the ground state valence
electronic structure in each case involves electrons centered at the bond midpoints

with alternating spins, e.g., @ 8 a B a 8, etc.1®

3. Peierls Instability

In contrast with HF, the UHF description of the low-spin Agg ring cluster leads to
stability with respect to the Peierls distortion (6a). The UHF total energy calculated

without orbital symmetry restrictions increases quadratically as a function of éa as
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shown in Figure 12.

At sufficiently large values of da, we anticipated the possibility that the valence
orbitals could slide away from the bond midpoints (as shown in Figure 10) towards
the atoms (as shown in Figure 11). However, this does not occur for éa < 0.30
A even though these UHF wavefunctions are optimized without orbital symmetry
restrictions, allowing complete freedom for the positions of maximum absolute or-
bital amplitudes. As a further test for sliding valence orbitals, we constructed a
set of skewed “starting guess” orbitals for §a = 0.30 A having maximum absolute
amplitudes centered at alternate positions midway between the atoms and the bond
midpoints. The UHF iterative self-consistent optimization of these skewed orbitals
resulted in orbitals having maximum absolute amplitudes centered exactly at bond
midpoints.

The UHF orbitals shown in Figure 10 imply that the cohesion of the symmetric
ring cluster is due to two-center one-electron bonds, similar to the one-electron bonds
of the diatomic molecular cations.’®1” Hence, the Peierls-distorted diatomic lattice

is unfavorable because alternate one-electron bonds are stretched and compressed.

D. UHF Energy Bands

In order to further characterize the UHF antiferromagnetic ground state, we examine
the effect of spin polarization on the one-electron energy bands. In general, the UHF
wavefunction results in separate energy bands for the a-spin and the 3-spin energy

levels.
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1. The Symmetric Cluster

For the symmetric cluster, the a-spin and the 3-spin levels coincide. The discrete -
a-spin levels for the Ags cluster are shown by the data points in Figure 13, where
the solid curve approximates the continuous band of energy levels obtained in the
limit as NV approaches infinity. Since the periodicity of the a-spin orbitals is 2a, the
a-spin Brillouin zone [the unit cell in reciprocal (k) space] extends from —7/2a to
7/2e (half that of the lattice). This is consistent with the energy bands obtained
with the Hubbard hamiltonian.® Hence, when spin polarization effects are included
(UHF) the energy band description of the chain of monovalent metal atoms consists
of completely filled energy bands. The Peierls instability i; predicted only for one-
dimensional metals with partially filled energy bands, and hence the My clusters‘
composed of Cu, Ag, Au, Li and Na are expected to be stable with respect to the
Peierls distortion.

The second band shown in Figure 13 (a-spin conduction band, unoccupied states,
plotted in the extended zone, w/2a < |k| < 7/a) is obtained with the improved
virtual orbital method?® and corresponds to o orbitals (symmetric with respect to
bond axes) having large amplitudes in the bond midpoints occupied by the B-spin
valence electrons. This leads to large electron-electron repulsions resulting in the
large energy gap (2.89 eV) between these two bands. The net result is that at the
UHF level the Agg symmetric ring cluster is an antiferromagnetic insulator.

The UHF band structure of Figure 13 is in qualitative agreement with that ob-
tained from the Hubbard hamiltonian;® a quaﬁtita.tive analysis of the UHF energy
bands and comparison with those obtained with the Hubbard hamiltonian is given

in Appendix C. Values of the Hubbard parameters B and U obtained directly from
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the ab initio calculations indicate that the B/U ratio follows the trend Li < Na <«

Ag < Cu < Au (Appendix C, Table 11).

2. The Peierls-Distorted Cluster

The Peierls distortion does not alter the 2a periodicities of the a-spin and [3-spin
orbitals. Figure 14 shows the effect of a small Peierls distortion (§a = 0.10 A) on
the one-electron energy bands, where we merged together (i) the a-spin valence half-
band (—7/2a > k > 0), (i) the B-spin valence half-band (0 > k > 7/2a), (441) the
a-spin conduction half-band (—7/e > k > —x/2a), and (z72) the 3-spin conduction
half-band (7/2a¢ > k > w/a). The energy bands for the symmetric ring are shown
by the thin dashed lines. The Peierls distortion stabilizes the a-spin valence orbitals
since they have nodes bisecting the expanded bond midpoints but destabilizes the 3-
spin valence orbitals since they have nodes bisecting the compressed bond midpoints.
The net result is that the one-dimensional metal composed of monovalent atoms does

not lead to a Peierls instability (if spin polarization effects are allowed).

ITI. Discussion

The ab initio calculations indicate that the one-dimensional elemental metals com-
posed of Cu, Ag, ‘Au, Li and Na are stable with res‘pect to the Peierls distortion, and
have large cohesive energies with respect to both atomization and dissociation into
diatomic molecules, as long as spin polarization effects of the UHF wavefunctions are
allov;red (see Table 1). The UHF wavefunction for each of these systems leads to an
antiferromagnetic (nonmetallic) ground state having a spin density wave, although

in each case the net electronic charge density of the ground state (obtained by adding
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the up-spin and down-spin densities) is fully symmetrical. This is consistent with
the low-density (or large a) solution of the Hubbard hamiltonian.?®"™® In each case,
the local description of the valence electronic structure consists of electrons centered
at the bond midpoints with alternating spins.

The HF wavefunctions (which do not allow spin polarization effects) give spurious
results, such as charge density waves for the Agg ring cluster and negative cohesive
energies with respect to atomization for both the Na;q ring cluster (see Table 1) and
the Naj molecule (see Appendix B). The HF wavefunctions for these one-dimensional
metallic clusters lead to Peierls instabilities, and very small or negative cohesive
energies with respect to dissociation into diatomic molecules.!®

Thus, the HF and UHF results calculated for the one-dimensional metals com-
posed of Cu, Ag, Au, Li and Na are in absolute disagreement with one another.
Since the UHF total energies are all lower than the HF total energies, (as shown in
Figure 15 for Agg), the variational principle suggests that the UHF results are more
likely to be correct. However, unlike HF, the low-spin UHF wavefunctions are “spin-
contaminated,” i.e., they are not eigenfunctions of the many-electron spin operator
5% (see Appendices A.4 and A.5) and hence contain contributions from both the
many-electron singlet (S = 0) and higher spin states such as triplet (S = 1), quintet
(S = 2), etc., up to high-spin (S = N/2, where N is the number of atoms in the
cluster). It is likely that errors due to spin contamination do not affect the diatomic
molecules (M3) and the ring clusters (My) in a consistent manner. For example, the
Ags symmetric cluster has a UHF total energy 1.801 eV (225.1 meV/atom) lower
than the HF total energy, whereas the Ag; molecule has a UHF total energy only
0.020 eV (10.1 meV/atom) lower than the HF total energy (see Figure 15). Hence,

the results of the ab initio calculations based on single-determinant wavefunctions
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(HF and UHF) are somewhat inconclusive.

In order to resolve the disagreement between the HF and UHF results, we per-
formed ab initio total energy calculations for each of these systems with the mul-
tideterminant generalized valence bond (GVB) wavefunction,®® which is a multi-
determinant generalization of UHF that is a proper eigenfunction of 52 (no spin
contamination); details of these results are reported elsewhere.!® The GVB total en-
ergies are all lower than the UHF and HF total energies, as shown in Figure 15 for
the Ags ring cluster. For Agg, the GVB total energy calculations confirm the UHF
result of stability with respect to the Peierls distortion (see Figure 15). In general,
for the ground electronic states of the one-dimensional My ring clusters composed of
Cu, Ag, Au, Li, and Na, the GVB results confirm that the HF-Peierls description is
fundamentally incorrect and th:;tt the UHF-Hubbard description is basically correct
except that (unlike UHF) the GVB descrii:tion of the antiferromagnetic ground state
leads to fully symmetrical spin and charge densities (no spin-contamination or spin
density wave).!®

Thus, spin polarization is crucial for a proper singie—determinant description of
the valence electronic structures of these one-dimensional metals, especially for the
antiferromagnetic ground states. However, both the spin contamination and the
spin density waves resulting from UHF wavefunctions for these systems are due to
an incomplete treatment of the electron correlation forced by the use of a single
determinant wavefunction.®

The UHF calculations indicate that the trend in the cohesive energy with respect
to dissociation into diatomic molecules differs dramatically for the one-dimensional
(Ag > Cu > Au) and three-dimensional (Au > Cu > Ag) noble metals (see Tables

1-2). The experimental atomization energies for the diatomic molecules and bulk
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metals both follow the trend Au > Cu > Ag (see Appendix B). However, the trend
for the one-dimensional metals is consistent with both the a;tomic s-to-p excitation
energies [Ag (3.740 eV) < Cu (3.806 eV) < Au (4.947 eV)),*! and with the extent
of p hybridization for the Mj, ring clusters as revealed by the standard Mulliken®
orbital population analysis [Ag (42 % ) > Cu (40 %) > Au (18 %); see Appendix A].

The cohesive energies (Li > Na; see Tables 1-2), the atomic s-to-p excitation
energies (Li, 1.848 eV; Na, 2.104 eV),*! and the extent of p hybridization (Li, 51 %;
Na, 35 %) are all consistent for Li and Na. Hence, it is clear that sp hybridization
plays a crucial role in the cohesion of these one-dimensional metals.

The participation of the low-lying p orbitals in the valence electronic structures
of these one-dimensional metal clusters leads to singly-occupied UHF valence or-
bitals having maximum absolute amplitudes centered at bond midpoints (see Figure
10). The UHF up-spin and down-spin orbitals are staggered, leading to a local-
ized description where electrons are centered at the bond midpoints with alternating
spins (antiferromagnetism). This implies tha,f. the cohesion in these one-dimensional
metals is due to two-center one-electron bonds, similar to the one-electron bonds of
the diatomic molecular cations.'®!? Hence, the Peierls-distorted diatomic lattice is
unfavorable because alternate one-electron bonds are stretched and compressed.

In terms of energy band theory, spin polarization effects resulting from the UHF
wavefunction lead to a reduction of the Brillouin zone by a factor of two, resulting in
a ground state having completely filled energy bands, explaining the lack of Peierls
instability (which is predicted only for one-dimensional metals with partially filled
energy bands).

The UHF calculations indicate that the usual half-filled band model for these

systems is fundamentally incorrect due to spin polarization effects; hence, the Peierls



31
instability occurs for HF but not for UHF. A generalization of the one-dimensional
Peierls instability’>? has been used to explain the Hume-Rothery rules®® [these rules
correlate particular alloy structures with particular valence-electron to atom ratios,
e.g., the vy-brass structure occurs frequently for alloys with electron/atom ratios of
approximately 21/13 (1.54 - 1.70)3%3* such as AgsZng, CugAly, etc]. The present
results raise doubts concerning this energy band explanation of the stability of the

Hume-Rothery phases, since spin polarization effects are neglected.

IV. Summary

The results for the one-dimensional metals composed of Cu, Ag, Au, Li and Na are.
summarized as follows.

(1) In each case, the UHF wavefunction leads to an antiferromagnetic (non-
metallic) low-spin ground state having a spin density wave, consistent with the low-
density (or large a) solution of the Hubbard hamiltonian.?®"8 The local description of
the valence electronic structure consists of electrons centered at the bond midpoints
with alternating spins. In each case the net electronic charge density of the ground
state (obtained by adding tﬁe up-spin and down-spin densities) is fully symmetrical.

(42) When electron correlation effects are included (spin polarization, UHF-Hubbard
description), the ﬁndistorted linear structures are stable in one dimension. There-
fore, the HF-Peierls description of the electronic structure (half-filled valence band)
is fundamentally incorrect because of the neglect of electron correlation effects. The
HF wavefunctions (which do not allow spin polarization effects) give spurious results,
such as charge density waves for the Agg ring cluster and negative cohesive energies

with respect to atomization for both the Nag ring cluster and the Na; molecule.
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(721) The cohesive energies with respect to dissociation into diatomic molecules are
large when spin polarization effects are included (UHF'). The Peierls instability does
not occur for these one-dimensional metals because of the strong cohesion resulting
from two-center one-electron bonds, similar to the one-electron bonds of the diatomic

18,

molecular cations.!®!” Hence, the Peierls-distorted diatomic lattice is unfavorable

because alternate one-electron bonds are stretched and compressed.
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Appendix A. Details of the Calculations

1. Basis Sets and Effective Potentials

We solved for both the unrestricted Hartree-Fock (UHF, spin polarized) and the
restricted Hartree-Fock (HF, non spin polarized) many-electron wavefunctions for
the low-spin states (S = 0) of the various My ring clusters (M = Cu, Ag, Au, Li,
and Na) where the one-electron orbitals {¢;} are expanded in terms of contracted

gaussian type basis functions (f, )

@i =Y focu
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and where the orbital expansion coeflicients (c,;) are optimized by the usual iterative
self-consistent field method3® to give the lowest possible total energy. The basis sets
{f.} used for the various cases®®3"38 are summarized in Table 5. For Li and Na,
these wavefunctions treated both the valence and core electrons explicitly. For the
noble metals, eleven electrons per atom (d%s') were included in the wavefunction,
and ab initio effective potentials were utilized to include the effects of all remaining
core electrons.?® These effective pot‘entia.ls include relativistic effects for Ag and Au
but not for Cu (relativistic effects are muc;h less important for Cu in comparison to
Ag and Au).

The basis set for Li includes nine s primitive gaussian ft;nctions and four sets of
P primitive gaussian functions that are contracted to give a total of three s functions
and two sets of p functions [hence, the notation (9s,4p)/(3s,2p)]. The 1s? core
electrons of Li are described predominantly by the first contracted s function, leaving
two s functions and two sets of p functions (two functions each for p., p, and p.)
to describe the valence electron. The basis sets chosen for Na, Cu, Ag and Au are
of similar quality to that for Li; in each case the core electrons are described by
the smallest possible number of functions and the valence electrons are described by
twice the minimum number of valence and polarization functions. Hence, the basis
sets have sufficient flexibility to describe the valence polarization and hybridization

effects crucial for describing the metallic cohesion.

2. Energy Bands and Atomic Orbital Populations

All results reported in this section are for HF or UHF wavefunctions where in each
case we optimized all orbitals (both valence and core) self-consistently. In this sec-

tion, the HF wavefunctions are optimized under full orbital symmetry restrictions
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(Bloch orbitals, 3,,) whereas the UHF wavefunctions are optimized without any

orbital symmetry restrictions whatsoever.

We ﬁnd that the HF wavefunction for the low-spin state of My, with valence

electron configuration

PRI LW L)BM(TL) (A1)

leads to core energy levels that are well separated from the valence energy levels for
each case (M = Cu, Ag, Au, Li, and Na).

For the noble metal ring clusters, the d bands are well separated from the va-
lence sp bands. The energy gaps between the highest-energjr d-band orbital and the
lowest-energy valence-band orbital (as defined by the Koopmans’ theorem?! ioniza-
tion potentials) are 4.91 eV, 5.88 eV and 2.85 eV for Cuyo, Ago and Auyo, respec-
tively, and the widths of the d-bands are 1.64 eV, 1.99 eV and 3.00 eV for Cuy,
Agio and Auyg, respectively. In addition, hybridization between the atomic d and sp
orbitals is minimal, as shown by atomic orbital populations!® calculated separately
for the d bands [/d), core] and the valence sp band [1)("), valence] given in Table 6.

This is in agreement with previous HF calculations for two- and three-dimensional
Cuy clusters up to N = 8,340 eg, 14, Cug octahedron, 1.89 eV d-band width
and 2.97 eV d-valence gap;*® '4,, Cug cube, 2.31 eV d-band width and 1.85 eV d-
valence gap.3® For Cu;3 clusters containing one bulk atom and twelve surface atoms
(cubo-octahedron and icosahedron), the d-band and valence band overlap at the
HF-Koopmans’ theorem level of theory.*® However, allowing relaxation effects for
the positive ion states (localized d holes) results in a description where the d band
is embedded in the valence band for the smaller copper clusters.#!

For Ags and Au,o, we also optimized the UHF wavefunction for the low-spin
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(antiferromagnetic) ground states. For Ags, the energy gap between the d band and
the valence band is 5.55 eV (UHF; 'the HF band gap is 5.90 eV), and the width of
the d band is 1.842 eV (UHF; the HF band width is 1.851 eV). For Au,g, the energy
gap between the d band and the valence band is 2.71 eV (UHF; the HF band gap is
2.85 eV), and the width of the d band is 3.005 eV (UHF; the HF band width is 2.996
eV). In each case, hybridization between the atomic d and sp orbitals is minimal, as
shown by atomic orbital populations!? calculated separately for the d bands and the
valence sp band as given in Table 7 (UHF).
We also find that the core levels are well separated from the valence levels for
the many-electron “high-spin” states (one unpaired electron ‘per atom) of the various
ring clusters. The lowest energy high-spin state for each of the My, ring clusters is

described by the valence electron configuration

PO MMM MR MMM (A2)

where each valence band orbital [1){?)] is occupied by a single up-spin electron. Again,
hybridization between the atomic d and sp orbitals is minimal, as shown by the
atomic orbital populations!® given in Table 6.

Valence-excited high-spin states such as that described by the valence electron

configuration

38 (MY MMM MO M) (A3)
where 1&[(5") is the highest energy valence orbital and zp((,") is the lowest energy =-
conduction orbital are significantly higher in energy than the lowest energy high-spin
state (A2), e.g., the total energy splitting between (A2) and ( A3)is 0.468 eV for Cuyo
and 2.168 eV for Liyo.
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3. The Frozen Core Approximation

We find that the optimum core orbitals obtained from the lowest energy hiéh—spin
state (A2) are very similar to those obtained from the lowest energy low-spin state
(A1). Hence, for the My ring clusters we freeze the core orbitals at the high-spin
HF level, allowing an enormous reduction in the computational effort. This is es-
pecially important since in our study of the My, ring clusters we optimized more
than 150 many-electron wavefunctions [six different magnetizations for each of the
five Mo clusters, with five different types of wavefunctions (HF with Djox and Cyp
orbital symmetry restrictions, HF without orbital symmetry restrictions, UHF, and
generalized valence bond)].1®

The high-spin state was chosen for defining the core orbitals because of the ab-
sence of various peculiarities associated with the low-spin states at both the HF level
(e.g., charge density waves and fluctuations in the Fermi level as a function of NV)
and at the UHF level (e.g., spin density waves). The savings in computational effort
afforded by the frozen core approximation described above is obtained by perform-
ing integral transformations;*? hence, for Mo clusters where M is a noble metal
this results in a reduction from 110 electrons and 140 basis functions (our integrals
codes use “cartesian” sets of d functions) to 10 electrons and 60 basis functions (we
eliminate the = virtual orbitals).

We do not use the frozen core approximation for the M; diatomic molecules be-
cause it is substantially less accurate for the M; diatomic molecules than it is for the
My ring clusters (see Table 8).*3 Hence, for all diatomic molecules we optimized both
the core orbitals and the valence orbitals simultaneously. Hence, for the My ring

clusters, cohesive energies with respect to both atomization and dimerization calcu-
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lated with the frozen core approximation are always smaller than those calculated
by optimizing all orbitals self-consistently.

In order to test this frozen core approximation, we calculated total energies for
the symmetry-restricted low-spin states (Al) of the various My clusters by the
method described above and also by the usual method of optimizing all orbitals
self-consistently. We also tested the HF low-spin charge density wave state of the
Agg symmetric and Peierls distorted clusters. In addition, we tested this frozen core
approximation for the HF low-spin spin density wave state for both the Ags and
Au;o symmetric clusters.

