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"The man who is certain he is right
is almost sure to be wrong, and he
has the additional misfortune of
inevitably remaining so."

Michael Faraday (1791-1867)

"Attempts to direct research toward
results of possible applicability can-
not lead to growth in science which is
of much value. ..We shall see the
authorities recoiling at various points
from the destruction of wealth and
culture caused by their attempts at
total planning...Unless we fully re-
establish man's right to pursue truth
regardless of social interests...This
generation will find, too late, that it
has opened wide the pass to the
barbarians. "

Michael Polanyi (1891-1976)
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ABSTRACT
Part 1

_ The photoionization cross section is shown to be directly related
to the imaginary part of the frequency dependent polarizability.

Using this relation, an approximate representation of the
frequency-dependent polarizability is constructed from a discrete set
of transition frequencies and oscillator strengths. This approximate
representation is used in an analytical continuation for complex values
of the frequency using a sequence of (N+J/N) Pad€ Approximants (with |
J = -1). Once the representation of the frequency-dependent polariza-
bility in the upper half part of the complex plane is known, we
can calculate its value along the real axis and consequently the photo-
ionization cross section. The great advantage of the method resides
on the fact that the use of a discrete representation for the dynamic
polarizability explicitly avoids the use of continuum functions.

We have applied this method previously in the calculation of
photoionization cross sections for the helium atom in its ground state
and in the 2'S and 2°S metastable states. Calculations for the CO mole-
cule are in progress.

Here we present calculations for the H™ atom. For this system
we also computed the dynamic polarizability in the normal dispersion

region. A study of the basis set dependence is also presented.
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Part oI

Self-consistent ab initio generalized valence bond (GVB) and
configuration interaction (CI) calculations are presented for the
ground states, valence and non-valence states, Rydberg states and
7 positive ion states of trans 1, 3-butadiene and all-trans 1, 3, 5-
hexatriene molecules.

It is shown that the electronic spectra of these molecules can
be rationalized in terms of a few valence excited states and a series
of Rydberg states. The first singlet excited states of these molecules
(11Bu) correspond to non-valence, non-vertical states.

It was found that to correctly describe the 1 lBu and the 2 1Ag
(valence) states of these molecules it is necessary to correlate not
only the electrons of the 7 system but also the electrons of the (C-0) o
subspace.

It is also shown that the first two bands of the photoelectron
spectrum (PE) of the butadiene molecule and the first three bands of the
PE spectrum of hexatriene correspond to ionization out of the occupied
7 orbitals of these molecules.

Another important conclusion from our studies is that for this
type of system, good quality GVB (n/PP) wavefunctions with the 2nz
electrons correlated can be obtained by carrying out a Hartree-Fock
calculation on the ground state followed by a GVB (n/PP) calculation
on just the 2ny orbitals (keeping the o HF space fixed). From this
wavefunction accurate values for the transition energies of the valence

states can be obtained. Work on all-trans 1, 3, 5, T-octatetraene now in

progress will provide a good test for this scheme.
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CHAPTER 1
THEORETICAL STUDIES OF PHOTOIONIZATION



SECTION A
PRELIMINARIES



The basic idea of the approach is to explore the relation
between the frequency dependent polarizability of a system and its
photoionization cross section.

The frequency dependent polarizability is given by1

f )
i )
n£0 Wop =@ €] € -w*

where f on and g(€) are the oscillator strengths for the bound and con-
tinuum transitions, respectively, w on 2¥€ the transition frequencies

and €1 the first ionization threshold. Extending (1) to complex fre-

quencies,
f o d
alz) = 2 __O_n__+f g(e)de_ (2)
n+0 wzn—zz’ € € -z?

we see that the complex polarizability is analytical throughout the com-
plex plane except for an infinite number of poles along the real axis
(the ones in the positive part corresponding to the transition frequencies),
and a branch cut in the photoionization interval €1 < Re(z) < w,

To extract the real and imaginary parts of (2) we assume that
a(z) is analytical also in the lower half plane for points very close to
the real axis, Taking two points very close to the real axis, z=w + in,

n — 0, the discontinuity across the branch cut is given by:

Re a(z) = a(w+in); olw -in) (32)

Im a(z) = olw + i'n)zi- a(w - in) (3b)



Introducing the definition of a(w) in (3b) we obtain,

1 oo [ fOn fon
Im a(z) = g L |5——r— - — +
n=0 ‘won-w +in  w -w -in
1 7 gle)de 1 1
+27f€ €+2z |e-w-1y 'e-w-inJ (4)
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In the limit that n — 0 (z = w = in — w) the discrete contributions
cancel and recognizing that the expression in braces under the integral

sign is just 2ri 6(e - w) we finally obtain:

Im oalwzin) = 217 %Z—‘;l 27i = 1%%2 (5)

lim 70

Similarly, for the real part we have:
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In the limit 7~0 the first two terms become equal and because

lim f—zgfm—g— = Pf?g{—?z— * 7ig(w®)

3-0 ° € -w’zxip

we obtain:
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f 0
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We can finally write that:

= f 0 )
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Since the photoabsorption cross section can be written as2

27
ow) = -y g(w) ’
we obtain the relationship

0(@) = lim 2 Im [o(w+in)] 9)

1n-0
between the total cross section and the imaginary part of the dynamic
polarizability.

The advantage of using the dynamic polarizability to perform
the analytical continuation resides on the fact that its analytical form is
such that it can be written as a Stieltjes series. Once this is recognized,
Padé Approximants provide an efficient way to perform the continuation.
It is known from the theory of Pade Approximants that, for this type of
series, any sequence of [N+J/N]J = -1 of Padé Approximants will
converge to the function o (z) in the cut, as N goes to infinity. 3 ot
course we expect in practice to obtain convergence with small values of

N.



For the sake of completeness let us show that the dynamic
polarizability can indeed be written as a Stieltjes series. Baker4 seems
to be the first one to point out this relationship using an approach dif-
ferent from the one presented here.

It will be convenient to rewrite (1) in a more compact form,

- ® (df/ de)

0 e -w?

a(w) = de (10)

where the generalized oscillator strength, df/de, is defined as

0

Q. 121 1,6y, -9 +gle) | de (11)

That (10)is equivalent to (1) can be shown by simple substitution
of (11) on (10). The 6 function will generate the summation over the
discrete part of the 'spectrum and the second term of (11) will generate
the integral over the continuum.

If we expand (10) in a Maclaurin series

r
w ’

0
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the coefficients of w can be written as

S = foo (ﬂﬁ)lrdf} de (12)

0 (e

Then the dynamical polarizability (10) can be written as a power series



alw) = 2 8. (13)

To prove that series (13) for a(w) is a Stieltjes series it suffices to

show that the coefficients Sr can be written as

S, = fo u’ dy(u) (14)

where ¥ (u) is a bounded, nondecreasing function in the interval

Osu<°<>.3

Let us define the variableu =1 /62 and the following relations

derived from this definition:
€ =-u't? de = -é—u'“ du

Introducing these relations in equation (12) we obtain:

=}

S, = fO (df/de) u” %—u_l ? du

Introducing now the function y(u) defined as .
u -
Y@= [ (3)u™? (dt/de) du (15)

we establish the equivalence between equations (12) and (14). For

excitations out of the ground state of a system is always true that

df/de = 0



This last condition is sufficient to establish that the function y(u) is a
nondecreasing, bounded function of variable u. Consequently, the
dynamic polarizability can be written as a Stieltjes series.

In practice we cannot use definition (1) or any equivalent because
they require the knowledge of all the bound and continuum states of the
system. Instead we try to represent the dynamic polarizability by an

"effective summation' over a discrete basis set

~/

f :
a(w) = Z :»—2—(L2— (16)
n+0 w on~ ¢
Notice that equation (16) has the same analytical structure of equation
(1) and can equally be represented by a Stieltjes series, that guarantees
the convergence of the analytical continuation.

Our basic problem is then to obtain a set of "effective' oscillator

> - o~
and transition frequencies, w that allow us to con-

strengths, f on’

on’
struct (using equation 16), a representation for the dynamic polarizability
that exactly reproduces the true function at least in the range of energy

pertinent to the process being studied.
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SECTION B
THE PHOTODETACHMENT CROSS SECTION
OF THE NEGATIVE HYDROGEN ION



11°
I. INTRODUCTION

The photoionization cross section of the hydrogen negative ion has
been subject of several calculations since Wildt1 first suggested that
it could be responsible for the visible and infrared opacity in the atmos-
phere of cooler late spectral type stars.

Cha.ndra.sekhar2 and his co-workers pioneered these studies in a
series of papers investigating the dependence of the cross section on the
accuracy of the bound-state wave function. They also investigated the
effect of the central field approximation for the free state. 8 The
importance of taking into account exchange effects in the free wave func-
tion was first investigated by John4 using the Hart-Herzberg twenty-
parameter wave function for the ground state and the "1s'" exchange
approximation continuum function. A number of subsequent calculations
have appeared. Géltman5 employed the seventy-parameter bound-state
wave function of Schwartz and variationally determined symmetrized
continuum functions, containing terms corresponding to excited states of
the hydrogen atom. This allowed him to treat both correlation and
distortion of the residual hydrogen atom. Doughty et al. 6 employed a
close~-coupling approach for using a Hartree-Fock eigenfunction expan-
sion for the continuum states which included up to 3d atomic
orbitals of the hydrogen atom. Bell and Kingston'7 used the method
of polarized orbitals to obtain a representation of the continuum. More
recently Ajmera and Chung 8 used the variational method of Kohn-
Feshbach to obtain free-state wave functions. A recent review of the
photodetachment of H was given by Risley. 9

While many of the above calculations have produced good results
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for H , they are generally not easily extended to large Systems, first
because such highly accurate wave functions are not available for systems
with more electrons and secondly because the generation of continuum
functions by the methods used above becomes very cumbersome. 10
Our interest is in developing a method which could be equally applied
to larger systems. Thus we use highly accurate wave functions and methods
practicable for polyatomic molecules, and we avoid the explicit use of
11 The method is based upon the relation between

continuum functions.
the cross section for photodetachment and the imaginary part of the
frequency-dependent polarizability. As first suggested by Reinhardt and

12d we used a discrete basis set representation of the

co-workers,
frequency-dependent polarizability which is used to make an analytical
continuation in the complex plane. Details of the method and the calcula-
tions are presented in Secs. II and ITI. This method has been success-

12 but systematic studies of the basis

fully applied to other small systems
set for the unbounded orbitals have not been reported. This is an impor-
tant part of the problem since basis set expansions represent the most
convenient approach to the treatment of large systems. Once we under-
stand how to select small but adequate basis sets for the unbounded
orbitals, the method is automatically extendable to larger systems,

since the use of basis set expansions for the bound part of the system is

well established.
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II. METHOD

The basic difficulty with using a discrete or finite basis set for
photoionization calculations is that we obtain only a finite number of
transitions which are supposed to represent the continuum. That the
discrete set does represent the continuum in some sense is indicated
by the fact that the calculated sum over the discrete transitions (1)

and its moments,

2 f (1)

n on

(where £ on is the oscillator strength), is approximately equal to the
integrated absorption for the continuum,(2), and its respective

moments,

P v
[ gle)de (2)
€1

(where €; is the jonization potential and g(e) is the oscillator

strength for the continuum). On the other hand it is clear that the

oscillator strengths at every transition energy w on must be associated

with a band of transitions near w The problem then is how to

on *
proceed from the theoretical results

{fon’ won’ n= 1’ nmax} (3)

to a continuum function g(e).
The approach we follow makes use of the relationship between

g(w) and the complex dynamic polarizability «(z).
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The frequency-dependent polarizability is given by:

£ o0
o(w) ;_0_13_ +/gxzszg_ze_ , @
n won_ w EI ‘”E-w

where fon and g(€) are the oscillator strengths for the bound and continuum
transitions respectively, Won the transition frequencies,and € the first

ionization threshold. Extending this definition to complex frequencies -

leads to
" o0
-
a(z) = B +f g@de (5)
n;eo“bn'z e € - Z

The complex polarizability a(z) is analytical throughout the complex
plane except for an infinite number of poles along the real axis (the ones
in the positive region corresponding to the transition frequencies) and

a branch cut in the photoionization interval EI =Re(z) <w.

Since the cross- section can be written a313
21'_2
o(w) = Tg(w) (6)
and since
f o0
a(w+in)=2 ._Z__QB_Z_,_ P f g(ez)d€2 +i7fg(w) , ()
n—0 n=0 wj, - w € €W 2w

we obtain the relationship
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o(w) = lim é’-é-g)- Im [a (W +in)], (8)

n=0

between the total cross -section and the imaginary part of the dynamic
polarizability on the real axis.

So far we converted the problem of obtaining g(w) to that of
obtaining the imaginary part of a(z). This latter task is accomplished
by an analytical continuation procedure14 as follows: (i) we construct
an initial guess for a(z) from (3) as

~

f
a(z) = 2 —,ﬂ—g)n—z ; 9
n=0 @~ Z

this is approximate since each discrete f on

continuum and thus should not be associated with a single ‘;on;

(ii) using (9) we calculate a(z) at a number of points in the complex

represents a band of the

plane; (iii) these points are fitted by a Padé Approximant, providing

a representation of o (z) in the complex plane; (iv) using this represen-
tation we calculate @ (z) on the real axis where it is equal to a(w); and
(v) the imaginary part of @(z) on the real axis thereby provides the
cross section by Eq.(8). Having the representation for a(z) we can

evaluate o (w) at a very large number of points with little effort.

The crucial point in this process is the fitting procedure. In this
respect it is important to notice that the analytical form of the .
frequency-dependent polarizability is such that it can be written as a

15 Consequently, Padé Approximants16 can be used

Stieltjes series,
as a very efficient way to perform the continuation. For this type of

series, any sequence of [N+J/N] Padé Approximants (with J = -1)
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will converge, as N goes to infinity, to the function a(z) in the cut.
Of course, we hope to achieve convergence with small values of N.
There are two ways of using Padé Approximants to fit a(z).
One is to use its analytical form and expand it in a Taylor series
around some point z,. The coefficients of the series can be used to

construct the approximants by equating

. P
£(z) = £(zy) +2,(2 - Zo) + 8,(Z - Zp) +... +23,(z-2,)" = —, (10)
n

where P . and Q, are polynomials of degree m and n in (z - z,).
Notice that forthe particular case of f(z) = a(z) and z, chosen at the
origin, the coefficients a; are the sum- rules. Although the approxi-
mants are determined by the information in f(z) at only one point,
these unipoint-multipiece approximants have been successfully used

to continue Taylor series expansions out of its range of convergence.
In addition, inside the circle of convergence of the Taylor series, they
usually converge faster than the series itself. Among several applica-
tions, this type of Padé has been used to calculate second-order optical

properties of atoms and molecules. 17

However, there are some cases
where this type of Padé Approximant presents numerical problems.

For example, small errors in the coefficients can produce uncontrol-
lable divergences far from the point of expansion. This implies that
the use of higher-order Padé Approximants (to obtain better convergence)

can be seriously affected by increasing error in the coefficients. 18
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This type of divergence can be circumvented by the use of multipoint-
multipiece Pade' Approximants. In these cases, instead of expanding the
function around one single point, we expand it at several points, with a
subsequent matching of the series. The extra points can be picked, for
instance, in the regions where the Pade'Approximant constructed from the
previous series starts diverging. Multipoint-multipiece Pade Approximants

19 mainly in their

have been the subject of recent theoretical investigations,
relation to Stieltjes series, and many of the results for the normal Pade
can be extended to the multipoint case. Several recent applications of

two-point Padé Approximants have been reported in the literature. 20

In
principle this type of Pade should provide the best way of fitting the function

since it contains several pieces of information about the function at each

point. Increasing the number of pbints leads to additional algebra
involved in the matching of the various series. Here, the approach is most
useful if a small number of points is sufficient to assure convergence
over the range of interest.

An alternative approach is to construct a Pade' type-11 Approximant. 21
This Padé is built not from the coefficients of a Taylor series expan-
sion but from values of the function at different points. In the nomenclature
used above, this is a multipoint-unipiece Padé Approximant,and is the
type of Pade used in the present work. Here we do not have problems
associated with uncertainties in the coefficients. Besides that, since we
can,in principle, pick points covering most of our range of interest, it

seems to be more efficient for the continuation than the usual unipoint-

multipiece Pade Approximant.
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III. WAVE FUNCTIONS AND BASIS SETS

A. Wave functions

The Hartree-Fock wave function of H is unbounded, i.e., above the
energy of the H atom, and hence inappropriate to our studies. The simplest
acceptable wave function is the five-term expansion:

1 - 2_ 2 -2 2 2 11
W08 = ety v o by v ocilfy, v B v T 1)
We solved for the orbitals and coefficients of this MC-SCF wave

22 The resulting energy is

function using the GVBTWO program,
-0.5251 h which is 0.0026 h (0.07 eV) above the exact energy but 0.0372h
(1.012 eV) below the Hartree-Fock energy.

As an approximation to the 'P continuum states we solved for the

wave functions-
VCP) = (dgPnpn + Pnpz®is) s (12)

where qbl s is taken as the 1s orbital of the hydrogen atom and qbnpz are
the variational solutions of (12) (given fixed qbl S).

The final wave functions for the calculation were obtained from CI
calculations using the above orbitals. 23 For the 'S state we used the
five orbitals from (11) plus the ¢, ¢ orbital from (12) (orthogonalized),
including all the allowed configurations (nine configurations). For the 'P
states we included the nine P, orbitals from (11) and (12) plus the three s orbitals
(q.'>1§ , qbzé , qbls), allowing a full CI over these states (27 configurations). 33
These solutions were used to evaluate the oscillator strengths for the

. 1 1 e . . R
various P - °S transitions. The basis set is discussed below.
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B. Basis sets

All calculations were carried out using the Huzinaga [6s/3s]
expansion for the 1s orbital ({ = 1.0) plus the inner two components
of the (4p) expansion of the 2p orbital (¢ = 0.5). 2% To this basis set
we added diffuse s and p basis functions, as indicated below.

The uncertainty in choosing the basis set concerns what to
include for the continuum wave functions. We cannot optimize the
basis sets as we do for bound states. Instead we want an expansion
leading to a good description of (at least) the region of the continuum
most involved in the process. One criterion which we used to deter-
mine the quality of the basis sets is to require them to produce a
distribution of oscillator strengths and transition frequencies which
satisfy the sum rules (see Sec. IV-B for a discussion of the sum rule
criterion).

It is important in this type of study to have a systematic way of
changing both the number of basis functions and the range of exponents
of the basis sets. We accomplished this by considering each member

of the diffuse s and p basis sets to have orbital exponents as,

¢, BE, B, ...,

that is, each orbital exponent is the geometrical factor 8 times the
previous exponent. Various geometrical factors, g, were used with
diffuse s and p functions lying in the range 0. 04 to 0.00256.
Explanatory calculations indicated that the diffuse s and p basis
functions should have the same distribution of exponents and hence we

took
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In Table I we show the spectra (f on and w on) resulting from three
different basis sets, all covering the same range (out to 0.00256) in
exponents. From this table it is clear that the smoothest spectrum is tl
one generated by the basis set [11s/11p; 8 =1/1.5]. Of course smooth-
ness is not a rigorous criterion for choosing a basis. A more fundament:
criterion is the agreement with the sum rules arising from the spectra.
We proceeded then by computing the sum rules for several basis sets
using various sized basis sets with various geometrical factors.

