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ABSTRACT

"Ab initio" calculations have been carried out on the states of
BH(X'Z", a’m, AT, and *=%) which dissociate to the ground states of B
and H. The application of the G1 method (which is a special case of the
GI method) was extended to handle five- and six-electron systems, and
this method along with SOGI, CI and the GVB method was used to inves-
tigate the BH states. The effect of restricting the orbitals of the wave-
function to be basis functions for the irreducible representations of the
spatial symmetry group leads to noncontinuous changes in the orbitals
as a function of internuclear distance. And further it is noted that the
removal of this restriction on the atomic wavefunction of boron leads to
simple predictions of the forms of the wavefunctions, geometries of the
molecules and characteristics of the potential curves for the BHN
molecules. On the basis of this the potential curves for the a’Il and
A'Tl states are correctly predicted to have humps and the 2A1 and 2Bl
states of BH, are predicted to be bent and linear, respectively. Molec-
ular properties for many of these wavefunctions have been calculated
and correlated with changes in the orbitals as a function of internuclear
distance.

Gas phase reactions and properties of fluoromethyl cations have
been investigated using the techniques of ion cyclotron resonance spec-
troscopy (icr). Fluoride transfer reactions between substituted methyl
cations are observed to be rapid and permit the determination of relative

fluoride ion affinities, defined as the negative of the enthalpy change for
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the reaction CHNF?;_N +F — CHy\F4_n- By combining available ther-
mochemical data and our experimental results the following order for
the fluoride affinities of the methyl cations is constructed: CF; (256.3
keal/mole) > CHY (252.0 kcal/mole) > CH,F' (243.6 kcal/mole) >
CF2H+ (242.8 kcal/mole). A measurement of the equilibrium constant
for the reaction (CF,H™ + CH,F, = CH,F' + CF,H) between the latter two
ions has permitted their relative fluoride ion affinities to be accurately
determined. Fluoride ion affinities are a means of determining car-
bonium ion stabilities.

With the general goal of understanding reactions involving
electrophillic addition to 7-systems the reactions of the fluoromethyl
cations with ethylene, ethylene-d, and benzene-d, were investigated.

The important process in each case involves addition of the fluoromethyl
cation to the substrate to form a chemically activated intermediate
which decomposes with loss of HF or H,. Rate constants for the
reactions of the fluoromethyl cations with ethylene were determined
using icr trapped ion techniques. In conjunction with ion ejection double
resonance, product distributions for the reactions involving ethylene-d,
and benzene-d; have been determined. Only in the case of the reactions
of fluoromethyl cations with benzene-d, is the possibility of a distinctive

reaction mechanism revealed from the isotopic product distributions.
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I. ORBITAL INTERPRETATION AND PROPERTIES OF THE
x'z*, a’, A'l AND °s* STATES OF BH



A. Introduction

The very pleasing results derived from the application of MO
(the Hartree-Fock method) theory to predicting the structure and geom-
etry of molecules (Walsh's rules), 1 to similarly producing an Aufbau
principle2 and to predicting the products of organic reactions (Woodward-
Hoffman rules)3 suggests the application of an improved method to the
further investigation of these rules. As a portion of an overall study
relating to these problems the GI4 (and SOGI)5 methods have been
applied in a detailed study of the ground (X12+) and excited (aSH, ATl and
32+) states of BH. Both correct dissociation of the wavefunction and
single occupancy of the orbitals are two of the advantages which the GI
method has which are lacking in the Hartree-Fock method. 6 Conse-
quently the method has been employed to obtain an orbital description of
the molecular building process in the BH system which gives new insights
into the factors which influence the structure and geometry of related
molecules. Molecular properties for these wavefunctions have been
calculated and analyzed in terms of changes in the individual orbital
properties.

Section B is a summary and discussion of all work accomplished
on the project. Comments will be about programs written and ideas and
methods developed in the course of the project. Discussion of the
implications of the orbital description for the BHN series are discussed
in section C. The details and discussions on actual calculations of the

ground and excited BH states are contained in section D, and Appendix 1



and 2 discuss previous work done on the symmetry restricted and non-

symmetry restricted calculations on the ground (X's") state of BH.

B. Summary

Several relevant implications about the symmetry restrictions
which must be placed on the basis set in a G1 (nonorthogonal GVB)
approach7 to independent particle wavefunctions were brought out by the
calculations on the ground state of the BH system. Also the calculations
on two of the excited states of the BH system show a hump (maximum)
in their potential curves which were predicted in advance of the calcula-
tion. Also developed is a method of partitioning the properties of the
wavefunction in terms of contributions from the individual orbitals.

Considerable programming was required to complete these projects.

Programming. The initial requirement for calculations on the
BH system was the construction of the first five- and six-electron G1
program. The program required development of a rapid density matrix§
forming method and a series of auxiliary programs to form the
Hamiltonians and variationally solve for the optimum orbitals. Also
investigated in some detail were extrapolation methods to improve con-
vergence and another method of solving the variational equations. Also
a nonorthogonal G1 configurational generating program was written to
calculate the projected G1 calculation discussed in Appendix 2. Also
the program to calculate the GI properties and projected GI properties
was written incorporating into it previously written integral properties
programs. ) Various other small subsidiary programs were developed

as needed.



Symmetry Restrictions. A critical result obtained from these
calculations involved the symmetry restrictions placed upon the basis
set expansion used to describe the molecular wavefunction. For non-
degenerate, totally symmetric many-electron wavefunctions, the orbitals
of the Hartree- Fock wavefunction must belong to irreducible representa-
tions of the total spatial symmetry group. 10 This restriction, although
valid for the HF wavefunction, produces extremely erratic results (see
Appendix 2) in the orbital description of the GI wavefunction. Removal
of the restriction that each orbital be a symmetry function allows the
orbital to incorporate basis functions of whatever symmetry will mini-
mize the energy of the system. Expanding the basis set for a boron
atom calculation to include basis functions of a symmetry which could
not normally be incorporated into a HF wavefunction allowed the GI wave-
function for the atom to incorporate angular correlation-like terms into
the wavefunction. It is important to note that the angular correlation-
like terms were introduced into the wavefunction variationally. The G1

boron atom symmetry restricted wavefunction,
szl = d[(lsls' +1s'15)(282s” + .Zs'Zs)2pZ aBaBa ] ,

adjusted variationally to mix Py character into the 2s orbitals so that the

wavefunction can then be written as
Y1 = Al(1s1s’ +1s"1s)((2s + 2p,)(2s -2p,) +(2s - 2p, )(2s +2p,))2p, apapa |

where the admixture of angular correlation provides a rather unique inter-
pretation for the wavefunction. The orbitals derived from this type of

symmetry unrestricted wavefunction transform smoothly as a function of



internuclear distance in the construction of the X'=7 state (see Appendix
2) and provide an orbital interpretation which provides a means of pre-
dicting the geometries and the form of their potential curves (see

section C).

BH Molecular States. The electronic wavefunction for the ground
(x*'s™) and low-lying excited states (2’1, A'll, *°=¥) of BH have been cal-
culated using the SOGI method. 5 The potential curve of the A'Tl state
in the zero rotational level is found to have a hump of 0.150 eV at
R = 3.89 a, (experimentally a hump of unknown size is found at 3.9 +
0.4 a.(,);11 a smaller hump (0. 026 eV) at R = 4.92 a, is also found in the
calculation of a Tl potential curve. The presence of these humps was
predicted on the basis of an orbital recoupling process which must occur
as a function of internuclear distance in order to minimize the energy at
the equilibrium internuclear distance. The calculated binding energies
of the BH states are 3.272 eV (X't ), 2.216 eV (all), a 0.502 eV (A'I).
The 3z7 state is unbound although it does exhibit a small unbound

minimum.

Properties. The dipole moment, molecular quadrupoie moment
and electric field gradient for the different states are calculated as a
function of internuclear distance. The dipole moment of the X'>" state
is especially interesting because the property has a minimum at about
R = 4 2, and changes sign as a function of internuclear distance. The
dipole moment is negative (B™H") for all R > 3 a,; however at shorter
internuclear distances it becomes positive and compares quite favorably

with the experimental value of 1.27 + 0.21 D (calculated value at
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R = 2.5 a3, is 1.25 D). 12 All the properties are discussed in terms of

individual orbital contributions which are defined as
(P,) = (2P,0,,%)/($|0,,®)

where & is the product of the spatial orbitals and P, is the one-electron
spatial operation associated with the property and operating only on
electron index i. The total property (P) is the sum of each of the
individual orbital contributions. In each case the changes in the prop-

erties can be correlationed to changes in orbital contributions.

Implications. The form of the boron atom wavefunction allows
the prediction of the two T states being bonding and repulsive due to the
spin coupling of the unpaired orbital of B to the hydrogen 1s orbital. In
the case of the two II states, the two orbitals S+p, and S~Py of the boron
must recouple with the s orbital so that the S+Py and Hs orbitals are
coupled into a singlet. This recoupling causes a hump (maximum) in

the potential curve. A discussion of this is contained in the following

section.



C. Generalized Valence Bond View of the BHN Series

I. INTRODUCTION

The Aufbau or building-up principle combined with the Mulliken and
Hund prbital correlation diagrams [1] has been very successful in leading
to useful predictions of the symmetries of excited states of molecules and
when combined with the Walsh diagrams [2] has been quite useful in pre-
dicting qualitatively the geometries of polyatomic molecules. These ‘
important concepts were developed in terms of molecular orbitals and
based on the Hartree-Fock (HF) method for wavefunctions. Despite these

successes, there are some difficulties with these interpretations since the



Hartree-Fock method leads to very poor wavefunctions as atoms are pulled
apart (bond dissociation).

