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Thesis Abstract

In order to increase the efficiency of protein simulations, both deterministic and
stochastic methods can be formulated in terms of the most important degrees of
freedom in polypeptide and protein systems: the torsions. Two such methods are
presented here. The first is Newton-Euler Inverse Mass Operator (NEIMO) Dynam-
ics, an internal-coordinate molecular dynamics method originally designed to study
the dynamics of general multibody systems. The second is the Probability Grid
Monte Carlo (PGMC) method, developed for searching the conformational space of
polypeptides using a weighted sampling of the most favorable dihedral angles.

The first use of the NEIMO Dynamics method for studying molecular systems
is reported here. The method is used to study the dynamics of a wide range of
peptide and protein systems. These range from the pentapeptide Met-enkephalin to
the crystallographic asymmetric unit of the tomato bushy stunt virus (TBSV), an
assembly of three chains totaling 893 residues. Bond lengths and angles do not vary
during the dynamics simulations; this enables timesteps larger than 10 femtoseconds
to be used for small peptides, a substantial improvement over Cartesian coordinate
molecular dynamics. Timesteps of 10 fs do not work well for NEIMO simulations of
large proteins because of unacceptably large energy fluctuations. However, timesteps
of 2-5 fs give acceptable results, even for very large systems. The NEIMO method
is applied to TBSV coat proteins, in an investigation of the effect of Ca’* ions on
the coat stability.

The PGMC method provides efficient conformational searches for polypeptide

systems by assigning probabilities to different discrete values of the ¢, ¥, and x
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dihedral angles. These probabilities were derived by investigation of the protein
structures in the Brookhaven Protein Database. The PGMC method is applied
successfully to several important problems in protein modeling: studies of the low-
energy conformations of a peptide, prediction of the all-atom conformation of a
protein from its C, coordinates alone, and the prediction of antibody loop confor-
mations. The success of the C, modeling is further extended by its application to
structures with coordinates constrained to a lattice, through the use of a simple C,

Forcefield.
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Chapter 1

Simulation Techniques for Proteins: Molecular Dynamics and

Monte Carlo

I. Protein Simulations

Advances in many fields have led to an accelerated demand for computational tools
which can be used to study proteins. Biophysical techniques such as X-ray crys-
tallography and multidimensional NMR are heavily dependent on computers for
data retrieval and analysis, as well as for model-building of protein structures from
those data. These techniques have provided a wealth of information about protein
structures, much of which can serve as a starting point for computational studies
of the protein’s dynamics, thermodynamics, and substrate interactions. Spectacu-
lar advances in gene cloning and sequencing have provided tremendous amounts of
protein sequence data, which demand computational analysis. New sequences are
often compared against a gigantic library of other sequences in hope of discovering
any structural similarities and evolutionary relationships. Sequence data is accumu-
lating even faster than structural data, so there is great demand for computational
techniques which can provide structural informational about the protein using both
sequence and homology data. The eventual goal is a technique for predicting the

three-dimensional structure of a protein from the sequence alone. Advances in com-
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puter power and computational techniques and the promise of continual advances
in the future, have encouraged scientists to believe that computational solutions to
these and other problems are possible, today or in the near future.

A wide variety of computational techniques have been applied to the study of pro-
teins. The area of protein structure prediction is particularly wide-open, because the
task seems too daunting for more traditional techniques. Among the many theoret-
ical approaches applied to this goal are neural networks[1], lattice simulations[2, 3],
structural profiles[4], and analysis of patterns in sequence alignments[5]. The most
popular techniques for studying proteins, however, remain molecular modeling and
molecular mechanics. The two terms are often used interchangeably, but the former
refers primarily to the graphical display of molecules and the manipulation of these
structures to obtain structural insights, while the latter refers to underlying compu-
tational techniques for analyzing molecular structure, dynamics, thermodynamics,
and other properties. Molecular modeling techniques are widely used for predicting
protein structures from structural homology[6] and understanding enzyme-substrate
interactions(7]. Molecular mechanics techniques, especially molecular dynamics, are
used in a wide variety of applications. It is not now feasible to simulate the en-
tire folding process of a protein using molecular dynamics (folding can take several
seconds or even minutes, but molecular dynamics usually uses timesteps of 10715
seconds), but the unfolding process can be studied to gain insight into intermediates
in the folding process[8]. Other applications of molecular dynamics to proteins in-
clude the calculation of relative free energies of substrate binding to enzymes[9] and

analysis of protein-solvent interactions[10].



II. Molecular Mechanics

“Molecular Mechanics” refers to computational techniques which use classical me-
chanics to analyze the structure and dynamics of molecular systems including biolog-
ical macromolecules, organic compounds, polymers, and materials. These systems
are composed of atoms which are treated as classical particles, whose interactions
are described by simple two-, three-, and four-body potential energy functions. This
classical forcefield-based approach is a great simplification over quantum chemistry,
which describes systems in terms of nuclei, electrons, and orbitals. This simplic-
ity allows molecular mechanics to be applied to much larger systems than can be
studied by ab initio methods. Tremendous improvements in computer power and
computational methodology have accelerated the pace towards simulation of larger
and larger systems, so that today simulations of a million particles is possible. Such
advances have also enabled researchers to obtain much greater information from
their simulations: more accurate calculation of physical and chemical properties or
simulations of much longer dynamical processes.

The simplest calculation in molecular mechanics is a calculation of the potential
energy of the system, which is performed by summing the numerous energy terms
for the given conformation of the system using the given set of potential energy
functions and parameters. Optimizing the structure of a system can be done by
“energy minimization” which improves the conformation by reducing the gradients
and the energy of the system. A great deal more information about a system can be
obtained from molecular dynamics simulations. In these calculations, the motions
of the particles are followed by calculating the forces from the forcefield and, from
this, the accelerations and velocities. Careful control of the energy and temperature
of the system ensures that the conformations produced form a statistical ensemble,

from which thermodynamic and other properties can be calculated.



II.A. Forcefields

Forcefields enable the potential energy of a molecular system to be calculated rapidly
and fairly accurately. A typical forcefield represents each atom in the sytem as a
single point and energies as a sum of two-, three-, and four-particle interactions.
The potential energy of a particular interaction is described by an equation which
involves the positions of the particles and a small number of parameters which have
been determined experimentally or by quantum mechanical calculations. For large
systems with many particles, the equations are usually quite simple in order to
allow for a rapid calculation of the total energy. There is often a trade-off between
simplicity and accuracy. For instance, the bond between two particles : and j can

be described by a harmonic potential,
. 1 5
V;)(Z,]) = §I(b(R” — Req) 5 (11)
or a Morse potential:
1
Vifipg) = 5 Dale™ (%) 11 (12)

Here, R;; is the distance between the two particles; Kj, R, and Dy are force
constant, equilibrium geometry, and bond energy parameters, respectively; and o =
\/—I—(b/—2D—0. The Morse potential is more accurate, especially when R;; is significantly
larger than the equilibrium bond distance. The harmonic potential, however, is
calculated very fast and gives reasonable answers for bonds near their equilibrium
geometries. Forcefields designed for proteins and nucleic acids almost always use the
simpler harmonic form.

During the past ten years, several forcefields have been developed for protein sim-
ulations. Those having the most widespread usage are AMBER [11] and CHARMm

[12]. Recently, the DREIDING forcefield was enhanced and published[13]. Although
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this forcefield is much more general than either AMBER or CHARMm, it is equally
effective for protein simulations. All three are “united atom” forcefields: hydrogens
bonded to carbons are not treated specially but are treated as a unit with the carbon
atom. The three forcefields also share many of the same potential functions. How-
ever, specific parameters, such as force constants and equilibrium geometries, and
atom type assignments, i.e., which parameters should be used for which atoms in a
simulation, are different. Most of the calculations presented here used the DREID-
ING forcefield. However, in some instances results are reported for simulations using
AMBER for the sake of comparison.

Valence interactions. The overall potential energy of a molecular system is

typically described by a forcefield like
V(r) = Vit Vo + Vo + Vi+ Va + Vogw + Vi, (1.3)

where the energy potential terms are either between bonded atoms (“valence inter-
actions”) or through-space (“nonbonded interactions”). Valence interactions include
bonds(V4), angles(V3), torsions(V;), and inversions(V;). The nonbonded interactions
are electrostatic(Vy;), van der Waals(V,4y ), and hydrogen bonds(Vy,). The valence
interactions are generally quite simple, like the bond energy terms in Equation (1.1).
The total bond energy is a sum over all bonds in the system, which is typically very
close to the number of atoms:

1
V, = Z “?I‘I(b(Rij — Req)Z. (14)

bonds

The angle term is very similar and is also the same in both DREIDING and AMBER:

1
‘/9 = Z 5[{9(91']% — 95(1)2. (15)

angles
Here, 0,51, is the angle formed by the atoms ¢, j, and k. Torsion terms are also treated

identically in DREIDING and AMBER, but the equation is very different from the



equations for bonds and angles:
6.1
Ve = m%;m; §I(¢1n[1 — dcos(ng)]. (1.6)
Here, each four-body torsion is itself a sum of up to six terms, each of which can have
its own periodicity. The periodicity is determined by n, while d(= £1) determines
whether the term has a maximum at ¢ = 0° or at ¢ = 180°/n.

The most complex term in a typical protein forcefield is the inversion term,
which is added to ensure that a particular atom 7, which is bonded to three other
atoms 7,k, and [, remains planar or non-planar. AMBER and DREIDING treat this
term differently. AMBER uses the angle ) between the lij and kil planes and the
equation:

Vi = 3 5K cosln( — ur) (1.7

Planarity is enforced by n = 2 and a tetrahedral geometry is enforced by n = 3.
The DREIDING forcefield uses a different angle ¢ between the ¢jk and [jk planes
and a simpler harmonic term:
V= 5 Ko = b’ (1.8
Note that ¢ and ¢ are unrelated to the important ¢ and ¢ backbone dihedrals of
proteins. For more details, see the AMBER[11] and DREIDING[13] papers.
Nonbonded interactions. The number of valence interactions that must be
calculated for a molecule is usually proportional to the number of atoms, n. The
number of nonbonded terms, however is roughly proportional to n?, because they
involve almost all possible pairs of atoms. It is slightly less than n® because two
atoms involved in a particular bond or angle are not considered to have a through-
space interaction. Also, it is very common to ignore interactions between atoms too

far apart in space (typically, more than 9 A), even though this technique can be



~
{

quite inaccurate (N. Karasawa and H.Q. Ding, unpublished data). Nevertheless, for
large systems, the bulk of computational time is spent calculating the nonbonded
interactions, so a great deal of work has been done to optimize these calculations for
vector and parallel processors. There has also been considerable work in developing
new methods of accurate nonbond calculations which are proportional to n (see
Reference [4]). Nevertheless, most calculations are done using the n® techniques.

Both van der Waals and electrostatic interactions are calculated over pairs of

() 2 ()]} o

If all atoms in a system are explicitly included in a calculation, the vacuum di-

atoms, so they are usually done concurrently:

Ve + Vodw =ZZ{Z}§J + Dy
ij

i §>i

electric constant (¢ = 1) should be used. However, ¢ is often set proportional to
R;;, ostensibly to represent the electrostatic screening effect of solvent atoms when
they not present, but more practically to make the electrostatic term proportional
to 1/R;; rather than 1/R;;. This speeds calculations substantially because Rf; can
be directly calculated from the Cartesian coordinates of 1 and j without requiring
a lengthy square-root calculation. Each forcefield includes van der Waals radii and
well depths for each atom type. The equilibrium bond strength Dy in Equation (1.9)
is the geometric mean of the van der Waal’s well depths of the individual atoms ¢
and j. The equilibrium bond length R., is the arithmetic mean of the two van der
Waals radii.

Hydrogen atoms are treated specially. The AMBER forcefield assigns charges
to hydrogens but does not give them van der Waals parameters. Instead, it uses
“off-diagonal” van der Waals terms. In other words, these are special terms for ¢, j
interactions when 7 # j, rather than simply using the averages of the individual

atomic terms. These interactions do not use the Lennard-Jones 12-6 potential, but
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rather a Lennard-Jones 12-10 potential, which goes to zero much more quickly:

12 0
(1) (%)
Rz‘]‘ Rij

DREIDING treats hydrogens even more unusually. Hydrogens are not given charges

Vodwr =Y. D

T g>t

(1.10)

or van der Waals parameters, so Equation (1.9) does not apply at all. Rather, the
DREIDING forcefield has a special hydrogen bond term for D-H-A interactions,
where D is the hydrogen bond donor, H is the hydrogen bonded to it covalently,
and A is the hydrogen bond acceptor, non-covalently attached. The DREIDING
hydrogen bond uses both a radial Rpsy and an angular fpya part:

Vis = >_> Dy [5 (&) s 6 <£°lq—)m] cos® Opya.- (1.11)

i Rpa Rpa

Both the radial and angular parts are set to zero beyond certain cutoff values and
switching functions are used to make the transition to Vi, = 0 smooth. See Refer-

ence [15] for details.

I1.B. Energy Minimization

The potential energy calculated by summing the energies of various interactions is
a numerical value for a single conformation. This number can be used to evaluate a
particular conformation, but it may not be a useful measure of a conformation be-
cause 1t can be dominated by a few bad interactions. For instance, a large molecule
with an excellent conformation for nearly all atoms can have a large overall energy
because of a single bad interaction, for instance two atoms too near each other in
space and having a huge van der Waals repulsion energy. It is often preferable to
carry out energy minimization on a conformation to find the best nearby conforma-
tion. Energy minimization is usually performed by gradient optimization: atoms are

moved so as to reduce the net forces on them. The minimized structure has small
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forces on each atom and therefore serves as an excellent starting point for molecular
dynamics simulations.

Energy minimization is usually performed in Cartesian coordinates, by optimiz-
ing along pathways in 3n-dimensional space, where n is the number of particles.

This pathway can be the gradient, V, where

ov

(1.12)

In other words, each Cartesian component, z, of the gradient equals the derivative
of the potential energy with respect to that component. Only those interactions
involving particle 7 contribute to the gradients of the Cartesian coordinates of ¢
(z;,:,2). The 3n components of V constitute a path, P, in 3n-dimensional space.
Finding the minimum along this pathway typically involves an interpolation of two
points in 3n-space to find a new point where V - P = 0. Usually, however, V| #0
at the new point, so a new path is chosen and minimization proceeds. It is possible
to set P = V at each new point, but it is more efficient to choose the new pathway
to be orthogonal to all previous paths. This method of “conjugate gradients” is
perhaps the most popular method of energy minimization. Details of this method
can be found in Reference [16].

It is also possible to minimize the energy of a conformation by optimizing the
dihedral angle degrees of freedom, rather than the Cartesian coordinates. The mini-
mization occurs in M-dimensional space, where M is the number of dihedral angles.
Torques, or derivatives of the forcefield with respect to dihedral angles, take the
place of the gradient. We have found that “torque minimization,” when followed by
Cartesian minimization, produces an overall lower-energy conformation than Carte-
sian minimization alone. Neither method, however, can guarantee that the lowest
possible conformation (the global minimum) will be reached. The process of moving

along pathways in conformational space usually ends at a “local minimum” - a well
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in the potential energy surface, where the energy is lower than for all other nearby

conformations, but not necessarily lower than other local minima.

II.C. Molecular Dynamics

The most important application of forcefields has been molecular dynamics. Molec-
ular dynamics simulates the motion of particles in a system as they react to forces
caused by interactions with other particles. In itself, this dynamical view of molec-
ular systems can be important for studying time-dependent processes. However,
two aspects of these simulations give them importance which goes far beyond their
fundamental use. First, these calculations allow a system to sample conformational
space. While an energy minimization calculation will find a local minimum in the
potential energy surface, molecular dynamics calculations can cover a far broader
sample of conformations. By giving each particle a velocity, molecular dynamics
imparts kinetic energy to the system. This energy can be sufficient to enable the
systemn to progress over barriers in the potential surface which could not be crossed
in a gradient minimization procedure. A second very important factor in molecu-
lar dynamics is that the conformations produced during a simulation can form a
thermodynamic ensemble. For instance, maintaining constant total energy, volume,
and particles produces a microcanonical ensemble of conformations. Microcanon-
ical dynamics is the easiest and most common form, but new methods have been
developed to form other types of ensembles. This property allows one to calculate
thermodynamics properties, such as relative free energies, from molecular dynam-
ics simulations. This has been exploited recently with great success by free-energy
perturbation calculations[17].

Molecular dynamics calculations evaluate the forces acting on each particle and

use these to determine the accelerations these particles undergo. Particle velocities
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are initially determined by a random distribution calibrated to give a Maxwell-
Boltzmann distribution at a given simulation temperature, but the velocities are
updated according to the calculated accelerations. Most molecular dynamics meth-
ods work in Cartesian coordinates, allowing the maximum 3n degrees of freedom for
n particles. Each particle 7 has three Cartesian degrees of freedom (r; = z;, yi, 2).
These degrees of freedom are uncoupled: forces, velocities, and accelerations are
determined for each degree of freedom independently of the other degrees of free-
dom, with the exception that the overall translation and rotation of the system are

subtracted out. The forces acting on particle : are the opposite of the gradient:

ov

Fi= o

(1.13)

Since the Cartesian degrees of freedom are uncoupled, each force component, [ is

calculated separately:

ov
=9 1.14
B (1.14)
The accelerations, z, are calculated from Newton’s equation of motion:
F;
F=—, (1.15)
m;

where m; is the mass of particle 7. Ideally, velocities would be updated from accel-
erations by analytical integration of the equations of motion as in Equation (1.16),

where vit = 7 is the z-component of the velocity vector at time ¢;:

t2
vz =uh 4 [ Fdt. (1.16)

< A
Unfortunately, an analytical equation for & would be extraordinarily unwieldy, ex-
cept for very simple systems, so the integration in Equation (1.16) must be done
numerically.

There are numerous methods for doing numerical integrations{16] and many of

these have been used in molecular dynamics. The simulations reported here use the
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most popular of the methods, the Verlet algorithm[18]. The verlet algorithm, itself,
has many formulations[19], of which we use the “leapfrog formulation,” so named
because velocities and coordinates are updated at half-timestep intervals after one
another. Methods for numerically integrating the equations of motion generally
divide the simulation into timesteps, h, which are shorter than the periodicity of the
fastest motions in the system. Typically, a timestep of one femtosecond (1 x 1071%
s) is used, to enable accurate integration of O-H and N-H bond stretches. In the
leapfrog Verlet algorithm, the velocities at timestep n + § are obtained from the

previous velocities and the new accelerations:
n+l n—1 .
ve 2 =wvz ° + hi". (1.17)
n 1 . .
The new velocities vy ? are then used to update the coordinates to timestep n + 1:
" =" 4+ hvg 2. (1.18)

These new coordinates are then used to calculate the forces as in Equation (1.14)

and the process is repeated.

ITI. Monte Carlo

Monte Carlo calculations represent an entirely different type of simulation from
molecular dynamics. The name “Monte Carlo” comes from the random-chance na-
ture of the simulations, akin to the games of chance at Monaco’s gambling resort.
Rather than being a deterministic method like molecular dynamics, where the phys-
ical properties of a system (e.g., coordinates, interatomic forces) determine its time
evolution, Monte Carlo simulations are stochastic and use random numbers to gen-
erate a sample population of the system from which properties can be determined.

Monte Carlo simulations are by no means limited to molecular systems, but are used
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in such diverse areas as integrated-circuit design and solving differential equations.
But Monte Carlo calculations are very widespread in chemical simulations, primarily
in studies of gases and fluids, where the random nature of the technique is readily
employed.
An extremely important Monte Carlo algorithm for molecular systems was de-
veloped by Metropolis et al.[20]. One can calculate a molecular property F' from a

canonical ensemble, using the equation

_ [ Fe El*5T dqdp

F =
Je~BlksTdgdp

(1.19)

where kg is the Boltzmann constant, 7' is the system temperature, and dgdp is
a volume element in phase space. The integral is generally too complex to solve
analytically, but it can be estimated by a computer simulation using a sufficiently
large sample. A simulation with N. sample configurations has properties calculated

from:
N, —E./kgT
Tk FePelks

F
Ne -E./kgT
zczl € / B

(1.20)

The straightforward approach to calculating Equation (1.20) by generating nu-
merous configurations and weighting them by exp(—F./kgT), has problems in the
(common) case where most generated configurations have high energies. The great
majority of the conformations will be those which are least important, i.e., they
have the lowest weighting factors. The Metropolis algorithm avoids this problem by
generating conformations according to the probability exp(—FE./kpT) and weighting
them all equally. This ideal distribution is established by giving each conformation
a conditional probability of being accepted into the average. Each conformation c is
perturbed in some way to produce conformation ¢+ 1. If the energy of the new con-
formation, E.y; is smaller than that of F., the new conformation is accepted. If its

energy is higher, the probability of it being accepted is P = exp(—AE/kgT) where
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AE = E..;—FEc. The standard method for enforcing this probability is to generate a
random number n, and to accept the new conformation c¢+1 if n, < exp(—AE/kgT).
Otherwise, the new conformation is rejected and the previous one is restored and it
is included again in the summation. Although many enhancements have been made
to Monte Carlo theory since the Metropolis algorithm was derived, it still has very
wide popularity. In some fields, the Metropolis algorithm has practically become
the definition of Monte Carlo simulations.

The random nature of Monte Carlo simulations makes them useful for sampling
conformational space. Although they are generally not as efficient as molecular dy-
namics simulations for sampling conformational space[21], Monte Carlo simulations
can incorporate large conformational changes which cannot be simulated by molec-
ular dynamics. For instance, the Dihedral Probability Grid Monte Carlo method of
Chapter 3 can rotate a dihedral angle in a single step without regard to an energy
barrier which might prevent the same rotation in molecular dynamics. In general, we
have found that Monte Carlo simulations are excellent for coarse-grained sampling
of conformational space while molecular dynamics and minimization techniques are
excellent for performing the complementary role of local conformational optimiza-

tion.



15

References

[1] M.S. Friedrichs, R.A. Goldstein, and P.G. Wolynes, J. Mol. Biol., 222, 1013-

1034 (1991).

[2] A. Godzik, J. Skolnick, and A. Kolinski, Proc. Natl. Acad. Sci., USA, 89, 2629-
2633 (1992).

(3] D.G. Covell and R.L. Jernigan, Biochemistry, 29, 3287-3294 (1990).
[4] J.B. Bowie, R. Liithy, and D. Eisenberg, Science, 253, 407-414 (1991).
[5] S.A. Benner and D. Gerloff, Adv. Enz. Regul., 31, 121-181 (1991).

[6] I.T. Weber et al., Science, 243, 928-931 (1989); R.S. Struthers, D.H. Kitson,

and A.T. Hagler, Proteins: Structure, Function, Genet., 9, 1-11 (1991).
[7] E.C. Meng, B.K. Shoichet, and I.D. Kuntz, J. Comp. Chem., 13, 505-524 (1992).
(8] J. Tirado-Rives and W.L. Jorgensen, Biochemistry, 30, 3864-3871 (1991).
[9] T.P. Straatsma and J.A. McCammon, Meth. Enzym., 202, 497-511 (1991).
[10] K. Sharp, J. Comp. Chem., 12, 454-468 (1991).
[11] S.J. Weiner et al., J. Am. Chem. Soc., 106, 765-784 (1984).
(12] B.R. Brooks et al., J. Comp. Chem, 4, 187-217 (1983).

[13] S.L. Mayo, B.D. Olafson, and W.A. Goddard 111, J. Phys. Chem., 94, 8897-8909

(1990).

[14] H.Q. Ding, N. Karasawa, and W.A. Goddard III, J. Chem. Phys., 97, 4309-4315

(1992).



16

[15] BIOGRAF Reference Manual, Molecular Simulations, Inc. (1992).

[16] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical

Recipes, Cambridge University Press, Cambridge (1989).

[17] D.L. Beveridge and F.M. DiCapua, Annu. Rev. Biophys. Biophys. Chem., 18,
431-492 (1989).

[18] A.Rahman, Phys. Rev., 136, A405 (1964); L. Verlet, Phys. Rev., 159, 98 (1967).

[19] D.W. Heermann, Computer Simulation Methods in Theoretical Physics,

Springer-Verlag, Berlin (1986).

[20] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, and A.H. Teller, J. Chem.

Phys., 21, 1087-1092 (1953).

[21] G. Jacucci and A. Rahman, Il Nuovo Cimento, 4, 341-355 (1984).



17

Chapter 2

Newton Euler Inverse Mass Operator (NEIMO) Dynamics of

Polypeptides

Abstract

Newton-Euler Inverse Mass Operator (NEIMO) Dynamics is a fast method for cal-
culating internal-coordinate molecular dynamics. Unlike other exact methods for
solving these equations of motion, computational time for the NEIMO method is
propdrtional to N, rather than A3, where A is the number of degrees of freedom.
This allows internal-coordinate dynamics to be solved for very large systems. The
first use of the NEIMO method for molecular dynamics is presented here. Results
are given for simulations of a wide range of peptide and protein systems. The
computational time is shown to be rigorously proportional to N. Additionally, the
dynamics are shown to be accurate for timesteps much larger than those used in
Cartesian-coordinate dynamics. For small peptides, timesteps as large as 20 fs are

achievable.



I. Introduction

Molecular dynamics simulations have become a very important tool in computa-
tional chemistry and biology. Once primarily useful for understanding the dynamic
properties of molecular systems, molecular dynamics has become invaluable for such
diverse tasks as building protein models from crystallographic data[l] and deter-
mining the relative free energy of binding of different drug molecules to the same
receptor[2]. As these calculations become more accurate and applicable to a wider
variety of problems, researchers seek to apply them to larger and more complex sys-
tems as well as to use them to study processes occurring over increasingly longer
timescales. This requires continual improvements in both computer hardware and
software performance. The former challenge is being addressed by such develop-
ments as vector processing supercomputers, RISC workstations and now massively
parallel supercomputers. The software problem is being tackled on several overlap-
ping fronts: optimization of programs for new computer architectures[3], improved
efficiency in calculating interatomic forces[4, 5], and development of techniques for
allowing larger timesteps in molecular dynamics simulations(6, 12].

Molecular dynamics simulations typically involve numerical integration of New-
ton’s equations of motion. Timesteps for the integration must be small enough for
the fastest modes to be handled accurately. Typically, a timestep of 1 femtosecond
(1 x 1071% ) is necessary to handle bondstretches involving hydrogen atoms. Al-
though success has been achieved lately by separating short and long-range forces
and using different timesteps for the different forces[6], the most popular approach
for increasing timesteps is to fix the fastest degrees of freedom (bond stretches and
angles) and to solve the equations of motion for the slower (dihedral) degrees of free-
dom. Such an approach is especially justified for studies of large biological molecules,

where bond lengths and angles vary little from one structure to another and nearly
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all important conformational transitions are due to dihedral angle motions.