In some cases the s basis set was insufficient to describe the ground-
state 'S and the basis set was discarded.

Table II shows some typical results for several cases. For the
three basis sets of Table I (which cover essentially the same range of
exponents), we see that [7s/Tp; 8 =1/2.5] exceeds sum rules S, S,
and S,, while both [9s/9p; g = 1/1,175] and [11s/11p; B = 1/2.5]
exceed the S, and S; sum rules, On the basis of this comparison,
[7s/Tp; B = 1/2.5] is clearly unsatisfactory.

We next considered variations in the number of s and p basis sets
while keeping B fixed. From Table II it is clear that (a) for the
geometrical factor 8 = 1/2.5 no improvement is obtained; (b) for
B =1/1,75, the addition and subtraction of basis functions to the basic
[9s/9p] basis do not show any improvement; on the contrary, worse
sum rules are obtained;(c) for 8 = 1/1.5 substantial improvement is

obtained when the number of basis sets of the s-space is reduced.
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On these considerations we selected g8 = 1/1.5 as the optimum
geometrical factor. Figure 1 shows the resulting cross sections for
some of the bases which violated the sum rule criterion.

Once the optimum geometrical factor was chosen, we turned
our attention to the size, i.e., the number of basis functions in the
basis set. Assuming that we have enough diffuse p functions in the
basis set, the question to be answered is how many s diffuse functions
are required? Table III shows the dependence of the H™ ground state
energy on the size of the s basis, for g = 1/1,5, using the basis sets
listed in Table IV. From Table III we see that only 7s basis functions
are required. We selected this basis set [7s/11p, 8 = 1/1.5] as the
optimum one, This basis set was the one used for the calculations of

the cross sections and dynamic polarizability.
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IV. RESULTS

The final spectra obtained are shown in Table V. These spectra

were used to produce all the results described below.

A. Cross-section for photodetachment

Following the procedure outlined in Sec. II we performed the
analytical continuationto obtain the cross -sections. Figure 2 shows the
results for two different analytical continuations, indicating the con-
vergence of the calculation. The convergence is good for both velocity
and length forms. Figure 3 shows our results in both forms compared
with other theoretical results. The agreement among all calculations
is good in general except in the region very near the threshold.

Our best agreement over the entire range (Fig. 3), in both forms,

5 who used true continuum wave functions in his

is with Geltman
calculations. This suggests that we are representing the continuum
well, at least for the region most involved in the process.

Comparing our results with the experiment in Fig. 4, we find good
agreement. These experimental results are the relative measurements

25 normalized to the value of our cross section at

of Smith and Burch
2.35 eV (5280 4). These relative measurements have a maximum
estimated uncertainty of +3%. On the basis of the absolute integrated

measurements of Branscomb and Smith, 26

Geltman put Smith and
Burch results on an absolute basis, obtaining a value of 32.8 Mb at
2.35 eV (5280 A), with an uncertainty of 20%. This value is in good

agreement with our value of 30.56 Mb at 2.35 eV (52804).
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From Fig. 4 we also see that the agreement between the length
and velocity forms of the cross sections is very good. Since for the
exact wave functions \Ir(IS) and \If(lP) these two forms are equivalent,
the agreement between them can be used as a test for the quality of the
basis set. Of course close agreement between the two forms is only

a necessary but not sufficient condition for an adequate basis set.

B. Sum rules

One way of estrirﬂnating- tﬁe quality ofrﬂcr)ur results is to compute the
sum rules associated with each distribution. Because the sum rules emphasize
different regions of the spectra, they provide an estimate of the accuracy
of the cross section at different values of energy. On the basis of the

27 were able to show that the

5

sum-rules criterion,Dalgarno and Kingston
cross sections calculated by Chandrasekhar should be in error. Geltman
analyzed his results in terms of his sum rules and concluded that his .
results should be low near the threshold. These sum rules can be

expressed as.

f
S ,;n : (13)
n£0 “on

S, is the Thomas-Reich-Kuhn oscillator strength sﬁm rule and S,

is the static polarizability. The exact values of these sum rules contain
contributions not only from transitions in which the hydrogen atom is left
in its ground state but also from transitions in which the hydrogen atom is
left in an excited state or even ionized. Thus the exact values can be used
as upper bounds for the values computed when only the transitions leaving

the hydrogen atom in its ground state are considered. Table VI shows our
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sum rules compared with other calculations and with the upper bounds.
Note that most results in Table VI are for the single channel in which the
H atom is left in the 1s state, whereas the bound includes all processes.
Thus theoretical values of S close to the bound need not indicate an
accurate result,

Assuming Schwartz's bound for the static polarizability, Table VI
shows that all the sum rules are satisfied. On the other hand, if

28 value is taken for the upper bound, we exceeded this value

Chung's
in both forms. This may indicate that the cross sections near threshold
are somewhat large. Independent of which bound is used for the static
polarizability, other calculations seem to indicate low values of the
cross section near threshold. Consequently we expect the exact

values near the threshold to lie somewhere between our results and

the other calculations.
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C. Dynamic polarizability

An alternative way of checking our distribution is to calculate
the dynamic polarizability in the normal dispersion region below the
threshold. Since there are no bound-bound transitions for H™, it can
be seen from (7) that both the real and imaginary parts of the dynamic
polarizability are given directly by g(w).

In general there are several alternate approaches to extracting
the information contained in the frequency-dependent polarizability.
First of all, if there is interest only in the absorptive properties of
the system, we can neglect all the bound-bound transitions
because the imaginary part of a(z) is given solely by the distribution
g(w) which only involves bound-free transitions. Indeedin the case of the
hydrogen atom,1 2d a better description of the cross section was
obtained when two bound-bound transitions were neglected. Another
possibility is to construct the full representation for a(z) including
all bound-bound transitions. In this case we can extract from
o (z) both the dispersive and absorptive properties of the system.
There is still another possibility which is to use the real part of a(z).

Since it is directly related to the index of refraction by
n(w) - 1 = 27 N, Re[a (w)], (14)

we could in principle use experimental index-of-refraction data and
discrete oscillator strengths to perform the analytical continuation.
Unfortunately these data are not accurate enough to produce good

cross sections. 12d,29
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Figure 5 shows our results for the dynamic¢ polarizability
compared with a variational-perturbation calculation by Chung. 28
The curves parallel Chung's values up to 0. 01 h and begin to deviate
significantly above 0.023 h. Near the threshold (0.0275 h) the differ-
ence is very large. Although Chung's results are expected to be very
accurate for lower energies (where they are converged values for a
140 Hylleraas-type wave function), they are not converged for

E > 0.023 h (just the region where: our values start deviating signifi-
cantly from Chung's). While it is clear from Chung's results that
inclusion of more terms in the expansion would not affect this region
drastically, it is important to note that his wave function is con-
tracted and cannot describe well the behavior of a diffuse system like
H™ near the threshold. (This is clear from Chung's results for Li*,
a much tighter system, where a rapid increase in the region near the
threshold is found and a faster convergence is obtained.) More

recently, Adelman31 developed an analytical expression for the

dynamic polarizability of H™, using Rotenberg and Stein's®2 wave
function (a 33 Hylleraas term expansion plus a tail function) and an
asymptotic approximation. His value for the static polarizability was
215.5a.u., but if he uses Chung's value of 206 a. u., his results differ
from Chung's results about 4.5 to 5.0% for w < 0.0252.u. Very close
to threshold this difference jumps to 6.6%, his value being larger than
Chung's, but still much lower than our present results. We believe
that this large discrepancy near threshold is due to the fact that

Adelman's expression for a(w) is poleless, which could prevent it

from increasing sufficiently in the region very close to threshold.
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Thus while we expect Chﬁng 's value of the static polarizability to be
more exact, we expect our dynamic polarizability to show a more
correct behavior over the whole range.

Based on all the results presented above we conclude that the
velocity form of the frequency-dependent polarizability gives the best
results but that the agreement with the results from its length form

is very good.
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V. CONCLUSIONS

The results obtained permit us to conclude that a discrete basis
set expansion can be effectively used to represent the continuum wave
functions. This "'discretization' of the continuum together with tech-
niques of analytical continuation can be efficiently used to calculate
cross sections for photoionization, once an adequate basis set is
chosen. That makes the method potentially applicable to large systems.

For H there remains some uncertainty about the region near the
threshold. This region remains unexplored experimentally. Although
the uncertainty is not great enough to invalidate any conclusions about
the importance of photoionization in H™, it seems that the subject
merits a new experimental investigation, using modern techniques

such as tunable dye lasers and modern systems of detection. 30
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TABLE I. Dependence of the spectra upon basis set,? 'fori = oscillator

strength, Won = transition energy (eV).

[7s/7p ;B =1/2.5] [9s/9p; B =1/1.175] [11s/11p; B = 1/1.5]
fon “on fon “on fon “on

0.043039 0.841215 0.025572 0.813537 0.017101 0.793612
0.215733 1.250041 0.114370 1.082266 0.076601 1.002800
0.454171 2.279275 0.246037 1.585558 0.168768 1.356880
0.437477 4.896766 0.294583 2.495641 0.212764 1.916556
0.418858 11.379151 0.322565 4.155460 0.250749 2.784818
0.051405 63.118341 0.282310 7.315295 0.228296 4.140133
0.108864 14.017534 0.227801 6.289182

0.211064 9.859149

0.137689 16.633445

4The diffuse functions of these three basis sets cover the exponent range of
0.04 - 0.00256 for both s and p spaces. Since the geometrical factors are
differerit, the first diffuse basis of each basis set are not exactly equal.
They are 0.04000, 0.04202 and 0.04374 for 8 =1/2,5, 1/1.75, 1/1.5,

respectively.



30

TABLE TI. Sum rules dependence on the basis sets.

Basis Sets S S, S, S,
[7s/7p; B = 1/2.5] 1.625 15.06 228.1 4535. 4
[7s/9p; B = 1/2.5] 1,574 14,95 227.9 4537.6
[9s/9p; B = 1/2.5] 1,574 14,96 227.9 4526.3
[7s/7p; B = 1/1.75] 2.048 15. 61 228.9 4536.8
[9s/9p; B = 1/1.75] 1.394 14,54 226.5 4505.4
[11s/11p; g =1/1.75] 1,849 15,44 228.3 4505.1
[11s/11p; 8 =1/1.5]  1.531 14, 81 227.2 4511.4
[9s/11p; B = 1/1,5] 1.829 14.84 210.7 3983.7
[7s/11p; B = 1/1.5] 1,51 14.2 208.3 3940

Bounds 2 15, 0% 217+ 7P 4000:300P
206. 0°¢

4C. L. Pekeris, Phys. Rev. 126, 1470 (1962).

b

CRef. 28.

C. Schwartz, unpublished (cited in Ref. 5).
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Table ITI. Energy of the ground state 'S of H™

for various basis sets (8 =1/1.5).

Basis sets (fa?xilx" ?; )
(11s/11p) -0.525099
(9s/11p) -0.525098
(7s/11p) -0.525097
(6s/11p) -0.524980
(7s/11p) after CI ~0.525494
Hartree Fock?® -0.487930
Weiss S + PP -0.526470
Exact® -0.527750

ac. c. J. Roothaan, L.. M. Sachs, and A. W. Weiss,
Rev. Mod. Phys. 32, 186 (1960).

PA. W. Weiss, Phys. Rev. 122, 1826 (1961).

€C. L. Pekeris, Phys. Rev. 126, 1470 (1962).
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Table IV. Largest basis set used (11s/11p) with the best
geometrical factor 8 = 1/1.5, Exponents above the solid line
are contracted together with relative coefficients as in the H
atom basis functions. Exponents below the dotted lines are

considered as diffuse functions (modified in various basis sets).

s Exponents p Exponents
68.16 0.173
10.2465 0.17

2,34648 0.113
0. 67332 0. 04374
0.22466 0. 02916
0.082217 0.01944

" 0.04374 0. 01296

02916 0. 00864
01944 0.00576

0.00384
00864 0.00256

o
et
nN
Ne]
(o]




Oscillator strengths, f op 2nd transition frequencies, @

33

Table V. Spectrum obtained with the (7s/11p) basis set.

on’

fon)length (fon)velocity Gon (eV)
0. 00888214 0.00869698 0. 79335322
0. 06835403 0.06603274 1.00254140
0.15545195 0.15523099 1.35662122
0.22477895 0.22949153 1.91629754
0.24558997 0.24070119 2.178455907
0.23131597 0.23283304 4.13987423
0.22792494 0.22992260 6.28895075
0.20792662 0.20578687 9.85880897
0.138571175 0.13693591 16.63336036
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FIGURE CAPTIONS

The effect of different basis sets on the photoionization

cross-section of H .

The dependence of the calculated H™ photoionization cross
section on different ahalytical continu-atirbné (dipdlé w}eiééify
form), The points in the compléx plane used to calculate o(z)

were chosen as previously (Refs. 12a,b, c) with Re(zi) =

)

i ')
results for R = 0.75 (solid) and R = 1,00 (dashed). No appre-

(@og41 - wOi)/Z and Im(z,) = R(we;,1 ™ Yo The figure shows
ciable changes are noticed as long as the points are near the

real axis.

Comparison among calculated photoionization cross sections
for H™ using both (A) the length and (B) velocity forms for

the transition matrix elements.

Comparison of theoretical and experimental photoionization
cross. sections for H-. Experimental points are relative
measurements of Smith and Burch, Ref. 25, normalized to
the value of our cross section at 2.35 eV (5280 A).

Solid line, dipole length form; dashed line, dipole velocity

form.

Theoretical dynamic polarizabilities.
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CHAPTER 1I
THE ELECTRONIC STRUCTURE OF
LINEAR POLYENES
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SECTION A
THE VALENCE ELECTRONIC EXCITED STATES OF
TRANS 1, 3-BUTADIENE AND TRANS-TRANS, 1, 3, 5-
HEXATRIENE FROM GENERALIZED VALENCE
BOND AND CONFIGURATION INTERACTION CALCULATIONS
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1. Introduction

The electronic spectra of linear polyenes have been the subject
of intensive experimental and theoretical studies since they were first
prepared in the early 1930's. Most of the experimental results

obtained in the period of 1930 to 1950 could be reasonably explained
in terms of molecular orbital (MO) and valence bond (VB) arguments,
despite the fact that these models predicted different (symmetry)
ordering of the excited states [1]. More recently there has been a
revival of interest in the subject mostly because of its relation to the
chemistry of visual pigments [2]. Various polyenes have now been
studied using such more sophisticated techniques as vacuum-ultra-
violet [3,4] and electron-impact spectroscopy [5, 6,7] as well as ion-
imbact [8] and multiphoton spectroscopy [9,10]. This has led to the
discovery of new features and to corrections in old asSignmehts, but
there is still considerable uncertainty concerning the ordering and
character of the excited states.

We report here the results of extensive ab initio generalized
valence bond (GVB) and configuration interaction (CI) calculations on
the valence excited states and on the positive ion states of trans-1, 3-
butadiene (hereafter butadiene) and all trans-1, 3, 5-hexatriene (here-
after hexatriene). Similar studies on Rydberg-like excited states will

be discussed in a separate publication.
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2. Basis set and geometry

All the calculations reported in this paper were carried out
using the Dunning [11] (3s/2p,2s) contraction of the Huzinaga [12]
| 7doub1e-zeta (DZ) (9s/5p,4s) gaussian basis set. For the Rydberg
and nonvalence states this basis set was augmented with diffuse 3s, 3p
and 3d basis functions as will be described in a forthcoming publication.
Inclusion of these diffuse basis functions does not change the descrip-
tion of the states described in this paper.

In all calculations we used the ground-state geometries
as determined from electron diffraction by Traetteberg[13]. These

geometries are summarized in fig. 1.
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3. The GVB wavefunction

Before going into the details of the calculations, we will briefly
review the form of the GVB wavefunctions and some of the terminology
used in the succeeding sections [14].

For the ground-state of butadiene the Hartree-Fock (HF) wave-

function has the form of a Slater determinant,

‘FHF=4[¢1¢1¢2¢2"'¢15 b5 aB---aB], 1)

where each of the 15 orbitals is doubly-occupied and &2 is the anti-
symmetrizer or determinant operator. Two of the orbitals in (1) are

7 orbitals (i.e., antisymmetric with respect to the molecular plane)
and the other 13 are o orbitals. The GVB(2/PP) (PP stands for perfect

pairing) wavefunction for this state has the form
Yove/pp) = £lo, (@, --26)8 (7...30)], (2a)

where @ cons ists of 13 doubly-occupied o orbitals,

@o = ¢1¢1"'¢13¢13QB---QB, (2b)

just as in the Hartree-Fock case and
& = (b, bp + Pp0,) (B, B + 949 BB (2¢)

corresponding to a valence bond-like wavefunction for the two bonds.
In the GVB(2/PP) wavefunction all the 17 orbitals of (2) are calculated
self-consistently with the restriction that the orbitals ¢, and ¢, are

orthogonal to the orbitals ¢ c and ¢ d: No restrictions are made upon

the shape and character of the orbitals in these wavefunctions. We



50

also considered wavefunctions in which ¢ orbitals were correlated just
as in (2¢). In general, GVB(n/PP) indicates that n electron pairs have

been correlated.

In this section we describe the calculations performed on the vari-
ous states of butadiene at the GVB and GVB-CI levels.

In order to understand the symmetries of the states, recall that
in the simple MO description the four # MO's are in the order lau, lbg,
2au, and 2b o (lowest energy first) with the first two doubly-occupied.
Thus the positive ion states generated from ionizing an electron from a
¥ orbital are 2Bg (lowest) and 2Au states. The lowest triplet state corre-
sponds to a lbg - Zau orbital transition leading to a 3Bu state and the
next triplet state corresponds to a 1bg - Zbg (or lau-— 2au) orbital transi-
tion leading to a A g state. - Similarly, in the MO description the first
singlet excited state would be "B, .

In the valence bond model, the valence excited states of a conjugated
system are obtained by placing one electron in each pr orbital and then
combining the spins so as to obtain states of proper spin and Pauli sym-

metry. For butadiene, four singly-occupied orbitals lead to two linearly

independent singlet states as in 1 and 2.
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Structure § can be written as § = 1 - g and thus need not be considered.