An alternative approach, the valence bond (VB) method, provides a
proper description of bond dissociatioh but generally leads to poor quanti-
tative results. We have modified the usual VB method by solving for the
orbitals self-consistently as in the Hartree-Fock method [3, 4]. This
leads to energies better than the Hartree-Fock values and in addition leads
to a proper description of bond dissociation. This method {called the

generalized valence bond (GVB) method [4]} leads to an orbital descrip-

tion closely related to the usual VB description and hence allows convenient
interpretation of the wavefunction.

We find that simple analyses of the GVB wavefunctions of atoms leads
to an Aufbau-~type principle that allows qualitative predictions of the sym-~
metries and geometries of the excited states of molecules. However,
this Aufbau principle does not involve the Mulliken-Hund or Walsh-type
correlation diagrams. This principle, which was developed
from the results of ab initio GVB calculations [5] on BH, will be illustrated

here for the case of BH n molecules.

. WAVEFUNCTION

For a system with two bonds, a valence bond (VB) configuration

has the form
Ql¢,¢,0.94@B - Ba)(aB - pa)]

which we denote as



(here a and b are singlet paired as are c¢ and d). These orbitals can
be bonded more than one way and the valence bond wavefunction may be

taken as

c, + C, : (1)

where the orbitals are generally taken as (hybridized) atomic orbitals.

In the generalized valence bond (GVB) method [3, 4] we use wavefunctions
of the form in (1) but allow every orbital (including nonbonding orbitals) to
be singly occupied (but nonorthogonal) and solve variationally for the opti-
mum such orbitals (analogous to the procedure in HF). In addition, the
coupling coefficients of (1) are optimized. (This procedure is

used for various numbers of electrons and spins and has also been referred

to as the SOGI method [3].) In diagrams of the type in (1),

indicates singlet pairing of the orbitals ¢, and ¢y, and

a
b

indicates triplet pairing of the orbitals.
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A. The B Atom

The usual Hartree-Fock (and valence bond) wavefunction for the

ground state (°P) of B atom has the form
Q1500158950 9By, ,2) )

(where (is the antisymmetrizer or determinant operator). In the
generalized valence bond (GVB) method we allow all orbitals to be different
and replace the (2 by a suitable operator to retain the proper permuta-

tional (Pauli Principle) and spin symmetry, The final wavefunction can be

written in the VB-~type form
Q[(¢ls¢1s' tP1g ¢1s)(¢sx¢s'>i * ¢s§¢sx)¢pzaﬁaﬁa] @)

= 915915 PxPx s (@B - Ba)(ap - paja]

which we will denote as

1s 1g’
SX SX (4)
pz

The orbitals ¢1g and ¢14¢ are referred to as core orbitals
since they are similar to the usual 1s orbital (but radially split). These
core orbitals are essentially unchanged upon bond formation and will be
ignored in the following.

The pz orbital (Fig. lc) is essentially the same as the HF 2pz
orbital, however the (2s) HF pair changes drastically upon going to
GVB. These orbitals, sx and sX, build in p character so as to

attain the form
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Psx = Cifog + Cz4’2px

(5)
$sx = Cidos - C2¢'2px
as shown in Fig. lab[5].
Combining the orbitals of (5) together, as in the many-electron
wavefunction, leads to terms of the form [6]
GVB _
‘I'(l,z) = PsxPsx * PsxPsx

2 2

= C1¢2S(1)¢ZS(2) - C2¢2px(1)¢2px(2) (6)

Consequently, whenboth electrons 1 and 2 are on the same side of the atom (say
in the +x direction) the terms of (6) subtract, whereas they add when the
electrons are on opposite sides of the atom. Thus the probability of
the two electrons being on the same side is smaller than the probability
of their being on opposite sides. This angular correlation [7] reduces
the electron-electron repulsion energy (from that in HF) between these
electrons and leads to a significant decrcase in the energy {0.015h =
0.41 eV using (6) and 0.024h = 0.65 eV using the full symmetry [6]}.
In discussions of the B atomic orbitals it is convenient to
represent them schematically as in Fig. 2a. Here the lobe orbitals
sx and sX are shown pointing away from each other and perpendicular

to the pz orbital.

B. BH Molecule

Starting with the atomic orbitals of B and H we can form a

'S state [8]
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SX SX
(7
pz Hz
3
or a 2 state
SX SX
0z (8)
Hz

Since the pz and Hz orbitals have the same sj/mmetry, the one-elcctron
exchange terms should dominate the interaction energy, leading to a
strongly bonding ‘5t state and a repulsive energy curve for the ‘ot
state [ 9].

In Fig. 3 we show the orbitals for 's* as a function of internuclear
distance, R. Here we see that the Bpz orbital graduaily delocalizes and
hybridizes as the bond forms. As the bond is forming the nonbouding pair
[sx, sX] rotates out of the way of the bond. This serves to reduce the
overlap between the bonding and nonbonding pairs and hence to reduce
the repulsive interactions between these pairs. The final angle between
each lobe and the bond is 125°. These orbitals are indicated schemati-
cally as in Tig. 2b.

Bringing the H in along the x axis leads from the atowmic orbitals

in (3) and (4) to

' SX SX SX SX
Pz and | vz Hx (9)
Hx
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which describe the *IT and I states, respectively. At large R, these
couplings lead to repulsive energy curves since the overlapping orbitals
Hx and sx are not singlet-paired (the repulsive terms are approximately
proportional to the square of the overlap between ¢Hx and ngX [10]

and are quite analogous to the repulsions belween

different pairs of orbitals that are responsible for rotational barriers in

molecules.) However, for small R we can rccouple the orbitals [11] of

(9) as
sx Hx $x  Hx
pz and pz sx (10)
SX

These couplings lead to attractive interactions between gbs » and Hx that
are approximately proportional to the square of their overlap. However,
(10) also leads to repulsive interactions (approximately proportional to the
square of the overlap) between ¢z and Hx (and betwcen ¢z and (j)SX).
Thus (10) can lead to bonding only if sx and sX are sufficiently different so

that S is large while S_— is small. However, as shown in Fig. 1,

sx, Hx sx, Hx

the atomic angular correlation leads to just such splittings in ¢__ and ¢ =

SX sx?

and hence we may expect bonding in the I and T} states of BH. Indecd.
these states are bound as shown in Fig. 4.

For large R the couplings in (10) cannot describe the ground state of the
B atom. Consecquently, the recoupling and concomitant bonding do not occur
until R decreases enough so that the bonding interactions of sx and Hx over-
come the effect of promoting the state of the B atom.

The ocrbitals for the ’[I state are shown as a function of R in

Fig. 5 (and indicated schematically in Fig. 2¢). Here we see
continuous changes in the orbitals with R. Indeed, comparing the orbitals
at R = 2.25 a, (near Re) with those at R = =, we scc that the GVB
orbitals of the molecule are rather close in shape to the GVB

atomic orbitals, which justifics the analysis above [e.g¢., (9) and (10)].
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Examining Fig. 5 closely we see that the singlet coupled pair

(g 5 and ¢qp,) Of the atom changes continuously into the bonding pz;i\r of
the molecule while the nonbonding orbital on the H becomes the non-
bonding orbital of the molecule. Thqse changes are quite comparable

to those that occur in chemical reactions (see ref. 4). Even the phase.
change expected (see refs. 4 and 12) in the nonbonding orbital (¢3a) ocecurs.
The potential humps in the N states are quite analogous in origin to

the activation energies of chemical reactions, and indeed the process

B + H -~ BH corresponds to a highly exothermic addition reaction.

C. BH, and BH, Molecules

Starting with the orbitals of the ground state of BH, Fig. 2b, we
must ask whether BH, should be stable and if so what geometry and
symmetry should it have. Just as for the II states of BH, we can form
a strong bond by pairing the second H with one of the lobe orbitals of
Fig. 2b, leading to Fig. 2d. Thus, we would expect BH, to be a 2A1
state with a bond angle of about 125°. Somé increase in this angle
should occur due to overlapping of orbitals in different bonding pairs,
and indeed the experimental bond angle [13] is 131° (theoretical calcu-
lations [14,15] have led to 129°). A second state of BH, is obtained
by starting with BH (*I) and bonding the second H to the lobe orbital
as indicated in Fig. 2e. This leads to the 2BJl state of BH, which is
indeed linear [13].

Starting with the 2A1 state of BH, we would expect BH; to be
planar with Dy, symmetry (after allowing for slight readjustments bf the
orbitals due to the new bond-bond interactions). At this point there are
no more valence orbitals for bonding furthér H's. (However, we do

have an empty n orbital that can be involved in coordinate bonds.)
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Fig. 5. The valence orbitals of the *[ state of BH as a function of R
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D. Energy Humps

Because of the recoupling involved in proceeding from (9) to
(10), we expected and found an energy hump at large R. This hump
is 0.15 eV for 'IT and 0.03 eV for °I and occurs at 3.9 a, and 4.9 a,,
respectively. The difference in the humps for these states is due to the
difference in the exchange interactions between the nonbonding ¢ and 7
orbitals. By averaging,we obtain an exchangeless hump of about 0,09 eV
at 4.4 a,.

