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Abstract

Compressive sensing is an emerging research field that has applications in signal

processing, error correction, medical imaging, seismology, and many more other areas.

It promises to efficiently recover a sparse signal vector via a much smaller number

of linear measurements than its dimension. Naturally, how to design these linear

measurements, how to construct the original high-dimensional signals efficiently and

accurately, and how to analyze the sparse signal recovery algorithms are important

issues in the developments of compressive sensing. This thesis is devoted to addressing

these fundamental issues in the field of compressive sensing.

In compressive sensing, random measurement matrices are generally used and ℓ1

minimization algorithms often use linear programming or other optimization methods

to recover the sparse signal vectors. But explicitly constructible measurement ma-

trices providing performance guarantees were elusive and ℓ1 minimization algorithms

are often very demanding in computational complexity for applications involving very

large problem dimensions. In chapter 2, we propose and discuss a compressive sens-

ing scheme with deterministic performance guarantees using deterministic explicitly

constructible expander graph-based measurement matrices and show that the sparse

signal recovery can be achieved with linear complexity. This is the first of such a

kind of compressive sensing scheme with linear decoding complexity, deterministic

performance guarantees of linear sparsity recovery, and deterministic explicitly con-

structible measurement matrices.

The popular and powerful ℓ1 minimization algorithms generally give better spar-

sity recovery performances than known greedy decoding algorithms. In chapter 3,

starting from a necessary and sufficient null-space condition for achieving a certain
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signal recovery accuracy, using high-dimensional geometry, we give a unified null-

space Grassmann angle-based analytical framework for compressive sensing. This

new framework gives sharp quantitative trade-offs between the signal sparsity and

the recovery accuracy of the ℓ1 optimization for approximately sparse signal. Our

results concern the fundamental “balancedness” properties of linear subspaces and so

may be of independent mathematical interest.

The conventional approach to compressed sensing assumes no prior information

on the unknown signal other than the fact that it is sufficiently sparse over a particu-

lar basis. In many applications, however, additional prior information is available. In

chapter 4, we will consider a particular model for the sparse signal that assigns a prob-

ability of being zero or nonzero to each entry of the unknown vector. The standard

compressed sensing model is therefore a special case where these probabilities are all

equal. Following the introduction of the null-space Grassmann angle-based analytical

framework in this thesis, we are able to characterize the optimal recoverable sparsity

thresholds using weighted ℓ1 minimization algorithms with the prior information.

The roles of ℓ1 minimization algorithm in recovering sparse signals from incomplete

measurements are now well understood, and sharp recoverable sparsity thresholds for

ℓ1 minimization have been obtained. The iterative reweighted ℓ1 minimization algo-

rithms or related algorithms have been empirically observed to boost the recoverable

sparsity thresholds for certain types of signals, but no rigorous theoretical results have

been established to prove this fact. In chapter 5, we try to provide a theoretical foun-

dation for analyzing the iterative reweighted ℓ1 algorithms. In particular, we show

that for a nontrivial class of signals, the iterative reweighted ℓ1 minimization can in-

deed deliver recoverable sparsity thresholds larger than the ℓ1 minimization. Again,

our results are based on the null-space Grassmann angle-based analytical framework.

Evolving from compressive sensing problems, where we are interested in recovering

sparse vector signals from compressed linear measurements, we will turn our attention

to recovering matrices of low rank from compressed linear measurements in chapter 6,

which is a challenging problem that arises in many applications in machine learning,
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control theory, and discrete geometry. This class of optimization problems is NP-

HARD, and for most practical problems there are no efficient algorithms that yield

exact solutions. A popular heuristic replaces the rank function with the nuclear

norm of the decision variable and has been shown to provide the optimal low rank

solution in a variety of scenarios. We analytically assess the practical performance of

this heuristic for finding the minimum rank matrix subject to linear constraints. We

start from the characterization of a necessary and sufficient condition that determines

when this heuristic finds the minimum rank solution. We then obtain probabilistic

bounds on the matrix dimensions and rank and the number of constraints, such that

our conditions for success are satisfied for almost all linear constraint sets as the

matrix dimensions tend to infinity. Empirical evidence shows that these probabilistic

bounds provide accurate predictions of the heuristic’s performance in non-asymptotic

scenarios.
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Chapter 1

Introduction

1.1 Motivations

Compressive sensing, also referred to as compressed sensing or compressive sampling,

is an emerging area in signal processing and information theory which has attracted a

lot of attention recently [CT06] [Don06b]. The motivation behind compressive sensing

is to do “sampling” and “compression” at the same time. In conventional wisdom,

in order to fully recover a signal, one has to sample the signal at a sampling rate

equal or greater to the Nyquist sampling rate. However, in many applications such as

imaging, sensor networks, astronomy, high-speed analog-to-digital compression and

biological systems, the signals we are interested in are often “sparse” over a certain

basis. For example, an image of a million pixels has a million degrees of freedom,

however, a typical interesting image is very sparse or compressible over the wavelet

basis, namely, very likely only a small fraction of wavelet coefficients, say, one hundred

thousand out of a million wavelet coefficients, are significant in recovering the original

images, while the rest of wavelet coefficients are “thrown away” in many compression

algorithms. This process of “sampling at full rate” and then “throwing away in

compression” can prove to be wasteful of sensing and sampling resources, especially

in application scenarios where such resources as sensors, energy, and observation time

etc. are limited.

Instead of thinking in the traditional way, compressive sensing promises to recover
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the high-dimensional signals exactly or accurately, by using a much smaller number

of non-adaptive linear samplings or measurements. In general, signals in this context

are represented by vectors from linear spaces, many of which in the applications will

represent images or other objects. The fundamental theorem of linear algebra, “as

many equations as unknowns,” tells us that it is not possible to reconstruct a unique

signal from an incomplete set of linear measurements. However, as we said before,

many signals such as real-world images or audio signals are often sparse or compress-

ible over some basis, such as smooth signals or signals whose variations are bounded.

This opens the room for recovering these signals accurately or even exactly from in-

complete linear measurements. However, even though we know that the signal itself

is sparse, it is a non-trivial job to recover the signals from the compressed measure-

ments since we do not know the locations of the non-zero or significant components of

that vector. One of the cornerstone techniques enabling compressive sensing is then

about efficient and effective decoding algorithms to recover the sparse signals from

the “compressed” measurements. One of the most important and popular decoding

algorithms for compressive sensing is the Basis Pursuit algorithm [Che95, CDS98],

namely the ℓ1-minimization algorithm.

1.2 Mathematical Formulation for Sparse Recov-

ery

Before we go into greater technical details in later chapters, we will first give the

general signal models discussed in this thesis. We say that a n-dimensional signal x

is k-sparse if it has k or fewer non-zero components:

x ∈ Rn, ‖x‖0 := |supp(x)| ≤ k ≪ n,

where |supp(x)| denotes the cardinality of the support set of x, and thus ‖·‖0, namely

the number of non-zero components, is a quasi-norm. For 1 ≤ p <∞, we denote by
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‖ · ‖p the usual p-norm,

‖x‖p :=
( n∑

i=1

|xi|p
)1/p

,

and ‖x‖∞ = max |xi|, where xi denotes the i-th component of the vector x. In the

case when signals are not exactly sparse, but their coefficients decay rapidly, we call

these signals approximately sparse signals. In particular, compressible signals are

those satisfying a power law decay:

|x∗i | ≤ Li−
1
q , (1.2.1)

where x∗ is a non-increasing rearrangement of x, L is some positive constant, and

0 < q < 1. Of course, sparse signals are special cases of compressible signals.

Compressive sensing only measures sparse signals from a small set of non-adaptive

linear measurements. Each measurement is seen as an inner product between the

signal x ∈ Rn and a measurement vector ai ∈ Rn, where i = 1, . . . , m. If we collect

m measurements in this way, we may then consider the m×n measurement matrix A

whose rows are the vectors ai. We can then view the sparse recovery problem as the

recovery of the k-sparse signal x ∈ Rn from its measurement vector y = Ax ∈ Rm.

One may wonder how to reconstruct the signals from this incomplete set of mea-

surements. With the prior information of the sigal being sparse, one of the theoreti-

cally simplest ways to recover such a vector from its measurements y = Ax is to solve

the ℓ0-minimization problem

min
x∈Rn

‖x‖0 subject to Ax = y. (1.2.2)

If x is k-sparse and the rank of A is larger than 2k, then the solution to (1.2.2)

must be the signal x. Indeed, if the solution is z, then since x is a feasible solution,

z must be k-sparse as well. Since Az = y, y − x must be in the null-space of

A. But z − x has at most 2k non-zero elements, and since the rank of A is larger

than 2k, we must have that z = x. Thus this ℓ0-minimization problem works perfectly
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theoretically. However, it is computationally NP-Hard in general [CT05]. Fortunately,

in the framework of compressive sensing, there have been computationally efficient

relaxation algorithms for this computationally NP-Hard problem.

1.2.1 ℓ1 Minimization

One major approach, Basis Pursuit, relaxes the ℓ0-minimization problem to an ℓ1

minimization problem:

min
x∈Rn

‖x‖1 subject to Ax = y. (1.2.3)

Simply put, instead of trying to find the solution with the smallest ℓ0-norm, ℓ1 min-

imization tries to find the solution with the minimum ℓ1 norm. Surprisingly, this

relaxation often recovers x exactly when x is sparse or accurately when x is an ap-

proximately sparse signal or compressible signal. Please note that the measurement

matrix A is given and fixed in advance, and does not depend on the signal, but as long

as the signals are sufficiently sparse and the measurement matrix satisfies some con-

ditions independent of the signals, the ℓ1 minimization will succeed [CT05, Don06c].

That is, even though ℓ1-norm is different from the quasi-norm ℓ0, the solution of ℓ1

often comes as the sparsest solution.

As mentioned in [CT08], this sparsity-promoting feature of ℓ1 minimization was

already observed in the 1960’s by Logan [Log65], where he proved probably the first

ℓ1-uncertainty principle. Suppose we have the observation over time

y(t) = f(t) + n(t), t ∈ R, (1.2.4)

where f(t) is bandlimited, namely

f ∈ B(Ω) := {f : f̂(ω) = 0 for |ω| > Ω}, (1.2.5)

and n(t) is an impulsive noise term supported on a sparse set T . Logan observed that
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if we recover f by the following program

min ‖y − f̂‖L1(R) subject to f̂ ∈ B(Ω), (1.2.6)

then the recovery is exact provided that |T ||Ω| ≤ π/2. This holds for whatever

f ∈ B(Ω) and for whatever values of the noise. ℓ1 minimization also appeared early

in reflection seismology, where people tried to infer a sparse reflection function (in-

dicating meaningful changes between subsurface layers) from bandlimited data. For

example, Taylor, Banks and McCoy and others began proposing the application of

ℓ1 for deconvolving seismic traces [TBM79] and a refined idea better handling the

observation noise was introduced in [SS86]. In the meanwhile, some rigorous theo-

retical results started appearing in the late 1980’s, when Donoho and Stark [DS89]

and Donoho and Logan [DL92] extended Logan’s 1965 result and quantified the abil-

ity to recover sparse reflectivity functions from bandlimited data. With the LASSO

algorithm [Tib96] proposed as a method in statistics for sparse model selection, the

application areas for ℓ1 minimization began to broaden. Basis Pursuit [CDS98] was

proposed in computational harmonic analysis for extracting a sparse signal represen-

tation from highly overcomplete dictionaries, and a related technique known as total

variation minimization was proposed in image processing [GGI+02].

It then came as a breakthrough in [CT05, CT06] and [Don06c] that Basis Pur-

suit method was shown to be able to recover sparse signals with a linear fraction of

non-zero elements. Certainly this requires some conditions on the measurement ma-

trix A stronger than the simple rank conditions mentioned above. For example, the

restricted isometry property (RIP) conditions were given in [CT05, CT06] to guar-

antee that ℓ1 minimization accurately recovers sparse or compressible signals. It is

now known that many kinds of matrices satisfy these conditions with the number of

measurements m = klog (n)O(1) [CT05, CT06], where O(·) is the standard notion for

computational complexity in computer science.
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1.2.2 Greedy Algorithms

The ℓ1-minimization approach provides uniform guarantees over all sparse signals and

also stability and robustness under measurement noises and approximately sparse sig-

nals, but relies on optimization which has relatively high complexity, for example, lin-

ear programming, the complexity of which grows cubic in the problem dimension n. In

many applications which involve very large dimension processing, these approaches

are not optimally fast. The other main approaches use greedy algorithms such as

Orthogonal Matching Pursuit [MZ93, TG], Stagewise Orthogonal Matching Pur-

suit [DTDS07], Regularized Orthogonal Matching Pursuit [NV09], Iterative Thresh-

olding [FR07, BD] and Compressive Sampling Matching Pursuit (CoSaMP) [NT08].

Most of these approaches calculate the support of the signal iteratively. With the sup-

port S of the signal calculated, the signal x is reconstructed from its measurements

y = Ax as x = (AS)
†y, where AS denotes the measurement matrix A restricted to the

columns indexed by S and † denotes the pseudoinverse. Greedy approaches are rela-

tively fast compared with the Basis Pursuit algorithm, both in theory and practice,

but most of them deliver smaller recoverable sparsity compared to ℓ1 minimization

and most of them often come without provable uniform guarantees and stability, with

the exception of [NV09, NT08].

1.2.3 High Dimensional Geometry for Compressive Sensing

The idea of compressive sensing and ℓ1 minimization certainly did not come from

nowhere. The theoretical foundation for compressed sensing is high dimensional ge-

ometry, which is deeply connected with the field of geometric functional analysis. For

example, Kashin in the 1970’s studied how many and what linear measurements (as

described before) need to be taken so that we can recover a vector with a precision ǫ

from the ℓ1 ball,

{x ∈ Rn : ‖x‖1 ≤ 1}, (1.2.7)

in principle (regardless of the computational complexity of the decoding methods).
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After we know the measurement matrix A, we know that all the solutions x to the

underdetermined system lies in an affine space parallel to the null space of A. Then

Kashin’s problem clearly becomes a high dimensional geometrical problem, which

is about how we should select this null space so that the affine space’s intersection

with the ℓ1 ball has minimal radius. The answer to this question was given by

Kashin [Kas77] and later refined by Garnaev and Gluskin [GG]. Their existential

results rely on randomly choosing the linear projections (or measurements) and are

optimal in order of the number of measurements, which is within a multiplicative

factor of what the ℓ1 minimization compressive sensing provides. However, their

results were mostly existential while compressive sensing comes with at least one

practical algorithm, the ℓ1 minimization algorithm, which is nearly optimal over many

classes of signals.

In addition, the deep probabilistic techniques from [Bou89, BT, BT87, BT91],

especially the generic chaining technique developed in [Bou89, Tal96], which controls

the suprema of random processes, were used as important technical tools in verify-

ing that certain measurement matrix ensembles satisfy the conditions for recovering

sparse signals [CT06].

1.3 Applications

Besides its deep roots in fundamental theories, compressive sensing has widespread

applications, both in the past, for example, in seismology and promisingly in the

future. It has already advanced the state of the arts in imaging, MRI (magnetic

resonance imaging), NMR (Nuclear Magnetic Resonance) spectroscopy, radar design,

function approximation, real-numbered error correction, communications and high-

speed analog-to-digital conversion. Several examples of its applications are listed

below.
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1.3.1 Compressive Imaging

Naturally, one of the most prominent applications of compressive sensing is to acquire

images efficiently. The images we are interested in are often sparse over some basis so

that they fit just into the framework of compressive sensing. Today’s digital cameras

capture images with one sensor for each pixel and acquire every pixel in an image

before compressing that captured data and storing the compressed image. Due to

the use of silicon, everyday digital cameras today can operate in the megapixel range.

Consistent with the motivation for compressive sensing, a natural question asks why

we need to acquire this many data, just to throw most of it away immediately.

In the newly developed compressive imaging, the sensors directly acquire random

linear measurements of an image while avoiding using sensors for each pixel. Compres-

sive sensing provides a guideline framework for implementing such an idea, including

designing the measurement methods and the decoding algorithms. Researchers have

worked on the construction of such systems, for example, in a prototype “single-

pixel” compressive sampling camera [WLD+06]. This camera consists of a digital

micromirror device (DMD), two lenses, a single photon detector and an analog-to-

digital (A/D) converter. The first lens focuses the light onto the DMD. Each mirror

on the DMD is for a pixel in the image, and can be tilted toward or away from the

second lens. This operation is analogous to creating inner products with random

vectors. This light is then collected by the lens and focused onto the photon detector

where the measurement is computed. This optical computer computes the random

linear measurements of the image in this way and passes those to a digital computer

that reconstructs the image.

In a very different style from the traditional camera, this camera utilizes only one

photon detector. One key highlight is that the single-pixel camera can operate over a

much broader range of the light spectrum than traditional cameras that use silicon.

Over some light spectrum, the sensors can be very expensive. A digital camera made

of silicon to capture infrared images would be very complicated and costly if it is built

in a traditional way.
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In medical imaging, in particular in magnetic resonance imaging (MRI) which

sample Fourier coefficients of an image, compressive sensing finds another important

application. MR images are implicitly sparse: some MR images such as angiograms

are sparse in their actual pixel representation, whereas more complicated MR im-

ages are sparse over some other basis, such as the wavelet Fourier basis. As we all

know, MRI in general is very time costly, as the speed of data collection is limited by

physical and physiological constraints. Thus it is very helpful to reduce the number

of measurements collected without sacrificing quality of the MR image, or said in

another way, increasing the recovered image quality with the same number of mea-

surements. In fact, compressive MRI is a very active topic in compressive sensing and

has attracted a large number of researchers in this field. Many compressive sensing

algorithms have been specifically designed for MRI application [LDP07].

1.3.2 Radar Signal Processing

A traditional radar system transmits some kind of pulse form, and then uses a matched

filter to correlate the signal received with that pulse. The receiver then uses a pulse

compression system together with a high-rate analog-to-digital (A/D) converter for

signal processing. This conventional approach is not only complicated and expensive,

but also the resolution in traditional radar system is limited by the radar uncertainty

principle. Compressive Radar Imaging discretizes the time-frequency plane into a grid

and treats each possible target scene as a matrix. If the number of targets is small

enough, then the occupations of the grids will be sparse, and compressive sensing

techniques can be used to recover the target scene [HS07].

1.3.3 Biology

Compressive sensing can also be used for efficient and low-cost sensing in the area

of biological applications. In fact, the applications of Group Testing, an idea closely

related to compressive sensing, was used as early as in World War II to test soldiers

for syphilis [WNB06]. Because the test (or sensing) for syphilis antigen in a blood
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sample is expensive, the method was to group people and test the entire pool of blood

samples for this group. Only if syphilis antigen was found in a pool of samples, further

testings into the subgroups of that group would then take place.

A more modern example of compressive sensing idea in biology is for comparative

DNA Microarray [VPMH, MBSR]. Microarrays (DNA, protein, etc.) are massively

parallel affinity-based biosensors capable of detecting and quantifying a large number

of different genomic particles simultaneously. Generally, DNA microarrays comprising

tens of thousands of probe spots are being used to test a multitude of targets in a

single experiment. In conventional microarrays, each spot contains a large number

of copies of a single probe designed to capture a single target, and hence collects

only a single data point. But in comparative DNA microarray experiments, only a

fraction of the total number of genes represented by the reference sample and the

test sample is differentially expressed. So we can use the compressive ideas to create

the so-called compressed microarrays [VPMH], wherein each spot contains copies of

several different probes and the total number of spots is potentially much smaller

than the number of targets being tested.

Gene expression studies also provide examples of compressive sensing. For exam-

ple, one would like to infer the gene expression level of thousands of genes from only

a limited number of observations [Can06].

1.3.4 Error Correcting

Compressive sensing also has impacts on the coding theory and practices and can

be seen as a dual to the error correction problem over the real number field. Error

correction problem is a classic problem in coding theory: when signals are sent from

the sender to the receiver in communications, the signal is usually corrupted by

errors. It is thus interesting to see how to design system and decoding algorithms to

correct the errors. Over the real field, because the errors usually occur in few places,

sparse recovery can be used to reconstruct the signal from the corrupted encoded

data [CT05]. What is novel here is that this error correction problem is over the real
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field, while on the contrary, traditional coding theory usually assumes data values over

the finite field. Indeed there are many practical applications for encoding over the

continuous reals. In digital communications, for example, one wishes to protect results

of onboard computations that are real-valued. These computations are performed by

circuits that experience faults caused by effects of the outside world. This and many

other examples are difficult real-world problems of error correction.

