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Abstract

This thesis presents results derived from, ab initio wavefunctions, leading to new 

concepts of metallic bonding — real-space concepts that do not require “thinking in 

reciprocal (fc) space.” As the first step in this study of metallic bonding, Hartree- 

Fock and generalized valence bond wavefunctions are presented for ring clusters com­

posed of monovalent atoms (Cu, Ag, Au, Li, and Na). These results show that one­

dimensional metals need not exhibit Peierls instabilities, charge density waves, or 

spin density waves. In addition, magnon spectra calculated using various wavefunc­

tions are compared with each other and with magnon spectra obtained with simple 

nearest-neighbor Ising and Heisenberg hamiltonians.

Generalized valence bond wavefunctions for small metal clusters lead to the con­

clusion that, for metallic systems, the valence electrons occupy interstitial regions — 

bond midpoints for one-dimensional systems, triangular hollows for two-dimensional 

systems, and tetrahedral hollows for three-dimensional systems. The new concepts 

of metallic bonding are summarized by a set of rules for the valence sp electrons of 

metallic systems. These rules are used to derive the low-lying isomers of small metal 

clusters, and are expected to prove useful in predicting the chemistry and catalytic 

properties of such systems. Applying these rules to bulk metals leads to a new ex­

planation of the solubility limits governing alloys of monovalent, divalent, trivalent, 

and tetravalent atoms. These rules are expected to prove valuable in describing the 

localized states in metals and alloys such as defects or interfaces.
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Thesis Introduction

Valence bond theory1 provides a powerful framework for understanding and predict­

ing structures and properties of nonmetallic systems, where the electrons can be 

described as being localized into hybridized atomic orbitals, spin-paired to form 

bonds and nonbonding lone pairs. This framework is quite useful in describing 

molecules, bulk structures, surface structures, and the localized states at defects 

and interfaces.2’3’4

However, for metallic systems, simple valence bond theory has been ambiguous 

and of little use. For example, each atom in a face-centered cubic monovalent metal 

has twelve nearest neighbors but only one valence electron. How does one form a 

valence bond description for systems having far too few valence electrons to form 

two-center two-electron bonds between all the nearest neighbors?

As a first step in addressing the issue of a valence bond description of metals, 

Chapters 1-4 present restricted Hartree-Fock (HF), unrestricted Hartree-Fock (UHF), 

and generalized valence bond (GVB) wavefunctions for ring clusters composed of 

copper, silver, gold, lithium, and sodium. These systems provide a sensitive test 

of the HF, UHF, and GVB wavefunctions because of the importance of electron 

correlation effects. For these “one-dimensional” metals, strong cohesion results from 

two-center one-electron (localized) bonding.
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Chapter 5 presents HF, UHF, and GVB wavefunctions for 2D and 3D clusters of 

lithium atoms. Chapter 5 leads to a generalized valence bond model of metallic bond­

ing, based on electrons localized into interstitial regions such as bond midpoints (ID), 

triangular hollows (2D), and tetrahedral hollows (3D). Hence, for the π-dimensional 

metallic system, the “characteristic” localized orbital is composed of ap hybrid or­

bitals from n +1 adjacent atoms. Applying this model to bulk metals leads to a new 

explanation of solid solubility limits governing the alloys of monovalent, divalent, 

trivalent, and tetravalent metals.
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Chapter 1

Charge Density Waves, Spin Density Waves, and 

Peierls Distortions in One-Dimensional Metals: 

Hartree-Fock Studies of Cu, Ag, Au, Li, and Na

Chapter 1 consists of an article coauthored with William A. Goddard ΠI that has 

been accepted for publication in the Journal of Chemical Physics.
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Charge Density Waves, Spin Density Waves, and 
Peierls Distortions in One-Dimensional Metals:

I. Hartree-Fock Studies of 
Cu, Ag, Au, Li, and Na 

Mark H. McAdon and William A. Goddard III

Contribution No. 6986 from the Arthur Amoa Noyes Laboratory 

of Chemical Physics, California Institute of Technology, 

Pasadena, California 91125

(Received June 25, 1987; revised manuscript received August 22, 1987)

Abstract: Ab initio calculations indicate that each of the one-dimensional elemental 

metals composed of Cu, Ag, Au, Li and Na is stable with respect to the Peierls 

distortion if spin polarization is allowed [unrestricted Hartree-Fock (UHF)], leading 

to a spin density wave. Disallowing spin polarization [restricted Hartree-Fock (HF)] 

leads to a half-filled energy band, Peierls instability and a charge density wave. 

For each case, the UHF wavefunction leads to an antiferromagnetic (non-metallic) 

ground state, with a spin density wave resulting from electron correlation effects, 

consistent with the MotbHubbard low-density antiferromagnetic insulator. The UHF 

antiferromagnetic (non-metallic) ground states have large cohesive energies resulting 

from two-center one-electron bonds (similar to the one-electron bonds of the diatomic 

molecular cations).
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I. Introduction

The electronic structure of a crystalline solid is usually described in terms of energy 

bands involving Bloch functions delocalized over the infinite lattice.1’2’3 These energy 

bands for crystalline solids [analogous to the molecular orbital (MO) energy levels 

of molecules] determine the electronic properties. Metals result when one or more 

energy bands are only partially occupied. Insulators (or semiconductors) result when 

the valence band and conduction bands are separated by a finite energy gap, so that 

the valence band is completely occupied (each orbital occupied with two electrons, 

one of each spin), and the conduction bands are completely unoccupied.

Peierls1 has shown that one-dimensional metals having partially filled energy 

bands are susceptible to a distortion leading to an energy band gap at the Fermi 

level and hence a metal-to-insulator transition. Consequently, linear metallic chains 

with equidistant adjacent atoms (“symmetical” chains) are predicted to distort such 

that the distances between adjacent atoms are not all equal.1 For a homonuclear 

linear chain composed of monovalent atoms, the energy band description leads to a 

half-filled band (in the absence of strong electron-electron interactions) and a Peierls 

distortion pairing up adjacent atoms to form a diatomic lattice.1 The Peierls in­

stability is often associated with a charge density wave having maxima and minima 

at alternating bond midpoints (the absence of such a charge density wave does not 

preclude a Peierls distortion).

Crystalline solids of the alkali or noble metals are metals whereas the monatomic 

gases (infinite interatomic distance) are insulators. Mott2 has suggested that a crys­

talline lattice of monovalent atoms should exhibit a sharp metal-to-insulator transi­

tion as the distance a between the atoms is increased. However, the normal energy
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band theory (restricted Hartree-Fock theory) predicts that such a system is a metal 

for all α.2 This contradiction has been referred to as the Mott paradox.

The problem with normal energy band theory is that it does not include the elec­

tron correlation effects required to obtain nonmetallic behavior for metallic systems 

at large a.2’4 However, the necessary electron correlation effects are included in both 

unrestricted Hartree-Fock and generalized valence bond theory.4,5

In order to modify normal energy band theory to account for the metal-to- 

insulator transition, Hubbard® introduced a hamiltonian for monovalent atoms in­

cluding the normal one-electron terms and in addition, the intra-atomic coulomb

energy

U = (ω1(l)ω1(2)∣r[21∣ω1(l)ωι(2))

that tends to prevent two electrons from occupying the same localized Wannier3 

orbital uq, where τ<∙1 is the electrostatic interaction between electrons i and j (in 

atomic units where e = 1). Hubbard showed that this hamiltonian splits the usual 

half-filled valence band (doubly-occupied orbitals) into two sets of energy bands; for 

each spin there is a lower-energy band consisting of singly-occupied orbitals and a 

higher-energy band consisting of unoccupied orbitals. These two bands presumably 

overlap2’® when a is sufficiently small that

S/W ≥ γz4∕3 ≈ 1.15

[where S is the band width for U = 0], leading to a transition from an antiferro­

magnetic insulator2’7 — with a spin density wave — at large a (“low-density”) to a 

metal at small a (“high-density”). However, the critical ratio B∣U = 1.15 is based 

on an approximate solution of the Hubbard hamiltonian,2’® and the exact solution8 

of the Hubbard hamiltonian for a one-dimensional lattice of monovalent atoms with
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a single band leads to a transition from antiferromagnetic insulator to metal only in 

the limit as B ∕U approaches infinity.

These ideas of Peierls instability, charge density waves, antiferromagnetic in­

sulators, and spin density waves have proved useful in characterizing pseudo-one- 

dimensional inorganic and organic compounds9'10 such as (ι) NbL⅛, consisting of 

dimerized chains of edge-sharing octahedral complexes (presumably due to Peierls 

instability),11 (ii) CuCl2 and (CH3)4NMnCl3 antiferromagnetic insulators,12 consist­

ing of symmetric chains, (m) organic polymers such as polyacetylene,13 and (⅛) 

organic charge transfer salts such as those based on the tetracyanoquinodimethane 

(TCNQ) anion.9'10 Such pseudo-one-dimensional solids are believed to be likely can­

didates for high-temperature superconductivity.10

Testing these concepts of Peierls instability, charge density waves, antiferromag­

netic insulators, and spin density waves with high quality ab initio14 total energy 

calculations for one-dimensional metallic systems should prove valuable in under­

standing the properties of such pseudo-one-dimensional solids.

Here we present results of extensive ab initio total energy calculations for various 

one-dimensional ring clusters composed of copper, silver, gold, lithium and sodium. 

We discuss the electronic structure of the one-dimensional metal from the energy 

band point of view, using results of the ab initio calculations to illustrate the concepts. 

Section II presents results calculated with single-determinant self-consistent field 

wavefunctions [restricted Hartree-Fock (HF, non-spin-polarized) and Unrestricted 

Hartree-Fock (UHF, spin-polarized)]. Details of these many-electron wavefunctions 

are given in Appendix A.

After submission of this article, a paper appeared in this journal presenting ab 

initio HF results for the Lie, Liio, and Lii4 ring clusters and coupled-cluster results
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for Liβ.15 This study also showed that at the HF level, Liβ, Liχo, and Liι4 are each 

unstable with respect to dissociation into Lia molecules, and that HF leads to Peierls 

instability for Liio and Li14.ιs

Here we show that the Peierls instability and lack of cohesion of the one-dimensional 

ring clusters composed of Cu, Ag, Au, Li, and Na are artifacts of the HF wavefunc- 

tion. Hence, UHF leads to stable one-dimensional structures (no Peierls instability) 

for Cu, Ag, Au, Li, and Na. The stabilities of these one-dimensional systems are con­

firmed by the results of generalized valence bond calculations (presented elsewhere).16

II. Results

In the process of exploring the bonding in metal clusters,17 we performed extensive 

ah initio calculations on various one-dimensional ring and chain clusters of lithium 

atoms up to N = 14, where N is the number of atoms in the cluster, and extrapolated 

the various results to infinite N.lβ These studies show that the cohesive properties 

of the ring clusters converge rather quickly, and that the eight and ten atom ring 

clusters are qualitatively correct and fairly accurate as models for the infinite chain 

(each are periodic in one dimension). Herein we examine Afjv ring clusters composed 

of copper, silver, gold, lithium, and sodium, where the lattice constants (o) for the 

undistorted (symmetric) clusters are taken equal to the nearest-neighbor distances for 

the bulk metals.18 We model the Peierls dimerized chains with ring clusters containing 

alternating long and short intemuclear separations α±5α, as shown in Figure 1, where 

the average nearest-neighbor distance is equal to that for the symmetric cluster.

We find that the cohesive properties of the one-dimensional alkali and noble 

metals are dominated by the valence sp electrons. The standard Mulliken19 orbital
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population analysis for the Mw ring clusters leads to the average atomic configura­

tions (UHF, see Appendix A.2) 3d9∙9724sθ∙β244pθ∙4°4 (Cu), 4d9∙9715sθ∙β085pθ∙421 (Ag), 

5d9∙95963θ∙8β26p0∙179 (Au), 2sθ∙4942pθ∙50β (Li), and 3s0∙6493p0∙351 (Na). For the ground 

and low-lying excited electronic states of the noble metal clusters, there is minimal 

hybridization of the d core orbitals with the sp valence orbitals, and hence the closed- 

shell dw configurations are maintained (see Appendix A.2). For both the noble and 

alkali metals, sp hybridization is crucial in describing the valence electronic struc­

tures. However, the pπ conduction bands are significantly higher in energy than the 

valence band for both the alkali metals and the noble metals and hence for the ground 

electronic states the pπ conduction bands are unoccupied (see Appendix A.2).

A. Energy Band Theory — Non-Interacting Electrons

The normal energy band theory of metals is based on one-electron Bloch functions 

(V,∏*) which for a Λf∕v symmetric ring cluster can be written as

J=ι
, 2πτn
k = 7iv

Rj = jo>

where m is an integer (∣m∣ ≤ 1V∕2), {ωj∙} is the optimal set of N equivalent real 

orthogonal localized (Wannier)3 orbitals, k is the wave vector, and Rj denotes the 

position of u>j∙ (going around the circumference). The one-electron energies are given

as

¾ = (&n\hEFF[t/>m') (1)

where hEFF is an effective one-electron hamiltonian including the electronic kinetic 

energy and the potential energy [due to both the ion cores and the remaining (π — 1)
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valence electrons]. A given set of Bloch functions can always be combined to give an 

equivalent set of real functions (see Appendix A.6), and we use the real representa­

tions of the Bloch functions except where noted otherwise. The real representations 

of the Bloch functions are equivalent to molecular orbitals, and the non-interacting 

electrons approximation for bulk solids is somewhat analogous to the Hiickel approx­

imation for molecules.20

The Bloch functions for the valence band of each Mn ring cluster (Λf = Cu, 

Ag, Au, Li and Na) can be written in terms of localized orbitals {ωj∙} centered 

symmetrically at the bond midpoints, as shown in Figure 2 for the Aga ring cluster. 

It is important to note that the valence Bloch functions for these Mpr ring clusters 

cannot be written in terms of localized orbitals that are centered symmetrically at 

the atoms. This is because the valence band k — π/a orbital (m = N∕2, even N) has 

nodes passing through the atomic centers whereas (in each case) the fe = π∕α orbital 

with nodes passing through the bond midpoints is much higher in energy (hence part 

of a conduction band).

The one-electron energies for the Aga ring cluster are given in Figure 3, where the 

data points representing the discrete levels are joined by a solid curve approximating 

the continuous band that would be obtained in the limit as N approaches infinity. 

The orbitals and energy levels21 presented in Figures 2-4 are obtained from the HF 

valence high-spin state where each Bloch function is occupied with a single electron 

(total spin 5 = 4, see Appendix A).22

In the energy band model (with the usual non-interacting electrons approxima­

tion), the e⅛ are independent of occupation because two-electron terms are not ex­

plicitly included in the effective hamiltonian (1). Thus, the ground state for the 

one-dimensional metal composed of monovalent atoms consists of a half-filled band
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of doubly-occupied Bloch functions.

In the HF description, the two-electron terms are explicitly included in thé hamil- 

tonian, and as a result the e⅛ are not independent of occupation.23

1. The Peierls Instability

Peierls1 showed that the application of band theory to symmetric one-dimensional 

metals with partially occupied valence bands leads to instability with respect to 

geometric distortions. Thus, for a one-dimensional metal with a partially occupied 

valence band, Peierls showed that it is always possible to find a distortion lowering 

the energies of the one-electron states below the Fermi level (and raising the energies 

of the one-electron states above the Fermi level).

The Peierls instability1 for one-dimensional metals is analogous to the Jahn- 

Teller34 and pseudo-Jahn-Teller instabilities for open-shell molecules with high sym­

metry.

For a monovalent one-dimensional metal, the Peierls instability leads to a dimer­

ized chain,1 as shown in Figure lb. The valence energy band for the dimerized Ag8 

ring cluster is shown in Figure 4. The effect of the dimerization is to produce a band 

gap at kp = ±7r∕2α (0.011 eV at Sa = 0.10 Â). In the usual non-interacting electrons 

approximation, this results in a metal-to-insulator transition since the one-electron 

states below the band gap are all doubly-occupied and the one-electron states above 

the band gap are all unoccupied. The origin of the band gap can be explained in a 

qualitative fashion by examining the degenerate ∣τn∣ = 2 orbitals of the Aga symmet­

ric ring (Figure 2). Each m = 2 orbital has nodes bisecting alternate bond midpoints. 

Upon dimerization, the orbital with nodes bisecting the expanded bond midpoints 

is stabilized while the orbital with nodes bisecting the compressed bond midpoints
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is destabilized.

We chose the eight-atom cluster as opposed to six- or ten-atom clusters for model­

ing the anticipated Peierls instability, since only clusters where JV is divisible by four 

have one-electron states at kp = ±7r∕2α (τn = 5/2 is not an allowed state for Afχo). 

Hence, with respect to the Peierls instability, N = 4i ring clusters are expected to be 

better models of the one-dimensional metal than N = 4λ + 2 ring clusters, although 

the distinction between N = 4i and N = 4i + 2 is expected to vanish in the limit as 

N approaches infinity.35

B. Hartree-Fock

1. Cohesive Energies

Using HF wavefunctions we calculated cohesive energies of the Cuιo, Age, Ag8, Agio, 

Auιo, Lie, Liιo, Li1<, and Na10 symmetric ring clusters (low-spin) with respect to 

atomization

Mn→NM (2)

and dimerization

Mn → N/2 Mi (3)

(dissociation into diatomic molecules). These are reported in Table 1, where the 

total cohesive energies have been divided by N. These cohesive energies are cal­

culated using (ι) the total energies of low-spin ring clusters at fixed values of the 

lattice constant (a), (ii) the total energies of diatomic molecules at their calculated 

equilibrium internuclear separations (jRe)s and (m) the total energies of the isolated 

atoms. In all cases the HF wavefunctions are optimized with no orbital symmetry 

restrictions. [For HF, the orbitals are each occupied with two electrons (except for
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the isolated atoms where the core orbitals are doubly-occupied and the valence s 

orbital is singly-occupied).]33 Further details are given in Appendices A-B.

At the HF level, Na1o is unstable with respect to atomization, and Liχo and Liι4 

are just barely stable with respect to atomization. However, Cu1o, Age, Aga, Agio, 

and Auιo each have large cohesive energies with respect to atomizaton (see Table 1). 

A second criterion for stability is cohesion with respect to dissociation into diatomic 

molecules.(3) Here, Aga, Lie, Lii0, Liχ4, and Naχ0 are unstable while Cuio, Agχ0, and 

Auιo are just barely stable.

As expected, the series Agβ, Aga, Agio indicates that, at the HF level, the N = 4i 

clusters are significantly less stable than the N = 4i + 2 clusters. This is consistent 

with the Hiickel model of 4i + 2 aromaticity where the N = 4i + 2 rings have fully 

occupied bonding Fermi levels whereas the N = 4i rings have partially occupied 

nonbonding Fermi levels.30 However, the UHF results (see Table 1 and Section C) 

exhibit no distinction between N = 4t and N = 4z + 2.

Results for the series Liβ, Liχo, Liχ4, and the series Aga, Aga, Agio indicate that 

the HF cohesive energies decrease with increasing N. Hence, we expect that at the 

HF level, the Agi4 and Aui4 ring clusters would each have a negative cohesive energy 

with respect to dissociation into diatomic molecules.

In each case the HF atomization and dimerization energies are substantially 

smaller than the respective UHF values (see Table 1). Both the HF and UHF cohesive 

energies for the one-dimensional metal clusters (Table 1) are much smaller than the 

respective experimental values for the three-dimensional bulk metals (Table 2).3βι37∙28

Despite the poor cohesive energies, HF often yields accurate geometries. Thus, 

for Na2 HF yields a potential well with a reasonably accurate bond length (too long 

by 3.8%) and force constant (too small by 4.2%; see Appendix B and Table 10),
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while the cohesive energy for Na2 is negative at the HF level (the HF energy of Na2 

at the minimum of the well is higher than twice the HF energy of the isolated Na 

atom)!

For Lie, Li1o, and Lii4, the HF cohesive energies reported here differ somewhat 

from those reported by Fδrner and Seel (FS).15 There are several factors that lead to 

these differences (see Table 3): (i) The HF results reported by FS are for optimized 

lattice constants (αβ = 3.076 ± .004 À) whereas our results are reported at fixed 

lattice constants (α = 3.014 Â). However, the force constants (symmetric stretch) 

for these systems are small enough that a displacement from the equilibrium lattice 

constant by 0.06 Â increases the total energy by only 1.5 meV∕atom.ιs (ü) FS used 

a basis set that has more a flexibility but less p flexibility in comparison to our 

basis set (see Appendix A), {iii) By calculating two sets of HF results with the 

same basis set — (a) HF with full D^h orbital symmetry restrictions and (b) HF 

with no orbital symmetry restrictions — it is clear that the results reported by FS 

are for the fully symmetric states (see Table 3). Thus, for Lie, Liio, and Lii4, our 

Dfrh HF total energies are higher than those reported by FS by 11.973, 11.701, and 

11.429 meV/atom, respectively (note that the increment is exactly 0.272 meV/atom). 

Hence, for both Li1o and Liu, FS did not obtain the lowest energy low spin HF 

solution (which has a charge density wave) — although their conclusion that both 

Liιo and Liu exhibit Peierls instability at the HF level is undoubtedly correct.

2. Charge Density Waves

First, we present results for the N = 4i + 2 low-spin symmetric ring clusters, 

and then we present results for N = 4» (Aga).

For Cuιo, Agβ, Agi0, Auι0, and Liβ, the HF wavefunction leads to a fully symmet­
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rical electronic charge density (having periodicity α) even if the orbitals are optimized 

without symmetry restrictions.

However, for Li10, Li14, and Na10, HF (optimized without symmetry restrictions) 

leads to an electronic charge density having periodicity 2α (twice that of the lat­

tice). Since the electronic charge density does not have the same periodicity as the 

lattice, each of these systems is said to have a charge density wave (defined by the 

difference between the net charge density and the symmetric component of the net 

charge density). For these systems, the charge density wave has maxima and min­

ima centered about alternate atoms, as shown for Li44 in Figure 5, where the seven 

doubly-occupied valence orbitals lead to a charge density wave with maxima centered 

about atoms 1, 3, 5, 7, 9, 11, and 13, and minima centered about atoms 2, 4, 6, 8, 

10, 12, and 14.

Charge density waves can be avoided for the low-spin HF states of the Mn ring 

clusters by optimizing the wavefunctions with full D^fl orbital symmetry restrictions; 

i.e., restricting the orbitals to be Bloch functions. Hence, for Λf10 and Mι4, the states 

described by the valence configurations

M10 : ≠o(Ti)≠-ι(↑i)≠1(↑i)≠.2(↑χ)≠2(↑χ)

‰ : ≠o(↑i)≠-ι(↑i)≠ι(Tn≠-2(↑υ≠2(↑i)≠-3(↑i)≠3(↑i)

each lead to a fully symmetrical charge density. Orbitals optimized in this fashion 

are shown for Li14 in Figure 6.

However, the optimum HF symmetric state is higher in energy than the opti­

mum HF charge density wave state by 5.99 meV/atom, 23.22 meV/atom, and 0.70 

meV/atom tor Lι10, Lιu, and Naw, respectively (see Table 3). For each of these 

cases, allowing the HF wavefunction to break symmetry - leading to a charge den­
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sity wave — reduces the total electron-electron repulsion energy (two-electron energy; 

see Table 3). However, this is countered by one electron terms (such as the electronic 

kinetic energy) favoring the fully delocalized (smooth) orbitals (see Table 3).

The charge density wave states of these ring clusters can each be characterized 

by the Dχh symmetry-projection of their canonical orbitals (having in each case 

Dnh symmetry where n = N∕2). In each case, the Pn⅛ real canonical orbitals can 

be combined to give complex Dnκ functions {ψ'm, 0 ≤ ∣τn∣ ≤ Nj⅛} that can be 

decomposed into D^h Bloch functions {≠m, 0 ≤ ∣τn∣ ≤ N∕2} as

V,m = 4^ ^n-τηψη—m∙

Summing up the squares of the coefficients crn gives populations pτn of the Bloch 

(-f⅛7ι) energy levels above and below the Fermi level (|ïhf| = -N-∕4). These pop­

ulations are given in Table 4, and, for Liio and Li14, are plotted as a function of 

wave vector in Figure 7. The magnitude of the charge density wave increases as the 

populations of energy levels above mp increases. Note that in each case the sum 

Pm + Pn-m is an integer and is independent of the magnitude of the charge density

wave.

At the HF level, charge density waves are enhanced by (i) a narrow, partially 

occupied energy band (low overlap, low density) and (ii) a large density of states 

immediately above and below the Fermi level.22 These properties enhance the orbital 

mixings required in order for the orbitals to break symmetry (and form the charge 

density wave) by minimizing the concomitant one-electron energy penalty. For Mw, 

the valence band widths follow the trend Cu > Au > Ag ↑S> Na > Li (see Appendix 

C). Hence, (i) the charge density wave for Lii0 is greater than that for Na10 (see 

Tables 3-4), and (it) Cu10, Ag1o, and Aujo do not have charge density waves because
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their valence bands are too wide.

This is also consistent with the increase in charge density wave magnitude with 

increasing N for the series Lie, Liχo, Liχ4 (HF does not lead to a charge density wave 

for Liβ). The full band width, defined as

s = ∣4⅛y1∣

where ⅛"2 one-electron nearest-neighbor hopping integral (see Appendix C; h"2

is closely related to the Huckel β parameter),20 actually decreases substantially with 

increasing N {B = 3.999, 2.838, and 2.334 eV for Liβ, Liio, and Liχ4, respectively; 

see Appendix C). Also, the number of one-electron states in the valence band is 2V, 

and hence, the energy gap between the occupied and empty one-electron states at 

the Fermi level

δep ≈ B sin7r∕TV for N = 4i + 2

decreases dramatically with increasing N (Sep = 1.397, 0.792, and 0.544 eV for Liβ, 

Li10, and Lin, respectively).22 Based on these results for the series Lie, Liχo, and Lii4, 

we cannot rule out charge density waves for the HF low-spin states of the N = 4i + 2 

Cujv, Agjv, and Au^ clusters for N > 10.

The effects that control the charge density waves for the N = 4i + 2 ring clusters 

are also important for the N = 4i rings. However, unlike the N = 4i -(- 2 rings, for 

N = 4i the Fermi level is partially occupied; hence, for N = 4i, charge density wave 

states can always be obtained from the symmetry-restricted HF state by mixing the 

orbitals at the Fermi level (this does not raise the total one-electron energy). The 

orbitals below the Fermi level respond to this perturbation by breaking symmetry, 

further enhancing the charge density wave. Therefore, at the HF level, a N = 4i 

cluster can have a charge density wave even if the neighboring N = 4i ± 2 clusters
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do not have charge density waves (this is true for the series Agβ, Ag8, and Ag10)∙

As an example, for the M8 symmetrical ring, the two D<ih, HF states

≠°(W≠-ι(U)≠1(∏)≠-2(∏)

≠o(↑i)≠-ι(TJ,)≠ι(τχ) 2̂(↑i)

are degenerate and both lead to a fully symmetrical charge density (see Appendix 

A.6). However, combining the complex orbitals ≠,2 and ≠2 to form the real orbitals 

^Ψ-2 and ∙02, and forming the analogous configurations in terms of these real orbitals 

leads to states having charge density waves.

For low-spin Ag8, the HF fully symmetrical state (optimized with D%h orbital 

symmetry restrictions) has a total energy higher than that of the lowest energy HF 

state by 27.8 meV/atom (see Tables 3-4 and Figure 8a). For low-spin Ag8, the lowest 

energy HF wavefunction leads to a charge density wave having maxima and minima 

centered about alternate atoms (see Figure 8a). The orbital population analysis for 

this state (Table 4) indicates that the three HF valence orbitals below the Fermi 

level break symmetry, whereas the fourth orbital at the Fermi level has the same 

symmetry as

For low-spin Ag8, we also solved for a higher energy HF wavefunction leading 

to a charge density wave having maxima and minima centered about alternate bond 

midpoints (see Figure 8b); hence, the charge density wave of this excited state is 

“phase-shifted” from that of the lowest energy state (Figure 8a) by o∕2. This excited 

charge density wave HF state (Figure 8b) was optimized self-consistently by imposing 

D4h orbital symmetry restrictions, leading to four orbitals that are D4∣1 symmetry 

combinations of four two-center, two-electron bonds (similar to the bond of Ag2).

Neither of these low-spin Ag8 HF states leads to cohesion with respect to disso-
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ciation into Aga molecules (see Table 3). The energy splitting of these two distinct 

low-lying charge density wave states is 14.9 meV/atom for the Age symmetric ring 

cluster. If the lack of cohesion (with respect to diatomic molecules), and the charge 

density waves were directly related, one would expect that the charge density wave 

state having maxima and minima centered about alternate bond midpoints (Figure 

8b) — consistent with the superposition of two-center two-electron bonds — would 

be the lowest in energy. However, for Ag8, the lowest energy charge density wave 

state is the one having maxima and minima centered about alternate atoms (Figure 

8a).

For Ag8, the HF triplet state described by the valence configuration

≠o(Π)≠-ι(Wι(Tl)≠-√↑)⅛(↑)

leads to a fully symmetrical charge density and an energy lower than that of the 

low-spin charge density wave state (Figure 8a) by 33.6 meV/atom. However, the 

lowest energy Ag8 HF triplet state leads to both charge and spin density waves and 

a total energy lower than that of the singlet charge density wave state (Figure 8a) 

by 38.7 meV/atom. Nevertheless, even the lowest energy Ag8 HF triplet state is 

unstable with respect to the limit of four low-spin Aga molecules by 4.5 meV∕atom. 

Further details of the Ag8 HF triplet states are given in Appendix E.

3. Peierls Instability

We chose Aga for modeling the anticipated Peierls instability. The two charge density 

wave states (Figures 8a-b) for the low-spin Ag8 symmetric ring cluster are each 

doubly degenerate. In each case, “translating” the valence orbitals by α (or rotating 

by 2τr∕8) results in an equivalent but different charge density wave state. All four
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charge density wave states are invariant to translations by integral multiples of 2α.

The HF energy of low-spin Ags as a function of the Peierls distortion (5α) is shown 

in Figure 9. As predicted by Peierls1 the optimum geometry is a distorted (I?4a) 

structure. The HF wavefunctions optimized without orbital symmetry restrictions 

lead to an adiabatic potential energy curve having the correct symmetry [FJ(5α) = 

E(-Sa)', the solid curve in Figure 9]. The HF wavefunctions optimized with D4h 

orbital symmetry restrictions lead to a set of diabatic potential energy curves crossing 

at Sa = 0 (the dashed curves in Figure 9). The T>4⅛ orbital symmetry restrictions 

ensure that the valence charge density has maxima centered on a particular set of 

four alternating bond midpoints, as in Figure 8b.

The Peierls distortion breaks the degeneracy of the two states having charge den­

sity wave maxima centered at alternate bond midpoints (as in Figure 8b). Numbering 

the bond midpoints 1 through 8, the Peierls distortion compressing bonds 2, 4, 6, 

and 8 (and expanding bonds 1, 3, 5, and 7) lowers the energy of the state having 

charge density wave maxima centered at bond midpoints 2, 4, 6, and 8, and raises the 

energy of the state having charge density wave maxima centered at bond midpoints 

1, 3, 5, and 7 (for small distortions δa). Hence, Peierls instability results for the 

low-spin states having charge density wave maxima centered at bond midpoints.

For small δα, the energy splitting is approximately equal to twice the band gap 

at k = 7r∕2α (as defined by the valence high-spin state; see Appendix A). Thus, 

the band gap and total energy splitting are 0.121 eV and 0.257 eV, respectively, for 

8a = 0.04 Â, and 0.301 eV and 0.641 eV, respectively, for δa = 0.10 Â [the ratio of 

band gap to total energy splitting is 0.4705 and 0.4698 for δa = 0.04 Â and δa = 0.10 

Â, respectively].

Although small Peierls distortions do not break the degeneracy of the two states
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having charge density wave maxima centered at alternate atoms (as in Figure 8a), 

these states also lead to Peierls instability. For the small distortion of Sa = 0.04 Â, 

the Peierls distortion causes the charge density wave maxima to slide towards the 

compressed bond midpoints and the charge density wave minima to slide towards 

the expanded bond midpoints, resulting in a net stabilization of the total energy. 

For Sa ≥ 0.10 Â, the charge density wave maxima and minima are located at the 

exact centers of alternate bond midpoints (as in Figure 8b).

The optimum value of the Peierls distortion Saopt = 0.189 Â, leads to alternating 

internuclear separations of 2.700 and 3.078 Â. The optimum value of the compressed 

bond length is somewhat smaller than the 2.724 Â equilibrium bond length calculated 

for Aga at the HF level (see Appendix B and Table 10), indicating that the interaction 

between dimers in the distorted ring cluster is repulsive. This is consistent with the 

observation that the Ag8 ring cluster with Saσpt = 0.189 Â is higher in total energy 

than four Aga molecules (-Re = 2.72 Â) by 0.143 eV (17.9 meV/atom).

C. Unrestricted Hartree-Fock

1. Cohesive Energies

Using UHF wavefunctions we calculated cohesive energies of the Cu10, Agθ, Ag8, 

Agio, Auιo, Liβ, Liχ0, Li14, and Nai0 symmetric ring clusters (low-spin) with respect 

to atomization (2) and dimerization (3). These are reported in Table 1, where 

the total cohesive energies have been divided by N. These cohesive energies are 

calculated using (i) the total energies of low-spin ring clusters at fixed values of the 

lattice constant (a), (ri') the total energies of diatomic molecules at their calculated 

equilibrium internuclear separations (Re), and (in) the total energies of the isolated
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atoms. In all cases the UHF wavefunctions are optimized with no orbital symmetry 

■restrictions. The UHF total energies are lower than the HF total energies in all cases 

except for Auj and the isolated atoms, where the UHF and HF total energies are 

equal. Further details axe given in Appendices A-B.

The results given in Table 1 indicate that at the UHF level the symmetric ring 

clusters are all quite stable with respect to dissociation into both atoms and diatomic 

molecules. In contrast with HF, for UHF the cohesive energy per atom increases with 

increasing N.

Comparison of the UHF cohesive energies calculated for the Afι0 ring clusters with 

the experimental cohesive energies for the three-dimensional bulk metals (given in 

Table 2) indicates that the trend in the cohesive energy with respect to dimerization 

differs dramatically for the one-dimensional (Ag > Cu > Au) and three-dimensional 

(Au > Cu > Ag) noble metals. However, the experimental and calculated atomiza­

tion energies for the diatomic molecules both follow the trend Au > Cu > Ag (see 

Appendix B). This could indicate a fundamental difference in the bonding for the 

one-dimensional and three-dimensional systems.

2. Spin Density Waves

The UHF wavefunction contains a separate orbital for each valence electron, where 

the orbitals occupied with up-spin electrons (↑ or α) are allowed to overlap the 

orbitals occupied with down-spin electrons (‡ or β}. For each of the Cuιo, Agβ, Ag8, 

Ag10, Auιo, Liβ, Liιo, Li14, and Naio symmetric ring clusters, the UHF ground state 

optimized without orbital symmetry restrictions is low spin and leads to valence 

orbitals having maximum absolute amplitudes centered at the bond midpoints, as 

shown in Figure 10 for Ag8.
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By imposing orbital symmetry restrictions, we solved self-consistently for low- 

spin “excited” states having valence orbitals with maximum absolute amplitudes 

centered at the atoms (as shown in Figure 11 for Aga), leading to significantly higher 

total energies [for Ag8, the UHF energy for the atom-centered state is higher than 

that of the ground state (bond-centered) by 109.6 meV/atom; further details of these 

atom-centered (excited) UHF states are given in Appendix D].

In each case, the α-spin orbitals and ∕3-spin orbitals optimized without symmetry 

restrictions for the low-spin ground state break symmetry in such a manner that 

(i) the total valence α-spin density has maxima and minima on alternating sets of 

bond midpoints (periodicity 2α), (ii) the total valence ∕3-spin density is phase-shifted 

from the total total valence α-spin density by a such that the maxima (and minima) 

of the valence α-spin and ∕3-spin densities axe staggered, leading to a spin density 

(defined by the difference between the α-spin density and the ∕3-spin density) with 

periodicity 2o, and (iti) the total valence electronic charge density (disregarding 

spin) is fully symmetric (with periodicity a). Hence, for each of the low-spin Cu10, 

Age, Aga, Agio, Auιo, Liβ, Liιo, Lii4, and Naio symmetric ring clusters, UHF leads 

to an antiferromagnetic description having a charge density with periodicity a and 

spin density with periodicity 2α. The local description of the ground state valence 

electronic structure in each case involves electrons centered at the bond midpoints 

with alternating spins, e.g., a β a β a β, etc.16

3. Peierls Instability-

In contrast with HF, the UHF description of the low-spin Age ring cluster leads to 

stability with respect to the Peierls distortion (5α). The UHF total energy calculated 

without orbital symmetry restrictions increases quadratically as a function of δa as
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shown in Figure 12.

At sufficiently large values of Sa, we anticipated the possibility that the valence 

orbitals could slide away from the bond midpoints (as shown in Figure 10) towards 

the atoms (as shown in Figure 11). However, this does not occur for Sa ≤ 0.30 

Â even though these UHF wavefunctions are optimized without orbital symmetry 

restrictions, allowing complete freedom for the positions of maximum absolute or­

bital amplitudes. As a further test for sliding valence orbitals, we constructed a 

set of skewed “starting guess” orbitals for Sa = 0.30 Â having maximum absolute 

amplitudes centered at alternate positions midway between,the atoms and the bond 

midpoints. The UHF iterative self-consistent optimization of these skewed orbitals 

resulted in orbitals having maximum absolute amplitudes centered exactly at bond 

midpoints.

The UHF orbitals shown in Figure 10 imply that the cohesion of the symmetric 

ring cluster is due to two-center one-electron bonds, similar to the one-electron bonds 

of the diatomic molecular cations.16,17 Hence, the Peierls-distorted diatomic lattice 

is unfavorable because alternate one-electron bonds are stretched and compressed.

D. UHF Energy Bands

In order to further characterize the UHF antiferromagnetic ground state, we examine 

the effect of spin polarization on the one-electron energy bands. In general, the UHF 

wavefunction results in separate energy bands for the α-spin and the ∕3-spin energy 

levels.



26

I» The Symmetric Cluster

For the symmetric cluster, the α-spin and the ∕3-spin levels coincide. The discrete 

α-spin levels for the Agg cluster are shown by the data points in Figure 13, where 

the solid curve approximates the continuous band of energy levels obtained in the 

limit as N approaches infinity. Since the periodicity of the α-spin orbitals is 2α, the 

a-spin Brillouin zone [the unit cell in reciprocal (½) space] extends from —7r∕2α to 

τr∕2α (half that of the lattice). This is consistent with the energy bands obtained 

with the Hubbard hamiltonian.® Hence, when spin polarization effects are included 

(UHF) the energy band description of the chain of monovalent metal atoms consists 

of completely filled energy bands. The Peierls instability is predicted only for one­

dimensional metals with partially filled energy bands, and hence the clusters 

composed of Cu, Ag, Au, Li and Na are expected to be stable with respect to the 

Peierls distortion.

The second band shown in Figure 13 (a-spin conduction band, unoccupied states, 

plotted in the extended zone, 7r∕2α ≤ ∣⅛∣ ≤ π/α) is obtained with the improved 

virtual orbited method28 and corresponds to σ orbitals (symmetric with respect to 

bond axes) having large amplitudes in the bond midpoints occupied by the ∕3-spin 

valence electrons. This leads to large electron-electron repulsions resulting in the 

large energy gap (2.89 eV) between these two bands. The net result is that at the 

UHF level the Agg symmetric ring cluster is an antiferromagnetic insulator.

The UHF band structure of Figure 13 is in qualitative agreement with that ob­

tained from the Hubbard hamiltonian;® a quantitative analysis of the UHF energy 

bands and comparison with those obtained with the Hubbard hamiltonian is given 

in Appendix C. Values of the Hubbard parameters B and U obtained directly from
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the ab initio calculations indicate that the B∣U ratio follows the trend Li < Na <C 

Ag < Cu < Au (Appendix C, Table 11).

2. The Peierls-Distorted Cluster

The Peierls distortion does not alter the 2α periodicities of the a-spin and ∕3-spin 

orbitals. Figure 14 shows the effect of a small Peierls distortion (Sa = 0.10 Â) on 

the one-electron energy bands, where we merged together (i) the α-spin valence half­

band (—ττ∕2α ≥ k ≥ 0), (ii) the ∕3-spin valence half-band (0 ≥ k > π∕2α), (Hi) the 

α-spin conduction half-band (-iι∕a ≥ k > -τrj2a), and (Hi) the ∕3-spin conduction 

half-band (π∕2a ≥ k ≥ π∕a). The energy bands for the symmetric ring are shown 

by the thin dashed lines. The Peierls distortion stabilizes the α-spin valence orbitals 

since they have nodes bisecting the expanded bond midpoints but destabilizes the β- 

spin valence orbitals since they have nodes bisecting the compressed bond midpoints. 

The net result is that the one-dimensional metal composed of monovalent atoms does 

not lead to a Peierls instability (if spin polarization effects are allowed).

III. Discussion

The ab initio calculations indicate that the one-dimensional elemental metals com­

posed of Cu, Ag, Au, Li and Na are stable with respect to the Peierls distortion, and 

have large cohesive energies with respect to both atomization and dissociation into 

diatomic molecules, as long as spin polarization effects of the UHF wavefunctions are 

allowed (see Table 1). The UHF wavefunction for each of these systems leads to an 

antiferromagnetic (nonmetallic) ground state having a spin density wave, although 

in each case the net electronic charge density of the ground state (obtained by adding
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the up-spin and down-spin densities) is fully symmetrical. This is consistent with 

the low-density (or large α) solution of the Hubbard hamiltonian.2’8’7’8 In each case, 

the local description of the valence electronic structure consists of electrons centered 

at the bond midpoints with alternating spins.

The HF wavefunctions (which do not allow spin polarization effects) give spurious 

results, such as charge density waves for the Aga ring cluster and negative cohesive 

energies with respect to atomization for both the Naio ring cluster (see Table 1) and 

the Na2 molecule (see Appendix B). The HF wavefunctions for these one-dimensional 

metallic clusters lead to Peierls instabilities, and very small or negative cohesive 

energies with respect to dissociation into diatomic molecules.15

Thus, the HF and UHF results calculated for the one-dimensional metals com­

posed of Cu, Ag, Au, Li and Na are in absolute disagreement with one another. 

Since the UHF total energies are all lower than the HF total energies, (as shown in 

Figure 15 for Age), the variational principle suggests that the UHF results are more 

likely to be correct. However, unlike HF, the low-spin UHF wavefunctions are “spin- 

contaminated,” i.e., they are not eigenfunctions of the many-electron spin operator 

S2 (see Appendices A.4 and A.5) and hence contain contributions from both the 

many-electron singlet (5 = 0) and higher spin states such as triplet (5 = 1), quintet 

(5 = 2), etc., up to high-spin (5 = 2V∕2, where N Is the number of atoms in the 

cluster). It is likely that errors due to spin contamination do not affect the diatomic 

molecules (M3) and the ring clusters (Mjv) in a consistent manner. For example, the 

Ags symmetric cluster has a UHF total energy 1.801 eV (225.1 meV/atom) lower 

than the HF total energy, whereas the Agj molecule has a UHF total energy only 

0.020 eV (10.1 meV/atom) lower than the HF total energy (see Figure 15). Hence, 

the results of the ab initio calculations based on single-determinant wavefunctions
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(HF and UHF) are somewhat inconclusive.

In order to resolve the disagreement between the HF and UHF results, we per­

formed ab initio total energy calculations for each of these systems with the mul­

tideterminant generalized valence bond (GVB) wavefunction,3° which is a multi­

determinant generalization of UHF that is a proper eigenfunction of S2 (no spin 

contamination); details of these results are reported elsewhere.16 The GVB total en­

ergies are all lower than the UHF and HF total energies, as shown in Figure 15 for 

the Aga ring cluster. For Ag8, the GVB total energy calculations confirm the UHF 

result of stability with respect to the Peierls distortion (see Figure 15). In general, 

for the ground electronic states of the one-dimensional Μχ ring clusters composed of 

Cu, Ag, Au, Li, and Na, the GVB results confirm that the HF-Peierls description is 

fundamentally incorrect and that the UHF-Hubbard description is basically correct 

except that (unlike UHF) the GVB description of the antiferromagnetic ground state 

leads to fully symmetrical spin and charge densities (no spin-contamination or spin 

density wave).16

Thus, spin polarization is crucial for a proper single-determinant description of 

the valence electronic structures of these one-dimensional metals, especially for the 

antiferromagnetic ground states. However, both the spin contamination and the 

spin density waves resulting from UHF wavefunctions for these systems are due to 

an incomplete treatment of the electron correlation forced by the use of a single 

determinant wavefunction.lβ

The UHF calculations indicate that the trend in the cohesive energy with respect 

to dissociation into diatomic molecules differs dramatically for the one-dimensional 

(Ag > Cu > Au) and three-dimensional (Au > Cu > Ag) noble metals (see Tables 

1-2). The experimental atomization energies for the diatomic molecules and bulk
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metals both follow the trend Au > Cu > Ag (see Appendix B). However, the trend 

for the one-dimensional metals is consistent with both the atomic ∙s-to-p excitation 

energies [Ag (3.740 eV) < Cu (3.806 eV) < Au (4.947 eV)],31 and with the extent 

of p hybridization for the Mw ring clusters as revealed by the standard Mulliken19 

orbital population analysis [Ag (42 % ) > Cu (40 %) > Au (18 %); see Appendix A].

The cohesive energies (Li > Na; see Tables 1-2), the atomic s-to-p excitation 

energies (Li, 1.848 eV; Na, 2.104 eV),31 and the extent of p hybridization (Li, 51 %; 

Na, 35 %) are all consistent for Li and Na. Hence, it is clear that sp hybridization 

plays a crucial role in the cohesion of these one-dimensional metals.

The participation of the low-lying p orbitals in the valence electronic structures 

of these one-dimensional metal clusters leads to singly-occupied UHF valence or­

bitals having maximum absolute amplitudes centered at bond midpoints (see Figure 

10). The UHF up-spin and down-spin orbitals are staggered, leading to a local­

ized description where electrons are centered at the bond midpoints with alternating 

spins (antiferromagnetism). This implies that the cohesion in these one-dimensional 

metals is due to two-center one-electron bonds, similar to the one-electron bonds of 

the diatomic molecular cations.18’17 Hence, the Peierls-distorted diatomic lattice is 

unfavorable because alternate one-electron bonds are stretched and compressed.

In terms of energy band theory, spin polarization effects resulting from the UHF 

wavefunction lead to a reduction of the Brillouin zone by a factor of two, resulting in 

a ground state having completely filled energy bands, explaining the lack of Peierls 

instability (which is predicted only for one-dimensional metals with partially filled 

energy bands).

The UHF calculations indicate that the usual half-filled band model for these 

systems is fundamentally incorrect due to spin polarization effects; hence, the Peierls
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instability occurs for HF but not for UHF. A generalization of the one-dimensional 

Peierls instability1’32 has been used to explain the Hume-Rothery rules33 [these rules 

correlate particular alloy structures with particular valence-electron to atom ratios, 

e.g., the 7-brass structure occurs frequently for alloys with electron/atom ratios of 

approximately 21/13 (1.54 - 1.70)33,3* such as AggZng, Cu9Al4, etc]. The present 

results raise doubts concerning this energy band explanation of the stability of the 

Hume-Rothery phases, since spin polarization effects are neglected.

IV. Summary

The results for the one-dimensional metals composed of Cu, Ag, Au, Li and Na are 

summarized as follows.

(i) In each case, the UHF wavefunction leads to an antiferromagnetic (non- 

metallic) low-spin ground state having a spin density wave, consistent with the low- 

density (or large α) solution of the Hubbard hamiltonian.2,β,7,s The local description of 

the valence electronic structure consists of electrons centered at the bond midpoints 

with alternating spins. In each case the net electronic charge density of the ground 

state (obtained by adding the up-spin and down-spin densities) is fully symmetrical.

(iι) When electron correlation effects are included (spin polarization, UHF-Hubbard 

description), the undistorted linear structures are stable in one dimension. There­

fore, the HF-Peierls description of the electronic structure (half-filled valence band) 

is fundamentally incorrect because of the neglect of electron correlation effects. The 

HF wavefunctions (which do not allow spin polarization effects) give spurious results, 

such as charge density waves for the Agg ring cluster and negative cohesive energies 

with respect to atomization for both the Na10 ring cluster and the Naj molecule.
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(iii) The cohesive energies with respect to dissociation into diatomic molecules are 

large when spin polarization effects are included (UHF). The Peierls instability does 

not occur for these one-dimensional metals because of the strong cohesion resulting 

from two-center one-electron bonds, similar to the one-electron bonds of the diatomic 

molecular cations.16,17 Hence, the Peierls-distorted diatomic lattice is unfavorable 

because alternate one-electron bonds are stretched and compressed.
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Appendix A. Details of the Calculations

1. Basis Sets and Effective Potentials

We solved for both the unrestricted Hartree-Fock (UHF, spin polarized) and the 

restricted Hartree-Fock (HF, non spin polarized) many-electron wavefunctions for 

the low-spin states (5 = 0) of the various Mχ ring clusters (AT = Cu, Ag, Au, Li, 

and Na) where the one-electron orbitals {⅛sg∙} are expanded in terms of contracted 

gaussian type basis functions (∕g,)

<fii = ∑ fv<⅛i
w
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and where the orbital expansion coefficients (cu⅛) are optimized by the usual iterative 

self-consistent field method35 to give the lowest possible total energy. The basis sets 

{f,,} used for the various cases36’37’38 are summarized in Table 5. For Li and Na, 

these wavefunctions treated both the valence and core electrons explicitly. For the 

noble metals, eleven electrons per atom (d10s1) were included in the wavefunction, 

and ab initio effective potentials were utilized to include the effects of all remaining 

core electrons.36 These effective potentials include relativistic effects for Ag and Au 

but not for Cu (relativistic effects are much less important for Cu in comparison to 

Ag and Au).

The basis set for Li includes nine s primitive gaussian functions and four sets of 

p primitive gaussian functions that are contracted to give a total of three s functions 

and two sets of p functions [hence, the notation (9s,4p)∕(3s,2p)]. The l<s2 core 

electrons of Li are described predominantly by the first contracted s function, leaving 

two s functions and two sets of p functions (two functions each for px, pj, and p2) 

to describe the valence electron. The basis sets chosen for Na, Cu, Ag and Au are 

of similar quality to that for Li; in each case the core electrons are described by 

the smallest possible number of functions and the valence electrons are described by 

twice the minimum number of valence and polarization functions. Hence, the basis 

sets have sufficient flexibility to describe the valence polarization and hybridization 

effects crucial for describing the metallic cohesion.

2. Energy Bands and Atomic Orbital Populations

All results reported in this section are for HF or UHF wavefunctions where in each 

case we optimized all orbitals (both valence and core) self-consistently. In this sec­

tion, the HF wavefunctions are optimized under full orbital symmetry restrictions
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(Bloch orbitals, ^φm) whereas the UHF wavefunctions are optimized without any 

orbital symmetry restrictions whatsoever.

We find that the HF wavefunction for the low-spin state of Mio with valence 

electron configuration

≠^(τi)^S(↑υ⅛∖τn≠⅛(↑i)≠sv∖τi) (ai)

leads to core energy levels that are well separated from the valence energy levels for 

each case (M — Cus Ag, Au, Lis and Na).

For the noble metal ring clusters, the d bands are well separated from the va­

lence sp bands. The energy gaps between the highest-energy d-band orbital and the 

lowest-energy valence-band orbital (as defined by the Koopmans, theorem21 ioniza­

tion potentials) are 4.91 eV, 5.88 eV and 2.85 eV for Cuχo> Agio and Auιo, respec­

tively, and the widths of the d-bands are 1.64 eV, 1.99 eV and 3.00 eV for Cu10, 

Agio and Auιo, respectively. In addition, hybridization between the atomic d and sp 

orbitals is minimal, as shown by atomic orbital populations19 calculated separately 

fox the d bands [ψffl, core] and the valence sp band [V⅛∖ valence] given in Table 6.

This is in agreement with previous HF calculations for two- and three-dimensional 

Cu/y clusters up to N = 8,39,40 e.g., 1Aιg Cuβ octahedron, 1.89 eV d-band width 

and 2.97 eV d-valence gap;40 1Alfl Cug cube, 2.31 eV d-band width and 1.85 eV d- 

valence gap.39 For Cui3 clusters containing one bulk atom and twelve surface atoms 

(cubo-octahedron and icosahedron), the d-band and valence band overlap at the 

HF-Koopmans’ theorem level of theory.39 However, allowing relaxation effects for 

the positive ion states (localized d holes) results in a description where the d band 

Is embedded in the valence band for the smaller copper clusters.41

For Age and Auιo, we also optimized the UHF wavefunction for the low-spin
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(antiferromagnetic) ground states. For Ag8, the energy gap between the d band and 

the valence band is 5.55 eV (UHF; the HF band gap is 5.90 eV), and the width of 

the d band is 1.842 eV (UHF; the HF band width is 1.851 eV). For Au10, the energy 

gap between the d band and the valence band is 2.71 eV (UHF; the HF band gap is 

2.85 eV), and the width of the d band is 3.005 eV (UHF; the HF band width is 2.996 

eV). In each case, hybridization between the atomic d and ap orbitals is minimal, as 

shown by atomic orbital populations19 calculated separately for the d bands and the 

valence ap band as given in Table 7 (UHF).

We also find that the core levels are well separated from the valence levels for 

the many-electron “high-spin” states (one unpaired electron per atom) of the various 

ring clusters. The lowest energy high-spin state for each of the Λf10 ring clusters is 

described by the valence electron configuration

4∙∖τ)≠L¾τ)≠i">(↑)≠ħ'(T)⅛>(T)ψS(↑)⅛,(τ)≠⅛>(τ)⅛>(↑)⅛l(τ) (A2)

where each valence band orbital [≠M] is occupied by a single up-spin electron. Again, 

hybridization between the atomic d and ap orbitals is minimal, as shown by the 

atomic orbital populations19 given in Table 6.

Valence-excited high-spin states such as that described by the valence electron 

configuration

4'∖↑)≠⅛∖↑)≠S"∖↑)≠i'λ↑)⅛∖r)ψ⅛∖↑)⅛∖↑)≠W(↑)≠M(τ)⅛)(τ) (A3)

where ≠⅛'1 is the highest energy valence orbital and 1⅛*> is the lowest energy π-

conduction orbital are significantly higher in energy than the lowest energy high-spin 

state (A2), e.g., the total energy splitting between (A2) and (A3) is 0.468 eV for Cu10 

and 2.168 eV for Li10.
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3. The Frozen Core Approximation

We find that the optimum core orbitals obtained from the lowest energy high-spin 

state (A2) are very similar to those obtained from the lowest energy low-spin state 

(Al). Hence, for the Mχ ring clusters we freeze the core orbitals at the high-spin 

HF level, allowing an enormous reduction in the computational effort. This is es­

pecially important since in our study of the Mw ring clusters we optimized more 

than 150 many-electron wavefunctions [six different magnetizations for each of the 

five M10 clusters, with five different types of wavefunctions (HF with Dw∣i and C2fl 

orbital symmetry restrictions, HF without orbital symmetry restrictions, UHF, and 

generalized valence bond)].16

The high-spin state was chosen for defining the core orbitals because of the ab­

sence of various peculiarities associated with the low-spin states at both the HF level 

(e.g., charge density waves and fluctuations in the Fermi level as a function of TV) 

and at the UHF level (e.g., spin density waves). The savings in computational effort 

afforded by the frozen core approximation described above is obtained by perform­

ing integral transformations;42 hence, for Mι0 clusters where M is a noble metal 

this results in a reduction from 110 electrons and 140 basis functions (our integrals 

codes use “cartesian” sets of d functions) to 10 electrons and 60 basis functions (we 

eliminate the π virtual orbitals).

We do not use the frozen core approximation for the M2 diatomic molecules be­

cause it is substantially less accurate for the M2 diatomic molecules than it is for the 

Mn ring clusters (see Table 8).43 Hence, for all diatomic molecules we optimized both 

the core orbitals and the valence orbitals simultaneously. Hence, for the Mχ ring 

clusters, cohesive energies with respect to both atomization and dimerization calcu­
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lated with the frozen core approximation are always smaller than those calculated 

by optimizing all orbitals self-consistently.

In order to test this frozen core approximation, we calculated total energies for 

the symmetry-restricted low-spin states (Al) of the various clusters by the 

method described above and also by the usual method of optimizing all orbitals 

self-consistently. We also tested the HF low-spin charge density wave state of the 

Agg symmetric and Peierls distorted clusters. In addition, we tested this frozen core 

approximation for the HF low-spin spin density wave state for both the Agg and 

Auιo symmetric clusters.

The results given in Tables 7-8 indicate that the frozen core approximation de­

scribed above is reasonably accurate for the ring clusters composed of Cu, Ag, 

Au, Li, and Na. For the Liιo and Naχo ring clusters, total energies calculated with 

the frozen core approximation are less than 0.4 meV/atom higher than total energies 

calculated by optimizing all orbitals self-consistently. The HF atomization energies 

for the Cuιo, Agio, ajιd Aui0 symmetric ring clusters calculated with the frozen 

core approximation are 2-3% smaller values calculated by optimizing all orbitals self- 

consistently. The UHF atomization energies calculated with the frozen core approxi­

mation are smaller than values calculated by optimizing all orbitals self-consistently 

by 8.7% and 11.4% for Agg and Au10, respectively. The UHF dimerization energies 

calculated with the frozen core approximation are smaller than values calculated 

by optimizing all orbitals self-consistently by 17.0% and 32.3% for Agg and Au10, 

respectively.
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4. Details of the Valence Electron Wavefunctions

The UHF and HF many-electron valence wavefunctions for the various My ring 

clusters can all be written in the general form

⅛tf,Λ = Λ[⅜3χy4]

⅛N,A = 9ι(1)^2(2)⅞o3(3) ∙ ∙ ∙ ⅛5jv(fV)

where A is the antisymmetrizer or determinantal operator, Φjv,λ is the many-electron 

spatial product function, {⅛3,∙} are the canonical valence one-electron orbitals opti­

mized self-consistently for each state A, and χjv,A is tbe many-electron spin function,

e.g.,

Æ = XunsI = <≈(1)≈(2) ∙ ∙ ∙ α(X)∕3(A + 1)∕3( A + 2) ∙ ∙ ∙ ∕3(ΛΓ),

where a and β are the one-electron spin functions for the up-spin (↑ or ms = + j) 

and down-spin (J, or me = — j) projections, respectively (m1 is the quantum number 

describing the projection of the electron’s spin angular momentum on an arbitrary 

axis, z), and where A and B are the number of valence electrons with spins a and 

β, respectively (A + B = N).

For wavefunctions such as HF or UHF where both Φ and χ are products of one- 

electron functions, Λ forms a single Slater determinant. For brevity, the electron 

coordinates are often omitted; by standard convention the orbital product is ordered 

such that the electron coordinates are sequential (the electron coordinates and the 

orbital subscripts are independent), e.g.,

≡ ¥>3(l)<£l(2)<É>4(3)...

Æ = <∕ = *AßB-
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We solved self-consistently for the [unrestricted Hartree-Fock (UHF, spin-polarized) 

and restricted Hartree-Fock (HF, non-spin-polarized)] valence wavefunctions using 

the hamiltonian

« = ⅛obe + ∑⅛(.) + ∑-
«=1 i>j r'j

= + V(r1 ) + Vcoλj5

Vc0re = J2(2Jc-⅛c)
c

where (i) E^ore includes the nuclear repulsion energy and all one-electron and 

two-electron energy terms involving only the core electrons {the [Ar]3dlθ, [Kr]4dlθ, 

[Xe]4∕1*5d10, Is2, and ls32s32pβ shells for Cu, Ag, Au, Li, and Na,3β respectively 

(see Section A.3)}, (ii) the “one-electron” operator ⅛(i) includes the electronic ki­

netic energy (—∣V2), the electron-nuclear attraction [U(∕ )], and all two-electron 

interactions [coulomb (J) and exchange (Ä-)] between core electrons and valence 

electrons (V'c'oλs)'42j and (jjj) r7.1 js the electrostatic interaction between electrons 

i and j (τ,ij is the distance between electrons i and j).

The HF and UHF wavefunctions differ in the restrictions applied to the valence 

orbitals prior to the self-consistent field optimization (energy minimization), as dis­

cussed below.

HF: Orbitals of opposite spin are forced to be equal, e.g.,

<pA+i = φ⅛s i = 1,2,...,H

(thus for low-spin the orbitals are all doubly-occupied). In addition, the {⅞o<} are 

restricted to be orthonormal, e.g.,

¾ = (ψi∖<Pi) = ⅛, i,3 ≤ A.



40

These restrictions ensure that Φf^ is an eigenfunction of S2

= S(S + 1)⅛¾ (A4)

ς _ ∖a~b∖

where S2 and S are the total (many-electron) spin angular momentum operator 

and quantum number, respectively. The HF orbitals are optimized either with full 

symmetry restrictions (complex Bloch functions, average field calculation; see sec­

tion A.6), insuring a fully symmetrical charge distribution, or with selected or no 

symmetry restrictions, often resulting in charge density waves.

UHF: No orbital restrictions are made, generally leading to wavefunctions that are 

not eigenfunctions of S2 (A4). In addition, UHF wavefunctions do not always have 

the correct spatial symmetry, e.g., a spin density wave sometimes occurs. However, 

both Φ^^f and Φ^⅜ are eigenfunctions of Sz

s3 = Sl + S3 + S2z

Sz*n,a = MshVNtA (A5)

M A~BMs = -τ-

where Sz and Ms are the total (many-electron) spin angular momentum projection 

operator and quantum number, respectively.

The operators 7f, 52, and Sz all commute with one another, and hence, the exact 

wavefunctions can be taken as simultaneous eigenfunctions of all three operators. For 

the high-spin state (A = N), the HF and UHF wavefunctions are equivalent. How­

ever, for other spin states, the HF and UHF descriptions can differ quite remarkably.
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5. UHF Spin Contamination

The UHF wavefunction for a two-electron “singlet”

®2,iF = [(⅛=,ι⅞σ2)(θι∕3)] = (⅛2χ⅞52)(α∕3) - (⅞5z9Ι)(^α)

= + ⅛52⅛9ι)(α∕3 - βa) + ^(⅛5i⅛j2 " ⅛22⅞0ι)(α∕3 + βa)

consists of a combination of singlet and triplet wavefunctions (if ≠ ⅛s2). Pure spin 

states for a two-electron system are given by the valence bond wavefunctions

⅛S=1 = [(^ιψ2)(α∕3 + βa)↑ = (<Pιφ2 - φ2<p1)(aβ + βa)∕ ι∕(2 - 2⅞) 

φ‰f=o = «4 [(v5ιφ2)(α∕3 - βa)} = (⅞oi⅛J2 + ⅛52<^ι)(α∕3 - βa}∣y∣{2 + 2∙¾)

where

⅞ = (⅛j)

is the overlap between normalized orbitals ιpi and φj∙ (<⅜< = 1.0). The UHF low-spin 

wavefunction can be expanded in terms of these VB wavefunctions as

«??f = f√1-⅞Φjχ1 + √ι + ¾ ¾,1 /VÎ.

Thus, the low-spin UHF wavefunction is a pure singlet state only when φι = ⅛52 

(where it reduces to the HF wavefunction).

In general,

φKf = [(iσli°2 ’ ∙ ’ VAVA+iVA+I ° ‘ ’ <^)ΰί^/3Β] (A6)

contains a mixture of spins ∣Ms∣ < S < N∕2.

