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Thesis Abstract

This thesis describes new methods for extending ab initio electronic structure theory
calculations to larger molecules—those requiring more than ~200 basis functions. These
molecules are difficult to describe with standard methods in electronic structure theory
because they require large amounts of CPU time, disk storage space, and physical
memory. The work presented in this thesis develops the PS-GVB program that uses
pseudospectral operator construction—a faster method of constructing two electron
operators—toA calculate the electronic structure of real chemical systems; and it outlines the
procedure for using these operators to calculate the electronic structure of molecules with a
variety of compositions, geometrie.s, and wave functions. This thesis extends PS-GVB to
metallic elements, which present particular problems for the pseudospectral method because
the nature of the chemical bonding is qualitatively different between metallic elements than
between non-metallic main group elements. This thesis also generalizes the Direct Inversion
in the Iterative Subspace method to wave functions with arbitrary numbers of core, open-
shell, and GVB natural orbitals. These wave functions are necessary to describe physical
properties of chemical systems. Finally, this thesis applies these methods to study
porphyrin excited states. Porphyrins appear in a variety of biological applications including
the photosynthetic reaction center and the heme group, as well as applications in chemical
catalysis. Semi-empirical electronic structure calculations have suggested that the porphyrin
excited states are composed of coupled single excitations from the ground state. The
combination of the large size of the porphyrins and the multi-configurational nature of the
excited states have prevented ab initio calculations with quality basis sets on these states.
Two different approaches are used: (i) Frozen Core-Four Orbital Excited States, which
takes advantage of the planar geometry of many porphyrin rings to separate the ¢ and 7

orbitals of the molecules; and (ii) Self-Consistent-Four Orbital Excited States, which
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calculates explicitly the multi-configurational excited state energies and optimum orbitals.
Both methods yield excellent agreement with experimental results suggesting that they may

be used to analyze a wide variety of different porphyrin spectra.
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Chapter I
Introduction

This thesis describes new methods for extending ab initio electronic structure theory
calculations to larger molecules. Ab initio methods are important for investigation of the
chemical properties of large molecules because they remain the most accurate method of
computing the electronic structure of a molecule. For the purposes of this thesis, the term
large molecules refers to those molecules that require more than ~200 basis functions (vide
infra). Molecules of this size are difficult to describe with standard methods in ab initio
electronic structure theory because they require large amounts of CPU time, disk storage
space, and physical memory. Subsequent chapters will describe ab initio calculations in
greater detail, but to summarize briefly, the principal expense of ab initio methods arises
from the basis function techniques used to evaluate the two-electron integrals. Basis
function methods, also known as spectral methods, expand the one- and two-electron
integrals as a sum of integrals that can be evaluated analytically. Ab initio calculations use
basis function methods because these methods provide a high degree of accuracy,
especially for the one-electron terms where the fact that basis functions are analytically
differentiable yields highly accurate integration. These methods become expensive as the
size of the molecule increases. In particular, evaluation of the two-electron integrals using
Nyt basis functions scales as O(Npe4), which becomes prohibitively expensive as Npf
increases. Evaluation of the one-electron integrals using Nps basis functions is much less
expensive, scaling only as O(Npf2).

The notation O(Np¢#*) denotes that when Ny is doubled, the computation requires
16 times as much CPU time to complete; similarly, the notation O(Np2) means that when
Npr is doubled the computation requires 4 times as much CPU time to complete. When Ny

is large—the assumption made throughout the rest of this thesis for scaling comparisons—



the higher-order scalings dominate the smaller order ones, so that a calculation that depends
upon different elements scaling as O(Np#) and O(Nps2) scales overall as O(Np?). Clearly,
one of the requirements in making ab initio electronic structure calculations possible on
larger molecules is to determine methods that scale with molecular size better than O(Np4).

Numerical methods provide a less expensive alternative to integral evaluations.
Numerical techniques evaluate one- and two-electron integrals over a grid of points in
three-dimensional space. Numerical methods scale roughly as O(N3), where N is related to
the number of grid points (vide infra). Traditionally, numerical methods have not been used
for electronic structure theory because the accuracy required by electronic structure theory
can be achieved using numerical methods only with an impractically large number of grid
points. The one-electron integrals are particularly difficult to integrate using numerical
methods.

For electronic structure theory calculations there has traditionally been a tradeoff
between the accuracy of basis function methods and the speed of numerical methods.
Because ab initio calculations on small molecules are not as computationally intensive as
those on larger molecules, basis function methods have predominated. As the size of the
molecule—and thus Npg—increases, the O(Np¢#*) scaling of basis function methods makes
these methods impossible. Thus, to solve the ab initio electronic structure of large
molecules new methods must be developed.

The solution to the problem of applying ab initio electronic structure theory to large
molecules is to use a hybrid approach, the pseudospectral method. The pseudospectral
method utilizes the speed of numerical techniques to evaluate the two-electron integrals; and
it utilizes the accuracy of basis function techniques to evaluate the one-electron integrals.
Evaluation of the two electron integrals using the pseudospectral method with Ngrig grid
points and Npr basis functions scales as O(N gridNbfz), approximately O(Np¢3). At the same
time the accuracy achieved by basis function techniques for one electron integrals is

preserved with the pseudospectral method. The improvement in scaling from O(Np4) to



O(Npe3) reduces the expense of calculations on larger molecules, and promises to make ab
initio electronic theory calculations possible on larger molecules that are impossible with
pure basis function techniques.

The work presented in this thesis develops programs that use pseudospectral
operator construction to calculate the electronic structure of real chemical systems. Chapter
II presents an overview of ab initio electronic structure theory, describing not only the
manner in which basis function techniques are used to evaluate the requisite one- and two-
electron operators in electronic structure theory, but also how these operators are used to
obtain converged wave functions. Chapter III describes the formation of ab initio one- and
two-electron operators using the pseudospectral method; and it outlines the procedure for
using these operators to calculate the electronic structure of molecules with a wide variety
of compositions, geometries, orbital occupancies, and wave functions. The orbital
optimization techniques used in standard basis function methods are used with the
pseudospectral method; this combination results in a program that has the flexibility of the
basis function methods and the speed of the pseudospectral operator construction. The
accuracy of the pseudospectral method is demonstrated using examples of calculations on
methylene, silylene, and ethylene, with a variety of geometries, spin states, and wave
functions. Chapter III demonstrates that the speed and accuracy pseudospectral methods
displayed with closed-shell Hartree-Fock wave functions can be extended to: (i) general
wave functions with arbitrary numbers of doubly-occupied core orbitals, singly-occupied
open-shell orbitals, and variably occupied GVB natural orbitals; (ii) the calculation of
physical properties of molecules rather than total electronic energies; (iii) a variety of quality
basis sets, including ones with diffuse functions; (iv) elements not in the first row of the
periodic table, in particular Silicon; (v) molecules that use effective core potentials. This
work demonstrates that the pseudospectral method can be applied to any of the molecules

containing main group elements that the standard basis function methods can describe.



Chapter IV extends the methods of Chapter III to metallic elements, which present
particular problems for the pseudospectral method. The nature of the chemical bonding is
qualitatively different between metallic elements than between non-metallic main group
elements. Metallic systems have a wider range of bond angles, bond lengths and
coordinations than do non-metallic molecules. Moreover, the electrons in metallic systems
localize between atoms in metallic systems, whereas the electrons in molecules composed
of main-group elements localize on the atoms themselves. Chapter IV demonstrates that the
pseudospectral method can be used to form the ab initio one- and two-electron operators for
Nickel clusters without loss of accuracy. Chapter IV also describes the adjustments to the
parameters used by the pseudospectral method that are needed to describe these systems.
These parameters are optimized using Ni3 clusters with several different geometries. The
generality of the optimized parameters is demonstrated by using them to determine a
chemical property of another Ni system. Chapter IV demonstrates that on the scale of
chemical properties the error that the pseudospectral method makes relative to the standard
basis function method is negligible. This work demonstrates that with the appropriate
modifications to the pseudospectral parameters to reflect the different nature of the metallic
bonding, the pseudospectral method may be used to describe metallic systems with
virtually no loss of accuracy.

Chapters III and IV present methods to speed the construction of the operators
required in ab initio electronic structure theory. Operator construction is the most
computationally intensive part of an ab initio calculation, and fast operator construction is
essential for performing this level of calculation on large molecules. Even with fast operator
construction ab initio calculations can be difficult on large molecules because of slow
convergence of the wave function that describes the electronic structure. The electronic
wave function is obtained in an iterative fashion. A large number of iterations does not pose
a serious difficulty for small molecules because little work is required for each iteration; as

the molecular size increases the work required for each iteration becomes significant, and



an efficient method for converging the electronic wave function is essential. Chapter V
introduces the Direct Inversion in the Iterative Subspace method, developed by Pulay for
converging Hartree-Fock wave functions, and extends it to general wave functions with
arbitrary numbers of doubly-occupied core orbitals, singly-occupied open-shell orbitals,
and variably occupied GVB natural orbitals. These general wave functions are necessary to
describe physical properties of real chemical systems. The convergence method described
in Chapter V rapidly converges these wave functions, often in a fraction of the time
required by standard convergence methods.

The combination of the fast operator construction described in Chapters III and IV
and the rapid convergence algorithm described in Chapter V provides a method of
accurately computing the electronic structure of large molecules. Chapter VI describes an
application of these methods to porphyrin molecules. Porphyrin molecules are tetrapyrrole
rings that appear in a variety of biological applications including the photosynthetic reaction
center and the heme group, as well as many applications in chemical catalysis. Because
much of the chemistry of porphyrin rings proceeds through the excited states, and because
porphyrins are primarily characterized through their optical absorption spectra, the
porphyrin excited states have long been an area of intense experimental and theoretical
investigations. Approximate methods of electronic structure calculations have suggested
that the porphyrin excited states are composed of coupled single excitations from the
ground state. The combination of the large size of the porphyrin rings and the multi-
configurational nature of the excited states have prevented ab initio calculations on the
porphyrin excited states. Chapter VI presents two different approaches to solve this
difficulty, both of which use the pseudospectral method of operator construction. The first
method takes advantage of the planar geometry of many porphyrin rings to separate the ¢
and 7 orbitals of the molecules. A potential to replace the ¢ electrons is calculated using the
pseudospectral method. This potential is incorporated into standard basis function methods

for calculating the multi-configurational excited states in the ® space only. The second



method calculates explicitly the multi-configurational excited state energies and optimum
orbitals. All of the operators required for the energy expression and orbital optimization
equations are computed using the pseudospectral method. Both methods yield excellent
agreement with experimental results.

This thesis also includes two appendices. The first appendix describes an effective
method to evaluate Hamiltonian matrix elements between electronic wave functions. Such
evaluations are necessary in deriving energy expressions for Hartree-Fock, Generalized
Valence Bond, and other types of Wave functions. They also can be useful in computing
coupling terms between ground and excited determinants in Configuration Interaction and
properties calculations. The second appendix describes the energy expression and orbital
optimization equations for the Restricted Configuration Interaction wave function, a more
accurate way to include electron correlation in a wave function that does not require a full
transformation of the two-electron integrals. These appendices are included because they
may be of help to other researchers in this field.

The work presented in this thesis develops new methods for calculating and
converging electronic wave functions. These methods allow ab initio electronic structure
theory calculations on molecules much larger than those that can be addressed by standard
basis function methods. The use of larger molecules, in turn, allows theoretical chemists to
use more accurate models to investigate chemical interactions. This thesis also presents an
application of these methods to the study of porphyrin excited states. The calculations on
the porphyrins are significant not only because they demonstrate the types of molecules that
can be studied with the pseudospectral method, but also because these calculations show

good agreement with experimental results for an important class of molecules.



Chapter 11
Overview of Ab Initio Electronic Structure Theory

2.1 Introduction

Chapter II presents an overview of ab initio electronic structure theory and it
reviews the standard methods that relate to topics later in this thesis. Section 2.2 describes
the nature of electronic wave functions in general, and the closed-shell Hartree-Fock (HF)
wave functions in particular. Closed-shell Hartree-Fock wave functions are important
because they are the simplest wave functions used in electronic structure theory. Much of
the work described in this thesis involves extending methods developed for closed-shell
Hartree-Fock wave functions to the more general wave functions described in Section 2.7.
Section 2.3 describes open-shell Hartree-Fock wave functions, an extension of closed-shell
Hartree-Fock theory to wave functions where some orbitals are singly-occupied. These
wave functions are significant because they are the simplest wave functions where orbital
optimization between occupied orbitals is necessary.

Hartree-Fock calculations generate a great deal of information about the electronic
energy and density of the molecules they describe; Section 2.4 describes how this
information is interpreted to yield chémically important insights. Although Hartree-Fock
calculations can provide a great deal of important chemical information, there are many
types of systems for which these wave functions are impractical or inappropriate, for
example distorted or dissociated bonds or excited states. Section 2.5 describes these
shortcomings, and Section 2.6 describes a convenient solution to many of them, namely
the generalized valence bond wave (GVB) function. Generalized valence bond wave
functions introduce degrees of functional freedom to the electronic wave function and allow
it to adjust more accurately to its particular environment. In addition, the equations for

optimizing this type of wave function are presented in this section.



Section 2.7 summarizes Sections 2.2 - 2.6 by presenting the form of the general
wave function having an arbitrary number of doubly-occupied core orbitals, singly-
occupied open-shell orbitals, and variably occupied GVB natural orbitals. The energy
expression and orbital optimization equations for this wave function are also presented in
this section. These equations are significant because, as stated earlier, much of the work in
this thesis involves expanding methods developed for closed-shell Hartree-Fock
calculations to general wave functions of the type described in this section. In particular,
Chapter III describes expanding the pseudospectral method from one that describes only
Hartree-Fock wave functions to one that can describe this type of general wave function.
Chapter V describes expanding the direct inversion in the iterative subspace method from
one that could describe only Hartree-Fock and single-pair generalized valence bond wave
functions to one that can describe the type of general wave function described in this
section. Moreover, the concepts of orbital optimization described here are also crucial in
Chapter VI, where the porphyrin excited state wave functions are optimized.

The final two sections of this chapter describe two other related methods from ab
initio electronic structure theory. Section 2.8 describes configuration interaction, where the
ground state wave function is allowed to mix with excited wave functions. Configuration
interaction can more accurately correct the flaws of Hartree-Fock theory than can
generalized valence bond theory, but at greater computational cost. Multi-configurational
self-consistent field theory, described in Section 2.9, is a method of iteratively optimizing
the orbitals of a wave function that consists of more than one electronic configuration.
Configuration interaction and multi-configurational self-consistent field theory are
significant to the work described in this thesis not only because they present an important
contrast to the way that generalized valence bond wave functions describe accurate chemical
bonding, but also because these two methods are the methods normally used to describe the
porphyrin excited states in Chapter VI, and the methods described in that section are a less

expensive method of performing the same calculations.



The next section, Section 2.2, describes the nature of wave function used in ab
initio electronic structure theory, and it presents the simplest case of these wave functions,

the closed-shell Hartree-Fock wave function.

2.2 The Electronic Hamiltonian and Hartree-Fock Wave Functions

Electronic structure theory seeks to find approximate solutions to the non-relativistic
time-independent Schrodinger equation!

HY = EY (2.2.1)

where H is the Hamiltonian operator for the nuclei and electrons in a molecule. H is given

b
g Nel 5 Nat NelNat
H=-YAvi- 3 otevk-3 3
A i=1A=1T

NeINel Nat Nat ZAZB (2.2.2)

153 I
i=1j>i ' A=1B>A AB
for a system with Ng) electrons and Ny nuclei, where the quantities in H are expressed in
terms of atomic units, M is the nuclear mass of atom A in terms of the electron mass, ZA
is the charge on nucleus A, rja is the distance of electron i from nucleus A, rjj is the
distance between electrons i and j, and Rp is the distance between nuclei A and B.

The Hamiltonian is commonly simplified using the Born-Oppenheimer
approximation, which derives from the observation that nuclei are much heavier than
electrons, and consequently move much more slowly than do electrons. To a good
approximation one can fix the nuclear coordinates and consider only the electronic part of

the Hamiltonian. The consequence of this approximation is that H now becomes Hg], the

electronic Hamiltonian, given byl
Nel Nel Nat Nel Nel

e1=—21V2 Ty ZA ZZ— (2.2.3)
i=1A=1TIA =1 j>i Tij

For simplicity, the terms in Hej involving only one electron are grouped into a single term

h,
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Nel Nat 7
h=-Y|1ivi+ Y =A (2.2.4)
i=1 A=1TiA

and Hgj is given by
Nel 1
Heg =h+ ) —. (2.2.5)
r

i,j>i 1

The nuclear repulsion energy
Nat Nat 7.7
En =9, 2, —RA—E (2.2.6)
A=1B>A TAB
is constant for a fixed geometry and can be evaluated separately. H will hereafter refer to
only the electronic Hamiltonian Hg.

The solutions to H are in the form of a product of molecular orbitals!
Nel

. H‘Vi- (2.2.7)
i

The molecular spin orbitals y; are composed of a spatial function ¢; and a spin function 6;.
The spatial orbital ¢; is a function of the position r of electron i. ¢; describes the spatial
distribution of electron i such that I¢;(r)I2dr is the probability of finding the electron in the
volume element dr. This probability for each orbital integrated over all space must be one,
giving the normalization condition?

[o: (0e; (r)dr = 1. (2.2.8)
Spatial molecular orbitals can be taken to form an orthonormal set!

jq)’f(r)q)j(r)dr = 3. (2.2.9)

Orbital y; also has a spin component 8;l. The spin of an electron in orbital ¢; is
described by one of the orthogonal pair of functions o (spin up) and f3 (spin down). Each
spatial orbital can accommodate one electron with a-spin, and one electron with B-spin.

Thus, the simple product wave function has the form

$10001802002BL ONoccO®ONoccB (2.2.10)
where Noce = Ner/2. The wave function for an electron that describes both the spatial and

spin components is the spin orbital y
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v =010, (2.2.11)

2 =015,

W2Noce-1 = ONocc,

W2Noce = ONocef-
Spin orbitals are convenient for evaluating many of the energy expressions in electronic
structure theory; Appendix I describes techniques for evaluating matrix elements using spin
orbitals.

Because each of the individual orbitals is normalized, the total probability? of
finding an electron anywhere in the wave function is equal to Ne|.

[ = [W(,....Ng) W(L,...,Ngpdry...drne = Neg (2.2.12)
The Pauli exclusion principle! states that a wave function must change sign when the
spatial and spin components of any two electrons are exchanged.

Y(1,2,....i,...,],...,Nep) = —F(1.,2,...,3,....1,...,Nep) (2.2.13)
The Pauli principle derives from the fact that electrons are indistinguishable particles, so
that observable properties of the wave function cannot change upon exchange of electrons.
Because these observables depend on W12 the wave function must either be symmetric
(having the same sign) or anti-symmetric (having opposite sign) when electrons are
exchanged, and, in practice, only anti-symmetric wave functions are observed.

Because the wave functions must be anti-symmetric, the simple product wave
function form (2.2.10) will not work. A convenient method of making a simple product
wave function anti-symmetric is to write use a Slater determinant. For the two electron

simple product wave function ¢1(1)o(1)61(2)B(2), the anti-symmetric wave function is

given by evaluating

5172 o(Mad) o1 (MPM)
01(Da(2)  ¢1(2)P(2)

— o112 o) (1)¢1(2)(a(1)ﬁ(2) - B(I)OL(2))

Y(1,2) =
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The generalization of the Slater determinant to an arbitrary number of particles (and using

spin orbitals to signify an arbitrary spin coupling) is2
yvi)  wa) L yn(D
“12|V1(2) w2 (2) L wN(2)
M M M |

Yi(N) yor(N) L yn(N)

Y(L,2,...N)=(N!) (2.2.14)

The (N!)-1/2 is the normalization condition. For convenience, two shorthand notations are
often used for (2.2.14). The first

W(L....N) = (ND-12A[y1(1)y2(2). .. yN(N)] (2.2.15)
uses the anti-symmetry operator A to represent the determinant and explicitly normalizes the
wave function. The second uses Dirac bracket notation

¥(L,...N) = |y (D2 (L YN (N) (2.2.16)
to represent both the Slater determinant and the normalization constant (N!)-1/2. Both
notations use only the diagonal of the Slater determinant to represent the wave function.

Because Slater determinants are so commonly used to antisymmetrize wave
functions, individual configurations (as shown above) of a wave function are often referred
to as determinants.

Even with the restrictions already made, it is not in general possible to solve (2.2.3)
for many electron wave functions. Therefore, rather than solve the exact electronic
Hamiltonian given by (2.2.3), the Hartree-Fock! (HF) approximation is made, which
solves an electron’s wave function in the average field of all the other electrons. This

reduces the electronic Hamiltonian tol

HHF = h 4 yHF (2.2.17)
where vHF is a two-electron operator representing the Hartree-Fock field. Given a wave

function with N doubly-occupied orbitals
¥ =)0 )HaDo1(2)BR)L ON (2N = Da2N ~ DN (2N)B2N))

we can simplify the notation by writing



¥ = [0161L OnON) (2.2.18)
—_—‘l_l_L NN> -

where a bar over an orbital signifies spin down, and no bar signifies spin up, and the order

of the orbitals implies electron index. The energy of ¥ is thus given by
_(viaY)
(¥1¥)
- — - —\. 2.2.19
<1 I NRJh+vJi o NN) (2.2.19)
(1TL NNI Tz NN)

The denominator will be unity if the wave function is properly orthonormalized. The
numerator can be broken into one-electron and two-electron terms, where the one-electron
terms are given by

N
(1TL NNJh[1IL NN) = Y 2h;; (2.2.20)

i=1

and the two-electron terms are given by

N N
(1L NN]vPF|U T NN) = 3 3 25 - Ky (2.2.21)
i=lj=1 '
The electronic energy is given by
N N
Ee = ) 2h; + ) 215 - Kj;. (2.2.22)
i ij

The Jjj terms are matrix elements of the Coulomb operatorZ, which is the quantum
mechanical operator corresponding to the macroscopic Coulombic repulsion between
electrons i and j. Tse one-particle Coulomb operator Ji(1) is given by

=] 520 @) (2.2.23)

2

where r17 is the distance between electrons 1 and 2. The matrix element Jj is given by

T = [ 07 I Woj(Ddry = {67 I (1)o; (1)dr. (2.2.24)
This element is commonly written (iiljj), where the first half of the symbol corresponds to

electron 1 and the second part of the symbol corresponds to electron 2.
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The Kjjterms are elements of the exchange operatorZ, which is purely a
manifestation of the anti-symmetry of the wave function and has no macroscopic
correspondence. The one-particle exchange operator Ki(1) is most easily defined in terms

of its action on another orbital ¢j1

: [(2)0;(2)
K (1)o;(1) = ( J’ w—drzjm(l). (2.2.25)
12
The Kjj matrix element is given by
Kyj = [0; (DK (Doj(dry = [ o; (DK (1)¢; (1dry (2.2.26)

This matrix element is often written as (ijlij).

The variational principle states that the energy evaluated via (2.2.19) of any
approximate wave function is an upper bound to the exact energy. Therefore, the optimal
orbitals {¢;} are those that give the lowest energy of the total wave function. As orbital ¢;

changes to (¢; + 8;) = (¢; + 8), the electronic energy from (2.2.22) changes to?3

Fi

N
E(i+) = B+ 4, (§F']i)+ 06?) (2.2.27)

where F is the Fock operator given by
F=h+I'+)21-K/. (2.2.28)
j#i

The Fock operator corresponds to the first derivative of the electronic energy with respect
to variations in the orbitals. Because Jjj = Kjj,
Jii = 2Jii - Kii
and we can add and subtract self-terms to obtain the closed-shell Fock operator3
FC=h+Y 2]/ -K/
i (2.2.29)

F = (7))
which is the same for all orbitals in our doubly-occupied core. It is easy to show that
variations between occupied orbitals do not change the electronic energy for the closed-
shell wave function being considered, and consequently the orbital variations 8¢; must be

orthogonal to all occupied orbitals.
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In practice, the orbital optimization is achieved by expanding the orbitals in a set of

Gaussian basis functions® {xy}:

Nbf
0i = Y CpiXp (2.2.30)
p=1

for a basis set with Nps basis functions. Using Gaussian basis functions both one-electron

and two-clectron integrals are easily evaluated:
Nbf

hjj = D cpiCvibpuy (2.2.31)
uv

is the expression for the hjj matrix element, where hyy is the one electron operator element

between basis functions Xy, and Xy, and

= ()

= (kklij)
Nbf
= D CciCyi(KKILV) (2.2.32a)
[18Y
Nbf Nbf i
= D Cpicvj X, Don(oniuv)
v on

is the expression for the ij-th element of the Jk Coulomb operator and
k Jur k.
Kij = <1|K | J>

= (kilkj)

Nbf
= Y cpicyj(kulkv) (2.2.32b)
v
Nbf Nbf
= zcuicvj ZDlo(n (opinv)
pv on

is the expression for the ij-th element of the KK exchange operator. The terms
Jx’é}(l)xn DX Dy
12

(onipv) = rydry (2.2.33)

are the two-electron integrals over basis functions, and
k
DO'T] = COkCT]k (2234)
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is the corresponding density matrix element for orbital ¢x. The set of orbitals are varied by
varying the coefficients ¢y; of the basis functions.

A wave function of the form of (2.2.18) that contains only doubly occupied orbitals
is called a closed-shell wave function3. Because all of the orbitals can be described by a
single Fock operator F¢ (2.2.29) the wave function is said to have only one shell or
Hamiltonian3.

For closed-shell wave functions, the orbitals are optimized by first forming the
closed-shell Fock operator F¢, given by (2.2.29)2. FC is obtained by first forming the core

density matrix D€

Occ
Dn = 2. CoiCni (2.2.35)
i
where the summation occurs only over occupied orbitals. FC is given by
Nbf
Fiy = hyy + 3 Dgn[2(uvion) - (ueivn)] (2.2.36)
on

in basis-function space, and

Nbf
FC — C
5= cuicviFpv (2.2.37)
JTAY

over molecular orbitals, where i and j now range over both occupied and virtual
(unoccupied) orbitals. The Fock matrix in molecular orbital space is diagonalized
UTFU =¢ (2.2.38)

and the eigenvectors {Uj} give the linear combination of occupied and virtual orbitals that
give the improved set of orbitals {¢;}, and the eigenvalues €; give the orbital energies for
these orbitals. This procedure is repeated iteratively until either the orbitals or the energy
stops changing; at this point the optimal set of orbitals has been obtained and the wave
function is said to be converged.

The next section extends HF wave functions to systems where some orbitals are

singly-occupied.
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2.3 Open Shell Hartree-Fock Wave Functions

Section 2.2 outlines the equations for closed-shell HF wave functions, which
describe molecules where each orbital is doubly-occupied. Many molecules cannot be
restricted to this type of wave function, either because of an odd number of electron or
because of a spin coupling that forces multiple orbitals to be high-spin coupled. This
section describes an extension of the closed-shell HF wave function for such molecules: the
open-shell HF wave function. For a molecule that consists of N¢ doubly-occupied core
orbitals and N, singly-occupied, high-spin coupled open shell orbitals, the wave function

is given by3

VY= |¢151¢252L ONCONCONe+1)P(Ne+2)L ¢(Nc+No)>- (2.3.1)
The energy of this wave function is given by3
Occ Occ
Eer = D, 2fihyi + ) aylij + byKyj. (2.3.2)
1 ij

where f; is the occupation for orbital i3:

fi=1 0; is doubly-occupied (2.3.3)
fi=1/2 0; is singly-occupied

and3
ajj = 2fjfj (2.3.4)
bjj = —fifj

with the added condition that bjj = -1/2 if i and j are both open-shell orbitals. Note that
(2.3.2) reduces to (2.2.6) when all orbitals are doubly occupied.

Because an open-shell wave function of the form of (2.3.1) requires two sets of fj
coefficients (fi = 1 and fj = 1/2), the wave function is said to have two shells. Because
(No+1) Fock operators are required (see next paragraph), the wave function is said to have
(No+1) Hamiltonians.