The SHAKE algorithm{7] has become the standard approach for doing molecular
dynamics with fixed bond lengths. It can also be used to hold angles fixed, but this
is less common. SHAKE is a modification of the Verlet algorithm for integrating the
equations of motion for the 3n — 6 Cartesian coordinates degrees of freedom in an n-
particle system. Particle velocities are first calculated for the unconstrained system,
then modified to meet each constraint. An iterative process is required to meet all
the constraints concurrently. The SHAKE algorithm works well for timesteps up to
5 fs[9, 10], thereby enabling a five-fold speedup in computational time as long as the
process of iteratively solving the constraint equations does not consume too much
timel9)].

An alternative to the SHAKE methodology of solving Cartesian coordinate dy-
namics plus constraints, is to solve the equations of motion directly for the internal
degrees of freedom. Solutions to these equations automatically fulfill the desired
bond length and/or angle constraints, so their efficiency is not limited by a secondary
constraint-solving step. Indeed, Mazur et al.[14] were able to simulate accurately
a small polypeptide, (Ala)g, with timesteps as large as 13 fs. This is a significant
improvement over the SHAKE algorithm. Unfortunately, their method requires the
direct solution of matrix equations; the computational time for solving these equa-
tions is usually proportional to AN?, where A is the number of degrees of freedom.
This can be prohibitive for large systems.

Recently, Jain et al.[11, 12] have developed an alternative method for solving the
equations of motion for internal coordinates. This new method, the Newton-Euler
Inverse Mass Operator (NEIMO) method, does not require direct manipulation of
matrices and is proportional to A, rather than A®. This method was developed

for spacecraft dynamics, but in a separate report, Jain ef al[12] described how the
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method could be applied to molecular dynamics. This report presents the first
implementation of the NEIMO method for molecular systems. We have studied the
dynamics of polypeptide systems and have found that we are able to calculate the
dynamics of some systems accurately with timesteps as large as 20 fs. Because the
NEIMO method is computationally proportional to A, it can be applied to very
large systems. The method is shown to be rigorously proportional to A for systems
as large as the tomato bushy stunt virus crystal structure[24], which has three chains

of nearly 300 residues each.

II. Methodology

In Cartesian coordinate molecular dynamics calculations, the 3n degrees of freedom
are uncoupled, and Newton’s equations of motion can be solved independently for

each degree of freedom, z:

mii = F. (2.1)

Here, the mass of particle i, m;, is used for that particle’s three degrees of freedom,
# is the acceleration, and F} is the force. In internal coordinates, similar equations

of motion can be written for systems with a tree-topology:

M(0)(8) +C(8,6) = T(6). (2.2)

Here, 0 is the M-length vector of internal coordinates, C is the A-length vector of
nonlinear forces and 7' is the A'-length vector of generalize forces, or torques in the
case of dihedral-angle degrees of freedom. In internal coordinates, the N degrees
of freedom are not uncoupled. The N x A mass matrix, M, has off-diagonal el-
ements and has a nonlinear dependence on #, so the equations cannot be solved
independently for each degree of freedom, 6; as is done for the Cartesian degrees of

freedom in Equation (2.1). The accelerations f can be determined by solving the
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matrix equation in Equation (2.2), as was done for the Lagrange equations of motion
by Mazur et al.[14]. The computational cost of these matrix equations is proportional
to N3, so they are prohibitive for large molecules. Recently, however, Jain et al.[12],
have developed a recursive algorithm for solving the equations of motion which
does not require explicit calculation of the mass matrix, M, or direct solution of
the matrix equation 2.2. The method uses spatial operator algebra in a recursive
approach which is computationally proportional to A'. This linear dependence on A/
opens up a new class of molecular systems to study by internal-coordinate molecular
dynamics.

The details of the recursive spatial operator equations for solving the equations
of motion can be found in Reference [12]. The methodology has been developed for
general multibody systems configured as serial chains, topological trees, or closed-
loop systems[11]. The implementation for molecular systems reported here has not
yet been extended to closed-loop topologies, so only the serial chain and tree topology
will be discussed here. The NEIMO method uses the concepts of “clusters” and
“hinges” to describe a mechanical system. A cluster is a body which moves as a unit;
in a molecule, this could be a single atom, a multiple-atom group such as a methylene
group, a phenyl ring, or even an entire domain of a protein. A “hinge” describes
the relative orientation between two connected clusters; in a molecular system, the
hinges correspond to the bonds connecting adjacent clusters. There are six possible
degrees of freedom for each hinge, including such modes as bond stretching, ball and
socket rotation, and torsional rotational. Our interest is primarily in the torsional
degrees of freedom, so each hinge in our molecular implementation is limited to a
single torsional degree of freedom. The one exception per molecule is the “base”
cluster, which is connected to the reference coordinate system by a hinge with the

full six degrees of freedom, thereby enabling each molecule to be oriented correctly
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o—T

Phe 4

Figure 2.1. The peptide Met-enkephalin is shown, with the bonds/hinges numbered.
Clusters are the chemical units connected by the hinges, such as the phenyl ring in
tyrosine 1. The hinges are numbered to allow for analysis of the dihedral angles.

in space.

The relationship between adjacent clusters is described in terms of “parents” and
“children.” The base cluster can have one or more child clusters; it is the parent
cluster of each of these children. Each of these clusters, in turn, may have one
or more children, branching outward from the base. In a topological tree, outward
branching can continue with each cluster having zero, one, or more children, but each
child having only one parent cluster. Clusters at the far extent of each branch are
termed “tips” and have no children. In a serial chain, such as a linear polymer, there
is a single tip cluster; between the base and tip clusters, each cluster has a unique
parent and unique child. In a protein system, most of the C, atoms are branch
points with two children, and the outermost cluster of every sidechain (other than
alanine and glycine, which have no sidechain clusters) is a tip. These concepts are
visualized in Figure 2.1, where the pentapeptide Met-enkephalin is shown with the

hinges numbered. This numbering system is not equivalent to the numbering used
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in Reference [12], but is used here to facilitate analysis of the dihedral angles. Hinge
0, which connects the base cluster to the reference frame, is not shown. The clusters
can be assigned the same number as the hinge connecting it to its parent cluster and
are listed that way in Table II. In addition, the torsional degree of freedom for each
hinge, other than hinge 0, can be defined to correspond to a specific dihedral angle.
These dihedrals are also listed in Table II, using the standardize nomenclature for
protein dihedrals.

The NEIMO method uses spatial operator algebra to formulate the equations of
motion in terms of relationships between parent and child clusters, and to solve the
equations during several recursions from the base cluster to the tips, and the tips to
the base. These Newton-Euler recursive equations of motion are described in detail

in Reference [12], but can be sumnmarized as:

1. A base to tips recursion, during which each cluster’s spatial velocity is deter-
mined from the torsional motion of its associated hinge as well as the motion

of its parent cluster.

2. A tips to base recursion, during which the effective forces acting on each cluster
are derived from the explicit Cartesian forces, hinge torques, and Coriolis and
related forces acting on the cluster, as well as the forces imparted to it from
its children. Several other quantities related to the inverse of the mass matrix

are also calculated during this recursion.

3. A final base to tips recursion, during which the acceleration of each cluster and
its related hinge acceleration, are determined from the cluster’s acceleration
within its own frame of reference plus acceleration due to the acceleration of

its parent cluster.

The use of spatial operator algebra has another important consequence in that an
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Cluster Hinge Dihedral Residue
-NHF 0 (none)  Tyrl
-CH- 1 )

~CH,- 2 !

-CeHy— 3 X2
-OH 4 ®

-(CO)- 5 0

~(NH)- 6 w Gly 2
-CHy- 7 o)

-(CO)- 8 0y

~(NH)- 9 w Gly 3
~CH,- 10 ¢

~(CO)- 11 »

~(NH)- 12 w Phe 4
~CH- 13 ¢

~CH,- 14 X!

~CeHs 15 x?

~(CO)- 16 »

~(NH)- 17 w Met 5
~CH- 18 ¢

-CO0~ 19 P

~CH,- 20 Xt

~CHyp- 21 2
-SH 22 ¥

Table 2.1. The clusters, hinges, and related dihedrals of Met-enkephalin, shown in
Figure 2.1.
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operator expression can be derived for the inverse of the mass matrix, M, without
actually having to invert the matrix. This allows the accelerations, 0, to be deter-
mined by recursive equations, computationally proportional to A, the number of
clusters, rather than by matrix equations of the order of A®. The use of an operator
expression for M ™! has given the Newton-Euler Inverse Mass Operator (NEIMO)
Dynamics method its name.

Currently, we use a “leapfrog” Verlet algorithm[8] to integrate the equations of
motion, using the accelerations determined by the recursive spatial operator equa-
tions. The Verlet algorithm is a very successful and popular method in Cartesian-
space dynamics, but may be less suitable for NEIMO dynamics because it calculates
accelerations and velocities at alternating half-timesteps. In NEIMO dynamics, ac-
celerations are not independent of velocities, so the half-timestep separation of ac-
celerations and velocities must be modified. This can be done by iteratively solving
for the velocities at integer timesteps. Fortunately, this iteration is very fast in
practice. A major advantage of the Verlet algorithm is that it requires only a sin-
gle calculation of the forces at each timestep. In simulations of large systems, the
force calculation consumes the vast majority of computational time, so methods
which require only a single force calculation are preferable to methods which require
two or more force calculations per timestep, such as the Gear predictor-corrector
algorithm[15]. Currently, other integration schemes are being investigated for use in
NEIMO dynamics, but all results presented here use the leapfrog Verlet algorithm.
Details of this integration method are given in Appendix A.

The NEIMO calculations presented here were performed using a version of the
program written to work with the BIOGRAF/POLYGRAF program from Molecular
Simulations, Inc[16]. All calculations were performed on Iris PowerSeries and Iris

Indigo workstations from Silicon Graphics, Inc.
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ITI. Results

NEIMO calculations were carried out on a wide variety of peptide and protein sys-
tems, ranging from the five-residue peptide Met-enkephalin to the tomato bushy
stunt virus (TBSV) protomer, which contains three proteins totaling 893 residues.
Table 2.2 contains a list of the ten systems studied. The two peptides were built
using the Peptide Builder of BIOGRAF[16], which uses standard amino acid geome-
tries. They were initially configured as alpha helices, but were minimized to a local
potential energy minimum using conjugate gradients minimization. As in all calcula-
tions reported here, the DREIDING forcefield was used for these minimizations. No
solvent or counterions were used, but the dielectric constant for each pair of atoms ¢
and j was set proportional to r;;, the distance between them. This crudely represents
the electrostatic shielding of aqueous solvent. For these peptides, no nonbond cutoff
was used; i.e., all possible pairs were included in the van der Waals and electrostatic
calculations. The initial conformations of the proteins were derived from the X-ray
crystal structures listed in Table 2.2. All metal ions, solvent molecules, and disulfide
bridges were removed, leaving only protein chains which conformed to a tree topol-
ogy. (As mentioned above, sidechain aromatic rings and proline rings are treated
as single clusters). Hydrogen atoms were then added to non-carbon atoms. As was
done for the peptides, the DREIDING forcefield was used to energy-minimize these
conformations. Nonbonds, however, were treated differently. The large size of the
proteins precluded the inclusion of all possible nonbond pairs, a number close to n?
for an n-atom protein. Therefore, the cell-multipole method (CMM) of Ding et al.[4]
was used to calculate the van der Waals and electrostatic interactions. This method
is roughly proportional to n, but provides far greater accuracy than the standard

approach of excluding all nonbond interactions greater than 9 A.
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Protein Structure Ref. Residues Atoms N
Met-Enkephalin MEnk - 5 48 28
(Ala)o Ala : 9 57 32
Avian Pancreatic Polypeptide 1ppt (17] 36 368 192
Crambin lern 18] 46 402 216
Plastocyanin Tpcy [19] 98 857 460
Troponin-C Stnc [20] 161 1514 857
Alpha-Lytic Protease 2alp [21] 198 1748 959
Carbonic Anhydrase 2ca2 [22] 256 2482 1305
Carboxypeptidase A, Scpa (23] 307 2986 1581
Tomato Bushy Stunt Virus 2tbv [24] 893 8083 4335

Table 2.2. Proteins and peptides used in NEIMO simulations. The structures listed
are the initial Protein Database files, except for the peptides “MEnk” and “Ala9,”
which were created using the BIOGRAF peptide builder.



ITTI.A. Timing

Timing results for the ten systems are shown in Table 2.3. The times represent
the average of 100 dynamics steps run on an Iris Indigo workstation. Times are
given for both the NEIMO calculations and the nonbond calculations, the latter of
which consumes the vast majority of cpu time, even when a very fast method such
as CMM is used. The NEIMO timing is shown to be rigorously proportional to A
for Crambin and the large proteins. The times for the small peptides apparently are
shorter, but the resolution of the timing routine used is 0.01 s, so the results may
be off by as much as 4+ 50%. The nonbond calculations are less consistent, even for
CMM, which is proportional to n, the number of atoms in the system. The lack of
perfect proportionality is due to the asymmetry of the protein conformations. The
Cell-Multipole algorithm[4] creates a cubic cell around the system being simulated
and divides this cell into a hierarchy of smaller cubic cells, for which dipole and
quadrupole terms are calculated. An oblong protein molecule would require a par-
ticularly large outer cell and would have many of its smaller cells empty. These are
the least efficient conditions for CMM. Considering this limitation, the method is
very nearly proportional to n, and is much faster than the n? method of calculating

all possible nonbond pairs.

III.B. Energy Fluctuations

The primary advantage of internal-coordinate methods of molecular dynamics is
the ability to use larger timesteps than the 1 femtosecond step size typically used
in Cartesian molecular dynamics. An important measure of the accuracy of the
dynamics calculation is the energy fluctuations. In microcanonical dynamics, the
total energy of the system, E, should be constant, even though its two components,

the potential energy, V, and kinetic energy, K, fluctuate. The energy fluctuation &€
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Dynamics Timing

NEIMO Nonbonds
Protein Time (s) Time/AN (ms) Method Time (s) Time/n (ms)
MEnk 0.011 0.393 All NB 0.044 0.92
Ala9 0.012 0.375 All NB 0.061 1.07
1ppt 0.084 0.438 AINB  1.933 5.25
lern 0.102 0.472 All NB 2.322 5.78
Tpey 0.220 0.478 AIINB  10.121 11.81
1ppt 0.084 0.438 CMM 1.408 3.83
lcrn 0.102 0.472 CMM 1.950 4.85
Tocy 0.220 0.478 CMM 3.541 4.13
dtnc 0.411 0.480 CMM 9.180 6.06
2alp 0.460 0.480 CMM 11.153 5.26
2ca2 0.629 0.482 CMM 15.612 6.29
dcpa 0.762 0.482 CMM 22.733 7.61
2tbv 2.094 0.483 CMM 55.439 6.86

Table 2.3. Timing results for the ten protein/peptides systems studied here. The
average times per timestep of the NEIMO calculation and the nonbond calculation

are given, along with the NEIMO time divided by A, and the nonbond time divided

by the number of atoms, n.
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is defined by
(E%) — (B)

&= ks T

(2.3)

where kg is the Boltzmann constant and 7' is the temperature of the simulation.
Figure 2.2 shows the value of E during 1 picosecond (1 x 107*? s) simulations of the
pentapeptide Met-enkephalin (NHZ-Tyr-Gly-Gly-Phe-Met-COO™) for NEIMO(N)
and Cartesian(C) dynamics simulations at timesteps ranging from 1 fs to 20 fs. The
Cartesian dynamics simulations had an initial 1 fs equilibration phase, where the
fluctuations were significantly higher. These fluctuations were not included in these
results. The NEIMO simulations did not require an equilibration phase. Carte-
sian dynamics simulations were not possible for timesteps greater than 3 fs. When
timesteps are too large for the motions being simulated, particle motions from one
timestep to the next are exaggerated and the energy quickly “blows up” (the en-
ergy goes to infinity). For Cartesian dynamics of large systems, timesteps greater
than 1 fs are usually unstable. Even for the small peptide Met-enkephalin, a 2 fs
timestep gives rise to far larger energy fluctuations than a 1 fs simulation. The
NEIMO dynamics simulation is far more stable, with timesteps as large as 18 fs giv-
ing small fluctuations, smaller even than the Cartesian dynamics simulation with a 1
fs timestep. A fairer comparison is to divide the energy fluctuations by the number
of degrees of freedom. For Met-enkephalin, V' = 28 (22 dihedral angles plus the six
degrees of freedom for the base body), while the number of degrees of freedom in
Cartesian dynamics is 3n — 6, or 138. The scaled fluctuations, £*, are also shown
in Figure 2.2 and are labeled with an asterisk (N* and C*). NEIMO timesteps as
large as 12 fs gave smaller scaled fluctuations than the 1 fs Cartesian simulation.
Similar results were obtained for nine-residue polyalanine, (Ala)g. Cartesian dy-
namics were only possible at 1 fs and 2 fs timesteps. The 3 fs simulation did not blow

up, but the fluctuations were extremely large. The scaled fluctuations, £, were very
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Energy Fluctuations in
Molecular Dynamics
of Met-Enkephalin
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Figure 2.2. Energy fluctuations, £, for NEIMO(N) and Cartesian(C) dynamics sim-
ulations of Met-enkephalin. Simulations were run for 1 ps using timesteps ranging
from 1 to 20 fs. N* and C* are the scaled fluctuations, £*, where £ is divided by
the number of degrees of freedom: A for NEIMO simulations and 3n-6 for Cartesian
coordinates.
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similar for 1 fs and 2 fs Cartesian dynamics of both peptides. The NEIMO simu-
lations of (Ala)g gave larger values of £ and £* than for Met-enkephalin at almost
every timestep, but the fluctuations did not blow up until timesteps larger than 30 fs
were used. It is likely that (Ala)g is able to tolerate such large timesteps because it
has no light sidechain clusters which would be expected to have higher rotational ve-
locities. Since the DREIDING forcefield uses a united-atom approach, the CHs units
of the Alanine sidechains are treated as a single atom and, therefore, do not form
clusters which move independently in the NEIMO model. In contrast, the tyrosine,
phenylalanine, and methionine sidechains of Met-enkephalin all contain individual
clusters with low moments of inertia. As indicated below in the analysis of Met-
enkephalin dihedral angle fluctuations, the long, unbranched methionine sidechain
is particularly flexible.

As the simulations are carried out for longer periods of time, the fluctuations &€
gradually increased. For instance, a 1 ps NEIMO simulation of Met-enkephalin using
a 5 fs timesteps had a value of € less than 0.0001 kcal/mol. The same simulation run
for 5 ps had €& = 0.0042 kcal/mol, even though no 0.1 ps stretch of the simulation
had £ > 0.0004 kcal/mol, and the average fluctuation over the 50 0.1 ps stretches
was only 0.0001 kcal/mol. Run for 25 ps, the simulation has an overall £ of 0.0360
kcal/mol, even though the average 0.1 ps stretch had & = 0.0005 kcal/mol. This
discrepancy is caused by very slow fluctuations in the total energy which cause (E?)
to slowly diverge from (E)®. The cause of this long-term fluctuation is unknown.

In order to compare NEIMO directly to the matrix method of Mazur et al.[14],
the quantity ég was calculated from simulations of (Ala)g at timesteps ranging from
1 fs to 20 fs. For each timestep, the simulation was run for 4.0 ps during which the
velocities were rescaled, when necessary, to equilibrate the system. At the end of

the 4.0 ps run, 110 additional steps were run. The first ten of these were discarded,
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Energy Fluctuations in
Molecular Dynamics
of (Ala)9
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Figure 2.3. Energy fluctuations, £, for NEIMO(N) and Cartesian(C) dynamics sim-
ulations of (Ala)g. Simulations were run for 1 ps using timesteps ranging from 1 to
35 fs. N* and C* are the scaled energy fluctuations, £*.
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but the final 100 steps were used to determine ég, which is defined by

(AE)
(E)

op = (2.4)

(E) is the average energy during the 100 steps, and (AF) is the root-mean-square
deviation in the energy. Mazur et al. reported simulations on (Ala)g using a variety
of models including some containing explicit hydrogens. The DREIDING/NEIMO
calculation corresponds to their third model: united atoms are used rather than
explicit hydrogens, and all bond lengths and angles are fixed. Only dihedral degrees
of freedom are allowed plus the six degrees of freedom of the base body, for a total
of 32 degrees of freedom. Mazur et al. obtained a value of ég = 0.8 x 107° using
timesteps of 0.5 fs. Values of ég increased linearly with increasing timesteps, but
they were able to achieve their desire level of accuracy, ég &~ 1072, using timesteps
as large as 13 fs. NEIMO simulations using a 0.5 fs timestep had a larger value
of ég = 4.0 x 1078, but timesteps as large as 15 fs gave ég ~ 1072, as can be
seen in Figure 2.4. These results are very consistent with the results of Mazur et
al., even though they used a different forcefield (a combination of CHARMm|26] and
ECEPP][27]) and a different integration scheme. It should be noted that the choice of
forcefield should not affect the results dramatically, since our average energy (25.402
kcal/mol) is nearly equal, though opposite in sign, to the average energy they report
(-26.8 kcal/mol) for their 0.5 fs timestep simulations.

Although timesteps of 15 fs and longer are clearly possible for NEIMO simulations
of small peptides such as Met-enkephalin and (Ala)g, such timesteps are not yet
possible for large polypeptides and proteins. Simulations were run on the 36 residue
hormone peptide avian pancreatic polypeptide (aPP), a very interesting case because
it is one of the smallest known polypeptides to fold into a stable globular form.
Figure 2.5 shows the polypeptide backbone of aPP, which has two helices, an o helix

and a collagen-like polyproline helix. Hydrophobic sidechains line the cleft between
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Figure 2.5. Avian pancreatic polypeptide (aPP), with the sidechain atoms removed
for clarity. From the crystal structure 1PPT [16]).
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the two helices, allowing for unusual stability in a peptide this size.

Figure 2.6 shows £ and £* using different timesteps for 1 ps simulations of aPP.
NEIMO simulations of aPP break down when timesteps above 10 fs are used. Al-
though timesteps as large as 9 fs give values of € as good or better than the 1 fs
Cartesian simulation, the scaled fluctuations, £*, are approximately equal for the 6
fs NEIMO and 1 fs Cartesian cases. Several factors may cause folded polypeptides
and proteins to have substantially larger fluctuations than small peptides at large
timesteps. Complex secondary structure elements such as helices, turns, and beta
sheets, are held together by hydrogen bonds, which are very short-range interactions.
Large timesteps may cause rapid destabilization of these hydrogen bond networks.
Another potential problem, due to the nature of the dynamics algorithm rather than
the chemical nature of the system being studied, is the possible buildup of errors as
the recursive equations are solved from the base cluster to the tips and the tips to
the base. This is a more fundamental problem that may be substantially improved
by higher precision in the calculations and a more central choice for the base cluster.
Currently, the amino-terminal -NHZ group is usually chosen as the base cluster, and
the carboxy terminal residue tip clusters are maximally distant.

The fastest dynamical modes in the NEIMO model are those with the smallest
spatial inertia. In protein systems, these are clusters containing explicit hydrogens,
where rotation of the hinge moves only the hydrogen atoms. For instance, the
hydroxyl group of Tyrosine forms a two-atom cluster. Rotation of the hinge between
the aromatic ring C¢ and the hydroxyl O, only modifies the hydroxyl hydrogen.
These are the fastest degrees of freedom in the system. These dihedrals can be fixed
by including the moiety in its parent cluster. In tyrosine, the hydroxyl and aromatic
ring can be treated as a single cluster. This “Rigid H” model removes the fastest

degrees of freedom of the system and enables even longer timesteps to be used than
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Energy Fluctuations in
Molecular Dynamics of
Avian Pancreatic Polypeptide
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Figure 2.6. Energy fluctuations, £, for NEIMO(N) and Cartesian(C) dynamics sim-
ulations of avian pancreatic polypeptide (aPP). Simulations were run for 1 ps using
timesteps ranging from 1 to 15 fs, but all those above 11 fs caused the energy to
blow up. N* and C* are the scaled energy fluctuations, £*.
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the standard NEIMO model. This is seen clearly in Figure 2.7, where the 18 -OH and
-NH, groups have been incorporated with their parent clusters. Although the scaled
fluctuations, £*, are very similar for small timesteps, the standard model blows up
when timesteps above 10 fs are used, while the “Rigid H” fluctuations increase only
slowly above this point. Simulations using even longer timesteps displayed the same
gradual increase in fluctuations, without any sharp jump in £*, as is seen in the
standard model when timesteps above 10 fs are used. The “Rigid H” model would
be useful for studies primarily interested in large-scale motions, where the hydrogen-
bonding interactions of these sidechain groups are less important, and the advantage
of longer timesteps is pre-eminent.

Detailed studies of protein systems require the inclusion of solvent, which plays
an important role in stabilizing the native conformation of most proteins. Solvent in-
cludes both water (and/or lipids in the case of membrane-bound proteins) and ionic
charges, which may be present to stabilize charged groups on the protein. In order
to test the ability of NEIMO simulations to include such factors, we ran calculations
where NEIMO dynamics were used to solve the equations of motion for the pro-
tein, while standard Cartesian dynamics were solved simultaneously for counterions.
Avian pancreatic polypeptide was used as a test system. Oppositely-charged groups
within 10 A of each other were considered paired. This left eight unpaired charges,
which were then neutralized by adding counterions (five Nat and three CI7). After
the counterion locations were optimized by minimizing their energies, simulations
were run for 2 ps using various timesteps. The first picosecond was used for equi-
librating the counterion motions, and & was determined from 1 ps to 2 ps. The
results are shown in Figure 2.7, along with the results from standard and “Rigid H”
simulations of the protein alone. The addition of counterions increases the energy

fluctuation substantially, but timesteps as large as 8-10 fs are still practical. This
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Energy Fluctuations in
NEIMO Dynamics of
Avian Pancreatic Polypeptide
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Figure 2.7. Scaled energy fluctuations, £*) for 1 ps NEIMO simulations of aPP.
“Rigid H” differs from “Normal” NEIMO in that hinges which rotate only hydrogen
atoms are held fixed. The “Counterions” simulation used the standard NEIMO
method for the protein, but concurrently solved the Cartesian equations of motion
for counterions (5 Nat and 3 C17) added to neutralize unpaired charges.
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is, nevertheless, a great improvement over simulations where all atoms are treated
with Cartesian-space molecular dynamics.

It is common practice to keep the temperature of a microcanonical dynamics sim-
ulation roughly constant by periodically scaling the velocities. Other calculations
which must be done periodically, such as updating a list of nonbond pairs within
a given cutoff distance, can be done at the same time the velocities are rescaled.
This is particularly important for large systems, where calculation of all nonbonded
interactions for every timestep is prohibitive. Under such conditions, where non-
bonds and velocities are updated periodically, the total energy, E, does not remain
constant throughout the entire time of the simulation. The energy fluctuation £ is,
therefore, no longer an accurate measure of the dynamics because (E?) diverges from
(E)?. Instead, we have used the average fluctuation, (£), determined by calculating
&€ during each 0.100 ps interval, and averaging. If the total calculation has N; 0.100
ps intervals, (£) is defined by

€ =+3 6 (25)
where &; is the energy fluctuation calculated during the :-th interval. In such calcu-
lations, timesteps should be chosen so that they give an integral number of dynamics
steps per 0.100 ps — for instance, a timestep of 3.0303 fs is used, rather than 3.0 fs.