In proceeding from BH('Z) to BH2(2A1) we have a similar recoupling.
Thus for large R (> 4.4 a;) we expect a repulsive energy curve
regardless of orientation. However, for an angle of ~ 125° with
respect to the bond axis and a second BH bond length of ~ 4.4 a,,
there should be a saddle point of about 0.03 to 0.09eV in height. Inside
this distance the energy should drop rapidly to that of BH,. On the other
hand, for BH(%'I) + H — BH,(°B, ), and BH,(*A,) + H — BH,('A,), we
expect no humps along the minimum cn'ergy path.

From the form of the rotational breakoffs for A'll ~~ X ' in BH, it

has long been presumed that the A 'Il state has a hump (at about 3.9 a0);
however, the experiments do not yield the magnitude of the barrier [16].

No experimental results are available concerning humps in BH, and BH,.

III. DISCUSSION AND SUMMARY

From the GVB orbitals of B atom we can obtain qualitative pre-
dictions of the symmetries, geometries, and potential curves of the low-
lying states of BHn. Thus, the trivalent nature of B is already apparent
in the orbitals of the ground state (ZP) of B atom. There is no nced to

congsider the presence of higher spectroscopic states to account for this

trivalent character.
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Similar analyses can be carried out for molecules formed from other
atoms and lead to systematic predictions of the symmetries and geometries
of large classes of polyatomic molecules. Thus valence-bond-type ideas
can be used for predicting the sorts of things usually done with molecular
orbitals in terms of Mulliken-Hund and Walsh-type correlation diagrams..
In addition, the valence-bond ideas can be used for discussing processes
involving bond dissociation. For example, this approach leads to correct

predictions of the occurrences of energy humps.
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D. Orbital Description of the Lower Excited States of the' BH Molecule

I. INTRODUCTION

A major objective in calculating electronic wavefunctions is to
obtain qualitative concepts which allow one to predict the origins of the
‘bonding and properties of various electronic states of molecules. A
particularly useful approach leading to several important concepts has
been the Hartree-Fock method which allows the wavefunction to be understood
,in terms of
molecular orbitals occupied by the various electrons. Unfortunately
the method often leads to erratic and inconsistent results (especially
improper dissociation) for large internuclear separations, resulting in
some difficulties in interpretation and in relating atomic and molecular
properties.

The GI (and SOGI) (2) method is similar to Hartree-Fock in that
the variational principal is applied and the orbitals are solved self-
consistently; however, it places no overt restrictions on the many-
electron wavefunction (especially double occupancy) and allows the wave-
function to dissociate properly. The SOGI wavefunction is similar to a
valence bond wavefunction except that the orbitals are solved for self-
consistently. Consequently, it is well suited for investigating
the characteristics of a system from the separated-atom limit to the
united-atom limit. In the past we have found these orbitals to be
particularly useful in analyzing and interpreting the properties associated

with the wavefunction. Here then we are particularly interested in
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correlating changes in the individual orbitals (which exhibit an independent-
particle formalism) with the changes in various properties of the wave-

function as a function of internuclear distance. For the A1 IT state a simooth

transition of the wavefunction from « to Re required a spatially projected
SOGI wavefunction which was constructed from a CI wavefunction with

specially selected configurations.,

In this paper we consider the four electronic states of the BH
molecule that dissociate to a B atom in the “P state and a hydrogen
atom in the S state. Three states are bound (x IZ}+, a ’lI, and A 1H,
in order of decreasing binding energy) and one is unbound (32+). Calcu-
lations on these states have been carried out for internuclear distances
(R) in the range of 1.85 a, to «.(3 ) In both the I state and the 311
state, the potential curves exhibit a maximum between R, and « which
we find to result from changes in the spin coupling of the wavefunction
(see Sec. IIL C).

As discussed in Section II, we find that the B core orbitals
(1s, 1s’) can be replaced by the HF doubly occupied core orbitals
without seriously affecting the properties. This reduces the complexity
of the calculations to essentially that of a four-electron system. Also
discussed in Section II are some of the other relevant aspects of the
wavefunctions and the calculational details. The wavefunctions and the
potential curves are discussed in Sec. III in conjunction with some
general concepts of bonding that have been abstracted from these calcu-
lations. In Sec. IV we report as a function of R some properties (dipole
moment, quadrupole moment, and electric field gradient) for these wave-

functions.
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II. THE WAVEFUNCTION

A. The Frozen Core Restriction

The six-electron SOGI wavefunction has the form-

GY T [(0, 8, &1, 011, 5001, 2B BB ), (1)

where G‘{'L is a group operator based on the Wigner projection opera-
tors for the symmetric group [and includes only permutation operators

involving spatiél and spin coordinates (2, 4)] and where each o) is
a one-electron spatial function. The orbitals in (1) are solved self-
consistently to yield the best possible energies. However, previous SOGI
calculations on BH (5) and LiH (6 ) have shown that ¢, and ¢é remain
essentially the same as the atomic 1s core orbitals (that is, these orbitals
change only slightly with R). In addition we have found that forcing

b = ¥, )

(i.e., double occupancy) results in only very small changes in the calcu-
lated potential curves and properties. Since the complexity of the calcu-
lations is reduced significantly by assuming (2) and, since this restriction
does not have a significant effect upon the molecular properties of interest

(7), we have assumed (2) and taken ¢ o to be the 1s Hartree-Fock orbital

from the B(*P) wavefunction. Thus the wavefunction is taken as
vL

where the four valence orbitals (qbla, b1y Pons and ¢2b) are solved
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self-consistently. This restriction in the wavefunction will be referred

to as the frozen core restriction. Replacing a valence orbital ¢j

with
¢j - Yo,

(where v is an arbitrary number) leads to no net change in the wavefunc-
tion (3) because of (2), Thus the valence orbitals may all be taken
orthogonal to qbc without making any additional restrictions upon the
many -electron wavefunction (1). This orthogonality will result in the
incorporation into the variational orbitals of nodes that would not appear
in the'ab initid'(six-electron) wavefunction; however, these nodes appear
only in the region of the boron nucleus and do not alter the interpretation
of the wavefunction.

In the variational equations

H k=1,234 (4)

kPk © k%

for the valence orbitals of (3), the Hamiltonian has the form

Hy = GV + 23y - Ky + U (5)

which is exactly the same form as for the four-electron wavefunction

GT[(0, 010909, 28a8] (6)

except for the presence of an additional term of the form 2Jls - Kyg
resulting from the interaction with the core orbitals. Consequently,
the SOGI effective field term Uy of (5) is just the same as would be obtained

from (6),
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The most costly part of the SOGI calculations on BH is the compu-
tation of Uk repeatedly as the orbitals are being iterated to convergence.
But from (5) we see that because of (2) we need only calculate the Uy
for a four-electron system, which is much less time consuming than for
a six-electron system. The 2J1S - K1S term then serves as an effective
potential replacing the core orbitals (8 ). However, we should emphasize
that the 2J1S - Kls appearing in (5) is not an approximation but results
directly from the application of the variational principle to (3). That
the core orbitals have not been allowed to readjust as a function of R is

the only approximation in our procedure.

B. Spin Coupling
There are two linearly independent ways of combining the spins
of four electrons together to get a singlet state. For example, the

two valence bond (VB) wavefunctions

Y = (Z[(¢1a¢1b + ¢1b¢1a)(¢2a¢2b + ¢2b¢2a)aﬁaﬁ]
(7)

Ve = QLS a0op + apd1a) @91y + S1pPan)apes]

correspond to one choice of the two linearly independent wavefunctions.

Furthermore, wavefunction (6) can be expanded as

GV [61,01,09, 89,0881 = ¢t + ¢,¥ (8)

where optimizing the spin coupling in the SOGI wavefunction is equivalent

to optimizing the linear coefficients in (8). Thus the SOGI method
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corresponds to solving self-consistently for the optimum orbitals in
(1) simultaneously with optimizing the coefficients in (8).
For convenience of discussion the orbital couplings in (7) are

represented as

la 1b
(7%
2a  2b
(9)
la 2b
Yy,
: 2a 1b ’
e

where elements in the same row are symmetrically coupled (as for a
singlet). [Note in (9) and below an orbital ¢1, is often denoted as 1a. ]
In discussing the SOGI wavefunction (8), a convenient choice for the

pair of linearly independent wavefunctions is often Y, plus

la | 1b

W , (10)
2a | 2b

where in 1//f orbitals la and 2a are antisymmetrically (triplet) coupled as also
are 1b and 2b. The wavefunctions i, and Y are often referred to as
Gl and GF coupled, respectively. The GF wavefunction can be expressed

as a linear combination of ¥, and iy,

la | 1b la 2b la 1b
= - . (11)
2a | 2b 2a 1b 2a 2b
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For a four-electron triplet state, the three linearly independent

VB wavefunctions can be taken as

Y jla 1b| ¢': {2a 1b]| ¢/: {3a 1b
2a, 3a la (12)

3a‘ 1a . 2a

Again the SOGI method corresponds to optimizing a linear combination
- of these wavefunctions while solving self-consistently for the optimum
orbitals. The special couplings used in describing SOGI wavefunctions

are {Y{", W', ¥ } where

11/1” = ‘Px'

V' = ful+ 43y

Y= R - - 329

In the case of the 'St and °c™ states of BH, we find that the
optimum wavefunction involves only the first type (G1) of
coupling. However, for both the I and 1 states, we find that the

other possible spin couplings become quite important.