Orthogonalizing 2 to 1 leads to the structure

1 _—/_
4
2A a b

in which each of the 5 orbitals of a and b are coupled into a triplet
state (indicated by wavy lines), the 7 orbitals of ¢ and d are coupled
into a triplet state but the four electrons are the coupled into a singlet
state. Thus just as the ground state 1 corresponds to combining a left
ethylene singlet and a right ethylene singlet into an overall singlet,

the wavefunction 4 corresponds to coupling a left ethylene triplet and a
right ethylene triplet into an overall singlet state. Both 1 and 4 have
1Ag symmetry in the C,; symmetry group. Structure ,1\ corresponds
closely to the ground state of butadiene while 4 corresponds to an
excited state at ~7 eV. [Levin [28] carried out GVB calculations on
the excited states of butadiene (but without the PP restriction) and

showed that the GVB wavefunctions lead to the above description while

the GVB energies are very close (0.2 eV) to those of a full 7-CI.]}
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Combining four singly-occupied orbitals into triplet states leads to

three linearly independent spin functions which can be written as

where the wavy lines indicate triplet pairing. Here 5 and 6 are orthog-
onal but correspond to coupling one triplet ethylene and one singlet
ethylene to obtain an overall triplet state. Orthogonalizing Tto 5 and 6

leads to

which corresponds to starting with two localized triplet ethylenes (as
in 4) and combining their spins so as to obtain an overall (four-electron)
triplet state. Structure 8 is of 3Bu symmetry but 5 and 6 must be

combined as

A /—// : /7—‘//

to obtain symmetry states of C,,. Of these latter two triplet states,

O

3Bu (10) is lower; the stabilization of 10 with respect to 3 is referred
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to as the resonance energy. State °B a (8) corresponds to exciting two
ethylenes rather than one and hence is higher than either 9 or 10; 3'B11
(8) is related to 21Ag (4) but higher.

Summarizing, the VB model predicts a 1 1Ag (1) ground state; two
triplet states, 3Bu (10) and 3Ag (9), at ~ 4 eV (a triplet excitation energy);
and two states 2 1Ag (4) and 2 3Bu (8) at ~ 8 eV (twice the triplet excita-
tion energy); in addition, there is a °A g state slightly higher than these
latter states.

Note that the VB description leads to two singlet states, both of
1Ag symmetry. In order to obtain a 1Bu state from four pw orbitals, the

VB description must utilize ionic configurations of the form

e., @
@ &
Self-consistent solutions (either HF or GVB) of the orbitals

of the lowest 1Bu state lead to one orbital that becomes quite diffuse
(nearly Rydberg-like). As a result, we will postpone the discussion of
the 1Bu state to a subsequent paper dealing with Rydberg states. Here
we Wili discuss only those states arising from non-ionic valence bond

structures.

4.1 GVB calculations [15]

The ground state, 1 JLAg, was studied using GVB(2/PP) with the
two 7 bonds correlated and using GVB(5/PP) wavefunctions with the
three CC o bonds also correlated. For the lowest triplet (3Bu) and the
two lowest 7 positive ions (ng and 2Au) we also carried out GVB(3/PP)
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calculations with the three CC ¢ bonds correlated. In addition, for the
lowest positive ion we also carried out a GVB(9/PP) calculation in
which all nine o bonds were correlated. The GVB orbitals from the
ground state GVB(5/PP) calculations are shown in Fig. 2. In the
GVB(9/PP) wavefunction for the ng state we found that the CC o bond
orbitals were essentially the same as in the 1 1Ag state (see Fig. 2);
thus only the CH-like orbitals from this GVB(9/PP) calculation are
shown in Fig. 3. All orbitals have qualitatively shapes of the form
visualized in the simple valence bond description. It should be noted
here that these orbitals are not forced to be localized; rather, this is
the optimum form for maximizing electron correlation effects that

emerge naturally from the GVB calculations.

4.2 GVB-CI calculations [16]

We considered three different basic types of CI calculations
and various levels of excitation. Inthe simplest type, referred to as
the 7-CI, we considered only the 7 electrons of the various states.
A second type of CI calculation was considered where the CC part of the ¢
structure was allowed to participate in the CI treatment. This type of
CI was performed only for the ‘A ¢ singlet states and for the 3Ag and
3Bu triplet states. Finally, in the most complete set of calculations,
referred to as all-valence CI, we included all the ¢ valence electrons.

In all the calculations and at all levels, we introduced no
approximations for diagonalizing the CI matrix. The only restriction

made in any calculation was on the level of excitation allowed.
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4.2.1 w-CI calculations

In all of these calculations we allowed the four m electrons to

readjust themselves among the eight 7 basis functions.

For these calculations we used the selfconsistent GVB 7 orbitals
for each state with the exception of the °A g state for which the ground-
state GVB(5/PP) orbitals were used. The results of these calculations
are shown in table 1and compared with other calculations at the same
level. It is important to notice the good agreement between the
calculated and the experimental IP's for the 2Bg and zAu ions. This is
an indication of the consistency of the calculations and allows us to use
either the ground-state or ion state as the reference for calculating

the transition energies.

- CI's with partial inclusion of the o structure

4,2,2

In these calculations we used as starting points the GVB (5/PP)
wavefunction for the ground state and A g state and the GVB(3/PP)
wavefunction for the 3Bu state.

Our goal with these calculations is to get some insight into the
importance of o correlation for the various states as a preparative
step for the all-valence CI calculations.

We considered up to double excitations in the 0 GVB space but
because of the larger size of the CI matrix (particularly for the triplets)
we adopted intermediate levels of excitation in the 7 space. The
strategy was first to consider all single excitations in the GVB o space
and for each configuration to include a full #-CI over the complete

(eight MO's) 7 space; this is denoted as
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[full 7-CI] * [S(c —o0*)]

or as CI-I. Following this we found an intermediate level of #-CI that

would reproduce the results of CI-I to within 0.02 eV. Once this level

was established, we then included double excitations in the GVB o space.
For each state we will partition the eight 7 orbitals into two sets:

four GVB orbitals from the GVB calculation and four remaining

orbitals referred to as the r virtual orbitals. From considerations of

various restrictions on the 7-CI portion of CI-I we found that the follow-
ing CI (CI-II in table 2) leads to excitation energies within 0.02 eV (and
to changes in the total energy by 0.08 eV) while reducing the size of the
CI by a factor of 3. We carry out a full CI over the four GVB orbitals,
and for each configuration we include all single excitations from each

GVB orbital to each 7 virtual; this is denoted as
[GVB(r-CI) + nS].

As an example of a more restricted CI, we report CI-III in
table 2. This calculation included all single and double excitations
within the GVB space plus, for each configuration, all single excitations
from a GVB orbital to a virtual orbital. The result was errors of 0.17 to
0.54 eV in the excitation energies.

Next we included higher-order excitations in the ¢ space, CI-IV
and CI-V; however, for a given level of 7-CI, these o excitations changed
the excitation energies by only 0.02 eV.

The conclusions from these calculations are as follows:

a) o correlation effects increase the 1 ‘A g 2 'A g separation by

0.20 eV but have little effect (0.02 eV) on the lowest two triplet

states.
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b) An adequate level of CI is
[GVB(r-CI) + 78] * [S(o=0¥)]
for the 2 1Ag state and m-CI for the triplet states.

4.2.3 CI calculations including all valence orbitals

In this last step of our calculations we considered correlations
involving all valence electrons (o and 7).

From the GVB(5/PP) and GVB(3/PP) calculations on the ground-
state and on the 3Bu state we obtained the corresponding pairs of
natural orbitals for the (C~C) o bonds. To obtain the natural orbitals
corresponding to the (C~H) ¢ bonds one would solve for the GVB (11/PP)
and GVB(9/PP) wavefunctions for the ground-state and triplet 3Bu state,
respectively. There are no computational difficulties in carrying out
these calculations. However, because we also needed to carry out
similar calculations for the nonvalence and Rydberg states, we used
the following shortcut to generate these natural orbital pairs. We first
solved for the GVB(9/PP) wavefunction of the ’B o positive ion state
(the lowest ion state). Then we projected the first natural orbitals
from the latter calculation onto the HF o space of the ‘A g

and 3Bu GVB wavefunctions, and the second natural orbitals onto the
virtual (unoccupied) o orbitals of the same wavefunctions. In this way
we obtain a localized representation of the . HF o space
nearly identical to that which would have been obtained from the first

natural orbitals of a full GVB solution on the ‘A _ and 3Bu states. In

g
addition, we obtain a good approximation of the correlating (second
natural) orbitals that would have been obtained from the full GVB

calculations.
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The results of the last section show that double excitations in the
(C-C) o space are not important to describe the valence excitation
energies of the 7 system. Similarly, we would expect double excita-
tions in the (C-H) o space to be even less important. However, it is
still possible that double excitations in the full o space could be
important. At this level of calculation, we have 22 electrons (18 o +
4 1) distributed over 26 MO's (18 0 + 8 7). Consequently, we will

examine ways of reducing the level of excitation.

We started with the study of the effect of single excitations in the
o GVB space. This set of CI calculations was performed based on the
following strategy. From the full #-CI configuration list for each
state, we selected all configurations contributing an energy lowering™
of 0. 001 h or more. From these selected configurations we allowed
single excitations in the full 7 space times single excitations in the full
o space. To this list of configurations we added the complete configura-
tion list for the full w-CI. The results of these calculations (CI-VI) are
shown in table 3. The results do not differ appreciably from the ones
obtained in the last section, that is, the transition energies are
practically the same and nearly all configurations involving o excita-
tions come from excitations within the (CC) o GVB space. Configu-
rations involving excitations within the (CH) o space contribute an

energy lowering of the order of 0.0001 h and lower.

*The energy lowering of a configuration is defined as the difference in
energy of the state when the given configuration is deleted from the full
configuration list without reoptimizing the coefficients of the remaining

configurations.
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To investigate the effect of double excitations in the o space, we
recombined the localized pairs of natural orbitals to obtain a set of
symmetry orbitals (reducing the number of configurations by a factor
of two). We started again from the selected configurations of a full
7 -CI (now with symmetry orbitals) which contribute an energy lowering
of 0.001 h and from those we allowed all single and double excitations
(SD) in the o space times all single excitations in the 7 space. We also
added the full list of configurations relevant to the respective full #-
CI's. The results of these calculations (CI-VIII) are also shown in
table 3. Using the symmetry orbitals we repeated the first set of CI
calculations (involving only single ¢ excitations) including now the con-
figurations with an energy lowering of 0.0001h in the selected list. The
results of these calculations (CI-VII) reproduce those obtained in the

last section, indicating that the effect of o correlation can be well

established using only the (C-C) o subspace.
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5, Hexatriene

We now proceed to describe the calculations carried out for
the hexatriene molecule. Calculations were performed at the
HF, GVB, HF-CI, and GVB-CI levels.

For the hexatriene molecule in the MO description the 7 elec-
tronic configuration is (lau)2 (lbg)2 (Zau)2 with E(la u) < E(lbg) < E(Zau),
and the lowest unoccupied (valence) orbitals are 2bg and 3a u with
E(2b g) < E(Sau). The positive ion states generated from this configu-
ration are, in order of increasing energy, 12Au, ng and 22Au. The
lowest triplet state corresponds to the transitions 2a u” 2bg and
Zau - 3au (or 1bg - 2bg) which lead to 3Bu (lowest) and 3Ag states.

As discussed in section 4, the 1Bu state requires diffuse basis functions
and will not be discussed here.

The VB description of the 7 system of hexatriene leads to the
five singlet states and nine triplet states of which we will discuss only

the lower ones. The two lowest singlet structures are

/.__ ///'\‘.__.
e 4
U4, __/ and 2'A, C R

u 12
both of which correspond to 1Ag states. Here 11 is the ground state
and 12 is an excited 1Ag state analogous to 2 for butadiene.

For the triplet state the lowest configurations are



61
Jr’f—‘ _—

v _—:/:"‘/: J/— _/J—

13 14 15 16

S~ S~ Pa¥al PaSal

of which 13 and 14 lead to 3Bu symmetry while 15 and 16 combine into

3 3
one Bu and one Ag state.

5.1 HF and GVB calculations [15]

For a molecule of this size, GVB calculations of the same
quality as those described for butadiene becomes costly. However,
it is still possible to obtain good quality # natural orbitals for a CI
calculation.

The ground state, X A o’ was first solved self-consistently
at the HF level. After that, the HF ¢ core was frozen and we
calculated the GVB(3/PP) wavefunction for the r space.

Following that, to allow for ¢ core relaxation, the 7 natural orbitals
were frozen and we again solved self-consistently for the o core.

No significant changes were found, indicating that we can safely use the
natural 7 orbitals from the GVB(3/PP) calculation with this frozen HF
o core.

Using the frozen HF o core for the ground-state, we
solved for a GVB(2/PP) wavefunction for the 3Ag state. We solved for
the three most stable VB structures, 13, 14, and 15. The transition
energies calculated from these wavefunctions are 4.27 eV,

4,01 eV and 4.28 eV for structures 13, 14 and 15, respectively.
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We also solved self-consistently at the HF level for
the triplet 3Bu state, for the 7 ions (zAu, °B g) and for a valence singlet
1Bu state. The transition energies computed at this level are shown
in table 4.

Since there have been suggestions [4, 17] that o — 7* states
could be responsible for transitions observed at 6.57-7.25 eV and
7.40 eV, we investigated these states. To do this we solved self-

consistently for both 'B_ and 1Au states using the ground-state

g
orbitals and allowing the excitation from the highest occupied ¢ orbital

to the 7 space. The result for these states are also shown in table 4.,

5.2 HF-CI calculations [16]

These HF-CI calculations were carried out using the HF
orbitals described above. All calculations were performed with the
respective ¢ cores frozen, so we refer to them as 7-CI calculations.
Our DZ basis set furnishes 12 4 MO's to describe the
7 space. Starting from the HF configurations for each
state, we allowed up to quadruple excitations among the 12 7+ MO's.
This level of excitation includes most of the correlation effects and
yet leads to quite manageable calculations. The results of these
calculations are shown in table 5. Again it is important to notice the
excellent agreement between theoretical and experimental values of
the ionization potentials (errors -0.12, 0.10, and 0. 05 eV), indicating

the consistency of the calculations.
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As in the case of butadiene, the second 2 'A_ state (calculated

g
at 5.62 eV) is significantly above the dipole allowed 11Bu state

(experimental origin at 4.95 eV).

For the 0 — 5 states the CI calculations were performed (now
with seven electrons in the 7 space) allowing up to quadruple excitations.
The results of these calculations are also given in table 5. These
states are calculated to be at 9.18 eV and 11.51 eV. Thus, even
considering that these are results of a partial CT treatment, it is quite
improbable that refinements-could lower their energy (by 2 to 4 eV)
down to ~7 eV. Our conclusion is that these ¢ — 7* states cannot be
responsible for the observed transitions. Rydberg and nonvalence
states are more likely to occur in those regions, as will be shown in a
forthcoming publication.

The results for the triplet states are in good agreement with
experiment but a better description can be obtained from the GVB

wavefunctions as will be discussed below.
5.3 GVB-CI calculations [16]

To perform these calculations we used the orbitals obtained
from the GVB calculations described in section 5.1.

As discussed in section 3, we know that GVB wavefunctions
already have some correlation effects built in, and that other effects
not originally present can easily be incorporated in a CI treatment.
Thus we expect (at least for the lower excited states) that a good

description can be obtained from CI calculations using the GVB space.
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In general we try to represent the excited states with a partial or full
C1 in the GVB space plus single excitations to the virtual space to
allow for orbital readjustments.

In the first set of calculations we performed a full #-CI in the
GVB space allowing single excitations to the virtual space, denoted as
[GVB(r-CI)] * [7S]. The results of these calculations are shown in
table 6. It is important to emphasize that the size of the CI matrix for
these GVB-type CI's is considerably smaller (for example, for the lAg
states: 3800 spin eigenfunétions for HF-CI and 1435 spin eigenfunctions
for GVB-CI) than the ones generated at the HF-CI level. One can see
from table 6 that these calculations exactly reproduce the results of
HF-CI calculations. For the sake of comparison we also performed
this type of CI calculation for the butadiene molecule, and the results
are also shown in table 6.

Our final goal with these GVB-CI-type calculations was to
establish an intermediate level of excitation in the GVB space such as
to reproduce the results of full 7-CI calculations. Even more ambitious
would be to find a level of description where the valence states (and
possibly the ions) could be described in terms of the ground-state wave-
function within certain well-established limits. The existence of such
a level would allow us to treat even larger polyene molecules at moder-~
ate costs. Table 7 shows the results of such a calculation for the
butadiene and hexatriene molecules [based on the GVB(5/PP) wave-
function for butadiene and the GVB(3/PP) wavefunction for hexatriene].
Thus a CI calculation with up to triple excitations in the GVB
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space and allowing single excitations into the virtual-space furnishes
results of the same quality as a full 7-CI calculation (except for the

butadiene ions and for the first hexatriene ion).

6. Discussion
From the results presented above we conclude that the valence
states of these polyene molecules can be correctly described at a 7-CI

level with the exception of the 2'A_ states (where the 7-CI excitation

energies are ~0.25 eV too low). :

Figure 4 summarizes our best estimates of the transition
energies for the valence states and ion states of butadiene and hexa-
triene.

The triplet states for both butadiene and hexatriene molecules
are in good agreement with experiment. For the hexatriene molecule
the T °B y and the d°A o states have not been identified experimentally.
Our calculations (fig. 4) predict them to occur at 5.1-5.2 eV and
6.92 eV, respectively. The ¢ 3Bu state is probably masked by the

strong XA — 11Bu transition which occurs in the same region[7]. The

second d 3}2 state occurs in a region exhibiting several features [7]
(usually attributed to singlet transitions). It is possible that a careful
examination of each feature by means of a variable angle electron
impact experiment could reveal this state.

About the ¢ — ¢ * transitions in hexatriene, they are far too
high to explain the features observed at 6.57-7.25 eV and 7.40 eV.

These transitions are more probably due to non-valence and Rydberg

states, as will be discussed in a forthcoming publication.
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A special comment has to be made about the second singlet 2 ‘A g
states concerning their nature and location. There have been suggestions
that this state would occur below the strong dipole-allowed state (1 1Bu),
based on interpretation of experimental results in larger polyenes [18,19].
Results of semi-empirical n-type calculations were used to support this
hypothesis despite the fact that the ordering of the excited states
depended on the level of excitation considered [20,21). For butadiene
ab initio calculations [22] as well as recent multiphoton [9] and electron-
impact studies [5,7] do not show evidence for the existence of such a
state below the 'B a state. Table 8 shows our results for different levels

of ¢ ~CI for the singlet 1A states and for the non-valence 1Bu state for

butadiene. At no level of ixcitation does the second ‘A ¢ state occur
below the 1Bu state. This is also true for the hexatriene molecule.