Figure 2.8 shows the variation in (£) during 5 ps simulations of aPP. In these
calculations, the Cell-Multipole Method was used for the nonbond calculations. The
£ was calculated during 0.1 ps intervals, during which the average kinetic energy was
calculated and the farfield contribution to the CMM energy was held constant[4].
At the end of each 0.1 ps interval, the velocities were rescaled if necessary, the CMM
farfield was recalculated, and the £ was recorded. At the end of the 5 ps simulations,
the £ values were averaged to give (£). These values are plotted in Figure 2.8. For

very short timesteps (1 and 2 fs), the (£) values are much larger than the & values



41

Average Energy Fluctuations in
Dynamics of APP

1x10" 5 :
1X100—§ ::":
© 1§ — N
E xw0{
g § — N
5 i
21 i L~ o ] s C
_s 1x10§
§ 1T 7 : S| | e C*
° 1x10'3?
= 3
ic N
1x10™
1x10°5 e
o 1 2 3 4 5 6 7 8 9 10
Timestep(fs)

Figure 2.8. The average energy fluctuations, (£), during 5 ps simulations of avian
pancreatic polypeptide. Fluctuations in NEIMO(N) and Cartesian(C) dynamics
were determined at 0.1 ps intervals during the course of the simulation, after which
velocities could be rescaled and the CMM nonbond farfield calculation was updated.

from the 1 ps simulations in Figure 2.6. At large timesteps, however, the results are
very consistent with the shorter simulations.

Figure 2.9 shows the average value of E* during 5 ps simulations of several of
the proteins in Table 2.2. Clearly the energy fluctuations in NEIMO dynamics sim-
ulations, even when scaled by the number of degrees of freedom, increase linearly
with protein size. This is in contrast to the fluctuations during Cartesian dynam-
ics simulations, which are roughly constant when divided by the number of degrees
of freedom. Some of the possible causes of this phenomenon have been mentioned

above. It should be noted that for NEIMO simulations using a 1 fs timestep, the
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Figure 2.9. (£) vs. protein size for Cartesian dynamics at 1fs and NEIMO dynamics
at various timesteps.

rise in (£)* is much flatter than at higher timesteps. The very large proteins studied
here may have problems with large timesteps simply because the actual number of
nonbond interactions is extremely large, being proportional to n?, and large dynam-
ics steps can cause rearrangement of a substantial proportion of these interactions.

Currently, work is being done to improve the results for large timesteps.

III.C. Dihedral Distributions

Analysis of energy fluctuations indicates that the NEIMO method accurately solves
its equations of motion for molecular systems, but does not verify that NEIMO pro-

duces molecular motions similar to Cartesian dynamics, which solve the equations of
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motion for the full 3n - 6 degrees of freedom. In order to determine how well NEIMO
simulations represent the dynamics of the Met-enkephalin peptides, the distribution
of dihedral angles during these simulations was determined. Cartesian dynamics
using a 1fs timestep and NEIMO dynamics using a variety of timesteps were run for
5.0 ps at a simulation temperature of 300 K, during which the dihedral angles were
output every 0.1 ps. Figure 2.10 shows the resulting distributions from simulations
of Met-enkephalin. The numbering of the dihedral angles is shown in Figure 2.1 and
further identified in Table 2.1. The top graph in Figure 2.10 shows the distribution
from Cartesian dynamics and the bottom shows the distribution from a NEIMO
dynamics simulation; both simulations used a 1 fs timestep. The distributions from
the two simulations are very similar, with the backbone w dihedrals (6, 9, 12, and
17) showing the least flexibility, as would be expected, and the methionine sidechain
dihedrals showing the greatest variation during the simulation. The average values
for each dihedral, 8, can be calculated from such distributions. Because dihedral
angles have a periodicity of 27 (360°), the average cannot be calculated directly, but

is derived from the average cosine and sine[28]:
(0) = arctan ((sin#)/{cos §)). (2.6)

Once (0) is known, the standard deviations can be calculated easily from N; simu-

lations:
v 1/2
N, —1 ’ '
where
66, = (6, — (0
(6: —(0)) (28)
-7 < 60; < 7.

Because of the periodicity of dihedral angles, Equation (2.8) can always be enforced

by appropriate additions or subtractions of 2.
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Figure 2.10. During 5 ps molecular dynamics simulations of Met-enkephalin, the
22 dihedral angles were written out at 0.1 ps intervals. The fifty values for each
dihedral are plotted here for Cartesian and NEIMO dynamics simulations using 1 fs
timesteps.
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The average values, (6), and standard deviations, o, for the distributions in
Figure 2.10 are shown in Figure 2.11. The average values are also shown in Table 2.4,
and are compared to the initial conformation. The NEIMO results are very similar
to the results from the Cartesian simulations, indicating that the reduction in the
number of degrees of freedom does not, in general, affect the torsional flexibility of the
molecules. There are two exceptions to this here: x' of Met 5 undergoes a transition
from roughly 30°to -60°(300°) in the Cartesian simulation, but remains near 45°in
the NEIMO simulation. Secondly, the 1 angle of Gly 2 is rotated from -60°to 60°in
the Cartesian simulation, but remains near -60°during the NEIMO calculation. It
is possible that fixing the angle terms increases the barriers to rotation enough to
prevent these transitions during 5 ps NEIMO simulation at 300 K. The rotational
transition of Met 5 x! did occur after approximately 40 ps of a 50 ps NEIMO
simulation using 5 fs timesteps. A 600 K NEIMO simulation using 5 fs timesteps saw
both transitions occur by 20 ps, but the temperature was high enough that further
transitions continued in both directions over these barriers. It is important to note
that the NEIMO formalism explicitly includes the capacity for bond stretches and
angle bends between clusters, but the current implementation uses only the dihedral
degrees of freedom.

A slightly different type of plot shows the average dihedrals from 10 different
NEIMO simulations in Figure 2.12. The simulations were identical except for the
timestep, which ranged from 1 fs to 10 fs. As explained above, timesteps were chosen
to give an integer number of dynamics steps per 0.100 ps. It is clear that the results
are extremely consistent for timesteps up to 10 fs. Only the two outer sidechain
dihedrals x! and x? of Met 5 have significantly different distributions at different
timesteps. x! has (0) ~ 145° for 8, 9, and 10 fs timestep simulations, but () ~ 90°

for the smaller timesteps. It is possible that the larger timesteps occasionally enable
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Dihedral 6, (0)y 60v0  (0)g 8000 0on

1 186.3 191.1 4.8 189.6 3.3 -1.5
2 706 66.6 -4.0 76.1 5.5 9.5
3 1074 999 -7.5 104.6 -2.8 4.7
4 178.0 178.0 0.0 180.2 2.2 2.2
3 300.1 306.8 6.7 301.4 1.3 -5.4
6 185.1 1834 -1.7 186.0 2.6 2.6
7 311.5 272.0 -39.5 2794 -32.1 7.4
8 306.8 300.8 -6.0 55.8 109.0 115.0
9 182.1 177.7  -4.4 173.0 -9.1 -4.7
10 2048 271.7 -23.1 2634 -314 -8.3
11 353.2 303.8 -49.4 309.8 -434 6.0
12 1734 173.9 0.5 1723 -1.1 -1.6
13 246.1 241.6 4.5 254.7 -8.6 13.1
14 61.3 65.5 4.2 712 9.9 5.7
15 72.0 928 208 99.8 27.0 7.6
16 351.7 320.0 -31.7 3204 -31.3 0.4
17 184.0 1772 -6.8 176.3 -1.7 -0.9
18 238.8 241.0 2.2 245.6 6.8 4.6
19 116.3 128.8 12.5 116.0 -0.3  -12.8
20 33.3  46.0 12.7 289.8 -103.5 -116.4
21 70.1  89.2 19.1 113.5 43.4 24.3

22 82.0 1172 352 1594 774 -39.8

Table 2.4. The average values of the Met-enkephalin dihedrals from 5 ps NEIMO
((9) ) and Cartesian ((6).) dynamics simulations, compared to the initial values o
and compared to each other.
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Average Dihedrals and
Standard Deviations from
5 ps Simulations
(Cartesian vs. NEIMO Dynamics)
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Figure 2.11. The average dihedrals from the distributions in Figure 2.10 are shown
here with error bars indicating 4o, the standard deviations.
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Average Dihedrals from 5 ps
NEIMO Simulations
(Timesteps 1 - 10 fs)
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Figure 2.12. The average dihedrals from NEIMO simulations using timesteps ranging
from 1 to 10 fs.

the molecule to jump over rotational energy barriers which cannot be cleared by
simulations using smaller timesteps which, in effect, calculate energies and forces at
more points along the trajectory.

In order to quantify the dihedral distributions, we represented each distribu-
tion by a gaussian, using the average, (6), and standard deviation, o, from the 50

datapoints:

o\ 2T

W(@,(@),U):{ ! }1/26—502/402. (2.9)

These gaussians were normalized to give a probability function,

P(0)do = [ [W]*d6 =1, (2.10)
L A

—T ki
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which is a normal distribution. Note that the constant in Equation (2.9) is derived for
nonperiodic variables, and the total probability in Equation (2.10) does not exactly
equal 1.0 if o is so large that the probability is non-zero for every value of 8. This
is not the case for any of the distributions we have analyzed.

Distributions from two different simulations can be compared by calculating the

overlap, S12, of the functions ¥y and ¥5:

Sp= [ W0,d0. (2.11)

If U, and U, are defined as

4 (602 (2.12)

where o = 1/40? and 8 = 1/402, and 60; and 60, are defined as in Equation (2.8)

for (6), and (6),, then the product of these functions is also a gaussian:

\Ifl\pg = I:4—aé

72

1/4
} Kype~(040)8012 (2.13)

Here, 662 is defined as usual from (0),,, where

(0), + B10);

(0)12 = ot B (2.14)
The constant in Equation (2.13) is
6 0),)* 2 2
Kip = exp [(a( >;:ﬂﬂ< ) _ (a(8)] + B(8)3)] - (2.15)

Inserting Equation (2.13) into Equation (2.11) gives a formula for the overlap:

4oy 1/4
P fmz} Ko, (2.16)

S12 equals 1 if the two distribution functions are identical and equals 0 if there is no

S|

overlap.
The overlaps from the 10 NEIMO simulations plotted in Iigure 2.12 are shown in

Figure 2.13. Each line represents the overlap between the 1 fs timestep simulation
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and one of the simulations with a larger timestep. A second figure, Figure 2.14,
specifically shows the overlaps between the 1 fs simulation and the 2, 5, and 10 fs
simulations at a higer resolution. As expected, there is almost 100% overlap among
the NEIMO simulations, which indicates clearly that the molecular dynamics are
very consistent across a range of timesteps of 1 fs to 10 fs. The only exceptions to
these are y dihedrals of Met 5 and the w of Gly 2. The relatively small overlap of
the latter is actually due to the very small value of o (0.3°) for the 1 fs NEIMO
simulation. The discrepancy in the methionine sidechains is also due primarily to
differences in o rather than (#) for the smaller timestep simulations. At larger
timesteps, however, both ¢ and (8) differ.

Overlaps between the dihedral distribution from the Cartesian simulation, and
those from the NEIMO simulations, are shown in Figure 2.15. Here, the overlap is
quite small for x? of Met 5 and the 3 backbone dihedral of Gly 2, as indicated by
the large differences in (6) note above. A third very-low overlap is seen for the w
of Gly 2. This difference is completely hidden in Figure 2.11 since it is due entirely
to the extremely low value of ¢ in the NEIMO simulations. The value is so low, in
fact, that it does not appear in Figure 2.11 for the 1 fs NEIMO simulation. The
overlaps are greater than 65% for 19 of the 22 dihedrals for every NEIMO timestep.
Excluding the methionine residue, overlaps are greater than 90% for 13 of the 16

dihedrals.

IV. Conclusions

The NEIMO method has now been successfully applied to polypeptide and pro-
tein systems. The method is extremely fast compared to other internal-coordinate

dynamics methods, as it scales linearly with the number of degrees of freedom.
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For increasingly large systems, the NEIMO computational requirements grow more
slowly than those for energy calculations, thereby allowing for its applicability to
extremely large systems. Molecular dynamics of only torsional degrees of freedom
can use larger timesteps than simulations allowing all possible degrees of freedom.
NEIMO calculations of peptides indicate that timesteps as large as 20 femtoseconds
can be used for these small systems. Timesteps of this size are not yet possible for
large polypeptides and proteins, as judged by the criterion of total energy fluctua-
tions. However, timesteps of 5 fs and longer can be used for large systems without
danger of energy divergence; such calculations may be useful for conformational anal-
yses of extremely large systems such as viruses. The use of a different integration
method may improve the energy conservation for larger systems.

The dynamics of polypeptides are accurately modeled by the NEIMO method.
Analyses of dihedral angle fluctuations show that NEIMO dynamics simulations
produce conformational fluctuations very similar to those arising from Cartesian
dynamics simulations. The few exceptions to this in simulations of Met-enkephalin
appear to be cases where rotational barriers are traversed in the Cartesian dynamics
simulation, but not in a NEIMO simulation at the same temperature. It is likely that
fixing bond angles keeps rotational barriers higher than in a more flexible model.
Future implementations of the NEIMO method for molecular systems will include
the additional hinge degrees of freedom, allowing for flexibility in these angles.
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A. Leapfrog Verlet for Internal Coordinates

The Verlet algorithm is probably the most popular algorithm for integrating the
equations of motions in standard Cartesian-space molecular dynamics. Currently,
NEIMO dynamics uses a modification of one formulation of the Verlet algorithm,
the “leapfrog” formulation. Regardless of the formulation, the Verlet algorithm
requires that accelerations be calculated at a time ¢, before the velocities at time
t are known. However, NEIMO accelerations at time ¢ depend upon the velocities
at time ¢, so these velocities must first be estimated. Iteration allows for a more
accurate determination of the velocities.

A “leapfrog” Verlet calculation with a timestep of h determines the accelerations
at integer timesteps n (0”, simulation time = nh) and uses these to determine the
velocities at timestep n + 1 (§*%). These velocities are then used to determine the
coordinates at timestep n 4+ 1 (0"*'). The next dynamics timestep then proceeds
with n = n + 1. However, in order to calculate é”, NEIMO requires the unknown
0" as well as known 8™, It is, therefore, first necessary to estimate the velocities or

from the previously determined velocities:
6" = 1.56% — 0.56"" 2. (2.17)

It is then possible to calculate the NEIMO accelerations 6. Accelerations are cal-
culated by solving the spatial operator (SO) equations described in detail in Ref-
erences [12] and [11]. The accelerations are a function of the coordinates 6", the

velocities 67, the torques T", and/or the forces F". The forces and torques are
g = SO(F", T, 0", 6") (2.18)

calculated from the derivatives of the potential energy functions with respect to

Cartesian and dihedral coordinates, respectively. The accelerations are used to up-
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date the velocities as they are in Cartesian dynamics (cf. Equation (1.17)).
g7tz = "7 4 po" (2.19)

Because d" is estimated in Equation (2.17), fn is inaccurate and such errors could
build up as the simulation progresses. In order to eliminate such errors, " is re-

estimated from the new 6™% and the known fn — %
" = 0.56"% 4+ 0.56"2 (2.20)

Repeating Equations 2.18 through 2.20 until g converges produces a very accurate
value for ™. Sufficient convergence is generally reached after a single iteration, so
the effect on overall computational speed is minimal. The converged values of g in

Equation (2.19) give values for 6+ which are then used to update the coordinates.
g+ = g + hfmte (2.21)

The dynamics step is completed by updating the Cartesian coordinates from the

new internal coordinates 671,
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Chapter 3

Simulations of the Tomato Bushy Stunt Virus Capsid

Abstract

The spherical protein capsid of the tomato bushy stunt virus expands by 10% when
calcium ions are removed from the system and the pH is raised above 7[1]. We have
attempted to simulate this effect using molecular dynamics. Although we calculate
velocities for only the three proteins of the asymmetric unit plus associated ions, we
include the nonbonded interactions of all 180 proteins (nearly 500,000 atoms) in the
virus coat. The Cell-Multipole Method (CMM)[2] enables us to calculate the non-
bond interactions in this gigantic system. Also, in order to increase the timelength
of the simulation, we employ internal coordinate dynamics, using Newton-Euler In-
verse Mass Operator (NEIMO) Dynamics[4], which enable us to use timesteps of 2

femtoseconds for proteins of this size.
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I. Introduction

The tomato bushy stunt virus is an RNA virus composed of 180 identical coat pro-
teins arranged in 7' = 3 icosahedral symmetry. The asymmetric unit of the viral
capsid, containing three copies of the coat protein having slightly different confor-
mations, has been crystallized and is shown in Figure 3.1. The three conformations
of the coat protein are designated A, B, and C, and differ primarily in the orienta-
tion of a few surface sidechains. A second major difference is that while all three
conformations contain RNA-binding (R), surface (S), and projecting (P) domains,
the R domain (residues 1-101) is completely unresolved in the A and B conforma-
tions while in the C conformation, residues 67-101 have an ordered structure and are
resolved. The full viral coat is shown in Figure 3.3, with two spheres representing
each protein. The symmetry is more apparent in Figure 3.4, where the P domains
have been removed and only the S domains are shown. The picture emphasizes the
five-fold symmetric axis, but three-fold and two-fold symmetries also exist for the
coat. The viral RNA (molecular weight 1.5 X 10°) is, of course, not icosahedral; it
is disordered and does not appear in the crystal structure at all.

In addition to the three proteins, Figure 3.1 shows the location of the two Ca?*
jons which bind per protein. Each pair of calcium cations binds in a negatively
charged pocket at the interface between adjacent S domains in the triad, the pocket
being formed by five aspartic acid sidechains contributed by the two proteins. This
is shown in more detail in Figure 3.2. Tt is postulated that the interaction between
these Asp residues and the Ca?" ions plays a major role in stabilizing the viral
coat[1]. If the Ca?* ions are removed, the virus expands as the pH is raised above 7.
The hydrodynamic radius of the virus can expand by as much as 10%, but there is no
loss of mass and the process is reversible. A low-resolution (8 A) crystal structure

was determined for the expanded conformation of the virus{l] and indicated that
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Figure 3.1. The tomato bushy stunt virus asymmetric unit, showing the A, B, and
C conformations as well as the associated Ca?* ions. From the crystal structure by

Olson et al.[3].
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expansion occurred by relative motions perpendicular to the interfaces where Ca**
ions bind in the unexpanded conformation. However, no atomic details were available
from this low resolution data.

In order to investigate the expansion phenomenon, we carried out molecular dy-
namics calculations on two different models of the viral coat proteins representing
different possible configurations. The model systems include all resolved residues
from the asymmetric unit plus counterions, Na™ and C1™ and, perhaps, Ca®*, for a
total of 8138 atoms. Through the use of the transformation matrices in the crystal
structure (Brookhaven Protein Database structure 2TBV), coordinates can be gen-
erated for the entire viral coat containing 180 proteins and nearly 488,280 atoms. It
is not yet practical to simulate a system this large on a standard workstation, so the
dynamics were only calculated for the three proteins of the asymmetric unit. How-
ever, it is possible to include the electrostatic and van der Waals, i.e., “nonbonded”
forces contributed by the rest of the viral coat. No standard method for calculating
nonbonded forces could be used for a system of this size, but the Cell-Multipole
Method (CMM)[2] provides a means for doing such calculations both quickly and
accurately. Therefore, we are able to simulate the dynamics of the entire viral coat.
The RNA is not represented in the current calculations. Newton-Euler Inverse Mass
Operator (NEIMO) Dynamics (see Chapter 2) provide a means of speeding the cal-
culations by allowing us to use internal-coordinate dynamics with timesteps of 2 fs,

rather than the 1 fs timesteps required by Cartesian dynamics.

II. Methodology

In an attempt to simulate the expansion effect, two different models of the TBSV

asymmetric unit were developed. The first contains the protein atoms and calcium



Figure 3.2. Detail of the aspartic acid/Ca®* interactions at the contact site between
the S domains of two coat proteins.



Figure 3.3. The TBSV protein coat, with each P and S domain represented by a
sphere.
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Figure 3.4. A second view of the TBSV coat, with the outer P domains removed to
emphasize the symmetry of the virus.
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jons as they appear in the protein database coordinate file (2TBV)[3], with hydrogen
atoms added to nitrogen, oxygen and sulfur atoms to allow for hydrogen bonding. In
addition, Na* and Cl1~ ions were added to balance the charges of unpaired acidic and
basic residues, respectively. This structure is termed the “PH7” model. The second
representation is the “NOCA” model, in which the six Ca’* ions were removed and
the free aspartic acid residues were allowed to form salt bridges with basic residues,
or were given Nat counterions. In this model, the 15 Asp residues are no longer
held together by interactions with Ca®*, but are free to move independently. This
is believed to be the major factor in the expansion of the virus particle[l].

Inclusion of explicit waters in a calculation of this type can improve its accuracy
but can also greatly expand the computational cost. We do not, therefore, have
waters included in the system. However, we are able to compensate for this partially
in two ways: 1) by using a distance-dependent dipole, and 2) by using counterions
to balance lone charges. The first mimics the charge-shielding capacity of water by
using an effective dielectric constant between charges 7 and j proportional to the

distance between the two charges, r;;

4% _ 99
(g, q;) = 6eﬁr:j = ?2” (3.1)

Inclusion of counterions in the simulation can provide charge stabilization for lone
charged groups. In nature, such stabilization is provided both by water dipoles and
free jons. The 893 residues of the simulated triad include 69 acidic (48 aspartic acid
and 21 glutamic acid) and 58 basic (38 arginine and 20 lysine) residues. Of the 48
aspartic acid residues, 15 are involved in the binding of the 12 Ca®t ions. At each
protein interface, two calcium ions and five aspartic acids are present; at the A/B
interface Asps 181, 183, and 186 from A are present along with Asps 153 and 225
from B. A basic residue, Lys 232 from A, is also present, approximately 3.1 A from

Asp 183. Excluding these six residues per protein, there were a total of 109 free
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charged residues.

Not every charged residue requires a counterion, since many are involved in salt
bridges. We eliminated (+,-) paired sidechains by looking at all pairwise distances
between the central atoms of oppositely charge sidechains. These atoms are C, in
aspartic acid, Cs in glutamic acid, C¢ in arginine, and N¢ in lysine. We checked not
only for (+,-) pairs within the three proteins of the asymmetric unit but expanded
the viral coat into its entire 180 proteins and checked for pairs between residues in
different triads. Pairs less than 10 A apart were considered to stabilize one another,
and were not given countercharges. There were 30 such pairs in addition to the
Lys 232-Asp 183 pair mentioned in the preceding paragraph. Of these, 23 occurred
within the asymmetric unit and 10 occurred between residues of different triads. As
can be seen in Figure 3.3, each P domain is closely paired with a P domain from a
different triad, and several salt bridges occur in this region. After eliminating charge-
paired residues, 25 Cl~ were still needed to balance 10 arginines and 15 lysines while
24 Nat were needed for 18 aspartic acids and 6 glutamic acids. These counterions
were placed in idealized locations, determined by previous calculations on individual
sidechains. In the NOCA model, the Ca?* ions were removed, and the need for
counterions was recalculated. In this model, the Asp 53 sidechains from B formed
weak (+,-) pairs with Lys 182 of B, so counterions were not needed for these residues.
This was the case at all three interfaces. Therefore, the NOCA model required a
total of 33 Nat counterions and 22 CI™ and there was no net change in the total
number of atoms in the system.

The asymmetric unit of the TBSV viral coat contains three copies of the coat
protein in slightly different conformations. The S (residues 102-274) and P (275-
387) domains are resolved crystallographically in all three conformations. In each

case, the two domains were built independently, so mismatches exist in the hinge
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region (residues 273-275). The crystal structure (2TBV)(3] lists alternate S and
P coordinates for the residues in the overlap region. For these calculations, the
two alternates were averaged and re-optimized by energy minimization. The R
domains are not resolved, except for residues 67-101 in the C conformation. Only
these are included in the calculations. The RNA is also not included in the current
calculations, since no structure is available for it. The simulated PH7 system contains
893 protein residues having a total of 8083 atoms in addition to six Ca®t, 24 Na*t
and 25 Cl~ for a total of 8138 atoms. As explained above, the NOCA model has
zero Ca?t but 33 Nat and 22 Cl—, so the total number of atoms remains the same.

In order to accurately model the capsid environment, the nonbonded forces act-
ing on the asymmetric unit included interactions with the other 177 proteins. This
was made possible by the Cell-Multipole Method (CMM)[2], an extremely fast and
accurate method for calculating nonbonds in large systems. CMM divides the simu-
lation space into a hierarchy of cubic cells, the smallest of which contains, ideally, 4
or 5 atoms and the largest of which contains the entire system. Each cell at level ¢
contains eight cells from level ¢ + 1. For the triad alone, four levels are used. There
are 4096 (8%) cells at this level, measuring 6.397 A on a side. Since the system is
much flatter than it is cubic, 81.4% of these cells are empty, leaving 762 populated
cells with an average of 10.7 atoms per cell. When the triad is expanded into the full
180 protein capsid, the cell multipole method uses six levels for the 488,820 atom
system. At level 6, there are 262,144 cells measuring 5.340 A on a side. 87.5% of
these are empty, leaving 8.0 atoms per populated cell. Both the dimension and the
average population in this case are better than those in simulations of the triad,
alone.

In CMM calculations, the total charge, dipole, and quadrupole are calculated

for each cell at each level. Exact pairwise interactions, like those in Equation (3.1)
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are only calculated for atoms in adjacent cells. Interactions with distant cells are
calculated as interactions with the cumulative charge, dipole and multipole of those
cells. For nearby cells, just beyond the nearest neighbors, interactions are calculated
with the lowest-level cells, e.g., level six cells in the capsid simulation. Interactions
at increasing distance are calculated with larger, higher-level cells, up to level 1.
This hierarchical approach makes the nonbond calculation proportional to n, the
number of atoms, rather than n?, as would be the case for traditional methods, yet
is highly accurate because the errors introduced are proportional to the strength of
the interaction.

All calculations were performed on one processor of a Silicon Graphics 4D /380
workstation using the BIOGRAF software from Molecular Simulations, Inc.[6]. En-
ergies were calculated using the DREIDING forcefield[5]. NEIMO dynamics calcu-
lations were performed using software written at JPL and Caltech, and interfaced

to the BIOGRAF program.