C. Projected SOGI Wavefunction

In the case of the BH(AIH) state it is found that two unique
SOGI wavefunctions are necessary to properly describe the wave-

function as a function of internuclear distance.. Consequently a
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selected configuration interaction wavefunction was constructed
which incorporates both forms of the SOGI wavefunction. This wave-

function can be described as
- yL
¥psogr = C1G 1 (#y,91,P0,00, aBab) +
. _
C.G 105, 982001y @B0)

or | (13)

¥sogr = ¢ TL{ (C181 01, *+ C293,031,) 93, By, 2BaB]

where orbitals ¢1 a¢1b and ¢3 a¢3b are the orbitals which correspond to
the different SOGI wavefunctions which are important to the molecular
wavefunction. The ¥YpsoGI wavefunction is constructed by selecting
all configurations which describe the wavefunctions in (7) and (8). (9)
In addition certain single and double excitations are allowed into the
wavefunction to give approximately the same freedom of wavefunction

adjustment as a self-consistent approach would provide.

D. Calculational Details

The SOGI equations (3) were solved self-consistently using a
basis set expansion in terms of nuclear-centered Gaussian-type basis

functions. For each R the molecular integrals (ab initio) were evaluated
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using a general set consisting of 42 basis functions (called the primiti.ves);
these basis functions were then contracted into 16 functions for use in
solving the SOGI equations.

On the boron we used the 1ls set of boron of Huzinaga and
Sakai (10), the 5p set of boron of Huzinaga (11), and a set of polarization

d and c&z) based on a fit to the

functions (three each of dyzs dyz, 29
.optimum Slater basis functions of Cade and Huo (12). The s and p

primitives were contracted on the basis of uncontracted SOGI calcula-
tio,ns. on the boron atom (using the frozen core restriction) ———————’

and using the Dunning principles. The con-

traction coefficients for the d functions were obtained from a previous
set of ab initio (six-electron) calculations on the ‘Z* state (5).

Six primitive Gaussian 1s functions from Huzinaga (11) and a p,
orbital (along the molecular axis) based on Cade and Huo (12) were
centered on the hydrogen nucleus. The s functions were contracted
into three basis functions suitable for describing the hydrogen atom at
R, and R = 0 (13).

The coefficients for the contractions are given in Table I.(14)The

SOGI calculations were carried out using the Ladner quadratically
convergent SOGI program and the Blint Gl program. The

projected SOGI calculation was carried out using the Ladner-

Hay spin eigenfunction CI program. The Hunt version

of the Basch Polyatom Integrals program was used to calculate the
Gaussian molecular integrals (partly contracted). The integrals for the
contracted functions were obtained using the Huestis Ns—integral trans-
formation program. The Gaussian properties integrals were carried
out using the Neumann-Moskowitz NYU program. The contour plots

were made using the Huestis-Guberman-Parr Contour Plotting program.
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0

Table I. Contraction coefficients for BH calculations where each X
is orthogonalized to the core orbital.
@ TYPe Gomiietion  Ovhital  Goeffiotents

10324.650 S(B) 0.0014191  0.17617112 - - - - - -
1587.2834 S 0.0106715  0.17617112 - - - - - -
358.64641 S 0.0567633  0.17617112 - - - - ----
99.421167 S 0.2366461  0.176171i2 - - - - - - -
31.5161170 S 0.7696531  0.17617112 - - - - ----
10.9185210 S 1.0 0.32132155 -0.0032(x,) =~ - - -
4.0434363 S 1.0 0.43507210 -0.0146(x,) =~ - - -
1.6000069 S 1.0 0.20250098 -0.0388(x,) =~ - - -
0.4230671 S 1.0 0.00964005 1.0(x,) -
0.1648581 S 1.0 -0. 00224001 1.0(x,) - - -
0.0661828 S 1.0 0.0006900  1.0(x,) - -
11,341300 x 1.0 - - - - - 0.0059(x,)  0.0143(x3)
2. 43599 X 1.0 @ .- 0.0279(xs)  0.0873(xg)
0.68358 X 1.0 @ ----- 0.1535(x;)  0.3031(xg")
0.21336 X 1.0 eaa-- 0.2470(x)  0.5144(x)
0.070114 X 1.0 = - - - -- 0.0266(x,) 1.0(x3)
11,3413 Zz 1.0 = - 0.0143(x,,) 0. 0059(x;p)
2. 43599 Zz 1.0 - 0.0874(x,,) 0. 0279(x5,)
0.68358 7z 1.0 - - - - 0.3031(x,) 0.1535(x3)
0.21336 Z 1.0 - - - 1.0(x;,) 1. 0000(x},)
0.070114 z 1.0 = - - - - - 1. 0(Xy) 1. 0000(x},)
1.23148 XX 0.1836481 - - - - - -1.7600(x,,)  3.550(x;s)
0.36852 XX 0.8872685 - - - - - -1.7600(x,,) 1.000(x;5)
0.13582 XX 1.0 - - -0.5000(x,,) =3.5500(x,s)
1.23148 YY 0.1836481 @ - - - - - -1.7600(x,,) -1.0000(x,s)
0. 36952 YY 0.8872685 @ - - - - - -1.7600(x,,) - - - -
0.13582 Yy 1.0 - - - .- ~0.5000(x,) = - - =
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Table I. (Continued)

@ TYPC Conraction  Osbital  Coeffeients
1.23148 Z7 0.1836481 - - - - - 3.5200(x,,) -
0. 36952 ‘77 0,8872685 - - ~ - - 3.5200(x,,) -
0.13582 77z 1.0 = - - - 1.0000(x,,) -
1.23148 X7 0.1836481 - -~ - - - 1. 7100(x,,) -
0. 36952 XZ 0.8872685 - - ~ - - 1.7100(x,) -
0.13582 XZ 1.0 - 1.0000(x,e) -
82.4736 S(H) 0,0068959 =~ - - - - 1.0(x,) -
12.3983 S 0.0521466 - - - -~ - 1.0(x,) -
2.83924 S 0.2536880 - - - - - 1. 0(x,) -
0.814717 §  0.7680501 - - - - - 1.0(x,) -
0.271838 S 1.0 = - - - - - 1. 0(x,) -
0.099482 S 1.0 = - - - - - 1. 0(xs) -
3.89655 7 0.1736019 - - - - - 1.73(xy) -
0.92283 z 0.8940545 - == - = 1.73(Xs9) -
0. 28535 Z 1.0 - m - e 1.0(xy) -

*Contracted functions which are different for the II states.
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OI. THE WAVEFUNCTIONS AND ENERGIES

The four states that arise from the coupling of the ’S state of
hydrogen plus the ’P state of boron are discussed in the following

sections.

A. Potential Energy Curves and Energy-Related Properties_

The calculated potential curves (15) of BH are shown in Fig. 1.
The X 'Z% state is the ground state of the system; it has only one mini-
mum. The * and ' are the next two states, each of which is slightly
repulsive at large R and attractive for small R. The resulting maximum

at intermediate R is henceforth referred to as a hump. Finally, the

’z* state leads to a highly repulsive potential curve possessing a small
(unbound) minimum near R = 2.1 a;. The R's and energies of the
humps and minima are given in Table I, and a tabulation of the energies
calculated for each internuclear distance are shown in Table III.

It was first noted by Herzberg and Mundie “that the potential
curve for the A 'II state of BH must have a hump. This was indicated
by the linearity of the breaking off points in the absorption spectra of
the visible bands (X taa 1II, transitions). Rotational break-off is
caused by predissociation of the vibrational-rotational levels of the A'll
state. In the case that the rotationless potential curve has a hump
(as in Fig. 1) at R = Ry the rotational hump in the effective potential
curve>[E + J(J + 1)/2mr2] is also essentially at Ry, (i.e., Rgnax ~
R0 ). Hence the energy of break-off is approximately proportional

max
to J(J +1). In this case extrapolation of the break-off energy to J = 0

yields the sum
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TABLE III. Ab initio energies of the four states at each calculated

point. (All energies are inHartree and R is in Bohr.)