This clearly shows the inadequacy of the approximate w-type theories

to describe these states. Our conclusion from the theoretical and
experimental studies is that (for the ground state geometry) there is no
singlet state occurring below the origin for the 1 1Bu state of butadiene
and hexatriene. Another look at table 8 shows an interesting results.
While the excitation energies for the 21Ag state do not differ appreciably
in going from a full 7-CI to SD-nCI, it is considerably larger at the
single excitation level. This is consistent with the fact that this state is
mainly a doubly~excited state. Dunning [22a] has discussed the possi-
bility of representing the excited states of butadiene in terms of excitonic
structures. He showed that the 21Ag state could be described in terms of

two ethylenic T (triplet) structures, a description that was confirmed by

Levin [28] with full GVB calculations. This is exactly the picture that
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results from our CI calculations at every level (with the obvious excep-
tion to the S 7 -CI level) when using the orbitals from the GVB(5/PP)
wavefunction. It could be argued that this result is somehow biased
because of the localized nature of the GVB(5/PP) wavefunction. How-
ever, even using delocalized 7 orbitals, the 2'A g state is dominated by
doubly-excited configurations (but with increased contributions from
singly-excited configurations). The same results are obtained for hexa-
triene. These results lead us to the conclusion that the 2 1Ag state is a
doubly-excited TT-like state; (In Valencé bbnd Ianguage, such a Sfate
corresponds to an orthogonal spin coupling, i.e., a different bonding
structure.) The results for butadiene show that the 2 1Ag state may be
shifted 0.2 to 0.3 eV by ¢ readjustments. We did not perform compar-
able calculations on the hexatriene molecule but a similar effect is
expected; assuming effects of the same magnitude as in butadiene, the
2 'A g state should occur at approximately 5.87 eV for the hexatriene
molecule.

A simple estimate can be made of how long the linear polyene
has to be before the 21Ag state occurs below the llBu state. The
experimental values of the 11Bu transition energies for butadiene,
hexatriene and octatetraene were used in an exponential fit against
chain length together with the fact that the value of this transition
should converge asymptotically to ~ 18,000 em™ (2.23 eV) as the chain
length increases indefinitely [1]. The calculated 2'A o transition
energies were fitted to another exponential. From these curves we
find that the 2 'A « state should occur below the 1 1Bu V;at;a f;)r the case
of 1,3,5,7,9,11-dodecahexane (12 carbon atoms and six double bonds).
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There exists some experimental evidence that a g state does lie below
the 1Bu in diphenyl octatetraene (DPO) and diphenyl hexatriene (DPH)
[10]. If these assignments are correct, a possible explanation is that
the 2 'A g-like states are strongly stabilized by conjugation with the ring.
The fact that they are more affected than the corresponding 1Bu states
might be attributed to the non-valence character of these latter states.

The calculations for the ion states help resolve some assign-
ments on the photoelectron spectra of these molecules.

For the butadiene molecule there has been some controversy
about whether the second band at 11.4 eV in the photoelectron spectra
should be assigned as ionization out of the lowest 7 orbital (lau) or out
of the highest (a.g) o orbital [23]. Semi-empirical calculations [24]
have suggested that the highest occupied o orbital should lead to a
lower IP than the 17 (au) orbital. Our calculations clearly assign the
11.4 eV band to the 2‘Au 7 ion, resulting from the removal of one
electron out of the 7 (a u) orbital. This result is in agreement with
recent experiments using variable angle photoelectron spectroscopy [25].

For hexatriene, a similar situation exists in the literature.
Semi-empirical calculations [26] predict the highest o (ag) occupied
orbital to occur above the lowest 7 orbital (1a,). .In this case the photo-
electron spectrum [27] is not sufficiently resolved in the region of the
band, at 11,60 eV, to allow a more detailed analysis. Our calculations
are in excellent agreement with the first two experimental IP's and
places the third r ion at 11,55 eV. This leads us to conclude that the
third band in the photoelectron spectrum is due to the third 7 ion state,

2
2 Au.



69

7. Summary

a)

b)

c)

d)

e)

The main conclusions of our calculations are:

the valence states of these polyene molecules can be accurately
described at a ¥-CI level. The largest error is for the 2 "A .
states where excitation energies are § eV too low;

to correctly describe the 2 ‘A g states, it is necessary tq include
o correlation effects. These states are mainly doubly-excited
states and they occur significantly above the origin for the 1 1Bu
state; \

the effects of ¢ correlation on the valence states can be well
established using only the subspace of (C-C) o orbitals;

for alternate polyenes a good approximation to the GVB(n/PP)
wavefunction with the 2n 7 electrons correlated can be obtained by
carrying out an HF calculation on the ground state followed by a
GVB(n/PP) calculation on just the 2n 7 orbitals (keeping the 0 HF
space fixed). From this wavefunction accurate values for the
transition energies of the valence states can be obtained. This is
an important conclusion since it establishes the possibility of
extending this type of calculation to larger polyene molecules at
moderate costs;

the first two ions of butadiene and the first three ions of hexatriene
correspond to removal of one electron out of the 7 orbitals of these
molecules. This result is of importance in assigning the photo-

electron bands of these molecules.
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Table 2

Effect of CC ¢ correlations on the valence states of butadiene

CI-type and ground state Transition energies (eV)
1 3 3

energy (hartrees) 2 Ag 1'B, 1 Ag

0: [Full 7-CI] only 6.83 3.35 5.10

(-154. 92796)

I: [Full 7-CI} +[S(c ~o*)] 7.01 3.37(3.58)% 5.20%
(-154. 97613)

11: [GVB(r-CI)] #[rS]+[S (o ~0*)] 7.03 3.35(3.55)% 5.20%
(-154.97301)

I: [GVB(ESDr-CD)] {xS]*[S(c~0"]  7.18 3.54 (3.90)2 5.83%
(154, 96893)

IV: [GVB(r-CT)] *[#S] *[SD(0 ~0*)] 7.05
(-155.00416)

V: [GVB(Sdn-CI)] #[rS]+[SD(c =0*)] 17.18 3.57(3.90)% 5.83%
(-155. 00022)

a) These numbers were based on a CI using the orbitals of the ground
state GVB(5/PP) wavefunction rather than the self-consistent excited
state orbitals. The resulting error in the excitation energy is about

0.20 eV for CI-I and CI-II and about 0.35 eV for CI-II and CI-V.
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Table 4

Hartree-Fock transition energies for the valence states of 1,3, 5-

hexatriene
State : Transition Energy (eV)
XIAg (-231, 72322 hartree) 0
1
B, (valence, 22:1.u -2b g) 6. 02
3
B, a, -~ 2bg) 2.1
2 . . 1 .
Bg (ionize lbg) 0.33
2 . .
A, (ionize 2au) 7.23
1
Bg (0—~7%) 9.56

‘A, (0-1%) 11.99
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Table 5

HF-w-CI results for the valence states of 1, 3, 5-hexatriene

State AE(eV)

XlAg (-231.81913 h)

ziA o 5.62

1 B, (valence) 6.56

1A, (0-7% 11,51

1113g (@-7% 9.18

°By (2a,~ 2b)) 2.73 2.61(1.9-3.5)% 2.57°, 2, 58°
G*"Agf 4.37 ~4.29 4,112 3.6-4.6)
¢°B® 5.28

1°A,, (ionize 2a,) 8.33 8.45¢

2°A (ionize 1a,) 11,55 11, 60°

1ng (ionize 1by) 10.53 10.43°

a) Ref. [7].

b) N. G. Minnaard and E. Havinga, Rec. Trav. Chim. 92 (1973) 1179,

c) D. F. Evans, J. Chem. Soc. (1960) 1735,

d) F. W. E. Knoop and L. J. Oosterhoff, Chem. Phys. Lett. 22 (1973)
241,

e) Ref. [27b].

f) Mainly a mixture of (2au-'4au) (54%) and (lbg-»3bg) (46%) configura-
tions.

g) Equal mixture of (lau-—Zbg) and (Zau-—4bg) configurations.
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Table 6 .
GVB-CI calculations for the valence states of butadiene and 1,3, 5-
hexatrienea \
[GVB@-CD)]*[rS]  Full 7-CI®  Exp. Results®

Butadiene

XlAgd -154.92506  -154.92796

21Ag 6.84 6.83

a’B,° 3.34 3.35 3.32,3.30,3.20

b3Ag 5.10 5.10 4,80,4.93
Hexatriene .

XlAgd -231,81497  -231,81913

ZlAg 5. 62 5.62

1 1Bu (valence) 6.56 6.56

::1”313u 2.71 2.73 2.61

~3

e B, 5,20 5.28

bsAg 4.32 4.37 4.2,4.11

a) As discussed in the text we used in these calculations the GVB(5/PP)
wavefunction and the GVB(3/PP) wavefunction for the ground state
and S’Bu state of butadiene, respectively. For hexatriene we used the
GVB(3/PP) wavefunction for the A g states and for the valence 1Bu,
and the GVB(2/PP) wavefunction for the triplet states,

b) For the case of the hexatriene molecule the results of this column
correspond to HF #~CI's up to four excitations.

¢) See tables 1 and 5 for references.

d) Ground state energies in hartrees.

e) For this particular state we really do not have a GVB r space.

The full 7 -CI was restricted to the four more important orbitals
in the full g -CI description, allowing single excitations to the

remaining four orbitals.
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Table 7
GVB-CI calculations for the valence states of butadiene and 1,3,5-

hexatriene, using the respective ground state wavefunctions.

[GVB(r-CT)1*[x8] Full #-CT®
Butadiene
XIAgb -154, 92796
2 lAg 6.78 6.83
i°B, 3.43 3.35
% 3Ag 5.04 5.10
2Bg 9.24 8. 87
*A, 11,81 11,32
Hexatriene
XlAgb -231, 80820 -231, 81913
2 lAg 5.70 5. 62
1Bu (valence) 6.78 6.56
a B, 2.62 2.74
b A 4.20 | 4,37
c’B, 5,12 5,28
1°A 8.25 8.45
2°A 11.70 11.60
ng 10.37 10.43

a) For the case of hexatriene the results of this column correspond to
an HF-CI up to quadruple excitations.

b) Ground state energies in hartrees.
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Figgre C'aptions

Figure 1. experimental geometries of 1, 3-butadiene and 1, 3,5~
hexatriene (angles in degrees, interatomic distances in A).
Both molecules are in the yz plane, with the z axis along

the central CC bond and the origin at the central bond mid-

point.

Figure 2. GVB pair orbitals for the ground state of butadiene. Long
dashes indicate zero amplitude, solid lines and short
dashes indicate positive and negative amplitudes, with a

spacing of 0.05 atomic units between various contours.

Figure 3. GVB CH pair orbitals for the B ¢ Positive ion of butadiene.

Same convention as fig. 2 is used for the amplitudes.

Figure 4. Best results for the transition energies (eV) of the valence

states and ion states of butadiene and hexatriene.
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SECTION B
A GENERALIZED VALENCE BOND DESCRIPTION OF THE
NON-VALENCE AND RYDBERG STATES OF TRANS 1, 3-
BUTADIENE AND TRANS-TRANS 1, 3, 5-

HEXATRIENE MOLECULES
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I. Introduction

Because of the role of particular polyenes in the photochemistry of
vision there have recently been numerous experimental studies of the

1-16 However, there is still consider-

excited states of various polyenes.
able uncertainty in both the nature and the assignment of even the smaller
polyenes such as 1, 3-trans-butadiene and 1, 3, 5-trans-hexatriene (here-
after referred to as butadiene and hexatriene, respectively).

In a previous publication (hereafter referred to as Part I),l'7 we
presented results of extensive ab initio generalized valence bond (GVB)
and configuration interaction (CI) studies for the valence states of buta-
diene and hexatriene molecules, In this paper we complete the previous
calculations with results for the non-valence and Rydberg states of these
molecules.

For hexatriene we have considered only vertical transitions (same
geometry as the ground state). For butadiene some exploration of the
potential surface for the excited lBu state (lowest # - n*) was carried

out. These studies are used to assign the observed one- and two-photon

spectra of butadiene and hexatriene.
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II. Geometrx and Basis Set

As in Part I, we used the ground state geometries as determined

18

experimentally by electron diffraction techniques.”” In the description

of the valence states in Part I, we used the Dunning19 (3s/2p, 2s) con-

20 gouble-zeta (DZ) (9s/5p, 48) gaussian basis set.

traction of Huzinaga's
This basis set was augmented with diffuse basis functions of 3s, 3p0_,
3pﬂ, and 3d1r character in order to provide an adequate description of

the Rydberg excited states.
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II. Butadiene deberg States

In this section we describe the calculations performed for the
Rydberg states of the butadiene molecule. The 1Bu (w —u*) states will
be discussed in the following section.

To understand the symmetry of the states that can be generated,

we recall that (a) a simple molecular orbital (MO) description of buta-
diene leads to four # MQ's, lau, lbg, Zau, and 2bg, in order of increas-
ing energy. Thus the ground state corresponds to the electronic config-
uration (lau)z(ibg)z; and (b) the molecular designation of the atomic
orbitals in butadiene is ns = ag; mp =a, bu; n = ag, bg; and nf = a, bu.

The Rydberg state will have overall symmetries B . (1bg -ns, ndo),
Au (lbg ~np , nfo), Ag (lbg-—ndﬂ), and B, (lbg-—np',nfﬂ ). Transitions
tothe ‘A 4 and ‘B, states will be optically allowed while transitions to the
1Ag and 'B_ states will be forbidden.

g
A. Basis Sets. In order to describe the o Rydberg excited states,

we augmented the valence basis set with 12 diffuse basis functions of 3s,
3px’ and 3py characters (538 = 0.023, g3p = 0.021) centered at each

carbon atom. An IVO calcula’cion21

with this basis (referred to as basis
A) provides an adequate description of the 3s, 3p - 3p s 3d - 3d ., and
3d o Rydberg orbitals.

In solving self-consistently (and also at the CI level) for the Ryd-
berg states of butadiene it is desirable to
reduce the size of the basis set without sacrificing the accuracy of the
results. To this purpose we performed several calculations at the IVO

level, and these results are summarized in Table I.
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From Table I we see that excluding the 3p basis functions (basis
B) reduces the number of diffuse basis functions to four but at the sacri-
fice of serious errors in even the 3p o orbitals. On the other hand, from
the plots of the 3s, 3p o and 3p o' orbitals in Fig. 1 (a, c,e) it appears
that four off-centered 3s-like basis functions might adequately describe
these states. Choosing appropriate coordinates (see Table I) for the 3s-
like basis funétions(basis C) leads to adequate results for the first four
Rydberg states. Figure 1 (b, d,f) shows the first three Rydberg states
obtained from the calculation with basis C (compare with Fig. 1a,c,d).

An alternative approach is to use both 3s and 3p o basis functions
but to center them at the C,-C, and C,-C, bond midpoints. This basis
(D) has half the diffuse basis from basis A but leads to an excellent
description of the first five Rydberg orbitals. This approach was
used for the calculations on the hexatriene molecule, and we recommend
this approach for similar calculations on larger polyenes.

For the ® Rydberg states we considered a basis augmented by one
3pﬂ basis on each carbon atom (basis E) and a basis with two 3pﬂ basis
functions at each carbon atom plus a set of 3d1r basis functions at the
C,-C, and C,-C, bond midpoints. From Table I we see that basis E is
quite accurate for the 3p1r Rydberg orbital but that the second 3d,ﬂ (3dxz)
orbital is off by 0.25 eV (compare with basis F).

B. Character of the Rydberg Orbitals. Although these orbitals

have the overall characteristics expected from the designated names

(3s, 3p, 3d, etc.), there are clear effects due to the influence of the

molecule.
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In Fig. 1 (a, c,e) we show the first three o Rydberg orbitals (using
basis A). These orbitals can be easily associated with the 3s(a) ahd the
two 3p - (c,e) atomic orbitals. The molecule affects the 3s orbital in
such a way that instead of its spherical symmetry, its shape (in the
molecular plane) resembles more one of an ellipse with its major axis
along the line joining the C,C, carbon atoms. The two 3p  orbitals are
less distorted but still rotated relative to the molecular coordinate sys-
tem. If one uses the coordinate system shown in Fig. 1, the three
orbitals in Fig. 1 (a, c,e) can be classified as 3s, 3p§, and 3p;.

In Fig. 2 (a,c,e) we show the three 3d . orbitals (using basis A).
They also show clear distortion effects due to the molecule, but it is
still possible to classify them in the (X, y, z) coordinate system. Fig-
ure 2 (b, d, f) shows the same three orbitals in the Xz plane, Comparison
of their amplitude plots in both planes allows us to classify them as
3d22 3dy_z’ and 3d 3{-2_?2. Notice that while orbitals 2a and 2e
seem to overlap, this is not the case because they are IVO orbitals of
the same calculation and consequently orthogonal. This is more'clearly
seen in Figs. 2b and 2f. Also from Fig. 2c (or 2e) one would be témpted
to classify the orbital as 3d-§2_52 , but it really has to be associated with
the 3dx2-y2 atomic orbital. It seems that the planarity of the molecule
restricts most of its amplitude to the yz plane.

Figure 3 shows the 3p and 3d1r orbitals (using basis E). Interest-
ingly enough, they are not rotated relative to the molecular coordinate
system. Amplitude plots of the two 3d,” orbitals in both the yz and xz
planes allow us to classify them as 3de (a, b) and 3d, (c,d).

Figure 4 shows the two 4f orbitals (using basis E) in both Xz and

Xz planes.
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From Figs. 1, 2, 3, and 4 we see that even for a large molecule
such as butadiene the shape of the Rydberg orbitals resembles very
much the corresponding atomic orbitals. While the ¢ atomic orbitals
leading to the Rydberg molecular orbitals seem to couple strongly
(causing shape distortions and rotations), there appears to be much less
coupling between the 7 atomic orbitals,

Table II shows transition moments computed using these orbitals
and their spatial extension (given in terms of second moments).

C. Hartree-Fock and GVB Calculations. In this section we will

describe the calculations performed on the Rydberg states at the

Hartree-Fock (HF) and GVB levels.

}\,\Ni@g Mn States. The 1Bg and JLAu Rydberg states correspond
to excitations out of the lbg (m) orbital to the 3s and 3p§, 3p2 orbitals.
These transitions add one more electron to the ¢ space. We have not
correlated the o valence orbitals in the SCF calculations in order to
avoid any additional constraints that might affect the various Rydberg
states differently.

Using the IVO's obtained with basis set C [Table ¥(a)] as starting
guesses for the excited orbitals, we solved self-consistently, at the HF
level, for the 1Bg [lbg(n) -~ 3s] and 1Au [lbg(n) ~3p,] Rydberg states.

2. B, 2nd’A,

spond to excitations out of the lbg(ﬂ) orbital to the 3d1T and 3p7T orbitals,

States. The lAg and "B, Rydberg states corre-

respectively. Since they are both 7 states, we do not expect that corre-
lating the o valence orbitals will cause any constraints to the description

of these states.
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Using the IVO's obtained with basis set E (Table I) as starting
guesses for the excited orbitals (3p, and 3dﬂ), we constructed GVB(3/PP)22
wavefunction for both the lAg and 1Bu states. These wavefunctions corre-
spond to correlating the three (C-C) ; bonds.

Because the 1Ag [lbg(ﬂ') ~3d_] Rydberg state is not the lowest state
of this particular symmetry, the GVB(3/PP) wavefunction will not repre-
sent the ""pure’ Rydberg state. Nevertheless, the self-consistent orbitals
generated will be adequate to describe a diffuse open-shell state. The
final description of this Rydberg state is obtained as a higher root of a
CI calculation. It is very easy to distinguish, in the CI calculations, the

Rydberg A_ state from the valence X ‘A o and 2 lAg states, as will be

discussed ii the next sections.