The error correction problem can be formulated as follows, from where we can also

see the close relationship between coding theory and compressive sensing. Consider

a m-dimensional input vector f ∈ Rm, the “plaintext,” that we wish to transmit

reliably to a remote receiver. We transmit the n-dimensional coded text, namely

“ciphertext,” z = Bf where B is the n×m coding matrix, or the linear code. In the

case of no noise, it is clear that if the linear code B has full rank, we can recover the

input vector f from the ciphertext z. But as is often the case in practice, we consider

the setting where the ciphertext z has been corrupted by sparse noises (similar to

the finite field coding literature, a few bit errors). We then wish to reconstruct the

input signal f from the corrupted received codeword z′ = Bf + e where ε ∈ Rn is the

sparse error vector. To realize this in the usual compressed sensing setting, consider

a matrix A whose null-space is the range of B. Apply A to both sides of the equation

z′ = Bf + ε to get Az′ = Aε. Set y = Bz′ and the problem becomes reconstructing

the sparse vector ε from its linear measurements y. Once we have recovered the error

vector ε, we have access to the actual measurements Af and, since A is full rank, can

recover the input signal f . For the details, please refer to [RIC, CT05].

1.4 Some Important Issues

There are many interesting theoretical and practical issues that merit attention in

the field of compressive sensing.
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1.4.1 Explicit Constructions of Sensing Matrices

There are several classes of random matrices used nowadays in compressive sensing,

for example, random Gaussian matrices, random Bernoulli matrices, or random mi-

nors of a discrete Fourier transform matrix, but they are all probabilistic in nature;

in particular, these randomly constructed matrices are not perfectly guaranteed to

actually produce a “good” sensing matrix, although in many cases the failure rate

can be proven to be exponentially small in the size of the matrix. Moreover, there

were no fast algorithms known to test whether any given matrix is a good measure-

ment matrix, for example, satisfying the RIP condition [Tao07]. It is thus interesting

to find a deterministic construction which can give and test “good” sensing matri-

ces efficiently. In analogy with error-correcting codes, it may be that algebraic or

number-theoretic constructions may give such deterministic “good” matrices; some

efforts have been made towards this end, for example, in [DeV07] where determinis-

tic sensing matrices with suboptimal sparsity parameters have been given. However,

deterministic explicit efficient constructions of sensing matrices, which offers stable

recovery of sparse signals with sparsity scaling linearly with the problem dimension,

were elusive.

1.4.2 Efficient Decoding Algorithms with Provable Perfor-

mance Guarantees

In the compressed sensing literature, there have been many numerically feasible de-

coding algorithms to the sparse recovery problem from compressed observations.

One major approach, Basis Pursuit, relaxes the ℓ0-minimization problem to an ℓ1-

minimization problem. The ℓ1-minimization approach provides uniform guarantees

and stability, but relies on optimization methods for ℓ1-minimization, for example,

linear programming. These algorithms are not optimally fast (generally not linearly

bounded in the problem dimension). One could also use other greedy algorithms

such as Orthogonal Matching Pursuit [MZ93, TG], Regularized Orthogonal Match-
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ing Pursuit [NV09], and Compressive Sampling Matching Pursuit (CoSaMP) [NT08].

These algorithms can provide similar uniform guarantees and stability results as the

Basis Pursuit algorithm, but the complexity of these algorithms are growing super-

linearly in the problem dimension. It would be interesting to design sensing matrices

and decoding algorithms which are able to provide provable strong sparsity recov-

ery performances while having low computational complexity, hopefully linear in the

problem dimension.

1.4.3 Performance Analysis of Sparse Signal Recoveries

There are many algorithms for sparse signals recoveries, for example, the ℓ1-minimization

algorithm. It is very important to understand how well these algorithms perform in

recovering sparse signal recoveries, which is often characterized by the recoverable

sparsity threshold. Thus what is in particular interesting then is to characterize the

recoverable sparsity thresholds or sharp performance bounds for different decoding

algorithms and measurement matrices. When the measured signals are not exactly

sparse and the measurement results are corrupted by noises, we are more interested

in analyzing the stability and robustness of these sparse signal recovery algorithms

and how they interact with the signal sparsity. The analysis made for sparse signal

recovery is often tightly connected to fundamental probabilistic or geometric phe-

nomena and problems in high dimensional geometry, thus often advancing the fruit-

ful interactions between signal processing, optimization theory and high dimensional

geometrical and probabilistic analysis.

1.4.4 More than Sparse Vectors

One may naturally wonder whether compressive sensing principle only applies to

recovering sparse vectors. The answer is certainly no because sparse vectors are

not the only information objects which have structures even though their ambient

dimension might be large. For example, the matrices we run into in applications may

have low rank. It is thus possible to recover the information objects (e.g., matrices
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and information tables). Some results have been obtained in this direction [RFP,

CR09, RXH08a]. All the important technical challenges with compressive sensing

also appear in these more general problems.

1.5 Contributions

The contributions of this thesis are closely related to addressing the problems of how

to design these linear measurements, how to construct the original high-dimensional

signals efficiently and accurately, and how to analyze the sparse signal recovery algo-

rithms.

1.5.1 Expander Graphs for Explicit Sensing Matrices Con-

structions

As we mentioned before, explicitly constructible measurement matrices providing per-

formance guarantees and linearly scaling sparsity recoverability were elusive and the

ℓ1 minimization methods are very demanding in computational complexity for prob-

lems with very large dimension. In chapter 2, we proposed and discussed a compres-

sive sensing scheme with deterministic performance guarantees using deterministic

explicitly constructible expander-graphs-based measurement matrices. Moreover, we

showed that sparse signal recoveries can be achieved with linear complexity. This is

the first of such a kind of compressive sensing scheme with linear decoding complex-

ity, deterministic performance guarantees and deterministic explicitly constructible

measurement matrices.

1.5.2 Grassmann Angle Analytical Framework for Subspaces

Balancedness

ℓ1 minimization algorithms generally give better sparsity recovery performances than

known greedy decoding algorithms in compressive sensing. In chapter 3, starting from
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a necessary and sufficient null-space condition for achieving a certain signal recovery

accuracy, we reduce the analysis of sparse signal recovery robustness to investigating

a linear subspace balancedness property. Using high-dimensional geometry, we give

a unified null-space Grassmann angle-based analytical framework for analyzing the

linear subspace property. This new framework gives sharp quantitative tradeoffs

between the signal sparsity and the recovery accuracy of the ℓ1 optimization for

approximately sparse signals.

1.5.3 Weighted ℓ1 Minimization Algorithm

The conventional approach to compressed sensing assumes no prior information on

the unknown signal and a plain ℓ1 minimization was used. In chapter 4, we consider

a particular model for the sparse signal that assigns a probability of being zero or

nonzero to each entry of the unknown vector. The standard compressed sensing model

is therefore a special case where these probabilities are all equal.

We proposed to use weighted ℓ1 minimization algorithm for signal recovery under

this model. Assuming that the Gaussian measurement matrix ensemble is used,

using the null-space Grassmann angle-based analytical framework, we are able to

characterize the optimal recoverable sparsity thresholds, the optimal weights or the

smallest number of measurement using weighted ℓ1 minimization algorithms under

the prior information.

1.5.4 An Analysis for Iterative Reweighted ℓ1 Minimization

Algorithm

Even though iterative reweighted ℓ1 minimization algorithms or related algorithms

[CWB08] have been empirically observed to boost the recoverable sparsity thresholds

for certain types of signals, no rigorous theoretical results have been established to

prove this fact. In chapter 5, we try to provide a theoretical foundation for analyzing

the iterative reweighted ℓ1 algorithms. Our idea is that some of the support set
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information was able to be obtained in the process of iterations and this information

can be utilized in the weighted ℓ1 minimization to boost the sparse signal recovery.

In particular, we showed that for a nontrivial class of signals, the iterative reweighted

ℓ1 minimization can indeed deliver recoverable sparsity thresholds larger than the ℓ1

minimization. Again, our results are based on the null-space Grassmann angle-based

analytical framework and the Gaussian measurement matrix ensemble.

1.5.5 Null Space Conditions and Thresholds for Rank Mini-

mization

Evolving from compressive sensing problems, we turned our attention to recovering

matrices of low rank from compressed linear measurements in chapter 6.

Minimizing the rank of a matrix subject to constraints is a challenging problem

that arises in many applications in machine learning, control theory, and discrete

geometry. This class of optimization problems, known as rank minimization, is NP-

HARD, and for most practical problems there are no efficient algorithms that yield

exact solutions. A popular heuristic replaces the rank function with the nuclear

norm—equal to the sum of the singular values—of the decision variable and has been

shown to provide the optimal low rank solution in a variety of scenarios.

In chapter 6, we analyze the practical performance of this heuristic for finding the

minimum rank matrix subject to linear constraints. Our starting point is the charac-

terization of a necessary and sufficient condition that determines when this heuristic

finds the minimum rank solution. We then obtain conditions, as a function of the

matrix dimensions and rank and the number of constraints, such that our conditions

for success are satisfied for almost all linear constraint sets as the matrix dimen-

sions tend to infinity. Finally, we provide empirical evidence that these probabilistic

bounds provide accurate predictions of the heuristic’s performance in non-asymptotic

scenarios.
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Chapter 2

Expander Graphs for Compressive

Sensing

As discussed, compressive sensing is an emerging technology which can recover a

sparse signal vector of dimension n via a much smaller number of measurements than

n. However, on the encoding side, there were no explicit constructions of “good”

measurement matrices which come with guaranteed performances under computa-

tionally feasible and robust decoding methods [Tao07]. On the decoding side, the

known decoding algorithms have relatively high recovery complexity, such as O(n3),

or can only work efficiently when the signal is super sparse, sometimes without deter-

ministic performance guarantees. In this chapter, we propose a compressive sensing

scheme using measurement matrices constructed from expander graphs. It is the first

of its kind that comes with explicit measurement matrix constructions, deterministic

decoding performance guarantees with the capability of recovering signals with linear

sparsity, where the number of non-zero elements k grows linearly with n, and, at the

same time, with linear (O(n)) decoding complexity. When the number of nonzero

elements k does not grow linearly with the dimension n, similar to the ℓ1 minimiza-

tion using dense random matrices, this scheme can exactly recover any k-sparse signal

using only O(k log(n/k)) measurements.

Our main approach is to construct measurement matrices from the adjacency

matrix of an unbalanced expander graph. We further show that the expander graph

based scheme is applicable to approximately sparse signals and robust to measurement
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noise. Simulation results are given to show the performance and complexity of the

new method and we also compare our work with recent works on expander graph

based compressive sensing schemes.

2.1 Introduction

Compressive sensing has recently received a great amount of attention in the applied

mathematics and signal processing community. The theory of compressive sensing,

as developed over the past few years, attempts to perform sampling and compression

simultaneously, thus significantly reducing the sampling rate. What allows this theory

is the fact that, in many applications, signals of interest have a “sparse” representation

over an appropriate basis. In fact, compressive sampling is intimately related to

solving underdetermined systems of linear equations with sparseness constraints. The

work of Candès, Romberg and Tao [CRT06, CT06] and Donoho [Don06c] came as a

major breakthrough in that they rigorously demonstrated, for the first time, that,

under some very reasonable assumptions, the solution could be found using simple

linear programming—thus rendering the solution practically feasible. The method is

essentially constrained ℓ1 minimization, which for a long time was empirically known

to perform well for finding sparse solutions and has been known in the literature as

“Basis Bursuit” [Che95, CDS98]. Interestingly, the area of compressive sensing is

closely connected to the related areas of coding [CT05], high-dimensional geometry

[DT05a], sparse approximation theory [Don06a], data streaming algorithms [CM06,

GSTV05] and random sampling [GGI+02]. Furthermore, promising applications of

compressive sensing are emerging in compressive imaging, medical imaging, sensor

networks and analog-to-digital conversion [Can06].

While solving the linear program resulting from ℓ1 optimization can be done in

polynomial-time (often O(n3), where n is the number of unknowns), this may still be

infeasible in applications where n is quite large (e.g., in current digital cameras the

number of pixels is of the order n = 106 or more) [CR]. Therefore there is a need for

methods and algorithms that are more computationally efficient. Also, in many of
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the previous works, random measurement matrices are used where a successful signal

recovery can not be always guaranteed although it succeeds with a high probability.

So it is also desirable to have an explicit construction of a measurement matrix for

compressive sensing [Can06, DeV07].

2.1.1 Related Works

Recently, some significant progress has been made in addressing these two problems

for compressive sensing. Orthogonal Matching Pursuit (OMP) algorithms can be used

as alternative recovery algrithms which require O(nk2) computations [TG], where k

is the number of non-zero entries in the unknown vector; however, this may also be

too high a complexity. Stage-wise OMP [DTDS07] has recently been proposed that

solves the problem in O(n logn) computations. In [CM06] a certain sparse coeffi-

cient matrix has been used, along with group testing, that yields an algorithm with

O(k log2 n) complexity; however, this comes at the expense of more measurements—

O(k log2 n) measurements, as opposed to the O(k logn) measurements required of the

aforementioned methods. Chaining pursuit has been introduced in [GSTV05], which

has complexity O(k log2 n log2 k) and also requires O(k log2 n) measurements. From

the number of measurements needed, we can see that both the group testing methods

[CM06] and the chaining pursuit methods only work in the “supersparse” case, i.e.,

when the ratio k/n is very small—when k/n is increased, an enormous number of

measurements is required, as noted in [SBB06a]. Motivated by low-density parity-

check codes (LDPCs) a method called sudocodes has been proposed in [SBB06b] to

recover sparse signal with high probability, which requires O(k log n log k) recovery

complexity, yet only O(k logn) measurements. The Homotopy methods are able to

recover the sparse solutions by reducing the computational complexity from O(n3)

to O(nk2) [DT06a]. In [Fuc04], it was shown that by using the Vandermonde mea-

surement matrix and linear programming, one can recover k nonzero elements using

approximately 2k measurements when the nonzero elements are restricted to positive

numbers. In [AT07], motivated by Reed-Solomon codes rather than LDPC codes as
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in [SBB06b], a scheme of recovery complexity O(k2) is proposed to recover any signal

vector with k nonzero elements using the Vandermonde measurement matrix. List

decoding was proposed for similar schemes in [PH08].

With the exception of the method in [DeV07], the group testing methods in [CM06]

and the Vandermonde measurement matrix-based methods in [Fuc04, AT07], all the

results described above hold with “high probability” either over the random mea-

surement matrix or over some assumptions on the input signals [SBB06b]. While the

methods in [DeV07, CM06] can guarantee sparse signal recovery deterministically

with explicit measurement matrices, they suffer from the fact that they only work in

the supersparse case where k can not be kept as a constant fraction of n. But recov-

ering a constant fraction of n non-zero elements via a small number of measurements

is of great practical interests [CT05]. For this reason, in this chapter, we will allow

k to grow linearly in n, i.e., k = Θ(n). In this sparsity regime, the complexity of

the methods of [Fuc04, AT07] are of order O(n3) and O(n2) respectively, which will

still be impractical for problems of large dimensions. Sometimes, it is also required

that the recovery schemes are applicable to approximately sparse signals and robust

to the noise in the measurements and numerical errors.

2.1.2 Contributions

In this chapter, we propose a new scheme for compressive sensing with deterministic

performance guarantees based on bipartite expander graphs and show that even with

k = Θ(n), the recovery complexity of our algorithm is O(n) while saving a constant

fraction of n measurements. The new scheme thus pushes the performance and com-

plexity bounds of compressive sensing to be asymptotically linear in n at the same

time. By the time that this result was published [XH07a, XH07b], this had not been

achieved by other methods. Bipartite expander graphs [CRVW02, SS96] are a certain

class of graphs whose existence has been known for quite some time and whose recent

explicit constructions are considered to be a major feat [CRVW02]. In some sense our

approach is closest to that of [SBB06b], which is inspired by LDPCs, certain classes of
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which are related to expander graphs [SS96], but in our works we provide performance

guarantees. Preliminary analytic results further show the feasibility of application of

the new method to approximately sparse signals and the noisy measurement cases.

When the number of nonzero elements k does not grow linearly with the dimension n,

similar to the ℓ1 minimization using dense random matrices, this scheme can exactly

recover any k-sparse signal using only O(k log(n/k)) measurements.

2.1.3 Recent Developments

After the publication of our works [XH07a, XH07b], an explicit construction for com-

pressive sensing matrices was given in [Ind08] which used extractors. But the con-

struction in [Ind08] only works for recovering sparse signals with sublinear sparsity.

In a more recent very interesting work [BGI+08], it was shown that the expander

graph-based measurement matrices can work with performance guarantees under the

ℓ1 minimization methods. Indyk and Ruzic [IR08], and Berinde, Indyk and Ruzic

[BIR08] proposed new compressed sensing algorithms based on the properties of the

expander graphs. Those algorithms are similar to the CoSaMP algorithm [NT08],

from the orthogonal matching framework, and are designed to be robust against

more general noise and compressible signals; however, this comes with a cost on com-

plexity of the algorithm and its analysis. The algorithm that we proposed in this

chapter is much simpler, and also the analysis on why the algorithm works is only

based on the unique neighborhood properties of the expander graphs. In contrast, the

other algorithms require expander graphs with stronger expansion and a complicated

preprocessing step, and the analysis is based on more involved properties of expander

graphs with larger expansions.

The rest of this chapter is organized as follows. In the next section we review

the background and give the problem formulation. We introduce expander graphs in

Section 2.3 and show how they can be used to develop deterministic methods with

O(n) recovery complexity. The analysis of the new compressive sensing scheme for

approximately sparse signals is given in Section 2.4. RIP-1 property and full recovery
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property are described in Section 2.6. Optimized expander graphs are used in Section

2.7 to reduce the number of iterations to O(k). Simulation results are given in the

section 2.8.

2.2 Background and Problem Formulation

In compressive sensing the starting point is an n-dimensional signal vector which

admits a sparse representation in some particular basis. Since the basis is not of

primary concern to us, we may, without loss of generality, assume that it is the

standard basis. In other words, we shall assume that we have an n-dimensional

vector x ∈ Rn, such that no more than k entries are non-zero. Clearly, k < n. Here

we assume k can be up to a constant fraction of n, since this case is of great practical

interest [CT05].

The vector x itself is not directly observable. What is observable aremeasurements

of x that correspond to linear combinations of the form

n∑

j=1

ajxj . (2.2.1)

We often have control over what measurements to employ, and this may turn out to

help us. In any event, assuming we have m (k < m < n) measurements of this form,

we may collect them in a m× n matrix A so that

y = Ax, (2.2.2)

or, in other words,

yi =

n∑

j=1

Aijxj , i = 1, . . . , m. (2.2.3)

The system of equations (2.2.2) is, of course, underdetermined. However, the

fact that a sparse solution exists, allows us to be able to find the solution. It was a

significant result when it was rigorously shown by Candès, Romberg and Tao [CRT06,
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CT06] and Donoho [Don06c] that, under the sparsity assumption, the solution could

be found via solving the ℓ1 optimization problem

min
x,Ax=y

‖x‖1, (2.2.4)

where ‖x‖1 =
∑n

i=1 |xi| is the ℓ1-norm of the vector x. The upshot is that something

that appeared to be practically infeasible can now be potentially computed. For

example, in [CT05], it was shown that if the measurement matrix A satisfies the

restricted isometry conditions, then the ℓ1 minimization can recover a vector with up

to k nonzero elements, where k is a constant fraction of n.

In spite of the recent developments, one unanswered question is whether we can

develop compressive sensing schemes and recovery algorithms with complexity O(n)

even when k = Θ(n)? If yes, can one explicitly develop constructions of measurement

matrices that deterministically guarantee finding the optimal solution for all signal

instances in such schemes, provided the vector x is sparse enough? We shall presently

answer both questions in the affirmative and discuss all these developments in the

next section.

2.3 Expander Graphs and Efficient Algorithms

2.3.1 Expander Graphs

Expander graphs can be defined for arbitrary graphs, however, here we shall restrict

ourselves to bipartite graphs. For a bipartite graph, we have two types of nodes.

Following coding theory parlance, we will call one type left variable nodes of which

there are n and which correspond to the entries of x, and right parity check nodes of

which there are m and which correspond to the entries of y (or the measurements).

We assume that n ≥ m. In a bipartite graph, connections within the variable nodes

and within the parity check nodes are not allowed. The existence of edges between

the different variables and parity check nodes are represented by a m× n matrix A.
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In particular,

Aij =







1 if right node i connected to left node j

0 otherwise
(2.3.1)

for i = 1, . . . , m and j = 1, . . . , n. In what follows we shall use the matrix thus

obtained from a suitably chosen bipartite graph as the measurement matrix for com-

pressive sampling.

...1

2

3

n

1

2

m

Figure 2.1: A bipartite graph

A bipartite graph will be said to have regular left degree c if the number of edges

emanating from each variable node is c.