ITI. Results

Timing results for the CMM molecular dynamics calculations are shown in Fig-
ure 3.5, in terms of cpu seconds on one processor of an SGI 4D /380 workstation. The
total charge, dipole, and quadrupole of each cell, collectively termed the “farfield,”
can be recalculated every step or can be considered constant for a number of steps.
These two cases are labeled “Updatel” and “Update50,” the latter referring to cal-
culations in which the farfield was updated only every 50 steps. Also shown is
the difference between calculations using only the nonbonds of the three-protein
asymmetric unit, labeled “NB3,” and those including interactions with the entire

180-protein capsid, labeled “NB180.” It is interesting to note that the Update50
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Computational Time for TBSV Simulations
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Figure 3.5. CPU times for CMM calculations, NEIMO acceleration calculations,
and overhead, including coordinate updating for NEIMO.
calculations are actually faster for NB180 than NB3 (37.2 versus 41.0 s). This is
because the calculation is dominated by the nearfield interactions. As noted above,
the average cell in the NB180 case has 5.4 atoms versus 6.4 for the NB3 case. This
means fewer pairwise interactions need to be calculated. The farfield interaction
takes longer to calculate in the NB180 case, but the effect is not significant because
of the hierarchical approach described above. Only when the farfield itself must be
updated every step, i.e., the Updatel calculations, does the size of the system make
a significant difference. In such calculations, including the entire capsid increases
the time of the nonbond calculations from 49.8 s to 92.6 s.
Figure 3.5 also shows the total time required for NEIMO calculations, including
the time required to calculate accelerations and velocities, and to update the system

coordinates. Unlike other internal-coordinate methods, NEIMO dynamics are com-
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putationally proportional to A, the number of internal degrees of freedom. There-
fore, NEIMO can be used to calculate internal coordinate dynamics for a system
this large, an almost impossible task for other internal-coordinate methods, which
typically have computational costs proportional to A”®. As is clear in Figure 3.5,
the linear scaling with respect to A’ makes NEIMO entirely feasible for simulations
of TBSV. NEIMO calculations for the three protein chains in the asymmetric unit
(N = 4335) require 5.3 s per dynamics step. The primary advantage of internal-
coordinate methods is that large timesteps can be used; whereas Cartesian dynamics
simulations typically require timesteps of 1 fs for accuracy, timesteps as large as 15
fs can be used reliably for small peptides. Although the current NEIMO implemen-
tation does not allow timesteps of this magnitude for large proteins, timesteps larger
than 1 fs are practical. As is indicated in Figure 3.5, the overhead for NEIMO cal-
culations is very small compared to the time required for the nonbond calculations.
Therefore, an increase in step size just to 2 fs will nearly double the speed of the
simulation with respect to a 1 fs Cartesian simulation.

Figure 3.6 shows the average scaled energy fluctuation, (£)*, versus timestep
for calculations on the PH7 model of TBSV. (£)* is the average value of £ during
a simulation, divided by the number of degrees of freedom. & is determined over

0.100 ps intervals using the equation:

(E%) —(B)"

€= T

2 (3.2)

where E is the total energy (potential plus kinetic), kp is the Boltzmann constant,
and T is the temperature of the simulation. The figure indicates that no choice for
nonbonds gives superior results at all timesteps. Fluctuations using the entire capsid,
with the farfield updated every step, i.e., NB180/Updatel, were not measured but
are unlikely to provide a substantial improvement. In every case, there was typically

a 4- to 5-fold increase in the fluctuation for each 1 fs increase in the timestep. The
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Figure 3.6. (£)* during 1.0 ps NEIMO simulations.

average scaled fluctuation, (£)*, shown in Figure 3.6, is approximately the same for
1 fs NEIMO and 1 fs Cartesian dynamics. However, the unscaled fluctuation, 1.e.,
the average value of £ not scaled by the number of degrees of freedom, is of the same
order of magnitude for 2 fs NEIMO and 1 fs Cartesian dynamics.

The two model systems, PH7 and NOCA, were initially optimized using Cartesian
space conjugate gradients minimization. The nonbond calculations included the
entire capsid, with the farfield updated every 50 steps. The radius of gyration of
the entire 180 protein system was calculated every 50 steps, when the farfield was

updated. The radius of gyration is defined as:

o [ V) o 2 o 2171/2
Ry, = SPml(z — Tem) +(3iz Yem ) + (20 — Zem)?] (3.3)
Zi m;

where the coordinates and mass of each particle ¢ are (z;,y;, z;) and m;, respectively,

and the coordinates of the center of mass are (Z.m,%Yem, Zem). This is shown in
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Figure 3.7. The radius of gyration during energy minimization.

Figure 3.7 for the first 1000 steps of minimization. PH7 and NOCA actually took
1300 and 1176 steps to minimize, respectively. Both structures contracted by about
0.08% during the minimization with their radii following almost identical curves.
The contraction rate remained constant after the first 100 steps, indicating it would
have continued had the minimization gone longer. However, curves of the potential
energy during minimization, shown in Figure 3.8, clearly indicate that the energy
had converged. The PH7 and NOCA energies also had similar curves. However,
the PHT7 structure is almost 700 kcal/mol lower in energy than NOCA, despite
containing identical numbers of atoms. This energy difference is almost entirely due
to the electrostatic energy term and indicates the large stabilizing energy of the Ca**
ions.

Molecular dynamics calculations were carried out on the different minimized

structures, again using nonbonds from the full capsid. The farfield was updated
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Figure 3.8. The potential energy of the TBSV triad, including CMM nonbonded

interactions with the full viral coat, during energy minimization.
every 0.100 ps. Two different Cartesian dynamics methods were tried: microcanon-
ical ensemble (NVE) with temperature scaling and canonical ensemble (NVT). In
addition, NEIMO dynamics, which are NVE, were used with a timestep of 2 fs. Fig-
ure 3.9 shows the radius of gyration of PH7 during the first 2.0 ps of dynamics. All
three methods give different curves but there are some similarities. Both Cartesian
simulations have an initial expansion phase followed by a longer contraction. The
NEIMO simulation has no expansion phase, but its contraction phase closely resem-
bles that of the Cartesian NVE simulation, with roughly the same slope, contracting
until approximately 1.8 ps, when it levels out. The canonical dynamics simulation,
in contrast, shows no similar leveling out through the first 2.0 ps.

Longer simulations were run using Cartesian canonical dynamics and NEIMO

dynamics on both the PH7 and NOCA models. The NEIMO dynamics simulations
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Figure 3.9. The TBSV radius during 2.0 ps Cartesian and NEIMO dynamics simu-
lations.

were twice as fast, since 2 fs timesteps were used. Therefore, longer simulations
could be run. Figure 3.10 shows the radius of gyration of the PH7 and NOCA
models during the first 4.0 ps of NEIMO and Cartesian NVT simulations. In the
NEIMO simulations, the NOCA model undergoes a rapid expansion during the first
2.0 ps, then an even sharper contraction. The PH7 model has no such expansion
phase but does have a gradually increasing contraction rate. Both of these simu-
lations show far more variation in their radius of gyration than the corresponding
Cartesian simulations. However, in both simulations, the NOCA model initially has
a larger radius of gyration than for PH7, but eventually becomes smaller. Although
the curves of the radii cross after about 3.9 ps in the Cartesian simulation, the en-
ergy curves do not cross, as shown in Figure 3.11. The energy plot indicates that
the NOCA model is less stable, as it is undergoes larger energy fluctuations after

3.0 ps. These fluctuations continue until the end of a 5.0 ps simulation (data not
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Figure 3.10. The radius of the PH7 and NOCA models of TBSV during 4.0 ps of
Cartesian (NVT) and NEIMO dynamics.
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Figure 3.11. Potential energy during the 3.0 ps Cartesian canonical dynamics simu-
lations.
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shown). The PH7 model is relatively stable. For the NEIMO simulations, the con-
traction rate is comparatively exaggerated, but the energies do not show such large
fluctuations. The NOCA model has a potential energy around -3850 kcal /mol while
the PH7 model’s potential remains near -4550 kcal/mol. Note that these energies
are substantially lower than in the Cartesian simulation because the numerous bond

and angle degrees of freedom are held at their minimum potential energy values.
Therefore, the approximately 700 kcal/mol differential between PH7 and NOCA is

relatively constant, even though the radii change significantly.

IV. Conclusions

The current simulations have not been able to reproduce the 10% expansion expected
for the NOCA model on the basis of the experimental data[l]. However, the NOCA
model is substantially higher in energy (700 kcal/mol), indicating that it might be
driven to expand in more extensive calculations. The NEIMO simulations show
substantial contraction of both the PH7 and NOCA models, but the nature of this
phenomenon is unknown. The RNA in the interior of the virus may be needed to
prevent contraction of the viral coat. Other models of TBSV should be investigated,

including those in which all Ca?* ions are removed, but are not replaced by Nat.
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Chapter 4

Probability Grid Monte Carlo

Abstract

We have devised a Monte-Carlo method that employs importance sampling of dihe-
dral angles to model peptide and protein conformations. This new method, which
we call Probability Grid Monte Carlo (PGMC), modifies amino acid residue back-
bone and/or sidechain dihedrals according to probability grids derived from the
Brookhaven Protein Database. We have used this method to study peptide con-
formations and have successfully adapted it to a number of important problems in
protein modeling, including the prediction of all-atom protein conformations from C,
coordinates alone, and the prediction of the conformations of protein loops. Here,
the method is applied to a study of the low energy conformations of the peptide

Met-enkephalin.



I. Introduction

Probability Grid Monte Carlo (PGMC) is a method developed for predicting the
conformations of peptides and proteins by searching their torsional degrees of free-
dom. The PGMC method combines two of the best features from other torsion-
space conformational search methods which have been developed to study peptide
conformations; Monte Carlo importance sampling and grid searching. Like the im-
portance sampling method of Lambert and Scheraga[l], the method described here
assigns probabilities to different ¢,% conformations, and conformations are gener-
ated according to those probabilities, rather than completely at random or through
an exhaustive search of all possibilities. However, unlike Lambert and Scheraga,
our probabilities are derived to work within the framework of a grid search method,
i.e., only discrete values are chosen for the dihedral angles. There are two primary
advantages to using discrete values for dihedral angles, rather than sampling from
a continuum: the conformational space is reduced to a finite number of possible
conformations per dihedral angle and the probabilities can be generated to reflect
known ¢, distributions more accurately. In addition, the method is easily extended
to sidechain (x) dihedrals. Because no functional form is necessary to specify the
probabilities, grids can be developed for any necessary dimensionality. They range
from one-dimensional grids for small sidechains to five-dimensional grids for arginine.

Grid searches have been employed in many conformational studies, such as those
designed to predict protein loop structures[2] and those employed in the study of
organic molecules[3]. The conformational space in a grid method is still large, as each
dihedral can assume 360/S conformations, where S is the grid spacing. Therefore,
these methods usually employ sophisticated schemes for eliminating combinations
which cause steric overlap. The PGMC method, in contrast, implicitly includes a

great deal of steric information through the use of probability grids: probabilities are
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assigned to different protein backbone (¢,v) and sidechain (x) dihedrals according
to their distributions in known protein structures. Conformations with significant
steric overlap are not found in nature and, therefore, have extremely low probabilities
of being sampled.

The Probability Grid Monte Carlo method has evolved into a general tool for
protein modeling. Its conformational search methodology has been adapted to sev-
eral problems in addition to the study of peptide conformations. The first of these is
the prediction of all-atom conformations of proteins from C, coordinates, discussed
in Chapter 5. The second is the study of loop conformations in proteins, as applied
to immunoglobulin hypervariable loops in Chapter 6. Both of these methods use
the fundamental PGMC algorithms in conjunction with geometric constraints: the
C, coordinates or the loop endpoints, respectively. The results from both of these
applications are encouraging: the C,-based modeling gives results comparable to or
better than other published methods, while the loop modeling is nearly as good as
other methods, even though they employ surface-area corrections in order to choose
more native-like conformations. Success in these modeling studies indicates that the
method can be applied to cases where experimental information is lacking, such as

the conformational states of small peptides.

II. Methodology

In the PGMC method, conformations of a polypeptide are generated by rotating
backbone (¢,1) and/or sidechain (x) dihedral angles for individual amino acids.
These dihedral angles are shown in Figure 4.1 for arginine, which has the largest
number of freely-rotating x dihedrals. The conformations are not chosen randomly,

but are selected from probability grids calculated from a selected subset of proteins
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from the Brookhave Protein Database. Each grid is an /V;-dimensional matrix, where
Ny is the number of dihedrals involved. For instance, backbone sampling involves
two-dimensional grids, and each point on the grid is the probability of chosing a
particular ¢, pair. The grids have S° spacing, where S = 5, 10, 15, 30, or 60.
Therefore, ¢, grids have Ng points, where Ng = (360/.5) x (360/.5). The probabil-
ities were derived by partitioning every ¢, pair in a set of high-resolution protein
crystal structures into S-degree bins. The probabilities (P(¢,v)) are normalized so

that
360/5 360/ S

oD P(diy) = (4.1)

i=1 j=1

Sidechain probability grids have varying dimensionality, depending upon the number
of dihedrals needed to specify the conformation. This ranges from Ny = 1 for small
sidechains like serine and threonine, to N; = 5 for arginine. For alanine and glycine,
Ny = 0.

Our standard approach for doing Monte Carlo simulations uses these probabil-
ity grids to generate trial conformations and assesses these conformations using the
Metropolis criterion[4]. The protein is assigned an initial conformation, usually by
rotating all backbone and sidechain dihedrals to the highest-probability grid values.
A new conformation is generated by modifying one amino acid, which is chosen at
random. Depending on the nature of the simulation, either a new main-chain con-
formation is chosen from the ¢, probability grid, or a new side-chain conformation
is chosen from the y probability grid. The potential energy of the new conformation
(i +1) is calculated, using a standard forcefield such as DREIDING[5] or AMBER][6]
and is compared to the energy of the previous conformation (z). Conformation 7 + 1
is either accepted or rejected according to the Metropolis criterion[4]. If the new

structure is lower in energy (AE < 0, where AE = E;; — E1), 1t is accepted. If it
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Figure 4.1. The backbone (¢, 9, and w) and sidechain (x) dihedrals of arginine.
The two outermost sidechain dihedrals, Y®! and x®? rotate hydrogens, only, so they
are not varied in the Probability Grid Monte Carlo method.
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is higher in energy, the probability of acceptance, P, is defined by:
P = ¢ 2B/ksT, (4.2)

where kg is the Boltzmann constant and T is the simulation temperature. A random
number n, is generated between 0.0 and 1.0. If P > n,, the new conformation is
accepted. Otherwise, the structure is rejected and the previous structure is restored.
This is the Metropolis criterion for accepting or rejecting a new structure, designed to
ensure a Boltzmann distribution of conformations{4]. This criterion means, for exam-
ple, that there is a 50% chance of accepting a new structure if AE = —kgT In(0.5).
At 300 K, this value is 0.413 kcal/mol. At higher temperatures, the probability of
accepting a bad structure increases.

We are generally interested in finding the lowest-energy conformation of a given
peptide. This can be done, theoretically[7], by the simulated annealing method:
starting at a high simulation temperature, and slowly cooling the system in a process
called simulated annealing. However, it is usually not possible to know beforehand
exactly what cooling rate is necessary to achieve the global minimum. Considerable
work has been done in optimizing the heating and cooling process in Monte Carlo
simulations of peptides[8, 9]. We have employed both constant temperature and

simulated annealing in our studies of protein conformations.

II.A. The Protein Database Subset

The dihedral probabilities which are integral to our method require a judicious choice
of structural data. Therefore, we sought to use a subset of protein structures from
the Brookhaven Protein Database (PDB) which was both diverse and accurate. The
Brookhaven PDB contains more than 500 protein crystal structures, even excluding

structures with only C, coordinates. However, there are many proteins which are
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represented numerous times or are highly homologous to other proteins in the PDB
dataset. Such identical, or nearly identical, structures would tend to distort our
probabilities in favor of geometries found in those particular proteins. In order to
eliminate highly redundant structures, we carried out pairwise sequence comparisons
among 503 proteins in our initial PDB dataset, using the “align” program from W.R.
Pearson’s FASTA sequence analysis package[10]. Any protein with greater than 25%
sequence identity with another protein of higher resolution was eliminated. This
homology-elimination process reduced our dataset from 503 proteins to 121. This
dataset of 121 proteins, which we call U121, is useful for a wide variety of statistical
analyses. However, geometric analyses such as those required here require high
resolution data, so we further reduced the dataset to 64 crystal structures which
had 1.5 A resolution data or better, or had better than 2.0 A resolution and R-
factors below than 20%. This dataset, which we call H64, was used to create our
probability grids. The 64 crystal structures comprising this dataset are listed in
Table 4.1.

II.B. Backbone (¢,v) Probability Grids

During a Monte Carlo step, either the backbone or side-chain conformation of one
amino acid residue, selected at random, is altered. If the backbone conformation is
to be changed, a new ¢, pair is selected for the residue. The ¢, pair is chosen
from a grid of probabilities where the spacing between the gridpoints is S°. The
grid, therefore, contains Ng gridpoints, where Ng = (360/.5) x (360/5). The third
backbone dihedral angle, w, is fixed at 180° during Monte Carlo simulations, except
where it occurs before proline residues. For prolines, there is a 7% chance of flip-
ping to the cis conformation (w = 0°). However, even for proline the w is treated

independently and not as a third-dimension in the probability grid.
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PDB  Res.(A) R PDB  Res.(A) R PDB  Res. (A) R

IAMT 1.5 155 | 1UBQ 1.8 176 | 3BLM 2.0 163
1BP2 1.7 171 | 1UTG  1.34 23 | 3CLA 1.75 157
ICRN 1.5 N.A. | IXY1 1.04 088 | 3DFR 1.7 152
1CSC 1.7 188 | 256B 1.4 164 | 3GRS  1.54 186
ICSE 1.2 178 | 2AZA 1.8 157 | 3SRNT 1.8 137
ICTF 1.7 174 | 2CA2 1.9 176 | 451C 1.6 187
1IECA 1.4 N.A. | 2CCY 1.67 188 | 4CPV 1.5 215
1FB4 1.9 189 | 2CDV 1.8 176 | 4FD1 1.9 192
1GD1 1.8 177 | 2CPP  1.63 19 | 4FXN 1.8 200
1GMA  0.86 071 | 2CYP 1.7 202 | 4INS 1.5 153
1IGP1 2.0 171 | 2ER7 1.6 142 | 4PTP  1.34 171
1HOE 2.0 199 | 2GBP 1.9 146 | 5CPA  1.54 N.A.
1B 2.0 189 | 2LTN 1.7 177 | 5CYT 1.5 171
1L19 1.5 153 | 2MHR 1.7 158 | 5PTI 1.0 200
1ILZ1 1.5 177 | 2MLT 2.0 198 | 5BRXN  1.20 115
IMBA 1.6 193 | 20V0 1.5 199 | 5TNC 2.0 155
IMBD 1.4 N.A. | 2RSP 2.0 144 | 6TMN 1.6 171
INXB 1.38 N.A. | 2SGA 15 126 | TRSA  1.26 15
1PAZ  1.55 18 | 2SNS 1.5 N.A.| 9PAP  1.65 161
IPCY 1.6 17 | 2WRP 1.65 180 | OWGA 1.8 175
1PPT  1.37 N.A. [ 3B5C 1.5 16

ITHB 1.5 196 | 3BCL. 1.9 189

Table 4.1. Crystal structures used in the H64 dataset.
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The probability grids were determined by partitioning every ¢, ¢ pair in the pro-
teins comprising the H64 dataset into bins of size 5° x §° and normalizing. We have
determined separate probability grids for each amino acid, but it is sufficient to use
individual grids for the three major residue types: glycine, which has no sidechain,
proline, whose sidechain forms a closed loop with the backbone, and the other 18
“standard” amino acids. The ¢, probabilities are significantly different for these
three residue types, as can be seen in Figure 4.2. The shape of the grid depends not
only on the data, but on the grid spacing, S, as can be seen in Figure 4.3. A nar-
rower spacing allows for much greater conformational flexibility, which is especially
important in simulations of constrained systems. However, the total coverage of
conformational space is somewhat reduced for narrower grid spacings. For instance,
for standard residues, 110 of the 144 possible 30° gridpoints are populated (76.4%),
while only 1114 out of 5184 gridpoints (21.5%) are populated on a 5° grid. Of course,
the number of populated gridpoints, and their probabilities, depends on the size and
quality of the dataset. Therefore, in order to evaluate the grids produced from the
H64 dataset, we have also constructed grids using the U121 dataset.

The number of each type of residue found in the two datasets is shown in Ta-
ble 4.2. The U121 dataset contains nearly three times as many residues as the H64
dataset. Although it is advantageous to have a larger sample size when doing sta-
tistical analyses, this advantage is mitigated for the U121 dataset because of the
inclusion of low-quality structures. This problem is made clear in Table 4.3, where
the number of non-zero gridpoints is listed for the three residue types at various
grid spacings. The inclusion of data from all structures in the U121 dataset greatly
increases the number of gridpoints which are populated. This is the case for all three
residue types at all five spacing levels, but is particularly notable at grids spacings

of 15° and less. Clearly, far more areas of @, conformational space have at least



Proline

“
\‘ Saya- /4‘
[/l PN

QX2
’.I.AL& &
ST

ozv\ g
047
Aﬂq ;
R/
.2 %

Glycine

4
O o
N
O
QR0
5“‘.&5 ;
o%%%.
... b

Al

O

on-Gly

AN
"VW?..“.“."..
< ) 0%% b
NN
X

... §
. ¢

Non-Pro, N
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90

30° 60°

Figure 4.3. ¢, grids for standard (non-Proline, non-Glycine) residues at grid spac-
ings of 10, 15, 30, and 60°.



91

Residue Type

Dataset | Standard | Glycine | Proline

H64 11052 1076 562

U121 33722 2787 1581

Table 4.2. The number of ¢, samples of the three residue types in the protein
datasets.

one representative in the U121 dataset. However, it is difficult to say whether this
is due to the larger sample size or reflects the fact that low-resolution structures are
included in the U121 data. Unusual conformations in these low-resolution structures
may be due to poor crystallographic data and might even be a cause of bad fits to
data (high R-factors). A more interesting analysis is the number of high-probability
gridpoints (P(¢,%) > (P)), as shown in Table 4.4. Because of the large number of
gridpoints with P(¢,%) = 0, the percentage having P(¢,%) > (P) is substantially
less than 50%. This number is very consistent across different grid spacings and is
far more consistent between the datasets. This indicates that the U121 dataset has
a large number of very rare ¢, conformations, and it should not be detrimental to
exclude them from the probability grids used for our simulations. This is especially
true for the standard residues and for the larger grid spacings of glycine and proline.
For the ultrafine 5° grids, there clearly is insufficient data for proline and glycine
conformations. The sample sizes for glycine and proline are less than the number
of 5° gridpoints, so every nonzero gridpoint automatically has P(¢,) greater than
(P). This problem is particularly acute for the H64 dataset, where the percentage
of high-probability conformations drops off dramatically at 5°. This dataset is prob-

ably inadequate for glycine and proline conformation sampling at a 5° resolution.
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Non-zero Gridpoints

S Ns| DS Standard Glycine Proline

60° 36 | H64 33 91.7% 30 83.3% | 10 27.8%
30° 144 | He4 | 110 76.4% 83 57.6% | 24 16.7%
15° 576 | H64 | 253 43.9% | 198 34.4% | 48 8.3%
10° 1296 | H64 | 429 33.1% | 312 241% | 76 5.9%

5° 5184 | H64 | 1114  21.5% | 593 11.4% | 164 3.2%

60° 36 | Ul21 36 100.0% 36 100.0% | 18 50.0%
30° 144 | U121 | 143 99.3% | 131 91.0% | 51 35.4%
15° 576 | U121 | 519 90.1% | 376 65.3% | 118 20.5%
10° 1296 | U121 | 1004 77.5% | 627 48.4% | 193 14.9%

5° 5184 | U121 | 2400 46.3% | 1280  24.7% | 420 8.1%

Table 4.3. This table lists the number of (and percentage of the maximum possible)
¢, gridpoints which have non-zero values for each of the three residue types at
different grid spacings, S.
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High-probability Gridpoints

S (P)| DS Standard Glycine Proline

60° 2.778% | H64 7 19.4% 12 33.3% 4 11.1%
30° 0.694% | H64 | 23 16.0% 33 222% | 11 7.6%
15° 0.174% | H64 | 78 13.5% | 127 22.0% | 48 8.3%
10° 0.077% | H64 | 172 13.3% | 312 241% | 76 5.9%

5° 0.019% | H64 | 630 122% | 593 11.4% | 164 3.2%

60° 2.778% | U121 7 194% 12 33.3% 4 11.1%
30° 0.694% | U121 | 25 17.4% 37 25.7% | 18 12.5%
15° 0.174% | U121 | 89 15.5% | 144 25.0% | 63 10.9%
10° 0.077% | U121 | 194 15.0% | 282 21.8% | 121  9.3%

5° 0.019% | U121 | 788 15.2% | 1280 24.7% | 420 8.1%

Table 4.4. This table lists the number of high-probability gridpoints: the number
which have probabilities above (P).
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Table 4.4 confirms what can be seen in Figure 4.2: the grids are substantially
different for the three residue types. Glycine is clearly more flexible, having a much
larger number of high-probability conformations. Proline, in contrast, is far less
flexible. There are far fewer high-probability conformations for proline, as would be
expected from geometrical considerations. The closed ring formed by its backbone
and sidechain severely restrict the ¢ angle to angles near -60°. The highest proba-
bility peak for each type of residue is shown in Table 4.5. For standard residues, the
alpha-helical peak predominates. For every spacing level, the alpha helical conforma-
tion is the highest peak, even though the probability of picking the peak gridpoint
decreases as the total number of gridpoints increases. The intra-strand hydrogen
bonding of alpha-helices greatly favors conformations near (¢ = —57,¢ = —47).
Therefore, the peak is very sharp, as becomes increasingly clear for the finer grids
in Figure 4.3. In contrast, the beta sheet region of the ¢, grid, centered about
(¢ = —115,¢ = 130), is much broader. No individual gridpoint in the beta sheet
region is as high as the alpha helical peak, even though the beta sheet quadrant
(I) has nearly the same overall probability as the alpha helix quadrant (II) (47.8%
vs. 49.4% - see Table 4.6). Proline grids have two sharp peaks, as is seen for 30°
in Figure 4.2. The two peaks are so similar that the identity of the highest peak
depends on both the grid spacing and the dataset. There is little probability of pro-
line conformations outside of the two peak regions; there is almost no chance that
the conformation is in quadrant III or IV. The opposite is true for the third major
residue type, glycine. Glycine’s great flexibility is clearly seen in Table 4.6. The
four quadrants are almost equally populated, since there is no sidechain to sterically
hinder quadrant III and IV conformations. Because of this flexibility, no single peak
has a particularly high probability (Table 4.5).