The procedure for optimizing the orbitals34 is slightly more complicated with the

open-shell wave function in (2.3.1) than it was for the closed shell wave function in
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(2.2.2). For optimizing the occupied orbitals with the unoccupied orbitals (No+1)Fock

operators are now required. For the core orbitals, FC, given by
Nham " L
Fiv =fch+ Y agdiy +baKpiy (2.3.5)
k

is formed, and for each open-shell orbital
) Nham )
Fuy =fih+ Y agJly +byKlly (2.3.6)
k
is formed. Note that the summation here is over Npam, the number of Hamiltonians, equal
to Ny+1. One density matrix, D€, is formed for all the core orbitals, and density matrices Di

are formed for each of the open-shell orbitals. The Coulomb and exchange operators

associated with each of these density matrices are given by

k o k
Ty = . Dgy(uvion) (2.3.7)
on
and
k Rl k
Kiv = X, Dénuolvn). (2.3.8)
on

Forming the matrices in this fashion saves considerable effort because only one Coulomb
and one exchange matrix are needed for all of the N¢ core orbitals.

Once the Npam Fock operators are formed in the basis function space, they are
again transformed into molecular orbital space by multiplying by the appropriate
transformation coefficients3->:

Nbf
F¥ = Y cpicyiFy (2.3.9)
ij picvitpy- -
pnv

For the core Fock operator F€, i and j range over all core orbitals and all unoccupied
orbitals; for the open shell Fock operator FX, i and j range over open-shell orbital k and all
unoccupied orbitals. Once each Fock operator is transformed to the molecular orbital basis
it is diagonalized; the eigenvectors yield the linear combination of orbitals required for the

next more optimized set of orbitals, and the eigenvalues yield the orbital energies.
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Unlike the closed-shell example given earlier, mixing occupied orbitals that have
different f, a, and b coefficients can change the energy. Starting from the energy expression

(2.3.2) and taking the pairwise mixing34 of orbitals ¢; and ¢;
0 +8;0;
_) —_——

d;
1’1+6ij2
(2.3.10)

to preserve orthonormality, and expanding through second order in 6; gives the equation

for the change in energy

AE;(1+8;%) = 28;;A + 8;°B;; (2.3.11)
where4 ‘

Aq = (i[F1 - F)j) (2.3.12)

By = (iF7 - Ffi) - (F7 - F'[i}+ v (2.3.13)

Yij = 2(aj; +aj — 2a5)Ky; + (bjj + by = 2b)(Jy + Kyy). (2.3.14)

Requiring the energy change be stationary3 with respect to dyj gives

A..
8 4, (2.3.15)

i =~
To preserve orbital orthonormality3, dji = -8jj. One way of making these variations

simultaneously is to form the rotation matrix A, the anti-symmetric matrix with zero

diagonal defined by3
o 2
_ Bjj
A= i (2.3.16)
_i

The new set of orbitals {¢} are obtained from the old set of orbitals {¢o} via the

transformation>-0
[0] = exp(A)-[0o]. (2.3.17)
This method computes the optimal mixing of the occupied orbitals with respect to each

other while preserving orbital orthonormality.
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It should be noted that if two orbitals have the same f, a, and b coefficients, as
defined by (2.3.3) and (2.3.4), Aj; = 0, and, consequently, no mixing is done between
those orbitals3-3. Thus, when the wave function only consists of closed-shell orbitals no
occupied-occupied mixing is done, and only occupied-unoccupied mixing is performed via
diagonalization of the Fock operator F¢. The occupied-occupied mixing would have no
effect because the numerator of the rotation matrix A would be zero, and thus the orbitals
would not change.

In a given iteration?, first the optimal occupied-occupied mixing is computed via
(2.3.17), and the occupied-virtual mixing is computed by forming and diagonalizing the
Fock operators for each Hamiltonian, via (2.3.5) - (2.3.9). The iterations continue until
the orbitals stop changing, at which point the wave function is said to be converged.

This section described methods of obtaining converged orbitals and electronic
energies for Hartree-Fock wave functions. The next section describes how this data is

interpreted to yield chemically significant information about the molecule.

2.4 Interpretation of Hartree-Fock Theory Results

A converged wave function and energy can yield a number of chemically important
bits of information. The energy can be used to determine the relative energy of the
particular geometry with respect to other conformations or other moleculesl.7. Moreover,
the square norm of the converged wave function gives the electron density of the wave
function!. This interpretation of the wave function can be extended to the individual
orbitals, so the electron density in each orbital is easily obtained. The electron density may
be used to calculate a set of atomic charges and multipole moments for the molecule8.
Finally, the individual orbital energies, via Koopman’s theorem!.7, are often good
approximations to the ionization potential of an electron in that orbital.

Although HF wave functions describe important properties of many different types

of molecules, there are some types of molecules or states for which HF wave functions are
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inappropriate. HF wave functions are appropriate for molecules near their equilibrium
geometries, but become increasingly problematic as the molecules are distorted. The next

section details these and other shortcomings of HF theory.

2.5 Shortcomings of Hartree-Fock Theory

Hartree-Fock theory is appropriate for many different applications in electronic
structure theory, especially for the ground states of molecules near their equilibrium
geometries. It does have two major shortcomings: it ignores much of the electron
correlation, and excited states are difficult to calculate.

The first shortcoming of HF theory is that electron correlation is ignored!, except in
an averaged sense. Electron correlation is the interactions between the motions of the
individual electrons, and HF theory, because it calculates an electron’s motion in the
average field produced by the other electrons rather than the exact positions of the other
electrons, leaves much of the electron correlation out.

One manifestation of the incorrect treatment of electron correlation in HF theory is
the well-known fact that HF wave functions of the type of (2.2.2) or (2.3.1) do not
dissociate properly’. Consider the Hp molecule described by two basis functions, X and

x1- The ground state HF wave function will be given by
\PHF = |(Xr + X1 )(Xr + XI)OLB>

_ 1 _ 2.5.1)
= 51X + 2 + 0 + X0 J (0B~ o)

which is an accurate description of the bonding when the molecule is near equilibrium bond
length. As the molecule dissociates the terms Y11 and X¢Xr in the wave function become
increasingly unstable because they correspond to heterolytic bond cleavage. The wave
function should dissociate only to the terms corresponding to homolytic cleavage, ixr and
xrx1- The valence bond (VB) wave function starts from the correct dissociation fragments

x1xr and xrx1. Consequently, the VB wave function is given by’
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YyvB = | X1%r0B + XrX108)
2 (2.5.2)
= 7—2‘[X1Xr + % X1 (B - Boo)

which dissociates to the correct limit because it does not contain the heterolytic cleavage
terms Y1 and XgXr- A generalization of the VB wave function, the generalized valence
bond (GVB) wave function, described at length in the next section, always yields a lower
energy than the HF wave functions, but the difference in energies is negligible for small
bond distances.

Figure 1 shows an example of the incorrect dissociation of HF wave functions.
Shown is the dissociation of Hp using a HF wave function, with respect to the fragment
energy of the individual H atoms®. On the same curve is the GVB wave function that will
be discussed in the next section. As is evident from Figure 1, the HF wave function
dissociates to an incorrect limit, one higher in energy than the individual H fragments. The

GVB wave function, on the other hand, dissociates to the correct energy.
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Figure 1: Dissociation of Hp using HF and GVB wave functions and 6-31G** basis set.

Another shortcoming of HF theory is that it is often difficult to converge excited
states of wave functions!0. Unless the excited state has a different overall symmetry than
the ground state, it generally collapses to the ground state upon orbital optimization. This
prevents HF theory from providing chemically useful information about excitation energies
and charge densities of excited states.

The next section presents a simple correction to some of the HF shortcomings, the

aforementioned GVB wave function, which generalizes the two electron wave function

from (2.5.2) for many electron wave functions.

2.6 Generalized Valence Bond Theory

One simple correction to HF theory that overcomes many of HF’s shortcomings is

Generalized Valence Bond (GVB) theory3-7. GVB theory replaces the closed-shell HF

wave function
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Yyp =

Occ
H¢i¢10€[3> (2.6.1)

with the GVB wave function3

Occ
Ygye = {H(%(Diz +¢i2¢il)J®(L2’---’NOCC)> (2.6.2)

where ©(1,2,...,Nocc) 1s a general spin wave function for the Ny electrons and the GVB
orbitals ¢;1 and ¢j2 are not orthogonal. It is generally convenient to replace the general spin
coupling O in (2.6.2) with the GVB-Perfect Pairing (GVB-PP) wave function where the

two electrons in each GVB pair are paired only with each other. This reduces (2.6.2) to3

Occ Occ
YGv = H(¢n¢12 + ¢iz¢n)0tl3> = H(¢il¢iz)(0tl3 - Ba)>- (2.6.3)

(2.6.3) can be regarded as a generalization of (2.6.1), where each orbital ¢;in (2.6.1) is
replaced by a GVB pair consisting of two non-orthogonal orbitals ¢j1i2:
0i0io — di10i2(0f — Por) = (di1di2 + didiv)ap. (2.6.4)
For computational purposes, it is convenient to replace the GVB pair
(9i10i2 + di2diop (2.6.5)
with the natural orbital representation3
(cighighig — Ciudiudin)op (2.6.6)
where ¢jg and ¢jy are now orthogonal and given by3
q)' — (Ciguzq)ig + Ciul/zq)iu)
! \/ cig + Ciu
172 1/2 (2.6.7)
(Cig ~¢ig - Ciu q)iu)
'\/cig + Ciu .

With the strong orthogonality constraint, which assumes that GVB orbitals of different

0, =

pairs are orthogonal, the energy may once again be written in the familiar form3
Occ Occ
Ee = ), 2fihyi + D 2yl + bKj. (2.6.8)

i ij

except now fj, ajj, and bjj are given by3
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fi=1 0; is doubly-occupied (2.6.9)
fi=1/2 0; is singly-occupied
fi = ci2 ¢ is a pair orbital with GVB CI coefficient ¢;
and3
ajj = 2ifj
bij = ~fif
except that3

bjj =-1/2 ¢; and ¢; are both singly-occupied
a = f; . L

0j is a pair orbital
by =0
aij = O

¢; and ¢; are in the same GVB pair.
bij = —CiCj
Because equations in Section 2.3 were derived based on the general energy expression
(2.3.2), the orbital optimization equations are still appropriate for our modified definitions
of fj, ajj, and bjj. Thus, the same equations that were used to optimize open-shell HF wave
functions can be used to optimize GVB-PP wave functions.

For a GVB wave function of the form of (2.6.3) with Ny pairs and 2Nj natural
orbitals (often referred to as a GVB Np/2Np wave function) 2Np, different values of fj are
obtained, and hence the wave function is said to have 2N shells. 2N, Fock operators must
also be formed, and hence the wave function is said to also have 2Ny Hamiltonians.

The coefficients cjg and cj, for the GVB orbital are optimized each iteration33 by

solving a two-by-two configuration interaction (vide infra) for each GVB pair to minimize

the overall energy with respect to the cjg and cjy coefficients. This amounts to solving3

Yici = ciE; (2.6.10)
where3
Yi gg Yi gu
Y. = ’ ’ (2.6.11)
' l:Yi,gu Yi,uu

Yi,gu = Kig,iu (2.6.12)
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Fig

Y = ™ (2.6.13)
Fiu

Yiuw =7 (2.6.14)
1

The added functional freedom associated with having a pair of orbitals describe the electron
pair allows the GVB-PP wave function to incorporate the appropriate amount of ionic and
covalent character for any particular internuclear separation. Such a modification to the
wave function for the electron pair is tantamount to including electron correlation between
the two electrons in the GVB pair. One important result is that GVB-PP wave functions
dissociate to the correct limits, yielding accurate physical data for chemical systems.
Moreover, bylselecting a higher root to (2.6.10) excited states can be selected10.
Generally, molecular wave functions have a combination of orbitals described by
HF and GVB wave functions. The next section summarizes equations from Sections 2.2 -

2.6 for these wave functions.

2.7 Summary of Equations for General HF/GVB Wave Functions

The orbital optimization equations given in Sections 2.3 - 2.6 will be referred to
often later in this thesis. Consequently, the equations are summarized in this section. The
general wave function composed of N¢ doubly-occupied core orbitals, N, singly-occupied

open-shell orbitals, and Np, pairs of variably-occupied GVB natural orbitals is given by

¥ = |\PC0re\POpen‘PPair> (2.7.1)
where
Nc
Weore = H¢i¢iaB (2.7.2)

i=1

No
\POpen = Hq)ia

i=1

Np
Ypair = H(Cig¢ig¢ig + Ciu¢iu¢iu)(aﬁ ~Ba), (2.7.4)
i=1

(2.7.3)
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and cjg and cjy are optimized each iteration via (2.6.10). The electronic energy of this

general wave function is given by
Nocc Nocc

E= 3 20hii+ D ayli + bK; (2.7.5)
i=1 i,j=1
where Noce = (Nc+No+2Np), h, J, and K, are the standard one- and two-electron operators

given by (2.1.4), (2.2.8), and (2.2.10), and fj, ajj, and bjj are given by

fi=1 0 is doubly-occupied (2.7.6)
fi=1/2 0; is singly-occupied
fi = ¢;2 0j is a pair orbital with GVB CI coefficient ¢j
and '
ajj = 21if;
bij = fifj
except that

bjj =-1/2 ¢; and ¢; are both singly-occupied
% =i 0 is a pair orbital
bji =0 AP
aij =0
¢; and ¢; are in the same GVB pair.
bij = —CiCj .

Because the general wave function in (2.7.1) requires (2+2Np) different values of
fi, the general wave function is said to have (2+2Np) shells. Furthermore, because the
general wave function requires (1+Ny+2Np) different Fock operators, the general wave
function is said to have (1+No+2Np) Hamiltonians. These numbers assume that N¢, Ng #
0. If Nc # 0, Np = 0, the number of shells and Hamiltonians is (1+2Np); similar changes
are made when there are no core orbitals.

To optimize the orbitals of this general wave function, first the optimal mixing of

the occupied orbitals with the other occupied orbitals is calculated. The optimal mixing is

determined by first calculating the A matrix,
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Aij

A=l Al ’ 2.7.7)

ij

B;

where

Ajj = <in1' _Fl j> (2.7.8)
Bjj = <ile ~F i>—<j|Fj - Fi|j>+vij (2.7.9)
Yij = 2(ag; +aj; — 2;5)Ky5 + (by; + by — 2by)(Jy; + Ky). (2.7.10)

The new set of orbitals {¢pNEW} are obtained from the old set of orbitals {$Old} via the

transformation

[oNe"] = expa)-[0]. 2.7.11)
The next step in the wave function optimization is the calculation of the optimal mixing of
the occupied orbitals with the virtual orbitals. This optimization is done by forming the
Fock operator

Nham
Fiy =fih+ Y agJfy, +biKy, . (2.7.12)
k
One Fock operator is required for all of the core orbitals, and another is required for each
open-shell and GVB pair orbital. The Fock operator is transformed into molecular orbitals
via (2.3.9), and diagonalized. The eigenvectors yield the optimal linear combination of
occupied and virtual orbitals to form the new set of occupied orbitals. The optimization
process is repeated until the orbitals stop changing.

Much of the work in later sections of this thesis involves extending closed-shell HF
methods to the general HF/GVB wave function described in Section 2.7. Chapter III
combines the standard orbital optimization equations (2.7.7) - (2.7.12) with pseudospectral
operator construction to produce a method with the speed of the pseudospectral method and
the flexibility of the general HF/GVB wave functions. Likewise, Chapter V combines these
wave functions with the rapid direct inversion in the iterative subspace convergence

method. This method replaces the standard orbital optimization equations with a single
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Fock matrix diagonalization. Chapter V describes a method of incorporating the general
HF/GVB wave functions and the standard orbital mixings in the Fock matrix
diagonalization. Finally, Chapter VI uses the pairwise orbital mixings from (2.3.10) to
derive the orbital optimization equations from an energy expression more complex than that
in (2.7.5). Although the resulting orbital optimization equations are more complex than
those in Section 2.7, the same method of obtaining the improved orbitals by forming and
exponentiating the rotation matrix A is used with the more complex wave functions there.
The final two sections in this chapter describe more rigorous methods of correcting
the shortcomings of HF theory, configuration interaction and multi-configurational self- |
consistent field theory. These methods can be more accurate than the general wave

functions described in this section, but at much greater computational expense.

2.8 Configuration Interaction

Another method of correcting for the shortcomings of HF theory is Configuration
Interaction! (CI). CI considers the interaction of excited wave functions with the ground
state wave function. As with GVB wave functions, the excited wave functions give
additional functional freedom for the total CI wave function to use to adjust to find an
optimal energy. For a wave function consisting of N spin orbitals

¥ =[12L iL jL N) (2.8.1)
with unoccupied spin orbitals Wy, Vs, ..., the wave func.tion1

¥i =|12L jL Nr) (2.8.2)
1s a singly excited wave function obtained from taking an electron out of occupied orbital y;
and putting it into orbital ;. Similarly, the wave function!

¥i =|12L Nrs) (2.8.3)
is a doubly excited wave function obtained by taking an electron out of each of the occupied
orbitals yj and j and putting them into unoccupied orbitals Wy and . In a similar fashion

triply, quadruply, and so on, excited wave tunctions may be formed.
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CI wave functions can add electron correlation by including a linear combination of

excited wave functions with the ground state wave function!

OccVirt OccVirt .
Wer =W+ Y CIWi+ Y Y Chivi+L (2.8.4)
i r ij 18

The CI coefficients C are obtained by forming the CI matrix Ay, whose elements are given
by

Ap = (¥1H¥;) (2.8.5)
where ¥ and Wy are any of the ground state or multiply excited wave functions.
Diagonalizing Ay yields the coefficients C as the eigenvectors, and the correlated energy as
the lowest eigenvalue. The singly-excited wave functions interact weakly with the ground
state, and consequently the doubly-excited determinants are the most important for the
correlated energy!.

The CI wave function can also be used to calculate excited states10. When I and J
range over the singly-excited determinants the eigenvectors of Ayj yield the linear
combination of excited wave functions in the various excited states, and the eigenvalues
yield the energies of the excited states.

Although the CI wave function does correct the shortcomings of HF theory, one
major drawback is that the elements in Ay require a full transformation of the two-electron
integrals (Lv|on). This transformation scales as O(Nps) where Npy is the number of basis
functions. HF and GVB calculations scale only as O(Npg4), which means that a CI
calculation is significantly more expensive than a HF or GVB calculation for large
molecules. For CI calculations diagonalization of the Ay matrix is often a much more
computationally intensive process than the O(Npgd) integral transformation, depending on
what levels of excitations are included, and so the work required to transform the integrals
is negligible. Nonetheless, because the CI calculations scale as at least O(Np) they are

generally too expensive for large molecules, and methods that do not require a full integral
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transformation, such as the general HF/GVB wave functions described in (2.7.1) become

more attractive.

2.9 Multi-Configurational Self-Consistent Field Wave Functions

Another method of correcting the shortcomings of HF theory is the Multi-
Configurational Self-Consistent Field (MCSCF) method!-6. Whereas a CI wave function
merely diagonalizes the Hamiltonian matrix between various excited configurations, the
MCSCEF solve self-consistently for the optimal orbitals among the excited configurations.
Again, the additional functional degrees of freedom afforded by the excited wave functions
give the total MCSCF wave function the ability to more accurately adjust to the constraints
of the molecule, which allows MCSCF wave functions to describe correlated wave
functions and excited states. Each iteration the coefficients of the various component wave
functions in the MCSCF wave function are recalculated, and the orbitals are optimized
using these coefficients. The GVB wave functions described in Section 2.6 are a special
case of MCSCF wave function3. The GVB wave function does not require an integral
transformation to compute its energy and optimize its wave functions, but in general, the
MCSCEF energy and orbital optimization equations do require a transformation of the two-
electron integrals. Like the CI wave function, the integral transformation makes MCSCF
calculations prohibitively expensive for large molecules.

CI and MCSCEF calculations are the way that calculations on states with more than
one significant electron configuration, such as those in Chapter VI on porphyrin excited
states, are normally performed. In Chapter VI the size of the porphyrin molecule prohibits a
full transformation of the two-electron integrals, and consequently the methods presented
there are necessary. Although CI and MCSCF wave functions do provide more
computational rigor, often general HF/GVB wave functions of the form of (2.7.1) can

describe the same interactions with considerably less expense.
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2.10 Conclusion

The remainder of this thesis describes improved methods of ab initio electronic
structure theory. This chapter outlines the foundation upon which the improved methods
are built by describing in detail the methods that standard electronic structure theory uses to
obtain converged wave functions and electronic energies. In particular, Section 2.7
summarizes the most important equations for converging a general HF/GVB wave
function. The methods described in the remainder of this thesis develop faster methods of
calculating the operators required in Section 2.7 (Chapters III and 1V), develop faster
convergence methods than (2.7.8) - (2.7.10) (Chapter V), and apply these improved

methods to study an important class of large molecules (Chapter VI).
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Chapter I1I
Pseudospectral - Generalized Valence Bond Theory

3.1 Introduction

Chapter II outlined the basic methods behind ab initio electronic structure theory
calculations, particularly for general HF/GVB wave functions. This chapter describes how
pseudospectral methods may improve the efficiency of forming the operators required for
those calculations. Faster operator construction allows electronic structure calculations on
larger molecules. The work presented in this chapter extends the basic pseudospectral
program—a niumerical method of calculating the Coulomb and exchange operators for HF
wave functions—to the general HF/GVB wave functions described in Section 2.7. The
resulting program, pseudospectral-generalized valence bond (PS-GVB), maintains the
speed advantages of the pseudospectral method and introduces the flexibility of general
wave functions, different basis sets, effective core potentials, and new elements.

In this chapter, Section 3.2 discusses scaling considerations between numerical and
spectral methods for electronic structure theory calculations. Section 3.3 introduces the
pseudospectral method, a hybrid method that uses a numerical integration scheme for the
two-electron operators and basis function methods for the one-electron operators. Section
3.4 presents a simple method of constructing Coulomb and exchange operators using a
numerical integration scheme rather than the standard basis function methods. Although the
simple method presented in Section 3.4 is not accurate enough for the purposes of
electronic structure theory calculations, it does demonstrate why numerical integration
schemes can be faster than standard basis function methods. Section 3.5 describes how
using a least-square’s fitting procedure can improve the numerical integration scheme.
Section 3.6 describes (i) the grids over which the pseudospectral method performs the
numerical integration; (ii) the dealiasing functions that remove noise in the numerical

integration caused by finite grids; and (iti) atomic corrections, with which the
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pseudospectral integration performs part of the integration analytically—over basis
functions—and the rest numerically, over grid points. Section 3.7 describes how all of the
elements described in Sections 3.3 - 3.6 are combined to form the Coulomb and exchange
operators required to calculate the electronic structure of a general HF/GVB wave function
such as the one described in Section 2.7 . Finally, Section 3.8 describes applications of the
PS-GVB program to a series of molecules that demonstrate the flexibility and accuracy of

the method.

3.2 The Scaling of Hartree-Fock and GVB Calculations

The largest impediment to applying HF or GVB theory to large molecules—those
requiring more than 200 basis functions—arises from the way these calculations scale with
the size of the molecule. For a molecule with Npf basis functions the amount of time
required for a HF or GVB calculation scales as O(Np4), meaning that if Npf is doubled the
calculation will require 16 times as much CPU time to complete. The O(Npe#) scaling of
HF or GVB calculations is still a significant improvement over the O(Npg°) scaling required
for a full transformation of the two-electron integrals required for CI and general MCSCF
calculations, but even O(Np#) becomes prohibitively expensive for large molecules.

The most computationally intensive step in a HF or GVB calculation is the
formation of the Coulomb and exchange matrices. Recalling (2.3.7) and (2.3.8), these
matrices for Hamiltonian k—where k can represent either a closed shell or an open shell
Hamiltonian—are formed from the corresponding density matrix DX and the two-electron

integrals (LLv|ov) vial
" Nbf K
Jiv = 2. Dgn(uvion) (3.2.1)
on

and

k pLy k
Kjv = X, Dén(uoivn). (3.2.2)
on
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Because each element of the J or K operators requires a summation over Nps? elements,
and because there are Np¢2 elements in each operator, forming an entire JX or KK matrix

requires an O(Npg?) process. Such a process becomes too expensive for large molecules.

3.3 The Pseudospectral Method

The basis function techniques, also known as spectral techniques, used to compute
the one-electron, Coulomb, and exchange matrices via (3.2.1) and (3.2.2) yield excellent
accuracy, particularly for the one-electron terms, where basis functions provide an accurate
method of calculating derivatives because they are themselves analytically differentiable.
Unfortunately, as the previous section shows, the scaling of basis function techniques with
the size of the basis set is poor.

Numerical techniques, also known as grid-based techniques or physical space
techniques, can be much faster for the types of calculations needed to form the Coulomb
and exchange matrices. These techniques evaluate the requisite integrals over a grid of
points in three-dimensional space. Although such a method of evaluating integrals is fast,
the integrals are not as accurate as those from basis function techniques, particularly the
one-electron terms.

The solution?-7 is to use a combination of basis function and numerical techniques.
Numerical techniques are used to form the Coulomb and exchange matrices, which are
subsequently transformed back to basis function space, and added to the one-electron
matrix calculated over basis functions. The result is a reduction of the formal scaling of the
electronic structure calculation from O(Np#?) to O(NgNps2) (where Ny is the number of
gridpoints used in the numerical part), which is roughly equal to O(Np¢3). This method is
called pseudospectral? because rather than only using spectral (basis function) methods, it
uses a combination of grid-based and spectral methods. The factor of Npf saved in the

scaling makes pseudospectral techniques much better suited to large molecules.
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3.4 Naive Grid-based Calculation of Coulomb and Exchange Matrices

The derivation of the pseudospectral formulas for the Coulomb and exchange
operators begins in this section with a simplified numerical formulation of these operators.
This naive formulation is not accurate enough for electronic structure theory, but provides a
convenient bridge between the spectral formalism presented in Chapter II, and the
pseudospectral formalism presented in this chapter. Section 3.5 shows that the final forms
of the pseudospectral Coulomb and exchange operators is very similar to the naive
numerical forms presented in this section.

Rewriting the Coulomb operator
Nbf

Jiv = Y. Dy (uvion) (3.4.1)
on

in the more appropriate form
k k
it = ()

. (3.4.2)
= [ (I Wy (Ddry
where
o (DAn (2
1) = Y D&y [ Ko Bn®) (3.4.3)
on 2

and ry7 is the distance between electrons 1 and 2. The Coulomb operator may be formed

numerically by first forming the matrix?

%
(2)xn(2)
Aon(rg) = [2 gy (3.4.4)
II‘2 - I‘gl
over a set of gridpoints at coordinates rg = (Xg,yg,Zg). The numerical analog to the spectral

JK(1) operator in (3.4.3) is formed via

¥ (rg) = Y D§nAcn(rg)- (3.4.5)
on

The collocation matrix3 R(rg,v) is defined as the basis function )y evaluated at point rg
R(rg,V) = Xv(r = rg) (3.46)

Using the collocation matrix, a naive definition of the Coulomb operator is3
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Ng
Ty = 2 R(rg I (rg)R(ry, V) (3.4.7)
g
or
Ng ’
Ty = 2 R(rg.1)| Y, DenAcn(rg) R(rg. V). (3.4.8)
g on

The integration over the coordinates of electron 2 (the formation of Agv(rg) in (3.4.4)) is
still done using basis functions, whereas the integration over the coordinates of electron 1
(the final formation of Jkuv in (3.4.8)) is done numerically using the set of grid points.

By similar reasoning, the numerical exchange operator may be formed. Writing the

exchange operator

Nbf
Ky = 3, Den(oivn) (3.4.9)
on

in the more appropriate form
k k
Kpv = <XM|K 'Xv>

. (3.4.10)
= [ xp (KX ()dry
where
*
. 2)xy (2
KX Dy (1) = Ech;nUZ—q(—)—x—‘iudrzjxn(l). | (3.4.11)
on 12
The exchange operator may be formed numerically by again first forming the matrix
£
Agy(ry) = [2e DD g (3.4.12)
|r2 - I‘gl

The numerical analog to the spectral space product KK(1)yy(1) (3.4.11) is2

KX (rg)R (1, V) = Y, DenAgy (rg)R(rg,n) (3.4.13)
on
and a naive definition of the numerical exchange operator is thus given by3
Ng
Ky = 2 R(rg. )Y DinAgy (rg)R(rg,1). (3.4.14)
g on

The naive numerical Coulomb and exchange matrices in (3.4.8) and (3.4.14) are

unfortunately not accurate enough to be useful in electronic structure theory. These
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definitions are important because their conceptual simplicity makes their derivation from the
standard Coulomb and exchange matrices, (3.4.1) and (3.4.9), straightforward. Moreover,
as the next section shows, the final pseudospectral form of the Coulomb and exchange
matrices is quite similar to the naive numerical forms here.