Definition 2.3.1 (Expander). A bipartite graph with n variable nodes, m parity

check nodes and regular left degree c will be called a (αn, βc) expander, for some

0 < α, β < 1, if for every subset of variable nodes V with cardinality less than or

equal to αn, i.e., |V| ≤ αn, the number of neighbors connected to V is larger than

βc|V|, i.e., |N (V)| > βc|V|, where N (V ) is the set of neighbors of V.

Here we assume that each righthand side node also has a regular degree d, where

cn = md. The existence of expander graphs has been known for quite some time

since the work of Pinsker and Bassylago [BP73], who used probabilistic arguments to

prove their existence. Expander graphs arise in many applications: fast, distributed

routing algorithms [PU89], LDPC codes [SS96], storage schemes [UW87], and proof

systems [BSW99], to name a few. An explicit construction of constant regular left

degree lossless (with β arbitrarily close to 1) expander graph is recently given in
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[CRVW02]. An existence result, which holds for the setting we are interested in, is

the following [BM01]:

Theorem 2.3.2. Let 0 < β < 1 and the ratio r = m
n
be given. Then for large enough

n there exists a regular left degree c and a regular right degree d bipartite expander

(αn, βc) for some 0 < α < 1 and some constant (not growing with n) c.

2.3.2 The Main Algorithm

We are now in a position to describe our main algorithm. We begin with β = 3
4
and

some fixed r = m
n
. (Thus, our number of measurements is m = nr. We can use the

construction of [CRVW02], or any other recent one, to construct an expander with

some 0 < α < 1 and constant c.) Denote the resulting measurement matrix by A. In

particular, assuming x ∈ Rn is sparse with at most k nonzero entries, we perform the

m measurements

y = Ax. (2.3.2)

We will assume that

k ≤ αn

2
. (2.3.3)

We need one further notation: given an estimate x̂ of x, we define as the gap in

the i-th equation the quantity

gi = yi −
n∑

j=1

Aijx̂j . (2.3.4)

Algorithm 1 is incredibly simple. What is remarkable about it is that, in step 2 of

the algorithm, if y 6= Ax̂ one can always find a variable node with the property that

c′ > c
2
among the measurement equations it participates in have identical nonzero

gap g. Furthermore, the algorithm terminates in at most ck steps. We proceed to

establish these two claims via a series of lemmas. At any step of the algorithm, let S
denote the set

S = {j|x̂j 6= xj}. (2.3.5)
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Algorithm 1

1: Start with x̂ = 0n×1.
2: if y = Ax̂ then

3: declare x̂ the solution and exit.
4: else

5: find a variable node, say x̂j , such that of the c measurement equations it par-
ticipates in c′ > c

2
of them have an identical nonzero gap g.

6: Set x̂j = x̂j + g. Go to 2.
7: end if

Lemma 2.3.3 (Initialization). When x̂ = 0 ,y 6= Ax̂ and k ≤ αn
2
, there always exists

a variable node such that c′ > c
2
of the measurement equations it participates in has

identical nonzero gap g.

Proof: Initially since x̂i = 0, the set S has cardinality |S| = k ≤ αn/2. We can

therefore apply the property of the expander with β = 3
4
to S to conclude that

|N (S)| > 3

4
c |S| . (2.3.6)

Let us now divide the set N (S) into two disjoint sets: Nunique(S) comprised of those

elements of N (S) that are connected to only one edge emanating from S and N>1(S)
which are the remaining elements of N (S) that are connected to more than one edges

emanating from S. Clearly, (2.3.6) implies

|Nunique(S)| + |N>1(S)| >
3

4
c |S| . (2.3.7)

Counting the edges emanating from S leads to

|Nunique(S)| + 2 |N>1(S)| ≤ c |S| , (2.3.8)

since the total number of edges is c |S| and since some of the nodes in N>1(S) may

have more than 2 edges connecting to S. Eliminating |N>1(S)| from the inequalities

(2.3.7) and (2.3.8) yields

|Nunique(S)| >
c

2
|S| . (2.3.9)
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The above inequality implies that there must be at least one element of S that is

connected to c′ > c
2
elements of Nunique(S). But since this is the only element of

S connected to these c′ measurements, and since the Aij’s are all 1 for the edges

connecting these nodes, they must all have the same nonzero gap g.

We now need another definition. At any step of the algorithm, let T denote the

set

T =

{

i|yi 6=
n∑

j=1

Aijxj

}

. (2.3.10)

Lemma 2.3.4 (Decrease in |T |). After the first step of the algorithm, the cardinality

of the set T decreases at least by 1.

Proof: According to the proof of Lemma 2.3.3, we have found a variable node with

c′ > c
2
measurements with identical nonzero gap g. Setting x̂j = x̂j + g sets the gap

on these c′ equations to zero. However, it may make some zero gaps on the remaining

c− c′ measurements nonzero. Nonetheless, since c′− (c− c′) = 2c′− c ≥ 1 (note that

c′ − c/2 ≥ 1
2
) the cardinality of T decreases at least by one.

We can now proceed to the main induction argument.

Lemma 2.3.5 (Induction). Consider a regular left degree c bipartite graph with n

variable nodes and m parity check nodes. Assume further that the graph is an (αn, 3
4
c)

expander and consider Algorithm 1. If for all iterations of the algorithm up to step l:

(1)
∣
∣S(l′)

∣
∣ < αn, l′ = 1, . . . , l, where S(l′) is the same definition as in (2.3.5), except

for at the l′-th iteration.

(2) There always exists a variable node such that c′ > c
2
of the measurement equa-

tions it participates in have identical nonzero gap g.

(3)
∣
∣T (l′)

∣
∣ ≤

∣
∣T (l′−1)

∣
∣ − 1, for l′ = 1, . . . , l , where T (l′) is the same as in the

definition (2.3.10), except at the l′-th iteration.

Then at the (l + 1)-th iteration we have
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(i)
∣
∣S(l+1)

∣
∣ < αn

(ii) If y 6= Ax̂, there always exists a variable node such that c′ > c
2
of the measure-

ment equations it participates in have identical nonzero gap g.

(iii)
∣
∣T (l+1)

∣
∣ ≤

∣
∣T (l)

∣
∣− 1

Proof: Let us begin with claim (ii). The argument is very similar to that of the

proof of Lemma 2.3.3, which we essentially repeat here. Due to assumption (1) in

the lemma,
∣
∣S(l)

∣
∣ < αn. Therefore we can apply the property of the expander with

β = 3
4
to S(l) to conclude that

∣
∣N (S(l))

∣
∣ >

3

4
c
∣
∣S(l)

∣
∣ . (2.3.11)

As before, we divide the set N (S(l)) into two disjoint sets: Nunique(S(l)) comprised of

those elements of N (S(l)) that are connected to only one edge of S(l) and N>1(S(l))

which are the remaining elements of N (S(l)) that are connected to more than one

edges emanating from S(l). Clearly, (2.3.11) implies

∣
∣Nunique(S(l))

∣
∣+
∣
∣N>1(S(l))

∣
∣ >

3

4
c
∣
∣S(l)

∣
∣ . (2.3.12)

Counting the edges emanating from N (S(l)) leads to

∣
∣Nunique(S(l))

∣
∣ + 2

∣
∣N>1(S(l))

∣
∣ ≤ c

∣
∣S(l)

∣
∣ , (2.3.13)

since the total number of edges is c
∣
∣S(l)

∣
∣ and since some of the nodes in N>1(S(l))

may have more than 2 nodes emanating from them. Eliminating
∣
∣N>1(S(l))

∣
∣ from the

inequalities (2.3.12) and (2.3.13) yields

∣
∣Nunique(S(l))

∣
∣ >

c

2

∣
∣S(l)

∣
∣ , (2.3.14)

which implies that there must be at least one element of S(l) that is connected to

c′ > c
2
elements of Nunique(S(l)). But since this is the only element of S(l) connected
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to these c′ nodes, and since the Aij’s are all 1 for the edges connecting these nodes,

they must all have the same nonzero gap g.

This establishes (ii). Establishing (iii) is similar to the proof of Lemma 2.3.4. We

have already found a variable node with c′ > c
2
measurements with identical nonzero

gap g. Setting x̂
(l+1)
j = x̂

(l)
j + g sets the gap on these c′ equations to zero. However, it

may make some zero gaps on the remaining c−c′ measurements nonzero. Nonetheless,

since c′ − (c − c′) = 2c′ − c ≥ 1 (note that c′ − c/2 ≥ 1
2
), the cardinality of T (l+1)

decreases at least by one compared to T (l).

This establishes (iii). We finally turn to (i). Note that, since in each iteration of

Algorithm 1 we change the value of only one entry of x̂, the cardinality of the set

S(l′) can change at most by one. Since, due to assumption (1) of the lemma we have

S(l) < αn, (iii) can only be violated if S(l+1) = αn. Let us assume this and arrive at

a contradiction. Note that we can apply the property of the expander with β = 3
4
to

the set S(l+1) to obtain
∣
∣N (S(l+1))

∣
∣ >

3

4
cαn. (2.3.15)

Once again, we divide the set N (S(l+1)) into two disjoint sets: Nunique(S(l+1)) and

N>1(S(l+1)). Clearly, (2.3.15) implies

∣
∣Nunique(S(l+1))

∣
∣ +
∣
∣N>1(S(l+1))

∣
∣ >

3

4
cαn. (2.3.16)

Counting the edges emanating from N (S(l+1)) leads to

∣
∣Nunique(S(l+1))

∣
∣+ 2

∣
∣N>1(S(l+1))

∣
∣ ≤ cαn (2.3.17)

since the total number of edges is cαn and since some of the nodes in N>1(S(l)) may

have more than 2 nodes emanating from them. (2.3.16) and (2.3.17) imply

∣
∣Nunique(S(l+1))

∣
∣ >

c

2
αn. (2.3.18)

Since the nodes in Nunique(S(l+1)) are connected to unique elements in S(l+1), we
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conclude that Nunique(S(l+1)) ⊆ T (l+1). This in turn implies that

∣
∣T (l+1)

∣
∣ >

c

2
αn. (2.3.19)

Note, however, that since k ≤ αn/2 and the left degree of the graph is c, at the

beginning of the algorithm we have
∣
∣T (0)

∣
∣ ≤ c

2
αn. However, from assumption (3) and

property (iii), which we just established, we know that
∣
∣T (l′)

∣
∣ is a decreasing function

for all l′ ≤ l + 1. Therefore,

∣
∣T (l+1)

∣
∣ <

∣
∣T (0)

∣
∣ ≤ c

2
αn, (2.3.20)

which contradicts (2.3.19). This establishes (i) and hence all claims of the lemma.

The above sequence of lemmas establishes the following main result regarding

Algorithm 1.

Theorem 2.3.6 (Validity of Algorithm 1). Consider a regular left degree bipartite

graph with n variable nodes and m parity check nodes. Assume further that the

graph is an (αn, 3
4
c) expander and consider its corresponding A matrix. Let x ∈ Rn

be an arbitrary vector with at most k ≤ αn/2 nonzero entries and consider the m

measurements

y = Ax. (2.3.21)

Then Algorithm 1 finds the value of x in at most kc ≤ c
2
αn iterations. If we assume

that the bipartite graph has a regular right degree, we will have a recovery algorithm

with complexity linear in n.

Proof: The theorem has essentially been proven in Lemmas 2.3.3, 2.3.4 and 2.3.5. We

essentially have shown that at each iteration the cardinality of the set T (l) decreases

by at least one. Since the initial cardinality is at most kc, T (l) will be empty after at

most kc steps. But, of course, an empty T (l) implies that the algorithm has found x

(This is because in this process S is always smaller than αn and we can see that a non-

zero vector x′ satisfying Ax′ = 0 must have larger than αn nonzero elements following



31

essentially the same arguments as in the proof of Lemma 3). If the bipartite graph

has a regular right degree, then in each iterative step of algorithm 1, we only need a

fixed number of operations to update the variable nodes and its related measurements

by keeping track of the list of variable nodes.

Remarks

Here we can allow for k = Θ(n) nonzero entries in x since α is a constant (not going to

zero as n grows) which depends on the expander graph. The number of measurements

is m = rn, where r can take any value from (0, 1) and determines the value of α.

2.4 Expander Graphs for Approximately Sparse

Signals

In this section, we will give preliminary analytic results on expander graph-based

compressive sensing for approximately sparse signals. In an approximately sparse

signal vector, only a few signal entries are significant and the remaining signal entries

are near zero but possibly not exactly zero. In practice, the approximately sparse

model is a more realistic model for signals. Here we use the same measurement

matrix as in the previous section except that we apply it to approximately sparse

signals. We also assume a two-level (“near-zero” and “significant”) signal model for

the approximately sparse signal vector. (Of course, this is a coarse signal model,

but it captures the nature of approximately sparse signal vectors.) The entries of the

“near-zero” level in the signal vector are near-zero elements taking values from the set

[−λ,+λ] while the “significant” level of entries take values from the set {x|(L−∆) ≤
|x| ≤ (L+∆)}, where L > ∆ and L > λ. Let ρ = max{2∆, λ} and d be the regular

right check node degree. Now we apply the following signal recovery algorithm to y

with the measurement matrix A.

The following theorem establishes the validity of Algorithm 2.

Theorem 2.4.1 (Validity of Algorithm 2). Consider a bipartite graph with n variable
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Algorithm 2

1. Start with x̂ = 0n×1.

2. If ‖y − Ax̂‖∞ ≤ ρd, determine the positions and signs of the significant
components in x as the positions and signs of the non-zero signal components
in x̂; exit.

Else, find one variable node, say x̂j , such that of the c measurement equations
it participates in c′ > c

2
of them are in either of the following categories:

(a) They have gaps which are of the same sign and have absolute values
between L−∆−λ−ρ(d−1) and L+∆+λ+ρ(d−1). Moreover, there
exists a number t in the set {x|x = 0, |x| = (L − ∆), |x| = (L + ∆)}
such that |y−Ax̂| are all ≤ ρd over these c′ measurements if we change
x̂j to t.

(b) They have gaps which are of the same sign and have absolute values
between 2L− 2∆− ρ(d− 1) and 2L+ 2∆+ ρ(d− 1). Moreover, there
exist a number t in the set {x|x = 0, |x| = (L−∆), |x| = (L+∆)} such
that |y − Ax̂| are all ≤ ρd over these c′ measurements if we change x̂j
to t.

3. Reset x̂j = t. Go to 2.

nodes and m parity check nodes. Assume further that the graph is an (αn, 3
4
c) ex-

pander with regular right degree d and regular left degree c. Denote the corresponding

measurement matrix as A. Let x ∈ Rn be an arbitrary vector with at most k ≤ αn/2

significant signal components and assume that max{ρ(2d − 1) + ∆ + λ, ρ(2d − 2) +

3∆ + λ} < L. Consider the m measurements

y = Ax. (2.4.1)

Then Algorithm 2 correctly finds the sign and positions of the significant components

of x in at most kc ≤ c
2
αn iterations with complexity linear in n.

Proof: The arguments here basically follow the same reasoning as in the proof of

Lemma 2.3.3, Lemma 2.3.4, Lemma 2.3.5 and Theorem 2.3.6. But now we define the

set S as the set of variable nodes j’s such that xj and x̂j are on different signal levels

or have opposite signs while both being on the “significant” signal level. If a variable
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node j ∈ S, then L−∆−λ ≤ |xj−x̂j | ≤ L+∆+λ or 2(L−∆) ≤ |xj−x̂j | ≤ 2(L+∆).

Also notice that |xj − x̂j | ≤ ρ if xj and x̂j are both in the near-zero signal level or

have the same sign while both being on the “significant” signal level. Define the set

T as the set of measurements where |y−Ax̂| have values larger than ρd. Notice that

after each iteration, we can always decrease the cardinality of T by at least 1.

Now let us consider the case where the measurements themselves are not perfect

and corrupted by additive noises. In this case, we have

y = Ax+ w, (2.4.2)

where w is am-dimensional noise vector. We assume |w|∞ ≤ ε and that x is generated

according to the same approximately sparse signal model as stated previously. Then

the previous algorithm and can be extended to the noisy measurements cases.

Algorithm 3

1. Start with x̂ = 0n×1.

2. If ‖y − Ax̂‖∞ ≤ ρd + ε, determine the positions and signs of the significant
components in x as the positions and signs of the non-zero signal components
in x̂; exit.

Else, find one variable node, say x̂j , such that of the c measurement equations
it participates in c′ > c

2
of them are in either of the following categories:

(a) They have gaps which are of the same sign and have absolute values
between L−∆−λ−ρ(d−1)−ε and L+∆+λ+ρ(d−1)+ε. Moreover,
there exists a number t in the set {x|x = 0, |x| = (L−∆), |x| = (L+∆)}
such that |y − Ax̂| are all ≤ ρd + ε over these c′ measurements if we
change x̂j to t.

(b) They have gaps which are of the same sign and have absolute values
between 2L− 2∆− ρ(d− 1)− ε and 2L+2∆+ ρ(d− 1)+ ε. Moreover,
there exist a number t in the set {x|x = 0, |x| = (L−∆), |x| = (L+∆)}
such that |y − Ax̂| are all ≤ ρd + ε over these c′ measurements if we
change x̂j to t.

3. Reset x̂j = t. Go to 2.

The following theorem establishes the validity of Algorithm 3 in the case of ap-
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proximately sparse signals and noisy measurements.

Theorem 2.4.2 (Validity of Algorithm 2). Consider a bipartite graph with n variable

nodes and m parity check nodes. Assume further that the graph is an (αn, 3
4
c) ex-

pander with regular right degree d and regular left degree c. Denote the corresponding

measurement matrix as A. Let x ∈ Rn be an arbitrary vector with at most k ≤ αn/2

significant signal components and assume that max{ρ(2d − 1) + ∆ + λ + 2ε, ρ(2d −
2) + 3∆ + λ+ 2ε} < L. Consider the m measurements

y = Ax. (2.4.3)

Then Algorithm 2 correctly finds the sign and positions of the significant components

of x in at most kc ≤ c
2
αn iterations with complexity linear in n.

Proof: The arguments here basically follow the same reasoning as in the proof of

Lemma 2.3.3, Lemma 2.3.4, Lemma 2.3.5 and Theorem 2.3.6. But now we define

the set S as the set of variable nodes j’s such that xj and x̂j are on different signal

levels (one is on the “near-zero signal” level and the other is on the “significant

signal” level) or have opposite signs while both being on the “significant” signal level.

Suppose for a variable node j ∈ S, xj and x̂j are on different signal levels, then

L−∆− λ ≤ |xj − x̂j | ≤ L+∆+ λ or 2(L−∆) ≤ |xj − x̂j | ≤ 2(L+∆). Also notice

that |xj − x̂j | ≤ ρ if xj and x̂j are both on the near-zero signal level or have the same

sign while both being on the “significant” signal level. If ρ(2d− 1) +∆+ λ+ 2ε < L

and ρ(2d− 2) + 3∆ + λ+ 2ε < L respectively, we will respectively have

L−∆− λ− ρ(d− 1)− ε > ρd+ ε; (2.4.4)

and

2L− 2∆− ρ(d− 1)− ε > L+∆+ λ+ ρ(d− 1) + ε. (2.4.5)

Under these conditions, we can distinguish the case (a) and case (b) in Algorithm

3. Moreover, under these conditions, if 0 < |S| < αn , there must be one variable
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node lying in category (a) or category (b) (following the same arguments as in Lemma

2.3.3). Define the set T as the set of measurements where ‖y−Ax̂‖ have values larger
than ρd+ ε. Notice that after each iteration, we can always decrease the cardinality

of T by at least 1. By similar arguments from Lemma 3, we will have each component

of x̂ and x belonging to the same signal level (if they are both on the “significant

signal” level, they will have the same sign).

Also, after knowing the signs and locations of significant components, the esti-

mation for their amplitudes can be further refined by using other techniques like

minimum mean square error estimations. Actually, simulation results in Section 2.8

we show that a slight modification of algorithm 1 is very effective even in the case of

random Gaussian noises and approximately sparse signal.

2.5 Sufficiency of O(k log (n
k
)) Measurements

In the previous parts, we assume that the number of nonzero elements k in a sparse

signal vector grows linearly with n and the number of measurements needed in com-

pressive sensing need to grow linearly with n, too. However, in some cases, the number

of nonzero elements k remains fixed while the dimension of the signal vector n can

grow arbitrarily large. For the ℓ1-minimization framework, it has been shown that

O(k log (n/k)) measurements suffice for perfectly recovering a sparse signal vector

of dimension n with no more than k non-zero elements. In this part, we will show

that only O(k log (n/k)) measurements are needed in order to perfect recovering all

k-sparse signal when n goes large while requiring much lower recovery complexity.