The 1Bu [lbg(ﬂ) -3p ﬂ) Rydberg state has the same symmetry as
the strong dipole-allowed 'B u state observed experimentally (peak) at
5.95 eV. So, if this latter transition corresponds to a vertical transition
(same geometry as the ground state), our GVB(3/PP) description should
correspond to the 1Bu state and not to the 3pﬂ Rydberg state. From
now on we consider the vertical transition to correspond to the 3p1r
Rydberg state and defer the discussion of the 1Bu (m - o*) state to the
next section. It is interesting to note that there are indications, even
at the IVO level, that the vertical transition should most probably
correspond to a 3pﬂ Rydberg state. From Table I we can see that the
Rydberg states with the same ¢ quantum number occur close to each
other. Of course, in a perfect '"central field" they would be degenerate.
Since the transitions to the 3p o states can be unambiguously assigned

and since the 7 IVO state always occurs in the same region of the two
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3p . states, it is reasonable to suppose that this 7 state should correspond
to the 3p - Rydberg transition. As will be seen below, after these states
are solved for self-consistently and the CI calculations are performed,
the final states also occur in the same region of the spectrum.

D. Full 7-CI Calculations. The first set of CI calculations23

was performed using the respective HF or GVB wavefunctions obtained
in the previous section.

For the singlet 1Bg Rydberg states the r space was formed by the
eight HF 7 MO's. To the diffuse self-consistent 3s orbitals we added
three more o orbitals, obtained from the IVO calculations, properly
reorthogonalized to the occupied o orbitals. Using these 12 orbitals
(87 + 40) we performed a full m-CI while simultaneously allowing the o
electrons to readjust in the full o space. The first CI root of this calcu-
lation corresponds to the 3s Rydberg state and the second one to the first
3d0 Rydberg state. Table III shows the results of this calculations and
compares them with other results obtained at the same level.

The 1Au (3p0) states were obtained by a similar calculation using
the appropriate orbitals. The results are also shown in Table III.

For the 1Ag (3d.) Rydberg states we started from the GVB(3/PP)
wavefunction described above. From our augmented basis set we obtain
12 # MO's. To these orbitals we added six n IVO's properly reorthogo-
nalized to the occupied # MO's. Using this space (18 7 MO's) we per-
formed a full #-CI calculation. Four CI roots were obtained from this
calculation in order to project out the ground state and the first valence
excited 'A g states. These can be clearly distinguished from the Rydberg

states. The first root is dominantly a closed-shell valence state, while
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the second one is dominantly a double excited valence state., The next
two roots correspond to dominantly single excited diffuse configurations
and represent the Rydberg states. The results obtained for these Ryd-
berg states are also shown in Table III.

For the 1Bu states we proceeded in an analogous way. Starting
from the 12 # MO's from the GVB(3/PP) calculation on the lBu state,
we added six m IVO's properly orthogonalized to the occupied m MO's
and performed a full 7-CI among the 18 # MO's. The results of this
calculation are shown in Table III.

E. All-Valence CI Calculations. In this second set of CI calcula-

tions we allowed all but the C,4-1like orbitals to participate in the CI
treatment.

In these calculations the CI matrices are considerably larger than
the ones generated in the previous calculations. Because of this we
have to limit ourselves to lower levels of CI excitations. In so doing,
we follow exactly the same strategy used in Part I, where we examined
o effects on the valence states. Here we also used both localized and
delocalized descriptions of these states.

The localized description calculation was designed to detect any
flux of charge along the bonds in the o space resulting from the redistri-
bution of charge in the v space. To obtain the localized description of
these states, one should have to solve, in principle, for at least a
GVB(9/PP) wavefunction for each one of the states. There are no com-
putational difficulties in carrying out these calculations, but they are
too costly. It would be interesting to devise a simplified but physically

meaningful way of obtaining the o natural pairs. Since Rydberg states
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correspond to excitation of an electron to an orbital that is in general
much larger than the dimensions of the molecule, one can look at these
states as being composed of one electron plus a residual positive core.
Since all the Rydberg states with which we are dealing result from
excitations out of the same 7 (lbg) orbital, the remaining positive core
will look quite alike for all these states. This positive core
corresponds basically to the ng ion. Following this argument, we
solved for a GVB(9/PP) wavefunction for the 2Bg ion state. The first
natural orbitals from this latter calculation were then projected onto
the occupied HF o core of each one of the Rydberg states. The second
natural orbitals were projected onto the virtuals (unoccupied) HF space
of each one of the Rydberg states. In this way we obtained a localized
presentation of the HF ¢ space nearly identical to the one that we would
have obtained from the first natural orbitals of a full GVB solution. In
addition, we obtained a good approximation to the correlating (second

| natural) orbitals that would have been obtained from the full GVB calcu-
Iations.

Once the localized description was obtained, we proceeded in
exactly the same way as in Part I. We started fromthe full #-CI con-
figuration lists of each one of the states and selected all the configura-
tions contributing an energy lowering of 0.001 h or more. From these
we allowed all single excitations in the 7 space times all single excita-
tions in the full o space. To these new lists we added the respective
configuration lists corresponding to the full #-CI's described in the
previous section. With these final lists we performed the CI calcula-

tions. The results of these calculations are shown in Table IV. We
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did not find any special o-¥ mixed effect, but again, as in the case of
the valence states (Part I), all the important configurations involving ¢
excitations came from excitations within the (CC) o subspace. If one
compares the results in Table III and IV, one notices that the results of
the full 7-CI calculations do not differ appreciably from the present
results, mainly for the first roots of each symmetry.

To study the effect of higher excitation levels, we recombined
the natural orbitals to obtain a set of symmetry orbitals. In so doing
we reduced considerably the number of configurations and that allowed
us to increase the level of excitation.

With the delocalized description we first considered the same
type of CI described above but now including all the configurations from
the respective full #-CI lists that contributed an energy lowering of
0.0001 h or more. No appreciable changes were found relative to the
previous CI. Next we started again from the selected lists including
the configurations contributing an energy lowering of 0.001 h or more.
From these configurations we allowed single excitations in the 7 space
times (S + D) excitations in the o space. To these lists we added the
respective lists corresponding to the full #-CI's of the previous section.
Again, no appreciable changes occurred and practically all the config-
urations including double excitations in the o space involved the (C-C)
o subspace.

From these calculations one can conclude that the Rydberg
states of butadiene can be very well represented at a full 7~CI level.
While not shown in Table III, it is also true that the first states of each

symmetry can be well represented at intermediate levels of excitation
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in the 7 space. Another conclusion that results from these calculations
is that the o effects can be well established using only the (CC) o sub-
space,

As one can see, most of the electron spectra of trans-butadiene

can be explained in terms of Rydberg transitions.
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IV. The 1Bu 311 -"ﬂ'*! Transition

Most of our attention was directed to this particular state since it
has bravely resisted all the theoretical descriptions so far. The initial
motivation for our study of the electronic spectra of polyenes was basic-
ally to obtain the correct descriptions of these states. The initial idea24
that finally proved to be not completely wrong came from a simple anal-
ysis of the VB description of these states. As discussed in Part I,
while the 1Ag states can be described mostly by covalent structures,
the 1Bu states need polar structures for their description. Such a
large redistribution of charge in the & space should correspond to a
complete readjustment of the /o structure. Because all the calculations
(ab initio and semi-empirical) only considered n-CI's, the o readjust-

24 to investi-

ments could not be properly accounted for. So we proposed
gate the effects of o correlation in the ordering of the energy levels of
polyenes.

In what follows we describe our attempts to correctly describe
this state. We feel that it is more convenient to separate at this point
the work performed on the vertical transition and on the non-vertical

transition.

A. The Vertical Transition. This transition has been previously

discussed in connection with the Rydberg states. At that point we

assigned it to a Rydberg 3p1r state. It seems more appropriate to dis-

cuss it fully here since it was the failure to correlate this state with

the 1Bu (¥ ~m*) state that led us to investigate the non-vertical transition.
The first set of calculations for this transition has been described

before in Secs. II.D and ITI.E. We only want to add that besides the

GVB(3/PP) calculation, we also performed a GVB(4/PP) calculationZ?
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where we also correlated the (C,-C,) # bond. The GVB(4/PP) wavefunc-
tion gives a slightly better description of the state but when both wave-
functions are used to perform a full #-CI calculation, the results are
practically the same. From Sec. III.A we know that at the full 7-CI
level the energy for this vertical transition is 6.79 eV, which is

~ 0.8 eV higher than the experimental value for the 1Bu (w ~n*) transi-
tion.

We next decided to investigate the possibility of any stabilizations
by resonance effects. For that we considered localized excitations and
tried to describe the system as a ground state (N) ethylenic unit coupled
with an excited (V) ethylenic unit. We cannot solve self-consistently
for a localized 1Bu state because it collapses into the X ‘A g ground state
(the Cyy, Ag, and Bu irreducible representations both correlate with the
A’ representation of the C s group). The alternative was to generate
localized IVO's. To do that we started from the localized description
of the ground state and calculated IVO's considering excitations from
both localized C-C w orbitals. These IVO's properly reorthogonalized
to the occupied 7 orbitals of the GVB wavefunction for the vertical state,
were used in a full 7-CI calculation. No dramatic changes were
observed and the localized excitation model was temporarily abandoned.

We next turned our attention to the original idea of including ¢

24 While similar calculations have already been

correlation effects.
described for the Rydberg states, they were initially designed for the
study of o effects on the ‘B (v ~n¥) state.

Here we performed a more detailed calculation that the one pre-

viously described in Sec. III. E, starting with the inclusion of the (C-C)
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o subspace only. We started from the GVB(4/PP) wavefunction and
chose the lowest level of 7 excitation that exactly reproduces the full
7-CI description of the state. While the higher roots (n J‘Bu) have to be
described at the full -CI level, the first 1Bu can be very well described
by a #-CI up to double excitations. The three (C-C) o natural orbitals
were recombined to obtain symmetry orbitals. To the 12 7 MO's used
in the full #-CI calculation we added the six (C-C) o orbitals. Using
these 18 orbitals (12 7 + 6 ¢) we performed a CI calculation allowing up
to double excitations in the ¥ space times single excitations in the (C-C)
o subspace. At this level of calculation we obtained a transition energy
of 6.68 eV.

In the next step of our calculation we included the full o valence
space. The natural orbitals for the (C-H)o space were obtained from
the corresponding natural orbitals of the GVB(9/PP) wavefunction for
the *B e ion. The procedure to obtain these orbitals has been described
before (see Sec. III.E). Once the localized o structure was obtained,
we proceeded to perform the CI calculations in exactly the same way
as described for the Rydberg states in Sec. II.E. The results obtained
from this calculation followed the general trends observed before, i.e.,
that most of the o effects can be described within the (C~-C)o subspace.
One exception was observed, however, in which excitations from the
(C-H) ¢ space to the (C-C) o space were found to contribute an energy
lowering much larger (0.001-0.004 h) than was previously observed in
connection with the valence and Rydberg states. These configurations

N~/

C=———=C

N

describe the mechanism
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in which the net positive charge is left on the hydrogen atom instead of

in the carbon atom. That this mechanism should provide some stabiliza-
tion can be understood in terms of the relative electronegativities of
carbon and hydrogen.

For the next CI calculation we recombined the natural orbitals to
obtain a set of symmetry orbitals. Using this new set of orbitals we
performed a similar CI calculation but now including in the selected list
all the configurations from the full #-CI that contributed an energy
lowering of 0.0001 h or more.

The results of the two last calculations are basically the same and
the final value for the transition energy is 6.67 eV.

At this point in our calculations we are still ~ 0.7 eV higher than
the experimental value for the 1Bu (m - m*) state.

Before looking at the possibility of a non-vertical transitions, we
decided to investigate the influence of adding extra o and d1r basis
functions to our basis set. It seems to be true that d functions play an
important role in stabilizing the V(w-n*) state of ethylene. So we
decided to investigate its role in the stabilization of the vertical 1Bu
state of butadiene. The augmented basis set for this study corresponds
to basis set E of Table I. The effect of the extra basis functions can be
conveniently studied at the IVO level. From our experience we know
that the transition energies from IVO's should not differ more than
~ 0.4 eV (mainly for the first state of a particular symmetry) from the
final value obtained after SCF optimization of the state and CI calcula-
tion. So, any drastic effects caused by the extra basis functions

should be detected at the IVO level. If we look at Table I (basis set E)
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we see that the inclusion of the extra basis functions did not affect at all
the transition energy for the 3p," state. On the other hand, the 3d1r
Rydberg states showed an appreciable stabilization, which is quite
reasonable. Besides that, the MO coefficients for the d functions are
much smaller than the ones corresponding to the p basis functions, and
our experience tells us that no drastic changes should be expected after
the SCF calculation is performed. From these results we can conclude
that the failure to describe correctly the lBu (m = 7*) state is not due to
a basis set problem. We do not expect d functions to play any important
role, at least for the description of the vertical transition.

Finally, we have computed the oscillator strength for the transi-
tion X ‘A g™ 'B " (vertical) using the full 7-CI wavefunctions. This is
not the best description of these states, and the oscillator strength
(0. 341) should not be taken absolutely but compared with the oscillator
strength for the non-vertical state calculated at the same level of
description. As we will see in the next section, the oscillator strength
for the "non-vertical transition" is much larger.

It seems to us that from the results presented above, one can
assign the vertical X ‘A ¢ -lBu transition to a 1Bu 3p, Rydberg state.
The only possibility left now for the 1Bu (m—m*) is of a non-vertical
transition.

B. Non-vertical Transitions. In this section we will describe our

various attempts to describe the 1Bu (w = *) transition using optimized
geometries for the excited state (referred to here as non-vertical
transitions). We considered symmetric stretched and bent structures,

asymmetric stretched structures;' and twisted geometries. It will be
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more convenient to describe each one of the changes in geometry
separately.

Most of our study of these structures was performed at the
GVB(1/PP) level corresponding to correlating the = bond between the
middle carbon atoms. When, at this level, a reasonable change in
energy relative to the vertical state was observed, the calculation was
carried further on. For these particular structures a GVB(4/PP)
wavefunction was constructed and used to perform full #-CI and #-CI
with inclusion of the (C-C) o subspace.

In all these calculations we used the same augmented basis set
used to describe the vertical transition (basis E, Table I).

1. Symmetric Stretched Structures. Initially we considered
only symmetric stretched structures.

In the first structure studied we simply inverted the double and
single bonds relative to the ground state geometry. So, this structure
corresponds to (C,-C,) = (C;-C,) =1.46 A and (C, = C,;) =1.34 A. At
the GVB(1/PP) level, this structure is less stable than the vertical
state but at the GVB(4/PP) level it is slightly more stable (0.0021 h).

Next we considered a set of structures where the C,-C, double
bond was kept fixed (1. 34 A) and the terminal bonds varied. Figure 5a
shows the dependence of the GVB(1/PP) wavefunction energy on the
terminal (C-C) bond distance. It is interesting to notice that the only
structure that is more stable than the vertical state is the one corre-
sponding to all (C-C) bonds equalto 1.34 A. For this last structure
we solved for a GVB(4/PP) wavefunction. No real improvement rela-

tive to the GVB(4/PP) description of the vertical transition was found.
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Following that we decided to increase the middle (C-C) double
bond and, keeping it fixed at 1,38 A, we again varied the terminal (C-C)
bond lengths. Here all the structures considered showed a reasonable
stabilization (~ 0.27 eV) relative to the vertical transition. Figure 5b
shows the dependence of the GVB(1/PP) wavefunction energy on the
terminal (C-C) bond length. Interestingly enough, we again found that
the most stable structure corresponded to all (C-C) bonds equal to
1.384,

After that, we decided to increase further the (C,-C;) bond dis-
tance to 1.40 A. Because of the previous results we first solve for the
equal bond lengths structure, at the GVB(1 /PP) level, After that we
considered one structure with terminal bond lengths equal to 1.43 A.
This last structure was found less stable than the previous one (1.40 i\),
and that was enough to establish that, again, the structure correspond-
ing to equal bonds will be the more stable of this set of structures.

Relative to the previous sets of structures [with (C-C) = 1.38
and 1.34 A ], both structures of this set (1.40 A) are more stable.

Following that, we further increased the double bond length to
1.43 A and performed a GVB(1/PP). calculation for the case of all equal
(C-C) bonds but we found the structure less stable than the ones with
shorter bonds.

At this point we decided that the best structures should correspond
to the all-equal (C=C) bond lengths and among these the one with
(C,-C,) = 1.40 A was the best. Figure 6 shows the dependence of
GVB(1/PP) wavefunction energy on the (C-C) bond length for the equal
bond structures.
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For three of these structures [with (C,-C,) =1.34, 1.40, and
1.43 A] we solved for a GVB(4/PP) wavefunction. Again, at this level
the structure with (C,~C,) = 1.40 A was found to be the most stable. At
this level of calculation, this last wavefunction corresponds to a stabil-
ization of ~ 0.43 eV relative to the GVB(4/PP) wavefunction for the
vertical transition.

Using this best structure, we performed a full #-CI calculation.
We found at this level a transition energy equal to 6.47 eV. To include
o effects we first looked for the lowest possible level of excitation in
the 7 space that would reproduce the results of a full #-CI calculation.
We found that the state could be very well described considering up to
double excitations in the 7 space. We then recombined the (C-C) o
bonds from the GVB(4/PP) calculation to obtain symmetry orbitals.
Using these 18 orbitals (6 o + 12 m) we performed a CI calculation
allowing up to double excitations in the # space times all single excita-
tions in the o space. At this level of calculation we found a transition
energy of 6.15 eV, which, when compared with the vertical transition
energy (6.67 eV) gives us a good indication that the 1Bu (r - w*) should
correspond to a non-vertical transition. It is important to notice that
while ¢ correlation stabilizes the vertical transition by 0.12 eV, for
the non-vertieal transition the same effect is of 0.32 eV, approximately
three times larger! |

2. Simultaneous §zmmetric Stretch and Bend. The results of

the last section were very stimulating and we decided to investigate if

further stabilization could be accounted for in terms of bending modes.

Since the difference between the observed state (at 5.95 eV) and the
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state found in the last section is small, it is possible that low energy
bending modes can provide further stabilization.

Starting from our most stable structure [with all (C-C) bonds
equal to 1.40 A] we investigated the effects of -CH, rocking and (C-C)
bending. We followed here the same strategy used before. We looked
at different geometries at the GVB(1/PP) level and, if any noticeable
difference was found, we proceeded further on with GVB(4/PP) calcu-
lations.

We considered first the terminal -CH, rockings. Figure Th shows
the dependence of the GVB(1/PP) wavefunction energy on the angle of
rocking. It is clear from the figure that this mode does not provide
any stabilization.

Next we considered symmetric (C,-C,) and (C,;-C,) bendings.
Figure 7a shows the behavior of the GVB(1/PP) wavefunction energy
with the angle of bending. We found a minimum at 0.8° corresponding
to a stabilization of 0.0021 h relative to the unbent structure. Using
this last structure, we calculated a GVB(4/PP) wavefunction that
showed a stabilization of ~ 0.0013 h relative to the GVB(4/PP) wave-
function of the unbent structure. Using this geometry, we performed
a CI calculation including the (C-C) o subspace analogoils to the one
described for the unbent structure. At this level of calculation we
found a transition energy of 6.12 eV.