The simple form of the numerical operators presented in this section also makes
scaling comparisons easy. Forming the spectral Coulomb operator given in (3.4.1) requires

the following operations in a Fortran program®:
do k =1, nham
do ij = 1, nbf*nbf
i(k,ij)=0.
- do kl =1, nbf*nbf
j(k,ij) = j(k,ij) + den(k kI)*int(ij,k1) (3.4.15)
enddo
enddo
enddo

where the matrix element j(k,ij) in the program corresponds to the Coulomb operator
element Jkuv in (3.4.1), den(k k1) corresponds to density matrix element DkGT] in (3.4.1),
and int(ij,kl) corresponds to the two-electron integral (uvion) in (3.4.1). From (3.4.15) it
is evident that forming all of the Coulomb matrix elements requires Npam*Npg# operations,
or O(Np?), assuming that Npam is much smaller than and independent of Npy.

In contrast to the O(Nps#) scaling of the spectral Coulomb operator, the first step in
forming the naive numerical Coulomb operator in (3.4.8) is the formation of the

chm*Am](rg) product, requiring operations of the form?’

dok =1, nham
dorg =1, ngrid
itkrg) = 0.
do k1l = 1, nbf*nbf
jk,rg) = jk,rg) + den(k k)*A(kl,rg) (3.4.16)
enddo
enddo

enddo
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which requires a total of Nhaln*Ngrid*Nbfz operations. The next step is the final

summation, which requires operations of the form’
do k =1, nham
doi=1, nbf
doj=1,nbf
dorg =1, ngrid
jk.ij) = jkrg)*R(rg,i)*R(rg.j) (3.4.17)
enddo
enddo
enddo

enddo
requiring another Nham*Ngrid*Nbfz operations. Thus, the naive numerical algorithm is
faster than the spectral formulation because it requires O(Ngrid*Nbfz) operations instead of
O(Np#) operations. In practice, although Ngrig is larger than Np, it is smaller than Npg2,
and increases proportionally to the size of the molecule, and thus proportionally to Npf.

The actual programs’ that form the spectral and numerical Coulomb operators use
routines to construct the matrices that are more efficient than those in (3.4.15)-(3.4.17), but
the inherent scaling of each routine is dictated by the form expressed in those equations.

The next sections detail methods of making the numerical Coulomb and exchange

operator formation accurate enough for use in ab initio electronic structure calculations.

3.5 Pseudospectral Coulomb and Exchange Operators
The numerical integration in (3.4.8) and (3.4.14) is not accurate enough to make
the pseudospectral method useful for electronic structure theory. To make the integration

more accurate, the product

T (rg)R(rg, V) ZD Agy(rg) [R(rg,V) (3.5.1)

is fit onto a set of basis functions via a least squares fitting procedure?, and is then

multiplied by the collocation matrix R(rg,u). Thus,
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T (rgR(rg.v) ZDk on(tg) [R(rg.v) = ¥ R(rg,0)cs . (3.5.2)
c

In matrix form,

(DKA)R = Rc, (3.5.3)
where the matrices DK, A, and R in (3.5.3) replace the individual elements in (3.5.2).
Multiplying both sides of (3.5.3) by the transpose of the collocation matrix, RT,

RY(D¥A)R =R'Re, (3.5.4)
and solving for c yields

¢ = [RTR]"IRT(DKA)R. (3.5.5)
In practice3 this procedure can be made more accurate by using a quadrature scheme where
each gridpoint has a different weight, wg. Using such a scheme modifies (3.5.5) to

c = [RTwR]'IRTw(DKA)R. (3.5.6)
Inserting (3.5.6) into (3.5.3), and multiplying by the other collocation matrix to form the
Coulomb matrix, yields4

Jk = S[RTWR]- IRTw(DKA)R, (3.5.7)
where S is the usual overlap matrix between the basis functions, produced by the product
of RfwR. Thus, the final result of the least-squares fitting procedure is to replace (3.4.8)
with

Ng
Ty =2 Q(rg, p)[ZD‘gnAcn(rg)]R(rg,v) (3.5.8)
g on

where the matrix Q is given by#

Q = S[RTwR]- IR Tw. (3.5.9)
One of the reasons so much emphasis was placed on the naive equations for the two-
electron operators in the Section 3.4 is that, as (3.5.8) shows, they have very similar form
to the final equations, the only difference being that R(rg,)) in (3.5.8) is replaced by
Q(rg,l) in (3.5.8).

In a similar fashion, fitting the product
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K (r)R(rg.v) =| ¥ DgyAgy(ry) [R(rg, M) (3.5.10)
on

onto a set of basis functions via a least squares fitting procedure and multiplying the result

by the collocation matrix Ry,(rg) has the effect of replacing (3.5.14) with4

Ng
Ky = 2, Q(rg.t) Y DnAgy (rg)R(rg,m) (3.5.11)
g on

where Q is once again given by (3.5.9).

The least squares fitting procedure for the Coulomb matrix in (3.5.2) and for the
exchange matrix in (3.5.5) provides greater accuracy than does the naive numerical
Coulomb and exchange formulae in (3.4.8) and (3.4.14). The least squares procedure is
necessary to achieve the high degree of accuracy required by electronic structure theory
calculations without using an impossibly large number of grid points in the numerical

integration procedure.

3.6 Grids, Dealiasing Functions, and Atomic Corrections

This section describes three components of the pseudospectral method: quality
grids, dealiasing functions, and atomic corrections. These components significantly
increase the accuracy of the numerical integration scheme in the pseudospectral method.

The pseudospectral method requires accurate molecular grids over which to perform
the numerical integrationd. These molecular grids are obtained by patching together atomic
grids. The atomic grids are a set of concentric spherical grids of different radii from the
nucleus. The spherical grids are based on the Lebedev grids>® which integrate the spherical
harmonics exactly and have either octahedral or icosahedral symmetry. The symmetry of
the grids is important to insure that the PS-GVB results are independent of orientation, and
that small changes in molecular geometry do not cause large changes in the PS-GVB
accuracy. These grids are placed at selected radii to achieve a higher density of gridpoints

near the nucleus than away from it. The atomic grids are patched together by removing
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gridpoints beyond the Voronai surface? between adjacent atoms; often additional points
beyond the surface are retained with diminished grid weights to allow the grids to
dissociate smoothly>. The atomic grids are specific to each element, and parameters must
be determined for every new element the pseudospectral method can describe.

Dealiasing functions are an additional set of Ngaf basis functions that are added to
the basis set to make the least squares fit more accurate3:4. These functions are necessary
because the action of the Coulomb or exchange operator on a basis function

(R (1g) =| Y DinAcn(rg) Ry (rg) (3.6.1)
on

contains an alias—mnoise that is outside of the basis set due to finite grid size. By least
squares fitting onto a set of (Npr+Ndar) functions the alias can be discarded so that it does
not contaminate the genuine part of the integration product in (3.6.1). Because the alias is
generated by finite grid size, the nature of the dealiasing functions is closely tied to the
particular characteristics of the grid. Consequently, different dealiasing sets are chosen for
each atomic grid, and each dealiasing set must be modified whenever the grid changes.

The dealiasing functions do not severely affect the overall scaling of the
pseudospectral calculation because they are used only for the least-squares fitting procedure
and then are discarded. The dealiasing functions are discarded by replacing overlap matrix
S in the Q matrix definition in (3.5.9) with the overlap of the basis set with the dealiasing
set, which projects out any character on the dealiasing functions.

As Section 3.3 describes, for two-electron operator construction basis set methods
offer high accuracy at high computational expense, while numerical methods offer lesser
computational expense with slightly lesser accuracy. It is possible to evaluate a few of the
dominant integrals using basis functions, and evaluate the remaining part of the integration
using the numerical grid. Integrals of the type (1vjom), with all four basis functions on the
same atom, can be included at virtually no extra cost because there are only O(Ny) (where

Njt is the number of atoms in the molecule and is much less than Npf) such terms,
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negligible compared to the O(Nngfz) scaling of the pseudospectral integration scheme.
These integrals can be evaluated more accurately using basis functions, which leads to
greater overall accuracy in the integration scheme.

These corrections are called atomic corrections®. When all integrals that have all
four basis functions on the same atom are included analytically, the program is said to use
one center corrections (1C). When all integrals that have all four basis functions on two
atoms are included analytically the program is said to use two center corrections (2C)5.
Faster methods of evaluating two electron integrals allow higher levels of atomic
corrections to be included. Atomic corrections improve the accuracy of the program
because highly localized integrals, e.g., those with all four basis functions on the same
atom, are the most difficult to integrate numerically. By integrating these functions
analytically, higher accuracy may be achieved. Moreover, fewer gridpoints are required for
the remaining integrations, and hence the program can run faster to achieve the same level

of accuracy.

3.7 The Structure of the PS-GVB Program

The Pseudospectral-Generalized Valence Bond (PS-GVB)%7 program uses
pseudospectral operator construction to solve HF and GVB wave functions whose energy
expression is of the form (2.7.5). PS-GVB combines the speed of PS with the flexibility of
the GVB wave function optimization as described in Section 2.7.

Because PS-GVB is targeted toward large molecules, disk storage and physical
memory must be carefully monitored so that their size does not increase unmanageably as
the size of the molecule is increased. Specifically, no matrices larger than Nps? may be
stored, and only two Npf matrices may be kept in memory at any given time. Although
these constraints somewhat limit the way the PS-GVB program may be arranged, they

allow very large molecules to be computed.
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As a preprocessing step the least squares fitting matrix Q and the trial wave function
are computed. In the main SCF program these matrices are input and the iterative sequence
begins. At the beginning of each iteration the density matrix for each of the required
Hamiltonians is computed. The corresponding Coulomb and exchange matrices are formed
from the density matrix via (3.5.2) and (3.5.5). These matrices are stored on disk, and then
the next Hamiltonian’s density matrix, Coulomb, and exchange operators are computed and
stored’. This sequential method is slower than the method the GVB programs such as
GVB2PS5 use. In GVB2P58, a large buffer of memory is allocated for the integrals. This
buffer is filled with as many pv-pairs of the (ivjon) integrals as it can hold; these integrals
are read off of disk storage and held in physical memory in the buffer space. The on
components are multiplied by the on components of all of the density matrices at once,

forming the first pv elements of all of the Coulomb (or exchange) matrices. Pictorially, the

transformation is shown in Figure 3.1,

Nbf*Nbf Nbf*Nbf Nbf*Nbf

Nham J = Nham D *

Ints Nbf*Nbf

Figure 3.1: GVB2P5 formation of multiple Coulomb operators.

where the last matrix (Ints) can have any number of columns, corresponding to the buffer
space of physical memory. Formation of two-electron integrals in this fashion is
particularly fast because the transformation shown in Figure 2.1 can be performed using
matrix multiply routines, which are very efficient on computers with vector processors.

Although such a procedure is fast, it uses too much memory to be practical for large
molecules. The Coulomb and density matrices are each (NHam*Nbf2) long, and the buffer
space that holds the integrals is (Npuft*Nps2) long. This yields a total memory size of
(3Nham+Npuff) *Npt2—a number that rapidly approaches Nbf*. The goal of the PS-GVB

program is to keep memory and disk space requirements to O(Np2), and hence memory
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use in the PS-GVB program is limited to two Npe? matrices. Consequently, PS-GVB uses
a sequential procedure to compute the two-electron operator. In this procedure, as each
shell’s density matrix DK is formed the corresponding Coulomb and exchange matrices Jk
and KK are computed and stored on disk. Then the next density matrix is formed, and so
on. Although this procedure cannot take advantage of matrix multiply routines to form all
of the Coulomb and exchange matrices at once, with the use of out-of-core math routines
memory use is kept to 2Np2. Because of such care to keep memory use down, PS-GVB is
capable of calculating the electronic structure of molecules with many more basis functions
than the GVB2PS5 limit of 180 without the memory increasing unmanageably.

Once the Coulomb and exchange matrices for all of the shells have been formed and
stored on disk, the orbital optimization procedure begins. First the optimal mixing of the
occupied orbitals is computed, following the procedure outlined in (2.7.7)-(2.7.11). Then
Fock operators for the core, open shell, and GVB pairs are formed and diagonalized, via
the procedure outlined in (2.7.12). The procedure is essentially the same as that in
GVB2P5, except, as with orbital construction, memory use is kept to 2Nps2. In forming
the necessary matrices for orbital optimization, only one (Npf2) matrix (h, J¢, K¢€,...) is
input at a given time, and from this matrix all of the orbital optimization terms that depend
upon it are computed before the next matrix is input. This keeps disk access to a minimum,
which significantly speeds up the PS-GVB program because every time a disk is accessed
the rest of the program must wait for the access to complete before it can continue.

PS-GVB combines the flexibility of general wave functions having arbitrary
numbers of core, open shell, and GVB orbitals with the speed of pseudospectral operator
construction. The result is a program capable of much larger molecules than had previously
been calculated. The GVB2P5 program had a limit of 180 basis functions. This limit is
caused primarily by an indexing procedure GVB2P5 uses to store the sorted two-electron
integrals, but even without that limit it would be extremely difficult to compute molecules

much larger than that because of the high memory use and the slow two-electron operator
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construction. The limit of 180 basis functions means that GVB2PS5 is limited to molecules
with roughly 7 heavy atoms and the associated H’s, and even molecules of that size run
extremely slowly. In contrast, PS-GVB is routinely capable of calculating molecules with
500 basis functions (20-30 heavy atoms), and has on occasion run molecules with as many

as 1500 basis functions.

3.8 PS-GVB Applications

This section describes results for three test systems that demonstrate the accuracy
with which PS-GVB reproduces the results of a program (GVB2P5) that uses standard
methods to compute the molecular integrals®. The systems described here are methylene
(CHy), silylene (SiH»), and ethylene (C2H4). While these are not large molecules by any
definition, this work confirms many important aspects of the PS-GVB program necessary
before application to larger systems. This research demonstrates four crucial aspects of PS-
GVB: (i) that PS-GVB is capable of using general GVB wave functions of the type
described in Section 1.7; (ii) that PS-GVB is capable of working on elements that are not in
the first row of the periodic table; (iii) that PS-GVB is capable of working with effective
core potential to replace the core electrons; and (iv) that PS-GVB is capable of reproducing
bond energies and other physical quantities to a high degree of accuracy.

In contrast to earlier work with the pseudospectral algorithm?, each example given
here computes physical quantities—energy differences, excitation energies, or dissociation
energies—rather than merely the total energies. For methylene and silylene the quantities
considered here are the differences in energy between the singlet and the triplet states. In
addition, an effective core potential is tested for Si to demonstrate that PS-GVB 1is
compatible with core potentials. For ethylene the quantities computed are the n-m*
excitation energy, the rotational barrier about the C-C bond, and the energy required to

double the C-C bond length.
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A. Methylene

The first system studied in this section is methylene, CHp. The ground state of
methylene is a triplet state with 3B] symmetry and ¢ and ® nonbonding orbitals, and the
first excited state is a singlet with 1A| symmetry with the two nonbonding electrons spin

paired10, as shown in Figure 3.2.

H H

3B1 1A,
Figure 3.2: Ground (3By) and first excited (1A1) states of methylene.
Because of the difference in the nonbonding orbitals the geometries of the two states are
quite different. Using the GVB-CI configuration interaction program, Harding and
Goddard!0 determined Ry = 1.084 A, 6cH = 133.2° for the triplet state, and RcH =
1.113 A, Oych = 101.8° for the singlet state. The same calculations determined that the
triplet-singlet gap is 9.09 kcal/mol.

In studying methylene, the goals are to test (i) the accuracy of PS-GVB with a
variety of high quality basis sets, and (ii) the accuracy of PS-GVB with wave functions
more accurate than simple HF, i.e., those with GVB pairs correlating the bonds.

Tables 3.1 and 3.2 show the results of calculations on methylene with a variety of
basis sets and wave functions. Three different basis sets are used!!:

(1) VDZ: uses the Dunning-Huzinaga valence double-zeta basis set [based on (9s/5p)] with
one set of d polarization functions (o = 0.64) on C, and the Dunning-Huzinaga basis
(based on four s functions contracted to two, with the exponents scaled by {=1.2) and one
set of p functions (. = 1.0) on H.

(2) VDZ2: replaces the 4s H scaled basis with a 6s H unscaled basis, contracted to 3s triple
zeta. The d and p polarization functions in this basis are replaced by pair of functions scaled

by the factors (2.3)1/2 and (2.3)-1/2 from the above values.
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(3) VDZ+: adds to the second basis a diffuse set of s and p functions (a5 = 0.45, op =
0.34) on the C atom, optimized for the negative ion of C.

In describing the basis sets, the symbol { denotes an effective Slater exponent,
whereas o denotes a Gaussian exponent. Thus, for H, { = 1.2 implies that the standard
exponents for the Gaussian expansion have all exponents scaled by 1.44.

For the triplet state, the two C-H bonds are correlated with GVB pairs, leading to
two pairs overall, and for the singlet state the two C-H bonds and the doubly-occupied lone
pair are correlated with GVB pairs, leading to three pairs overall. These wave functions
have the same total number of orbitals, yielding to a consistent level of description for the
two states.

Table 3.1 compares total energies for the various calculations on methylene. The
GVB2P5 results are expressed in hartrees, and the PS-GVB results are expressed as the
difference in kcal/mol from the GVB2P5 results. Results for PS-GVB program are
reported using both one center atomic corrections (PS-GVB 1C) and two center atomic

corrections (PS-GVB 2C).
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TABLE 3.1: Total energy for CHp using GVB-PP wave functions. A
GVB (3/6) wave functions is used for the 1A state, and a GVB (2/4)
wave functions used for the 3B state. GVB2P5 results are present in
hartrees, and the PS-GVB error is presented in kcal/mol. PS-GVB
results are given using both one center (1C) and two center (2C)

atomic corrections.

Basis Sets
Method State vDZ vDzZ2 VDZ+

Total Energy (h)
GVB2P5 A4 -38.938766 -38.942557 -38.943274

GVB2P5 3B -38.953285 -38.955554 -38.955771

PS-GVB Error (kcal/mol)

PS-GVB 1C . 1, 0.015 0.032 0.024
PS-GVB2C 14, -0.005 0.005 0.004
PS-GVB 1C 3B, -0.054 0.117 0.112
PS-GVB2C 3B, 0.001 0.013 0.013

For the singlet state, using one center corrections, the errors in the total energy

range from 0.015 to 0.032 kcal/mol; when two center corrections are employed this error

drops to a maximum of 0.005 kcal/mol. In the triplet state the errors are a factor of 3 to 5

larger, ranging from 0.054 to 0.117 kcal/mol for one center corrections, and up to 0.013

kcal/mol for two center corrections.

Table 3.2 shows the singlet-triplet gap obtained for both HF and GVB-PP wave

functions. In both cases the error is smaller than (.09 kcal/mol using one center

corrections, and smaller than 0.02 kcal/mol for two center corrections.
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TABLE 3.2: The singlet-triplet gap (AEsT) for CHp, in
kcal/mol. Experimental results are 9.09 kcal/mol. All other
details are similar to Table 2.1.

Basis Sets

Method Wave Function VDZ vDzZ2 VDZ+

GVB2P5 HF 26.11 25.48 25.13
PS-GVB 1C HF 26.18 25.41 25.06
PS-GVB 2C HF 26.11 25,48 25.12

GVB2P5 GVB-PP 9.11 8.16 7.84
PS-GVB 1C GVB-PP 9.18 8.07 7.75
PS-GVB 2c GVB-PP 9.11 8.15 7.83

An important feature demonstrated by Tables 3.1 and 3.2 is that the errors do not
increase as the size or complexity of the basis set increases. This shows that PS-GVB does
not have any intrinsic problems in manipulating the diffuse functions present in larger basis
sets. These two tables show that the errors in the PS-GVB integration scheme compared to
standard methods are negligible compared to the magnitude of the quantities involved; in a
10 kcal/mol quantity an error of 0.02 kcal/mol is hardly significant. Moreover, even the
best ab initio electronic structure calculations often differ from experimental results by as
much as 1 kcal/mol, and so the PS-GVB error is negligible compared to the magnitude of

errors in all electronic structure calculations.

B. Silylene

The next molecule studied is silylene, SiH2, which is the Silicon analog of
methylene. Table 3.3 reports results for silylene calculations. For silylene the two low-
lying states are of the same form as those in Figure 3.2; however, the singlet state is the
ground state of silylene, where the triplet state was the ground state of methylene. The PS-
GVB studies on silylene tested two important features, (i) the ability of PS-GVB to
describe a second-row element, and (ii) the ability of PS-GVB to use an effective core

potential (ECP). Two sets of calculations were carried out, one with all core electrons
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described with basis functions, and the other using the shape and Hamiltonian consistent
(SHC) effective core potential to replace them.

For the 1A state a geometry with Rgjy = 1.508 A, 8ysii = 92.4° was used, and
for the 3B state a geometry with Rgjy = 1.471 A, 6sig = 118.2° was used; these
geometry were based on geometry optimizations using MP2 and unrestricted MP2 with a 6-
31G** basis set. With no ECP present, a Huzinaga valence double-zeta basis set
(11s8p/4s3p) was used for Si, and a Huzinaga unscaled double-zeta basis set (4s/2s) was
used for hydrogen. A set of d polarization functions (o = 0.42) was used with the Si basis,
and a set of p polarization functions (o = 0.6) was used with the H basis. The SHC ECP12
was used to eliminate the Si core electrons. The corresponding VDZ basis set (3s3p/2s2p)
was augmented with the same d polarization functions as before, and the same basis set
was used for H.

Table 3.3 compares total energy calculations and singlet-triplet gaps (AEgST)
between GVB2P5 and PS-GVB for silylene. The errors are of the same order of magnitude
as those for methylene. The maximum error is 0.079 kcal/mol when one center corrections
are included, and 0.014 kcal/mol when two center corrections are used. As Table 2.3

shows, the magnitude of the errors is consistent whether HF or GVB wave functions are

used.
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TABLE 3.3: Energy comparison for SiHj. Experimental geometry (see text)

with VDZ basis set. The GVB2PS results report total energies in hartrees,
the PS-GVB results report error in kcal/mol. A GVB (2/4) wave function is
used for the 3B state, a GVB (3/6) wave function is used for the LA1 state.

_Both one center (1C) and two center (2C) atomic corrections are reported.

GVB2P5 PS-GVB 1C PS-GVB 2C
Total Energy Error Error

Calculation State (hartrees) (kcal/mol) (kcal/mol)
All-Electron

HF 3B1 -289.920507 0.065 0.007

HF 1A1 -289.929006 0.08 0.025

AEST 0.008499 -0.015 -0.019

GvB 331 -289.940694 -0.062 0.008

GvB 1A1 -289.972813 0.075 0.025

AEgT -0.032119 -0.013 -0.017
Core Potential

HF 351 -289.994255 0.002 0.01

HF 1A1 -290.003034 0.063 0.024

AEST 0.008779 -0.061 -0.014

Q8 3B1 -290.014773 0.001 0.004

GvB 1A1 -290.04802 0.063 0.024

AEgT 0.033247 -0.061 -0.02

The presence of an ECP introduces no new error into the PS-GVB method. The

errors remain of the same magnitude as those from calculations where all core electrons are

included.

C. Ethylene

The final system considered here is ethylene. With this system the focus is shifted
away from electronic criteria—basis sets, wave functions, and effective core potentials—

and centers on the effect of larger geometric changes on the accuracy of the PS-GVB

program. Four geometries are used here:

(1) Experimental: the ground state geometry with a torsional angle ¢ = 0°, Rec = 1.338 A,

Rey = 1.085 A, and Oy = 117.8°.
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(2) Twisted: the experimental geometry with ¢ set to 90° and all other quantities fixed.

(3) Stretched: the experimental geometry with Ree = 2.676 A and all other quantities fixed.
(4) Stretched/twisted: the experimental geometry with ¢ = 90°, Rcc = 2.676 A, and all
other quantities fixed.

For calculations on ethylene, the VDZ basis from methylene is used again. In these
calculations the ¢ and T C-C bonds are correlated. Table 3.4 summarizes the calculations
performed on ethylene. The first two columns tabulate the results from GVB2P5 (in
hartrees) using standard methods to compute the molecular integrals, for both HF and GVB
wave functions. The next four columns detail the errors (in kcal/mol) in the corresponding
PS-GVB calculations. Columns three and four include results with one center corrections,

and columns five and six include results with two center corrections.
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TABLE 3.4: Summary of energy differences for CoHg. See text for geometries.
Calculations use VDZ basis. GVB2PS5 energies are given in hartrees, PS-GVB errors are
reported in kcal/mol. PS-GVB results are reported with both one center (1C) and two
center (2C) corrections. A GVB (3/6) wave function is used for 1A state, a GVB (2/4)
wave function is used for 3A» state. The barriers reported for the twisted geometry are
E(d =90°) - E(¢ = 0°). The bond energies reported for the stretched geometries are the

energy required to double the bond length.

GVB2P5 PS-GVB 1C PS-GVB 2C

Total Energy (h) Error (kcal/mol) Error (kcal/mol)

State HF GVB HF G\B HF GvB

Experimental Geometry
3A2 -77.931907 -77.942874 -0.137 -0.119 -0.036 -0.038
1A4 -78.060723 -78.09924 -0.243 -0.209 -0.045 -0.045
AEST 0.128816 0.156366 0.106 0.089 0.008 0.007
Twisted Geometry
3A, -77.973417 -77.984305 -0.183 -0.022 0.003 0.004
A4 -77.888273 -77.981006 0.016 -0.025 0.007 0.004
AEST -0.085144 -0.003299 -0.199 0.003 -0.004 0
3A, Barrier -0.04151 -0.041431 0.046 -0.097 -0.039 -0.042
A4 Barrier -0.17245  0.118234 -0.259 -0.184 -0.053 -0.049
Stretched Geometry
3A2 -77.772934 -77.884587 -0.199 -0.196 -0.013 -0.013
1A4 -77.726946 -77.847384 -0.128 -0.209 -0.038 -0.016
AEsT -0.045988 0.002797 -0.07 0.013 -0.009 0.003
Bond E 3A; 0.158973 0.098287 0.062 0.077 0.023 0.025
Bond E 1A4 0.333777 0.251856 0.115 0 0.007 0.029
Stretched/Twisted Geometry

3A, -77.773688 -77.845388 -0.128 -0.104 0.003 -0.013
1A -77.727351 -77.845284 -0.139 -0.104 0.012 0.013
AEST -0.046337 -0.000104 0.011 0 -0.006 0

With one center corrections, all of the total energy calculations and relative energy
quantities (singlet-triplet gaps, dissociation energies, rotational barriers) agree to within
0.25 kcal/mol. With two center corrections the total energy calculations and relative energy

quantities agree to within (.05 kcal/mol.
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The calculations reported in this section were performed using the original version
of the PS-GVB program. Since these calculations were completed many more revisions of
the program have been released, with improved accuracy, atomic corrections, speed,
memory use and flexibility. But what these calculations show is still of crucial importance
for the PS-GVB program: that it is possible, with the appropriate choice of grids,
dealiasing functions, and atomic corrections, to create a numerical integration scheme that
introduces only negligible errors to the formation of operators used in HF and GVB
calculations. Moreover, holding all of these parameters fixed, this integration scheme can
be applied to a wide range of basis sets, geometries, wave functions, and spin states, and a
reliable degree of accuracy can be maintained throughout. These calculations demonstrated
for the first time that the significant speed advantages of the PS-GVB program may be used
for quantum chemical research without the need for constant worry about the accuracy of
the algorithm, of whether the basic scheme still applies to the current system. These
calculations showed that the numerical integration scheme used in PS-GVB is robust

enough for practical applications in electronic structure theory.