The results given in Tables 7-8 indicate that the frozen core approximation de-
scribed above is reasonably accurate for the My ring clusters composed of Cu, Ag,
Au, Li, and Na. For the Liyo and Na,q ring clusters, total energies calculated with
the frozen core approximation are less than 0.4 meV/atom higher than total energies
calculated by optimizing all orbitals self-consistently. The HF atomization energies
for the Cujq, Agio, and Au;o symmetric ring clusters calculated with the frozen
core approximation are 2-3% smaller values calculated by optimizing all orbitals self-
consistently. The UHF atomization energies calculated with the frozen core approxi-
mation are smaller than values calculated by optimizing all orbitals self-consistently
by 8.7% and 11.4% for Agg and Au,, respectively. The UHF dimerization energies
calculated with the frozen core approximation are smaller than values calculated
by optimizing all orbitals self-consistently by 17.0% and 32.3% for Ags and Auy,,

respectively.
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4. Details of the Valence Electron Wavefunctions

The UHF and HF many-electron valence wavefunctions for the various My ring

clusters can all be written in the general form

Una = A[®na x4

Ona = @1(1)pa(2)p3(3) - on(N)

where A is the antisymmetrizer or determinantal operator, ® N,4 is the many-electron
spatial product function, {y;} are the canonical valence one-electron orbitals opti-
mized self-consistently for each state A, and x4 is the many-electron spin function,
e.g.,

Xna = Xnd = a(l)a(2)-- a(A)B(A+1)B(A+2) - B(N),

where & and [ are the one-electron spin functions for the up-spin (T or m, = +1)
and down-spin (] or m, = —1) projections, respectively (m, is the quantum number
describing the projection of the electron’s spin angular momentum on an arbitr;ry
axis, z), and where A and B are the number of valence electrons with spins @ and
B, respectively (A + B = N).

For wavefunctions such as HF or UHF where both~ ® and x are products of ome-
electron functions, A forms a single Slater determinant. For brevity, the electron
coordinates are often omitted; by standard convention the orbital product is ordered
such that the electron coordinates are sequential (the electron coordinates and the

orbital subscripts are independent), e.g.,

w3p1ps-.. = 3(1)p1(2)pa(3)...
T, = xGEF = ahp?
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We solved self-consistently for the [unrestricted Hartree-Fock (UHF, spin-polarized)
and restricted Hartree-Fock (HF, non-spin-polarized)| valence wavefunctions using

the hamiltonian

T = ESORE LSRG +> =
i=1 i>; Tij
RG) = —59i 4 P() + PEORS

peoRs _ Y24, - K.)

where (i) E$PRE includes the nuclear repulsion energy and all one-electron and
two-electron energy terms involving only the core electrons {the [Ar]3d™°, [Kr]4d™,
[Xe]4f145d1°, 1s?, and 15%2s2p® shells for Cu, Ag, Au, Li, and Na,*® respectively
(see Section A.3)}, (43) the “one-electron” operator h(i) includes the electronic ki-
netic energy (—1¥?), the electron-nuclear attraction [V(7 )], and all two-electron
interactions [coulomb (J) and exchange (K)] between core electrons and valence

electrons (V7CORE)42

, and (442) r;' is the electrostatic interaction between electrons
12 and j (r;; is the distance between electrons ¢ and j).

The HF and UHF wavefunctions differ in the restrictions applied to the valence
orbitals prior to the self-consistent field optimization (energy minimization), as dis-

cussed below.

HF: Orbitals of opposite spin are forced to be equal, e.g.,
Patri =i, t=12,...,B

(thus for low-spin the orbitals are all doubly-occupied). In addition, the {y;} are

restricted to be orthonormal, e.g.,

Sff = (‘Pil%‘) = 0ij, 7'7.7 < A.
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These restrictions ensure that ¥5%, is an eigenfunction of 52

S*UHE = S(S+1)A*TRE (A4)
|A — B

S = 5

where 5% and S are the total (many-electron) spin angular momentum operator
and quantum number, respectively. The HF orbitals are optimized either with full
symmetry restrictions (complex Bloch functions, average field calculation; see sec-
tion A.6), insuring a fully symmetricé.l charge distribution, or witﬁ selected or no
symmetry restrictions, often resulting in charge density waves.

UHF': No orbital restrictions are made, generally leading to wavefunctions that are
not eigenfunctions of 52 (A4). In addition, UHF wavefunctions do not always have
the correct spatial symmetry, e.g., a spin density wave sometimes occurs. However,

both WREF and WIF are eigenfunctions of S,

§ = §+5+3;
S5.Una = MshUy,4 (A5)

A-B
2

where 5, and Ms are the total (many-electron) spin angular momentum projection
operator and quantum number, respectively.

The operators 77, 52 and §, all commute with one another, and hence, the ezact
wavefunctions can be taken as simultaneous eigenfunctions of all three operators. For
the high-spin state (A = N), the HF and UHF wavefunctions are equivalent. How-

ever, for other spin states, the HF and UHF descriptions can differ quite remarkably.
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5. UHF Spin Contamination

The UHF wavefunction for a two-electron “singlet”

T = Alerea)(aB)] = (e102)(eB) — (¢a91)(Be)
= %(901902 + pap1)(ef — Ba) + %(Wﬁz —p2p1)(aff + fa)

consists of a combination of singlet and triplet wavefunctions (if ¢; # ;). Pure spin

states for a two-electron system are given by the valence bond wavefunctions

U381 = Allprpa)(af + Ba)l = (p1¢1 — wag1)(aB + Ba)/ /(2 — 25%)
i3 = Al(p102)(aB — Ba)] = (p192 + papr1)(ef — Ba)/ /(2 + 25%)

where
Sij = (pile;)
is the overlap between normalized orbitals ; and ¢; (Si;; = 1.0). The UHF low-spin

wavefunction can be expanded in terms of these VB wavefunctions as

WEF = [\ 1= SLUY, + 1+ SR UL V2

Thus, the low-spin UHF wavefunction is a pure singlet state only when ¢; = ¢,
(where it reduces to the HF wavefunction).

In general,

WREF = A[(0r01+ - paparPara -+ on)ot B (49)

contains a mixture of spins |Ms| < S < N/2.
We evaluated the spin contaminations of the UHF wavefunctions for the various

My ring clusters and M; diatomic molecules, by calculating the “average” spin
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quantum numbers (5) from the expectation values of 52

(5%) = (2N.axn.4l5°|¥n )

5 —-1/2 4+ /(52) + 1/4

(the results are given in Table 9). Of the diatomic molecules, Na, has the greatest
spin contamination. This is consistent with the negative atomization energy of Na,
at the HF level (see Appendix B), since any improvement in the total energy afforded
by UHF is at the expense of mixing in higher-spin states. For Auy, $YHF collapses
into WHF at R < 2.70 A, so there is no spin contamination for R. = 2.678 A. For
Cu,, Ags, Liz, and Nag, UUEF collapses into TEF a boﬁd lengths of 2.34, 2.55,
2.51, and 2.41 A, respectively (these bond lengths are smaller than the respective
calculated R, values).

Values of (52) are calculated by expanding S? as

5 = §2+5,+8°5*

" N
5~ = Y57(3)

i=1

§+ = Y53

i=1
where 5, is defined in Equation (A5), and 3+ and 5~ are the one-electron raising

and lowering spin operators

ta=0 st=a

®)

Ta=/ §™B=0.

Hence, for the two-electron singlet (\Il,g{m

(57) = (($10)(aB)|5 ~ A(¢$142)(ae)])
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= {((¢1¢2)(aB)|A[($162)(afB + Ba)])
= ((¢162)(cB)|($162 — d261)(aB)))

= 1-8}.

For N > 2, we divide the canonical orbitals into two sets according to their spins

A: {pi, 1 <1< A}
B: {p;, A+1<j< N}

(A > B) and diagonalize the overlap matrix between the two sets

to obtain two sets of orbitals
A: {gi, 1<i< A}
B: {p;, A+1<j <N}
such that each orbital of set A has at most one nonzero overlap with an orbital bf

set B

S,'J' ifj =14+ A4
0 otherwise

(hence, sets A and B are biorthogonal).** The wavefunction
A = A [(951952 c PAPAF1IP A+ SEN)OLAﬂB]

is equivalent to W3F (A6) since orbital sets A and A, and orbital sets B and B are
both related by orthogonal transformations and single determinant wavefunctions are
invariant to such orthogonal orbital transformations. This simplifies the evaluation
of (52). Hence,

(52>=M§+M5+ES“+A. (AY)

i=1
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6. The Energy Expression for Complex Bloch Orbitals

The energy band theory of metals is based on one-electron Bloch functions (%)

which for a My symmetric ring cluster can be written as

N
¢’(:) = N~1/3 Z w; exp(ikR;)

j=1
2tm
k =
aN
Rj = ja

where m is an integer (Jm| < 0.5N), {w;} is an optimal set of N equivalent real
nonorthogonal localized (Wannier)? orbitals, k is the wave vector, and R; denotes
the position of w; (going around the circumference). |

A given set of complex Bloch functions can always be combined to give an equiv-

alent set of real functions

P = Pl + Ypmi = (N/2)"'/? 3 wj cos(kR;

'Qb|m| V2 (N/2) ; ; cos(kR;)
_ N

B = DL (/2) Y sin(hRy)

since energy levels resulting from complex Bloch functions are doubly degenerate
(e—|k| = €x|) and non-degenerate energy levels (k = 0, 7/a) are always described by
real Bloch functions.

Single-determinant wavefunctions written in terms of the {,,} always lead to
fully symmetrical charge distributions, e.g.,

N N
B (1) = N7 (1) + 287 3 (U 1) col (s — )

(wj = w}). This is not always true for single-determinant wavefunctions written in

terms of the {¥,_}.
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The energy expression for the configuration

Pm(1)fmi(2) «(1)8(2)

can be written in terms of the {3} as

E o= 2 [@nlin) + Bl BBom) + ot Bl) + Bt BB
1.11[57; TV o VN RN Lol )
( E ] IIJ-m’E-—m‘) (¢—m¢—m|rl 1|¢-m’¢—m'>] °

This energy expression is simply the average of the eneréy expressions for each of
the configurations
m(2)  o1) B(2)
bom(l) Pm(2) (1) B(2)
Im(l)  Bom(2) al) B(2)
bom(l) Pom(2) (1) B(2).
Energy expressions for single-determinant wavefunctions written in terms of the {,» }
can always be expressed in terms of the {1}, leading to an “average field” descrip-

tion in terms of the {3, }.

Appendix'B. Results for the Diatomic Molecules

We calculated the optimum internuclear separations (R.), dissociation energies (D.),
and force constants (k. ) for homonuclear diatomic molecules composed of Cu, Ag, Au,
Li, and Na at the HF and UHF levels. The frozen core approximation of Appendix
A.3, which is fairly accurate for the My ring cluster calculations, is substantially less
accurate for diatomic molecules (see Table 8);*3 hence, we optimized both the core

orbitals and the valence orbitals for all diatomic molecules.
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These HF and UHF results are compared with results obtained both from ex-

45,48 including treatments of the electron correlation

periment and from calculations
effects that are more complete than that of HF or UHF (see Table 10). The errors
in the HF values of R,, k. and D, for the various metal dimers in comparison with:
experiment are as follows. R, too large by 8-10 % (Cu,Ag,Au), 4-5 % (Li,Na); k.
too small by 42-45 % (Cu,Ag), 23 % (Au), 5-8 % (Li,Na); D, too small by 77 %
(Cu,Ag), 68 % (Au), 87 % (Li), 104 % (Na).

Note that although the HF value of D, for Na; is negative (for our basis set,
the energy of Na; is higher than twice the energy of the isolated Na atom), the
HF values of R, and k., for Na; are rather accurate. Due té> ionic terms in the HF
wavefunction (which are present in the HF description of the dimer but absent in the
HF description of the isolated atom), HF rarely gives accurate bond energies, and
occasionally gives negative bond energies. The HF D, value for Na; in the limit of a
complete basis set (e.g., numerical HF) is approximately 0.014 eV (too small by 98
%).47

For Cuy, our HF results (R, = 244 A, D. = 0.463 eV, k. = 4.44 eV/A?)
calculated with an effective potential (22-electron wavefunction) and an inflexible
d-basis are in very good agreement with “all-electron” HF results (R, = 2.42 A,
D, = 0.54 eV, k, = 4.05 eV/A?) calculated with all 58 electrons included in the
wavefunction and a flexible (triple-() d-basis.*® Similar agreement has been reported
for Ag; between the effective potential and all-electron HF results.®

These results indicate that our basis sets are sufficiently flexible for the HF de-
scription, a,nd that the effective potentials are fairly accurate. Hence, the errors in
the various HF results (in comparison to experiment) are mainly due to the neglect

of electron correlation effects (inherent to the single-determinant form of the HF
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wavefunction).

The UHF wavefunctions lead to somewhat more accurate D, values in comparison
to HF. However, UHF leads to values of R, and k. that are less accurate than the
corresponding HF values (especially for Nay). The reason for the decreased accuracy
for the R, and k. values is that any improvement in D, afforded by UHF is at the
expense of mixing in triplet character (see Appendix A.5). The lone exception of
these trends is Auj, where the HF and UHF results are identical.

A reasonably accurate description of the potential energy well (R, ke and D.)
for each of these metal dimers requires an accurate description of valence electron
correlation effects.*®48:48 The noble metal dimers also require correlation effects in- -
volving the subvalence d'° electrons as well as relativistic effects (especially for Ag
and Au).*4® The effective potentials used in this study include relativistic effects for

Ag and Au but not for Cu.

Appendix C. Details of the UHF Energy Bands

For the UHF descriptio’n of the Agg symmetric ring cluster, the valence energy band
of the high-spin state (Figure 3, band width B) splits into upper and lower energy
bands for the low-spin state (Figure 13, band widths B; and Bj, respectively) when
spin polarization effects are allowed. This results in an antiferromagnetic insulator
since the energy gap (AW) between the upper and lower energy bands is at the

Fermi level. This is in qualitative agreement with the Hubbard hamiltonian?®

N N
HUB
HAUB = B (e ieipng + el cin] + U S migna,
t=1 i=1

B = -—2zh{, (C1)
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b = (wilhlw;)

tJ

u = Jo (C2)
i = (wiwj|ry lwiw;)

n‘-'f = CE,TC“"T

nei = oo

i, = C‘-'LC"L

where B is the band width without correlation (the band width for & = 0), z is the
coordination number (z = 2 for one-dimensional metals), ¢;, (cxt,,) are operators for
creating (annihilating) an electron with spin o in the localized Wannier® orbital w;,
and U is the intra-atomic coulomb energy. U > 0 tends 1;0 prevent two electrons
from occupying the same localized orbital w;.

In this appendix we assess for Agg the quantitative agreement of the UHF energy
bands with those obtained with the Hubbard model. To do this we obtained Hubbard
parameters (B and U) directly from the ab initio calculations by two methods.

(2) Equations (C1) and (C2) [using the high-spin {w;}] result in the values & =
8.001 eV, B = 5.433 eV, and B/U = 0.679 for Ags. The value B = 5.433 eV
obtained from the nearest-neighbor one-electron integral A, = —1.358 eV is in very
good agréement with the high-spin valence band width B = 5.524 eV obtained from
the orbital energies [hence including all one-electron interactions and two-electron
interactions with (N — 1) valence electrons;?! see Figure 3|. Values of B and U for
Cuyo, Age, Ags, Ag10, Auyg, Lig, Lijp, Lij4, and Na,o obtained by this method are
given in Table 11.

(72) “Effective” values of B and U are obtained by satisfying the relations®

AW = U—0.5(B; + Bi)
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Ji(u)du
u(1 + exp [(2U /B)u|

= U—-B_2BY (1) [\/1 + j2(2U/B)? — j(2U/B)

j=1

AW = u-B+28 [ (C3)
0

[J1(u) is the Bessel function]® where AW, B, and B; are taken directly from the
UHF energy bands (see Figure 13). For Ags, the UHF values AW = 2.893 eV,
B; = 2.626 eV, and B; = 1.187 eV lead to UZFF = 4.800 eV, BEFF = 2,273 eV, and
BEFF [YEFF = 0.474).

The values / and B are much larger than UZFF and BEFF, respectively. The
values & = 8.001 eV and B = 5.433 eV lead to a Hubbard band gap AW = 3.802
eV (C3) 31% larger than the UHF band gap AW = 2.893 e:V for Ags.

The value BEFF = 2.273 eV is much closer to the average of the widths of the
upper (B;) and lower (B;) energy bands? (B4YE = 1.907 eV) than it is to B = 5.433
eV. Indeed, B; and B,

By ~ =2z (47PPERIR|4IPPER)

B -2 (OVSRRISOVER)

are based on nezt-nearest neighbor hopping integrals where {¢Y7PER} and {pFOWER}
are sets of localized nonorthogonal orbitals obtained from separate localizations
(Fourier transformations) of the up-spin and down-spin canonical orbitals for the
)18

upper and lower energy bands, respectively (see Figure 10

For Mg, the two-electron coulomb energy for the covalent configuration

wi(Tws(L)ws(Tws(L)ws(TIws(L)wr(T)ws(l)

can be simplified as

ECOUL — 8J% + 8J% + 8J%, + 4J%
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due to the cyclical nature of the {w;}. For My there are two different types of localized

ionic configurations occuring with equal weights:

wi(Twr({Jwa(T)wa(L)ws(Twa(L)wr(T)ws(L)
ECOUL = Ju + U3 + 835 + 8J3 + 4T3
where the doubly-occupied orbital and hole are adjacent (wy and w;), and
wi(Twa(L)ws(T)wr (4 )ws(T)ws(L)wr(T)ws(l)
ECOUL = i 4 8J3% + 8735 + 1Ty, + 4T3
where the doubly-occupied orbital and hole are third-nearest neighbors (w; and wy).
Hence, for Mg a more accurate definition of & is .

Us = T — 0.5(J% + J2).

For Agg, the values Jj;, = 8.001 eV, J¥ = 4.536 eV, and J, = 2.028 eV lead to the
value Uy = 4.719 eV, in very good agreement with UEFF — 4800 eV.

The Uy values for My symmetric ring clusters (even N)

N/2
Uy = Jﬁ_2N—12J;}zi
i=1
N = i

are hence expected to converge as N~!. Hence, Equation (C2) does not accurately
define U for a finite cluster. Since BEFF is expected to decrease with increasing N
for My clusters composed of Cu, Ag, Au, Li, and Na'® (the {w;}, {¢7*PER}, and
{pFOWERY are all centered at the bond midpoints and the distances between adjacent
bond midpoints and next-nearest neighbor bond midpoints increases with increasing
N), the net result is that BEFF [UEFF js expected to decrease with increasing N and

AW is expected to increase with increasing V.
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Appendix D. Further Details of UHF Spin Density

Wave States

1. Symmetric Ring Clusters

For each of the Cuyo, Ags, Ags, Ag10, Auyg, Lis, Lijo, Lij4, and Na;q symmetric ring
clusters, optimizing the UHF wavefunction without orbital symmetry restrictions
for the low-spin ground state leads to valence orbitals having maximum absolute
amplitudes centered at the bond midpoints, resulting in a spin density wave with
periodicity 2a (with maxima and minima centered at alternate bond midpoints) but
a fully symmetric charge density. This is shown for Ags in Figure 10. We refer to
these states of the My ring clusters as the bond-centered states.