We have also used the secondary structure designators in the protein database
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Highest-probability Gridpoints

S| DS Standard Glycine Proline

60° | H64 | -60,-60 33.6% 60,0 17.2% | -60,120 30.2%
30° | H64 | -60,-30 26.1% 90,0 14.2% | -60,-30 33.8%
15° | H64 | -60,-45 17.6% | -60,-45 7.1% | -60,-30 15.1%
10° | H64 | -60,-40 9.8% | -60,-40 3.7% | -60,-30  8.2%

5° | H64 | -60,-45 3.3% | 90,5 1.5% | -60,-35 3.2%

60° | U121 | -60,-60 29.8% | -60,-60 13.4% | -60,120 31.0%
30° | U121 | -60,-30 20.1% 90,0  9.4% | -60,150 24.2%
15° | U121 | -60,-45 12.5% | -60,-45  5.9% | -60,-30  9.6%
10° | U121 | -60,-40 6.4% | -60,-40  2.7% | -60,-30  5.1%

5° | U121 | -60,-45 2.2 % | -60,-45 1.0% | -60,-35  1.9%

Table 4.5. This highest-probability gridpoint of each residue type for each grid
spacing.
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Quadrant Populations

Quadrant ¢ ¢ | DS | Standard | Glycine | Proline
I <0 >0/ H64 478% | 14.8% | 54.4%
11 <0 <0| H64 49.4% | 29.9% | 45.6%
111 >0 >0/ H64 2.4% | 29.1% | 0.0%
IV >0 <0| H64 04% | 26.1% | 0.0%
I U121 | 49.0% | 19.7% | 56.5%
I U121 | 46.8% | 29.0% | 42.9%
111 U121 3.0% | 27.6% | 0.3%
v U121 1.1% | 23.6% | 0.2%

Table 4.6. The percentage of sample ¢,’s falling within each quadrant of ¢,
conformational space.

(HELIX, SHEET, and TURN) to obtain separate probability grids for alpha helix,
beta sheet, and coil regions. We decided not to create grids for beta turn residues
because the four residues involved in a turn usually have completely different ¢,
conformations and it would be counterproductive to treat them identically. Presum-
ably, eight-dimensional probability grids generated for sequences of four consecutive
¢, 1 pairs would have peaks for particular turn conformations as well, but the total
number of turns in our set of crystal structures is tiny compared to the immense
number of gridpoints on an eight-dimensional grid. Such grids would have little
advantage over a method which simply tries all known turn configurations. We do
have separate probability grids for coil residues, however. We define coil residues
as all those not involved in any of the three major secondary structure types. Six
proteins in the H64 database had no HELIX, SHEET, or TURN designators, and

we excluded these from secondary structure analyses. We did not want to assume
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a complete lack of secondary structural elements for these proteins. The remain-
ing 58 proteins with secondary structure designators comprise the S558 dataset,
which we used to create the probability grids shown in Figure 4.4. Table 4.7 lists
the total number of samples of each residue type for each structural class. While
the coil population is large for all residue types, it is particularly high for proline
residues. The backbone nitrogen of proline is bonded to the Cs of the sidechain, so it
is not available for hydrogen bond formation. Prolines therefore cannot participate
in the hydrogen bonds which stabilize « helices, B sheets, and turns. The coil grid
in Figure 4.4 contains significant probabilities for both o helix and 3 sheet con-
formations, but the probabilities are much lower than those in the “all-structures”
grid. Presumably, residues in the coil regions are not participating in the extended
hydrogen-bonding networks or involved in the large-scale dipole-dipole interactions
of « helices and B sheets. Therefore, the coil probability grids are more indicativ¢
of the inherent conformational energies of individual residues and, therefore, are the
grids which most closely resemble classic Ramachandran plots[11] and ¢, poten-
tial energy maps[12]. These secondary structure-specific grids are useful only when
the secondary structure is known beforehand. This is not the case for an ab initio
prediction of protein conformation, but is for simulations used in conjunction with

C4 coordinates, homology modeling, or secondary structure prediction algorithms.

II.C. Sidechain (x) Probability Grids

While every amino acid backbone can be specified by the same three dihedral angles,
¢, and w, there is a far greater diversity among sidechain dihedrals, x. At the ex-
tremes are glycine, which has no sidechain, and tryptophan, which has 12 x dihedral
angles. Our simulations do not modify dihedral angles which affect only hydrogen

positions, or those involved in rings, so the number of dihedrals is significantly re-
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Secondary structure distribution in the SS58 dataset

Structure Standard Glycine Proline

Total 11061 100.0% | 1076 100.0% | 562 100.0%
a-Helix 4255  38.5% | 245 22.8% | 129  23.0%
B-Sheet 2279  20.6% | 167 15.5% | 61  10.9%
Turn 1912 17.3% | 300 27.9% | 153  27.2%
Coil 2615 23.6% | 364 33.8% [ 219 39.0%

Table 4.7. The distribution of secondary structure designations in the crystal struc-
tures of the SS58 dataset.

duced. Both alanine and glycine have zero PGMC sidechain dihedrals (N, = 0),
while tryptophan, tyrosine, phenylalanine and histidine have only two, despite be-
ing very large sidechains. The values of N, for the common amino acids, excluding
alanine and glycine, are given in Table 4.8. Although proline is a ring, we allow x!
to vary while holding the Cs atom fixed. This enables reasonable conformations of
x! = x* to be sampled by modifying only a single dihedral, x'.

Table 4.8 also lists the number of occurrences of each amino acid in the H64
dataset as well as the number of populated (non-zero) gridpoints at each spacing
level. These numbers can be compared to the total number of gridpoints at each
spacing level, listed in Table 4.9. It is clear that there is insufficient data for the
multidimensional grids (Ng > 3) at the fine spacings. For these cases, the number
of populated gridpoints approaches the sample size. In other words, almost every
conformation occupies a different gridpoint and the probability grid is extremely flat.
This extreme variability is due primarily to the enormous number of possible con-
formations available for these structures (Table 4.9), rather than unusual flexibility

in these particular sidechains. The x',x* distributions of these residues makes this
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Populated Gridpoints
Amino Acid N, Samples | 120° 60° 30° 15° 10° 5°
CYS 1 283 3 4 10 15 21 34
PRO 1 568 2 3 5 9 13 22
SER 1 925 3 6 12 24 35 70
THR 1 791 3 6 12 23 32 54
VAL 1 991 3 6 12 23 30 51
ASN 2 634 9 28 82 198 282 465
ASP 2 728 9 31 84 200 296 485
HIS 2 317 9 27 66 125 170 253
ILE 2 603 8§ 23 56 89 134 238
LEU 2 1025 9 27 67 135 191 343
PHE 2 491 8§ 23 51 119 175 318
TRP 2 179 8 19 39 73 98 141
TYR 2 453 9 22 52 107 172 294
GLU 3 699 26 116 200 528 528 688
GLN 3 409 24 83 312 331 331 404
MET 3 241 20 54 120 185 218 240
LYS 4 858 67 288 380 115 834 858
ARG 5 438 | 116 195 322 421 429 456

Table 4.8. The number of PGMC x dihedrals (N,) for each amino acid, the number
of occurrences of each amino in the H64 crystal structures, and the number of pop-
ulated (non-zero) gridpoints at each grid spacing. .V, = 0 for alanine and glycine.
The numbers in italics are more than 95% of the sample size, indicating that nearly

every conformation occupies a different gridpoint.
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Possible conformations

N, | 120° | 60° 30° 15° 10° 5°
1 3 6 12 24 36 72
2 9 36 144 576 1296 2184
3 27| 216 1728 13824 46656 | 3.7 x 10°

4 81 | 1296 20736 | 3.3 x 105 | 1.7 x 108 | 2.7 x 107
5 243 | 7776 | 2.5 x 10° | 8.0 x 10% | 6.0 x 107 | 1.9 x 10°

Table 4.9. The total number of gridpoints for N, dihedrals at different grid spacings.

more clear (see Table 4.10): only lysine has an unusually large number of populated
conformations when only y! and x? are considered.

One- and two-dimensional y probability grids are shown in Figures 4.5 and 4.6,
respectively. It is not possible to show the higher dimensional grids in their en-
tirety. These figures make it clear that there is a great deal of variety even among
residues with the same number of significant x dihedrals. One caveat about these
grids: some of the x’s actually have a period of 180°, rather than 360° as shown.
This arises when two branches are the same, as in Asp, where the two carboxylate
oxygens are chemically identical but only one is labeled Os1 and is used to specify
x%. This labeling is not always done the same way, hence there are separate peaks at
150°and -30°. Note that this does not affect our Monte Carlo simulations, since the
orientations will be simulated identically with a total probability equal to the sum
of the individual probabilities. The great variety in sidechain conformations can also
be seen in Table 4.11, which lists the highest probability sidechain conformation for

each amino acid.
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x!,x? Distribution

120° 60° 30° 15° 10° 5°

ASN 634 9 28 82 198 282 465
ASP 728 9 31 84 200 296 485
HIS 317 9 27 66 125 170 253
ILE 603 8 23 56 89 134 238
LEU 1025 9 27 67 135 191 343
PHE 491 8 23 51 119 175 318
TRP 179 g§ 19 39 73 98 141
TYR 4533 9 22 52 107 172 294

GLU 699 9 31 86 192 267 435
GLN 409 9 27 67 125 175 275
MET 241 8 18 48 79 118 174

LYS 838 9 33 98 229 326 515

ARG 438 9 27 60 128 178 275

Table 4.10. The number of populated gridpoints in the x,x? distribution of amino
acids with N, > 2. Lysine appears to be the most flexible while tryptophan is the
least flexible.
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II.D. Note on Computations

The Probability Grid Monte Carlo programs are interfaced to the BIOGRAF pro-
gram from Molecular Simulations, Incorporated[13]. Basic functions such as graph-
ical displays and energy evaluations are performed by the routines provided by the
commercial version of BIOGRAF. All calculations reported here were performed on

Silicon Graphics workstations, primarily on a model 4D/380 VGX.

I1I. Conformations of Met-Enkephalin

Small peptides are an important class of molecules to study with computational
methods because it is extremely difficult to obtain experimental information about
them. Polypeptides of less than 50 residues in length rarely assume a single confor-
mation in solution[14]. This flexibility makes them virtually impossible to charac-
terize structurally with either X-ray crystallography or multidimensional NMR[15].
Even if a crystal or solution structure could be determined, its relevance would
be questionable since these molecules usually act by binding to a receptor, and it is
their bound conformation which is of utmost importance. There is evidence that the
bound conformations of such peptides are different from their solution structures[16].
Computational studies of such molecules are extremely important, therefore, because
they may produce not only a prediction for the global minimum energy conformation
but an ensemble of low energy conformations which may include the receptor-bound
conformation.

The small neuropeptide Met-enkephalin has become a standard test case for
peptide structure prediction programs. This pentamer, with sequence Tyr-Gly-Gly-
Phe-Met, has been studied by a number of groups using different conformational

search methodologies [9, 17, 18, 19, 20]. Li and Scheraga believe they have found
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Powz | X' X* x Xt x

CYS | 49.1% | -60
PRO | 38.2% 0
SER | 31.0% | 60
THR | 42.4% | -60
VAL | 60.6% | 180

ASN | 9.5% | -60 -30
ASP 9.3% | -60 -30
HIS | 13.2% | -60 -90
ILE | 31.5% | -60 180
LEU | 38.8% | -60 180
PHE | 12.6% | -60 90
TRP | 12.3% | -60 90
TYR | 13.9% | -60 -90

GLU | 3.8% | -60 180 150
GLN | 2.9% | -60 180 -30
MET | 5.8% | -60 -60 -60

LYS 4.7% | -60 180 180 180

ARG | 2.1% | -60 180 180 -150 O

Table 4.11. The highest-probability gridpoint for each amino acid for S = 30°. Ppe.
is the probability of this particular conformation.
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the global minimum [17] of Met-enkephalin, and this claim is supported in the work
of von Freyberg and Braun[9], who found the same minimum-energy conformation
several times during their simulations. It is important to note that this conformation
is merely the lowest found so far using the ECEPP/2 forcefield[21]. It is not compu-
tationally possible, currently, to evaluate all possible conformations so it remains a
possibility that lower-energy conformations do exist even using the ECEPP/2 force-
field. It is also very possible that different forcefields have different global minima.
The ECEPP/2 global minimum is by no means guaranteed to be the DREIDING

or AMBER global minimum.

The purpose of our simulations is to determine low-energy conformations of Met-
enkephalin using the DREIDING forcefield. To this end, we have carried out numer-
ous simulations on Met-enkephalin using the Probability Grid Monte Carlo method,

at different grid spacings and different temperatures. These studies aim to answer

the following questions:

1. What is the lowest-energy conformation of Met-enkephalin using the DREID-
ING forcefield?

2. How does the ECEPP/2 minifnum—energy conformation compare to the DREI-

DING minima?

3. How well does the PGMC method work for conformational searching of pep-

tides?

4. What parameters, such as grid spacing and temperature, produce the best

results?

The simplest calculation using our probability grids is to build Met-enkephalin

using standard geometries, and then rotate each ¢, pair and each sidechain to 1ts
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peak conformation according to the probability grids. We used the “Peptide Builder”
function of BIOGRAF to build an initial structure from a “Peptide Library” of amino
acid structures. This starting structure was then modified by rotating the backbone
and sidechain dihedrals to their highest-probability conformations. This process was
repeated for each grid spacing, and the energy of each conformation was calculated
using BIOGRAF and the DREIDING forcefield[5]. The results are shown in Ta-

ble 4.12. We call these conformations “S%”

T 0

where S is the grid spacing. Except
for the 5°-peak conformation, 59, the energy decreases as the grid spacing becomes
finer — i.e., finer grids give better conformations. The energy of 57 is extremely high
because of steric overlap between the sidechain of Tyr 1 and the backbone of Met 5.
This overlap is caused by both the tyrosine sidechain conformation, and the fact the
the glycines have ¢ = 90°,¢ = —5° conformations, thereby forming a turn in the
backbone. The 30°-peak conformation, 309 has a very similar backbone conforma-
tion, but its sidechain conformations, most importantly that of Tyr 1, are completely
different, so it avoids the steric overlap problem. The other conformations have com-
pletely different backbone conformations than 5 and 307. The conformations 107
and 159 are almost identical a-helices.

We used the conjugate-gradients minimizer of BIOGRAF to minimize these con-
formations in order to find a stable local minimum in the DREIDING potential
energy surface. The dihedral angles of the minimized conformations, S} , were no
longer restricted to lattice values, and the bonds and angles were no longer fixed.
The resulting structures were significantly different and had far lower energies than
the un-minimized conformations, as can be seen in Table 4.13. The minimized con-
formations differ from their unminimized counterparts by 1.4 A or more. Except

for the 52 — 5° transition, minimization primarily modifies the backbone dihedrals

(see Table 4.13). Minimization of 59, however, substantially modifies the sidechain
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Met-Enkephalin Conformations

Dihedral 602 | 302 152 102 59

Tyr 1 ¢ | -60.0| -60.0| -60.0| -60.0| -60.0
¥ | -60.0 | -30.0 | -60.0 | -40.0 | -45.0

x!| -60.0 | -60.0 | -60.0 | -70.0 | 180.0

x?| -60.0 | -90.0 | -90.0 | -90.0 | 90.0

Gly 2 w |180.0|180.0 | 180.0 | 180.0 | 180.0
¢ | 60.0| 90.0| -60.0| -60.0| 90.0

P 00| 00| -45.0| -40.0| -5.0

Gly 3 w |180.0|180.0| 180.0 | 180.0 | 180.0
¢ | 60.0| 90.0| -60.0| -60.0| 90.0

0 00| 0.0]| -45.0| -40.0| -5.0

Phe 4 w | 180.0 | 180.0 | 180.0 | 180.0 | 180.0
¢ | -60.0 | -60.0 | -60.0 | -60.0| -60.0

¥ | -60.0 | -30.0 | -45.0 | -40.0 | -45.0

x' | 180.0 | -60.0 | -60.0 | -60.0 | 180.0

x2| 60.0| 90.0| 105.0| 100.0 | 85.0

Met 5 w | 180.0| 180.0 | 180.0 | 180.0 | 180.0
¢ | -60.0 | -60.0 | -60.0 | -60.0 | -60.0

¥ | -60.0 | -30.0 | -45.0 | -40.0 | -45.0

x! | -60.0 | -60.0 | -60.0 | -60.0 | -70.0

x% | -60.0 | -60.0 | -180.0 | -170.0 | -175.0

x| -60.0 | -60.0| 75.0| 70.0| -60.0

Energy 260.8 | 215.1 | 183.6 | 180.0 ol

Table 4.12. Conformations generated for Met-enkephalin from peak ¢, ¥, and x
gridpoints at different grid spacings. Because of steric overlap, the energy of the 5°
conformation is greater than 1 x 10° kcal/mol.
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dihedrals, especially x' and x® of Met 5. This removes the steric overlap and im-
proves the energy of the 5° conformation to a value similar to the other minimized
conformations. Interestingly, 602, and 302, are the best minimized conformations,
even though 60° and 30 were substantially higher in energy than 157 and 107. The
turn-like conformations of the 30° and 60° are more compact than the helical 10°
and 15° conformations. This compactness caused unfavorable overlap initially, but
upon minimization led to favorable van der Waals packing as well and electrostatic
interactions between the N- and C- termini.

It is interesting to compare these conformations to the ECEPP/2 global mini-
mum conformation of Li and Scheraga[17]. This conformation, LS; is described in
Table 4.14 both before and after DREIDING minimization. Clearly, the Li and
Scheraga dihedral angles do specify a global minimum using our geometries and the
DREIDING forcefield. The energy of LS; is substantially higher than many of the
unminimized conformations in Table 4.13. After minimization, its energy is far lower
but the conformation has changed substantially: the ¢,¢ angles have changed by
an average of 37.4°. Nevertheless, the minimization altered the initial conforma-
tion less than it altered the grid-peak conformations of Table 4.12, indicating that
LS; lies closer to a local minimum in the conformational energy space. It should
be noted that the Li and Scheraga global minimum is the product of minimization
using an internal-coordinate minimizer whereas the DREIDING minimizations use
full Cartesian-coordinate minimization of all 3n-6 degrees of freedom. It is possible
that the changes to its torsions upon minimization are due to the increased dimen-
sionality, i.e., allowing bonds and angles to vary decreases the energy barriers for
the torsional degrees of freedom as well, allowing them to move. This factor may
be as important as differences between the DREIDING and ECEPP forcefields. In

any case, with an energy of 67.7 kcal/mol, the minimized Li and Scheraga confor-
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Met-Enkephalin Conformations after Minimization

Dihedral 60°, 30°, 152, 102, 59
Tyr 1 ¢ -53.4 | -54.0 | -49.0| -485| -55.1
¥ 753 | -68.2| -57.6| -57.0| -63.4

x! 485 | -64.2| -66.4| -66.2| -153.3

x? -70.0 | -74.9 | -69.4| -69.4 69.9

Gly 2 w -179.6 | 179.4 | 176.0 | 174.8 | 173.8
& 67.4 | 106.0 | -58.7| -59.1| 117.0

) 76| 60.6| -48.2| -47.1 9.7

Gly 3 w -170.8 | -175.8 | 177.7| 176.2 | 179.1
é 94.6 | 76.7| -75.8| -T4.4| 104.8

P 29| 16.7 3.5 2.8 9.7

Phe 4 w -170.8 | -175.8 | 178.3 | 177.5| -176.3
¢ -121.3 | -115.6 | -113.4 | -112.3 | -124.2

¥ -60.2 | -57.9| -48.7| -49.4 | -56.6

x! -172.0 | -54.7 | -62.2| -60.5| -162.5

x? 65.3 1 115.2 | 114.0| 114.7| 70.1

Met 5 w -179.9 | -179.0 | -177.0 | -177.4 | -175.6
é -124.1 | -114.4 | -109.8 | -110.5 | -116.8

¥ -66.5| -58.3| -60.6| -60.7| -59.8

x! -65.1| -64.3| -70.0, -70.4] -163.1

X2 67.1| -76.3| 1735 174.2| -172.1

X -88.5| -90.7| 90.2| 90.3| 904

Energy 81.2 80.8 87.4 87.5 86.3
RMS (¢,%) (°) | 34.3| 39.8| 31.9| 3L.1| 477
RMS (x) (°) 13.2 17.5 11.5 14.3| 686
RMS (A) 1.6557 | 1.5109 | 1.3953 | 1.5529 | 2.0174

Table 4.13. Conformations generated from peak ¢, %, and x gridpoints at dif-
ferent grid spacings, after minimization with the DREIDING forcefield. The en-
ergy of each conformation is given, along with the RMS deviation from its original
(un-minimized) structure.
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mation, LS,,, is more than 10 kcal/mol lower in energy than any of the minimized
conformations listed in Table 4.13.

The goal of our simulations was to sample the conformational space of Met-
enkephalin using the PGMC method, and to fully minimize the conformations to
yield optimum conformations. Our simulations produced approximately 50,000 con-
formations per hour of cpu time on a single processor of a Silicon Graphics 4D /380
workstation. The energy of each conformation was calculated using the DREIDING
forcefield with no nonbond cutoffs — all van der Waals and electrostatic pairs were
included. Short runs of 10,000 Monte Carlo steps were carried out first, in order to
optimize the parameters to be used in longer runs.

The key parameter in any Metropolis Monte Carlo simulation is the simulation
temperature (Equation (4.2)), which controls the probability of accepting a new
conformation generated at random. A higher temperature means that a conforma-
tional change which increases the energy is more likely to be accepted than at a
lower temperature. The advantage is that energy barriers can be traversed more
easily and conformational space can be searched more thoroughly. The correspond-
ing disadvantage of high simulation temperatures is that the computation can spend
a lot of time in bad areas of conformational space and not settle near optimal con-
formations. The effect of temperature can be seen in Figure 4.7, where the results
from four separate 10,000-step runs are shown. At 100 step intervals during the
simulation, both the current energy (Figure 4.7a) and the best energy to that point
(Figure 4.7b) were recorded. The four simulations, run at temperatures of 0 K,
300 K, 1000 K, and 10,000 K, give very different results. As expected, the 10,000 K
simulation has a far greater fluctuation in energy than the lower temperature sim-
ulations. However, although it samples a wider variety of conformations, it does

not sample as many good conformations. As can be seen in (Figure 4.7b), it is the
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Li and Scheraga Global Minimum

Dihedral LS; LS,,
Tyr 1 ¢ -86.0 -58.8
0 156.0 | 108.9

X1 -173.0 | -153.9

x? -101.0 | -104.2

Gly 2 w -177.0 | 174.2
é -155.0 | -123.8

¥ 84.0 58.9

Gly 3 w 169.0 | -173.1
é 84.0 98.5

W -74.0 -61.2

Phe 4 w -170.0 | 179.5
é -137.0 | -117.3 |

W 19.0 -47.9

x! 59.0 73.7

X2 95.0 108.7

Met 5 w -174.0 | -177.7
¢ -164.0 | -117.7

) 160.0 | 121.2

X! 53.0 60.8

X2 175.0 | -177.7

X3 180.0 | -179.7

Energy 236.5 67.7
RMS (¢,%) (°) 0.0 37.4
RMS (x) (°) 0.0 11.3
RMS (A) 0.0000 | 1.0574

Table 4.14. LS; is the structure produced by rotating the dihedrals of our starting
structure to the values reported for the ECEPP/2 global minimum {17]. LS,, was
obtained by a Cartesian-coordinate conjugate-gradients minimization of LS; using

the DREIDING forcefield.
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low-temperature simulations at 0 K and 300 K which obtain the lowest-energy con-
formations. All four simulations began with the 183.6 kcal/mol conformation 15?
and produced substantially better conformations. The 300 K simulation produced
the best conformation, which had an energy of 131.9 kcal/mol before minimization
and 70.3 kcal/mol after minimization — nearly as low as the LS,,. In contrast, the
10,000 K simulation had a best conformation more than 10 kcal/mol higher, with
an energy of 145.7 kcal/mol before minimization. After minimization, however, the
energy dropped to 73.9 kcal/mol, nearly as low.

Monte Carlo simulations use random numbers both to produce new conforma-
tions and to determine whether new conformations are accepted or rejected. The
use of random numbers ensures that simulations will proceed differently every time
they are run, even when initial conditions are the same. Therefore, it is possible to
run several simulations at the same grid spacing, with the same starting structure,
and achieve different final conformations. Single runs like those plotted in Figure 4.7
are not sufficient for establishing optimum parameters. In order to obtain optimal
parameters, we carried out numerous simulations at different grid spacings and tem-
peratures. Omne such series is show in Figure 4.8. These calculations used a 15°
grid spacing and a temperature of 1000 K. Forty simulations were run, using dif-
ferent random numbers, and the lowest-energy reached during each simulation was
recorded. Twenty simulations, labeled (1), began with the same initial conformation,
15¢ and twenty began with conformations generated at random from the backbone
and sidechain 15° probability grids. All the simulations progressed in the same way,
with new conformations generated at every step by selecting one sidechain or one
¢,v pair at random and choosing a new conformation from the probability grids.
However, a different series of random numbers was used each time, so different con-

formations were generated and different conformations were accepted or rejected.
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Figure 4.7. Results from several Monte Carlo simulations of Met-enkephalin. The
simulations were identical except for the temperature used. The starting structure
of each simulation was the 15° peak conformation and 15° ¢, and x grids were
used for conformational sampling. At 100 step intervals, the energy of the current
conformation and the best overall conformation were recorded. The two graphs plot
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Met-Enkephalin
Best Energies from 40
10,000-Step Simulations
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Figure 4.8. The best energy from 40 simulations of Met-enkephalin using 15° grid
spacing at 1000 K. 20 simulations began with conformations generated at random
(R) and 20 began with the peak 15° conformation, 157, (I).
Apparently, there is little advantage to starting with the peak conformation rather
than one generated at random. The best energy from the twenty simulations (1)
begun with 15 was 143.0 kcal/mol. The average best energy from the twenty simu-
Jations was 145.54 1.3 kcal/mol. This compares to an overall best of 143.4 kcal /mol
and an average best of 145.9 + 1.4 kcal/mol for the twenty simulations (R) begun
with random conformations.

The next series of simulations was carried out in order to determine which combi-
nations of temperature and grid spacing gave the best results. For each grid spacing

(5, 10, 15, 30, and 60 degrees), 10 simulations of 10,000 steps were run at each of
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five temperatures (0 K, 300 K, 600 K, 1000 K, and 5000 K). Each simulation began
with ¢, and x conformations chosen at random from the probability grids. For
each of the 250 simulations, the best overall conformation was saved and its en-
ergy recorded. We also recorded the overall acceptance rate during each run. This
number, the percentage of new conformations which are accepted, depends directly
upon the simulation temperature and indirectly upon the probability grids, which
determine the conformational sampling and, therefore, the energy range of confor-
mations which are generated. For each of the 25 temperature/spacing combinations,
the overall best energy, the average best energy and the acceptance rate were calcu-
Jated for its 10 10,000-step runs. The acceptance rates are shown in Figure 4.9. As
expected, the rate is highly temperature-dependent, with roughly a 70% acceptance
rate at 5000 K, 33% at 1000 K, 20% at 600 K, 10% at 300 K, and 0.5% at 0 K.
The latter figure actually represents the percentage of time a new minimum energy
conformation is reached, since at 0 K, there is no probability of accepting a confor-
mation which is higher in energy than the preceding one. At nonzero temperatures,
the acceptance rate includes instances when AE < 0 and when AE > 0, but meets
the Metropolis criterion (see Section 4.II).