Using the full #-CI wavefunctions, we calculated the 6sci11ator
strength for the transition X 'lAg -—lBu, where the 1Bu corresponds to
the most stable bent structure above. We found a value of 0.636
which is to be compared with the oscillator strength for the vertical
transition (0. 341).
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At this point it would be interesting to reinvestigate the importance
of extra p and d basis functions in the description of the non-vertical
state. To do this we included in our augmented basis the same set
of p and d functions we used in our study of the vertical transition (see
Sec. IV.A). Here we made use of IVO's again in the following way.
We know that after solving self-consistently for the 1Bu state [o(lau)2
(lgg)(lau)] if any IVO calculation is done using 0'(1::1,11)2(1bg)2 as core,
we obtain exactly the Zau orbital of the self-consistent calculation. So
we expect that if the extra basis functions will cause any improvement
in the (Zau) orbital, this should be apparent from the IVO calculation.
The result of this calculation is that after including the extra basis
functions the energy of the Zau orbital is practically the same (~0.01 eV
lower). We also used the ground state core but no improvement was
noticed. So, again it seems that the extra stabilization needed will not
result from improvements in the basis set.

3, Asymmetric Stretch, Before we can conclude that any of the
previously studied structures is the most favoréble one for the IB‘1 (m— %)
state, we have to examine further possible structures. With this intention,
we performed a few calculations on asymmetric stretched and polar

structures.

The use of asymmetric stretched structures naturally forces us
to introduce polar form because it would be unreasonable to assume
one terminal bond (in principle, completely equivalent to the other one)
is larger than the other unless some charge transfer to one of the
terminal carbon atoms is allowed.

Here the computational effort will be considerably larger since

we have only one element of symmetry left, namely, the plane of the
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molecule. This implies that the *A g and lBu states will now belong to
the same irreducible representation (A’) of the C point group and that
1Bu states can only be obtained at the CI level, after the ‘A g states are
projected out.

We initially solved for asymmetric structures of the type

starting from the symmetrically stretched [all (C-C) = 1.40 A] and
varying one of the terminal bond lengths. We considered at the GVB
(1/PP) level, structures with one of the terminal bonds equal to 1.54 A
(S1) and 1.64 A (S2). The former structure (S1) was found to be the
most stable. One cannot compare the energies of these structures
with the symmetric stretched ones because at this level what we obtain
is a bad description of the ground state (X ‘A g) and not of a JLBu state,

Using structure S1 we performed a full 7-CI calculation. The
root corresponding to the 1Bu state gives a transition energy of 7.16 eV,
We did not perform similar CI calculations with the structure S2. The
reason for that was not because that structure was found less stable
than S1 structure at the GVB(1/PP) level (since that only tells us that
a worse representation of the ground state is being obtained but does
not say anything about the CI root corresponding to the 1Bu state) but
because we do not believe that a stabilization by ~1.16 eV can be
achieved only by increasing the terminal bond length by 0.1 A.

4, Polar Forms. We next considered polar forms of the type



which can be viewed as formed by an allyl system attached to a -CH,
group. The bond distances in the allyl group were kept equal to 1.40 A
(which, by the way, happens to be equal to the optimized bond distance
for the allyl group) and we solved for different values of the terminal
bond.

We considered two different values of the terminal bond length
(1.54 and 1.64 A) and solved for a GVB(2/PP) wavefunction for each one
of these structures. To force the system to retain its polar structure
we put in different '"classes' the basis functions corresponding to the
atoms of the allyl group and the ones corresponding to the terminal
-CH, group. That forces the hamiltonian matrix to be block-diagonalized
in such a way that these two classes do not mix. The GVB(2/PP) wave-
functions correspond to correlating the 7 bond in the allyl group and the
electron pair in the p orbital at the terminal carbon atom. To properly
describe in-out correlations in the terminal atom we added to the aug-
mented basis set an extra Py basis function on each carbon atom. This
extra basis function was scaled in such a way that its exponent (¢ =
0.05) is in geometric progression with the outer p exponent of the
double-zeta basis set and with the diffuse p (¢ = 0.021) basis function

previously added.
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At the GVB(2/PP) level the structure with a terminal bond equal to

1.54 A is slightly more stable, but at the full 7-CI level they give
practically the same description of the root corresponding to the JLBu
state. This state is found at ~7.0 eV. The second root of these CI
calculations is a doubly-excited valence state (at ~ 6.6 eV) which
corresponds to the 2 lAg state. The interesting thing is that in both CI
calculations the dominant configuration for this state (2 ‘A g) contains an
excitation of one of the electrons of the terminal carbon atom back to the
allyl system. This is in accordance with the fact that covalent struc-
tures are more important than polar structures in describing the ‘A g
states,

We did not try to include o effects in any of the calculations
described in this section because we do not believe that these effects
could be responsible for the necessary stabilization (~1 eV). Besides
that, the size of the CI matrices become very large because of the
reduced symmetry and the necessity of solving for at least three roots
makes the calculations impractical.

5. Twisted Geometries. We finally looked at the effect of
twisting the terminal -CH, group. Experimental results suggest and
theoretical calculations seem to confirm that the V state of ethylene is
stabilized by twisting the -CH, group out of the plane of the molecule.
So, our last chance of finding any similarities between these two sys-
tems is to show that this effect can equally stabilize the lBu state of
butadiene.

We did not attempt to construct a potential surface for this

motion but looked only at the 90° twisted configuration that in the case
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of the ethylene molecule represents the most stable configuration. So
we expect that any drastic changes caused by twisting the -CH, group
should be apparent from our study of the fully twisted configuration.

We chose a geometry that again resembles an allyl system
attached to a -CH,, group, the difference being that now the -CH, group
is 90° twisted relative to the plane of the allyl group

The carbon-carbon bond lengths in the allyl group were taken as equal
to 1.40 A and the terminal bond length equal to 1.54 A, At the Hartree-
Fock level we obtained an energy of -154. 2270 h for this structure.
This energy is so high that it is very improbably that CI effects can
lower it to a value compatible with the state observed experimentally.
So, we decided not to proceed further with this calculation.

Instead, we decided to look at the polar form

using the same geometry as above. At the Hartree-Fock level this
structure is much more stable (E = -154, 6742 h) than the nonpolar one.

Using this Hartree~Fock 7 space we performed a full #-CI calculation
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and solved for three CI roots. The transition energies obtained are
excessively large (11.73 and 12,98 eV) to have any connection with the
kind of state that we are trying to represent. The interesting thing
about this calculation is that after twisting, the calculated states
acquire a pure valence character. The diffuse MO's do not give any
contribution at all to the states we solved for. Because of that, the
identification of these states with the original 1Ag and 1Bu states is
more difficult to be made. It is important to mention that after twist-
ing the -CH, group the o electronic distribution is significantly changed.
So, any correct treatment of this structure must include some descrip-
tion of o correlation. We did not attempt to do so because we do not
believe that a stabilization of ~ 6 eV could be obtained on the basis of
this effect.

Before closing this section we should mention that in an earlier
calculation, Shih 9}_&1_1.25 also looked at twisted geometries of the
butadiene molecule. In their calculation they considered simultaneously
twisting of both -CH, terminal groups. These groups were rotated by
the same amount and in the opposite sense so as to keep C, symmetry.
The advantage of performing the motion in this way is that under C,
symmetry the 1Ag and 1Bu states will correlate with different irreduc-
ible representations. They 25 found that at a 30° twisting angle the 1Bu
state was stabilized by an amount of ~ 0.2 eV, but they conclude that
this stabilization should represent an overestimation because of the
excessive valence character ascribed to this state (they did not include
diffuse functions in the calculation). On the basis of our present

results, we would expect the states corresponding to twisting both
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-CH, groups to be valence-like. This implies that the absence of
diffuse functions does not represent any drawback in the calculation
by Shih _et_al.25 However, an important factor that can modify the
results of their study is the lack of treatment of ¢ correlation, since

the changes on the o system are even larger in this case.
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V. Hexatriene

We proceed now to describe the calculations performed for the

hexatriene molecule.

In this case we have two more electrons in the  space and a
simple MO description gives a ground state corresponding to the elec-
tronic configuration (‘lau)2 (lbg)2 (2a.u)2 plus three unoccupied orbitals
2b o’ 3au, 3bg in order of increasing energy. This molecule has the
same symmetry as butadiene and the atomic orbitals will have
symmetries ns = ag; np=a ;nds= ag,bg; of = a,, by

The first dipole allowed state will correspond to the 2a a 2bg
transition which gives rise to a 1Bu state. Again, as in butadiene,
this is not a valence state, the 7 * (Zbg) orbital having some diffuse
character.

The Rydberg states for this molecule will have overall symme-
tries Bg(Zau ~ np,,nf;), Au(2au ~ ns,nd), Ag(za.u - npﬂ,nfn) and
B,(2a, ~nd ). Transitions to the 'A and ‘B, states will be optically
allowed while transitions to the A_ and B_ states will be forbidden.

g g
A. Basis Set. In order to describe the o Rydberg states we

initially augmented the valence basis set with diffuse basis functions
of 3s, 3py and 3pZ character (§3S = 0.023, §3p = 0.021) centered on
each carbon atom. An IVO calculation with this basis set (basis A,

Table V) gives an adequate description of the 3s, 3p_, 3p s, 3do, 3d0,,

and 3d0, Ryvcibef*g%cy)rbifél—sjf This sam;baskis (A) also generétes 4p0,
4f o? and 5g . Rydberg orbitals. Figure 8 shows the first three o
Rydberg orbitals generated with this basis.
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As we did in the butadiene case; we again reduced

the size of the basis set (without loss of accuracy) in order to perform
the SCF and CI calculations. To this purpose we augmented the valence
basis set with one set of 3s, 3py and 3pZ basis functions centered at the
C,-C;, C;-C, and C,-C; bond midpoints. As we can see from TableV
(basis B) and Figure 8 (b, d, f),//this basis set gives a very good descrip-
tion of the ¢ Rydberg states.

B. Character of the Rydberg Orbitals. As for butadiene, the

Rydberg orbitals for hexatriene very much resemble the corresponding
atomic orbitals.

The ¢ Rydberg orbitals again show clear distortions and are
rotated relative to the molecular coordinate system, but the r Rydberg
orbitals seem to be oriented along the molecular coordinate system.

Figure 8 (a,c,e) shows the first three 0 Rydberg orbitals (using
basis A) which can be classified relative to the (X,y,z) system (Figure
8) as 3s(a), 3p7 (c) and 3p§ (e). Similarly, the 3do orbitals on Figure
9 can be classified as 3d_22(a,b), 3d§7‘2 (c,d) and 3d§2_72 (e,f). This
latter orbital shows much more amplitude in the molecular plane than
the equivalent one in butadiene.

Figure 10 shows the first three r Rydberg orbitals, obtained from
basis set C (Table V). Amplitude plots in both Xy and XZ planes allow
us to classify them as 3dXy (a,b) and 3d> (c,d). Figure 11 shows the
two 4f orbitals (41, and 4fxy2) in both Xz and xy planes.

Table VI shows the transition moments and spatial extension

(second moments) computed using these Rydberg orbitals.
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C. Hartree-Fock Calculations. For the o Rydberg states we

used the IVO's obtained with basis set B (Table V) as starting guesses
for the excited Rydberg orbitals.

Using the first IVO of of ag(3s) symmetry and i)u(3p 0) sjmmetry
we solved self-consistently for the ‘A u(3s) and 1Bg(3p0) Rydberg states.

For the r Rydberg states we used the IVO's obtained with basis
set C (Table V) as starting guesses for the excited Rydberg orbitals.

Similar to the case of butadiene, the Hartree-Fock solution for
the ‘A g(spw) Rydberg state will not correspond to a '"'pure' state. But
because this latter state is very different in character from the valence
1Ag states it will be easily identified at the CI level, as discussed in
the next section.

The 1Bu states in the case of hexatriene correspond to the ndﬂr
Rydberg states. Using the first IVO of bg(3d”) symmetry obtained from
basis set C (Table V) we solved self-consistently for the lBu(3d1r) state,

We did not try to search for a 1Bu(1r -7*) corresponding to a non-
vertical transition, because the optimization of this state is much more
complex. The problem will be certainly simplified after a correct
description is found for the butadiene case.

The Hartree-Fock results for the Rydberg states are shown in
Table VII.

D. CI Calculations. The set of CI calculations to be described

below were performed using the orbitals generated by each one of the
SCF calculations respectively, plus some IVQO's properly reorthogona-

lized to the HF occupied orbitals.
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Because the CI matrices generated are very large; we limited
ourselves to the first two Rydberg states of each symmetry with
exception of the lAg states. In that case, the need to project out the

_é;ound state and the 21Ag valence state forces us to solve for four roots
to obtain the first two 1Ag Rydberg states. This makes the calculation
very impractical.

1. The 1Au states (ns,nd;). The CI calculation for these states

was performed in the following way. The 7 space was formed by the
orbitals generated in the SCF calculation. The o space was formed
using the 3s orbital solved self-consistently plus 56 IVO's (2ag + 3bu)
obtained from basis set B (Table V), reorthogonalized to the HF ¢ core.
Using these spaces we allowed up to triple excitations among the 12¢
MO's while simultaneously allowing the o electron to readjust a mong
the 60 MO's. The first root of this CI calculation corresponds to the
3s Rydberg state and the second to the 3d0 Rydberg state. Both states
are optically allowed and should be observed in both uv and electro n-
impact experiments. The results of this calculation puts the 3s state
at 5.97 eV and the first 3d0 (3d22) state at 6.72 eV.

One attempt was made to estimate the transition energy of the
second 3d0r Rydberg state using the IVO results corrected for CI effects.
This correction was based on the CI effects observed for lower Rydberg
states of butadiene and hexatriene. Following this procedure we found
the second 3d0 Rydberg state at 6.80 eV. This state could be corre-
lated to the transition observed experimentally at ~ 6.9 eV. 22 However,
from the experimental point of view the bands observed at ~6.75 eV,

6.90 eV and 7.08 eV appear to be vibronic peaks of a single electronic
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transition. 26 Again experimentally this transition has been tentatively

assigned to a 2 1Bu(11 -1 state?2 and also to a o—7* state. 27 As

previiously discussed in Part I, the o —7* states are at mu;:h 7higher
energies and that leaves the 2 1Bu(1r - *) as a sole candidate for this
assignment. If one looks at Tables I and V, one can see that at the IVO
level the 3d o Rydberg states of both butadiene and hexatriene are
~0.1-0.2 eV apart. From this observation another interpretation of
the three-band system (6.75 eV, 6.90 eV and 7.08 eV) can be made,
namely that they could correspond to the three 3do Rydberg states
(3d_Z_2, 3d?_z. and 3di2_72 , respectively).

2. The 'B_ states (np,) - The CI calculations for these states

g
were performed in an analogous way to the one described for the 1Au

states.

The 7 space was formed from the orbitals generated by the SCF
calculation. The ¢ space was formed by the 3p0 self-consistently
optimized orbital plus 50 IVO's (3a gt Zbu) properly reorthogonalized to
the HF o orbitals.

Using these space, the CI calculation was performed allowing up
to triple excitations among the 127 MO's and simultaneously allowing
the o electron to readjust among the 60 MO's. The two CI roots
obtained correspond to the two 3po Rydberg states. We found those
states at 6.00 eV (3p?) and 6.20 eV (3pz).

These 1Bg states occur in the same region of optically allowed
transitions and could well be masked by these transitions. Also in the

electron impact spectrum at 0° angle these transitions should exhibit

small cross-sections.
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Recently a two-photon absorption experiment in the region of
6.23 eV indicated the presence of a parity-forbidden sta.te.8 A more
recent study of its intensity dependence on the laser beam polarization
indicated a state of Ag symmetry. 28 As will be discussed below, we
also calculate a 1Ag Rydberg state at 6.26 eV. But the same experi-

ment® does not show the presence of a 'B_state at 6.2 eV. To try to

g
explain why this transition was not observed we calculated two-photon

transition rates for both lAg and 'B Rydberg states. To do that we

derived expressions for the two-phcion transition rate from a single
beam of elliptically polarized light for each one of the transitions.
From these expressions the rates for linearly and circularly polarized
light can be easily obtained. The derivations can be found elsewhere.29
We used IVO states to perform the summation over the intermediate
states. At this level of calculation we found the ratio between the
and JLB states equal to ~ 4 for linearly

g g
polarized light and ~ 10 for circularly polarized light. We have com-

transition rates for the A

puted two-photon transition rates for the butadiene molecule (for other
purposes) using full 7-CI wavefunctions. To have an idea of how the

CI results differ from the ones using IVO states, we recalculated the
rates for the butadiene case using IVO states. A factor of ~5 was
found between the ratios (w'A g/ wlBg) for the two calculations. If one
uses this as an estimate for the CI effects in hexatriene, one can say
that the ‘A g transition might be ~20-50 times more intense than the 1Bg

transitions. While these numbers represent only estimates, we can

safely say that the lAg transition is more intense than the lBg transition.
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3. The 1Ag states (npx). For those states the 7 space was com-
posed of the HF 7 orbitals for this state plus # IVO's (3au + 3bg)
obtained with basis set C (Table IV). Using this space we performed
the CI calculation considering up to quadruple excitations.

As discussed above, because we have first to project out the

valence 'A_ states we only obtained the first ‘A Rydberg state which

Correspon§S to the 3px state. This state is easgily identified with the
third root of the CI calculation. The first root is a valence closed-
shell state and corresponds to the X'A o ground state of the system.
The second root is also a valence state and shows a doubly-excited
dominant configuration characteristic of the 2 1Ag(1r -1 ¥*) valence state.
Finally, the third root corresponds to the diffuse open-shell configura-
tion of the Hartree-Fock calculation and is identified with the ‘A g(3px)
Rydberg state. We found this state at 6.26 eV in excellent agreement

with the state at 6.23 eV observed in the two-photon absorption

experiment. 8

An estimate for the higher ‘A Rydberg states was made following

g
the same procedure used for the 3d0 Rydberg states. In this way we

found the 4f253z state at 7.19 eV and the 4fﬁ2 state at 7.81 eV, The 4fﬁ2
state can be tentatively correlated with the observed transition at

7.25 eV 9 and the 41 state With the one observed at 7.77 eV. %5
Experimentally the first transition (7.25 eV) has been assigned to a

vibronic component of the 2 1Bu(17 —~7*) stateza and the second one

2a

(7.77 eV) was assigned to a 4fﬁ2 Rydberg state.““ If we assume that the

three-band system (discussed in connection with the 3d o 1Au Rydberg
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states) at 6.75 eV, 6.90 eV and 7.08 eV correspond to the 3d  states
that leaves the 7.25 eV transition unassigned. On the basis of our
present results a plausible assignment of this band is its identi-
fication with the 4f o Rydberg state.