We evaluated the spin contaminations of the UHF wavefunctions for the various

Mχ ring clusters and Λf2 diatomic molecules, by calculating the “average” spin
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quantum numbers (5) from the expectation values of S2

(S2) = ^nMλ∖S2∖^n,λ}

5 = -1/2 + √(52) + 1/4

(the results are given in Table 9). Of the diatomic molecules, Na2 has the greatest 

spin contamination. This is consistent with the negative atomization energy of Na2 

at the HF level (see Appendix B), since any improvement in the total energy afforded 

by UHF is at the expense of mixing in higher-spin states. For Au2, Φusf collapses 

into Φbf at R ≤ 2.70 Â, so there is no spin contamination for Re = 2.678 Â. For 

Cu2s Ag2, Li2, and Na2, ⅛ubf collapses into Ψaτ at bond lengths of 2.34, 2.55, 

2.51, and 2.41 Â, respectively (these bond lengths are smaller than the respective 

calculated Re values).

Values of (52) are calculated by expanding S2 as

S2 = S2z + Sz + S~S +

§~ = ∑s~(i)

S+ = ∑s+(i}
s=X

where Sx is defined in Equation (A5), and s+ and s~ are the one-electron raising 

and lowering spin operators

i+α = 0 s+β = a

s~a = β a~β = 0.

Hence, for the two-electron singlet (Φ⅜jγf)

(S’) = ((≠1≠1)(α,3)∣S-Λ[(≠1⅛)(αα)i)
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= {(Φ1Φ2}(aβ')∖Λ{{φ1φ2}{0iβ + ∕3α)])

= <(≠i≠2)(<⅛∕3)∣(≠i≠2 - Φ1φ1}(aβ}}∖
= ι-⅛

For N > 2, we divide the canonical orbitals into two sets according to their spins

A : {φi, 1 ≤ i ≤ A}

B : {⅛jj∙, A + 1 ≤ j < N}

(A ≥ B) and diagonalize the overlap matrix between the two sets

¾ = (⅛j*IVjj)> l≤i<A, A + l<j<.N

to obtain two sets of orbitals

Â : {^i, 1 ≤ i < A}

B : {⅞∙, A + 1 ≤ j ≤ N}

such that each orbital of set A has at most one nonzero overlap with an orbital of 

set B
5⅛∙ if j = i + A

0 otherwise

(hence, sets Ä and B are biorthogonal).44 The wavefunction

= [(⅞δ1⅛52 ∙, ∙ <Pa<Pa+i<Pa+2 “ ∙ ° φτν)αΛ/3Β]

is equivalent to (A6) since orbital sets A and Ä, and orbital sets B and B are

both related by orthogonal transformations and single determinant wavefunctions are 

invariant to such orthogonal orbital transformations. This simplifies the evaluation 

of (52). Hence,

(S2) = M⅛ + Ms + ∑Sii+A- (A7)
4=1
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6. The Energy Expression for Complex Bloch Orbitals

The energy band theory of metals is based on one-electron Bloch functions (≠m) 

which for a Mχ symmetric ring cluster can be written as

= TV^ιz252ωj∙exp(i½¾)
j=ι

27rτn 
h = ~0N~

Rj = ja

where m is an integer (∣τn∣ ≤ 0.52V), {ωj∙} is an optimal set of N equivalent real 

nonorthogonal localized (Wannier)3 orbitals, k is the wave vector, and Rj denotes 

the position of u>j∙ (going around the circumference).

A given set of complex Bloch functions can always be combined to give an equiv­

alent set of real functions

≠∣m∣ = ^l⅛W=(JV∕2)-^∑α,.cos(⅛⅜)

≠-W = Μ*' - W2)-^∑u,i,i,(⅜⅝)
‘‘vi j-1

since energy levels resulting from complex Bloch functions are doubly degenerate 

(e_m = e∣⅛∣) and non-degenerate energy levels (⅛ == 0, τr∕α) are always described by 

real Bloch functions.

Single-determinant wavefunctions written in terms of the {≠m} always lead to 

fully symmetrical charge distributions, e.g.,

C(l)⅛(l) = ^r~1 ∑¾(l)ωj(l) + 2JV-1 £ u,j(l)ωi(l)cos[fc(¾ - ⅛)]

J=1 3>3,

(ωj∙ = ωj). This is not always true for single-determinant wavefunctions written in 

terms of the {≠m}.
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The energy expression for the configuration

⅛,(1‰(2) c√l)∕3(2)

can be written in terms of the {≠m} as

e = I [(≠J⅞l≠m) + (≠-m∣⅛l≠-m) + (≠m<∣Λ∣≠m-) + (≠-m<l⅛l≠-m')]

+ I [Ojû’Oj + (≠-m≠-m^Γ2Ι≠m-≠m')

+ (≠∏8≠mkΓ2Ι≠-m<‰') + (≠-m≠-mkΓ21∣≠-m^≠-mθ] ‘

This energy expression is simply the average of the energy expressions for each of 

the configurations

≠m(1) ≠ra∙(2) α(l) /3(2)

≠-m(l) ‰,.(2) α(l) /3(2)

≠m(1) ≠-ra.(2) α(l) /3(2)

≠-m(1) ≠-m∙(2) α(l) /3(2).

Energy expressions for single-determinant wavefunctions written in terms of the {≠m} 

can always be expressed in terms of the {V,m}j leading to an “average field” descrip­

tion in terms of the {≠to}.

Appendix B. Results- for the Diatomic Molecules

We calculated the optimum internuclear separations (Re), dissociation energies (L>β), 

and force constants (⅛e) for homonuclear diatomic molecules composed of Cu, Ag, Au, 

Li, and Na at the HF and UHF levels. The frozen core approximation of Appendix 

A.3, which is fairly accurate for the Mjf ring cluster calculations, is substantially less 

accurate for diatomic molecules (see Table 8);43 hence, we optimized both the core 

orbitals and the valence orbitals for all diatomic molecules.
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These HF and UHF results are compared with results obtained both from ex­

periment and from calculations45’46 including treatments of the electron correlation 

effects that are more complete than that of HF or UHF (see Table 10). The errors 

in the HF values of J2e, ke and De for the various metal dimers in comparison with 

experiment are as follows. Re too large by 8-10 % (Cu,Ag,Au), 4-5 % (Li,Na); ke 

too small by 42-45 % (Cu,Ag), 23 % (Au), 5-8 % (Li,Na); De too small by 77 % 

(Cu,Ag), 68 % (Au), 87 % (Li), 104 % (Na).

Note that although the HF value of De for Na2 is negative (for our basis set, 

the energy of Na2 is higher than twice the energy of the isolated Na atom), the 

HF values of Re and fce for Na2 are rather accurate. Due to ionic terms in the HF 

wavefunction (which are present in the HF description of the dimer but absent in the 

HF description of the isolated atom), HF rarely gives accurate bond energies, and 

occasionally gives negative bond energies. The HF De value for Na2 in the limit of a 

complete basis set (e.g., numerical HF) is approximately 0.014 eV (too small by 98 

%).47

For Cu2, our HF results (Re = 2.44 Â, De = 0.463 eV, ⅛e = 4.44 eV/Â2) 

calculated with an effective potential (22-electron wavefunction) and an inflexible 

d-basis are in very good agreement with “all-electron” HF results (Re = 2.42 Â, 

De = 0.54 eV, ⅛⅛ = 4.05 eV/Â2) calculated with all 58 electrons included in the 

wavefunction and a flexible (triple-^) d-basis.45 Similar agreement has been reported 

for Ag2 between the effective potential and all-electron HF results.48

These results indicate that our basis sets are sufficiently flexible for the HF de­

scription, and that the effective potentials are fairly accurate. Hence, the errors in 

the various HF results (in comparison to experiment) are mainly due to the neglect 

of electron correlation effects (inherent to the single-determinant form of the HF
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wavefunction).

The UHF wavefunctions lead to somewhat more accurate De values in comparison 

to HF. However, UHF leads to values of Re and ke that are less accurate than the 

corresponding HF values (especially for Na2). The reason for the decreased accuracy 

for the J2β and ⅛e values is that any improvement in De afforded by UHF is at the 

expense of mixing in triplet character (see Appendix A.5). The lone exception of 

these trends is Au2, where the HF and UHF results are identical.

A reasonably accurate description of the potential energy well (Re, ke and De) 

for each of these metal dimers requires an accurate description of valence electron 

correlation effects.45,48,48 The noble metal dimers also require correlation effects in­

volving the subvalence dw electrons as well as relativistic effects (especially for Ag 

and Au).45,4β The effective potentials used in this study include relativistic effects for 

Ag and Au but not for Cu.

Appendix C. Details of the UHF Energy Bands

For the UHF description of the Ags symmetric ring cluster, the valence energy band 

of the high-spin state (Figure 3, band width 23) splits into upper and lower energy 

bands for the low-spin state (Figure 13, band widths 231 and 232, respectively) when 

spin polarization effects are allowed. This results in an antiferromagnetic insulator 

since the energy gap (ΔW) between the upper and lower energy bands is at the 

Fermi level. This is in qualitative agreement with the Hubbard hamiltonian2,β

Hbub = B ∑[ct τci+lι∣ + ct+uci,i] + U 52 ni,τni,i 
8=1 8=1

B -2zh⅛l (Cl)
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¾ = (ui∖h∖uj)

U = J"1 (C2)

j⅛ = (ωiωi∣r⅛%∙ωj>

Ήΐ = ci,Tc<,ι 

n<i = ⅛cu

where B is the band width without correlation (the band width for U = 0), z is the 

coordination number (z — 2 for one-dimensional metals), <⅞ιβ∙ (c∣σ) are operators for 

creating (annihilating) an electron with spin σ in the localized Wannier3 orbital u⅛, 

and U is the intra-atomic coulomb energy. U > 0 tends to prevent two electrons 

from occupying the same localized orbital ω<.

In this appendix we assess for Age the quantitative agreement of the UHF energy 

bands with those obtained with the Hubbard model. To do this we obtained Hubbard 

parameters (B and Z∕) directly from the ab initio calculations by two methods.

(t) Equations (Cl) and (C2) [using the high-spin {u⅛}] result in the values U — 

8.001 eVs B = 5.433 eV, and B∣U = 0.679 for Aga. The value B = 5.433 eV 

obtained from the nearest-neighbor one-electron integral h"2 = —1.358 eV is in very 

good agreement with the high-spin valence band width B = 5.524 eV obtained from 

the orbital energies [hence including all one-electron interactions and two-electron 

interactions with (IV — 1) valence electrons;21 see Figure 3]. Values of B and U for 

Cuio, Age, Aga, Agio, Auio, Lie, Liio, Lil4, and Na10 obtained by this method are 

given in Table 11.

(m) “Effective” values of B and TÂ are obtained by satisfying the relations2’8

ΔWr = U -0.5(Bi + B2)
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= U-B-2B ∑(-l)i [√l+p(2W∕βp - j(2W∕S)]

(C3)

[J1(u) is the Bessel function]8 where ΔW, Bχ and S2 are taken directly from the 

UHF energy bands (see Figure 13). For Ag8, the UHF values ΔW = 2.893 eV, 

B1 = 2.626 eV, and B2 = 1.187 eV lead to Ueff = 4.800 eV, Beff = 2.273 eV5 and 

βEFF∣llEFF = 0.474).

The values 1Ä and B are much larger than Ueff and Beff, respectively. The 

values U = 8.001 eV and B = 5.433 eV lead to a Hubbard band gap ΔW = 3.802 

eV (C3) 31% larger than the UHF band gap ΔW = 2.893 eV for Ag8.

The value Beff = 2.273 eV is much closer to the average of the widths of the 

upper (Si) and lower (S3) energy bands3 (Bave = 1.907 eV) than it is to S = 5.433 

eV. Indeed, Si and S2

Si ≈ — 2z (φ-lUPPER

B2 ≈ — 2z (φ:EOWER

l⅛3

,∣i∣⅛

UPPER

LOWER

,LOWERare based on next-nearest neighbor hopping integrals where {ΦYpper} and {Φeower} 

are sets of localized nonorthogonal orbitals obtained Horn separate localizations 

(Fourier transformations) of the up-spin and down-spin canonical orbitals for the 

upper and lower energy bands, respectively (see Figure 10).lβ

For Λf8, the two-electron coulomb energy for the covalent configuration

ω√↑ )u>3 ( J,)ω3 ( ↑ )ω4( i)ω5(↑ )u>β ( i W ↑ W‡)

can be simplified as
eCOUL = 8jω + g jcu + g j« + 4j«
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due to the cyclical nature of the {ωf}. For Ma there are two different types of localized 

ionic configurations occuring with equal weights:

ωi(↑ >ι(i)ω3(↑ )ω4(J,)ω5(↑ )ωβ(i)ω7(↑)ω8( J.)

= jω + lj^ + 8 j« + 8 + 4 j«

where the doubly-occupied orbital and hole are adjacent (u>1 and u⅛), and

ωι(↑)ω2(∣)ω3(↑)ω1(∣)ω5(↑)ω6(j,)ω7(↑)ω8(^)

Ecovl = J1ω1 + 8 J1ω2 + 8 J1ω3 + 7 J" + 4 J1ω5

where the doubly-occupied orbital and hole are third-nearest neighbors (u>ι and ω4). 

Hence, for AΓ8 a more accurate definition of U is

⅛ = J1ω1-0.5(J⅛+ Λω4)∙

For Ag8, the values J"1 = 8.001 eV, J"2 = 4.536 eV, and J%i = 2.028 eV lead to the

value ⅜ = 4.719 eV, in very good agreement with Ueff = 4.800 eV.

The Ιίχ values for Mχ symmetric ring clusters (even N)
N/2

un = jr1-2jv-1∑¾
j=l.

Urn Un = J“
N→∞ 11

are hence expected to converge as N~1. Hence, Equation (C2) does not accurately 

define U for a finite cluster. Since Beff is expected to decrease with increasing N 

for Mff clusters composed of Cu, Ag, Au, Li, and Nalβ (the {u⅛}, {^fPP£Ä}, and 

{Φi°wεii} are all centered at the bond midpoints and the distances between adjacent 

bond midpoints and next-nearest neighbor bond midpoints increases with increasing 

N), the net result is that Beff∕Ueff is expected to decrease with increasing N and 

ΔW is expected to increase with increasing AT.
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Appendix D. Further Details of UHF Spin Density

Wave States

1. Symmetric Ring Clusters

For each of the Cuio, Agβ, Ag8, Agio, Aui0, Liβ, Lii0, Lii4, and Nai0 symmetric ring 

clusters, optimizing the UHF wavefunction without orbital symmetry restrictions 

for the low-spin ground state leads to valence orbitals having maximum absolute 

amplitudes centered at the bond midpoints, resulting in a spin density wave with 

periodicity 2α (with maxima and minima centered at alternate bond midpoints) but 

a fully symmetric charge density. This is shown for Ag8 in Figure 10. We refer to 

these states of the ring clusters as the bond-centered states.

For each of these systems, we were able to optimize a low-spin UHF wavefunc­

tion with orbitals having maximum absolute amplitudes centered at the atoms by 

imposing Pn⅛ orbital symmetry restrictions (n = AΓ∕2), also leading to a spin density 

wave with periodicity 2α (with maxima and minima centered at alternate atoms), 

but a fully symmetric charge density. This is shown for Ag8 in Figure 11. We refer 

to these states of the Mχ ring clusters as the atom-centered states. Thus, the atom- 

centered state spin density wave and the bond-centered state spin density wave are 

phase-shifted by α∕2.

There are two distinct choices for Dnh orbital symmetry restrictions for the Mjf 

symmetric ring cluster. Each orbital can be required to be either symmetric or 

antisymmetric with respect to one of two types of C⅛ symmetry axes (perpendicular 

to the principle Cpj symmetry axis), (i) Choosing a C'a symmetry axis bisecting a 

particular set of opposite bond midpoints leads to the bond-centered state (Figure
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10). (ii) Choosing a C'a symmetry axis bisecting a particular set of opposite atoms 

leads to the atom-centered state (Figure 11).

Details of the low-spin UHF wavefunctions for both states are given in Table 12. 

In each case, the atom-centered state leads to a significantly higher total energy than 

the bond-centered state, although both states have positive cohesive energies with 

respect to dissociation into diatomic molecules. The atom-centered state has less 

spin contamination than the bond-centered state, and the atom-centered state has 

less p hybridization than the bond-centered state.

2. Peierls-Distorted Ring Clusters

We already showed that the antiferromagnetic ground state of the Aga ring cluster 

(bond-centered, Figure 10) is stable with respect to the Peierls distortion (see Figures 

12 and 15).

In addition, for Aga we solved for the atom-centered UHF antiferromagnetic state 

as a function of the Peierls distortion (5α) by optimizing the valence orbitals under 

the symmetry restriction that each α-spin orbital must be related to one of the ∕3-spin 

orbitals by a particular symmetry plane bisecting two opposite bond midpoints.

This leads to total energies (Figure 16, dashed curve) much higher than those 

calculated without the orbital symmetry restriction (Figure 16, solid curve), e.g., the 

energy difference between these two states is 109.6, meV/atom for δa = 0 and 69.0 

meV/atom for δa = 0.30 Â.

In summary, for Aga the spin density wave shows a very strong preference for 

centering about the bond midpoints for Peierls distortions up to Sa ≤ 0.30 Â. Neither 

the bond-centered state (Figure 10) nor the atom-centered state (Figure 11) leads to 

Peierls instability at the UHF level (see Figure 16).
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3. Comparison with GVB—PP

Total energies of Ag8 as a function of the Peierls distortion (£a) for both the bond- 

centered state and the atom-centered state calculated with perfect-pairing gener­

alized valence bond wavefunctions (GVB-PP)49 are also given in Figure 16. The 

GVB-PP wavefunction is a restricted form of the full GVB wavefunction. Hence, 

GVB-PP leads to higher total energies than full GVB (compare Figures 15 and 16; 

further details of these GVB-PP results are presented elsewhere).16 For both Ag8 and 

Aga, the GVB-PP total energies are lower than the UHF total energies. In addition, 

the GVB-PP wavefunction is an eigenfunction of S2 while the UHF wavefunction is 

not (see Appendix A and Tables 9 and 12).

For the bond-centered (ground) state of Ag8, GVB-PP and UHF both lead to a 

positive cohesive energy with respect to dissociation into Ag2 molecules, and stability 

with respect to the Peierls distortion.

However, for the atom-centered (excited) state of Ag8, GVB-PP leads a nega­

tive cohesive energy with respect to dissociation into Aga molecules, and a Peierls 

instability (in disagreement with UHF).

Further details of the GVB-PP results for the Cu10, Ag6, Ag8, Ag10, Au10, Liβ, 

Liχo, Li14, and Naχ0 ring clusters are presented elsewhere.16

Appendix E. HF Results for the Ag8 Triplet State

The triplet state of Ag8 described by the valence configuration

≠o(U)≠-ι(∏)≠ι(U)≠.3(↑)^2(↑) (El)
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leads to fully symmetrical electronic spin, and charge densities; however, optimizing 

the orbitals at the HF level without orbital symmetry restrictions

⅛Ι(ΠMU)φ3(U)φ4(↑)9,5(↑)

leads to a triplet state having both a spin density wave and a charge density wave 

with a total energy lower than that of (El) by 0.041 eV for the symmetric ring 

cluster.

The HF total energies for these two states as a function of the Peierls distortion 

(Sa) are shown in Figure 17, where the dashed curve shows the results obtained with 

Dih orbital symmetry restrictions. Figure 17 also includes the HF total energy for 

the lowest-energy low-spin state (singlet, dotted curve). Neither triplet state leads 

to a Peierls instability, although they both are unstable with respect to the limit of 

four low-spin diatomic molecules. Both of these triplet states are lower in energy 

than the singlet state for the symmetric ring cluster (Sa = 0), but for ∣iα∣ > 0.13 Â 

the energy of the singlet drops below that of the triplet due to the Peierls instability 

for the singlet.

The HF orbitals optimized without symmetry restrictions for the triplet state 

are shown in Figure 18 for Sa = 0.00, 0.10, 0.20, and 0.30 Â. Although the triplet 

spin state having spin and charge density waves is stable with respect to the Peierls 

distortion, the spin and charge density waves slide as a function of Sa in such a 

manner that the two singly-occupied orbitals localize about a pair of adjacent atoms 

forming a compressed bond for Sa = 0.30 Â.
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Appendix F. Detailed Energy Data for Ag§

In this appendix we use the energy expression

βTOTAL

Eone

ττ∣CORE&N

N
Σ⅛
8=1

ONE , &TWO

hij = (w(i)I¾i)I<pj(i)>

+ + E

= ∑⅛-∑¾- Σ K‘i
i>3 i>3 i>j>A

ja = MiM2)∣-⅛K1M2))
^12

Kij = (φi(l)vJj∙(2)∣-∣^∙(l)⅛5i(2))
**12

based on the valence electron hamiltonian of Appendix A.4 where (i) Ecore in­

cludes the nuclear repulsion energy and all one-electron and two-electron energy 

terms involving only the core electrons {the [Ar]3d10, [Kr]4d10, [Xe]4∕145dlθ, Is2, 

and ls32s32pβ shells for Cu, Ag, Au, Li, and Na,3β respectively (see Section A.3)}, (m) 

Eone Is the total “one-electron” (valence) contribution to the total energy includ­

ing the electron-nuclear attraction and kinetic energy of the valence electrons, and 

all two-electron interactions between core electrons and valence electrons, and (iii) 

Eτwo is the total two-electron (valence) contribution to the total energy where Jjj∙ 

and Kij are the valence two-electron integrals (coulomb and exchange, respectively).

Calculated values of Ecore, Eone, Etwo, and Etotal are given in Table 13 

as a function of the Peierls distortion (5α) for selected states of the Age ring cluster 

where the average nearest-neighbor internuclear separation is a = 2.889 Â. Table 13 

also includes similar data for low-spin Age calculated with the GVB wavefunction. 

The total energy of low-spin Ag8 as a function of Sa is also presented in Figure 15 for 

HF, UHF and GVB. The total energies for these wavefunctions were all optimized
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using the same basis sets and frozen core hamiltonian (see Appendix A); further 

details of the GVB calculations are given elsewhere.16

In all cases, Ecore increases quadratically as a function of δa. For the low-spin 

HF wavefunction optimized with D<⅛ orbital symmetry restrictions, the variation of 

Eone with δa is approximately linear, leading to the Peierls instability (the variation 

of Eτwo with δa is negligible for this case). Likewise, the Peierls instability for the 

low-spin HF wavefunction optimized with Cs orbital symmetry restrictions is driven 

by Eone, For the high-spin HF wavefunction and the low-spin UHF and GVB 

wavefunctions the variations of Eone and Eτwo with δa are quadratic but the 

variations cancel one another, i.e., in each case the variation of Eone + Eτwo with 

δa is negligible. Hence, the symmetric ring is stable for these cases due to Ecore.

Appendix G. Results for Hydrogen Ring Clusters

Since the stable form of hydrogen is the diatomic molecule, we tested our model 

calculations by performing analogous calculations for ring clusters composed of hy­

drogen. Extensive total energy calculations for one-dimensional arrays of hydrogen 

atoms are presented elsewhere.50

In order to model the anticipated Peierls instability, we chose the Hg ring cluster 

with an average internuclear separation (α = 1.483 Â) equal to twice the experimental 

bond length of the Ha molecule51 [the Huzinaga53 (5s∕3s) unsealed basis set was 

used]. The results of these calculations are given in Table 14. The low-spin HF 

wavefunction leads to a charge density wave for the symmetric cluster. The low-spin 

UHF wavefunction leads to a spin density wave (but no charge density wave). The 

low-spin GVB wavefunction leads to fully symmetrical spin and charge densities. All
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Table 1. Cohesive energies for low-spin ring clusters, αl

system α
(Â)

atomization 6) 
energy 

(meV/atom)

dimerization c) 
energy 

(meV/atom)
HF UHF HF UHF

Agβ 2.889 246.4 352.8 57.6 153.8
Ags 2.889 145.7 370.8 -43.1 171.8
Agio 2.889 191.3 379.8 2.4 180.8
Liβ 3.014 60.4 361.7 -10.3 269.1
Liιo 3.014 15.0 398.2 -55.8 305.6
Liι⅛ 3.014 9.6 408.9 -61.1 316.3
Cuιo 2.556 239.7 388.7 8.1 152.6
Agio 2.889 191.3 379.8 2.4 180.8
Auιo 2.884 374.0 511.5 1.1 138.6
Liιo 3.014 15.0 398.2 -55.8 305.6
Naιo 3.659 -72.9 177.6 -56.3 136.5

a) Results for the lowest energy low-spin states (HF, 5 = 0; UHF, Ms = 0) calculated 
without orbital symmetry restrictions. A frozen core approximation was in effect. See 
Appendix A for further details.
δ) The total atomization energy Mpr → N M divided by N atoms.
c) The total dimerization energy Ms → N/2 M? divided by N atoms. In calculating the 
dimerization energies, the bond length of the diatomic molecule is optimized (see Table 
10).
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Table 2. Experimental cohesive energies for bulk three-dimensional metals.

system
atomization energy βl 

(eV ∕ atom)
dimerization energy 

(eV/atom)

Cu 3.49 2.47
Ag 2.94 2.11
Au 3.82 2.66
Li 1.64 1.11
Na 1.11 0.74

α) Reference [26].
⅛) Cohesion with respect to diatomic molecules, e.g., Af(,) → 1/2 Afg, References 
[26,27,28].
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Table 5. Basis set summary.

element basis set °1
ground state· 
configuration

energy 61 
(hartrees)

Cu (3s,2p,5d)∕(2s,2p,ld) [Ar]3d104s1 -50.43769
Ag (3s,3p,4d)∕(2s,2p,ld) [JΓr]4d105s1 -37.40668
Au (3s,3p,3d)∕(2s,2p,ld) [Xe]4∕145dlθ6s1 -33.38745
Li (θs,4p)∕(3s,2p) ls32∙s1 -7.43174
Na (lls,7p)∕(4s,3p) ls32s32p63s1 -161.79530

α) The basis sets are composed of contracted gaussian-type functions and contain the 
smallest possible number of functions to describe the core orbitals and twice the 
minimum number of functions to describe the valence s and low-lying p orbitals. 
Calculations for Cu, Ag and Au utilize basis sets and ab initio effective potentials from 
Reference [36]. Calculations for Li and Na are all-electron ab initio, with basis sets from 
Reference [37] and Reference [38], respectively.
δ) For each case the energy of the isolated atom is the same for HF and UHF.
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Table 9. Spin contaminations for low-spin UHF wavefunctions

system a (Â) <s2> S

Cu2
M2 molecules o* ------

2.476 0.168 0.147
Ag2 2.778 0.261 , 0.215
Au2 2.672 0.000 0.000
Lij 2.994 0.367 0.285
Naa 3.620 0.644 0.446

Agβ
Mw ring clusters------

2.889 1.515 0.828
Ag8 2.889 2.219 1.071
Agio 2.889 2.789 1.243
Liβ 3.014 2.306 1.099
Liιo 3.014 3.973 1.555
Liι⅛ 3.014 5.618 1.922
Cuιo 2.556 2.417 1.133
Agio 2.889 2.789 1.243
Au10 2.884 2.343 1.110
Liιo 3.014 3.973 1.555
Naιo 3.659 3.541 1.447

α) Results for the diatomic molecules (Λf2) are given for the equilibrium bond lengths 
(JZe) calculated at the UHF level.
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Table 11. Hubbard Parameters based on high-spin ring clusters, αl

system α
(Â)

U = J{i
(eV)

S = 4∣A⅛∣
(eV)

B∣U

Agβ 2.889 7.882 6.137 0.779
Ag8 2.889 8.001 5.433 0.679
Agio 2.889 8.065 4.948 0.614
Liβ 3.014 8.079 3.999 0.495
Liιo 3.014 8.267 2.838 0.343
Li1⅛ 3.014 8.325 2.334 0.280
Cu10 2.55δ 8.639 6.314 0.731
Agio 2.889 8.065 4.948 0.614
Auιo 2.884 7.995 5.489 0.687
Liιo 3.014 8.267 2.838 0.343
Naio 3.659 6.783 3.056 0.450

a) Results calculated with, high-spin HF Waαnier orbitals.
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Table 12. Details of the UHF wavefunctions for symmetric ring clusters.

dimerization a) valence
a energy hybridization ΔE

systern (Â) (meV/atom) (52) S d s p (meV! atom)

Agβ 2.889 153.8
bond-centered state — 

1.515 0.828 0.002 0.684 0.314
Agg 2.889 171.8 2.219 1.071 0.001 0.629 0.370
Agio 2.889 180.8 2.789 1.243 0.001 0.594 0.404
Lig 3.014 269.1 2.306 1.099 0.595 0.405
Li10 3.014 305.6 3.973 1.555 0.494 0.506
Idl4 3.014 316.3 5.618 1.922 0.433 0.567
Cu10 2.556 152.6 2.417 1.133 0.002 0.611 0.386
Agio 2.889 180.8 2.789 1.243 0.001 0.594 0.404
Aujj) 2.884 138.6 2.343 1.110 0.007 0.835 0.158
Idιo 3.014 305.6 3.973 1.555 0.494 0.506
Na10 3.659 136.5 3.541 1.447 0.649 0.351

----------------- atom-centered state - --------------------
Agβ 2.889 70.9 0.842 0.545 0.002 0.829 0.196 82.9
Aga 2.889 62.3 1.626 0.870 0.002 0.804 0.194 109.6
Agio 2.889 66.1 1.870 0.956 0.002 0.771 0.228 114.7
Ui® 3.014 10.7 1.158 0.687 0.867 0.133 258.4
Liio 3.014 6.3 2.150 1.049 0.752 0.248 299.3
Li14 3.014 5.9 3.031 1.311 0.690 0.310 310.4
Cuιo 2.556 61.1 1.608 0.863 0.002 0.791 0.206 91.6
Agio 2.889 66.1 1.870 0.956 0.002 0.771 0.228 114.7
Auιo 2.884 92.9 1.977 0.992 0.007 0.928 0.064 45.7
Liχo 3.014 6.3 2.150 1.049 0.752 0.248 299.3
Naχo 3.659 14.5 2.712 1.221 0.959 0.041 122.0

α) The total cohesive energy with respect to diatomic molecules Mpr → N/2 M2 divided 
by N atoms (where the diatomic molecules are at equilibrium; see Table 10).
6) Atomic orbital populations calculated in the Mulliken approximation [19].
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Table 13. Detailed energy data for selected Aga wavefunctions.

wavefunction δa 61 ]gCOR}S e°ne etwo βTOTAL

(undistorted ring) (Â) (hartree) (hartree) (hartree) (hartree)
low-spin HF (Cs) 0.00 -294.22519 -8.33056 3.25950 -299.29625
low-spin HF (D4⅛) 0.00 -294.22519 -8.32737 3.26071 -299.29186
low-spin UHF (C⅛) 0.00 -294.22519 -8.25960 3.12235 -299.36244
low-spin GVB (CJ 0.00 -294.22519 -8.27990 3.11676 -299.38833
high-spin HF (D4a) 0.00 -294.22519 -7.93802 2.94002 -299.22320

E(δa} — E(δa = 0.00)
(distorted rings) (Â) (eV) (eV) (eV) (eV)
low-spin HF (C'a) ±0.00 0.000 0.000 0.000 0.000

±0.04 0.014 -0.046 . 0.010 -0.022
±0.10 0.088 -0.243 0.030 -0.126
±0.20 0.367 -0.595 0.027 -0.201
±0.30 0.884 -0.968 0.022 -0.062

low-spin HF (D4∕1) -0.30 0.884 0.804 0.015 1.703
-0.20 0.367 0.569 0.013 0.949
-0.10 0.088 0.301 0.007 0.395
-0.04 0.014 0.124 0.002 0.141

0.00 0.000 0.000 0.000 0.000
0.04 0.014 -0.129 -0.002 -0.117
0.10 0.088 -0.330 -0.003 -0.245
0.20 0.367 -0.682 -0.005 -0.320
0.30 0.884 -1.055 -0.010 -0.181

low-spin UHF (C⅛) 0.00 0.000 0.000 0.000 0.000
±0.04 0.014 -0.003 0.004 0.014
±0.10 0.088 -0.019 0.021 0.090
±0.20 0.367 -0.073 0.076 0.370
±0.30 0.884 -0.163 0.159 0.879

low-spin GVB (C∫) ±0.00 0.000 0.000 0.000 0.000
±0.04 0.014 -0.003 0.003 0.014
±0.10 0.088 -0.016 0.018 0.090
±0.20 0.367 -0.062 0.063 0.368
±0.30 0.884 -0.222 0.208 0.870

high-spin HF (D4a) ±0.00 0.000 0.000 0.000 0.000
±0.04 0.014 -0.004 0.004 0.014
±0.10 0.088 -0.023 0.022 0.086
±0.20 0.367 -0.075 0.071 0.363
±0.30 0.884 -0.135 0.127 0.876

α) The orbital symmetry restriction is given in parenthesis, 
δ) The average nearest-neighbor intemuclear separation is 2.889 Â.
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Table 14. Detailed energy data for Hg.

wavefunction α) Sa b) jβCORE ^OlfE etwo etotal

(undistorted ring) (A) (hartree) (hartree) (hartree) (hartree)

low-spin HF (-D<a) 0.00 6.12818 -16.51837 •6.40061 -3.98958
low-spin UHF (C’a) 0.00 6.12818 -16.42010 6.15824 -4.13368
low-spin GVB (C,j) 0.00 6.12818 -16.46687 6.12281 -4.21588
high-spin HF (D4∕1) 0.00 6.12818 -15.49309 5.72957 -3.63533

E(δa} - E(Sa = 0.00)
(distorted rings) (A) (eV) (eV) (eV) (eV)

low-spin HF (P4⅛) -0.05
0.00
0.05

0.084
0.000
0.084

0.946
0.000

-1.230

-0.080
0.000
0.154

0.949
0.000

-0.992
low-spin UHF (C'a) 0.00

±0.05
0.000
0.084

0.000
-0.328

0.000
0.177

0.000
-0.067

low-spin GVB (Ci) 0.00
±0.05

0.000
0.084

0.000
-0.645

0.000
0.211

0.000
-0.350

high-spin HF (Dih) 0.00
±0.05

0.000
0.084

0.000
-0.017

0.000
-0.001

0.000
0.065

α) The orbital symmetry restriction is given in parenthesis.
6) The average nearest-neighbor intemuclear separation is 1.483 Â.
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(b)

Figure 1. (a) The Ms symmetric ring cluster as a model of the undistorted one­
dimensional metal, (b) The Mg distorted ring cluster (composed of alternating 
long and short bonds) as a model of the Peierls distorted one-dimensional metal.
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m = 4 
(-3.84 eV)

∣m∣ = 3 
(-S.32 eV)

∣m∣ = 2 
(-7.32 eV)

jτn∣ = 1 
(-8.76 eV)

∖'⅛λ%*'∕¼ ∙ * s

m = Ο 
(-9.36 eV)

Figure 2. Real representations of the Bloch functions for the Age symmetric ring 
cluster. Note that the maximum absolute amplitudes are at bond midpoints. In 

this Figure and In similar figures that follow, contours are at uniform amplitude in­
crements (0.015 au for Ag) and squares mark the atomic positions. Solid contours 

denote positive amplitudes and dashed contours denote negative amplitudes.
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Figure 3. The valence energy band of the undistorted one-dimensional metal as 
defined by the valence high-spin state (where each Bloch function of Figure 2 is 
occupied by one up-spin electron). The discrete energy levels of Age (marked 
by the data points) are joined by the solid curve approximating the continuous 
energy band for the limit as N approaches infinity. The valence band is half filled 
in the HF description of the low-spin state of the one-dimensional metal, i.e.5 the 
one-electron states with ∣⅛∣ < 7r∕2α and one of the two degenerate ⅛ = ±7r∕2α 
states are double-occupied.
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Figure 4. The valence (—7r∕2α ≤ ⅛ ≤ 7r∕2α) and ^-conduction (∙7τ∕2α ≤ ∣⅛∣ < 7r∕α) 
energy bands of the Peierls dimerized metal are shown by the solid curves. Data 
points mark the discrete energy levels for the Agg distorted ring cluster (α = 2.889 

Â, Sa — 0.1 À). The dashed curve shows the valence band for the undistorted one­
dimensional metal. The distortion splits the states at k = ±7r∕2α by 0.011 eV. 
The lower half of the valence band is completely filled in the HF description of 
the low-spin state of the distorted one-dimensional metal.
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Figure 5. The HF valence orbitals for Li14 optimized with no orbital symmetry 
restrictions, leading to a charge density wave having maxima and minima centered 
about alternating atoms. All orbitals are doubly-occupied as indicated. The 

contour increment is 0.009 au.
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Figure 6. Real representations of the HF valence orbitals for.Li14 optimized with 

full (Pi4⅛) orbital symmetry restrictions. All orbitals are doubly-occupied as 

indicated.
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Figure 7. Bloch orbital populations for the HF low-spin charge density wave 
states of Liιo and Li14. Populations are obtained by symmetry projecting the HF 
canonical (doubly-occupied) broken-symmetry orbitals (see Table 4).
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(a) (b)

Figure 8. The HF valence orbitals optimized for the two distinct charge density 
wave states of the Agg symmetric ring cluster. All orbitals are doubly-occupied as 
indicated, (a) Shows the orbitals for the state with charge density wave maxima 
centered at the atoms, (b) Shows the orbitals for the state with charge density 
wave maxima centered at the bond midpoints.
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PEIERLS DISTORTION (δα, À)

Figure 9. The HF total energy of low-spin Age as a function of the Peierls dis­
tortion (io). The results calculated without orbital symmetry restrictions are 

indicated by the solid curve. The results calculated with Dih orbital symmetry 

restrictions are indicated by the dashed curves.



88

(-6.24
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Figure 10. The UHF valence orbitals for the lowest-energy antiferromagnetic spin 
density wave state of Aga optimized without orbital symmetry restrictions. All 
orbitals are singly-occupied as indicated.
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Figure 11. The UHF valence orbitals for the excited antiferromagnetic (phase 
shifted) spin density wave state of Agg optimized with orbital symmetry restric 
tions. All orbitals are singly-occupied as indicated.
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Figure 12. The UHF total energy of low-spin Aga as a function of the Peierls dis 
tortion (5α).
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Figure 13. The UHF α-spin energy bands for the undistorted one-dimensional 
metal. Shown are the valence band (—7r∕2α ≤ k ≤ 7r∕2α, occupied, band width 
β2 = 1.187 eV) and the σ-conduction band (ττ∕2α ≤ ∖k∣ ≤ τr∕α, unoccupied, band 
width B1 = 2.626 eV) for the lowest energy antiferromagnetic state of the undis­
torted one-dimensional metal. The discrete α-spin energy levels of Age (marked 

by the data points) are joined by the curve approximating the continuous energy 
band for the limit as N approaches infinity. The ∕3-spin energy bands are degener­
ate with the α>-spin energy bands for the undistorted one-dimensional metal. The 

energy gap between the upper and lower bands is ΔVF = 2.893 eV. The effective 
intraatomic coulomb energy is Ueff = 4.800 eV (see Appendix C). The valence 
band is completely filled for the UHF antiferromagnetic ground state.



92

Figure 14. The UHF energy bands for the Peierls distorted one-dimensional metal. 
The α-spin valence (—π∕2α ≤ k ≤ 0), ∕3-spin valence (0 ≤ k ≤ 7r∕2α), α-spin σ- 
conduction (—7r∕α ≤ k ≤ —π∙∕2a), and ∕3-spin σ-conduction (∙7r∕2a ≤ k ≤ 7r∕a) 
energy bands for the lowest energy antiferromagnetic state of the Peierls distorted 
one-dimensional metal (solid curve). Data points mark the discrete energy levels 
for the Aga distorted ring cluster (5α = 0.1 Â). The dashed curve shows analogous 
energy bands for the undistorted one-dimensional metal.
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Figure 15. The total energy of Agg as a function of the Peierls distortion (ία) 
calculated with the HF, UHF, and GVB wavefunctions5 as indicated. The GVB 
energy of undistorted Aga (ία = 0) is chosen as zero energy. The horizontal 
lines indicate the cohesive energy limits with respect to dissociation into four Ag2 
molecules.(separate energies result from HF, UHF and GVB).
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Figure 16. The∙total energy of Ags as a function of the Peierls distortion (5α) cal­
culated with the UHF and GVB-PP wavefunétions, as indicated. Solid curves de­
note the bond-centered states and dashed curves denote the atom-centered states. 
The GVB-PP energy of the Ags bond-centered state (at Sa = 0) is chosen as 
zero energy. The horizontal lines indicate the cohesive energy limits with respect 
to dissociation into four Ags molecules (separate energies result from UHF and 
GVB-PP).
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PEIERLS DISTORTION (δα, A)

Figure 17. The HF total energy of Agg as a function of the Peierls distortion (ία). 
Results for the triplet state with both spin and charge density waves (optimized 
without orbital symmetry restrictions) are indicated by the solid curve. Results for 

the triplet state with fully symmetrical spin and charge densities (optimized with 

Dih orbital symmetry restrictions) are indicated by the dashed curve. Results for 
the singlet state with charge density waves (optimized without orbital symmetry 
restrictions) are indicated by the dotted curve.
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Sa =■ 0 Sa = 0.1 Â Sa ~ 0.2 A δα = 0.3 A

Figure 18. The HF valence orbitals optimized without symmetry restrictions for 
the Ags triplet state, leading to spin and charge density waves that slide as a 
function of the Peierls distortion (ία). Orbital occupations are as indicated.



97

Chapter 2

Charge Density Waves, Spin Density Waves, and 

Peierls Distortions in One-Dimensional Metals:

Generalized Valence Bond Studies of

Cu, Ag, Au, Li, and Na

Chapter 2 consists of an article coauthored with William A. Goddard III that has 

been accepted for publication in the Journal of Physical Chemistry.
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Abstract: Ab initio generalized valence bond (GVB) calculations indicate that the 

one-dimensional elemental metals composed of Cu, Ag, Au, Li and Na are each 

stable with respect to the Peierls distortion. This results because of the strong 

cohesion resulting from two-center one-electron bonds (as opposed to two-center two- 

electron bonds). Hence, the Peierls distortion stretching and compressing alternate 

one-electron bonds is unfavorable. For each system, GVB leads to a singlet (low- 

spin) ground state having fully symmetrical charge and spin densities (no charge 

density wave and.no spin density wave). Some of these GVB results are in complete 

disagreement with results calculated with less sophisticated wavefunctions such as 

restricted Hartree-Fock and unrestricted Hartree-Fock. Comparison of the GVB and 

Hartree-Fock wavefunctions reveals the origins of these errors In the Hartree-Fock 

descriptions.
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I. Introduction

A common description of the electronic structures of crystalline solids is in terms 

of energy bands involving Bloch functions delocalized over the infinite lattice,1’2’3 

where each energy band can contain up to 2 electrons per primitive unit cell (one 

up-spin electron and one down-spin electron, e.g., doubly-occupied orbitals). The 

arrangement and occupation of the energy bands determine the electronic properties. 

Thus, for solids composed of monovalent atoms (alkali metals or noble metals), the 

classic metallic structures [face-centered cubic (∕cc), hexagonal close-packed (Λcp), 

and body-centered cubic (δcc)] all lead to a half-filled energy band, consistent with 

their metallic properties (e.g., low electrical resistivity).

Peierls1 has shown that all one-dimensional metals with partially filled energy 

bands are susceptible to a distortion leading to an energy band gap at the Fermi 

level and hence a metal-to-insulator transition. Hence, linear metallic chains with 

equidistant adjacent atoms (“symmetical” chains) are predicted to distort such that 

the distances between adjacent atoms are not all equal.1 For a homonuclear linear 

chain composed of monovalent atoms, the energy band description leads to a half- 

filled valence band and an instability pairing adjacent atoms to form a chain of 

diatomic molecules.1

Energy band theory [in both the restricted Hartree-Fock approximation (doubly- 

occupied orbitals) and the noninteracting electrons approximation including only 

one-electron terms in the hamiltonian] cannot account for the sharp metal-to-insulator 

transition that for all metals must occur for a sufficiently large uniform expansion of 

the crystalline lattice.2 In order to account for a metal-to-insulator transition as a 

function of the lattice constant (a), Hubbard4 introduced a hamiltonian for monova­
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lent atoms including the normal one-electron terms and in addition, the intra-atomic 

coulomb repulsion energy

W = (ωi(l)ωt∙(2)∣⅛1 ∣ωi(l)u>i(2))
that tends to prevent two electrons from occupying the same localized Wannier3 

orbital ω1. Here τγ)1 is the electrostatic interaction between electrons i and j (in 

atomic units where e = 1). The Hubbard hamiltonian presumably leads to a tran­

sition from antiferromagnetic insulator (large α or low-density) to metal (small α or 

high-density) when a is sufficiently small that2’4

β∕W ≥ λ∕4∕3 ≈ 1.15

[where S is the band width for U = 0]. However, the critical ratio B∣U ≈ 1.15 

is based on an approximate solution of the Hubbard hamiltonian,2’4 and the exact 

solution5 of the Hubbard hamiltonian for a one-dimensional lattice of monovalent 

atoms with a single band leads to a transition from antiferromagnetic insulator to 

metal only in the limit as B∣U approaches infinity.

In order to test these two contradictory models, we previously carried out ab 

initio6 total energy calculations for various one-dimensional low-spin ring clusters 

composed of Cu, Ag, Au, Li, and Na, using single-determinant many-electron wave- 

functions [restricted Hartree-Fock (HF, non spin polarized) and unrestricted Hartree- 

Fock (UHF, spin polarized)].7

For these one-dimensional metallic clusters, HF leads to half-filled energy bands, 

charge density waves, Peierls instabilities, and negative or very small cohesive ener­

gies with respect to dissociation into diatomic molecules.7 UHF leads to large cohe­

sive energies with respect to dissociation into diatomic molecules, stable symmetric
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(undistorted) linear structures (in disagreement with the HF-Peierls model), and an­

tiferromagnetic (non-metallic) ground states having spin density waves (consistent 

with the Hubbard hamiltonian at low density).7

Hence, the UHF and HF results are in complete disagreement with one another. 

Since the UHF total energy is lower than the HF total energy, the variational prin­

ciple suggests that the UHF results are correct. However, unlike HF, the UHF 

wavefunctions are “spin-contaminated.” The low-spin UHF wavefunction is not an 

eigenfunction of the many-electron spin operator (S2) and hence contains contribu­

tions from not only the singlet (5 = 0) but also from higher spin states such as triplet 

(5 = 1), quintet (5 = 2), etc., up to high-spin (5 = 1V∕2, where N is the number of 

atoms in the cluster).7

Because both HF and UHF have deficiencies (lack of cohesion for HF,7 spin con­

tamination for UHF), the HF and UHF results for these one-dimensional metals are 

not conclusive. Here we report the results of ab initio total energy calculations with 

multi determinant generalized valence bond (GVB) many-electron wavefunctions8 re­

moving the deficiencies in HF and UHF.

The GVB wavefunctions lead to the following conclusions concerning the ground 

electronic state of each of the Cu, Ag, Au, Li, and Na one-dimensional metal clus­

ters. (t) The HF-Peierls description of the valence electronic structure (half-filled 

band) is fundamentally incorrect. The charge density waves and lack of cohesion for 

HF are artifacts of neglecting electron correlation effects, (ii) The UHF-Hubbard 

description of the electronic structure is basically correct except that the spin con­

tamination and spin density wave are artifacts of the restricted nature of the UHF 

wavefunction. (iiï) GVB leads to a singlet (antiferromagnetic)9 ground state having 

fully symmetrical charge and spin densities (no charge density wave, no spin density
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wave, and no spin contamination). Large cohesive energies with respect to dissocia­

tion into diatomic molecules result from two-center one-electron bonds similar to the 

two-center one-electron bonds of the diatomic molecular cations. Hence, the Peierls 

distortion stretching and compressing alternate one-electron bonds is unfavorable.

Details of the results are given in Section IV and details of the many-electron 

GVB wavefunction are given in Section III.

II. Qualitative aspects of the bonding

The simple valence bond (VB) description of bulk metals10 is based upon two-center, 

two-electron covalent bonds between singly-occupied orbitals centered at adjacent 

atoms, as shown in Figure 1 fo^ Cu2, Ag2, Au2, Li2, and Na2. However, for Cu, Ag, 

Au, Li, and Na, the atomization energies of the bulk metals

∙mW → Af(fl)

[(s) and (p) signify solid and gas, respectively] are 3.0-3.5 times larger than the two- 

center two-electron bond strengths of the respective homonuclear diatomic molecules

1-m2->m ■ (1)

(experimental cohesive energies are given in Table l).11∙12>13 Consequently, simple 

VB is not as useful for describing metallic-systems as it is for describing nonmetallic 

systems.

On the other hand, the UHF and GVB many-electron wavefunctions for one­

dimensional Mjv ring clusters and one-dimensional M⅛ chain clusters (M = Cu, 

Ag, Au, Li, and Na) lead in each case to singly-occupied orbitals having maximum 

absolute amplitudes centered at the bond midpoints, forming two-center one-electron
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bonds as shown in Figures 2-3 for clusters, M‡ linear chains, and Afιo rings 

(Af = Cu, Ag, Au, Li, and Na; further details of these systems are presented in 

Section III and Appendices A-B). Hence, the UHF and GVB wavefunctions are not 

consistent with the simple valence bond (VB)1° description of metals.14

This propensity for one-electron bonds vs. two-electron bonds is characteristic 

of metallic bonding14 and is even manifest in the diatomic molecules. Thus, the 

cohesion per valence electron for the M‡ molecule

M+ →M + M+,

is 1.83, 2.02, 2.46, and 2.65 times larger than the cohesion per valence electron for 

the M2 molecule (1) for M = Cu,11,15 Ag,11,lβ Li,17 and Na,18 respectively (see Table 

1; the Au‡ bond strength is not known).

IIL The GVB Many-Electron Wavefunction

The generalized valence bond (GVB)8 valence wavefunction utilizes the hamiltonian

« = i∞∙ + f⅛) + ∑i

i=l i>j 7V

X(<) = -jVi’ + r(f;) + v>c°M 

Pcom = ∑(2Λ-⅛e)
c

where (t) E^ore includes the nuclear repulsion energy and all one-electron and 

two-electron energy terms involving only the core electrons {the [Ar]3d10, [Kr]4<flθ, 

[Xe]4∕145d10, Is2, and lsa2s22pβ shells for Cu, Ag, Au, Li, and Na,18 respectively},7 

(it) the “one-electron” operator h(i) includes the electronic kinetic energy ( — ∣V2), 

the electron-nuclear attraction [V(r )], and all two-electron interactions [coulomb
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(Jc) and exchange (-K"c)] between core electrons and valence electrons (yCOREyo, 

and {iiï} r⅛1 is the electrostatic interaction between electrons i and j (rij is the 

distance between electrons i and j). This hamiltonian is identical to that utilized 

previously for UHF and HF calculations7 and is based on the frozen core approxi­

mation presented elsewhere/

The full (spin-optimized) generalized valence bond (SOGVB)21 valence wavefunc- 

tion for each of the various Mχ ring clusters can be written in the general form

⅛N,A — Â [ΦjV,A (2)

$N,A = ^l(l)yj2(2)<^3(3) ’ " ∙ φtf(N}
nf

(3)

Xn.a = ∑cif^3 
i=l
25 + 1 (N\

"' - A + l W

(4)

A = S + N∣2

where A is the antisymmetrizer or determinantal operator, Φjv,λ is the many-electron 

spatial product function, {⅛3j} are completely general one-electron valence orbitals 

optimized self-consistently for each state A without restrictions with respect to sym­

metry or overlap (the numbers in parentheses label the electronic coordinates),22 

and is a completely general 2V-electron spin function for total spin S where 

the coefficients <⅛∙are optimized self-consistently and {fif,s} is a complete set of spin 

eigenfunctions. Thus, using the normal 2V-electron spin operators, the {fif's} satisfy 

the eigenvalue equations

52 = 52 + 5j + 52 = 52 + ⅜ + 5~5+

S3tfi's = S(S+ l}ħ2fP,s (5)

∖A~B∖ -S
2
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S,f!,∙s = MskfιN,S (6)

Ms
A-B

2

where S is the spin angular momentum quantum number, Ms is the spin angular 

momentum projection quantum number, and A and B are the number of valence 

electrons having spins a (↑ or ms = +∣) and /3 (‡ or ms = — j), respectively 

(A + B = N). Optimizing χ in this fashion imposes no restriction21 since S2 and Sz 

commute with one another and with Ή.. Thus, the wavefunction (2) is a simultaneous 

eigenfunction of 52 and Sx and satisifies the Pauli principle for arbitrary {⅛j,∙} and 

χ.21 The simultaneous self-consistent optimization of {φi} and χ leads to the SOGVB 

wavefunction.21

For SOGVB, all N orbitals are allowed to overlap arbitrarily with one another, 

leading to an energy expression

E = <Φ[7i∣Φ>∕<Φ[Φ>

involving Nl terms. As a result SOGVB is not practicable for large IV.

Instead we use a procedure for obtaining a wavefunction mimicking SOGVB

but optimizing N orthogonal orbitals in place of the N overlapping orbitals. This 

procedure is called self-consistent field full configuration interaction GVB [GVB- 

CI(SCF)] and is described in Appendix A.l. Using the GVB-CI(SCF) orthogonal 

orbitals as the basis, we obtain localized non-orthogonal orbit als typical of GVB with 

the Hartree localization method presented in Appendix A.2. These GVB-CI(SCF) 

results are labelled either full GVB or GVB.

An approximation to SOGVB is the perfect-pairing GVB wavefunction (GVB- 

PP)23 having the form of Equations (2, 3) except that Φ is optimized for a single
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spin eigenfunction

X⅝ = (,≈β - ßa~)saA-B/V2B

dividing electrons into B “bond pairs” and A — B “high-spin” electrons [this is 

called the “perfect-pairing” (PP) spin function].22’23 Here, Φ is constrained so that 

the two orbitals of each bond pair maintain orthogonality with all other orbitals, e.g., 

orbitals <p2i-ι and φ2z of the ith bond pair may overlap one another but are restricted 

to maintain orthogonality with all other orbitals. Both the GVB-PP wavefunction 

and the GVB-CI(SCF) wavefunction are simultaneous eigenfunctions of S2 and Sz 

and satisfy the Pauli principle.

The UHF wavefunction has the same general form (2, 3) except that the UHF 

spin function

Xnbaf = *AßB (7)

is a simple product and is not an eigenfunction of S2 (except for B == 0). Since both 

Φ and χ are products of one-electron functions, the UHF wavefunction contains a 

single Slater determinant, is an eigenfunction of Sz but is not an eigenfunction

of S2 unless the down-spin orbitals are identical to the up-spin orbitals (this leads 

to the restricted Hartree-Fock wavefunction, denoted simply HF herein).7 For the 

general case where Φubf ≠ ΦjJ^f is “spin-contaminated”, e.g., Φ^^r contains 

a mixture of spins ∣Ms∣ ≤ S ≤ 7V∕2.τ The UHF orbitals are optimized without 

restrictions with respect to overlap or symmetry, resulting in a spin density wave for 

the ground state of each Λf1o ring cluster.7

For the high-spin state (A = N, B = 0), there is just one spin eigenfunction

,z _ ftf,S=If∕2 _ NXN,A=N = ∕ , =a

and hence the GVB and UHF wavefunctions are equivalent. However, for all other
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spin states, GVB and UHF differ quite remarkably.

IV. Results

In the process of exploring the bonding in various metal clusters,14’24 we performed 

extensive ab initio calculations for various one-dimensional ring and chain clusters 

of lithium atoms up to N = 12, where N is the number of atoms in the cluster, 

and have extrapolated various results to infinite N,24 These studies show that the 

cohesive properties of the ring clusters converge rather quickly, and that the Ms 

and Mw ring clusters are qualitatively correct and fairly acpurate as models for the 

infinite chain (each is periodic in one dimension).

Here we examine ring clusters composed of Cu, Ag, Au, Li, and Na, with 

lattice constants (a) for the undistorted (symmetric) clusters equal to the nearest- 

neighbor distances for the bulk metals.25 The cohesive properties of the one-dimensional 

alkali and noble metals are dominated by the valence sp electrons,7 and sp hybridiza­

tion is crucial in describing the valence electronic structures.7 However, in each case 

the pv conduction bands are significantly higher in energy than the valence band, 

and hence the pπ conduction bands are unoccupied for the ground and low-lying ex­

cited electronic states.7 For the ground and low-lying excited electronic states of the 

noble metal clusters, there is minimal hybridization of the d core orbitals with the sp 

valence orbitals, and hence the closed-shell d10 configurations are maintained.7 These 

observations for both HF and UHF7 are expected to hold also for GVB, and hence the 

same frozen core approximation for the core electrons (including the closed-shell d1° 

electrons of the noble metal rings) is employed for GVB as was previously employed 

for HF and UHF.7
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Peierls1 argued that the symmetric one-dimensional monovalent metal is unstable 

with respect to the geometric distortion pairing adjacent atoms to form a chain of 

diatomic molecules, because this distortion lowers the energies of the occupied one- 

electron states below the Fermi level (and raises the energies of the unoccupied 

one-electron states above the Fermi level).1’7 To test for Peierls instability, we chose 

Aga.2β The Ag8 Peierls-distorted ring cluster contains alternating long and short 

internuclear separations a ± δa, as shown in Figure 4, where the average nearest- 

neighbor distance is equal to that for the undistorted cluster.

The results presented here are calculated using the same geometries, hamiltonian, 

and basis sets as in our previous study,7 but with different wavefunctions. First we 

present the GVB-PP results, and then we present results calculated with the more 

general GVB-CI(SCF) wavefunction.

A. GVB-PP

1. Cohesive Energies

The cohesive energies of the Cuιo, Age, Aga, Ag10, Auιo, Lie, Li10, Liu, and Na10 

low-spin symmetric ring clusters with respect to atomization

Mn→ N M (8)

and dimerization

Mn → N/2 M2 (9)

(dissociation into diatomic molecules) calculated with GVB-PP wavefunctions are 

given in Table 2, where the total cohesive energies have been divided by N. These 

cohesive energies are calculated for low-spin ring clusters at fixed values of the lattice
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constant (a). The dimerization energies are given with respect to similar calculations 

for diatomic molecules at their calculated equilibrium internuclear separations (7Ze, 

see Appendix C.l).

At the GVB-PP level, the symmetric ring clusters are all stable with respect to 

both atomization and dimerization (see Table 2).

2. Charge Density Waves

For each of the Cu1<j, Age, Age, Agio, Au1o, Lie, Li10, Liu, and Naio symmetric ring 

clusters, GVB-PP leads to a low-spin (antiferromagnetic) ground state described 

by N well-localized singly-occupied orbitals centered at the N bond midpoints (see 

Figures 3 and 5a). In each case, these are the orbitals obtained by optimizing the 

low-spin GVB-PP wavefunction without imposing any orbital symmetry restrictions. 

These singly-occupied orbitals are spin-coupled into N/2 equivalent bond pairs (as 

shown in Figures 3 and 5a). Each of the bond pairs for the Mpf ring cluster is similar 

to the bond pair of linear M%, as shown in Figures 2, 3, and 5a.

The GVB-PP ground state wavefunction of each of these systems leads to a charge 

density wave — the electronic charge density does not have the same periodicity as 

the lattice. In each case, the total electronic charge density can be decomposed 

into a fully symmetric component with periodicity a and a “wave” component with 

periodicity 2α. The charge density wave maxima occur at atoms sharing the two 

overlapping orbitals of a bond pair. Thus, the charge density wave contains maxima 

and minima centered at alternate atoms — for Agg, electron density depleted from 

atoms 1, 3, 5, and 7 accumulates on atoms 2, 4, 6, and 8 as shown in Figure 5a.

For each of these systems, by applying local orbital symmetry restrictions, we 

solved self-consistently for an excited low-spin state having a charge density wave
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with maxima and minima centered at alternate bond midpoints (we required that 

the orbitals of each bond pair be related by the symmetry plane bisecting a particular 

bond midpoint). Hence, the excited state charge density wave is “phase-shifted” by 

a/2 with respect to ground state charge density wave. For each of the Cu10, Age, 

Ag8, Agio, Auιo, Lie, Liιo, Liι4, and Na1o symmetric ring clusters, this GVB-PP 

excited state is described by N singly-occupied atom-centered orbitals, divided into 

N/2 equivalent bond pairs (as shown in Figure 5b for Ag8). Each of the bond pairs 

for the Mu ring cluster is similar to the bond pair of Ma (compare Figures 5b and 1 

for Ag).

For brevity, we label these two distinct states “bond-centered” and “atom-centered” 

referring to the localization of the singly-occupied orbitals.

The bond pair overlaps, cohesive energies and energy splittings of these two dis­

tinct states are given in Table 3 for each of the nine symmetric ring clusters. In each 

case, the cohesive energy with with respect to dissociation into diatomic molecules 

(9) Is negative for the atom-centered state (this state is unstable). For Ag8, the 

dimerization energy (9) is —76.1 meV/atom for the atom-centered state (unstable) 

and +49.8 meV/atom for the bond-centered state (stable); the excitation energy be­

tween these two states is 1.007 eV (125.9 meV/atom; see Table 3). For each system, 

the cohesion of the ground state (bond-centered) is due to two-center one-electron 

bonding, similar to the bonding of M‡ and linear M$ (compare Figures 2, 3, and 

5a).

For each case, these two distinct charge density wave states are each doubly 

degenerate (for the symmetric ring cluster) in the sense that “translating” the valence 

orbitals by a (or rotating by 2τr∕2V) results in a new charge density wave state with 

the same energy (for finite N these many-electron states are not orthogonal). Each of
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the four charge density wave states is invariant to translations by integral multiples 

of 2α, hence each of these four states is consistent with Pn⅛ symmetry for the Mχ 

symmetric cluster (n = N∕2).

3. Peierls Instability

The GVB-PP total energies of the low-spin states of Ag8 as a function of the Peierls 

distortion (ία) are shown in Figure 6. The GVB-PP bond-centered wavefunctions 

(Figure 5a and Figure 6, solid curve) are optimized without orbital symmetry restric­

tions, leading to C⅛⅛ symmetry for ία ≠ 0 (the lattice symmetry is D4j1 for ία ∕ 0). 

In order to obtain GVB-PP atom-centered wavefunctions (Figure 5b and Figure 6, 

dashed curve), we applied local orbital symmetry restrictions during the optimization 

(the two orbitals of each bond pair were restricted to be exact mirror images of one 

another), leading to P⅛⅛ symmetry for all ία.

The Peierls distortion breaks the degeneracy of the atom-centered states (Figure 

5b). Numbering the bond midpoints as 1 through 8, the Peierls distortion compressing 

bonds 2, 4, 6, and 8 (and expanding bonds 1, 3, 5, and 7) lowers the energy of the 

atom-centered state having charge density wave maxima centered at bond midpoints 

2, 4, 6, and 8, and raises the energy of the atom-centered state having charge density 

wave maxima centered at bond midpoints 1, 3, 5, and 7 (for small distortions ία). 

Hence, the atom-centered states are unstable. The optimum value of the Peierls 

distortion ∣δaσpt∣ = 0.164 Â leads to alternating internuclear separations of 2.725 and 

3.053 Â. The optimum value of the compressed bond length is significantly smaller 

than the 2.801 Â equilibrium bond length calculated for Aga at the GVB-PP level 

(see Appendix C.l), indicating that the interaction between dimers for the atom- 

centered state is repulsive [the total energy at ∣iαopt∣ = 0.164 Â is higher than that
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of four Aga molecules (Re = 2.801 Â) by 0.371 eV (46.4 meV/atom)].

However, Peierls distortions do not break the degeneracy of the bond-centered 

states (Figure 5a), and these states are stable. The Peierls distortion does cause 

a very minor sliding of the valence orbitals, leading to a very minor flow of charge 

from the expanded bond midpoints to the compressed bond midpoints, increasing 

as a function of ∣0α∣ as shown in Figure 7. This results in a very minor sliding of 

the charge density wave maxima and minima towards the compressed and expanded 

bond midpoints, respectively. In addition, the bond pair overlaps increase slightly 

as a function of j5o∣. However, these effects are rather small even for ∣iα∣ = 0.30 À.