The energy minima for the 25 temperature/spacing combinations are shown in
Figure 4.10. Figure 4.10a shows the lowest energy obtained during all ten runs
combined while Figure 4.10b shows the average energy minimum for the ten separate
runs. The overall lowest-energy conformation gives a good indication of how effective
a set of parameters is, but it only requires one good conformation to be sampled over
100,000 steps, so it depends on good luck as well as on good parameters. A low value
for the average minimum energy, on the other hand, requires that a set of parameters
give consistently good answers. This is, therefore, the more useful number. The best

overall energy obtained during the 250 runs was 127.9 kcal/mol, sampled during a
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Figure 4.9. PGMC simulations were run at temperatures of 0 K, 300 K, 600 K,
1000 K and 5000 K, for each grid spacing (5°, 10°, 15°, 30°, and 60°). For each
spacing/temperature pair, ten simulations of 10,000 steps each were run. Here,
the overall acceptance rate for the ten runs is shown for each spacing/temperature
combination.
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0 K simulation using 5° probability grids. However, the best average energies were
obtained during 300 K simulations. The average over 10 simulations at 300 K using
both 5° and 10° probability grids was essentially the same: 131.8 kcal/mol. This is
slightly less than the 5°/0 K average of 131.9 kcal/mol and significantly less than
the next closest, the 15°/300 K simulations, which averaged 132.6 kcal/mol.

It is interesting to note that the energies appear to converge as the grid spacing
increases. At low temperatures, finer grids give better results, but at high temper-
atures, the opposite result is obtained. Figure 4.9 indicates that this is related to
the acceptance rate, which is much higher for 60° than 5° grids at 300 K (16.3% vs.
9.3%), but lower for 60° than 5° grids at 5000 K (62.2% vs. 68.3%). Figure 4.10 and
Figure 4.9 show a strong negative correlation between high acceptance rates and low
energies. This is likely to be the case because low acceptance rates require that the
simulation take a more downhill path through conformation space. This may pre-
vent sampling of low energy conformations in distant areas of conformation space,
but it leads to lower energies on average. The relationship between grid spacing and
acceptance rates is more subtle. The fine 5° and 10° grids have far more possible con-
formations which vary slightly from one another. Therefore, at high temperatures
it may be difficult to make progress towards an energy minimum, because so many
conformations are nearby in energy and are accepted. The 60° conformations are
likely to vary much more widely in energy, and fewer would be acceptable. At low
temperatures, however, the far greater flexibility of the fine-grained grids provide
much easier pathways to minima in the potential energy surface. Rapid descent into
an energy minimum may lock the structure into areas of conformational space where
few low-energy alternatives exist, so the acceptance rate drops rapidly. Indeed, ac-
ceptance rates for the first few hundred steps are usually much higher than for later

steps. The fact that grids play a significant role in the acceptance rate may mean
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energy (b) for the ten runs.
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that a grid-based annealing scheme may be effective, as temperature-base annealing
has been shown to be. For instance, one might start with 60° grids in order to
sample broader regions of conformational space, but then slowly decrease the grid
spacing as the simulation proceeds, to give added flexibility in favored subregions of
the potential energy surface.

We chose the most successful spacing/temperature combinations from the above
study (5°/300 K and 10°/300 K) to use in a more thorough second set of simulations.
In this set of calculations, twenty 50,000-step simulations were run for each of the two
spacing/temperature choices. The best conformation sampled during each run was
saved and then minimized. The energies of the best conformations, before and after
minimization, are shown in Figure 4.11. The results are fairly consistent from one
simulation to the next, and there is not a large difference between the simulations
which used 10° probability grids and those which used 5° grids. The best energy,
on average, for the 10°-grid simulations, was 129.4 kcal/mol before minimization
and 71.4 kcal/mol after minimization. For the 5° simulations, the averages were
128.0 kcal/mol before minimization, and 73.0 kcal/mol afterwards. It is interesting
that the 10° conformations are, on average, better than the 5° conformations after
minimization, even though they are worse before minimization. This implies that the
5° conformations are closer to their local minima and are optimized less dramatically
(by an average of 55 kcal/mol vs. 58 kcal/mol) during the full Cartesian-coordinate
minimization.

Although the results are very consistent for all 40 simulations, no two simulations
produce the same energy minimum. Several are extremely close, differing by only
5° or 10° at a single dihedral, but in general there is a fairly good diversity of con-
formations represented. This can be clearly seen in Figure 4.13, where the dihedral

angles from the various energy minima are plotted. The numbering for the dihedrals
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Figure 4.11. 20 simulations of 50,000 steps each were run at 300 K using grid spacings
of 5° and 10°. The best conformation from each run was energy minimized and the
energy before and after minimization was recorded. The top two lines plot the
unminimized energies while the bottom two, labeled “(min)”, show the minimized
energies.
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oO—I

Phe 4

Figure 4.12. The peptide Met-enkephalin, with the dihedrals numbered as in Ta-
ble 4.15.

is shown in Table 4.15 and Figure 4.12. Although there are definite trends among
the different minima, only the five dihedrals unsampled by the PGMC method are
the same in each conformation. These dihedrals are x® of Tyr 1 (dihedral 4), and the
four backbone w dihedrals, (6, 9, 12, and 17). All other dihedrals are represented by
at least two different conformations and some by as many as 11. The dihedrals which
show the greatest variability are the ¢ and ¢ of the two glycine residues, dihedrals
7, 8, 10, and 11. This is an important factor to consider in understanding the ac-
tive conformations of Met-enkephalin. The great flexibility of the glycine backbone
means that many conformations are possible which differ radically in their backbone
conformation but which are near each other in energy. The active conformation may
require one particular glycine conformation which, in the absence of a receptor, is
not especially favorable.

Of the twenty optimized conformations created by the 10° simulations, six have
energies within 1.0 kcal/mol of LS,, (Table 4.14). Two of the 5° conformations also

had energies within 1.0 kcal/mol. None of these eight conformations, however, was
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Tyr 1 Gly 2 Gly 3 Phe 4 Met 5
o x' X2 P Wlw ¢ v|lw o Ylw ¢ X X v lw ¢ ¥ X XX
1 2 3 4 5|6 7 8|9 10 11{12 13 14 15 1617 18 19 20 21 22

Table 4.15. Dihedral numbering used in Figure 4.13 and Figure 4.14.

actually lower in energy than LS,,; the closest had an energy of 68.0 kcal/mol, only
0.3 kcal/mol higher. It is not known whether any conformation close to the Li and
Scheraga minimum was sampled during any of the simulations, since its energy is
so high before minimization. The eight lowest energy conformations predicted here
are extremely similar to one another, particularly at residues Phe 4 and Met 5,
where they are all virtually identical. Only one of the 5° conformational minima,
which had an energy of 68.6 kcal/mol, differed significantly in this region. As can
be seen in Figure 4.14b, the other seven minima are identical in this region, and are
distinguished primarily at x? of Met 1, the ¢ and ¢ of Gly 2, and the ¢ of Gly 3.
The Li and Scheraga minimum, LS,,, not shown, is also very similar, but differs in

the sidechain dihedrals, x! and x? of Phe 4 and x' of Met 5.

IV. Conclusions

The Probability Grid Monte Carlo method is an effective strategy for sampling the
conformation space of peptides. Even without the benefit of simulated annealing
or other more elaborate temperature adjustment schemes, it regularly produced
very low energy conformations for Met-enkephalin. These conformations are quite
similar to the published global minimum of ECEPP/2. In addition, a much wider

variety of conformations was generated at a slightly higher energy. This ensemble
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Figure 4.14. The top plot shows the distribution of dihedral angles for the eight
conformations with energies within 1 kcal/mol of LS;, the conformation with the
lowest known energy . The bottom plot shows the same distribution minus the one
conformation which differs significantly from the others at dihedrals 16, 18, and 19.
The other seven conformations have virtually identical conformations for residues

Phe 4 and Met 5.
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of conformations may be important for understanding the bound conformations and

activity of Met-enkephalin.
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Chapter 5

Protein modeling from C, coordinates

Abstract

We present a method for predicting the complete conformation of a protein from
its C, coordinates based on the Probability Grid Monte Carlo (PGMC) Method
described in Chapter 4. Unlike most methods designed to solve this problem, the
PGMC Method does not attempt to fit known polypeptide conformations onto the
C,, framework. Rather, conformational propensities for individual residues are used
to guide conformational searches while the protein is built from the amino-terminus
to the carboxy-terminus. Therefore, no structural homology to other known struc-
tures is required. We present results for a number of proteins and show that both
the backbone and sidechain can be accurately modeled using the PGMC method.
Backbone atoms can generally be predicted to within 0.6 A of their X-ray crystal
structure coordinates, while the total rms for all atoms can be predicted to 1.7 A
or better. The method is also used to build all-atom protein models from C, coor-
dinates derived from lattice-based methods of protein structure prediction, through

the use of a “C, Forcefield.”
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I. Introduction

The global conformation of a protein can be well approximated by a trace drawn
through the coordinates of its C, atoms. As the central atom of each amino acid
residue — the point at which the sidechain branches off from the main chain - the C,
atom is the best choice to represent the amino acid as a whole. Figure 5.1 shows the
C,, trace of the small protein crambin, as well as a picture of the backbone atoms and
a picture of all atoms in the structure, from the crystal structure by Hendrickson
and Teeter[1] (Brookhaven protein database (PDB) structure 1CRN). Because of
their central location, C, coordinates usually form the starting point for the process
of building a protein model from X-ray crystallographic data[2]. In addition, purely
theoretical schemes to predict tertiary-structure often use a simplified protein model
containing only C, coordinates[3, 4]. And C, coordinates can form a template for
homology-based molecular modeling [5]. However, the C,, coordinates do not provide
sufficient information for understanding the most critical aspects of proteins such as
binding and catalysis, which are determined by the chemical and steric properties
of the protein backbone and sidechains. It is therefore necessary to provide a means
of obtaining all atomic coordinates for proteins when the C, coordinates alone are
known.

Several methods for modeling complete protein structures from C, coordinates
have been published in recent years[2,6-10]. The primary purpose for such methods is
to speed and automate the process of building a protein model from crystallographic
data[2], but several other uses have been suggested. Holm and Sander[9] describe
how correct and incorrect protein folds can be evaluated by such a method, while Rey
and Skolnick mention that their procedure may enable complete protein structures
to be built from the C, coordinates of a lattice representation[9]. The work reported

here has been motivated by both of these factors: the desire to build full protein
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Crambin

|

(C-alphas

Figure 5.1. Three views of crambin: the C,’s (46 atoms), the peptide backbone
(185 atoms), and the all-atom structure (402 atoms). From the crystal structure by
Hendrickson and Teeter|[1].
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structures from lattice structures, and to provide a means for evaluating different
lattice conformations. In addition, we have found that the “C, Builder” described
here has been useful for homology modeling, as it allowed us to build a model of Hin
recombinase from the C, coordinates of A Cro[5].

The process of building full protein conformations from C, coordinates requires
success in two areas: prediction of backbone conformations in the presence of ex-
plicit geometric constraints (the known C, coordinates) and prediction of sidechain
conformations constrained only by the conformation of the backbone and the pres-
ence of other sidechains. Our method provides a consistent approach to solving the
two problems. Based primarily on Monte Carlo conformational searching, our tech-
nique differs significantly from previously published techniques, which range from the
purely geometric[6, 10] to methods based primarily on database searches of several
consecutive residues[7, 2, 9] or molecular mechanics|8].

Our procedure for building protein structures from C, coordinates uses the con-
formational probabilities of individual residues, rather than groups of residues and,
therefore, does not depend upon the prior existence of particular conformations in
the protein database. The process uses the Probability Grid Monte Carlo (PGMC)
method to build, first, the backbone conformation then, second, the sidechains. The
PGMC method, described fully in Chapter 4, modifies protein conformations one
residue at a time, by choosing either new backbone (¢, ) or sidechain (x) dihedral
angles from probability matrices. In the first phase of the PGMC C, Builder, the
backbone is built one residue at a time. As the protein chain grows, the conforma-
tional space of the backbone is sampled by the PGMC method using ¢, % probability
grids. The DREIDING forcefield[11] is used to evaluate the energy of each struc-
ture, with additional harmonic constraint terms added between the template C,

coordinates and the C, coordinates of the growing chain. After the entire backbone
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is built in this way, sidechain positions are optimized during a second PGMC sim-
ulation. This second simulation uses y probability grids to modify one sidechain
conformation at a time. Because the PGMC method uses random numbers both to
determine whether new conformations are accepted or rejected and to choose new
conformations, each run produces different results. Therefore, it is general practice
to generate numerous backbone conformations and select those with the best energy
to use in the second stage. Likewise, for each backbone conformation, several Monte
Carlo simulations are run to optimize the sidechains, and the structure with the best

overall energy is selected as the optimized model.

II. Methodology

II.A. General Methodology

The PGMC C, Builder was developed as an extension of the BIOGRAF program
from Molecular Simulations, Incorporated[18]. All calculations reported here were
run on Silicon Graphics Power Series and Indigo workstations; all timing numbers
were obtained from simulations run on a single processor of an SGI 4D/380. During
the first stage of the model-building procedure, the protein is created one residue
at a time until the entire protein has been built. As each residue ¢ is added, its
geometry is initially built from the standard peptide geometries in the BIOGRAF
peptide library, then the backbone (¢,%) and sidechain () dihedrals are rotated
to their most probable conformations according to the relevant probability grids.
A Monte Carlo simulation using ¢, probability grids is then used to search the
conformational space of a “pulse” of residues: the last p residues of the current
chain (residues [ — p + 1 through [). The residues preceding the pulse are held fixed

and are not included in the energy calculations. Simulations in which these early
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residues are held fixed, but included in the energy calculation, are considerably
slower and give worse results. The sidechains are also ignored during the chain-
building phase; they are added in the second stage after the backbone conformation
has been built. The energy used during the Monte Carlo simulations is essentially
the DREIDING energy of the backbone atoms of the pulse, plus harmonic terms
constraining the pulse C, coordinates to the true coordinates. The best conformation
sampled during the Monte Carlo simulation is saved and then optimized by conjugate
gradients minimization. This process proceeds sequentially, with each new residue
being involved in several optimization cycles before finally being held in its final
position as the pulse moves beyond it.

The backbone Monte Carlo simulations are aided by pre-determination of the
secondary structure, where possible. There is a high correlation between the ¢,
dihedrals of a protein and its C, coordinates, so knowledge of the C, coordinates
can limit the possible ¢, ¥ values. The most common secondary structural elements,
o helices and B sheets, have very specific C, configurations, as described by the
virtual angle ¢ and virtual dihedral v, shown in Figure 5.2. Analysis of the (,y
distributions of the proteins in our H64 dataset showed that HELIX and SHEET
residues almost always have { and « values within the ranges specified in Table 5.1.
Residues with ¢, distributions in one of these two regions are assumed to have ¢,
values common to that secondary structure type; when their ¢ and ¢ conformations
are sampled during the chain-building process, the ¢, grids determined for HELIX
or SHEET residues are used. Residues with (,~ values falling outside this region
are sampled using the generic @, probability grids. 85% of the residues in the H64
dataset having ¢ and ¢ values within the high-probability § sheet region listed in
Table 5.1, also have ¢, v values within the specified region. The correlation is even

higher for o helices, where 88% of the residues with o helix ¢, values have (,~ val-
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Figure 5.2. Definition of virtual angle, (, and dihedral, v, for residue 2.

ues within the corresponding range. If there were no variation in bond lengths and
angles in the protein backbone, the (,~ angles would provide almost completely suf-
ficient information to determine the @, 1 angles, according to the method developed
by Purisima and Scheraga[6]. Unfortunately, the variability in real conformations is
too high for this exact method to work, and ¢, ¢ angles must be derived from simula-
tion methods such as the one presented here. Nevertheless, the correlation between
¢,~v and ¢, angles is sufficient to determine which residues should be sampled us-
ing the HELIX and SHEET ¢, grids. The use of these grids for the appropriate
residues improves our results significantly.

Because Monte Carlo simulations depend on random numbers, each time the
calculation is run, it produces a different backbone conformation. However, an
exhaustive search is much more computationally intensive, even if only a few con-
formations were allowed for each residue. A complete sampling of just the top 20
¢, conformations for each residue in a three-residue pulse would require evalua-
tion of 8000 different conformations. In contrast, we are able to obtain excellent
results from only 200 Monte Carlo steps. The Metropolis criterion (see Section 1.I11
and Reference [12]) rejects conformations which produce very bad energies, allowing

the conformational sampling to focus on low-energy conformations. It is therefore
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*

2° Structure Vi G

« helix 25° <y < T5° 80° < ¢; < 110°

B sheet | 160° < v, v < —75° | 100° < (; < 145°

ol (U5
a helix —90° < ¢ < —30° —60° < ¢ < 0°
3 sheet —165° < ¢ < —45° | 100° < ¢ < 180°

Table 5.1. (,~ regions indicating residue ¢ is likely to be in an o helix or 3 sheet
conformation; i.e., its ¢ and 1) fall within the corresponding ¢, ¢ region listed in the
lower table. (; and ~; are defined in Figure 5.2.

possible to quickly build backbone conformations. A typical simulation takes ap-
proximately 15 seconds per residue on one processor of an Silicon Graphics 4D /380
workstations, or less than 12 minutes for the 46 residue protein, crambin. Speed is
crucial for simulations where different C, conformations are being evaluated, for in-
stance when numerous conformations are generated by a lattice-based protein struc-
ture prediction method[3]. In cases where a single set of C, coordinates is being
used, it may not be necessary to limit the calculations to a matter of minutes. In
these cases, several simulations can be run, using different random numbers for the
Monte Carlo calculation. Each will produce a slightly different backbone conforma-
tion. From these, the lowest energy conformations are selected for the second stage
of the calculation.

The best-energy conformations generated in Phase 1 were evaluated without re-
gard to their sidechain positions. During the chain-building process, energies were
determined for only a small pulse of residues; all previous residues were ignored.
However, after the chain is built, the energy of the entire backbone is evaluated and

this value is used to determine which backbone conformations are used in Phase 2.
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The sidechain conformations are optimized by a PGMC simulation using x prob-
ability grids. In this stage, the backbone atoms are held fixed, but are included
in the energy calculation. Because the backbone is held fixed, constraints to the
C, coordinates are removed. In these calculations, at every Monte Carlo step, one
sidechain is selected at random, and a new sidechain conformation is chosen from
it according to the residue-specific y probability grid. The energy of the new con-
formation is calculated, and the Metropolis criterion is used to accept or reject this
structure. Since the Metropolis acceptance probability (Equation (4.2)) is depen-
dent upon the AF, the change in energy, only the energy of the sidechain being
modified needs to be evaluated; all interactions not involving the sidechain being
modified can be considered constant and do not need to be evaluated. This results
in a huge speed increase over calculations which re-evaluate the entire energy of the
protein at every step. Using this method, the second stage can be quite rapid. For
the small protein crambin, which has 46 residues and 396 atoms in the DREIDING
calculations, 1000 Monte Carlo steps requires seven minutes of cpu time, while plas-
tocyanin, with 98 residues and 857 atoms, requires 22 minutes for 1000 steps. Like
the backbone-building process, the sidechain-modeling process is a stochastic simula-
tion, dependent upon random numbers. Therefore, it is useful to run the simulation
several times, using different random number seeds, and to use the lowest-energy

structures for further studies.

II.B. Variables

There are a considerable number of variables which affect the efficiency of the PGMC
C, builder. Several of these are listed in Table 5.2. In order to determine which
combination of parameters were most effective, we ran numerous simulations using

crambin(1] as a model. This protein was chosen because of its small size, which
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Phase 1 Variables

Variable Description
Pulse The number of residues used in Monte Carlo sampling.
Constraint Force constant of harmonic C, constraint.

Variables for Phases 1 and 2

Spacing The dihedral increment used: 5°, 10°, 15°, 30°, or 60°.
Temperature | The constant controlling the Monte Carlo acceptance probability.

Steps The number of conformations sampled by the PGMC calculation.

Table 5.2. Variables used in PGMC C, Builder. For Phase 1, “steps” refers to the
number of conformations sampled as each residue is added. For Phase 2, it refers to
the total number of conformations sampled.
allowed for rapid calculations, and because it contained « helix, § sheet, and § turn
regions. Phase 1 parameters were evaluated by running 20 simulations for each set
of parameters, building the complete crambin backbone from its C, coordinates.
The efficacy of the parameters was determined by averaging, over the 20 runs, the
root-mean-square (rms) deviations from the crystal structure for the backbone atoms
of the models produced. This average correlated very well with a second measure
of the accuracy of the backbone model: the rms deviations in the ¢, dihedrals.
Not every variable had a large impact on the results. In particular, the simulation
temperature and the grid spacing had smaller effects than did the pulse size, the
harmonic constraint, or the number of Monte Carlo steps.

The average rms deviations from twenty Phase 1 simulations are shown in Fig-
ure 5.3 for several temperatures and pulse sizes. These simulations were run using
200 Monte Carlo steps for each pulse, a grid spacing of 10°, and a C, constraint of

1000 (kcal/mol)/A2. There are no consistent trends with respect to temperature.
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For pulse lengths of three or four, the best results are obtained at a temperature of
1000 K. However, for longer pulses, higher temperatures are more favorable. The
pulse length, itself, has a much bigger impact on the results. There is a consistent
trend favoring shorter pulse lengths at all temperatures except 5000 K, where a pulse
of six is better than a pulse of five. It was clear from numerous other simulations
that a pulse length of three gave the best results, with four residues being slightly
worse and large numbers significantly worse. The number of possible ¢, conforma-
tions grows exponentially with the number of residues in the pulse, so smaller pulse
lengths are clearly favored in that a larger percentage of their conformational space
can be searched during the Monte Carlo calculation. This makes up for the fact
that important hydrogen bonding interactions occur between residues ¢ and ¢ 4 4
in o helices, a fact that would favor a pulse length of at least four. In addition,
the time of the simulation is roughly proportional to p, so a pulse length of three is
preferable from the standpoint of speed, as well.

Another important variable in these simulations is the force constant of the har-
monic constraint between the C,’s of the protein chain being built and the input C,

coordinates. The energy of each constraint is given by the expression
1 2
E. = 5KC(H) , (5.1)

where K. is the force constant and r; is the distance between the C, coordinate
of residue ¢ in the model and in the template. There is a constraint of this type
for each residue in the pulse. There is an additional constraint, with a weak force
constant of K./10 and an offset of 2.0 A, between the carbonyl carbon of the most
recently added residue, [, and the template C, of residue [ + 1. This helps to orient
the final residue of the growing chain. Figure 5.4 shows the effect of the constraint
on the average rms errors in the backbone atoms (RMSB) and the C, coordinates

(RMSC). These simulations were run at a temperature of 1000 K, using a grid spacing
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Figure 5.3. The average rms deviation from the crystal structure for models of the
crambin backbone built using various temperatures and pulse sizes.
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Average Backbone Deviation
vs. Simulation Temperature
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Figure 5.4. The average rms deviation in backbone atoms (RMSB) and C, coordi-
nates (RMSC) for crambin backbone models built using different C,, constraint force
constants.

of 10° and a pulse length of three. As should be expected, the deviations for the Cq
coordinates decrease exponentially as the force constant increases. However, the fit of
the entire backbone has a minimum of 0.520 A when K, = 100 (kcal/mol)/A2. This
is substantially less than a typical DREIDING force constant of 700 (kcal/mol) /A2
or more for bondstretches. Therefore, the C, constraints do not cause distortions in
the geometries during the conjugate gradients minimization stage which follows the
Monte Carlo.

As each new residue is added, the pulse of residues is optimized first by the
Monte Carlo conformational search, then by 100 steps of conjugate gradients min-
imization. Both stages are important. The minimization process is necessary to

provide flexibility in the bond lengths and angles of the protein model, in order to
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match closely the specific C, geometry of the protein being built. Although the
minimization process makes only small adjustments in the conformation of the pulse
residues, it makes a substantial difference in the results. With no minimization,
the errors in the backbone model built up very quickly. Using the same parame-
ters which produced an average backbone deviation of 0.52 A when minimization
was included, the C, Builder produces crambin backbone models with an average
rms deviation of 1.32 A when no minimization is involved. The parameters were
optimized for simulations including minimization and probably do not represent the
best possible results for simulations without minimization. Nevertheless, it is clearly
preferable to include the minimization process. It is also important to include the
Monte Carlo conformational search. The results using different numbers of Monte
Carlo steps are shown in Figure 5.5. Simulations with one step correspond to sim-
ply using the highest probability conformation from the ¢, grids for each residue;
no other conformations are sampled. Although the results for this case are good
(0.60 A rms), the results are clearly improved by the use of even a small number of
Monte Carlo steps, and get better as the number of steps increases. The standard
error in these averages is typically 0.01 A, so there is little statistical significance to
the improvements above 50 steps. Nevertheless, in order to increase the number of
conformations sampled while keeping the simulation time to 10 minutes per crambin
backbone conformation, we chose to use a value of 200 Monte Carlo steps for most
simulations.

The choice of grid spacing was based upon simulations of the pentapeptide Met-
enkephalin (see Section 4.I1T), which found that the best results were obtained using
a grid spacing of 10°. The 10° dihedral spacing appears to provide the best balance
between conflicting trends which arise as the grid spacing becomes smaller: there

are far more possible conformations, so the protein can assume more low-energy
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Average Backbone Deviation
vs. Number of Monte Carlo Steps
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Figure 5.5. Average backbone rms vs. the number of Monte Carlo steps. Also shown
is the average time to build each backbone conformation.
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conformations, but the fraction of the total conformational space that can be sampled
during a given number of Monte Carlo steps decreases.

After backbone models have been developed in Phase 1, the sidechains are op-
timized in Phase 2. In these calculations, the backbone is held fixed while the
sidechains are modified by randomly choosing new conformations according to the
x probability grids. The most important variables for these simulations are the grid
spacing, the temperature, and the number of Monte Carlo steps. A grid spacing of
10° was selected for these calculations in order to be consistent with the grid spacing
chosen for Phase 1. Results improved consistently as the number of Monte Carlo
steps was increased, but improvement slowed after about 500 steps; therefore, a
value of 1000 was used for the calculations reported below. As discussed below, this
number may be insufficient for large proteins, but for crambin it represents more
than 25 conformations per residue for the 37 non-alanine, non-glycine optimized
during these simulations.