4. The 'By states (3d,). The CI calculations for these states
were carried out in exactly the same way as described for the 1Ag
states. The 7 space was formed using the HF 7 orbitals for the 1Bu
state plus 67 IVO's (3:3,u + 3bg) reorthogonalized to the HF 7 orbitals.
Using this space we solved for two CI roots allowing up to quadruple
excitations. These two roots correspond to the two 3d1r orbitals. We
found these states at 6.27 eV and 6.68 eV.

We also tried to estimate the transition energy for the 4drn
Rydberg state following the same procedure used for the 3d0 (1Au)
states. In this way we obtained a transition energy of 7.41 eV for the
4dﬁ state which correlates well with the transitions observed experi-
mentally at 7.46-7.48 eV, 2,5 These tranSitions have been tenfatively

2a or to a o—n* state. 27 Again, from

assigned to the 3 lBu (m —-m*) state
Part I we know that this transition does not correspond to a o—n*
transition. As for the 2 1Bu (7 —w*) state, nothing can be said at the

moment about the nature and location of the 3 1Bu (7 —m*) state.
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VI. Discussion

We now proceed to discuss the results of both calculations com-
paring our results with the experimental spectra and other theoretical
calculations. As will be apparent from the discussion, most of the
spectra of these molecules can be explained in terms of a few valence
states plus a series of Rydberg transitions.

It will be more convenient to discuss each molecule separately.

A. Butadiene Molecule. Except for the 1 1Bu state experimen-

tally observed at 5.95 eV (peatk)4 our present calculation can provide
assignments for most of the observed transitions. Table X shows our
results (including the valence states) and compare them with experi-
mental results. Except for a few transitions our assignments agree
with the results of a recent ab initio calculation. 30
The transitions observed experimentally at ~3.2 eV and ~4.9 eV
can be unambiguously assigned to the two lower triplets 3Bu and °A g
states, corresponding to the 2 and b bands.
The next transition, observed experimentally at ~ 5. 95 eV'4’ 31
and assigned to the 1 'B u state (K band system), constitute the most
serious challenge to the theoretical description of the electronic states
of polyenes. We think that our calculations provided enough evidence
that this transition is non-vertical. Our best estimate locates this
transition at 6.12 eV and that corresponds to a ''state' with all C-C
bond distances equal to 1.40 A and with the (C-C) terminal bonds

symmetrically bent 0.8° degrees relative to the ground-state geometry

(see Section IV, A.2). We believe that a more detailed investigation of
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the symmetric stretched geometries will provide the final answer to
the problem. If one looks at Figure 6 for example we see that the
differences of energies among the structures with shorter (C-C) bonds
(1.40 A and less) are relatively small. We decided to proceed further
with the calculations of the structure, with all (C-C) bond distances
equal to 1.40 A, because, at-the GVB(1/PP) level, this structure was the
most stable one. From the (7 +0¢) CI calculations we learned that the
effects of o correlation for this structure were approximately three
times larger than the corresponding effects for the vertical transition.
This effect could be even larger for shorter (C-C) bond lengths. That
means that while at the GVB(1/PP) level the differences of energy

were small, it is possible that at higher levels of calculation structures
with shorter (C-C) bond lengths (i.e., shorter than 1.40 A) could
become more stable. It is also possible that the o effects can be large
enough to provide the extra (0.12 eV) stabilization for this transition.
The small differences of energy among these stretched structures

could provide ah explanation for the broadness of the band observed
experimentally as being a result of (C-C) stretching progressions.

We plan further studies in this direction.

We assigned the system band B 32 observed at ~ 6.27 eV to the
1Bg (3s) Rydberg state. This transition has been recently observed in
a two-photon absorption experiment. @ While no polarization studies
were performed, on the basis of the present calculation this transition
can be unambiguously assigned to the 1 1Bg (3s) Rydberg state, since no
other parity-forbidden states were predicted in this region. This

assignment also agrees with the results of Buenker et al. 30
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In the region between 6.0 eV and 7.0 eV two more transitions
have been observed experimentally, one at 6,64 - 6.66 eV3’ 4 and
another at 6.80-6.81 eV. 3,4 In this same region our calculations
predicted three states, namely, the 1'A_ ey ) at 6. 61 eV, the

B (3p ) state at 6. 67 eV and the 2 ‘A (3p_) state at 6.78 eV. The
tranS1t1on at 6.80- 6.81 eV can be assigned to the 2 A (3p ) Rydberg
state but the transition at 6.64 - 6. 66 eV could be equally asmgned to
the 1A (3py) state or the ‘B, (30, ) state. At this point the assign-
ment has to be decided in terms of the relative intensities of the
transitions. For this purpose we calculated oscillator strengths for
all three transitions at the full 7-CI level. We found f values of
0. 0026 for the 1Au state, 0.1096 for the 2 lAu state and 0. 3410 for the
1B (3p_) state. From these results it is quite reasonable to assume
that the 1 A (3p ) may not be observed. So we assigned the transition
observed at 6. 64 6.66 eV (C ba,nd)32 to the B (3p ) Rydberg state.
The transition at 6.80 eV-6.81 eV (D band) We assign to the 2 Au
(3pz) Rydberg state. Our assignments in this region differ from the
ones by Buenker et al. since they do not assign any transition corre-
sponding to the D band.

Several transitions are observed experimentally in the region
3,4

32

between 7.0 eV and 8.0 eV. These were designated as 'ﬁf, F, and

a band systemé by Herzberg.
The first of these bands (f) is observed at 7.07-7.08 eV. 3
McDiarmid3 assigns this transition to the first member (n=3) of a p-
allowed Rydberg series (series 2). More recently, Wiberg et al., 12

from a comparative study of the vibrational structures of the uv and
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photoelectron spectra (PE) also assigned this transition as the origin
of a Rydberg series. We do not find any Rydberg transij:ions in this
region. On the contrary, we find the 21,Ag (m - m*) valence state at
7.06 eV and another recent ab initio calculation also finds this state in
the same region (7.02 eV). 30 From the McDiarmid3 analysis one sees
that this transition fits her = Rydberg series 2 but with the largest
deviation between calculated and observed values. Besides, the fact
that the spectrum of solid butadiene shows a presence of a weak
absorption in this region supports the identification of this transition
with a valence state. We assign this transition to the 2 1Ag (m—7*)
valence state.

The uv absorption in the 7.27-7.86 eV region was originally
assignedto a X-—E band system32 and is by far the most complicated
structure of the spectrum. From the McDiarmid3 analysis of the uv
spectrum and from the electron-impact (EI) results of Flicker et al., 4
it is quite clear that this E band has several components. Transitions
are observed at 7.27, 7.47, 7.63, 7.79, and 7.85 eV in the uv spec-
trum® and at 7.28, 7.48, 7.60, and 7.80 eV in the EI spectrum, 4
We find several Rydberg transitions in this region. In Table IX we
list the components of the E band system as predicted by our calcula-
tions. The first three observed transitions (7.33, 7.47, and 7.65 eV)
are assigned to parity-forbidden transitions that can be made vibronic-
ally allowed. The last two transitions (7.79 and 7.85 eV) correspond
to higher members of the dipole-allowed Rydberg series np and np.
These assignments are consistent with the fact that the first three

transitions are very weak, while the last two are relatively more
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intense. The 3 1Bg (3d§z) Rydberg state at 7.40 eV does not result
from the CI calculations, From Table I we can see that our basis set
(basis C) cannot represent well the second 3d0 orbital. But we can
still make a good estimate of the transition energy in the following way.
From Table I we have an estimate of the transition energies for both
3d . Rydberg orbitals, and from Table IV we have the CI correction for
the 3d-£2 Rydbert state. Assuming the same CI corrections for both
states, we obtain the Bdﬁ state at 7.40 eV. The observed transition
at 7.63-7.64 eV >
the 3 1Ag (3dxy) state. We expect the transition to correspond most

can be correlated with either the 4 1Bg (4s) state or

probably to the 3dxy state since the first member of the ns series is
very weak. Our assignments of the components of the E system band

30

differ appreciably from the ones by Buenker et al. Recently, Wiberg

12 proposed that all the transitions in this region are vibrational

et al.
components of a single Rydberg transition with the origin at 7.06 eV.
The next two observed transitions correspond to bands G and ﬁ

3,4 We assign these transitions

at 8.0 eV and 8.18 eV, respectively.
to the 1Bu (4fX3) and 1Bu (5px) n-Rydberg states.

In order to understand the many transitions converging to the
first IP, we examined the various Rydberg series for which our calcu-
lations provided the first members. First of all, we have to conclude
that our 1Bu (4fxz2) state calculated at 8.91 eV is in error (see Table
IV). If this assignment is correct,v it would imply that all the other
transitions between 8.2 and 8.9 eV should correspond to the fourth and
fifth members of the different Rydberg series. From Table I (basis E)

it is also clear that our basis set cannot represent well the 4f _ ,
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orbital found at ~1 eV higher than the 4f_; orbital when we expect
them to be nearly degenerate.

Table X shows the results of our studies on five different Ryd-
berg series. The other possible series were discarded because their
first members showed very low intensity or because their first mem-
bers cannot be well represented by our basis set. One example of the
former is the np-}; (nlAu) series whose first member (3p§,-) is very
weak (f = 0.0026). An example of the latter is the nf_, series.

335 ~1.0,

Typical quantum defects (6) for molecular spectra are s

6p ~0.6, 8, ~0.1, and 8; ~ 0.0 with deviations of + 0. 2 units.
From Table X we can see that

a) the quantum defects obtained are in the range expected for each
type of series. The fact that the 6fx3 is larger than expected can
be attributed to a possible strong coupling between those states
and the np, states since they both have the same symmetry;

b) for n = 9 all the series are practically degenerate;

c)  the optically allowed np, ('B,), np5 (lAu) and nf ; ("B,) Rydberg
series can account for all the transitions observed in this region.
The disagreement between our calculated transitions and the ones

observed for larger n's is certainly because our series converges to a

lower ionization potential.
This region of the butadiene spectrum has been recently analyzed

15

by McDiarmid3 and Ellison™" using uv absorption spectroscopy and by

J ohnson'7 using three-photon absorption spectroscopy. In Ellison's

15

analysis™" he finds a single Rydberg series with the first member

(n=3)at 7.06 eV. McDiarmid3 analyzes this region in terms of four
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Rydberg series. She assigns two of the series to p-allowed series and
the other two to d or { series. Johnson'7 proposes the existence of
three Rydberg series in the molecule with two of them almost degener-
ate. He proposes an n(p, f) 1Bu series with a very strong f component,
an n(p, f) lAu series, and another n(p, f) lAu series with strong p
character.

From our analysis we conclude that the transitions in this region
can be explained in terms of an np. 1Bu series, an nfz13 1Bu series,
and an np 1Au series. We also expect an nf o lAu series to be present
in this region. Because our basis set cannot describe adequately fo_
states, we do not present any results for this series. But we expect,
as in the case of the np_ and np- , that both f series will be nearly
degenerate even for small n.

Finally, the transitions observed at 9.53 eV and 11.04 eV in the
electron-impact Spectrum4 may correspond to ¢ = 7* transitions. In

trans-hexatriene we found o -7 * transitions in these regions of the

spectrum. K also could correspond to excitations out of the inner #

(lau) orbital.

B. Hexatriene Molecule. The electronic spectrum of this mole-

cule is much less understood than the spectrum of butadiene. Experi-
mentally only the two lowest triplet states (1 3Bu and 1°A g), the strong
1 1Bu state and more recently a parity forbidden 1Ag state can be
unambiguously assigned. Our calculations can contribute to a quanti-
tative assignment of most of the observed transitions. Table XI shows
the complete results of our calculations and compares them with the

available experimental results. Unfortunately, this molecule is com-
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putationally more complex than the butadiene molecule and we have to
restrict ourselves to a few states of each symmetry.
The two lowest observed transitions at ~2.6 eV and ~4.2 eV

5,34, 35 Our calcula-

have been assigned to the first two triplet states.
tion confirms the assignments. We find the 1 3Bu state at 2.71 eV and
the 13Ag state at 4.23 eV.

The next experimentally observed transition corresponds to the

2D, 5, 34

strong dipole allowed 1 1Bu state. Similar to the butadiene

case this is a very broad band covering the range from ~4.95 eV to

~5.70 eV. 1

We did not try to search for a description of this state but
from what we learned from the butadiene calculation this is most
probably a non-vertical transition. Once the structure of this state in
butadiene is known, it would provide the guidelines to the description of
the corresponding state in hexatriene. We plan a more detailed in-
vestigation on the butadiene state and once its structure is determined
we will extend the calculation to the hextriene molecule.

The next transition observed in the uv spectrum corresponds to
a series of weak bands covering the range from ~5.70 eV to 6.44 eV.
These transitions correlate with the bands at 6.06 eV, 6.25 eV and
6.42 eV observed in the electron impact experiment.5 From the
analysis of the uv spectrum2 it was found that only a few of these bands
could be fitted in the progressions found for the X ‘A g™ 1 1Bu transition,
even if rather large anharmonicities are assumed for the vibrations.
From that observation it was concluded that the majority of the
observed bands in this region could well be associated with electronic

states other than the 1 1Bu state. These transitions have been assigned
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2

to the parity-forbidden 2 'A_and 3'A g states“ and more recently to an

g
optically allowed 2B, state.>"
The first state predicted by our calculations to occur in this
region is the valence 2 1Ag state at 5.87 eV. Earlier semi-empirical
ca.lculations36 predicted this state to occur below the 1 1Bu state. The

2 and electron-impact5 spectra do not show any

analysis of both uv
evidence for such a state below the 1 1Bu state. This 2 1Ag state could
well be associated with the weak bands in the region between 5.70 eV
and 5.89 eV of the uv spectrum. The electron-impact spectrum at 70°
shows a weak feature at ~ 5.9 eV which is not present in the spectrum
at 0° angle. 5 Since optically forbidden transitions are in general more
prominent at larger scattering angles, that feature could be an indica-
tion of a parity forbidden transition. However, this observation is far
from being conclusive. Besides the fact that the resolution of the two
spectra is different, several factors could contribute to simulate such
a weak feature. A more convenient way of veryfying the presence of
this state would be by means of a two-photon absorption experiment.
To have an idea of how strong this transition would be, we calculated

the two-photon transition rate for the xX'A_ ~2'A ’transition using

our best CI description of these states. V;c’;e foundgtransition rates

equal to 7.1x10™% F° sec™ for the case of linearly polarized light and
1.2 x10™ F° sec™ for the case of circularly polarized light (F is the
photon flux in photons/cm? sec). Since fluxes of the order of 10°°-10%

are currently available (from nitrogen-pumped dye lasers for instance)

B ,,th,e,, transition should be observable.
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In this same region (5.70 eV - 6.44 eV) our calculations predict
two optically allowed Rydberg states and three parity forbidden
Rydberg states. The first transition, at 5.97 eV, corresponds to the
1 1Au 3s Rydberg state. This state could well be associated with the
bands in the region of 5.94 eV - 6.09 eV in the uv 2Spectrum and with
the 6.06 eV feature of the electron-impact spectrum.5 The next three
transitions calculated in this region correspond to parity forbidden

Rydberg states at 6.00 eV (1'B 3p),at 6.20 eV (2 1Bg, 3p) and at

’
6.26 eV (3 1Ag, 3px). From thegse, the first two transitions are very
weak and may not be observed even in a two-photon absorption experi-
ment (see Section V.B. 2). It is interesting to notice that these same
transitions in butadiene (in which case they are optically allowed) are
also weak and one of them is almost certainly not observed. The
transition at 6.26 eV corresponding to the 3 ‘A g (3pX) Rydberg state has
been recently observed in a two-photon absorption experiment. 8
Finally, the last transition in this region predicted by our calculations
occurs at 6.27 eV and corresponds to the 'B u (3dﬁ-) Rydberg state.
This transition can be correlated with the bands at 6.28 eV in the uv2
spectrum and at 6.25 eV in the electron-impact spectrum. 5 We found
no other transitions at higher energies in this region that could be
correlated to the bands observed at 6.38 - 6.44 eV in the uv2 spectrum
and with the peak at 6.42 eV in the electron-impact spectrum. o '

In a reinterpretation of the uv spectrum this whole system of

21 From our

bands (5.70 eV - 6.44 eV) was assigned to a 2 1Bu state.
calculations it is clear that more than a single transition are present

in this region.
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The next band system observed in the uv spectrum corresponds

to a series of medium intensity bands covering the range between

6.53 eV and 7.30 eV.2

2

This band system was initially assigned to a
2 1Bu state” and more recently to a o - 7~ 1Au state. 21 The corre-
sponding peaks in the electron-impact spectrum are observed at

6.57 eV, 6.75 eV, 6.93 eV, 7.08 eV and 7.25 eV.°

In this region
(6.53-7.30 eV) we found several transitions which we proceeded to
analyze.

First of all, from Part I we know that the ¢~ 7* states occur at
much larger energies and should not be associated with any transition
in this region.

The only transition predicted by our calculation to occur around
6.5 eV corresponds to a 1Bu valence state at 6.56 eV. If we assume
that the last few bands of the previous region (5.70 eV~ 6.44 eV) are
hot bands [-2v}, -2 + 11)] ! of the observed transition at 6.53 eV (0-0)2
we could assign this band system (6.42 - 6. 62 eV) to the 1Bu valence
state. However, we are not sure about the existence of such a
valence state even if it provides our only explanation for the observed
transition.

The next state predicted to occur in this region corresponds to
the 113u (3dxy) Rydberg state calculated at 6.68 eV. A transition at the
same energy observed in the uv spectrum was assigned to a vibronic
(v,) transition of the 6.53 eV band (0-0). 2 Moving at higher energies
we found another Rydberg state at 6. 72 eV corresponding to the

2'A, (3d2) state. This state can be associated with the transition

observed at 6.73 eV in the uv Spectrum2 and with the one at 6.75 eV
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in the electron-impact spectrum. 5 The next two transitions calculated
at ~6.80 eV and ~7.0 eV correspond to the 3'A_ (3dz) and 4'A (3dz2 52)
Rydberg states, respectively. The transition at 6.80 eV can be
correlated to the observed transition at 6.90 eV in the uv spectrum2
and the one at 6. 93 eV in the electron-impact spectrum.5 Similarly
the 4 1Au (3d 5{—2_-3-;2) state can be correlated with the transition at 7.06
eV (uv)1 and 7.08 eV (EI). 5
The last state predicted by our calculations to occur in this
region corresponds to the 1Bu (4dE)Rydberg state at 7. 25 eV. This
state could be associated with the bands observed at 7.15 ~7.30 eV
in the uv Spectrum2 and with the peak at 7.25 eV of the electron
impact Spectrum.5
A series of medium intense bands starting at ~7.37 eV in the uv
spectrum have been tentatively assigned to a 3 'B u state.2 Only one
transition at 7.48 eV is observed in the electron-impact spectrum in
this region. 5
A final series of sharp bands starting at ~7.71 eV and extending

2

up to 8.30 eV is observed in the uv spectrum.” The associated transi-

tions in the electron-impact spectrum are found at 7.77, 7.93, and

8.06 eV.°

The analysis of the uv spectrum revealed that these transi-
tions could be fitted in a pﬂ-type Rydberg series with the principal
quantum number in the range n = 5,12 and quantum defect equal to
0.054.2

To understand the nature of these transitions, we examined the
various Rydberg series for which our calculations provided the first

members. Table XII shows the results of our studies on four Rydberg
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series. From Table XII we can see that

a) the quantum defects obtained are in the range expected for each
type of series;

b) for n > 4, the nd2 and nde series are practically degenerate
and for n =10 all the nd series are degenerate. Also, for n =11
the four series are pratically degenerate; and

c) these four optically allowed series can account for all the transi-
tions observed in this region.