For each of these systems, we were able to optimize a low-spin UHF wavefunc-
tion with orbitals having maximum absolute amplitudes centered at the atoms by
imposing Dpp orgita.l symmetry restrictions (n = N/2), also leading to a spin density
wave with periodicity 2a (with maxima and minima centered at alternate atoms),
but a fully symmetric charge density. This is shown for Ags in Figure 11. We refer
to these states of the My ring clusters as the atom-centered states. Thus, the atom-
centered state spin density wave and the bond-centered state spin density wave are
phase-shifted by a/2.

There are two distinct choices for D, orbital symmetry restrictions for the My
symmetric ring cluster. Each orbital can be required to be either symmétric or
antisythetric with respect to one of two types of C; symmetry axes (perpendicular
to the principle Cy symmetry axis). (i) Choosing a C; symmetry axis bisecting a

particular set of opposite bond midpoints leads to the bond-centered state (Figure



52

10). (#2) Choosing a C; symmetry axis bisecting a particular set of opposite atoms
leads to the atom-centered state (Figure 11).

Details of the low-spin UHF wavefunctions for both states are given in Table 12.
In each case, the atom-centered state leads to a significantly higher total energy than
the bond-centered state, although both states have positive cohesive energies with
respect to dissociation into diatomic molecules. The atom-centered state has less
spin contamination than the bond-centered state, and the atom-centered state has

less p hybridization than the bond-centered state.

2. Peierls-Distorted Ring Clusters

We already showed that the antiferromagnetic ground state of the Agg ring cluster
(bond-centered, Figure 10) is stable with respect to the Peierls distortion (see Figures
12 and 15).

In addition, for Ags we solved for the atom-centered UHF antiferromagnetic state
as a function of the Pelerls distortion (§a) by optimizing the valence orbitals under
the symmetry restriction that each a-spin orbital must be related to one of the #-spin
orbitals by a particular symmetry plane bisecting two opposite bond midpoints.

This leads to total energies (Figure 16, dashed curve) much higher than those
ca.lcula.te(i without the orbital symmetry restriction (Figure 16, solid curve), e.g., the
energy difference between these two states is 109.6, meV/atom for §a = 0 and 69.0
meV/atom for §a = 0.30 A.

In summary, for Ags the spin density wave shows a very strong preference for
centering about the bond midpoints for Peierls distortions up to 6a < 0.30 A. Neither
the bond-centered state (Figure 10) nor the atom-centered state (Figure 11) leads to

Peierls instability at the UHF level (see Figure 16).
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3. Comparison with GVB-PP

Total energies of Agg as a function of the Peierls distortion (§a) for both the bond-
centered state and the atom-centered state calculated with perfect-pairing gener-
alized valence bond wavefunctions (GVB-PP)*? are also given in Figure 16. The
GVB-PP wavefunction is a restricted form of the full GVB wavefunction. Hence,
GVB-PP leads to higher total energies than full GVB (compare Figures 15 and 16;
further details of these GVB-PP results are presented elsewhere).!® For both Agg and
Ags, the GVB-PP total energies are lower than the UHF total energies. In addition,
the GVB-PP wavefunction is an eigenfunction of $? while the UHF wavefunction is
not (see Appendix A and Tables 9 and 12). |

For the bond-centered (ground) state of Ags, GVB-PP and UHF both lead to a
positive cohesive energy with respect to dissociation into Ag; molecules, and stability
with respect to the Peierls distortion.

However, for the atom-centered (excited) state of Ags, GVB-PP leads a nega-
tive cohesive energy with respect to dissociation into Ag, molecules, and a Peierls
instability (in disagreement with UHF).

Further details of the GVB-PP results for the Cu,,, Agg, Ags, Agio, Auyg, Lig,

Liyq, Liy4, and Na,o ring clusters are presented elsewhere,1®

Appendix E. HF Results for the Ag; Triplet State

The triplet state of Agg described by the valence configuration

%(Tl)¢—1(Tl)¢1(Tl)¢-z(T)¢z(T) (E1)
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leads to fully symmetrical electronic spin and charge densities; however, optimizing

the orbitals at the HF level without orbital symmetry restrictions

21(T1)ea(TL)ea(T1)pa(T)es(T)

leads to a triplet state having both a spin density wave and a charge density wave
with a total energy lower than that of (E1) by 0.041 eV for the symmetric ring
cluster.

The HF total energies for these two states as a function of the Peierls distortion
(éa) are shown in Figure 17, where the dashed curve shows the results obtained with
Dy, orbital symmetry restrictions. Figure 17 also includes the HF total energy for
the lowest-energy low-spin state (singlet, dotted curve). Neither triplet state leads.
to a Peierls instability, although they both are unstable with respect to the limit of
four low-spin diatomic molecules. Both of these triplet states are lower in energy
than the singlet state for the symmetric ring cluster (§a = 0), but for |§a| > 0.13 A
the energy of the singlet drops below that of the triplet due to the Peierls instability
for the singlet.

The HF orbitals optimized without symmetry restrictions for the triplet state
are shown in Figure 18 for §a = 0.00, 0.10, 0.20, and 0.30 A. Although the triplet
spin state having spin and charge density waves is stable with respect to the Peierls
distortion, the sI;in and charge density waves slide as a function of da in such a
manner that the two singly-occupied orbitals localize about a pair of adjacent atoms

forming a compressed bond for §a = 0.30 A.
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Appendix F. Detailed Energy Data for Ags

In this appendix we use the energy expression

ETOTAL = E§ORE+EONE + ETWO
EON E — i hii
i=1

ki = (ei(1)[R(1)]p;(1))

N A N
E™O = 3 Ji-) Ki— ), K

B i>j i>j>4
1
Ji = (p()ei(2) —lei1)es(2))

Ki; <so,-(1)¢,-(2)|r—j;xsa,-(l)w(z»

based on the valence electron hamiltonian of Appendix A.4 where (i) ECORE in-'
cludes the nuclear repulsion energy and all one-electron and two-electron energy
terms involving only the core electrons {the [Ar]3d?, [Kr]4d?, [Xe]4f145d17, 1s?,
and 1s22s%2p® shells for Cu, Ag, Au, Li, and Na,3® respectively (see Section A.3)}, (i)
EONE is the total “one-electron” (valence) contribution to the total energy includ-
ing the electron-nuclear attraction and kinetic energy of the valence electrons, and
all two-electron interactions between core electrons and valence electrons, and (731)
ETWO js the total two-electron (valence) contribution to ‘the total energy where J;;
and K;; are the valence two-electron integrals (coulomb and exchange, respectively).

Calculated values of ECORE EONE ETWO a5nd ETOTAL are given in Table 13
as a function of the Peierls distortion (6a) for selected states of the Ags ring cluster
where the average nearest-neighbor internuclear separation is a = 2.889 A. Table 13
also includes similar data for low-spin Agg calculated with the GVB wavefunction.
The total energy of low-spin Agg as a function of éa is also presented in Figure 15 for

HF, UHF and GVB. The total energies for these wavefunctions were all optimized
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using the same basis sets and frozen core hamiltonian (see Appendix A); further
details of the GVB calculations are given elsewhere.!®

In all cases, EC9RE increases quadratically as a function of §a. For the low-spin
HF wavefunction optimized with D4, orbital symmetry restrictions, the variation of
EONE with §a is approximately linear, leading to the Peierls instability (the variation
of ETWO with §a is negligible for this case). Likewise, the Peierls instability for the
low-spin HF wavefunction optimized with Cs orbital symmetry restrictions is driven
by E°NE, For the high-spin HF wavefunction and the low-spin UHF and GVB
wavefunctions the variations of EO¥F and ETWO with §a are quadratic but the

variations cancel one another, i.e., in each case the variation of EONEF  ETWO with

§a is negligible. Hence, the symmetric ring is stable for these cases due to ECORE -

Appendix G. Results for Hydrogen Ring Clusters

Since the stable form of hydrogen is the diatomic molecule, we tested our model
calculations by performing analogous calculations for ring clusters composed of hy-
drogen. Extensive total energy calculations for one-dimensional arrays of hydrogen
atoms are presented elsewhere.5°

In order to model the anticipated Peierls instability, we chose the Hg ring cluster
with an average iﬁternuclear separation (a = 1.483 A) equal to twice the experimental
bond length of the H; molecule® [the Huzinaga®? (5s/3s) unscaled basis set was
used]. The results of these calculations are given in Table 14. The low-spin HF
wavefunction leads to a charge density wave for the symmetric cluster. The low-spin
UHF wavefunction leads to a spin density wave (but no charge density wave). The

low-spin GVB wavefunction leads to fully symmetrical spin and charge densities. All
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Table 1. Cohesive energies for low-spin ring clusters. %)

atomization ®) dimerization ©)
energy energy

system e (meV/atom) (meV/atom)

(A) HF UHF HF UHF
Ags 2.889 246.4 352.8 57.6 153.8
Ags 2.889 145.7 370.8 —43.1 171.8
Agio 2.889 191.3 379.8 2.4 180.8
Lig 3.014 60.4 361.7 —10.3 269.1
Liyo 3.014 15.0 398.2 —55.8 305.6
Lisq 3.014 9.6 408.9 —61.1 316.3
Cuyo 2.556 239.7 388.7 8.1 152.6
Agio 2.889 191.3 379.8 2.4 180.8
Auye 2.884 374.0 511.5 1.1 138.6
Liyo 3.014 15.0 398.2 —55.8 305.6
Na;g 3.659 —-72.9 177.6 —56.3 136.5

a) Results for the lowest energy low-spin states (HF, S = 0; UHF, Mg = 0) calculated
without orbital symmetry restrictions. A frozen core approximation was in effect. See
Appendix A for further details.

b) The total atomization energy My — N M divided by N atoms.

¢) The total dimerization energy My — N/2 M, divided by N atoms. In calculating the
dimerization energies, the bond length of the diatomic molecule is optimized (see Table
10).
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Table 2. Experimental cohesive energies for bulk three-dimensional metals.

atomization energy ®) dimerization energy *
system (eV/atom) (eV/atom)
Cu 3.49 2.47
Ag 2.94 2.11
Au 3.82 2.66
Li 1.64 1.11
Na 1.11 0.74

a) Reference [26].

b) Cohesion with respect to diatomic molecules, e.g., M(;) — 1/2 M;, References
[26,27,28).
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Table 5. Basis set summary.

ground state: energy b)
element basis set %) configuration (hartrees)
Cu (3s,2p,5d)/(2s,2p,1d) [Ar])3d1%4s? —50.43769
Ag (3s,3p,4d)/(2s,2p,1d) [Kr]4d1%5s? —37.40668
Au (3s,3p,3d)/(2s,2p,1d) [Xe]df145d2065? —33.38745
Li (9s,4p)/(3s,2p) 1s22s! —T7.43174
Na (11s,7p)/(4s,3p) 15223522p83s? —161.79530

a) The basis sets are composed of contracted gaussian-type functions and contain the
smallest possible number of functions to deseribe the core orbitals and twice the
minimum number of functions to describe the valence s and low-lying p orbitals.
Calculations for Cu, Ag and Au utilize basis sets and ab initio effective potentials from
Reference [36]. Calculations for Li and Na are all-electron ab initio, with basis sets from
Reference [37] and Reference [38], respectively.

b) For each case the energy of the isolated atom is the same for HF and UHF.
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Table 9. Spin contaminations for low-spin UHF wavefunctions

system a (A) (5%) S
M, molecules®) ——
Cu, 2.476 0.168 0.147
Ag, 2.778 0.261 . 0.215
Aug 2.672 0.000 0.000
Li, 2.994 0.367 0.285
Nag 3.620 0.644 ' 0.446
My ring clusters
Ags 2.889 1.515 0.828
Ags 2.889 2.219 1.071
Agio 2.889 2.789 1.243
Lig 3.014 2.306 1.099
Lie 3.014 3.973 1.555
Lij, 3.014 5.618 1.922
Cujo 2.556 2.417 1.133
Ago 2.889 2.789 1.243
Auyg 2.884 2.343 1.110
Liyo 3.014 3.973 1.555
Najo 3.659 3.541 1.447

a) Results for the diatomic molecules (Mj3) are given for the equilibrium bond lengths
(Re) calculated at the UHF level.
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Table 11. Hubbard Parameters based on high-spin ring clusters. )

system a U=Je B = 4|hY, B/U
(A) (eV) (eV)
Agg 2.889 7.882 6.137 0.779
Ags 2.889 8.001 5.433 0.679
Agyo 2.889 8.065 4.948 0.614
Lig 3.014 8.079 3.999 0.495
Liye 3.014 8.267 2.838 0.343
Lijg 3.014 8.325 2.334 0.280
Cuyo 2.556 8.639 6.314 0.731
Agio 2.889 8.065 4.948 0.614
Auye 2.884 7.995 5.489 0.687
Liyo 3.014 8.267 2.838 0.343
Na;jo 3.659 6.783 3.056 0.450

a) Results calculated with high-spin HF Wannier orbitals.
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Table 12. Details of the UHF wavefunctions for symmetric ring clusters.

dimerization %) valence®)
a energy hybridization AE
system (A)  (meV/atom) (5?) S d s p (meV/atom)

bond-centered state

Ags 2.889 153.8 1.515 0.828 0.002 0.684 0.314
Ags 2.889 171.8 2.219 1.071 0.001 0.629 0.370
Agyo 2.889 180.8 2.789 1.243 0.001 0.594 0.404
Lie¢ 3.014 269.1 2.306 1.099 0.595 0.405
Li;o 3.014 305.6 3.973 1.555 0.494 0.506
Li,, 3.014 316.3 5.618 1.922 0.433 0.567
Cujo 2.556 152.6 2.417 1.133 0.002 0.611 0.386
Agyo 2.889 180.8 2.789 1.243 0.001 0.594 0.404
Auyo 2.884 138.6 2.343 1.110 0.007 0.835 0.158
Li;, 3.014 305.6 3.973 1.555 0.494 0.506
Na,o 3.659 136.5 3.541 1.447 0.649 0.351
— —  atom-centered state
Agg 2.889 70.9 0.842 0.545 0.002 0.829 0.196 82.9
Ags 2.889 62.3 1.626 0.870 0.002 0.804 0.194 109.6
Agyo 2.889 66.1 1.870 0.956 0.002 0.771 0.228 114.7
Lig 3.014 10.7 1.158 0.687 0.867 0.133 258.4
Li,, 3.014 6.3 2.150 1.049 0.752 0.248 299.3
Li,, 3.014 5.9 3.031 1.311 0.690 0.310 310.4
Cuyo 2.556 61.1 1.608 0.863 0.002 0.791 0.206 91.6
Ago 2.889  66.1 1.870 0.956 0.002 0.771 0.228 114.7
Auyp 2.884 92.9 1.977 0.992 0.007 0.928 0.064 45.7
Li,, 3.014 6.3 2.150 1.049 0.752 0.248 299.3
Na,o 3.659 14.5 2.712 1.221 0.959 0.041 122.0

a) The total cohesive energy with respect to diatomic molecules My — N/2 M; divided
by N atoms (where the diatomic molecules are at equilibrium; see Table 10).
b) Atomic orbital populations calculated in the Mulliken approximation [19].
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Table 13. Detailed energy data for selected Ags wavefunctions.

" wavefunction @ §a®) ECORE EONE ETWO ETOTAL

(undistortled ring) (A) (hartree)  (hartree) (hartree) (hartree)

low-spin HF (Cjg) 0.00 —294.22519 —8.33056 3.25950  —299.29625
low-spin HF éD,;h) 0.00 —294.22519 —8.32737 3.26071  —299.29186
low-spin UHF (Cs) 0.00 —294.22519 —8.25960 3.12235 —299.36244
low-spin GVB (C;) 0.00 —294.22519 —8.27990 3.11676  —299.38833
high-spin HF (D4,) 0.00 —294.22519  —7.93802 2.94002 —299.22320

E(6a) — E(6a = 0.00)

(distorted rings) (A) (eV) (eV) (eV) (eV)
low-spin HF (Cg) £0.00 0.000 0.000 0.000 0.000
+0.04 0.014 —0.046 . 0.010 —0.022

+0.10 0.088 —0.243 0.030 —0.126

+0.20 0.367 —0.595 0.027 —0.201

+0.30 0.884 —0.968 0.022 —0.062

low-spin HF (Dg) —0.30 0.884 0.804 0.015 1.703
—0.20 0.367 0.569 0.013 0.949

-0.10 0.088 0.301 0.007 0.395

—0.04 0.014 0.124 0.002 0.141

0.00 0.000 0.000 0.000 0.000

0.04 0.014 —0.129 —0.002 —-0.117

0.10 0.088 —0.330 —-0.003 —-0.245

0.20 0.367 —0.682 —0.005 —0.320

0.30 0.884 —1.0585 -0.010 —0.181

low-spin UHF (Cs) 0.00 - 0.000 0.000 0.000 0.000
+0.04 0.014 —0.003 0.004 0.014

+0.10 0.088 —0.019 0.021 0.090

+0.20 0.367 —-0.073 0.076 0.370

+0.30 0.884 —0.163 0.159 0.879

low-spin GVB (C;) +0.00 0.000 0.000 0.000 0.000
- +0.04 0.014 —0.003 0.003 0.014

+0.10 0.088 —0.016 0.018 0.090

+0.20 0.367 —0.062 0.063 0.368

+0.30 0.884 —0.222 0.208 0.870

high-spin HF (Dgs) £0.00 0.000 0.000 0.000 0.000
+0.04 0.014 —0.004 0.004 0.014

+0.10 0.088 —0.023 0.022 0.086

+0.20 0.367 -0.075 0.071 0.363

+0.30 0.884 —0.135 0.127 0.876

a) The orbital symmetry restriction is given in parenthesis.
b) The average nearest-neighbor internuclear separation is 2.889 A.
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Table 14. Detailed energy data for Hg.

wavefunction ) 6a®) ECORE EONE ETWO ETOTAL
(undistorted ring) (A)  (hartree) (hartree)  (hartree)  (hartree)
low-spin HF (D) 0.00 6.12818 —16.51837 +6.40061 —3.98958
low-spin UHF (Cs) 0.00 6.12818 —16.42010 6.15824 —4.13368
low-spin GVB (C;) 0.00 6.12818 —16.46687 6.12281 —4.21588
high-spin HF (D)  0.00 6.12818 —15.49309 5.72957 —3.63533
E(6a) — E(6a = 0.00)

(distorted rings) (A) (eV) (eV) (eV) (eV)
low-spin HF (D4s) —0.05 0.084 0.946 —0.080 0.949
0.00 0.000 0.000 0.000 0.000

0.05 0.084 —1.230 0.154 —-0.992

low-spin UHF (Cs)  0.00 0.000 0.000 0.000 0.000
+0.05 0.084 —0.328 0.177 —0.067

low-spin GVB (C;) 0.00 0.000 0.000 0.000 0.000
+0.05 0.084 —0.645 0.211 —0.350

high-spin HF (Dg)  0.00 0.000 0.000 0.000 0.000
+0.05 0.084 —0.017 —0.001 0.065

a) The orbital symmetry restriction is given in parenthesis.
b) The average nearest-neighbor internuclear separation is 1.483 A.
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(a) (b)

Figure 1. (a) The Ms symmetric ring cluster as a model of the undistorted one-
dimensional metal. (b) The My distorted ring cluster (composed of alternating

long and short bonds) as a model of the Peierls distorted one-dimensional metal.
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m=4

(-3.84 eV)

lm| =

(-7.32 eV)

Im| =1

(-8.76 eV)

m=0
(-9.36 eV)