3.9 Conclusion

The PS-GVB program presented in this section has significant advantages over the
GVB2PS5 program. By using the pseudospectral method to compute the two-electron
operators, not only can PS-GVB run small molecules faster than GVB2PS, but PS-GVB
can also run molecules much larger than the limits set in GVB2P5. Whereas GVB2P5
cannot compute the a molecule with more than 180 basis functions, PS-GVB can calculate
molecules with up to 500 basis functions with roughly the same CPU, disk, and memory
resources.

The PS-GVB program also presents substantial advantages over earlier
implementations of the pseudospectral method. In particular, PS-GVB can compute

molecules whose wave functions have arbitrary numbers of doubly-occupied core orbitals,
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singly occupied open-shell orbitals, and variably occupied GVB natural orbitals. This
added flexibility comes without substantially increasing the disk storage, memory, or CPU
time requirements of the program.

This chapter concludes with applications that demonstrate these advantages that PS-
GVB introduces. Namely, molecules are run with GVB and open-shell wave functions,
with larger and more accurate basis sets, with Si atoms, with Si atoms using effective core
potentials. In these cases a wide variety of physical properties are reported, ranging from
bond dissociation energies to singlet-triplet gaps. Over these examples, PS-GVB displays a
remarkably constant accuracy, generally giving results within 0.1 kcal/mol of the
experimental numbers. These applications demonstrate that the significant time advantages
of the pseudospectral method for integral evaluation may be extended to a robust program

that can be used to study real chemical problems.
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Chapter IV
Pseudospectral Parameters for Calculations on
Nickel Clusters

4.1 Introduction

The research presented in this chapter presents parameters for PS-GVB calculations
on molecules containing Nickel atoms. By proper choice of these parameters, PS-GVB
calculations run on Ni clusters can achieve the same accuracy as those on main group
elements. A general procedure was used to optimize the parameters over a variety of
geometries, so that when the same parameters were used on a different Ni cluster with a
different wave function, the high degree of accuracy was maintained. The procedures and
general lessons obtained from the Ni parameter optimization should be applicable for
deriving PS-GVB parameter sets for other transition metal systems.

Chapter ITI describes the procedure by which the PS-GVB program!-6 constructs
the operators required for ab initio electronic structure theory calculations. In addition to the
basis sets required for standard ab initio calculations, PS-GVB requires grids and
dealiasing sets for each atom type in the molecules.

The grids# for each atom type are composed of concentric shells of spherical grids.
Each spherical shell is a Lebedev grid” of a particular angular momentum. The Lebedev
grids integrate the angular spherical harmonics exactly over the shell. For each atom type
parameters must be determined for the radii at which to place the spherical shells, and for
the angular momentum (which determines the number of gridpoints on the spherical grid)
of each shell. Using the procedure described in Section 3.6, these atomic grids are patched
together to form the molecular grid.

The dealiasing functions2-3 help remove the noise generated by inaccurate
integration over finite grids, and, consequently, they are closely related to the particular

nature of the grids. Because the grid is finite and therefore imperfect, the action of the
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Coulomb or exchange operator on a basis function contains an alias —character outside of
the basis set. By employing a set of additional basis functions the alias can be expressed in
the least squares fitting procedure and discarded. Thus, dealiasing functions are chosen that
help complete the particular basis set.

PS-GVB has shown excellent results3:0 for molecules composed of main group
elements. Although main group elements are the most important elements for organic
chemistry and biochemistry, a great deal of important chemistry occurs with metals and
non-metals not in the main group. This chapter describes procedures for optimizing grids
and dealiasing sets for one element—Nickel. Nickel was chosen because the bonding and
the geometries it displays are strikingly different from those displayed by main group
elements. At the outset of this research it was not clear that the ~0.1 kcal/mol accuracy that
PS-GVB achieves for main group elements could be extended to metals. This research
shows that with judicious choices of grids and dealiasing functions the same accuracy
obtained with main group elements can be obtained for metals.

It should be noted that the procedure for grid and dealiasing set generation
presented here is slightly simplified for the sake of brevity and conciseness. The most
important concepts and features are reported.

In this chapter, Section 4.2 describes some of the basic features of metal bonding
that make the pseudospectral description of the bonding between these elements more
difficult than for main group elements. Section 4.3 describes the nature of the parameters
that form the pseudospectral atomic grids; in particular, it describes the Carbon atomic grid
parameters, which are the most optimized of the main group element grid parameters, and
the parameters from which consideration of Nickel atomic grid parameters began. Section
4.4 describes the nature of the parameters that determine the set of dealiasing functions. As
with the atomic grid parameters, the Carbon dealiasing function parameters are the most
optimized and the ones from which consideration of Nickel dealiasing set parameters

began. Section 4.5 describes the optimization procedure through which the correct set of
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parameters for Nickel was determined. This section also presents the final values of the
Nickel atomic grid and dealiasing function parameters, and draws some conclusions for
deriving parameters for other elements from the nature of these parameters. Finally, Section
4.6 demonstrates that the parameters developed in Section 4.5 are general by applying them
to a different Nickel cluster at a series of different geometries, and by using a correlated
wave function. The optimized Nickel atomic grids and dealiasing functions show excellent

agreement with the results from GVB2P5.

4.2 Nickel Cluster and Metal Bonding

Main .group elements display chemical bonding behavior that is very regular.
Orbitals are generally centered about the nucleus, and are composed of s and p hybrids.
First row transition metals display strikingly different behaviour8. The 3d orbitals are much
smaller than the 4s orbitals in the valence shell. Consequently, the electrons in 3d orbitals
stay largely localized on the atoms and do not participate in chemical bonding8. The 4s
electrons are for the most part responsible for the chemical bonding, but, in contrast to
main group chemistry, the 4s electrons do not stay at the atom centers, but localize between
atoms in metals. In linear chains of metal atoms electrons localize at bond midpoints. In
two-dimensional sheets of atoms electrons localize at the center of triangles between three
atoms, and in three-dimensional crystals electrons localize at the centers of octahedra and
tetrahedra between three or more atoms3,

Because metal molecular orbitals display such a different nature from main group
molecular orbitals, it is not obvious that the same optimization techniques may be used to
derive parameters for the grids and dealiasing functions used by PS-GVB in the numerical
integration procedure. Clearly new parameters need to be determined to reflect the different
bond angles, bond distances, basis sets, and bond character of Ni clusters. The issue with
metals is whether the algorithm for choosing and optimizing parameters also needs to be

changed. The research presented in this chapter demonstrates that essentially the same
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algorithms that were used to derive main group grids and dealiasing sets may be used to
derive grids and dealiasing sets for Ni clusters. It is also presumed that these same
techniques may be used to derive grids and dealiasing sets for other transition metals.

The research described in this chapter uses small Ni3 clusters of atoms in different
geometries to derive a set of grid and dealiasing set parameters that yield the high accuracy
required for ab initio calculations. It is relatively easy to find a set of parameters that work
for one geometry, but the constraint that the same set of parameters works for a wide
variety of bond angles and radii was sought in the hope that the resulting parameters would
work for arbitrary geometries. -

Once such a set of grid and dealiasing set parameters is found that works for the
various Ni3 geometries, this set is applied to a system with a different geometry and wave
function, and a calculation is made on a real physical property of that molecule to determine
the accuracy of the parameter set. The idea is to test the parameters by running them on a
molecule different from the ones for which the parameters were optimized. This presents a
stiff test of the accuracy of the parameters. The final test system for the Ni parameters is the
distortions of a Nig cluster correlated with two GVB pairs, from the ground, rhombohedral
geometry to a square geometry. The fact that the same accuracy was achieved on this
system as was achieved for main group elements shows that the Ni parameters have broad
applicability. This in turn shows that it is possible to optimize a set of grids and dealiasing
functions with which PS-GVB calculate metal clusters with the same accuracy with which

the program calculated molecules containing only main group elements.

4.3 Grid Parameters

Several parameters determine the structure of the atomic grids in the PS-GVB
program. The radial space is divided into several regions. To each region is assigned a

number of spherical shells, and an angular momentum for each shell. The angular
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momentum determines the number of points. Table 4.1 summarizes the number of grid

points associated with each angular momentum level’.

TABLE 4.1: The number of points (Npts) associated
with the PS-GVB grid of a number (N). The points are

arranged ona sEherical shell. See text for other details.

N Npts N  Npts N  Npts
1 6 11 32 21 78
2 8 12 38 22 78
3 12 13 42 23 86
4 12 14 42 24 90
5 14 15 44 25 110
6 18 16 44 26 116
7 20 17 50 27 148
8 24 18 54 28 194
9 26 19 56 29 302
10 30 20 60

PS-GVB uses a multi-grid algorithm® for the numerical integration. In this
algorithm, grids of different densities—coarse, medium, and fine—are constructed for each
molecule. The medium grid is used for the majority of the iterations. The highest quality
grid is used for only one iteration, once the wave function has reached a certain level of
convergence. After this iteration the medium grid is again used with Fock matrix updating
procedures>. The updating procedures integrate the difference in the orbitals over the grid,
rather than the orbitals. The difference in the orbitals is smoother and easier to integrate, so
no loss of accuracy is obtained even though a less dense grid is used. The advantage to the
multi-grid scheme is that even though the overall accuracy of the converged wave function
is determined by the quality of the fine grid, this grid is only used for one iteration, and
consequently the expense of the calculation is determined by the less dense medium grid.

In determining optimized grids for PS-GVB, a high quality grid that achieves good
results is first obtained. Spherical shells are removed or made less dense to obtain medium

and coarse grids. In the comparisons between the grids for different elements that follow,
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only the highest quality grids will be compared, because it is assumed that the lower quality
grids can be obtained from the higher quality grids in a simple, straightforward manner.
The Carbon grid was the most optimized grid, and the work on determining Ni grid
parameters began with the Carbon grid. For the placements of the radial grids, the highest
quality C grid put 4 spherical shells below 0.4 bohr, another 3 shells between 0.4 and
1.173 bohr, another 5 shells between 1.173 and 3.2 bohr, another 3 shells between 3.2
and 4.765 bohr, and a final 3 shells between 4.765 and 8.0 bohr. All shells below 0.6 bohr
used PS-GVB grid number 9 (26 points per shell), the shells between 0.6 and 4.5 bohr
used grid number 26 (116 points per shell), and the shells beyond 4.5 bohr used grid

number 3 (12 points per shell)Y. Table 4.2 summarizes the results for the C fine grid.

TABLE 4.2: PS-GVB C fine grid. The position of
the spherical grids is given as the outer radius Royt
of each region and the number of spherical grids
Nsphere in the region. The density of the spherical
grids is given as the outer radius Roye and the
angular density of the grids in that region. Radii are

in terms of bohr.

Position Density
Rout Nsphere Rout Grid Num.
0.400 4 0.6 9
1.173 3 4.5 26
3.200 5 8.0 3
4.765 3
8.000 3

Because the covalent radius of Ni is roughly twice that of C, the first attempt at a
grid simply put another 2 spherical shells between 8 and 16 bohr, so that the spatial extent
of the Ni grids would be roughly twice that of the C grids. The radial regions between 4.5
and 8 bohr were augmented with higher angular momenta shells. The reasoning behind

these choices was to maintain the basic appearance of the C grids shifted out a bit. Care
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was taken to keep the total number of points from becoming too much larger than C, which
had roughly 1000 gridpoints for the highest quality grids.

One unfortunate discovery of the optimization procedure was that grid and
dealiasing function parameter optimization is tightly coupled. The result of this is that the
grid cannot be optimized without the simultaneous optimization of the dealiasing functions.
This made the optimization procedure much more time consuming. The particular form of
the optimized Ni grid will be described after the discussion on the optimization procedure in

Section 4.5.

4.4 Dealiasing Function Parameters

While the grid parameters were being optimized it was also necessary to
simultaneously optimize the dealiasing set parameters. The dealiasing function parameters
are considerably more complex than those of the grid. Because of finite grid size, and
therefore imperfect numerical integration, when the effect of J¥ is computed on a basis

function xy

T¥(rg)R(rg, V) =| ¥ D§nAgn(ry) [R(rgV) (4.4.1)
on

is contains an alias2.3, character outside of the basis set, that can cause errors in the
integration if not removed. The dealiasing functions are a set of basis functions that express
the alias so that it can be projected out of the integration procedure (see Section 3.6).
Because the primary function of the dealiasing set is to complete the basis set, dealiasing
functions are chosen with exponents between the basis set exponents, or with the same
exponent and higher angular momentum. Again, because the C parameters are the most
optimized, they are used as a starting point for Ni dealiasing set optimization.

The alias in the numerical integration procedure does not occur only on the atom on
which the basis function 7y is centered, but it also occurs on the neighboring atoms.

Consequently dealiasing functions are also included on neighbors, next-nearest neighbors,
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and so on. Just as the medium and coarse grids are derived from the fine grids by
simplifying them, the neighbor dealiasing functions are derived from the atoms dealiasing
functions by removing some of the dealiasing functions.

Table 4.3 reports the C basis set 6-31G**, which is the basis set that PS-GVB

primarily uses for C.

TABLE 4.3 C 6-31G** basis set. The lines
indicate groups of exponents contracted

together via the coefficients in the third

column.

Exponent Type Coefficient
3047 s 0.001835
457 .4 s 0.01404
103.9 [ 0.06884
29.21 S 0.2322
9.287 s 0.4679
3.164 s 0.3623
7.868 s -0.1193
1.881 S -0.1608

0.5442 s 1.143
7.868 p 0.06900
1.881 p 0.3164

0.5442 p 0.7443

0.1687 s 1.000

0.1687 p 1.000

0.8000 d 1.000

Generally, only the largest exponent in a contracted set is considered when choosing
dealiasing functions. The guideline used in choosing exponents was that a factor of 2
between exponents is ideal. The smallest exponent in C 6-31G** is 0.1687. Optimization
of C dealiasing sets showed that smaller exponents are not necessary. An additional
exponent was included at 0.35 to span the space between 0.1687 and 0.5442, and an
exponent of 1.6 was included to span the space between 0.8 and 3.164. Larger exponents

were added at 6.4, 12.8, and 25.6 to span the rest of the space.
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At each basis and dealiasing function exponent an angular momentum is also
selected. The guideline used in choosing exponents is that one degree of angular
momentum beyond the highest basis function angular momentum is required, and the
angular momentum for dealiasing functions are chosen to be similar to the basis function
angular momenta nearby. Table 4.4 shows the entire dealiasing set for C%. The guidelines
are not absolutely followed because optimization shows that different choices might be

better for a given basis set.

TABLE 4.4: C dealiasing set. Shown are the
exponents of the basis functions, and the
angular momenta at which dealiasing

functions are created on the atom and

neighboring atoms.
Exponent Atom A.M.  Neighbor A.M.

0.1687 spdf spd
0.3500 spdf -

0.8000 spdf spdf
1.600 spdf spd
3.164 spd -

6.400 spd spd
12.80 sp sp
25.60 sp sp

The Ni basis set is considerably different from the C 6-31G** basis set. The Ni
basis set is a double-zeta basis derived by Hay and Wadt!0 with an effective core potential

replacing the core electrons. This basis set is given in Table 4.5.
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TABLE 4.5: Ni Hay-Wadt basis set. The

lines indicate groups of exponents

contracted together via the coefficients in

column three.

Exponent Typé- Coefficient
7.620 s -0.4061
2.294 s 0.7423
0.8760 s 0.5330
2.294 s -0.02643
0.8760 s -0.1212
0.1153 s 0.5267

0.03960 s 1.000
23.66 p -0.048019
2.893 p 0.6241
0.9435 p 0.4702

0.08600 . p 0.02610

0.08600 p 0.5215

0.02400 p 0.5955
42.72 d 0.03236
11.76 d 0.1698
3.817 d 0.3960
1.169 d 0.4881
0.2836 d 1.000

The most striking difference between the Ni basis set and that of C is that, just as the

average bond distances are about twice as long for Ni as they are for C, the basis functions

are more diffuse for Ni than they are for C.

The first guess of the Ni dealiasing set places exponents at 0.012 and 0.024 to span
the space below 0.0396, an exponent to span the space between the exponents 0.0396 and
0.086 at their geometric mean, 0.0584, an exponent to span the space between the
exponents 0.086 and 0.2836 at their geometric mean, 0.15, and exponents at 0.56, 1.12,
2.24, 4.48, 8.9, and 17.8 to span the rest of the functional space. The final optimized

dealiasing set will be presented in the next section, after a discussion of the optimization

procedure.
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4.5 Optimization Procedure

The Nis cluster was used to optimize the grid and dealiasing set parameters.
Because PS-GVB uses two center atomic corrections, this was the smallest cluster that
would include numerical integrals. Five geometries were selected, at a variety of angles and
radii. It was desirable to have such a wide range of geometries to insure that the results
were robust and not merely limited to a particular geometry. At each geometry calculations
were run using a HF wave function on the quartet spin state.

The grids and dealiasing sets were optimized over a large number of different
calculations. The final optimized highest quality Ni grid had 7 radial shells below 0.4 bohr,
8 radial shells between 0.4 and 1.173 bohr, 10 radial shells between 1.173 and 3.2 bohr, 5
radial shells between 3.2 and 4.765 bohr, 6 radial shells between 4.765 and 8.0 bohr, and
6 radial shells between 8.0 and 16.0 bohr!l. These numbers were essential scaled from C
results to the appropriate radii. Most of the grid optimization went into assigning
appropriate angular momenta to each shell, on the assumption that new difficulties
associated with Ni has more to do with the increased angular momentum of the d electrons
than it has to do with increased complexity in the radial functions. Shells below 0.5 bohr
use grid number 9, those between (1.5 and 1.0 bohr use grid number 20, those between 1.0
and 1.5 bohr use grid number 26, those between 1.5 and 4.5 bohr use grid number 28,
those between 4.5 and 5.5 use grid number 26, and those between 5.5 and 16.0 bohr use

grid number 22. These results are summarized in Table 4.6.
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TABLE 4.6: Ni fine grid. The position of the
spherical grids is given as the outer radius Royq of
each region and the number of spherical grids
Nsphere in the region. The density of the spherical
grids is given as the outer radius Ry and the
angular momentum of the grids in that region.

Radii are in terms of bohr.

Position Density
Rout Nsphere Rout Grid Num.
0.4 7 0.5 9
1.17 8 1.0 20
3.2 10 1.5 26
4.77 5 4.5 28
8.0 6 5.5 26
16.0 -3 16.0 22

Many of these gridpoints are removed when the grids are patched together. Consequently,
the central Ni atom in the Ni3 clusters had 3000 gridpoints on it, compared to the roughly
1000 on C; more points were necessary to achieve the (.1 kcal/mol accuracy for Ni.

Several conclusions can be drawn from the appearance of the Ni grid. Because the
bonding in Ni clusters is delocalized from the atomic centers, higher densities of gridpoints
are required farther away from the nucleus than were required with C. The C grids could
fall off rapidly because most of the electron density was close to the nuclei. Not only do the
grids have to extend farther out in space, due to the longer Ni bond lengths, but the density
must be higher farther out, because of the delocalized electrons.

Table 4.7 displays the final dealiasing set!! for Ni.
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TABLE 4.7: Ni dealiasing set. Shown are the
exponents of the basis functions, and the

angular momenta at which dealiasing functions

are created on the atom and neighboring atoms.
Exponent Atom A.M.  Neighbor A.M.

0.012 spd spd
0.024 spd spd
0.0396 spd spd
0.0584 spdf spdf
0.086 spd spd
0.15 spdf spdf
0.2836 spd spd
0.56 spdf spdf
1.12 sp sp
2.24 sp sp
4.48 sp sp
8.9 sp sp
17.8 spd spd

The choice of the exponents is entirely determined from the basis set. The types of
dealiasing functions at each exponent were optimized over a series of trials, until the current
set was found that could reproduce to within 0.1 kcal/mol the results of GVB2PS5
calculations for a series of geometries.

Some conclusions may be drawn from the appearance of the Ni dealiasing set. The
dealiasing functions have, in general, higher angular momentum, no doubt reflecting the
higher angular momentum of the Ni 3d electrons. Moreover, the dealiasing set gives the
most accurate results when the neighbor blocks have the same dealiasing functions as the
central atom does. This is another result of the delocalized Ni bonding, similar to the grid
requirement of higher density at greater radii.

The goal at the outset of the work on Ni clusters was to maintain the accuracy PS-
GVB obtains on main group elements, ~0.1 kcal/mol. Table 4.8 summarizes the results!]

for Ni3 clusters using the parameter sets reported in this section. These results meet the

accuracy criteria of 0.1 kcal/mol.
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TABLE 4.8: Ni3 results. Shown are the total energies using
GVB2P5 and PS-GVB in hartrees, and the error in kcal/mol, for

a series of isosceles triangular Ni3 clusters.

Geometry Energy (h) Error
Angle R (A) GVB2P5 PSGVB {kcal/mol)
60° 1.74 -504.248096 -504.247943 0.096
60° 2.48 -504.628405 -504.628249 0.098
120° 2.04 -504.591164 -504.590973 0.120
180° 2.04 -504.598970 -504.598870 0.063
180° 2.48 -504.676823 -504.676809 0.009

The geometries for the Nij clusters were all isosceles triangles, with the angles and
bond lengths shown in Table 4.8. The geometries were chosen to span most of the
geometries Ni would see in different metal clusters. By requiring the parameters apply to a
wide range of geometries, a more physically relevant set of parameters is obtained. The
quality of the parameters is confivrmed in the next section when they are applied to a

different type of Ni cluster.

4.6 Application to Nig Clusters

To verify that the grid and dealiasing set parameters were general and did not only
work for Ni3 clusters, a set of calculations were run on Nig clustersl. These clusters are
described with two GVB pairs correlating the 4s orbitals localized at the interstices of the
bonds. The ground state geometry12 for this cluster is a rhomboidal geometry, with acute
angle 60°, obtuse angle 120°, and bond length 2.487 A. The quintet spin state of the 3d
electrons on the Ni atoms was used. From the ground state geometry, the rhomboid was

distorted into a square, as shown in Figure 4.1.
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\/\ 21.43 kcal/mol

53 —

Figure 3.1: Distortion of Nig4 from rhomboid to square.

Table 4.9 pfesents the results for this calculation. As the sixth column shows, the
agreement of PS-GVB with GVB2PS5 is excellent, once again to within roughly 0.1

kcal/mol.

TABLE 4.9: Nig distortion energies. Nig with a bond length of 2.487 A and the acute
angles shown in column one. Shown for each angle is the total energy in hartrees
calculated via GVB2P5 and PS-GVB, and the distortion energy relative that program’s
minimum energy. Column 6 reports the error, in kcal/mol, between the two method’s total

energies. _
Angle GVB2P5 AE PS-GVB PS AE Error
(h) (kcal/mol) (h) (kcal/mol) (kcal/mol)
60° -672.902067 0.00 -672.901989 0.00 -0.04894
70° -672.893097 5.63 -672.893090 5.58 -0.004392
80° -672.880313 13.65 -672.880555 13.45 0.1518
90° -672.867922 21.43 -672.868110 21.26 0.1180

The third and fifth columns show the distortion energy from the ground state energies.
GVB2P5 calculates this barrier as 21.43 kcal/mol, and PS-GVB calculates the barrier as
21.26 kcal/mol. Figure 4.2 plots these values versus the angles, and shows that, compared

to the magnitude of the quantities being calculated, whatever error PS-GVB introduces in

negligible.
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Figure 4.2: Distortion Energy of Nig Cluster. Comparison of

PS-GVB barrier to GVB2PS5 barrier.

The Nig case run in this section is a stringent test of the accuracy of the parameter
set, because different geometries and wave functions are used than were used for any of the
geometries for which the parameters were originally derived. That the same accuracy is
achieved for a different system that was achieved for the Nij clusters with which the
parameters were obtained indicates that the parameters are general and do not apply only to

the special cases used to derive them.

4.7 Conclusions
The work reported in this chapter shows that, with judicious choice of grid and
dealiasing set parameters, it is possible to reproduce the results of standard method

programs such as GVB2P5 using the PS-GVB program. A significant number of
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optimization runs are required and the two sets of parameters must be optimized
simultaneously because of the tightly coupled nature of the grids and the dealiasing
functions. Nonetheless, the fact that a high level of accuracy is possible with the PS-GVB
program indicates that the significant speed advantages delivered by this program can be
used for research on metallic systems.

The conclusions that can be drawn from the optimization work on Ni grids are: (i)
because the bond lengths of Ni clusters are approximately twice as long as those for C
containing molecules, the Ni grids must extend twice as far from the nucleus as the C grids;
(ii) because the Ni orbitals are delocalized from the nucleus, in contrast to the atom-centered
C orbitals, the Ni grids fall off more slowly than the C grids, and higher grid densities are
required at large radius; (iii) that the factor of two spacing between dealiasing set exponents
used for C again works for Ni; (iv) that the neighbor dealiasing functions are even more
important for Ni than they were for C, and more functions are required on the neighbor
atoms, another reflection of the delocalized Ni bonding. It is expected that these rules can

be applied to derive parameter sets for other transition metal systems.
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Chapter V
Direct Inversion in the
Iterative Subspace Convergence
for Generalized Valence Bond Wave Functions

5.1 Introduction

The research presented in this chapter describes an improved method of converging
Hartree-Fock and Generalized Valence bond wave functions. The most important
advantage of this method is that wave functions converge in fewer iterations using this
method than using standard convergence methods. Another advantage is that the method
presented in this chapter is more reliable than standard convergence methods, almost
always converging wave functions in 10-15 iterations; although in the best cases, standard
methods can converge wave functions this quickly, they often require many more
iterations. Finally, the method presented herein is automatic. Standard convergence
methods often require user intervention to turn on or off orbital averaging or otherwise
adjust the convergence procedure. This method is fully automatic and requires no input
from the users to help the convergence.

Section 2.7 summarizes the orbital optimization equations1-3 for a general wave
function consisting of closed, open, and GVB pair orbitals. These optimal orbitals are
solved in an iterative process. In each iteration the one- and two-electron operators are
formed from the trial (or previous iteration’s) orbitals, and the optimal occupied and
unoccupied mixings are calculated, from which the set of improved orbitals is formed. The
iterations proceed until the wave function stops changing.

Unfortunately, wave function optimization can be a very slow procedure, especially
in cases with many open-shell or GVB orbitals. In these cases the orbital rotations between
occupied shells can require many iterations to converge. Moreover, the rate of convergence

for any type of wave function generally slows as the wave function becomes more
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converged, which makes attainment of a highly converged wave function an even more
computationally expensive procedure than it would normally be.

For SCF calculations, quadratically convergent procedures? have been developed
that require the Hessian matrix—whose elements represent the second derivative of the
energy with respect to orbital variation. Although these methods show excellent
convergence properties, they require a full transformation of the two-electron integrals—an
O(N>3) process—to compute all of the elements for the optimization. General MC-SCF
procedures require a full integral transformation, and so a negligible amount of additional
work is required to use a quadratically convergent procedure. But one of the principal
advantages of the general HF and GVB wave functions summarized in Section 2.7 is that
they do not require a full integral transformation, and consequently the work required to
compute the operators scales formally only as O(N3) with the PS-GVB method. With such
wave functions, computation of the Hessian matrix would be significantly more expensive
than computation of the other operators, and therefore the quadratically convergent methods
are not practical for HF and GVB wave functions.

To address these difficulties, Pulay introduced the direct inversion in the iterative
subspace (DIIS) method> that has made a significant impact on SCF methods in quantum
chemistry. The DIIS method allows wave functions to obtain convergence rates
approaching quadratic convergence without any of the overhead associated with rigorous
quadratically convergent methods (i.e., calculating and storing a Hessian matrix, which has
Npg? elements). DIIS methods extrapolate the Fock matrices from different iterations to
obtain the most optimal Fock matrix. Thus far, DIIS methods have beén applied to closed-
shell HF4, restricted open-shell HF (ROHF), and single-pair GVB wave functions®, and
have yielded impressive results.