In order to determine the best simulation temperature for Phase 2, ten PGMC
calculations were run at several temperatures between 0 K and 5000 K. The starting
structure for these calculations was the crambin crystal structure, with its sidechains
rotated to their most probable conformations according to the 10° x probability
grids. This structure had an rms deviation from the crystal structure of 1.52 A: the
deviation for sidechain atoms alone was 2.34 A. For each simulation, 1000 Monte
Carlo calculations were run, after which the lowest energy conformation was saved
and its overall rms deviation from the crystal structure was recorded. The average
for the ten simulations at each temperature is shown in Figure 5.6. As was found
for the backbone Monte Carlo simulations in Phase 1 (see Figure 5.3), there is not
a large variation with respect to temperature. This is the case despite the fact that

the acceptance rate for new structures rises from 7.7% at 0 K to 46.8% at 5000 K.
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Average RMS Deviation
vs. Simulation Temperature
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Figure 5.6. Average all-atom rms deviations for sidechain Monte Carlo simulations
of crambin at different temperatures.

Apparently, the much greater acceptance rate of new structures does translate di-
rectly into the creation of more low-energy conformations. The simulations at 300 K
were more consistently accurate, so this temperature was used in the simulations
reported below. Table 5.3 lists the values used for Phase 1 and Phase 2 simulations

reported in the following sections.

I1I. Results

III.A. Crambin

The values listed in Table 5.3 were used in an attempt to reproduce the structure

of crambin using the C, coordinates from the crystal structure[l]. Twenty different
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Variable Phase 1 Phase 2
Spacing 10° 10°
Temperature 1000 K 300 K

Steps 200 1000

Constraint | 100 (kcal/mol)/A? -

Pulse 3 -

Table 5.3. Values used for production runs of the C, Builder.

backbone conformations were generated by using different random numbers to con-
trol the selection of ¢, dihedrals as well as to determine which conformations would
be accepted and which rejected. The conformational energy of the backbone, the
rms deviations in backbone atoms and @, 1) dihedrals from each of these structures is
listed in Table 5.4, ranked by energy. The average backbone rms deviation for these
20 simulations was 0.527 A, in close agreement with the previous result of 0.520 A
mentioned in the preceding section. The average all-atom deviation was 1.696 ATt
is apparent that there is only a small correlation between the backbone energy and
the rms fit to the crystal structure backbone. The backbone of the crystal structure
itself has an energy of 759.8 kcal/mol, higher than 12 of the 20 model conforma-
tions. This is likely to be due both to errors in the crystal structure and in the
limitations of the forcefield approach: no forcefield can be optimal for every crystal
structure, even when such factors as crystal packing and solvation are considered.
Nevertheless, in cases where the crystal structure is unknown, the backbone energy
is the best criterion for selecting model structures. Other possible selection criteria,
including Cq constraint energy and total energy including sidechain atoms, had even

worse correlation with the deviation in the backbone coordinates.
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Energy (kcal/mol) and RMS Deviations from Phase 1
Energy RMSB (A) RMSD (°) | Energy RMSB (A) RMSD (°)
335.3 0.494 22.05 | 597.6 0.481 31.15
338.4 0.430 19.43 | 652.7 0.572 33.77
363.3 0.543 25.75 | 796.9 0.588 33.13
363.8 0.495 26.00 | 797.1 0.430 21.49
366.4 0.515 28.69 | 822.7 0.498 27.47
376.9 0.576 29.40 | 850.3 0.505 27.74
377.6 0.545 29.88 | 872.4 0.595 33.38
393.2 0.582 32.96 | 1445.3 0.589 32.08
465.5 0.668 42.27 | 5266.2 0.447 27.67
577.1 0.483 28.94 | 5700.5 0.513 34.44

Table 5.4. The energy, rms deviation in backbone atoms (RMSB), and rms deviation
in ¢,1 dihedrals (RMSD) for each of the 20 backbone conformations generated for

crambin.
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Energy (kcal/mol) and All-Atom RMS (A) from Phase 2

Energy RMS | Energy RMS | Energy RMS | Energy RMS

668.1 1.386 767.8 1.449 971.7 1.102 | 2225.6 1.272
669.2 1.367 793.9 1.430 | 1039.0 1.337 | 2576.8 1.393
688.2 1.132 801.3 1.278 | 1074.0 1.519 | 3023.2 1.486
691.6 1.259 823.0 1.243 | 1111.8 1.153 | 3077.1 1.391
706.6 1.313 860.7 1.297 | 1304.6 1.332 | 3105.8 1.487
757.3 1.170 947.9 1.111 | 1696.1 1.468 | 3334.5 1.221

3383.6 1.484

Table 5.5. The energy and rms deviation in atomic coordinates for each of the
crambin models produced by the PGMC C, Builder.

The five lowest-energy backbone conformations from Phase 1 were used as a
starting point for Phase 2. For each of the five backbone conformations, five Phase
2 simulations were carried out, again using different random numbers to produce
different results. Each simulation involved 1000 Monte Carlo steps using 10° proba-
bility grids and a simulation temperature of 300 K. The 25 conformations produced
are listed in Table 5.5. Again, there is only a small correlation between energy and
rms fit to the crystal structure. Nevertheless, the fits are quite good, with an average
rms deviation from the crystal structure of 1.323 A. All five backbone conformations
were represented throughout the list of of all-atom conformations, so the backbone
energy was not the determining factor in the overall energy.

The best energy conformation from Phase 2 was chosen as the “model” con-
formation of crambin for detailed comparison to the “true” structure, the crystal
structure[1]. Table 5.6 gives a breakdown of the rms deviation of the crambin model

for different regions of the protein. Some of this information is shown graphically in
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Region Residues Backbone ¢,v% All Atoms Sidechains
All 1-46 0543 A 25.8° 138 A  2.010 A
No C-term | 1-44 0361 A 23.0° 1248 A  1.841 A
Helix 1 7-19 0.209 A 13.7° 1.658 A 2.347 A
Helix 2 23-30 0.394 A 22.3° 1.026A 1454 A
Sheet 1 1-4 0417 A 22.3° 1146 A  1.7711 A
Sheet 2 32-35 0315 A 19.2° 1070A  1.530 A
Turn 1 41-44 0571 A 32.9° 1.853A 1853 A
N-terminus | 1-2 0.559 A 31.1° 1.184 A  1.688 A
C-terminus | 45-46  1.872 A 67.9° 3175 A 4682 A
Coil others  0.373 A 285° 0511A 0728 A

Table 5.6. RMS deviations for different regions of the crambin model.

Figure 5.7, where the backbone rms deviation of each residue is shown. The largest
deviations occur at the carboxy terminus, where residues 45 and 46 are very poorly
modeled. If these two residues are excluded, the backbone rms deviation drops from
0.543 A to 0.361 A. The carboxy terminal residues are generally the worst modeled
residues because there are fewer constraints on the structure: they usually lie on
the surface of the protein where there are fewer inter-residue contacts and there is
no [ +1 C, to constrain the orientation of the terminal carboxyl group. In the
crambin model, the Asn 46 sidechain and the terminal carboxyl group have reversed
positions, giving rise to a large error even though the chemical significance is small.
The backbone rms deviation is fairly consistent throughout the rest of the protein,
with 34 of the 46 residues having deviations in the 0.1-0.4 A range. The lowest

backbone deviations are in the residues of the long a helix, Helix 1, where the de-
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Figure 5.7. Backbone rms per residue for crambin model.
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viation in atomic coordinates is 0.209 A, and the deviation in ¢ and ¢ dihedrals is
only 13.7°. The deviations are equally low (0.232 A and 13.1°) for the first seven
residues of Helix 2. However, the last residue in the helix starts a turn, and is poorly
modeled. In general, the turn regions before and after « helices are the most poorly
modeled residues other than those at the C-terminus. This is very apparent from
both the graph in Figure 5.7 and the picture in Figure 5.9. These regions (partic-
ularly residues 5, 20, and 30) have nonstandard ¢, values which have very low
probabilities in the ¢,y probability grids. No ¢, probability grids were specifically
developed for turn regions, but these might prove very valuable.

The sidechain modeling is not as successful as the backbone modeling, with
the average deviation in atomic coordinates being near 2.0 A. This is not at all
surprising, since each peptide unit in the polypeptide backbone is constrained at
both ends by the positions of two consecutive C,’s while the sidechains are usually
constrained only by their attachment to a single C,. The constraints on the sidechain
conformations are primarily steric in nature: sidechains in the interior of a protein
can have considerable steric overlap and their conformations must be correlated to
allow for closest packing. The rms deviation for the atomic coordinates may not be
the best indication of modeling success, since it will be heavily weighted toward any
poorly modeled large sidechain such as arginine. A better measure is the deviation in
sidechain dihedral angles, x, defined as the absolute value of the difference between
the dihedral in the model and in the crystal structure. The deviationsin x! are shown
for the crambin model in Figure 5.8. Most x! dihedrals have high probabilities at
60°, -60°, and 180°, so deviations would be expected to be near 0° or 120°. Of the 37
xY’s in crambin, 24 have deviations less than 30°, and 11 have deviations between 90°
and 150°. Therefore, only two have deviations between 30° and 90°. It is important

to note that five of the 11 poorly modeled sidechains are cystein residues involved
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Figure 5.8. The deviation in x' for each residue of the crambin model.

in disulfide bridges in the crystal structure. The C, Builder does not currently
predict the presence of disulfide bridges, so the disulfide bond is not included in the
Monte Carlo energy evaluations. Such a term could be included and would certainly
improve the results for these residues. RMS deviations for the different backbone
and sidechain dihedrals are shown in Table 5.7. Although the sidechain dihedrals are
not as well modeled as the backbone, the results are not discouraging with respect
to other methods. As discussed below, our method provides results for flavodoxin x
dihedrals as good or better than other methods, and these results for crambin are
even better.

The differences between the crambin model and the crystal structure are shown
in detail in Figures 5.9, 5.10, and 5.11. Figure 5.9 shows the model and crystal

structure backbones for the entire protein. For most of the protein, it is very



Deviation

Dihedral Number | RMS < 30° > 90°
¢ 45 22.3°  86.7%  0.0%
) 45 28.8°  75.6% 2.2%
w 45 5.4° 100.0%  0.0%
x* 37 69.6°  62.2% 29.7%
X2 21 84.5°  38.1% 28.6%
X 8 75.1°  25.0% 37.5%
x* 7 34.9°  71.4%  0.0%
x5 2 9.8° 100.0%  0.0%

Table 5.7. The rms deviations in various types of dihedrals for the crambin model
and the percentage of each type of dihedral with deviations less than 30° or more

than 90°.
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Figure 5.9. The peptide backbone of the model and crystal structures of crambin.
The rms deviation is 0.538 A.
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Figure 5.10. A comparison of helix 2 (residues 23 to 30) in the model and crystal
structures. The rms deviation is 1.026 A for all atoms and 0.394 A for the backbone

atoms.
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Figure 5.11. Helix 1 (residues 7 to 19) in the model and crystal structures. The rms
deviation is 1.658 A for all atoms and 0.209 A for the backbone atoms.
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difficult to distinguish between the two structures. Only in the turn regions after
the two helices is the difference readily apparent. The two following figures show
the all-atom structures of the two helices of crambin. Helix 2, shown in Figure 5.10,
is very well modeled, with an rms deviation of 1.03 A for all atoms. In terms of the
all-atom deviation, it is the best modeled region of the protein (see Table 5.6). The
picture shows this quite well, with both sidechain and backbone atoms showing little
difference between the two structures, except for Thr 30 on the C-terminal (right)
end of the helix. As explained above, this residue begins a turn in the backbone
conformation and is poorly sampled during the Phase 1 backbone Monte Carlo. The
Helix 1 backbone, in contrast, is modeled quite well throughout its length, including
Pro 19 at its C-terminal (left) end. However, Helix 1 has many large sidechains
which are difficult to model. Large errors can be seen in Asn 14 and Arg 17. The
latter has a particularly large impact on the rms deviation. Excluding Arg 17, the
crambin model has an rms deviation of 1.207 A, rather than 1.386 A. However, this
incorrect conformation of Arg 17 may be energetically more favorable than other
conformations more similar to the crystal structure. Of the next four lowest-energy
conformations listed in Table 5.5, all five have more native-like conformations of Arg
17, but all are higher in energy.

The crambin model illustrates several general findings for simulations using the
PGMC C, Builder. The lowest-energy structures from Phases 1 and 2 are usually
among the best models built, but are rarely the very best. Regardless, the backbone
models from Phase 1 are consistently good, and almost any one of them provides an
acceptable model of the true backbone. The model backbones are especially good
in regions of regular secondary structure such as helices and sheets, but rather poor
in turn regions. These results are obtained consistently in different simulations.

There is a much larger variation among the results from Phase 2. This may be
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due to the constraints of time; the number of 1000 Monte Carlo steps was selected
largely in order to keep the simulation time below ten minutes, so that large numbers
of different conformations could be evaluated. Better and more consistent results
might be obtained by substantially longer calculations. Nevertheless, between 40%

and 60% of x! dihedrals are modeled correctly.

III.B. Larger Proteins

Although the variables discussed in the previous section could be tuned to specific
problems, the same values were used for six different proteins, ranging from the 46
residue crambin to myoglobin, which has 153 residues. These proteins are listed
in Table 5.8. The proteins have widely different structures, as indicated by the
percentages of their secondary structures which are a-helical and S sheet. Four of
the six proteins are included in the subset of crystal structures used to develop the
Monte Carlo probability grids (see Section 4.1I). Of the other two, the flavodoxin
structure used is merely a different form (oxidized) than the one used in the dataset
(semiquinone), while the plastocyanin studied is homologous, but not identical, to
the structure used in the dataset.

For each of these six proteins, the C, coordinates from the listed crystal structure
were used to rebuild the backbone conformation twenty times, as described in the
preceding sections for crambin. In each case, all prosthetic groups, such as the
myoglobin heme, were removed from the crystal structure, as were any cofactors
or solvent molecules. Each of the twenty backbone conformations was compared to
the crystal structure and the results were analyzed. Table 5.9 lists the average rms
deviation as well as the standard deviation (o) for the twenty structures. Also listed
are the rms deviations for the lowest energy conformation and the conformation with

the best fit. Again, it is seen that the lowest energy conformation is never the one



160

Protein PDB Ref. Size | % Helix % Sheet
Crambin lern  [1] 46| 457 17.4
BPTI spti [13] 58| 276 25.9
Plastocyanin Tpcy  [14] 98 7.1 58.2
Ribonuclease A Trsa [15] 124 26.7 46.8
Flavodoxin 3fxn  [16] 138 37.7 26.8
Myoglobin Imbd [17] 153 79.1 0.0

Table 5.8. The proteins modeled by the PGMC C, Builder. The reference crystal
structure is given along with the number of residues in the protein and the percent
of these which are in « helices and 3 sheets.
with the best fit to the crystal structure. However, it is encouraging that the lowest
energy conformation was better than average for five of the six proteins.
Comparing Tables 5.8 and 5.9, it is clear that the size of the protein has little
effect on the accuracy of Phase 1. In fact, the largest protein, myoglobin, is con-
sistently modeled most accurately. This is not surprising considering the crambin
results, where the average backbone deviations was approximately 0.2 A for helical
residues. The protein myoglobin, with almost 80% of its residues in « helices, is
greatly benefited by the accuracy with which the method models helices. Plasto-
cyanin is also modeled relatively well, even though it has a 3 sheet protein, with
little helical content. The large 8 sheet content is probably also a favorable factor,
as these conformations are also very well represented by the probability grids. It is
proteins such as bovine pancreatic trypsin inhibitor (BPTI), with only about 50%
a helix and § sheet content, which are relatively poorly modeled, though even for
this case the rms deviation is badly distorted by poor modeling of the C-terminal

residues. The average rms deviation for residues 1-54 1s 0.501 A.
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Crystal Backbone RMS Deviation

Structure | Average o  Best E  Best Fit

lern 0.527  0.062 0.494 0.430
Spti 0.610  0.065 0.582 0.506
Tpcy 0.550  0.048 0.602 0.470
Trsa 0.601  0.052 0.551 0.530
3fxn 0.593  0.050 0.577 0.509

Imbd 0.453  0.033 0.451 0.366

Table 5.9. The results from Phase 1 constructions of the backbone conformations of
several proteins.

Phase 2 simulations were carried out on flavodoxin and plastocyanin, building
five complete structures from each of the top five backbone conformations from
Phase 1. The same parameters were used for these simulations as were used for
Phase 2 simulations of crambin. The energy and all-atom rms deviation for each
of the 25 conformations was evaluated and the results were analyzed. Table 5.10
lists the results for these two proteins, along with those for crambin. Unlike Phase
1, the results for Phase 2 are highly dependent on the size of the protein, with the
average deviation increasing substantially for larger proteins. In Phase 1 simulations,
each residue was sampled the same number of times, regardless of the size of the
protein. In the Phase 2, simulations, however, each simulation involved a total of
1000 Monte Carlo steps. For crambin, this meant that the average residue was varied
27 times during the simulation (alanine and glycine residues are not affected). For
plastocyanin, the 73 relevant dihedrals were sampled an average of 14 times; for
flavodoxin, the average was 8.5. Clearly, the sidechains of flavodoxin are not being

adequately sampled. Unfortunately, the cpu time required for the simulations also
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Crystal All-Atom RMS Deviation

Structure | Average Best E Best Fit

lern 1.323 1.386 1.102
Tpcy 1.483 1.398 1.299

3fxn 1.796 1.663 1.607

Table 5.10. The results from Phase 2 constructions of the sidechains of crambin,
plastocyanin, and flavodoxin.

grows substantially as the size of the protein grows. While the 1000 Monte Carlo
steps take seven minutes for crambin, they require nearly 20 minutes for plastocyanin
and over 40 minutes for flavodoxin. Therefore, it is computationally expensive to
increase the number of steps for flavodoxin. Nevertheless, the results for flavodoxin
are comparable to ér better than published results using other methods.

The lowest energy conformation of flavodoxin was chosen for comparison with
other methods. This protein has become a standard test case for published meth-
ods of building all-atom conformations from C, coordinates. This includes both
methods based on molecular mechanics[8] and those using database searches to de-
termine conformations for multiple-residue peptide fragments from the protein[7, 9].
Table 5.11 lists several measures of the accuracy of these models. “Peptide flips”
refer to the number of peptide units (the planar backbone unit between the C,
coordinates) which are rotated by more than 90° degrees from the crystal struc-
ture. This occurs seven times in our model, compared to only 5 and 4 times in the
fragment-matching methods of Reid and Thornton[7] and Holm and Sander[9]. This
is the only measurement by which the PGMC method appears deficient. In most of
the other measures, the PGMC method is comparable to, or better than, the other

published methods. The PGMC C,, Builder is currently not quite as accurate as the
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Reference PGMC
Atoms 71 [8] [9] | Model

RMS All Atoms (A) | 1.73 1.64 1.57| 1.66
RMS Main Chain (A) | 0.57 0.49 0.48 | 0.57

RMS Side Chain (A) | 241 - 219] 231
Peptide Flips 5 - 4 7
Correct x! (%) 40 - 44 41
Correct x!, x* (%) 17 - 25 24

Table 5.11. A comparison of the results for flavodoxin vs. other methods. “Correct”
refers to dihedrals predicted to within 20° of their crystal structure values.

method of Holm and Sander[9], but is comparable in most respects, even though it
is based on a more general approach to protein modeling: Probability Grid Monte
Carlo. The PGMC method is applicable to unconstrained systems as well as those

constrained by a priori knowledge of the C, coordinates.

IV. The C, Forcefield

In recent years, lattice-based methods have become increasingly popular tools for
theoretical studies of protein folding[3,19-21]. In these calculations, a protein is
represented by points on a 2-D or 3-D lattice. Typically, each amino acid occupies
a single lattice site[3], but some methods use other models, such as one backbone
and one sidechain site per residue[19]. Conformations of a protein are represented
by chains traced through the lattice, with consecutive residues occupying adjacent
sites. Adjacent sites can also be filled if the chain folds back upon itself. Because

positions are limited to points on a lattice, energy calculations are extremely fast.
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Valence terms such as bond stretches can be eliminated entirely, since there are only
a few possibilities. In addition, nonbonded forces can be calculated rapidly because
distances between lattice sites are known in advance. Therefore, lattice simulations
greatly speed the evaluation of a protein’s conformational space in two ways: the
size of conformational space is decreased by allowing only lattice conformations and
evaluation of each conformation is greatly decreased through the use of simplified
energy terms.

Despite the simplifications of the lattice methodology, there 1s still a huge number
of possible conformations available to even a small protein. And while energy func-
tions may give favorable values to the “correct” structure (the lattice conformation
most closely resembling the native structure)[3], they are rarely sufficiently accurate
to predict it outright. In order to evaluate lattice conformations more fully, and to
enable construction of all-atom protein conformations from lattice models, we have
developed a “C,, Forcefield” (C,FF) for use in molecular mechanics simulations of C,
models of proteins. This forcefield is used to optimize lattice conformations, enabling
them to have conformations more like true proteins. These optimized C, conforma-
tions can then be used as templates for the PGMC C, Builder. This process, termed
the “Hierarchical Protein Folding Strategy” (HPFS), is shown in Figure 5.12. The

method has a hierarchy of refinement levels:
1. The lattice Cy-only model.
2. The C, model optimized using the C,FF.
3. Backbone atoms added by the C, Builder (Phase 1).

4. Sidechain atoms added by the C, Builder (Phase 2).

5. All-atom conformation optimized by full Cartesian energy minimization.



165

The final level of optimization is not shown in Figure 5.12. It involves energy mini-
mization of the all-atom protein conformation using a forcefield such as DREIDING.
At this point, solvent molecules may be introduced into the system to reflect the
protein environment more accurately.

The simple C, Forcefield which we have developed for lattice structure optimiza-
tion has valence terms, only. Nonbonded interactions, such as van der Waals and
electrostatic terms, are not included in the forcefield. Future enhancements of the
C,FF will include such terms and will be amino acid-specific. The current imple-

mentation, however, treats all amino acid types equally, and has the three terms:

1

Vo(biir1) = 5K (biir — beg)? (5.2)

Ve(Go) = %I{C,aﬁ(@ — Cegrap)’ (5.3)
and

Vo(yi) = %Kw,aﬁ(% — Yegap) - (5.4)

The bond energy, Vi, is summed over all C,(2)-Cy (¢ + 1) distances (b; 1), while
angle and torsion terms are summed over all virtual angles, (;, and virtual dihedrals,
~:, as defined in Figure 5.2. The af subscripts denote that different angle and torsion
force constants (K¢, K.,) and equilibrium geometries ((cq, 7eq) are used for a helix and
3 sheet conformations. These bond and angle terms are commonly found in atomic
forcefields, but the torsion term is unlike a typical torsion forcefield, which uses an
expansion of cosine terms (see Equation (1.6)). The present form was used because
the virtual dihedrals do not have probability minima or maxima at v = 0, so no
cosine expansion could reproduce the known distribution. Unfortunately, problems
arise for calculating atomic forces when (v; & 180°), so alternate functional forms
are being investigated.

Parameters for the C, Forcefield have been determined from analyses of the C,
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q

C, Coordinates from Optimized C,
Lattice Coordinates
Backbone
Monte Carlo

Side-chain
Monte Carlo

All-atom Structure Backbone Structure

Figure 5.12. The Hierarchical Protein Folding Strategy, which converts lattice C,
coordinates into all-atom protein conformations.
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Figure 5.13. The probability distribution (0.01 A resolution) for C,-C, bonds. The

actual distribution is compared to that derived from the bond-stretch term of the
C,FF.

coordinates in the protein structures of the Brookhaven PDB. A subset of 64 of the
protein structures was used. This “H64” dataset was also used for the development
of ¢, and y grids and is described in detail in Section 4.II. Figure 5.13 shows the
distribution of Cg4(i)-C4(i-+1) distances in the H64 dataset, using a 0.01 A interval
to determine probabilities. From this distribution, an average, be,;, and standard
deviation, o, can be calculated. The average is used directly in Equation (5.2),

while the force constant is derived from

kT

Ky =—, (5.5)

where k is the Boltzmann constant and 7' is the temperature. Using these parameters

in Equation (5.2) gives a probability distribution very similar to that derived from
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Virtual Angle/Dihedral Distribution
for All Residue Types

0 30 60 90 120 150 180 210 240 270 300 330 360
Dihedral

Figure 5.14. 2000 virtual angle, dihedral ({,~) values.

the crystal structure. The probability distribution is determined from:

e~ Ve(b)/KT

= = (5.6)

P(b)

Replacing the integral by a sum over 0.01 A intervals gives the probability distribu-
tion in Figure 5.13.

Similar analyses can be made for the virtual angles ({) and dihedrals (y). How-
ever, it should first be noted that there are strong ¢, propensities in protein back-
bones which lead to corresponding (,~ correlations. This is clearly seen in Fig-
ure 5.14, where 2000 randomly selected (, v values from the H64 dataset are plotted.
There are two high density regions. This can also be seen by binning the data. Fig-
ure 5.15 shows probability grids derived from determining the fraction of all points
in the region ((o+7.5%, 70+ 7.5°) for {; and 7o intervals of 15°. There are two distinct

peaks, which correspond to « helix and 3 sheet regions, as is made evident by the
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Virtual Angle/Dihedral Distribution
for All Residue Types

Probabliity

Figure 5.15. The (,~ probability grids for the entire H64 dataset, using 15° bins.

probability grids for HELIX and SHEET residues in I'igure 5.16. The high prob-
ability regions for the two major secondary structure types are listed in Table 5.1.
These regions account for 39.7% (« helix) and 34.7% (5 sheet) of all {,~ points.
The (,~ pairs which fell within the & helix or § sheet regions were used to calculate
average values and standard deviations of  and # for each of these regions. These,
in turn, were used as equilibrium geometries and to calculate force constants as was
done for bond lengths (Equation (5.5)). All such parameters for the C,FF are listed
in Table 5.12. Note that the « force constants are significantly higher than the
ones, reflecting the much sharper peak in the « helix region of the (,+ probability
distribution.

This forcefield described above was used to optimize lattice conformations for
several proteins. These lattice conformations were generated by finding the con-

formations on a face-centered cubic (fcc) lattice which best matched the crystal
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Virtual Angle/Dihedral Distribution

for HELIX Residues

ANIIqeqOId

Virtual Angle/Dihedral Distribution

for SHEET Residues
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Figure 5.16. The (,~ probability grids for HELIX and SHEET residues in the H64

dataset.
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Parameter | Equil. Geom. Force Constant
b 3.807 A 335 (kcal/mol) /A2
Ca 92.145° | 117.15 (kcal/mol)/rad?
Yo 50.837° | 25.07 (kcal/mol)/rad?
(s 121.976° | 17.25 (kcal/mol)/rad?
- 144.495° | 2.20 (keal/mol)/rad?

Table 5.12. Equilibrium geometries and force constants in the C,FF.