Before going to the precise statement and formal proof, we should notice that in Sec-

tion 2, the signal recovery mechanism still works as long as the parameters α β and c

remain fixed for a fixed n even if they are a function of n as n grows. From the results

of previous parts, to recover any k-sparse signal, we need a (k, 3
4
c) bipartite expander

graph with m measurements. So by showing the existence of such an expander graph

with m = O(k log (n/k)), we actually show that for any k, O(k log (n/k)) measure-
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ments are enough for recovering any k-sparse signal with deterministic guarantees

even as n grows. Before showing this, in the following theorem, we will give a lower

bound on the number of measurements, namely m, in order to make an expander

graph possible. Please note that this lower bound is a general result in the sense that

it is also true for expander graphs with irregular right degrees.

Theorem 2.5.1 (Lower Bound on the Number of Measurements to Make an Ex-

pander Graph). Consider a bipartite graph with n variable nodes and m measurement

nodes. Assume further that the graph is a (k, 3
4
c) expander graph with regular left

degree c. Then m must satisfy
(
m
3
4
ck

)
/
(
m−c
3
4
ck−c
)
> n/k.

Proof: We prove this theorem by ‘double counting’. In order for a bipartite graph

to be a (k, 3
4
c) expander, every 3

4
ck measurement vertices must ‘dominate’ less than

k variable nodes. Here we say a measurement set Ω dominates a variable node v if v

is not connected to measurement nodes outside Ω. We now double count the number

of 2-tuple pairs (Ω, v), where Ω is any set of measurement nodes of cardinality 3
4
ck

and v is a variable vertex dominated by the set Ω.

Notice that there are in total
(
m
3
4
ck

)
measurement node set Ω with cardinality 3

4
ck

and for the j-th (1 ≤ j ≤
(
m
3
4
ck

)
) such set Ωj , we denote the set of variable nodes that

are dominated by Ωj as Vj. So the total number of 2-tuple pairs (Ω, v) is
∑( m

3
4 ck)

j=1 |Vj|.
Now let us count the number of 2-tuple pairs (Ω, v) from the perspective of variable

nodes. For the i-th variable node vi, there are
(
m−li
3
4
ck−li

)
measurement node sets Ω of

cardinality 3
4
ck that dominate vi, where li (1 ≤ li ≤ c) is the number of measurement

nodes that the variable node vi is connected to. So the total number of 2-tuple pairs

(Ω, v) is also equal to
∑n

i=1

(
m−li
3
4
ck−li

)
, which is no smaller than

(
m−c
3
4
ck−c
)
n. For an (k, 3

4
c)

expander graph,
∑( m

3
4 ck)

j=1 |Vj| < k ×
(
m
3
4
ck

)
because each set Ω dominates less than k

variable nodes. By combining the results of double counting, we have
(
m−c
3
4
ck−c
)
n <

k ×
(
m
3
4
ck

)
. This proves Theorem 2.5.1.

Lemma 2.5.2 (Constant Left Degree not Achieving the O(k log(n)) bound). Con-

sider a bipartite graph with n variable nodes and m measurement nodes. Assume
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further that the graph is a (k, 3
4
c) expander graph with regular left degree c. If

m = O(k log (n/k)), then c can not be a constant independent of n.

Proof: It is straightforward from Theorem 2.5.2 thatm ≥ (n
k
)
1
c , which is a polynomial

over n.

In the following part, we will give the main result of this section.

Theorem 2.5.3 (The Sufficiency of O(k log (n/k)) Measurements). Consider regular

bipartite graphs with n variable nodes and m measurement nodes. Assume that they

have regular left degree c and regular right degree d. For any k, if n is large enough,

there exists a regular (k, 3
4
c) expander bipartite graph with m = O(k log (n/k)) for

some number c (Note that the left-degree c depends on n). Let x ∈ Rn be an arbitrary

vector with at most k
2
nonzero entries and consider the m measurements

y = Ax. (2.5.1)

Then Algorithm 1 finds the value of x in at most kc
2
iterations.

Proof: We show the existence of the expander graphs stated in Theorem 2.5.3. Then

the signal recovery performance statement in Theorem 2.5.3 follows from the existence

of such an expander graph and Theorem 2.3.6. In proving the existence of such an

expander graph, we show that a regular bipartite graph randomly generated in a

certain way will be a (k, 3
4
c) expander graph with probability approaching 1 as n goes

large.

Here we take c = C log (n/k) and m = Dk log (n/k), where C and D are constants

independent of k and n and will be specified later. Consider the bipartite graph as

shown in Figure 2.1. For the time being, we assume that C ≤ D. So, in total, we

have

TE = (C log (n/k))× n (2.5.2)

edges emanating from the n variable nodes. We generate a random permutation

of these (C log (n/k)) × n emanating edges with a uniform distribution (over all
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the possible permutations) and connect (‘plug’) these (C log (n/k))× n edges to the

(C log (n/k)) × n ‘sockets’ on the Dk log (n/k) parity check nodes according to the

randomly generated permutation. So the number of edges each measurement node

connects is

d = (C log (n/k))× n/m =
Cn

Dk
. (2.5.3)

Take an arbitrary variable node set S of cardinality k and consider the random

variable Y , which is the number of check nodes connected to S in this randomly

generated graph. Obviously,

Y =

kC log (n/k)
∑

i=1

Ii, (2.5.4)

where Ii is the indicator function of whether the i-th edge is connected to a check

node which is not connected to any of the previous (i−1) edges. Suppose the previous
(i − 1) edges are connected to Li−1 measurement nodes, then Ii takes the value ‘1’

with probability
TE − d× Li−1

TE − Li−1

, (2.5.5)

whatever measurement nodes the previous (i− 1) edges are connected to. Since any

(i− 1) edges are connected to at most (i− 1) measurement nodes and i ≤ C log (n),

we have
TE − d× Li−1

TE − Li−1
≥ TE − d× (k × C log (n/k))

TE − (k × C log (n/k))
. (2.5.6)

So the probability that (1− Ii) takes the value ‘1’ is at most

1− TE − d× (k × C log (n/k))

TE − (k × C log (n/k))
=

Cn
D
− k

n− k ≤
C

D
, (2.5.7)

whatever Ij , 1 ≤ j ≤ (i− 1), are.

Define a new random variable

Z = kC log (n/k)− Y =

kC log (n/k)
∑

i=1

(1− Ii), (2.5.8)
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and consider another random variable

Z ′ =

kC log (n)
∑

i=1

bi, (2.5.9)

where bi’s are independent binary Bernoulli random variables of parameter C
C
( taking

the value ‘1’ with probability C
D
and taking the value ‘0’ with probability 1− C

D
). Then

the probability that Z ≥ 1
4
kC log (n/k) is always no larger than the probability that

Z ′ ≥ 1
4
kC log (n/k). This is because whatever Ij , 1 ≤ j ≤ (i− 1) are, the probability

of (1− Ii) taking the value ‘1’ is at most C
D

conditioned on Ij , 1 ≤ j ≤ (i− 1).

By the well-known Chernoff bound for the sum of independent Bernoulli random

variables [DZ98], we know that if C
D
< 1

4
,

P (Z ≥ 1

4
kC log (n/k)) ≤ e−H( 1

4
‖C
D
)kC log (n/k). (2.5.10)

Here H(a‖b) is the Kullback-Leibler divergence between two Bernoulli random vari-

ables with parameter a and b, namely,

H(a‖b) = a log
a

b
+ (1− a) log 1− a

1− b . (2.5.11)

In summary, with probability no larger than e−H( 1
4
‖C
D
)kC log (n/k), a variable node

set S of cardinality k is connected to no more than 3
4
kC log (n/k) measurement nodes.

Since there are at most
(
n
k

)
≤ ek(log(n/k)+1) variable node sets of cardinality k, by a

simple union bound, we have with probability at least

Pk = 1− ek(log(n/k)+1) × e−H( 1
4
‖C
D
)kC log(n/k), (2.5.12)

all variable node sets of cardinality of k are connected to more than 3
4
kC log(n/k)

check nodes. If we take the constants C and D such that C
D

is sufficiently small,

ek(log(n/k)+1) × e−H( 1
4
‖C
D
)kC log(n/k) will go to zero exponentially in kC log n/k. In fact,

if C
D

is arbitrarily small, H(1
4
‖C
D
) can go to infinity.
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Similarly, for each integer 1 ≤ l ≤ k, the probability that all variable sets of

cardinality of l are connected to more than 3
4
lC log(n/k) check nodes is at least

Pl = 1− el(log(n/l)+1) × e−H( 1
4
‖C
D
)lC log(n/k). (2.5.13)

By union bound, the probability that any set of cardinality no larger than k has good

expansion property satisfies

P ≤ 1−
k∑

l=1

el(log(n/l)+1) × e−H( 1
4
‖C
D
)lC log(n/k), (2.5.14)

which is positive given that n is large enough and if we choose C
D

sufficiently small.

This shows that we only need O(k log(n/k)) check nodes to make a bipartite graph a

(k, 3
4
c) expander.

2.6 RIP-1 Property and Full Recovery Property

2.6.1 Norm One Restricted Isometry Property

The standard Restricted Isometry Property [CT05] is an important sufficient condi-

tion that enables compressed sensing using random projections. Intuitively, it says

that the measurement almost preserves the Euclidean distance between any two suf-

ficiently sparse vectors. This property implies that recovery using ℓ1 minimization is

possible if a random projection is used for measurement. Berinde et al. in [BGI+08]

showed that expander graphs satisfy a very similar property called “RIP-1” which

states that if the adjacency matrix of an expander graph is used for measurement,

then the Manhattan (ℓ1) distance between two sufficiently sparse signals is preserved

by measurement. They used this property to prove that ℓ1-minimization is still possi-

ble in this case. However, we will show in this section how RIP-1 can guarantee that

the algorithm described above will has full recovery.

Following [BI08, BGI+08], we show that the RIP-1 property can be derived from
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Figure 2.2: (k, ǫ) vertex expander graph

the expansion property and will guarantee the uniqueness of sparse representation.

We begin with the definition of the “unbalanced lossless vertex expander graphs”

with expansion coefficient 1−ǫ, bearing in mind that we will be interested in 1−ǫ > 3
4
.

Definition 2.6.1 (Unbalanced Lossless Expander Graphs). A (l, 1 − ǫ)-unbalanced
bipartite expander graph is a bipartite graph V = (A,B), |A| = n, |B| = m, where A

is the set of variable nodes and B is the set of parity nodes, with regular left degree

d such that for any S ⊂ A, if |S| ≤ l then the set of neighbors N(S) of S has size

N(S) > (1− ǫ)d|S|.

The following claim follows from the Chernoff bounds [BI08]1.

Claim 2.6.1. for any n
2
≥ l ≥ 1, ǫ > 0 there exists a (l, 1 − ǫ) expander with left

degree:

d = O

(
log(n

l
)

ǫ

)

and right set size:

m = O

(
l log(n

l
)

ǫ2

)

.

Lemma 2.6.2 (RIP-1 property of the expander graphs). Let Am×n be the adjacency

matrix of a (k, 1− ǫ) expander graph E, then for any k-sparse vector x ∈ Rn we have:

(1− 2ǫ)d‖x‖1 ≤ ‖Ax‖1 ≤ d ‖x‖1 (2.6.1)

1This claim is also used in the expander codes construction.
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Proof. The upper bound is trivial using the triangle inequality, so we only prove the

lower bound.

The left side inequality is not influenced by changing the position of the coordi-

nates of x, so we can assume that they are in a non-increasing order: |x1| ≥ |x2| ≥
· · · ≥ |xn|. Let E be the set of edges of G and eij = (xi, yj) be the edge that connects

xi to yj. Define

E2 = {eij : ∃ k < i such that ekj ∈ E}.

Intuitively E2 is the set of the collision edges. Let

Ti = {ei′j ∈ E2 such that i′ ≤ i},

and ai = |Ti|. Clearly a1 = 0; moreover by the expansion property of the graph for

any k′ less than or equal to k ak′ is less than or equal to ǫdk′. Finally since the graph

is k-sparse we know that for each k′′ greater than k, xk′′ is zero. Therefore

rcl
∑

eij∈E2

|xi| =

n∑

i=1

|xi|(ai − ai−1)

=
∑

i≤k
ai(|xi| − |xi+1|)

≤
∑

i≤k
ǫdi(|xi| − |xi+1|)

≤
∑

i≤k
|xi|ǫd

= ǫd ‖x‖1 .
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Now the triangle inequality, and the definition of E2 imply

rcl ‖Ax‖1 =

m∑

j=1

∣
∣
∣
∣
∣
∣

∑

eij∈E
xi

∣
∣
∣
∣
∣
∣

=

m∑

j=1

∣
∣
∣
∣
∣
∣

∑

eij∈E2

xi +
∑

eij /∈E2

xi

∣
∣
∣
∣
∣
∣

≥
m∑

j=1



|
∑

eij /∈E2

xi| − |
∑

eij∈E2

xi|





=

m∑

j=1



|
∑

eij /∈E2

xi|+ |
∑

eij∈E2

xi| − 2|
∑

eij∈E2

xi|





=
∑

eij /∈E2

|xi|+
∑

eij∈E2

|xi| − 2
∑

eij∈E2

|xi|

≥ d ‖x‖1 − 2ǫd ‖x‖1
= (1− 2ǫ) d ‖x‖1.

2.6.2 Full Recovery Property

The full recovery property now follows immediately from Lemma 2.6.2.

Theorem 2.6.3 (Full recovery). Suppose Am×n is the adjacency matrix of a (3k, 1−ǫ)
expander graph, and suppose x1 is a k-sparse and x2 is a 2k-sparse vector, such that

Ax1 = Ax2. Then x1 = x2.

Proof. Let z = x1 − x2. Since x1 is k − sparse and x2 is 2k-sparse, z is 3k-sparse.2

By Lemma 2.6.2 we have:

‖x1 − x2‖1 ≤
1

(1− 2ǫ) d
‖Ax1 −Ax2‖1 = 0,

hence x1 = x2.

Note that the proof of the above theorem essentially says that the adjacency

matrix of a (3k, 1− ǫ) expander graph does not have a null vector that is 3k sparse.

2‖z‖0 ≤ ‖x1‖0 + ‖x2‖0 = 3k.
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We will also give a direct proof of this result (which does not appeal to RIP-1) since

it gives a flavor of the arguments to come.

Lemma 2.6.4 (Null space of A). Suppose Am×n is the adjacency matrix of a (3k, 1−ǫ)
expander graph with ǫ ≤ 1

2
. Then any nonzero vector in the null space of A, i.e., any

z 6= 0 such that Az = 0, has more than 3k nonzero entries.

Proof. Define S to be the support set of z. Suppose that z has at most 3k nonzero

entries, i.e., that |S| ≤ 3k. Then from the expansion property we have that |N(S)| >
(1− ǫ)d|S|. Partitioning the set N(S) into the two disjoint sets N1(S), consisting of

those nodes in N(S) that are connected to a single node in S, and N>1(S), consisting
of those nodes in N(S) that are connected to more than a single node in S, we may

write N1(S) + N>1(S) > (1 − ǫ)d|S|. Furthermore, counting the edges connecting

S and N(S), we have |N1(S)| + 2|N>1(S)| ≤ d|S|. Combining these latter two

inequalities yields |N1(S)| > (1− 2ǫ)d|S| ≥ 0. This implies that there is at least one

nonzero element in z that participates in only one equation of y = Az. However, this

contradicts the fact that Az = 0 and so z must have more than 3k nonzero entries.

2.7 Recovering Signals with Optimized Expanders

In Section 2.5, we showed the sufficiency of k log(n/k) measurements in recovering

a k-sparse signal, but it seems that we would need k log(n/k) iterations in our algo-

rithm. In this section, we generalized our result to more general expander graph with

expansion factor as 1 − ǫ, where ǫ > 1
4
and showed that we actually only need O(k)

iterations in recovering the k-sparse signal.

2.7.1 O(k log(n
k
)) Sensing with O

(
n log

(
n
k

))
Complexity

Before proving the result, we introduce some notations used in the recovery algorithm

and in the proof.
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Definition 2.7.1 (gap). Recall the definition of the gap. At each iteration t, let Gt

be the support3 of the gaps vector at that iteration:

Gt = support (~gt) = {i|yi 6=
n∑

j=1

Aijxj}.

Definition 2.7.2. At each iteration t, we define St an indicator of the difference

between the estimate x̂ and x:

St = support (x̂− x) = {j : x̂j 6= xj}.

Now we are ready to state the main result:

Theorem 2.7.3 ( Expander Recovery Algorithm ). Let Am×n be the adjacency matrix

of a (2k, 1− ǫ) expander graph, where ǫ ≤ 1/4, and m = O
(
k log

(
n
k

))
. Then, for any

k-sparse signal x̂, given y = Ax̂, the expander recovery algorithm (Algorithm 4 below)

recovers x̂ successfully in at most 2k iterations.

Algorithm 4 Expander Recovery Algorithm

1: Initialize x = 0n×1.
2: if y = Ax then

3: output x and exit.
4: else

5: find a variable node say xj such that at least (1− 2ǫ) d of the measurements it
participate in, have identical gap g.

6: set xj ← xj + g, and go to 2.
7: end if

The proof is virtually identical to that of [XH07a], except that we consider a

general (1 − ǫ) expander, rather than a 3
4
-expander, and it consists of the following

lemmas.

• The algorithm never gets stuck, and one can always find a coordinate j such

that xj is connected to at least (1− 2ǫ)d parity nodes with identical gaps.

3set of nonzero elements
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Figure 2.3: Progress lemma

• With certainty the algorithm will stop after at most 2k rounds. Furthermore,

by choosing ǫ small enough the number of iterations can be made arbitrarily

close to k.

Lemma 2.7.4 (progress). Suppose at each iteration t, St = {j : x̂j 6= xj}. If |St| < 2k

then always there exists a variable node xj such that at least (1− 2ǫ)d of its neighbor

check nodes have the same gap g.

Proof. We will prove that there exists a coordinate j, such that xj is uniquely con-

nected to at least (1 − 2ǫ)d check nodes, in other words no other non-zero variable

node is connected to these nodes. This immediately implies the lemma.

Since |St| < 2k by the expansion property of the graph it follows that N(St) ≥
(1 − ǫ)d|St|. Now we are going to count the neighbors of St in two ways. Figure 2.3

shows the notations in the progress lemma.

We partition the set N(St) into two disjoint sets:

• N1(St): The vertices in N(St) that are connected only to one vertex in St.

• N>1(St): The other vertices (that are connected to more than one vertex in St).

By double counting the number of edges between variable nodes and check nodes we

have:

|N1(St)|+ |N>1(St)| = |N(St)| > (1− ǫ)d|St|
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|N1(St)|+ 2|N>1(St)| ≤ #edges between St, N(St) = d|St|

This gives

|N>1(St)| < ǫd|St|,

hence

|N1(St)| > (1− 2ǫ)d|St|, (2.7.1)

so by the pigeonhole principle, at least one of the variable nodes in St must be

connected uniquely to at least (1− 2ǫ)d check nodes.

Lemma 2.7.5 (gap elimination). At each step t if |St| < 2k then |Gt+1| < |Gt| −
(1− 4ǫ)d

Proof. By the previous lemma, if |St| < 2k, there always exists a node xj that is

connected to at least (1 − 2ǫ)d nodes with identical nonzero gap, and hence to at

most 2ǫd nodes possibly with zero gaps. Setting the value of this variable node to

zero, sets the gaps on these uniquely connected neighbors of xj to zero, but it may

make some zero gaps on the remaining 2ǫd neighbors non-zero. So at least (1− 2ǫ)d

coordinates of Gt will become zero, and at most 2ǫd its zero coordinates may become

non-zero. Hence

|Gt+1| < |Gt| − (1− 2ǫ)d+ 2ǫd = |Gt| − (1− 4ǫ)d. (2.7.2)

Figure 2.4 shows the gap elimination.

Remark: The key to accelerating the algorithm is the above Lemma. For a 3
4

expander, ǫ = 1
4
and so |Gt+1| < |Gt|, which only guarantees that |Gt+1| is reduced by

a constant number. However, when ǫ < 1
4
, we have |Gt+1| < |Gt| − (1 − 4ǫ)d, which

means that |Gt+1| is guaranteed to decrease proportionally to d. Since d = Ω(log n),

we save a factor of log n.

The following lemma provides a direct connection between the size of Gt and the

size of St.
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Figure 2.4: Gap elimination lemma

Lemma 2.7.6 (connection). If at iteration t, |St| < 2k, then (1− 2ǫ)d|St| ≤ |Gt|.

Proof. By Equation (2.7.1), |N1(St)| > (1 − 2ǫ)d|St|, also each node in N1(St) has

non-zero gap and so is a member of Gt.

Lemma 2.7.7 (preservation). At each step t if |St| < 2k, after running the algorithm

we have |St+1| < 2k.

Proof. Since at each step we are only changing one coordinate of x, we have |St+1| =
|St|+ 1, so we only need to prove that St+1 6= 2k.