The work described in this chapter reports the development of an improved DIIS
scheme, generalized valence bond-direct inversion in the iterative subspace® (GVB-DIIS),

which is valid for general wave functions having arbitrary numbers of doubly-occupied
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core orbitals, singly occupied open-shell orbitals, and variably occupied GVB natural
orbitals (vide supra Section 2.7). The DIIS scheme presented here differs from previous
schemes in several ways. Existing formulations of DIIS are only valid for special cases:
closed-shell HF wave functions, ROHF wave functions, or one-pair GVB wave functions.
GVB-DIIS is general, and can be applied to wave functions with arbitrary numbers of core,
open, and GVB orbitals. Another limitation of the Pulay DIIS scheme is that it was only
applicable for late-iteration convergence, when the wave function is already mostly
converged. This implies that the Pulay scheme has a small radius of convergence. By
introducing second-order terms into the Fock operator used in GVB-DIIS, the radius of
convergence is significantly improved. With a sufficiently accurate initial guess!?, GVB-
DIIS methods can be used for early iterations in addition to the late iteration convergence
for which the methods were derived.

This chapter presents a description of the GVB-DIIS scheme and compares it to the
Pulay DIIS scheme as well as another DIIS scheme in the GAMESS program suite?. This
chapter also applies the GVB-DIIS method to a number of examples of wave functions
with various numbers of core, open, and GVB pair orbitals; and it presents convergence
results for GVB-DIIS as well as a number of the other standard methods of wave function
convergence. For the limited types of wave functions for which the Pulay and GAMESS
DIIS schemes, work the GVB-DIIS convergence is compared to them. For more general
wave functions we compare our convergence to the pseudo-second-order convergence used

in GVB2P58 as well as that in Gaussian9019,

5.2 Closed-Shell HF-DIIS

Using orbital optimization equations in Section 2.7, the wave function can be said

to be converged if
<iFi j>=0, (5.2.1)
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for all occupied orbitals ¢;, with Fock operator Fi, and all occupied and virtual orbitals ¢;.
This is equivalent to saying that an orbital is converged if the Fock matrix for that orbital is
diagonal in the space spanned by all other orbitals.

DIIS proceduresd make use of this definition of wave function convergence to

speed the convergence of the wave function. The error vector for the n-th iteration is given

by
Fi,n

eg = <] i>’ i =1, Noces ] =1, Noce+Nyirts (5.2.2)
where Fil is the Fock operator for the i-th orbital at the n-th iteration, and orbitals ¢; and ¢;
are also evaluated at the n-th iteration. The DIIS procedures use error vectors from various
iterations to find a “best” combination

n

Yane" 0. (5.2.3)

n

The next iteration uses the best Fock operator

Dyer

F* =3 q,F (5.2.4)

where F now refers to the general (i.e., spanning all shells) Fock operator at iteration n.
This is a single Fock operator that replaces the individual Fock operators Fin, The
particular nature of F? is discussed below. Diagonalizing this predicted Fock operator FOPt
(rather than F?, as in an eigenvalue method) leads to accelerated convergence.

The Fock operator in (5.2.4) and the error vector in (5.2.2) cannot be in an
molecular orbital basis, as such a basis would be changing each iteration as the orbitals are
optimized. In practice an orthonormalized atomic basis, hereafter referred to as canonical
orbitals (CO), is generally used. Alternatively, the initial guess molecular orbitals could
instead be used as an unchanging basis.

For closed shell HF cases it is convenient to write the error vector e as simply

Nc
e = z[FC|k)(k| —Ik)(kIFC] (5.2.5)
k=1

in terms of molecular orbitals. This definition of e™ has the property that
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ejj =0 if ¢; and ¢; are both occupied,

ejj = —Fjj if ¢; is occupied and ¢j is unoccupied,
ejj = Fj; if ¢; is unoccupied and ¢j is occupied,
ejj =0 if ¢; and ¢; are both unoccupied.

In terms of the atomic orbital basis
efly = 2[<u|F°‘k>(k|v) - (u]k)<le°lv>]
k
or
el = Fnpn§ - SDnfgn

where _
Sap = (Xa|15)

is the overlap matrix, and
Nc

Don = . CokCrk
k=1

is the core density matrix with orbital coefficients cgk given in (2.2.14).

(5.2.6)

(5.2.7)

(5.2.8)

(5.2.9)

(5.2.10)

Equation (5.2.5) is normally written as (FD-DF) for a closed shell system. Because

the canonical orbital basis is also an orthogonal basis, the error vector is also defined as

(FD-DF) in that basis. In practice, for closed shell systems, the Fock matrix F and the

density matrix D are formed in the atomic orbital basis (i.e., over the basis functions) and

transformed to canonical orbitals to form the error vector.

For multi-shell systems the choice of the error vector is no longer straightforward.

Section 5.4 presents a general approach for such systems.

Once an error vector has been defined, the gy iteration coefficients are determined

by minimizing>
n\2
> Qanei)
i,j n
under the constraint that

Dy

an =1

n

(5.2.11)

(5.2.12)
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This leads to the equations

P-q=f (5.2.13)
of order nj+1, where

Pj=e el forij >0, (5.2.14)

Ppj =Pjp =-1 fori>0,

Poo =0,

fi=0 i>0 (5.2.15)

fo = -1,

where the qj coefficients are used in (5.2.4) to obtain the orbitals of the new iteration, and

where qq is a Lagrange multiplier corresponding to half the norm of the new error vector.

5.3 General Fock Operators

The Fock operator (2.7.12) represents the first-order change in the energy with
respect to orbital variation. Normally, one Fock operator, F¢, is constructed for the core
orbitals, and another Fock operator, Fi, is constructed for each open or GVB pair orbital
0i. But in order for the DIIS method to work all orbital optimizations take place as the
diagonalization of a single Fock operator. This section describes a variety of methods for
replacing the separate Fock operators (FC, Fi) with a single Fock operator F. Traditionally,
orbital optimization schemes that performed all orbital optimization with a single
diagonalization (pure diagonalization or eigenvalue methods) for multi-shell cases generally
give slow convergence because only first-order changes in the energy are considered. One
of the major advantages to a DIIS method is that through extrapolation it can provide the
fast convergence generally only seen in second-order methods. The goal in this section is
how to combine the speed of the DIIS method with a Fock operator that can express all of

the GVB orbital optimization in a single diagonalization.
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A. Simplest Approach: Combine Separate Fock Operators
The simplest definition of a multi-shell Fock operator that satisfies the convergence

criteria in Egn. (5.2.1) is

F,=F, i,j are orbitals in shell T (5.3.1)
F,= Ffj - Ffj 1,j are in different occupied shells 1J

F,= F; i1s an orbital in shell I, j is virtual

F, =F™ i,j are virtual orbitals.

This is the algorithm that the GAMESS program suite? uses for their DIIS convergence for
open shell and GVB wave functions. We have found that DIIS methods based on such a
Fock operator work well when the wave function is sufficiently close to convergence, but
have difficulty with less optimal starting guesses. Moreover, this method is inherently
unsuited to cases with multiple GVB pairs because very often two or more pairs are
degenerate (e.g. the two OH bonds in water); with this Fock operator the diagonal elements
for degenerate pairs are equivalent, and diagonalization will delocalize the GVB natural
orbitals over the equivalent pair.

Further difficulties with this Fock operator can be seen by examining the mixing

due to off-diagonal elements in a matrix diagonalization, which is proportional to
M.
P (5.3.2)
M; -M;
for an arbitrary matrix M, where Mjj « | Mjj-M;j; |. With the Fock matrix definition in

(5.3.1), this yields for the mixing between two occupied orbitals
FL-F
ij ij
_ (5.3.3)
J I
Fj —F;

where here F!is the Fock operator for orbital ¢;, and F! is the Fock operator for orbital ¢;.
Recalling (2.7.7)-(2.7.9), the correct second-order form for the mixing between two

occupied orbitals is
J I
I I I 1 :
Fii — Fi - F]l + FU + 'YU

(5.3.4)
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Ignoring the ¥jj terms for the moment, the most striking part of (5.3.3) is that it gets the
sign wrong for the mixing of FjjJ and F;i! in the denominator. In (5.3.3) these elements
have opposite signs, whereas the actual mixing term in (5.3.4) has the same signs for these
two terms. This can cause the denominator to be small (or even zero) and the mixing terms
consequently to become very large and unstable. Moreover, the lack of the vjj terms
prevents the wave function from converging with two degenerate orbitals: as ¢j approaches
¢j all of the terms in (5.3.4) approach zero except Yij, which is large for localized orbitals.
The v;j term causes (5.3.4) to go to zero, because the denominator remains non-zero
whereas the numerator goes to zero. The mixing in (5.3.3) is unstable for degenerate
orbitals because both the numerator and the denominator go to zero. The absence of Fiii
and Fyl terms in (5.3.3) is yet another example of how the mixing described there does not

reproduce the actual orbital mixing in (5.3.4).

B. The Pulay Multi-shell Fock Operator

Other methods, e.g., Pulay's>, have used as the Fock operator

F, =F;™ i,j both in shell I or virtual orbitals (5.3.5)
F, = F:J - FfJ i,j are in different occupied shells
F, =F; iis occupied, j is virtual.

The advantage to the Pulay Fock operator is that the denominator of the mixing term from
(5.3.2) is Fjjcore - Fjicore rather than Fji! - Fjl, which is a somewhat better approximation.
The Pulay Fock operator is intended only for wave functions with a single GVB pair, and,
indeed, is inappropriate for wave functions with more pairs, as degenerate orbitals would

still produce the instabilities discussed in Section 5.3A.

C. The Page and Mclver Fock Operator

Page and Mclver suggest’ that many of the problems associated with the Fock

matrix of the type in (5.3.1) or (5.3.5) can be avoided by incorporating the proper orbital
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mixing terms into the Fock operator and scaling those elements by the difference in the
diagonal elements so that the proper mixing terms are obtained when the matrix is
diagonalized. A further improvement is made when pseudo-canonical orbitals are used by
diagonalizing each shell individually before forming the Fock operator. Such a formulation
allows an artificial diagonal term, generally Fj;") =1, to be used as the diagonal element and
divided out when the matrix is diagonalized. Page and Mclver use this Fock operator in a
scaled eigenvalue method. GVB-DIIS uses the Page and Mclver method to incorporate the

proper orbital mixing into a DIIS procedure for multiple shells.

D. The GVB-DIIS Multi-shell Fock Operator

GVB-DIIS, following Page and Mclver, uses the following form for the multi-shell

Fock operator:

F, = Fii"Sij i,j are in shell I or virtual (5.3.6a)
F, = -2 (gD _ gDy i,j are in different shell (5.3.6b)
j =5 (Fjj ~Fii ,j are in different shells 3.
i
F.(FP -FP
i = —”(———“——") i is occupied, j is virtual. (5.3.6¢)
Fj-F;

This definition requires that pseudo-canonical orbitals be used. Transforming to pseudo-
canonical orbitals is easily done: essentially the core Fock operator is diagonalized in the
space spanned by the closed shell orbitals. Although such a transformation does not change
the energy, it does rotate the core orbitals into their canonical orientations. In (5.3.6b), Aj;

and Bjj are defined in (2.7.8) and (2.7.9), leading to
(B —EL)(F} - Fp)

TP _F P ey (5.3.6b")
ii 1 ij ij TYij

ij

Multiplying the off-diagonal blocks by (FiiD-FiiD) removes the effect of the division by this
term when the matrix is diagonalized (see (5.3.2)). This allows the inclusion in (5.3.6b) of
the correct second-order terms as in (2.7.7). This approach has the additional advantage

that it reduces exactly to the standard approach in the limit where all the off-diagonal
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elements of (5.3.6) go to zero. It should be emphasized that the multiplication by (Fij-
F;;P) in (5.3.6) is not included to scale the mixing in the off-diagonal elements, but rather
to ensure that the correct second-order mixing strength is included when the matrix is

diagonalized.

5.4 Choice of the Error Vector

Section 5.2 describes the choice of the error vector at iteration n, e®, In particular,
(5.2.6) describes the error vector in terms of off-diagonal elements of the Fock matrix for
that iteration. Using this definition it is easy to see how DIIS algorithms work. The orbitals
are converged when the off-diagonal elements of the Fock matrix are all zero. DIIS find the
linear combination of Fock operators that is closest to diagonal, and takes the eigenvalues
of that matrix as the next iteration’s.orbitals.

The original approach for a multi-shell error vector built on the definition in (5.2.5).
That is, (FD-DF) is taken as the error vector, and a general definition of the multi-shell
density matrix is sought. Using the definition for F given in (5.3.6), the multi-shell density
matrix is defined in terms of molecular orbitals as

Dji=1fj (5.4.1)

Djj=0 i#].
This definition corresponds to transforming the standard atomic orbital definition of the
density matrix (2.2.18) or (2.2.19) into a molecular orbital basis. D thus defined is
transformed into the canonical orbital basis, and the error vector is formed as (FD-DF).

Using the definition (5.4.1) of the multi-shell density matrix and forming the error
vector as (FD-DF) has the unfortunate effect of minimizing the importance of GVB second
natural orbitals, where fj can be very small. With such a formulation of the error vector the
core and first natural orbitals converge well, but the second natural orbitals converged more
slowly. Correcting this problem led to the modified definition

Dji = fi fi>1/2 (5.4.2)
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Dj=1/2 ti< 12

D;j=0 1#].
Although (5.4.2) is an ad hoc definition and lacks the physical rigor of definition (5.4.1), it
leads to reliable convergence for all orbitals when (FD-DF) is used as the definition of the
error vector.

At this point it was noted that although definition (FD-DF) is a convenient method
of implementing the conditions for the error vector defined in (5.2.6), it is by no means a
necessary definition of the error vector. In particular, because the definition of the multi-
shell density matrix is not straightforward, (FD-DF) can be abandoned in favor of a more
direct method of forming the error vector that preserves the spirit of (5.2.6). The essence of
the DIIS method is that the off-diagonal elements of the Fock matrix be zero for
convergence, and that the linear combination of past and present iteration’s Fock matrices
be chosen that form the most diagonal Fock matrix. Thus the error vector for iteration n is
defined as the super-vector

eij(n) =Fj 1< Noce, ] > 1 (5.4.3)
and that ¢;j and ¢; cannot also be in the same type of shell (e.g., both core orbitals). This
matrix is constructed over the current iteration’s molecular orbitals, and transformed to the
canonical orbital basis so that it is in the same basis as the error vectors from other
iterations.

In practice, this definition of the error vector leads to essentially the same
convergence behavior as the definition using (5.4.2) and forming the error vector as (FD-
DF). The definition in (5.4.3) is used in GVB-DIIS because of its conceptual and

computational simplicity.
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5.5 Related Convergence Issues
Pulay has found> the use of level shifting and off-diagonal element scaling useful in
improving DIIS convergence. Level shifting is a method of insuring that the wave function
converges to the proper root. Recalling definition (2.7.7) of the rotation angle A
A

ij
= — 5.5.1
i3, (5.5.1)

A
and further recalling that the Aj; terms are related to the first derivative of the energy with
respect to orbital mixing, and the Byj terms are related to the second derivative of the energy
with respect to orbital variations, for a wave function to converge to a minimum the
denominator must be positive. When the wave function is far away from convergence it is
often the case that many of the Bj; terms are negative. Level shifting calculates an amount )
to add to all of the Bjj terms to make them all positive, and forms the rotation angle as

Ay =- A (5.5.2)
J Bij+8

Typically, & is taken as twice the amount of the most negative value of Bjj, which has the
effect of making the new minimum value of Bjj as much positive as it had been negative,
and shifting all of the other values upward accordingly. If excited states are desired, a value
of & can be chosen that makes all but one of the values of Bjj positive. The second-order
terms introduced in the GVB-DIIS Fock operator in (5.3.6) give excellent convergence for
a wide variety of cases without needing to resort to such methods. Indeed, no improvement
is seen when such methods are introduced, but these methods may be important in future
applications to metals or excited states.

The DIIS extrapolation scheme in (5.2.4) and (5.2.11)-(5.2.15) requires Fock
matrices and error vectors to be saved every iteration. This can result in large values of the
gn coefficients in (5.2.4) if the number of iterations becomes large. Pulay scales the
diagonal elements of the P matrix in (5.2.11)-(5.2.15) to resolve this problem. GVB-DIIS
has implemented a scheme that saves only ten iterations. Past algorithms that save only a

fixed number of iterations use an expensive process of discarding the oldest iteration,
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moving the matrices around in memory to save the newest iteration’s information. In
contrast, for each iteration past the tenth GVB-DIIS overwrites the matrix that had the
lowest qp coefficient in the previous extrapolation. The GVB-DIIS scheme amounts to
discarding the least important information rather than the oldest information; the scheme
that older methods employ assumes that the oldest information is the least important for
convergence, but this is not necessarily the case. The GVB-DIIS scheme decreases the
storage requirements and has little impact on the efficiency of the GVB-DIIS convergence.

Although the introduction of second-order terms greatly increases the radius of
convergence for GVB-DIIS, and although quality initial guesses most often put the starting
point of a calculation within this radius of convergence, it is still possible to find a system
for which the initial guess is outside the radius of convergence of GVB-DIIS. Defining a
threshold limit of the error vector, above which standard convergence methods (such as
those defined in Section 2.7) are used, can make the algorithm more robust. The results
presented here use max(e) = 1.0 as this threshold, which is found to be optimal for overall
computation time. In contrast, the Pulay DIIS method uses a threshold error vector value of
0.05, which reflects the smaller radius of convergence of the Pulay DIIS scheme.
GAMESS DIIS scheme uses a threshold of the energy change being less than (.5 hartree,
which is also generally closer to convergence than the threshold used by GVB-DIIS. The
difficulty with using a lower value is that very often non-DIIS convergence methods take a
long time to reach the lower value; the difficulty with a higher value is that there is a chance
the wave function will still be outside of the radius of convergence of the DIIS method.
Generally such a threshold definition, with a quality initial guess, leads to no more than one
non-DIIS iteration.

Once the calculation is within the DIIS radius of convergence, the sequence of
operations within a GVB-DIIS iteration is: (i) calculation of J and K operators; (ii)
calculation of GVB-CI coefficients; (iii) formation of the general Fock operator in (5.3.6)

and error vector in (5.4.3); (iv) determination of the iteration coefficients via (5.2.11)-
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(5.2.15); (v) diagonalization of the composite Fock operator in (5.2.4) to obtain the new
orbitals. If the wave function is not converged, the calculation proceeds back to (1) for

another iteration.

5.6 Results®

The GVB-DIIS method® as described above provides excellent convergence for a
wide variety of wave functions. For one-pair GVB wave functions we compare our results
to both GVB2P58 and GAUSSIAN9010 convergence methods and to the DIIS
convergence in GAMESS®. The DIIS scheme in GAMESS can be unstable for more than
one GVB pair or for open shell orbitals in addition to a GVB pair. GAUSSIAN90 only
uses DIIS for HF wave functions. Thus, the GVB-DIIS results for more complex wave
functions are compared to GVB2PS and GAUSSIAN9Q standard (i.e., non-DIIS)
convergence.

One of the important lessons of the work reported here is that reliable convergence
does require a reliable automatic procedure for initial guesses. GVB-INIT!2 is a fast,
automatic method of generating the localized initial guesses for GVB orbitals, and is used
as the starting guess for the examples reported here.

In the following examples we compare results between different programs. We
begin all programs from the same initial guess. The convergence criteria we use in the
following examples requires the SQCDF, the sum of the squares of the difference in the
wave function between two iterations, to be less than 10-9 (it should be noted than this is
often a much more stringent requirement than the more commonly used criteria of energy
variation between iterations being less than 10-9). We report the number of iterations from

trial guess to convergence in all cases.
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A. One pair GVB wave functions
1. HO, one bond stretched

The first example demonstrates the ability of GVB-DIIS to converge a wave
function with a single correlated ¢ bond. Table 5.1 summarizes a series of electronic
structure calculations on H2O using a GVB pair for one of the O-H ¢ bonds and a 6-31G**
basis set. The equilibrium geometry is obtained from an STO-3G minimization. The
correlated O-H bond is stretched to a variety of distances past the equilibrium geometry, the
electronic structure is calculated using GVB-DIIS, GVB2P5, GAUSSIANYS0 and
GAMESS, starting from the same initial guess and geometry for all three programs.

Table. 5.1 presents data starting from our standard initial guess, described above.
GVB-DIIS displays typically excellent behavior, converging in 11 to 13 iterations in the
cases reported. GVB2PS5 takes significantly longer in every case. The GAMESS DIIS
convergence scheme does about as well as GVB2PS for the three most stretched cases, but
does not converge for the two cases closer to the equilibrium geometry. This is due to
mixing between the first GVB natural orbital and the uncorrelated O-H bond, which results
from using the Fock operator defined in (5.3.1), which would have near-identical matrix
elements along the diagonal for these two orbitals. The use of pseudo-canonical orbitals
and the Fock matrix defined in Eqn. (5.3.6) allows GVB-DIIS to use an artificial diagonal
element of the Fock operator with no loss of accuracy. As the results in Table 5.1 show,
GVB-DIIS has no difficulty whatsoever with these degeneracies. GAUSSIAN90, whose
GVB convergence is based upon a similar scheme to that in GVB2PS5, follows the same
general trends as GVB2PS5 but takes slightly longer for each case; its convergence is much

slower than that seen in GVB-DIIS.
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TABLE 5.1: Number of iterations to converge the one-pair GVB
wave function for H20 as one OH bond is dissociated. The starting
geometry (ROH = 0.94 A, aHOH = 105.98°) is the optimum
geometry for the HF wave function with an STO-3G basis. The 6-
31G** basis set is used with the GVB-INIT initial guess.

Number of iterations
AROH (A) Energy (h) GVBDIS GVB2P5 GAMESS G90

0.0 -76.043561 13 24 dnct 41
0.2 -76.023038 13 23 dnct 26
0.5 -75.963830 11 23 22 24
1.0 -75.904616 12 19 20 22
2.0 -75.883588 11 20 22 26

t dnc = Did not converge

In Table 5.2, the effect of using a guess that involves a HF SCF calculation before
generating the GVB orbitals is investigated. These guesses are significantly more
computationally intensive than the guesses used in Table 5.1. In every case GVB-DIIS
runs as fast or faster with these guesses, but the one or two iterations saved hardly justifies
the expense of obtaining the guess. On the other hand, although GVB2P5 does work
slightly better for some of the less distorted geometries, for the more distorted ones it
behaves very poorly. This is no doubt due to the fact that HF orbitals are poor descriptions
for chemical bonds at very distorted geometries, and that they therefore provide a poor
basis for initial guesses here. GAUSSIAN's convergence is also moderately better for the
less distorted geometries and rather poorly for the more distorted geometries. GAMESS
failed to converge 3 of the cases. The general conclusion is that the potential added
accuracy of the guesses that involve a HF SCF calculation before generating the GVB
orbitals certainly does not justify the added expense. The remainder of this chapter uses

GVB-INIT, the less expensive standard initial guess method used in Table 5.1.
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TABLE 5.2: The same sequence as in Table 5.1, but with initial
guesses based on localizing the orbitals of the HF wave function
rather than GVB-INIT.

Number of iterations
AROH (A) Energy (h) GVBDIS GVB2P5 GAMESS G90

0.0 -76.043561 13 22 dnct 34
0.2 -76.023038 12 21 dnct 26
0.5 -75.963830 11 19 dnct 24
1.0  -75.904616 11 37 19 46
2.0 -75.883588 10 107 27 392

Tdnc = Did not converge.

2. Twisted ethylene

Table 5.3 reports data obtained from twisting the ® bond in CoHg from 0° to 90°.
The geometry of Krisnan et al.8 is used as the equilibrium geometry. The © bond is
correlated with a GVB pair. The total number of iterations required to converge the wave

function from the trial guess to a SQCDF less than 107 is reported.

TABLE 5.3: Number of iterations for the one-pair GVB wave
function of CpHj4 as a function of the twisting about the C—C bond.
Starting geometry: Ree=1.334 A, Rcu=1.081 A, agcy=117.4°
(Ref. 8). The 6-31G** basis set is used with GVB-INIT.

Number of iterations
Twist Energy (h) GVBDIS GVB2P5 GAMESS G90

0° -78.066047 7 11 13 27
30° -78.022104 12 19 21 23
60° -77.906403 12 29 25 31
90° -77.748431 21 46 dnet 74

T dnc = Did not converge.

At the equilibrium geometry all methods display acceptable convergence, but as the
bond twists further GVB2P5, GAUSSIAN90, and GAMESS have increasing difficulty.
GVB2P5 and GAUSSIAN take a large number of iterations for the 90° geometry, and

GAMESS does not converge at all. In contrast, GVB-DIIS shows rapid convergence in
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every example. All of the wave functions have the most difficult time converging the wave
function for the geomeltry that has the dissociated ©t bond. GVB-DIIS maintains reasonable
convergence properties even for this wave function. The fact that the GAMESS DIIS
convergence scheme cannot converge a number of the geometries used so far casts doubts
on the general applicability and reliability of its algorithm. In contrast, GVB-DIIS

demonstrates excellent convergence for all of the geometries.

3. Formaldehyde, one pair

Figure 5.1 graphically illustrates the convergence advantages of GVB-DIIS using
an electronic structure calculation on HyCO with a GVB pair correlating the © bond. An
STO-3G minimized geometry and a 6-31G** basis set is used with all methods. The figure
plots the convergence, -Logg(SQCDF), versus iteration number for GVB-DIIS,
GVB2P5, GAUSSIAN90, and GAMESS methods. GVB-DIIS has the fastest convergence
of the four programs. GAMESS also displays the rapid convergence typical of DIIS
methods. GVB2PS5 takes much longer than either of the DIIS methods to converge, and
GAUSSIAN90 takes even longer; the run illustrates how this type of scheme can often
slow down close to convergence. In contrast the DIIS methods continue their rapid rate of

convergence for the entire sequence.
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Figure 5.1: Comparison of convergence with GVB-DIIS, GVB2P5, GAMESS/diis,
and GAUSSIANO90 for formaldehyde with a one-pair GVB wave function.

Figure 5.1 demonstrates how the convergence of standard methods (GVB2PS5 and
GAUSSIAN90) slows as the wave function becomes increasingly converged. In contrast,
both DIIS methods show rapid convergence properties that remain relatively constant as the

wave function converges.

B. Multiple GVB pair wave functions
1. Dissociating both bonds of HyO

An example of wave functions with multiple GVB pairs is reported in Table 5.4,
where the electronic structure of HO is calculated with a 6-31G** basis set using two
GVB pairs to correlate both O-H bonds. The equilibrium geometry is obtained from an

STO-3G minimization. The bonds are stretched from equilibrium (0.94 A) to over three
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times the equilibrium distance (2.94 A). GVB-INIT is again used for the trial wave

function. Table 5.4 reports the total number of iterations from trial guess to SQCDF < 10-9.

TABLE 5.4: Same as Table 5.1, except that both bonds are
simultaneously dissociated and a two-pair GVB wave function is
used to correlate both O-H o bonds.

Number of lterations
AoH1 (A) ApoH2 (A) Energy (h) GVBDIS GVB2P5  G90

H
0.0 0.0 -76.063303 14 24 89
0.0 1.0 -75.925219 15 31 36
1.0 1.0 -75.799411 14 17 61
0.0 2.0 -75.904235 14 32 40
1.0 2.0 -75.778726 15 56 65
2.0 2.0 -75.756784 18 13 dnct

fdnc = Did not converge

Although in one case GVB2P5 converges in fewer iterations than GVB-DIIS, for
other cases the convergence using GVB2PS can be quite poor. In contrast, GVB-DIIS
converges quickly (14 to 18 iterations) for every case reported; GVB2PS requires from 13
to as many as 56 iterations to converge the same cases. GAUSSIAN9(, again, does
significantly worse than either of the other programs for all cases here.

The fact that GVB2PS does better for one of these cases is very curious, because
the GVB-DIIS Fock operator should reproduce all of the orbital optimization characteristics

of GVB2P5 convergence methods. The approximation
M.

S 5.6.1

M; -M; ( )
made for the mixing when an arbitrary matrix M is diagonalized only holds when

M;j « I Mji-Mj; L. (5.6.2)

This is not the case for large changes in the orbitals during optimization steps. Thus,
standard methods for orbital optimization can still work better for unconverged wave
functions. This is why non-DIIS iterations are still necessary at the beginning of the

convergence sequence. It should be emphasized that even though the standard methods
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work better in this one instance, GVB-DIIS at its worst converges wave functions much

more rapidly than the majority of examples using standard methods.