R x'=" S* a 1 Al

o -25. 047120 -25, 047120 -25.047120 -25.047120
6.0 ~25.052582 -25, 043930 ~25. 046860 -25. 046326
5.0 -25.065720 -25.036235 -25. 046417 -25. 044525
4.5 -25.078552 -25.027634 -25,047119 ~25., 042999
4,0 -25.096619 -25, 012787 -25.052414 -25.041702
3.2 -25.119766 -24. 988342 -25.068939 -25.042938
3.15 -25, 137970 -24, 963577 -25. 087845 ~25,047653
3.0 -25, 145752 -24, 950806 -25.096985 -25.060896%
2.5 -25.165833 -24, 899826 -25. 124237 -25,063828
2.25 -25. 166077 -24. 886826 -25. 128738 -25.064636
2.0 -25. 159345 -24, 883484 -25. 117142 ~25,048111
1.85 -25,127518 -24.868912 -25.096573 -25.026169

4 SOGI angle (6/2) equals 29. 358; a converged SOGI angle was not

obtained for this state.
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Dy (X 'ZY) + E_,. (A ) (14)

which is referred to as the predissociation limit. In addition, the
ax*
Since only the first three vibrational levels of the X 'Z% state

slope of the break-off energy curve yields an estimate of Rm

are known, D, (X '£*) cannot be reliably obtained from a Birge-Sponer

extrabolation and the presence of Em (14) does not allow a separate

ax
estimate of D, (X 'Z%. Thus, it has not yet been possible to obtain
) separate experimental determinations of D, (X ‘=), Dy(A 'II) and
_;Emax(A M). The most recent experimental determination (17) of the
predissociation limit (14) is 28,850 + 150 ecm™ (3.577 + 0.0186 eV)
as extrapolated from emission break-off points. From the slope
of the break-off curve, Rmax(A 1I'I) is estimated to be 3.9 =+ 0.4 a,
(the R, for the A 1II state is 2.303 a;). The experimental separation
between the two states [Dy(X = - D (A 'm7] is 23,135 cm~' (2.868 eV).
In order to obtain D, (X ‘E+), it has been necessary to estimate
Ema.x(A ). The only previous estimate for this quantity was made by
Hurley (18). Hurley carried out a semi-empirical valence-bond calcula-
tion on the A 'l state and found that it produced a purely repulsive
botential curve; using the semi-empirical i.c.c. correction for
correlation errors in atomic and ionic limits, he obtained a corrected
potential curve with a hump of 0.155 eV at 4.32 a, and a minimum
at 2.7 a,. He then estimated that the hump from the i.c.c. calculation
should not be more than twice the size of the exact hump. He thus
estimated E ax = 0.12 + 0.04 eV, and obtained a D,(BH) of 3.39 &
0.04 eV [using the older predissociation limit (28, 350 cm"l) reported by

Herzberg and Mundie(l_g)]. Wilkinson assumed Emax to be 0.08 + 0.08
eV, leading to Dy (X 'Z% = 3.43 £ 0.08 eV. (19)
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occurs at 2.13,a, and it is 4.25, eV above the dissociation limit. As we
will see below, the inner minimun arises from the B °3 Rydberg state of

B atom. Since our basis set does not contain the
diffuse basis functions needed to describe a Rydberg state, we do not expect
to obtain a good description of the region near the inner minimum. Recently
Schaefer (21) has carried out configuration interaction (CI) calculations using
a basis including diffuse functions and finds a deeper well centered at

2.217 a4, with the maximum occurring at 2.73 a,.

B. The Orbitals

The three valence orbitals of B(’P) are shown in Fig. 2 where

the coupling is

la 1b
(15)
2a
Taking the p orbital ((j)Za) along the z axis these orbitals have the
form
la ~ 5 + cpy ~ SX
Ib ~ s - cpy ~ sX (16)

2a ~ py

where 5 denotes the spherically symmetric part of $1q (or ¢1b> and
Py and p, denote functions with the angular symmetry of a p orhital
but no special radial behavior (in particular, the self-consistent orbitals

lead to a different radial form for Py than for pz), [The orbitals of
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(16) will sometimes be denoted as sx, sX, and p, although, of course,
.nothing is special about the axes chosen, i.e., we could just as well
have used sy, sy and py. ] In (14) 1a‘ and 1b are hybridized functions
(c is about0.185if s and py are normalizéd) pointing in opposite. |
directions and perpendicular to the p orbital, ¢2a' We should make
it clear that 1a and 1lb are not forced to have the form in (16), they
are solved self-consistently, yielding the form in (16),

In discussing these orbitals we will represent them

schematically as

(54
pz mn
sX
where the dot indicates that orbital 2a is not paired with any other
orbitals. '
1. The T States
Starting with the orbitals of (15) and bringing the H in along
the z axis
SX
pz
H (18)

SX
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we can couple the pz and Hz orbitals in cither of two ways,obtaining

the two states

sx sX - (19)
pz Hz

Sx  sX

pz = %%, (20)
Hz

where (19) leads to a 's* state and (20) leads to a °T% state. The iz orbital
has a much larger overlap with pz than with the sx, sX functions, so that
the dominant term in the interatomic potential should be the exchange term

between pz and Hz,
sz, Hz

which should be large and negative. But for singlet coupling of pz and Hz

as in (19), sz’ Hz

as in (20) it comes in with a minus sign. Thus the "% state is attractive

enters with a plus sign, whereas for triplet coupling

and the 323 state is repulsive. The interactions between Hz and the (sx, sx)

)

pair are repulsive since the corresponding exchange terms (e.g., —é-KSX’ Hz
enter  with a negative sign and hence are positive.

Upon solving for the orbitals self-consistently, we would expect that in
the 'S state  they would adjust so as to increase the overlap between
Hz and pz, while at the same time decreasing the overlap between Hz and
the (sx, sx ) pair (thereby decreasing the repulsive terms while increasing

the bonding terms). In Fig. 3, we show the self-consistent SOGI orbitals
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as a function |

of R,-where we see that the orbitals readjust ab.out as expected. The
pz orbital hybridizes a bit, delocalizing toward the H, and the (sx, sX)
pair rotates away from the newly forming bond..

For the °Z state the pz and H orbitals re'aadjust minimizing the
overlaps at all R. Primarily this resultg in the pz orbital hybridizing
away from the H. The interactions between pz and the (sx, sX) pair
then favors a rotation of this pair toward the H despite an unfavorable
interaction with the H orbital.

The orbital energies of the Z states are shown in Fig. 4 .
For the ' state epz drops monotonically from R = to R =R, but €Hz
increases as R decreases to about 5a, and then decreases rapidly for
smaller R. On the other hand, € sx decreases as R decreases to 5a, and
increases for smaller R. The rapid decrease of €y and epz for R<3a,
reflects their strongly bonding effect in this region. The increase of € sx
in this region probably reflects the repulsive interactions between them
as they are rotated into each other. Part of this increase in € sx could
also be due to the shielding of the B nucleus from the ¢sx and ¢ s% orbitals
due to the presence of the ¢, orbital. For large R (>5a,), the main
change in the orbitals is a delocalization of pz partly onto the H.

In Fig. - 4, the %5* orbital energies strongly reflect the crossing
of the Rydberg state (B 3+ st) with the initially repulsive valence state
(3%p + H?S). For large R we find that all the orbital energies increase
smoothly as R decreases with the 2b orbital (B 2po) increasing most
rapidly. However, at about 2.5a, the two states cross and orbitals 1la,

1b, and 2b start decreasing rapidly as one would expect for BH" orbitals

while the 2a orbital keeps on increasing smoothly.
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2. The NI States

Besides the Z states discussed above we can get other states
by starting with B(P) plus H(’S).

In Fig. 5 we show a plot of the sx and sX orbitals along the x axis.
Considering an H atom at about R = 2.5a,, we see that Hx has a much larger
overlap with sx than with sx. Thus we should cn;nsider the possibility
that strongly bound states could be formed by bringing the H along the

x axis and bonding to sx,

Pz

H :
T O (20

In this case we can couple the orbitals in either of two ways,

sx Hx
pz = 3H 2 2)
sX
and
sx Hx
- _ 1 (23)
pz sX = I

depending upon how the nonbonding orbitals (sX and pz) are paired.
Since the pz orbital is perpendicular to the molecular axis, we obtain

1 and 111 states. Both of these states have a bonding interaction
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between sx and H; they differ.’m that the exchange term I%z’ sx comes,
ipto the energy with a negative sign for (22) and a positive sign for

(23). Since pz and sX are orthogonal, the e:;change term is positive
and the *I1 state should be lower.

At large R the orbitals of the 'l states are not coupled as in .

(22) and (23) but rather as

sx SX
Pz (24)
- Hx
and
sx SX
25
pz Hx

But in (24) and (25) the Hx orbitals have negative exchange interactions
with both orbitals of the (sx, sX) 'pair, and hence both the *I and 'l potential
curves should be repulsive for large R.

The recoupling of orbitals that occurs for these states as R decreases

from o to R o is similar to that occurring in the radical exchange reactions
H, + D~ H + HD (26a)
LiH +H -~ Li +H, (26b)

and indeed forming BH in a II state is in many ways quite analogous
to the highly exothermic reaction (26b). Indeed for the same reason
that an activation energy (energy barrier) is involved in each reaction of

(26), we expect a hump to occur in the potential curves for each of the II states.
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The changes of the orbitals in such reactions have been discussed
in detail elsewhere (22) and we will note here the implications relevant
for BH. In such reactions the singlet pair [for BH, the pair (sx, sX)]
stays somewhat paired during the reaction,becoming the bonding pair of
the product. The orbital starting out in the middle (gﬁSX) stays there during
the reaction, changinglittle in the process. The orbital (¢s§) starting out

coupled with (/Jsx delocalizes onto the other center, becoming of the form

Sez + Prx (27)

in the transition region (keeping a high overlap with qbsv)' Concomitantly,
the nonbonding orbital of the reactants (¢>HX in this case) switches
centers and becomes the nonbonding orbital (¢s§) of the product, In the

transition region this orbital has the form

Prx " Cosx (28)

(keeping a low averlap with the other two orbitals) and hence changes
phase during the reaction.

The self-consistent orbitals of the *If state are shown in Fig. 6 where
we sec that the orbital changes are just as expected. The orbitals of the
I state vary in a somewhat more complicated manner and are discussed
further in the next section,

For both the °Il states and ‘11 states (Figs. 7 and 8) we see that the
self-consistent orbitals at R, are quite similar to those at R = =
except that they have been recoupled. This justifics the above
qualitative discussions making use of the atomic orbitals.