Figure 2. Real representations of the Bloch functions for the Ags symmetric ring
cluster. Note that the maximum absolute amplitudes are at bond midpoints. In
this Figure and in similar figures that follow, contours are at uniform amplitudein-
crements (0.015 au for Ag) and squares mark the atomic positions. Solid contours

denote positive amplitudes and dashed contours denote negative amplitudes.
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Figure 3. The valence energy band of the undistorted one-dimensional metal as
defined by the valence high-spin state (where each Bloch function of Figure 2 is
occupied by one up-spin electron). The discrete energy levels of Ags (marked
by the data points) are joined by the solid curve approximating the continuous
energy band for the limit as IV approaches infinity. The valence band is half filled
in the HF description of the low-spin state of the one-dimensional metal, i.e., the
one-electron states with |k| < m/2a and one of the two degenerate k = +w/2a

states are double-occupied.
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2a © 2a
WAVE VECTOR (k)

Figure 4. The valence (—7/2a < k < 7/2a) and o-conduction (7/2a < |k| < 7/a)
energy bands of the Peierls dimerized metal are shown by the solid curves. Data
points mark the discrete energy levels for the Agg distorted ring cluster (@ = 2.889
A, §a =10.1 A). The dashed curve shows the valence band for the undistorted one-
dimensional metal. The distortion splits the states at & = +x/2a by 0.011 eV.
The lower half of the valence band is completely filled in the HF description of

the low-spin state of the distorted one-dimensional metal.
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Figure 5. The HF valence orbitals for Li;4 optimized with no orbital symmetry
restrictions, leading to a charge density wave having maxima and minima centered
about alternating atoms. All orbitals are doubly-occupied as indicated. The

contour increment is 0.009 au.
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Figure 6. Real representations of the HF valence orbitals for Lij4 optimized with
full (Dy4n) orbital symmetry restrictions. All orbitals are doubly-occupied as

indicated.
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Figure 7. Bloch orbital populations for the HF low-spin charge density wave
states of Lijo and Lij4. Populations are obtained by symmetry projecting the HF
canonical (doubly-occupied) broken-symmetry orbitals (see Table 4).
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Figure 8. The HF valence orbitals optimized for the two distinct charge density
wave states of the Agg symmetric ring cluster. All orbitals are doubly-occupied as
indicated. (a) Shows the orbitals for the state with charge density wave maxima
centered at the atoms. (b) Shows the orbitals for the state with charge density

wave maxima centered at the bond midpoints.
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Figure 9. The HF total energy of low-spin Agg as a function of the Peierls dis-
tortion (8a). The results calculated without orbital symmetry restrictions are
indicated by the solid curve. The results calculated with Dsa orbital symmetry

restrictions are indicated by the dashed curves.
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Figure 10. The UHF valence orbitals for the lowest-energy antiferromagnetic spin
density wave state of Agg optimized without orbital symmetry restrictions. All

orbitals are singly-occupied as indicated.
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shifted) spin density wave state of Agg optimized with orbital symmetry restric-

tions. All orbitals are singly-occupied as indicated.
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Figure 13. The UHF a-spin energy bands for the undistorted one-dimensional
metal. Shown are the valence band (—7/2a < k < 7/2a, occupied, band width
B; = 1.187 eV) and the o-conduction band (7/2a < |k| < /e, unoccupied, band
width B; = 2.626 eV) for the lowest energy antiferromagnetic state of the undis-
torted one-dimensional metal. The discrete a-spin energy levels of Ags (marked
by the data points) are joined by the curve approximating the continuous energy
band for the limit as NV approaches infinity. The 3-spin energy bands are degener-
ate with the a-spin energy bands for the undistorted one-dimensional metal. The
energy gap between the upper and lower bands is AW = 2.893 eV. The effective
intraatomic coulomb energy is UEFF = 4.800 eV (see Appendix C). The valence
band is completely filled for the UHF antiferfomagnetic ground state.
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Figure 14. The UHF energy bands for the Peierls distorted one-dimensional metal.
The a-spin valence (—m/2a < k < 0), -spin valence (0 < k < 7/2a), a-spin o-
conduction (—7w/a < k < —w/2a), and S-spin o-conduction (7/2a < k < w/a)
energy bands for the lowest energy antiferromagnetic state of the Pelerls distorted
one-dimensional metal (solid curve). Data points mark the discrete energy levels
for the Agg distorted ring cluster (§a = 0.1 A). The dashed curve shows analogous

energy bands for the undistorted one-dimensional metal.
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energy of undistorted Ags (6a = 0) is chosen as zero energy. The horizontal
lines indicate the cohesive energy limits with respect to dissociation into four Ag;

molecules (separate energies result from HF, UHF and GVB).
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Figure 17. The HF total energy of Ags as a function of the Peierls distortion (§a).
Results for the friplet state with both spin and charge density waves (optimized
without orbital symmetry restrictions) are indicated by the solid curve. Results for
the triplet state with fully symmetrical spin and charge densities (optimized with
Dy orbital symmetry restrictions) are indicated by the dashed curve. Results for
the singlet state with charge density waves (optimized without orbital symmetry

restrictions) are indicated by the dotted curve.
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Chapter 2

Charge Density Waves, Spin Density Waves, and
Peierls Distortions in One-Dimensional Metals:
Generalized Valence Bond Studies of

Cu, Ag, Au, Li, and Na

Chapter 2 consists of an article coauthored with William A. Goddard III that has

been accepted for publication in the Journal of Physical Chemistry.
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Abstract: Ab initio generalized valence bond (GVB) calculations indicate that the
one-dimensional elemental metals composed of Cu, Ag, Au, Li and Na are each
stable with respect to the Peierls distortion. This results because of the strong
cohesion resulting from two-center one-electron bonds (as opposed to two-center two-
electron bonds). Hence, the Peierls distortion stretching and compressing alternate
one-electron bonds is unfavorable. For each system, GVB leads to a singlet (low-
spin) ground state having fully symmetrical charge and spin densities (no charge
density wave and no spin density wave). Some of these GVB results are in complete
disagreement with results calculated with less sophisticated wavefunctions such as
restricted Hartree-Fock and unrestricted Hartree-Fock. Comparison of the GVB and

Hartree-Fock wavefunctions reveals the origins of these errors in the Hartree-Fock

descriptions.
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I. Introduction

A common description of the electronic structures of crystalline solids is in terms
of energy bands involving Bloch functions delocalized over the infinite lattice,b2:
where each enérgy band can contain up to 2 electrons per primitive unit cell (one
up-spin electron and one down-spin electron, e.g., doubly-occupied orbitals). The
arrangement and occupation of the energy bands determine the electronic properties.
Thus, for solids composed of monovalent atoms (alkali metals or noble metals), the
classic metallic structures [face-centered cubic (fcc), hexagonal close-packed (hcp),
and body-centered cubic (bec)] all lead to a half-filled energy band, consistent with
their metallic properties (e.g., low electrical resistivity).

Peierls! has shown that all one-dimensional metals with partially filled energyA
bands are susceptible to a distortion leading to an energy band gap at the Fermi
level and hence a metal-to-insulator transition. Hence, linear metallic chains with
equidistant adjacent atoms (“symmetical” chains) are predicted to distort such that
the distances between adjacent atoms are not all equal.! For a homonuclear linear
chain composed of monovalent atoms, the energy band description leads to a half-
. filled valence band and an instability pairing adjacent atoms to form a chain of
diatomic molecules.!

Energy band theory [in both the restricted Hartree-Fock approximation (doubly-
occupied orbitals) and the noninteracting electrons approximation including only
one-electron terms in the hamiltonian] cannot account for the sharp metal-to-insulator
transition that for all metals must occur for a sufficiently large uniform expansion of
the crystalline lattice.? In order to account for a metal-to-insulator transition as a

function of the lattice constant (a), Hubbard* introduced a hamiltonian for monova-
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lent atoms including the normal one-electron terms and in addition, the intra-atomic

coulomb repulsion energy

U = (wi(Lwi(2)|rg wi(1)wi(2))

that tends to prevent two electrons from occupying the same localized Wannier®

orbital w;. Here 7',7']»1 is the electrostatic interaction between electrons : and j (in
atomic units where € = 1). The Hubbard hamiltonian presumably leads to a tran-
sition from antiferromagnetic insulator (large a or low-density) to metal (small a or

high-density) when a is sufficiently small that?4
B/U > \/4/3 ~ 1.15

[where B is the band width for ¥ = 0]. However, the critical ratio B/U =~ 1.15
is based on an approximate solution of the Hubbard hamiltonian,?* and the exact
solution® of the Hubbard hamiltonian for a one-dimensional lattice of monovalent
atoms with a single band leads to a transition from antiferromagnetic insulator to
metal only in the limit as B/U approaches infinity.

In order to test these two contradictory models, we previously carried out ab
initio® total energy calculations for various one-dimensional low-spin ring clusters
composed of Cu, Ag, Au, Li, and Na, using single-determinant many-electron wave-
functions [restricted Hartree-Fock (HF, non spin polarized) and unrestricted Hartree-
Fock (UHF, spin polarized)].”

For these one-dimensional metallic clusters, HF leads to half-filled energy bands,
charge density waves, Peierls instabilities, and negative or very small cohesive ener-
gies with respect to dissociation into diatomic molecules.” UHF leads to large cohe-

sive energies with respect to dissociation into diatomic molecules, stable symmetric
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(undistorted) linear structures (in disagreement with the HF-Peierls model), and an-
tiferromagnetic (non-metallic) ground states having spin density waves (consistent
with the Hubbard hamiltonian at low density).”

Hence, the UHF and HF results are in complete disagreement with one another.
Since the UHF total energy is lower than the HF total energy, the variational prin-
ciple suggests that the UHF results are correct. However, unlike HF, the UHF
wavefunctions are f‘spin—conta.minated..” The low-spin UHF wavefunction is not an
eigenfunction of the many-electron spin operator (§ ?) and hence contains contribu-
tions from not only the singlet (S = 0) but also from higher spin states such as triplet
(S = 1), quintet (S = 2), etc., up to high-spin (S = N/2, where N is the number of
atoms in the cluster).”

Because both HF and UHF have deficiencies (lack of cohesion for HF,” spin con-
tamination for UHF), the HF and UHF results for these one-dimensional metals are
not conclusive. Here we report the results of ab initio total energy calculations with
multideterminant generalized valence bond (GVB) many-electron wavefunctions? re-
moving the deficiencies in HF and UHF.

The GVB wavefunctions lead to the following conclusions concerning the ground
electroﬁic state of each of the Cu, Ag, Au, Li, and Na one-dimensional metal clus-
ters. (z) The HF-Peierls description of the valence electronic structure (half-filled
‘band) is fundamentally incorrect. The charge density waves and lack of cohesion for
HF are artifacts of neglecting electron correlation effects. (iz) The UHF-Hubbard
description of the electronic structure is basically correct except that the spin con-
tamination and spin density wave are artifacts of the restricted nature of the UHF
wavefunction. (ii2) GVB leads to a singlet (antiferromagnetic)® ground state having

fully symmetrical charge and spin densities (no charge density wave, no spin density



102
wave, and no spin contamination). Large cohesive energies with respect to dissocia-
tion into diatomic molecules result from two-center one-electron bonds similar to the
two-center one-electron bonds of the diatomic molecular cations. Hence, the Peierls
distortion stretching and compressing alternate one-electron bonds is unfavorable.
Details of the results are given in Section IV and details of the many-electron

GVB wavefunction are given in Section III.

II. Qualitative aspects of the bonding

The simple valence bond (VB) description of bulk metals!® is based upon two-center,
two-electron covalent bonds between singly-occupied orbitals centered at adjacent
atoms, as shown in Figure 1 for Cu,, Ag;, AU2; Liz, and Na;. However, for Cu, Ag,

Au, Li, and Na, the atomization energies of the bulk metals
M) — M)

[(3) and (g) signify solid and gas, respectively| are 3.0-3.5 times larger than the two-

center two-electron bond strengths of the respective homonuclear diatomic molecules
1 :
iMz - M ) (1)
(experimental cohesive energies are given in Table 1).11:1%13 Consequently, simple
VB is not as useful for describing metallic systems as it is for describing nonmetallic
systems.
On the other hand, the UHF and GVB many-electron wavefunctions for one-
dimensional My ring clusters and one-dimensional M7 chain clusters (M = Cu,

Ag, Au, Li, and Na) lead in each case to singly-occupied orbitals having maximum

absolute amplitudes centered at the bond midpoints, forming two-center one-electron
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bonds as shown in Figures 2-3 for M; clusters, M} linear chains, and Mo rings
(M = Cu, Ag, Au, Li, and Na; further details of these systems are presented in
Section III and Appendices A-B). Hence, the UHF and GVB wavefunctions are not
consistent with the simple valence bond (VB)'® description of metals.!
This propensity for one-electron bonds vs. two-electron bonds is characteristic
of metallic bonding!* and is even manifest in the diatomic molecules. Thus, the

cohesion per valence electron for the M, molecule
M} - M+ M,

is 1.83, 2.02, 2.46, and 2.65 times larger than the cohesion per valence electron for
the M; molecule (1) for M = Cu,'% Ag 1118 1117 and Na,'® respectively (see Table

1; the Auf bond strength is not known).

ITII. The GVB Many-Electron Wavefunction

The generalized valence bond (GVB)® valence wavefunction utilizes the hamiltonian

- NA N 1
A= BPRE LSRG+ -

i=1 i>j Tij
Tpoe 1/\ ., ~
i) = ‘—5\7i2+V(r; ) + 7CORE

VCORE = (2. - K.)

where (i) ESPRE includes the nuclear repulsion energy and all one-electron and
two-electron energy terms involving only the core electrons {the [Ar]3d?, [Kr]4d°,
[Xe]4f145d10, 157, and 1s*2522p® shells for Cu, Ag, Au, Li, and Na,!® respectively},”
(1) the “one-electron” operator k(i) includes the electronic kinetic energy (—{752),

the electron-nuclear attraction [V(7 )], and all two-electron interactions [coulomb
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(J.) and exchange (K.)] between core electrons and valence electrons (VCORE)20,

and (77) r;;' is the electrostatic interaction between electrons i and j (r;; is the
distance between electrons ¢ and j). This hamiltonian is identical to that utilized
previously for UHF and HF calculations” and is based on the frozen core approxi-
mation presented elsewhere.”

The full (spin-optimized) generalized valence bond (SOGVB)?! valence wavefunc-

tion for each of the various My ring clusters can be written in the general form

‘I’N,A. = A[®n4 xn,4] : (2)
Bna = p1(1)ea(2)pa(3)---on(N) (3)
ng
XN4A = ZcifsN’s (4)
_ 25+1/(N
A P (A)
A = S+N/2

where A is the antisymmetrizer or determinantal operator, ®y, 4 is the many-electron
spatial product function, {¢;} are completely general one-electron valence orbitals
optimized self-consistently for each state A without restrictions with respect to sym-
metry or overlap (the numbers in parentheses label the electronic coordinates),??
and xw,4 is a completely general N-electron spin function for total spin S where
the coefficients ¢; are optimized self-consistently and {f/V'°} is a complete set of spin
eigenfunctions. Thus, using the normal NN-electron spin operators, the { N 'S} satisfy

the eigenvalue equations
5 = 5245 +52=52+5,+5°5*

BN = S(S+ RS (5)
A-B
2
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S, = MshfYe (6)

A-B
Ms = —5—

where S is the spin angular momentum quantum number, Ms is the spin angular
momentum projection quantum number, and A and B are the number of valence
electrons having spins a (T or m, = +3) and 8 (| or m, = —3), respectively
(A + B = N). Optimizing x in this fashion imposes no restriction?! since 5? and S,
commute with one another and with 7. Thus, the wavefunction (2) is a simultaneous
eigenfunction of 5? and S, and satisifies the Pauli principle for arbitrary {¢;} and
x-** The simultaneous self-consistent optimization of {¢;} and x leads to the SOGVB
wavefunction.??

For SOGVB, all N orbitals are allowed to overlap arbitrarily with one another,

leading to an energy expression
E = (2[H|T)/(2|T)

involving N! terms. As a result SOGVB is not practicable for large N.

Instead we use a procedure for obtaining a wavefunction mimicking SOGVB
but optimizing N orthogonal orbitals in place of the N overlapping orbitals. This
procedure is called self-consistent field full configuration interaction GVB [GVB-
CI(SCF)] and is described in Appendix A.l. Using the GVB-CI(SCF) orthogonal
orbitals as the basis, we obtain localized non-orthogonal orbitals typical of GVB with
the Hartree localization method presented in Appendix A.2. These GVB-CI(SCF)
results are labelled either full GVB or GVB.

An approximation to SOGVB is the perfect-pairing GVB wavefunction (GVB-

PP)? having the form of Equations (2, 3) except that & is optimized for a single
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spin eigenfunction
Xk = (o8 — Be)Pe " |V2B

dividing electrons into B “bond pairs” and A — B “high-spin” electrons [this is
called the “perfect-pairing” (PP) spin function].?»23 Here, ® is constrained so that
the two orbitals of each bond pair maintain orthogonality with all other orbitals, e.g.,
orbitals @g;_1 and ,; of the 7th bond pair may overlap one another but are restricted
to maintain orthogonality with all other orbitals. Both the GVB-PP wavefunction
and the GVB-CI(SCF) wavefunction are simultaneous eigenfunctions of 5% and S,
and satisfy the Pauli principle.

The UHF wavefunction has the same general form (2, 3) except that the UHF
spin function

YUEF = ot )

is a simple product and is not an eigenfunction of 52 (except for B = 0). Since both
® and x are products of one-electron functions, the UHF wavefunction contains a
single Slater determinant. ¥YHF is an eigenfunction of S, but is not an eigenfunction
of 5% unless the down-spin orbitals are identical to the up-spin orbitals (this leads
to the restricted Hartree-Fock wavefunction, denoted simply HF herein).” For the
general case where WUHF £ QHF QUHEF 5 “spin.contaminated”, e.g., URAF contains
a mixture of spins |[Ms| < § < N/2." The UHF orbitals are optimized without
restrictions with respect to overlap or symmetry, resulting in a spin density wave for
the ground state of each My, ring cluster.”

For the high-spin state (A = N, B = 0), there is just one spin eigenfunction

N,S=N/2 _ N
XN,a=N = f =q

and hence the GVB and UHF wavefunctions are equivalent. However, for all other
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spin states, GVB and UHF differ quite remarkably.

IV. Results

In the process of exploring the bonding in various metal clusters,'?* we performed
extensive ab initio calculations for various one-dimensional ring and chain clusters
of lithium atoms up to N = 12, where N is the number of atoms in the cluster,
and have éxtrapolated various results to infinite N.2* These studies show that the
cohesive properties of the ring clusters converge rather quickly, and that the Mj;
and M, ring clusters are qﬁalita.tively‘ correct and fairly accurate as models for the
infinite chain (each is periodic in one dimension).