2. Dissociation of the double bond in ethylene

Dissociating a double bond is a suff test of the convergence method. The next
example, summarized in Table 5.5, reports the dissociation of C—C double bond in CoHy4.
The ¢ and & bonds are correlated with two GVB pairs. The planar geometry from Table
5.2 is used as the equilibrium geometry here. GVB-DIIS is dramatically faster than the
other two programs for every geometry, requiring no more than 15 iterations from initial
guess to SQCDF<10 for any case. GVB2PS5, on the other hand, takes no less than 14 and
as many as 54 iterations, whereas GAUSSIAN9O requires from 26 to 126 iterations for

these same geometries.

TABLE 5.5: Number of iterations for the two-pair GVB
wave function of CpHy4, as a function of bond
dissociation. The GVB pairs correlate both the C-C ¢ and
n bonds. The same equilibrium geometry is used that
Table 5.2 uses.

Number of lterations
Acc (A) Energy (h) GVBDIS GVB2P5 G90

0.0 -78.075751 10 15 26
0.5 -77.975870 13 36 40
1.0 -77.862122 8 14 70
2.0 -77.800986 15 54 74
3.0 -77.798767 15 39 1256

3. Methyl dissociation

The next example (Table 5.6) examines the effect of an open-shell orbital on the
convergence rate of GVB-DIIS. One of the advantages of GVB-DIIS is that it can handle
general wave functions that mix open-shell and GVB natural orbitals. CH3 radical is a good

test of the convergence for such a wave function; the wave function is calculated using a
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planar geometry with 120° HCH angles. The C-H bond distances are varied from 1 to 2.6
A, and the electronic structure of the doublet state is calculated at that geometry using both
GVB-DIIS and GVB2P5. Once again, GVB-DIIS requires fewer iterations than does
GVB2P5, and GAUSSIANY0 has increasing difficulty as the molecule dissociates.

TABLE 5.6: Number of iterations for converging the
three-pair GVB wave function of CHj3 radical for
symmetric dissociation of the three C-H bonds. The
geometry is kept planar with bond angles of 120°. The 6-

31G** basis set is used with GVB-INIT.
) Number of lterations
RCH (A) Energy (h) GVBDIS GVB2P5 G90

1.0 -39.585824 14 17 28
1.2 -39.583762 12 15 28
1.4 -39.492389 11 18 30
1.6 -39.382916 11 21 39
1.8 -39.281492 11 22 41
2.0 -39.196612 10 21 67
2.2 -39.127903 12 20 111
2.4 -39.072965 12 18 191
2.6 -39.029350 14 17 249

4. Glycine with different numbers of GVB pairs

In the final example the number of iterations required to converge a glycine wave
function with up to ten GVB pairs is examined. An STO-3G minimized geometry is used
for glycine. Table 5.7 reports results with 0 GVB pairs (the regular HF wave function), 1
GVB pair (correlating the C-O © bond), 5 GVB pairs (correlating all the heavy atom-heavy
atom bonds: 4 ¢ and 1 & bonds), 6 GVB pairs (correlating the C-O = bond, the 3C-Ho
bonds, and the 2 N-H o bonds), and 10 GVB pairs (correlating all bonds). GVB-DIIS
requires from 12 to 20 iterations to converge these wave functions, whereas GVB2P5

requires from 26 to 162 iterations, and GAUSSIAN9( from 16 to 75 iterations.
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TABLE 5.7: Number of iterations for converging GVB wave
functions for glycine, HyN-CH-C(O)OH. The 6-31G** basis set
is used with GVB-INIT. The geometry was from an STO-3G
minimization: Ryg = 1.03 A, Rne = 1.48 A, Ren = 1.09 A, Rec
=1.55 A, Rco = 1.22 A, Rc.on = 1.37 A, Ron = 0.99 A, one
= 104.25°, aycy = 107.54°, agnc = 107.24°, ancc = 113.59°,
acco = 125.67°, apco = 122.44°, acon = 104.75°, tHNCC =
55.98°, THcco = -122.00°, all heavy atoms and the hydroxyl H

are coglanar.

Number of lterations

Npair Energy (h) GVBDIS  GVB2P5 G90
0 -282.837281 12 48 161
1 -282.864831 13 26 30
5 -282.932640 20 162 111
6 -282.953850 17 42 42
10 -283.019396 20 90 75

T HF DIIS convergence used in Gaussian

Particularly interesting in this example is that GVB-DIIS converges the HF wave function
faster than GAUSSIANOQ, which uses the Pulay DIIS scheme. This demonstrates that the
additional equations required to make the GVB-DIIS scheme consistent with general wave
functions does not impede its behavior on closed-shell HF wave functions, and, in fact,
improves the convergence behavior.

Figures 5.2 and 5.3 illustrate some of these cases graphically. The convergence,
-Log10(SQCDF), is plotted versus the iteration number for the wave functions with 1 and
10 GVB pairs for GVB-DIIS, GVB2P5 and GAUSSIAN90. We see consistently rapid
convergence for GVB-DIIS. GVB2P5 and GAUSSIAN90 show similar behavior, each
requiring many more iterations, and the rate of convergence slows as the iterations

ncrease.
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Figure 5.2: Comparison of convergence of GVB-DIIS, GVB2P5 and Gaussian90 for

Glycine wave functions with the C-O n-bond correlated with one GVB pair

Although GVB-DIIS has one iteration where the convergence does not monotonically
increase, the wave function converges rapidly, and the convergence behavior does not
degrade as the wave function converges. In contrast, the standard convergence methods

slow down significantly as the wave functions converge, and the wave functions take much

longer to reach convergence.
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Figure 5.3: Comparison of convergence of GVB-DIIS, GVB2P5 and Gaussian90 for

Glycine wave functions with all 10 bonds correlated with GVB pairs

The same trend continues with the ten pair example. GVB-DIIS converges rapidly,
whereas the convergence of the standard methods slows as the wave functions become
more converged.

The results presented in Section 5.6 reflect a number of significant points. GVB-
DIIS in general converges much more quickly than GVB2P5 does. Moreover, pathological
cases, where the program takes an inordinate number of iterations or does not converge,
are much rarer in GVB-DIIS than in GVB2P5. GAUSSIAN90 convergence follows the
same general trends as does GVB2PS5, but generally takes longer for a given case; this
convergence is far inferior to that seen in GVB-DIIS. Finally, the radius of convergence for
GVB-DIIS, although perhaps not as wide as that of GVB2PS5, is a significant improvement
over that in the DIIS scheme in GAMESS.

The most important advantage gained by the GVB-DIIS algorithm comes from the
reliability it brings to wave function convergence. As the examples in this section

demonstrate, GVB-DIIS converges wave functions in 10-15 iterations, often a few more or
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a few less, but almost always in this range. The behavior of other convergence algorithms
varies from cases where they do as well as GVB-DIIS, to cases where they take several
times as many iterations to converge. It is this reliability that makes GVB-DIIS an

extremely reliable option for converging HF and GVB wave functions.

5.7 Conclusions

The GVB-DIIS method makes converging wave functions that include arbitrary
numbers of core, open, and GVB orbitals fast and reliable. This method makes it now
possible to use physically accurate wave functions to calculate force-fields, to describe
bond distortion and dissociation processes, and to obtain highly converged wave functions
for the purpose of calculating more exact molecular properties such as charges and dipole
moments.

The GVB-DIIS convergence scheme has already been implemented in the PS-GVB
electronic structure program. The pseudospectral approach, when combined with the
methods detailed here, should allow GVB calculations on much larger systems than have

been possible before.
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~ Chapter VI
Ab Initio Calculation of Porphyrin Excited States

6.1 Introduction

The research presented in this section develops two new methods of calculating the
energy and wave functions for porphyrin excited states using ab initio electronic structure
theory methods. These methods involve frozen core approximations and the self-consistent
optimization of the excited states. Results are presented for porphine, the simplest
porphyrin, using both methods. In addition, the flexibility of the second method allows
calculation of chlorin and bacteriochlorin, two reduced porphyrins. These methods may be
used to evaluate the accuracy of some of the common assumptions made on porphyrin
excited states.

Porphyrin molecules are ubiquitous in biology and chemistry, appearing in, among
other places, photosynthetic pigmentsl, hemoglobin2, cyctochrome P-4503, and a variety
of synthetic catalysts#. One of the reasons porphyrins are so common in biology and
chemistry is that they can be modified and substituted in a variety of ways, and these
variations can have a profound effect on the chemistry they perform. Figure 6.1 shows
porphine, the simplest porphyrin. The two hydrogens can be removed from the center of
the ring yielding the porphyrin dianion, and a series of metals can coordinate with the four
Nitrogen atoms. The outer ring hydrogens may also be replaced with organic groups,
which can affect the ring geometry, changing it from the planar porphine geometry to a
non-planar geometry. Finally, double bonds on the pyrrole groups may be reduced.

Because porphyrins are primarily characterized by their absorption spectrum, and
because the absorption spectrum varies greatly with substitution of the ring and center
positions on the porphyrin, analysis of the excited states of the molecule has long been a
subject of intense experimental and theoretical effort. The spectra of porphyrins are

characterized by an intense UV absorption known as the “Soret” or “B” band, and several



106

weak visible absorptions known as the “visible” or “Q” bands®. The four-orbital model®
arose from 18-electron circular wire models of porphyrins, and was later refined with semi-
empirical calculations. The four-orbital model explains the qualitative appearance of the
absorption spectrum, and the qualitative shift of the absorption spectrum with substitution,
and has been an invaluable tool in the analysis of porphyrin spectra.

Unfortunately, attempts to put the four-orbital model on firmer theoretical ground
have been hindered by the difficulty of an ab initio calculation on a porphyrin molecule.
This difficulty is partially due to the size of the porphyrin molecule. With 24 heavy atoms
and 14 hydrogens, porphine (Figure 6.1) requires 430 basis functions when using a
double-zeta plus polarization basis set. Moreover, the multi-configurational nature of the
excited states predicted by the four-orbital model contribute to the difficulty of the
calculation. In general, description of multi-configurational states requires an O(NJ) (where
N is the number of basis functions) transformation of the two-electron integrals that is
prohibitively expensive for a molecule with 430 basis functions. Descriptions of the excited

states of porphyrins have thus lacked the rigor of ab initio quantum chemistry.

Figure 6.1: Structure of Porphine
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This chapter describes two methods, both based on ab initio quantum chemistry, of
calculating the four orbital excited states (FOES) of porphyrins that correct these
shortcomings. The first, frozen core four orbital excited states (FC-FOES) uses frozen core
corrections to freeze the ¢ interactions in the porphyrin and performs MC-SCF calculations
on the FOES. These calculations are followed by CI calculations (FC-FOES-CI) at the
single excitation level to correct for the approximations made by the Gouterman model. The
FC-FOES and FC-FOES-CI methods are used to calculate the excited state for porphine,
the simplest porphyrin. The second method, self-consistent four orbital excited states (SC-
FOES), calculates the FOES self-consistently, using the appropriate Hamiltonian for each
state. The SC-FOES calculations use the PS-GVB program to describe the electronic
structure of porphyrin molecules. This program makes it possible to directly calculate the
matrix elements necessary to describe the energy and the orbital optimization of the multi-
configurational states, so that a transformatio‘n of the two-electron integrals is not
necessary. The flexibility of the SC-FOES method allows it to calculate the excited states of
not only porphine, but also those of chlorin and bacteriochlorin, two reduced porphyrins.
Both FC- and SC-FOES methods show excellent agreement with experimental results. The
accuracy of the FOES method can be improved by combining it with the frozen core
method, which allows the incorporation of single excitations from the FOES states into the
unoccupied orbitals. This combined method, SC-FOES-CI, is used to correct the
limitations of the four orbital approximation in porphine. The high degree of accuracy
attained with these methods indicates that they are well suited to describing the absorption

spectrum of other porphyrins.

6.2 The Four-Orbital Model and Four-Orbital Excited States
The four-orbital model considers the occupied orbitals with the highest energies, a

and b, and the two virtual orbitals with the lowest energies, ¢ and d. From 18-electron
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circular wire models a and b are degenerate, as are ¢ and d. In porphine with Dy, symmetry
orbital a has by, symmetry, orbital b has ay symmetry, orbital ¢ has b3g symmetry, and

orbital d has by symmetry (Figure 6.2).

a (byy,ay)

b (ay,au)
Figure 6.2: Schematic representation of the p-density of the highest two occupied
molecular orbitals and the lowest two unoccupied molecular orbitals of porphine. Shown
are the tops of the p basis functions that compose the orbitals, filled circles representing
negative phase, open circles representing positive phase. Symmetry labels are given for

each orbital in the Dyp and D4p, symmetries.

Thus, the optically allowed transitions consist of
a—¢C bpy symmetry

b—>d bpy Symmetry
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a—d b3y symmetry
b—c¢ b3y symmetry.

Transitions of like symmetry combine to form the following coupled transitions

Qy=@—>0+(b-—4d (6.2.1a)
By=(@—-c¢)-(b—d) (6.2.1b)
Qx=@—-d)-(b—c) (6.2.1c)
Bx=(a—d)+(b—0). (6.2.1d)

These states will hereafter be referred to as the four-orbital excited states, or FOES. These

transitions are shown schematically in Figure 6.3.

c (b3g) d (b2g)
) -
y y
X X
ably) b

Figure 6.3: Schematic representation of transitions between idealized,

degenerate four orbitals.

In D4y, symmetry orbital a has symmetry apy, orbital b has symmetry ayy, and ¢ and
d form a degenerate pair of eg orbitals. Even though the transitions are all now of symmetry
ey and may freely mix, the four-orbital model assumes that they still retain the general form
of (6.2.1).

The four-orbital model predicts the shift of the absorption spectrum with
substitution by predicting that the relative strength of the individual transitions in each of
the coupled transitions in (6.2.1) will shift, causing a shift in intensity. Thus the “pure”
FOES described by (6.2.1) are no longer the exact wave functions but are only

approximate. The pure FOES remain an excellent approximation to the real excited states
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that would be obtained by allowing the single excitations in (6.2.1) to mix arbitrarily by

comparing our calculated excitation energies to experimental spectra.

6.3 The Multi-Configurational Nature of FOES

Wave functions whose energy expression can be written in the form of (2.7.5) can
form all of the terms required to calculate the energy and to optimize the orbitals from h, J,
and K operators. Thus, rather than a complete transformation of the two-electron integrals
only the partial transformation to compute J and K operators is required. This reduces the
formal scaling of the problem from O(Npsd) to O(Npeh), where Ny is the number of basis
functions (cf. discussions in Sections 1.1 and 2.1).

Unfortunately, more complex wave functions do require a full transformation of the
two electron integrals. The four-orbital states described in (6.2.1) are multi-configurational.

For example, consider the four-orbital Qy state:
Yo l{Core} (bd+db)+b2(ac+ca)]>. (6.3.1)

The energy of this wave function is given by
Core

2 [2b55+ 295 = Ky |+ Fhaa + 31 + F hee + Fhao
3 & 1
+3Jak”7Kak+3ka“Kbk+Jck“ch+Jdk‘Ede (6.3.2)
1 1
+7Jaa+71bb+21ab Kab 2J "'ZKac'*'J 2 Kad
1 1
where k signifies a core orbital. Most of the terms in (6.3.2) are simply h, I, or K matrix

elements, but the terms

r2
and
(abled) = [ 94 (D Do @)0q(2) 43, 43, (6.3.4)
12

cannot be formed from the matrix elements of h, J, or K operators.
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The situation is made even more difficult when the orbital optimization equations
are considered. Recalling the procedure described in Chapter II, given a set of trial orbitals
{®o}, the optimal set of orbitals {¢} are obtained via the transformation

[0] = exp(8)-[0o] (6.3.5)
where [¢] is the matrix whose columns are the orbitals ¢;. A is the anti-symmetric matrix

with zero diagonal defined by

o A
_ Bjj
A=| o (6.3.6)
1)
ke R
B.

where Aij contains terms of first-order in orbital mixing, and Bij contains terms of second-
order in orbital mixing.

For general HF/GVB wave functions of the form (2.7.1) all of the Ajj and Bjj terms
are formed from the J and K operators. The energy expressions for the wave functions
which describe the FOES contain terms of the types (6.3.3) and (6.3.4) which cannot be
constructed from J and K operators. Consequently, the orbital mixing terms Ajj and Bjj
contain terms which cannot be computed from J and K operators. Thus, a full
transformation of the two-electron integrals is needed to update the orbitals and form the
energy expression.

Because of the size of porphyrin molecules, the required integral transformation is
impossible. Consequently, methods must be determined which can calculate the excited
states without requiring a transformation of the two-electron integrals. Section 6.4
describes a method which transforms only a small subset of the two-electron integrals, thus
reducing the problem to one of manageable size, and Section 6.6 describes a method where
the orbitals are not transformed at all, but where additional terms are calculated using the

pseudospectral program for the orbital optimization equations and the energy expression.
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6.4 The Frozen Core Four Orbital Excited State Method
One method of making ab initio calculations on porphyrin excited states tractable is
the frozen core approximation. The electronic energy in (2.7.5) can be expressed as a sum

of orbital energies

0CC
E= ZEI
i
where
OCC
Ei = fihii + Zaijlij + blelj (641)

]

The o and 7 orbitals in planar molecules are of different symmetry types and do not mix

with each other. We can therefore rewrite E; as

(8 T
Ei = fihii + ZaijJij + leKIJ + ZaijJij + bl_]Klj . (6.4.2)
j j
Taking
o
Vo = X alij + bKj (6.4.3)
j

allows us to rewrite E; as

'y
E; = fihi + Vo + 2 aly + bKy. (6.4.4)
i

The frozen core approximation assumes that Vg remains constant while the n-orbitals are
optimizing, being excited, and so on. This assumption allows us to perform a calculation
only in the ®-space of the molecule, which is much smaller than the 6+ space. In the case
of porphine the o+ space contains 430 basis functions and 81 occupied orbitals whereas
the  space contains only 110 basis functions and 13 occupied orbitals. The © space is
small enough to allow a full transformation of the two-electron integrals, which allows
standard methods such as Configuration Interactions (CI) and Multi-Configurational SCF
(MC-SCF) to be used to describe the excited states.

In practice, the FC-FOES method uses PS-GVB to calculate the Vg term. As

outlined in Chapters II-IV, the combination of a grid and basis functions for integral
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evaluation enables PS-GVB to handle calculations with very large basis sets. Porphine
(Figure 6.1), with 24 heavy atoms and 14 hydrogens, has 430 basis functions using the 6-
31G** basis set. PS-GVB makes possible calculations of this size even on simple
laboratory workstations. The V4 term is evaluated via (6.4.3) and output over the basis set
of 110 = basis functions.

Using the MQM program suite, the two-electron integrals are constructed in a
modified 6-31G** basis that contains only & basis functions, and Vg is added to the one-
electron integrals. The 7 space is only 110 basis functions, small enough to allow a full
transformation of the two-electron integrals. After the integral transformation, MC-SCF
calculations are performed to optimize the FOES in the four orbital active space using the
MQM program GVBTHREE. These FC-FOES approximations subsequently can be
corrected by performing a single-excitation CI (CI-S) calculation. The FC-FOES-CI
calculation allows the excited states to relax from the FOES structure.

The frozen core approximation thus described can break down in two ways. First,
if the molecule is not planar the ¢ and & spaces are no longer orthogonal and can mix. In
such a case Vg is no longer constant and cannot be included as a parameter. Secondly,
excitations or other perturbations of the m orbitals can cause the ¢ core to relax, which
again causes Vg to change.

In the present work we use the frozen core approximation in two applications.
First, we calculate Vg from a HF ground state. The Vg potential can be included in a © only
calculation of the porphyrin excited states. The relaxation of the ¢ core that occurs when the
T orbitals are excited is not included, which leads to errors in the calculation. Later, in
Section 6.10, the SC-FOES calculations are used to obtain improved V. In this case the ¢
core already has adjusted to the excited & orbitals, and our results are much more accurate.
Such a calculation is valuable because it allows the CI-S calculation to estimate the error

introduced by the FOES assumption in the SC-FOES.
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6.5 Results of FC-FOES Porphine Calculations

This section reports the results of FC-FOES and FC-FOES-CI calculations on
porphine, where the Vg term is calculated from ground state calculations porphine
calculations. In FC-FOES calculations, Vg is calculated with the PS-GVB program, and is
incorporated into the MQM program suitel®, where HF and MC-SCF calculations are
performed. The active space in our MC-SCF calculations is confined to the four orbitals;
excitations amongst the four orbitals are allowed to mix in arbitrary amounts. Table 6.1
reports the accuracy of the Vg potential. For a ground state calculation, virtually the same
orbital energies are obtained with a frozen core as with an active core. The error reported in
the last column is no higher than 0.03 eV—which is the same order of magnitude of error
that the numerical grid itself introduces to PS-GVB calculations. This indicates that, for
ground state calculations, no additional error is introduced when the Vg term is introduced

to the energy.
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TABLE 6.1: Comparison of ground state frozen core and active core orbital energies
for porphine. Active core energies calculated using PS-GVB, frozen core energies
calculated using GVB2P5 and V4 from PS-GVB active core calculation. See text for

other details.

Symmetry Active Core (h) Frozen Core (h) Error (h) Error (eV)
1 bgg -0.539384 -0.539370 -0.000014 -0.000381
2 bog -0.375437 -0.375329 -0.000108 -0.002939
3bgg -0.8324257 -0.324189 -0.000068 -0.001850
1 bag -0.582523 -0.582513 -0.000010 -0.000272
2 bag -0.374731 -0.374622 -0.000109 -0.002966
3 bag -0.366131 -0.366372 0.000241 0.006558
1ay -0.437340 -0.437228 -0.000112 -0.003048
2 ay -0.219526 -0.219372 -0.000154 -0.004190
1 byy -0.589291 -0.589152 -0.000139 -0.003782
2 b1y -0.522173 -0.522011 -0.000162 -0.004408
3 b1y -0.377294 -0.377387 0.000093 0.002531
4bqy -0.333696 -0.333601 -0.000095 -0.002585
5bqy -0.238392 -0.238227 -0.000165 -0.004490

In these calculations the porphine geometry is taken from the crystal structure given
in Reference 14. Slight modifications to this geometry are made so that the porphine
molecule has overall Dyph symmetry.

Table 6.2 reports the accuracy of FC-FOES and FC-FOES-CI calculations, again
using a Vg derived from a ground state wave function. The first four columns of Table 6.2
compare the FC-FOES energies to experimental numbers. The FC-FOES results agree with
experimental results to within 1.29 to 1.78 eV for the Soret and visible band of porphine.
This error—roughly 1.5 eV—comes from three sources. The first comes from the four
orbital approximation itself, limiting the excited states to the form of (6.2.1). The second
comes from freezing the electrons represented by the Vg potential in the same states that
they occupied in the ground state calculations. Although the ¢ and r orbitals do not mix in
planar molecules, the 7 electron density changes when the electron in the four orbitals go
from their ground to their excited configurations. Consequently, the ¢ electron density

would normally readjust, but being represented by a potential rather than explicit active
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electrons, it cannot, which introduces another source of error. Section 6.6 presents a
method of correcting for the ¢ relaxation upon ® excitation.

With the frozen core calculations it is possible to correct for the errors introduced by
the FOES structure. By following the FC-FOES calculations with a single-excitation CI
(CI-S) calculation even greater accuracy may be obtained. The final two columns of Table
6.2 report the improvement of these FC-FOES calculations when a CI calculation is
performed at the single excitation level in the 110 orbital n-space—the FC-FOES-CI
method. The single excitations improve the agreement with experiment to from 0.29 to
1.04 eV. We therefore estimate that the FOES structure introduces roughly 1 eV of error to
the porphyrin excited state energies, and that the remaining ~0.5 eV of error in the FC-

FOES-CI calculations is due to the lack of ¢ relaxation in this model.

TABLE 6.2: Comparison of theoretical and experimental porphine
excited state energies using ground state V. Experimental results from
Reference 16: Q band results are from gas phase studies (Radziszewski
et al.); B band results from solution phase studies (Edwards et al.). FC-

FOES and FC-FOES-CI results are reported. All energies in eV.
State Experiment FC-FOES Error FC-FOES-CI Error

x 2.03 3.45 1.42 2.26 0.23
Qy 2.46 3.71 1.25 2.75 0.29
Bx 3.33 5.07 1.74 4.01 0.68
By 3.33 5.11 1.78 4.37 1.04

Later, Section 6.10 again uses frozen ¢ cores, but there Vg is derived from the

excited state calculations. These calculations should combine the strengths of the frozen

core calculations with a potential that has already relaxed to the excited w electrons.

6.6 Self-Consistent Orbital Optimization in FOES
The FC-FOES and FC-FOES-CI methods show excellent agreement with

experimental results. In an effort to obtain better agreement with experiment, this section
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describes a method that describes all ¢ and = electrons self-consistently. Such a description
of the porphyrin excited states is made possible by assuming that the excited states are of
the form of (6.2.1) with equal components of the two excitations in each excited state.

The SC-FOES method is the method that solves for the FOES, by calculating the
energy and the optimum orbitals of the excited state self-consistently and without an
integral transformation. The SC-FOES method accomplishes this by analytically calculating
the orbital optimization equations for each of the FOES. The equations that result are
expressed in terms not only of h, J, and K operators (as is the case for simpler energy
expressions of the form of (2.7.5)), but also general two electron integrals that cannot be
expressed as matrix elements of h, J or K. These terms are normally calculated by a full
transformation of the two-electron integrals, but, as porphine is too big to allow a full
integral transformation without resorting to either a poor basis set or a frozen core
description, a different method of obtaining these terms must be found. SC-FOES uses PS-
GVB is used to calculate all of the terms required for the orbital optimization and the energy
expressions and to use these terms to optimize the orbitals for each state self-consistently.
SC-FOES uses the standard PS-GVB procedure of calculating the h, J, and K operators
required in the optimization equations, and explicitly calculates the additional general two
electron integrals required.

The energies of the wave functions for the four states are given by
Core

3 3 1
Eqypy = 2. [2hii+2]ik_Kik +3haa + 3 hpp + Fhee + 50

1
3 3 1 )
3V 5 Ko 3k =5 Ky + Tk — 57K Hak — 7 Kk (6.6.1)

1 1 1 1 1
tolaat 7Tt 2~ Kap t39ac T 7K tag — 7Ky
1 1 1
where the Qy state comes from the top part of the  operators and the By state comes from

the bottom part, and
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Core
3 3
i

3 — 3K 30— 2K o~ 7Kg Hla —3Kae  (6.62)
+%Jaa +%Jbb + 2Jab - Kab + Jac —%Kac +f’12_Jad + %Kad
+1 10 + 3Ky + Tpog — 1 Kyq £2(ad]bc) m(ablcd)
where the By state comes from the top part of the * operators and the Qy state comes from
the bottom part.
There are two methods of obtaining the orbital optimization equations from the
energy expressions (6.6.1) and (6.6.2). The first and most general method is that of Yaffe

and Goddard!2. This is a method consists of writing the energy expression in the form

Eyg = 2, fijhij + X, i iilkD). (6.6.3)
ij ijkl

The Yaffe-Goddard method obtains the Ajj and Bjj terms for use in the A matrix in (2.7.7)
from the coefficients fjj and cjjki.
A simpler method is to take pairwise mixings of all of the orbitals. Pairwise

mixings of the form
.0 +AD;

; = =
2
¢.lj;¢. (6.6.4)
9T M

¢ P
! V1+22

are inserted into an energy expression such as (6.6.1) or (6.6.2). By expanding the energy

expression in terms of powers of A, the terms that are first-order in A lead to the Ajj terms,
and the terms that are second-order in A lead to the Bj; terms.

For the derivation of the SC-FOES equations presented below, both the Yaffe-
Goddard method and the pairwise mixing method were applied, and both yield the same set
of equations.

The FOES wave functions have three types of orbitals: core, the doubly occupied

orbitals; active, the fractionally occupied Four Orbitals; and virtual, the unoccupied orbitals.
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This section categorizes the equations as core-active mixings, active-active mixings, and
active-virtual mixings.