Similar qualitative discussions can be used to predict the bonding

and geometrics of polyatomic molecules, as will be discussed clsewhere.
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The rapid decrease with R in the orbital energics of the 1a and 1b
orbitals (sce Fig. 9 ) of the *I state indicates that these orbitals are bond-
ing orbitals. Orbital 2a (the m-orbital) exhibits only a slight dip in the
bonding region and otherwise is essentially constant. This is consistent
with ¢2a being a nonbonding orbital, Orbital l1a has basically the same
shape as the bonding orbitals of the X o except that for the °II state the
orbital energy has a hump in the region where the spin coupling is changing
rapidly ( 5.0a, to 3.5 ao). (This hump is due to strong interactions with
the 1b and 2b orbitals, both of which have high overlap with 1a.) The
changes in orbitals 1b and 2b are discussed in detail in the next section;
however, it should be noted that the 1b is basically a bonding orbital at all
R and 2b is essentially a nonbonding orbital at all R.

The orbital energies for the ' state are quite erratic in the region
(3. 5a.to 2. 5a, ) of large spin coupling changes. The w-orbital 2a is nonbond-
ing and for R < 4.0 a,, €9, increases slowly with decreasing R due to
increased interactions with the other orbitals. Orbital la is a bonding
orbital at all R and €1a behaves similarly to that for the X "5t and %7 states.
The behavior of the 1b and 2b orbitals is discussed in more detail in the
following section. At large R, €1p increases as R decreases, as expected,
since in this region there is no net binding; however, for R < 3.0a,, €1p
decreases rapidly with R as a bonding orbital would be expected. For

large R, ¢gp decreases with R; however, for R < 3.0 a,, € increases

rapidly.
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3. Angular Correlation in the I States

The proper description of the boron atom wavefunction at the
separated atom limit for the II states is the three-configurational wave~

function (29) which has the same symmetry (C °°V) as does
p = [16@25"- 5 (pg+py))pz aBapa] (29)

the BH molecule,” The inclusion of the term (p.X2+ pyz) in the wave=~
function is an angular correlation effect which corresponds to double
excitations from the 2s” orbital into the p orbitals perpendicular to the
pg orbital. As discussed previously these correlation terms, although
not the major configuration of the wavefunction, significantly lower the
energy of the wavefunction.(z) However, the wavefunction (29) can not
be expressed in a non-spatially projected independent particle method.
The Hartree-Fock method is capable of handling only one configuration
per pair of electrons and the G1 method which corresponds to a self-
consistently optimized valence bond wavefunction is equivalent to only
two configurations per pair of electrons. Consequently the G1 wave~

function for the boron atom can be expressed as
p= [18°(25"-py)p, eBapal (30)

which does have an independent particle interpretation, but does not
have C w0y symmetry. This wavefunction has an energy which is only
slightly above that for fully correlated wavefunction (29). The difference
in the energies is due only to the interactions of py and Py For the

calculations on the T states the situation remains exactly the same



57

where an independent particle wavefunction exactly analogous to (30)
can be written and where the only difference in energy between the
completely correlated wavefunction and the partially correlatéd wave~
function is the interaction term between Ty and ﬂy which has been
shown to be small,

The éituation is considerably different for the II states where
the hydrogen atom is oriented along one of the lobes of the p correlated
orbitals (16) rather than the p, orbital. Self~consistent optimization
of the SOGI wavefunction will then require a recoupling of the orbitals
so that the singlet coupled pair of orbitals in the BH bond will have the
maximum overlap. This recoupling of the orbitals require the orbitals,
b and ¢2b’ to change character as described in the previous section
and the wavefunction to incorporate additional VB configurations into
the wavefunction [ see (7) and (8)]. In order to minimize the energy
orbital ¢2b retaiﬁs as small an overlap with 4)1 a and ¢1b as possible.
However, since each of the orbitals ¢1b and ¢2b contéin significant
portions of the other there is a point in the transition -region where
their overlap reaches a maximum. Also maximum inclusion of secon~
dary valence bond structures (high SOGI spin coupling angles) will
cccur at this point. The maximum in the potential hump will occur at
approximately this point also because a high overlap of the ¢1b and
¢2b orbitals maximizes the effect of the positive energy contributions
arising from the coupling of these two orbitals. Neither of the I wave-~
functions can incorporate the configuration (nryz) corresponding to the

py2 configuration which appears in (29).
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The erratic variations in the orbital energies for the A' II
wavefunction in the region around R = 3.0 a, are attributed to the
energetic interactions caused by the high overlap of the qﬁlb and Q‘)Zb
orbitals. The incorporation of the n‘.y2 configurations into the wave-
function would allow orbitals ¢1b and ¢2b to split outside the xz plane
and would, therefore, minimize their overlap in the transition region.
This would allow the orbitals to transform smoolhly through the
transition region. This effect should be the most pronounced in the A 11
state  which also has the nonbonding orbitals coupled into a singlet.
The combination of high overlap and singlet counling maximizes the
exchange contributions to the energy. The a °T state should also show
this effect; however, it should be much less pronounced because the
nonbonding orbitals are coupled into a triplet where the exchange
contributions improve the energy.

The effect of including this angular correlation remains to be
determined; however, a projected SOGI calculation was done on the

A'n correlation term (29). (23)
L . L
XJ/SCI =¢,G; [¢1a’¢1b(lb2a¢2b Cfﬁaﬁ]'l“czujé‘[ Hyny ¢2a¢2b cpaB]. (29)

A comparison of these energies to those in Table III shows that the II
correlation improvement in the wavefunction is a decreasing cffect and
conscquently would actually enhance the maximum of the hump by as
much as 26%. So, although the orbital description of the A lH state

is improperly described within the transition region, the description

at Re and at « are unaffected,
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IV. PROPERTIES

The dipole moment, electric field gradient on both centers
and the quadrupole moment calculated at the boron center are éhéwn
in Figs. 10-11 for all four states as a function of the internuclear
distance (see also Table IV). The behavior of these properties will be
examihed in the light of the changes which occur in the individual
orbitals which we shall qualitatively discuss in terms of individual

orbital contributions which are defined as
(Py; = (@P, O1" @)/ (|OVL @)

where & is the product of spatial orbitals and Pi is the one electron
spatial operator associated with the property and operating only on
electron index i. The total property (P) is the sum of the orbital
contributions,

A. Dipole Moment

The X '=* dipole moment has a particularly in_teresting shape
which can be related to the changes which occur in the individual orbital
contributions. The initial negative character (B+H") arises because
of the large and decreasing negative contribution from the 2a(Bpz)
orbital which is hybridizing significantly onto the hydrogen atom. The
upturn and eventual change to a positive (B'H+) dipole moment occurs
when the 2a orbital contribution reaches a minimum and begins to
increase and when the steadily increasing positive contributions from
the other three orbitals become significant and then dominate the

dipole moment. The nonbonding orbitals have a positive contribution
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BE states as a function of internuclear distance.
Abscissa is scaled as in Fig. 4.
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Table IV. Calculated properties as a function of internuclear distance
for each of the four states. (All properties are
reported in atomic units.)

uB sz
R | Xzt =% 2'm am | xzt °zt  a%m An
o 0.000 0.000 0.000 0.000| -2.398 -2.398 1,025 1,025
6.0 | -0.184 0.024 0.011 0.036} -3.132 -2.554 1,103 1,081
5.0 { -0.379 0,023 0,010 0.090| -3.829 -2.857 1.129 1.131
4,5 | -0.419 -0,002 0.003 0.1381} -3.982 -3,154 1,123 1,205
4.0 | -0.342 -0.071 -0.031 0.210}|] -3.821 -3.631 0.967 1.325
3.5 {-0.132 - - - -0.066 0.300} -3.376 - - - 0.606 1,444
3.15| 0,074 - - - -0.051 0.346)1 -2,988 - - - 0.394 1.431
3.0} 0,170 - - - -0.036 - - -}jl -2.824 -~ - - 0.326 - - -
2.5 0.490 - - - 0,029 0.319} -2.359 -~ - - 0.146 0.980
2.25! 0.634 - - - 0.059 0.277§ -2.188 =~ - - 0,068 0.717
2.0! 0.759 - - - 0.084 0,230} -2.053 =~ - - -0.002 0,460
1.85! 0.822 - - - 0,095 0.2104 -1.985 -~ - - -0.037 0.282

B H

Uz Uzz
R | xzt % am Am | xz* =t a'nm Am
o 0.574 0.574 -0.246 -0.246 0.000 0.000 0.000 0.000
6.0 0.530 0.585 -0.243 -0.244 0.004 0.002 -0.002 -0.002
5.0 0.472 0.599 -0.239 -0.245 0.009 0.002 -0.004 -0.005
4.5 0.447 0.608 -0.224 -0.240 0.011 0.002 -0.004 -0,008
4.0 0.443 0.617 -0.170 -0.222 0.011 0,001 -0.004 -0.014
3.5 0.472 - - - -0.063 -0.170 0.004 - - - -0.006 -0.025
3.15! 0.518 -~ - - 0,017 -0,100}) -0.013 - - - -0.019 -0.042
3.0 0.544 - - - 0,049 - - -4 -0.024 - - - -0,030 - - -
2.5 0.657 - - - 0.150 0.081} -0.108 - - - -0.113 -0.137
2.25, 0.725 - - - 0.196 0.144} -0.206 - - - -0.213 -0,238
2.0 0.794 - -~ - 0.234 0,194} -0.390 - - - -0.405 -0,433
1.85; 0,831 - - - 0,249 0.212]) -0.574 - - - -0.599 -0.628




63

to the dipole moment because they bend away {rom the hydrogen and
back behind the boron, and the adjusted (the nuclear term has been
added to this contribution) 2b{Hs) orbital contribution is positive
because it hybridizes more onto the B as R is decreased.