Here we examine My ring clusters composed of Cu, Ag, Au, Li, and Na, with
lattice constants (a) for the undistorted (symmetric) clusters equal to the nearest-
neighbor distances for the bulk metals.2® The cohesive properties of the one-dimensional
alkali and noble metals are dominated by the valence sp electrons,” and sp hybridiza-
tion is crucial in describing the valence electronic structures.” However, in each case
the pr conduction bands are significantly higher in energy than the valence band,
and hence the pr conduction bands are unoccupied for the ground and low-lying ex-
cited electronic states.” For the ground and low-lying excited electronic states of the
noble metal clusters, there is minimal hybridization of the d core orbitals with the sp
valence orbitals, and hence the closed-shell d!° configurations are maintained.” These
observations for both HF and UHF7 are expected to hold also for GVB, and hence the
same frozen core approximation for the core electrons (including the closed-shell d*°

electrons of the noble metal rings) is employed for GVB as was previously employed

for HF and UHF.”
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Peierls! argued that the symmetric one-dimensional monovalent metal is unstable
with respect to the geometric distortion pairing adjacent atoms to form a chain of
diatomic molecules, because this distortion lowers the energies of the occupied one-
electron states below the Fermi level (and raises the energies of the unoccupied
one-electron states above the Fermi level)."” To test for Peierls instability, we chose
Ags.?® The Agg Peierls-distorted ring cluster contains alternating long and short
internuclear separations a £ da, as shown in Figure 4, where the average nearest-
neighbor distance is equal to that for the undistorted cluster.

The results presented here are calculated using the same geometries, hamiltonian,
and basis sets as in our previous study,” but with diﬁ"erent‘wavefunctions, First we .
present the GVB-PP results, and then we present results calculated with the more
general GVB-CI(SCF) wavefunction.

A. GVB-PP

1. Cohesive Energies

The cohesive energies of the Cuyg, Ags, Ags, Agio, Auyg, Lis, Lije, Liy4, and Najg

low-spin symmetric ring clusters with respect to atomization
My - NM (8)
and dimerization
My — N/2 M, (9)

(dissociation into diatomic molecules) calculated with GVB-PP wavefunctions are
given in Téble 2, where the total cohesive energies have been divided by N. These

cohesive energies are calculated for low-spin ring clusters at fixed values of the lattice
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constant (a). The dimerization energies are given with respect to similar calculations
for diatomic molecules at their calculated equilibrium internuclear separations (R.,
see Appendix C.1).
At the GVB-PP level, the symmetric ring clusters are all stable with respect to

both atomization and dimerization (see Table 2).

2. Charge Density Waves

For each of the Cu;q, Ags, Ags, Ag10, Auyg, Lig, Lijg, Lij4, and Nayp symmetric ring
clusters, GVB-PP leads to a low-spin (antiferromagnetic) ground state described
by N well-localized singly-occupied orbitals centered at the N bond midpoints (see
- Figures 3 and 5a). In each case, these are the orbitals obtained by optimizing the
low-spin GVB-PP wavefunction without imposing any orbital symmetry restrictions.
These singly-occupied orbitals are spin-coupled into N/2 equivalent bond pairs (as
shown in Figures 3 and 5a). Each of the bond pairs for the My ring cluster is similar
to the bond pair of linear My, as shown in Figures 2, 3, and 5a.

The GVB-PP ground state wavefunction of each of these systems leads to a charge
density wave — the electronic charge density does not have the same periodicity as
the lattice. In each case, the total electronic charge density can be decomposed
into a fully symmetric component with periodicity @ and a “wave” component with
periodicity 2a. The charge density wave maxima occur at atoms sharing the two
overlapping orbitals of a bond pair. Thus, the charge density wave contains maxima
and minima centered at alternate atoms — for Agsg, electron density depleted from
atoms 1, 3, 5, and 7 accumulates on atoms 2, 4, 6, and 8 as shown in Figure 5a.

For each of these systems, by applying local orbital symmetry restrictions, we

solved self-consistently for an ezcited low-spin state having a charge density wave
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with maxima and minima centered at alternate bond midpoints (we required that
the orbitals of each bond pair be related by the symmetry plane bisecting a particular
'bond midpoint). Hence, the excited state charge density wave is “phase-shifted” by
a/2 with respect to ground state charge density wave. For each of the Cujo, Agg,
Agg, Agio, Auyg, Lig, Lijo, Lij4, and Na,o symmetric ring clusters, this GVB-PP
excited state is described by N singly-occupied atom-centered orbitals, divided into
N/2 equivalent bond pairs (as shown in Figure 5b for Ags). Each of the bond pairs
for the My ring cluster is similar to the bond pair of M3 (compare Figures 5b and 1
for Ag).

For brevity, we label these two distinct states “bond-centered” and “atom-centered”,
referring to the localization of the singly-occupied orbitals.

The bond pair overlaps, cohesive energies and energy splittings of these two dis-
tinct states are given in Table 3 for each of the nine symmetric ring clusters. In each
case, the cohesive energy with with respect to dissociation into diatomic molecules
(9) is negative for the atom-centered state (this state is unstable). For Agg, the
dimerization energy (9) is —76.1 meV /atom for the atom-centered state (unstable)
and +49.8 meV /atom for the bond-centered state (stable); the excitation energy be-
tween these two states is 1.007 eV (125.9 meV/atom; see Table 3). For each system,
the cohesion of the ground state (bond-centered) is due to two-center one-electron
bonding, similar to the bonding of M and linear My (compare Figures 2, 3, and
5a).

For each case, these two distinct charge density wave states are each doubly
degenerate (for the symmetric ring cluster) in the sense that “translating” the valence
orbitals by a (or rotating by 27 /N) results in a new charge density wave state with

the same energy (for finite N these many-electron states are not orthogonal). Each of
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the four charge density wave states is invariant to translations by integral multiples
of 2a, hence each of these four states is consistent with D, symmetry for the My

symmetric cluster (n = N/2).

3. Pelerls Instability

The GVB-PP total energies of the low-spin states of Ags as a function of the Peierls
distortion (8a) are shown in Figure 6. The GVB-PP bond-centered wavefunctions
(Figure 5a and Figure 6, solid curve) are optimized without orbital symmetry restric-
tions, leading to Cys symmetry for da # 0 (the lattice symmetry is Dy, for fa # 0).
In order to obtain GVB-PP atom-centered wavefunctions (Figure 5b and Figure 6,
dashed curve), we applied local orbital symmetry restrictions during the optimization
(the two orbitals of each bond pair were restricted to be exact mirror images of one
another), leading to D4s symmetry for all éa.

The Peierls distortion breaks the degeneracy of the atom-centered states (Figure
5b). Numbering the bond midpoints as 1 through 8, the Peierls distortion compressing
bonds 2, 4, 6, and 8 (and expanding bonds 1, 3, 5, and 7) lowers the energy of the
atom-centered state having charge density wave maxima centered at bond midpoints
2,4, 6, and 8, and raises the energy of the atom-centered state having charge density
wave maxima centered at bond midpoints 1, 3, 5, and 7 (for small distortions éa).
Hence, the atom-centered states are unstable. The optimum value of the Peierls
distortion |§a.p| = 0.164 A leads to alternating internuclear separations of 2.725 and
3.053 A. The optimum value of the compressed bond length is significantly smaller
than the 2.801 A equilibrium bond length calculated for Ag; at the GVB-PP level
(see Appendix C.1), indicating that the interaction between dimers for the atom-

centered state is repulsive [the total energy at |6a,pe| = 0.164 A is higher than that
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of four Ags; molecules (R, = 2.801 A) by 0.371 eV (46.4 meV/atom)).

However, Peierls distortions do not break the degeneracy of the bond-centered
states (Figure 5a), and these states are stable. The Peierls distortion does cause
a very minor sliding of the valence orbitals, leading to a very minor flow of charge
from the expanded bond midpoints to the compressed bond midpoints, increasing
as a function of |§a| as shown in Figure 7. This results in a very minor sliding of
the charge density wave maxima and minima towards the compressed and expanded
bond midpoints, respectively. In addition, the bond pair overlaps increase slightly
as a function of |§a|. However, these effects are rather small even for |§a| = 0.30 A.

In Figure 8 we show total energies calculated at the HF"’a.nd GVB-PP levels as
a function of the Peierls distortion (§a) for low-spin Ags (the dashed curves in both'
Figures 5 and 7 depict states with charge density wave maxima and minima centered
at alternate bond midpoints). In the GVB-PP description, the cohesion of the Agg
ground state is due to two-center one-electron bonding, similar to the bonding of
Agt and linear Agi (compare Figures 2 and 5a). The HF wavefunction leads to
Peierls instability and lack of cohesion with respect to dissociation into diatomic
molecules.” The lack of cohesion in the HF description of the Ags ground state is
.due to the inaccuracy of describing one-electron bonds with doubly-occupied orbitals.
Therefore, electron correlation effects (included in GVB-PP but excluded from HF)

are responsible for the Peierls instability and lack of cohesion in the HF description

of Ags.
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B. Full GVB

1. Cohesive Energies

The GVB-CI(SCF) many-electron wavefunction mimics the full SOGVB?! many-
electron wavefunction (see Section III and Appendix A), and contains one orbital for
each valence electron. At the full GVB level, the Cuyo, Ages, Ags, Agi0, Auyg, Lig,
Lijo, and Nayo low-spin symmetric ring clusters are all quite stable with respect to
dissociation into both atoms (8) and diatomic molecules (9) (see Table 2).

For the three-dimensional bulk noble metals, the experimental cohesive energies
with respect to dimerization .

M(‘) - %Mg

follow the trend Au > Cu > Ag. This same trend (Au > Cu > Ag) is also followed
by the atomization energies of the diatomic molecules (see Appendix C.1). However,
for the one-dimensional noble metal ring clusters, the cohesive energies with respect
to dimerization [Equation (9), calculated at both the GVB-PP and full GVB levels|
follow the trend Ag > Cu > Au. This same trend for the one-dimensional noble
metals was observed for the UHF calculations? and is consistent with both the atomic
s-to-p experimental state splittings®” and with the extent of p hybridization (smaller
excitation energies lead to greater hybridization and stronger cohesion).” The same
relationships between s-to-p excitation energies, p hybridization, and cohesion apply
to Li and Na.” Hence, sp hybridization plays a crucial role in the cohesion of these

one-dimensional metals.
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2. Charge and Spin Densities

The GVB-CI(SCF) many-electron wavefunction for the ground state of each of the
Cuyo, Ags, Ags, Agio, Auyo, Lig, Lijg, and Najp symmetric ring clusters leads to
a fully-symmetrical (Dy4) electronic charge distribution (no spin density wave or
charge density wave; see Figures 3 and 9a, and see Appendix B for further details).

For each system, each localized valence orbital ¢; optimized for the ground state is
symmetrically centered at a bond midpoint and is composed primarily of sp hybrids
from the two adjacent atoms. Orbitals ¢; and ¢; are related by a rotation through
(7 — %) bond midpoints and hence are equivalent. The high symmetry of the {¢;}
leads to a fully-symmetrical (Dyp) electronic charge distribution (as shown in Figure
3 for Cuy0, Ag10, Aujo, Lijo, and Nayo and in Figure 9a for Agg). Consequently, each
GVB orbital has equal overlaps with the two adjacent orbitals (and with the two
next-nearest neighbor orbitals, etc., see Appendix B).

The overlaps of adjacent GVB orbitals are compared with the GVB-PP bond pair
overlaps in Table 3. The GVB-PP orbitals are also centered at the bond midpoints
but each GVB-PP orbital has a non-zero overlap with one adjacent orbital and is
orthogonal to the other adjacent orbital. Hence, the GVB-PP orbitals are skewed
(leading to a charge density wave, as shown in Figure 3 for Cujq, Ago, Auyo, Lijo,
and Nayg and in Figure 5a for Agg). GVB-CI(SCF) corrects this GVB-PP deficiency.

Since the GVB ground state for each My symmetric ring cluster (S = 0, 4 =
B = N/2)

Uns=0 = A[®n Xw,5=0] (10)

Oy = ¢1Pad3---on

contains a fully symmetrical spatial orbital product &y, the many-electron sym-
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metry is in each case determined by the symmetry of the spin function XN,s=0 (in
combination with 4). The spin function Xy s—o can be written?* as a “resonance

combination” of two primary spin couplings

XNs=0 = (aff —pa)*/VN
XFo = [a(aB - Ba)A™'B — B(af — Ba)i~'a]/VN

XN,S=0 = C [Xﬁfs:o - (—l)AX§_€$=O] + oo (11)

and numerous secondary spin couplings [there are (4+1)~! (ﬁr ) linearly independent
spin eigenfunctions for the N-electron singlet]. Here x§5_, and xﬁ?’sﬂ are the two
perfect-pairing spin functions involved in the two degenerate GVB-PP charge-density
wave states of My.

The ground state of the Ags symmetric ring cluster (bond-centered orbitals, Fig-
ure 9a) has ! By, symmetry, whereas the ground state of each of the Cu;o, Ags, Agio,
Auyo, Lig, Lijo, and Na,o symmetric ring clusters has *4;, symmetry.?

In addition, for the Ags symmetric ring cluster we carried out GVB-CI(SCF)
calculations restricted so that the final (converged) orbitals would be atom-centered,
leading to a !B, excited state (Figure 9b).2® The orbitals optimized in this fashion
(Figure 9b) also result in a fully-symmetrical (Dsg) electronic charge distribution,
in contrast to the GVB-PP skewed orbitals for the Agg atom-centered state (Figure
5b, leading to a charge density wave). Details of the Agg atom-centered state are
also given in Table 3.

The energy splitting between the atom-centered state (*Bi,) and the bond-
centered state (1By,) is 1.043 eV (130.4 meV/atom) for the Ags symmetric cluster.
This is a measure of the very strong preference of the valence orbitals for centering

about the bond midpoints (as opposed to centering about the atoms). The Ags
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atom-centered state (Figure 9b) is unstable with respect to diatomic molecules (9)
by 0.102 eV (12.7 meV/atom). The Ags bond-centered state (Figure 9a) is stable
with respect to diatomic molecules (9) by 0.941 eV (117.7 meV/atom).
These results show again that two-center one-electron bonding, similar to the
bonding of M;" and linear M; (compare Figures 2, 5a, and 9a), plays a crucial role

in the cohesion of the My ring clusters.

3. Peierls Distortion

Again, we focus our attention on the Agg ring cluster as the test for Peierls inéta,bility.26
The Ags ring is stable with respect to the Peierls distortion for both GVB and GVB-

PP. Hence, the total energy of the Ags ground state increases quadratically as a

function of the Peierls distortion (§a; see Figure 10).

Although alternate bond midpoints are compressed and expanded for §a # 0, all
the nuclet are equivalent by symmetry (D,s). We tested for charge density waves in
the GVB-CI(SCF) wavefunction by using the GVB-PP skewed orbitals as “starting-
guess” orbitals (shown in Figure 7 for §a = 0.00, 0.10, 0.20 and 0.30 A) and then
solving iteratively for the optimum (self-consistent) orbitals (shown in Figure 11
for §a = 0.00, 0.10, 0.20 and 0.30 A). The converged GVB-CI(SCF) wavefunction
results in a fully symmetrical charge density for |6a| < 0.20 A. For |6a| > 0.30 A,
the converged GVB-CI(SCF) wavefunction results in a charge density wave having
Csn symmetry [the GVB-PP charge density wave has Cy; symmetry for all |§a| # 0].
Hence, for §a = 0.30 A the optimum GVB orbitals are slightly skewed. However, the
GVB-CI(SCF) energy calculated with Dy, orbital symmetry restrictions (Figure 10,
dashed line) at |§a| = 0.30 A is only 0.0049 eV (0.61 meV/atom) higher than that

calculated without orbital symmetry restrictions (Figure 10, solid line).
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The optimum GVB orbitals (shown in Figure 11) imply that the Peierls-distorted
diatomic lattice is unfavorable because alternate one-electron bonds are stretched and
compressed. As |§a| increases, orbitals centered at expanded bond midpoints tend to
delocalize somewhat over adjacent compressed bond midpoints, and orbitals centered
at compressed bond midpoints tend to contract, resulting in increased gradients along

the compressed bond axes.

V. Discussion

These ab initio calculations [GVB-PP and (full) GVB| indicate that the one-dimensional
elemental metals composed of Cu, Ag, Au, Li, and Na have large cohesive energies
with respect to both atomization and dissociation into diatomic molecules, and are
stable with respect to the Peierls distortion (see Table 2 and Figure 12).

For each of the Cuyo, Aggs, Ags, Ag10, Auyo, Lig, Lijg, and Na;p symmetric ring
clusters, the GVB ground state wavefunction consists of singly-occupied valence or-
bitals centered at the bond midpoints, forming one-electron bonds similar to the
bonds in the respe.ctive My and linear M3 molecules (compare Figures 2, 3, and
9a). Adjacent bond-centered orbitals overlap, leading to antiferromagnetic (singlet)
ground states having fully symmetrical electronic charge densities (no charge density
or spin density waves for full GVB).

The cohesion in each of these one-dimensional metals is dominated by these two-
center one-electron-bonds; hence, the Peierls distortion stretching and compressing
alternate one-electron bonds is unfavorable.

For a correct description of the cohesion due to these one-electron bonds, the

wavefunction must include the configuration occupying each localized nonorthogonal
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valence orbital with only one valence electron. Hence, the wavefunction must include
at least one orbital for each valence electron, as is the case for unrestricted Hartree-
Fock (UHF, spin polarized), GVB-PP, and GVB, each including exactly one orbital

per valence electron.

A. Restricted Hartree-Fock

The restricted Hartree-Fock wavefunction (HF, non spin polarized) describes each
electron pair by a single orbital. Therefore, HF leads to spurious results such as (1)
a charge density wave and Peierls instability for the Ags symmetric ring cluster (see
Figure 12),7 (i) a negative atomization energy for the lovv}-spin Nayo ring cluster,’
and (4:) a ferromagnetic (high-spin) ground state for the Lijq ring cluster.!*?* The
HF wavefunctions for the Cuyo, Ages, Ags, Ag10, Aujo, Lig, Lijo, Li1s, and Na;qo low-
spin symmetric ring clusters lead to cohesive energies with respect to dissociation
into diatomic molecules that are very small or negative.” Thus, the HF results for
these one-dimensional metals are iﬁ absolute disagreement with the more accurate
UHF" and GVB results.

The HF-energy band arguments predicting instability for one-dimensional metals!
have been generalized!® to explain the Hume-Rothery rules.3 These rules are based
on an empirical correlation of particular alloy structures with particular valence-
electron to atom ratios. For example, nearly all y-brass alloys occur for electron/atom
ratios of 1.54 - 1.70%132 [the ideal ratio is 21/13 as for AgsZng, CugAly, etc]. The
present results raise doubts concerning this explanation of the stability of the Hume-
Rothery phases, since it is based on doubly-occupied orbitals.

The absence of strong cohesion in the HF description of these systems is due to the

inaccuracy of describing one-electron bonds with doubly-occupied orbitals. For the
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Cuyo, Age, Ags, Ag10, Auyg, Lig, Lijo, Liyg, and Na;o symmetric ring clusters, the local
HF description of each electron pair involves an atom-centered orbital [¢(T)p(])]."2*
Expanding this atom-centered orbital ¢ as a sum of two adjacent orthogonal bond-

centered orbitals
o= (w1 +wa)/ V2

leads to the two-electron spatial function
® = ¢ ¢ = 0.5(wywy + wow;y) + 0.5(wyws + waw; )

with equal components of “ionic” configurations (w; doubly-occupied) and “covalent”
configurations.3® The HF wavefunction forces the ionic and covalent configurations
to have equal weights for each low-spin pair of electrons (no electron correlation),
leading to the spurious results.