In this section, the label k will signify a core orbital, labels a, b, ¢, and d signify the
active orbitals, and the label v will signify a virtual orbital. We also define the following
modified Fock operators, which are useful in simplifying the equations

FK = 4h + 8]k - 4Kk + 6Ja - 3K2 + 6Jb - 3Kb + 2J¢ - K¢ + 2Jd - Kd

Fa = 3h + 6Jk - 3Kk + 4Ja - 2Ka + 4Jb - 2Kb + J¢ + K¢ + 2Jd - Kd

Fb = 3h + 6JK - 3Kk 4+ 4Ja - 2Ka + 4Jb - 2Kb + 2J¢ - K¢ + Jd 4+ Kd (6.6.5)

FC=h+2Jk-Kk+Ja + Ka+2Jb- Kb

Fd=h+2Jk-Kk +2J2a-Ka +Jb + Kb,

There is an appealing similarity between the modified Fock operators, as described above,
and the normal Fock operators from standard Hartree-Fock theory, which is why the name
is retained even though the derivative of an orbital’s energy with respect to mixing with
other orbitals also depends upon inhomogeneous terms, as shown below. All of the
operators required to optimize the orbitals and calculate the energy of the wave functions
can be constructed from the matrix elements hxy, JKyy, KKyy, Jaxy, Kayy, Joyy, Kbyy, J6y,
K¢y, dey, dey, (ablxy), (aclxy), (adixy), (bclxy), and (bdIxy), where x and y range over
all occupied and virtual orbitals. We use the PS-GVB program to form these operators.

The following equations are the orbital mixing equations for the Qy (the top
combination of the + operators) and the By FOES. The corresponding equations for the Bx

and Q states are obtained by switching the “c” and “d” labels in the equations.

1. Core-Active Mixing
<k‘Fk - Fala> + (kbled) m2(ke|bd)

kIFk _ Falk> _ <ale _ Fa’a> m (abled) £ 2(acfbd) (6.6.6a)

Axa = <

(K[F* = F"[b) # (kalod) m2(kdlac)

Axp = < (6.6.6b)

K[F* — FPlk) - (b[F* = F"[b) m (abled) £ 2(acfba)
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<k]Fk = F¥|c )+ (kdfab) m2(kalbd)
<k|Fk —Fc‘k> < [k - Flc >+2ch—6ch m(abled) % 2(aclbd)
(K[F* = F¥d) £ (kelab) m2(Kblac)

(K[F* - Fd|k> (a[* - Fd|d> +2J g - 6Kyq m{abled) % 2(ac|bd)

(6.6.6¢)

Agc =

(6.6.6d)

Agg =

2. Active-Active Mixing
<a|Fa - Fb|b> + <c|Ja G L 2Kb|d>
(afF® - Fla) - <b|Fa - FO|b) + 4(abled) m4(aclbd) m 4(adlbe)

<a|Fa - Fc|c> + <b|2Ja K2 -25+ KC|d>

(6.6.7a)

Agp =

- (™~ F¥[a) - (JF® - F¥Je) + 23qc ~ 6K e £ 2(abled) + 2(ad]be) m8(aclba)
< > < > (6.6.7b)
) aIFa _Fdld + b'Ka - KdIC
o R <d|Fa~Fd|d>m2 (abled) £ 2(aclod) o
T
" (bfF® = F[o)—(dJF" - Fele)m2(sbled) £ 2(aeba) -
Apd =

<b’Fb - Fd|d> + <a]2Jb —KP-23% 4 Kd|c>

(b[F® ~ F%Jo)~ (4fF® — F|d) + 2354 — 6K £ 2(abled) £ 2(adfbc) m8(aclbd)

(6.6.7¢)
<c|Fc - Fd|d> + <a|J° —2KC -4+ 2Kd|b>
Aca = 3 1 (6.6.70)
Clags: e} - (a[Fe - F [d) 4(abled) m4(aclbd) m 4(ad]bc)
3. Occupied-Virtual Mixing
(¥ )
Agy = (6.6.8a)

<k’Fk‘k> - <V‘Fk‘v> —4J,, + 12Ky,
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(alF?[v) £ 2(bdev)m (bvlea)

Bav = <aIFala> - <V‘Fa’V> — 4K, m(ablcd) + 2(ac]bd) (6689
<b|Fb’v> + 2(ac|dv) m(av|cd)
fov = (b[F®[b) = (¥]F?|v) — 4Kpy m(abled) + 2(aclba) (0659
(dJFe|v) % 2(avibd) m(abldv)
8w = TIFI0) — (o[Fe ) m (abjed)  2(aclbad (6659
(cfFele) = (fFefy) m (abled) £ 2(ackba)
<d,Fd|v>i 2(ac|bv) m(ablcv) o
Bav= <dIFdld>—<vIFd|v>m(ablcd)i2(ac|bd) (66080

6.7 PS-GVB Calculation of Multi-Configurational Operators for SC-FOES
The last section lists the operators required for the four-orbital state orbital
optimization and energy calculation. Most of the operators, the ones in standard J or K
form, can be formed using the standard PS-GVB program as described in Chapter II. The
other operators, those of the form (ijlxy), where ij is the pair of active orbitals in the set
{ab, ac, ad, bc, bd}, and x and y range over all occupied and virtual orbitals. These
operators are also formed using the PS-GVB program. Replacing the density matrix DX in

(2.4.2) with the two-orbital effective density matrix Dii given by

S I
Duv = i(cwcw + chvx) 6.7.1)
yielding
(ifuv) = 2. Qu{z J cm(g)D?m}Rv(g). (6.7.2)
g on
The matrix elements (ijixy) can be formed via the transformation
(ipxy) = > cpicvi(iiuv) (6.7.3)
v

The program forms the density matrices Dcore, D2, Db, D¢, Dd, Dab, Dac, Dad Dbc, and
Dbd, With each density matrix it forms the associated J and K matrices, which it stores on

disk. After all of the two-electron matrices have been formed, the program optimizes the
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orbitals, calculates the energy, and, if the program is not converged, goes to the beginning.
The process repeats until the program converges.
Because each four-orbital excited state Qyx, Qy, Bx, and By has a different

Hamiltonian, this sequence is repeated for each of the four-orbital excited states for each

molecule studied.

6.8 Convergence Acceleration in SC-FOES

The Bjj matrix described in (6.3.4) as the denominator of Ajj, the rotation matrix, is
actually just the diagonal elements of Bijjkj, a tensor that describes the full second
derivative of the electronic energy with respect to orbital variations. When the molecule is
small enough to permit a full transformation of the two-electron integrals, quadratic
convergence may be achieved by forming all elements of the Bj; kj tensor (according to the
equations in Reference 12) and solving

0=Ap +4A;Bjju- (6.8.1)
For most equations the advantages obtained from using the full Bjj k1 tensor are negligible
when compared to the amount of computational effort that is required for a full integral
transformation, primarily because the Bjj k1 tensor is diagonally dominant. Consequently,
only the diagonal elements Bj; jj are used, resulting in (6.3.4).

Unfortunately, in cases where the Bjj matrix alone is not sufficient to achieve
reliable convergence, methods to improved convergence must be used. Such methods
include scaling down the size of the A matrix, orbital averaging, level shifting, and Direct
Inversion in the Iterative Subspace (DIIS)!3 convergence acceleration. Here the SC-FOES
method implements a level shifting scheme, primarily for its computational simplicity.
Noting that the curvature of a function is positive at a local minimum, all Bij values are
shifted by an amount equal to twice the most negative value. The result of such a shift is
that the smallest value of the matrix is now positive by as much as it had previously been

negative.
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It might be questioned here why, if excited states are sought, are positive values of
the second derivative matrix desired? Excited states are generally characterized as having
one negative eigenvalue. But because of the nature of the FOES wave function, each state
is the ground state of its particular Hamiltonian, and consequently the lowest state of that
particular Hamiltonian is sought.

The use of the level shifting allows the rapid convergence of the wave functions that

otherwise would require many more iterations.

6.9 SC-FOES Results for Porphine

In this section we present calculations on the FOES of porphine (Figure 6.1). The
greater freedom of the SC-FOES description of the electronic structure allows the different
porphyrins to be described, and Section 6.11 reports for two reduced porphyrins, chlorin
and bacteriochlorin. The porphine molecule is calculated using a 6-31G** basis set. The
porphine geometry is obtained from a crystal structure symmetrized to Dop symmetry from
Reference 14, the same geometry used in the FC-FOES and FC-FOES-CI calculations in
Section 6.5.

The first part of this section presents the orbital energies for porphine and
demonstrates that even though the energies of the pairs of orbitals in the Four Orbitals are
not exactly degenerate, they remain sufficiently close to degeneracy compared to the energy
of the orbitals higher and lower than the Four Orbitals. This near-degeneracy justifies the
structure of the FOES wave functions used in this section. The second part of this section

reports the actual excited state energies using the FOES model.

A. Orbital Energies

As was noted in Section 6.2, because the four-orbital model assumes the two
HOMO:s and the two LUMOs are each degenerate pairs of orbitals, the FOES assume an

even mixing of the single excitations from the HOMOs into the LUMOs. In real systems



124

these orbitals are not degenerate. For metalloporphyrins with Dgh symmetry the two
LUMOs form a pair of degenerate eg orbitals, but the two HOMOs are no longer
degenecrate. For porphyrins of lower symmetry neither the HOMOs nor the LUMOs form
degenerate pairs. This section shows that although the active orbitals no longer form
degenerate pairs, they are still close enough in energy to justify the FOES structure.

Table 6.3 shows the orbital energies for porphine. The column marked “RVO”
contain the energies of the regular virtual orbitals that are obtained from the eigenvalues of
the Fock operator. The difficulty with these orbitals and the accompanying orbital energies
is that the virtual orbitals are generated in the field generated by the N electrons in the core,
rather than the field from (N-1) electrons that an electron in such an orbital would interact
with if the orbital corresponded roughly to an excited orbital. Because of this the energy of
the RVOs is unnaturally high. To correct this discrepancy the Improved Virtual Orbitall>
(IVO) energies are also displayed in Table 6.3. These are the virtual orbitals from the cation
of the molecule, and correspond much more closely to experimental excitation energies.
Whereas the RVO energies predict excitation energies of roughly 6.5 eV, the IVO energies
predict excitation energies of roughly 4.0 eV, significantly closer to the theoretical and

experimental results presented in the next section.

TABLE 6.3: RVO and IVO orbital energies in
eV for porphine calculated using PS-GVB. See

‘text and Figure 6.4 for other details.

Orbital RVO Energy IVO Energy

HOMO-2 -8.82 -8.82
biu -6.48 -6.48
au -5.98 -5.98
b3g 0.36 -1.93
b2g 0.50 -1.80

LUMO+2 3.30 0.46

Figure 6.4 represents the RVO and IVO data from Table 6.3 pictorially. It is evident

from this figure that although the pairs of active orbitals are not perfectly degenerate, their
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energies are still much closer to each other than to that of any other nearby orbitals,

suggesting that the structure of the FOES is still accurate.

+5.0 7
ag
Orbital
Energy 0.0 3
(CV) b3g g au
b3g b2g
-5.0 —
au au
blu blu
-10.0 — b2g b2g
RVO VO

Figure 6.4: Orbital energies and symmetry labels for porphine IVOs and RVOs.
Shown are the four active orbitals, the next lowest occupied orbital, and the next

highest unoccupied orbital. Orbital energies in eV.

The RVO energies shown in Figure 6.4 have the correct qualitative appearance, but the
actual energies are unnaturally high, due to the extra electrons contained in the core. The
use of the IVOs presents a more realistic picture of the orbital energies. Although the
energies cannot be used to estimate excitation energies accurately (via Koopman’s theorem)
because they ignore the resonance between the multiple configurations involved in the

excitation, they present a reasonably accurate model of the excitations.
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B. SC-FOES Porphine Calculations

Table 6.4 describes the results of the SC-FOES calculations for porphine. The
excited state energies range from 2.73 to 4.03 eV above the ground state energy. The
experimental numbers!6 correspond well with these numbers. The last column of Table 6.4
gives the error in the calculation relative to the experimental number; this error ranges from

0.32 10 0.76 eV.

TABLE 6.4: Excited State Energies for Porphine. Excited states calculated via

SC-FOES procedure. Experimental energies as in Table 6.2.
" State  Total E (h) Excit. E (h) Excit. E (eV) Expt. (eV) Error (eV)
Ground -983.219088 - - - -

Qx -983.118662 0.100426 2.73 2.03 0.70
Qy -983.111192 0.107896 2.94 2.46 0.48
By -983.071054 0.148034 4.03 3.33 0.70
B}f -983.084791 0.134297 3.65 3.33 0.32

By comparing the FC-FOES, FC-FOES-CI, and SC-FOES calculations, several
conclusions can be made. On the average, the FC-FOES method makes an error of 1.55
eV, the FC-FOES-CI method makes an error of 0.56 ¢V, and the SC-FOES method makes
an error of 0.55 eV, relative to the experimental results. The FC-FOES and SC-FOES
methods are the most similar of the three. The methods differ in that (i) the FC-FOES
method allows the excited configurations to mix in arbitrary amounts, and (i1) the SC-
FOES method allows the ¢ orbitals to relax in response to the excited & orbitals. Table 6.3
shows that the pairs of HOMOs and LUMOs are roughly degenerate in porphine, so that
the stabilization gained by allowing the different configurations to mix arbitrarily is
minimal. Consequently, the 1.0 eV difference in the accuracy of the FC-FOES and SC-
FOES methods can be taken as the effect of ¢ orbital relaxation.

The FC-FOES-CI method reproduces experimental results more accurately than the
FC-FOES method by (.98 eV. As Section 6.5 noted, this amount is taken as the magnitude

of the error introduced by limiting the excited states to the Gouterman FOES form.
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The FC-FOES/FC-FOES-CI methods are limited because they do not include ©
relaxation. The SC-FOES method is limited because the excited states are restricted to the
FOES form. These methods can be combined to one which has none of these limitations,

as detailed in the next section.

6.10 Frozen Core Corrections to SC-FOES: SC-FOES-CI

By combining the SC-FOES methodology with the frozen core technique we can
take advantage of the best aspects of both approaches. Here the Vg potentials are calculated
from the converged wave functions from the FOES, and perform the MC-SCF and the CI
calculations using a Vg where the o core has already relaxed in response to the ©
excitations. The resulting method is called SC-FOES-CL

Table 6.5 details the result of these calculations. As the table shows, by using a Vs
where the ¢ core has relaxed in response to the excited w orbitals improves the accuracy of
the visible bands by roughly 0.05 eV, a significant portion of the error in these states. For
the Soret bands, where the error is larger, the calculations are still underway, but a similar

improvement is expected.

Table 6.5: Porphine excitation energies in €V, using a frozen
Vo core from SC-FOES calculations. Experimental energies as

in Table 6.2. See text for other details.
Excitation Energy

State SC-FOES-CI Experiment Error
Qx 2.21 2.03 0.18
Qy 2.74 2.46 0.28
Bx - 3.383 -
By - 3.33 -

For the visible Q bands the SC-FOES-CI method shows excellent agreement with
experimental results. Future studies will complete the analysis of porphine excited states by

determining the SC-FOES-CI excitation energies for the By and By bands.
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6.11 Reduced Porphyrins

One important advantage to the SC-FOES method mentioned in earlier sections is
that the method does not depend upon symmetry to make the calculation tractable. As a
consequence, calculations on porphyrins which do not have Dy symmetry are possible
with the SC-FOES method. One important porphyrin which does not have Dy symmetry
is chlorin (Figure 6.5), the porphyrin part of the chlorophyll molecule. The bacterial analog
of chlorin is bacteriochlorin (Figure 6.6). The SC-FOES energies for these molecules are
presented in this section.

The chlorin and bacteriochlorin geometries are obtained from the porphine crystal
structure by reducing the relevant double bonds and minimizing using a molecular
mechanics program; this method is chosen for ease of comparison with the porphine
calculations. For chlorin and bacteriochlorin the axis of reduction is perpendicular to the
axis of the protons in the porphyrin ring; this choice was made to be consistent with earlier
calculations19 that show it to be slightly lower in energy. Figures 6.5-6.6 show the

structures of these molecules.



Figure 6.5: Structure of Chlorin

Figure 6.6: Structure of Bacteriochlorin
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As with porphine, an important issue for SC-FOES calculations on chlorin and
bacteriochlorin is whether the orbitals are degenerate enough for the FOES model of the
excited states to apply. Table 6.6 reports the RVO and IVO orbital energies for these two

molecules.

Table 6.6: RVO and IVO energies in eV for chlorin and bacteriochlorin. See text
and Figure 6.7 for details.

Chlorin Bacteriochlorin
Orbital RVO Energy IVO Energy RVO Energy IVO Energy
HOMO-2 -8.27 -8.27 -8.82 -8.82
b1y -6.45 -6.45 -6.26 -6.26
ay -5.89 -5.89 -4.92 -4.92
bag ) 0.40 -2.16 0.18 -1.61
bog 1.34 -1.18 2.48 -0.99
LUMO+2 4.07 1.12 4.77 1.91

Figure 6.7 pictorially displays the RVO energies for chlorin and bacteriochlorin.
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+5.0—
Orbital au au
Energy 0.0
V)
b2g - b2g
b3g £
-5.0 -
au
blu a blu
loc
b3g
-10.0 —
Chiorin Bacteriochlorin

Figure 6.7: Orbital energies and symmetry labels for chlorin and bacteriochlorin RVOs.
Shown are the four active orbitals, the next lowest occupied orbital, and the next

highest unoccupied orbital. Orbital energies in eV.

As Table 6.6 and Figure 6.7 show, the HOMOS and LUMOs are not as degenerate
in chlorin and bacteriochlorin as they are in porphine. The orbital energies only differ by an
eV, and consequently, the SC-FOES energies should be a good approximation to the
excited state energies.

Table 6.7 details SC-FOES calculations for chlorin. The excited state energies range
from 2.87 eV to 3.70 eV. Again, experimental results are reported, and the errors relative

to these results range from 0.59 to 0.97 eV.
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TABLE 6.5: Excited State Energies for Chlorin. Excited states calculated via
FOES procedure. Experimental energies from Reference 17.

—

State Total E (h) Excit. E (h) Excit. E (eV) Expt. (eV) Error (eV)
Ground -984.350401 - - - -

Qyx -984.244819 0.105582 2.87 1.9 0.97
-984.244813 0.105588 2.87 2.28 0.59
Bx -984.214517 0.135884 3.70 2.96 0.74

Blf -984.215089 0.135312 3.68 3.03 0.65

Table 6.6, finally, describes the calculations of the FOES energies for bacteriochlorin. The

energies here range from 2.94 t0 3.99 eV.

TABLE 6.6: Excited State Energies for Bacteriochlorin. Excited states calculated

via FOES procedure. Experimental energies from Reference 17.
State Total E (h) Excit. E (h) Excit. E (eV) Expt. (eV) Error (eV)

Ground -985.484634 - - - -

Qx -985.376757 0.107877 2.94 1.66 1.28
Qy -985.368262 0.116372 3.17 2.36 0.81
Bx -985.351625 0.133009 3.62 3.23 0.39
Blf -985.337881 0.146753 3.9=9 3.47 0.52

Whereas the average SC-FOES error in porphine is 0.55 eV relative to the experimental
results, the average SC-FOES error for chlorin is 0.74 eV and that of bacteriochlorin is
0.75 eV. Because the only additional source of error in the chlorin and bacteriochlorin
results is the lack of approximate degeneracy between the two HOMOs and between the
two LUMOs, this discrepancy is taken to be the source of the increased error in the chlorin
and bacteriochlorin results.

The CI corrections to the SC-FOES calculations via the frozen core approximation
described for porphine in the previous section are also possible for the reduced porphyrins
in this section. Such SC-FOES-CI calculations for reduced porphins are currently

underway. These calculations will correct the restriction imposed by the FOES structure,
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and it is expected that the results of these calculations will yield the same accuracy relative

to experiment as did the SC-FOES-CI calculations on porphine.

6.12 Conclusion

The methods described in this chapter can reproduce porphine excited states
quantitatively. These methods employ a variety of techniques to make the calculation of
porphine excited states computationally tractible. The first of these techniques is the frozen
core approximation, which uses the planarity of the porphine molecule to separate the ¢ and
7 parts of the calculations. This separation enables a potential to be substituted for the ¢
orbitals, and a full MC-SCF and CI calculations to be performed in the ® space. The
limitation to the frozen core method is that it does not describe the relaxation of the ¢
orbitals as the & orbitals are excited. The second method described in this section explicitly
calculates the resonance wave functions in the Gouterman Four Orbital model for porphyrin
excited states. The limitation to this method is that the excited state structure is restricted to
the form with equal contributions from the two excited configurations in each state. These
two techniques can be combines, and the frozen core MC-SCF and CI calculations are

performed using a frozen core potential consistent with the excited x configuration. This

hybrid method produces results which agree with experiemental results to within 0.18 eV.
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Appendix I
A Technique for Evaluating
Hamiltonian Matrix Elements

A1.1 Introduction

At various times in this thesis it has been necessary to evaluate matrix elements of
the form

Hj = (‘PiIHI‘I’j> (AL.1.1)
where W; and '¥j are two wave functions consisting of singly or doubly occupied spin
orbitals, or linear combinations of such wave functions. Among other places, these terms
occur in evaluating the energy of ground and excited state wave functions, in calculating the
resonance between different configurations, and in calculating CI matrix elements.

This appendix will describe a simple techniquel for evaluating these terms. The
technique involves transforming the wave functions into spin orbitals, evaluating the matrix

element there, and transforming back to spatial orbitals.

A1.2 The Method
Step One: Break Into Individual Determinants

The first step in the method is to break the matrix element down into matrix
elements between single determinants or configurations. The GVB wave function with one

correlated pair2
YGvi1 = A[q)kq)k(cg‘bgq)g +Cydudy )OLBOCB]

= |kk(cggg+cuuu)> (A1.2.1)

= |cgkkgg + cukkuu>

has energy given by
EGver = <cgkkgg+cukkuu[H]cgkkgg+cukkuu>. (A1.2.2)
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(A1.2.2) is separated into a linear combination of matrix elements between individual

determinants
EGgyp] = cg2<kkgg|H[kkgg> + ¢y % (kkuu|H|kkuu)

+2c40y (kkgg|H|kkuu).

(Al1.2.3)

Step Two: Transform to Spin Orbitals

The next step is to transtorm from spatial orbitals to spin orbitals. For the wave

function in (A1.2.1), the spin orbitals are:
dxo = g

OB — w2
Og = Y3
0o Wy
Oyl = Y5
ouB = We.

(Al1.2.4)

This transforms the energy expression into
EGvp1 = ¢g°(1234H|1234) + ¢, 2 (1256]H]|1256)

+2c4c, (1234|H]1256).

(A1.2.5)

It is often useful to write spin orbital indices using Arabic numerals, and spatial orbital

indices using letters to avoid confusion.

Step Three: Order and Classify Determinants

The next step is to order the determinants in each matrix element so that they are in
the order of maximum coincidence. There should be three types of determinant
relationships: identical determinants, determinants that differ by one spin orbital, and
determinants that differ by two spin orbitals. Because the electronic Hamiltonian has only
one and two electron operators, a matrix element containing determinants that differ by
more than two determinants are zero.

When the determinants have to be rearranged, the sign of a determinant flips
whenever two of the orbitals are interchanged. An example of putting a matrix element in

the order of maximum coincidence follows.
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(2135|H[4321) = —(2135/H|2341)
= (2135]|H|2143) (A1.2.6)
= —(2135H|2134)

Thus, this matrix element is classified as one that differs by one spin orbital.

Step Four: Evaluate Matrix Elements between Operators

In this section the rules are given for evaluating matrix operators between the two

types of operators in the Hamiltonian

Nocc

Op= D h(i) (A1.2.7)
i=1
‘NoccNoce 1

Oy= ) > — (A1.2.8)
i=l j>i i

Case 1: Identical determinants
IK) =[123L Ny ) (A1.2.9)

Nocc

(KloK) = ' hy (A1.2.10)
i=1

Nocc Noce
(KoalK)=3 3. (i) (i) (AL2.1D)
i=1 j=1

Case 2: Determinants differing by one spin orbital
|K) =]123L aL Noe)

(A1.2.12)

|L) ={123L bL Nyc)

(K|Oj|L) = hy (A1.2.13)
Nocc

(K|Oz|L) = Y (ablii) - (ailbi) (A1.2.14)
i=1

Case 3: Determinants differing by two spin orbitals
K)=|123L abL N
1K) =| occ) (A1.2.15)

|L) =|123L mnL N)
(KjoJLY =0 (A1.2.16)
(K|O,|L) = (am|bn) — (an|bm) (A1.2.17)
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Step Five: Transform Back to Spatial Orbitals

Once the matrix elements have been evaluated, all that remains is to transform back
to spatial orbitals. The two-electron integrals (ablcd) are zero unless a and b have the same

spin and ¢ and d have the same spin.

A1.3 Example: One Pair GVB Energy

The one GVB pair wave function was already given in (Al.2.1), and transformed

into spin orbitals in (A1.2.5):

Ygvp1 = Icgkkgg + Cukk““> (A1.3.1)
=|cg1234 +c,1256) -

The energy of the GVB wave function is given by

WGvB1 = (cg1234+ ¢, 1256]Hlc 1234 +¢,1256) (A1.3.2)

= ¢2(1234|H[1234) + c5 (1256]H|1256) + 2c4c,, (1234]H]1256)

Using the rules from the previous section, the matrix elements are:
(kkgg|H|kkgg) = (1234]H|1234)
=hyy+hgp +hyz+hyg +J1p +J13-Ky3
g +J23+ 104 ~Kog +J34
= 2hkk + 2hgg +Jkk + Jgg +4Jkg - 2Kkg
(kkuu|H|kkuu) = (1256|H[1256)
=hyy +hgp +hss+hes +J12 +J15 - Kys

(A1.3.3)

(Al.3.4)
+J16 + 125 +J26 —Kog + 756

=2hyy +2hyy + e + T + 4Tkn — 2Kk
(kkgg|H|kkuu) = (1234|H|1256)
= (35/46) (A1.3.5)
=Kgy
The total energy of the one GVB pair wave function is given by
EGva1 = 2hix +¢g2(2hgg + g +2Jkg — Kig |
+Cu2(2huu +Juu +2Jx —Kku) (Al1.3.6)
+2¢cyKgy
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Al1.4 Conclusion

One common task in electronic structure theory is the evaluation of matrix elements
of the Hamiltonian operator between different determinants. The method presented in this
appendix may be used to obtain wave function energy expressions, resonance energies,
and CI matrix elements for a variety of wave functions. The evaluation method is made
easier by transforming the wave function into spin orbitals from the more commonly used
spatial orbitals, evaluating the matrix elements, and transforming back. Although the extra
transformations introduce additional work, orbital interchanges and other manipulations of
the Slater determinants are much easier using spin orbitals. Consequently, the method is
relatively simple, and presents a reliable method of Hamiltonian matrix element evaluation

with minimal room for error.
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Appendix II
The Self-Consistent Optimization of
Restricted Configuration Interaction Wave Functions:
Two-Pair, Closed-Shell Special Case

A2.1 Introduction

As an extension of the methods in Chapter V and Appendix I, this appendix
presents the equations for the self-consistent optimization of a two-pair, closed-shell
restricted configuration interaction wave function. The equations and techniques presented
here should able to be generalized to a method with an arbitrary number of RCI pairs, to
provide an accurate method of correlated ground state wave functions that does not require
a full transformation of the two-electron integrals and thus can be applied to large
molecules.

The Generalized Valence Bond-Perfect Pairing (GVB-PP or GVB) wave function!
for a single GVB pairs is given by

Wovb = |0xPi[cg0ePg +Cu®uBu ]) = cg|KkeE)+ cy|Kkul) (A2.1.1)
with the constraint that

cgZ +cy2=1,
and where the brackets indicate an antisymmetrized wave function. As in earlier sections,
orbital label k refers to a core orbital, and orbital labels g and u refer to the gerade and
ungerade natural orbitals. The energy for this wave function is given by

E = c,?(kkgg|H|kkgg) + c,, (KkuH|kkut ) + 2c4c, (kkgg[HlKku). (A2.1.2)
The cg and ¢y coefficients are the GVB CI coefficients, which are determined by solving a
2x2 CI. Section 1.6 presents the GVB wave function in greater detail.