The portion of the ol dipole moment curve calculated shows
it as decreasing and negative (B+H-). (Only the initial parts of the
’v* curves were calculated because the highly repulsive character
of the potential curve makes the properties at short R uninteresting.)
Due to the triplet coupling the 2a orbital contribution is positive, but
both the la(sx), 1b(sX), and 2b(IIs) orbitals come in with negative
contributions. The sharp decrease of the moment is due to rapid
drop in the nonbonding orbital contributions which occurs because the
la and 1b orbitals are bending forward rapidly.

The a *Ildipole moment tends to be quite small and it
changes sign twice as R is reduced. Basically we find that only one
orbital la(sz), provides a negative contribution to the dipole moment;
the remaining three orbitals all have positive (B"H+) contributions.
Orbital 1a has a negative contribution because it is an sz orbital
directed toward the hydrogen; while the remaining three orbitals,
sz, Hs, and 7 are all directed at or past the boron atom. Because the
dipole moment is small (it is always less than 0.1 a.u.) indicates that
the electron density is rather evenly distributed in the molecule which
is nontypical of the other two bound states. One could predict that the
dipole moment for the a I state would alwvays be less than thal of the

A 'll state because coupling the two nonbounding orbitals into singlet
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in the A 'Il state causes a higher interaction between the two orbitals
and causes them to spread out behind the boron increasing the dipole
moment. In the a I state this is a bonding interaction SO

that these two orbitals would tend toward each other, thereby reducing
the dipole moment., The A o dipole moment is always positive (B-H+)
reaching a maximum at slightly less than 3.0 a,. Two orbitals, 1b
and 2b, provide the impetus for the positive character of the dipole
moment, As one would expect,these two orbitals tend to hybridize

to or behind the boron atom causing a positive increasing

behavior. The la(sz) orbital contributes negatively,as would be
expected,due to its significant hybridization onto the hydrogen center.
Finally the 2a(7) orbital has a small negative contribution indicating
that it is bending in the direction of the hydrogen atom. The maximum
found in the dipole moment curve occurs because the negative contri~
butions from the la and 2a orbitals are steadily decreasing, while the
contributions from 1b and 2b orbitals have begun to decrease slightly.
This probably occurs because the high overlap of the 1b and 2b orbitals
has begun to decrease and 1b has become significantly localized on the
hydrogen center.

Experimentally the dipole moments of the X '>* and A 'IT
states of BH have been determined by analyzing the Stark effects
observed in the optical emission spectrum of BH. (24). The dipole
moments were determined tobe 1,27 + 0,21 D, and 0,58 + 0.04 D. for
the X =% and A *II states,respectively. This compares quite favorably
with the calculated value of 1.25 D. for the X 5" state at 2.5 a,. (25)

The error limits of the experimental result include the R dipole
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moment and extend somewhat past R o+ Other determinations of the
x'=" dipole moment are 1.733 D. (12) using the HF method and a VB-
CI determination of 1.784 D. (26). The consistently too high values of
these calculations result from the double occupancy restriction in HF
which over emphasizes the description of the wavefunction on the boron
at the expense of that on the H atom. The dipole moment for the A Bil
state is experimentally determined to be 0.58 + 0,04 D. The calculated
dipole moment for the A Mstate at R = 2.5 a, is 0.810 D, at R = 2.25 a,
is 0.705D. and at R = 2.0 a, is 0.586 D. The too high dipole moment
exhibited by the A "I calculation is quite likely due to the inability of
the wavefunction to adjust at long enough internuclear distance to the
spin coupling change.

B. Quadrupole Moment

The molecular quadrupole moment, Q]sz’ was evaluated with
respect to the boron nucleus. A plot of Q}Z3Z for each of the states is
shown in Fig. 10. A negative quadrupole moment corresponds to an
electron-charge distribution which is prolate along the bonding axis.
For the X '=" state the wavefunction becomes increasingly prolate as
the internuclear distance is reduced until about R = 4.5 a, where the
prolate character begins to decrease making the wavefunction more
oblate, The orbital contribution from the 2a (sz) orbital is the major
contributing factor because it is hybridizing onto the hydrogen nucleus
and consequently gives a very prolate contribution. However, as the
internuclear distance is reduced this contribution decreases and the

contributions from the other three orbitals which are more oblate in
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character become important,

The portion of the 3Z+ quadrupole moment plotted shows an
increasingly prolate character which is not unexpected bec‘ause o.f the
high repulsive character between the sz orbital and the Hs orbital.

. The orbital contributions for the la(sx) and 1b(sX) orbitals are positive,
equal and quite small compared to the orbital contributions from the
Za(sz) and 2b(Hs) orbitals which are large and negative.

The molecﬁlar quadrupole moments for the a *Mand A '1I
states are quite similar. For the a I wavefunction the molecular
quadrupole moment increases slightly initially until it reaches a
maximum in the region of the potential maximum and than it decreases
smoothly and actually goes negative. The high oblate character of this
wavefunction is completely attributable to the 7 orbital. The orbital
contribution from the 7 orbital varies in the range from 1.24 a.u. to
1.87 a.u. and reaches its minimum at about R = 3.15 a,. The contri-
butions from the sx and sX orbitals are both negative and the contribu~
tion from the Hs orbital after correction for the nuclear contribution is
positive (oblate).

For the A I state the molecular quadrupole moment is also
very oblate; however this state exhibits a much greater oblate hump
than did the a 'TI waﬁeﬂmction. The maximum of this hump also occurs
at approximately the same region, as did the hump in the potential
curve.- Again as expected a major and essentially constant oblate
contribution comes from the 7 orbital which ranges in value from 1.35 a,

to 1.23 a.u. The contributions from each of the sz and sZ orbitals is
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again prolate. The contribution from the Hs orbital is positive
and increases from zero to a maximum of about 1.44 a.u. at short
R. The major difference between the a Il curve and the A ‘T curve
is the orbital contribution of la(sz) orbital. The sz orbital contribu-
tion has a much greater prolate character for the a *I state than it
does for the A 'TI state. This indicates that the 1a orbital for the
a ’Il state is more highly polarized along the bond axis than is the la
orbital for the A 'II state.

C. Electric Field Gradient

Electric field gradients at bothnuclei are shown as a function
of internuclear distance in Fig. 11, In interpreting the contributions
to qu (electric field gradient at the boron nucleus) note that a 2pZ
function leads to a positive q,, While a 2px(or 2py) function leads to a
negative Ay

The qu3z for the X ‘=" state remains positive for all R shown;
however, it does reach a minimum near 4 a, due primarily to the boron
bonding orbital, 2a,which is the major contribution to this property at
all R. The contribution from the nonbonding orbitals is small and starts
out negative as would be expected. However, as more and more b,
character is incorporated into the orbitals (the nonbonding orbitals bend
back) this contribution becomes positive. The orbital contribution from
the Hs function is a smoothly increasing positive term.

The =% state exhibits a positive, increasing function which is
mainly due to the contribution from the BpZ orbital. All other contribu-

tions to this field gradient are completely negligible.
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Each 1T states exhibit considerably different character. Each
of them has essentially zero contributions to the electric field gradient
on the boron, qg’z, until about 5.4 a, when they both begin to increase
smoothly. The a 1 state exhibits a slightly greater qlgz than does the

A I state.

B
ZZ

is the constant and predominate effect at long R of the contribution

Two effects characterize the shape of the a 1 q,, curve; one
from the 7 orbital which varies between ~0.30 and ~0.31 a.u. The
other effect is the growing positive contributions from the remaining
three orbitals; 1la, 1b, and 2b. Each of these functions are polarized
along the bonding axis and consequently make positive contributions to
the electric field gradient. Both the 1a and 1b (sx and sX) orbitals '
start out with a small positive contribution and increase while the
2b(Hs) orbital starts out from zero and also increases.

quz for the A 'H state exhibits quite similar characteristics.
The major negative orbital contribution again comes from the 7 orbital

which remains essentially constant at all R; while the effect which

B

a4, is the increasing positive contributions

causes the increase in the
from each of the remaining three orbitals. The major difference
between the two curves is the magnitude of the contribution from the

la (sz) bonding orbital. The contribution from the A I for this orbital
is much less than that of the a "I state. The electric field gradient
could be considered as a measure of the amount of p-like character

in an orbital and as was also observed in the contribution to the

molecular quadrupole moment the la(sz) orbital hybridization is more

pronounced for the a °II state than it is for the A 'II state.
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From Fig. 11 the qu, electric field gradient on the hydrogen
nucleus,' for all four states looks quitesimilar. Clearly the dominate
effect for this property is the nuclear contribution which makes qu< 0

at all distances less than R = 3.0, Similarity of shape and value
of qu for all states indicate;c; that the character of each of the wave-
functions in the vicinity of the hydrogen=-nucleus are quite alike with
respect to the p-like character in the wavefunction. In each case the
orbital contributions from each of the four orbitals show a gradually
and smoothly increasing value which is rapidly dominated by the

7/R® nuclear term expecially at short internuclear distances.
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Appendix 1

1. INTRODUCTION

We report here the wavefunctions and proper-
ties of the BH molecule as obtained using the re-
cently developed G1 [1-3] and spin-coupling op-
timized GI [4] (SOGI) methods. The G1 method
can be viewed as a generalization of the valence
bond (VB) method {n which all orthogonality con-
ditions are removed, the orbitals are allowed to
be of any shape and spread over all the atoms,
and the orbitals are functionally optimized in ab
initio calculations [3,4]. Thus for BH there are
six orbitals, none of which are orthogonal to an-
other. However, the orbitals still divide into
three groups: two core orbitals, two ncnbonding
orhitals, and two bonding orbitals. The SOGI
method is a generalization of the G1 method in
which the spin-coupling is optimized simultane-
ously with the orbital optimization rather than
forced to be the spin coupling appropriate for the
G1 or VB wavefunction [4].