Suppose for a contradiction that |St+1| = 2k, and partition N(St+1) into two

disjoint sets:

1. N1(St+1): The vertices in N(St+1) that are connected only to one vertex in St+1.

2. N>1(St+1): The other vertices (that are connected to more than one vertex in

St+1).

The argument is similar to that given above; by double counting the number of

vertices in N1(St+1), N>1(St+1) one can show that

|N1(St+1)| ≥ (1− 2ǫ) d 2k.

Now we have the following facts:
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• |N1(St+1)| > |Gt+1| : Coordinates in N1(St+1) are connected uniquely to coor-

dinates in St+1, hence each coordinate in N1(St+1) has non-zero gap.

• |Gt+1| > |G1|: gap elimination from Lemma 2.7.5.

• |G1| ≤ kd: x, x̂ differ in at most k coordinates, so Ax,Ax̂ can differ in at most

kd coordinates.

As a result we have

(1− 2ǫ)2 dk ≤ |N1(St+1)| ≤ |Gt+1| ≤ |G1| ≤ kd. (2.7.3)

This implies ǫ ≥ 1
4
which contradicts the assumption ǫ < 1

4
.

Proof of the Theorem 2.7.3. Preservation (Lemma 2.7.7) and progress (Lemma 2.7.4)

together immediately imply that the algorithm will never get stuck. Also by Lemma

2.7.5 we had shown that |G1| ≤ kd and |Gt+1| < |Gt|− (1−4ǫ)d. Hence after at most

T = k
1−4ǫ

steps we will have |GT | = 0 and this together with the connection lemma

implies that |ST | = 0, which is the exact recovery of the original signal.

Note that we have to choose ǫ < 1
4
, and as an example, by setting ǫ = 1

8
the

recovery needs at most 2k iterations.

Remark: The condition ǫ < 1
4
in the theorem is necessary. Even ǫ = 1

4
leads to

a 3
4
expander graph, which needs O(k logn) iterations.

2.7.2 Explicit Constructions of Optimized Expander Graphs

In the definition of the expander graphs (Definition 2.6.1), we noted that probabilistic

methods prove that such expander graphs exist and furthermore, that any random

graph, with high probability, is an expander graph. Hence, in practice it may be

sufficient to use random graphs instead of expander graphs.

Though, there is no efficient explicit construction for the expander graphs of Defi-

nition 2.6.1, there exists explicit construction for a class of expander graphs which are
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very close to the optimum expanders of Definition 2.6.1. Recently Guruswami et al.

[GUV07], based on the Parvaresh-Vardy codes [PV05], proved the following theorem:

Theorem 2.7.8 (Explicit Construction of expander graphs). For any constant α > 0,

and any n, k, ǫ > 0, there exists a (k, 1− ǫ) expander graph with left degree

d = O

((
log n

ǫ

)1+ 1
α

)

and number of right side vertices

m = O(d2k1+α)

, which has an efficient deterministic explicit construction.

Since our previous analysis was only based on the expansion property, which does

not change in this case, a similar result holds if we use these expanders.

2.7.3 Efficient Implementations and Comparisons

We now compare our approach with recent analysis by Berinde et al [BGI+08]. This

paper integrates Indyk’s previous work which was based on randomness extractors

[Ind08] and a combinatorial algorithm (employing an alternative approach to the RIP-

1 results of Berinde-Indyk [BI08]) based on geometric convex optimization methods

and suggests a recursive recovery algorithm which takes m′ = O(m logm) sketch

measurements and needs a recovery time O(m log2 n). The recovery algorithm exploit

the hashing properties of the expander graphs, and is sublinear. However, it has

difficulties for practical implementation.

By comparison, our recovery algorithm is a simple iterative algorithm, that needs

O(k logn) sketch measurements, and our decoding algorithm consists of at most

2k very simple iterations. Each iteration can be implemented very efficiently (see

[XH07a]) since the adjacency matrix of the expander graph is sparse with all entries

0 or 1. Even the very naive implementation of the algorithm as suggested in this
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chapter works efficiently in practice. The reason is that the unique neighborhood

property of the expander graphs is much stronger than what we needed to prove the

accuracy of our algorithm. Indeed, it can be shown [HLW06, IR08] that most of

the variable nodes have (1 − ǫ/2)d unique neighbors, and hence at each of the O(k)

iterations, the algorithm can find one desired node efficiently. The efficiency of the

algorithm can also be improved by using a priority queue data structure. The idea

is to use preprocessing as follows: For each variable node vi compute the median of

its neighbors mi = Med (N(vi)) and also compute ni the number of neighbors with

the same value mi (Note that if a node has (1− 2ǫ)d unique neighbors, their median

should also be among them.) Then construct the priority queue based on the val-

ues ni, and at each iteration extract the root node from the queue, perform the gap

elimination on it, and then, if required, make the correction on corresponding dD

variable nodes. The main computational cost of this variation of the algorithm will

be the cost of building the priority queue which is O
(
n log

(
n
k

))
; finding the median

of d elements can be done in O
(
log n

k

)
and building a priority queue requires linear

computational time.

In this section we show how the analysis using optimized expander graphs that

we proposed in the previous section can be used to illustrate that the robust recovery

algorithm in [XH07a] can be done more efficiently in terms of the sketch size and

recovery time for a family of almost k-sparse signals. With this analysis we will

show that the algorithm will only need O(k logO
(
n log

(
n
k

))
) measurements. Explicit

constructions for the sketch matrix exist and the recovery consists of two simple steps.

First, the combinatorial iterative algorithm in [XH07a], which is now empowered with

the optimized expander sketches, can be used to find the position and the sign of the

k largest elements of the signal x. Using an analysis similar to the analysis in section

2.7 we will show that the algorithm needs only O(k) iterations, and similar to the

previous section, each iteration can be done efficiently using a priority queue. Then

restricting to the position of the k largest elements, we will use a robust theorem in

expander graphs to show that simple optimization methods that are now restricted
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on k dimensional vectors can be used to recover a k sparse signal that approximates

the original signal with very high precision.

Before presenting the algorithm we will define precisely what we mean for a signal

to be almost k sparse.

Definition 2.7.9 (almost k-sparse signal). A signal x ∈ Rn is said to be almost k-

sparse iff it has at most k large elements and the remaining elements are very close to

zero and have very small magnitude. In other words, the entries of the near-zero level

in the signal take values from the set [−λ, λ] while the significant level of entries take

values from the set S = {x : |L−∆| ≤ |x| ≤ |L+∆}. By the definition of the almost

sparsity we have |S| ≤ k. The general assumption for almost sparsity is intuitively

the fact that the total magnitude of the almost sparse terms should be small enough

that so that it does not disturb the overall structure of the signal which may make the

recovery impossible or very erroneous. Since
∑

x/∈S |x| ≤ nλ and the total contribution

of the ’near-zero’ elements is small we can assume that nλ is small enough. We will

use this assumption throughout this section.

In order to make the analysis for almost k-sparse signals simpler we will use

a optimized expander graph which is right-regular as well4. The following lemma

which appears as Lemma 2.3 in [GLR08] gives us a way to construct right-regular

expanders from any expander graph without disturbing its characteristics.

Lemma 2.7.10 (right-regular expanders). From any left-regular (k, 1−ǫ) unbalanced
expander graph G with left size n, right size m, and left degree d it is possible to

efficiently construct a left-right-regular (k, 1 − ǫ) unbalanced expander graph H with

left size n, right size m′ ≤ 2m, left side degree d′ ≤ 2d, and right side degree D = [nd
m
]

Corollary 2.7.11. There exists a (k, 1− ǫ) left-right unbalanced expander graph with

left side size n, right side size m = O(k log n
k
), left side degree d = O(log n

k
), right side

degree D = O(
n log n

k

k log n
k

) = O(n
k
). Also based on the explicit constructions of expander

graphs, explicit construction for right-regular expander graphs exists.

4The right-regularity assumption is just for the simplicity of the analysis and as we will discuss
it is not mandatory.
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We will use the above right-regular optimized expander graphs in order to perform

robust signal recovery efficiently. The following algorithm generalizes the k-sparse

recovery algorithm and can be used to find the position and sign of the k largest

elements of an almost k-sparse signal x from y = Ax. At each iteration t in the

algorithm, let ρt = 2t∆ + (D − t − 1)λ and φt = 2t∆ + (D − t)λ. where D = O(n)

is the right side degree of the expander graph. Throughout the algorithm we will

assume that L > 2k∆ + Dλ. Hence the algorithm is appropriate for a family of

almost k-sparse signals for which the magnitude of the significant elements is large

enough. We will assume that k is a small constant; when k is large with respect to n,

(k = θ(n)), the (αn, 3
4
) constant degree expander sketch proposed in [XH07a] works

well.

Algorithm 5 Expander Recovery Algorithm for Almost k-sparse Signals

1: Initialize x = 0n×1.
2: if |y − Ax|∞ ≤ φt then
3: determine the positions and signs of the significant components in x̂ as the

positions and signs of the non-zero signal components in x; go to 8.
4: else

5: find a variable node say xj such that at least (1− 2ǫ)d of the measurements it
participate in are in either of the following categories:

(a) They have gaps which are of the same sign and have absolute values
between L − ∆ − λ − ρt and L + ∆ + λ + ρt. Moreover, there exists a
number G ∈ {0, L+∆, L−∆} such that |y−Ax| are all ≤ φt over these
(1− 2ǫ) d measurements if we change xj to G.

(b) They have gaps which are of the same sign and have absolute values
between 2L−2∆−ρt and 2L+2∆+ρt. Moreover, there exists a number
G ∈ {0, L+∆, L−∆} such that |y−Ax| are all ≤ φt over these (1−2ǫ) d
measurements if we change xj to G.

6: set xj ← G, and go to 2 for next iteration.
7: end if

8: pick the set of k significant elements of the candidate signal xT . Let A′ be the
sensing matrix A restricted to these entries, output A′†y.

In order to prove the algorithm we need the following definitions which are the

generalization of the similar definitions in the exactly k-sparse case.
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Definition 2.7.12. At each iteration t, we define St an indicator of the difference

between x̂ and the estimate x:

St = {j|x̂j and xjin different levels or large with different signs.}.

Definition 2.7.13 (gap). At each iteration t, let Gt be the set of measurement ele-

ments in which at least one “significant” elements from x contributes:

Gt = {i||yi −
n∑

j=1

Aijxj |∞ > λD}.

Theorem 2.7.14 (Validity of the algorithm 5). The first part of the algorithm will

find the position and sign of the k significant elements of the signal x (or more dis-

cussion see [XH07a]).

Proof. This is very similar to the proof of the validity of the exactly k-sparse recovery

algorithm. We will exploit the following facts.

• x̂ is almost k-sparse so it has at most k significant elements. Initially S0 = k

and G0 ≤ kd.

• Since at each iteration only one element xj is selected, at each iteration t there

are at most t elements xj such that both xj and x̂j are in the significant level

with the same sign.

• If |St| < 2k then |St+1| < 2k (Preservation Lemma), and by the neighborhood

theorem at each round (1− 2ǫ)|St|d ≤ |Gt|.

• If St < 2k by the neighborhood theorem there exists a node xj ∈ St which is

the unique node in St that is connected to at least (1−2ǫ)d parity check nodes.

This node is in St. It differs from its actual value in the significance level or at

sign. In the first case the part (a) of the recovery algorithm will detect and fix

it and in the second case the part (b) of the algorithm will detect and fix it.

For further discussion please refer to [XH07a].
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• As a direct result, |Gt+1| ≤ |Gt| − (1− 4ǫ)d. So after T = kd
(1−4ǫ)d

iterations we

have |GT | = 0. Consequently |ST | = 0 after at most 2k iterations.

This means that after at most 2k iterations the set

ST = {j|x̂j and xj in different levels or with different signs} (2.7.4)

will be empty and hence the position of the k largest elements in x̂T will be the

position of the k largest elements in x.

Knowing the position of the k largest elements of x̂ it is easier to recover a good

k-sparse approximation. If k is large, parallel version of the Algorithm 4 may be

applicable. If k is small, analytical solutions are achievable. Based on the RIP-1

property of the expander graph we propose a way to recover a good approximation

for x efficiently and analytically. We need the following lemma which is a direct result

of the RIP-1 property of the expander graphs and is proved in [BI08, BGI+08]

Lemma 2.7.15. Consider any u ∈ Rn such that ‖Au‖1 = b, and let S be any set of

k coordinates of u. Then we have

‖uS‖1 ≤
b

d(1− 2ǫ)
+

2ǫ

1− 2ǫ
‖u‖1,

and
1− 4ǫ

1− 2ǫ
‖uS‖1 ≤

b

d(1− 2ǫ)
+

2ǫ

1− 2ǫ
‖uS̄‖1.

Using Lemma 2.7.15 we prove that the following minimization recovers a k-sparse

signal very close to the original signal:

Theorem 2.7.16 (Final recovery). Suppose x is an almost k-sparse signal and y =

Ax is given where y ∈ Rm and m = O
(
k log

(
n
k

))
. Also suppose S is the set of

the k largest elements of x. Now let A′ be a submatrix of A restricted to S. Hence

the following minimization problem can be solved analytically with solution v = A′†y

(where A′† is the pseudoinverse of A′), and recovers a k-sparse signal v with close
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distance to the original x in the ℓ1 metric:

min ‖A′v − y‖2

Proof. Suppose v is the recovered signal. Since v is k-sparse we have Av = A′v and

hence:

‖Av − Ax‖1 = ‖Av − y‖1
= ‖A′v − y‖1
≤ √

m‖A′v − y‖2
≤ √

m‖A′xS − y‖2
=
√
m‖AxS − Ax‖2

≤ √
mλD

√
m

≤
√
m2λD

= mDλ = ndλ. (2.7.5)

The first two equations are only definitions. The third one is the Cauchy-Schwartz

inequality. The fourth one is from the definition of v and the last one is due to the

almost k-sparsity of x. Since v is k-sparse and x is almost k-sparse with the same

support, we may set u = x− v in Lemma 2.7.15 to obtain

1− 4ǫ

1− 2ǫ
‖uS‖1 ≤

‖Ax−Av‖1
d(1− 2ǫ)

+
2ǫ

1− 2ǫ
‖uS̄‖1

≤ nλ

(1− 2ǫ)
+

2ǫ

1− 2ǫ
‖uS̄‖1

≤ nλ

(1− 2ǫ)
+

2ǫ

1− 2ǫ
nλ

= O(nλ).

As a result, since the signal is almost k-sparse, the value of nλ is small, and hence
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the recovered k-sparse signal is close to the best k-term approximation of the original

signal.

Remark: Recall that the right-regularity assumption is just to make the analysis

simpler. As we mentioned before, it is not necessary for the first part of the algorithm.

For the second part, it is used in the inequality |Av − Ax| ≤ √m|AxS −Ax|2.
However, denoting the i-th row of A by Ai, we have

‖AxS −Ax‖2 =
√
m

√
√
√
√

m∑

i=1

(Ai(xS − x))2 ≤
√
m

√
√
√
√

m∑

i=1

(λDi)2

where Di denotes the number of ones in the i-th row of A. (In the right regular case,

Di = D, for all i.)

Therefore

‖AxS − Ax‖2 ≤
√
mλ

m∑

i=1

Di =
√
mλnd

The only difference with the constant Di case is the extra
√
m but this does not

affect the end result.

2.8 Simulation Results

In this section, we give simulation results of the proposed schemes for different n, m

and sparsity levels. Although there exist explicit constructions of the required bipar-

tite expander graphs as given in [CRVW02], we will simulate the proposed schemes

using randomly generated bipartite graphs since it is easier to implement for evalu-

ation at the current stage, and a randomly generated bipartite graph is expected to

be an expander graph with high probability. Also, we can enhance the compressive

sensing performance by making some refinements of the randomly generated bipartite

graphs. Compressive sensing using explicitly constructed expander graphs for large

n is an important topic of future study [CRVW02].
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In the simulation, we set the regular left degree c as 5 and generate the random

bipartite graphs using a uniformly random permutation of size n × c. In randomly

generating the bipartite graphs, there is a chance of getting a small set of variable

nodes that have a few common neighbors. For example, sometimes, one variable

node is connected to a measurement nodes via two or even more edges. When this

occurs, we simply exchange those edges connected to those common measurement

nodes with some other randomly chosen edges. After randomly generating bipar-

tite graphs and doing the refinements (thus we get the measurement matrix A), we

uniformly select the support set for the k non-zero elements of the signal vector x.

The nonzero entries for x are sampled as i.i.d. Gaussian random variables with zero

mean and unit variance. We repeat the experiments for 100 independent trials for

each k in the experiment. In comparison, we present here the simulation result for

linear programming decoding method with the same measurement matrix and the

same sparse signal vectors. Here we use the CVX software [boy] to perform the linear

programming decoding.

As shown in Figure 2.5, when n = 1024 and m = 512 we can recover up to

the sparsity level of k = 70, 7 percent of the signal vector length using Algorithm

1. Although the performance of the proposed scheme is not comparable with ℓ1

minimization method in [CT05] using Gaussian measurement matrices, we should

notice that the randomly generated bi-partite graphs are not optimized expander

graphs. Also, the signal recovery for each instance works instantly, taking much less

time than the various linear programming solvers which will usually take more than

one second and the average time for solving one problem instance is shown in Figure

2.6. The experiment is done using Matlab 7.4.0 on a Windows Platform with 3.00G

Hz Intel Pentium CPU and 2.00 GB memory. Surprisingly, under linear programming

decoding method, similar recovery performance is achieved by using the measurement

matrices constructed from the random graphs and Gaussian ensemble matrix used in

[CT05]. In the numerical experiments, the linear programming decoding using the

Gaussian ensemble matrix runs much slower than the linear programming decoding
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method for the measurement matrix generated from the random bipartite graphs.

Similar numerical results are also observed for various n and m’s, as shown in Figure

2.7,2.8, 2.9, and 2.10.

In Figure 2.11, we give the simulation results for the performance of recovering

approximately sparse signal using Algorithm 2. The significant parts of the signal

vector x will take +1,−1 with equal probability and the near-zero elements in x are

taken uniformly over the interval [−λ, λ]. We can see that the proposed algorithm

works well in these cases when λ is reasonably small.
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Figure 2.5: The probability of recovering a k-sparse signal with n = 1024 andm = 512

2.9 Conclusion

We propose to use bipartite expander graphs for compressive sensing of sparse signals

and show that we can perform compressive sensing with deterministic performance
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Figure 2.6: The average running time (seconds) of recovering a k-sparse signal with
n = 1024 and m = 512

guarantees at a cost of O(n) signal recovery complexity when the number of non-

zero elements k grows linearly with n. At the same time, this expander graph-based

scheme offer explicit constructions of the measurement matrices [CRVW02]. When

the number of non-zero elements k does not grow linearly with n, we show that we

need O(k log (n/k)) measurements, O(k) decoding iterations and total decoding time

complexity n log(n/k). Also we showed how the expansion property of the expander

graphs guarantees the full recovery of the original signal. Since random graphs are

with high probability expander graphs and it is very easy to generate random graphs,

in many cases we might use random graphs instead. When k grows linearly with n,

we have an explicit construction of the measurement matrix where the number of

measurements optimally scaling with n. When k does not grow linearly with n, just
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Figure 2.7: The probability of recovering a k-sparse signal with n = 1024 andm = 640

with a little penalty on the number of measurements and without affecting the number

of iterations needed for recovery, one can construct a family of expander graphs for

which explicit constructions exist. We also compared our results with a recent result

by Berinde et al. [BGI+08], and showed that our algorithm has advantages in terms of

the number of required measurements, and the simplicity of the algorithm for practical

use. Finally, we showed how the algorithm can be modified to be robust and handle

almost k-sparse signals. In order to do this we slightly modified the algorithm by using

right-regular optimized expander graphs to find the position of the k largest elements

of an almost k-sparse signal. Then exploiting the robustness of the RIP-1 property of

the expander graphs we showed how this information can be combined with efficient

optimization methods to find a k-sparse approximation for x very efficiently. However,

in the almost k-sparsity model that we used non-sparse components should have
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Figure 2.8: The average running time (seconds) of recovering a k-sparse signal with
n = 1024 and m = 640

“almost equal” magnitudes. This is because of the assumption that L > k∆ which

restricts the degree of deviation for significant components. As a result, one important

future work will be finding robust algorithms based on more general assumptions, or

investigating alternative noise models in which the expander graphs are beneficial.