Protein PDB Ref. Residues Lattice fit Minimized
Crambin  lcrn [1] 46 1.93 A 1.50 A
BPTI dpti  [22] 59 1.79 A 1.66 A
Cobratoxin  lctx  [23] 71 1.99 A 2.18 A
Calmodulin Icln  [24] 145 2.15 A 2.02 A

Table 5.13. Best-fit fcc lattice conformations of several proteins, before and after
minimization with the C,FF.
structures. These conformations were then optimized by conjugate-gradients mini-
mization using the C,FF. As shown in Table 5.13, C, coordinates after minimization
by the C,FF are usually much better than lattice conformations. Figure 5.12 dis-
plays this improvement more dramatically, by showing the lattice and minimized
structures of crambin. Clearly, the lattice constraint imposes unnatural geometries
on the C, configuration, a problem remedied by the C,FF.

The utility of the C,FF is further displayed by the results in Table 5.14. In
these simulations, several C, coordinate sets for crambin were used as templates for

the PGMC C, Builder. The results are shown in the table after the final all-atom
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Origin of C,’s RMS-All RMS-BB RMS-C,
Crystal Structure 1.39 0.50 0.20
Crystal Minimized 1.80 1.00 0.88
Best Fit to Lattice 3.04 1.99 1.96
Lattice Minimized 2.48 1.57 1.50

Table 5.14. Results from building all-atom conformations from various C, confor-
mations of crambin using the PGMC C, Builder.

conformation is minimized with energy minimization using DREIDING. Naturally,
the C, coordinates from the crystal structure, itself, form the best template for the
C, Builder. Minimizing the crystal structure C, atoms with the C,FF causes them
to diverge from their true coordinates, but a good model, with a backbone RMS
deviation of only 1.0 A, can still be built. Use of the lattice conformation, however,
produced poor results, with a backbone RMS deviation of nearly 2.0 A. The results
are significantly improved through the use of the C,FI', which reduces the error per
atom by almost 0.5 A.

The C,FF is, therefore, able to assist significantly in the building of all-atom
conformations of proteins from lattice models of their C, coordinates. Other uses
may include the evaluation of different lattice models by energy evaluation and/or
minimization. This may ease the difficult task of determining which lattice confor-
mations are native-like. In addition, future enhancements of the C, Forcefield will
include nonbond forces as well as residue masses, thereby allowing for the possibility

of extremely fast molecular dynamics simulations of a C, protein model.
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V. Conclusions

Probability Grid Monte Carlo provides a new method for predicting all-atom pro-
tein conformations from C, coordinates. Most of the previous methods [2, 7, 9]
use database searches to find conformations for several consecutive residues which
match the configuration of the C, coordinates being used as a template. The PGMC
method, in contrast, uses probabilities for individual residues to guide Monte Carlo
searches. The method produces results as good as or better than the previously
published methods for the protein flavodoxin. In general, backbone conformations
are modeled accurately to within 0.6 A rms deviation from the crystal structure.
Most of the error comes at the C-terminal ends and in turns, while the extended
secondary structures,  helices and 3 sheets are modeled much better, with a typical
rms deviation of 0.3 A or better. Sidechain conformations are not modeled as accu-
rately. Sidechain rms deviations over 2.0 A can be expected for large proteins where
the computational cost of optimizing all sidechains concurrently is very large. The
sidechain deviation for the small protein crambin was much better, averaging 1.87 A
for 25 models. Overall rms deviations are typically better than 2.0 A, and depend
primarily upon the amount of time spent optimizing the sidechain conformations.
The PGMC C, Builder is an extremely fast, automatic method. For proteins the
size of crambin, both the backbone and sidechain can be modeled accurately in less
than 20 minutes on a standard workstation. This may enable the method to be used
for evaluating numerous possible C, conformations, such as those generated from a
lattice-base protein folding simulation. To this end, a simple C, forcefield has been
developed which enables lattice conformations to be smoothed, thereby providing a

template for the C, Builder.
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Chapter 6

Prediction of Loop Conformations in Antibodies

Abstract

The Probability Grid Monte Carlo technique is an effective technique for many
problems in protein modeling. Here, the technique has been adapted for modeling
loop structures in proteins. The method has three phases: (1) generation of nu-
merous loop backbone conformations using ¢, probability grids, (2) optimization
of sidechain conformations of the best backbones from Phase 1 using x probabil-
ity grids, and (3) optimization of the best loop conformations from Phase 2 using
conjugate gradients minimization. The method is applied to the six hypervariable
loops of immunoglobulins, using the crystallized Fab fragments from HyHEL-5 and
McPC603 as test cases. Conformations are predicted which are very similar to the
crystal structure conformations — several backbone conformations have rms devia-

tions of 1.0 A or less from the crystal structure.
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I. Introduction

In homology modeling studies, the X-ray crystal structure of one protein serves as
a template for predicting the 3-dimensional structure of a second protein, which is
similar in sequence but whose tertiary structure has not been determined experimen-
tally. This method has been used successfully for a variety of systems, such as HIV-1
protease modeled from a protease of Rous sarcoma virus[l] and amyloid precursor
protease inhibitor domain modeled from bovine pancreatic trypsin inhibitor[2]. If
the sequences of the template protein (T) and the unsolved protein (U) are very sim-
ilar in length and composition, the structure of protein U can be modeled simply by
using nearly the entire 3-dimensional structure of T, modifying only the coordinates
of the sidechains which differ in the two proteins. Replacement of sidechain geome-
tries is a standard facility of most molecular modeling software. A more complex
modeling task arises when regions of the proteins differ in both sequence and the
number of residues. There is no standard method for replacing three residues in pro-
tein T with six residues from protein U. Even if such sequence length mismatches are
localized to short segments of the protein, there are significant rearrangements in the
backbone conformations which must be modeled by more sophisticated techniques.

The loop-modeling procedure described here provides a methodology for making
such replacements by sampling the conformational space of the variable-length se-
quences. Regions of the two proteins which are highly similar in both sequence and
length are termed “framework” regions. The regions of variable length are termed
“loops.” This is a broader use of the term “loop” than in the terminology of Rose
and coworkers[3], who use the term to define regions of proteins which meet certain
geometric criteria. Nevertheless, the variable regions described here are often loops
in both senses. Modeling these loops requires success in two endeavors: determina-

tion of the loop backbone, which must meet the geometric constraints imposed by
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the loop “endpoints,” where it attaches to the framework, and optimization of the
sidechain positions. We have separated these two components into different phases.
The first phase rapidly produces a large number of backbone conformations which
meet the endpoint criteria while the second phase samples sidechain conformations
for the best loops from Phase 1. A third phase optimizes the best structure from
Phase 2 by using energy minimization of all atomic positions. This strategy allows
increasing sophistication to be built into the model as the breadth of the conforma-

tional searches is decreased.

II. Methodology

Several methods have been reported for modeling loop conformations. These fall
into two general categories: those using databases of known loop conformations(4, 5]
and those using conformational searching[6, 7]. A combined approach has also been
described[8]. The method here also combines features of both approaches, as it
uses a conformational search method similar to Bruccoleri and Karplus[6], but with
dihedral angles sampled from probability grids developed through an analysis of the
Brookhaven Protein Database.

The Probability Grid Monte Carlo (PGMC) method is described in detail in
Section 4.II. The method samples conformational space by modifying the dihedral
angles of a polypeptide or protein according to probability matrices determined
from an analysis of known protein structures. At each step of the simulation, one
amino acid residue is selected for modification and either its backbone or sidechain
conformation is modified. If its backbone conformation is to be modified, new values
of ¢ and 1 are chosen from 2-dimensional grids, where each possible ¢, ¢ combination

has been assigned a specific probability. The values of ¢ and i are confined to
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discrete values between -180°and 180°. The spacing between gridpoints is S, so there
are [360/S]? possible conformations for each amino acid. Probabilities have been
determined for grids with spacings of 5, 10, 15, 30, and 60°. Different probability
grids were determined for three different residue types: glycine, proline, and the 18
standard residues, from the ¢, ¢ distributions found among residues in a selection of
high-quality structures in the Brookhaven Protein Database (PDB). Additionally,
different grids were developed for different secondary structure types: o helices,
B sheets, and coil conformations. Separate grids were not determined for 8 turns
because these conformations require specific four-residue conformations and are not
represented well by single-residue probabilities. The probabilities for coil regions
were derived from all residues not specified by the HELIX, SHEET, and TURN
designators of the PDB files. These coil probability grids are the most pertinent to
loop conformations and are, therefore, the ones used in these simulations.

Sidechain conformations are also chosen from probability grids, but these grids
are 1- to 5-dimensional, depending upon the number of sidechain x dihedrals that
are sampled in a particular residue. Only x dihedrals which affect the geometries
of heavy atoms (non-hydrogen) and are not part of ring systems are included. The
number of PGMC x dihedrals varies from one (e.g., for serine and threonine) to five
(for arginine).

The goal in loop modeling is to predict the native conformation of the loop. If a
forcefield is used to evaluate conformations, and the forcefield is highly accurate, the
minimum energy conformation should be very similar to the native conformation.
Our simulations use the DREIDING forcefield[9] to evaluate structures. Although
there is probably no forcefield in existence which guarantees that its global minimum
is the native conformation, we have included the capacity to improve the results by

increasing the sophistication of the calculations. Ideally, such factors as solvation
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and loop-protein and loop-substrate interactions would be included in the calcula-
tion. However, including such terms can increase computational time so much that
only a few possible conformations can be evaluated. There must be a balance be-
tween speed and accuracy. We have addressed this need for balance by creating a
hierarchical procedure, which increases in accuracy as the simulation proceeds. The
first stage of the procedure creates backbone conformations which meet the endpoint
criteria; these conformations are evaluated without regard to sidechain interactions.
The second stage optimizes the positions of the sidechains of the loop residues. In-
teractions among all the sidechain and backbone atoms of the loop are considered,
as are interactions with residues from other regions of the protein and, if possible,
interactions with a substrate. The final stage is complete optimization of the best
conformations from the second stage, using energy-minimization of all degrees of
freedom of the loop. At this stage, solvent may be added to enhance the accuracy
of the simulation.

The first stage of the simulation involves the generation of numerous backbone
conformations which meet the endpoint criteria established by the constant frame-
work. The conformation of each loop in a protein is predicted independently. The
framework residues from the template protein are held constant, while all loop
residues are removed. The loop being modeled is then constructed using standard
geometries from the BIOGRAF[10] peptide libraries. Loop conformations are then
generated which meet the criteria that the endpoint residues of the loop attach to
the framework with the same geometry as in the template protein. There is, theo-
retically, no limit to the number of conformations of an n;-residue loop which meet
such endpoint criteria if n; > 3, so there is no method for directly calculating all pos-
sible conformations. The seminal work of Go and Scheraga[l1], however, described

a method for exactly determining the conformations of three consecutive residues
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which enable them to meet endpoint criteria. This is done by solving constraint
equations for the three ¢ and 3 dihedrals while holding all other dihedrals, bonds,
and angles fixed. The algebraic equations described cannot be solved for all cases;
G6 and Scheraga[l1l] found the number of solutions varied from 0 to 8.

We have implemented the chain-closure algorithm to work in conjunction with
our probability grids to generate n;-residue loop structures which exactly meet the
endpoint criteria. An initial conformation is generated by randomly selecting ¢, v
pairs from the probability grids for the “outer” loop residues — those besides the
central three residues. New conformations are generated by randomly choosing one
of the outer residues and choosing a new ¢, pair from the appropriate probability
grid. After each new conformation is constructed, the chain-closure algorithm is
used to determine whether any combination of ¢’s and ’s for the central three
residues can close the loop. If so, each of the solutions is constructed and the energy
of the structure is calculated. If not, the process continues with a new loop residue
selected at random and a new ¢, pair chosen from the probability grids. The
process continues until a loop is successfully built. As each successful loop structure
is saved, its energy is calculated. Because the first phase is only concerned with the
generation of backbone conformations, the sidechain atoms are ignored in the energy
calculations. A typical calculation produces and tests 2000 conformations per cpu
minute on a single processor of a Silicon Graphics 41)/380 workstation. On average,
20 of these 2000 structures can form a successful loop.

The successful loops from Phase 1 are ranked by energy and the best are saved
for sidechain positioning in Phase 2. This second phase uses the PGMC method,
including selection of sidechain conformations from y probability grids, calculation
of the energy of each new conformation, and acceptance or rejection according to the

Metropolis criterion[12]. For each of the backbone conformations saved from Phase



182

2, a Monte Carlo simulation is run in which sidechain conformations are initially
randomly selected from the sidechain probability grids, and new conformations are
built by modifying one sidechain at a time. As each new conformation is built, the
energy of its sidechain and backbone are calculated, including its interactions with
nearby atoms of the framework. The energy of the new conformation is compared to
the previous energy. If the change in energy, AF, is less than 0, the new structure
is saved. If the new structure is higher in energy, the probability of accepting it
is exp(—AE/kpT), where kp is the Boltzmann constant and 7' is the simulation
temperature. The Monte Carlo simulation proceeds for a number of steps and the
best energy conformation is saved. A similar simulation is run for each backbone
structure.

The best conformations from Phase 2 are selected for full minimization. The
lowest-energy conformation for each of the six loops is built onto the crystal struc-
ture framework. This new structure is then minimized using conjugate gradients
minimization with the framework atoms included in the force calculations, but only
the loop atoms allowed to move. Considerable refinement can be achieved even for
the lowest-energy conformations from Phase 2 because bonds and angles need no
longer be fixed and dihedral angles are no longer restrained to gridpoint values, i.e.,
multiples of the grid spacing S. At this point, solvation models may be introduced
into the calculations. Initial work has been done to incorporate the solvation poten-
tial of Eisenberg and McLachlan[13], but without substantial improvement over the
vacuum calculations reported here.

In summary, the three phases of the loop-building simulations presented here are:

1. Phase 1. Generate a large number of loop conformations which meet the

endpoint criteria, using ¢, 1) probability grids and the chain-closure algorithm.

2. Phase 2. Optimize the sidechains of the lowest-energy backbone conforma-
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tions from Phase 1, using y probability grids in the PGMC method.

3. Phase 3. Reconstruct the six loops from the lowest-energy conformation of

each loop from Phase 2. Energy-minimize the resulting structure.

ITI. Antibody Hypervariable Loops

One of the most important classes of proteins to be studied by homology modeling is
the immunoglobulins. These molecules are ideal candidates for homology modeling
studies because each organism can produce a huge number of immunoglobulins, or
antibodies, which differ dramatically in their binding specificities, but are nearly
identical in sequence and structure. The specificity is due to the great variability
of six small loop regions, the “complimentarity determining regions” (CDR’s), also
known as hypervariable loops. A reliable method for predicting the conformations of
the six CDR’s would essentially be a method for predicting the antigen binding sites
of an enormous variety of immunoglobulins and would provide valuable information
about the immune system, catalytic antibodies, and on a more fundamental level,
molecular recognition.

The most common of the five closely related immunoglobulin classes is im-
munoglobulin G (IgG), which is Y-shaped and contains two antigen-binding sites.
Figure 6.1 shows a schematic diagram of an IgG molecule, which contains two copies
each of two different types of chains. The light chains contain a variable (Vi) and a
constant (Cy) domain, while the heavy chains contain one variable (Vi) and three
constant (Cygl, Cyg2, Cy3) domains. All six domain types are similar in sequence
and structure, containing 100-120 residues folded into two antiparallel 8 sheets. The
great diversity of antibody specificity arises from the extreme variability of three

loops in each variable domain. The three variable loops in Vg are called H1, H2,
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Figure 6.1. A schematic diagram of an [gG molecule.

and H3, while those in Vi, are L1, 1.2, and L3. The spatial arrangement of the six
loops is shown in Figure 6.2 for two immunoglobulins whose F,; fragments have been
crystallographically resolved: HyHEL-5 [14] and McPC603 [15].

Because the specificity of antibodies is determined by the six CDR’s, considerable
work has gone into understanding the structure-sequence relationships for these small
loop regions. Several crystal structures of murine and human IgG’s have been solved.
Most are not complete IgG’s, but just the Fab fragment (see Figure 6.1). Many are
co-crystals which include the antigen or a hapten. After analyzing these crystal
structures, as well as several hundred other immunoglobulin sequences, C. Chothia
and coworkers[4, 16] proposed that a small number of “canonical structures” exist for
each of the five loops other than H3. Most examples of these loops should conform
to one of these structures. For example, as many as 95% of the L2 loops are believed

to conform to a single canonical structure, while L1 has four canonical structures



McPC603

Figure 6.2. The six hypervariable loops of the immunoglobulins HyHEL-5[14] and
McP(C603[15], shown as C, coordinates only.
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which account for about 70% of the total. For these loops, antigen specificity is due
primarily to the sidechain conformations, so it is of paramount importance to model
these correctly. Additionally, no canonical structures have been identified for the
H3 loops, which show extreme variation in size and sequence. Therefore, a major
challenge in modeling the antigen binding site is to model both the backbone and
sidechains of the H3 loop.

The studies reported here used the PGMC-based method described above to re-
produce the conformations of the hypervariable loops from the murine IgG molecules
HyHEL-5[14] (structure 2HFL from the Brookhaven Protein Database (PDB)) and
McPC603[15] (PDB structure 1IMCP). These two cases have been used to test
methodologies which use canonical conformations[16], as well as those using con-
formational search methods [17, 18] and those which use a combination of database
information and conformational searching[8]. Different published reports have used
slightly different definitions of the loop regions. As our method is most similar to
that of Bruccoleri and coworkers[6, 18], we used the loop definitions similar to those
in Reference [18], as shown in Table 6.1. There are two differences: we include an ad-
ditional residue in the L1 and L3 loops of HyHEL-5, making these six-residue loops.
In these cases, increasing the size of the loops consistently improved our results.

In order to produce the largest variety of loop conformations, we used probability
grids with S = 5°. As described above, all six loops were removed from the crystal
structure, and each loop was modeled independently. In the first stage of the simu-
lation, 1000 loops were created. The energy of the backbone atoms of each of these
loops was calculated, and the top 100 were saved for Phase 2. Any repeat conforma-
tions were eliminated. These 100 best backbone conformations were each subjected
to 50 steps of PGMC, using x probability grids and a simulation temperature of

1000 K. The full energy of the loops, including the sidechain atoms, was used for



HyHEL-5 McPC603

Loop | Residues | Size | Residues | Size

L1 25-30 6 26 - 37 12
L2 49 - 54 6 36 — 61 6
L3 89 -~ 94 6 97 - 102 6
H1 28 - 32 3 28 - 32 b}
H2 50 — 56 7 30 - 58 9

H3 | 100-103| 4 |102-109, 8

Table 6.1. The loop residues of HyHEL-5 and McPC603.

the Monte Carlo phase. For each of the six loops, the overall lowest-energy confor-
mation from the 100 Monte Carlo runs was saved for Phase 3. In this last stage, the
six loops were assembled and were energy-minimized using the conjugate-gradients
minimizer of BIOGRAF[10].

The results for McPC603 and HyHEL-5 are described in Tables 6.2 and 6.3.
The Phase 2 root-mean-square (rms) deviations are given with respect to the crys-
tal structures. The Phase 3 rms deviations are given with respect to DREIDING
reference structures, in order to reduce the effects of the choice of forcefield. The
DREIDING reference structures were created by minimizing the loop conformations
from the crystal structure while holding the framework atoms fixed. For all cases,
hydrogen atoms were not included in the determination of rms deviations.

Results were consistently good for small and medium-sized loops (4-6 residues),
with the exception of the H1 loop of HyHEL-5. For this loop, 17 of the top 25
loops from Phase 2 had C, rms deviations of less than 1.5 A, but the best loop

had a deviation of 2.48 A. It is possible that increasing the sophistication of the
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Predicted Loops for McPC603

RMS deviations (A)

Phase 2 Phase 3
Loop Size| Al BB C, | Al BB C,

L1 12 453 3.72 3.70 | 495 4.11 4.17
L2 6179 1.15 1.09]1.14 0.82 0.62
L3 6118 1.19 1.09|145 094 0.58
H1 511.8 141 1221190 1.44 1.17
H2 91450 2.73 271|425 281 2.70

H3 813.00 1.72 1.66|3.16 1.80 1.75

All 46 | 3.45 2.48 244 1349 2.64 2.59

Table 6.2. The rms deviations for all atoms, backbone atom (BB), and C, coor-
dinates are given for the predicted conformations of the McPC603 hypervariable
loops.



Predicted Loops for HyHEL-5

RMS deviations (A)

Phase 2 Phase 3
Loop Size| Al BB C, | Al BB C,

L1 6218 142 1.44|1.67 1.04 0.87
L2 61207 1.59 1301|157 1.23 0.92
L3 61304 254 199296 231 1.75
H1 51377 1.98 2.00|4.06 231 248
H2 71273 1.89 1.77]253 1.87 1.98

H3 41277 092 0.32]264 098 0.27

All 341284 1.83 1.62]273 1.74 1.59

Table 6.3. The lowest-energy loops created in phases 1 and 2 of simulations of
HyHEL-5.
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energy term, such as including terms for surface area or solvation, could improve
the selection of more native-like conformations. As noted in other studies[18, 8],
the energy from vacuum calculations correlates only modestly with improved fit to
the crystal structure. For example, the bests C, fits from the 1000 loops generated
in Phase 1 are listed in Table 6.4, clearly indicating that better loops were sam-
pled. Nevertheless, the vacuum calculations used here did quite well for most of the
medium sized loops, with C, deviations ranging from 0.27 A for H3 of HyHEL-5
to 1.75 A for L3 of HyHEL-5. It is important to note that the backbone confor-
mations of the two H3 loops were modeled quite well, since these loops cannot be
modeled using canonical structures[16]. Modeling of the L3 loop of McPC603 was
very successful, not only in that the rms deviations were low, but that the cis pep-
tide bond of Pro 101 was accurately predicted. Likewise, the trans peptide bond
of the homologous Pro 94 of HyHEL-5 was predicted, as well. On the other hand,
the large L1 and H2 loops of McPC603 were modeled poorly in comparison to the
shorter loops. The conformational space of these loops is so large that even 1000
trial structures is probably too small a number for adequate sampling. Modeling
loops greater than 10 residues in length is probably beyond the capabilities of both
database and conformation-searching algorithms, the former because of the lack of
example conformations meeting the necessary criteria and the latter because the
huge conformational space cannot be adequately searched in a short period of time.
Generally, the calculations here took two hours per loop. One hour was required
to generate the 1000 loop conformations and one hour was required to optimize the
sidechain conformations of the 100 initial conformations in Phase 2.

The C, traces of the modeled and actual loops for HyHEL-5 and McPC603 are
shown in Figures 6.3 and 6.4. The loops are shown in the same face-on view of the

antigen-binding site as used in Figure 6.2. The excellent fits of the predicted loops
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Best C, Conformations from Phase 1

Loop | McPC603 HyHEL-5
L1 2.48 0.44
L2 0.41 1.12
L3 0.90 1.21
H1 0.38 0.44
H2 2.21 0.88
H3 1.34 0.26

Table 6.4. The best rms deviation of C, coordinates from the crystal structure from
among the 1000 loops generated in Phase 1.

for H3, L1, and L2 of HyHEL-5 and H1, L2, and L3 of McPC603 are very apparent,
even in the simple C, trace pictures. More detail can be seen in Figures 6.5 and
6.6, which show the entire backbone conformations of the model and actual loops
in views perpendicular to the plane of the loops. The large errors in the backbone
conformations of the L1 and H2 loops of McPC603 would prevent an adequate
model of the antigen-binding pocket from being predicted, if this were a blind test
where the conformation of the loops was unknown. L1 and H2 are both involved
in binding the phosphocholine hapten[19] co-crystallized with the McPC603 Fab in
the PDB structure 2MCP[20], so better modeling would be required to understand
this interaction if no crystal structure were available. In contrast, the predicted
backbone conformations of the HyHEL-5 loops may be sufficient to understand its
binding to lysozyme. Sidechain modeling would still require improvement. This
may be possible with concurrent optimization of the sidechain loops. Currently,
the Phase 2 simulations are done on each individual loop, without the other loops

present. Simulations run with all six loops present should improve the sidechain
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packing in the binding site model.

The results are quite comparable to the results of Bruccoleri et al.[18], who used
a more brute-force conformational search algorithm for constructing possible loop
structures and included surface area calculations in a variety of ways to choose
particular loop conformations to use. That study predicted the HyHEL-5 loops to
an rms deviation of 2.6 A for all atoms and 1.4 A for backbone atoms, compared
to our results 2.73 A and 1.74 A, respectively. Our results for McPC603 were not
as good, since the two large loops were modeled less successfully. Nevertheless, the
results for the other four loops are quite good. The results from various methods are
shown in Table 6.5. The PGMC method reported here, produces results similar to
those of the published packages, despite being a highly generalized method, which
does not require the loops being modeled to have any relationship to loops of known
conformations, and without having taken into account any solvent effects. The
method described here does not require any user input once the initial conformation

and the sequence to be changed has been specified.

IV. Conclusions

An effective loop-modeling procedure has been developed which uses probability grid
Monte Carlo (PGMC) to search the conformational space of the loop backbone and
its sidechains. Although this method is completely general, applicable to any loop
conformation and sequence, it produces results comparable to methods requiring
database matching or canonical structure matching. Modeling of the hypervariable
loops of the immunoglobulins HyHEL-5 and McPC603 showed that most loops can
be modeled to within 2 A (backbone) or 3 A (all-atom) rms deviations from the

crystal structures. Additional energy terms using solvent-accessible surfaces or other



Model vs.

Figure 6.3. C, traces of the predicted and actual loop conformations of HyHEL-5.
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Model vs.

Figure 6.4. C, traces of the predicted and actual loop conformations of McPC603.



Figure 6.5. Backbone conformations of the predicted (yellow) and actual (red) loop
conformations in HyHEL-5.




Figure 6.6. Backbone conformations of the predicted (yellow) and actual (red) loop
conformations in McPC603.
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All-atom and Backbone atom rms deviations (A)
HyHEL-5

Loop | PGMC | Ref.[18] | Ref.[16] | Ref.[§]

L1 | 167 1.04|1.8 06|~ 0.8 |1.53 1.02

L2 | 157 1.23|1.7 08|~ 09 |1.55 0.76

L3 [296 231|41 11|- - |250 1.37

H1 |4.06 231|1.8 1.1|- 1.4 |1.64 0.90

H2 [253 187(31 21 |- 1.1 |1.83 1.13

H3 [264 09827 1.0|- - |[231 145
McPC603

L1 | 495 4.11|3.0 26

L2 | 113 0.82|19 L6

L3 | 1.45 094 |14 0.8

H1 [1.89 1.44|1.7 0.7

H2 |4.25 2.70|21 1.6

H3 [3.16 1.80 |29 1.1

Table 6.5. The results from this work (PGMC) compared to results from three
different methods: a conformational-search algorithm[18], a method which uses the
canonical structures of loops other than H3 (L3 of HyHEL-5 also does not fit one of
the canonical structures)[16], and a method which combines conformational search-

ing with comparisons to database conformations[8].
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solvation terms, may provide a means for improving the correlation between energy
and rms fit to the crystal structure, thereby enabling backbone conformations to
be regularly fit to near 1 A or better. In addition, concurrent optimization of the
sidechains of all six loops during Phase 2 should improve the packing of sidechains

and the prediction of the shape of the antigen-binding site.
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