In Figure 8 we show total energies calculated at the HF7 and GVB-PP levels as 

a function of the Peierls distortion (5α) for low-spin Ag8 (the dashed curves in both 

Figures 5 and 7 depict states with charge density wave maxima and minima centered 

at alternate bond midpoints). In the GVB-PP description, the cohesion of the Ag8 

ground state is due to two-center one-electron bonding, similar to the bonding of 

Agf and linear Ag‡ (compare Figures 2 and 5a). The HF wavefunction leads to 

Peierls instability and lack of cohesion with respect to dissociation into diatomic 

molecules.7 The lack of cohesion in the HF description of the Ag8 ground state is 

due to the inaccuracy of describing one-electron bonds with doubly-occupied orbitals. 

Therefore, electron correlation effects (included in GVB-PP but excluded from HF) 

are responsible for the Peierls instability and lack of cohesion in the HF description 

of Ag8.
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B. Full GVB

1. Cohesive Energies

The GVB-CI(SCF) many-electron wavefunction mimics the full SOGVB21 many- 

electron wavefunction (see Section III and Appendix A), and contains one orbital for 

each valence electron. At the full GVB level, the Cui0, Agβ, Ag8, Agi0, Aui0, Lie, 

Liιo, and Nam low-spin symmetric ring clusters are all quite stable with respect to 

dissociation into both atoms (8) and diatomic molecules (9) (see Table 2).

For the three-dimensional bulk noble metals, the experimental cohesive energies 

with respect to dimerization

follow the trend Au > Cu > Ag. This same trend (Au > Cu > Ag) is also followed 

by the atomization energies of the diatomic molecules (see Appendix C.l). However, 

for the one-dimensional noble metal ring clusters, the cohesive energies with respect 

to dimerization [Equation (9), calculated at both the GVB-PP and full GVB levels] 

follow the trend Ag > Cu > Au. This same trend for the one-dimensional noble 

metals was observed for the UHF calculations7 and is consistent with both the atomic 

s-to-p experimental state splittings27 and with the extent of p hybridization (smaller 

excitation energies lead to greater hybridization and stronger cohesion).7 The same 

relationships between s-to-p excitation energies, p hybridization, and cohesion apply 

to Li and Na.7 Hence, sp hybridization plays a crucial role in the cohesion of these 

one-dimensional metals.
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2. Charge and Spin Densities

The GVB-CI(SCF) many-electron wavefunction for the ground state of each of the 

Cu10, Agβ, Aga, Agio, Au10, Liβ, Li10, and Nai0 symmetric ring clusters leads to 

a fully-symmetrical (Djv⅛) electronic charge distribution (no spin density wave or 

charge density wave; see Figures 3 and 9a, and see Appendix B for further details).

For each system, each localized valence orbital φi optimized for the ground state is 

symmetrically centered at a bond midpoint and is composed primarily of sp hybrids 

from the two adjacent atoms. Orbitals φi and φj are related by a rotation through 

(j — ») bond midpoints and hence are equivalent. The high symmetry of the {φi} 

leads to a fully-symmetrical (Djvfc) electronic charge distribution (as shown in Figure 

3 for Cuιo, Agio, Auio, Liι0, and Nai0 and in Figure 9a for Ag8). Consequently, each 

GVB orbital has equal overlaps with the two adjacent orbitals (and with the two 

next-nearest neighbor orbitals, etc., see Appendix B).

The overlaps of adjacent GVB orbitals are compared with the GVB-PP bond pair 

overlaps in Table 3. The GVB-PP orbitals are also centered at the bond midpoints 

but each GVB-PP orbital has a non-zero overlap with one adjacent orbital and is 

orthogonal to the other adjacent orbital. Hence, the GVB-PP orbitals are skewed 

(leading to a charge density wave, as shown in Figure 3 for Cuι0, Agio, Au1o, Liιo, 

and Nai0 and in Figure 5a for Ag8). GVB-CI(SCF) corrects this GVB-PP deficiency.

Since the GVB ground state for each Mn symmetric ring cluster (S = 0, A = 

B = AΓ∕2)

‰,s=o = Λ [Φλγ Xλγ,s=o] (10)

= ΦlΦ2Φs ,∙∙<i>N

contains a fully symmetrical spatial orbital product Φ7∖r, the many-electron sym-
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metry is in each case determined by the symmetry of the spin function χπts=o (in 

combination with √4). The spin function XNts=o can be written24 as a “resonance 

combination” of two primary spin couplings

Æ=o = {aβ - ßa}Ä/VN

Xn*s=q = la(aß-ßa)A~1ß-ß(aß-ßa)A~1aJ/VN

Xn,s=o = c1 [⅛ - (-l)xχ⅞‰0] + ∙ ∙ ∙ (11)

and numerous secondary spin couplings [there are (A+1)~1 linearly independent 

spin eigenfunctions for the 7V-electron singlet]. Here χ⅞⅞≈0 and χ⅞⅞=0 are the two 

perfect-pairing spin functions involved in the two degenerate GVB-PP charge-density 

wave states of Λfjy.

The ground state of the Aga symmetric ring cluster (bond-centered orbitals, Fig­

ure 9a) has 1Big symmetry, whereas the ground state of each of the Cuι0, Agβ, Ag10, 

Auιo, Lie, Liχo, and Na10 symmetric ring clusters has 1Alg symmetry.28

In addition, for the Ag8 symmetric ring cluster we carried out GVB-CI(SCF) 

calculations restricted so that the final (converged) orbitals would be atom-centered, 

leading to a 1B2g excited state (Figure 9b).2β The orbitals optimized in this fashion 

(Figure 9b) also result in a fully-symmetrical (tDah) electronic charge distribution, 

in contrast to the GVB-PP skewed orbitals for the Ag8 atom-centered state (Figure 

5b, leading to a charge density wave). Details of the Ag8 atom-centered state are 

also given in Table 3.

The energy splitting between the atom-centered state (1^2β) a∏d the bond- 

centered state (1-H⅛) is 1.043 eV (130.4 meV/atom) for the Ag8 symmetric cluster. 

This is a measure of the very strong preference of the valence orbitals for centering 

about the bond midpoints (as opposed to centering about the atoms). The Ag8
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atom-centered state (Figure 9b) is unstable with respect to diatomic molecules (9) 

by 0.102 eV (12.7 meV/atom). The Agg bond-centered state (Figure 9a) is stable 

with respect to diatomic molecules (9) by 0.941 eV (117.7 meV/atom).

These results show again that two-center one-electron bonding, similar to the 

bonding of M‡ and linear M‡ (compare Figures 2, 5a, and 9a), plays a crucial role 

in the cohesion of the Mχ ring clusters.

8. Peierls Distortion

Again, we focus our attention on the Agg ring cluster as the test for Peierls instability.26 

The Agg ring is stable with respect to the Peierls distortion for both GVB and GVB- 

PP. Hence, the total energy of the Ag8 ground state increases quadratically as a 

function of the Peierls distortion (Sa°, see Figure 10).

Although alternate bond midpoints are compressed and expanded for Sa ≠ 0, all 

the nuclei are equivalent by symmetry (Z>4∕l). We tested for charge density waves in 

the GVB-CI(SCF) wavefunction by using the GVB-PP skewed orbitals as “starting- 

guess” orbitals (shown in Figure 7 for Sa = 0.00, 0.10, 0.20 and 0.30 Â) and then 

solving iteratively for the optimum (self-consistent) orbitals (shown in Figure 11 

for Sa = 0.00, 0.10, 0.20 and 0.30 Â). The converged GVB-CI(SCF) wavefunction 

results in a fully symmetrical charge density for ∣5α∣ < 0.20 Â. For ∣tfα∣ > 0.30 Â, 

the converged GVB-CI(SCF) wavefunction results in a charge density wave having 

C,4⅛ symmetry [the GVB-PP charge density wave has C4⅛ symmetry for all ∖Saj ≠ 0]. 

Hence, for Sa = 0.30 Â the optimum GVB orbitals are slightly skewed. However, the 

GVB-CI(SCF) energy calculated with J94⅛ orbital symmetry restrictions (Figure 10, 

dashed line) at ∣5α∣ = 0.30 Ä is only 0.0049 eV (0.61 meV/atom) higher than that 

calculated without orbital symmetry restrictions (Figure 10, solid line).
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The optimum GVB orbitals (shown in Figure 11) imply that the Peierls-distorted 

diatomic lattice is unfavorable because alternate one-electron bonds are stretched and 

compressed. As 15α∣ increases, orbitals centered at expanded bond midpoints tend to 

delocalize somewhat over adjacent compressed bond midpoints, and orbitals centered 

at compressed bond midpoints tend to contract, resulting in increased gradients along 

the compressed bond axes.

V. Discussion

These ab initio calculations [GVB-PP and (full) GVB] indicate that the one-dimensional 

elemental metals composed of Cu, Ag, Au, Li, and Na have large cohesive energies 

with respect to both atomization and dissociation into diatomic molecules, and are 

stable with respect to the Peierls distortion (see Table 2 and Figure 12).

For each of the Cu10, Agβ, Age, Agio, Au10, Liβ, Li10, and Na10 symmetric ring 

clusters, the GVB ground state wavefunction consists of singly-occupied valence or­

bitals centered at the bond midpoints, forming one-electron bonds similar to the 

bonds in the respective M‡ and linear M‡ molecules (compare Figures 2, 3, and 

9a). Adjacent bond-centered orbitals overlap, leading to antiferτomagnetic (singlet) 

ground states having fully symmetrical electronic charge densities (no charge density 

or spin density waves for full GVB).

The cohesion in each of these one-dimensional metals is dominated by these two- 

center one-electron bonds; hence, the Peierls distortion stretching and compressing 

alternate one-electron bonds is unfavorable.

For a correct description of the cohesion due to these one-electron bonds, the 

wavefunction must include the configuration occupying each localized nonorthogonal
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valence orbital with only one valence electron. Hence, the wavefunction must include 

at least one orbital for each valence electron, as is the case for unrestricted Hartree- 

Fock (UHF, spin polarized), GVB-PP, and GVB, each including exactly one orbital 

per valence electron.

A. Restricted Hartree-Fock

The restricted Hartree-Fock wavefunction (HF, non spin polarized) describes each 

electron pair by a single orbital. Therefore, HF leads to spurious results such as (i) 

a charge density wave and Peierls instability for the Aga symmetric ring cluster (see 

Figure 12),7 (ii) a negative atomization energy for the low-spin Naχ0 ring cluster,7 

and (iiι) a ferromagnetic (high-spin) ground state for the Li10 ring cluster.14’24 The 

HF wavefunctions for the Cuχ0, Agβ, Aga, Agi0, Au10, Lie, Liι0, Lii4, and Nai0 low- 

spin symmetric ring clusters lead to cohesive energies with respect to dissociation 

into diatomic molecules that are very small or negative.7 Thus, the HF results for 

these one-dimensional metals are in absolute disagreement with the more accurate 

UHF7 and GVB results.

The HF-energy band arguments predicting instability for one-dimensional metals1 

have been generalized1’30 to explain the Hume-Rothery rules.31 These rules are based 

on an empirical correlation of particular alloy structures with particular valence- 

electron to atom ratios. For example, nearly all 7-brass alloys occur for electron/atom 

ratios of 1.54 - 1.7031'3a [the ideal ratio is 21/13 as for AggZng, Cu9Al4, etc]. The 

present results raise doubts concerning this explanation of the stability of the Hume- 

Rothery phases, since it is based on doubly-occupied orbitals.

The absence of strong cohesion in the HF description of these systems is due to the 

inaccuracy of describing one-electron bonds with doubly-occupied orbitals. For the
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Cuιo, Agβ, Ag8, Agio, Auιo, Liβ, Lii0, Lii4, and Naw symmetric ring clusters, the local 

HF description of each electron pair involves an atom-centered orbital [⅛≈,(↑)^(i)].τ,24 

Expanding this atom-centered orbital φ as a sum of two adjacent orthogonal bond- 

centered orbitals

φ = (ωi + ω2)∕√2

leads to the two-electron spatial function

Φ = φ φ = 0.5(ωιu>ι + u>2u∕2) + 0.5(ω1ω2 + ω2u>1)

with equal components of “ionic” configurations (ω⅛ doubly-occupied) and “covalent” 

configurations.33 The HF wavefunction forces the ionic and covalent configurations 

to have equal weights for each low-spin pair of electrons (no electron correlation), 

leading to the spurious results.

The relative weights of the covalent and ionic terms can be optimized for an 

electron pair by including the configuration placing both electrons in the antibonding 

orbital φ*

φ*,φι = 0.5(ω1ω1 + ω2u>2) — 0.5(ω1ω2 + ω2ω1)

¥>* = (ω1 - ω2)∕√2.

The resultant configuration interaction (CI) spatial wavefunction

Φ = Cχ φ φ — <⅛ φ*,φ*

= Q.5(cχ — i⅛)(ufχωχ + ω2ω2) H^ 0∙5(cχ -(- C2)(iVχU>2 + ω2wι) 

c2 + c2 = 1

for
c1 = λ2 > 0, λ > 0 

c2 = λ2 > 0, λ > 0
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is equivalent to the GVB (correlated) wavefunction23’34

Φ = Φ1Φ2 + Φ2Φ1

Φι = (A^ + λ⅞eβ)∕γ^λ3 + λ3 = [(λ + λ)u>ι + (A — λ)ω2]∕^2(λ3 + λ2)

Φ2 = (λ<^ — λ⅛j*,)∕^∕λ3 + λ3 = [(λ + λ)ω2 + (A — λ)ωι]/^2(λ2 + λ2)

(≠1∣≠2) = ⅛ = (λ2-λ2)∕(λ2 + λ2).

For the one-dimensional ring clusters composed of Cu, Ag, Au, Li, and Na, these 

GVB orbitals {φi} are centered at adjacent bond midpoints and overlap (<S12 ≠ 0; 

see Figure 3 and Table 3).

The GVB total energy is always lower than the HF total energy (as shown in 

Figure 12 for the Aga - ring) because electron correlation is included in GVB but 

excluded in HF. Hence, the neglect of electron correlation is responsible for the 

spurious HF results.

B. Unrestricted Hartree-Fock

The UHF wavefunction is the simplest single-determinant wavefunction leading to 

strong cohesion for the low-spin Mjf ring clusters composed of Cu, Ag, Au, Li, and 

Na.7 The UHF total energy can be no higher than the HF total energy, since UHF 

allows a separate orbital for each valence electron. UHF leads to stability with 

respect to the Peierls distortion (in agreement with GVB), as shown in Figure 12 for 

Ag8.

However, unlike HF and GVB, the low-spin UHF wavefunction is not an eigen­

function of the many-electron spin operator S2 and hence contains contributions 

from not only the singlet (S = 0) but also from higher spin states such as triplet 

(5 = 1), quintet (5 = 2), etc., up to high-spin (5 = JV∕2, where N is the number of
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atoms in the cluster).7 As a result of this “spin contamination,” the lack of Peierls 

instability for UHF does not imply a lack of Peierls instability for the exact ground 

state (which would be a properly described singlet state).

C. Generalized Valence Bond

The proper generalization of UHF yielding a wavefunction that is an eigenfunction 

of S2 is the GVB wavefunction.8’35 GVB resolves the disagreement between the HF- 

Peierls model and the UHF-Hubbard model for these one-dimensional metals. The 

GVB total energy is always lower than the UHF and HF total energies, as shown 

in Figure 12 for the Age ring cluster. For Age, GVB confirms the UHF result of 

stability with respect to the Peierls distortion (see Figure 12).

For the low-spin ground electronic states of the one-dimensional Mχ ring clusters 

composed of Cu, Ag, Au, Lr, and Na, GVB confirms that the HF-Peierls description 

is fundamentally incorrect due to the neglect of electron correlation effects, and 

that the UHF-Hubbard description is basically correct except that (unlike UHF) 

GVB does not lead to a spin density wave (or spin-contamination). Hence, both 

the spin contamination and the spin density wave resulting from UHF are due to 

an incomplete treatment of the electron correlation (forced by the use of a single 

determinant).

VI. Summary

For the ground electronic states of the one-dimensional metal clusters composed of 

Cu, Ag, Au, Li, and Na, the full GVB wavefunctions lead to the following results, 

(i) Electron correlation is crucial for a proper description of the valence electronic
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structure. In each case the GVB ground state is singlet (antiferromagnetic),9 consist­

ing of singly-occupied nonorthogonal valence orbitals centered symmetrically at the 

bond midpoints (no charge density wave or spin density wave), (ü) The HF-Peierls 

description of the valence electronic structure (doubly-occupied orbitals, half-filled 

band) is fundamentally incorrect due to the neglect of electron correlation effects. 

(iii) The UHF-Hubbard description of the electronic structure is basically correct 

except that (⅛) unlike UHF, the GVB antiferromagnetic (nonmetallic) ground state 

has neither spin-contamination nor a spin density wave, (∙u) GVB leads to large 

cohesive energies with respect to dissociation into diatomic molecules. The cohesion 

is due to two-center one-electron bonds similar to the two-center one-electron bonds 

describing the diatomic molecular cations. Hence, the Peierls distortion stretching 

and compressing alternate one-electron bonds is unfavorable.
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Appendix A. Details of the Calculations

1≈ The GVB—CI(SCF) Wavefunction

The full (untruncated) configuration interaction GVB wavefunction (GVB-CI)14,4θ 

includes all possible 7V-electron spatial configurations (SC) within a fixed set of 

N orbitals (usually taken as the GVB-PP natural orbitals). Each SC consists of
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orbitals occupied with zero, one, or two electrons, and is multiplied by all possible 

spin functions {∕<v,s}∙ Here we call each (antisymmetrizable) product of a SC with 

a particular spin function f[i,s a spin eigenfunction (SEF) [although each ffτ's alone 

is also an eigenfunction of 52]. Each SEF is multiplied by a separate CI coefficient 

optimized to give the lowest possible total energy.

For the full GVB-CI, the total number of SC, fff,s, SEF, and Slater determinants 

(DET) are given as follows:

n∞ - ∑(*)(2ii1)
8=2⅛ V 7

25 + 1 (N + 1∖ (N\
nsEF - ÂTïU+vW

nDET = (a) (a)
[note that usef is much less than n/nsc since a SC having D doubly occupied orbitals 

leads to ^a+^1^ antisymmetrizable products]. These characteristics of the

GVB-CI are given in Table 4 for even values of N ≤ 12 (the above formulas are exact 

for all N and 5).

For cases involving orbital symmetry, selecting configurations by symmetry re­

duces nsc, nsEFi and -∏det by approximately the factor F, where F = 8, 4, and 2 

for D2h, C,2v, and Ca, respectively [for planar cases without 7r orbitals, ∏sc, nSEF↑ 

and n∑>ET are reduced by ≈ F/2; F = 1 for cases with no orbital symmetry (C,1)].

Since GVB-CI includes all possible SEF, the total energy is invariant to linear 

transformations of the orbitals and hence the orbitals can be taken as orthogonal 

without restriction.

Here the optimum set of GVB-CI orbitals are solved self-consistently by a two-
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step iterative procedure where first (i) the CI coefficients38 are optimized for the 

given orbitals and then (n) the orbitals39 are optimized for the given CI coefficients. 

This sequence is iterated until the orbitals, CI coefficients, and calculated total en­

ergy all converge (usually only three or four iterations are required), resulting in the 

self-consistent field full (untruncated) configuration interaction GVB wavefunction 

[GVB-CI(SCF)]. GVB-CI(SCF) is the most general wavefunction describing N elec­

trons with N orbitals since it involves absolutely no restrictions other than the total 

number of orbitals.

The GVB-CI(SCF) wavefunction mimics the full SOGVB21 wavefunction

φΛrf∕yβ = ∙^[(≠1 <ι>2 Φs ∙ ∙ ∙ <M XΛΓ,λ] ∙ (Al)

SOGVB optimizes a separate orbital φ* for each valence electron (without any restric­

tions with respect to overlap or symmetry) for a completely general many-electron 

spin function χ (see Section III). The SOGVB {φi} are uniquely defined and tend 

to be localized (and nonorthogonal).8’21

Since GVB-CI(SCF) includes all possible SEF, the total energy is invariant to lin­

ear transformations (both orthogonal and nonorthogonal) of the (orthogonal) GVB- 

CI(SCF) natural orbitals {⅞s<}. A linear transformation of the {∣⅛ff<} resulting in a 

unique set of localized overlapping orbitals {<£,·} is given by the Hartree-localization 

method of Appendix A.2.33 These {φi} are used to discuss qualitative aspects of 

GVB-CI(SCF) in terms of (Al).

2. The Hartree Localization Method

We define the “classical” wavefunction

⅛N∖A — Φl Φi Φ3 ’ ∙ ° Φn
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as the Hartree product of the {<&}. The classical wavefunction leads to the energy 

expression
W N N N

Ecl = ∑⅛n + ∑⅞ = ∑⅛ + 0.5∑Jij∙
»=1 i>j i=l i≠3

ha = (<kl⅛)

∙Λj = (ΦiΦj l7*ia ∖ΦiΦj}

where {⅛,∙j∙} are the one-electron integrals (including the electronic kinetic energy, the 

potential energy due to the nuclei, and all two-electron core-valence interactions),7 

and {Λj} are the two-electron “coulomb” integrals describing valence-valence elec­

tron repulsions (see Section III).

The classical energy expression can also be written as

Ecl = ∑H∑(⅛-0⅛) (A2)
i=l

N
∑j = 0.5 ∑Jij. (A3)

m

For a set of orthogonal orbitals, the quantity ∑j is invariant to orthogonal tranfor- 

mations of the orbitals, so that minimizing Ecl would correspond to minimizing the 

sum of Âü — 0.5Jii∙ Our basic approximation in the Hartree localization method is 

that this is also true for the case of overlapping orbitals. The self-coulomb integral 

( Jo) strongly favors localization, whereas ha effectively weights the transformation 

by the one-electron energies, favoring delocalization. Since Equation (A2) contains 

only diagonal integrals, we solve for each φi independently (using the GVB2p536 

self-consistent field program).

Starting with the N optimum GVB-CI(SCF) orbitals {φi} and solving for the 

transformation minimizing (A2) leads to the (nonorthogonal) Hartree-localized or­

bitals {≠i}.33 Details of the Hartree-localized orbitals for Cuio, Agβ, Age, Agio, Aui0,
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Lie, Liχo, and Na10 are given in Appendix B (also see Figures 3, 9, and 11).

3. The Wannier Localization Method

Often it is useful3’7,24’37 to obtain an orthogonal set of localized orbitals {ωj∙} from a 

unitary transformation of the (delocalized) canonical or natural orbitals {<Aj}∙33

For symmetric ring clusters where the {⅛sj∙} are a full set of one-electron Bloch 

functions {≠to}

⅛) = ΛΓ-*∕j∑u,,∙exp(⅛¾)
J=ι

, 2πm
k = τr

Rj = ja

[where m is an integer (∣τπ∣ ≤ 7V∕2), ⅛ is the wave vector, and Rj denotes the position 

of ωj∙ (going around the circumference)], the {ωj∙} can be obtained by the Fourier 

transformation of the

However, for systems where the Fourier transformation method cannot be used 

(unfilled energy bands, low symmetry, etc.) a unique set of {ωj∙} can be obtained37 

by minimizing the energy expression

Z = -∑⅛ (A4)
s=l

within the {⅛jj∙} basis subject to orthogonality restrictions (we use the GVB2P536 

self-consistent field program to solve for all the ωj∙ simultaneously).

For the Λfχ ring clusters, the {ωj∙} by the self-localization method (A4) are iden­

tical to those obtained by the Fourier transformation method.
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4. Basis Sets and Effective Potentials

The GVB-PP and GVB-CI(SCF) many-electron wavefunctions3β,38'39 were opti­

mized using the same basis sets and hamiltonians as in our HF and UHF study;7 

hence, only a brief summary is given (further details axe given elsewhere).7

For the ring clusters (Cu10, Agβ, Ag8, Agio, Au10, Liβ, Lii0, Li14, and Nai0), all 

core electrons (including the subvalent d1° cores of the noble metals) are described 

using the core orbitals optimized for the valence electron high-spin state (one un­

paired electron per atom).7 Thus, only the valence orbitals are optimized for each 

state other than high-spin. For the diatomic molecules, all orbitals are optimized 

without restrictions.

For the noble metals, ab initio effective potentials19 were utilized to include the 

effects of all electrons other than eleven electrons per atom (d10s1) described explicitly 

in the wavefunction. These effective potentials include relativistic effects for Ag and 

Au but not for Cu (relativistic effects are much less important for Cu in comparison 

to Ag and Au).19 For the alkali metals, all electrons are treated explicitly in the 

wavefunction.

In each case, the basis set is composed of gaussian type orbitals contracted to 

give two s functions and two sets of p functions per atom for describing the valence 

orbitals. Hence, the basis sets chosen have sufficient flexibility to describe the valence 

polarization and hybridization effects crucial for describing the metallic cohesion.
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Appendix B. Detailed Results for Mχ Rings

1. GVB—CI(SCF) Wavefunctions

The GVB-CI(SCF) ground state wavefunction for each of the Cuχo, Age, Aga, Agi0, 

Au1o, Liβ, Li10, and Na10 symmetric ring clusters leads to a fully-symmetrical (D7v7l) 

electronic charge distribution (no spin density wave or charge density wave, see Fig­

ures 3 and 9a) and can be constructed from a full set of one-electron Bloch functions

≠m* = cmf2 ∑ Φi ∞p(ikRj)
3=1

2τrτn
k = τiΓ

Rj = J®

where m is an integer (∣τn∣ ≤ JV∕2), cτn is the normalization constant, {φj} is an 

optimal set of N equivalent real nonorthogonal localized orbitals, ⅛ is the wave 

vector, and Rj denotes the position of φj (going around the circumference). We 

use real representations of the {≠m} except where otherwise noted. The {φj} are 

obtained from the {≠m} by the Hartree-localization method presented in Appendix 

A.2.

For each of the Af1o symmetric ring clusters, the {≠m} optimized for the bond- 

centered state (Figure 3, 1Aifl ground state) belong to the αiff, elu, e2fl, e3u, e4ff, and 

δ2u38 representations of the point-symmetry group Z>ιo⅛≈ The {≠m} optimized for the 

Age bond-centered state (Figure 9a, 1B∖s ground state) belong to the αχa, eiu, e2fl, e3u 

and δ2fl representations of P8h. The {≠m} optimized for the Ag8 atom-centered state 

(Figure 9b, 1B2ff excited state) belong to the αlfl, eχω, e2fl, e3u and b-lg representations 

of Dsh.
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2. GVB—CI(SCF) Hartree Localized Orbitals

As a test of the Hartree-localization method, for the M‡ linear chain clusters we 

compare the GVB Hartree-localized orbitals {φi} with the unique GVB-PP canonical 

singly-occupied orbitals {⅛3⅛} (see Figure 2). Systems having two valence electrons 

such as Mf are ideal test cases since the GVB-PP and GVB-CI(SCF) wavefunctions 

are identical. Hence we define

δ(Φi) = 1 ~ (Φi∖Vi)

to compare the {φi} and {y>i}∙ Values of δ(φi) for Cu‡, Ag†, Au†, Li‡, and Na‡ 

are 0.00258, 0.00104, 0.00154, 0.00022, and 0.00002, respectively. For comparison, 

values of

5(ω,∙) = 1 - (ωi∣^i)

[where {ω⅛} are (orthogonal) GVB Wannier-localized orbitals] for Cu‡, Ag†, Au†, 

Li‡, and Na‡, are 0.01990, 0.01541, 0.01594, 0.00626, and 0.00838, respectively [the 

average S(φi) value (0.00108) is smaller than the average i(u>j) value (0.01318) by 

a factor of 12]. As a further test, we also compare the overlaps (⅛5χ∣φ2) (GVB- 

PP) and (≠1∣<^2) (GVB Hartree-localized) in Table 5. In comparison to the GVB-PP 

overlaps, the GVB Hartree-localized overlaps range from 18% too small (Li‡) to 33% 

too large (Cu‡). Overall, the comparison between the Hartree-localized orbitals and 

the GVB-PP orbitals for the linear M‡ clusters is satisfactory.

For each of the Cuχo, Agio, Auχo, Liχ0, and Naχ0 ground state (bond-centered) 

symmetric ring clusters, the GVB Hartree-localized orbitals are quite similar to the 

GVB-PP singly-occupied orbitals (see Figure 3) except that they reflect the higher 

symmetry of GVB-CI(SCF) in comparision with GVB-PP. Each Hartree-localized 

GVB-CI(SCF) orbital overlaps both adjacent localized orbitals equally, leading to a
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fully symmetrical charge density, whereas each GVB-PP orbital is allowed to over­

lap only one of the two neighboring orbitals, leading to a charge density wave. In 

comparison to the GVB-PP bond pair overlaps, the GVB Hartree-localized orbital 

nearest-neighbor overlaps range from smaller by 21% (Lii0) to larger by 6% (Cu10; 

see Table 5).

Table 6 presents all the overlaps [5⅛ = 5j+nj∙+n] between the GVB Hartree- 

localized orbitals. For the Cuι0, Agio, Au1o, Liio, and Na10 low-spin ring clusters, 

the decrease with each succeeding increment of 1 ≤ ∣i — j∖ ≤ 4 by factors of 

roughly 2.8, 3.3, 4.0, 4.2, and 6.2, respectively.

The overlaps for the Agg bond-centered state are larger than the respective 

values for the Agio bond-centered state. Indeed, the distance between bond-centered 

orbitals i and i + n is smaller for Ag8 than for Agi0 — even for n = 1. This indicates 

a minor flaw in the GVB-PP bond pair overlaps since for the bond-centered state, 

the bond pair overlap for Ag8 (0.542) is slightly smaller than that for Agio (0.546; 

see Table 3 or Table 5). But for the atom-centered state, the GVB-PP bond pair 

overlap for Ag8 (0.657) is smaller than that for Agi0 (0.684; see Table 3).

For each of the M£ linear chain clusters and each of the My ring clusters, the 

GVB Hartree-localized orbitals for the high-spin and low-spin (singlet) states are 

quite similar. Tables 5-6 present GVB Hartree-localized orbital overlaps for valence- 

electron high-spin states (S = 1 for M%, S = N/2 for My). The GVB Hartree- 

localized orbital nearest-neighbor overlaps for the Mio high-spin states are 6 to 31% 

larger than values for respective Mχo low-spin states (see Table 5). For each of 

these ring clusters, the fact that the nature of the localized valence orbitals does 

not change in going from low-spin to high-spin suggests that the magnon spectrum 

(the spectrum of excited spin states) can be described by the Heisenberg model41



131

involving local spin-spin exchange interactions.14>24

The Hartree localization method has not been tested for heteronuclear systems or 

for cases with very large overlaps [where the approximation of (A3) may tend to break 

down, possibly leading to orbitals that are not qualitatively correct]. However, the 

Hartree localization method is satisfactory for both the bond-centered and atom- 

centered states of Agg (compare Figure 5a-b with Figure 9a-b) and for the bond- 

centered state of the Ag8 Peierls-distorted ring cluster (compare Figure 7 with Figure 

11),

Overall, the comparison between the Hartree-localized orbitals and the GVB-PP 

orbitals for the M‡ and clusters is quite satisfactory.

3e UHF Hartree Localized Orbitals

For the ground state M% linear chains the canonical UHF orbitals and the

canonical GVB orbitals are very similar (both sets of orbitals are singly-

occupied and localized at bond midpoints). Values of

s⅛>Ybf) = ι - (vYBF\<f?VB)

for Cu‡, Ag‡, Au‡, Li‡, and Na‡, are 0.00079, 0.00050, 0.00044, 0.00010, and 

0.00030, respectively [the average value of S(<pYsf") is 0.00043]. For M‡, the UHF 

nearest-neighbor overlap integrals are 1-10% larger than the respective GVB-PP 

values (see Table 5).

For the M& ring clusters, the {⅞sfzffr} are delocalized although they do break 

symmetry (further details of these UHF wavefunctions are given elsewhere).7,24 UHF 

wavefunctions are invariant to separate linear transformations of the up-spin and 

down-spin orbitals. Here, we compare UHF Hartree-localized orbitals {Φbbf} (ob-
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tained by separate transformations of the up-spin and down-spin valence orbitals) 

with the GVB Hartree-localized orbitals {<^kb}∙

Values of

= 1 - (Φ?ΒΡ\Φ?νΒ)

for Cuιo, Agio, Au™, Liχo, and Naιo, are 0.00098, 0.00033, 0.00026, 0.00112, and 

0.00039, respectively [the average value of S(Φbhf) is 0.00062]. In comparison to the 

GVB Hartree-localized orbital nearest-neighbor overlaps, the UHF Hartree-localized 

orbital nearest-neighbor overlaps range from smaller by 5% (Cuio) to larger by 21% 

(Liio; see Table 5).

Table 6 presents all the overlaps [∙⅜j∙ = 5,∙+nj∙+n] for both the {Φbbf} and the 

{φfvs}. The UHF and GVB overlaps are in fairly good agreement up to the fourth- 

nearest neighbor («Sis).

Appendix C. Results for the Diatomic Molecules

We calculated the optimum internuclear separations (-Re), dissociation energies (De) 

and force constants (⅛e) at the full-valence GVB level for the ground state (1∑÷ ) 

Cua, Aga, Aua, Lia, and Naj molecules and for the ground state (2∑^) Cu‡, Ag‡, 

Au‡, Li‡, an^ Na‡ molecules.

The frozen core approximation7 is much less accurate for the diatomic molecules 

than it is for the Mχ ring clusters; hence, we optimized both the core orbitals and 

the valence orbitals for all diatomic molecules.

The neutral diatomic molecules contain only two valence electrons so GVB-PP 

and GVB-CI(SCF) are identical for the 1∑+ ground states. The diatomic cations 

contain only one valence electron so HF, UHF, GVB-PP and GVB-CI(SCF) are
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identical.

1. Cu2, Ag2, Au2, Li2, and Na2

For Cu2, Aga, Au2, Li2, and Na2, the GVB results are compared with UHF results 

(calculated using the same basis sets and hamiltonians)7 and with results obtained 

both from experiment and from calculations including more complete treatments 

of the electron correlation effects (see Table 7).42,43 The errors in the various GVB 

results (in comparison to experiment) are due mainly to the neglect of dynamic 

electron correlation effects (GVB includes only “static” electron correlation effects) 

as opposed to the basis set truncation. Note that basis set truncation errors are 

generally much smaller for GVB than for the higher level wavefunctions including 

dynamic electron correlation effects.

The values of Re and ke calculated with UHF and GVB are of similar accuracy 

(except for Na2 where UHF is especially poor). In each case, GVB leads to a cohesive 

energy (-De) that is substantially larger than the UHF value.

Although atomization energies are seriously underestimated at the GVB level for 

both the M2 diatomic molecules and the Mχ ring clusters, the cohesive energies of 

the Mif ring clusters with respect to dissociation into diatomic molecules

Mn → N/2 M2

should be much more accurate due to similar dynamic electron correlation energies 

(per atom or valence electron) for the Mu ring cluster and the Λf2 diatomic molecule.
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2. Cu‡, Ag‡s AuJ, Li‡, and Na‡

For Cu‡, Ag‡, Au‡, Li‡, and Na‡, the GVB results are compared with the available 

experiment results in Table 8.11'16'lβ>17'18>27∙44

The GVB values of De for Cu‡, Ag‡, Li‡, and Na‡ are too small by 32 ± 4%, 

28 ± 2%, 5.6%, and 5.9%, respectively (for Au‡, there is no available experimental 

data). Values of Re and ke have not been determined experimentally for Cu‡, Ag‡, 

or Auj . The GVB values of fcβ for Li‡ and Na‡ are too large by 1.6 ± 1.1% and 

0.5 ± 0.8%, respectively. The GVB values of Re for Li‡ and Na† are too large by 

2.2 ± 0.4% and 1.9 ± 0.9%.

For Cu‡ and Ag‡, the errors in the GVB De values (in comparison to experi­

ment) are mainly due to the neglect of core-core and core-valence electron correlation 

effects.44 For Li‡, almost all of the discrepancy between the listed GVB results and 

the experimental results can be removed with basis set improvements (such as opti­

mizing the p basis scale factor and adding a set of d functions).14’46

Appendix D. Localization transition for Li8

The ground state local electronic structure of each of the Cuιo, Age, Ag8, Agio, 

Au10, Liβ, Liιo, Li14, and Na10 ring clusters involves valence orbitals centered at 

bond midpoints for lattice constants (a) equal to the respective bulk metal nearest- 

neighbor distances.26 However, in each case, for sufficiently large uniform expansions 

of the lattice there is a sharp transition from the bond-centered state to the atom- 

centered state (having valence s orbitals centered at the atoms in the limit as a 

approaches infinity).

GVB-PP potential energy curves showing this localization transition for the Lig
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ring cluster axe presented in Figure 13 for both the low-spin (5 = 0) ground state 

and the valence electron high-spin state (S = 4). Results for these GVB-PP states 

and also for the UHF and GVB-CI(SCF) bond-centered (ground) states are given 

in Table 9 for Liβ. The localization transition occurs at a = 1.42αβ = 4.424 Â and 

at α = 1.37aβ = 4.457 Â for low-spin Lis and high-spin Lig, respectively.

This localization transition is similar to the Mott2 metal-insulator transition 

(both are sharp transitions as a function of a). For one-dimensional monovalent 

metals, the high-density (bond-centered) states are insulators since there is only one 

site (bond midpoint) per electron; hence all sites are filled. However, for two- and 

three-dimensional metals and alloys, analogous localization transitions — triangle- 

centered to atom-centered for 2D and tetrahedron-centered to atom-centered for 

3D,14 both occuring at α ≈ 1.4ae for Li — are expected to be true metal-insulator 

transitions since in each case the number of sites per electron is greater than one 

(two sites/electron for 2D and up to five sites/electron for 3D).
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Table 1. Cohesive, energies for Cu, Ags Au, Li and Na.

system

Molecules Bulk Solid
M2a]

(eV/atom)
Λf,+ i> 
(eV)

atomization c)
(eV/atom)

dimerization d'> 
(eV ∕ atom)

Cu 1.02 1.87 3.49 2.47
Ag 0.84 1.69 2.94 2.11
Au 1.16 - 3.82 2.66
Li 0.53 1.30 1.64 1.11
Na 0.37 0.99 1.11 0.74

a) 1/2 M2 → M, References [ll,12].
5) M2 → M + M+, References [ll,15,16,17,18]. See Table 8 for further details.
c) M(i) → Λf(a)s Reference [13].
d) M(i) → 1/2 M2, e.g., cohesion with respect to M2, References [ll,12,13].
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Table 2. Cohesive energies for low-spin ring clusters.o)

system α
(Â)

atomization energy5)
(meV/atom)

dimerization energy0) 
(meV/atom)

GVB-PP GVB GVB-PP GVB

Agβ 2.889 401.7 480.3 60.5 139.1
Age 2.889 391.0 458.9 49.8 117.7
Agio 2.889 406.8 479.0 65.6 137.7

Lie 3.014 366.4 419.8 158.1 211.5
Liιo 3.014 402.1 447.6 193.8 239.3
Lix⅛ 3.014 413.1 204.8

Cuχo 2.556 425.4 509.1 38.1 121.8
Agio 2.889 406.8 479.0 65.6 137.7
Au10 2.884 538.2 623.6 10.0 95.5
Liιo 3.014 402.1 447.6 193.8 239.3
Naxo 3.659 191.2 236.8 45.5 91.1

α) Results calculated for the lowest energy low-spin states (Section ∏). The frozen core 
approximation was used for the eight and ten-atom ring clusters.
b) The total atomization energy Aijγ → N M divided by N atoms.
c) The total cohesive energy with respect to diatomic molecules (at equilibrium),
Mχ → N/2 Afj, divided by N atoms.
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Table 3. Details of GVB-PP and GVB-CI(SCF) wavefunctions for low-spin sym­

metric ring clusters.

system a
(Â)

dimerization 
energy 

(meV ! atom)

nearest-neighbor 
overlap αl

(meV ∕ atom)

Agβ 2.889
------GVB-PP bond-centered state------

60.5 0.596
Agg 2.889 49.8 0.542 ■
Agio 2.889 65.6 0.546
Liβ 3.014 158.1 0.386
Liio 3.014 193.8 0.357
Lin 3.014 204.8 0.349
Gu« 2.556 38.1 0.597
Agio 2.889 65.6 0.546
Auio 2.884 10.0 0.613
Liio 3.014 193.8 0.357
Naio 3.659 45.5 0.435

—— GVB-PP atom-centered state------
Age 2.889 -15.5 0.714 76.0
Agg 2.889 -76.1 0.657 ,125.9
Agio 2.889 -53.4 0.684 119.0
Liβ 3.014 -65.2 0.683 223.3
Liio 3.014 -93.2 0.651 287.0
Liκ 3.014 -97.1 0.644 301.9
Cuιo 2.556 -62.0 0.720 100.1
Agio 2.889 -53.4 0.684 119.0
Auιo 2.884 -37.9 0.668 47.9
Li10 3.014 -93.2 0.651 287.0
Naιo 3.659 -73.1 0.558 118.6
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Table 3. Details of GVB-PP and GVB-CI(SCF) wavefunctions for low-spin sym­

metric ring clusters, continued.

system a
(Â)

dimerization 
energy 

(meV/atom)

nearest -neighb or 
overlap ttl ΔF7

(meV/atom)

------GVB-CI(SCF) bond-centered state —
Agβ 2.889 139.1 0.818
Ag8 2.889 117.7 0.623
Agio 2.889 137.7 0.548
Liβ 3.014 211.5 0.536
Liιo 3.014 239.3 0.282
Cuιo 2.556 121.8 0.632
Agio 2.889 137.7 0.548
Auιo 2.884 95.5 0.593
Liιo 3.014 239.3 0.282
Nai0 3.659 91.1 0.382

------GVB-CI(SCF) atom-centered state -
Ag8 2.889 -12.7 0.755 130.4

α) For GVB-PP, the bond pair overlap is listed; each orbital overlaps one adjacent 
orbital (forming a bond pair) and is orthogonal to the other adjacent orbital, 
δ) For GVB-CI(SCF), each orbital has equal overlaps with both adjacent orbitals (see 
Table 6 for further details).
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Table 4. Details of the full (untruncated) GVB-CI wavefunction.“^

N S A 6)
nf nsc nSEF npBT

2 0 1 1 3 3 4
2 1 2 1 1 1 1

4 0 2 2 19 20 36
4 1 3 3 13 15 16
4 2 4 1 1 1 1
6 0 3 5 141 175 400
6 1 4 9 121 189 225
6 2 5 5 31 35 36
6 3 6 1 1 1 1
8 0 4 14 1 107 1 764 4 900
8 1 5 28 1 037 2 352 3 136
8 2 6 20 477 720 784
8 3 7 7 57 63 64
8 4 8 1 1 1 1

10 0 δ 42 8 953 19 404 63 504
10 1 6 90 8 701 29 700 44 100
10 2 7 75 5 551 12 375 14 400
10 3 8 35 1 351 1 925 2 025
10 4 9 9 91 99 100
10 5 10 1 1 1 1
12 0 6 132 73 789 226 512 853 776
12 1 7 297 72 865 382 239 627 264
12 2 8 275 56 233 196 625 245 025
12 3 9 154 21 583 44 044 48 400
12 4 10 54 3 103 4 212 4 356
12 5 11 11 133 143 144
12 6 12 1 1 1 1

α) Total numbers of spacial configurations (nsσ)> spin eigenfunctions (n5^y), and 
determinants (npjsr) for the GVB-CI wavefunction without symmetry restrictions. 
b) Total number of spin eigenfunctions for the configuration having each orbital
singly-occupied.
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Table 5. Nearest-neighbor overlaps.

system
α

(A) UHF
--------low-spin

GVB-PP
high-spin 

GVB-CI(SCF)GVB-CI(SCF)

Cu+ 2.556 0.429 0.389 0.517 0.654
Ag‡ 2.889 0.367 0.344 0.428 0.544
Au‡ 2.884 0.373 0.350 0.452 0.568
ι⅛ 3.014 0.224 0.222 0.181 0.227
Na‡ ∙ 3.659 0.260 0.256 0.268 0.356
Agβn 2.889 0.692 0.657 0.755 ' 0.755

Age 2.889 0.658 0.596 0.818 0.862
Age 2.889 0.562 0.542 0.623 0.680
Agio 2.889 0.535 0.546 0.548 0.609
Lig 3.014 0.416 0.386 0.536 0.728
Liιo 3.014 0.341 0.357 0.282 0.369
Liι⅛ 3.014 0.326 0.349 0.284
Cuio 2.556 0.601 0.597 0.632 0.682
Agio 2.889 0.535 0.546 0.548 0.609
Auιo 2.884 0.589 0.613 0.593 0.631
Liιo 3.014 0.341 0.357 0.282 0.369
Naiβ 3.659 0.408 0.435 0.382 0.477

α) Results are for the bond-centered state except where otherwise noted. See Table 6 for 
further details.
&) For UHF, the overlap is for adjacent Hartree-localized orbitals (obtained by separate 
localizations of the up-spin and down-spin orbitals).
c) For GVB-PP the bond pair overlap is listed.
d) For GVB-CI(SCF) the overlap is for adjacent Hartree-localized orbitals.
e) For the high-spin state (5 = 2V∕2s one unpaired electron per atom) HF, UHF, and 
GVB-CI(SCF) are identical.
∕) Results for the atom-centered state.
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Table 6. Hartree-localized orbital overlap integrals, al

system α (Â) «^13 «^13/<5l3 <^14∕<5l3 ∙Sl5∕<Sl4 <Sιβ∕51V

low-spin, UHFc>
Ag∕, 2.889 0.692 0.478 0.439 0.668
Agβ 2.889 0.658 0.655 0.737
Ag8 2.889 0.562 0.391 0.356 0.655
Agio 2.889 0.535 0.303 0.224 0.376 0.795

Lie 3.014 0.416 0.564 0.611
Liιo 3.014 0.341 0.199 0.165 0.362 0.625
Li1⅛ 3.014 0.326 0.124 0.026 0.717 0.684
Cu10 2.556 0.601 0.375 0.282 0.394 0.791
Agio 2.889 0.535 0.303 0.224 0.376 0.795
Au10 2.884 0.589 0.300 0.183 0.253 1.062
Liχo 3.014 0.341 0.199 0.165 0.362 0.625
Naχo 3.659 0.408 0.179 0.107 0.157 1.057
low-spin, GVB-CI(SCF)
Age*0 2.889 0.755 0.499 0.455 0.668
Agβ 2.889 0.818 0.708 0.855
Ags 2.889 0.623 0.397 0.403 0.619
Agio 2.889 0.548 0.301 0.307 0.294 0.341
Liβ 3.014 0.536 0.547 0.813 0.000 0.000
Liιo 3.014 0.282 0.204 0.293 0.214 0.356
Cuιo 2.556 0.632 0.376 0.351 0.334 0.436
Agio 2.889 0.548 0.301 0.307 0.294 0.341
Auιo 2.884 0.593 0.298 0.257 0.193 -0.110
Liχo 3.014 0.282 0.204 0.293 0.214 0.356
Naιo 3.659 0.382 0.177 0.223 0.082 -1.476
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Table 6. Hartree-localized orbital overlap integrals, continued, α)

system a (Â) <Sχa ⅜3∕<Sl2 3n∕ ^13 Sls∕S-i4 5χβ∕⅛

high-spin,
Age^

e) GVB-CI(SCF) 
2.889 0.755 0.474 0.403 0.608

Agβ 2.889 0.862 0.742 0.856 ,
Ag8 2.889 0.680 0.413 0.366 0.584
Agχ0 2.889 0.609 0.316 0.235 0.209 0.329
Liβ 3.014 0.728 0.625 0.803 0.000 0.329
Liχo 3.014 0.369 0.216 0.189 0.262 0.534
Liχ4 3.014 0.284 0.136 0.084 0.189 0.410

Cuχo 2.556 0.682 0.390 0.290 0.265 0.447
Agχo 2.889 0.609 0.316 0.235 0.209 0.329
Au10 2.884 0.631 0.308 0.198 0.042 -2.932
Liχo 3.014 0.369 0.216 0.189 0.262 0.534
N½χo 3.659 0.477 0.200 0.149 0.171 0.393

a) Results are for the bond-centered state except where otherwise noted.
⅛) For the Miq rings, the ratios <Sχβ∕<Sιs vary somewhat haphazardly due to the small 
values of <Sχβ and 5χg [in each case ∣5χg∣ ≤ 0.026 and ∣5χβ∣ ≤ 0.020].
c) UHF Hartree orbitals obtained by separate localizations of the up-spin and down-spin 
orbitals.
d) Results for the atom-centered state.
e) For the high-spin state (S = N∕2, one unpaired electron per atom) the HF, UHF and 
GVB-CI(SCF) wavefunctions are identical
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Table 8. Comparison of calculated and experimental results for M‡ clusters.“)

GVB . experiment * c, d) d) 
De 

(eV)
⅛e.

(eV/Â3)system
Re
(Â)

De
(eV)

⅛,
(eV∕A≈)

Re
(Â)

Cu‡ 2.75 1.27 1.50 1.87 (10)
Ag‡ 2.99 1.22 1.63 1.69 (05)
Aui 2.85 1.44 4.39
Li‡ 3.18 1.225 0.901 3.11 (1) 1.298 0.887 (10)
Na‡ 3.67 0.926 0.620 3.60 (3) 0.984 0.617 (05)

α) Re is the equilibrium intemuclear separation, De is the dissociation energy 
(Afj" → M '+ Af+), ke is the harmonic force constant.
ft) Since these systems contain one valence electron, the HF (and also the UHF) results 
are identical.
c) De Values for Cu‡ and Ag‡ are based on the equation
De(M%} = De(M2) + IP(M) — IP(Mz) where De is the dissociation energy and IP is 
the ionization potential. We use Pe(Cu2) = 2.04 ± .08 eV and Pe(Ag2) = 1.67 ± .03 eV 
from Reference [11], JP(Cuj) = 7.894 ± .015 eV and ∕P(Ag2) = 7.56 ± .02 eV from 
References [11,15,16] and JP(Cu) = 7.726 eV and JP(Ag) = 7.576 eV from 
Reference [27]. JP(Ag2) = 7.56 ± 0.02 eV (based on an unpublished multiphoton 
experiment [11,16]), leads to JP(Ag) - JP(Ag2) = 0.016 ± 0.020 eV, in reasonably good 
agreement with unpublished theoretical results, JrP(Ag) — ∕P(Ag2) = 0.09 eV [44].
d) Values for Li‡ and Na† are from References [17,18].
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Table 9. Calculated results for the Lig symmetric ring cluster.“’6)

spin
wavefunction state

------cohesive energies-------
ffle ⅛e atomization c) dimerization d)

(Â) (meV∕atom∙A2) (meV/ätom) (meV/atom)

---------atom-centered states----------
GVB 5 = 4
GVB-PP 5 = 0 3.317 375.8

(no cohesion) 
124.9 -83.4

------- - bond-centered states------
GVB 5 = 4 3.249 734.7 246.1 37.8
UHF Ms = 0 3.126 811.9 391.7 299.0
GVB-PP 5 = 0 3.120 815.2 394.4 186.1
GVB-CI(SCF) 5 = 0 3.097 840.2 439.6 231.3

α) α8 is the equilibrium lattice constant, ⅛e is the harmonic force constant.
&) For the 5 = 4 (valence electron high-spin) states, the HF, UHF, GVB-PP and 
GVB-CI(SCF) results are identical.
c) The total atomization energy Lig → 8 Li divided by 8 atoms.
d) The total cohesive energy with respect to diatomic molecules (at equilibrium), 
Lig → 4 Li2, divided by 8 atoms.
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GVB ORBITALS
ATOM DIATOMIC MOLECULE

(S)

O’ ∙^g∣)

((j∣> w∣)

Figure 1. The optimum GVB valence orbitals for the Cu, Ag, Au, Li, and Na 
atoms (one orbital each) and homonuclear diatomic molecules (two orbitals each). 
Each orbital contains one electron. For Cu2, Ag2, Au2, Li2, and Na2, the bond pair 

overlaps are 0.621, 0.596, 0.600, 0.593, and 0.496, respectively. For this figure and 
for all following figures showing orbital amplitude contours, the nearest-neighbor 
distance (a) is equal to that of the bulk metal (α = 2.556, 2.889, 2.884, 3.014, 
and 3.659 Â for Cu, Ag, Au, Li, and Na, respectively), and the boxes are scaled 

to a (for Figures 1-3, box width = 3.6 a). Squares mark the atomic positions. 

Contours mark even amplitude increments of 0.2α~3∕3 unless noted otherwise. 
Solid and dashed contours denote positive and negative amplitudes, respectively.
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GVB ORBITALS
m‡ linear m‡

Cu

Ag

Au

Li

Na

Bg∣∣g9BUSS·∣^∣2∣∣m^g^··
El

Figure 2. The optimum GVB valence orbitals for M‡ (one orbital each) and linear 
M‡ (two orbitals each), M = Cu, Ag, Au, Li, and Na. Each orbital contains one 
electron. For Cu‡, Ag‡, Au†, Li†, and Na‡, the bond pair overlaps are 0.389, 
0.344, 0.350, 0.222, and 0.256, respectively. The GVB and UHF orbitals for the 
M‡ clusters are identical, since there is only one valence electron. For each of the 
linear M% clusters, the UHF orbitals are very similar to the GVB orbitals (the 
UHF spatial orbital overlaps for Cu‡, Ag†, Au†, Li‡, and Na‡ are 0.429, 0.367, 
0.373, 0.224, and 0.260, respectively). However, UHF results in net spin densities 
for low-spin M‡, whereas GVB does not.



156

Cu10

Agio

AUχo

Liιo

Naχo

UHF GVB-PP FULL GVB
♦ ♦ -------------------- ♦ « φ φ

∖ *’ ∖ * -s∙f∙, % /
β

∕ ‰
W

SW

« φ Φβ φ Φ φ φ

I Φ ∖ φ φ ♦ φ y

w ∖ w√√Wj*∖
∕ φ

β

♦ φ φ φ Φ φ

>½∙

∖ 0
∖∖¾>^J‰pγ.

)o φ

∕ ⅛φβ ' 0

W'
ή,er

♦ φ φ φ φ Φ φ

* φ

φ

Ό’ φ 1∣,

♦ φ φ Φ φ φ φ

♦ \ *
♦ ΖζΞ φ

ζ^\ «

((v⅛2βτ√
φ }(BK0yBL

β

Figure 3. Valence orbitals for each of the Cuχo, Agio, Auιo, Liio, and Nai0 ring 

clusters (each orbital contains one electron; overlaps are given in Tables 3 and 
5). Localized orbitals are shown for UHF (see Appendix B.3), GVB-PP (the two 

orbitals of a bond pair are shown), and full GVB (see Appendix B.2).
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(b)

Figure 4. (a) The Ma symmetric ring cluster as a model of the undistorted one­
dimensional metal, (b) The Ma distorted ring cluster (composed of alternating 
long and short bonds) as a model of the Peierls distorted one-dimerisional metal.
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(a) gvb
BOND-CENTERED

''B'

PP (b)

Figure 5. The GVB-PP (optimum) valence orbitals for (a) the bond-centered 

state of Agg, 0.542 overlap each bond pair, and (b) the atom-centered state of Aga, 
0.657 overlap each bond pair. In each case, the superposition of all eight orbitals 

is shown at the bottom excluding contours < 0.6<z~3∕2 for clarity. All orbitals are 
singly-occupied and spin-coupled into bond pairs as indicated. In each case, the 
four bond pairs are related by four-fold rotations about the eight-fold symmetry 
axis, leading to a charge density wave having P4⅛ symmetry.
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PEIERLS DISTORTION (5α, A)

Figure 6. The total energy of low-spin Ags as a function of the Peierls distortion 
(ία) calculated at the GVB~PP level. The solid curve depicts the bond-centered 
state (Figure 5a) and the dashed curves depict the atom-centered state (Figure 

5b).



160

GVB-PP
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Figure 7. The GVB-PP valence orbitals for the Agg bond-centered (ground) 
state as a function of the Peierls distortion (ία). All orbitals are singly-occupied 

and spin-coupled into bond pairs. In each case a single bond pair is shown (the 

other pairs are obtained by successive four-fold rotations). Bond pair overlaps are 
0.542, 0.547, 0.562 and 0.589 for δ = 0.00, 0.10, 0.20 and 0.30 Â, respectively. 

The many-electron wavefunction symmetry for ία ≠ 0 is C4⅛.
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PEIERLS DISTORTION (δα, A)

Figure 8. The total energy of low-spin Age as a function of the Peierls distortion 
(ία) calculated at the HF and GVB-PP levels. The results calculated without 

orbital symmetry restrictions are indicated by the solid curve (leading to charge 

density wave maxima centered at the atoms for all ία). The results calculated 
with Dih orbital symmetry restrictions are indicated by the dashed curves (leading 
to charge density wave maxima centered at the bond midpoints for ία = 0).



162

GVB (b)

Figure 9. The GVB valence orbitals for (a) the bond-centered state of Aga (ground 

state, 1Bιff) and (δ) the atom-centered state of Ags (excited state, 1-B2fl). In each 
case, the superposition of all eight orbitals is shown at the bottom excluding 
contours < 0.6α~3∕2 for clarity. All orbitals are singly-occupied.
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PEIERLS DISTORTION (δα, À)

Figure 10. The total energy of the Aga ground electronic state as a function 
of the Peierls distortion (5α) calculated at the GVB-PP and full GVB levels 
(solid curves). The GVB-CI(SCF) energy calculated with P4∕1 orbital symmetry 
restrictions (dashed curve, almost obscured by the solid curve) is equal to that 
calculated with no orbital symmetry restrictions (C'a, solid curve) for |£a| ≤ 0.20 
Â. For |£o| = 0.30 Â the D4fl energy is higher than the C'a energy by 0.0049 eV 

(0.61 meV/atom).
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Figure 11. The GVB valence orbitals for the Agg bond-centered (ground) state 
as a function of the Peierls distortion (ία). All orbitals are singly-occupied. In 
each case, two orbitals are shown (the other orbitals are obtained by successive 
four-fold rotations). For ∣iα∣ ≤ 0.20 Â the optimum GVB orbitals lead to a fully 

symmetrical charge density (P8⅛ for ία = 0 and Dih fθr ∣iα] ≤ 0.20 Â). The 
adjacent-orbital overlaps are 0.623, 0.625, and 0.631 for ία = 0.00, 0.10, and 0.20 
Â, respectively. For ∣iα∣ = 0.30 Â the optimum GVB orbitals are slightly skewed, 

leading to a C,4⅛ symmetry charge density wave having very small amplitude. For 
∣iαj = 0.30 Â, the adjacent-orbital overlaps alternate between 0.637 and 0.644 
(the overlap of the orbitals shown is 0.637).
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PEIERLS DISTORTION (δα, A)

Figure 12. The total energy of the Agg ground electronic state as a function of 
the Peierls distortion (ία) calculated without orbital symmetry restrictions at the 
HF, UHF and GVB levels.
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Figure 13. The GVB-PP total energy of the Lis symmetric ring cluster as a 
function of the lattice constant, showing localization transitions for the low-spin 
(5 = 0) and high-spin (5 = 4) states.
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Chapter 3

Magnon Dispersion, Spin Density Waves, and

Charge Density Waves in One-Dimensional Metals:

Ab Initio HF and UHF Wavefunctions for

Cu, Ag, Au, Li, and Na

I. Introduction

The properties of pseudo one-dimensional solids have long been a subject of con­

siderable interest. Peierls1 has shown that one-dimensional metals having partially 

filled energy bands are susceptible to a distortion leading to an energy band gap 

at the Fermi level and hence a metal-to-insulator transition. For a chain of mono­

valent atoms, the Peierls instability is often associated with a charge density wave 

having maxima and minima at alternating bond midpoints, leading to a Peierls dis­

tortion pairing up adjacent atoms to form a diatomic lattice.1 However, for a chain 

of monovalent atoms, the exact solution2 of the Hubbard hamiltonian3’4 leads to an 

antiferromagnetic insulator (with a spin density wave).

These ideas of Peierls instability, charge density waves, antiferromagnetic in­

sulators, and spin density waves have proved useful in characterizing pseudo-one­
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dimensional inorganic and organic compounds5’8 such as (i) CuCl2 and (CH3)4NMnCl3 

antiferromagnetic insulators,7 consisting of symmetric chains, (ii) organic polymers 

such as polyacetylene,8 and {iii} organic charge transfer salts such as those based 

on the tetracyanoquinodimethane (TCNQ) anion.5’8 Such pseudo-one-dimensional 

solids are believed to be likely candidates for high-temperature superconductivity.8

Testing these concepts of Peierls instability, charge density waves, antiferromag­

netic insulators, and spin density waves with high quality ab initioθ total energy 

calculations for one-dimensional metallic systems should prove valuable in under­

standing the properties of such pseudo-one-dimensional solids. In addition, such 

systems provide a sensitive test of various electronic structure techniques.

Hence, we have optimized restricted Hartree-Fock (HF, non-spin-polarized), un­

restricted Hartree-Fock (UHF, spin-polarized) and generalized valence bond (GVB) 

wavefunctions for various one-dimensional ring clusters composed of Cu, Ag, Au, 

Li, and Na. Results for the low-spin states of these clusters are presented elsewhere 

in full detail.10’11 The cohesion of these systems is due to two-center one-electron 

bonding,11 as shown by the UHF valence orbitals for M‡, linear M‡, and Mw in 

Figures 1-2 [for these systems, the GVB and UHF (Hartree-localized) orbitals are 

similar].11 At the highest level of theory (GVB),11 these systems are antiferromag­

netic insulators having fully symmetrical charge and spin densities, and do not lead 

to Peierls Instabilities. UHF wavefunctions for these systems are consistent with the 

Hubbard hamiltonian.1° However, both UHF and HF lead to incorrect results (in 

comparison to GVB), such as spin density waves (for UHF), charge density waves 

(for HF), and Peierls instabilities (for HF).10,13

Here, we present HF and UHF results calculated for all allowed magnetizations of 

the Cu10, Agβ, Ag8, Agio, Au10, Liβ, Liio, Liι4, and Naι0 ring clusters. An analogous



169

GVB study of these systems is presented in full detail elsewhere.13 We show that 

the UHF magnon spectra are consistent with a nearest-neighbor Ising model.14’15 

However, HF leads to incorrect results (such as a ferromagnetic ground state for 

LItf).

Section II presents details of these results, and additional details are given in 

the appendices. Speculations on Ising models for the valence electronic structures of 

two-dimensional and three-dimensional metals are given in Section III.D.

II. Results

A. Introduction

For each of the Cui0, Agβ, Aga, Agio, Aui0, Lie, Liι0, Lin, and Na10 ring clusters we 

report the total energy as a function of magnetization (or density of unpaired spins)

where A and B are the number of up-spin electrons (↑ or α) and down-spin electrons 

(‡ or /3), respectively (A + B ■=■ Ν'). We calculate both the UHF magnon spectrum 

and the HF magnon spectrum using the same geometries, hamiltonians, and basis 

sets as in our previous studies of the cohesive properties of these systems.10’11 The 

bond lengths or lattice constants (a) for these symmetric ring clusters are taken equal 

to the nearest-neighbor distances for the respective bulk metals.lβ Further details of 

these ab initio calculations are given in Appendix A.