The G1 wavefunction has the form

GYex,
where

(1)

B = 01,(1) 01,,(2) 9,(3) By, (4) d34(5) ¢3,(6)  (2)

and
X = a(1) g(2) a(3) p(4) a(5) p(6)

are products of spatial and spin functions res-
pectively.(In the following, electron numbers
will be omitted from functions such ag ¢ and x;
it will be understood that all functions are order-
ed by electron number.) Here G’i is the group
operator [5] (involving apatial and spin permuta-
tion operators) which ensureg that for any & and
X, (1) deacribes a singlet state and satisfies
Pauli'e principle. The wavefunction in (1) can be
re-expressed as [2,4]

cal{$1a O1b+ $1b P12)(92a P20 + P2b P2a) X
(635 P+ Pgp, Pg,)2BaBafl] =
{015 P1p P22 Pop P34 Pap X

(a8~ Ba)(ap - pa)(as - Ba)] , (3)

which hag the form of a generalized valence-bond
wavefunction (¢ is just an arbitrary constant de-
pendent upon normalization). In the Gl method it
is required that each orbital, ¢, be optimum
{that is, that the energy be atationary under vari-
ations of ¢p). The result i3 a aet of aelf-conais-
tent equations analogous to the Hartree-Fock
equations. However, the ¢p's are allowed to be
completely general (no double occupancy or or-
thogonality restrictions) and the G1 wavefunctions
dissoclate to the correct atomic limits,



In the usual valence bond [6] (VB) or extended
valence bond [7] (EVB) method, the wavefunction
for BH would have the form in (3) except that we
would take ¢, and ¢,, to be identical core-like
orbitals and &g, and dgy, to be identical non-
bonding orbitals. In this case (3) differs from the
form of the Hartree~Fock wavefunction only by
having a split ¢g pair. Thus the G1 wavefunction
is a generalization of the VB and EVB wavefunc-
tions in which all orbitals are allowed to split and
where the orbitals are allowed to be of any shape
and spread over all the atoms, and the orbitals

are functionally optimized in ab initio calculations.

Given a product of orbitals as in (2) we can
construct five linearly independent many-electron
wavefunctions satisfying Pauli's principle and
describing a singlet state. These can be taken as

(5]
Gz’¢x' i=112; v5)

where the group operator G'f simultaneously takes
care of the Pauli and spin symmetries. The dif-
ferent ¢ just correspond to the different spin cou-
plings of 6 electrons to form a singlet, one of
which is presented in (1) and (3). However the

G? are expressed in terms of representation ma-
trices for the symmetric group, and any linear
combination of the operators ¥;C;G; can be ex-
pressed as GI’ using a new set representation
matrices [4],

= -1
ub-pLu, Lt
Thus the optimum wavefunction constructable

from the product of orbitals ¢ in (2) can be
written as [4]

cihex. )

The orbitals of (4) are optimized in the same way
{using the same programs) as are the orbitals of
(1) except that now we must also optimize the
transformation matrices L. in order to optimize
the spin coupling. In order to distinguish these
approaches the latter is called the spin-coupling
optimized GI (SOGI) method [4]. The SOGI orbi-
tals can also be interpreted as the states of elec-
trons mov*na in the average field due to the other
electrons (the indepencent particle interpretation).
In fact since the SOGI wavefunction is the best
possible wavefunction using just the product of
orbitals (1), these SOGI orbitals are the optimum
independent particle orbitals. Hence the SOGI
method can be viewed as the generalization and
synthesis of the other orbital methods, such as
Bartree-Fock, valence bond, and G1.

Previous calculations with the G1 and SOG!
methods have been limited to molecules [3,4] and
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atoms [2,4,8] with up to four electrons. Here we
will report the first such calculations on larger
systems. A matter of particular interest will be
the description of the nonbonding orbitals of BH
since VB and HF calculations take the nonbonding
orbitals to be doubly occupied and since the sys-
tems previously considered with the G1 and SOGI
methods did not have nonbonding orbitals.

2. CALCULATIONAL DETAILS.

The SCF calculations were carried out in the
same way as described previously [1-4] except
that each GI equation was expanded to first order
in all six orbitals and the six coupled equations
for the changes in all six orbitals were solved
for the increments in each orbital each iteration.
This generalized Newton—Raphson procedure {9]
was found to lead to quadratic convergence in the
orbitals *.

Only the first row of L. is needed for con-
structing Uy (7). In the case of a six-electron
singlet state or a five-electron doublet state this
row becomes

LII = COS%E

in 5% iz
le = Sinu& | COS 2Zg

. L . 1 Pom
Lg= sin3Z sinyEg cos 2E3

N - . —~ - 1
Ly, - siny= ) sin 3% sin-»’g:.3 o8 3E

Ly =sinE siniZy sin$Zq sin 5y .

Thus the spin- Louplm%{ is specified by the angles
u.l, Kz, Zq, and Z4 . In some cases it is con-
venient to represent the spin-coupling in terms
of the standard five spin-couplings (correspond-
ing to the standard Young tableaux; these coeffi-
cients are denoted as {c;} and can be easily cal-
culated from the {Z;}).

The basis set consists of nine Slater orbitals
on the boron (five s, three p, and one d) and two
Slater orbitals on the hydrogen (one s and one p).
The three core-like s functions of the B were
chosen from a G1 B** calculation {2] and the
other functions were chosen from Hartree-Fock
[10,11} and GF [12] calculations. All SCF orbitals
were restricted to be symmetry functions (o for
BH, s or p for B), Indeed, we have found that for

* Typically three to four {terations were required for
the orbitals to converge to ten places, l'or six clec~
trons and eleven bagis functions this took 220 se-
conds/iteration on an IBM 360/75 computer,
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Calculated properties for the HF. G1 and SOGI wavefunctions of B and BH. Hartree atomic units are used unless
otherwise specified

B BH
HF (13] G1 SOGI HF (10,14) G1 SOGI
Total energy (&) -24,52905  -24.54558 - 24.54602 -25.13137  -25.16639 - 25.16640
Kinetic energy (KE) 24.52337 24.53695 24,5380 25.11630 25.15858  25.15850
Virial ratio (V/2E) 0.99999 0.99932 0.99934 1.00030 0.99934 0.99984
Electric field gradientb
B nucleus - 0.62042 - 0.62149 - 0,63051 - 074218 - 0.74249
H nucleus | 0,0 0.0 0.0 aee 0.1767t 0.17663
Dipole moment €} 0,0 0.0 0.0 0.682 0.70197 0.70200
Molecular quadrupole
moment at boron 9) - 2.45008 - 244813 -~ 242077 - 232309 - 2.32198
(Aye) 15.853 15.90059  15.87240 22.752) 23.19517  23:19441
(PDye) 3.0 3.0 3.0 47.70% 48.30235  48.30173
RN 11,37930 1137642  11.37727 11:81%) 11:80471 1180471
1
P 10 1.0 1.0 3,272%) 3.26849 3.26847

a) Ref, {15},

b) 1 au = 3,24140 x 1015 esu/em3,
c) 1 au = 2,54158 D,

d) U au = 1,34492 x 10-26 egu cm2,

e) Multiply by -0.791 985 to obtain diamagnetic susceptibility in ppm {cgs).
) Multiply by 17,7487 to obtain diamagnetic shielding in ppm {cgs).

AMPLITUDE (AU)

DISTANCE (BOHR)

¥ig. L. The nonbonding SOGI orbitals of B!l and the 2s

valence nair SOGI orbitals of B. The dashed lines show

the G! orbitals of B, the GI orbitals of BH superim-
pose upon the SOGI orbitals,

the UHF, GF, G! and SOGI wavefunctions of such
systems as Be, B, and BH, the SCF orbitals
split so as to have lower symmetry than that of
the atom and molecule. In this case, the gpatial

symmetry of the total wavefunction is not correct,

The wavefunctions reported here are the optimum

ones leading to the correct spatial symmetry for
the total wavefunction. These effects will be dis-
cussed more completely elsewhere.

Note in fig. 1 that the core parts of the non-
bonding orbitals (2a and 2b) of B change signifi-
cantly between SOGI'and G1 (indicated by dashed
lines in fig. 1). We have also noted that the
shapes of the 2a and 2b orbitals in B for sym-
metry restricted calculations are quite sensitive
to the description of the core potentials whereas
this is not true for the unrestricted wavefunctions.
Thus the changes in this 