The relative weights of the covalent and ionic terms can be optimized for an’
electron pair by including the configuration placing both electrons in the antibonding

orbital ©°

e _@

w*e® = 0.5(wiwy + waws) — 0.5(wiws + wawy)
o = (@ —wn)/VE

The resultant configuration interaction (CI) spatial wavefunction

$ = cpp-aey
= 0.5(¢1 — €3)(wiwy + wawa) + 0.5(c1 + ¢3)(wiwa + wawy )
a+c =1
for
cg=A>0, A>0

c&2=2>0, 2>0
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is equivalent to the GVB (correlated) wavefunction?334

® = ¢1¢3+ da2
$r = (A +Ae")/VA+ X3 = [(A+ X)wr + (A = Nwa]//2(A? + 22)
$r = (A =2 )[VA+ X = [(A+ X)wz + (A = X)wn]/y/2(A2 + 3?)

(1lda) = Sia = (N = ¥)/(\ + 1),

For the one-dimensional ring clusters composed of Cu, Ag, Au, Li, and Na, these
GVB orbitals {¢;} are centered at adjacent bond midpoints and overlap (S1; # 0;
see Figure 3 and Table 3).

The GVB total energy is always lower than the HF total energy (as shown in
Figure 12 for the Agg.ring) because electron correlation is included in GVB but

excluded in HF. Hence, the néglect of electron correlation is responsible for the

spurious HF results.

B. Unrestricted Hartree-Fock

The UHF wavefunction is the simplest single-determinant wavefunction leading to
strong cohesion for the low-spin My ring clusters composed of Cu, Ag, Au, Li, and
Na.” The UHF total energy can be no higher than the HF total energy, since UHF
allows a separate orbital for each valence electron. UHF leads to stability with
respect to the Peierls distortion (in agreement with GVB), as shown in Figure 12 for
Ags.

However, unlike HF and GVB, the low-spin UHF wavefunction is not an eigen-
function of the many-electron spin operator 5% and hence contains contributions
from not only the singlet (S = 0) but also from higher spin states such as triplet

(S = 1), quintet (S = 2), etc., up to high-spin (S = N/2, where N is the number of
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atoms in the cluster).” As a result of this “spin contamination,” the lack of Peierls
instability for UHF does not imply a lack of Peierls instability for the exact ground

state (which would be a properly described singlet state).

C. Generalized Valence Bond

The proper generalization of UHF yielding a wavefunction that is an eigenfunction
of 52 is the GVB wavefunction.®3® GVB resolves the disagreement between the HF-
Peierls model and the UHF-Hubbard model for these one-dimensional metals. The
GVB total energy is always lower than the UHF and HF total energies, as shown
in Figure 12 for the Ags ring cluster. For Ags, GVB conﬁrms the UHF result of
stability with respect to the Peierls distortion (see Figure 12).

For the low-spin ground electronic states of the one-dimensional My ring clusters
composed of Cu, Ag, Au, Iif, and Na, GVB confirms that the HF-Peierls description
is fundamentally incorrect due to the neglect of electron correlation effects, and
that the UHF-Hubbard description is basically correct except that (unlike UHF)
GVB does not lead to a spin density wave (or spin-contamination). Hence, both
the spin contamination and the spin density wave resulting from UHF are due to
an incomplete treatment of the electron correlation (forced by the use of a single

determinant).

VI. Summary

For the ground electronic states of the one-dimensional metal clusters composed of
Cu, Ag, Au, Li, and Na, the full GVB wavefunctions lead to the following results.

(2) Electron correlation is crucial for a proper description of the valence electronic
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structure. In each case the GVB ground state is singlet (antiferromagnetic),? consist-
ing of singly-occupied nonorthogonal valence orbitals centered symmetrically at the
bond midpoints (no charge density wave or spin density wave). (iz) The HF-Peierls
description of the valence electronic structure (doubly-occupied orbitals, half-filled
band) is fundamentally incorrect due to the neglect of electron correlation effects.
(122) The UHF-Hubbard description of the electronic structure is basically correct
except that (1v) unlike UHF, the GVB antiferromagnetic (nonmetallic) ground state
has neither spin-contamination nor a spin density wave. (v) GVB leads to large
cohesive energies with respect to dissociation into diatomic molecules. The cohesion
is due to two-center one-electron bonds similar to the two-center one-electron bonds
describing the diatomic molecular cations. Hence, the Peierls distortion stretching

and compressing alternate one-electron bonds is unfavorable.
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Appendix.A. Details of the Calculations

1. The GVB-CI(SCF) Wavefunction

The full (untruncated) configuration interaction GVB wavefunction (GVB-CI)!4°
includes all possible N-electron spatial configurations (SC) within a fixed set of

N orbitals (usually taken as the GVB-PP natural orbitals). Each SC consists of
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orbitals occupied with zero, one, or two electrons, and is multiplied by all possible
spin functions {f"*°}. Here we call each (antisymmetrizable) product of a SC with
a particular spin function f¥* a spin eigenfunction (SEF) [although each f*° alone
is also an eigenfunction of 5%]. Each SEF is multiplied by a separate CI coefficient
optimized to give the lowest possible total energy.
For the full GVB-CI, the total number of SC, f/*°, SEF, and Slater determinants

(DET) are given as follows:

mo = S () (i)

s=A
ne = 2S+1(N)
= Ay \4
_ 25 +1 N+1\ (N
MSEF = 4 (A +1) (A)
mer = (X) ()

[note that nsgr is much less than nnsc since a SC having D doubly occupied orbitals
leads to 2]‘1_?_'—11- (N :12D ) antisymmetrizable products|. These characteristics of the
GVB-CI are given in Table 4 for even values of N < 12 (the above formulas are exact
for all N and S).

For cases involving orbital symmetry, selecting configurations by symmetry re-
duces ngsc, nsgr, and npgr by approximately the factor F, where F' = 8, 4, and 2
for Dyp, Csy, and Cg, respectively [for planar cases without m orbitals, nsc, nsgr,
and npgr are reduced by &~ F/2; F =1 for cases with no orbital symmetry (C;)].

Since GVB-CI includes all possible SEF, the total energy is invariant to linear
transformations of the orbitals and hence the orbitals can be taken as orthogonal
without restriction.

Here the optimum set of GVB-CI orbitals are solved self-consistently by a two-
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step iterative procedure where first (i) the CI coefficients?® are optimized for the
given orbitals and then (iz) the orbitals®® are optimized for the given CI coefficients.
This sequence is iterated until the orbitals, CI coefficients, and calculated total en-
ergy all converge (usually only three or four iterations are required), resulting in the
self-consistent field full (untruncated) configuration interaction GVB wavefunction
[GVB-CI(SCF)]. GVB-CI(SCF') is the most general wavefunction describing N elec-
trons with IV orbitals since it involves absolutely no restrictions other than the total
number of orbitals.

The GVB-CI(SCF) wavefunction mimics the full SOGVB?! wavefunction

‘I’g/'?fva = A[(¢1 ¢2 b3 -+ dN) X4l (A1)

SOGVB optimizes a separate orbital ¢; for each valence electron (without any restric-
tions with respect to overlap or symmetry) for a completely general many-electron
spin function x (see Section III). The SOGVB {¢;} are uniquely defined and tend
to be localized (and nonorthogonal).%?

Since GVB-CI(SCF) includes all possible SEF, the total energy is invariant to Iin-
ear transformations (both orthogonal and nonorthogonal) of the (orthogonal) GVB-
"CI(SCF) natural orbitals {¢;}. A linear transformation of the {y;} resulting in a
unique set of localized overlapping orbitals {¢;} is given by the Hartree-localization
method of Appeﬁdix A.2.3% These {¢;} are used to discuss qualitative aspects of
GVB-CI(SCF) in terms of (Al).

2. The Hartree Localization Method

We define the “classical” wavefunction

3 = b1 2 ¢$ oo ON
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as the Hartree product of the {¢;}. The classical wavefunction leads to the energy

expression

o]
Q
&

I

N N N N
Shi+Y i = D hi+05> J;
i=1 >3 i=1 i#5
hij = (¢ilh|d;)

Jii = (udilris |dids)

where {h;;} are the one-electron integrals (including the electronic kinetic energy, the
potential energy due to the nuclei, and all two-electron core-valence interactions),”
and {J;;} are the two-electron “coulomb” integrals describing valence-valence elec-
tron repulsions (see Section III).

The classical energy expression can also be written as

‘ N
E°L = 2r+ Z(h,‘,’ - 0.5J§,‘) (A2)
i=1
N
;s = 05 Jij. (A3)
8,3

For a set of orthogonal orbitals, the quantity ¥; is invariant to orthogonal tranfor-
mations of the orbitals, so that minimizing E€L would correspond to minimizing the
sum of Ay — 0.5J;;. Our basic approximation in the Hartree localization method is
that this is also true for the case of overlapping orbitals. The self-coulomb integral
(Ji) strongly favors localization, whereas h;; effectively weights the transformation
by the one-electron energies, favoring delocalization. Since Equation (A2) contains
only diagonal integrals, we solve for each ¢; independently (using the GvB2pP52®
self-consistent field program).

Starting with the N optimum GVB-CI(SCF) orbitals {¢;} and solving for the
transformation minimizing (A2) leads to the (nonorthogonal) Hartree-localized or-

bitals {¢;}.3* Details of the Hartree-localized orbitals for Cuyo, Agg, Ags, Ag10, Auyo,
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Lig, Lijo, and Nayo are given in Appendix B (also see Figures 3, 9, and 11).

3. The Wannier Localization Method

Often it is useful®"2437 to obtain an orthogonal set of localized orbitals {w;} from a
unitary transformation of the (delocalized) canonical or natural orbitals {;}.33

For symmetric ring clusters where the {¢;} are a full set of one-electron Bloch

functions {1m}

N
1/;5,‘;’) - N"I/’Ew,- exp(ikR;)

i=1
2rm

kE =
aN

R; = ja

[where m is an integer (|m| < N/2), k is the wave vector, and R; denotes the position
of w; (going around the circumference)], the {w;} can be obtained by the Fourier
transformation of the {¢m,}.

However, for syétems where the Fourier transformation method cannot be used
(unfilled energy bands, low symmetry, etc.) a unique set of {w;} can be obtained?®’

by minimizing the energy expression
E=-> Js (A4)

within the {¢;} basis subject to orthogonaiity restrictions (we use the GvB2p53®
self-consistent field program to solve for all the w; simultaneously).
For the My ring clusters, the {w;} by the self-localization method (A4) are iden-

tical to those obtained by the Fourier transformation method.
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4. Basis Sets and Effective Potentials

The GVB-PP and GVB-CI(SCF) many-electron wavefunctions®®?%%® were opti-
mized using the same basis sets and hamiltonians as in our HF and UHF study;’
hence'; only a brief summary is given (further details are given elsewhere).”

For the ring clusters (Cuyo, Ags, Ags, Ag10, Auig, Lig, Lijg, Liz4, and Nayg), all
core electrons (including the subvalent d!° cores of the noble metals) are described
using the core orbitals optimized for the valence electron high-spin state (one un-
paired electron per atom).” Thus, only the valence orbitals are optimized for each
state other than high-spin. For the diatomic molecules, all orbitals are optimized
without restrictions.

For the noble metals, ab initio effective potexﬁ:ia.ls19 were utilized to include the
effects of all electrons other than eleven electrons per atom (d's) described explicitly
in the wavefunction. These effective potentials include relativistic effects for Ag and
Au but not for Cu (relativistic effects are much less important for Cu in comparison
to Ag and Au).!® For the alkali metals, all electrons are treated explicitly in the
wavefunction.

In each case, the basis set is composed of gaussian type orbitals contracted to
give two s functions and two sets of p functions per atom for describing the valence
orbitals. Hence, the basis sets chosen have sufficient flexibility to describe the valence

polarization and hybridization effects crucial for describing the metallic cohesion.
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Appendix B. Detailed Results for My Rings

1. GVB-CI(SCF) Wavefunctions

The GVB-CI(SCF) ground state wavefunction for each of the Cuyo, Ags, Ags, Ag10,
Auy, Lig, Liyp, and Na;¢ symmetric ring clusters leads to a fully-symmetrical (Dy4)
electronic charge distribution (no spin density wave or charge density wave, see Fig-

ures 3 and 9a) and can be constructed from a full set of one-electron Bloch functions

’ N
p@® = MY ¢;exp(ikR;)

Jj=1
2rm
E =
aN
Rj = ja

where m is an integer (|m| < N/2), ¢, is the normalization constant, {¢;} is an
optimal set of N equivalent real nonorthogonal localized orbitals, k is the wave
vector, and R; denotes the position of ¢; (going around the circumference). We
use real representations of the {¢,} except where otherwise noted. The {¢;} are
obtained from the {1,,} by the Hartree-localization method presented in Appendix
A2, |

For each of the M;o symmetric ring clusters, the {4} optimized for the bond-
centered state (Figure 3, ! 4,, ground state) belong to the ayy, €1y, €34, €34, €49, and
b3, representations of the point-symmetry group Dion. The {¥m} optimized for the
Agg bond-centered state (Figure 9a, ! By, ground state) belong to the a4, €1y, €24, €34
and by, representations of Dgy. The {1} optimized for the Ags atom-centered state

(Figure 9b, ! By, excited state) belong to the ayg, €1y, €24, €34 and by, representations

Of Dgh.
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2. GVB-CI(SCF) Hartree Localized Orbitals

As a test of the Hartree-localization method, for the My linear chain clusters we
compare the GVB Hartree-localized orbitals {¢;} with the unique GVB-PP canonical
singly-occupied orbitals {¢;} (see Figure 2). Systems having two valence electrons
such as M are ideal test cases since the GVB-PP and GVB-CI(SCF) wavefunctions

are identical. Hence we define
§(¢i) =1 — (dilwi)
to compare the {¢;} and {¢;}. Values of §(¢;) for Cui, Ags, Aud, Lif, and Naj

are 0.00258, 0.00104, 0.00154, 0.00022, and 0.00002, respectively. For comparison,
values of
8(wi) = 1 — (wile:)

[where {w;} are (orthogonal) GVB Wannier-localized orbitals| for Cuf, Agd, Auf,
LiJ, and NaJ, are 0.01990, 0.01541, 0.01594, 0.00626, and 0.00838, respectively [the
average §(4;) value (0.00108) is smaller than the average §(w;) value (0.01318) by
a factor of 12]. As a further test, we also compare the overlaps (p1]p2) (GVB-
PP) and (¢1|¢a2) (GVB Hartree-localized) in Table 5. In comparison to the GVB-PP
overlaps, the GVB Hartree-localized overlaps range from 18% too small (Lii) to 33%
too large (Cuf). Overall, the comparison between the Hartree-localized orbitals and
the GVB-PP orbitals for the linear M3 clusters is satisfactory.

For each of the Cuyo, Agio, Auyo, Lijo, and Na;o ground state (bond-centered)
symmetric ring clusters, the GVB Hartree-localized orbitals are quite similar to the
GVB-PP singly-occupied orbitals (see Figure 3) except that they reflect the higher
symmetry of GVB-CI(SCF) in comparision with GVB-PP. Each Hartree-localized
GVB-CI(SCF) orbital overlaps both adjacent localized orbitals equally, leading to a
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fully symmetrical charge density, whereas each GVB-PP orbital is allowed to over-
lap only one of the two neighboring orbitals, leading to a charge density wave. In
.compa.rison to the GVB-PP bond pair overlaps, the GVB Hartree-localized orbital
nearest-neighbor overlaps range from smaller by 21% (Liyo) to larger by 6% (Cuio;
see Table 5).

Table 6 presents all the overlaps [S;; = Siynj+n) between the GVB Hartree-
localized orbitals. For the Cujo, Agio, Aujg, Lijo, and Najo low-spin ring clusters,
the S;; decrease with each succeeding increment of 1 < |i — j| < 4 by factors of
roughly 2.8, 3.3, 4.0, 4.2, and 6.2, respectively.

The overlaps S;; for the Agg bond-centered state are larger than the respective
values for the Ag,o bond-centered state. Indeed, the distance between bond-centered
orbitals ¢ and i 4 n is smaller fof Agg than for Ag;o — even for n = 1. This indicates
a minor flaw in the GVB-PP bond pair overlaps since for the bond-centered state,
the bond pair overlap for Ags (0.542) is slightly smaller than that for Ag;o (0.546;
see Table 3 or Table 5). But for the atom-centered state, the GVB-PP bond pair
overlap for Ags (0.657) is smaller than that for Ag;q (0.684; see Table 3).

For each of the M linear chain clusters and each of the My ring clusters, the
GVB Hartree-localized orbitals for the high-spin and low-spin (singlet) states are
quite similar. Tables 5-6 present GVB Hartree-localized orbital overlaps for valence-
electron high-spin states (S = 1 for My, S = N/2 for My). The GVB Hartree-
localized orbital nearest-neighbor overlaps for the Mo high-spin states are 6 to 31%
larger than values for respective Mo low-spin states (see Table 5). For each of
these ring clusters, the fact that the nature of the localized valence orbitals does
not change in going from low-spin to high-spin suggests that the magnon spectrum

(the spectrum of excited spin states) can be described by the Heisenberg model*!
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involving local spin-spin exchange interactions.!*?*

The Hartree localization method has not been tested for heteronuclear systems or
for cases with very large overlaps [where the approximation of (A3) may tend to break
down, possibly leading to orbitals that are not qualitatively correct]. However, the
Hartree localization method is satisfactory for both the bond-centered and atom-
centered states of Ags (compare Figure 5a-b with Figure 9a-b) and for the bond-
centered state of the Agg Peierls-distorted ring cluster (compare Figure 7 with Figure
11).

Overall, the comparison between the Hartree-localized orbitals and the GVB-PP

orbitals for the M; and My clusters is quite satisfactory.

3. UHF Hartree Localized Orbitals

For the ground state M, linear chains the canonical UHF orbitals {¢YZF} and the
canonical GVB orbitals {¢FVB} are very similar (both sets of orbitals are singly-

occupied and localized at bond midpoints). Values of

B(p77F) = 1 - (V=¥ )

%

for Cuf, Ag!, Auf, Lif, and Naf, are 0.00079, 0.00050, 0.00044, 0.00010, and
0.00030, respectively [the average value of §(pYHF) is 0.00043]. For M, the UHF
nearest-neighbor overlap integrals are 1-10% larger than the respective GVB-PP
values (see Table 5).

For the My ring clusters, the {pY#F} are delocalized although they do break
symmetry (further details of these UHF wavefunctions are given elsewhere).?* UHF
wavefunctions are invariant to separate linear transformations of the up-spin and

down-spin orbitals. Here, we compare UHF Hartree-localized orbitals {¢Y#F} (ob-
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tained by separate transformations of the up-spin and down-spin valence orbitals)
with the GVB Hartree-localized orbitals {¢FV2}.
Values of

§(¢HF) =1 (87F1457F)

for Cujo, Ag1o, Auyg, Lijo, and Nayo, are 0.00098, 0.00033, 0.00026, 0.00112, and
0.00039, respectively [the average value of §(¢YHF) is 0.00062]. In comparison to the
GVB Hartree-localized orbital nearest-neighbor overlaps, the UHF Hartree-localized
orbital nearest-neighbor overlaps range from smaller by 5% (Cu,0) to larger by 21%
(Liyo; see Table 5).

Table 6 presents all the overlaps [S;; = Sitn j+n] for b;th the {#YEF} and the
{¢€VB}. The UHF and GVB overlaps are in fairly good agreement up to the fourth-

nearest neighbor (S15).

Appendix C. Results for the Diatomic Molecules

We calculated the optimum internuclear separations (R.), dissociation energies (D.)
and force constants (k) at the full-valence GVB level for the ground state (*Z7)
Cua, Aga, Aus, Liz, and Na, molecules and for the ground state (*Z}) Cuj, Agj,
Au}, Lif, and NaJ molecules.