For each of these systems, the effect of valence magnetization changes on the 

core orbitals is small.10 For Cu10, Agβ, Age, Agio, and Au10, calculations where 

both the core and valence orbitals are optimized self-consistently lead to minimal
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hybridization between the d orbitals (core) and the valence sp orbitals for both the 

low-spin {μ = 0) and high-spin (jι = 1) states.10 For these systems, the closed-shell 

d1° configurations are maintained for magnetizations of up to one unpaired electron 

per atom.10 (In Appendix G, we show for Au1q that the lowest energy 5d-excited 

μ = 1 state is 2.46 eV higher in energy than the lowest energy μ = 1 state at the HF 

level.)

Hence, the same frozen core approximation as utilized previously (including the 

closed-shell d1° electrons of the noble metal rings)10’11 is expected to be reasonably 

accurate for magnetizations 0 ≤ μ < 1.1°

Incorporating this frozen core approximation, we solve for the UHF and HF 

valence wavefunctions

= A&iV2'‘‘VAVA+iVA+2'-VN}aAßB]

where A is the antisymmetrizer, {φ3∙} are the canonical one-electron orbitals opti­

mized self-consistently for each case, and a and β are the up-spin and down-spin 

one-electron spin functions, respectively (see Appendix A for further details).

We first examine the electronic structure of the valence high-spin state (μ = 1, 

one unpaired electron per atom) where HF and UHF are identical. However, for 

magnetizations μ < 1, the UHF and HF wavefunctions differ dramatically.

B. The High-Spin State

For each of the Cuιo, Agβ, Ag8, Agio, Aui0, Liβ, Liio, Li14, and Na10 ring clusters, the 

optimum (real) canonical orbitals {φj∙} for the lowest energy high-spin state (μ=l,
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one unpaired electron per atom)

⅛N,N = «4 [(^1⅛5,2⅛53 ∙ ■ ∙ 95τv)(ααα ∙ ∙ ∙ α)] (1)

can be combined10 into (complex) Bloch functions17

≠m = c^2∑φj∞p(ikRj), Q <∖m∖< N/2 (2)
j=ι

t 2πm
k = In

R3 = 3a

where cm is the normalization constant for ψm, {φj} is a nonorthogonal set of N 

equivalent localized orbitals, k is the wave vector, and Rj denotes the position of φj 

(going around the circumference; φι+j is generated from φχ by j successive JV-fold 

rotations). In terms of the {V,m}j the μ = 1 wavefunction

Φχ,x = «4 [(≠0≠1≠-1 ■ ° ∙ Φn-ι Ψ-n+ι ψn)(ocaa ∙ ∙ ∙ ααα)] (3)

(to = 2V∕2) has the same form and total energy as wavefunction (1).

These two sets of orbitals [{⅛sj∙} and {V¼}] are not the only means of describing 

the high-spin state; e.g., the wavefunction written in terms of {φj}

Φ‰χ = ^[(≠1≠3≠3 ° ∙ ° <Atf)(ααα ° ■ ∙ α)] (4)

has the same total energy as wavefunctions (1) and (3), since the {φj∙}, {≠m}, and 

{≠j∙} are related by linear transformations [see Appendix A.3].

Figure 2b shows the optimum localized orbital φ-i for each of the Cui0, Agio, 

Auιo, Liιo, and Na1o ring clusters, where φι is obtained from the {⅛sj∙} by Hartree 

localization.11 For each case, φ-i is centered at one of the bond midpoints and is 

composed primarily of a hybridization of s and pσ functions from two adjacent atoms.
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For each case, the φ-i for the Afio high-spin, cluster (Figure 2b) is remarkably similar 

to the valence orbital of the respective M‡ cluster (Figure la).

Incidentally, the {≠fn} can also be expanded in terms of a complete set of orthog­

onal localized Wannierlδ,11 orbitals {ωj∙}

≠m = N~1/2 52 ω3 exp(i⅛jRj∙) 
j=l

and the high-spin wavefunction in terms of {ω,∙}

Φ⅝∙ιjy = A [(ω1ω2ω3 ∙ - ∙ ωjv)(ααα ∙ - ∙ α)] (5)

has the same total energy18 as wavefunctions (1), (3), and (4).

Figure 2c shows the optimum ω1 for each of the Cu10, Ag10, Au10, Lii0, and Nai0 

ring clusters. In each case, u>ι (Figure 2c) is similar to φι (Figure 2b) except for the 

negative amplitudes in the regions of adjacent orbitals (2 and 10) resulting since the 

{ωj} are orthogonal whereas the {φj} are allowed to overlap one another.

The Hartree orbitals {φj} prove useful for describing the UHF wavefunctions for 

other magnetizations, and the Wannier orbitals {ωj∙} prove useful for describing the 

HF wavefunctions for other magnetizations.

C. Unrestricted Hartree-Fock

1. Ab Initio Results

We optimized UHF wavefunctions for all allowed magnetizations 0 < μ ≤ 1 of each 

of the Cuιo, Agβ, Aga, Agio, Au10, Liβ, Li10, Liι4, and Na10 ring clusters. These 

UHF wavefunctions are optimized with real orbitals and with Cs orbital symmetry 

restrictions; however, reducing the orbital symmetry restriction to Cχ or raising the
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orbital symmetry restriction to (with the C,2 axis bisecting two opposite bond 

midpoints of the ring) leads to identical results. The results are given in Tables 1-2.

For each case, UHF leads to a low spin (antiferromagnetic, μ = 0) ground state 

with a monotonic increase in the total energy as μ is increased. Figure 3 presents 

the UHF magnon spectra for the Λf1o ring clusters. For M1o, the UHF magnon 

dispersion energies

Ι⅛∙ = Efflμ=ι — Epflμ=H

follow the trend Cu > Au > Ag Na > Li.

For each state A of each Mχ ring cluster, the UHF wavefunction in terms of the 

optimum canonical orbitals {φ,∙} has an equivalent form in terms of nonorthogonal 

localized orbitals {φi} where φi and φi+n are nth nearest neighbors [φi and φi±τ 

are adjacent (modulo N°, see Figure 2)]. For each state A, the {φi} are obtained by 

separate Hartree localizations11 of the up-spin canonical orbitals {⅛j,∙, i = 1,2,..., A} 

and the down-spin canonical orbitals {φ⅛, i = A + 1, A + 2,..., N}.

The key property of the {φi} is that they exhibit only minor variations as a 

function of μ for each of the Cuι0, Age, Ags, Agio, Auχo, Lie, Liχo, Li14, and Nax0 

ring clusters (this is not true for the {y>i})∙ Hence, the {φi} optimized for μ = 1 

(high-spin, Figure 2b) are very similar to the {φi} optimized for μ = 0 (low-spin, 

Figure 2a). For Cu10, Ag10, Auι0, Lixo, and Nai0, the average value of

sΦι = i - (ΦF0∖ΦF1)

is 0.00351 (individual values are listed in Table 2).

For Afχo, values of the nearest-neighbor overlap integrals

<⅜2 = (≠l∣≠s)
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for μ = 1 are 7-17% larger than those for μ = 0 (see Table 2). These <Si2 values 

(5^f0, 5i∙f15 ajχd their average) follow the same trend as the 25 values (Cu > Au > 

Ag > Na > Li; see Figure 4 and Table 2).

The UHF wavefunctions in terms of the {φi} for magnetizations 0 ≤ μ ≤ 1 are 

outlined schematically in Figure 5 for Mi0. UHF leads to a spin density wave for 

each magnetization except for μ = 1. The UHF μ = 0 spin density wave state is 

discussed elsewhere10 in further detail.

For each magnetization of M^, adjacent orbitals (φi and φi+ι) prefer to be occu­

pied with opposite spins (a-β or β-a) wherever possible [such as for the antiferromag­

netic (μ = 0) ground state; see Figure 5]. Hence, adjacent orbitals having parallel 

spins (α-α or β-fi} lead to an antibonding nearest-neighbor exchange interaction 

(exchange coefficient U = — 1; see Appendix B).

For Mjf, leads to ∖A — B∖ = μN antibonding nearest-neighbor exchange

interactions (U = —1) and N(l — μ) nonbonding nearest-neighbor exchange interac­

tions (a-β°, U = 0). Ignoring all other interactions leads to the simple Ising14 energy 

expression

Eff,μ ≈ Effiμ=Q — μN J (6)

(where Jr is the exchange interaction), explaining the near linear increase of the total 

energy with increasing μ as shown in Figure 3 (therefore, JΓ is negative; see Appendix 

B for further details).

The UHF magnon spectra for the series Age, Aga, Agio, and for the series Lie, 

Liχo, Lik are presented in Figures 6 and 7, respectively. In agreement with (6), 25 

increases almost linearly with increasing N.

For Agχ and Lijv, 25/JV ≈ ∣,∕∣ decreases slightly with increasing N (see Table 

2). The reason for this that ∣√7" J decreases as the distance between the two orbitals
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increases. For Afy, the localized orbitals are centered at bond midpoints, and the 

distance between adjacent bond midpoints

Rbm = a cos (7r∕2V)

increases with increasing N, hence explaining the decrease in D∕2V with increasing 

N at fixed α. This also explains the decrease of the nearest-neighbor overlap (S12) 

with increasing N at fixed a.

2. lsing and Generalized Ising Models

For each of the Cui0, Agβ, Aga, Agio, Aui0, Liβ, Li10, Liu, and Nai0 ring clusters, we 

fit the UHF total energies (-É^^) to the Ising14 model and generalized Ising models

= ^N,μ=O — μNJ
μNJπGIMl = -⅞V,μ=o — 1 - μNS2

E%1*2 = ‰=o-^J(l + μ2∖ΓS2)

where J and «S are the “effective” nearest-neighbor exchange energy and the “ef­

fective” nearest-neighbor overlap integral, respectively (J^ < 0 leads to an antiferro­

magnetic ground state). These energy expressions are based exclusively on nearest- 

neighbor exchange interactions and are derived in Appendix B.

For each case, we take Fijy,μ=o equal to the μ = 0 UHF energy (-F10,μ=0 = 

and use J and 5 as least-squares parameters, e.g., J and 5 minimize root mean 

square (RMS) error

(δb^*v-∣ ∑ (¾,-o,∙
∙iv Λ=X+ΛΓ∕3

The results presented in Table 3 for Mw indicate that Egim2 is more accurate 

than Eim by factors of 6.3 to 13.8, and Egim2 is more accurate than Egimi by
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factors of 1.2 to 2.0; hence, Egim2 is used to interpolate the calculated UHF total 

energies in Figure 3 and Figures 6-7.

For each of the Mu ring clusters, J and «S’ values follow the patterns —g^GiM21 < 

∣^g∕mi∣ < ∣^yZΛf∣ and «Su > Sgim2 > Sgimx >'Sim = 0, respectively (where <Su is 

the average of the UHF values <S£f0 and <Su-1; see Table 2 and Figure 4).

The explanation of the trend «Su > Sgim2 > Sgimi is as follows. GIM1 requires 

«S < N~1∣2 in order to avoid the singularity. GIM2 requires that «S be proportional 

to N~i^2 for large N in order to obtain a finite energy splitting between states A 

and A + S in the limit as N approaches infinity (for finite £)

I® - *w3"∣ - ∣2SJ[l + 2μΛΓ5≈]∣

μ = ∖2A + δ-N∖∕N

(where μ is the magnetization of the average state A+i∕2). Thus, GIM2 is somewhat 

less restrictive than GIM1, consistent with the superiority of GIM2 over GIM1.

Despite the restrictions, the J^ and 5 values from GIM are closely related to the 

P and «Su values from UHF, as shown in Figure 4 for Λfιo. Each set of values (see 

Figure 4) follows the trend Cu > Au > Ag > Na > Li except that (i) Au > Cu for 

Sgimi and Sgim2, and («) Ag > Au for Jgim2.

D. Restricted Hartree-Fock

We optimized HF wavefunctions for all allowed magnetizations 0 ≤ μ of each of the 

Cujo, Age, Aga, Agio, Auιo, Lie, Liu, Liι<, and Nau ring clusters. These HF wave- 

functions are optimized using three different sets of orbital symmetry restrictions, as 

follows.

Dffh> Complex orbitals restricted to transform according to the irreducible rep-
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resentations of the point group Djv⅛ [e.g., Bloch orbitals (2)].10,17 These HF(-D∕vτl) 

wavefunctions always lead to fully symmetrical charge densities10 — even for degen­

erate open-shell states.

C,2A∙ Real orbitals restricted to transform according to the irreducible represen­

tations of C,2a∙ For Λfχo, raising the symmetry restriction to D2h leads to identical 

results. For Ma, raising the symmetry restriction to D2h is more complicated.10’18

Ca‘ Real orbitals restricted to be either symmetric or antisymmetric with respect 

to the plane of the ring. In each case, raising the symmetry restriction to C2υ (with 

the C2 axis containing two opposite atoms of the ring) leads to identical results.

The results are given in Table 1 and Figures 8-17.

Optimizing HF wavefunctions with -Djvλ or C2h orbital symmetry restrictions 

leads to higher total energies and rather complicated magnon spectra in comparison 

to HF(Ca). Therefore, we first present the HF(Ca) magnon spectra, and then we 

discuss the HF(<?2a) and HF(Djv⅛) magnon spectra. In Sections II.E-F we discuss 

symmetry-breaking effects (leading to charge and spin density waves).

1. HF Results Without Orbital Symmetry Restrictions

Unlike UHF, HF does not lead to μ = 0 (low-spin, antiferromagnetic) ground states 

in all cases. Figure 8 presents the HF(Ca) magnon spectra for the Λf1<j ring clusters. 

Although the HF and UHF magnon dispersion curves for Λfχo follow the same trend 

(Cu > Au > Ag Na > Li; compare Figures 3 and 8), the HF ground states for 

Naχo and Liχ<j contain 0.6 and 1.0 unpaired electrons per atom, respectively.

The HF magnon spectra for the series Agβ, Aga, Ag10, and for the series Liβ, Li10, 

Li1⅛ are presented in Figures 9 and 10, respectively. Unlike UHF, the HF magnon 

dispersion curves are not smooth and are not always monotonic (compare Figures 6
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and 9 for Agjy). Hence, HF leads to a μ = 0.25 (triplet) ground state for Ag8.19 For 

Lijv, HF leads to a μ = 1 (high-spin, ferromagnetic) ground state, with a monotonic 

increase in the energy with decreasing μ. Thus, for Lijv the HF and UHF results are 

in complete disagreement (compare Figures 7 and 10).

2. HF Results With Orbital Symmetry Restrictions

The HF magnon spectra calculated by imposing orbital symmetry restrictions are 

tabulated in Table 1 for each of the nine Λfχ ring clusters. For the Cuio, Ag8, 

Agio, Auιo, Liιo, Liκ, and Na1o ring clusters, the three sets of HF results (C8, C,2⅛, 

and Dtf∣l) are presented in Figures 11-17, where the UHF results are included for 

comparision.

In general, the HF(Pjv⅛) and HF(C,3λ) magnon dispersion curves are even less 

smooth and less monotonic than the HF(C8) magnon dispersion curves, especially for 

Agio, Naιo, Liιo and Lin (Figures 14-17). For each Mn cluster, the HF(P^∙⅛) energy 

is significantly higher than the HF(C8) energy for all magnetizations 0 < μ < 1. In 

addition, the HF(C,3h) energy is significantly higher than the HF(C8) energy for half 

of the allowed magnetizations 0 < μ < 1.

In each case, imposing orbital symmetry restrictions (Pjv⅛ or C2κ) does not al­

ter which magnetization has the minimum energy on the magnon dispersion curve. 

However, for Agio, Lii0, Lin, and Nai0, imposing orbital symmetry restrictions does 

change which magnetization has the maximum energy on the magnon dispersion

curve.
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E. HF Charge Density Waves

For each magnetization μ where the reduced-symmetry (C2⅛ or Cg} HF total energy 

is lower than the HF(Pjv∕,) total energy, that reduced-symmetry HF wavefunction 

leads to a charge density wave (and also a spin density wave if μ ≠ 0). For these 

cases, the optimum HF canonical orbitals localize (break symmetry) — they do not 

have the symmetry of the lattice; i.e., they are not Bloch functions (2).

Figure 18 shows the energetic effects of allowing the full charge density wave

ecdw = ebf{cs) _ EBF{D10h)

as a function of magnetization for each of the Cu10, Agio, Auχo, Liι0, and Na10 ring 

clusters. These charge density wave effects follow the trend Li > Na > Ag > Cu > 

Au. These results for M10 are tabulated in Table 4, along with similar results for the 

other four clusters (Age, Age, Lie, and Liχ⅛).

1. Intermediate Magnetizations (0 < μ < 1)

For each of these nine ring clusters, the HF(C,a) wavefunction leads to charge and 

spin density waves for all magnetizations 0 < μ < 1.

These charge density waves are a direct result of the HF doubly-occupied or­

bital restriction {.μ = 1 is unaffected since all valence orbitals are singly-occupied). 

For magnetization ∕x, the HF wavefunction contains B = N(l — μ)∕2 doubly occu­

pied canonical orbitals. Each HF doubly-occupied orbital leads to substantial ionic 

character.11 For HF, the amount of ionic character can be defined by expanding 

the wavefunction in terms of Wannier orbitals, resulting in a mixture of ionic and 

covalent configurations.11

In Appendices E-F we show that for HF, ionic character leads to a lowering
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of the total one-electron energy (kinetic energy and electron - nuclear attraction 

energy) at the expense of raising the two-electron energy (due to electron - electron 

repulsions).10

The key measure of the ionic character is the average number of doubly-occupied 

Wannier orbitals per configuration, (J). Values of (∕) are given by the formulas

W‰ = Λr(l~^)∕4 

(J)σ, = JV(l-μ)∕4

(see Appendix D for further details). Hence, for 0 ≤ μ ≤ 1, allowing the valence 

orbitals to localize (C'a) reduces the amount of ionic character, leading to a lower total 

energy despite the charge density waves. The reduction in ionic character afforded 

by localization

WpjikHj)ci = ⅜-∕*,)M (?)

depends quadratically on μ with the maximum at μ = 0.5.

The results given in Figure 18 indicate that the reduction of ionic character (7)

plays a major role in determining the charge density wave energy effects. Hence, for 

Mw the charge density wave effects peak at μ = 0.6, and for Aga the charge density 

wave effects peak at μ = 0.5 (see Table 4).

2. Low Spin (μ = 0)

For the μ = 0 HF states of these systems, we have previously shown that charge 

density waves are enhanced by narrow valence energy bands, that they occur more 

readily for the N = 4ι clusters than for the N = 4i + 2 clusters, and that their 

magnitudes generally increase with increasing N.w For each of the Cuι0, Agβ, Agio, 

Auιo, and Lie rings, the HF μ = 0 (low-spin) state contains neither a charge density
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wave nor a spin density wave. However, for each of the Aga, Lixo, L1l4, and Na10 

rings, the HF μ = 0 state contains a charge density wave — with maxima and minima 

centered at alternate atoms10’11 — but no spin density wave. For Aga, Lixo, Liκ, and 

Na10, the HF(Pjv⅛) energy is higher than the HF(C,3) energy by 0.222, 0.060, 0.325, 

and 0.007 eV, respectively.

F. Spin Density Waves and Spin Polarization

Figure 19 shows the energetic effects of allowing the full spin density wave (including 

spin polarization)

Esdw = Eubf - Ehf^dio^

as a function of magnetization for each of the Cui0, Agxo, Aux0, Lix0, and Naxo ring 

clusters.

Figure 20 shows the energetic effects of allowing spin polarization

esp = euhf _ eSF(C3)

as a function of magnetization for each of the Cuxo, Agio, Auxo, Lixo, and Nax0 ring 

clusters. These spin polarization effects increase monotonically from μ =■ 1 to μ = 0.

Each of these effects (charge density wave, spin density wave, and spin polariza­

tion) follows the trend Li > Na > Ag > Cu > Au. This trend is almost the inverse 

of the Li < Na < Ag < Au < Cu trend followed by both the overlap and magnon 

dispersion energy for UHF (see Section II.C).
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III. Discussion

A. Restricted Hartree-Fock

For the Mjf ring clusters composed of Cu, Ag, Au, Li and Na, restricted Hartree-Fock 

(HF) leads to spurious results, such as (t) a charge density wave and Peierls instability 

for each of the Aga, Liι0, and Lij4 μ = 0 (low-spin) symmetric ring clusters,10’11’12 

(it) a charge density wave and a negative atomization energy for the Naio μ = 0 ring 

cluster,10 (ii⅛) charge and spin density waves for all intermediate magnetizations 

(0 < μ < 1) of Cu10, Agβ, Aga, Agio, Auι0, Liβ, Liι0, Li14, and Na10 (see Section 

ILE), and (⅛) ground states for Ag8, Na10, Liβ, Li10, and Lii4 having 0.25, 0.6, 1.0, 

1.0, and 1.0 unpaired electrons per atom, respectively (see Table 1 and Figures 8-10).

This indicates a fundamental flaw in HF for these systems, and that flaw is the 

double occupation of valence orbitals for describing magnetizations μ < 1. This is 

further discussed in Appendices D-E, where we show that the HF doubly-occupied 

orbitals lead to a forced mixture of covalent and ionic configurations in terms of the 

localized Wannier orbitals {ωj∙}.ιs,11

For magnetizations 0 ≤ μ < 1, the charge and spin density waves are a direct 

result of minimizing the ionic character of the HF wavefunction (and hence the HF 

total energy) by allowing the orbitals to localize.

However, even with localized orbitals, each doubly-occupied HF valence orbital 

leads to 50% ionic character and 50% covalent character for each localized electron 

pair. Hence, the error in the HF energy due to the overemphasis of ionic character 

increases monotonically with decreasing magnetization (e.g., see Figure 20). Systems 

having narrow valence bands and large lattice constants (Li# and Na#) have a much 

lower tolerance of ionic character than those having wide valence bands and small
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lattice constants (Cu^∕∙, Ag^r, and Aujy). Thus, for Li10 and Na10, the HF ground 

states are μ = 1.0 and μ = 0.6, respectively.

The obvious solution of these problems is to optimize the coefficients of all possible 

covalent and ionic configurations (electron correlation); however, the restricted form 

of the HF wavefunction does not allow this.

Bβ Unrestricted Hartree-Fock

Unrestricted Hartree-Fock (UHF) leads to a nonmetallic, antiferromagnetic (μ = 0, 

low-spin) ground state for each of the Mjv ring clusters composed of Cu, Ag, Au, 

Li and Na. UHF allows a full reduction of ionic character by providing a separate 

orbital for each electron, and allowing the orbitals to break symmetry (localize). 

Hence, for each magnetization μ < 1, UHF leads to a spin density wave state (see 

Figure 5) having a lower total energy than the lowest energy HF state. The energy 

difference between UHF and HF (∖Ebf(c^ — Eubf∖", see Figure 20) increases mono- 

tonically with decreasing magnetization. Hence, for these systems, spin polarization 

is crucial for a Hartree Fock (single-determinant) description of the valence electronic 

structure.

In each case, the local valence electronic structure of the UHF ground state 

consists of singly->occupied orbitals centered at the bond midpoints with alternating 

spins (see Figures 2 and 5), e.g.,

≠ι(α)≠a(∕3)≠3(α)≠√∕3) ∙ ∙ ∙ ≠JV-ι(α)⅛(∕3)

(for even N). This leads to a spin density wave, although in each case the net 

electronic charge density (obtained by adding the up-spin and down-spin densities) 

is fully symmetrical.
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For each magnetization, localized orbitals {φi} similar to those for μ = 0 can be 

obtained by separate Hartree localizations11 of the up-spin canonical UHF orbitals 

{⅛5<s 1 ≤ i ≤ A} and the down-spin canonical UHF orbitals {⅛5t∙, A + 1 ≤ i ≤ N} 

(the UHF total energy is invariant to this orbital transformation).11 In terms of the 

{≠i}, for UHF, the magnetization is increased by flipping down-spin (∕3) electrons to 

up-spin (a), as shown in Figure 5 for Miq.

The UHF energy increases monotonically with increasing magnetization, because 

the nearest-neighbor exchange interaction between adjacent parallel spins is anti­

bonding (U = —l)s as opposed to the nonbonding (U = 0) interaction between 

adjacent antiparallel spins (see Appendix B).

The UHF Hartree orbitals exhibit only minor variations as a function of μ for each 

of the Cu10, Agβ, Age, Agio, Au10, Liβ, Liio, Lii4, and Na10 ring clusters (see Figure 

2 and Table 2). As a result, the UHF total energies for the allowed magnetizations 

can be interpolated accurately with a generalized Ising Model

¾m = Em ~ μNJ(l + μNS2).

This generalized Ising energy expression includes effects due to the nearest-neighbor 

overlap (5) to first order and results from the solutions of the nearest-neighbor Ising 

Hamiltonian14’15

Hising = J∑ ∣ + 2silsl∙+li (8)
i

including only nearest-neighbor exchange interactions J where s<i is the z com­

ponent of spin for lattice position i. This generalized Ising model reduces to the 

usual simple Ising model in the limit as 5 approaches zero (such as for a lattice of 

singly-occupied d or ∕ orbitals).

The reason for the success of the generalized Ising model in fitting the UHF total
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energies is that (i) the UHF wavefunctions for the various magnetizations of Mχ 

can all be described fairly well in terms of a single set of N equivalent well-localized 

non-orthogonal orbitals {φj} (see Appendices B-C), and (w) and S decrease ex­

ponentially with increasing distance;11’13 hence, non-nearest-neighbor overlaps and 

exchange interactions are negligible.

C. Generalized Valence Bond

The optimum wavefunction allowing an independent particle description of the elec­

tronic structure is the generalized valence bond wavefunction (GVB).2°,21 Both GVB 

and UHF include a separate spatial orbital for each valence electron, where the 

orbitals are energy-optimized without any restrictions. For UHF, the orbitals are 

optimized for a fixed many-electron spin function (%) that is a simple product of one- 

electron spin functions (χusp = aAßB}. However, unlike UHF, for GVB, both the 

valence orbitals and the many-electron spin function are optimized simultaneously.20,11 

Hence, for μ < 1, GVB always leads to a lower total energy than UHF.

We have optimized GVB wavefunctions for all allowed magnetizations of each of 

the Cuιo, Agβ, Agβ, Agio, Aui0, Liβ, Lii0, and Nai0 ring clusters. Full details of these 

results are presented elsewhere.13

In agreement with UHF, GVB leads to a μ = 0 ground state in each case. Also 

in agreement with UHF, GVB leads to localized orbitals centered at bond midpoints 

that exhibit only minor variations as a function of μ, However, unlike UHF, in each 

case GVB leads to fully symmetrical charge and spin densities for all magnetizations 

0 ≤ μ ≤ 1∙ Therefore, for these systems, the spin density waves resulting from UHF 

are due to an incomplete treatment of the electron correlation forced by the use of a 

restricted (product) spin function.11’13
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For each of the Λfy ring clusters, the GVB total energies for the allowed magne­

tizations are in excellent agreement with the exact solutions of the nearest-neighbor 

Heisenberg Hamiltonian15,22

hheis = t7 Ç I + 2⅛ ∙ 7i+1. (9)
i

The Heisenberg Hamiltonian leads to the energy expression 

' ⅛ = ⅛‰0 + (‰μ)JVJ∙

where Ε^μ=0 is the Ising energy for μ = 0, and (Ujv,μ) is average nearest-neighbor 

exchange coefficient (see Appendix B). The Ising model is an approximate solution 

of (9) leading to (t⅛,μ) = μ∙ Therefore, the exact solutions of (9) lead to (Ujf,μ} ≤ μ∙

As an example, for an M2 antiferromagnetic chain, the exact μ = 0 solution is 

simply (aß —∕3α)∕√z2, leading to U = 1 (bonding), and the UHF-Ising μ = 0 solution 

is aβ, leading to U = 0 (nonbonding). For μ = 1, the exact solution and the Ising 

solution are both aa, leading to U = — 1 (antibonding).

For the Mn ring, the Ising solution for μ = 0 leads to (Uj(^_0) = 0. However, for 

Afχo, the exact solution leads to (Z7jv,μ=o) = 0∙403 (bonding), and for M00, the exact 

solution leads to (∑7jv,μ=o) = 2In 2 — 1 = 0.386.23

The UHF-Ising description of the electronic structures of these systems can be 

useful as an approximation to the more exact GVB-Heisenberg description.

De Ising Models for Simple Metals

Based on the success of the Ising model in approximating the UHF results for the 

one-dimensional metals composed of Cu, Ag, Au, Li, and Na, it is likely that the 

Ising model could prove useful for describing the valence electronic structures of two- 

dimensional metals (metal surfaces) and three-dimensional metals (bulk metals).
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The classical model of antiferromagnetism is based on dividing the principal lat­

tice into two sublattices {A} and {5} — occupied by up-spin and down-spin elec­

trons, respectively — such that all nearest neighbors of sublattice {A} belong to 

sublattice {B} and vice versa.15 However, this two-sublattice model of antiferromag­

netism is impossible if the principal lattice contains triangles.15

The UHF results for the rings are consistent with this classical model of 

antiferromagnetism; however, since the valence orbitals are centered at the bond 

midpoints, the principal lattice for describing the valence electrons is the lattice of 

bond midpoints — not the atomic lattice.

in general, for a n-dimensional atomic lattice, we expect that the “characteristic” 

localized valence orbital is composed of sp hybrid orbitals from n +1 adjacent atoms 

(for metallic systems). This expectation is based on UHF and generalized valence 

bond studies of small lithium clusters containing up to thirteen atoms.24 Hence, the 

characteristic localized valence orbitals are centered at bond midpoints, triangular 

faces and tetrahedral hollows for ID metals, 2D metals, and 3D metals, respectively.24 

Therefore, for 2D and 3D metals, the lattice appropriate for simulating the valence 

electronic structure — based on interstices — need not have the same coordination

as the atomic lattice!

For 2D and 3D close-packed metals, we show in each case that the valence elec­

tronic lattice (based on orbitals centered at interstices) leads to the classical model 

of antiferromagnetism. Hence, the common belief that the classical model of antifer­

romagnetism cannot apply to the valence electrons of close-packed metals — because 

their atomic lattices contain triangles — is incorrect.
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1. Planar Close-Packed Metals

For a planar close-packed metal, each atom has six nearest neighbors. If this lattice 

is filled with Cu2+ (3d9) ions, then the atomic lattice is correct for describing the 

electronic structure of the hole states.

However, if this lattice is filled with Cu+ (3d10) ions and one valence electron per 

ion is added, the honeycomb (hexagonal) lattice defined by the triangular hollows — 

where each lattice point has three nearest neighbors — should be used for describing 

the valence electronic structure.

For transition metals, such as Ni (3d94∙s1), the valence electronic lattice would 

interact with the atomic lattice, since the d electrons are atom-centered.

The honeycomb valence electronic lattice leads to the classical model of anti­

ferromagnetism — where the two sublattices consist of the {B} and {N} sites of 

graphitelike BN.

Since there are two triangular hollows per atom, for monovalent metal atoms, this 

leads to a half-filled valence band for both the up-spin and the down-spin electrons, 

leading to a two-dimensional metal. For divalent simple metals (Be, Mn, Ca, etc. 

and Zn, Cd, Hg), the up-spin and down-spin valence bands are filled, leading to 

two-dimensional insulators.

2o Hexagonal Close-Packed Metals

For hep metals, the “valence electronic lattice” consists of the centers of the tetra­

hedral hollows. For ⅛cp, each tetrahedral hollow shares a face (three edges) with 

another tetrahedral hollow, and the three remaining edges are shared with three 

other tetrahedral hollows. Hence, for hep the lattice of tetrahedral hollows corre-
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sponds to the wurzite lattice (such as for hexagonal ZnS, where each lattice point 

has four neighbors).

The wurzite lattice leads to the classical model of antiferromagnetism ■— where 

the two sublattices consist of the {Zn} and {S} sites of hexagonal ZnS.

3. Face Centered Cubic Metals

For fee metals, the electronic lattice also consists of the centers of tetrahedral hollows. 

For fee, each tetrahedral hollow shares an edge with six other tetrahedral hollows; 

hence, for fee the lattice of tetrahedral hollows corresponds to the rock salt lattice 

(NaCl).

The rock salt lattice leads to the classical model of antiferromagnetism — where 

the two sublattices consist of the {Na} and {C1} sites of NaCl.

For both fee and hep, there are two tetrahedral hollows per atom. Hence, in each 

case the Ising model leads to a half-filled energy band for monovalent metal atoms and 

a completely filled energy band for divalent metal atoms. This is consistent with the 

observation that the monovalent metals tend to have higher electrical conductivities 

than the divalent metals.

IV. Summary

We optimized UHF and HF wavefunctions for all allowed magnetizations of each of 

the Cuιo, Agβs Ag8, Agio, Auι0, Liβ, Lii0, Liι∙t, and Nai0 ring clusters. The results 

for these one-dimensional metals — and speculations for two-dimensional metals and 

three-dimenstional metals — are summarized as follows.

Restricted Hartree-Fock leads to spurious results, such as (i) a charge density
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wave for each of the Ag8, Li10, Li14, and Nai0 μ = 0 (low-spin) symmetric ring 

clusters,10,11 (it) charge and spin density waves for all intermediate magnetizations 

(0 < μ < 1) of each ring cluster, and (tit) ground states for Ag8, Naχo, and Li1o 

having 0.25, 0.6, and 1.0 unpaired electrons per atom, respectively. These spurious 

results indicate a fundamental flaw in HF for these systems — the double occupation 

of valence orbitals for describing magnetizations μ < 1.

For each Mpr ring cluster, unrestricted Hartree-Fock leads to an antiferromagnetic 

(μ = 0) ground state that does not have a charge density wave. However, for 

each magnetization μ < 1 (including μ = 0), UHF leads to a spin density wave 

(orbital localization). The UHF total energy increases monotonically with increasing 

magnetization as long as spin density waves are allowed. The UHF magnon spectrum 

for each of the various Mjf rings is described accurately in terms of a generalized 

Ising model including only effective nearest-neighbor exchange interactions.

However, for these systems, the spin density waves resulting from the UHF- 

Ising description are due to an incomplete treatment of the electron correlation.11,13 

Hence, generalized valence bond calculations11’13 lead to lower total energies and 

fully symmetrical charge and spin densities for all magnetizations 0 ≤ μ ≤ 1.

For these one-dimensional ring clusters, the UHF-Ising model is consistent with 

the classical two-sublattice model of antiferromagnetism,ιs where the principal lattice 

is divided into two sublattices A and B — occupied by the up-spin and down-spin 

electrons, respectively — such that all nearest neighbors of one sublattice belong to 

the other sublattice. However, for these rings, the valence orbitals are centered at 

the bond midpoints; hence, the principal lattice for describing the valence electrons 

is the lattice of bond midpoints — not the atomic lattice.

For close-packed metals, the valence orbitals are centered at interstitial hollows
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— triangular hollows for two-dimensional metals and tetrahedral hollows for three di­

mensional metals.34 For three cases (planar close-packed, fee and hep), we show that 

the lattice defined by the interstitial hollows is consistent with the two-sublattice 

model of antiferromagnetism. Each of these three close-packed metals contains two 

interstitial hollows per atom, leading (for monovalent metal atoms) to metallic prop­

erties resulting from a half-filled valence energy band. Therefore, the common belief 

that the classical (two sublattice) model of antiferromagnetism cannot apply to the 

valence electrons of close-packed metals — because their atomic lattices contain tri­

angles —- is incorrect.

Appendix A. Details of the Calculations

1. The Frozen Core Approximation

The frozen core approximation can be described briefly as follows (more detail is 

given elsewhere).10

First, both the core orbitals and the valence orbitals are optimized simultaneously 

for the valence high-spin state (chosen since the HF and UHF valence wavefunctions 

are identical for high-spin). The core orbitals optimized for the high-spin state are 

then used to construct the valence hamiltonian

« = sSosx + ∑ι(∙) + ∑-
i=l i>,∙ rij

i(i) _ -lv,1 + v(fi ) + vc°∞

Vcore = ∑(2Jc-⅛c)
c

where (t) E%-ore includes the nuclear repulsion energy and all one-electron and 

two-electron energy terms involving only the core electrons {the [Ar]3d10, [Kr]4d10,
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[Xe]4∕145d10, l∙s2, and ls22s22p6 shells for Cu, Ag, Au, Li, and Na,25 respectively},10 

(iι) the “one-electron” operator h(i) includes the electronic kinetic energy (—∣V2), 

the electron-nuclear attraction [V(F )], and all two-electron interactions [coulomb 

(J) and exchange (2f)] between core electrons and valence electrons ÇyC0RE)2e and 

{iii} r⅛1 is the electrostatic interaction between electrons i and j (ι,ij is the distance 

between electrons i and j).

This hamiltonian is then used for the self-consistent field (SCF) optimizations 

(energy minimization) of many-electron wavefunctions for the other magnetizations.

This frozen core approximation is exact for the high-spin state.28 For the other 

magnetizations, total energies calculated with the frozen core approximation are 

somewhat higher than those calculated by the usual method of optimizing all or­

bitals self-consistently because the optimum core orbital shapes are not independent 

of the valence magnetization. However, the frozen core approximation is reason­

ably accurate for the low-spin states,10 and hence, the frozen core approximation is 

expected to be reasonably accurate for magnetizations from zero to one unpaired 

valence electrons per atom (0 ≤ μ ≤ 1).

2. Hartree-Fock Wavefunctions

The UHF and HF many-electron valence wavefunctions for the various ring 

clusters can all be written in the general form

Φjv,a = (Al)

Â = ∑CrT
τ

^N,Λ = ⅛3l(l)^2(2)953(3) °∙ ∙ Ψn(N)

XnFa = X™/ = α(1)α(2)·.·α(Α)/3(Α+1)/?(Α + 2)··^(Ύ)
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where (t) Â is the antisymmetrizer or determinantal operator [where the summation 

is over all Nl permutations

r∕(l,2,3,...,7V) = ∕(i1,i2,⅛∙∙∙s⅛ 1 ≤ Û ≤ N

of the electronic coordinates (1,2,3,...,TV) and ζτ is the parity of permutation τ], 

(ii) Φjv,λ is the many-electron spatial product function, where {⅛5√} are the canonical 

valence one-electron orbitals (a separate set is optimized for each state A), and (m) 

Xn,a is the many-electron spin function, where a and β are the up-spin (↑) and 

down-spin (‡) one-electron spin functions, respectively (A and B are the number of 

valence electrons with spins a and β, respectively; A + B = Ν').

For wavefunctions such as (Al) where both Φ and χ are products of one-electron 

functions, A forms a single Slater determinant. For brevity, the electron coordinates 

are often omitted. Hence, the orbital product is ordered such that the electron 

coordinates are sequential (the electron coordinates and the orbital subscripts are 

independent), e.g.,

∣WW∙∙∙ ≡ 953(l)⅛5ι(2)s04(3)...

Æ = = <*AßB·

The HF and UHF wavefunctions differ in the orbital restrictions as follows.

HFs Orbitals of opposite spin are forced to be equal

ψA+i = ⅛5i, î = 1,2,...,H

μ≥ B,l some orbitals are doubly-occupied). In addition, the {⅞s8∙} are restricted to 

be orthonormal

(<P⅛j) = ⅛, id ≤ A.
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These restrictions ensure that the wavefunction is an eigenfunction of 52

S≈Φ" = S(S + 1)S1*^ (A2)

_ 1A-B∣

2

where S2 and S are the total (many-electron) spin angular momentum operator and 

quantum number, respectively.

UHF: Orbitals are optimized without any restrictions, generally leading to many­

electron wavefunctions that are not eigenfunctions of S2 (A2). However, both Φ^^f 

and are eigenfunctions of Sx

S2 ¾ + ¾ + s2z

Ms
A-B

2

where Sx and Ms are the total (many-electron) spin angular momentum projection 

operator and quantum number, respectively.

3«, The Hartree-Fock Energy Expression

For determinantal wavefunctions (Al) the total energy expression

„ ‰Λ∣¾∣Φ⅝..)
N,Ä (Φλγ,a∣Φn,,a)

can be simplified as

Ex,a = (Φjv,λ Xjv,x∣Ti∣Φjv,∠4) = 52(Φ2V,^∣¾∣tΦλ',λ)Uγ (A3)
r

Uτ = ζτ(XN,A∖r%N,A}

where the normalization of Φ2V,λ is defined with respect to

(⅜If,A XW,Λ∣ΦjV,^) = 52(ΦΛΓ,A∣rΦ7V,jl)Ur = 1∙ 
r
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For cases where the spin function is a product of single particle spin functions such 

as %hf, Ut is zero for permutations that interchange a and β spin functions, and 

hence, the energy expression can be further simplified as

En,a = (A4)
ta tb

where ta are permutations of the coordinates {1,2,..., A}, Tβ are permutations of 

the coordinates {A + 1, A + 2,..., N}, and

UtλUtb ζτχζτΒ{'Χ.Ν^Α\τ’Α'ΓΒΧΝ,Αβ — ζτΑζτΒ>

Single determinant wavefunctions are invariant to separate linear transformations 

of the α-spin and ∕3-spin orbitals (followed by renormalization), e.g.,

Â [yj1(l) ∙ ∙ ∙ φi{i) ∙ ∙ ∙ 9?Xj) ∙ ∙ ∙ φΝ{N) xn,a] =

Â [⅛Ι(1) * ∙ ∙ [^i(i) + ⅛j(i)] “ ’ * ⅛jXj) ∙ ∙ ∙ Ψn(N) xn,a} (A5)

for i < j ≤ A or for A + 1 ≤ i < j. Hence, wavefunctions written in terms 

of delocalized canonical orbitals {y><} have equivalent forms in terms of localized 

orbitals {<fo}.

The HF and UHF wavefunctions written in terms of the {⅞si} lead to the same 

energy expression

En,a = E⅛ore + ∑ hii + ∑ Jij - ∑ Kij - ∑ Kij (A6)
s=l i>j i>j i>j>A

hij = Ml)∣h(l)∣⅛J,∙(l))

⅞ = <⅝5i(⅝(2)∣⅛i(l)⅜>i∙(2))
∏a

Kn = (a(⅝(2)I⅛(iM2))
^12

where ⅛j∙ is the “one-electron” integral, and J⅛∙ and JΓ⅛∙ are the two-electron coulomb 

and exchange integrals, respectively.
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Appendix B. The Generalized Ising Energy Ex­

pression

Here we derive the generalized Ising energy expression providing an accurate fit of 

the UHF magnon spectrum for each of the Cui0, Agβ, Ags, Agi0, Au10, Liβ, Liio, 

Li14, and Na10 ring clusters. The generalized Ising energy expression is expected 

to be useful for any system where a range of magnetizations can be described by 

a single set of singly-occupied orbitals {≠,∙}. Hence, the Mjf ring clusters are ideal 

cases since the Hartree orbitals11 {φi} optimized for low-spin (μ = 0, Figure 2a) are 

very similar to those optimized for high-spin (μ = 1, Figure 2b).

1. Two Electrons

For a system having two valence electrons (N = 2) such as the Cu‡, Ag‡, Au‡, Li†, 

and Na† linear chain clusters, the UHF wavefunctions

= Λ(≠I≠>X≈≈)] = (≠1≠1 - ⅛⅛)(αa)∕√2 - 2¾

= ∙i[(≠ι⅛)(°0)! = (≠ιA)(<⅛3) - (<⅛≠l)(∕⅛)

and the generalized valence bond (GVB) wavefunctions

= A[(ΦM(aβ + ∕3α)] = (φιφ2 - ΦM(aβ + ∕3α)∕√2 - 2⅞

Φjsfo = Λ[(φM(aβ - βa)] = (φ1φ2 + φM(aβ - ∕3α)∕√2 +2¾

can all be described fairly accurately with the same product of two overlapping 

valence orbitals
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For each of the Cu2 , Ag‡, Au†, Li†, and Na‡ linear chain clusters, φ± and φ2 are 

localized at the left and right bond midpoints, respectively (see Figure lb), and the 

optimum shapes of φι and φ3 do not depend crucially on the spin function, χ (as 

shown quantitatively in Appendix C, Table 5).

These wavefunctions all lead to the energy expression27

E2

ecl

τpGORE I ejC,JD I ^12>Tχ2
1 ÷ ^12<⅞

— Ec°re = ⅛ιχ + h22 ÷ Jl2

(⅛i⅛∣S∣⅛≠i> - S⅞Ucoω - SfjEci 

2Si,kii + Ktj - S⅛Eci

(BI)

(B2)

where Ecl is the electronic energy of the classical (Hartree product) wavefunction,27 

Uij is the coefficient for the exchange of orbitals i and j and is the only spin-dependent 

term (Uι3 = —1, 0, —1, and +1 for Φ^f, Φ^f, Φ2(s=ι> an^ Φ2^s=0> respectively), 

and Jij is the valence bond exchange term27 (hij, Jij, and have the same defini­

tions as in Appendix A.3 except that the {φi} are used in place of the {<p<}).

A singlet ground state results if ,7i3 is negative, occurring for nearly all cases 

where 512 ≠ 0 (as in bonding). If 5« = 0, then J^13 = Kr2 is positive, leading 

to a triplet ground state. [These conditions axe consistent with Hund’s rule, which 

states that the lowest energy state for a configuration containing orthogonal (non­

overlapping) singly-occupied orbitals is the state of highest spin multiplicity (e.g., for 

the la32a22p2 carbon atom, the lowest energy state is triplet).] Note that for S{j ≠ 0 

the valence bond exchange term ⅛7ij- is not equal to the two-electron exchange integral 

Kij. Also, for «Su = 1 (φι = φ2, K∖2 = J12), we obtain Φ^5=0 = Φ2^Ff = Φ^f and 

E3 = E*f = E%l for all ¼2.
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2. Mn Ring Clusters

The Φ^^κ for the various magnetizations (μ) of the Mχ ring clusters can all be 

described fairly accurately with the same spatial configuration

φ = ≠χ≠2≠3 '∙'Φn (B3)

but with the one-electron spin functions flipped from a to β as μ is decreased, as 

follows (for Λίχο; also see Figure 5).

Xιo,ιo = <*1° v (B4)

Xιo,9 = a9β 

Xιo,s = (α4∕3)(α4∕3)

Xxo,r = (α=W*W<*3∕3)

Xιo,β = (α2∕3)(α∕3)(α2∕3)(α∕3)

Xιo,s = (α^)5

Hence, except for high-spin (A = Ν'), UHF leads to a spin density wave.

In terms of the {≠*}, the α-spin orbitals and the ∕3-spin orbitals of Φ^f are

configured in such a manner that ∣A — B∖ = μN nearest-neighbor exchange interac­

tions are a-a (or β-β∙, Uiti+i = —1, antibonding) and N — ∣A — B∖ nearest-neighbor 

exchange interactions are a-β (t⅞,i+χ = 0, nonbonding).

Applying the general energy expression (A3) of Appendix A.3 to (B3, B4) with 

the assumptions that (i) non-nèarest neighbor overlap and exchange integrals are 

zero, e.g.,

a¾,*±ι ∙⅜,*÷ι ≈ θ’ lil ≥ 2

*7i,i±X 3i,i±S ≈ θj ∣J∣ ≥ 2
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and (it) the φi are all equivalent, e.g.,

Φj — }φi 

»7i,«±i = J7ia> i = 1> 2,..., TV 

<⅜,i±ι = ¾ι i = ls2,..., TV

where perfoms a rotation of 0 = 2π,∕TV about the Cjv rotational symmetry axis, 

leads to the approximate energy expression

F _ vCORE , rCl μTVJi2[l + 72] ,-c,cλEn,a - E + En -1^5ιy1 + ^ (B5)

E%l = (Φ∣7f∣Φ)-Eσo^ = ∑hii + ∑J⅛∙
>=1 i≠3

N/2—1
K ≈ ∑ O[μi(N - 2i)iS12*] (B6)

»=1

where 72 represents the approximate dependence of the higher order terms.

Since the exchange operator

r⅛∙ χ(l,2,„..,i,...,j,...,TV) = χ(l,2,... ,j,... ,i,..., TV)

is equivalent to the spin operator 1/2 + 2s↑ ∙ J},28 Equation (B5) leads to a general­

ization of the nearest-neighbor Ising model (IM)ib

. ¾ = ^°^ + ^-<7∑l∕2 + 2siisii+1 

i=l

where the sxi is the z-component of ¾ = mai = ±1/2 for UHF).

The untruncated energy expression Equation (B5) is not useful for large TV be­

cause of the importance of the higher order terms (B6). In addition, J∏, as defined 

by Equation (B2) is not a useful quantity for large TV, e.g.,

Jim Ji2 = Jim -S{2E^l = +∞.
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Hence, we have employed the following truncations of Equation (B5) for fitting 

UHF results for the various Mw ring clusters:

_ jgCORE + Ecl - μNJ
πGIMl _ ∏CORE I pCL _ pN J 

n'λ 1 - μNS2
^GIM2 _ βCORE + ECL - μNJ{l + μNS2)

where Ecl, S and J^ (without subscripts) refer to “effective” values of the classi­

cal energy, nearest-neighbor overlap integral, and nearest-neighbor exchange energy, 

respectively, and are assumed to have values that are independent of μ and include 

relaxation effects. Eim (Ising model) is obtained from (B5) by taking S = 0. The 

generalized Ising models (GIM) result from 5 ≠ 0. Egimi is obtained by truncating 

(B5) (taking 72 = 0; Egimi is “exact” for N = 2), and Egim2 is a truncated Taylor’s 

expansion of (B5) (for 5 = 0, Eim = Egimi = Egim2}.

Appendix C. UHF Results for Linear M‡ Clusters

Here we present results for the Cu†, Ag†, Au‡, Li‡, and Na† linear chain clusters, 

since (i) they are rather simple models of the respective infinite linear chains — in 

each case the localized orbitals for linear Mf (Figure lb) and for Mw (Figures 2a-b) 

are remarkably similar — and (it) they each contain two valence electrons, hence 

the higher order terms (72) in the general energy expression (B5) are avoided; see 

Equation (Bl).

For each of these M% linear chain clusters, Table 5 presents the overlap of adjacent 

localized orbitals (5n) and the magnon dispersion energy

-j-¾ __ pUSFτ, ~ ⅛=X UHF
2,μ=0- E
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(i.e., the “singlet-triplet gap”).

In order to evaluate the usefulness of Equation (Bl) for linear M‡ , we compare the 

fully self-consistent UHF values of 2? (where valence orbitals are optimized separately 

for each state) with the “frozen orbital” UHF magnon dispersion energies

^frozen _
1 ~ <¾

(where the localized valence orbitals optimized for μ = 0 are used to describe the 

μ, = 1 state). The self-consistent 2? values are smaller than the frozen orbital 2? 

values by only 5 - 11%; hence, both magnetizations can be described fairly well 

using a single set of localized orbitals.

Figure 21 shows that the values of Ί) and <S12 for M‡ follow the same overall 

trend (Cu > Au > Ag > Na > Li) as the values of 27/10 and <Sι3 for M10 (with 

one exception — 2? for Au‡ and Ag‡ are reversed). In order to compare values 

of 2? for linear M‡ and for the Mχ ring, we divide each value by the number of 

nearest-neighbor exchange interactions (one for M‡ and N for

The values 2? and 5ι2 for M‡ are somewhat smaller than the respective values 

27/10 and 512 for Λfιo∙ This is because (t) 2? and <S12 both decrease as the distance 

between adjacent orbitals increases, and (it) the effective distance between adjacent 

orbitals is larger for Μ$ than for the Λfjv ring (for constant a). For M$ , the orbitals 

are not centered at the exact bond midpoints but are polarized somewhat away 

from one another (see Figure 2b); hence, for M$ the effective distance between 

adjacent orbitals is somewhat larger than o. However, for the Mjf ring, the effective 

distance between adjacent orbitals is somewhat smaller than α since the orbitals are 

centered at the bond midpoints and the distance between adjacent bond midpoints 

[Rbm = αcos(π∕JV)] is somewhat smaller than a for finite N. Hence, for the Mn
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ring, both Ό/Ν and «S« decrease somewhat with increasing N (for constant a; see 

Table 2).

Appendix D. Ionic Character of HF wavefunctions

For magnetizations 0 ≤ μ < 1, restricted Hartree-Fock (HF) leads to incorrect results 

such as (t) a charge density wave and Peierls instability for each of the Aga, Liιo, and 

Li1⅛ μ = 0 (low-spin) symmetric ring clusters,10’11’12 (it) a charge density wave and a 

negative atomization energy for the Na10 μ = 0 ring cluster,10 {iii} charge and spin 

density waves for all intermediate magnetizations (0 < μ < 1) of Cuι0, Agβ, Ag8, 

Agιos Auχo, Lie, Liιo, Liu, and Na1o (see Section ILE), and (in) ground states for 

Ag8, Naιo, Lie, Liιo, and Liu having 0.25, 0.6, 1.0, 1.0, and 1.0 unpaired electrons 

per atom, respectively (see Table 1 and Figures 8-10).

These problems indicate a fundamental flaw in HF for these systems, and that flaw 

is the double occupation of valence orbitals for describing magnetizations 0 ≤ μ < 1. 

To elucidate problems with HF, we expand the HF wavefunctions in terms of the 

localized Wannier orbitals {ωj∙}.lδ,11

The HF μ = 1 (high-spin) wavefunction can be described by a single covalent 

configuration in terms of the {ωj∙},

ωι(↑ )ωa(↑ )ω3(↑ )ω4 ( ↑)ω5 ( ↑ )ωβ(↑ )ω7(↑ )ω8(↑ )ω9(↑ )ω10(↑ )

(see Section II.A). For 0 ≤ μ < 1, doubly-occupied valence orbitals present in the 

HF wavefunction lead to a mixture of covalent configurations (having each ωj singly- 

occupied) and ionic configurations11 — configurations containing doubly-occupied 

and empty ωj∙ such as

u⅛(↑J.)ω2( )ω3(T)ω4( J,)ω5(↑)ωβ(↑)ω7(↑)ω8( J,)ω9(↑)ω10(↑)
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where ωχ is doubly occupied and ω2 is empty (for each neutral ionic configuration, 

the number of doubly-occupied orbitals and holes is equal).

For magnetization μ, HF has B = 7V(1 — μ)∕2 doubly-occupied valence canonical 

orbitals, leading to configurations (in terms of {ωj∙}) having 0 ≤ I ≤ B doubly- 

occupied orbitals. The distributions of covalent and ionic configurations depend on 

the orbital symmetry restriction, and are given in Table 6 for all allowed magnetiza­

tions of Mn (for even values oi N < 10).

For 0 < μ < 1, allowing the valence orbitals to localize reduces the average num­

ber of doubly-occupied ωj per configuration ((I); see Table 6) leading to a lower total 

energy even though this results in charge and spin density waves (orbital symmetry 

breaking).

1. HF Without Symmetry Restrictions

The HF wavefunctions optimized without orbital symmetry restrictions lead to charge 

density waves (broken symmetry orbitals) for all intermediate magnetizations 0 < 

μ < 1 of the Age, Aga, Cu1o, Agio, Auχo, Lie, Li1o, Liχ4, and Naio ring clusters, and 

also for μ = 0 states of Ag8, Liχ0, Liχ4, and Nai0 (see Table 4 and Figures 11-18).

The HF wavefunctions containing charge density waves [labelled can

be written in terms of localized orthogonal (Wannier-like) orbitals {u>i} by perform­

ing separate orthogonal localizations11 of the singly-occupied and doubly-occupied 

canonical orbitals. In terms of the {ω<}, the HF(C*8) wavefunctions for the various 

magnetizations of M1q are

— A [(ωι+2ω3ω4Wε<*⅛ω7ω8ω9u⅛oωι-ι-⅛)(<x0∕3)]

= A [(wl+2We+7W3U)4W5a;8U>9WioU?x+2U;e4.r)(a8/32)]
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— A [(ωl+2W4+sω8+9(4∕3ωβω7(√10ω1+2ω4+5ω8+9)(α7∕33)]

= Â [(ωl+2ω3+4ωβ+rW8+9<^5^10<^l+2ω3+4ωβ+τU>8+9)(αβ∕34)]

= ≈^∙ [(ωl+2k⅛+4⅛⅛+β⅛>7+8<*,9+lθωi+2ω3+4k⅛+βωT+8ω9+lθ)(i*5∕3s)]

where

ωi ± ωj≡ -7r
(^i±3ωi±3 =

(ωiωi + ωj∙ω,∙) ± (ωiωj + ωjωi^)

Hence, for the doubly-occupied orbitals break symmetry in such a man­

ner that (t) each doubly-occupied canonical orbital leads to 50% ionic and 50% 

covalent local character, and (ti) each ionic configuration has the property that each 

doubly-occupied orbital is adjacent to at least one hole.

For expanding the B doubly-occupied orbitals in terms of the {ωt∙}

results in 22b configurations all of which survive antisymmetrization. The number 

of configurations having I doubly-occupied ω< is

raj =œ

and the average number of doubly-occupied orbitals per configuration is

m = B = JV(1 - μ)
' ' 2 4

(values of raj and (∕) are given in Table 6 for B ≤ 5).

2. Djfh symmetry-restricted HF

For Mw, the Djffl symmetry restricted HF wavefunctions are composed of complex 

Bloch orbitals (2),ιτ leading always to fully symmetrical charge densities.10 For the
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various magnetizations of Mio, the HF(Pι0⅛) wavefunctions are as follows.

φwTlβi' = [(≠0≠X≠-l≠2≠-2≠3≠-3≠4≠-4≠s)(α1°)]
Φwfβiwk, = ∙4 [(≠O≠l≠-l≠2≠-2≠3≠-3≠4≠-4≠θ)(α9∕3)]

Φ5^(ί>10&) = [(≠0≠l≠-l≠2≠-2≠3≠-3≠4≠0≠l)(α8∕3a)]

^WJ(£>lOk) = Â [(≠0≠l≠→≠2≠-2≠3≠-3≠0^1≠-l)(ατβ3)]

*W3 Dl°&) = [(≠0≠l≠-l≠2≠-2≠3≠0≠l≠-l≠2)(αβ∕34)]

^wî(2?l0fe) = Â [(≠O≠l≠-l≠2≠-2≠O≠l≠-lV,2≠-2)(α5∕3δ)] .

For Φ∕^⅛'°xk∖ each Bloch orbital ≠m contains equal contributions from all N 

Wannier orbitals {tv,·}; hence, expanding each ψm in terms of the {tv,∙} results in Nn 

configurations of which Nl survive antisymmetrization — configurations where 

two electrons of the same spin occupy the same orbital such as

(<v1qj) ∙ ∙ " (tui∙α) ∙ ∙ ∙ (ωj∙α) ∙ ∙ ∙ (ωjy∙α)

are deleted by the antisymmetrizer. The number of configurations having I doubly- 

occupied <j⅛ is

”'=(/) (∕)λγ'
and the average number of doubly-occupied orbitals per configuration is

NB-Ba = ΛΓ(1 - μa)
' ' N 4

(values of n∕ and (I) are given in Table 6 for even values of N ≤ 10).

In comparison to HF with no symmetry restrictions, imposing full (D^h) orbital

symmetry restrictions results in a substantial increase of (!) for 0 < μ < 1, and, 

in addition, the orientations of the doubly-occupied orbitals and holes are no longer 

favorably correlated.
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Appendix E. HF States with a Single Reversed 

Spin

In this appendix, we analyse the HF states having (TV — 1) up-spin electrons and one 

down-spin electron (A = N — 1; B = 1). The HF valence wavefunctions for these 

states contain [N — 2) singly-occupied orbitals and one doubly-occupied orbital. 

Allowing the valence orbitals to localize reduces the amount of ionic character [vide 

infra) leading to a lower total energy even though this results in a charge density 

wave (orbital symmetry breaking).

1. The Wavefunctions

The HF wavefunctions for the B = 1 (A = 9) state of Mw can be written as follows.

— A [(^l+2ω3W4ωεω8<^7t^8ω9ω10<^l+2)(^i8∕3)J (El)

= [(ωι+β^2<^3ω4ω5W7<∙⅜W9ωιoωι+β)(<≈8∕3)] (E2)

φSz,10kj = «ί [(≠O≠l≠-l≠2≠-2≠3≠-3≠4≠-4≠θ)(α9∕3)] (E3)

Wavefunctions and each involve a doubly-occupied orbital spread

out over two bond midpoints, leading to (J) = 0.5 (50% ionic character and 50% 

covalent character; see Appendix D).

Wavefunction obtained from Φχo4oβl°k^ (^) by removing the electron

from the highest energy band orbital (≠5), reversing its spin, and placing it into the 

lowest energy band orbital (≠o)≈ Expanding the product of the first nine orbitals of 

⅛ terms of the {ωj∙} results in a total of 109 configurations, of which 101

(3,628,800) survive antisymmetrization. Each of these 10! configurations involves
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nine singly-occupied u)j and one hole, thus multiplying by ψ0β results in (∕) = 0.9 

(90% ionic configurations and 10% covalent configurations, all surviving Λ).

2. Energy Analysis for M1q

Here, we analyse the energetic effects of the ionic configurations for Afχo, using the 

high-spin {α⅛} to describe both the high-spin (B = 0, A = 10) and the next-highest- 

spin (B = 1, A = 9) HF states.

The energy of the high-spin state (5) is

where is the one-electron integral, and Jt"∙ and are the two-electron coulomb 

and exchange integrals, respectively (⅛-, J1", and JΓt" have the same definitions as 

in Appendix A.3 except that the integrals are over the {cvj}; values are tabulated in 

Tables 7-8 for the various ring clusters). Because of the cyclical nature of the {ωj∙}, 

the energy expression can be simplified as

io
⅛fω = 10ΛT1 + 5∑¾-¾

j=a
10

≈ Wι + 5∑jii-lθ¾
j=2

where non-nearest neighbor exchange integrals are neglected (for Cu10, Agio, Auι0, 

Li10, and Na10, 0.021 ≤ K⅛∕K⅛ ≤ 0.134; see Table 8).

For each of the B = 1 states, the ionic configurations stabilize the total one- 

electron energy (relative to that of the B = 0 state) as follows.

⅛5i,σ', - ¾" = 2⅛

⅛"*<‰> _ ⅝"J = 2⅛
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j-,ONE(Diq∣1,) πONE 

-c,10,9 li10,10 (≠0∣⅛∣≠0> - (≠5∣⅛∣≠δ)

4∕⅛ + 4â“4 + 2â“6

Since the relation ∣Λ,"2∣ ∣h"4∣ > |h“e| holds true for all cases that we considered

(see Table 7), the one-electron contributions to the total energy strongly favor the 

fully symmetrical state (-Dioa) over the charge density wave states (C^ or Csa).

However, ionic configurations destabilize the total two-electron energy (relative 

to that of the B = 0 state). The total energy of a covalent B = 1 configuration 

is higher than the total energy of the B = 0 configuration by two nearest-neighbor 

exchange integrals
∏COV f 

-cιo,9 - 10,10 2¾.

The total energy of an ionic B = 1 configuration is

πIONIC E∣ ~ n τs∙u I TU TU-fiz10,9 - -βΙ0,10 ~ ^Λιa + √n - J,d

where k and I denote the doubly-occupied and empty orbitals, respectively.

Since the HF wavefunctions in terms of the {ωj∙} each contain more than one

configuration, the resultant energy expressions each contain cross terms. The cross 

terms between the covalent and ionic configurations lead to the stabilization of the 

total one-electron energy, as discussed above. Two-electron contributions in the en­

ergy expression resulting from such cross terms are generally small and are neglected 

for the purpose of this appendix.

The total two-electron energies for the various B = 1 HF states can be estimated 

by

E™ - ⅛S ≈ 2Λ¾ + W [∕ii - =‰>]
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e2(-R-IONIc} — ^12 fθr

e2(^∙IONIc} = *^lβ ^θr ^,2fc
1 10

e2(¾OWiσ) = Q∑,^li f°r ∙^10⅛
y i=a

where e is the fundamental electronic charge (e = 1 in atomic units) and (Rjonic) 

the reciprocal distance between the doubly-occupied Wannier orbital and the empty 

Wannier orbital (averaged over all ionic configurations). J"1 is related to the ioniza­

tion potential (IP) and electron affinity (EA) associated with ω1, e.g.,

= IP- EA,

and e%(RιoNic) results from the effective coulombic attraction between the doubly- 

occupied Wannier orbital and the empty Wannier orbital.