Table 2.1 compares our results with other algorithms. Simulation results verified the

effectiveness and efficiency of our methods.
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Figure 2.9: The probability of recovering a k-sparse signal with n = 2048 and m =
1024, with solid line for “Linear Programming” and dashed line for “Algorithm 1”



64

20 40 60 80 100 120 140 160 180 200 220
0

0.5

1

1.5

2

2.5

Sparsity Level (k)

A
ve

ra
ge

 R
un

ni
ng

 T
im

e 
fo

r 
O

ne
 In

st
an

ce

 

 

Algorithm 1
Linear Programming 

Figure 2.10: The average running time (seconds) of recovering a k-sparse signal with
n = 2048 and m = 1024
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Figure 2.11: The probability of recovering a k-approximately-sparse signal with n =
1024 and m = 512
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Table 2.1: Properties of k-sparse reconstruction algorithms that employ expander matrices with m rows and n columns to
reconstruct a vector x from its noisy sketch Ax+ e

Geometric/ Number of Number of Worst Case k-term Noise Explicit
Paper Approach /Combinatorial Measurements m Iterations Time Complexity Approximation Resilience Construction

ℓ1 Embedding of

[GLR08] Expander Codes Combinatorial O
(

k(log n)log n
)

- O(n3) Compressible No [GLR08]

Unique Almost Sparse
[XH07a] Neighborhood Combinatorial O(n) O(n) O(n) k-sparse Noise [CRVW02]

Unique Almost Sparse
[XH07b] Neighborhood Combinatorial O(k logn) O(k log n) O(n log n) k-sparse Noise [GUV07]

Sparse

[BGI+08] RIP-1 Geometric O
(

k log
(

n

k

))

- O(n3) Compressible Noise [GUV07]

Sparse

[BGI+08] Hash Functions Combinatorial O(k log n

k
log n) O(k log n

k
log n) O(k log3 n) Compressible Noise [GUV07]

All Unique Sparse

[IR08] Neighborhoods Combinatorial O
(

k log
(

n

k

))

O(n) O
(

n log
(

n

k

))

Compressible Noise [GUV07]

R = Sparse

[BIR08] RIP-1 Geometric O
(

k log
(

n

k

))

O
(

log
(

d‖x‖1
‖e‖1

))

O
(

n log
(

n

k

)

logR
)

Compressible Noise [GUV07]

Unique Almost Sparse

[JXHC] Neighborhood Combinatorial O
(

k log
(

n

k

))

O(k) O
(

n log
(

n

k

))

k-sparse Noise [GUV07]
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Chapter 3

Grassmann Angle Analytical

Framework for Subspaces

Balancedness

It is well known that compressed sensing problems reduce to finding the sparse solu-

tions of a large under-determined system of equations. Although finding the sparse

solution in general may be computationally difficult, starting with the seminal work

of [CT05], it has been shown that linear programming techniques, obtained from an

ℓ1-norm relaxation of the original non-convex problem, can provably find the unknown

vector in certain instances. In particular, using a certain restricted isometry property,

[CT05] shows that for measurement matrices chosen from a random Gaussian ensem-

ble, ℓ1 optimization can find the correct solution with overwhelming probability even

when the support size of the unknown vector is proportional to its dimension. The

paper [Don06c] uses results on neighborly polytopes from [VS92] to give a “sharp”

bound on what this proportionality should be in the Gaussian measurement ensemble.

In this chapter we shall focus on finding sharp bounds on the recovery of “ap-

proximately sparse” signals and also under noisy measurements. While the restricted

isometry property can be used to study the recovery of approximately sparse signals

in the presence of noisy measurements, the obtained bounds on achievable sparsity

level can be quite loose. On the other hand, the neighborly polytope technique which

yields sharp bounds for ideally sparse signals cannot be generalized to approximately

sparse signals. In this chapter, starting from a necessary and sufficient condition, the
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“balancedness” property of linear subspaces, for achieving a certain signal recovery

accuracy, using high-dimensional geometry, we give a unified null-space Grassmann

angle-based analytical framework for analyzing ℓ1 minimization in compressive sens-

ing. This new framework gives sharp quantitative tradeoffs between the signal sparsity

and the recovery accuracy of the ℓ1 optimization for approximately sparse signals.

As a consequence, the neighborly polytope result of [Don06c] for ideally sparse

signals can be viewed as a special case of ours. We give the asymptotic analytical

results of the sparsity level satisfying the new null-space necessary and sufficient

conditions for. In addition to the “strong” notion of robustness, we also discuss

the notion of “weak” and “sectional” robustness in sparsity recovery. Our results

concern fundamental properties of linear subspaces and so may be of independent

mathematical interest.

3.1 Introduction

Compressive sensing is an emerging area in signal processing and information theory

which has attracted a lot of attention recently [Can06] [Don06b]. The motivation

behind compressive sensing is to do “sampling” and “compression” at the same time.

In conventional wisdom, in order to fully recover a signal, one has to sample the

signal at a sampling rate equal or greater to the Nyquist sampling rate. However,

in many applications such as imaging, sensor networks, astronomy, biological sys-

tems [RIC], the signals we are interested in are often “sparse” over a certain basis.

This process of “sampling at full rate” and then “throwing away in compression”

can prove to be wasteful of sensing and sampling resources, especially in application

scenarios where resources like sensors, energy, and observation time are limited. In

these cases, compressive sensing promises to use a much smaller number of samplings

or measurements while still being able to recover the original sparse signal exactly

or accurately. The cornerstone techniques enabling practical compressive sensing are

the effective decoding algorithms to recover the sparse signals from the “compressed”

measurement results. One of the most important and popular decoding algorithms
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for compressive sensing is the Basis Pursuit algorithm, namely the ℓ1 minimization

algorithm.

In this chapter we are interested in the general principles behind the ℓ1 minimiza-

tion decoding algorithm for compressed sensing of approximately sparse signals under

noisy measurements. Mathematically, in compressive sensing problems, we would like

to find a n× 1 vector x, such that

Ax = y, (3.1.1)

where A is an m × n measurement matrix and y is m × 1 measurement vector. In

the usual compressed sensing context x is n × 1 unknown k-sparse vector. This

assumes that x has only k nonzero components. In this chapter we will consider

a more general version of the k-sparse vector x. Namely, we will assume that k

components of the vector x have large magnitudes and that the vector comprised of

the remaining n − k components has an ℓ1-norm less than ∆. We will refer to this

type of signal as approximately k-sparse signal, or for brevity only approximately

sparse signal. Possibly the y can be further corrupted with measurement noise. The

interested readers can find More on similar type of problems in [CDD08] and other

references. This problem setup is more realistic of practical applications than the

standard compressed sensing of ideally k-sparse signals (see, e.g., [TWD+06, Can06,

CRT06] and the references therein).

In the rest of the chapter we will further assume that the number of the measure-

ments is m = δn and the number of the “large” components of x is k = ρδn = ζn,

where 0 < ρ < 1 and 0 < δ < 1 are constants independent of n (clearly, δ > ζ).

3.1.1 ℓ1 Minimization for Exactly Sparse Signal

A particular way of solving (3.1.1) which recently generated a large amount of research

is called ℓ1-optimization (basis pursuit) [CT05]. It proposes solving the following
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problem:

min ‖x‖1
subject to Ax = y. (3.1.2)

Quite remarkably in [CT05] the authors were able to show that if the number of the

measurements is m = δn and if the matrix A satisfies a special property called the

restricted isometry property (RIP), then any unknown vector x with no more than

k = ζn (where ζ is an absolute constant which is a function of δ, but independent of

n, and explicitly bounded in [CT05]) non-zero elements can be recovered by solving

(3.1.2). As expected, this assumes that y was in fact generated by that x and given

to us (more on the case when the available measurements are noisy versions of y can

be found in, e.g., [HN06, Wai06]).

As can be immediately seen, the previous results heavily rely on the assumption

that the measurement matrix A satisfies the RIP condition. It turns out that for

several specific classes of matrices, such as matrices with independent zero-mean

Gaussian entries or independent Bernoulli entries, the RIP holds with overwhelming

probability [CT05, BDDW08, RV05]. However, it should be noted that the RIP is

only a sufficient condition for ℓ1-optimization to produce a solution of (3.1.1).

Instead of characterizing the m × n matrix A through the RIP condition, in

[Don06c, DT05a] the authors assume that A constitutes a k-neighborly poly-tope.

It turns out (as shown in [Don06c]) that this characterization of the matrix A is in

fact a necessary and sufficient condition for (3.1.2) to produce the solution of (3.1.1).

Furthermore, using the results of [VS92], it can be shown that if the matrix A has

i.i.d. zero-mean Gaussian entries with overwhelming probability it also constitutes

a k-neighborly poly-tope. The precise relation between m and k in order for this

to happen is characterized in [Don06c] as well. It should also be noted that for a

given value m, i.e., for a given value of the constant δ, the value of the constant ζ is

significantly better in [Don06c, DT05a] than in [CT05]. Furthermore, the values of

constants ζ obtained for different values of δ in [Don06c] approach the ones obtained
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by simulation as n −→∞.

3.1.2 ℓ1 Minimization for Approximately Sparse Signal

As mentioned earlier, in this chapter we will be interested in recovering approximately

k-sparse signals from compressed observations. Since in this case the unknown vector

x in general has no zeros, an exact recovery from a reduced number of measurements

is not possible normally. Instead, we will prove that, if we denote the unknown

approximately k-sparse vector is x and x̂ is the solution of (3.1.2), then for any given

constant 0 ≤ δ ≤ 1, there exist a constant ζ > 0 and a sequence of measurement

matrices A ∈ Rm×n as n→∞ such that

||x̂− x||1 ≤
2(C + 1)∆

C − 1
, (3.1.3)

holds for all x ∈ Rn, where C > 1 is a given constant (saying how close in ℓ1 norm

the recovered vector x̂ should be to x). Here ζ will be a function of C and δ, but

independent of the problem dimension n. In particular, we have the following theorem

Theorem 3.1.1. Let n, m, k, x, x̂ and ∆ be defined as above. Let K denotes a

subset of {1, 2, . . . , n} such that |K| = k, where |K| is the cardinality of K, and let

Ki denote the i-th element of K and K̄ = {1, 2, . . . , n} \K.

For any constant C > 1 and any δ = m
n
> 0, then there exists a ζ(δ, C) > 0 such

that if the measurement matrix A is the basis for a uniformly distributed subspace,

then with overwhelming probability as n→∞, for all vectors w ∈ Rn in the null-space

of A, and for all K such that |K| = k ≤ ζ(δ, C), we have

C

k∑

i=1

|wKi
| ≤

n−k∑

i=1

|wK̄i
|, (3.1.4)

where xK denotes the part of x over the subset K; and at the same time the solution

x̂ produced by (3.1.2) will satisfy
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||x̂− x||1 ≤
2(C + 1)∆

C − 1
. (3.1.5)

for all x ∈ Rn.

The main focus of this chapter is to establish a sharp relationship between ζ and

C (when δ is fixed). For example, when δ = 0.5555, we have the following figure

showing the tradeoff between ζ and C:

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

C

k/
n

Figure 3.1: Allowable sparsity as a function of C (allowable imperfection of the

recovered signal is 2(C+1)∆
C−1

)

To obtain the stated results, we will make use of a characterization that constitutes

both necessary and sufficient conditions on the matrix A such that the solution of

(3.1.2) approximates the original signal accurately enough such that (3.1.3) holds.

This characterization will be equivalent to the neighborly polytope characterization
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from [Don06c] in the “ideally sparse” case. Furthermore, as we will see later in the

chapter, in the perfectly sparse signal case (which allows C −→ 1), our result for

allowable ζ will match the result of [Don06c]. Our analysis will be directly based on

the null-space Grassmann angle result in high dimensional integral geometry, which

gives a unified analytic framework for ℓ1 minimization.

A similar problem as discussed in this paper was considered with different proof

techniques in [CDD08] based on the restricted isometry property from [CT05], where

no explicit values of ζ were given. Since the RIP condition is a sufficient condition,

it generally gives rather loose bounds on the explicit values of ζ even in the ideally

sparse case. In this chapter we will provide sharp bounds on the explicit values of

the allowable constants ζ for the general cases C ≥ 1 based on high-dimensional ge-

ometry. Certainly there were also discussions of compressive sensing under different

definitions of non-ideally sparse signals in the literature, for example, [Don06b] dis-

cussed compressive sensing for signals from a lp ball with 0 < p ≤ 1 using sufficient

conditions based on results of the Gelfand n-widths. However, the results in this

chapter are dealing directly with approximately sparse signals defined in terms of the

concentration of ℓ1 norm, and furthermore, we give a neat necessary and sufficient

condition for ℓ1 optimization to work and we are also able to explicitly give much

sharper compressive sensing performance bounds.

This rest of the chapter is organized as follows. In Section 3.2, we will introduce

a null-space characterization of linear subspaces for guaranteeing the signal recovery

robustness using the ℓ1 minimizations. Section 3.3 presents a Grassmann angle based

high dimensional geometrical framework for analyzing the null-space characterization.

In Section 3.4, 3.6, and 3.7, analytical performance bounds are given for the null-space

characterization. Section 3.8 shows how the Grassmann angle analytical framework

can be extended to analyzing the “weak”, “sectional” and “strong” notations of signal

recovery robustness. In Section 3.9, we present the robustness analysis of the ℓ1

minimization under noisy measurements using the null-space characterization. In

Section 3.10, the numerical evaluations of the performance bounds for signal recovery
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robustness are given. Section 3.11 concludes the chapter.

3.2 The Null Space characterization

In this section we introduce a useful characterization of the matrix A. The charac-

terization will establish a necessary and sufficient condition on the matrix A so that

solution of (3.1.2) approximates the solution of (3.1.1) such that (3.1.3) holds. (See

[FN03, LN06, Zha06, CDD08, SXH08a, SXH08b, KT07] for variations of this result).

Theorem 3.2.1. Assume that an m × n measurement matrix A is given. Further,

assume that y = Ax and that w is an n×1 vector. Let K be any subset of {1, 2, . . . , n}
such that |K| = k, where |K| is the cardinality of K and let Ki denote the i-th element

of K. Further, let K̄ = {1, 2, . . . , n} \ K. Then the solution x̂ produced by (3.1.2)

will satisfy

‖x− x̂‖1 ≤
2(C + 1)

C − 1
‖xK̄‖1,

with C > 1, if and only if ∀ w ∈ Rn such that

Aw = 0

and ∀ K such that |K| = k, we have

C

k∑

i=1

|wKi
| ≤

n−k∑

i=1

|wK̄i
|. (3.2.1)

Proof. Sufficiency: Suppose the matrix A has the claimed null-space property. Now

the solution x̂ of (3.1.2) satisfies

‖x̂‖1 ≤ ‖x‖1,

where x is the original signal. Since Ax̂ = y, it easily follows that w = x̂ − x is in

the null space of A. Therefore we can further write ‖x‖1 ≥ ‖x + w‖1. Using the
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triangular inequality for the ℓ1 norm we obtain

‖xK‖1 + ‖xK̄‖1 = ‖x‖1
≥ ‖x̂‖1 = ‖x+w‖1
≥ ‖xK‖1 − ‖wK‖1 + ‖wK̄‖1 − ‖xK̄‖1
≥ ‖xK‖1 +

C − 1

C
‖wK‖1 − ‖xK̄‖1

≥ ‖xK‖1 − ‖xK̄‖1 +
C − 1

C + 1
‖w‖1,

where the last two inequalities are from the claimed null-space property. Relating the

first equality and the last inequality above, we finally get

2‖xK̄‖1 ≥
(C − 1)

C + 1
‖w‖1,

as desired.

Necessity: Since every step in the proof of the sufficiency can be reversed if equality

is achieved in the triangular equality, the condition

C

k∑

i=1

|wKi
| ≤

n−k∑

i=1

|wK̄i
|

is also a necessary condition for ‖x− x̂‖1 ≤ 2(C+1)
C−1

‖xK̄‖1 to hold for every x.

It should be noted that if the condition (3.2.1) is satisfied, then

2‖xK̄‖1 ≥
(C − 1)

C + 1
‖w‖1 =

(C − 1)

C + 1
‖x̂− x‖1,

for any K or K̄. Hence it is also true for the set K which corresponds to the k largest

components of the vector x. In that case we can write

2∆ ≥ (C − 1)

C + 1
‖x̂− x‖1

which exactly corresponds to (3.1.3). In fact, the condition (3.2.1) is also a sufficient
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and necessary condition for unique exact recovery of ideally k-sparse signals after we

take C = 1 and let (3.2.1) take strict inequality for all w 6= 0 in the null space of A.
To see this, suppose the ideally k-sparse signal x is supported over the set K, namely,

‖xK̄‖1 = 0. Then from the same triangular inequality derivation of Theorem 1, we

know that ‖x̂− x‖1 = 0, namely x̂ = x. Or we can just let C be arbitrarily close to

1 and since

‖x− x̂‖1 ≤
2(C + 1)

C − 1
‖xK̄‖1 = 0,

we also get x̂ = x. In this sense, when C = 1, the null-space condition is equivalent

to the neighborly polytope condition [Don06c] for unique exact recovery of ideally

sparse signals.

Remark: Clearly, we need not check (3.2.1) for all subsets K; checking the subset

with the k largest (in absolute value) elements of w is sufficient. However, Theorem

1 will be more convenient for our subsequent analysis.

In the following section, for a given value δ = m
n

and any value C ≥ 1, we will

determine the value of feasible ζ = ρδ = k
n
for which there exists a sequence of A

such that (3.2.1) is satisfied when n goes to infinity and m
n
= δ. It turns out that for

a specific A, it is very hard to check whether the condition (3.2.1) is satisfied or not.

Instead, we consider randomly choosing A from a certain distribution, and analyze

for what ζ , the condition (3.2.1) for its null-space is satisfied with overwhelming

probability as n goes to infinity. When we consider C = 1 corresponding to the

ℓ1 minimization for purely k-sparse signals, coarse bounds on k were established

in [Zha06][SXH08a] using different analysis techniques for high-dimensional linear

subspaces. However, no sharp bounds are available for under the general case C ≥ 1.

The standard results on compressed sensing assume that the matrix A has i.i.d.

N (0, 1) entries. In this case, the following lemma gives a characterization of the

resulting null-space of A.

Lemma 3.2.2. Let A ∈ Rm×n be a random matrix with i.i.d. N (0, 1) entries. Then

the following statements hold:
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• The distribution of A is left-rotationally invariant, PA(A) = PA(AΘ), ΘΘ∗ =

Θ∗Θ = I.

• The distribution of Z, any basis of the null-space of A is right-rotationally in-

variant. PZ(Z) = PZ(Θ
∗Z), ΘΘ∗ = Θ∗Θ = I.

• It is always possible to choose a basis for the null-space such that Z ∈ Rn×(n−m)

has i.i.d. N (0, 1) entries.

In view of Theorem 1 and Lemma 1 what matters is that the null-space of A

be rotationally invariantly. Sampling from this rotationally invariant distribution is

equivalent to uniformly sampling a random (n −m)-dimensional subspace from the

Grassmann manifold Gr(n−m)(n). Here the Grassmannian manifold Gr(n−m)(n) is

the set of (n − m)-dimensional subspaces in the n-dimensional Euclidean space Rn

[Boo86]. For any such A and ideally sparse signals, the sharp bounds of [Don06c],

for example, apply. However, we shall see that the neighborly polytope condition for

ideally sparse signals does not apply to the proposed null-space condition analysis for

approximately sparse signals, since the null-space condition can not be transformed to

the k-neighborly property in a high-dimensional polytope [Don06c]. Instead, in this

chapter, we shall give a unified Grassmannian angle framework to analyze the pro-

posed null-space property with applications to compressive sensing for approximately

sparse signals.

3.3 The Grassmannian Angle Framework for the

Null Space Characterization

In this section we derive and detail the Grassmannian angle-based framework for an-

alyzing the bounds on ζ = k
n
such that the condition (3.2.1) holds for the null-space

of the measurement matrix A. Before proceeding further, let us make clear the prob-

lem that we are trying to solve: Let Z be the null-space of the randomly sampled
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measurement matrix A. Given a certain constant C > 1 (or C ≥ 1), which corre-

sponds to a certain level of recovery accuracy for the approximately sparse signals, we

are interested in how large the sparsity level k can be while satisfying the following

condition on Z (|K| = k ):

∀K ⊆ {1, 2, ..., n}, C‖wK‖1 ≤ ‖wK̄‖1, ∀w ∈ Z, (3.3.1)

with overwhelming probability as n→∞. From the definition of the condition (3.3.1),

there is a tradeoff between the largest sparsity level k and the parameter C, which in

turn is related to the allowable signal recovery imperfection. As C grows, clearly the

largest k satisfying (3.3.1) will decrease, and at the same time, ℓ1 minimization will

be more robust in recovering approximately sparse signals. The key in our derivation

is the following lemma

Lemma 3.3.1. For a certain subset K ⊆ {1, 2, ..., n} with |K| = k, the event that

the null-space Z satisfies

C‖wK‖1 ≤ ‖wK̄‖1, ∀w ∈ Z

is equivalent to the event that ∀x supported on the k-set K (or supported on a subset

of K):

‖xK +wK‖1 + ‖
wK̄

C
‖1 ≥ ‖xK‖1, ∀w ∈ Z. (3.3.2)

Proof. First, let us assume that C‖wK‖1 ≤ ‖wK̄‖1, ∀w ∈ Z. Using the triangular

inequality for the ℓ1 norm we obtain

‖xK +wK‖1 + ‖
wK̄

C
‖

≥ ‖xK‖1 − ‖wK‖1 + ‖
wK̄

C
‖

≥ ‖xK‖1,
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thus proving the forward part of this lemma. Now let us assume instead that ∃w ∈ Z,
such that C‖wK‖1 > ‖wK̄‖1. Then we can construct a vector x supported on the set

K (or a subset of K), with xK = −wK . Then we have

‖xK +wK‖1 + ‖
wK̄

C
‖

= 0 + ‖wK̄

C
‖

< ‖xK‖1,

proving the inverse part of this lemma.