The frozen co¥e approximation” is much less accurate for the diatomic molecules
than it is for the My ring clusters; hence, we optimized both the core orbitals and
the valence orbitals for all diatomic molecules.

The neutral diatomic molecules contain only two valence electrons so GVB-PP
and GVB-CI(SCF) are identical for the '} ground states. The diatomic cations

contain only one valence electron so HF, UHF, GVB-PP and GVB-CI(SCF) are
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identical.

1. CU2, Ag29 .Aug, Lig, and Naz

For Cujy, Aga, Au,, Li;, and Nay, the GVB results are compared with UHF results
(calculated using the same basis sets and hamiltonians)” and with results obtained
both from experiment and from calculations including more complete treatments
of the electron correlation effects (see Table 7).42#3 The errors in the various GVB
results (in comparison to experiment) are due mainly to the neglect of dynamic
electron correlation effects (GVB includes only “static” electron correlation effects)
as opposed to the basis set truncation. Note that basis s;:t truncation errors are
generally much smaller for GVB than for the higher level wavefunctions including
dynamic electron correlation effects.

The values of R, and k. calculated with UHF and GVB are of similar accuracy
(except for Na; where UHF is especially poor). In each case, GVB leads to a cohesive
energy (D.) that is substantially larger than the UHF value.

Although atomization energies are seriously underestimated at the GVB level for
both the M; diatomic molecules and the My ring clusters, the cohesive energies of

the My ring clusters with respect to dissociation into diatomic molecules
My — N/2 M,

should be much more accurate due to similar dynamic electron correlation energies

(per atom or valence electron) for the My ring cluster and the M; diatomic molecule.
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2. Cuj, Agf, Auf, LiJ, and Naj

For Cul, Agl, Auf, Lif, and Na], the GVB results are compared with the available
experiment results in Table 8.11:15:16,17,18,37,44

The GVB values of D, for Cuf, Agf, Lif, and NaJ are too small by 32 + 4%,
28 + 2%, 5.6%, and 5.9%, respectively (for Auj, there is no available experimental
data). Values of R, and k. have not been determined experimentally for Cuj, Ag7,
or Auf. The GVB values of k, for Li; and Na} are too large by 1.6 + 1.1% and
0.5 + 0.8%, respectively. The GVB values of R, for Li} and Na] are too large by
2.2 +0.4% and 1.9 + 0.9%.

For Cu} and Agj, the errors in the GVB D, values (in comparison to experi-
ment ) are mainly due to the neglect of core-core and core-valence electron correlation
effects.** For Lif, almost all of the discrepancy between the listed GVB results and
the experimental results can be removed with basis set improvements (such as opti-

mizing the p basis scale factor and adding a set of d functions).}445

Appendix D. Localization transition for Lig

The ground state local electronic structure of each of the Cuqo, Ags, Ags, Agio,
Auyg, Lig, Lijo, Lii4, and Nayo ring clusters involves valence orbitals centered at
bond midpoints for lattice constants (a) equal to the respective bulk metal nearest-
neighbor distances.?® However, in each case, for sufficiently large uniform expansions
of the lattice there is a sharp transition from the bond-centered state to the atom-
centered state (having valence s orbitals centered at the atoms in the limit as a
approaches infinity).

GVB-PP potential energy curves showing this localization transition for the Lig
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ring cluster are presented in Figure 13 for both the low-spin (S = 0) ground state
and the valence electron high-spin state (S = 4). Results for these GVB-PP states
‘and also for the UHF and GVB-CI(SCF) bond-centered (ground) states are given
in Table 9 for Lig. The localization transition occurs at ¢ = 1.42a, = 4.424 A and
at @ = 1.37a, = 4.457 A for low-spin Lis and high-spin Lig, respectively.

This localization transition is similar to the Mott? metal-insulator transition
(both are sharp transitions as a function of a). For one-dimensional monovalent
metals, the high-density (bond-centered) states are insulators since there is only one
site (bond midpoint) per electron; hence all sites are filled. However, for two- and
three-dimensional metals and alloys, analogous localization transitions — triangle-
centered to atom-centered for 2D and tetrahedron-centered to atom-centered for
3D, both occuring at a ~ 1.4a. for Li — are expected to be true metal-insulator
transitions since in each case the number of sites per electron is greater than one

(two sites/electron for 2D and up to five sites/electron for 3D).
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Table 1. Cohesive energies for Cu, Ag, Au, Li and Na.

Molecules Bulk Solid
M MY atomization dimerization 9
system (eV/atom) (eV) (eV/atom) (eV/atom)
Cu 1.02 1.87 3.49 2.47
Ag 0.84 1.69 2.94 2.11
Au 1.16 - 3.82 2.66
Li 0.53 1.30 1.64 1.11
Na 0.37 0.99 1.11 0.74

a) 1/2 M3 — M, References [11,12].

b) M — M + M+, References [11,15,16,17,18]. See Table 8 for further details.
) M,) — M(,), Reference [13].

d) M(,) — 1/2 Mj, e.g., cohesion with respect to Mj, References [11,12,13].
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Table 2. Cohesive energies for low-spin ring clusters.?)

atomization energy? dimerization energy®)

system a (meV /atom) (meV /atom)

(A) GVB-PP GVB GVB-PP GVB
Agg 2.889 401.7 480.3 60.5 - 139.1
Agg 2.889 . 391.0 458.9 49.8 117.7
Agio 2.889 406.8 479.0 65.6 137.7
Lig 3.014 366.4 419.8 158.1 211.5
Liyo 3.014 402.1 447.6 193.8 239.3
Liy, 3.014 413.1 _ 204.8
Cuyo 2.556 425.4 509.1 38.1 121.8
Agio 2.889 406.8 479.0 65.6 137.7
Auyg 2.884 538.2 623.6 10.0 95.5
Liyo 3.014 402.1 447.6 193.8 239.3
Nay, 3.659 191.2 236.8 45.5 91.1

a) Results calculated for the lowest energy low-spin states (Section II). The frozen core
approximation was used for the eight and ten-atom ring clusters.

b) The total atomization energy My — N M divided by N atoms.

c) The total cohesive energy with respect to diatomic molecules (at equilibrium),

My — N/2 My, divided by N atoms.
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Table 3. Details of GVB-PP and GVB-CI(SCF) wavefunctions for low-spin sym-

metric ring clusters.

dimerization nearest-neighbor
system a energy overlap ¢ AE
(A) (meV/atom) (meV /atom)
—— GVB-PP bond-centered state
Agg 2.889 60.5 0.596
Ags 2.889 49.8 0.542
Ago 2.889 65.6 0.546
Lig ‘ 3.014 158.1 0.386
Liyo 3.014 193.8 0.357
Lijg 3.014 204.8 0.349
Cujo 2.556 38.1 0.597
Agio 2.889 65.6 0.546
Auyg 2.884 10.0 0.613
Lije 3.014 193.8 0.357
Najo 3.659 45.5 : 0.435
—— GVB-PP atom-centered state
Agg 2.889 —15.5 0.714 76.0
Ags 2.889 —76.1 0.657 125.9
Agio 2.889 —53.4 0.684 119.0
Lig 3.014 —65.2 0.683 223.3
Lijo 3.014 —-93.2 0.651 287.0
Liyg 3.014 —97.1 0.644 301.9
Cuye 2.556 —62.0 0.720 ©100.1
Agio 2.889 —53.4 0.684 119.0
Auyg 2.884 —-37.9 0.668 47.9
Lije 3.014 —93.2 0.651 ‘ 287.0

Nayo 3.659 -73.1 0.558 118.6
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Table 3. Details of GVB-PP and GVB-CI(SCF) wavefunctions for low-spin sym-

metric ring clusters, continued.

dimerization nearest-neighbor

system a energy overlap ¢ AE

(A) (meV/atom) (meV/atom)

—— GVB-CI(SCF) bond-centered state

Agg 2.889 139.1 0.818

Ags 2.889 117.7 0.623

Agio 2.889 137.7 0.548

Lig 3.014 211.5 0.536

Liyo 3.014 239.3 0.282

Cuyo 2.556 121.8 0.632

Agio 2.889 137.7 0.548

Auye 2.884 95.5 0.593

Liy - 3.014 239.3 0.282

Na;g 3.659 91.1 0.382
—— GVB-CI(SCF) atom-centered state

Ags 2.889 -12.7 0.755 130.4

a) For GVB-PP, the bond pair overlap is listed; each orbital overlaps one adjacent
orbital (forming a bond pair) and is orthogonal to the other adjacent orbital.

b) For GVYB-CI(SCF), each orbital has equal overlaps with both adjacent orbitals (see
Table 6 for further details).
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Table 4. Details of the full (untruncated) GVB-CI wavefunction.®)

2
)

o
~—

A ny nsc NSEF npET

2 0 1 1 3 3 4
2 1 2 1 1 1 1
4 0 2 2 19 20 36
4 1 3 3 13 15 16
4 2 4 1 1 1 1
6 0 3 5 141 175 400
6 1 4 9 121 189 225
6 2 & 3 31 35 - 36
6 3 6 1 1 1 1
8 0 4 14 1107 1 764 4 900
8§ 1 35 28 1037 2 352 3 136
8 2 6 20 477 720 784
8 3 7 7 57 63 64
8§ 4 8 1 1 1 1
106 0 5 42 8 953 19 404 63 504
16 1 6 90 8 701 29 700 44 100
10 2 7 75 5 551 12 375 14 400
10 3 8 35 1351 1925 2 025
10 4 9 9 91 99 100
10 5 10 1 i 1 1
12 0 6 132 73 789 226 512 853 776
12 1 7 297 72 865 382 239 627 264
12 2 8 275 56 233 196 625 245 025
12 3 9 154 21 583 44 044 48 400
12 4 10 54 3103 4 212 4 356
12 8 11 11 133 143 144
12 6 12 1 1 1 1

a) Total numbers of spacial configurations (ngsc), spin eigenfunctions (nsgr), and
determinants (npgr) for the GVB-CI wavefunction without symmetry restrictions.
b) Total number of spin eigenfunctions for the configuration having each orbital
singly-occupied.
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Table 5. Nearest-neighbor overlaps. ®)

a low-spin ———— high-spin
system  (A) UHF GVB-PP GVB-CI(SCF) GVB-CI(SCF)
Cuf 2.556 0.429 0.389 0.517 0.654
Agd 2.889 0.367 0.344 0.428 0.544
Au} 2.884 0.373 0.350 0.452 0.568
Lif 3.014 0.224 0.222 0.181 0.227
Nal - 3.659 0.260 0.256 0.268 0.356
Agd) 2889 0.692 0.657 0.755 0.755
Ags 2.889 0.658  0.596 0.818 0.862
Ags 2.889 0.562 0.542 0.623 0.680
Agio 2.889 0.535 0.546 0.548 0.609
Lig 3.014 0.416 0.386 0.536 : 0.728
Lizo 3.014 0.341 0.357 0.282 0.369
Liys 3.014 0.326 0.349 0.284
Cuso 2.556 0.601 0.597 0.632 0.682
Ago 2.889 0.535 0.546 0.548 0.609
Auyo 2.884 0.589 0.613 0.593 0.631
Liso 3.014 0.341 0.357 0.282 0.369
Nayg 3.659 0.408 0.435 0.382 | 0.477

a) Results are for the bond-centered state except where otherwise noted. See Table 6 for
further details.

b) For UHF, the overlap is for adjacent Hartree-localized orbitals (obtained by separate
localizations of the up-spin and down-spin orbitals).

¢) For GVB-PP the bond pair overlap is listed.

d) For GYB-CI(SCF') the overlap is for adjacent Hartree-localized orbitals.

e) For the high-spin state (S = IN/2, one unpaired electron per atom) HF, UHF, and
GVB-CI(SCF) are identical.

f) Results for the atom-centered state.
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Table 6. Hartree-localized orbital overlap integrals. )

system a (A) S1a S13/S12 S14/S13 S15/S14 S16/S.)
low-spin, UHF ©

Agd 2889 0.692 0.478 0.439 0.668

Agg 2.889 0.658 0.655 0.737

Agg 2.889 0.562 0.391 0.356 0.655

Agio 2.889 0.535 0.303 0.224 - 0.376 0.795
Lig 3.014 0.416 0.564 0.611 )
Lijo 3.014 0.341 0.199 0.165 0.362 0.625
Li, 3.014 0.326 0.124 0.026 0.717 0.684
Cuyo 2.556 0.601 0.375 0.282 0.394 0.791
Agio 2.889 0.535 0.303 0.224 0.376 0.795
Aujgg 2.884 0.589 6.300 0.183 0.253 1.062
Liye 3.014 0.341 0.199 0.165 0.362 0.625
Najo 3.659 0.408 0.179 0.107 0.157 1.057
low-spin, GVB-CI(SCF)

Ag?  2.889 0.755 0.499 0.455 0.668

Agg 2.889 0.818 0.708 0.855

Agg 2.889 0.623 0.397 0.403 0.619

Agio 2.889 0.548 0.301 0.307 0.294 0.341
Lig 3.014 0.536 0.547 0.813 0.000 0.000
Lijo 3.014 0.282 0.204 0.293 0.214 0.356
Cuyo 2.556 0.632 0.376 0.351 0.334 0.436
Agio 2.889 0.548 6.301 0.307 0.294 0.341
Auyg 2.884 0.593 0.298 0.257 ~0.193 —0.110
Liye 3.014 0.282 0.204 0.293 0.214 0.356
Najg 3.659 0.382 6.177 0.223 0.082 —1.476
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Table 6. Hartree-localized orbital overlap integrals, continued. ®)

system - a (A) Sia S13/S13 S14/S13 S15/S14 S16/51
high-spin, ¥ GVB-CI(SCF)

Agd 2.889 0.755 0.474 0.403 0.608

Ags 2.889 0.862 0.742 0.856 .

Ags 2.889 0.680 0.413 0.366 0.584

Aguo 2.889 0.609 0.316 0.235 0.209 0.329
Lie 3.014 0.728 0.625 0.803 0.000 0.329
Lizo 3.014 0.369 0.216 0.189 0.262 0.534
Lixg 3.014 0.284 0.136 0.084 0.189 0.410
Cuso 2.556 0.682 0.390 0.290 0.265 0.447
Agio 2.889 0.609 0.316 0.235 0.209 0.329
Augo 2.884 0.631 0.308 0.198 0.042 ~2.932
Lizo 3.014  0.369 0.216 0.189 0.262 0.534
Nayq 3.659 0.477 0.200 0.149 0.171 0.393

a) Results are for the bond-centered state except where otherwise noted.

b) For the Mjo rings, the ratios S;g/S;s vary somewhat haphazardly due to the small
values of Syg and Sys [in each case |Syg| < 0.026 and |S;¢| < 0.020].

¢) UHF Hartree orbitals obtained by separate localizations of the up-spin and down-spin
orbitals. ‘

d) Results for the atom-centered state. .

e) For the high-spin state (S = NN/2, one unpaired electron per atom) the HF, UHF and
GVB-CI(SCF) wavefunctions are identical.
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Table 8. Comparison of calculated and experimental results for M, clusters.?)

GVB Y — experiment <9
R, D, ke R, D, ke .

system (A) (eV) (eV/A?) (A) (eV) (eV/A3)
Cuf 275  1.27 1.50 1.87 (10)

Agi 299  1.22 1.63 1.69 (05)

Auf  2.85 144 4.39

Lif 318 1225 0.901 3.11 (1)  1.298 0.887 (10)
Na} 3.67 0.926 0.620 3.60 (3) 0.984 0.617 (05)

a) R is the equilibrium internuclear separation, D, is the dissociation energy

(M — M + M%), k. is the harmonic force constant.

b) Since these systems contain one valence electron, the HF (and also the UHF) results
are identical.

¢) D Values for Cuj and Ag} are based on the equation

D (M}) = D.(Ms3) + IP(M) — IP(M;) where D, is the dissociation energy and IP is
the ionization potential. We use D.(Cuz) = 2.04 + .08 eV and D.(Ag3) = 1.67 + .03 eV
from Reference [11], IP(Cu,) = 7.894 % .015 eV and JP(Agz) = 7.56 + .02 eV from
References [11,15,16] and JP(Cu) = 7.726 eV and IP(Ag) = 7.576 eV from

Reference [27]. TP(Agy) = 7.56 £ 0.02 eV (based on an unpublished multiphoton
experiment [11,16]), leads to IP(Ag) — IP(Agz) = 0.016 £ 0.020 eV, in reasonably good
agreement with unpublished theoretical results, IP(Ag) — IP(Ag;) = 0.09 eV [44].

d) Values for Lij and NaJ are from References [17,18].
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Table 9. Calculated results for the Lig symmetric ring cluster.®®

cohesive energies
spin a. k. atomization © dimerization %
wavefunction state (A) (meV/atom-A?) (meV/atom) (meV/atom)

atom-centered states

GVB S=4 (no cohesion)

GVB-PP S=0 3.317 375.8 124.9 —83.4
bond-centered states

GVB S=4 3.249 734.7 246.1 37.8

UHF Ms=0 3.126 811.9 391.7 299.0

GVB-PP S=0 3.120 815.2 394.4 186.1

GVB-CI(SCF) S=0 3.097 840.2 439.6 231.3

a) a. is the equilibrium lattice constant, k. is the harmonic force constant.

b) For the S = 4 (valence electron high-spin) states, the HF, UHF, GVB-PP and
GVB-CI(SCF) results are identical.

¢) The total atomization energy Lig — 8 Li divided by 8 atoms.

d) The total cohesive energy with respect to diatomic molecules (at equilibrium),
Lig — 4 Lis, divided by 8 atoms.



154

GVB ORBITALS
ATOM DIATOMIC MOLECULE

Cu

Ag

Au

Li

Na

Figure 1. The optimum GVB valence orbitals for the Cu, Ag, Au, Li, and Na
atoms (one orbital each) and homonuclear diatomic molecules (two orbitals each).
Each orbital contains one electron. For Cu,, Ag,, Au,, Liz, and Na,, the bond pair
overlaps are 0.621, 0.596, 0.600, 0.593, and 0.496, respectively. For this figure and
for all following figures showing orbital amplitude contours, the nearest-neighbor
distance (a) is equal to that of the bulk metal (¢ = 2.556, 2.889, 2.884, 3.014,
and 3.659 A for Cu, Ag, Au, Li, and Na, respectively), and the boxes are scaled
to a (for Figures 1-3, box width = 3.6 a). Squares mark the atomic positions.
Contours mark even amplitude increments of 0.2a=3/? unless noted otherwise.