3« Approximate Energy Expression for Mχ

The analysis for Λf1o is generalized as follows. For Λfjy, the HF B = 1 (A = N — 1)

state leads to the energy expression

⅛, - E⅝ ≈ Λ>% + M¾ + (I) [jχ - (⅛σ)] (E4)

where
/12 — 2
(!) = 0.5

(Rjonic) ~ ¾ ≈ a~i

fl2 — 0 

(I) = 0.5

> for Cs

, for C2h
(R-IONIc) ~ ^in+i ≈ α 1 sin (π∕I^) 

(n = N∕2)
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= 4∕l2

= 1-N-ι

(R-IONIc) — ft ∑ *^1*
i=2

-1 ιr n~1 1 ► for DNh.

N

(Æ-1) yN sin(iτr∕W)
2α~1 1 2N

(lv^I)lnV

lim {R10nic} ~ θ
N→oo

Hence, in the limit as N approaches infinity, a charge density wave (C,a) occurs if

4∣¾l<Λω1 + Λω2.

Hence, a charge density wave occurs when the band width (S == 4∣h"2∣) is smaller than 

the sum of (i) the difference between the ionization potential and electron affinity 

associated with a localized Wannier orbital (Jn = IP — EÄ), and (ii) the coulomb 

repulsion between adjacent localized Wannier orbitals.

4c Failure of Simple Energy Band Theory

The assumption of simple energy band theory [or molecular orbital (MO) theory, 

both of which ignore electron-electron repulsions] is that the difference in total energy 

between two states can be obtained by summing up the one-electron energy levels 

(weighted by occupation) for each of the two states and taking the difference. Hence, 

for Mio, the difference in total energy between the B = 0 (A = 10, high-spin) and 

B = 1 (A = 9, next-highest-spin) HF(J9ιoh) states is

¾S - <?. = W⅛∣S∣≠o) - (≠S l⅛l⅜> ≈ 4A'. (E5)

However, the HF results — including all the one-electron and two-electron con­

tributions to the total energy (α⅛ initio) — are in serious disagreement with Equa-
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tion (E5). Thus, the values of — B^o (—0.63, +0.13, —1.11, +2.33, and

+1.15 eV for Cu10, Ag10, Au10, Li10, and Na10, respectively; see Table 1) are 4.4-5.7 

eV higher than the respective values of (values of 4A"2 are —6.31, —4.95,

—5.49, —2.84, and —3.06 eV for Cu10, Agχo, Au10, Liχo, and Na10, respectively; see 

Table 7).

5. Detailed Results for Cuχo and Li1o

First we present the total energies of the three B = 1 frozen-orbital wavefunctions 

(i.e., energies for B = 1 calculated with the B = 0 orbitals), and then we describe 

the relaxation effects. In the remainder of this appendix, we focus on Cuχo and Li10 ; 

results for the other ring clusters are very similar. Detailed results are given in Table 

9 for Cu10 and in Table 10 for Liχ0.

For the three B = 1 frozen-orbital states [C3 (El), C,2⅛ (E2), and D10fc (E3)], 

Equation (E4) is accurate to 0.63 eV for Cuχ<j and to 0.13 eV for Liχo (in comparison 

to the frozen-orbital total energy; see Tables 9-10). The calculated (Rionic} values 

are in reasonable agreement with expectation based on simple geometrical arguments 

— (1.000 a)”1, (3.236 a)-1, and (1.885 a)-1 for C&, C,2⅛, and Dχoh, respectively, based 

on the nearest-neighbor distance, the diameter of the M1q ring, and the average 

reciprocal distance between a given atom and the remaining atoms, respectively.

In comparison to the B = 1 (Dχo⅛) frozen state, the B = 1 (C'a) and 5 = 1 

(C,2fc) frozen states lead to a stabilization of the two-electron energy (5tifo) at 

the expense of destabilizing the one-electron energy (Eone}. This is due to the 

reduction of ionic character in the wavefunction afforded by the localization of the 

doubly-occupied orbital (leading to a charge density wave). Such orbital localization 

is most favorable for cases having narrow band widths (for Af10, the band widths
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B = 4∣7⅛j∣ follow the trend Cu > Au > Ag Na > Li; see Table 7).

Relaxation effects (optimizing the B = 1 orbitals within the given symmetry 

restrictions) are as follows.

(*) The doubly-occupied orbital can partially delocalize, stabilizing Eone at the 

expense of destabilizing Eτwo [this cannot occur for the B = 1 (-Dχo⅛) state (E3) 

since ψo is fully delocalized]. Cases where this is the primary effect are the B = 1 

(C,2fc) and the B = 1 (C⅛) states for Cu10.

(it) The doubly-occupied orbital can become more diffuse, stabilizing Eτwo at 

the expense of destabilizing Eone. Cases where this is the primary effect are the 

B = 1 (-Dχo⅛) state for both Cuχo and Liχo, and the B = 1 (C,s) state for Liχo∙

The lowest energy B = 1 relaxed state — for both Cuχo and Li1o — is the B = 1 

(C'a) state, leading to a charge density wave. The B = 1 (C,a) state is lower in total 

energy than the B = 1 (Dχoh) state by 0.98 eV for Cu1o and by 2.01 eV for Li10. The 

B = 1 (J9ioλ) state leads to a fully symmetrical charge density.

For the Li1o B = 1 (C,2⅛) state, both relaxation effects play a major role, stabi­

lizing both Eone and Eτwo.

For the Cuχo B = 1 (C,2⅛) state, relaxation leads to a fully delocalized doubly- 

occupied orbital; hence, for Cu1o the B = 1 (C,2h) and B = 1 (Pχo⅛) fully relaxed 

states are equivalent (neither leads to a charge density wave).

Appendix F. Detailed Comparison of the UHF and 

HF Energies

Here we compare the total energy (Etotal'), the one-electron energy (Eone}, and 

the two-electron energy (Eτwo) for UHF, HF(C,5), HF(C,2⅛), and HF(P^∕,), as a
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function of magnetization (μ). Results are given in Table 11 for the Nai0 ring cluster 

(results for the other clusters are fairly similar).

For μ = 1 (high-spin), UHF, HF(C3), HF(C,2h), and HF(Pjv⅛) lead to identical 

results.

For μ < 1, each of the HF wavefunctions contains doubly-occupied valence or­

bitals, leading to a forced mixture of covalent and ionic configurations (in terms of the 

03j∖ see Appendices D-E). The UHF wavefunction does not contain doubly-occupied 

valence orbitals and hence the weights of the ionic configurations are determined 

variationally [within the restricted (single-determinant) form of Φςz∙h'∙f].

For each allowed magnetization μ < 1, Eone follows the trend UHF HF(C,js) 

> HF(Pjvτι), whereas Eτwo follows the trend UHF <C HF(C⅛) < HF(Djvh). Since 

ionic configurations stabilize the total one-electron energy but destabilize the total 

two-electron energy, the total amount of ionic character in the wavefunction follows 

the trend UHF <C HF(C,a) < HF(27jy⅛). The net result is that the UHF total energy 

is much lower than the HF(C,a) total energy, and the HF(C,s) total energy is lower 

than the HF(P∕v⅛) total energy (for all magnetizations other than μ = 1).

Appendix G. Core-Excited States of Au10

Since this appendix is concerned with core-excited states, we optimize both the core 

orbitals and the valence orbitals self-consistently (no frozen core approximation).

1. One-Electron Energy Bands

Figures 22-23 show the energy band structure of the Aui0 ring, as defined by the 

orbital energies (K00pmans5 theorem)29 for the lowest energy μ = 1 state (3), where
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the valence band orbitals are each occupied with an up-spin electron and the 5d band 

orbitals are each doubly occupied.

We label the 5d bands and band orbitals according to the symmetry of the or­

bitals, as follows.

(t) Symmetry with respect to the plane of the ring (single-prime for symmetric; 

double-prime for antisymmetric).

(ii) Local symmetry with respect to rotation about each bond axis [using the 

standard (Pθofc) notation — σ, π,, and 5]. For an Mχ ring cluster with finite N, 

this is not an exact symmetry due to the curvature of the ring. However, we find 

for Auιo that the 5d band orbitals (having Z>ιo⅛ symmetry) can be classified as σ, 

7Γ, or S rather easily by inspection (orbitals having wave vectors near k = π,∕2α 

are somewhat harder to classify, since the orbital energies all cross near k = τι∣2a, 

resulting in rather strong orbital mixing effects — these mixing effects vanish in 

the limit as N approaches infinity, since rotation about the bond axis is an exact 

symmetry in the limit as N approaches infinity).

Hence, the 5d energy levels split into five bands — dσ'i dπ', dπ,,, dS,, and dδ". 

In the limit as N approaches infinity, the two dπ bands become degenerate, and the 

two dS bands become degenerate. For finite N, the nondegeneracy of the two dπ 

bands is a sensitive indication of the ring curvature (see Figure 23).

For each band, the band widths (B) and mean values of the orbital energies are 

listed in Table 12. The trend of the band widths (σ > 7Γ > 5) is exactly that expected 

by the orbital overlaps (<r > ττ > i).
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2. HF States Involving 5d Excitations

We solved for 5d-excited HF μ = 1 states of Au10 with (i) P10⅛ orbital symmetry 

restrictions and (it) C,2υ orbital symmetry restrictions (with the C2υ symmetry axis 

passing through two opposite atoms of the Au10 ring).

The one-electron energy levels (Figures 22-23) suggest that the lowest energy 5<Z- 

excited μ = 1 state of Auχo involves promoting an electron from the highest energy 

5d orbital (5dσj, k = 7r∕α) to the lowest energy valence orbital (fc = 0). This HF 

(Pχoh) μ = 1 state is 6.01 eV higher in energy than the lowest energy μ = 1 state

(3). This illustrates a weakness of the HF Koopmans’ theorem orbital energies, since 

the 5d - valence indirect gap obtained from Figure 22 is only 0.78 eV.

At the HF level, the lowest energy 5d-excited μ = 1 state of Au10 involves a 

localized “core hole” — a singly-occupied 5d orbital localized at a single atom — 

inducing a local 5d96∙s2 configuration at that atom (cancelling the +1 charge left by 

the core hole).

We constructed starting-guess orbitals for the 5d-excited μ = 1 state having 

a singly-occupied dσ, orbital localized at a single atom. However, solving for the 

orbitals self-consistently (with no symmetry restrictions) resulted in convergence to 

the lowest energy μ = 1 state (3).

Using C2v orbital symmetry restrictions, we optimized orbitals for a similar 5d- 

excited μ = 1 state having a 5dπ'l hole localized at one atom. The total energy of 

this state is just 2.46 eV higher than that of (3).

The various HF μ = 1 states each having one localized 5dσ core hole (<τ, 7r, S') 

should all be within approximately 0.19 eV in energy from one another (based on 

the average band energies given in Table 12).
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For comparison, the 5dlθ6∙s1 - 5d96s2 state splitting for the isolated Au atom 

(using the same Au basis set as for the Auχ0 calculation) is 3.11 eV at the HF level. 

A much more flexible basis set (and the same ab initio relativistic effective potential) 

leads to a 5d106s1 - 5dβ6s2 atomic state splitting of 2.14 eV at the HF level.25 The 

experimental 5d106s1 - 5d96s2 atomic energy splitting is 1.74 eV.30

Our HF calculations indicate that the 5d core hole of μ = 1 Au∏> is stabilized by 

0.65 eV with respect to that of the Au atom.

Appendix H. Results for Hydrogen Ring Clusters

Often, ideas concerning the electronic structures of one-dimensional metals have been 

tested with calculations on symmetric ring clusters composed of hydrogen atoms.31,32

In this appendix we present UHF and HF calculations for the He, Hg, Hιo, and 

H20 symmetric ring clusters using Huzinaga’s33 (5s) primitive set of gaussian-type 

orbitals (unsealed) contracted triple-^.10 For each of these Hy rings, we chose a 

lattice constant (α = 1.483 Â) equal to twice the Ha equilibrium bond length.34 For 

Ηχο, we also optimized UHF and HF wavefunctions for many other lattice constants, 

including a = 1.112 Â, a = 1.186 Â, and a = 1.260 Â, equal to factors of 1.5, 1.6, 

and 1.7 times the ¾ equilibrium bond length.34

The topologies of the various wavefunctions for H^ and (M = Cu, Ag, Au, Li, 

and Na) are similar, except that the localized orbitals ({ωj} and {<£/}) are centered 

at the atoms for Hjy as opposed to the bond midpoints for Mχ (see Figure 2).

We find (for UHF and HF) that Hjy ring clusters (at the extended lattice constant 

a = 1.483 Â) can model some aspects of the Mχ ring clusters. However, the Hjv 

results are rather sensitive to the lattice constant.
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1. UHF Results and the Ising Models

Table 13 summarizes the UHF results for each of the H# rings. For Hi0, the magnon 

dispersion (for 1.112 ≤ α ≤ 1.483 Â) is a factor of 2.7 to 7.0 greater than that for Cu10 

(at a = 2.556 Â). Also, for Hιo, the nearest-neighbor overlap (for 1.112 ≤ a ≤ 1.483 

Â) is a factor of 0.93 to 1.30 times that for Cuχ0 (at a = 2.556 Â).

The large magnon dispersion for Hjv results from the large antibonding exchange 

interactions for the μ > 0 states. For Hιo, the μ = 1 state is so strongly antibonding 

that for a ≤ 1.195-Â, UHF leads to a positive orbital energy for the highest occupied 

orbital (τn = 5). Hence, for a ≤ 1.195 Â, the UHF μ = 1 state is unstable with 

respect to ionization (forming μ = 1 H+o + e~). In order to compare UHF results 

for a > 1.195 Â with those for 1.112 ≤ a ≤ 1.195 Â, we optimize the UHF μ = 1 

wavefunction (3) with Pioλ orbital symmetry restrictions (this is no restriction for 

α > 1.195 Â; however, for a < 1.195 Â, the UHF(D10h) μ = 1 state (3) is not the 

lowest energy UHF solution).

Table 14 summarizes the results of fitting the Ising model (IM) and the generalized 

Ising models (GIM1 and GIM2) to the UHF total energies (following the same least- 

squares procedure as for the Mχ rings; see Section II.C.2). The results for the H^∙ 

rings (for 1.112 ≤ a ≤ 1.483 Â) are of similar quality to those for the Mj$ rings (for 

M = Cu, Ag, Au-, Li, and Na; see Table 3). For H/v (as well as for Mpτ, see Tables 3 

and 14), GIM2 gives the best fit to the UHF energies, as shown in Figure 24 for H2o∙

For small enough a, the Ising model is not expected to provide an accurate fit to 

the lowest energy UHF states.

(t) Due to the large antibonding exchange interactions for μ > 0 (especially for 

the higher magnetizations), for small enough a the UHF states involving ls-like
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orbitals become unstable with respect to ionization. For μ = 1 H1o, this occurs for 

a ≤ 1.195 Â, and for μ = 0.8 H1o, this occurs for a ≤ 1.046 Â.

(m') Due to the UHF spin contamination for μ < 1,1° for small enough α, the spin 

polarization vanishes. For μ = 0 H10, this occurs for a ≤ 1.048 Â.

2. HF Results and Symmetry Breaking Effects

Figure 25 presents the magnon spectrum for H10 (at α = 1.483 Â) calculated with the 

various wavefunctions [UHF, HF(C5), HF (C2h), and HF (25χoh)]∙ The results for H10 

at a = 1.483 Â are qualitatively similar to the results for Cu10 at a = 2.556 Â (Figure 

11) ■— the energetic magnitudes of orbital symmetry breaking effects (charge density 

waves, spin density waves, and spin polarization) relative to the magnon dispersion 

(25) are remarkably similar for Hiq at a = 1.483 Â and Cu10 at α = 2.556 Â.

However, for H10, as a decreases, the energetic magnitudes of the orbital sym­

metry breaking effects (relative to 25) decrease rather rapidly. As an example, for 

μ = 0.6, the energetic magnitude of the charge density wave (∣Ebf^∙c^ — EHF(Dl0k)[) 

is 0.1879 25, 0.0747 25, 0.0540 25, and 0.0385 25 for H10 at α = 1.483, 1.260, 1.186, 

and 1.112 Â, respectively (compare to 0.2028 25 for Cu10 at a = 2.556 Â; Table 13 

lists values of 25 for Ηχο). For μ = 0, the energetic magnitude of the spin density 

wave {∖Eubf - Ebf(d^∖) is 0.1759 25, 0.0292 25, 0.0116 25, and 0.0026 25 for H10 

at α = 1.483, 1.260, 1.186, and 1.112 Â, respectively (compare to 0.2310 25 for Cu10 

at ffi = 2.556 Â; for Hχo, the UHF μ = 0 spin density wave vanishes for α ≤ 1.048 Â).
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Table 1. UHF and HF magnon spectra.

A B μ UHF
----------Eμ

HF(Cs)
- Eμ=1 (eV)---------

HF(‰) HF(‰)

Cuio a = 2.556 Â Eμ=l = -•504.28277 Hartree
5 5 0.000 -6.448 -4.959 -4.959 -4.959
6 4 0.200 -5.646 -4.550 -4.550 -4.062
7 3 0.400 -4.709 -4.141 -3.707 -3.707
8 2 0.600 -3.334 -3.025 -3.025 -1.717
9 1 0.800 -1.739 -1.610 -0.631 -0.631

10 0 1.000 0.000 0.000 0.000 0.000
Age a = 2.889 Â Eμ=l = -•224.40832 Hartree

3 3 0.000 -2.981 -2.342 -2.342 -2.342
4 2 0.333 -2.282 -1.736 -1.736 -1.259
5 1 0.667 -1.368 -1.253 -1.101 -1.101
6 0 1.000 0.000 0.000 0.000 0.000

Age a = 2.889 Â Eμ=l = --299.22320 Hartree
4 4 0.000 -3.789 -1.988 -1.988 -1.766
S 3 0.250 -3.151 -2.297 -2.256 -2.256
6 2 0.500 -2.308 -1.820 -1.820 -0.894
7 1 0.750 -1.233 -1.049 -0.391 -0.391
8 0 1.000 0.000 0.000 0.000 0.000

Agio a = 2.889 Â Eμ=l = --374.03507 Hartree
5 5 0.000 -4.661 -2.775 -2.775 ■ -2.775
6 4 0.200 -4.024 -2.616 -2.616 -2.073
7 3 0.400 -3.299 -2.478 -1.891 -1.891
8 2 0.600 -2.315 -1.843 -1.843 -0.440
9 1 0.800 -1.194 -0.985 0.129 0.129

10 0 1.000 0.000 0.000 0.000 0.000
Auio a = 2.884 Â Bμ=l = ~-333.83386 Hartree

5 5 0.000 -6.220 -4.846 -4.846 -4.846
6 4 0.200 -5.501 -4.485 -4.485 -4.066
7 3 0.400 -4.661 -4.176 -3.838 -3.838
8 2 0.600 -3.362 -3.097 -3.097 -2.054
9 1 0.800 -1.857 -1.771 -1.115 -1.115

10 0 1.000 0.000 0.000 0.000 0.000
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Table 1. UHF and HF magnon spectra, continued, a)

A B μ UHF
----------Eμ

HF(Cs)
- ⅛ι (eV) ---------

HF(<72h) HF(‰)

Liβ a = 3.014 Â ¾=ι — ∙-44.63264 Hartree
3 3 0.000 -1.021 0.786 0.786 0.786
4 2 0.333 -0.726 0.520 0.520 1.338
5 1 0.667 -0.380 0.182 0.930 0.930
6 0 1.000 0.000 0.000 0.000 0.000

Liιo a = 3.014 À Eμ=l = ∙-74.40442 Hartree
5 5 0.000 -1.613 2.219 2.279 2.279
6 4 0.200 -1.329 1.627 1.627 2.676
7 3 0.400 -1.032 1.043 2.450 2.575
8 2 0.600 -0.699 0.636 0.636 3.003
9 1 0.800 -0.351 0.311 2.193 2.325

10 0 1.000 0.000 0.000 0.000 0.000
Liι⅛ a = 3.014 Â Eμ=l — ~-104.17273 Hartree

7 7 0.000 -2.230 3.360 3.685 3.685
8 6 0.143 -1.951 2.690 2.690 3.982
9 5 0.286 -1.658 2.025 3.768 3.944

10 4 0.429 -1.363 1.485 1.485 4.386
11 3 0.571 -1.034 1.051 3.234 4.314
12 2 0.714 -0.692 0.683 0.683 4.313
13 1 0.857 -0.346 0.340 2.542 3.061
14 0 1.000 0.000 0.000 0.000 0.000

Na10 a = 3.659 Â Eμ=ι = — 1617.94206 Hartree
5 5 0.000 -2.074 0.431 0.438 0.438
6 4 0.200 -1.746 0.159 0.159 0.818
7 3 0.400 -1.389 -0.128 0.725 0.776
8 2 0.600 -0.960 -0.191 -0.191 1.339
9 1 0.800 -0.489 -0.123 1.108 1.147

10 0 1.000 0.000 0.000 0.000 0.000

α) For μ = 1, the UHF and various HF wavefunctions are identical (see Section Π.Β).
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Table 2. Details of the UHF results. “1

system
a

(Â)
T>∕N

(eV ∕ atom) μ = 0
£12

μ=l average
Sφι

Age 2.889 0.497 0.658 0.862 0.760 0.03427
Ag8 2.889 0.474 0.562 0.680 0.621 0.00956
Agio 2.889 0.466 0.535 0.609 0.572 0.00422
Liβ 3.014 0.170 0.416 0.728 0.572 0.04058
Liιo 3.014 0.161 0.341 0.369 0.355 0.00130
Liw 3.014 0.159 0.326 0.284 0.305 0.00131

Cuιo 2.55β 0.645 0.601 0.682 0.642 0.00631
Agio 2.889 0.466 0.535 0.609 0.572 0.00422
Auιo 2.884 0.622 0.589 0.631 0.610 0.00224
Liιo 3.014 0.161 0.341 0.369 0.355 0.00130
Naιo 3.659 0.207 0.408 0.477 0.442 0.00348

α) 7? is the magnon dispersion, «S12 is the nearest-neighbor overlap integral, and Sφι 
measures the difference between orbitals φ%=0 and φ%=1 (see Section ILC.1).
4) (¾=" + Sj*i=>)∕2
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Table 3. Fits of the Ising and generalized Ising models to

----- Ising------ generalized Ising 1 generalized Ising 2 iθ
SystemL ffi

(Â)
-J
(eV)

5 error
(%)

-3
(eV)

S error
(%)

-3 
■ (eV)

5 error
(%)

Agβ 2.889 0.459 0.000 7.49 0.297 0.259 0.31 0.248 0.407 1.06
Ag8 2.889 0.440 0.000 6.13 0.309 0.209 0.81 0.270 0.307 0.26
Agio 2.889 0.432 0.000 5.78 0.308 0.185 1.01 0.272 0.268 0.57
Liβ 3.014 0.166 0.000 2.85 0.141 0.170 0.32 0.138 0.198 0.22
Liιo 3.014 0.157 0.000 2.11 0.139 0.119 0.38 0.137 0.134 0.32
Liκ 3.014 0.155 0.000 1.98 0.138 0.100 0.33 0.136 0.112 0.28

Cuιo 2.556 0.588 0.000 6.97 0.392 0.199 1.29 0.321 0.319 0.65
Agio 2.889 0.432 0.000 5.78 0.308 0.185 1.01 0.272 0.268 0.57
Auιo 2.884 0.554 0.000 8.09 0.342 0.213 1.05 0.254 0.380 0.59
Liιo 3.014 0.157 0.000 2.11 0.139 0.119 0.38 0.137 0.134 0.32
Naw 3.659 0.198 0.000 3.76 0.159 0.155 0.57 0.151 0.193 0.39

α) J7 and <S are the effective nearest-neighbor exchange and overlap determined by 
least-squares fits [see Section Π,C.2]. The error is ΔErmsI'D, where D is the UHF 
magnon dispersion (see Table 2).
i) For .EGiM2, including .Εζν,ο as a least-squares parameter reduces the listed Δ,Erms 
values by factors of only 1.01 to 1.05.
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Table 4. Charge density wave (CDW)s spin density wave (SDW), and spin polar­

ization (SP) effects.

system
a

(Â) A B μ>

α)
$cdw

(eV)
ECDW{C2h)

(eV)

c)
esdw

(eV)

d)
Esp
(eV)

Cum 2.556 5 5 0.000 0.000 0.000 -1.490 -1.490
6 4 0.200 -0.488 -0.488 -1.584 -1.096
7 3 0.400 -0.434 0.000 -1.001 -0.568
8 2 0.600 -1.308 -1.308 ' -1.618 -0.310
9 1 0.800 -0.980 0.000 -1.108 -0.129

10 0 1.000 0.000 0.000 0.000 0.000
Age 2.889 3 3 0.000 0.000 0.000 -0.638 -0.638

4 2 0.333 -0.478 -0.478 -1.024 -0.546
5 1 0.667 -0.152 0.000 -0.267 -0.115
6 0 1.000 0.000 0.000 0.000 0.000

Aga 2.889 4 4 0.000 -0.222 -0.222 -2.023 -1.801
5 3 0.250 -0.041 0.000 -0.894 -0.854
6 2 0.500 -0.926 -0.926 -1.414 -0.488
7 1 0.750 -0.657 0.000 -0.842 -0.184
8 0 1.000 0.000 0.000 0.000 0.000

Agio 2.889 5 5 0.000 0.000 0.000 -1.885 -1.885
6 4 0.200 -0.543 -0.543 -1.950 -1.407
7 3 0.400 -0.588 0.000 -1.408 -0.821
8 2 0.600 -1.403 -1.403 -1.875 -0.472

■ 9 1 0.800 -1.114 0.000 -1.323 -0.209
10 0 1.000 0.000 0.000 0.000 0.000

An10 2.884 5 5 0.000 0.000 0.000 -1.375 -1.375
6 4 0.200 -0.419 -0.419 -1.435 -1.016
7 3 0.400 -0.338 0.000 -0.823 -0.485
8 2 0.600 -1.043 -1.043 -1.308 -0.265
9 1 0.800 -0.656 0.000 -0.742 -0.086

10 0 1.000 0.000 0.000 0.000 0.000
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Table 4. Charge density wave (CDW)s spin density wave (SDW), and spin polar­

ization (SP) effects, continued.

system
a

(Â) A B μ

α)
ecdw

(eV)

&)
ECDW{C3h)

(eV)

c)
Esdw

(eV)

d)
Esp
(eV)

Lie. 3.014 3 3 0.000 0.000 0.000 -1.808 -1.808
4 2 0.333 -0.819 -0.819 -2.065 -1.246
5' 1 0.667 -0.748 0.000 -1.311 -0.562
6 0 1.000 0.000 0.000 0.000 0.000

Liιo 3.014 5 5 0.000 -0.060 0.000 -3.892 -3.832
6 4 0.200 -1.049 -1.049 -4.005 -2.956
7 3 0.400 -1.532 -0.125 -3.607 -2.075
8 2 0.600 -2.367 -2.367 -3.702 -1.335
9 1 0.800 -2.014 -0.132 -2.676 -0.662

10 0 1.000 0.000 0.000 0.000 0.000
Lii4 3.014 7 7 0.000 -0.325 0.000 -5.915 -5.590

8 6 0.143 -1.292 -1.292 -5.933 -4.641
9 5 0.286 -1.919 -0.176 -5.602 -3.683

10 4 0.429 -2.901 -2.901 -5.750 -2.849
11 3 0.571 -3.263 -1.079 -5.348 -2.085
12 2 0.714 -3.630 -3.630 -5.005 -1.375
13 1 0.857 -2.721 -0.519 -3.407 -0.686
14 0 1.000 0.000 0.000 0.000 0.000

Na10 3.659 5 5 0.000 -0.007 0.000 -2.512 -2.505
6 4 0.200 -0.659 -0.659 -2.564 -1.905
7 3 0.400 -0.904 -0.051 -2.166 -1.262
8 2 0.600 -1.530 -1.530 -2.299 -0.769
9 1 0.800 -1.270 -0.039 -1.635 -0.365

10 0 1.000 0.000 0.000 0.000 0.000

o) Ecdw = Ebf^c^ - ebf(dnk)
6) ecdw(c,i,) _ ebf(c^} _ ebf{dnk∖
c) esdw = eubf _ ebf{dnk)
d) Esp = Eubf - Ebf(cs).
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Table 5. UHF results for selected two-electron systems.

system a
(Â)

,j,σHf α) E2,2 
frozen 
(eV)

-e2,1 &)
— ∙Zl3
(eV)

∙^12 relaxed
(eV)

Sφιc)

Cu‡ 2.556 0.226 0.429 0.277 0.260 0.00948
Ag‡ 2.889 0.154 0.367 0.178 0.166 0.00530
Au‡ 2.884 0.133 0.373 0.154 0.143 0.00648
Li+ 3.014 0.069 0.224 0.073 0.069 0.00016
Na+ 3.659 0.075 0.260 0.080 0.071 0.00173

α) Values calculated with the UHF low-spin canonical orbitals.
&) Energy splitting between the low-spin and high-spin states. The frozen orbital values 
are calculated using a single set of orbitals — the low-spin orbitals — to describe both 
states (see Appendix C). The relaxed orbital values are calculated using the UHF (SCF) 
total energies for both states.
c) sφ1 = ι - (^Γ0∣≠Γ1)<
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Table 6. ïonic character of HF wavefunctions. α)

N A B n0 «2 n3 n4 n5 ' ω

HF(Cλ) ⅛)
5 1 5 10

- n1∕2e -----
10 5 1 2.500

4 1 4 6 4 1 2.000
3 1 3 3 1 1.500
2 1 2 1 1.000
1 1 1 0.500
0 1 0.000

HF(‰)
2 11 1 1

-nι∕Nl---- • 0.500
2 2 0 1 0.000
4 2 2 1 4 1 1.000
4 3 1 1 3 0.750
4 4 0 1 0.000
6 3 3 1 9 9 1 1.500
6 4 2 1 8 6 1.333
6 5 1 1 5 0.833
6 6 0 1 0.000
8 4 4 1 16 36 16 1 2.000
8 5 3 1 15 30 10 1.875
8 6 2 1 12 15 1.500
8 7 1 1 7 0.875
8 8 0 1 0.000

10 5 5 1 25 100 100 25 1 2.500
10 6 4 1 24 90 80 15 2.400
10 7 3 1 21 63 35 2.100
10 8 2 1 16 28 1.600
10 9 1 1 9 0.900
10 10 0 1 0.000

α) n∕ is the number of configurations (in terms of Wannier orbitals) having I doubly 
occupied orbitals. (J) is the average number of doubly occupied orbitals per 
configuration.
b) For HF(Cj), nj and (J) depend only on B.
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Table 7. One-electron integrals over Wannier orbitals.

System a
(Â)

⅛π
(eV)

%
(eV)

%∕^12 )%∕%' ^15∕^12 %∕⅛

Agβ 2.889 -23.702 -1.534 -0.038 0.133
Age 2.889 -27.001 -1.358 -0.108 0.071 -0.037
Agio 2.889 -29.468 -1.237 -0.149 0.064 -0.029 0.022
Liβ 3.014 -22.444 -1.000 0.133 0.105
Li10 3.014 -27.851 -0.710 -0.012 0.014 0.002 0.004
Liχ⅛ 3.014 -31.253 -0.584 -0.058 0.011 -0.001 0.001
C∏ιo 2.556 -32.196 -1.579 -0.147 0.066 -0.031 0.025
Agio 2.889 -29.468 -1.237 -0.149 0.064 -0.029 0.022
An10 2.884 -31.106 -1.372 -0.221 0.109 -0.070 0.051
Liχo 3.014 -27.851 -0.710 -0.012 0.014 0.002 0.004
Naιo 3.659 -23.313 -0.764 -0.156 0.056 -0.022 0.017
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Table 8. Two-electron integrals over Wannier orbitals.

System α
(Â) (eV)

∙%
(eV)

∙%∕∙% Λ"∕∙¾ ∙%∕∙% Λ"s∕Λ"

Age 2.889 7.882 4.513 0.622 0.536
Age 2.889 8.001 4.536 0.587 0.447 0.412
Agio 2.889 8.065 4.549 0.572 0.415 0.351 0.334
Lig 3.014 8.079 4.404 0.615 0.535
Liιo 3.014 8.267 4.399 0.562 0.411 , 0.350 0.333
Lii< 3.014 . 8.325 4.398 0.549 0.385 0.307 0.267
C∏ιo 2.556 8.639 5.004 0.580 0.422 0.358 0.340
Agio 2.889 8.065 4.549 0.572 0.415 0.351 0.334
Au10 2.884 7.995 4.705 0.571 0.410 0.345 0.327
Liιo 3.014 8.267 4.399 0.562 0.411 0.350 0.333
Naιo 3.659 6.783 3.661 0.563 0.409 0.347 0.330

System a
(Â)

J⅞
(eV)

Ä12
(eV)

^X3∕-i⅛ τzw 1JF<tf Ä14/Ä12 ¾∕∙S¾ 2X,ω ! Tfiti 
λ16∕λ-12

Agβ 2.889 7.882 0.159 0.068 0.019
Agβ 2.889 8.001 0.148 0.081 0.013 0.002
Agio 2.889 8.065 0.141 0.088 0.015 0.003 0.001
Liβ 3.014 8.079 0.093 0.032 0.012
Liιo 3.014 8.267 0.069 0.021 0.002 0.000 0.000
Liκ 3.014 8.325 0.061 0.026 0.002 0.000 0.000
Cuιo 2.556 8.639 0.164 0.093 0.017 0.003 0.001
Agio 2.889 8.065 0.141 0.088 0.015 0.003 0.001
Au10 2.884 7.995 0.206 0.134 0.031 0.007 0.004
Liιo 3.014 8.267 0.069 0.021 0.002 0.000 0.000
Naιo 3.659 6.783 0.091 0.076 0.012 0.002 0.001
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Table 11. Detailed Energy Data for Nai0.

A B UHF HF(Cs) HF(C2λ) HF(‰)

5 5 0.0 -2.074

gTOTAL

0.431
- EτμSPi (eV) — 

0.438 0.438
6 4 0.2 -1.746 0.159 0.159 0.818
7 3 0.4 -1.389 -0.128 0.725 0.776
8 2 0.6 -0.960 -0.191 -0.191 1.339
9 1 0.8 -0.489 -0.123 1.108 1.147

10 0 1.0 0.000 0.000 0.000 0.000

5 5 0.0 -4.742

pONE
μ

-7.140
E™E (eV)--------
-7.240 -7.240

6 4 0.2 -4.093 -5.976 -5.976 -6.559
7 3 0.4 -3.348 -4.881 -5.642 -5.987
8 2 0.6 -2.336 -3.354 -3.354 -4.122
9 1 0.8 -1.194 -1.704 -2.097 -2.408

10 0 1.0 0.000 0.000 0.000 0.000

5 5 0.0 2.668

pTWO-uμ
7.571

• ⅛T (eV)-------
7.678 7.678

6 4 0.2 2.347 6.135 6.135 7.377
7 3 0.4 1.959 4.754 6.366 6.763
8 2 0.6 1.376 3.163 3.163 5.461
9 1 0.8 0.705 1.581 3.205 3.554

10 0 1.0 0.000 0.000 0.000 0.000

a) a = 3.659 Â. For μ = 1, the UHF and various HF wavefunctions are identical (see 
Section Π.B). E™?AL = -1617.94206 Hartree; Ecore = -1612.67937 Hartree;

= -8.56735 Hartree; E^r1o = 3.30467 Hartree.



237

Table 12. HF one-electron energy bands for Au1q. o)

symmetry mean energy (eV) band width (S, eV)

dσt 12.98 3.04
dπt 12.90 2.20
dπ,g 12.87 1.76
dSs 12.80 0.47
dδ" 12.79 0.45
(d band, overall) 12.87 3.04
(valence) 8.16 6.82

α) Energy bands based on orbital energies for the lowest energy μ = 1 state of A∏ιo 
(α = 2.884 A).
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Table 13. Details of UHF results for H^ rings. “1

system
a

(A)
τ>∕τv

(eV/atom) μ = 0
*-*12 

μ = 1 average 6)
Sφι

Hβ 1.483 1.630 0.646 0.710 0.678 0.00542
Hg 1.483 1.695 0.599 0.634 0.616 0.00311
Hιo 1.483 1.744 0.594 0.603 0.598 0.00241
Hao 1.483 1.810 0.580 0.549 0.564 0.00272
Hιo 1.483 1.744 0.594 0.603 0.598 0.00241
Ηχο 1.260 3.115 0.749 0.759 0.754 0.00381
Hχo 1.186 3.750 0.800 0.796 0.798 0.00419
Hχo 1.112 4.497 0.849 0.825 0.837 0.00552

α) 2? is the magnon dispersion, is the nearest-neighbor overlap integral, and Sφχ 
measures the difference between orbitals φtf2° and (see Section ∏.C.1). 
⅛)(¾=° + 51V1)∕2
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Table 14. Fits of the Ising and generalized Ising models to Ejffl for Hχ rings.“1

System a
(Â)

-J
{eV)

- Ising - 
S error

(%)

generalized Ising 1 generalized Ising 2 fc)
-J
w

5 error
(%)

-J
(eV)

S error
(%)

Hβ 1.483 1.540 0.000 5.75 1.107 0.231 0.36 1.003 0.323 0.08
h8 1.483 1.583 0.000 6.25 1.116 0.208 1.52 0.969 0.308 0.94
H10 1.483 1.620 0.000 6.10 1.144 0.187 1.51 0.991 0.278 0.97
Hao 1.483 1.648 0.000 6.15 1.140 0.138 1.55 0.957 0.214 0.92

Hιo 1.483 1.620 0.000 6.10 1.144 0.187 1.51 0.991 0.278 0.97
Hιo 1.260 2.771 0.000 9.21 1.654 0.218 2.58 1.076 0.439 1.37
Hιo 1.186 3.295 0.000 10.03 1.882 0.225 2.91 1.074 0.503 1.53
Ηχο 1.112 3.915 0.000 10.60 2.166 0.229 3.10 1.100 0.559 1.64

α) J and 5 are thé effective nearest-neighbor exchange and overlap determined by 
least-squares fits [see Section ILC.2]. The error is ΔErmsI'D, where 2? is the UHF 
magnon dispersion (see Table 13).
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UHF ORBITALS

Cu

Ag

Au

Li

Na

M2 LINEAR M½

β

β o ∙ ∙β

(»>
β ∙∙

e 8 ∙ • β

ϋ • * • ο

Figure 1. The optimum UHF valence orbitals for M‡ and linear M‡ (low spin), 
M — Cus Ag, Au, Li, and Na. Each orbital contains one electron (one orbital for 

M‡ and two orbitals for M^; overlaps for M‡ are given in Table 5). For Figures 
1-2, the nearest-neighbor distance (a) is equal to that of the bulk metal (α = 2.556, 
2.889, 2.884, 3.014, and 3.659 Â for Cu, Ag, Au, Li, and Na, respectively), and 

the boxes are scaled to a (box width = 3.6 a). Squares mark the atomic positions. 
Contours mark even amplitude increments of 0.2α^3∕2. Solid and dashed contours 

denote positive and negative amplitudes, respectively. For M‡, the GVB and 
UHF orbitals are identical, since there is only one valence electron. For each of 
the linear M$ clusters, the GVB orbitals are very similar to the UHF orbitals. 

However, for low-spin M‡, UHF leads to net spin densities whereas GVB does 

not.
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UHF ORBITALS
(a) μ=0i φ1 (b) μ-l, φ1 (c) μ=l, ω1

Figure 2. UHF valence orbitals for each of the Cui0, Agio, Au10, Lii0, and Na10 
ring clusters (overlaps are given in Table 2). (a) Shows the low-spin (μ = 0) UHF 
Hartree-localized orbital, (b) Shows the high-spin (μ = 1) UHF Hartree-localized 
orbital, (c) Shows the high-spin UHF Wannier orbital.
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 3. The UHF magnon spectra for the Cu10, Agio, Aui0, Liι0, and Na10 ring 
clusters. In each case, (i) data points show the UHF total energy as a function 
of the magnetization (see Table 1), (ii) a curve shows the fit of the generalized 
Ising model to the UHF total energies (GIM2; see Table 3), and (iii) the UHF 
total energy for μ = 1 is chosen as zero energy. Analogous figures all follow this 
convention for UHF (Figures 4-5, Figures 8-17, and Figures 24-25).
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 4. The UHF magnon spectra for Age, Age, and Agio. Data points show 
the UHF total energies, and the curves show the fits of the generalized Ising model 
to the UHF total energies (GIM2, see Table 3).
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 5. The UHF magnon spectra for Lig, Liιos and Liu· Data points show the 
UHF total energies, and the curves show the fits of the generalized Ising model to 

the UHF total energies (GIM2, see Table 3).
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Ca) Cb)

Figure 7. (a) Effective nearest-neighbor exchange energies (J") and (b) effective 
nearest-neighbor overlap integrals (5), obtained by fitting the Ising Model and 
Generalized Ising models to the UHF total energies for Cuιo, Auιo, Agio, Naχo, 
and Liιo (see Table 3). Also shown are the UHF magnon dispersion energy T> and 
the UHF nearest-neighbor overlap integral (see Table 2; the UHF overlap shown 
is the average of the values for μ = 0 and μ = 1).
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 8. The HF(C,,s) magnon spectra for Cu10, Agio, Auxo, Lixo, and Nax0. In 
each case, (i) data points show the HF total energy as a function of the magnetiza­
tion (see Table 1), («) line segments joining the data points serve as a guide to the 
eye, and (m) the HF total energy for μ, — 1 is chosen as zero energy. Analogous 
figures all follow this convention for HF (Figures 9-17 and Figure 25).
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 9. The HF(C,3) magnon spectra for Agβ, Ag8, and Agi0 (see Table 1)
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>ω
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υ
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 10. The HF(<7,s) magnon spectra for Liβ, Liι0, and Liι⅛ (see Table 1).
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 11. The Cu1<j magnon spectrum. Data points show the total energy as 
a function of the magnetization for UHF, HF(C,s), HF(C2⅛), and HF(Z>10⅛), as 
indicated (see Table 1). The UHF results are interpolated by the generalized 
Ising model (GIM2, dashed line; see Table 3). Each of these four Hartree-Fock 
wavefunctions gives the same total energy for μ = 1 (see Section ILB); hence, the 

total energy for μ = 1 is chosen as zero energy. Analogous figures all follow this 
convention (Figures 12-17 and Figure 25).
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 12. The Au10 magnon spectrum, as calculated with UHF, HF(C⅞), HF(C2h)5 
and HF(P10⅛), as indicated (see Table 1).
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 13. The Ag8 magnon spectrum, as calculated with UHF, HF(C8), HF(C2a), 

and HF(Z>8⅛), as indicated. The UHF results are interpolated by the generalized 
Ising model (GIM2, dashed line; see Table 3).



253

Agio MAGNON SPECTRUM

LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 14. The Agio magnon spectrum, as calculated with UHF, HF(C3), HF(C2h), 
and HF(jDio⅛)s as indicated (see Table 1).
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Na10 MAGNON SPECTRUM

LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 15, The Na10 magnon spectrum, as calculated with UHF, HF(C,⅛), HF(C2∕1), 
and HF(Pioa), as indicated. The UHF results are interpolated by the generalized 
Ising model (GIM2, dashed line; see Table 3).
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Figure 16. The Liχo magnon spectrum, as calculated with UHF, HF(C,j), HF(C,2⅛) 

and HF(jDioλ), as indicated (see Table 1).
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Figure 17. The Li1⅛ magnon spectrum, as calculated with UHF, HF(Ca), HF(C2⅛), 
and HF(‰i), as indicated. The UHF results are interpolated by the generalized 

Ising model (GIM2, dashed line; see Table 3).
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Figure 18. Energetic magnitudes of charge density wave effects [Ehf^cs^ ~EHF^Diali^) 

as a function of magnetization for the various Mio ring clusters (see Table 4).
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Figure 19. Energetic magnitudes of spin density wave effects [jEczhf — EHF^Dl0h^] 

as a function of magnetization for the various M↑q ring clusters (see Table 4).
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Figure 20. Energetic magnitudes of spin polarization effects [Eusf — Ebf(csY] as 

a function of magnetization for the various Mio ring clusters (see Table 4).
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Ca) Cb)

Figure 21. (a) The UHF magnon dispersion energy (T>) divided by the number 
of nearest-neighbor exchange interactions — ten for Mw and one for linear M‡. 
(b) The UHF nearest-neighbor overlap integral for Mw and M‡ (μ = 0; Hartree- 

localized orbitals — see Figures 1-2, Table 2, and Table 5).
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Figure 22. The Au10 one-electron energy bands. Data points show the orbital 
energies (Koopmans, theorem) for the μ = 1 state as a function of wave vector 
(⅛). The valence energy levels are each singly-occupied and the 5d (core) energy 
levels are each doubly-occupied. Curves joining the data points approximate the 

band of continuous energy levels for the infinite ring. Figure 23 shows the 5d 
energy bands in greater detail (also see Table 12).
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Figure 23. The Auιo 5d one-electron energy bands. The 5d energy levels split 
into five bands — dσ,, dπ', dπ", dδ', and dδ", as indicated (dashed curves join the 

double-prime energy levels). Figure 22 shows the valence band (also see Table 
12).
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Figure 24. The H2o magnon spectrum. Data points show the UHF total energy 

as a function of the magnetization. The UHF results are interpolated by the Ising 
model, and the generalized Ising models — GIM1 (dashed line) and GIM2 (solid 
line) — as indicated (also see Tables 13-14). The UHF total energy for μ = 1 is 

chosen as zero energy.
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Figure 25. The Hιo magnon spectrum. Data points show the total energy as a 

function of the magnetization for UHF, HF(Ca), HF(C,2h), and HF(Dι0h), as in­
dicated. The UHF results are interpolated by the generalized Ising model (GIM2, 
dashed line; see Table 14). Each of these four Hartree-Fock wavefunctions gives 
the same total energy for μ = 1; hence, the total energy for μ = 1 is chosen as 

zero energy.
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Chapter 4

Magnon Dispersion, Spin Density Waves, and Charge 

Density Waves in One-Dimensional Metals: Ab Initio 

GVB Wavefnnctions for Cu, Ag, An, Li, and Na

I. Introduction

One-dimensional monovalent metals have long served as bench marks for electronic 

structure theories of metals.1,2,3,4,5,β'7

For example, for a one-dimensional chain of monovalent atoms, simple energy 

band theory leads to a half-filled energy band. However, Peierlsβ showed that the half- 

filled energy band is susceptible to a distortion pairing up adjacent atoms, leading to 

a band gap at the Fermi level and hence a metal to insulator transition. However, the 

Hubbard hamiltσnian7,s leads to an antiferromagnetic insulator for the undistorted 

chain.

We have carried out ah initio9’10 total energy calculations11’12’13 for Λfy ring 

clusters composed of Cu, Ag, Au, Li, and Na using three distinct types of wavefunc- 

tions — restricted Hartree-Fock (HF, non-spin-polarized) unrestricted Hartree-Fock 

(UHF, spin-polarized) and generalized valence bond (GVB). These studies show that,
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for normal lattice constants, the one-dimensional metals composed of Cu, Ag, Au, 

Li, and Na are all in the “low-density limit” with respect to the treatment of the 

electron-electron interactions. Hence, simple energy band theory leads to incorrect 

results for these systems.11’12’13

At the highest level of theory (GVB),12 these systems are antiferromagnetic insu­

lators having fully symmetrical charge and spin densities, and do not lead to Peierls 

instabilities.14 These systems lead to strong cohesion due to two-center one-electron 

bonding,12 as shown by the GVB valence orbitals for Λ⅛^, linear M‡, and Λfι0 in 

Figures 1-2. However, both UHF and HF lead to incorrect results (in comparison 

to GVB), such as spin density waves (for UHF), charge density waves (for HF), and 

Peierls instabilities (for HF).11,15

Here, we present GVB results calculated for all allowed magnetizations of the 

Cuio, Agβ, Aga, Agio, Auι0, Liβ, Lii0, and Nai0 ring clusters. We show that the GVB 

magnon spectra are consistent with a nearest-neighbor Heisenberg model.1’16 An 

analogous HF and UHF study of these systems is presented in full detail elsewhere.13

II. Details of the Calculations

For each of the Cuio, Agβ, Aga, Agio, Aui0, Lie, Liio, and Nai0 ring clusters we opti­

mize the GVB wavefunction for the lowest energy state of each allowed magnetization 

(or density of unpaired spins)

where A and B are the number of up-spin electrons (↑ or α) and down-spin electrons 

(‡ or βy), respectively (A + B = N). The magnon spectrum is simply the total energy 

as a function of magnetization.
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These magnon spectra are calculated using the same geometries, hamiltonians, 

and basis sets as in previous studies.11’13’13 The bond lengths or lattice constants (a) 

are taken equal to the nearest-neighbor distances for the respective bulk metals17 

(except where noted otherwise — for lithium, in addition to a = 3.014 Â17 we also 

include results for a = 2.50 Â and for a = 3.10 Â).

For each of these systems, the effect of valence magnetization changes on the 

core orbitals is small.11 For Cu1o, Agβ, Aga, Agio, and Auio, optimizing all orbitals 

self-consistently leads to minimal hybridization between the d orbitals (core) and 

the valence sp orbitals for both the low-spin (μ = 0) and high-spin (μ = 1) states.11 

In addition, the closed-shell d1° configurations are maintained for magnetizations 

0 ≤ μ ≤ l.11’13 Hence, we incorporate the same frozen core approximation as utilized 

previously (including the closed-shell dlθ electrons of the noble metal rings).11’12’13 

This frozen core approximation is expected to be reasonably accurate for magneti­

zations 0 ≤ μ ≤ 1.11

The full (spin-optimized) generalized valence bond (SOGVB)18 valence wavefunc- 

tion for My (monovalent M) can be written in the general form

= Λ [Φy,Λ Xw,ji]

Φjv,λ

Xn,a

— lιP1(l)952(2)∣∕53(3) ∙ ∙ ∙ y>y(7V)
nt

N,S

(1)

(2)

nf

A

_ 25 + 1 (n∖
= 5+Ύ/2

= ∑<⅛Λ

where A is the antisymmetrizer or determinantal operator, Φy,χ is the many-electron 

spatial product function, {φi} are completely general one-electron valence orbitals 

optimized self-consistently for each state A without restrictions with respect to sym­
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metry or overlap (the numbers in parentheses label the electronic coordinates),19 

and xn,a is a completely general 7V-electron spin function for total spin S where 

the coefficients <¾ are optimized self-consistently and {∕∕v,5} is a complete set of spin 

eigenfunctions. Thus, using the normal TV-electron spin operators, the {∕∕i,s} satisfy 

the eigenvalue equations

S2 = S2 + S2 + S2 = S2z + Sz + S~S +

S2fN,S = S(S+ l)ħ2ffr's

s = ∣A-B∣

2
Sztf's = Msħtf's

Ms A-B
2

where S is the spin angular momentum quantum number, and Ms is the spin angular 

momentum projection quantum number. As long as the complete set of spin eigen­

functions is used, optimizing χ in this fashion imposes no restriction18 since S2 and 

Sz commute with one another and with the Hamiltonian. Thus, the wavefunction (1, 

2) is a simultaneous eigenfunction of S2 and Sz and satisfies the Pauli principle for 

arbitrary {⅛σ,}- and χ.18 The simultaneous self-consistent optimization of {⅞0j} and χ 

leads to the SOGVB wavefunction.18

For SOGVB, all N orbitals are allowed to overlap arbitrarily with one another, 

leading to an energy expression

E == (Φ∣7i∣Φ)∕(Φ∣Φ)

involving TV! terms. As a result SOGVB is not practicable for large N.

Instead we use a procedure for obtaining a wavefunction mimicking SOGVB but

optimizing N orthogonal orbitals in place of the N overlapping orbitals. This proce­
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dure leads to the self-consistent field full configuration interaction GVB wavefunction 

[GVB-CI(SCF)]. Using the GVB-CI(SCF) orthogonal orbitals as the basis, localized 

non-orthogonai orbitals {φi} mimicking the SOGVB orbitals {y>i} are obtained with 

the Hartree localization method. The GVB-CI(SCF) and Hartree-localization meth­

ods are fully described elsewhere.12 The GVB-CI(SCF) results are labelled either full 

GVB or GVB.

The UHF wavefunction has the same general form (1, 2) except that the UHF 

spin function

is a simple product, is an eigenfunction of Sz but is not an eigenfunction of

S2 (except for B = 0). The UHF wavefunction is not an eigenfunction of S2 unless 

each down-spin orbital is equal to an up-spin orbital, e.g.,

φt∙+Λ = φi, l≤i<B

(this leads to the restricted Hartree-Fock wavefunction, denoted simply HF herein).11 

For the general case where Φσ∙ffp ≠ Φbf, ΦJJ^f is “spin-contaminated” — 

contains a mixture of spins ∣Λfs∣ ≤ S < N∕2.11

For μ = 1 (high-spin; B = 0), there is just one spin eigenfunction

_ fN,S=N∕2 _ N %N,Λ=N = J 1 = a

and hence the GVB, UHF, and HF wavefunctions are equivalent.

Here, we present magnon spectra calculated with GVB wavefunctions, and com­

pare the GVB results with results calculated with HF and UHF wavefunctions. For 

magnetizations μ < 1, GVB, UHF, and HF differ dramatically. The HF and UHF 

magnon spectra are discussed in full detail elsewhere.13
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III. Results and Discussion

A. Ab Initio (GVB) Magnon Spectra

The GVB magnon spectra for the Cu10, Agβ, Aga, Ag10, Auι0, Liβ, Lii0, and Na10 

ring clusters are given in Table 1 and Figures 3-4.

For each case, GVB leads to a low-spin (antiferromagnetic, μ — 0) ground state 

with a monotonic increase in the total energy as μ is increased. The magnon disper­

sion energies

2⅛ = ENtμ=i — Eu,μ=0

follow the trend Cu > Au > Ag Na > Li for M10 (see Figure 3).

For each magnetization 0 ≤ μ ≤ 1 of each Λfy ring cluster, GVB leads to a 

fully symmetrical charge density and a fully symmetrical spin density. Hence, the 

Hartree-localized orbitals {φi} exhibit the full symmetry of the molecule. In each 

case, φι is centered symmetrically at bond midpoint number 1, as shown in Figure 

2 for the μ = 0 and μ = 1 states of each Af1o ring cluster. Orbitals φι and ^>ι+j are 

related by a rotation through i bond midpoints.

For each of the Cu10, Agβ, Aga, Agi0, Au10, Liβ, Li10, and Nai0 ring clusters, the 

{φi} exhibit only minor variations as a function of μ. Hence, the {φi} optimized 

for μ = 1 (high-spin, Figure 2b) are very similar to the {φi} optimized for μ = 0 

(low-spin, Figure 2a). For Cujo, Agio, Aui0, Liιo, and Naι0, the average value of

Sφι = 1 - {ΦΓ0∖ΦΓ1}

is 0.00384 (individual values are listed in Table 2).

For Mio, values of the neaxest-neighbor overlap integrals

⅜2 — {Φl ∣<∕⅛)
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for μ = 1 are 6-31% larger than those for μ = 0 (see Table 2). These <S12 values 

(<¾=°, <⅜=∖ and their average) follow the same trend as the 2? values (Cu > Au > 

Ag Na > Li; see Table 2).

For Mjy, the orbitals are centered at bond midpoints, and the distance between 

adjacent bond midpoints

Rbm = oco5 {π∕N) (3)

increases with increasing N (for fixed a). This explains the decrease of the nearest- 

neighbor overlap («S12) with increasing N for the series Agβ, Ag8, Agio (see Table 

2)∙

For each of the Mn ring clusters, the GVB magnon spectrum is in fairly accurate 

agreement with that given by the exact solutions of the nearest-neighbor Heisenberg 

model (HM)1,lβ (see Table 3 and Figures 3-4). Details of the Heisenberg model are 

given in Section III.B. Here we discuss further details of the GVB results using the 

effective nearest-neighbor exchange energies (^Γ) determined by (i) the GVB values 

of Ί) and (ii) the HM values of the nearest-neighbor exchange coefficients (£7; see 

Section IΠ.B for further details).

For Li8, results for a = 3.10 Â and for α = 2.50 Â indicate that both J^ and 

Ι)∣N decrease as the distance between adjacent orbitals decreases (see Appendix D 

for further details).

Since the distance between adjacent orbitals increases with increasing N (for fixed 

a), a decrease in J^ with increasing N is expected. This is observed for the series 

L13, Li5, L17, Li9 (see Table 3). However, the series Li4, Li8, Li8, Liχo indicates that 

a small N = 4i ∕ N = 4i + 2 oscillation also plays a minor role. This N — 4i ∕ 

N = 4z + 2 oscillation is more pronounced in the J values for the series Ag8, Ag8, 

Agio, and is also apparent in the cohesive energies of this series.12
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We have not determined the origin of this subtle W = 4i∕7V = 4i + 2 oscillation. 

However, the many-electron symmetry of the μ = 0 state also exhibits a N = 4i ∕ 

N = 4i + 2 oscillation.11

B. The Heisenberg Model

The nearest-neighbor Heisenberg Hamiltonian1’16

Kbm = J∑l + 2si∙sι+1 (4)
»

is based exclusively on nearest-neighbor exchange interactions where (t) Si is the 

one-electron spin operator for lattice point i, (ii) j + 2⅞ ∙ Sj is equivalent to the 

two-electron exchange operator τ⅛∙,2° and {iiτ} J is the effective nearest-neighbor 

exchange energy.

The exact solutions of Ηhm (χ^^) depend only on the sign of J. J < 0 leads 

to a μ = 0 ground state (antiferromagnetism) and J > 0 leads to a μ = 1 ground 

state (ferromagnetism).

For the Mχ ring, the Heisenberg Hamiltonian leads to the energy expression

⅛1 = En,a=n + NJ{Un,a + i) (5)

un,a = w-1∑εrii+1
i

Uij = -(χ∣ry∣χ)

where Uij is the coefficient for exchanging spins i and j, and Û^^A is the average 

nearest-neighbor exchange coefficient (see Appendices A-B). The relationship of (5) 

and the GVB energy expression is derived in Appendix A.

For infinite N, Bethe4 obtained the exact μ = 0 eigenvector, and Hulthen5 ob-
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tained the exact μ = 0 eigenvalue

lim ÜNu-0 = 2 In 2 - 1 = 0.38629.
N→<x> ,μ

Cloizeaux and Pearson21 showed that (4) leads to a zero singlet-triplet gap in the 

limit as N approaches infinity, e.g.,

i:__ r∙SM rHM lim .C'jyι4 — jdv.j. = 0
N- N,A+SA∙

dUntμ

μ-0

lim
μ=0w→∞ dμ

For N = 4, 6, 8, 10,32 16, and 48,31 exact solutions have been obtained for various 

magnetizations. We solved (4) for the exact eigenvectors and eigenvalues for the five 

lowest-energy states of each allowed magnetization for N ≤ 12. Results for the 

lowest-energy state of each magnetization are given in Table 4 for even values of 

N ≤ 12.

As an example, for an M2 antiferromagnetic chain, the exact solutions are

P = 0 : = {<*β ~ ∕fo)∕√2

¾m = 1 (bonding)

= 1 : ×2t = <*a

= —1 (antibonding).

Each of these exact solutions leads to a fully symmetrical spin density and each is 

nondegenerate.23 In contrast, for μ = 0, the UHF spin functions aβ and βa are 

degenerate (each leads to U = 0; nonbonding), and each leads to a spin density 

wave. These UHF spin functions are not eigenvectors of (4).

In agreement with GVB, for even N, the lowest-energy state of each magneti­

zation is nondegenerate and leads to a fully symmetrical spin density — in each
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case, Ua+ι — 17∕v,λ for all i. However, for each magnetization μ < 1, higher-energy 

eigenvectors of (4) exist that are doubly degenerate and do lead to a spin density 

wave.23

For each of the Cuι0, Age, Aga, Ag1o, Auιo, Lie, Liιo, and Na10 ring clusters, we 

fit the Heisenberg model (5) to the GVB total energies using the exact UχtA

(see Table 4). For each case, E^^a-n and 47 are obtained by matching the GVB 

total energies for magnetizations μ = 1 and μ = 0. The agreement of HM with GVB 

for 0 < μ < 1 is evaluated by calculating the root mean square (RMS) error

(Δ£«Μ5)1= 2 (ΕΟΥΒ_ΕΗΜγ ■ forevenAT.
jn 2, A=∖+N∣l

The results presented in Table 3 indicate that for Mw, Ebm is accurate to 0.0287? 

or better. For Λfχo, the trend of the RMS errors (Au > Cu > Ag > Na > Li) is 

almost the same as the trend followed by the 7? values and the <S∖2 values (Cu and 

Au are switched).

The results for the series Age, Aga, Ag10 (see Table 3 and Figure 4), for the series 

Li4, Lie, Lie, Liχo, and for the series Lig, L17, Li9 (see Table 3) show that (i) the 

agreement of HM with GVB is just as good for odd N as it is for even N, and («) 

the agreement of HM with GVB improves with increasing N.

An explanation of the increased accuracy of HM with increasing N is that the 

distance between next-nearest-neighbor orbitals

R13 = 2R12 cos (π∕N)

(where Rij is the distance between orbitals φi and ^>j∙) increases as N increases, due 

to the curvature of the Mχ ring. Hence, for the Mχ rings, the HM error due to the 

neglect of next-nearest-neighbor interactions decreases with increasing N.
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The reason for the success of the Heisenberg model in fitting the GVB total en­

ergies is that (i) the GVB wavefunctions for the various magnetizations of Mχ can 

all be described fairly well in terms of a single set of N equivalent well-localized non- 

orthogonal orbitals {φj} (see Appendix A and Appendix C), and (ii) J decreases ex­

ponentially with increasing distance (see Appendix D); hence, non-nearest-neighbor 

exchange interactions are negligible (for large N}.

C. Comparison of GVB with Hartree-Fock

The GVB wavefunction is the optimum wavefunction allowing an independent par­

ticle description of the electronic structure.18’24 Here we compare the GVB results 

with results obtained with less sophisticated wavefunctions (UHF and HF).

The GVB magnon spectra are compared with UHF and HF magnon spectra 

in Figures 5-10 for Cuι0, Auio, Aga, Ag1o, Na10, and Li10. For μ = 1, the total 

energy is the same for GVB, UHF, and HF. For μ < 1, the total energies obey 

the relation Egvb < Eubf < Ebf. In Figures 5-10, the GVB magnon spectra are 

interpolated by the Heisenberg model, and the UHF magnon spectra are interpolated 

by the generalized Ising model.13 Full details of the HF and UHF results are given 

elsewhere.13

1. UHF

In each case, the UHF ground state is μ = 0, in agreement with GVB. However, 

UHF leads to spin density waves for all magnetizations μ < 1, whereas GVB leads 

to fully symmetrical charge and spin densities for all magnetizations 0 ≤ μ ≤ 1. In 

addition, the UHF magnon dispersion curves are significantly diiferent than those 

for GVB. For GVB, the magnon dispersion curve has zero slope at μ = 0; hence,
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the single-triplet splitting is expected to approach zero in the limit as N approaches 

infinity.31 For UHF, the magnon dispersion curve has nonzero slope at μ = 0, leading 

to a single-triplet splitting of approximately 2∣t71 for all N.13

Both GVB and UHF lead to valence orbitals centered at bond midpoints, ex­

hibiting only minor variations as a function of μ. For GVB, both the orbitals and 

the many-electron spin function are optimized simultaneously.18’12 For UHF, the or­

bitals are optimized for a many-electron spin function that is a simple product of 

one-electron spin functions (χuap = aAf3B). Therefore, for these systems, differ­

ences between the GVB and UHF results are due to an incomplete treatment of the 

electron correlation forced by the use of a restricted (product) spin function.12

Figure 11 shows the energetic effects of allowing spin optimization

βSOPT _ βGVB _ ^UHF

as a function of magnetization for each of the Cu10, Ag10, Aui0, Lii0, and Nai0 ring 

clusters (see Table 5 for N ≠ 10). These spin optimization effects follow the same 

trend as the magnon dispersion energy (Cu > Au > Ag Na > Li).