From the results of our analysis we conclude that the series of
bands starting at 7.71 eV and converging for the first IP should corre-
spond to three nd Rydberg series. The first member of the ndﬁ
series is more intense than the first members of the other series.
This difference in intensity could imply that for large n all the transi-
tions should correspond to members of this series (nd}-a). Higher
members of the ns series are not expected to be observed because the
3s ('A) transition is very weak.

Our assignments for this region are shown in Table XI. The dis-
agreement between our theoretical transitions and the observed transi-
tions for larger values of n (n =9) is certainly due to the fact that the
experimental series2 converges to a lower IP.

Finally, in the electron-impact spectrum, 5 transitions corre-
sponding to super-exicted states are observed at 9.1 eV, 9.7 eV and
10.5 eV. These transitions can be associated with o —~z* transitions or
with transitions from the inner n(lbg) orbital. The transition at 9.1 eV
correlates well with the 1Bg (o0 -n*) state calculated at 9.18 eV. We
did not find any transitions that could be correlated with the ones

observed at 9.7 eV and 10.5 eV. Those latter states could correspond
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either to another lBg (o0 —~7*) state (the 10.5 eV transition most
probably) or to transitions from the inner 7 (1b g) orbital.

Above 11 eV (energy loss) the electron impact spectra do not
show enough resolution to allow for the identification of the 1Au (0=7%)

state predicted by our calculation to occur at 11.51 eV,
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VII. SUMMARY

In this final section we summarize the main conclusions of our

calculations.

A)

B)

C)

D)

E)

F)

the spectrum of these polyene molecules can be understood in
terms of a few valence states plus a series of Rydberg states;

the first dipole-allowed transition (1 1Bu) which corresponds to
the strong and broad band characteristic of these polyenes is
most probably a non-vertical transition;

while the 2'A g valence states and the non-vertical 1Bu transition
require the inclusion of ¢ correlation effects to correctly describe
them, the remaining valence and Rydberg states can be accurate-
ly described at the 7-CI level;

the effects of ¢ correlation on these states can be well established
using only the subspace of the (C-C) o orbitals;

in the description of the ¢ Rydberg states the size of the basis set
can be considerably reduced without loss of accuracy by using
appropriate off-centered basis functions;

the super-excited states observed in the electron impact experi-
ments should correspond to o —r* states and to transitions from
the inner 7 orbitals (lau for butadiene and 1bg for hexatriene).
Therefore states occurring below the first IP of these molecules

should not be assigned to o—~7¢* states.
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Aggendix A

Imgroved Virtual Orbitals

In describing the sequence of Rydberg states from excitation out
of a particular valence orbital it is convenient to carry out Improved
Virtual Oribtal (IVO) calculations. In this procedure all the occupied
orbitals of the ground-state {qu} are kept fixed and the spectrum of

excited orbitals {¢I} is obtained by diagonalizing the Hamiltonian

(A-1)

ex _ _
HY =h+ 2 @3, - K)) + Iy £ K|

j=1I
subject to the condition that each ®y is orthogonal to all occupied {¢j}.
In the expression above h is the one-electron part of the hamiltonian,
J and K are the coulomb and exchange operators and the positive and
negative signs hold for singlet and triplet states, respectively.

We have used IVO's as starting guesses in our calculations of
the Rydberg and non-valence states of butadiene and hexatriene.
Representing a very good approximation to the excited orbital, they
lead to rapid convergence of the self-consistent calculation.

With the IVO orbitals the excitation energy (from the occupied
orbital ¢>j to the IVO gbI) is given by

AE.

=1 T 17§ (A-2)

J

where €] and ej are the orbital energies from the IVO and SCF calcula-

tions. The errors in such a prediction are the same as in using ej to

predict an ionization potential (i.e., using Koopmans theorem). That
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is, there is an error due to the fixed shape of the occupied orbitals
(making the IP too large) and an error due to the lack of electron
correlation effects (making the IP too low). However, for Rydberg
states -€1 is a good approximation to the IP out of the excited state
(some electron correlation and orbital readjustment effects are small).
Consequently, fairly accurate predictions of the excitation energy to

Rydberg states are obtained by replacing (A-2) with

where IPj is the experimental IP corresponding to ionizing out of
orbital qu.
Such IVO calculations are quite useful in determining the proper

basis functions for describing the Rydberg states.
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TABLE I: IVO Excitation Energiesa (in eV) of Butadiene for the 1r(1bg) - 0,7 Rydberg Transitions for

Different Basis Sets

Number of diffuse

Basis Set Augmentationb basis functions

Excited Orbital

a) o Rydberg states
A) one 3s, 3py and 3p, basis 12
functions on each carbon atom

B) one 3s basis function on 4
each carbon atom

C) four 3s-like basis 4
functions off-centerC

D) one 3s, 3py and 3p, on the 6
midpoint of the C,-C, and
C;-C, bonds
b) m-Rydberg states
E) one 3p"r basis function on
each carbon atom

F) two Spﬂ basis functions on
each carbon atom plus two
3d_., 3dxz at the midpoints of
the C,-C, and C,-C, bonds’

3s
6.55

6.62
6.55
6. 62
3px

6.88

6.88

’ry

6.80
7.21
6.83
6.82
4f
7.82

7.69

By

7.03
7.83
7.16
7.09
o,
8.87

8.317

3dzz

7.64
7.83
7.80
7.75
3d

7.58

7.49

7.78

3d
7.97

.72

4d

8.41

2 Using the relation AE; = IP - ¢, With IP = 8.45 eV.
bIn all cases the gaussian exponents are: £gq = 0. 023, g3p = 0.021.

€ Floating points at P, (0.0, 4.0, -3.125), P, (0.0, 3.125, 4.0), P, (0.0, -4.0, 3.125), and

P, (0.0, -3.125, -4.0).

9 The exponernts for the extra basis functions are: g'3p =0.049, g4, = 0.049, £54= 0.015,
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TABLE TI: Transition Moments and Spatial Extension of the Rydberg Orbitals of Butadiene.

Transition Moments (a.u.)

Orbital® (¢W0]r|ﬁ2(1bg))b (s|rix lAg> ¢ Component Second Moments®
m (a) 2.436 2.277 4.487
7, (Lby) 2.463 3.451 6. 721
3s 0.5883 1.0384 (xy) 15.138 22.057 23.133
1.2163 2.0701 (xz)
3p_ 0. 0257 0.0737 x 12.859 33.095 24.371
y
3p, 0.3429 0.4684 &® 17.315 31.745 417.192
3p_ 0.17863 0. 6065 w 27.898 13.827 16.257
0.17948 0.7590 (z)
34, 0.2180 (xy) 12.578 29.270 53,010
z 0.1566 (xz)
3d__ 0.3284 (xy) 14,928 55. 963 45,454
yz 0.0925 (x2)
3d_s 5o 0. 7531 (xy) 18.394 35.346 23.453
1,3187 (xz)
3% 1.4438 (yz) 30.816 32,224 15,059
3d— 0.2717 (v2) 37,754 13.418 38,540
4 1.0866 » 20.014 8.177 9.434
0.9729 {(2)
4, 0.4851 82 32.51 32.630  38.777
0.4619 (2)

20rbitals 7 , au) and %, (lbg) are from ground state wavefunction. Rydberg orbitals are from

IVO calculations using basis sets A and E of Table I.

b,

Transition moments using IVO orbitals.

CTransition moments using full 7-CI wavefunctions.

dSecond moments from IVO orbitals.



143

TABLE III: Results of Full #-CI Calculation for the 1, 3-trans-

butadiene Moleculea

State Present Results Shih et al.?

XlAg -154. 92796h -154,9181h

1 lBg 3s) 6.30 eV 6.24 eV

2 1Bg (3d_,) 7.33 7.31

1 lAu (3p7) 6.63 6.50

2°A Gp_) 6.80 6.76
‘B, (3p D 6.179 6. 60
"B, (4f,5) 8.16 7.98
‘B (4f, ) 9.00

3 IAg (3d,,) 7.173 7.79

4 1Ag (3d,,) 7.84

4Ground state in hartrees. Transition energies in eV,

bReference 25,
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TABLE IV: All-Valence CI Results for the Rydberg States of Butadiene®

State Present Results Buenker et a1.b
XlAg -155. 01537 -155.1900
1113g 3s) 6.29 6.20

1

7.29 7.29
2'B, (3d_z_2)
1°A (3p.) 6. 61 6.53
y

1
2°A, (3p_z_) 6.178 6. 72

1

B, 3p,) 6.67 6.67

1

B, (4f,5) 7.97 7.96

1

B, (41, ,2) 8.91

1
3 1A ¢ (Bdy,) 7.68 7.53
4°A, (3d,,) 7.79 7.78

AGround-state energies in hartrees. Transition energies in eV,

bReference 30.
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TABLE VI: Transition Moments and Spacial Extension of the Rydberg Orbitals of Hexatriene

Orbital® Transition Moments (au) Second Moments®
(Pryolr*Im@a)®  Component ) ) @)

m(lay) 2.525 3.114 8.010

7,(1b_) 2.566 5.799 17.095

7,(22)) 2.584 5.789 13.523

3s 0. 05597 (%) 15,924 27.918 23.738

3py 0.06012 (xy) 14,053 40. 832 22.196
0.01468 {xz)

3p; 0.170216 (xy) 22. 045 34.1738 66. 956
1.40801 (xz)

3p, 0.93646 {yz) 39.436 16,233 17.812

34, 0.10274 % 14.998 26,998 82.143

Sdgy 0.15104 () 19,023 68.453 58.839

3dge 52 0.07412 {® 18,1707 36.386 28.052

3dy,, 1.54968 {» 10. 866 14,143 24.439
1,76578 ()

3dxy 0.17917 2 30.972 27.246 18,326 .
0.22968 (z)

dig e 2.72703 {yz) 31,744 41,182 41,616

ddg> 0.78711 » 31,764 18.300 39.048
0.81046 {z)

4 g 0.11374 {yz) 37.315 13.624 59,284

30rbitals %,, ¥, and g are from ground state wave-function. Rydberg orbitals are from

IVO calculations.
bTransition moments using IVO orbitals.

®Second moments from IVO orbitals.
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TABLE VII: Hartree-Fock Transition Energies for the Rydberg States

of Trans-~hexatriene

State Transition Energy (eV)

XlAg (-231,72322 hartrees)

1°A (3s) 5.38

1'B_(3p.) 5.29
g7y

"B, Bdzz 5.178
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TABLE VIII: CI Transition Energies for the Rydberg States of Trans-

hexatriene
State Transition Energy (eV)
3s (1°A) 5.97
1
3p?(1 By) 6. 00
3p_(2'B.) 6.20
2 g
3py (3 Ay 6.26
1
3d("B,) 6.27
1
3d4, (By) 6.68
1
3d_s 2 1Au) 6. 72
3°A a
3dﬁ( o 6.80
a
42 (4 1Ag) 7.19
2 (51 7.812
=2 (57A,)

Apstimated transition energies. See text for discussion,
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TABLE IX: Excited Electronic States of the Butadiene Molecule

Theoretical Results® (eV) Experimerntal Results (V)
M cDiarmid® Flicker et al.©
State uv Absorption Electron-Impact Others
11’8, 3.35 3.22 s.229 3 3¢
B1's, 5.08 4.9 4.9
i1's, 6.12 5.76, 5. 82 (peak), 6. 05 (5.75,5.92,6.00€, 5. 71-0.29)"
81 iBg (38} 6.25 6.27 6.26!
T ‘s, 3p,) 6.67 6.66 6.64
B2'a, 6py 6.78) 6.8 6.80
F2'a 7.06 7.07 7.08
'2’sg (3,2) 7.29 7.27,7.83 7,28
3'B, (dg) 7.40% 7.47,7.48 7.48
~ 4’Bg (4s) 7.65 7.63,7.64 7.60
E s’Ag () [’z.es
'B,, (4py) 7.79 7.79 7. 80
4'A t4p;) 7.82 7.85
G 'Bafw 7.97 8.00 8.00
H B, Gpy 8.23 8.18 8.18
"A 51y 8.26 8.25
'B,, (614) 8.33 8.36 8.39
"B, (6p,) 8.45 8.41
A (Bpp) 8.48 8.47
‘B, (61,s) 8.52 8.50 8.54
oy, TPy, Tyt 8.60,8.63 8.65
8p,, 8p;, 8. 8.68,8.70 8.67 8.69
95, 9p5. Y 8.74,8.75 8.7
10p,, Opy. Of 8.78 8.18
11py, 1ipy, 1y 8.80,8.81 8.85
8.82,8.83 8.89 8.90

IZPx’an ,12£xs

2Results for the valence states from Part I.
bﬁei. 3.
CRef. 4.
9Ret. 35.
®H. H. Brongersma, J. A. van der Hart and L. J. Oosterhoff, in Fast Reactions and Primary Processes in
Chemical Kinetics, edited by S. Claesson (Interscience, New York, 1967) p. 211,
f3. B.Moore, Jr., 5. Pays. Chem., 76 (1972) 1130,
ERef. 31.
brer. 32.
iRet, 7.
iThe 1 'Au(SpyJ state calculated at 6. 61 eV is probably not observed {f = 0.0026). See text for discussion.

Epstimated from IVO calculations plus CI corrections. Bee text for discussion.
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TABLE XI: Excited Electronic States of the All-trans Hexatriene Molecule

state® Theoretical Results (eV)b Experimental Results (eV)
(present work) Gavin and Rice® Flicker et al. Others
1B, 2.7 2,61 (1.9-3.5) 2.58%
1’4, 4.32 4,11 (3.6-4.6) 4.2t
1'B, tr=7%) 4.93 4.95,5.13,5.5,5.7 ¢.1-5. 7
2’Ag P 5.87
1A, @3s) 5.97 5.942°,,2'B,,3'4)) 6.06
1'B, Bps) 6.08
2 ‘sg Bpy) 6.28
3 ’Ag @p,) 6.26 . 6,230
'B, Biz) 6.27 6.28 m‘Ag,s’Ag,zsu) 6.25 6.2
'B,, {r-r*)valence 6.56 6.53(2'B) 6.57
"B, Bd ) 6.68 6.68
2, Bdz2) 6.72 6.73 28,5, 6.75
3'a, Bs) e.aoi' 69028, s,) 6.93 6.9f
4'a, Bega go) 7.00! 7.06 "B pyw ) 7.08
'B,, ldzy) 7.26 .26 (2B, ¥+, ) 7.25
‘B, 4, ) 7.42 7.37
‘A 4ds2) 7.44 7.46
‘B: (5d.;_) 7.68 7.68
‘A, Bd=2) (.75 7.7 (5py) 7.7
‘B, Bdg) 17.76
'B, (64 7.90 7. 88 (6p,) .93
*B, (6d,) (7,93 7.98 (Tp, )
"A (6dy2) | 7.94
‘B, (7dc) [8.01 8.05 (8p,) 8.06 g.of
"B, (Td.), ', (785 ) | 8.04
'B,, (Bdgy) 8.09 8.10(9p,)
‘B, (8d,), 'A, (8dz2) 8.11
9d 8.18 8.13 (10p,)
104 8.21 8.15 (11p,)
11d 8.23 8.17(12py)
wd 8.33 8.27(=p,)
*Bg (0 =1*) 9.18 9.1 9.2
9.7 9.6f
10.5 0.7
A, 0=1%) 11,51

3state assigmments based on present calculations, except for the 1 lsu = —*) transition.
l)Vzuem:e states are from part 1.

CRef. 2. Assignments in this column from Refs. 2 and 27.

9Ret. 5.

€Ref. 35.

I, W. E. Knoop and L. J. Oosterhoff, Chem. Phys. Lett., 22 (1973) 247.

EThese transitions are probably not observed. See text for discussion.

hRet. 6.

1'1‘hese are estimated values from TVO calculations plus CI corrections. See text for discussion.
Jan members of this series camputed using Rydberg formula in Ref. 2.
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FIGURE CAPTIONS

FIG. 1. 3s and 3p - Rydberg orbitals of butadiene. Orbitals a,c,e
using basis set A (Table I). Orbitals b, d, f using basis set C (Table I).
Long dashes indicate zero amplitude, solid lines and short dashes indi-
cate positive and negative amplitudes, with a spacing of 0.005 atomic

units between the contours.

FIG. 2. 3d o Rydberg orbitals of butadiene using basis set A (Table I).
Orbitals a, ¢, e in the molecular coordinate system. Orbitals b,d,f in
the (X,¥y,Zz) coordinate system indicated in Fig. 1. Same convention as

in Fig. 1 is used for the amplitudes.

FIG. 3. Spﬂ and 3dﬂ Rydberg orbitals of butadiene using basis set E

(Table I). Same convention as in Fig. 1 is used for the amplitudes.

FIG. 4. 4fﬂ Rydberg orbitals of butadiene using basis set E (Table I).

Same convention as in Fig. 1 is used for the amplitudes.

FIG. 5. Energy of the GVB(1/PP) wavefunction for symmetrically
stretched structures. Terminal C-C bonds are stretched but middle
C-C bond is kept fixed at (A) 1.34 A and (B) 1.38 A.

FIG. 6. Energy of the GVB(1/PP) wavefunction for structures with all
C-C bonds equal.

FIG. 7. Energy of the GVB(1/PP) wavefunction for symmetric bent
structures. All C-C bonds equal 1,40 A, (A) Symmetric C,-C, and
C,-C, bendings. (B) Terminal -CH, rockings.

FIG. 8. 3s and 3p o Rydberg orbitals for hexatriene. Orbitals a,c,e
using basis set A (Table V). Orbitals b, d, f using basis set B (Table V).
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Same convention as in Fig. 1 is used for the amplitudes.

FIG. 9. 3d - Rydberg orbitals for hexatriene. Orbitals a,c,e in the
molecular coordinate system. Orbitals b,d,f in the (X,y,z) coordinate
system indicated in Fig. 8. Same convention as in Fig. 1 is used for

the amplitudes.

FIG. 10, 3pﬂ and 3d7r Rydberg orbitals for hexatriene. Orbitals a,c,e€
in the molecular coordinate system. Orbitals b,d,f in the (X,y,z)
coordinate system shown in Fig. 8. Same convention as in Fig. 1 is

used for the amplitudes.
FI1G. 11, 4f77 Rydberg orbitals for hexatriene in the molecular coordi-
nate system (a,c) and in the (X,¥,z) coordinate system of Fig. 8 (b, d).

Same convention as in Fig. 1 is used for the amplitudes.
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SIGMA RYDBERG ORBITALS BUTADIENE

Figure II
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Figure X
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