Solid and dashed contours denote positive and negative amplitudes, respectively.
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GVB ORBITALS

LINEAR M3

" Cu

Ag

)

] & ,@t

Au

Li

)

Na

£

CC

Figure 2. The optimum GVB valence orbitals for M; (one orbital each) and linear
M (two orbitals each), M = Cu, Ag, Au, Li, and Na. Each orbital contains one
electron. For Cuf, Agd, Auj, Lij, and Naj, the bond pair overlaps are 0.389,
0.344, 0.350, 0.222, and 0.256, respectively. The GVB and UHF orbitals for the
M clusters are identical, since there is only one valence electron. For each of the
linear M3 clusters, the UHF orbitals are very similar to the GVB orbitals (the
UHF spatial orbital overlaps for Cuf, Agd, Aud, Lij, and NaJ are 0.429, 0.367,
0.373, 0.224, and 0.260, respectively). However, UHF results in net spin densities

-for low-spin M3, whereas GVB does not.
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L 4

L 4

Figure 3. Valence orbitals for each of the Cujo, Agio, Atl10, Lizo, and Najo ring
clusters (each orbital contains one electron; overlaps are given in Tables 3 and
5). Localized orbitals are shown for UHF (see Appendix B.3), GVB-PP (the two
orbitals of a bond pair are shown), and full GVB (see Appendix B.2).
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(@) (b)

Figure 4. (a) The My symmetric ring cluster as a model of the undistorted one-
dimensional metal. (b) The Mj distorted ring cluster (composed of alternating

long and short bonds) as a model of the Peierls distorted one-dimensional metal.
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(2) GVB-PP (b)
BOND-CENTERED ATOM-CENTERED

Figure 5. The GVB-PP (optimum) valence orbitals for (a) the bond-centered
state of Agg, 0.542 overlap each bond pair, and (b) the atom-centered state of Agg,
0.657 overlap each bond pair. In each case, the superposition of all eight orbitals
is shown at the bottom excluding contours < 0.6a3/2 for clarity. All orbitals are
singly-occupied and spin-coupled into bond pairs as indicated. In each case, the
four bond pairs are related by four-fold rotations about the eight-fold symmetry

axis, leading to a charge density wave having Dy, symmetry.
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Figure 6. The total energy of low-spin Agg as a function of the Pelerls distortion
(6a) calculated at the GVB~PP level. The solid curve depicts the bond-centered

state (Figure 5a) and the dashed curves depict the atom-centered state (Figure
5b).
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Figure 7. The GVB-PP valence orbitals for the Ags bond-centered (ground)
state as a function of the Peierls distortion (§a). All orbitals are singly-occupied
and spin-coupled into bond pairs. In each case a single bond pair is shown (the
other pairs are obtained by successive four-fold rotations). Bond pair overlaps are
0.542, 0.547, 0.562 and 0.589 for § = 0.00, 0.10, 0.20 and 0.30 A, respectively.

The many-electron wavefunction symmetry for da # 0 is Cyy.
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Figure 8. The total energy of low-spin Ags as a function of the Peierls distortion
(6a) calculated at the HF and GVB-PP levels. The results calculated without
orbital symmetry restrictions are indicated by the solid curve (leading to charge
density wave maxima centered at the atoms for all §a). The results calculated
with Dy orbital symmetry restrictions are indicated by the dashed curves (leading

to charge density wave maxima centered at the bond midpoints for §a = 0).
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(a) FULLGVB  (p
BOND-CENTERED ATOM-CENTERED

Figure 9. The GVB valence orbitals for (a) the bond-centered state of Ags (ground
state, 1By,) and () the atom-centered state of Ags (excited state, * By,). In each
case, the superposition of all eight orbitals is shown at the bottom excluding

contours < 0.6a=3/2 for clarity. All orbitals are singly-occupied.
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Figure 10. The total energy of the Ags ground electronic state as a function
of the Peierls distortion (6a) calculated at the GVB-PP and full GVB levels
(solid curves). The GVB-CI(SCF) energy calculated with Dy, orbital symmetry
restrictions (dashed curve, almost obscured by the solid curve) is equal to that
calculated with no orbital symmetry restrictions (Cs, solid curve) for |§a| < 0.20
A. For |6a| = 0.30 A the Dy, energy is higher than the Cjs energy by 0.0049 eV
(0.61 meV/atom).
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FULL GVB
[¢)
.50, = 0.3 A.

Figure 11. The GVB valence orbitals for the Ags bond-centered (ground) state
as a function of the Peierls distortion (§a). All orbitals are singly-occupied. In
each case, two orbitals are shown (the other orbitals are obtained by successive
four-fold rotations). For |§a] < 0.20 A the optimum GVB orbitals lead to a fully
symmetrical charge density (Dgs for fa = 0 and D, for |§a| < 0.20 A). The
adjacent-orbital overlaps are 0.623, 0.625, and 0.631 for éa = 0.00, 0.10, and 0.20
A, respectively. For |§a| = 0.30 A the optimum GVB orbitals are slightly skewed,
_leadiﬁg to a Cyy symmetry charge density wave having very small amplitude. ‘For
|6a| = 0.30 A, the adjacent-orbital overlaps alternate between 0.637 and 0.644
(the overlap of the orbitals shown is 0.637).
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Figure 12. The total energy of the Ags ground electronic state as a function of
the Peierls distortion (8a) calculated without orbital symmetry restrictions at the
HF, UHF and GVB levels.



166

5 (‘ 1 ’ q M ] 1
- % o
%
VY 4 = ‘\‘s=4 -
% i %\ ATOM i
| -
> 3T : {CENT il
oo A Y «
8 = ‘\ S S=4 TRANS
w® 2rih 7.8 ]
> < (Y 7 A S .
w ! i Y - 18 Li
u \\ prond »” =
% t_f 1 S=0. §=0 TRANSITION
S ‘E;i’ ok S=4 ] :
- 4 Lis
I {BOND ]
-1fF 5§=0 CENTERED -
i i 1 ) ] 1 i g N
2 3 4 5 6

LATTICE CONSTANT (a, A)

Figure 13. The GVB-PP total energy of the Lig symmetric ring cluster as a
function of the lattice constant, showing localization transitions for the low-spin

(S = 0) and high-spin (S = 4) states.
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Chapter 3

Magnon Dispersion, Spin Density Waves, and
Charge Density Waves in One-Dimensional Metals:
Ab Initio HF and UHF Wavefunctions for

Cu, Ag, Au, Li, and Na |

I. Introduction

The properties of pseudo one-dimensional solids have long been a subject of con-
siderable interest. Peierls! has shown that one-dimensional metals having partially
filled energy bands are susceptible to a distortion leading to an energy band gap
at the Fermi level and hence a metal-to-insulator transition. For a chain of mono-
valent atoms, the Peierls instability is often associated with a charge density wave
having maxima and minima at alternating bond midpoints, leading to a Peierls dis-
tortion pairing up adjacent atoms to form a diatomic lattice.! However, for a chain
of monovalent atoms, the exact solution? of the Hubbard hamiltonian®* leads to an
antiferromagnetic insulator (with a spin density wave).

These ideas of Peierls instability, charge density waves, antiferromagnetic in-

sula.tors, and spin density waves have proved useful in characterizing pseudo-one-
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dimensional inorganic and organic compounds®*® such as (z) CuCl, and (CH3)4NMnCls
antiferromagnetic insulators,’ consisting of symmetric chains, (i2) organic polymers
such as polyacetylene,® and (7iz) organic charge transfer salts such as those based
on the tetracyanoquinodimethane (TCNQ) anion.’® Such pseudo-one-dimensional
solids are believed to be likely candidates for high-temperature superconductivity.®

Testing these concepts of Peierls instability, charge density waves, antiferromag-
netic insulators, and spin density waves with high quality ab initio® total energy
calculations for one-dimensional metallic systems should prove valuable in under-
standing the properties of such pseudo-one-dimensional solids. In addition, such
systems provide a sensitive test of various electronic structure techniques.

Hence, we have optimized restricted Hartree-Fock (HF, non-spin-polarized), un-
restricted Hartree-Fock (UHF, Spin-polarized) and generalized valence bond (GVB)
wavefunctions for various one-dimensional ring clusters composed of Cu, Ag, Au,
Li, and Na. Results for the low-spin states of these clusters are presented elsewhere
in full detail.!®!! The cohesion of these systems is due to two-center one-electron
bonding,!* as shown by the UHF valence orbitals for M;, linear M;", and Mj, in
Figures 1-2 [for these systems, the GVB and UHF (Hartree-localized) orbitals are
similar].’? At the highest level of theory (GVB),!! these systems4 are antiferromag-
netic insulators having fully symmetrical charge and spin densities, and do not lead
to Peierls instabilities. UHF wavefunctions for these systems are consistent with the
Hubbard hamiltonian.!® However, both UHF and HF lead to incorrect results (in
comparison to GVB), such as spin density waves (for UHF), charge density waves
(for HF), and Peierls instabilities (for HF).1%12

Here, we present HF and UHF results calculated for all allowed magnetizations of

the Cuyq, Age, Ags, Agi0, Aujo, Lig, Lijo, Li14, and Nayo ring clusters. An analogous
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GVB study of these systems is presented in full detail elsewhere.!* We show that
the UHF magnon spectra are consistent with a nearest-neighbor Ising model.}*!5
However, HF leads to incorrect results (such as a ferromagnetic ground state for
Liy).
Section II presents details of these results, and additional details are given in
the appendices. Speculations on Ising models for the valence electronic structures of

two-dimensional and three-dimensional metals are given in Section III.D.

II. Results

A. Introduction

For each of the Cujo, Ages, Ags, Ag10, A1, Lig, Lijo, Liz4, and Nayo ring clusters we

report the total energy as a function of magnetization (or density of unpaired spins)

_ |A-B|
- N

where A and B are the number of up-spin electrons (T or a) and down-spin electrons
(1 or B), respectively (A + B = N). We calculate both the UHF magnon spectrum
and the HF magnon spectrum using the same geometries, hamiltonians, and basis
sets as in our previous studies of the cohesive properties of these systems.1%!! The
bond lengths or lattice constants (a) for these symmetric ring clusters are taken equal
to the nearest-neighbor distances for the respective bulk metals.'® Further details of
these ab initio calculations are given in Appendix A.

For each of these systems, the effect of valence magnetization changes on the
core orbitals is small.!® For Cu,o, Ags, Ags, Agio, and Auyg, calculations where

both the core and valence orbitals are optimized self-consistently lead to minimal
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hybridization between the d orbitals (core) and the valence sp orbitals for both the
low-spin (g = 0) and high-spin (g = 1) states.!® For these systems, the closed-shell
d'® configurations are maintained for magnetizations of up to one unpaired electron
per atom.!® (In Appendix G, we show for Au,q that the lowest energy 5d-excited
p = 1 state is 2.46 eV higher in energy than the lowest energy u = 1 state at the HF
level.)

Hence, the same frozen core approximation as utilized previously (including the
closed-shell d'° electrons of the noble metal rings)'®!! is expected to be reasonably
accurate for magnetizations 0 < p < 1.1°

Incorporating this frozen core approximation, we solve for the UHF and HF

valence wavefunctions

‘I’K}ﬁF = Al(prp1- - @apar1Para- - on )t
Uyn = Alleips- - paprpa- - pp)atf?

where A is the antisymmetrizer, {p;} are the canonical one-electron orbitals opti-
mized self-consistently for each case, and a and 3 are the up-spin and down-spin
one-electron spin functions, respectively (see Appendix A for further details).

We first examine the electronic structure of the valence high-spin state (p = 1,
one unpaired electron per atom) where HF and UHF are identical. However, for

magnetizations g < 1, the UHF and HF wavefunctions differ dramatically.

B. The High-Spin State

For each of the Cujq, Ages, Ags, Agio, Auyo, Lig, Liso, Liy4, and Na,o ring clusters, the

optimum (real) canonical orbitals {y;} for the lowest energy high-spin state (u=1,
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one unpaired electron per atom)

Uy = Al(pr1p203-+ on)(aaa- - - )] (1)

can be combined!? into (complex) Bloch functions!?

N
Ym = ct?Y ¢iexp(ikR;), 0 < |m| < N/2 (2)
Jj=1
2rm
ko= aN
R; = ja

where ¢ is the normalization constant for ¥m, {#;} is 2 nonorthogonal set of N

equivalent localized orbitals, k is the wave vector, and R; denotes the position of ¢;
(going around the circumference; ¢14; is generated from ¢; by j successive N -fold

rotations). In terms of the {1}, the p = 1 wavefunction

‘I'g\},N = j’ [(¢0¢1¢—1 et ¢n—1 ¢—n+1 ¢ﬂ)(aaa T aaa)] (3)

(n = N/2) has the same form and total energy as wavefunction (1).

These two sets of orbitals [{¢;} and {tn}] are not the only means of describing

the high-spin state; e.g., the wavefunction written in terms of {¢;}

‘I’}‘V,N A (18203 - - ¢n)(aaa - - - )] (4)

has the same total energy as wavefunctions (1) and (3), since the {¢;}, {¢m}, and
{#;} are related by linear transformations [see Appendix A.3].

Figure 2b shows the optimum localized orbital ¢; for each of the Cujqo, Agio,
Auyg, Liyo, and Nayo ring clusters, where ¢, is obtained from the {¢;} by Hartree
localization.! For each case, ¢; is centered at one of the bond midpoints and is

composed primarily of a hybridization of s and po functions from two adjacent atoms.
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For each case, the ¢; for the Mjq high-spin cluster (Figure 2b) is remarkably similar
to the valence orbital of the respective M7 cluster (Figure la).

Incidentally, the {4} can also be expanded in terms of a complete set of orthog-
onal localized Wannier'®!! orbitals {w;}
N
Y = N71/2 3 wjexp(ikR;)
oy

and the high-spin wavefunction in terms of {w;}
INN = A [(wiwaws - - - wy)(aaa - - - a)] (5)

has the same total energy!® as wavefunctions (1), (3), and (4)

Figure 2c shows the optimum w; for each of the Cuyo, Ag10, Auyg, Liyg, and Najq
ring clusters. In each case, w, (Figure 2c) is similar to ¢, (Figure 2b) except for the
negative amplitudes in the regions of adjacent orbitals (2 and 10) resulting since the
{w;} are orthogonal whereas the {¢;} are allowed to overlap one another.

The Hartree orbitals {¢;} prove useful for describing the UHF wavefunctions for
other magnetizations, and the Wannier orbitals {w;} prove useful for describing the

HF wavefunctions for other magnetizations.

C. Unrestricted Hartree-Fock
1. Ab Initic Results

We optimized UHF wavefunctions for all allowed magnetizations 0 < g < 1 of each
of the Cuyo, Ags, Ags, Ag10, Auyg, Lig, Lijg, Liy4, and Najo ring clusters. These
UHF wavefunctions are optimized with real orbitals and with Cg orbital symmetry

restrictions; however, reducing the orbital symmetry restriction to C; or raising the
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orbital symmetry restriction to Cj, (with the C; axis bisecting two opposite bond
midpoints of the ring) leads to identical results. The results are given in Tables 1-2.
For each case, UHF leads to a low spin (antiferromagnetic, 4 = 0) ground state
with a m01‘10tonic increase in the total energy as p is increased. Figure 3 presents
the UHF magnon spectra for the Mjo ring clusters. For Mo, the UHF magnon
dispersion energies

DN = EN,u:l - EN,;.A:O

follow the trend Cu > Au > Ag > Na > Li.

For each state A of each My ring cluster, the UHF wavefunction in terms of the
optimum canonical orbitals {¢;} has an equivalent form in'terms of nonorthogonal
localized orbitals {¢;} where ¢; and @¢;.n are nth nearest neighbors [¢; and ¢ix;
are adjacent (modulo N; see Figure 2)]. For each state A, the {¢;} are obtained by
separate Hartree localizations'! of the up-spin canonical orbitals {¢;, i =1,2,..., A}
and the down-spin canonical orbitals {p;, i =A+1,A+2,...,N}.

The key property of the {¢;} is that they exhibit only minor variations as a
function of g for each of the Cuyo, Ags, Ags, Ag10, Aujo, Lig, Lijo, Lizg, and Nayg
ring clusters (this is not true for the {y;}). Hence, the {¢;} optimized for p =1
(high-spin, Figure 2b) are very similar to the {¢;} optimized for 4 = 0 (low-spin,

Figure 2a). For Cujo, Agi0, Auyg, Lijo, and Nayg, the average value of

S =1 — ($4=°1417")

is 0.00351 (individual values are listed in Table 2).

For Mo, values of the nearest-neighbor overlap integrals

Siz = (¢ll¢2)
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for p = 1 are 7-17% larger than those for 4 = 0 (see Table 2). These S;; values
(847, Si5°, and their average) follow the same trend as the D values (Cu > Au >
Ag > Na > Li; see Figure 4 and Table 2).

The UHF wavefunctions in terms of the {¢;} for magnetizations 0 < p < 1 are
outlined schematically in Figure 5 for M;,. UHF leads to a spin density wave for
each magnetization except for £ = 1. The UHF p = 0 spin density wave state is
discussed elsewhere!? in further detail.

For each magnetization of My, adjacent orbitals (¢; and ¢;+,) prefer to be occu-
pied with opposite spins (a-3 or 3-a) wherever possible [such as for the antiferromag-
netic (4 = 0) ground state; see Figure 5]. Hence, a,dja.cent' orbitals having parallel
spins (a-a or §-8) lead to an antibonding nearest-neighbor exchange interaction
(exchange coefficient U = —1; see Appendix B).

For My, U3AF leads to |A — B| = pN antibonding nearest-neighbor exchange
interactions (U = —1) and N(1 — ) nonbonding nearest-neighbor exchange interac-
tions (a-@3; U = 0). Ignoring all other interactions leads to the simple Ising'* energy
expression

Eny = Enu=0o —pNJT (6)
(where J is the exchange interaction), explaining the near linear increase of the total
energy with increasing g as shown in Figure 3 (therefore, J is negative; see Appendix
B for further details).

The UHF magnon spectra for the series Ags, Ags;, Agio, and for the series Lig,
Liyo, Li;4 are presented in Figures 6 and 7, respectively. In agreement with (6), D
increases almost linearly with increasing N.

For Agy and Liy, D/N =~ |J| decreases slightly with increasing N (see Table

2). The reason for this that || decreases as the distance between the two orbitals
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increases. For My, the localized orbitals are centered at bond midpoints, and the

distance between adjacent bond midpoints
RBM = gcos(r/N)

increases with increasing N, hence explaining the decrease in D/N with increasing
N at fixed a. This also explains the decrease of the nearest-neighbor overlap (Si2)

with increasing N at fixed a.

2. Ising and Generalized Ising Models

For each of the Cu;9, Agg, Ags, Ag10; Aujg, Lig, Lijo, Li14, and Nayo ring clusters, we

fit the UHF total energies (EY5F) to the Ising!* model and generalized Ising models

E]IVAJA EN,“:O - ,u'NJ

uNT
1—uNS?

Efr,l,f“ = Enu=0 —pNJT (1 + pNS?)

- ‘EN w=0 —

where J and S are the “effective” nearest-neighbor exchange energy and the “ef-
fective” nearest-neighbor overlap integral, respectively (J < 0 leads to an antiferro-
magnetic ground state). These energy expressions are based exclusively on nearest-
neighbor exchange interactions and are derived in Appendix B.

For each case; we take Ey = equal to the 4 = 0 UHF energy (E1ou=0 = E%%F
and use J and S as least-squares parameters, e.g., J and S minimize root mean

square (RMS) error

9 N
(apmsp =2 S (pgar_ pginy.
A=1+N/3

The results presented in Table 3 for M;o indicate that ES'™2 is more accurate

than E'™ by factors of 6.3 to 13.8, and ES'M2? is more accurate than EG/M1 by
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factors of 1.2 to 2.0; hence, ES™3 j5 used to interpolate the calculated UHF total
energies in Figure 3 and Figures 6-7.

For each of thé My ring clusters, J and S values follow the patterns —J ¢/M?| <
|TCMY| < |T*M| and Sy3 > SCIM2 > SGIML ' SIM — | respectively (where Sy is
the average of the UHF values Si5° and S5 '; see Table 2 and Figure 4).

The explanation of the trend Sy > SGIM3 > SGIM1 i5 a5 follows. GIMI requires
S < N~12 in order to avoid the singularity. GIM2 requires that S be proportional
to N=1/2 for large N in order to obtain a finite energy splitting between states 4
and A + 6 in the limit as N approaches infinity (for finite §)

B, - G| = |as7(1+2aN S|

i = |24+6—N|/N
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