2. HF

For Age, Naχo, and Liιo, the HF ground state contains 0.25, 0.6, and 1.0 unpaired 

electrons per atom, respectively — in serious disagreement with both GVB and UHF.

The total error in the HF energy due to the neglect of electron correlation effects 

can be divided into static and dynamic (instantaneous) contributions. Splitting each 

HF doubly-occupied orbital into a pair of overlapping singly-occupied orbitals allows 

the two electrons on the average to stay further apart. GVB includes a separate 

orbital for each valence electron, leading to the optimum static (independent particle)
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description, of the electronic structure.18,24 Hence,

j^CORR _ βGVB _ βHF

is a reasonable definition of the static electron correlation energy. For each of the 

eight Mff ring clusters, the static electron correlation energy increases monotonically 

with decreasing magnetization, as shown in Figure 12 for Cu10, Ag10, Au10, Li10, and 

Naχo (see Table 5 for N ≠ 10).

The near linear dependence of the static correlation energy — especially for 0.2 ≤ 

μ ≤ 1 — suggests a simple explanation for the error in HF (in comparison to GVB). 

For HF, ionic character is forced into the wavefunction by the restriction of doubly- 

occupied valence orbitals — and the amount of ionic character increases linearly 

with decreasing magnetization.13 GVB includes one orbital for each valence electron, 

allowing an optimization of the amount of ionic character.

The static correlation energies are remarkably similar for Cuχ0, Ag10, Auχo, and 

Na10. For μ = 0, the static correlation energy follows the trend Li Na > Ag > Cu 

> Au. This trend is almost the inverse of the Li < Na < Ag < Au < Cu trend followed 

by both the overlap and magnon dispersion energy for GVB (see Section III.A). This 

inverse relation between the correlation energy and the magnon dispersion energy 

explains why HF leads incorrect ground state magnetizations for Li10 and Na10 but 

not for Agχo, Auχo, and Cuχo∙

IV. Summary

We optimized GVB, UHF and HF wavefunctions for all allowed magnetizations of 

each of the Cuχo, Age, Age, Ag10, Auχo, Lie, Li1o, and Na10 ring clusters. The results 

for these one-dimensional metals are summarized as follows.
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For each case, GVB leads to leads to an antiferromagnetic (μ = 0) ground state, 

and fully symmetrical charge and spin densities for all magnetizations 0 ≤ μ ≤ 1. 

The GVB magnon spectrum can be fit fairly accurately with the nearest-neighbor 

Heisenberg Hamiltonian. This suggests that the singlet-triplet energy splitting ap­

proaches zero in the limit a N approaches infinity for each of these systems.21

In agreement with GVB, UHF leads to an antiferromagnetic (μ = 0) ground 

state for each case. The UHF magnon spectrum can be fit fairly accurately with 

a nearest-neighbor generalized Ising model.13 However, the UHF magnon dispersion 

curve does not have the correct form, and UHF leads to spin density waves for all 

magnetizations μ < 1. This disagreement of UHF with GVB is due to an incomplete 

treatment of the electron correlation (for UHF).

Restricted Hartree-Fock leads to spurious results, such as (i) incorrect ground 

state magnetizations for Ag8 (μ = 0.25), Nai0 (μ = 0.6), and Li10 (μ = 1-0), and (ii) 

charge and spin density waves for all intermediate magnetizations (0 < μ < 1) of each 

Mif ring cluster. These spurious results indicate a fundamental flaw in HF for these 

systems — the double occupation of valence orbitals for describing magnetizations 

μ < 1.

Appendix A. The Heisenberg Energy Expression

Here we show the relationship between the Heisenberg energy expression and the full 

GVB energy expression.

The Heisenberg energy expression is expected to be useful for any system where 

a range of magnetizations can be described by a single set of singly-occupied orbitals 

For the Mjf ring clusters, the GVB orbitals {φi} optimized for μ = 0 (Figure
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2a) are very similar to those optimized for μ = 1 (Figure 2b); hence, the Heisenberg 

energy expression provides an accurate fit of the GVB magnon spectrum for each of 

the Guιo, Agβ, Ag8, Agι0, Au10, Liβ, Li10, and Naι0 ring clusters.

1. The GVB Energy Expression

For determinants! wavefunctions (1, 2) the total energy expression

„ (9n,a∖Η∖<In,λ)
"'a (‰,λI*‰i)

can be simplified as

En,A = (⅜N,A ΧΝ,Α^Φν,α') =∑(Φn,a∖'H∖tΦn,a')Ut (Al)
τ

Ur = ζτ(XN,A∖τχN,A}

where the summation is over all N∖ permutations

r∕(l, 2,3,..., TV) = ∕(iι,i3,i3,∙∙∙,⅛∙)> 1 ≤ b ≤ n

of the electronic coordinates (1,2,3,..., 2V), ζτ is the parity of permutation r, and 

the normalization of Φn,a is defined with respect to

(⅜N,A XN,a∖⅛N,a} = ∑(ΦjV,Λ∣τΦ2VM)^r = 1. 
τ

2. Two Electrons

For a system having two valence electrons (N = 2) such as the Cu‡, Ag3 , Au†, Li†, 

and Na‡ linear chain clusters, the generalized valence bond (GVB) wavefunctions 

for the two allowed magnetizations

*Zι, = ⅜AX">)] = <fc⅛H
√ι - ¾

*SS = A{(φlφ1',(aβ - ∕3α)J (≠1≠2 + ≠2≠l)(θt⅛g - βθ) 
■ft + 25⅛
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can each be described fairly accurately with the same product of two overlapping 

valence orbitals

Φ = φ1φ2

Sij = (^t∣⅛,j)∙

For each of the Cu2 , Ag‡, Au‡, Li†, and Na2 linear chain clusters, φ1 and φ2 are 

localized at the left and right bond midpoints, respectively (see Figure lb), and the 

optimum shapes of φι and φ2 do not depend crucially on the spin function, χ (as 

shown quantitatively in Appendix C, Table 6).

These wavefunctions lead to the energy expression25’13

E1 = Ec°m + Eci + , (A2)1 + ff125122 k ,
Ecl = (φiΦj∖iH∖ΦiΦi} — Ecore — h-il + h22 + J12 

Ja = {ΦiΦi∖Η∖ΦiΦi} - S2-Ecore - S⅛Ecl

where (i) Ecore is the total energy excluding the two valence electrons, (ii) Ecl 

is the electronic energy of the classical (Hartree product) valence wavefunction25 — 

Ecl includes valence-core interactions,13 (nt) f7,∙j∙ is the coefficient for the exchange 

of orbitals i and j and is the only magnetization-dependent term (U-i2 = — 1 for μ = 1 

and U12 = +1 for μ = 0), (tυ) Jij∙ is the valence bond exchange energy25 and (u) 

hij is the one-electron integral, and J⅛∙ and are the two-electron coulomb and 

exchange integrals, respectively?1 ,

For nearly all cases where <S12 ≠ 0 (as in bonding), t7ι2 < 0, leading to a μ = 0 

ground state (antiferromagnetism). If S12 = 0, then Jι2 = Ä12 > θ5 leading to a 

μ = 1 ground state (ferromagnetism). [These conditions are consistent with Hund’s
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rule, stating that the lowest energy state for a configuration containing orthogonal 

(non-overlapping) singly-occupied orbitals is the state of highest spin multiplicity 

(e.g., for the ls22s22p2 carbon atom, the lowest energy state is triplet). Note that 

for Sij ∕ 0 the valence bond exchange energy jZij∙ is not equal to the two-electron 

exchange integral X,∙i∙].

3. Mχ Ring Clusters

The for the various magnetizations (μ) of the Mχ ring clusters can all be

described fairly accurately with the same spatial configuration

φ = ≠i≠2≠3 ∙ ∙ ' <t>N∙

Hence, the many-electron spin function X^a plaYs the major role in describing the 

various magnetizations.

Applying the general energy expression (Al) to the GVB wavefunction (1, 2) 

with the assumptions that (i) the nearest-neighbor exchange energies are all equal

Ji,i±ι = J™ for all i,

(ii) non-nearest-neighbor exchange integrals are zero, e.g.,

Λ,⅛ι » Ji⅛∙ ≈ θ fθr lil ≥ 2,

and {iit) S⅛ terms and higher-order terms can be neglected, leads to the approximate 

energy expression

en,a = E%ore + ecnl + nj12un,a 

Un,a = ^-1∑^i+ι
t

Uij = -(χ∣r⅛∙∣χ)

which is equivalent to the HM energy expression (5).
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Appendix B. Approximate Solutions of the Heisen­

berg Hamiltonian

For Λfjv ring clusters, this appendix compares values of the average nearest-neighbor 

exchange coefficient obtained with various many-electron spin functions. The

exact solutions to the Heisenberg Hamiltonian maximize (Ujv,μ) for each pair of values 

(N, μ}. Hence, approximate solutions lead to values of Uχ,μ smaller than the exact 

Heisenberg values.

Values of Ujv,μ fθr various spin functions are presented in Table 4 (for even values 

of N ≤ 12).

1. Exact HM Solutions

We solved for the exact HM eigenvectors and eigenvalues using a general configura­

tion interaction program28 where (i) we included only the configuration having all 

N orbitals singly-occupied — but including the full set of spin eigenfunctions, (ιi) 

the overlap integrals (5t∙j∙) were taken as the unit matrix, {iii) all one-electron and 

two-electron integrals were set equal to zero, except that (⅛) all nearest-neighbor 

exchange integrals (¾i+1) were set equal to —1.

2. Normal UHF (Ising)

Elsewhere13 we showed for the Mχ ring that UHF leads to |A—B∖ = μN antibonding 

exchanges (αα; U = — 1) and N(l — μ) nonbonding exchanges (a/3; U = 0). Hence, 

UHF leads to

Ujf,μ = -μ
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regardless of whether N is even or odd. This UHF solution is identical to the Ising 

solution.13

3. Spin Projected UHF

The two definitions of magnetization

1A-B1 _ ∣Ms∣ 
μ N N

2S
μ = ^N

are equivalent as long as (i) the spin function is an eigenfunction of the S2 operator, 

and (m) the Ms = S spin function component is chosen.

The rigorous definition of the magnetization (density of unpaired spins) is the 

one based on S. However, for μ < 1, the UHF spin function is not an eigenfunction 

of S2∙, hence, for UHF, μ is defined in terms of Ms.

For even N, spin-projecting the Ms = 0 UHF spin function27 leads to

TT _ ..2 I O (1 — ∕i)¾μ - ~μ +2 ———

(where μ is defined in terms of S). For odd N, spin-projecting the Ms = j UHF 

spin function27 leads to

Uy,μ = -μ2 + (ι-∕*)2
Ύ + l "

4. Simple Valence Bond

Values of Upjιμ for simple valence bond (perfect pairing) are also given in Table 4. 

For μ = 0, the VB spin function

Xvb = iaβ - ∕3α)"∕(2)"'1
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(η = N∣2} leads to alternating exchanges of U = 1 (intrapair) and U — — j (inter 

pair), leading to Utftμ=o = —0.25.

5. Resonating Valence Bond

For μ = 0, an equivalent VB spin function is

tλ ο vd

X = r12T23“’TN-1N X

= ∖β{aβ - βa)n~1a - a(aβ - βa}n~1β}∣2n∣2.

Hence, the resonating VB spin function is

XB.VB = XVB±^VB^

RVB leads to

(xrvb∖-t12∖xrvb)
(xrvb∖xrvb}

1 — 0.5 ± 2(χκs∣ — τι2∣χκs) 
2±2⅛vb∖xvb'1

0.5 ± (—l)n-1(2)2-n 
2 ± (—l)n-1(2)2~n

Hence, RVB leads to a resonant state

χRVB = χVB _ (_χ)η χVB
2n-3 + χ 
2n-1 + 1u =

and an antiresonant state

√r* = xvb + (-l)n xvb
3-l 
1 - 1 ■

However, both states lead to 17 = 0.25 in the limit as N. approaches infinity.
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Appendix C. GVB Results for Linear M‡ Clusters

Here we present results for the Cu‡, Ag‡, Au†, Li†, and Na‡ linear chain clusters, 

since they are rather simple models of the respective infinite linear chains — in each 

case the localized orbitals for linear M‡ (Figure lb) and for Λfio (Figures 2a-b) are 

remarkably similar. Since these systems each contain two valence electrons, SOGVB 

and GVB-CI(SCF) are identical; hence, (i) we obtain the localized orbitals directly 

from GVB (avoiding the Hartree-localization method), and (n) we compare the GVB 

results to the “exact” energy expression (A2).

For each of these M‡ linear chain clusters, Table 6 presents the GVB orbital 

overlap .(«Su = (y>ι∣lP2)) and the magnon dispersion energy

-π _ τ,iiva ~ h2,μ=1 GVB2,μ=0— E

(i.e., the “singlet-triplet gap”).

In order to evaluate the usefulness of Equation (A2) for linear , we com­

pare the fully self-consistent GVB values of Ί) (where valence orbitals are optimized 

separately for each state) with the “frozen orbital” GVB magnon dispersion energies

'T>FROZEN _ —Un 
l-⅜

(where the GVB orbitals optimized for μ = 0 are used to describe μ = 1). The 

self-consistent Ί) values are smaller than the frozen orbital Î? values by only 7 - 17%; 

hence, both magnetizations can be described fairly well using a single set of localized 

orbitals.

The values t7u and <Sχ2 for M‡ (Table 6) are somewhat smaller than the respective 

values J and «Su for M1o (see Tables 2-3). This is because (x) J and <S12 both 

decrease as the distance between adjacent orbitals increases, and (tx) the effective
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distance between adjacent orbitals is larger for M3 than for the Mχ ring (for constant 

a). For Λf3^, the orbitals are not centered at the exact bond midpoints but are 

polarized somewhat away from one another (see Figure lb); hence, for M3 the 

effective distance between adjacent orbitals is somewhat larger than a. However, for 

the Mn ring, the effective distance between adjacent orbitals is somewhat smaller 

than a since the orbitals are centered at the bond midpoints and the distance between 

adjacent bond midpoints (3) is somewhat smaller than a for finite N. Hence, for the 

Mjγ ring, both J and <Sι2 decrease somewhat with increasing N (for constant a; see 

Table 2-3 and Appendix D).

Appendix D. The Dependence of J on a and N

Figure 13 shows the dependence of the effective exchange energy on a for L15, Liß, 

Li7, and Lig. Here, J^ is obtained from GVB total energies in the same manner as in 

Section III.B. Figure 13 shows an exponential decrease in J with increasing a (for 

constant TV).

In addition, J decreases with increasing TV (for constant a). This is because the 

orbitals are centered at the bond midpoints (see Figure 2), and the distance between 

adjacent bond midpoints

Rbm — αcos (7r∕lV)

increases with increasing N (for constant a), approaching a in the limit as N ap­

proaches infinity.

The effective distance between adjacent orbitals

Reff = λa + (1 - X)Rbm
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is midway between α and Rbm because the orbitals are slightly polarized outwards 

from the center of the ring.

Hence, we fit the data of Figure 13 (24 data points) to the exponential

J(Reff} = C exp [-1Reff↑ (DI)

using Λ, C, and 7 as least-square parameters [the resultant values are λ = 0.5480, 

C = —0.8736 eV, and 7 = —0.6010 Â-1, leading to a root mean square error of 

0.00143 eV]. The results are given in Figure 14, showing that the 24 data points all 

fit on one curve!

Since Reff approaches α in the limit as N approaches infinity, (Dl) gives as 

a function of a for the infinite lithium chain.

Appendix E. Results for Hydrogen Ring Clusters

Often, ideas concerning the electronic structures of one-dimensional metals have been 

tested with calculations on symmetric ring clusters composed of hydrogen atoms.28’29

In this appendix we present GVB results for Hβ, H8, and H10 using Huzinaga’s30 

(5s) primitive set of gaussian-type orbitals (unsealed) contracted triple-^.11 For each 

of these H# rings, we chose a lattice constant (α = 1.483 Â) equal to twice the H2 

equilibrium bond length.31 For Hι0, we also chose α = 1.112 À, a = 1.186 Â, and 

a = 1.260 Â, equal to factors of 1.5, 1.6, and 1.7 times the H2 equilibrium bond 

length.31

The GVB wavefunctions for Hjv and Mu (Λf = Cu, Ag, Au, Li, and Na) are 

similar, except that the {<^j∙} are centered at the atoms for H7v as opposed to the 

bond midpoints for Mu (see Figure 2).
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Table 7 summarizes the GVB results. For H1o, the magnon dispersion (for 1.112 ≤ 

α ≤ 1.483 Â) is a factor of 4.6 to 6.4 greater than that for Cuχo (at α = 2.556 Ä). 

Also, for H10, the nearest-neighbor overlap (for 1.112 ≤ a ≤ 1.483 Â) is a factor of 

1.14 to 1.26 times that for Cu10 (at a = 2.556 Â).

The large magnon dispersion for H# results from the large antibonding exchange 

interactions for magnetizations μ > 0.5 (see Table 4). For Ηχο, the μ = 1 state 

is so strongly antibonding that for a ≤ 1.195 Â, the μ = 1 state is unstable with 

respect to ionization (forming μ = 1 H†o + e-).13 In order to compare GVB results 

for a > 1.195 Â with those for 1.112 ≤ a < 1.195 Â, we optimize the μ = 1 GVB 

wavefunction with Dwfl orbital symmetry restrictions.13

Table 8 summarizes the results of fitting the Heisenberg model (HM) to the GVB 

total energies (following the same procedure as for the My rings; see Section IΠ.B). 

The results for the Hχo rings (for 1.112 ≤ a ≤ 1.483 Â) are of similar quality to those 

for the Mw rings (for M = Cu, Ag, Au, Li, and Na; see Table 3).

Results for the series He, He, Hχo compare favorably with results for the series 

Agβ, Ag8, Agχ0 except that ∣JΓ∣ increases with increasing N for hydrogen, whereas 

I J∖ decreases with increasing N for silver (see Tables 3 and 8).

For small enough α, the Heisenberg model is not expected to provide an accurate 

fit to the lowest energy GVB states, due to the large antibonding exchange inter­

actions for μ > 0.5. For small enough α, μ > 0.5 states involving ls-like orbitals 

become unstable with respect to ionization.13 Hence, Mattheiss’ result28 that HM is 

inaccurate for He at α = 0.529 Â — leading to an RMS error of 0.212? — is not the 

least bit surprising.
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Table 1. GVB, UHF, and HF magnon spectra. “)

Eμ - Eμ=1 (eV)-----------
A B fi GVB UHF HF

Cuio a = 2.556 Â Eμ=l = -504.28277 Hartree
5 5 0.000 -7.652 -6.448 -4.959
6 4 0.200 -7.098 -5.646 -4.550
7 3 0.400 -6.123 -4.709 -4.141
8 2 0.600 -4.329 -3.334 -3.025
9 1 0.800 -2.286 -1.739 -1.610

10 0 1.000 0.000 0.000 0.000
Age a = 2.889 Â Eμ=l = -224.40832 Hartree

3 3 0.000 -3.746 -2.981 -2.342
4 2 0.333 -2.936 -2.282 -1.736
5 1 0.667 -1.949 -1.368 -1.253
6 0 1.000 0.000 0.000 0.000

Ag8 a = 2.889 Â Eμ=l = -299.22320 Hartree
4 4 0.000 -4.494 -3.789 -1.988
5 3 0.250 -4.274 -3.151 -2.297
6 2 0.500 -3.124 -2.308 -1.820
7 1 0.750 -1.740 -1.233 -1.049
8 0 1.000 0.000 0.000 0.000

Agio a = 2.889 Â Eμ=∖ = -374.03507 Hartree
5 5 0.000 -5.652 -4.661 -2.775
6 4 0.200 -5.268 -4.024 -2.616
7 3 0.400 -4.501 -3.299 -2.478
8 2 0.600 -3.188 -2.315 -1.843
9 1 0.800 -1.668 -1.194 -0.985

10 0 1.000 0.000 0.000 0.000
Auχ0 a = 2.884 Â Eμ=∖ = -333.83386 Hartree

5 5 0.000 -7.342 -6.220 -4.846
6 4 0.200 -6.814 -5.501 -4.485
7 3 0.400 -5.981 -4.661 -4.176
8 2 0.600 -4.253 -3.362 -3.097
9 1 0.800 -2.344 -1.857 -1.771

10 0 1.000 0.000 0.000 0.000
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Table 1. GVB, UHF, and HF magnon spectra, continued.

A B μ GVB
-------- Eμ - Eμ=1 (eV)------------

UHF HF

Lie a = 3.014 Â Eμ=ι = —44.63264 Hartree
3 ■ 3 0.000 -1.369 -1.021 0.786
4 2 0.333 -1.123 -0.726 0.520
5 1 0.667 -0.648 -0.380 0.182
6 0 1.000 0.000 0.000 0.000

Liιo a = 3.014 Â Eμ=-i = —74.40442 Hartree
5 5 0.000 -2.107 -1.613 2.219
6 4 0.200 -1.978 -1.329 1.627
7 3 0.400 -1.643 -1.032 1.043
8 2 0.600 -1.155 -0.699 0.636
9 1 0.800 -0.586 -0.351 0.311

10 0 1.000 0.000 0.000 0.000
Na10 a = 3.659 Â Εμ=ι == —1617.94206 Hartree

5 5 0.000 -2.666 -2.074 0.431
6 4 0.200 -2.493 -1.746 0.159
7 3 0.400 -2.077 -1.389 -0.128
8 2 0.600 -1.454 -0.960 -0.191
9 1 0.800 -0.738 -0.489 -0.123

10 0 1.000 0.000 0.000 0.000

α) For μ = 1, the GVB, UHF, and HF wavefunctions are identical (see Section ∏).
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Table 2. Details of the GVB results. “1

system
a

(Â)
t>∣n

(eV ∕ atom) μ = 0
<Sχ2 

μ = 1 average 61
δφl

Agβ 2.889 0.624 0.818 0.862 0.840 0.00462
Ags 2.889 0.562 0.623 0.680 0.652 0.00392
Agio 2.889 0.565 0.548 0.609 0.579 0.00373
Liβ 3.014 0.228 0.536 0.728 0.632 0.01993
Liιo 3.014 0.211 0.282 0.369 0.325 0.00371
Cujo 2.556 0.765 0.632 0.682 0.657 0.00390
Agio 2.889 0.565 0.548 0.609 0.579 0.00373
Au10 2.884 0.734 0.593 0.631 0.612 0.00219
Liιo 3.014 0.211 0.282 0.369 0.325 0.00371
Nai0 3.659 0.267 0.382 0.477 0.429 0.00568

α) Ί) is the magnon dispersion, 5u is the nearest-neighbor overlap integral, and δφχ 
measures the difference between orbitals φ%~0 and φ%=1 (see Section TTT.A). 
i)(SS=0 + SlV1)∕2
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Table 3. Fit of the Heisenberg model to

system a
(Â)

τ>∣Ni>
(eV)

~J
(eV)

error
(%)

Agβ 2.889 0.624 0.435 5.62
Ag8 2.889 0.562 0.398 3.42
Agio 2.889 0.565 0.403 1.15

Cuιo 2.556 0.765 0.545 1.48
Agio 2.889 0.565 0.403 1.15
Auιo 2.884 0.734 0.523 2.81
Liιo 3.014 0.211 0.150 0.43
Naw 3.659 0.267 0.190 0.62

Lie 3.014 0.228 0.159 1.59
Liιo 3.014 0.211 0.150 0.43

Li4 3.100 0.229 0.153 20.56
Liβ 3.100 0.218 0.152 1.64
Lig 3.100 0.202 0.143 0.47
Liιo 3.100 0.199 0.142 0.48

Li00 c) 3.100 0.188 0.135

L19 3.100 0.192 0.143 0.25
Li7 3.100 0.193 0.147 0.62
Li5 3.100 0.198 0.159 2.12
L13 3.100 0.205 0.205 d)

Lig 2.500 0.309 0.219 1.21

α) 2? is the GVB magnon dispersion, and J is the effective nearest-neighbor exchange 
(see Section HLB). The error is ΔErms/Ί) (see Section ΓH.B).
b) For odd N, HM is fit to the GVB energies for magnetizations μ = 1/N and μ = 1, and 
the magnon dispersion is defined as 2? = Eμ--i — Eμ=-i∕N (μ = 0 is not allowed for odd 
A).
c) Obtained by extrapolation; Appendix C.
d} For Li3, there are only two allowed magnetizations (μ = 0.333 and μ = 1.000); hence, 
ΔErms is undefined.
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Table 4. Average nearest-neighbor exchange coefficients.

spin

N A B μ Heisenberg
simple
VB

projected
UHF

normal
UHF α)

2 1 1 0.000 1.00000 1.00000 1.00000 0.00000
2 2 0 1.000 -1.00000 -1.00000 -1.00000 -1.00000
4 2 2 0.000 0.50000 0.25000 0.50000 0.00000
4 3 1 0.500 0.00000 -0.25000 0.00000 -0.50000
4 4 0 1.000 -1.00000 -1.00000 -1.00000 -1.00000
6 3 3 0.000 0.43426 0.25000 0.33333 0.00000
β 4 2 0.333 0.20601 0.00000 0.11111 -0.33333
6 5 1 0.667 -0.33333 -0.50000 -0.33333 —0.66667
6 6 0 1.000 -1.00000 -1.00000 -1.00000 -1.00000
8 4 4 0.000 0.41277 0.25000 0.25000 0.00000
8 5 3 0.250 0.28210 0.06250 0.12500 -0.25000
8 6 2 0.500 -0.04952 -0.25000 -0.12500 -0.50000
8 7 1 0.750 -0.50000 -0.62500 -0.50000 -0.75000
8 8 0 1.000 -1.00000 -1.00000 -1.00000 -1.00000

10 5 5 0.000 0.40309 0.25000 0.20000 0.00000
10 6 4 0.200 0.31844 0.10000 0.12000 -0.20000
10 7 3 0.400 0.09519 -0.10000 -0.04000 -0.40000
10 8 2 0.600 -0.22412 -0.40000 -0.28000 -0.60000
10 9 1 0.800 -0.60000 -0.70000 -0.60000 -0.80000
10 10 0 1.000 -1.00000 -1.00000 -1.00000 -1.00000
12 6 6 0.000 0.39790 0.25000 0.16667 0.00000
12 7 5 0.167 0.33859 0.12500 0.11111 -0.16667
12 8 4 0.333 0.17842 0.00000 0.00000 -0.33333
12 9 3 0.500 -0.05804 -0.25000 -0.16667 -0.50000
12 10 2 0.667 -0.34684 -0.50000 -0.38889 -0.66667
12 11 1 0.833 -0.66667 -0.75000 -0.66667 -0.83333
12 12 0 1.000 -1.00000 -1.00000 -1.00000 -1.00000
∞ «>) 0.000 0.38629 0.25000 0.00000 0.00000

a) The Ising Hamiltonian gives the same values as normal UHF. 
δ) Reference [5].
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Table 5. Electron correlation and spin optimization effects.

system
a

(Â) A B

electron
correlation

(eV)

spin fc)
optimization

(eV)

Cιiιo 2.556 5 5 0.000 -2.694 -1.204
6 4 0.200 -2.548 -1.452
7 3 0.400 -1.981 -1.414
8 2 0.600 -1.304 -0.994
9 1 0.800 -0.675 -0.547

10 0 1.000 0.000 0.000

Agβ 2.889 3 3 0.000 -1.404 -0.765
4 2 0.333 -1.200 -0.654
5 1 0.667 -0.696 -0.581
6 0 1.000 0.000 0.000

' Ag8 2.889 4 4 0.000 -2.506 -0.705
5 3 0.250 -1.976 -1.123
6 2 0.500 -1.304 -0.816
7 1 0.750 -0.692 -0.507
8 0 1.000 0.000 0.000

Agio 2.889 5 5 0.000 -2.877 -0.992
6 4 0.200 -2.652 -1.244
7 3 0.400 -2.023 -1.203
8 2 0.600 -1.345 -0.872
9 1 0.800 -0.683 -0.474

10 0 1.000 0.000 0.000

A∏ιo 2.884 5 5 0.000 -2.497 -1.122
6 4 0.200 -2.329 -1.313
7 3 0.400 -1.805 -1.320
8 2 0.600 -1.156 -0.891
9 1 0.800 -0.573 -0.488

10 0 1.000 0.000 0.000
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Table 5. Electron correlation and spin optimization effects, continued.

system
α

(A) A B μ∙

electron α) 
correlation 

(eV)

spin b)
optimization

(eV)

Liβ 3.014 3 3 0.000 -2.156 -0.348
4 2 0.333 -1.642 -0.396
5 1 0.667 -0.830 -0.267
6 0 1.000 0.000 0.000

Li1o 3.014 5 5 0.000 -4.326 -0.494
6 4 0.200 -3.605 -0.649
7 3 0.400 -2.686 -0.611
8 2 0.600 -1.791 -0.456
9 1 0.800 -0.897 -0.235

10 0 1.000 0.000 0.000
Naιo 3.659 5 5 0.000 -3.097 -0.592

6 4 0.200 -2.652 -0.747
7 3 0.400 -1.950 -0.688
8 2 0.600 -1.263 -0.494
9 1 0.800 -0.614 -0.249

10 0 1.000 0.000 0.000

α) ecorb, _ egvb _ ehf 
b) esopt = egvb _ euhf
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Table 6. GVB results for selected two-electron systems.

system α
(Ä)

φGVrB a) 
ψ2,μ=0 -Ei2,μ=l — -E2,μ=O

-∙Tl2 
(eV)

<Sl2 frozen
(eV)

relaxed
(eV)

Cu‡ 2.556 0.267 0.389 0.547 0.471
Agi 2.889 0.181 0.344 0.366 0.314
Au‡ 2.884 0.159 0.350 0.322 0.271
Li+ 3.014 0.074 0.222 0.149 0.138
Na+ 3.659 0.089 0.256 0.178 0.148

а) Values calculated with the μ = 0 GVB canonical orbitals.
б) Energy splitting between μ = 0 and μ = 1. The frozen values are calculated using a 
single set of orbitals — the low-spin orbitals — to describe both magnetizations (see 
Appendix B). The relaxed values are calculated using the optimum orbitals for each 
state.
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Table 7. Details of the GVB results for Hn rings.

system
a

(Â)
T>∣N

(eV ∕ atom) μ = 0
<Sl2 

μ = l average i)
Sφ1

Hβ 1.483 2.020 0.650 0.710 0.680 0.00514
Hg 1.483 1.975 0.584 0.634 0.609 0.00373
H10 1.483 2.067 0.548 0.603 0.575 0.00401

H10 1.260 3.497 0.734 0.759 0.747 0.00366
Hιo 1.186 4.139 0.786 0.796 0.791 0.00323
Ηχο 1.112 4.883 0.828 0.825 0.827 0.00316

α) P is the magnon dispersion, «Su is the nearest-neighbor overlap integral, and δφι 
measures the difference between orbitals φ%=° and φ%=1 (see Section III. A).
&) (¾=° + ⅜=1)∕2
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Table 8. Fit of the Heisenberg model to for H# rings.“)

system α
(Â)

' τ>∕N »>
(eV)

-J
(eV)

error
(%)

Hβ 1.483 2.020 1.409 4.33
H8 1.483 1.975 1.398 2.59
Hιo 1.483 2.067 1.473 0.71
Hιo 1.260 3.497 2.492 1.57
H1o 1.186 4.139 2.950 1.91
Hιo 1.112 4.883 3.480 2.23

α) Ί) is the GVB magnon dispersion, and J is the effective nearest-neighbor exchange 
(see Section HEB). The error is ΔErms/Ί) (see Section ΠLB).
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GVB ORBITALS

Cu

Ag

Au

Li

Na

M.+ LINEAR

(fj) (Jt ∙ ∙∣J)

β β ∙
'

@ ∙ ’ .©

8 • 8

β o * • 8

Figure 1. The optimum GVB valence orbitals for M‡ and linear M‡ (low spin), 
M — Cu, Ag, Au, Li, and Na. Each orbital contains one electron (one orbital for 

M‡ and two orbitals for M^’, overlaps for M‡ are given in Table 6). For Figures 
1-2, the nearest-neighbor distance (a) is equal to that of the bulk metal (α = 2.556, 
2.889, 2.884, 3.014, and 3.659 Â for Cu, Ag, Au, Li, and Na, respectively), and 
the boxes are scaled to α (box width = 3.6 a). Squares mark the atomic positions. 
Contours mark even amplitude increments of 0.2α-3∕2. Solid and dashed contours 

denote positive and negative amplitudes, respectively. For M‡, the GVB and 
UHF orbitals are identical, since there is only one valence electron. For each of 
the linear clusters, the GVB orbitals are very similar to the UHF orbitals. 
However, for low-spin , UHF leads to net spin densities whereas GVB does 
not.
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GVB ORBITALS 

(a) μ=0, φ1 (b) μ=l, φ1

Figure 2. GVB valence orbitals for each of the Cu10, Agio, Auχo, Liχo, and Nai0
ring clusters (obtained by Hartree localization; adjacent orbital overlaps are given
in Table 2). (a) Shows the low-spin (μ = 0) orbital, (b) Shows the high-spin
(μ = 1) orbital.
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 3. The GVB magnon spectra for the Cu10, Agio, Auχ0, Liχo, and Nai0 ring 
clusters. In each case, (i) data points show the GVB total energy as a function 
of the magnetization (see Table 1), (ii) a curve shows the fit of the Heisenberg 
model to the GVB total energies (see Table 3), and {iiz) the GVB total energy 
for μ = 1 is chosen as zero energy. Analogous figures all follow this convention for 
GVB (Figures 4-10, and Figure 15).
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 4. The GVB magnon spectra for Age, Aga, and Agi0. Data points show 
the GVB total energies, and the curves show the fits of HM to the GVB total 
energies (see Table 3).
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 5. The Cum magnon spectrum. Data points show the total energy as a 
function of the magnetization for GVB, UHF, and HF, as indicated (see Table 
1). The GVB results are interpolated by the Heisenberg model (see Table 3). 
The UHF results are interpolated by the generalized Ising model. The HF results 

are joined by straight line segments. Each of these three wavefunctions gives the 
same total energy for μ = 1 (see Section II); hence, the total energy for μ = 1 is 
chosen as zero energy. Analogous figures all follow this convention (Figures 6-10 

and Figure 15).
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LOW HIGH
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MAGNETIZATION (μ)

Figure 6. The Auχo magnon spectrum, as calculated with GVB, UHF, and HF, 

as indicated (see Table 1).
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 7. The Ag8 magnon spectrum, as calculated with GVB, UHF, and HF, as 
indicated. The GVB results are interpolated by the Heisenberg model (see Table 
3).
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Figure 8. The Ag10 magnon spectrum, as calculated with GVB, UHF, and HF, 
as indicated (see Table 1).
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Figure 9. The Naχo magnon spectrum, as calculated with GVB, UHF, and HF, as 
indicated. The GVB results are interpolated by the Heisenberg model (see Table 
3).
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Figure 10. The Liιo magnon spectrum, as calculated with GVB, UHF, and HF 

as indicated (see Table 1).
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 11. The energy stabilization due to spin optimization (Egvb — Euhf} as 
a function of magnetization for the various Mw ring clusters (see Table 5).
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)

Figure 12. The energy stabilization due to static electron correlation (Egvb —

Ebf) as a function of magnetization for the various Mio ∏∏g clusters (see Table
5).
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LATTICE CONSTANT (a, A)

Figure 13. The effective nearest neighbor exchange energy ( J^} as a function of a 

for Li5s Liβ, Li7, Li8, and Lioo, as indicated.
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Reff (Â)

Figure 14. The effective nearest neighbor exchange energy (t∕) as a function of 
the effective distance between adjacent orbitals (Reff} for Li5, Lie, Liγ, and Lig, 
as indicated.
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Figure 15. The Hχo magnon spectrum. Data points show the total energy as a 
function of the magnetization for GVB, UHF, and HF, as indicated. The GVB 
results are interpolated by the Heisenberg model (see Table 8). The UHF results 
are interpolated by the generalized Ising model. The HF results are joined by 
straight line segments. Each of these three wavefunctions gives the same total 
energy for μ = 1 (see Section II); hence, the total energy for μ = 1 is chosen as 
zero energy.
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Chapter 5

New Concepts of Metallic Bonding Based on 

Generalized Valence Bond Wavefunctions

Chapter 5 consists of three published articles coauthored with William A. 

Goddard III. Reprints of these articles follow.



319
Volume 55, Number 23 PHYSICAL REVIEW LETTERS 2 December 1985

New Concepts of Metallic Bonding Based on Valence-Bond Ideas
Mark H. McAdon and William A. Goddard, III

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125 
(Received 23 May 1985)

From generalized-valence-bond calculations on numerous Li-atom clusters (Li, and Liβ+, 
n ≤ 13), we conclude that the optimum bonding involves singly occupied orbitals localized intersti- 
tially (in tetrahedral Rules based on the calculations are used to predict low-energy isomers (lead­
ing for Lilj+ to low-symmetry structures that are significantly more stable than the icosahedron but 
retain local fivefold-symmetry axes) and are applied to infinite metallic systems.

PACS numbers: 36.4O.+d, 31.10.+z, 31.2O.Tz, 71.10.+x

The valence-bond principles of structural chemis­
try,1 so useful in rationalizing the geometries and 
bonding for nonmetallic molecules and solids,2^5 have 
not been similarly useful for understanding metallic 
systems. In order to lay the foundation for the 
development of analogous simple principles for metal­
lic systems, we have applied ab initio generalized- 
valence-bond (GVB) approaches to examining the 
bonding in various one-, two-, and three-dimensional 
clusters of Li atoms. The qualitative principles arising 
from these studies are presented here (further details 
will appear elsewhere).6 These principles should be 
useful in rationalizing and predicting the local 
geometric and electronic structures for clusters and 
amorphous metals,6 and for defects and interfaces of 
crystalline metallic systems.

For one-dimensional systems we find one singly oc­
cupied orbital localized at each bond midpoint, forming 
one-electron bonds. This is shown for the Lij0 ring 
cluster in Fig. 1. These bond-localized orbitals are 
very similar for other lithium rings and for Li2 + , linear 
Li3+, Cu2+, and linear Cu3+.6 The GVB wave func-

F1G. 1. The GVB orbitals for one of the two primary res­
onance structures for the Lil0 ring cluster. Squares mark the 
atomic positions and dots joined by thin lines represent the 
electrons and spin coupling. Solid and dashed contours 
show positive and negative orbital amplitudes, respectively. 
Contour spacings are at 0.015 a.u. (a) One singly occupied 
GVB orbital, (b) Contours ⅛ 0.045 a.u. for all ten GVB or­
bitals.

tion of the Li10 ring involves full optimization of the 
spin coupling (42 possible resonance structures) but is 
dominated by two primary resonance structures having 
adjacent (singly occupied) bond orbitals spin paired. 
This model for the bonding predicts correctly the dis­
tortions that occur when the ring structure is allowed 
to relax. The optimum geometric distortion is the one 
that increases the overlap of adjacent spin-paired orbi­
tals while decreasing the overlap of adjacent orbitals 
that are not spin paired. In square H«, the orbitals are 
atom centered, leading to an unstable rectangular dis­
tortion (no chemical bonding between the two H2 frag­
ments). For square Li4, the orbitals are bond cen­
tered, leading to a rhombic distortion (Fig. 2(a)] that is 
unstable as a result of one-electron bonding. Such dis­
tortions lower the energy of one resonance structure 
but raise the energy of the other resonance structure, 
reducing the resonance energy substantially. Nev­
ertheless, square Li4 (0 — 90°) distorts to a rhombus6·7 
(β0p,-57,3°). Similarly, hexagonal Li6 (0 —120°) dis­
torts to a trigonal hexagon6·8 (0opt-69.3°), as indicat­
ed in Fig. 2(b). Thus, optimum planar structures for 
L¼ and Li⅛ both resemble planar close-packed clusters.

Similar studies of larger two-dimensional close- 
packed arrays of Li atoms lead to the general result 
that interior regions have singly occupied orbitals local­
ized at the centers of equilateral triangles while surface 
(edge) regions have singly occupied orbitals localized at

FIG. 2. Geometric distortions for the (a) Li4 and (b) L⅛ 
ring clusters. Circles with dots represent the singly occupied 
bond orbitals. Lines ∞nnecting the dots show the dominant 
spin pairing.

© 1985 The American Physical Society 2563
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bond midpoints. This is illustrated for planar Li1o in 
Fig. 3.

Use of simple pair-additive potentials would suggest 
that tetrahedral Li4 is favored over the rhombus since 
it has one extra “bond.” However, the rhombus is 
the stable geometry as predicted by the following GVB 
argument. The above results suggest that the four or­
bitals of tetrahedral Li4 would be localized on the four 
faces and spin paired. The problem with this is that 
the orbitals in different pairs would be quite close 
(0.41 Ä, where R is the side length), leading to large 
repulsive interactions. Instead, the optimum orbitals 
are localized on four of the six edges and spin paired 
so that nonpaired orbitals are at least 0.5Λ apart. How­
ever, the distortion to a planar (rhombic) structure in­
creases the distance between nonpaired orbitals to 
0.89Ä, while retaining the favorable spin pairing. 
Thus the bonding principles predict and the calcula­
tions confirm that the stable geometry of Li4 is the 
rhombus.

We next discuss the lowest-energy spin singlet for 
Li13+ clusters having a central (bulk) atom and twelve 
surface atoms: (i) Z⅛, the icosahedron; (ii) fee, the 
truncated octahedron corresponding to the nearest 
neighbors of a face-centered-cubic lattice; and (iii) 
hep, the hexagonal array corresponding to the nearest 
neighbors of a hexagonal close-packed lattice.

For ∕⅛, the ground state involves orbitals localized at 
the centers of twelve of the twenty triangular faces and 
spin paired in rhombi (0.63 overlap) just as for the 
bulk atoms in Fig. 3. The four triangular faces adja­
cent to a spin-paired rhombus are empty (to avoid 
repulsive interactions between unpaired orbitals), as 
indicated in Fig. 4.

The fee and hep clusters have total energies 0.26 eV 
and 0.56 eV (per cluster) higher than Z⅛ (i.e., 20 
meV∕atom and 44 meV/atom), respectively. Both 
have only eight tetrahedra, and some of the tetrahedra 
have two spin-paired orbitals (on opposite faces). For

FIG. 3. All ten GVB orbitals for the principal resonance 
structure of planar close-packed Li∣0. Squares mark the 
atoms, and dots joined by thin lines represent the paired 
electrons. The contours represent 0.015-a.u. increments of 
orbital amplitude, starting at 0.060 a.u. Each orbital is occu­
pied by only one electron.

fee, each tetrahedron shares edges (and no faces) with 
three others and the electrons are distributed so that 
each edge-sharing pair of tetrahedra contains three 
electrons. For hep, there are three pairs of face-shared 
tetrahedra. This accommodates three pairs of spin- 
paired orbitals. The top and bottom tetrahedra are iso­
lated and each contains one electron pair. This leaves 
two electrons that end up along two of the three equa­
torial edges that do not border a tetrahedron.

From these various results emerge the following 
rules for three-dimensional metallic structures: (a) 
Orbitals (each with one electron) are localized in dif­
ferent tetrahedral hollows where possible. (∕3) If 
necessary, two orbitals may be placed in one 
tetrahedron (localized on opposite faces or edges) but 
they must be spin paired, (γ) No more than three 
electrons may be distributed between a pair of edge- 
shared tetrahedra. (δ) No more than two electrons 
may be distributed between a pair of face-shared 
tetrahedra, and these, must be spin paired (singlet), 
(e) Additional electrons must be in surface orbitals at 
edge or face sites that do not share edges with occu­
pied tetrahedra. (ζ) It is unfavorable to occupy more 
than four tetrahedra (or pairs of tetrahedra) sharing 
one central atom.

We expect that these rules may apply to the valence 
sp electrons of a variety of structures for elemental 
metals and alloys, including fee, hep, y-brass,9∙10 the 
Laves phases,10 and Frank-Kasper alloys.10,11 The

(a) TOP VIEW tb) SIDE VIEW

FIG. 4. GVB orbitals for one of the five primary reso­
nance structures of icosahedral Li∏+. The atoms are 
marked by circles; dots jointed by thin lines represent bond- 
paired electrons. Only one of the six equivalent bond pairs 
is shown (0.015-a.u. contour increments). Shaded triangular 
faces do not contain orbitals.

2564
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present rules may require modification for metallic 
structures possessing severely distorted tetrahedra 
(e.g., body-centered cubic) and for structures contain­
ing insufficient tetrahedra to accommodate all valence 
spelectrons (e.g., rule «).

The above principles are consistent with the relative 
energies and suggest that the optimum structures of 
small clusters should maximize the number of tetrahe­
dra. However, for the icosahedron, the twenty 
tetrahedra all share the same central bulk atom, violat­
ing rule ζ. This led us to predict several new Li,3 + 
optimum-tetrahedral (OPTET) clusters that maximize 
the number of tetrahedra while satisfying rule ζ. Each 
new structure6 has fifteen tetrahedra and is lower in 
energy than ∕⅛. The best (Fig. 5) has a total energy 
0.58 eV lower than the icosahedron (45 meV∕atom)! 
These OPTET clusters generally lead to local fivefold- 
symmetry axes, and since exact fivefold symmetry is 
inconsistent with three-dimensional crystal structure, 
OPTET bonding could play an important role in the 
stabilization of amorphous structures.6

Larger OPTET clusters are constructed by the addi­
tion of atoms to concave surface sites of the smaller 
OPTET clusters, forming at least two new tetrahedra 
for each atom added. The Li26 OPTET cluster is iso- 
structural with the Cuι0Zn16 cluster of Cu5Zn8 (γ- 
brass)9 (both contain 57 tetrahedra). The γ-brass 
structure is composed of these 26-atom clusters cen­
tered at body-centered-cubic (bcc) lattice positions. 
The γ-brass alloys usually have a valence- 
electron/atom ratio of 21/13, although an alloy of ap­
proximate composition Ag3Li10 also forms the γ-brass 
structure.10 Maximizing the number of tetrahedra also 
seems to be important for the stability of many other 
alloy structures.11

With such small clusters, surface effects are quite

FIG. 5. The lowest-energy Li∣3+ OPTET isomer. This 
cluster consists of a central tetrahedron (shaded circles, dot­
ted lines), four capping atoms (C), and five bridging atoms 
(B). This leads to a C2-symmetry axis, two reflection 
planes, and five local C5-symmetry axes.

large so that planar clusters (which lead to an increased 
number of internal sites) are quite competitive. We 
have found a planar Li13+ cluster that has a total ener­
gy 0.18 eV lower than lh (but 0.40 eV higher than the 
OPTET cluster).

These considerations suggest that there may be 
several regimes of structure for metal clusters. The 
smallest clusters either form planar structures (as in 
Li4 and Li⅛) or have very-low-energy planar configura­
tions. For intermediate size, the OPTET structures are 
stable (e.g., Li8, Li13+, and perhaps extending well 
into the 20’s), while very large clusters may yield 
structures approaching bulk character (hep, fee, bcc). 
The surface reactivities12 of these clusters can be ex­
pected to show dramatic dependences on the cluster 
regime (e.g., whether planar, OPTET, or high sym­
metry is favored).

Next, we apply these GVB ideas to close-packed 
(hep and fee) bulk metals and show how to rationalize 
certain solid solubilities and alloys in terms of 
electron/atom ratios.

Close-packed (cp) systems have twice as many 
tetrahedra as atoms. For the Be and Zn columns, the 
GVB mode! suggests that the optimum electronic 
structure be visualized in terms of one valence elec­
tron per tetrahedron. For a cp alkali or noble metal, 
only half the tetrahedra need be occupied by electrons, 
making the cp metals far more stable than the small cp 
clusters (where all tetrahedra are occupied, some with 
two electrons). Our rules do not state which cp struc­
ture is favored for these systems. Indeed, the alkali 
metals13,14 and the alkaline-earth metals13 seem to 
have nearly identical energies for hep, fee, and bcc. 
The noble metals (Cu,Ag, and Au) are all fee while Zn 
and Cd are hep.

For cp systems with three valence electrons per 
atom, half the tetrahedra must be doubly occupied, 
while the other half are singly occupied. In fee, each 
tetrahedron shares edges with six other tetrahedra, 
whereas pairs of tetrahedra are face shared in hep. On 
the basis of rule δ, we conclude that fee should be 
strongly favored over hep, and indeed, neither B, Al, 
Ga, nor In leads to hep, while Ai leads to fee and In to 
a slightly distorted fee.

With four valence electrons per atom, ail tetrahedra 
would be doubly occupied, strongly disfavoring either 
cp structure (rules y and δ). Indeed, except for Pb, 
the group-IV elements are either nonmetals (with 
strong two-electron covalent bonds) or metals with low 
coordination numbers. It is well known that Hg, Tl, 
Pb, and Bi exhibit properties suggesting that the (6s) 
pairs are particularly stable and not easily hybridized 
with the p orbitals to form normal sp3 hybrids, perhaps 
rationalizing the fee form for Pb.

Rules γ and δ place upper limits of 2e^∕atom for 
hep and 3e^∕atom for fee. These limits are consistent
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with known alloy formations and solid solubilities,10·15 
e.g., comparing atoms with similar sizes (Ag (le-), 
Zn (2e-), AÎ (3e-), andoSn (4e-); metallic radii13
1.44, 1.39, 1.43, and 1.54 A, respectively!, Ag and Zn 
are both highly, soluble in fee Al (23.8 and 66.5 at.%, 
respectively), while the solubility of Sn in Al is only 
0.02 at.%. Similarly, the solubilities of Al and Sn in 
hep Zn are small (2.4 and 0.14 at.%, respectively), 
while Ag is 5 at. % soluble in Zn and forms hcp-like al* 
loys with up to 63.8% Ag (Ag5Z∏t forms y-brass). 
The 3e-∕atom limit does not restrict solubilities in fee 
Ag (le~/atom); hence, the solubilities are all high 
(Zn, 40.2 at. %; Al, 20.34 at. %; Sn, 11.5 at. %).

We believe that these ideas of interstitially localized 
singly occupied orbitals will form a useful starting 
point in developing valence-bond ideas for predicting 
geometries, electronic structure, and properties of me­
tallic clusters, and for describing localized states in 
metals and alloys such as defects or interfaces. These 
ideas may also provide useful concepts for predicting 
transport properties and the chemistry and catalytic 
properties of such systems.

This work was partially supported by the National 
Science Foundation through Grant No. DMR82- 
15650.
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NEW CONCEPTS OF BONDING IN NONPERIODIC METALLIC SYSTEMS*

Mark H. McAdon and William A. Goddard III

Arthur Amos Noyes Laboratory of Chemical Physiest
California Institute of Technology, Pasadena, California 91125

Using the generalized valence bond method, we have examined numerous Li 
atom clusters (up to 13 atoms). Our conclusion is that the optimum 
metallic bonding involves singly-occupied orbitals localized interstitially, 
e.g., in bond midpoints, triangular hollows, and tetrahedra. For Li‡n, the 
low energy isomers have local five-fold symmetry axes (as in an icosahedron) 
but lead to low overall symmetry. The guiding principle is that the 
optimum structures (denoted OPTET) optimize the number of tetrahedral 
hollows while keeping the sharing of vertices below a threshold. These 
OPTET structures are significantly more stable than the high-symmetry 
icosahedral, hcp-like and fcc-like clusters. Speculations are given on 
the relevance of these results for amorphous metallic systems.

1. INTRODUCTION
The valence bond principles of structural chemistry∖ based on spin

pairing of hybridized atomic orbitals localized on various atoms, lead to
excellent rationalization of the geometries and bonding for nonmetallic
molecules and solids; e.g.s Si and Ge are tetrahedral in both crystalline and
amorphous phases, Se and Te lead to helical chains for both crystalline and
amorphous solids, As2∣ is tetrahedral, etc. These simple valence bond ideas of
nonmetallic systems have been confirmed by ab initio generalized valence bond 

2 3(GVB) calculations ’ that lead directly to localized spin-paired atomic 
orbitals corresponding to various bond pairs. Valence bond principles have
also proven valuable in understanding defects and surface reconstruction in

4 5nonmetallic solids such as the Si vacancy and the GaAs surface .
This paper presents the qualitative principles of our new model of metallic 

bonding. These principles have led to the prediction of several low-energy 
(OPTET) isomers that (coincidentally?) have local five-fold symmetry axes and 
cannot lead to bulk solids with long range (periodic) order. GVB calculations 
confirm that these OPTET clusters are lower in energy than high symmetry 
icosahedral, fcc-like and hcp-like clusters. These principles may lead to new 
rationalizations and predictions concerning the geometric and electronic 
structures of defects and interfaces for metallic systems. In particular,these

*This work was partially supported by a grant from the National Science 
Foundation (No. DMR82-15650).
+Contribution No. 7221

0022-3093∕85∕S03.30 © Elsevier Science Publishers B.V. 
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principles may lead to new insights regarding how local structure and alloying 
may control formation of amorphous metallic systems.

2. RESULTS
In order to lay the foundation for developing these chemical concepts, we 

have used GVB approaches to examine the bonding in various one-dimensional 
(ID), two-dimensional (2D) and three-dimensional (3D) clusters of Li atoms®. 

In all cases, we discuss the many-electron states in which the electrons are 
all spin-paired (singlet). The electronic structures of the various clusters 
are given in terms of the singly-occupied GVB orbitals.

2.1 One-Dimensional Systems
The optimum GVB wavefunction of Li∩θ) has a singly-occupied orbital 

localised at each bond midpoint. Typical bond orbitals are shown in Figure 1o
for the Liθ chain at an internuclear separation of R=3.1 A (near the

FIGURE 1 +
The GVB description of the (a) Lig, (b) Lig 
and (c) Lig chain clusters. The schematic 
diagrams show all of the singly-occupied GVB 
orbitals with the spin coupling for the prin­
cipal resonance structure represented by 
connected dots. In each case orbitals at 
the middle and both ends are shown in con­
tour plots. Contour spacings are at 0.015 
a.u.

LiΘLi Lι0LiφLi

β 8B

(a) (b)

FIGURE 2
Contour orbital plots for the 
GVB orbitals of (a) Li∣ and 
(b) linear Li3. Contour spa­
cings are at 0.015 a.u.
R = 3.1 A.
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0 6 +equilibrium bond distance of Li∩θp Rθ=3.14 A ]. For Liθ, Liθ and Liθ, 
there are seven bond-localized orbitals (each very similar to the bond orbitals 
of Lij and linear Lij as shown in Figure 2) and zero, one or two "surface" 
orbitals. In the ground state, adjacent (singly-occupied) bond orbitals are 
spin-paired [leading to two equivalent resonance structures]; however, the 
overlap between paired bond orbitals is small (≈0.34∙, normal two-electron 
bonds have large overlaps, 0.7 to 0.8), so that even the higher spin states 
involve similar orbitals and strong bonding. Even the maximum spin state 
(e.g., triplet (S=1) for Li^ or S=3.5 for Liθ) is bound strongly with respect 

to the separated atoms limit! Indeed the calculations lead to a vanishingg
singlet-triplet gap for Liθ∣ .

2.2 Two-Dimensional Systems
Starting with the Hij and Li^ symmetric ring clusters (and considering just 

one of the two equivalent resonance structures), the optimum geometric 
distortion is expected to increase overlap of adjacent spin-paired orbitals 
while decreasing overlap of adjacent nonpaired orbitals. In square H4, the 
orbitals are atom-centered, leading to an unstable rectangular distortion

H H ""^* H ∙∙∙ H

with no chemical bonding between the two Hg fragments. For square Liz^, the 
orbitals are bond-centered, leading to a rhombic distortion

which is stable due to the one-electron bonding. Such distortions lower the 
energy of one resonance structure (and raise the energy of the other resonance 
structure) reducing the resonance energy substantially. Nevertheless, square 
Li^ (θ = 90°) distorts to a rhombus (θopt = 57.3o)^. Similarly, hexagonal Liθ 
(θ = 120°) distorts to a trigonal hexagon (θ0pt = 69.3o)∖ Potential energy 

curves for these distortions are shown in Figure 3. Allowing similar distor­
tions for l∙i(-∣Q) results in a zig-zag chain (alternating 70° and 180° angles).
The optimum planar structures for Liλ and Li, both resemble planar close-packed 

4 O
clusters. As shown in Figure 4, the optimum orbitals for Liθ are quite similar 
to those in Li∩θj.

Examining larger two-dimensional close-packed arrays of Li atoms, we find 
the general result that interior regions tend to have orbitals localized at
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Ld
50 70 90 110 130 60 90 120 150 180

θ (DEGREES)
(a)

θ (DEGREES)
(b)

FIGURE 3.
Potential Energy curves for geometric distortions of the (a) Li4 and (b) Liθ 
clusters. Dashed curves represent the separate resonance structures, while 
solid lines show the energy including all possible resonance structures.
The energy per atom is given relative to Li2 (at equilibrium). Diagrams 
above the plots show the cluster geometries at various angles (θ) where 
squares mark the atomic positions and circles mark the positions of the 
orbitals.

the aenters of equilateral triangles while surface (edge) regions have
orbitals localized at bond midpoints. Extrapolating to the infinite
two-dimensional (close-packed) system [Li(2d)-^ ^eads t0 the description in
Figure 5a, where alternate pairs of triangular hollows have spin-paired 

g
singly-occupied orbitals and adjacent such pairs are empty .

This GVB wavefunction for Li^g) would lead to metallic character. Half
of the triangular hollows are empty, providing means for conduction. The 
structure shown in Figure 5a is only one of an infinite number of low-lying 
resonance structures, another of which is illustrated in Figure 5b.
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FIGURE 4
GVB orbitals for the planar Lig cluster. Solid and dashed lines show positive 
and negative orbital amplitudes, respectively, (a) Shows one of the six 
equivalent singly-occupied orbitals (0.015 contour spacings), (b) Shows 
contours >_ 0.045 a.u. for all six orbitals. The atomic positions are marked 
by squares. The connected dots represent the dominant spin pairing.

(b)

FIGURE 5
The GVB description of Li(2D)" (a) Shows contours 0.060 a.u. for the planar
Li^2 cluster, (b) shows an alternate resonance structure for Li^g) where 

connected circles represent the singly-occupied orbitals and shaded rhombi 
represent empty hollows.

(b)
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2.3 Three-Dimensional Systems
First we consider several high symmetry clusters consisting of one central 

(bulk) atom and 12 surface atoms: the icosahedral (I^), face-centered cubic 
(fee) and hexagonal close-packed (hep) Li†3 clusters. In each case we find 

that the orbitals prefer to be singly-occupied and centered at tetrahedral 
interstices.

Of these three clusters, I∣ι is lowest in energy. The I∣1 ground state 
involves orbitals localized at the centers of 12 of the 20 triangular faces 
and spin-paired in rhombi (0.63 overlap) just as for the bulk atoms of Li^pp

(a) TOP VIEW (b) SIDE VIEW

FIGURE 6
GVB orbitals for one of the five equivalent primary resonance structures of 
icosahedral Lijl^3 . The atoms in the plane are marked by solid circles while 
atoms above and below the plane are marked by open circles. Connected dots 
represent the spin-paired electrons. Only one of the six equivalent bond 
pairs is shown (0.015 a.u. contour increments). Solid and dashed lines show 
positive and negative orbital amplitudes, respectively. Shaded triangular 
faces do not contain orbitals.
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The four triangular faces adjacent to a spin-paired rhombus are empty (to 
avoid repulsive interactions between unpaired orbitals), as indicated in 
Figure 6.

The fee and hep clusters lie 0.26 and 0.57 eV higher than I^, respectively. 
Both fee and hep have only eight tetrahedra, thus, some of the tetrahedra have 
two spin-paired orbitals (on opposite faces). For fee, the tetrahedra are 
edge-sharing, and all twelve electrons are accomodated by the tetrahedra.
For hep, six of the tetrahedra share one face with an adjacent tetrahedron, and 
ten of the twelve electrons are accomodated by tetrahedra, leaving two 
remaining electrons that end up along surface sites (bond midpoints) that do 
not border a tetrahedron.

In order to compare the energies of planar and 3D clusters, we solved for
4.

the ground state electronic structures of several close-packed planar Li-∣3 
clusters. The lowest energy planar structure (Figure 7) is 0.18 eV lower 
than Ih! Apparently, with such small clusters, surface effects are quite 
large so that planar clusters (which lead to an increased number of internal 
sites) are quite competitive.

FIGURE 7
GVB orbitals for planar close-packed Li∣,. Only contours >. 0.060 a.u. are 
shown (0.015 a.u. spacings). Squares mark the atomic positions. The dominant 
spin pairing is shown by the connected dots.

The above results suggest that the optimum structures of small clusters 
should maximize the number of tetrahedra and the number of internal sites.
The icosahedron has the maximum number of tetrahedra (20), however, these 20 
tetrahedra all share the same central bulk atom. Guided by a set of rules 
(See Section 3) based on the I^, fee and hep results, we considered alternative 
arrangements of 13 atoms that maximize the number of tetrahedra while minimiz­
ing the number of tetrahedra shared by any given atom. This led us to predict
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(I) (II)

(III)

FIGURE 8 +
Three low-lying OPTET L1∙∣3 isomers. 
Cluster (I) consists of a central 
tetrahedron (shaded atoms, dotted 
lines), four capping atoms (C) and five 
bridging atoms (B). Cluster (II) dif­
fers from (I) in the position of only 
one atom. The shaded atoms of cluster 
(III) form a portion of the icosahedral 
surface. All three clusters have 
multiple local five-fold symmetry axes. 
Clusters (I), (II), and (III) have 
point group symmetries c c and c 
respectively. m 8 m

several new Li^ clusters [(I), (II) and (III) as shown in Figure 8], each 

lower in energy than I∣1∙ The best, the tetra-capped penta-bridged tetrahedron 
(I), has an energy 0.58 lower than the icosahedron! The Li†^ isomers in Figure 

8 all contain 15 tetrahedra. Structures (I) and (II) differ in the location of 
the thirteenth atom. In (I), the thirteenth atom bridges the central tetra­
hedron and in (II) the thirteenth atom occupies an exterior position. Cluster 
(III) was obtained by removing two adjacent atoms from the surface of the 
icosahedron and capping surface sites on the opposite side of the cluster 
(allowing all of the atoms to relax). Clusters (II) and (III) are only 0.08 
and 0.19 eV higher than (I) respectively.

In summary, the relative energies of the various Li†3 clusters are:

(I), 0.00 eV; (II), 0.08 eV; (III), 0.19 eV; planar, 0.40 eV; Ih, 0.58 eV; 
fee, 0.84 eV; hep, 1.15 eV.
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3. DISCUSSION
Based on these results for the high symmetry Lii^2 clusters we derived the

following rules for 3D structures®.

u) Orbitals (each with one electron) are localized in different tetrahed­
ral hollows where possible.

β) If necessary, two orbitals may be placed in one tetrahedron (localized 
on opposite faces or edges) but they must be spin-paired.

γ) However, no more than three electrons may be distributed between a 
pair of edge-shared tetrahedra.

■■>) No more than two electrons may be distributed between a pair of 
j'aee-shared tetrahedra, and these must be spin-paired (singlet).

ε) Additional electrons must be in surface orbitals at edge or face sites 
that do not share edges with occupied tetrahedra.

ζ) It is unfavorable to occupy more than four tetrahedra (or pairs of 
tetrahedra) sharing one central atom.