So the event that the condition in (3.3.1) on the null-space Z holds if and only if

∀ K ⊆ {1, 2, ..., n} with |K| = k, and ∀ x supported on the set K (or on a subset

of K),

‖xK +wK‖1 + ‖
wK̄

C
‖1 ≥ ‖xK‖1, ∀w ∈ Z. (3.3.3)

Based on Lemma 3.3.1, we are now in a position to derive the probability that

condition (3.3.1) holds for the sparsity |K| = k if we uniformly sample a random

(n − m)-dimensional subspace Z from the Grassmann manifold Gr(n−m)(n). From

the previous discussions, we can equivalently consider the complementary probability

P , namely the probability there exists a subset K ⊂ {1, 2, ..., n} with |K| = k, and a

vector x ∈ Rn supported on the set K (or a subset of K) failing the condition (3.3.2).

Due to the vector linear proportionality in the linear subspace Z, we can restrict our

attention to those vectors x from the crosspolytope

{x ∈ Rn | ‖x‖1 = 1}

that are only supported on the set K (or a subset of K).

First, we upper bound the probability P by a union bound over all the possible

support sets K ⊂ {1, 2, ..., n} and all the sign patterns of the k-sparse vector x. Since

the k-sparse vector x has
(
n
k

)
possible support sets of cardinality k and 2k possible

sign patterns (nonnegative or non-positive), we have
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P ≤
(
n

k

)

× 2k × PK,− (3.3.4)

,where PK,− is the probability that for a specific support set, there exist a k-sparse

vector x of a specific sign pattern which fails the condition (3.3.2). By symmetry,

without loss of generality, we assume the signs of the elements of x to be non-positive.

So now we can focus on deriving the probability PK,−. Since x is a non-positive

k-sparse vector supported on the set K (or a subset of K) and can be restricted to the

crosspolytope {x ∈ Rn | ‖x‖1 = 1}, x is also on a (k − 1)-dimensional face, denoted

by F , of the skewed crosspolytope SP:

SP = {y ∈ Rn | ‖yK‖1 + ‖
yK̄

C
‖1 ≤ 1}. (3.3.5)

Figure 3.2: The Grassmann angle for a skewed crosspolytope
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Now the probability PK,− is the probability that there exists an x ∈ F , and there

exists a w ∈ Z (w 6= 0) such that

‖xK +wK‖1 + ‖
wK̄

C
‖1 ≤ ‖xK‖1 = 1. (3.3.6)

We start by studying the case for a specific point x ∈ F and, without loss of generality,

we assume x is in the relative interior of this (k − 1)-dimensional face F . For this

particular x on F , the probability, denoted by P ′
x, that ∃w ∈ Z (w 6= 0) such that

‖xK +wK‖1 + ‖
wK̄

C
‖1 ≤ ‖xK‖1 = 1, (3.3.7)

is essentially the probability that a uniformly chosen (n −m)-dimensional subspace

Z shifted by the point x, namely (Z + x), intersects the skewed crosspolytope

SP = {y ∈ Rn | ‖yK‖1 + ‖
yK̄

C
‖1 ≤ 1}, (3.3.8)

non-trivially. Namely, at some other point besides x.

From the linear property of the subspace Z, the event that (Z + x) intersects

the skewed crosspolytope SP is equivalent to the event that Z intersects nontrivially

with the cone SP-Cone(x) obtained by observing the skewed polytope SP from the

point x. (Namely, SP-Cone(x) is conic hull of the point set (SP − x) and of course

SP-Cone(x) has the origin of the coordinate system as its apex.) However, as noticed

in the geometry for convex polytopes [Grü68][Grü03], the SP-Cone(x) are identical

for any x lying in the relative interior of the face F . This means that the probability

PK,− is equal to P ′
x, regardless of the fact x is only a single point in the relative

interior of the face F . (The acute reader may have noticed some singularities here

because x ∈ F may not be in the relative interior of F , but it turns out that the

SP-Cone(x) in this case is only a subset of the cone we get when x is in the relative

interior of F . So we do not lose anything if we restrict x to be in the relative interior
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of the face F ), namely we have

PK,− = P ′
x.

Now we only need to determine P ′
x. From its definition, P ′

x is exactly the comple-

mentary Grassmann angle [Grü68] for the face F with respect to the polytope

SP under the Grassmann manifold Gr(n−m)(n):
1 the probability of a uniformly dis-

tributed (n−m)-dimensional subspace Z from the Grassmannian manifold Gr(n−m)(n)

intersecting non-trivially with the cone SP-Cone(x) formed by observing the skewed

crosspolytope SP from the relative interior point x ∈ F .
Building on the works by L. A. Santalö [San52] and P. McMullen [McM75] in high

dimensional integral geometry and convex polytopes, the complementary Grassmann

angle for the (k − 1)-dimensional face F can be explicitly expressed as the sum of

products of internal angles and external angles [Grü03]:

2×
∑

s≥0

∑

G∈ℑm+1+2s(SP)

β(F,G)γ(G, SP), (3.3.9)

where s is any nonnegative integer, G is any (m + 1 + 2s)-dimensional face of the

skewed crosspolytope (ℑm+1+2s(SP) is the set of all such faces), β(·, ·) stands for the
internal angle and γ(·, ·) stands for the external angle.

The internal angles and external angles are basically defined as follows [Grü03][McM75]:

• An internal angle β(F1, F2) is the fraction of the hypersphere S covered by the

cone obtained by observing the face F2 from the face F1.
2 The internal angle

β(F1, F2) is defined to be zero when F1 * F2 and is defined to be one if F1 = F2.

• An external angle γ(F3, F4) is the fraction of the hypersphere S covered by the

cone of outward normals to the hyperplanes supporting the face F4 at the face

1Grassman angle and its corresponding complementary Grassmann angle always sum up to 1.
There is apparently inconsistency in terms of the definition of which is “Grassmann angle” and
which is “complementary Grassmann angle” between [Grü68],[AS92] and [VS92] etc. But we will
stick to the earliest definition in [Grü68] for Grassmann angle: the measure of the subspaces that
intersect trivially with a cone.

2Note the dimension of the hypersphere S here matches the dimension of the corresponding cone
discussed. Also, the center of the hypersphere is the apex of the corresponding cone. All these
defaults also apply to the definition of the external angles.
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F3. The external angle γ(F3, F4) is defined to be zero when F3 * F4 and is

defined to be one if F3 = F4.

Let us take for example the 2-dimensional skewed crosspolytope,

SP = {(y1, y2) ∈ R2| ‖y2‖1 + ‖
y1

C
‖1 ≤ 1},

(namely the diamond) in Figure 3.2, where n = 2, (n−m) = 1 and k = 1. Then the

point x = (0,−1) is a 0-dimensional face (namely a vertex) of the skewed polytope

SP. Now from their definitions, the internal angle β(x, SP) = β and the external

angle γ(x, SP) = γ, γ(SP, SP) = 1. The complementary Grassmann angle for the

vertex x with respect to the polytope SP is the probability that a uniformly sampled

1-dimensional subspace (namely a line, we denote it by Z) shifted by x intersects

non-trivially with SP = {(y1, y2) ∈ R2| ‖y2‖1 + ‖y1

C
‖1 ≤ 1} (or equivalently the

probability that Z intersects non-trivially with the cone obtained by observing SP

from the point x). It is obvious that this probability is 2β. The readers can also

verify the correctness of the formula (3.3.9) very easily for this toy example.

For a general polytope, it might be hard to give explicit formula for the external

and internal angles involved. Fortunately in the skewed crosspolytope case, both the

internal angles and the external angles can be explicitly computed.

First, let us look at the internal angle β(F,G) between the (k − 1)-dimensional

face F and a (l−1)-dimensional face G. Notice that the only interesting case is when

F ⊆ G since β(F,G) = 0 if F ⊆ G. We will see if F ⊆ G, the cone formed by

observing G from F is the direct sum of a (k − 1)-dimensional linear subspace and

a convex polyhedral cone formed by (l − k) unit vectors with inner product 1
1+C2k

between each other. In this case, the internal angle is given by

β(F,G) =
Vl−k−1(

1
1+C2k

, l − k − 1)

Vl−k−1(Sl−k−1)
, (3.3.10)

where Vi(S
i) denotes the i-th dimensional surface measure on the unit sphere Si,

while Vi(α
′, i) denotes the surface measure for regular spherical simplex with (i+ 1)
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vertices on the unit sphere Si and with inner product as α′ between these (i + 1)

vertices. Thus (3.3.10) is equal to B( 1
1+C2k

, l − k), where

B(α′, m′) = θ
m′−1

2

√

(m′ − 1)α′ + 1π−m′/2α′−1/2
J(m′, θ), (3.3.11)

with θ = (1− α′)/α′ and

J(m′, θ) =
1√
π

∫ ∞

−∞
(

∫ ∞

0

e−θv
2+2ivλ dv)m

′
e−λ

2

dλ. (3.3.12)

Also, we can derive the external angle γ(G, SP) between the (l − 1)-dimensional

face G and the skewed crosspolytope SP as

γ(G, SP) =
2n−l
√
π
n−l+1

∫ ∞

0

e−x
2

(

∫ x

C

√

k+ l−k

C2

0

e−y
2

dy)n−l dx. (3.3.13)

The derivations of these expressions involve the computations of the volumes of cones

in high dimensional geometry and will be presented in the appendix.

3.4 Evaluating the Bound ζ

In summary, we finally get the probability

P ≤
(
n

k

)

× 2k × 2×
∑

s≥0

∑

G∈ℑm+1+2s(SP)

β(F,G)γ(G, SP). (3.4.1)

First we define l = (m + 1 + 2s) + 1 and µ = l
n
. In the skewed crosspolytope

SP, we notice that there are in total
(
n−k
l−k
)
2l−k faces G of dimension (l− 1) such that

F ⊂ G and β(F,G) 6= 0.In the skewed crosspolytope SP , we notice that there are

in total
(
n−k
l−k
)
2l−k faces G of dimension (l − 1) such that F ⊂ G and β(F,G) 6= 0.

Because of the symmetry in the skewed crosspolytope SP, it follows from (3.4.1) that

P ≤
(
n

k

)

2k × 2
∑

s≥0

(
n− k
l − k

)

2l−kβ(F,G)γ(G, SP), (3.4.2)
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where l = (m + 1 + 2s) + 1 and G is any single face of dimension (l − 1) such that

F ⊆ G.

We plan now to estimate n−1 log(P ), decomposing it into a sum of terms involving

logarithms of the combinatorial prefactor, the internal angle and the external angle.

Define the Shannon entropy:

H(p) = p log(1/p) + (1− p) log(1/(1− p));

noting that here the logarithm base is e, rather than the customary base 2. It is easy

to see that

n−1 log

(
n

⌊pn⌋

)

→ H(p), p ∈ [0, 1], n→∞ (3.4.3)

so this provides a convenient summary for combinatorial terms. Defining ν = l/n ≤ δ,

we have

n−1 log(P ) = ν loge(2) +H(ρδ) +H(
ν − ρδ
1− ρδ )(1− ρδ) +R1 (3.4.4)

with remainder R1 = R1(s, k, d, n).

Define then the growth exponent,

ψcom(ν; ρ, δ) ≡ ν loge(2) +H(ρδ) +H(
ν − ρδ
1− ρδ )(1− ρδ), (3.4.5)

describing the exponential growth of the combinatorial factors. Applying (3.4.3), we

will see that the remainder R1 in (3.4.4) is o(1) uniformly in the range k−l > (δ−ρ)n,
n > n0.

We will define a so-called decay exponent ψext(ν) and show that γ(G, SP) decays

exponentially at least at the rate ψext(ν); for each ǫ > 0,

n−1 log(γ(G, SP)) ≤ −ψext(ν) + ǫ,

uniformly in l ≥ δn, n ≥ n0(δ, ǫ).

Similarly, Section 4.2 below defines a decay exponent ψint(ν; ρδ). Section 6 be-
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low shows that the internal angle β(F,G) indeed decays with this exponent; along

sequences k ∼ ρδn, l ∼ νn,

n−1 log(β(F,G)) = −ψint(ν; ρδ) +R2,

where the remainder R2 < o(1) uniformly in k − l ≥ (δ − ρ)n.
Hence for any fixed choice of ρ, δ, for ǫ > 0, and for n ≥ n0(ρ, δ, ǫ) , we have the

inequality

n−1 log(Ds) ≤ ψcom(ν; ρ, δ)− ψint(ν; ρ, δ)− ψext(ν; ρ, δ) + 3ǫ, (3.4.6)

valid uniformly in s.

3.4.1 Defining ρN

Define now the net exponent ψnet = ψcom(ν; ρ, δ)−ψint(ν; ρ, δ)−ψext(ν; ρ, δ). We can

define at last the mysterious ρN as the threshold where the net exponent changes sign.

We will see that the components of ψnet are all continuous over sets ρ ∈ [ρ0, 1], δ ∈
[δ0, 1], ν ∈ [δ, 1], and so ψnet has the same continuity properties.

Definition 3.4.1. Let δ ∈ (0, 1]. The critical proportion ρN (δ) is the supremum of

ρ ∈ [0, 1] obeying

ψnet(ν; ρ, δ) < 0, ν ∈ [δ, 1).

Continuity of ψnet shows that if ρ < ρN then, for some ǫ > 0,

ψnet(ν; ρ, δ) < −4ǫ, ν ∈ [δ, 1).

Combine this with (3.4.6). Then for all s = 0, 2, . . . , (n − d)/2 and all n >

n0(δ, ρ, ǫ)

n−1 log(Ds) ≤ −ǫ.

This implies our main result.
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3.5 Properties of Exponents

We now define the exponents ψint and ψext and discuss properties of ρN .

3.5.1 Exponent for External Angle

Let G denote the cumulative distribution function of a half-normal HN(0, 1/2) ran-

dom variable, i.e., a random variable X = |Z| where Z ∼ N(0, 1/2), and G(x) =

Prob{X ≤ x}. It has density g(x) = 2/
√
π exp(−x2). Writing this out,

G(x) =
2√
π

∫ x

0

e−y
2

dy; (3.5.1)

so G is just the classical error function erf. For ν ∈ (0, 1], define xν as the solution of

2xG(x)

g(x)
=

1− ν
ν ′

, (3.5.2)

where

ν ′ = (C2 − 1)ρδ + ν.

Since xG(x) is a smooth strictly increasing function ∼ 0 as x→ 0 and ∼ x as x→∞,

and g(x) is strictly decreasing, the function 2xG(x)/g(x) is one-one on the positive

axis, and xν is well-defined, and a smooth, decreasing function of ν. This has limiting

behavior xν → 0 as ν → 1 and xν ∼
√

log((1− ν)/ν) as ν → 0. Define now

ψext(ν) = −(1 − ν) log(G(xν)) + νx2ν .

This function is smooth on the interior of (0, 1), with endpoints ψext(1) = 0, ψext(0) =

0. When C = 1, a useful fine point is the asymptotic [Don06c]

ψext(ν) ∼ ν log(
1

ν
)− 1

2
ν log(log(

1

ν
)) +O(ν), ν → 0. (3.5.3)
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3.5.2 Exponent for Internal Angle

Let Y be the standard half-normal random variable HN(0, 1); this has cumulant

generating function Λ(s) = log(E(exp(sY )). Very convenient for us is the exact

formula

Λ(s) =
s2

2
+ log(2Φ(s)),

where Φ is the usual cumulative distribution function of a standard Normal N(0, 1).

The cumulant generating function Λ has a rate function (Fenchel-Legendre dual)

Λ∗(y) = max
s

sy − Λ(y)

This is smooth and convex on (0,∞), strictly positive except at µ = E(Y ) =
√

2/π.

More details are provided in the following sections. For γ′ ∈ (0, 1) let

ξγ′(y) =
1− γ′
γ′

y2/2 + Λ∗(y). (3.5.4)

The function ξγ′(y) is strictly convex and positive on (0,∞) and has a unique mini-

mum at a unique yγ′ in the interval (0,
√

2/π). We define

γ′ =
ρδ

C2−1
C2 ρδ + ν

C2

,

then we have the external angle exponent as

Ψint(ν; ρ, δ) = ξγ′(yγ′)(ν − ρδ) + log(2)(ν − ρδ). (3.5.5)

For fixed ρ, δ, Λint is continuous in ν ≥ δ. Most importantly, in the section below,

we get the asymptotic formula

ξγ′(yγ′) ∼
1

2
log(

1− γ′
γ′

), γ′ → 0. (3.5.6)
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Because γ′ = ρδ
C2−1
C2 ρδ+ ν

C2

, (3.5.6) means for small ρ, ν ∈ [δ, 1] and any given η > 0

Ψint(ν, ρδ) ≥ (
1

2
· log(1− γ

′

γ′
)(1− η) + log(2))(ν − ρδ). (3.5.7)

3.5.3 Combining the Exponents

We now consider the combined behavior of Ψcom, Ψint and Ψnet. We think of these

as functions of ν with ρ, δ as parameters. The combinatorial exponent Ψcom is the

sum of a linear function in ν, and a scaled, shifted version of the Shannon entropy,

which is a symmetric, roughly parabolic shaped function. This is the exponent of a

growing function which must be outweighed by the sum Ψint +Ψnet.

3.5.4 Properties of ρN

The asymptotic relations (3.5.3) and (3.5.6) allow us to see two key facts about ρN ,

both proved in the appendix. Firstly, the concept is nontrivial:

Lemma 3.5.1. For any δ > 0 and any C > 1, we have

ρN > 0, δ ∈ (0, 1). (3.5.8)

Secondly, one can show that, although ρN → 0 as δ → 0, it goes to zero slowly.

Lemma 3.5.2. For all η > 0,

ρN (δ) ≥ log(
1

δ
)−(1+η), δ → 0. (3.5.9)

Lemma 3.5.3. For a fixed δ > 0, define ρN(δ;C) as the ρ(N ; δ) for a certain C > 1.

Then

Ω(
1

C2
) ≤ ρN (δ;C) ≤

1

C + 1
, as C → 0, (3.5.10)
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where Ω( 1
C2 ) ≤ ρN(δ;C) means that there exists a constant ι(δ) and a C0 such that

for all C > C0,
ι(δ)

C2
≤ ρN (δ;C).

3.6 Bounds on the External Angle

We now justify the use of Ψext.

Lemma 3.6.1. Fix δ,ǫ > 0,

n−1 log(γ(G, SP)) < −Ψnet(l/n) + ǫ, (3.6.1)

uniformly in l > δn, n ≥ n0(δ, ǫ).

We start from an exact identity. We know that we have the explicit integral

formula

γ(G, SP) =
2n−l
√
π
n−l+1

∫ ∞

0

e−x
2

(

∫ x

C

√

k+ l−k

C2

0

e−y
2

dy)n−l dx. (3.6.2)

After a changing of integral variables, we have

γ(G, SP) =

√

(C2 − 1)k + l

π
(3.6.3)

∫ ∞

0

e−((C2−1)k+l)x2(
2√
π

∫ x

0

e−y
2

dy)n−l dx.

We notice the term in braces as the error function G from (3.5.1). Let ν = l/n,

ν ′ = (C2 − 1)ρδ + ν then the integral formula can be written as

√

nν ′

π

∫ ∞

0

e−nν
′x2+n(1−ν) log(G(x)) dx. (3.6.4)

This suggests that we should use Laplace’s method; we define

fρ,δ,ν,n(y) = e−nψρ,δ,ν(y) ·
√

nν ′

π
, (3.6.5)
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with

ψρ,δ,ν(y) = ν ′y2 − (1− ν) log(G(y)).

We note that ψρ,δ,ν is smooth and convex and (in the appendix) develop expressions

for its second and third derivatives. Applying Laplaces method to ψρ,δ,ν in the usual

way, but taking care about regularity conditions and remainders, gives a result with

the uniformity in ν, which is crucial for us.