The advantage of a GVB wave function over HF wave functions is that GVB
introduces electron correlation that is not present in HF wave functions. This way GVB

includes electron correlations yields wave functions that can accurately reproduce



143

dissociation energies, vibrational frequencies, bond lengths, bond angles, and many other
physical properties of molecules without being significantly more expensive than HF wave
functions. Unlike more complete correlated methods such as CI or MC-SCF, GVB does
not require a full transformation of the two-electron integrals (see Sections 1.8 and 1.9 for
more details), and thus GVB wave functions can be applied to much larger wave functions
than can CI or MC-SCF wave functions.

Can the approach GVB-PP uses for electron correlation be extended and improved
upon to yield an even more accurate MC-SCF? Can more electron correlation be included
while still not requiring an integral transformation? This appendix presents such a method.
The next level of correlated valence bond wave function is the GVB-Restricted
Configuration Interaction (GVB-RCI or RCI) wave function,3 that includes Igu> terms
representing single occupation of each of the g and u natural orbitals in addition to the Igg>
and luu> terms:

Wrer = og|kkgg) + ¢, |kkull) + ¢ | k[ gul) (A2.1.3)
with the constraint that

cg? +cy? +c2 =1,
and where the brackets around the [gu] term represents the particular spin pairing that will
be addressed later. For a single correlated pair, as written above, the ¢g and ¢y coefficients
are chosen such that ¢; is zero with no loss of accuracy; the wave function is identical to the
GVB wave function. For greater numbers of pairs the c; terms are no longer negligible.

This appendix will outline the energy expression and orbital optimization equations
required for a self consistent GVB-RCI wave function without a full integral
transformation. Indeed, with appropriate restrictions, the GVB-RCI wave function 1s only

minimally more computationally expensive than the GVB-PP wave function.
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A2.2 The GVB-RCI Wave Function
We first consider which terms should be included in a self consistent RCI wave
function. A wave function containing two GVB-RCI pairs has the form
Frar =’ kz(cg1g12 +cypup® + Cr1[g1u1])<cg2822 +cyupt + Crz[gzuz])>
(A2.2.1)
where the brackets around the [gu] terms again indicate that we will wait until later to
consider the exact spin pairing of these terms. Expanding this expression yields
Cg10g2k2g12g22 \
Wrep = regieuk e’ | (o Gup
+Cung21<21112g22
+egicuzk?uPuy?

+ crlcrzkz[glul][gzuz]}RCI —-RCI

+Cg1Cr2k2g12[g2u2]

2
+egicrak u?[gous ] (A2.22)
\RCI-GVB

+Crlcg2k2[glul]g22

+Crlcu2k2[g1ul]u22>)
The terms in the wave function marked GVB-GVB are the terms from the GVB-PP wave
function and must be retained. The most important terms from those that remain are the
ones marked RCI-RCI, which represent the effect of one of the [gu] terms on the other [gu]
term. Ignoring the terms marked RCI-GVB is consistent with the fact that, as was
explained for a one-pair case, the GVB-CI coefficients are chosen so that there is no
interaction between the Igu> term of one pair and any of the other lgg> or luu> terms. There
can, of course, still be interaction between the Igu> terms of different pairs, and,
consequently, the terms marked RCI-RCI are retained. Thus, the simplest wave function
we can derive that includes the effect of the [gu] terms includes only the terms marked

GVB-GVB and RCI-RCI. This wave function is of the form
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_ 2.2, 2 2.2 2
Yra _‘Cglchk 817827 +cgicuzk g 2

+culcg2k2u12g22 + culcuzkzulzuz2 (A2.2.3)

+Crlcr2k2[g1u1][g2u2 ]>

A2.3 RCI Spin Coupling

This section considers the exact spin couplings represented by the [gu] notation in
earlier sections. Four open shell orbitals can be combined into a singlet in two different
ways: two singlet pairs of orbitals paired as a singlet overall, and two pairs of triplet
orbitals, paired as a singlet overall.

The singlet—singlet spin coupling has the form

Wy = (| kkasrb) +| Kkafsb) + | Kkrabs) + | kksabi ). (A2.3.1)
and the triplet-triplet spin coupling has the form

1 2[ kErEsB) + 2| kEafb§> ~ l kﬁa§rg)

P, = (A2.3.2)

VI2{ +|kafsh) +| kkrabs ) — |kksabF)
Combining these two spin couplings with the GVB-PP spin-coupling yields the

RCI wave function of the form
Wrer = Cg¥pp + Co'Yoo + C1'¥11

with Wpp the two-pair GVB-PP wave function from Eqn. (1). Expanding YRy gives
. cacbl kEaEbB} + cacs| kEaEsE)
=C
RCT = &g +Cer| kEerB> + crcsl kErFs§>
Co |k§a§r€> + | kEanB)
2 | +|kkrabs) +| kksabr)
2| Kkrasb ) + 2| Kkaibs) (A2.3.4)
+% —‘ kEa§rE>+lkEanE>
+kkrabs ) - | kksabr)
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A2.4 Determinants in the GVB-RCI Wave Function
For the GVB-RCI wave function optimization and energy calculation, we must

calculate coupling between the following determinants:

|d1) = | kkaabb)
|d2)=|kEa§s§>
|d3) = | kkrTbb)
|d4) = | Kkrfss)
|d5) = | kkastb) (A2.4.1)
|d6) = |kkaFsb)
|d7) = | Kkrabs)
|d8) = | kksabr)
|d9) = |Kkrasb)

|d10) = | Kkatbs)
given core orbital k, g-type natural orbitals a and b, and u-type natural orbitals r and s.
Using these determinants, we may rewrite the WRcI
Yrer = Cglcacpldl) +cacg|d2) +cepld3) +cpcg|d4)]
ﬁ[}d5>+|d6) +|d7)+|d8)] (A2.4.2)

+ G
r

or, grouping terms of the same determinant together,
Wrer =1d1)(Cyeacp ) +]d2)(Coeacs ) +1d3)(Corep ) +]d4)(Cyeres)
Co_ G ) ( C ) (Co G )
+dS)| —=— +|d6)| —+—=|+|d +—== A243
as) - 2L +106 (L fL) a2e3)

+|d8>(%-—f[=)+|d9>( I)Hle)(%)

—L[2]d9) +2|d10) —|d5)+|d6)+|d7) ~|d8)]
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A2.5 Matrix Elements Between Determinants

in the GVB-RCI Wave Function

The matrix elements between these determinants are given below. They are
evaluated by transforming to spin orbitals, evaluating the determinant there using the
technique discussed in Appendix I, and transforming the result back to spatial orbitals. This
technique yields for the matrix elements:

Hy; = (d1jH|d1)

= 2hgk + 2hga + Zhpp + Jkk + Jaa + Job

+ 4Jka — 2Kga + 2Jxp — 2Kyp + 43ap — 2Kap

Hi2 = Kpg
Hi3 = Kar
Hi4=0

Hjys = (aslbr)
H1g = (arlbs)
Hji7 = (arlbs)
Hjig = (aslbr)

Hjpg = (arlbs) — (aslbr)
Hj, 10 = (arlbs) — (aslbr)
H22 = 2hkk + Zhaa + 2hSS + Jkk + Jaa + JSS

+ 4Jyq — 2Kga + 4l — 2Kks + 4Ja5 ~ 2Kys

Hp3 =0
Ho4 = Kyr
H»ys5 = ~(ablrs)

Hyg = (arlbs) — (ablrs)
H»y7 = (arlbs) — (ablrs)
Hpg = ~(ablrs)

Hjyg = (arlbs)
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Hj 10 = (arlbs)

H33 = 2hgk + 2hr + 2hpp + Jkk + Jor + Jbb
+ 4Jxr — 2Kyr + 4Jkp — 2Kkp + 4Jbr — 2Kpr

H34 = Kops

Hj35 = —(ablrs)

H3g = (arlbs) — (ablrs)

Hj37 = (arlbs) — (ablrs)

Hj3g = —(ablrs) |

H3g = (arlbs)

Hj3 10= (arlbs)

Hyq = 2hgx + 2h + 2hgg + Jxx + Jop + Jgs
+ 4l — 2Ky + 4 — 2Kk + 4dps — 2K

Hys = (aslbr)

Hye = (arlbs)

Hy7 = (arlbs)

Hyg = (aslbr)

Hyg = (arlbs) — (aslbr)

Hy, 10 = (arlbs) — (aslbr)

Hss = 2hygg + hgg + hpp + hyr + hgg + hik + Jik
+ 2Jxa = Kia + 2Jkp — Kk + 2Tk — Kir + 2 Jgs — Kks
+ Jab + Jar — Kar + Jag + Jor + Jbs — Kps + Jis

Hse = Ky

Hs7 = Kap

Hsg =0

Hs9 = —Kas

Hs,10 = —Kor

H66=2hkk+haa+hbb+hfr+h55+hkk+Jkk
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+ 2Jxa — Kka + 2Jxp — Kkb + 2Jkr — Kir + 2 Jgs — Kks
+ Jap + Jar + Jas — Kas + Jor — Kor + Jbs + Jis

Hg7 =0

Heg = Kab

Heo = Kar

He,10 = Kbs

H77 = 2hgk + haa + hpp + hyr + hgg + hik + Jkk
+ 2Jka — Kka + 2Jxb — Kkp + 2Jkr — Kk + 2 Jks — Kks

+Jab + Jar + Jas — Kas + Jbr — Kor + Jos + Jrs

H7,10 = Kar

Hgg = 2hyk + hga + hpp + her + hgg + hye + Jkk
+ 2Jka — Kka + 2Jxb — Kb + 2Jkr — Kkr + 2 Jks — Kks
+ Jab + Jar — Kar + Jas + Jor + Jbs — Kbs + Jrs

Hgg = —Kpr

Hg,10 = —Kas

Hogg = 2hgk + hga + hpp + hyr + hgs + hgk + Jkk
+ 2Jka — Kia + 2Jxb — Kb + 2Jkr — Kir + 2 Jks — Kkg
+ Jab — Kab + Jar + Jas + Jor + Jps + Jrs — Kis

Hg 10=0

H10,10 = 2hkk + haa + hpp + e + hgg + hgk + Jkk
+ 2Jka — Kka + 2Jxb — Kk + 2Jkr — Kir + 2 Jks — Kks

+Jab—Kab+JaI+Jas+Jbr+Jbs+JrS—KrS
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A2.6 The GVB-RCI Energy Expression
Using the matrix elements defined in the previous section, the energy of the two-

pair closed-shell RCI wave function may be defined as
Ercr = ngcazcszll + 2Cg20a2CbCSHl2

2 2 2
+2Cg CaCh CrH13+2Cg caCbCrCSH14

G G
+CgCaCb(CO _\/_)HIS +CgCaCb(CO + —\/§)H16

C C
+CgCaCb(CO + T;)Hl7 + CgCaCb(CO - —_\7’_;;_)1‘118
2 2
\/,- CICgCaCleg +—= -\/i CICgCaCle 10

+C g2, 20 Hyy +2C,2c,0pe,cHp +2C 2cac 0 Hpy

C C
+C gcacs(co - 7%—)1{25 + cgcacs(co + T;)H%

G C
+C CaCS(CO + \/g)H27 +C CaCS(CO \/%)Hzg

GC CaCsHZ,IO

(A2.6.1)

2 2
+EC1CgCaCSH29 + E

+C Ch cr2H33+2C cpe 2egHay

C C
+CgCer(CO - T;)H35 + CgCer (CO + 7-%—)[‘136

G G
+Ccc Cp+ H +Ccc Ch——=H
rb( 0 \/—i) 37 b( 0 \/3-) 38

2
+ ?/—-3— ClcherH?,g + —\/.—?—’ ClcgchbH3,10

+ngcrzcszH44

C C
+CgcrcS(C0 - T%)H“ +CgcrcS(C0 + r/_—;—)H%
G C
+CgCrC (CO + IJH47 +C c.C (CO ———J_;,—)H48

2
‘\/§ ClchrC Hyg + \/-Clc CCq H4 10



2 2
+%(C02 - 2C\/O.i-cl + %‘)HSS + —%(Coz - CTIJH56
{2 CF 1 2CoCy | Ci
+§ CO —T H§7+-2- COZ— -\fi +—'3_- H58
CoC; Ci? CoC; Ci?
e L T
2
+%(C02 + 2(i;)§cl +——C§ ]H66 +%(C02 +—2f;)§cl Cl JH67
C;2 CoC; C
+-;:-(C 2——;— H68+( \(}il + ; ]H69
CoC;  Ci2 2CaC;  Ci2
+[ 351 + H610+Z(C02+ \% 1 +TIJH77

Inserting definitions for the matrix elements and simplifying gives
Ercr = hix(2Cg2 +2C02 +2C12) + hg (2C%c,% +2Co? +2C4%)

+hpn(2C,2ep? +2Co2 +2C12) + hyr(2C %, +2Co? +2C1%)
+hyg(2C4 e +2Co% +2C1% )+ Tige(Cg? + Co® + Cy?)
+13a(C%ea2 )+ Ton(CoZen? ) + Trr(Cyer? ) + To(Coes?)
+(2Jga — Kia )(2Cg%¢,2 +Co? +C2)

)

+ Zka - Kkb (2Cg20b2 + C02 + C12)

(A2.6.2)

(
+(2Jkr — Kir )(2C4%¢,% +Co? +Cy?)
+ X

201 ~ Kis)(2C %2 +Co? + C12)
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+1ap(4Cg ¢, 0,2 +Co2 +Cy2)
+K g (—2Cg2ca2cp? + Co? - C2)
+Jm(C02 + C12)

+K g (CgZeacy — $Co2 +$C12 +4/3CoCy )
+1a5(4Cg 20, % +Co? +C2)

+K s (-2C 42, 2¢,2 =1 Co2 +.C12 = 4/3Co G, )
Jor (4Cg20bzcr2 + C02 + C12)

+Kpr (-2Cg%cp 2,2 =1 Co? +4C1% —+/3CoC )
+Jps(Co? +C1?)

+Kpg (Cgenes —$Co? + 1C2 +4/3C,Cy)
Trs(4Cg2e 202 +Co2 + C12)

+K (242, 2e 2 + Co? - C2)
+(ab|rs)<—4C0C g€aCs 4C0Cgcrcb)
2CCgeacp +2CCyeycs
+2C,Coeper +2CCqcrcq
+24/3C1Cqcycp + 24/3C1CyCyCs
+2x/3—C1Cgcbcr + 2\/§C1CgcrcS
2CCyeqcp +2CCycrCs
—2\/§C1Cgcacb - 2x/§Cngcrcs

+(ar|bs)

+(asbr)

A2.7 Energy Coefficients and the Yaffe-Goddard Form
We may simplify the energy expression in the preceding section by grouping

together the coefficients of like matrix elements:
orbs orbs

Ercr = O, 2f5hi+ . Cya(iifkl). (A2.7.1)
i.j Lkl
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The Yaffe-Goddard equations take an energy expression of the form (A2.7.1) and generate
the Ajj and Bjj matrices used to update the orbitals in (1.7.7)-(1.7.11). The fjj coefficients
are all zero, except:
fi =fy = Cg® +Co? +Cy2
fa =faa = Cglc,? +1Co2 +3C2
fy = fyp = Cyoep? +2Co% +1Cy2 (A2.7.2)
fr=fy=Cylc,2+1Co? +3Cy2
f =fg =Cy2ci? +2Co? +3C?
Similarly, the Cjjk coefficients are all zero, except:
agk = Crkk = CgZ +Co? +Cp2
P = Caaaa = ngcaz
ap = Cppbb = Cg2cp> (A2.7.3)
2y = Cor = Cg%c,?
ags = Cyges = Cg2Cs”
aka = Cian = Caaie = 2C,%¢,2 +Co? +Cy
bxa = Ckaka = Cakka = Ckaak = Cakak = —%Cg2€a2 —%Coz -%Clz
akp = Cibb = Cobkk = 2Cg%cp? +Co? +Cy?

_ _ _ _ 1,22 1~2_1(2
bib = Civkb = Cokkb = Crbbk = Cokok = —3Cg " —3C0” ~ 3G

2k = Chgarr = Crrie = 2Cg%¢, 2 +Co? +Cy2
_ _ _ _ __1r2.2 2 2
bir = Ciakr = Crikr = Ciark = Crirk = —5C¢ ¢ =760 —7C1
_ _ — 9 2.2 2. 0.2
ags = Crigs = Coalke = 2C7¢s" +Co° + G
_ _ _ _ __1r~2.2 2 2
brs = Cieks = Cskks = Ckssk = Coksk = —5Cg7¢s" —3C0” ~3C
_ - 2.2, 2. 1~2.,1~2
aah = Caabb = Cobaa = 2Cg ¢y +5Co" +5C
_ _ _ _ 1 2.2.2,1+~2_12
bab = Cabab = Chaab = Cavba = Chaba = ~5Cg Ca“cp” +3C0° = 3G
_ _ _ 102,12
ar = Caarr = Crraa = 5C0" +7G
_ _ _ _ 10 2.2.2_1-2,1~2_43
bar = Carar = Craar = Carra = Crara = 7Cg Ca ¢ —5Co” +3C17 +7-CoCy

— — — 2.2.2,1~2,10.2
aa5 = Caass = Cssaa = 2Cg7cy%c" +5Cp" + 7G4

— - - — 10~ 2.2.2_1~2_,1~2 3
bas = Casas = Csans = Cassa = Ciasa = —3Cg ca"cs” —5Co” +3C17 =5 CoC
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- — _ 2. 2.2 1 2, 1~2
apr = Cpbrr = Crph = 2Cg"cp7c” +5Co" +5C
_ - _ _ 1~ 2.2.2 1~2,.1~2_13
bbr = Corbr = Crbbr = Corrd = Crord = —3Cgcpcr” —gCo” +5C17 =5 CoCy
— — _1 2,.1~2
aps = Cpbss = Csspb = 5C0" +7C1
_ _ _ _ 1~ 2.2.2_1~2.1~2_43
bbs = Chsbs = Csbbs = Chssp = Cshsh = 7Cgp¢s” —5Co0” +5C1° +5CoCy
- _ — 2.2.2 ;1 2,102
ars = Crrss = Cyorr = 2Cg7cr7cq +75Co +5C
— — — — __1 2.2.2 .1 2_1p02
brs = Crors = Csirs = Crssr = Corsr = —jcg CrCs +ZCO -7C1
Cabrs = Cabsr = Chars = Coasr
— — — —_ 1 1
= Creab = Crsba = Cyrab = Carba = =73 C¢CaCsCo —5CgcpcCo
Carbs = Carsb = Crabs = Crasp
= Cpsar = Chsra = Csbar = Csbra

IC.

— 1 1 1
=g c,cpCo + ZCgCaCsCO + ZCngCrCO + ZCgCrCSCO

g
\3 V3 \3 \3

+TCgCaCbCl + TCgcacscl + TCngCrCI + TCgCrCSCI

Casbr = Casrp = Csabr = Carb

= Cpras = Corsa = Crbas = Crbsa

=1
=3Cq

cacpCo + %Cgcrcsco - {icgcacbcl - @Cgcrcscl
The f; (one subscript), ajj, and bjj terms are included here because later they will make the
orbital optimization equations considerably easier to interpret. Using these terms, we may
rewrite the RCI energy as:
ERrcr = 2fikhgk + 2fahgaa + 2fphpp + 2fthyr + 2f5hgg (A2.7.4)

+ agkJkk + aaataa + apbIbb + ardir + assIss

+ 2axaJka + 4bkaKka+ 2akpJkb + 4bkbKkb

+ 2agJxr + 4bgrKir + 2aksJks + 4bksKis

+ 2aabJap + 4bapKab + 2aardar + 4barKar

+ 2a34Jas + 4bagKas + 2apdvr + 4borKor

+ zabSJbs + 4bbSKbS + 2arSJrS + 4brsKrs

+ 8Cabrs(ablrs) + 8Carhs(arlbs) + 8Casbr(asibr)
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Note that the two electron operators do not have the usual 2J-K form here. This is because
the coefficients have been adjusted to make the overall energy equation compatible with

(A2.7.1), which is necessary for the orbital optimization equations, below.

A2.8 GVB-RCI Orbital Optimization

Because we can write the energy expression in the form of (A2.7.1), we may use
the Yaffe-Goddard Equations# to update the RCI orbitals. The Yaffe-Goddard Equations
are a general procedure for computing the orbital optimization equations given an energy

expression. Given a set of trial orbitals {¢g}, the optimal set of orbitals {¢} are obtained

via the transformation
[¢] = exp(A)-[eo] (A2.8.1)
where [¢] is the matrix whose columns are the orbitals ¢;. A is the anti-symmetric matrix

with zero diagonal defined by

A
o =
_ Bjj
A=l 4 (A2.8.2)
A

where Aij contains terms of first-order in orbital mixing, and Bij contains terms of second-
order in orbital mixing.
The following modified Fock operators are useful in simplifying the orbital
optimization equations
FK = foh + apJK + agaJ? + 2bgaK2 + acpJP + 2byp Kb (A2.8.3)
+ ageJT + 2b KT + agJs + 2byKS
Fa = f h + ag,JK + 2biaKK + a3,J2 + agptb + 2b,pKP
+ ageJT + 2ba KT + a5 ]S + 2byKS
Fb = fyh + agpJk + 2bp KK + a5pJ2 + 2b,pK2 + appJP
+ apJT + 2bp KT + apgJs + 2bpgKS

Fr = f,h + agJK + 2by KK + 2,02 + 2by K2 + ap,Jb + 2bp KD
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+ar )t + aggJS + 2bgKS
FS = fsh + aksJk + Zbksz + aasJa + 2baSKa + absjb'*' 2bbst
+ apJT + 2bp KT + agJs

The following definitions are also useful:
Yij = (2aii + 221_” - 4aij _4bij )KlJ - 4blle]

Eabrs = 2Cabrs(ab|rs) + 2Carbs(ar|bs) + 2Casbr(aslbr) '

With these definitions, we now define the orbital optimization equations.

A. Active-Core Mixing
_ Fllia - F%a - 2Cabrs(rs' bk) - 2Carbs(bs|rk) - 2Casbr(br|5k)

Aak ' Fllék - Fga - Fik + Fga ~Yak t Eabrs (2840

Apy = Fﬁb - FEb -k2cabr£(rslali)) ~ 2Cbarbs (as[rk) —2Cashr (arlsk) (A2.8.4b)
Fyx —Fop = Fik + Fob = Vbk * Eabrs

Ag = Fllir = Fle = 2kcabrs E(as|bk) — 2Cps (bsak) = 2Cagpr (ablsk) (A2.8.4¢)
Fik —Fnr — Flrck + Fir —Yrk + Eabrs

Ay = Fllgs —Fl = 2Cabrs(br|ak) —2Cqrbs (ar[bk) —2Casbr (ab|rk) (A2.8.4d)

k k S S
Fik — Fss = Frk + Fgs — Ysk + Eabrs

B. Active-Active Mixing
b b b b
ng - Fab - 2Cabrs(Jirls - Jrs) - 2Carbs(Kils - Krs) - 2Casbr(K?s - Krs)

Bba = F&, —FD —F& + P2 — Yap + 8Caprs (ab]rs) + 4(Cagps + Caspr )| (ar[bs) + (as]br)]
(A2.8.5)
P -Fi- 2Cors(Ks = Khs) = 2Carps (T = T )~ 2Castr (K ~ Kb
TR _FL —F2 4+ FL — Yy +8Carps (ar]bs) + 4(Caprs + Cagor )| (blrs) + (aslbr)]
(A2.8.5b)
 Fa-Fi- 2C s K = Kbr ) = 2Carbs(Khr Kb ) - 2C e (Ve = Vi
TR B8, —FA + F —Vag + 8Cachr(as]br) + 4(Cypr + Carps)[ (ablrs) + (arbs)]
(A2.8.5¢)
ay FBr — e — 2Cprs (K3 — Kb ) = 2Canbs( KBy = K )~ 2Cashr (1 ~ Ti)

ng ~ Fip = FPT +Fir = Yor +8Cagbr (as|br) +4(Caprs + Carbs )[(ablrs) + (ar|bs)]
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(A2.8.5d)
ng - F%s - 2Cabrs(Kgr - K;r) - 2Carbs(Kgr - Kglr) - 2Casbr (Jgr - J?lr)

ng ~ Fip = FES +Fgg =~ Yps + 8Carbs(arlbs) +4(Caprs + Caspr )[(ab|rs) + (as]br)]

Asb

(A2.8.5¢)
A = Frs = Frs = 2Cabrs(J ab ~ ng) - 2Carbs(Kzr1b - K?lb) - 2Casbr(K;r1b - KZb)
rs FL —FS —FL + F& — Ve + 8Cabrs (@brs) + 4(Cagps + Caspr )[(ar|bs) + (as]br)]

(A2.8.5f)
C. Occupied- Virtual Mixing
k
Fkv
Avk = % " (A2.8.6a)
- Fyk = Fyv = Yxv
_Fa+ 2C3prs (15|bV) + 2Cars (bs]v) + 2C qr (br]sv)
Ay, = S - (A2.8.6b)
Faa — Fyy = Yav + Eabrs
b
_ Fipy + 2Cabrs(rs|av) + 2Carbs(arlsv) +2Ca5br (aslrv) A28
vb = b b ( . 6C)
Fob = Fyv = Ybv + Eabrs
_ FJ, +2C s (ablsv) +2C s (bslav) + 2C e (as|bv) (A2.8.60)

vr T r
Frv - 1:vv “Yvt Eabrs

_Fy+ 2Cabrs(abs|rv) +S2Carbs(a"|bv) + 2Cagpr (brlav) (A2.8.6¢)
Fss - Fvv —Ysvt Eabrs

Vs

A2.9 Operators Required For GVB-RCI

The Hartree-Fock wave function

Wy = | kkaabb) (A2.9.1)
requires the computation of the one-electron operator h, and the two-electron operators J2,

Ka, Jb, and Kb—a total of 5n2 elements. When the two orbitals ¢, and ¢p are correlated

using two GVB pairs, the resulting GVB wave function
Cglcg2| kka?fbb) + cglcu2| kka§s§>
\PGVB = o _ (A292)
+Cy1¢g2|KKITOD ) + ¢ 10| KkrisS )

requires computation of the above operators, plus the two-electron operators J%, KT, J$, and

KS—for a total of 9n2 elements. From the preceding section, it is clear that when the GVB
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pairs are replaced by RCI pairs, the resulting wave function requires, in addition to the
operators required by the GVB wave function, the two-¢electron elements (ablrx), (ablsx),
(arlbx), (arlsx), (aslbx), (aslrx), (brlax), (brlsx), (bslax), (bslrx), (rslax), and (rslbx), where
x ranges over all occupied and virtual orbitals. This is a mere 12n elements, negligible in
terms of memory and computation time compared to the 9n? elements already required by

the GVB wave function.

A2.10 Conclusions

GVB-RCI wave functions are the next logical step beyond GVB-PP wave functions
in terms of the amount of electron correlation included in the wave function. For the two-
pair, closed-shell case, the GVB-RCI wave function the form (A2.3.4). The GVB (I
coefficients are chosen so that interaction between the Igu> terms in a pair is negligible with
all other lgg> or luu> terms. Hence, the only terms in the GVB-RCI energy expression that
differ from the GVB-PP energy expression are the interaction between the two lgu> terms
of different pairs. The resulting energy expression has the form of (A2.6.2). By proper
assignment of coefficients (A2.6.2) can be put in the form of (A2.7.1), where the Yaffe-
Goddard equations may be used to obtain the orbital optimization equations (A2.8.4)-
(A2.8.6). Inspection of the energy expression (A2.6.2) and the orbital optimization
equations (A2.8.4)-(A2.8.6) show that GVB-RCI requires only an additional 9n two-
electron integrals beyond the 12n2 integrals required by the two-pair GVB-PP wave
function (A2.1.1). Thus the additional expense required by the GVB-RCI wave function is

negligible.
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