Rule ζ is related to the fact that the low-lying valence orbitals of Li are 
ns and 2p, so that hybridization can lead to only four (linearly independent) 
orbitals associated with one atom. This also reduces the (Pauli principle) 
repulsion between orbitals that are not spin-paired (this becomes increasingly 
repulsive when the orbitals are close). The above principles are consistent 
with the relative calculated energies since I^ is lowest, with fee and hep 
0.26 and 0.57 eV higher, respectively.

We have used these rules to predict the OPTET (optimum tetrahedral) 
clusters presented in Figure 8. It is interesting to note that the OPTET 
clusters generally posess local fivefold symmetry axes (as does I∣1). Exact 
five-fold axes are not consistent with three-dimensional space groups and hence 
these OPTET arrangements which optimize the bonding in clusters are inconsis­
tent with crystalline symmetry (long range order). It is interesting to 
speculate whether this OPTET type of local bonding with its penchant for local 
five-fold symmetry axes may be the driving force for forming amorphous struc­
tures in metallic systems^.

These considerations suggest that there may be several regimes of structure 
for metal clusters. The smallest clusters either form planar structures (as in 
Li4 and Lig) or have very low energy planar configurations. For intermediate 
size, the OPTET structures are stable [e.g., Liθθ, Li†^» ant^ probably extending 

well into the 20's], while for very large clusters, structures approaching bulk 
character (hep, fee, bcc) may be stable.

The larger OPTET clusters are derived from adding atoms to the surface of 
the smaller OPTET clusters. This involves adding atoms to concave sites,
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forming at least two new tetrahedra for each atom added. For larger clusters, 
the number of tetrahedra shared by a given atom will tend to increase as the 
ratio of empty to occupied tetrahedra increases. We expect there may be many 
Li(λl) OPTET isomers lying within 0.1 eV of the optimum structure for larger 
values of « (where n is the number of atoms), and hence a greatly increasing 
number of different clusters will be in thermal equilibrium for larger n.
Some of these clusters may be suitable nuclei for forming crystalline systems 
while others may prefer growth into amorphous solids. The relative energies 
and numbers of the different types of clusters may thus play an important role 
in controlling the kinetics for forming crystalline vs. amorphous systems.

3.1 Force Fields
Ab initio quantum chemical calculations of the quality descirbed above are 

limited to a relatively small number of atoms (less than 100). In order to 
simulate the properties of a small portion of a metal we need to examine 
structures and kinetics for far larger systems (at least 1000 atoms).
Thus we believe that it is essential to develop force fields that accurately 
reflect the local bonding effects of metallic systems. The above studies sug­
gest that these force fields cannot be described merely in terms of nuclear 
positions but must also involve the positions of the localized (correlated) 
electrons. Consequently we have been using our cluster results to develop 
fqrce fields involving both nuclear and electronic coordinates®. These force 

fields involve such terms as atom - electon - atom bend and atom - electron 
- atom assymetric stretch, etc. Such force fields (involving multibody terms) 
may well provide a means for simulating amorphous metallic systems.
4. CONCLUSIONS

We believe that these ideas involving interstitially localized singly- 
occupied orbitals will form a useful starting point in developing valence bond 
ideas for predicting geometries, electronic structures, and properties of 
metallic clusters, and for describing localized phenomena in solids, such as 
defects or interfaces. They may provide useful conceptual ideas for predict­
ing the chemistry and catalytic properties of such systems and for predicting 
the factors controlling stabilization of amorphous systems.
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Using the generalized valence bond (CVB) method, we have examined the bonding in numerous small clusters of Li atoms (Li, and Lin+, n ≤ 13). Our conclusion is that the optimum bonding involves interstitially localized singly occupied orbitals, e.g., ( 1 ) bond-centered orbitals for one-dimensional clusters (e.g., rings such as Li4, Li4, Lit, and Li l0 and linear chains such as Li3+, Cu3+, Lis+, Li8, Liβ^, and Li∣3+), (2) equilateral-triangle-centered orbitals for planar close-packed clusters (e.g., Li∣0, Li∣24+, and Li)3+), and (3) tetrahedron-centered orbitals for three-dimensional clusters (examples here include three high-symmetry [icosahedral (Ih), face-centered cubic (fee), and hexagonal close-packed (hep)] Li∣3+ structures and three low symmetry [γ-brass-like] Li13+ structures. Of the three high symmetry Li33+ clusters, lh has the lowest energy while total energies for fee and hep are 0.26 and 0.56 eV higher, respectively. GVB wave functions for these three clusters suggest a set of rules predicting structures even more stable than the icosahedron. These lower energy structures [denoted as OPTET (optimum tetrahedral)] maximize the number of tetrahedra under the restrictions of the rules (e.g. minimizing the number of occupied tetrahedra sharing comers) and lead to relatively low symmetry, e.g. Cto, C,. These OPTET clusters coincide with truncations of the γ-brass structure. The lowest energy Li∣3+ OPTET cluster [γ-(4,4,5), C⅛] has a total energy 0.58 eV lower than that of the icosahedron. Suggestions are given on the relevance of these results for stability and reactivity of small clusters and on the extension of these ideas to infinite systems.
I. IntroductionThe valence bond (VB) principles of structural chemistry,1 based on spin pairing of hybridized atomic orbitals on various atoms, lead to excellent rationalization of the geometries and bonding for nonmetallic molecules and solids; e.g., bulk Si and Ge are tetraħedrally coordinated, Se and Te have helical chains in their solid forms, the As« molecule has a tetrahedron structure with a single bond along each edge, etc. These simple VB ideas of nonmetallic systems have been ∞nfirmed by ab initio generalized valence bond (GVB) calculations2 that lead directly to localized spin-paired atomic orbitals corresponding to various bond pairs. Valence bond principles have also proven valuable in understanding defects and surface reconstruction in nonmetallic solids, e.g. the Si vacancy3 and the GaAs(l 10) surface.4For metallic systems, there has not been an analogous set of simple principles to predict a priori the optimum geometries and structures of clusters, defects, or interfaces. In order to lay the
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foundation for developing chemical concepts for metallic systems, we have employed GVB approaches to examine the bonding in various one-dimensional (ID),5 two-dimensional (2D), and three-dimensional (3D) clusters of Li atoms. The results of this study have led directly to a new generalized valence bond model 
of metallic bonding·1 based on electrons localized in interstitial regions such as bond midpoints (ID clusters), triangular faces (2D clusters), and tetrahedral hollows (3D clusters). This model is
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(c)

(a)

Figure 2» The optimum GVB valence orbitals for (a) Li2*, (b) linear Li3*, (c) Cu/, and (d) linear Cu3*. Each orbital contains one electron. Two separate orbitals are shown for Li3* (b, 0.21 overlap) and two separate orbitals are shown for Cu3* (d, 0.40 overlap). The orbitals for Li3+ and linear Li3+ are shown for R ≈ 3.1 Λ. The orbitals for Cu2* and linear Cu3* are shown for R ≈ 2.556 Λ. All cases are drawn to equal scale (each box shows 6.2 À width). In Figures 2 and 3 and in similar figures that follow, solid contours denote positive orbital amplitudes and dashed contours represent negative orbital amplitudes (for normalized singly occupied orbitals). Unless otherwise noted, the contours represent orbital amplitude increments of 0.015 au and squares mark the atomic positions.
Figure 1. The simple VB description of metals [for the body-centered cubic Li( 110) surface). Thin lines connect nearest-neighbor atoms at the surface. Thick lines represent two-center, two-electron covalent bonds for one of numerous simple VB resonance structures.summarized by a simple set of rules (see section IV) based on singly occupied valence electron orbitals centered in tetrahedral hollows.We have used these rules to predict the low-energy Lil3+ isomers [denoted as OPTET. (optimum tetrahedral)]. GVB calculations confirm that these OPTET structures are significantly more stable than the traditional high-symmetry 13-atom structures. The high-symmetry icosahedron, fcc-like and hcp-like structures have total energies higher than the best OPTET cluster [OPTET(I)] by 0.58,0.84, and 1.14 eV, respectively. These OPTET isomers all have local fivefold symmetry axes which result from the ef­ficient packing of tetrahedra. Two of the three OPTET clusters (I and ∏) also clearly coincide with truncations of the y-brass structure. Thus, we also refer to these two OPTET isomers as γ-brass clusters. The correspondence of the third structure to a truncation of y-brass is rather subtle; however, OPTET(ΠI) is more clearly based on a modification of the icosahedron.We believe that these principles should prove useful in ra­tionalizing and predicting the geometric and electronic structures of such localized phenomena as defects, interfaces, and chemi­sorbed species for metallic systems. We have applied the principles to bulk close-packed metals and find that they are consistent with known solid solubilities and alloy structures. The OPTET clusters could also form a basis for certain classes of amorphous metals,7 since the exact fivefold symmetry axes favored by OPTET cannot lead to solids with long-range (periodic) order. Thus the principles presented here may lead to new insights regarding how local structure and alloying may control formation of amorphous metallic systems.Section II presents further background material. Results for the various clusters are given in section III and details of the calculations are given in the Appendix. Extension of the rules to bulk metals is given in section IV.
II. The GVB ModelThe simple VB description of metals1·8 involves two-center, two-electron covalent bonds between adjacent atoms (Figure 1). Since metallic systems have too few electrons and are t∞ highly coordinated to simultaneously allow one bond between each pair of adjacent atoms, the simple VB description involves numerous equivalent such bonding or resonance structures superimposed to describe the many-electron (total) wave function.1·8·’ This simple extension of the VB concepts so useful for nonmetallic systems has not led to a very useful description of metallic systems.A hint of the problem is seen from a simple estimate of the cohesive energy of lithium. The total cohesive energy or atom-
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(9) Feynman. R. P.; Leighton. R. B.; Sands. M, The Feyman Lectures on 

Physics·, Addison·Wesley: Reading, MA, 1965.

(c)

(a)

Figure 3. The optimum GVB valence orbitals for (a) Li atom, (b) Li2, (c) Cu atom, and (d) Cui. Each orbital contains one electron. Two separate orbitals are shown for Li2 (b, 0.58 overlap) and two separate orbitals are shown for Cu2 (d, 0.62 overlap). The scales (and bond lengths for the dimers) are consistent with Figure 2.ization energy of lithium would be estimated by adding all of the Li-Li bond energies to obtain the total bond energy for one bonding structure (resonance configuration) and then adding the additional stabilization (resonance energy) due to the interaction of all the resonance structures.’ The effective bond energy for each Li-Li bond can be estimated from the dissociation energy10 of the Li2 molecule into free atoms [Li(s)]l∕2Li2 — Li, = 0.53 eV/atom ( 1 )This can be compared with the experimental bulk atomization energy11 of the solid [Li,]Lis — Lil £s£ = 1.63 eV/atom (2)Thus, in order to explain the cohesive energy of the solid, the resonance energy would have to be 1.10 eV/atom, or over twice the intrinsic bond energy! Such a large resonance energy is clearly implausible.An alternative to such VB descriptions is suggested by the following observations.(1) The bond strength for the one-electron bond (Figure 2a) of the Li2+ molecule (1.30 eV12∙13 or 1.30 eV per valence electron) is 80% of the cohesive energy (per bonding electron) for Li metal [and a factor of 2.45 greater than the bond strength (per bonding electron) of Li2].
(10) Verma. K. K.; Koch, M. E.; Stwalley, W. C. J. Chem. Phys, t983, 

78, 5614. In order to compare bond energies for the bulk metal and for Li2, 
the total bond energy of Li2, 1.06 eV/motecule (Li2 — 2Li) is divided by 2, 
obtaining the per atom bond energy, 0.53 eV I atom.

(11) Huitgren, R.; Deaai, P. D.; Hawkins, D. T; Gleiser, M.; Kelley, K. 
K.; Wagman, D. D. Selected Values of the Thermodynamic Properties of the 
Elements·, American Society for Metals: Metals Park, OH, 1973.

(12) Konowalow, D. D.: Rosenkrantz, M. E. Chem. Phys. Lett. 1979. 61, 
489.

(13) Bernheim. R. A.; Gold, L. P.: Tipton. T. J. Chem. Phys. S983, 78, 
3635.
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The Journal of Physical Chemistry, Vol. 91, No. 10, 1987 2609GVB Studies of Metallic Bonding(2) The bonding in linear Li3+ involves two singly occupied orbitals,14 15 one localized at each Li-Li bond midpoint (Figure 2b) with an overlap (0.214) much smaller than that of normal two- electron bonds. These singly occupied bond orbitals are very similar to the optimum orbital of Li∕ (Figure 2a), but quite different from the 2s orbital of Li atom (Figure 3a) and the optimum orbitals of Li2 (Figure 3b) on which the simple VB model is based.Based on these observations,13 we suspected that the best simple description of extended Li systems is in terms of singly occupied 

orbitals localised interstitially. This led to the generalized valence bond studies reported herein on one-, two-, and three-dimensional lithium clusters that do indeed indicate that the bonding involves singly occupied orbitals localized in bond midpoints, triangular faces, and tetrahedral hollows. In addition, the valence orbitals for Cu atom, Cu2 (Figure 3c-d), Cu2+, and linear Cu3+ (Figure 2c-d) are very similar to those for Li atom, Li2 (Figure 3a-b), Li2+, and linear Lii+ (Figure 2a-b). [For these lithium systems, the optimum GVB orbitals are plotted for a bond length (R) of 3.10 Â, which is in the range of the experimental bond lengths (or nearest-neighbor distances) for Li2+ (3.113 ± 0.013 A),13 the close-packed form of Li, (3.105 Â at 78 K)16 and the body-cen- tered-cubic form of Li, (3.016 Â at 78 K).16 For the Cu systems, 
R ® 2.556 Â was chosen which corresponds to the value for face-centered-cubic Cu, at 298 K. For Cu, we used an effective potential17 18 while the Li calculations are all-electron ab initio (see the Appendix).] The similarity of the valence orbitals for the Cu and Li systems suggests that the results presented in this paper for lithium should also apply to the noble metals and the valence sp electrons of transition metals.
IΠ. ResultsIn the generalized valence bond (GVB) description, each valence electron is allowed to be in a different orbital, where the orbitals are allowed full freedom with respect to localization, delocalization, hybridization, and overlap. The form of the GVB wave function118 ensures that the Pauli principle and proper spin symmetry are obtained independent of the orbitals. Thus, GVB differs from Hartree-Fock type wave functions, where the proper spin sym­metry is obtained only when down-spin orbitals and up-spin orbitals coincide. Details of the GVB wave functions are given in AppendixA. In this section, it is sufficient to understand that the GVB wave function provides the optimal one-electron picture.118The orbitals are calculated self-consistently and the total wave function is thought of in terms of N electrons, each electron in its own optimum orbital (moving in the field due to the remaining 
N- 1 electrons in their optimum orbitals). Thus, we use the terms electron and orbital interchangeably. In general, we find that the GVB orbitals tend to be well localized, leading to a natural classification in terms of “bulk" orbitals or “surface” orbitals. We find that the bulk orbitals tend to be centered in bond midpoints, triangular faces, and tetrahedral hollows for ID, 2D, and 3D structures, respectively. Surface orbitals tend to be centered in surface triangular faces or bond midpoints for 3D structures, and in edge bond midpoints for 2D structures. For the linear chain clusters (ID), the surface orbitals tend to be at the ends of the chain, polarized away from the chain toward the vacuum.In this paper we focus upon clusters of Li atoms. However, similar calculations on other alkali metals (Na, K, Rb, Cs, Fr) and on noble metals (Cu, Ag, Au) are expected to yield very similar results.

(14) Kahn, L. R.: Goddard HI, W. A. J. Chem. Phys. 1972. 56. 2685.
(15) An early (unpublished) test of these ideas by T. H. Upton and W. A. 

Goddard Ill showed that the ground state of hexagonal Li⅛ involves one 
valence electron localized at each bond midpoint.

( 16) Donohue, J. The Structure of the Elements·. Wiley: New York, 1974.
(17) Hay, P. J.: Wadt, W. R. J. Chem. Phys. 198S. S2. 270. The effective 

potential for Cu included the effects of the [Ar] shell, leaving eleven electrons 
to be treated explicitly (3dlσ4st). It is fairly obvious that the second coefficient 
for the d-f potential should be -0.4621680 rather than the listed value of 
+0.4621680, and with this change we were able to reproduce the results listed 
by Hay and Wadt in Tables XIII-XIV of their paper.

(18) Goddard III, W. A. Ini. J. Quantum Chem. 1970, IIIS. 593. God­
dard III, W. A.; Ladner, R. C. J. Chem. Phys. 1969, 51. 1073.

Ll®LÎOLi0LifSLi2ÎLÎ®Li©Li

Figure 4. The GVB description of the (a) Li,^t. (b) Li,, and (c) Li,“ chain clusters (Ä “ 3.1 Â). The schematic diagrams show all of the singly occupied GVB orbitals with the spin coupling for the principal resonance structure represented by connected dots. In each case orbitals at the middle and both ends ate shown in contour plots. Overlaps for adjacent spin-paired bond-centered orbitals are ≈0.34. Overlaps for diffuse sur­face orbitals spin paired to adjacent bond orbitals are ≈O.52.

Figure 5. The GVB orbitals for one of the two primary resonance structures of the Li, ring cluster (R “ 3.1 Â). Squares mark the atomic positions and dots joined by thin lines represent the electrons and spin coupling, (a) One singly occupied GVB orbital, (b) Contours >0.045 au for all eight GVB orbitals. Spin-paired orbitals have overlaps of 0.36.
A. One-Dimensional Clusters. The valence electronic structure of the infinitely long ID Li chain [Li(iD)] involves one electron localized at each bond midpoint, each electron forming a one- electron bond as in Li2+. This is shown for the Li, chain (Figure 4) and for the Li, ring (Figure 5), where the adjacent atom interπuclear separation is R = 3.1 Â [near the equilibrium bond distance of Λe = 3.14 A5 for Liι ∣w]. The Liεψ, Lis, and Lig^ chains have seven singly occupied bond orbitals in common, one centered at each of the seven bond midpoints, and zero, one, or two singly occupied “surface” orbitals. Each of the seven bond orbitals contains one electron and is very similar to the bond orbitals of Li3* or linear Li3*. For the Li, ring, all eight valence electrons occupy bond midpoints.In the lowest energy (primary) configurations, adjacent singly occupied orbitals are spin-paired [leading to two equivalent res­onance structures for LiUD)]. The overlap between paired orbitals is small (=≈0.34 for adjacent bond orbitals and ≈0.52 for a surface orbital paired to a bond orbital), whereas normal two-electron bonds have large overlaps of 0.7 to 0.8; thus, the bonding is dominated by the one-electron bonds, with two-electron spin­coupling effects somewhat less important.5 The lowest energy many-electron states are all low spin. Nevertheless, higher spin states (including states with adjacent orbitals high-spin coupled) involve similar orbitals and also lead to strong bonding. [Indeed, even the maximum spin state (e.g., spin S = 4 for the Li, ring) is bound strongly with respect to the separated atoms limit!5]The orbitals in Figures 4 and 5 were optimized for the lowest energy resonance configuration (in some cases the orbitals are optimized for one of two equivalent lowest energy configurations). The Li,* chain has one unpaired electron, leading to four primary
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LOW HIGH
SPIN SPIN

MAGNETIZATION (μ)Figure 6. The total energy of Li∣0 (R » 3.1 A) as a function of magnetization for HF, UHF, and GVB wave functions. The symmetry restrictions imposed on the HF orbitals are indicated in parentheses. Lines connecting the HF energies serve as a guide to the eye. The low-spin and high-spin states are fit to an Ising model for UHF (dashed line) and to a Heisenberg model for GVB (solid line). The r∞t mean square errors for the fits of the Ising and Heisenberg models to the calculated energies of the four intermediate spin states are 0.044 and 0.010 eV for UHF and GVB, respectively.resonance structures (one for each alternate bond midpoint), of which the two configurations lowest in energy have the unpaired electron at the bond midpoint adjacent to one of the surface atoms (see Figure 4a). The Li, chain has all electrons spin paired, but it leads to one surface orbital that can localize on either end of the chain, leading to two equivalent primary resonance structures (see Figure 4b). The unpaired electron of Li,^ leads to five primary resonance configurations (see Figure 4c). Of these five config­urations, the two configurations with one unpaired surface electron are substantially higher in total energy («0.25 eV) than the three configurations with one unpaired bond electron. This is because the overlap for a surface orbital paired to an adjacent bond orbital is «53% larger than the overlap between two adjacent spin-paired bond orbitals. The Li, ring (Figure 5) has two equivalent primary resonance configurations [as does Li(∣D>]∙ The full GVB wave function for each of these four systems is dominated by the primary spin couplings, but this wave function allows a full optimization of the spin coupling and thus includes resonance configurations where nonadjacent orbitals are spin paired (for the low-spin Li, ring, there are a total of 14 resonance configurations). This is analogous to the VB description of benzene, involving the two Kekulé (primary) and three Dewar (secondary) resonance structures.1 In the full GVB wave function, the orbitals and spin coupling are optimized simultaneously, leading to orbitals that are similar to (but not identical with) those shown in Figures 4 and 5; e.g., the single-particle full GVB orbitals for the Li, ring are localized exactly in the center of the bond midpoints and have equal overlaps with each of the two adjacent orbitals, leading to a fully symmetrical (Ds*) description.
B. Electron Correlation Effects. At this point it is important to discuss the effects of electron correlation in describing the bonding in naked metal clusters. We shall illustrate these electron correlation effects with results for the magnon spectrum (spectrum of excited spin states) of the symmetrical Li∣0 ring calculated with the restricted Hartree-Fock (HF), unrestricted Hartree-Fock

♦ ♦€> ♦♦ ♦ ♦⅜(a) (b)Figure 7. The Wannier orbital (ω∣) for the (a) high-spin state and (b) low-spin state of the Li,0 ring. The scale and bond length (R = 3.1 A) are consistent with Figures 4 and 5. In each case, the Wannier orbital is obtained from a Fourier transformation of ten O,ω symmetry orbitals and orbitals <∣⅛, ω3,.... ωl0 are obtained by rotating <∣>∣.(UHF), and generalized valence bond (GVB) wave functions. The energy of Li∣o as a function of magnetization

(n = 10) is shown in Figure 6 for various wave functions (Ψ), where S is the eigenvalue (or spin quantum number) of the total spin operator (S2)S⅛,j-S(5+l)i⅛ts (4)e.g., 5, = 0, singlet; S = I, triplet, etc. A thorough discussion of the results of these calculations will be presented elsewhere;5 here, we shall simply touch upon the highlights. The general forms of these wave functions are discussed in greater detail in the Ap­pendix.The HF, UHF, and GVB wave functions are ail identical for valence electron total high-spin (μ = 1) states. Here, the optimum canonical valence orbitals are consistent with D,o∕, symmetry; i.e., they are what is commonly referred to as molecular orbitals (MO). The valence electron configuration of the lowest energy high-spin state of Li,□ is a∣5(i)e∣u(it)e2s(↑↑)e3u(↑↑)e4g(↑t)b2u(↑) where all valence orbitals are a and each electron is up-spin (↑ or a). This leads to an overall (many-electron) 11B2u state. The a,, orbital has zero radial nodes (m = 0), the doubly degenerate emfgιl0 orbitals have m radial nodes, and the b2ll orbital has five radial nodes (m = 5). As expected, the MO one-electron energies increase roughly as m1, where m is the number of radial nodes. The 11 B⅛ state of Lil0 is strongly bound, with a total bond energy of 2.63 eV with respect to separated atoms. Extrapolating the results for various Li„ rings and chains to infinite n leads to Li(lD) where the lowest energy high-spin state is bound with respect to separated Li atoms by 0.29 eV/atom.5The bonding in high-spin Li10 is due to high-spin coupled one-electron bond orbitals. Each MO in this wave function is composed of linear combinations of the ten localized bond-centered functions, one of which is shown in Figure 7a. Clearly, the orbital obtained from the high-spin state shown in Figure 7a is quite similar to the orbitals obtained from low-spin states shown in Figures 4 and 5. The Li 2p atomic functions (∕2p) are of vital importance in forming these one-electron bonds. The Li 2p functions can be split into three groups: prrL having their nodes in the plane of the ring, pr, pointing radially outward from the ring (and becoming τr orbitals in the limit as n -» ≈>), and pσ, tangent to the ring and pointing at adjacent atoms. Each localized bond orbital (ωi) as shown in Figure 7a would be referred to in the solid-state literature as a Wannier orbitaf and for Li10 the ω, are composed of roughly half 2s character and roughly half 2p<r character, e.g.
“i ≈ ∕⅛, + ∕ω> + Λ>∙λ - Λp,,b ( 5 )where a and b signify two adjacent centers (recall that the bonding combination of 2pσ orbitals is out-of-phase). The ω, also contain contributions due to 2s and 2p orbitals on nonadjacent atoms, but these contributions are quite small. The 2pσ orbitals are necessary to maintain the orthogonality of the adjacent high-spin orbitals. *

(19) Wannier. G. Phys. Rev. 1937, J2. 191.
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GVB Studies of Metallic Bondinge.g., the combinations∕2ia + ∕2pj and ∕2aj -∕2m are orthogonal. Hence the a,, orbital is simply the plus or bonding combination of all ten localized bond-centered orbitals and has no 2p character since the 2p coefficients of the ωi are out-of-phase. Likewise, the b2u orbital is derived from the antibonding ∞mbination of the ten localized bond-centered orbitals and has no 2s character since the 2s coefficients of the ωi are in-phase.The b2u orbital is crucial to the bonding of the high-spin Li∣0 ring. The ,lB∣u excited high-spin state of the Li,o ring obtained by the elementary excitation blu — b2u is totally repulsive at the HF level for all internuclear separations. Both the blu and b2ll orbitals are σ with respect to the plane of the ring and have five radial nodes (m = 5). However, the b∣u orbital is composed of the antibonding combination of 2s functions while the b2u orbital is composed of the bonding combination of 2pσ functions. It is important to note here that theories such as the jellium model20 and the Hûckel model21 would fail in distinguishing between the b∣u and b2ll orbitals (and hence the "Blu and llB2u states).Often single-determinant wave functions are used to describe the electronic states of extended systems. As discussed below, there are two general approaches: (1) UHF in which no re­strictions are made upon the orbitals, often leading to total (many-electron) wave functions that are not eigenfunctions of Sl (and often do not have the proper spatial symmetry), and (2) HF in which spin and/or spatial restrictions are made in order to ensure that the total wave function has the correct spin and/or spatial symmetry. Although all methods (GVB, HF, UHF) are equivalent for the high-spin case, we find that neither UHF nor HF gives a correct description for other spin states.The first point to emphasize for HF (and UHF) is that the optimum canonical orbitals are not always consistent with the symmetry of the molecule.For all spins of Li10 other than 5 = 5, HF energies calculated with symmetry-adapted orbitals [orbitals optimized under the 
restriction that they transform according to the irreducible rep­resentations of Dιω] are significantly higher than those with the optimum orbitals (of C, symmetry), as shown in Figure 6. Upon reducing the symmetry restriction to O2* (or Cf), half of the spin states are still higher in energy than the results using C, symmetry. This phenomenon of symmetry breaking is often described for bulk systems in terms of charge density waυesn-a (HF) or spin density 
waves (UHF) and for Li10 derives from a fundamental incon­sistency in the use of single Slater determinant wave functions. A single determinant wave function containing doubly occupied orbitals forces ionic character into the wave function, which is in turn deleterious to the energy. For Li10, the fraction of ionic character in the HF wave function decreases (and hence the total energy decreases) if the orbitals are allowed to localize even though this lowers the symmetry.5 Allowing for localization, the amount of ionic character (and thus the total energy) of the HF wave function increases monotonically with decreasing magnetization.The UHF wave function avoids doubly occupied orbitals (and thus avoids ionic character), but, in the process, the orbitals tend to localize (i.e., break symmetry) resulting in spin density waves for all states of Li 10 other than the μ = 1 state. The UHF wave function is an eigenfunction of the spin projection operator (Sz) ¾Φsuhf(Ms) - Msh*aυm{Ms) (6)where Afs is simply the half difference between the number of up-spin (a) and the number of down-spin (β) electrons. The UHF wave function with spin projection Afs contains a mixture of spins from 5, = ∣Λ∕s∣ to S' = π∕2 and thus is not an eigenfunction of the S2 operator (4) [we follow the standard convention for UHF

(20) Cleland, A. N.; Cohen, M. L. Solid State Commun. 1985, 55, 35. 
CIemenger, K. Phys. Rev. B 1985, 32, 1359.

(21) Wang, Y.; George, T. F.-, Lindsay, D. M.; Beri, A. C.; unpublished 
results. Lindsay, D. M.; Wang, Y.; George, T. F.; unpublished results.

(22) Overhauser, A. W. In Highlights in Condensed Matter Theory; In­
ternational School of Physics ,tEnrico PermΓ, Course 89, Bassani. F.; Fumi, 
F-; Tosi, Μ. Ρ.; Eds.; North Holland: Amsterdam, 1985: p 194. Overhauser, 
A. W. Ado. Phys. 1978, 27, 343.

(23) Giebultowicz, T. M.: Overhauser, A. W.; Werner, S. A. Phys. Rev.
Lett. 1986. 56, 1485.

The Journal of Physical Chemistry, Yol. 91. No. 10, 1987 2611of associating ∣Λfs∣ with S' in defining μ in eq 3 and in Figure 6]. The dependence of the UHF total energies on μ is in good agreement with a one-dimensional nearest-neighbor Ising model (IM)5 which leads to a linear dependence of the total energy on 
μ with a slope of nJ where J is the effective nearest-neighbor exchange energy. The slope of the line through the low-spin and high-spin UHF energies leads to the value √im = -0.1514 eV.Both the UHF and GVB many-electron wave functions for Li∣0 are based on ten valence orbitals; however, the GVB wave function is an eigenfunction of the S2 operator (4) while the UHF wave function is not. The GVB calculations presented here include all possible ∞valent and ionic configurations and thus are the most complete for each magnetization, corresponding to the best possible wave function for Li∣0 involving ten orbitals. For all spin states, these ten GVB orbitals can be taken as Dtah symmetry-restricted orbitals, unlike the situation for HF or UHF. These ten GVB orbitals can be transformed to give ten Wannier orbitals; indeed the GVB low-spin Wannier orbital (Figure 7b) is virtually in­distinguishable from the high-spin Wannier orbital (Figure 7a). Hence, all of the spin states calculated with the GVB wave function are consistent with the D∣o⅛ symmetry, leading to many-electron states with symmetries llB2ll, ’A,,, 7B2u, 5A1,, 3B2u, and ,A∣g. As a result, the GVB wave functions do not contain charge density or spin density waves for, any of these states of Li∣0. The GVB results lead to a monotonic increase in the energy with increasing magnetization, with zero slope at μ = 0, suggesting that the singlet-triplet splitting approaches zero as n approaches infinity.24 We find that for Li10 the GVB spin spectrum is accurately de­scribed in terms of a nearest-neighbor Heisenberg model (HM),s-24 where J is chosen to match the energy difference between the μ = 0 and μ = 1 states, leading to a root mean square error of 0.012 eV for the four remaining spin states. For Lilo, this leads to 7hm = -0.1415 eV (in reasonable agreement with the Ising value Jim = -0.1514 eV). This excellent agreement of the GVB calculations with the Heisenberg model is shown in Figure 6.The HF wave function (C, orbitals) contains charge density waves for the low-spin state of the Li∣0 ring cluster. The low-spin Li10 UHF wave function is characterized by spin density waves although it is completely free of charge density waves. The low-spin Li,0 GVB wave function is completely free of both charge density and spin density waves.The Li ∣0 ring is stable with respect to dissociation into Li2 molecules 1∕10Li10 - l∕2Li2 (7)by 0.243 eV/atom for the GVB wave function, 22% of the dif­ference in stability between bulk Li and Li2 [eq 1 and 2]. The low-spin HF wave function contains so much unfavorable ionic character that it predicts the Li10 ring to be unstable with respect to dissociation into dimers (7) by 0.054 eV/atom. The UHF results overestimate the stability of Li∣0 with respect to Li2 dimers, giving 0.312 eV/atom. This is because the UHF wave function leads to much larger spin contamination errors for Li2 than for Li10, a result that is expected since the high-spin state is bound for Li∣o but highly repulsive for Li2. The stability of Lι∣0 with respect to atoms is 0.47 eV greater for GVB than for UHF (see Figure 6).In summary, with no restrictions on symmetry (denoted as Cj in Figure 6), HF, UHF, and GVB all lead to monotonic variations in energy vs. spin. UHF agrees with GVB in favoring low spin, while HF favors high spin. Thus, the HF description of the magnon spectrum is in serious error, e.g., HF leads to a ferro­magnetic (high-spin) ground state and charge density waves for all other spin states. This must not be taken lightly, since the HF, jellium,20 and Hûckel21 models are all based on molecular orbital theory.The UHF wave function gives the correct antiferromagnetic ground state but with spin density waves for the low and inter­mediate spin states. The UHF spectrum of spin states is well described in terms of an Ising Hamiltonian, but leads to results

(24) Orbach, R. Phys. Rev. 1958, 115, 1181.
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Figure 8. Geometric distortions for (a) H4 and (b) Li4, The bonds for H4 are indicated by vertical lines (the electrons are atomic centered). For Li4 circles with dots represent the singly occupied bond-centered orbitals, while lines connecting the dots show the dominant spin pairing.

(o) <q)<p)
ANGLE (DEGREES) ANGLE (DEGREES)

(a) (b)Figure 9. Potential energy curves for geometric distortions of the (a) Li4 and (b) Li4 clusters as a function of the bond angle, β. In each case, the perimeters have been optimized for each value of ft. Dashed curves represent the separate resonance structures, while solid lines show the energy including all possible resonance structures. The energy per atom is given relative to Li2 (at equilibrium). Diagrams above the plots show the cluster geometries at various angles (9) where squares mark the atomic positions and circles mark the positions of the orbitals.that are in disagreement with the more exact (GVB-Heisenberg) description [e.g., nonzero singlet-triplet gap for Li(1D)j.The GVB wave functions for the various magnetizations retain full spatial and spin symmetries within a localized orbital de­scription. Because the optimum GVB singly occupied orbitals have small overlaps, the magnon spectrum of Li,0 (and also that of Liuo)) is described with excellent accuracy in terms of a simple Heisenberg Hamiltonian, where the coupling terms (J∣j) are ex­tracted from the ab initio calculations.Taken together, the GVB, UHF, and HF results in Figure 6 all indicate that it is absolutely essential for Li∣,ι,y that each orbital 
is occupied with only one electron. Thus, in Lil ∣bi, the bonding 
is dominated by the singly occupied orbitals with perturbations due to spin-pairing effects.C. Tiny Clusters (n ≤ 8). The GVB model for the ID lithium rings and chains leads to ∞rrect predictions of the distortions that occur when the ring (or chain) structures are allowed to relax. The working principles in making these predictions for the op­timum geometric distortions are ( 1 ) start with the symmetric ring geometry for neutral clusters and with the linear chain geometry for the cation or anion clusters, (2) pair up adjacent orbitals so as to maximize the number of bond pairs, (3) distort the geometry so as to increase overlaps in bond pairs by decreasing the distance between adjacent spin-paired orbitals, and (4) decrease the nonbonded repulsions (arising from orthogonalization due to the Pauli principle) by increasing the distance between adjacent or­bitals that are not spin paired.To illustrate how the bonding in Li, affects geometrical structure we compare H4 with Li4. In square H4, the optimum orbitals are

Figure 10. Low-energy isomers predicted by the 1D GVB model for (a) Lij saddlepoint; Cto 2A∣, (b) Li3 minimum; C⅛, 2B2, (c) Li4; Da, 'A,, (d) Lis; Cto, 2A∣, (e) L⅛. Z)3⅛, 'A∣,, (f) Li3+ (with resonance); D3a, iA,', (g) Li4°; C„ lA', (h) Li∕ (with resonance); C2,, 2A,, (i) Lis+; C2a, lA,, (j) Li,÷ (with resonance); Ou, lAs, (k) Li/; C,, 2A', (I) Li/; C2a, 2A,, (m) L⅛φ (with resonance); Z)2a, 2Ap (n) Lij*; D.a,1Σ*, (o) Li4"; Z>.4, 2∑J, (p) Lij"; C⅛, 1A∣, and (q) L⅛^i C„ 2A'. Squares denote the atomic positions, circles with dots represent the singly occupied valence orbitals, and lines connecting the dots show the dominant spin pairing. In all cases the orbitals are centered on bond midpoints, and for the negative ions additional surface orbitals are present (see Figures 4 and 5). The acute bond angles range from 55° to 70°.
atom-centered. Thus the above principle leads to a rectangular distortion (see Figure 8a). Indeed, in this case the stable con­figuration has two separate H2 molecules (no chemical bonding between the two H2 fragments).’ On the other hand, for square Li4, the optimum valence orbitals are bond-centered so that the above principles suggest a rhombic distortion (see Figures 8b and 9a). Because of the dominance of one-electron bonding, the Ltl cluster is stable with respect to two Li2 molecules for both the square and rhombic geometries. Indeed, as a result of the one- electron bonds along the four edges, the optimum edge lengths (∙Re) for square Li4 (9 = 90®, ¾ = 3.026 Â) and rhombic Li4 (8o,s = 56.6°, Λe = 3.083 Â) are quite similar. For both H4 and Li4, the distortions away from the symmetrical geometry lower the energy of one resonance structure but raise the energy of the other resonance structure, reducing the resonance energy drastically. However, the gain in bonding for the favored structure more than compensates for the loss in resonance, and square Li4 (8 = 90°) distorts to a rhombus (9op = 56.6°), as indicated in Figure 9a.25 26 27 28^2i

(25) Similar optimum geometries have been reported on Li4, Na4, and Na4
using ab initio configuration interaction (Cl) or local density functional (LDF) 
methods. Thus bond angles of 6_ - 52.8’ (CI. Li4, ref 27). 90i, =>53.1’ (CI, 
Li4. ref 26), ” 53.8’ (CI. Na4, ref 26). 9w ≈ 53’ (LDF, Na4, ref 28),
and 80- a> 61’ (LDF, Na4, ref 28) were calculated.

(26) Beckmann, H.-O.; Koutecky, J.; Bonacic-Kouteckÿ. V. J. Chem. Phys. 
1980, 73, 5182 and ref 39.

(27) Rao, B. K.; Jena, P. Phys. Rev. B 198S, 32, 2058.
(28) Martins, J. L.; Buttet. J.; Car, R. Phys. Rev. B 198S, 31, 1804.
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Figure 11. The GVB description of the geometric distortion of the (a) Lin·1· linear chain cluster (R « 3.12 A) into the <b> Lin° zig-zag chain cluster (Ä ≈ 3.12 Â, 9 « 70°). In each case all 12 orbitals are shown. Contour spacings are at 0.015 au of orbital amplitude starting at 0.045 au. The atomic positions are marked by squares. Circles with dots represent the singly occupied bond-centered orbitals. Thin lines con­necting the dots show the dominant spin pairing. Overlaps of adjacent spin-paired orbitals increase from ≈0.33 to ≈0.60 upon bending (a —- b)∙These same bonding principles govern the structures of other tiny naked clusters as well, and predictions of the low energy planar isomers for neutral, cation, and anion clusters of three to six atoms predicted by these principles are shown in Figure 10.Starting with hexagonal L⅛ (β = 120°, Rc =t 3.079 Â), these bonding principles predict a distortion to a trigonal hexagon29 (Sop, = 69.8°, Rt = 3.064 A, Figure 10e).25 Potential energy curves for this distortion are shown in Figure 9b as a function of S [where the edge length (A) is optimized for each value of 03°]. Indeed, the optimum orbitals for planar Li6 are centered at the surface bond midpoints.7 Topologically, the electronic structures of the Li4 and Li6 rings are equivalent to the »-electronic structures of cyclobutadiene (C4H4) and benzene (C6H6), respectively, except that the valence electrons of the lithium rings are localized on the bond midpoints while the » electrons of the CH rings are atom- 
centered. This suggests that both cyclobutadiene and benzene would also distort in the absence of the strong a bonds.For infinite ID Li [Li(ID)], allowing a distortion into two di­mensions results in an infinite zig-zag chain (alternating 70° and 180° bond angles) as shown in Figure 11 for Li13+. This distortion is due to the same spin-pairing and overlap effects that govern H4, Li4, and L⅛.The optimum structure for planar Lis is predicted and explained in a similar fashion. Starting with the Lij ring (9 = 108°), the GVB bonding principles suggest that the bond angle at each vertex atom shared by two adjacent orbitals of a bond pair decreases to 55-70° (increasing the bond pair overlaps), as shown in Figure 10d. Indeed ab initio configuration interaction (CI) calculations on Lis27 lead to a distorted ring geometry (two small angles of 61.2° and three large angles 120.5°, 120.5°, and 176.5°) that is consistent with this GVB description. In addition, local density functional (LDF) calculations28 on Nas give a similar geometry (bond angles of 58.4°, 58.4°, 119.4°, 119.4°, and 184.5°). This suggests that the bonding of both Lis and Nas is dominated by electrons localized in bond midpoints.Next we illustrate these principles for Li3+ and Li3^. Starting with linear Li3^, our model predicts that bending the bond angle would be unfavorable since it increases the overlap of adjacent orbitals that are not spin paired (Figure 10n). Thus, Li3^ is linear. This is in agreement with ab initio calculations31 for Li3^. Starting with linear Li3+ and bending the cluster increases the bond pair overlap and hence increases the bonding. At 60°, there are three equivalent bond midpoints, and, hence, three equivalent resonance structures (Figure 1 Of). Consequently, the equilateral triangle is the equilibrium structure.To analyze neutral Li3, we start with the equilateral triangle (9 = 60°). Neutral Li3 is a special case, unlike those considered

(29) Our results for Li4 are consistent with a p3eud0-Jahn-Teller de­
scription (ref 26). However, the pseudo-Jahn-Teiler description does not 
predict the analogous distortion for the Li6 ring.

(30) Previous values of 9opi =β 57.3β and 9σp, “ 69.3° for Li4 and L⅛, 
respectively, reported in ref 7 were calculated by assuming a fixed perimeter 
as a function of 9.

(31) Eades, E. A.; Hendewerk, M. L.; Frey, R.; Dixon, D. A.: Go!e, 3. L.
J. Chem. Phys. 1982, 76. 3075.

TABLE I: Summary of Results Calculated for Mj
obtuse state acute state

wave function bond bondangle, perimeter, angle, perimeter, ΔE.*deg A deg A meVLi3Hartree-Fock 75.4GVB 68.1valence Ci 71.5valence Cl° 71.1Na3, valence CI" 73.4CU], Cl' 68.5Ag3, CI' 69.2

9.361 50.58.951 53.89.090 52.28.956 53.810.57 51.57.40 54.98.49 55.2

9.0658.9359.0388.94010.637.358.44

-31.811.58.3 6.925.97.3 
13.4"Calculated difference in the total energy between the obtuse and acute states [the obtuse state is lower except for the uncorrelaιed (Hartree-Fock) wave function]. ‘Reference 32. "Reference 35. 'Reference 37.

Figure 12. The GVB description of the two low-lying electronic states of Li3. (a) The 2A, saddlepoiπt geometry (9 = 52.2°) which is described by a single valence-bond resonance structure, (b) The 2B2 equilibrium geometry (9 » 71.5°) which is described equally well by either the res­onance of two valence-bond structures or a single structure where two electrons are high-spin coupled and the third electron is coupled to the other two electrons to form an overall spin-doublet state.above, because of this very small bond angle and also because the equilateral triangle is the only regular polygon which cannot be distorted without changing the lengths of its sides. Thus, any variation of the bond angle to optimize the two-electron bonding according to the aforementioned principles is at expense of stretching or compressing one-electron bonds. Nevertheless, we find that the full GVB wave functions for low-lying geometries of Li3 do indeed contain orbitals localized in bond midpoints and thus, the stationary point geometries of Li3 can be described in terms of principles based upon orbitals localized in bond midpoints.Results for Li3 are presented in Table I and Figure 12. Pairing two orbitals to form a bond pair favors distortion (at the shared atom) to a smaller angle (9op, = 52.2°) in order to increase the overlap of the bond pair of electrons and to decrease the interaction of the radical orbital with the bond pair (90fn = 63.9°). This leads to the 2A, state (acute bond angle) as shown in Figure 12a. A second low-lying state results from a resonance superposition of two primary resonance structures (see Figure 12b). This resonance superposition of two primary resonance structures is very similar to the spin coupling in the »-electron system of the allyl radical.33 This resonance description is equivalent to an independent particle description composed of the triplet pairing of two electrons (in­dicated by jagged lines) and ∞upling with the remaining electron to obtain a spin doublet state (the “GF"18·33 spin coupling). In this case, the bond angle at the atom shared by the triplet-coupled electrons must increase, leading to an “obtuse” isosceles trianglular structure (2B1) with apex angle of 71.5°.Both the acute and obtuse structures are low-lying for Li3. The global minimum of Li3 is the GF spin-coupled “obtuse” triangle geometry (Figure 12b), while the valence-bond spin-coupled “acute” triangle geometry (Figure 12a) is 8.3 meV higher, rep­resenting the barrier to pseudorotation. The Hartree-Fock results (which neglect electron correlation effects) also indicate that both the acute and obtuse states are low-lying; however, Hartree-Fock
(32) Bagus, P. S.; del Conde, G.; Davies, D. W. J. Chem. Soc., Paraday 

Discuss. 1977, 62, 321.
(33) Levin, G.; Goddard III. W. A. J. Am. Chem. Soc. 1975, 97, 1649. 

Tbeor. Chim. Acta 1974, 37, 253.
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2614 The Journal of Physical Chemistry, Vol. 91, No. 10, 1987 McAdon and Goddard IIIyields the wrong ground state. The results of GVB calculations on Li3 are in very good quantitative agreement with full valence CI results within the same valence double√ basis set and with other full valence CI calculations32 with regard to the stationary point geometries and barrier to pseudorotation. Similar results have been found for other alkali trimers3sj6 as well as for Cu337 38∙3s and Ag3,37 indicating that the bonding mechanism is at least qualitatively similar for all of these systems. Results for Na3,3s Cu3,37 and Ag337 are included in Table I for comparison. The importance of the one-electron bonding in these systems is il­lustrated by the similarity of the perimeters (obtained by adding the three bond lengths) for the acute and obtuse states.Low-lying isomers for the larger charged clusters (Li4,j4+∙^) are predicted in a similar fashion by starting with the principle resonance structures of the linear chain clusters and varying the angles as described above. The predicted low-energy isomers for all of these clusters are also shown in Figure 10. The electronic structures for these isomers are indicated with circles with dots representing the singly occupied orbitals and lines connecting the dots indicating the dominant spin pairing. The isomers (I) and (m) of L⅛+ are expected to have very little barrier to rotation about the central bond midpoint into a three-dimensional structure where the two planar Li3 subunits are staggered. Similarly, the isomers for Li5+ are expected to exhibit free rotation about the central atom.Because of the multitude of “reasonable” structures for metallic clusters, it is very important to have a correct set of guidelines such as those given in this section if one is to correctly determine the low-energy isomers. Previous theoretical approaches to de­termining the low-energy isomers have been to guess structures, and then calculate their energies. Thus, in the first high-quality (electron correlation inclusive) ab initio studies on Li clusters,39 the correct structure of Li4 was obtained and a Dtk oblate octa­hedron structure for Lis was proposed based on the Li4 structure. In a subsequent multiple-reference singles and doubles CI ab initio investigation,40 it was determined for L⅛ that the lowest energy structure was a C5t, pyramid, with the planar structure (similar to that of Figure 10e but 9 = 60° was assumed) and the Dth structures higher in total energy by 0.045 and 0.194 eV, re­spectively. In an improved multiple-reference singles and doubles CI ab initio investigation using modified virtual orbitals,41 it was determined for Lt⅛ that the 60° planar structure is indeed the lowest energy structure, with the C⅛ and Dih structures higher in total energy by 0.039 and 0.240 eV, respectively. These studies were performed with ∞mρlete geometry optimizations with the exception that planar isomer was optimized with the 9 = 60’ angle restriction. Thus, relaxing geometric restrictions for all isomers will result in an increase of 9 and thus an increase of the stability of the planar isomer over the other isomers for L⅛.More recently, gradient approaches have been utilized to de­termine the forces on guess structures to obtain stationary iso­mers.27·2* However, these approaches have been limited to eight or less atoms and may be somewhat sensitive to the initial starting structures, especially if there are energy barriers separating the various low-energy isomers.The general picture that is consistent with a number of theo­retical studies27·28·41 and our own preliminary calculations34 35 36 is that these “ID zig-zag” clusters are competitive up to n ≈ 8. The

(34) McAdon, M. H.; Goddard III. W. A., unpublished results.
(35) Martin. R. L.; Davidson, E. R. Mol. Phys. 1978, 35, 1713.
(36) Thompson, G. A.; Lindsay, D. M. J. Chem. Phys. 1981, 74, 959.
(37) Walch, S. P.i Bauschiicher, C. W.,∙ Langhoff, S. R. J. Cher». Phys. 

1986, 85. 5900.
(38) Moskovits, M. Chem. Phys. Lett. 198S, 118, ill. Also see Lindsay, 

D. M.; Thompson, G. A.; Wang, Y. Presented at the 191st National Meeting 
of the American Chemical Society, New York, NY, April 13-18, 1986, 
appearing elsewhere in this issue.

(39) Beckmann, H.∙O.. Kouteckÿ, J,; 3otschwina, P.; Meyer, W. Chem. 
Phys. Lett. 1979, 67, 119.

(40) Plavsic. D.; Kouteckÿ, 3.; Pacchioni, G.: Bonaciô-Kouteckÿ, V. Z. 
Phys. Chem. 1983, 87, 1096.

(41) Fantucci, P.; Bonacié-Kouteckÿ, V.; Kouteckÿ, 3, Z Comput. Chem. 
198S, 6. 462.

Figure 13. (a) AH ten singly occupied GVB orbitals for the principal resonance structure of planar close-packed Li∣0 (Ä = 3.1 A; contour increments starting at 0.060 au). Squares mark the atoms, and dots joined by thin lines represent the paired electrons, (b) Bulk bond pair, 0.71 overlap. All contours are included, (c) Surface bond pair, 0.50 overlap. All contours are included.zig-zag Lis cluster puckers out of the plane in a fashion similar to cyclohexane. As the clusters increase in size, there is a tendency toward forming more compact structures (e,g., planar close-packed structures for the very small clusters), due to the resonance and/or delocalization stability obtained by increasing the number and/or quality of sites to place the electrons.D. Two-Dimensional Clusters. The optimum planar structures for Li4, Li5, and Li⅛ resemble planar close-packed clusters. Ex­amining larger 2D close-packed arrays of Li atoms, we find the general result that interior regions have singly occupied orbitals localized at the centers of equilateral triangles while surface {edge) 
regions have singly occupied orbitals localized at bond midpoints. This is illustrated for planar Lil0 in Figure 13. Extrapolating to the infinite 2D (close-packed) system [Li(2D)] leads to the description in Figure 14a where alternate pairs of triangular hollows have bond pairs and triangular hollows adjacent to the bond pairs are empty.This GVB description for Li(2D) could lead to charge density waves (CDW). However, there are an infinite number of ordered and disordered resonance structures (such as those shown in Figure 14b-c) that may enter into the many-electron wave function. Charge density waves have been proposed to account for certain experimental electronic anomalies for bulk (3D) alkali metals22 and have recently been observed by neutron diffraction for bcc potassium.23 It is interesting to speculate whether the present GVB model involving the spin-pairing localized interstitial orbitals would lead to CDW in bcc, hep, or fee bulk metals.This GVB description for Li(2D) may lead to metallic character. Half of the triangular hollows are empty, providing low-iying charge-transfer states required for conduction. The existence of essentially an infinite number of disordered resonance structures such as that shown in Figure 14c suggests a high density of low-lying many-electron states.

E. Three-Dimensional Clusters. We next discuss the GVB wave functions for Li∣3+ clusters having one central (bulk) atom and twelve surface atoms. The three high-symmetry structures examined, listed in order of increasing energy, are (1) Ih, the
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Figure 14. (a) The GVB description of Li(2D). The upper left corner shows contours >0.060 au for eight GVB orbitals optimized without restriction for the planar Li124+ cluster. The edge atoms of a planar unit cell count half, since each contributes half an electron to the cell and half an electron to the adjacent cell. Hence, the model Lil24* cluster is composed of four unit cells (two atoms per cell) with a total of eight valence electrons. The orbitals for the planar Li∣24+ cluster were obtained for 12 “real" atoms (four GVB pairs, 0.52 overlap each pair). The description of Li(2D) is obtained by translation of the planar Li,/* cluster where connected circles represent the singly occupied orbitals and shaded triangles represent empty hollows, (b) An alternative ordered resonance structure for Li(20). (c) A disordered resonance structure for Li(2D).
TABLE H: Relative Energies of Lil√ αustersa_____________________________relative energyper atom,cluster structure total, eV meV/atomOPTET(I) γ-(4,4,5), C2c 0.000 0.0OPTET(II) T-(4,4,4,l), C, 0.057 4.4OPTET(ΠI) ∕⅛-(l,l 1,2), C2o 0.197 15.1planar cto 0.400 30.8icosahedron 4-(l,12),/„ 0.581 44.7fee (1,12), Ok 0.837 64.4zig-zag chain clt, 0.947 72.9hep (1.12). £>,* 1.144 88.0linear chain O-⅛ 1.678 129.1“The structures are shown in Figures 11, 15-17, 19, and 20. Results are calculated at the GVB-CI level with basis set D. See the Appendix and Table VI for further details.icosahedron; (2) fee, the truncated octahedron corresponding to the nearest neighbors of a face-centered cubic lattice; and (3) hep, the hexagonal array ∞rresponding to the nearest neighbors of a hexagonal close-packed lattice. We will concentrate our studies here on the positive ion, Lilj+, since all the electrons can be spin paired, providing a useful model for the bonding in large clusters. Also, positively charged metal clusters have been examined ex­perimentally and hence techniques to test the predictions may s∞n become practical. The results are given in Table II (see the Appendix for details).The Ib cluster (Figure 15) ground state involves electrons localized at the centers of twelve of the twenty triangular faces. Each electron is spin-paired to an electron in an adjacent (edge-shared) surface triangle to form a rhombus (0.63 overlap)
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Figure 15. GVB orbitals for one of the six equivalent bond pairs of icosahedral Lin+ (six pairs occur along the ±x, ±y, and ±z directions; the +x pair is shown), (a) The top view where the orbital contours in the surface planes are shown, (b) A side view where the orbital contours in a symmetry plane bisecting the cluster are shown. In each case, the atoms in the plotting plane are marked by filled circles while atoms above and below that plane are marked by open circles. Connected dots rep­resent the spin-paired electrons. Shaded triangular faces do not contain orbitals. Overlaps of spin-paired orbitals are 0.63.just as for the bulk electrons of Li(2D) (Figures 13 and 14). The four triangular faces adjacent to a spin-paired rhombus are empty (to avoid repulsive interactions between unpaired electrons), as indicated in Figure 15. Each of the twelve Ih Li∣i+ valence orbitals is equivalent. Figure 15 shows the GVB electron pair on the +x axis. The many-electron wave function is composed of six equivalent such GVB pairs (one GVB pair along each of the ±x, ±y, and ±z axes).The fee cluster (Figure 16) has only eight tetrahedra (rather than the twenty of Ih). These eight tetrahedra are all geometrically equivalent and have three interior edges and three surface edges. Each interior tetrahedral edge is shared by two tetrahedra; thus, each tetrahedron shares an edge with three other tetrahedra. We find that all twelve singly occupied valence orbitals localize among the eight tetrahedra of the fee cluster, leading to a total energy for the fee cluster 0.26 eV higher than that for Is (20 meV/atom). Four tetrahedra each have two orbitals (centered on opposite faces, spin-paired with 0.75 overlap), accounting for eight of the twelve valence electrons. These doubly occupied tetrahedra are staggered so that no doubly occupied tetrahedron shares an edge with any other doubly occupied tetrahedron. The other four tetrahedra each have only one orbital (centered on an exterior face), ac­counting for the four remaining valence electrons. The four electrons in the singly occupied tetrahedra are well separated from one another, leading to a ground-state singlet having two weakly coupled bond pairs (-0.28 overlap for each pair). The optimum singly occupied orbitals for fee Li∣3+ are shown in Figure 16 for each type of bond pair. Focusing on a tetrahedron containing two electrons, one finds that the three adjacent edge-sharing tetrahedra each contain only one electron (in order to avoid the repulsive interactions endemic to two sets of paired electrons).The hep cluster (Figure 17) also has eight tetrahedra; however, six of the tetrahedra for hep occur in pairs sharing one face, while
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G—Figure 16. GVB orbitals for the two types of bond pairs in the fee Li∣ * cluster, (a) The two spin-paired orbitals located in the doubly occupied 111 tetrahedron and (b) the orbital localized in the singly occupied 111 tetrahedron (and spin-paired with the orbital of the 111 tetrahedron). Here cross sectional amplitudes of each of the orbitals are given at different evenly spaced (001) planes. Planes B, D, and F pass through atoms, marked by filled circles. Planes C and E pass through the centers of tetrahedral hollows, marked by asterisks. Planes A and G pass through virtual tetrahedral centers.the other two are isolated, sharing edges with the above paired tetrahedra. The result is a total energy 0.56 eV higher than l⅛ (43 meV/atom). The three face-shared tetrahedral pairs each have one set of spin-paired orbitals, with one electron localized in the tetrahedron above the shared face and one electron localized below the shared face. This accounts for si* valence electrons (three GVB pairs with overlaps of 0.58,0.58, and 0.62). The two remaining tetrahedra each contain one spin-paired set of orbitals (four electrons, two GVB pairs, 0.78 overlap). The remaining two electrons cannot go into tetrahedra without a severe energetic

B—≈C-~D—E—>
F—G—»H—V I—’Flgrae 17. GVB orbitals for the three types of bond pairs in the hep Lil34" cluster, (a) A spin-paired set of orbitals located in a doubly occupied tetrahedron, (b) A spin-paired set of orbitals distributed over a face- shared pair of tetrahedra. (c) A spin-paired set of orbitals distributed over two bond midpoints. Here, cross-sectional amplitudes of the orbitals are given at nine (0001) planes intersecting the ? axis at z ≈ 1.25, 1.0, 0.75, 0.25, 0.0, -0.25, -0.75, -1.0, and -1.25 (in units of c∕2, where c is the length of the hep unit cell in the z direction). Planes B, E, and H intersect atomic positions, marked by filled circles. Planes C, D, F. and G pass through the centers of tetrahedra, marked by asterisks. Planes A and 1 pass through virtual tetrahedral centers in the vacuum, e.g., tetrahedra that would be present if the cluster were allowed to grow in the iz directions.penalty; placing a third electron in a face-sharing pair of tetrahedra leads to very strong antibonding interactions. Consequently, the last two electrons end up along two of the three equatorial edges that do not border a tetrahedron (one GVB pair, -0.36 overlap). Summarizing, ten of the twelve valence electrons occupy tet­rahedra, while the remaining two valence electrons occupy surface bond midpoints (that do not border tetrahedra). These optimum
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cluster leading to a pseudo-icosahedron, (a) The fee cluster (cubo-oc- tahedron, O⅛ symmetry), (b) The icosahedron (lt symmetry), formed by compressing the square faces of the fee cluster (β ∙ 90°) into rhombi 
(0 ≈ 60°). (c) The pseudo-icosahedron (7⅛ symmetry) formed by further compressing the same faces (0 < 60°). The Tt point group symmetry is preserved for all 0.
singly occupied orbitals for hep Li13+ are indicated in Figure 17 for the three types of bond pairs.The GVB descriptions for these three highly symmetrical clusters all involve breaking the high symmetry. Thus, there will be a separate resonance structure for each symmetry operation that takes the localized bonding structure into a new equivalent (but not identical) structure. Including all of these resonance structures in the many-electron wave functions leads to degenerate states and thus the resonance energy is small and Jahn-Teller-like distortions shall occur. For example, the GVB description of I⅛ Li,3+ leads to five equivalent resonance structures which split into a quadruply degenerate ground state 1G, and a nondegenerate excited state 1A,. The energy lowering of the 1G, state relative to the energy of one resonance structure is expected to be ap­proximately one fourth that of the energy raising of the 1A, state relative to the same reference energy.’ The 1Gs state is thus subject to a Jahn-Teller-like distortion, if we assume that the optimum distortion can be determined by analyzing the dominant spin pairing of just one of the resonance structures (as is true for H4, Li4, L⅛, and linear Li∣3+, see Figures 8, 9, and 11) then the optimum structure of the icosahedral-like Li13+ isomer is expected to be a 1Aβ state of Γ4 symmetry (Γ⅛ is a subgroup of both I⅛ and O⅛, and Z>24 's a subgroup of 7∖). This 7⅛ structure can be described by starting with the fee cubo-octahedral structure, squashing the square faces to form the icosahedron, and then further squashing to form the optimum pseudo-icosahedral isomer, as shown in Figure 18. Such a distortion is expected to result in improved overlaps in the six equivalent bond pairs, since the dihedral angle between adjacent paired faces is reduced. Similar distortions are predicted for the fee and hep clusters; however, since all of these clusters are highly ∞ordinated, such distortions may be rather small (unlike the cases for the Li4 square or the L⅛ hexagon), leading to relatively small lowerings of the total energy.From the results on the three high-symmetry Li13+ clusters, it is clear that the valence electrons prefer to localize in interstitial regions (tetrahedra). Using a set of ∞ncepts derived from these results (as embodied in the set of rules of section IV), we con­sidered arrangements of 13 atoms that maximize the number of tetrahedra under the restriction that the number of tetrahedra shared by any given atom should be relatively small (much less than 20). This restriction stems from the observation that twelve valence electrons cannot all simultaneously bond in an effective manner to one central atom. Thus, the valence electrons for the Ik cluster are centered at surface triangular hollows whereas the exact tetrahedral centers are the preferred sites (in the absence of the large orthogonality and electron-electron repulsion effects associated with too many electrons trying to bond to the same central atom). This led to the prediction of several new Lil3+ clusters (Figure 18) each with 15 tetrahedra.GVB calculations show that each of these three clusters, denoted as OPTET (optimum tetrahedral), is lower in energy than Ih. These OPTET isomers all lead to local fivefold symmetry axes as a consequence of the efficient packing of tetrahedra. Two of the three OPTET clusters (1 and II) also clearly coincide with
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ft)Figiffe 19. Three low-lying OPTET Li∣3° isomers, (a) OPTET(1) which consists of a central tetrahedron (atoms 1-4, joined by dotted lines), four capping atoms (atoms 5-8), and five bridging atoms (atoms 9-13). (b) OPTET(II) which differs from OPTET(I) in the position of only one atom (atom 13). (c) OPTET(IH) which consists of a central atom (atom 1) surrounded by ten atoms in the first shell (atoms 2-11 forming an incomplete icosahedral shell) and two atoms in the second shell (atoms 12 and 13). In each case, the nuclear framework is shown on the left- hand side and the electronic structure is shown schematically on the right-hand side. The positions of doubly occupied tetrahedral hollows are shown with a large circle (representing the pair of orbitals) filled by two dots (representing the electrons). The positions of singly occupied orbitals and the principle spin pairing are represented by large circles filled with one dot each, joined by thin arcs. Faces shared by singly occupied tetrahedra are shaded. OPTET clusters (I). (II), and (III) have symmetries C⅛, C„ and C⅛, respectively. All three clusters have multiple local fivefold symmetry axes.truncations of the 7-brass structure. The correspondence of the third structure to a truncation of 7-brass is rather subtle; OP- TET(III) is more clearly based on a modification of the icosa­hedron. It is convenient to label these OPTET clusters in terms of their overall point group symmetries and the number of atoms in successive shells for the respective structure type. With this convention, the OPTET(I) structure is referred to as 7-(4,4,5), C2s, The OPTET(II) [7.(4,4,4,1), C,] and OPTET(IΠ) [Ih- (1,10,2), C3i,] have total energies higher than OPTET(I) by 0.05 and 0.20 eV, respectively. The high-symmetry Ih, fee, and hep clusters have total energies higher than OPTET(I) by 0.58, 0.84, and 1.14 eV, respectively (see Table II).Of all Li13+ structures examined, the OPTET(I) cluster (Figure 19a) has the lowest total energy. The geometric and electronic structures of the OPTET(I) cluster are described as follows. The central tetrahedron formed by atoms 1, 2, 3, and 4 is doubly occupied (two electrons, two orbitals, 0.72 overlap). Four capping atoms (atoms 5-8 in Figure 19a) form four tetrahedra sharing faces with the central tetrahedron. Each of these four capping tetrahedra are empty (i.e., orbitals are not centered on these four capping tetrahedra; however, orbitals centered on adjacent tet­rahedra have amplitudes that diminish as they approach the centers of these four tetrahedra). The five remaining atoms (labeled 9-13 in Figure 19a) form bridges to the four central atoms and to the capping atoms, leading to a total of ten new tetrahedra, each sharing one edge with the central tetrahedron and one face with the four empty tetrahedra. Each of these ten tetrahedra is singly occupied, and these ten electrons partition into five face­sharing bond pairs. We shall denote such face-sharing bond pairs
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Figure 20. GVB orbitals for planar close-packed Li∣j+. Only contours >0.060 au are shown (0.015-au spacings). The overlap of the bulk bond pair is 0.60. The average overlap for surface bond pairs is 0.52. Squares mark the atomic positions. The dominant spin pairing is shown by the connected dots.as a-(b,c,d)-e where a-b-c-d and b-c-d-e indicate the two tetrahedra and (bed) denotes the shared face. Hence, the bond pairs 5-(l,3,9)-7, 5-(2,3,11 )-8, 6-(l,4,10)-7, and 6-(2,4,l2)-8 each have an overlap of 0.57 and the remaining 5—( 1,2,13)—6 bond pair has an overlap of 0.66. As discussed above, this sequence starts with a tetrahedron, capping the faces and bridging the edges, leading to the characteristic cluster of the γ-brass structure. Consequently, we denote OPTET(I) as γ-(4,4,5), C2t,.The OPTET(II) cluster is just 0.057 eV higher in total energy than OPTET(I). The OPTET(Π) structure differs from the OPTET(I) structure by moving one atom from the third 7-bras3 shell to the fourth γ-brass shell so it is denoted as 7-(4,4,4,l), 
C,. The electronic structure of the OPTET(Π) ground state is diagrammed in Figure 19b. The 2-3-4-8 tetrahedron is located near the center of the cluster (on the symmetry plane) and is doubly occupied (0.72 overlap). Three tetrahedra sharing faces with the 2-3-4-8 tetrahedron are empty (l-2-3-4, 2-3-8-11, and 2-4-8-12). The 2-3-5-l 1 tetrahedron is also doubly occupied (0.71 overlap) and shares the 2-3 edge with the doubly occupied 2-3-4-8 tetrahedron. The remaining eight electrons occupy separate tetrahedra and are divided into four face-sharing bond pairs. These four remaining bond pairs are 11-(2,8,13)-12, 0.63 overlap; 5-(l,3,9)-7,0.62 overlap; 6-( 1,4,10)-7, 0.64 overlap; and 1—(2.4,6)— 12.0.63 overlap. With just one exception, tetrahedra sharing faces with these six bond pairs are empty. The exception to this rule is exhibited by two singly occupied tetrahedra ( l-2-4-6 and 1-4-6-10). These tetrahedra share the 1-4-6 face but their electrons are not spin-paired with one another. A careful exam­ination of these two orbitals shows that they are staggered in order to reduce the nonbonded repulsions. The l-2-4-6 orbital is strongly polarized toward the 1-2-6 face while the 1-4-6-10 orbital is strongly polarized toward the 4-6-10 face; thus, these two orbitals have only one atom in common (atom 6).The OPTET(III) structure (Figure 19c) is derived by plucking two adjacent atoms away from the surface of the high symmetry Ih cluster and adding them to adjacent capping positions on the opposite surface. This cluster is denoted as Ik-(l,10,2), C2o and leads to a total energy 0.20 eV higher than OPTET(I) but 0.38 eV lower than Ih. The electronic structure of the OFΓET(III) ground state (Figure 19c) consists of four doubly occupied tet­rahedra, four singly occupied tetrahedra (divided into two face­sharing pairs), and seven empty tetrahedra. Two edge-sharing tetrahedra (8-10-11-12 and 9-10-11-13) are each doubly oc­cupied (0.67 overlap each pair). Two additional atom sharing tetrahedra (l-5-7-l 1 and 1-4-6-10) are also both doubly oc­cupied (0.74 overlap each pair). All seven tetrahedra sharing faces with these doubly occupied tetrahedra are empty. The remaining four electrons are divided into two face sharing tetrahedral pairs; 4—( 1,2,8)—5 and 6-(l,3,9)-7,0.56 overlap each pair. Each of these four singly occupied tetrahedra shares one edge with a doubly occupied tetrahedron.Summarizing, we find typical orbital overlaps are 0.74-0.78 for doubly occupied tetrahedra. Face-sharing singly occupied tetrahedral orbitals typically have overlaps in the range of 0.57 to 0.63. Overlaps outside these ranges result occasionally from atypical surroundings [e.g., adjacent tetrahedra that are empty or doubly occupied].With such small clusters, surface effects are quite large so that planar clusters (which lead to an increased number of internal

McAdon and Goddard IIIsites) are quite competitive. Thus the planar cluster of Figure 20 has an energy 0.18-eV lower than Ih [0.40-eV higher than OPTET(I)]. Although the linear chain cluster is not a competitive structure [1.68 eV higher in total energy than OPTET(I)], the zig-zag chain cluster formed by bending the chain at alternate atomic sites (increasing bond pair overlaps as shown in Figure 11) is 0.20 eV lower in total energy than the hep cluster [the zig-zag chain is 0.95 eV higher in total energy than OPTET(1)[. 
IV. DiscussionThe results discussed in section III have led to a new generalized valence bond model of metallic bonding based on electrons localized in interstitial regions such as bond midpoints ( 1D clusters), triangular faces (2D clusters), and tetrahedral hollows (3D clusters). In section IVA we illustrate the use of these basic concepts by applying them to predictions concerning the Li, tetrahedron. This GVB model for metallic bonding is summarized in section IVB by a set of rules that applies to three-dimensional clusters. These rules lead to the prediction that OPTET clusters are the most stable (lowest energy) structures for naked lithium clusters from eight atoms up to about forty atoms. These .OPTET clusters are discussed in section IVC. The use of these rules to rationalize properties of condensed systems (bulk solids) is il­lustrated in sections IVD and IVE where we examine the struc­tures, conductivities, and solid solubility limits of bulk close-packed metals. This GVB model of metallic bonding also suggests a new type of metallic force field which should lead to improved modeling of metallic systems containing thousands of atoms (section IVF).

A. Analysis of the Lii Tetrahedron. To illustrate the concepts of this GVB model of metallic bonding, consider the Li, system. A simple model of bonding in terms of pairwise additive potentials would lead to the result that the tetrahedron is favored over the rhombus and other structures for Li, (it has one extra “bond”). Indeed, the results of the previous section might suggest that the four orbitals of tetrahedral Li, are localized on the four faces and spin-paired. The problem with this is that the distance between orbitals in different pairs would be quite small (0.41 R), leading to large repulsive interactions. (As in the previous section, R denotes the nearest-neighbor distance, e.g., for tetrahedral Li,, 
R is the edge length.) Indeed, we find from GVB calculations that the optimum orbitals of the Li, tetrahedron are instead localized on four of the six edges and spin-paired so that orbitals in different pairs are at least 0.5Æ apart. However, starting with this description, one would expect (and we find) that the distortion to a planar (rhombic) structure is favored (leading to a distance of 0.89S between nonpaired orbitals). Thus, the GVB bonding principles predict (and the calculations confirm) that the stable geometry of Li, is the rhombus (planar).

8. The Rules. From the results on three high-symmetry clusters, it is clear that the optimum bonding involves valence electrons that prefer to localize in separate tetrahedral hollows. This suggests that the optimum structures of small clusters are those that maximize the number of tetrahedra, as is the case for lh, with 20 tetrahedra. However, for the icosahedron, the 20 tetrahedral hollows all share the same central bulk atom (the eight tetrahedra for the fee and hep clusters also all share the central atom; see Figures 15-17). This is unfavorable for the following reasons.( 1 ) To describe an orbital localized in a tetrahedral interstitial requires a hybrid combination of the valence orbitals from each of the four atoms of the tetrahedron, with an equal contribution from each atom. For lithium, the low-lying orbitals are 2s and 2p and hence, each atom can contribute effectively to only four orthogonal interstitial orbitals (with the overlapping orbitals of a bond pair, one might be able to describe up to two electrons per orthogonal orbital and hence a total of eight electrons near one atom).(2) The orthogonality induced (Pauli principle) repulsion be­tween orbitals that are not spin-paired becomes large when these orbitals are close (as they must be when sharing a common vertex).Thus, the three OPTET clusters (Figure 19) and the planar cluster (Figure 20) are all lower in energy than the Ih cluster (Figure 15).



346GVB Studies of Metallic BondingFrom the results on the various clusters, we have abstracted the following rules for three-dimensional metallic structures.(a) Orbitals (each with one electron) are localized in different tetrahedral hollows where possible.(∕3) If necessary, two electrons may be placed in one tetrahedron (localizing on opposite faces or edges) but they must be spin-paired.(γ) No more than two electrons may be distributed between a pair of face-shared tetrahedra, and these must be spin-paired (singlet).(δ) No more than three electrons may be distributed between a pair of edge-shared tetrahedra.(<) No more than four bond pairs of electrons may share one central bulk atom, and no more than three bond pairs of electrons may share one central surface atom.
(f) Additional electrons must be in surface orbitals at edge or face sites that do not share edges with occupied tetrahedra.The above principles are consistent with the calculated wave functions and total energies where the OPTET(I) cluster is lowest, with Ih, fee, and hep higher by 0.58,0.84, and 1.14 eV, respectively.
C. OPTET Clusters. At this point, it is appropriate to note that infractions of the above rules for small clusters are una­voidable and thus are tolerated to a certain degree by such small clusters; e.g., orbitals that may prefer to be localized in tetrahedra may polarize strongly toward faces or even edges under certain circumstances in order to minimize nonbonded (orthogonality induced) repulsions. For example, although the three OPTET clusters are all composed solely of surface atoms, OPTET(I) contains two atoms each involved in four bond pairs (in violation of rule e; furthermore, these two atoms are adjacent). OPTETS (II) and (III) each ∞ntain one such atom. In addition, OPTETs (II) and (III) each have a single infraction against rule & (edge-sharing), while OPTET (II) also has a single violation against rule γ (two orbitals in face-shared tetrahedra that are not spin-paired). Overall, this accounts for two infractions for OP­TETS (I) and (III) and three infractions for OPTET(Π). Thus, the explanation of the relatively high energy of OPTET(IΠ) in comparison with OPTETS (I) and (II) lies in the relatively large number of doubly occupied tetrahedra [four for OPTET(III) vs. one for OPTET(I) and two for OPTET(II)].We have shown in section IΠB that the electronic structures of very small clusters (less than eight atoms) are characterized by electrons localized in bond midpoints, leading to very small bond angles (57-70°). Our various calculations indicate that the OPTET or 7-brass structures should be the most stable for clusters as small as Lig [y-(4,4), Γj] up to clusters as large as 40 atoms or so. The Li8 OPTET cluster involves a complete Filling of the first two 7-brass shells and consists of a central tetrahedron with four capping atoms, making a total of five tetrahedra. Incidentally, this Lii cluster is a serious violator of rule h (edge-sharing); its electronic structure consists of four doubly-occupied tetrahedra (the central tetrahedron is empty), each sharing three edges with adjacent doubly-occupied tetrahedra (six infractions against rule δ). As a consequence, each of these four bond pairs consists of one orbital localized on a bond midpoint and one orbital localized on a face, for a net overlap of «=0.67, significantly smaller than the 0.74-0.78 overlap for typical (rule-abiding) doubly occupied tetrahedra. The first three 7-brass shells are ∞mplete at 14 atoms, leading to the ∙γ-(4,4,6), Ti Lil4 structure with 17 tetrahedra. By applying the rules to this Li∣, cluster, we predict an electronic structure consisting of a doubly occupied central tetrahedron and six pairs of face-sharing singly occupied tetrahedra along the six edges of the central tetrahedron. Thus, this Li∣, cluster may be quite stable, although it does result in four infractions against rule e. The lowest energy Li,3+ cluster is derived from this Liw cluster by removing one atom from the outer shell and the two electrons occupying the face-shared tetrahedral pair formed by that atom.Larger OPTET clusters are constructed by adding atoms to concave surface sites of the smaller OPTET clusters, forming at least two new tetrahedra for each atom added. For larger OPTET clusters, the number of tetrahedra shared by a given atom tends to increase as the ratio of empty to occupied tetrahedra increases. Eventually, the clusters reach sufficient size such that none of the

The Journal of Physical Chemistry, Vol. 91, No. 10, 1987 2619rules are broken. Several low-lying OPTET isomers may be ∞mpetetive for any given size of cluster. The fourth and fifth 7-brass shells contain 12 atoms each, leading to a Ma cluster with 57 tetrahedra [γ-(4,4,6,12), ΓJ and a Mjg cluster with 97 tet­rahedra. [y∙∙(4,4,6,12,12), 7^rf]. Each of the four first-shell atoms of the M26 cluster has full icosahedral coordination. In the Mjg cluster, all eight atoms in the first two γ-brass shells have full icosahedral coordination." The OPTET clusters generally lead to local fivefold symmetry axes, a result that arises from the efficient packing of tetrahedral hollows. Thus, a strict adherence to forming near perfect tet­rahedra is inconsistent with 3D space groups but could play an important role in stabilization of amorphous structures.’ However, allowing major distortions to a small fraction of the tetrahedra can lead to periodic structures. For example, the ∙γ-(4,4,6,12), 
Ti cluster of Li26 is isostructural with the 26-atom Zn4Cu4Cu6Zn12 cluster forming the basic motif of 7-brass (Cu5Zng).42 These 26-atom clusters are centered at bcc lattice positions to form the 7-br'ass bulk structure. Thus, bulk 7-brass (Cu5Zn8) contains numerous fairly regular tetrahedra and relatively few severely distorted tetrahedra. In addition, many other alloy structures involve rather complicated networks of tetrahedra, e.g., the Frank-Kasper alloys43·44 and the Laves phases.43 Thus, the rules of section IVB should provide a basis for a better understanding of the electronic structures of many alloys.The limiting values (as n→- <*>) for the number of bulk sites per atom are one bond midpoint per atom for 1D, two triangular hollows per atom for planar close-packed, no more than five tetrahedral hollows per atom for OPTET, two tetrahedra per atom (and one octahedron per atom) for hep or fee, and six quasi- tetrahedra per atom for bcc. The quasi-tetrahedra for bcc each have four edges of normal length and two edges that are 15% longer in length. Perfect tetrahedra (with six edges of equal length) alone cannot be packed into a bulk structure without involving significant distortions (strain). Thus, for very large clusters, structures consistent with periodicity (hep, fee, bcc) eventually dominate.Z>. GVB Descriptions of Sulk Metals. The previous discussions show that the optimum intermediate-sized clusters are not the most symmetric ones but that the stable structures can be predicted by using basic principles. These principles are summarized by a set of rules given in section IVB. Here, we apply these rules to close-packed (hep and fee) bulk elemental metals. In section IVE we present a simple rationalization of some dramatic trends in solid solubilities of alloys.Close-packed (cp) systems have twice as many tetrahedra as atoms. In fee, each tetrahedron shares edges with six other tetrahedra, whereas in hep, each tetrahedron shares one face with another tetrahedron and edges with three other tetrahedra.For a cp alkali or noble metal, only half the tetrahedra need be occupied by electrons, making the cp metals far more stable than the small cp clusters (where all tetrahedra are occupied, some with two electrons). With half the tetrahedral sites empty, these extended systems are excellent conductors.The Be and Zn ∞iumns, with two valence sp electrons per atom, have one electron per tetrahedron. Thus, the GVB model suggests that the optimum electronic structure be visualized in terms of one valence electron per tetrahedron. This is consistent with an 
experimental wave function for hep beryllium metal derived from coherent X-ray diffraction data, where it is concluded that “charge flows into the tetrahedral hole regions and out of the nuclear regions and octahedral channels."45 For the perfect crystal all sites are filled, leading to a semimetal. The conductivity is ex­pected to be very sensitive to vacancies and the number of electrons on impurity atoms (hole conductor for group 1 (group 1 ),55 normal
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2620 The Journal of Physical Chemistry, Vol. 91, No. 10, 1987conductor for group III (group 13)). Our rules do not predict which cp structure is favored for systems with two or less valence sp electrons per atom. The differences in energy between the hep and fee forms for these systems could involve more subtle longer range interactions. Indeed, the alkali metals'6-4* and the alka­line-earth metals16 seem to have nearly identical energies for hep, fee, and bee. The low temperature structure of Li is currently unknown, but believed to be ≈75% close-packed rhombohedral 
9R (abcbcacab stacking of the planar close-packed layers; hep has aba stacking and fee has abc stacking) and ≈25% bcc.46 The noble metals (Cu, Ag, and Au) are all fee while Zn and Cd are hep.16For cp systems with three valence sp electrons per atom, half the tetrahedra must be doubly occupied, while the other half are singly occupied. For both hep and fee it is possible to arrange the occupations so that adjacent tetrahedra are not both doubly occupied (satisfying rule δ). In this arrangement, each pair of adjacent tetrahedra contains three electrons. However, the hep structure contains adjacent face-sharing tetrahedral pairs, while the fee structure contains only edge-sharing tetrahedral pairs; thus, based on rule y, we conclude that fee should be strongly favored over hep for group III (group 13). Indeed, neither B, Al, Ga, nor In leads to stable hep structures, while Al leads to fee and In to a slightly distorted fee. With a hole in every other tetrahedron, these systems are good conductors.With four valence electrons per atom, all tetrahedra would be doubly occupied, strongly disfavoring either cp structure (rules γ and i). Indeed, except for Pb, the group IV (group 14) elements are either nonmetals (with strong two-electron covalent bonds) or metals with low coordination numbers. It is well-known that Hg, Tl, Pb, and Bi exhibit properties suggesting that the 6s pairs are particularly stable and do not easily form the normal sp hybrids with the 6p orbitals, perhaps rationalizing the fee form for Pb and the hep form for Tl.

E. Solid Solubilities. Rules & and y place upper limits of 2e^∕atom for hep structures and 3e^∕atom for fee. These limits are consistent with known alloy formations and maximum solid solubility limits.43-47 Thus, comparing atoms with similar sizes [Ag (le^), Zn (2e^), Al (3e^), and Sn (4e^) with metallic radii16 of 1.44, 1.39, 1.43, and 1.54 Â, respectively], Ag and Zn are both highly soluble in fee Al [23.8 and 66.5 at. % (atomic percent), respectively] while the solubility of Sn in AI is only 0.02 at. %. Similarly, the solubilities of Al and Sn in hep Zn are small (2.4 and ≈0.10 ± 0.04 at. %, respectively) while Ag-Zn alloys form hep phases with up to 33 at. % Ag (Ag,Zn2). The 3e^∕atom limit does not restrict solubilities in fee Ag (le'/atom); hence, the solubilities are all high (Zn, 40.2 at. %; Al, 20.34 at. %; Sn, 11.5 at. %).The fact that the maximum solubility limits of Sn in Al and of Sn or Al in Zn are very small (and not zero) is not necessarily a result of a slight violation of the rules. These solubilities may depend crucially on imperfections of the substrate (e.g., stacking faults, vacancies, dislocations, impurities, etc.). The soluteatoms may tend to migrate to dislocations, surfaces, or polycrystalline grain boundaries and may actually lead to the creation of a higher density of such defects than present in the pure metal at the same temperature. For Al in Zn, the maximum solubility (2.4 at. % at 655 K or 0.94Γm where Tm is the melting temperature) de­creases to 1.2 at. % at 0.76Γm and 0.15 at. % at 0.43Γn,. Thus, at lower temperatures (fewer vacancies), the limits of such sol­ubility decrease. There are substantial disagreements among the various experiments regarding the exact values of the solubilities for Sn in Zn. Three different experiments regarding the solubility of Sn in Zn range from t∞ small to measure (0.0 at. %) to slightly greater than 0.06 at. % (at 0.97 Tm; somewhat greater than 0.03
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McAdon and Goddard IIIat. % at 0.437^m) to less than 0.14 at. % (presumably near Tm). The solubility of Sn in Al reaches its maximum of 0.02 at. % at 0.967"m, diminishes to 0.009 at. % at 0.867m, and is negligibly small at 0.47Γm. Indeed, the solubilities seem to vanish as the tem­perature is lowered for each of these three cases. Presumably, the density of defects similarly decreases with decreasing tem­perature. In contrast, for cases where the solid solubilities are high, the solubilities tend to decrease somewhat with increasing temperature but often reach sizable limits as the temperature approaches absolute zero (these systems are presumably meta­stable).Here we have focused on global electron/atom trends. Of course, certain binary combinations might lead to local electronic structures that would further restrict solubility. For example, Ag∣.xSπx is hep for 0.118 ≤ x ≤ 0.246 and a slightly distorted hep for 0.237 < x ≤ 0.25. The 2e^∕atom limit applied to hep Ag∣,rSπ, leads to the restriction x ≤ 0.335, which is somewhat less restrictive than the experimental limit of x ≤ 0.25 (1.75 e^∕atom). Similarly, the 2e^∕atom limit applied to hep Ag∣.xAl1 leads to the restriction x ≤ 0.50. This is in agreement with the experimental limits of 0.23 ≤ x ≤ 0.42 for hep Ag,.jAlx.
F. Force Fields. Fully correlated ab initio GVB calculations of the quality described herein are currently limited to a relatively small number of atoms (less than 100). This is a severe limitation since many phenomena in metallic systems would require thou­sands of atoms for a proper description. In order to extend our studies to such large systems, we have been using our cluster results to develop force fields that could be used in both static and dy­namical simulations.34 We find that, because of the special in­terstitial nature of the bonding, these force fields should not be described merely in terms of nuclear positions but must also involve the positions of the localized (correlated) electrons. Thus, the force field must involve both nuclear and electronic c∞rdinates. These force fields involve such three-body terms as atom-elec­tron-atom bend and atom-electron-atom asymmetric stretch, etc. Although still under investigation, we believe that such force fields will allow an accurate description of metallic systems that will permit reliable simulations for large systems.

V. SummaryResults of generalized valence bond studies for a variety Li 13+ geometries lead to a set of rules based on the paradigm of electrons localized in tetrahedral hollows. These rules lead to predictions of structure [e.g., the “zig-zag" clusters for M„, n ≤ 8 and the “OPTET* clusters for Mn, 8 < n ≤ 40] and to new rationalizations of solid solubility limits involving close-packed bulk metals. We expect that these rules apply to the valence sp electrons of a variety of structures for pure metals and for alloys, including fee, hep, 7-brass,42·43 the Laves phases,43 and Frank-Kasper alloys.43-44 The present rules may require modification for metallic structures that possess severely distorted tetrahedra (e.g., body-centered cubic) and for structures that contain t∞ few tetrahedra to accommodate all of the valence sp electrons (e.g., rule {).The interstitial localization of the valence electrons suggests a new approach to force fields for describing metallic systems where terms involving both electronic and nuclear positions are included. Such force fields should allow simulation of the GVB wave functions for systems containing thousands of metal atoms.The rules in combination with the force field should form a useful starting point in developing valence bond ideas for predicting geometries, electronic structure, and properties of metallic clusters, and for describing localized phenomena in solids, such as defects interfaces, or chemisorbed species. This should provide useful conceptual ideas for predicting the chemistry and catalytic properties of such systems.
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Appendix A. Calculational DetailsIn this Appendix we describe various details concerning the calculations. The results presented in the previous sections of this



348GVB Studies of Metallic Bonding The Journal of Physical Chemistry, Vol. 91, No. 10, 1987 2621communication stem from the usual generalized valence bond (GVB) self-consistent field2·4**48 49 50 51 and configuration interaction (CI)52 methods as described in the various sections of this Ap­pendix. For comparison, this Appendix also includes results obtained from unrestricted (spin-polarized) Hartree-Fock (UHF) and restricted (nonspin-polarized) Hartree-Fock (HF). Section A.l describes a series of studies with various basis sets. The results described in the previous sections are derived from all-electron ab initio wave functions using basis set D and are discussed in more detail in section A.3. A series of studies for the three high-symmetry clusters is presented in section A.2. Further details of the various wave functions are discussed in sections A.4 and A.5.
A.l. Basis Sets. As an initial test for the basis sets, we cal­culated equilibrium bond lengths (Rt), force constants (fce), bond energies (Oe), and total energies (£e) for both Li2+ and linear Li3j'^ These cases (Li2+ and linear Li?) were chosen because the bonding is similar to that of Liu+. Thus, in all cases the lowest energy many-electron states are described by valence orbitals localized in interstitial regions. The results are given in Table III.Basis sets A~G all share the same 3s Dunning53 valence double-  ̂(VDZ) contraction of the 9s Huzinaga54 55 Gaussian-type orbital (GTO) s basis. These bases differ only in the choice of p basis and d basis (see Table IV).Bases B, E, F, and G all entail variations of the Dunning (4p) GTO p basis (derived from the 2P Li ls22pl atomic state). These four sets of p GTO are contracted into a single set of functions 

(minimum basis sei, MBS) in basis set B, and they are contracted double-f (DZ) in bases E, F, and G. In addition, the p basis is scaled by a factor of 1.1 for basis sets F and G. The scale factor (f = 1.10) is near optimal (with respect to the total energy) for = 1.114) and for Li? ({^opl = 1.111) calculated at bond = 3.14 Â. Basis set G also includes a single set of dGTO’s optimized for Li? at R = 3.14 Â (α⅛pt = 0.13).Basis set C ∞ntains a single set of p GTO’s with an exponent 
a = 0.10. This p exponent (a = 0.10) is near optimum for Li2i (αop, = 0.110 at R = 3.1 Â, αop, = 0.106 at R = 3.24 Â), for rhombic Li4 (α0p, = 0.102 at R = 3.064 λ,,θ = 60°), and for L⅛ (α0p = 0.113 at R = 3. ! Â, tetracapped tetrahedron). These GTO p exponents are ∞nsiderabiy tighter than that optimized for the 2P Li (ls22pl) excited state atom (or2p = 0.0466). The exponent 
a = 0.10 corresponds to scaling α2p by a factor f = 1.46.Basis set D contains two sets of p GTO contracted MBS (2p∕ 1 p) into a single set of Slater-like functions. This is accom­plished by starting with the optimum two-Gaussian basis54 for the 2p state of H and scaling the orbital exponents while holding the contraction ratio fixed (d2∕d1 = 2.411792). Note that the Li 2p atomic state is very similar to the H 2p state since the Li nucleas (3+) is effectively shielded by the Li ls2 core electrons for this state. The scale factor (f = 1.5) was optimized for Li,+ atΛ = 3.19 Â.
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LEVEL OF CALCULATION U)

Figure 21. Total energies for nine Lt∣j+ clusters for the PPCI+SD(2∕) 
wave functions as a function of Z. Total energies are shown relative to 
the PPC1+SD(12) total energy of OPTET(I).

CALCULATIONS)(a) (b>
Figure 22. (a) Total energies for the OPTET(I), Ih, and planar Li,j* 
clusters for the PPCI+SD(2∕) wave functions as a function of I [relative 
to the PPC1+SD(I2) total energy of OPTET(I)]. The solid lines show 
the extrapolations to ∕ 35 6 using I = -1,0, I. 2. and 3. The dashed lines 
show the extrapolations to I ≈ 6 using / = —1.0, 1, and 2. The difference 
in total energy for the two extrapolations is 1.6 meV for OPTET(1),0.9 
meV for Ib, and 2.0 meV for the planar cluster, (b) Total energies of the 
I⅛ Lil3+ cluster for the PPCl+SD(2∕) and the GVBCI(2Z) trunctio∩s of 
the full GVB∙CI as a function of I (relative to the PPC1+SD(12) total 
energy of OPTET(I)]. The difference in the extrapolated energies for 
PPCI+SD(12) and GVBC1(12) is 0.080 eV.
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TABLE HI: Basis Sei Comparisoa for Li2*(i∑,*) and for Linear ⅛*(l∑,*)√ Basis Sets C and D Were Selected for Studies of the Liu* Systemsbasis set“ scale factor (p basis) Re, Λ k„ eV A^2 De' eV £e, hartreeLi2*A (9s,0p,0d)∕(3s,0p,0d) 3.377 0.458 0.543 -14.087 68B (9s,4p,0d)∕(3s,lp,0d) 1,0 3.286 0.718 1.070 -14.707 05C (9s,lp,0d)∕(3s,lp,0d) 1.46 3.195 0.918 1.182 -14.711 16D (9s,2p,0d)∕(3s,lp.0d) 1.5 3.152 0.951 1.206 -14.71205E (9s,4p,0d)∕(3s,2p,0d) 1.0 3.181 0.901 1.225 -14.71275F (9s.4p,0d)∕(3s,2p,0d) 1.1 3.141 0.945 1.236 -14,713 15G (9s.4p,ld)∕(3s,2p,ld) 1.1 3.146 0.890 1.274 -14.71453STO 5st5p,3d' 3.127 0.883 1.280 -14.716 18experiment* 3.133 (13) 0.888 (10) 1.2980 (7)Lis*A (9s.0p,0d)∕(3s,0p,0d) 3.126 1.225 0.493 -22.137 53C (9s,lp,0d)∕(3s,lp,0d) 1.46 3.149 1.760 0.804 -22.172 45D (9s,2p,0d)∕(3s,lp,0d) 1.5 3.113 1.782 0.808 -22.173 46E (9s,4p,0d)∕(3s,2p.0d) I.0 3.140 1.705 0.830 -22.174 99F (9s,4p,0d)∕(3s,2p,0d) t.t 3.115 1.754 0.830 -22.175 40G (9s,4p,ld)∕(3s,2p,ld) 1.1 3.123 1.670 0.856 -22.177 71β All wave functions are full GVB. Li2* is a one-valence electron system, so that GVB and HF are equivalent. Since Li2* is a two-valence electron system, GVB-PP and GVB-CI are equivalent. ‘The dissociation limits are Li2* — Li + Li* and Lij* — Li + Li2*. e I hartree =» 27.21161 eV. d Results using a large Slater-type orbital (STO) basis set, ref 12. The Li + Li* assymptote for this basis set is lower than that for Bases A-G by 0.00142 hartree. This is due to a better description of the ls2 core electrons with the STO basis set. 'Results obtained by extrapolaιiħg several Rydberg series of Li2, ref 13. Numbers in parentheses indicate the experimental uncertainty in the last digit. f Rrι is the bond distance, It. the force constant, O, the bond energy, and £, the total energy.
TABLE IV: p Bases Contraction Used in Various Calculation*basis set exponent a, contraction coefficient d,A (no p functions)B 1.488 0.038770

0.266 7 0.2362570.07201 0.8304480.023 70 0.817 656C 0.10D 0.313 371 0.325 6520.072882 0.785405E 1.488 0.0387700.2667 0.2362570.072010.023 70 0.830448
F, G‘ 1.80048 0.038 7700.322 707 0.236 2570.08713210.0286770 0.830448

'The results of test calculations on Li2* and linear Li1* using these basis sets are given in Table III. In this study, basis set F was used in all Li„ calculations for n < 10 unless otherwise stated. Basis sets C or D were used in all,calculations for n > 10. ‘Basis set G also includes a set of d GTO’s with exponent a « 0.Î3.

The overall trends of differences in the calculated results (Table III) among the various bases are very similar for both Li2* and linear Li1*. The various bases are listed in order of increasing overall quality, as determined by the variational principle (de­creasing total energy). The Li2* results calculated with basis set G are in reasonable agreement with results calculated with a large Slater-type orbital (STO) basis12 and with experiment.13The importance of p and d polarization functions is indicated from a comparison of the results for bases A, F, and G. For Li2*, the P, functions and drι functions contribute 54.4% and 3.0%, respectively, of the total bond energy (of basis set G).Comparing MBS p-basis results (bases B, C, and D) indicates that the optimum p function for bonding is much more compact «==1.5) than the Li 2p atomic function (f = 1.0). [The optimum scale factor for the DZ p basis (f = 1.1; F,G) is smaller because of the added flexibility of the DZ basis.] Scaling the p basis (j^ > 1.0) results in a decrease in the calculated Λe and an increase in the calculated ⅛0.These results indicate that bases C and D should be reasonably accurate for cluster calculations. Calculations with bases E, F, and G generally result in increases in the computation time by factors of at least 5, 5, and 40, respectively. We have employed basis set E in the calculations presented here for all clusters of ten atoms or less. For these cases, the GVB results refer to untruncated GVB-CI wave functions (full CI within the valence
TABLE V: Optimum Geometries for the Higk-Syαumtry Lin* Ousters'basis set C basis set D“structure Vms,6 a kvt eV A^2 Ee, hartree ΔΕ., eV Ez, hartree CiE. eVGVB-PPcicosahedron 3.24l 15.0 -96.673 71 0.00 -96.687 83 0.00fee 3.239 12.9 -96.66710 0.18 -96.683 88 0.11hep 3.244 13.3 -96.659 26 0.39 -96.67477 0.36PPCI+SD(0)'icosahedron 3.234 15.1 -96.688 25 0.00 -96.703 44 0.00fee 3.245 12.7 -96.676 66 0.32 -96.69281 0.29hep 3.228 13.4 -96.667 70 0.56 -96.683 89 0.53PPCI+SD(2)'icosahedron 3.230 15.2 -96.695 69 0.00 -96.71084 0.00fee 3.243 12.6 -96.684 33 0.31 -96.700 64 0.28hep 3.222 13.5 -96.673 7g 0.60 -96.69014 0.56“Calculated at Λrms = 3.19 Â (see section A.l). » Λβss for the fee and hep clusters. For the icosahedron. Re bs = 0.964ReRMS:Ress = 1.01 4Rcrms. 'GVB-PP is a 64-coπfiguration MCSCF wave function that allows an independent particle description. 'The full 73 789-con- ∏guration GVBCI was truncated to PPCI+SD(0), 535 configurations, and PPCI+SD(2), 2875 configurations (see section A.4). 'Λ,rms is the average bond distance, kc the force constant, Ee the total energy, A£ the relative energy.
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TABLE VI: Relative Total Energies (eV) for Lilj+ Ousters (Basis Set D) PPCI+SD(2∕)'zstructure* HF6 UHF GVB-PFf ∕ = 0 I = 1 I « 2 ∕ = 3 I = 6OPTET(I)' 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00OPTET(II)' -0.29 0.10 0.09 0.03 0.04 0.06 0.06 0.06OPTET(III)' -0.03 0.10 0.15 0.14 0.18 0.19 0.20 0.20planar 1.13 0.03 0.50 0.54 0.46 0.41 0.40 0.40icosahedron 0.75 0.18 0.78 0.63 0.59 0.58 0.58 0.58fee 0.98 0.32 0.89 0.92 0.86 0.84 0.84 0.84zig-zag chain 0.88 1.27 0.57 0.80 0.92 0.94 0.95 0.95hep 1.02 0.53 1.14 1.16 1.15 1.15 1.14 1.14linear chain 4.70 0.84 1.54 1.77 1.82 1.74 1.69 1.68correlation* 0.00 0.93 1.77 2.04 2.20 2.23 2.24 2.24flThe structures are shown in Figures 11, 15-17, 19, and 20. Rrms » 3.19 A except for the linear chain (/?RMS ≈ 3.12 A) and for the zig-zag chain (Rrms ≈ 3.12 A, 9 = 70°). 4The HF wave function (closed shell) contains only one configuration (one determinant). The orbitals were optimized with spin restrictions but without spacial (symmetry) restrictions. cThe UHF wave function (Λ/g x 0) contains only one configuration (one deter­minant). The orbitals were optimized without any restrictions (spin or spacial). 'The GVB-PP wave function contains 64 configurations in the natural orbital representation, but leads only one configuration (64 spin determinants) in the GVB single particle representation. The orbitals were optimized with the usual strong-orthogonality and PP restrictions. The GVB-PP and PPCI (∕5s -1) total energies are almost identical. The largest difference in total energy for these two wave functions is for the OPTET(I) cluster (0.00035 eV). pThe PPCI+SD(0), PPC1+SD(2), PPCI+SD(4), PPCI+SD(6), and PPCI+SD(12) wave functions [535, 2875, 7615, 12595 and 16336 configurations, respectively] are truncations of the full GVB-C1 wave function [73 789 configurations]. The GVB-CI wave function overcomes the strong orthogonality and PP restrictions of GVB-PP. 7The ∕ = 3 and ∕ = 6 total energies were obtained by extrapolating the PPCI+SD(2Z) total energies as a function of I as shown in Figures 21 and 22, except for the following cases where the total energies were calculated exactly. I » 3: OPTET(I), planar icosahedron and linear chain; I - 6: linear chain. 'The low symmetry clusters generated from rules a through f; see Figure 19. ‘The electron correlation energy of the OPTET(I) cluster is listed for each wave function. The correlation energy for each wave function is defined as the difference between the total energy calculated with that wave function and the HF total energy (-96.65158 hartree).
TABLE VII: Cartesian Coordinates for the L∣∏* OPTET Clusters 'atom(s) X, Â y. A z. AOPTET(I), p = 0.071 A1. 2 0.00000 ±1.593 47 1.I27553, 4 ±1.56394 0.00000 -1.179 285, 6 ±2.61908 0.00000 1.838007, 8 0.00000 ±2.73547 -1.767 699, 10, 11, 12 ±2.728 11 ±2.67928 0.000 0013 0.00000 0.00000 3.81622OPTET(II), p = 0.059 Â1 0.00000 -1.6OO5O 1.080962 0.00000 1.48229 1.125963,4 ±1.569 28 0.00000 -1.253 325. 6 ±2.75071 -0.026 11 1.650637 0.00000 -2.72096 -1.859738 0.000 00 2.688 11 -1.856 329, 10 ±2.709 53 -2.724 83 -0.1126011, 12 ±2.607 53 2.76503 0.0000013 0.00000 4.591 90 0.65458OPTET(ΠI), p = 0.070 A1 0.00000 0.00000 -0.207162, 3 0.00000 ±2.87994 -1.474514, 5, 6, 7 ±2.613 25 ±1.64063 0.000 ∞8. 9 0.00000 ±2.57908 1.667 2710, 1! ±!.61648 0.000 00 2.538 2812, 13 0.00000 ±1.61004 4.738 12• T?RMS ≈ 3.19 A; p is the r∞i mean square deviation of Λrms. The OPTET clusters are shown in Figure 19.
orbitals) where the orbitals have been optimized at the GVB-CI level. The calculations on the Li∣0 ring cluster are described in greater detail elsewhere.5 The calculations on Li∣3+ employ bases C or D and are described in further detail in the subsequent sections of this Appendix.

A.2. High-Symmetry lfi+ Clusters. The Ih, fee, and hep clusters (Figures 15-17) each consist of a central “bulk” atom surrounded by 12 surface atoms equidistant from the bulk atom. We performed calculations for several internuclear separations (Λbs) between the bulk and surface atoms and interpolated the results to obtain equilibrium values (Λcβs). Results at the per­fect-pairing GVB (GVB-PP)48 and configuration interaction GVB (GVB-CI) levels are shown in Table V. Details of the GVB-PP and various truncated GVB-CI wave functions [PPCI+SD(0), PPG1+SD(2), etc.] are given in sections A.4 and A.5. The

GVB-CI wave function allows a less-restricted treatment of the electron correlation than the GVB-PP wave function. Conse­quently, the GVB-CI leads to slightly lower total energies (≈≈0 44 eV) and slightly smaller bond lengths (≈0.009 Â) in ∞mparison to GVB-PP.For the icosahedron, Ras is 4.9% smaller than the surface- surface bond distance (Λss). In order to compare bond lengths of different structures, we use the root mean square distance (Λrms). For the fee and hep structures 7?RMS = Λbs = Λss, whereas for the Ih structure, Λrms = 0.986Λss = 1.037Λbs. The validity of Λrms as a measure of size is indicated by the close correspondences: 7?eRMS(k) = 3.230 Â, 7?,RMS(fcc) = 3.243 A, and Ä.RMS(hcp) = 3.222 A.For the hep cluster we fixed the c/a ratio43 at 1.633 so that all the nearest-neighbor distances are equal. Thus, the fee and hep clusters both have the same number of bulk-surface and surface-surface nearest neighbors. Even so, hep leads to a bond distance 0.02 A smaller than fee.Optimum bond lengths (Λcrms), force constants, total energies, and relative energies (ΔE,e) were calculated for the Ih, fee, and hep clusters by using basis set C. Since the energy differences among these three high-symmetry Li,3+ are rather small (≈≈21 meV/atom), we also carried out calculations using a slightly better p basis (basis set D). We did not optimize 7?RMS with basis set D; rather we chose Λrms = 3.19 A based on the average of the Ih, fee, and hep values for basis set C (ÆeRMS = 3.23 A) corrected by the difference in Re values calculated with the two basis sets for linear Li3+ (0.04 A, see Table III). The results calculated by using basis C (Table V) justify choosing a fixed Λrms rather than optimizing separate values for the various clusters. Actually, the relative energies are rather insensitive to the value of R. Thus, changing Λrms by as much as 0.05 A from ∙R,rms would lead to errors in the total energy of less than 0.02 eV (assuming kc < 16.0 eV A^2). The relative energies (∆f) of basis set D compare quite favorably with those of basis set C. Thus, at the GVB-CI level [PPCI+SD(2)], the maximum difference in NE between the two basis sets is 0.04 eV. We have chosen basis set D and Λrms = 
3.19 A for the lower symmetry clusters (to avoid the expense of further geometry optimizations). Since the total energies for basis set D are slightly lower [≈0.015 hartree] than those for basis set C, the NE values from basis set D are expected to be somewhat more reliable than those from basis set C.

A.3. Results for Lill+ Clusters Using Basis Set D. Total energies (E) of nine Li∣3+ structures are given in Table VI for
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TABLE VIII: Tπβcat∙d GVB-CI Results for the U13+ lcosahedro∙truncation4 s'zc of C1 wave functio" CPUwave function4 E, hartree error, mhartree SC SEF DET time/ hPPCI -96.687 834 24.639 64 64 64 0.00PPCI+SD(0) -96.703 443 9.029 535 760 I 876 0.06PPCI+SD(2) -96.710 836 1.636 2 875 4 300 11 236 0.38PPC1+SD(4) -96.712 295 0.177 7615 11 680 31 096 1.60PPCI+SD(6) -96.712457 0.015 12 595 19 720 53 176 3.63PPCI+SD(I2) -96.712472* 0.000 16336 26176 71 488 6"GVBCI(0) -96.618059 97.344 1 1 I 0.00GVBCI(2) -96.693 517 21.886 478 703 I 819 0.00GVBCI(4) -96.711 957 3.446 11078 28 278 98 694 0.23GVBCI(6) -96.715 067 0.336 46835 147 042 558810 3.50GVBCI(12) -96.715 4O3i 0.000 73 789 226512 853 776 9d"Basis set D, Λrms = 3.19 A. 4The PPCI+SD(I2) and GVBCI(12) energies were obtained by extrapolating the results for 2/ = -2, 0, 2, 4. and 6 to 21 = 12 (see Figure 2). "Machine time required on a DEC VAX 11/780 computer. The GVBCI(2∕) calculations utilize symmetry in solving for the wave functions (Da for the Li∣j+ icosahedron); cases with lower symmetries would involve much more CPU time, e.g., by factors of more than 4, 16, and 64 for Cto C1, and C∣ symmetries, respectively. "Estimated CPU time.
HF, unrestricted HF (UHF), GVB-PP, and various truncated GVB-CI wave functions. Details of these wave functions are given in sections A.4 and A.5.For seven of the nine clusters we have chosen Rrms ■ 3.19 A based on results given in section A.2. For the linear chain Li∣3+ cluster (Figure 1 la) we chose R = 3.12 A based on Re = 3.143 
A for the infinite Li chain [Li(1D)] calculated with basis set E5 and the 0.027-Â correction between basis set E and basis set D (see Table III). For the zig-zag chain (Figure lib), we chose 
R = 3.12 Â and a bond angle (fl) of 70°. This bond angle (9 = 70β) is close to that optimized for Φgvr-rr for the Li∣j+ zig-zag chain (⅛pt = 70.7° at R = 3.12 A) and to the optimum bond angle of the planar Li6 cluster (90pt = 69.8°, Figure 9b) calculated at the full GVB level.The OPTET clusters (Figure 19) are similar to the icosahedron in that the nearest-neighbor bond lengths (or tetrahedral edge lengths) cannot all be chosen equal. For the icosahedron, the ratio 2jβs∕2jss js fjxe≤i by symmetry. The OPTET clusters have rela­tively low symmetries, thus there is considerable freedom in choosing the various bond lengths. Geometries for the OPTET clusters were obtained by minimizing the root mean square de­viation (p) of all (N) nearest-neighbor bond lengths (Ri). Thus P2-⅛Λi-*rms)2 (8)
was minimized for N = 38 different bond lengths for each of the three OPTET clusters (each of the OPTET clusters contains 38 nearest-neighbor contacts). Obtaining the geometries in this fashion is equivalent to minimizing the strain energy, assuming equivalent harmonic bonds between each pair of nearest-neighbor atoms. Cartesian coordinates for the three OPTET clusters (Λrms = 3.19 Â) are given in Table VII. Nearest-neighbor bond lengths for these clusters all lie in the range R = 3.19 ± 0.11 Â, while next-nearest neighbors are at R ≈ 5.2 A.It is important to include the valence electron correlation effects implicit in the GVB wave function. For the Ih cluster, we estimate that the total energy of the full (untruncated) GVB-CI wave function is -96.71540 hartree (see section A.5). In ∞mparison, the PPCI+SD(4), GVB-PP, UHF, and HF wave functions lead to total energies that are higher than the estimated full GVB-CI total energy by 0.08, 0.75, 0.98, and 2.49 eV, respectively [1 eV = 36.74902 mhartrees].We find that the PPCI+SD(2∕) wave functions lead to very efficient truncations of the full GVB-CI wave function and include a large fraction of the energy difference between GVB-PP and full GVB-CI (see section A.5). PPCI+SD(2Z) energies for the various Li∣3+ clusters are plotted as a function of Z in Figure 21 [PPCI+SD(-2) ≡ PPCI ≈= GVB-PP] and extrapolated to 21 = 
n, (ne is the total number of valence electrons; n, = 12 for Li13+). Since the various curves in Figure 21 do not all have exactly the same form, we have used “cubic” splines3* with segments having the functional form

£(0 = ∑cj(nβ - 2Z)*3 ' (9)∕-eto perform the various extrapolations (the power of four was found to be required in order to give accurate extrapolations). In order to test the extrapolations, we compare the extrapolated limits (Z = 6) obtained with four points (Z = -1, 0, I, and 2) with those obtained with five points (∕ = -1,0, I, 2, and 3). Figure 22a shows the 4-point (dashed line) and 5-point (solid line) extrapolations for the OPTET(I), planar (Figure 20), and Ih clusters. The 4-point total energy limits are lower than the 5-point limits by 1.6, 0.9, and 2.0 meV for the OPTET(I), planar, and Ih clusters, respec­tively. The linear cluster differs from the other clusters in that the convergence of the PPCI+SD(2∕) energies with increasing 
I is rather slow, thus we calculated the PPCI+SD(12) energy exactly. For the linear cluster, the 4-point and 5-point I = 6 extrapolated limits are higher than the I = 6 calculated value by 37 and 3.6 meV, respectively. These results indicate that the extrapolated total energies in Table VI differ from calculated values by only negligible amounts (≈2 meV).Figure 21 shows that the relative energies (iEe) of the various clusters are fairly consistent for the GVB-PP and truncatedGVB-CI wave functions [PPCI+SD(2Z), I = 1, 2, 3.......6], exceptfor the zig-zag chain cluster. (Eliminating the zig-zag chain cluster, the GVB-PP and various PPCI+SD(2∕) wave functions all give the same ordering of the eight remaining Li13+ structures.) In comparison to the PPCI+SD(12) results, the root mean square errors in values for the various PPCI+SD(2Z) wave functions are 0.165, 0.089, 0.057, 0.023, and 0.004 eV for I = -1 (PPCI or GVB-PP), 0, 1, 2, and 3, respectively. Since the difference in total energy between the PPCI+SD(12) and full GVB wave functions is only =0.08 eV (see section A.5), the PPCI+SD(12) values represent a very good approximation to the full (un- truncated) GVB-CI. The error in the PPCI+SD( 12) values as compared with the full GVB-CI is expected to be much betterthan =0.08 eV due to cancellation effects.For several cases the relative energies for HF and UHF differ substantially from those of GVB. In comparison with the PPCI+SD(12) results, the root mean square errors in for HF and UHF are 1.11 and 0.47 eV, respectively. The closed-shell HF wave function correctly predicts that, of the nine structures, the OPTET clusters are the lowest in energy and the linear chain is the highest in energy. However, HF does not predict the correct ordering of the three OPTET clusters and gives relative energies for the planar cluster and linear chain that are 0.73 and 3.02 eV too high, respectively. Although the UHF results are somewhat more reliable than the HF results, the planar and linear chain clusters are still p∞rly described (0.37- and O.83-eV errors in Δ£, respectively).

A.4. Self-Consistent Field Wave Functions. Here we describe the HF, UHF, and GVB wave functions which have been solved for self-consistently; e.g., the orbitals have been optimized in such



352
GVB Studies of Metailic Bondinga manner as to give the lowest possible energy (within the par­ticular basis set) for the particular form of wave function. In general, we have allowed the orbitals to break symmetry, almost always leading to substantially lower energies than similar wave functions where symmetry restrictions are imposed on the orbitals.For the Li∣3+ clusters, the Li ls2 core orbitals are optimized at the Hartree-Fock level for a suitable valence state of Li∣3* and left frozen at this level and uncorrelated in subsequent calculations. The difference in total energy (£) between generalized valence bond (GVB) calculations performed in this manner and GVB calculations allowing the ls2 core orbitals to relax (but remain uncorrelated) is negligible, e.g,, 0.10 mhartree for Ih Li13+.The closed-shell restricted Hartree-Fock many electron wave function (Φhf) of Li13+ is writtenφhf = λ[Φ∞re≠1(1)≠,(2)≠2(3)≠j(4)≠3(5)≠3(6)...≠6(I1)≠6(12)xhf] (10)where À is the antisymmetrizer (determinantal operator), Φcore contains the 13 doubly occupied Li Is ∞re orbitals, ∣≠J are doubly occupied orthogonal valence orbitals, andXhf ≈ a( 1 )0(2)α(3)0(4)α(5)0(6)...α( 11)0(12)] (11)is the HF spin function where a and β are the electronic spin functions describing the up-spin (m, = '∕2) a∏d down-spin (m, = -l∕2) projections, respectively. Although it is often customary to apply symmetry restrictions to the HF orbitals when solving for their optimum shapes, this often results in higher energies than similar calculations without such spatial symmetry restrictions? Thus, we solved for the optimum (self-consistent) orbitals ∣≠j∣ for Ψhf without imposing spatial symmetry restrictions.The low-spin unrestricted Hartree-Fock many electron wave function (Φuhf) is writtenΦuhf = ^[Φc0re^iaV>ibΦ2aV⅛BV⅛aV⅛B∙∙∙V%aV⅛bXhf] (12)where it is understood that the electronic c∞rdinates are labeled sequentially. Again, we solved Φuhf self-consistently without imposing spatial symmetry restrictions on the orbitals I‰.⅜≈,,bI∙ Making the restriction φih = φi3 results in Φhf, thus the UHF total energy is never higher than the HF total energy (Φuhf eschews the HF restriction of doubly occupied valence orbitals). Here, singly occupied orbitals are partitioned into two sets ∣v>,a) and ∣y⅛∣. Because of the Pauli principle (Â), orbitals within one set are mutually orthogonal but are allowed to overlap orbitals of the other set. Although the spin projection of each electron is quantized in xhf, Φuhf is not an exact eigenfunction of the total spin operator (S2) and hence does not give the correct spin spectrum of the many-electron states.5The perfect-pairing GVB wave function (Φgvb-pp) has the form

φOVB-PP _ [Φc°re(Φ, aΦib)(Φ2λΦ2b)(Φ3aΦ3b)-(06aΦ6b)X1,,,] (13)where
χιf ≈ (aβ - βa)(aβ - βct)(aβ - βa)...(aβ- βa) (14)describes a singlet spin eigenstate (of S1) in which singly occupied, nonorthogonal pairs of orbitals (01∙a, Φ,b) are described as two- electron singlet spin eigenstates and solved for self-consistently (energy-optimized). For Li∣3+, the optimum canonical UHF orbitals are somewhat delocalized over the cluster, while the optimum GVB-PP orbitals tend to be fairly localized. Although the GVB-PP wave function is a proper exact eigenfunction of S2, the spin function χpp is not in general optimum. In Φ0vb-pp, the strong orthogonality4* restriction is imposed; i.e., for Li13* the 12 valence orbitals are partitioned into six bond pairs, and each orbital is allowed to overlap only the orbital that it is paired with (e.g., Φ∣a is allowed to overlap <J⅛1 b) but is restricted to be orthogonal to all of the other orbitals). The qualitative aspects of the elec­tronic structure are discussed in terms of φgvb-pp since the localized GVB-PP one-electron orbitals provide a useful conceptual description of the bonding.

The Journal of Physical Chemistry, Vol. 91, No. 10, 1987 2625The GVB-PP description is excellent for systems such as hy­drocarbons or crystalline sili∞n in which there is only one favorable way to spin pair the orbitals on various atoms to form strong (high overlap) two-center, two-electron bonds. However, for metallic systems such as Li13+, each localized valence orbital may have several near neighbor orbitals with which it could overlap and be spin-paired. Thus, there may be several nearly equivalent ways (resonance structures) of forming bond pairs. For such systems, it is important to allow each localized orbital to overlap ail adjacent orbitals and to optimize the spin function χ (including thereby the optimum combination of bonding structures) in order to maximize the total exchange energy stabilization resulting from all of these adjacent overlaps.5 In order to allow for the optimum description of such resonance effects, a full GVB description is needed.The full GVB wave function has the form
φGVB = ^[φC0REφιφ2φ3 ...φl2χGVB1 (15)with one orbital per valence electron (as in Φuhf and ψgvb-pp), but now the spin function (χov8) and the orbitals {φi) are optimized simultaneously without restrictions.18 Thus, the valence orbitals are no longer partitioned artifically into two sets (as in UHF) or six bond pairs (as in GVB-PP). Rather, each orbital is allowed to overlap all the other orbitals. Unfortunately, Φσvβ is not practicable for N larger than eight or ten (because of the large number of overlapping terms); thus, it is customary to approximate φGvβ ∣3y using orbitals derived from Φovβ'pp j∏ a CI expansion (GVB-CI).52 A full CI over GVB orbitals also requires a large amount of ∞mputational effort for 12 electrons (especialy for low symmetry cases), and consequently we have employed truncations of φgvb∙ci, as described in the following section.

A.S. Truncated GVB-C! Wave Functions. The GVB-PP wave function of Li∣3+ involves 13 doubly occupied Is core orbitals and 12 singly occupied valence orbitals partitioned into six bond pairs 
l(Φ∣A∙ Φ∣b), , = 1,2,..., 6). The 12 valence orbitals are optimized self-consistently for each geometry, while allowing the orbitals to localize (no symmetry restrictions are imposed) and overlap in pairs. For describing the GVB-CI, it is useful to expand the GVB (overlapping) orbitals (Φ,λ, <≠∙,b) >n terms of GVB orthogonal 
natural orbitalss0 i2 S≠,a, ≠,∙b∣ as

Φ,A = (ff.Al72≠,'A + <piB,zj≠iB)∕(<tfA + fffB)'z2 (16)

Φπ> ~ (PiΛι2'l'iΛ. ~ <tιa,2ΨiB)∕<∙σiΛ + ct,b)'72 (17)where the expansion coefficients σ,Α > 0, σ,e > 0 are related to the overlap of <⅛,∙a and φ,a
(<p∕A - <tiB)∕(∕iA + <r,β) = (ΦiA∣⅛B> (18)

<t∣A2 + ff(Bz = 1 ∙θ Ο9)In this way, φcvβ∙pp can be rewritten in terms of doubly occupied (natural) orbitals (≠ia, ≠∣b∙∙∙≠sa, ≠sb) βs 
φGVB-PP =t Λ[Φcore(iTia≠ia≠ia - itib≠ib0ib)

-(ff6A≠6A≠6A - <r6Bl/'6B>/'6B)XHF] (20)Since each of the six bond pairs involves two configurations in the natural orbital representation, this CI form of φgvb∙pp involves 26 = 64 spatial configurations (SC) and one spin term (×hf). In comparison, the independent particle form of φcvθ-pp involves just one SC but 64 spin terms (in ×ff). Thus, both forms of φgvb pp lead to 64 determinants for Li13+.A full (untruncated) GVB-CI (allowing all possible combina­tions of 12 electrons among 12 orbitals) involves 73 789 SC [226 512 spin eigenfunctions (SEF), 853 776 determinants (DET)]. Consequently, we have employed truncations of φgvb-ci.We find that a particular set of truncations of φcivβ∙c, [based on the Cl form of φgvbpp] is quite useful for Li∣3+. First we partition the 64 SC of φgvb-pp ⅛to seven sets. The “zeroth order” set consists of the single (dominant) SC with two electrons in the first natural orbital for each of the six bond pairsPPCI(O): ∣≠U1a≠UUIa^aI (21)



3532626The second-order set consists of the six SC involving a double excitation in just one of the six pairs, e.g.PPCI(2): ΙΦιβ02α03αΨ4αΦ5αΦ1α1 (22)In general, the 2∕-th order set [PPCI(2Z)] consists of the (*) SC involving double excitations in Z of the six bond pairs, thus the 64 SC partition as 1+6+15 +20+ 15 + 6+1 for the sets of order 0, 2, 4, 6. 8, 10, and 12, respectively.The PPCI wave function is simply the CI wave function in­volving these 64 SC. Thus ψppcl is nearly equivalent to ψovβ∙pf,, the only difference being the coefficient restrictions of Φgvb-ppi which leads to Φppcl having total energies generally lower than φGvβ-pp by ab0ut 0.01 millihartree. PPCI+SD(0) is defined as the wave function consisting of PPCI plus all single and double excitations (within the GVB natural orbitals) from PPCI(0). The PPCI+SD(2) truncation is PPCI plus all single and double ex­citations from the seven configurations included in PPCI(0) and PPCI(2). In general, PPCI+SD(2Z) is defined as the wave function consisting of PPCI+SD(2∕ - 2) plus all additional single and double excitations from PPCI(2∕).The limit of the PPCI+SD(2Z) series is PPCI+SD(πe), where 
nt is the total number of valence electrons (r⅛ =* 12 for Li∣3+). The PPCI+SD(ne) wave function is equivalent to PPCI times singles and doubles (PPCI×SD) and includes all excitations up to second order from all 64 SC in PPCI). For Li∣3+, the PPCI wave function differs from the full GVB-CI wave function by

excitations up to sixth order, since PPCI already includes selected 
closed-shell excitations up to twelfth order from the dominant SC.We find for Li13+ that the PPCI+SD(2Z) truncations of Ψgvb∙c, lead to an efficient method of including nearly all of the important electronic correlation effects of the full GVB-CI; e.g., PPC1+- SD(12) includes =90% of the total energy difference between GVB-PP and full GVBCI. We tested the PPC1+SD(2∕) trun­cations for the I⅛ cluster by ∞mparing the total energies with those calculated with the GVB-CI(2Z) truncations as described below (see Table VIII and Figure 22b).The GVB-CI(0) wave function consists of the dominant SC of the zeroth order set. GVB-CI(2) is defined as GVB-CI(0) plus all single and double excitations from the dominant SC. In general, GVB-CI(2Z) consists of GVB-CI(2∕ - 2) plus 1 - t and 
I order excitations from the dominant SC, thus GVB-CI( 12) is the full (untruncated) GVB-CI wave function.Results for the PPCI+SD(2∕) and GVB-CI(2Z) truncated CI wave functions are given in Table VIII and Figure 22b for Z = -I, 0, 1,2, and 3 and are extrapolated to Z = 6 for the Ih cluster. Both series of truncations are fairly well converged at Z-= 3. The error in the PPCI+SD(12) total energy (compared to the esti­mated full GVB-CI result) is only 0.08 eV. Errors in the PPCI+SD(12) relative energies (due to truncation of the GVB-CI) are certainly much smaller (due to cancellation effects).

Registry No. Li, 7439-93-2.
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Thesis Conclusions

In Volume 1 of the serial Solid State Physics, Wigner and Seitz1 state, “If one 

had a great calculating machine, one might apply it to the problem of solving the 

Schrödinger equation for each metal and obtain thereby the interesting physical quan­

tities. ... It is not clear, however, that a great deal would be gained by this. It would 

be preferable instead to have ... a simple description of the essence of the factors 

which determine cohesion and an understanding of the origins of variation in prop­

erties from metal to metal.”

This thesis presents results leading to new concepts of metallic bonding, derived 

from generalized valence bond theory — real-space concepts that do not require 

“thinking in reciprical (⅛) space.” In the process of deriving these concepts, we re­

fute a number of myths concerning one-dimensional metals. Hence, one-dimensional 

metals need not exhibit Peierls distortions,2 spin density waves or charge density 

waves. For one-dimensional metal clusters composed of monovalent atoms (Cu, Ag, 

Au, Li, and Na), generalized valence bond theory leads to fully symmetrical charge 

densities, fully symmetrical spin densities, and magnon spectra that fit the Heisen­

berg Hamiltonian.3

Generalized valence bond theory leads to the conclusion that, for metallic sys­

tems, the valence electrons occupy interstitial regions —∙ bond midpoints for one­

dimensional systems, triangular hollows for two-dimensional systems, and tetrahedral
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hollows for three-dimensional systems. Hence, for the π-dimensional metallic system, 

the “characteristic” localized valence orbital is composed of sp hybrid orbitals from 

n + 1 adjacent atoms.

The new concepts of metallic bonding are summarized by the following set of 

rules for the valence sp electrons of metallic systems.

(a) Orbitals (each with one electron) are localized in different tetrahedral hollows 

where possible.

(∕3) If necessary, two electrons may be placed in one tetrahedron (localizing on 

opposite faces or edges) but they must be spin-paired.

(7) No more than two electrons may be distributed between a pair of face-shared 

tetrahedra, and these must be spin-paired (singlet).

(5) No more than three electrons may be distributed between a pair of edge-shared 

tetrahedra.

(e) No more than four bond pairs of electrons may share one central bulk atom, 

and no more than three bond pairs of electrons may share one central surface

atom.

(£) Additional electrons must be in surface orbitals at edge or face sites that do not 

share edges with occupied tetrahedra.

These rules are used to derive the low-lying isomers of small metal clusters, and are 

expected to prove useful in predicting the chemistry and catalytic properties of such 

systems.4

Applying these rules to bulk metals leads to a new explanation of the solubility 

limits governing the alloys of monovalent, divalent, trivalent, and tetravalent atoms
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— the Hume-Rothery rules.5 These rules are expected to be most valuable in de­

scribing localized states in metals and alloys such as defects or interfaces. These new 

concepts of metallic bonding are expected to apply to a variety of metals and alloys

— including fee and hep, 7-brass, the Laves phases,® and Frank-Kasper alloys.7
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