Lemma 3.6.2. For ν ∈ (0, 1), let xν denote the minimizer of ψρ,δ,ν. Then

∫ ∞

0

fρ,δ,ν,n(x) dx ≤ e−nψρ,δ,ν(xν)(1 +Rn(ν)),

where for δ, η > 0,

sup
ν∈[δ,1−η]

Rn(ν) = o(1) as n→∞.

The minimizer xν is exactly the same xν defined earlier in (3.5.2) and the minimum

value in this lemma is the same as the defined exponent Ψext:

Ψext(ν) = ψρ,δ,ν(xν). (3.6.6)

In fact, we can derive Lemma 3.6.2 from Lemma 3.6.1. We note that as ν → 1,

xν → 0 and Ψext(ν) → 0. For given ǫ > 0 in the statement of Lemma 3.6.1, there is

a largest νǫ < 1 with Ψext(ν)→ 0. Note that γ(G, SP) ≤ 1, so that for l > νǫn,

n−1 log(γ(G, SP)) ≤ 0 < −Ψext(ν) + ǫ,

for n ≥ 1. Consider now l ∈ [δn, νǫn]. Based on (3.6.4),

γ(G, SP) =

∫ ∞

0

fρ,δ,ν,n(y) dx.
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Applying the uniformity in ν given in Lemma 3.6.2, we have as n→∞,

n−1 log(γ(G, SP)) = ψν(xν) + o(1), l ≥ δn.

So from the identity (3.6.6), we get

n−1 log(γ(G, SP)) ≤ −Ψnet(l/n) + o(1). (3.6.7)

Then Lemma 3.6.1 follows.

Now it remains to prove the uniform Laplace method Lemma (3.6.2). We will

follow the same line of reasoning given in [Don06c]. First, we state explicitly the key

lemma from [Don06c].

Lemma 3.6.3. [Don06c] Let ψ(x) be convex in x and C2 on an interval I and suppose

that it takes its minimum at an interior point x0 ∈ I, where ψ′′ > 0 and that in a

vicinity (x0 − ǫ, x0 + ǫ) of x0:

|ψ′′(x)− ψ′′(x0)| ≤ D|ψ′′(x0)||x− x0|. (3.6.8)

Let ψ̄ be the quadratic approximation ψ(x0) + ψ′′(x0)(x− x0)2/2. Then

∫

I

exp(−nψ(x)) dx ≤
∫ ∞

−∞
exp−nψ̄(x) dx · (S1,n + S2,n),

where

S1,n = exp(nψ′′(x0)Dǫ
3/6),

S2,n = 2/

(

nǫ(2π|ψ′′(0)|) 1
2 (1− 1

2
Dǫ2)

)

.

The constant D in this lemma can be as a scaled third derivative, since if ψ is C3,

we can take

D = sup
(x0−ǫ,x0+ǫ)

ψ(3)(x)/ψ′′(x).
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Based on Lemma 3.6.3, we can derive the uniformity in Lemma 3.6.2. In fact,

if we pick ǫn = n− 2
5 and let n ≥ n0(ψ

′′(x0), D), where n0(ψ
′′(x0), D) is a number

depending only on ψ′′(x0) and D, we can have

∫

I

e−nψ(x) dx ≤
∫ ∞

−∞
e−nψ̄(x) dx · (1 + o(1)). (3.6.9)

Here the term o(1) is uniform over any collection of convex functions with a

given ψ′′(x0) and D. Now we consider the collection of convex functions ψ(ν) (ν ∈
[δ, 1 − η]) in Lemma 3.6.2. Following the derivations in [Don06c], if we can show

that there exist a certain ǫ > 0 so that ψ′′
x0 and D is bounded for the function ψν(x)

uniformly over the range ν ∈ [δ, 1 − η]). Indeed, this is true based on the following

Lemma 3.6.4.

Lemma 3.6.4. The function ψν is C∞ with second derivative at the minimum,

ψ′′
ν (xν) = 2ν ′ + 4x2νν

′ +
4x2νν

′

1− ν , (3.6.10)

and third derivative at the minimum,

ψ(3)
ν (xν) = (1− ν)

(
(2− 4x2v)z − 6xνz

2 − 2z3
)
, (3.6.11)

where z = zν = 2ν ′xν/(1− ν). We have

0 < 2δ ≤ inf
ν∈[δ,1]

ψ′′
ν(xν),

and

sup
ν∈[δ,1−η]

ψ′′
ν(xν) <∞.

Moreover, for small enough ǫ > 0, the ratio

D(ǫ; δ, η) = sup
ν∈(δ,1−η]

sup
|x−xν |<ǫ

∣
∣ψ(3)

ν (x)/ψ′′
ν (x)

∣
∣
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is finite.

Proof. We can get the following first, second, third derivatives of the function ψν(x):

ψ′
ν(x) = −(1− ν)g/G+ 2ν ′x;

ψ′′
ν(x) = −(1− ν)(g′/G− g2/G2) + 2ν ′;

ψ(3)
ν (x) = −(1 − ν)(g′′/G− 3g′g/G2 + 2g3/G3).

Because g′ = (−2x)g, g′′ = (−2 + 4x2)g, and

g(xν)/G(xν) =
2νxν
1− ν = zν

at the point xν , we can immediately have (3.6.10) and (3.6.11).

Notice that ψ′′
ν (xν) ≥ 2ν ′, so it is bounded away from zero on any interval ν ∈ [δ, 1],

δ > 0. Also, since xν is a continuous function bounded away from zero over ν on the

interval [δ, 1− η] (δ, η > 0), we have ψ′′
ν (xν) is also bounded above over [δ, 1− η].

Now as for ψ(3), we note that clearly xν and zv are continuous functions on [δ, 1).

And both are bounded on the interval ν ∈ [δ, 1− η]. As a polynomial in ν, xν and Zν ,

ψ
(3)
v is also bounded. If we consider the interval (xν − ǫ, xν − ǫ), the boundness of the

ratio D(ǫ; δ, η) also holds uniformly over ν ∈ [δ, 1 − η] by inspection if ǫ > 0 is small

enough.

3.7 Bounds on the Internal Angle

In this section, we will show how to get the internal angle decay exponent, namely

proving the following lemma:

Lemma 3.7.1. For ǫ > 0 and n > n0(ǫ, δ, ρ),

n−1 log(β(F,G)) ≤ Ψint(l/n; k/n) + ǫ,
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uniformly in l ≥ δn, k ≥ ρn, (l − k) ≥ (δ − ρ)n.

Recall that the decaying exponent is

n−1 log(β(F,G)) = n−1 log(B(
1

1 + C2k
, l − k)), (3.7.1)

where

B(α′, m′) = θ
m′−1

2

√

(m′ − 1)α′ + 1π−m′/2α′−1/2
J(m′, θ), (3.7.2)

with θ = (1− α′)/α′, and

J(m′, θ) =
1√
π

∫ ∞

−∞
(

∫ ∞

0

e−θv
2+2ivλ dv)m

′
e−λ

2

dλ. (3.7.3)

To evaluate (3.7.1), we need to evaluate the complex integral in J(m′, θ′). A

saddle point method based on contour integration was sketched for similar integral

expressions in [VS92]. A probabilistic method using large deviation theory for evalu-

ating similar integrals was developed in [Don06c]. Both of these two methods can be

applied in our case and of course they will produce the same final results. So we will

follow the probabilistic method from [Don06c] in this chapter. The basic idea then

is to see the integral in J(m′, θ′) as the convolution of (m + 1) probability densities

being expressed in the Fourier domain. More explicitly, we have the following lemma.

Lemma 3.7.2. let θ = (1 − α′)/α′, where α′ = 1
C2k+1

. Let T be a random variable

with the N(0, 1
2
) distribution, and let Wm′ be a sum of m′ i.i.d. half normals Ui ∼

HN(0, 1
2θ
). Let T and Wm′ be stochastically independent, and let gT+Wm′ denote the

probability density function of the random variable T +Wm′. Then

B(α′, m′) =

√

α′(m′ − 1) + 1

1− α′ · 2−m′ · √π · gT+Wm′ (0). (3.7.4)

Applying this probabilistic interpretation and large deviation techniques, it is
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evaluated as in [Don06c] that

gT+Wm′ ≤
2√
π
·
(∫ µm′

0

ve−v
2−m′Λ∗(

√
2θ

m′ v) dv + e−µ
2
m

)

, (3.7.5)

where Λ∗ is the rate function for the standard half-normal random variable HN(0, 1)

and µm′ is the expectation of Wm′ , namely µm′ = EWm′ . In fact, the second term in

the sum is argued to be negligible [Don06c]. And after changing variables y =
√
2θ
m′ v,

we know that the first term is upperbounded by

2√
π
· m

′2

2θ
·
∫
√

2/π

0

ye−m
′(m

′
2θ

)y2−m′Λ∗(y) dy. (3.7.6)

3.7.1 Laplace’s Method for Ψint

As we know, m′ in the exponent of (3.7.6) is defined as (l−k) for our case. Similar to

evaluating the external angle decay exponent, we will resort to the Laplace’s method

in evaluating the internal angle decay exponent. In fact, we can see the function ξγ′

of (3.5.4) in the exponent of (3.7.6), with γ′ = θ
m′+θ . Since θ =

1−α′

α′ = C2k, we have

γ′ =
θ

m′ + θ
=

C2k

(C2 − 1)k + l
.

Since k ∼ ρδn, l ∼ νn,

γ′ =
k

l
C2 +

C2−1
C2 k

=
ρδ

C2−1
C2 ρδ + ν

C2

.

Define the integral

fγ′,m′(y) = ye−m
′ξγ′ (y)

If we apply similar arguments as in proving Lemma 3.6.2 and take care of the

uniformity, we will have the following lemma.
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Lemma 3.7.3. For γ′ ∈ (0, 1] let yγ′ ∈ (0, 1) denote the minimizer of ξγ′. Then

∫ ∞

0

fγ′,m′(x) dx ≤ e−m
′ξγ′ (yγ′ ) · Rm′(γ),

where, for η > 0,

m′−1 sup
γ∈[η,1]

log(R′
m(γ)) = o(1) as m′ →∞.

This means that

gT+Wm′ (0) ≤ e−m
′ξγ′ (yγ′ )Rm′(γ).

So applying (3.7.4), we get

n−1 log(β(F,G)) ≤ (−ξγ′(yγ′) + log(2)) (ν − ρδ) + o(1),

where the o(1) is uniform over a range of k and l.

3.7.2 Asymptotics of ξγ′

As in our previous discussion, we define γ′ = ρδ
C2−1
C2 ρδ+ ν

C2

, so γ′ can take any value in

the range (0, 1]. As in [Don06c], using the convex duality associated to the cumulant

generating function Λ(s) and its dual Λ∗, we have

y = Λ′(s), s = (Λ∗)′(y),

defining a one-one relationship s = s(y) and y = y(s) between s < 0 and 0 < y <
√

2
π
.

From these relations, following the same line of reasoning in [Don06c], we can get

the minimizer yγ′ of ξγ′ ,
1− γ′
γ′

yγ′ = −sγ′ , (3.7.7)

where sγ′ = s(yγ′).

Because the cumulant generating function for a standard half-normal random
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variable HN(0, 1) is Λ(s) = s2/2+ log(2Φ(s)) (recall φ and Φ are the normal density

and cumulative), we have from y = Λ′(s) that

y(s) = s · (1− 1

M(s)
), s < 0, (3.7.8)

where the function of M(s) is defined on s < 0 with 0 < M(s) < 1 and M(s)→ 1 as

s→ −∞ so that

Φ(s) =M(s) · φ(s)|s| .

Combining (3.7.7) and (3.7.8), we know that

M(sγ′) = 1− γ′. (3.7.9)

Further, we can derive that

ξγ′(yγ′) = −
1

2
y2γ′

1− γ′
γ′
− log(2/π)/2 + log(yγ′/γ

′). (3.7.10)

So by the property of the function M(s) and (3.7.9), as γ′ → 0, sγ′ → −∞. We

have

EesY =
2

2
√
π

M(s)

s
∼ 2

2
√
π

1

|s| , s→ −∞.

Hence Λ(s) ∼ − log |s| and Λ′(s) ∼ −1
s
as s→ −∞. So by y = Λ′(s), we have

y(s) ∼ 1

|s| s→ −∞,

and by combining this with (3.7.7), we get further

yγ′ ∼
√

γ′

1− γ′ .

This then leads to the asymptotics of ξγ′(yγ′) in this section.
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3.8 “Weak”, “Sectional” and “Strong” Robustness

So far, we have discussed the robustness of ℓ1 minimization for sparse signals recovery

in the “strongest” case, namely the robustness for all the approximately k-sparse

signal vectors x. But in applications or analysis, we are also often interested in the

signal recovery robustness in weaker senses. As we shall see, the framework given in

the previous sections can be naturally extended to the analysis of other notions of

robustness for sparse signal recovery, resulting in a coherent analysis scheme. In this

section, we will introduce our null-space conditions on the matrix A to guarantee the

solution of (3.1.2) approximates the solution of (3.1.1) in the “weak”, “sectional” and

“strong” senses in a unified way.

Theorem 3.8.1. Let the m × n measurement matrix be A, x be a n-element vector

and y = Ax. Let K be a subset of {1, 2, . . . , n} such that |K| = k and further, let

K̄ = {1, 2, . . . , n} \K. Let w denote an n× 1 vector.

• (Weak Robustness) Suppose the part of x supported on K, namely xK is fixed.

With C > 1, the solution x̂ produced by (3.1.2) will satisfy ∀ xK̄,

‖xK‖1 − ‖x̂K‖1 ≤
2

C − 1
‖xK̄‖1,

and

‖(x− x̂)K̄‖1 ≤
2C

C − 1
‖xK̄‖1,

if and only if ∀ w ∈ Rnsuch that Aw = 0, we have

‖xK +wK‖1 + ‖
wK̄

C
‖1 ≥ ‖xK‖1. (3.8.1)

• (Sectional Robustness) With C > 1, for a specific set K ⊆ {1, 2, . . . , n}, the

solution x̂ produced by (3.1.2) will satisfy ∀ x ∈ Rn

‖x− x̂‖1 ≤
2(C + 1)

C − 1
‖xK̄‖1,
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if and only if ∀ x′ ∈ Rn, ∀ w ∈ Rnsuch that Aw = 0,

‖x′
K +wK‖1 + ‖

wK̄

C
‖1 ≥ ‖x′

K‖1. (3.8.2)

• (Strong Robustness) With C > 1, ∀K ⊆ {1, 2, . . . , n}, ∀ x ∈ Rn, the solution x̂

produced by (3.1.2) satisfies

‖x− x̂‖1 ≤
2(C + 1)

C − 1
‖xK̄‖1,

if and only if ∀ K ⊆ {1, 2, . . . , n}, ∀ x′ ∈ Rn, ∀ w ∈ Rnsuch that Aw = 0,

‖x′
K +wK‖1 + ‖

wK̄

C
‖1 ≥ ‖x′

K‖1. (3.8.3)

Proof. Sufficiency: First we consider the “weak” norm robustness. Let w = x̂ − x

and we must have Aw = A(x̂ − x) = 0. From the triangular inequality for ℓ1 norm

and the fact that ‖x‖1 ≥ ‖x +w‖1, we have

‖xK‖1 − ‖xK +wK‖1
≥ ‖wK̄ + xK̄‖1 − ‖xK̄‖1
≥ ‖wK̄‖1 − 2‖xK̄‖1.

But the condition (3.8.1) guarantees that

‖wK̄‖1 ≥ C(‖xK‖1 − ‖xK +wK‖1),

so we have

‖wK̄‖1 ≤
2C

C − 1
‖xK̄‖1,

and

‖xK‖1 − ‖x̂K‖1 ≤
2

C − 1
‖xK̄‖1.
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For the “sectional” robustness, again, we let

w = x̂− x.

Then there must exist an x′ ∈ Rn such that

‖x′
K +wK‖1 = ‖x′

K‖1 − ‖wK‖1.

Following the condition (3.8.2), we have

‖wK‖1 ≤ ‖
wK̄

C
‖1.

Since

‖x‖1 ≥ ‖x+w‖1,

following the proof of Theorem 1, we have

‖x− x̂‖1 ≤
2(C + 1)

C − 1
‖xK̄‖1.

The sufficiency of the condition (3.8.3) for strong robustness also follows.

Necessity: Since in the proof of the sufficiency, equalities can be achieved in

the triangular equalities, the conditions (3.8.1), (3.8.2) and (3.8.3) are also necessary

conditions for the respective robustness to hold for every x (otherwise, for certain x’s,

there will be x′ = x+w with ‖x′‖1 < ‖x‖1 while violating the respective robustness

definitions. Also, such x′ can be the solution to (3.1.2)).

The conditions for “weak”, “sectional” and “strong” robustness are very similar

except that the “weak” robustness condition is for x with a specific xk on a specific

subset K, the “sectional” robustness condition is for x with all possible xK ’s on a

specific subset K, and the “strong” robustness conditions are for x with all possible

xK ’s on all possible subsets. Basically, the “weak norm robustness” condition (3.8.1)

guarantees that the ℓ1 norm of x̂K is not too far away from the ℓ1 norm of xK and
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the error vector wK̄ is small in ℓ1 norm when ‖xK̄‖1 is small. Notice that if we define

κ = max
Aw=0,w 6=0

‖wK‖1
‖wK̄‖1

,

then

‖x− x̂‖1 ≤
2C(1 + κ)

C − 1
‖xK̄‖1.

That means, if κ is not ∞ for a measurement matrix A, ‖x− x̂‖1 is also small when

‖xK̄‖1 is small. Indeed, it is not hard to see that, for a given matrix A

κ <∞

as long as the rank of the measurement matrix A is no smaller than |K| = k, which

is generally satisfied for k ≤ m.

Despite the fact that the “weak” robustness condition is only for one specific signal

x, the “sectional” robustness condition instead guarantees that given any approxi-

mately k-sparse signal mainly supported on the subset K, the ℓ1-minimization gives

a solution x̂ close to the original signal by satisfying (3.1.3). When we measure an

approximately k-sparse signal x (the support of the k largest-magnitude components

is fixed though unknown to the decoder) using a randomly generated measurement

matrix A, the “sectional” robustness conditions characterize the probability that the

ℓ1 minimization solution satisfies (3.1.3) for any signals for the set K. If that proba-

bility goes to 1 as n → ∞ for any subset K, we know that there exist measurement

matrices A’s that guarantee (3.1.3) on “almost all” support sets (namely, (3.1.3) is

“almost always” satisfied). The “strong” robustness conditions instead guarantee the

recovery robustness for approximately sparse signals mainly supported on any subset

K. The “strong” robustness conditions are useful in guaranteeing robustness uni-

versally for all approximately k-sparse signals under a single measurement matrix

A.

Interestingly, after we take C = 1 and let (3.8.1), (3.8.2) and (3.8.3) take strict

inequality for all w 6= 0 in the null space of A, the conditions (3.8.1), (3.8.2) and
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(3.8.3) are also sufficient and necessary conditions for unique exact recovery of ideally

k-sparse signals in “weak”, “sectional” and “strong” senses [Don06c], namely the

unique exact recovery of a specific ideally k-sparse signal, the unique exact recoveries

of all ideally k-sparse signal on a specific support setK and the unique exact recoveries

of all ideally k-sparse signal on all possible support sets K. In fact, if ‖xK̄‖1 = 0,

from similar triangular inequality derivations in Theorem 1, we have x̂ = x under all

the three conditions.

For a given value α = m
n
and any value C ≥ 1, we will determine the value of feasi-

ble ζ = k
n
for which there exist a sequences of A’s such that these three conditions are

satisfied when n→ ∞ and m
n
= α. It turns out that for a specific A, it is very hard

to check whether these three conditions hold. Instead, we consider randomly choos-

ing A from a certain distribution, and analyze for what ζ , these three conditions are

satisfied with overwhelming probability. The standard results on compressed sensing

assume that the matrix A has i.i.d. N (0, 1) entries. In this case, the null-space of

A is rotationally invariantly distributed and sampling from this rotationally invari-

ant distribution is equivalent to uniformly sampling a random (n − m)-dimensional

subspace from the Grassmann manifold Gr(n−m)(n), the set of (n − m)-dimensional

subspaces in the n-dimensional Euclidean space Rn [Boo86]. For such a distribution

on A and ideally sparse signals, the sharp bounds of [Don06c], for example, apply. In

this chapter, as manifested by the statements of the three conditions (3.8.1), (3.8.2)

and (3.8.3) and the previous discussions in Section 3.3, we can naturally extend the

Grassmann angle approach to analyze the bounds for the probabilities that (3.8.1),

(3.8.2) and (3.8.3) fail. Here we will denote these probabilities as P1, P2 and P3 re-

spectively. Note that there are
(
n
k

)
possible support sets K and there are 2k possible

sign patterns for signal xK . From previous discussions, we know that the event that

the condition (3.8.1) fails is the same for all xK ’s of a specific support set and a

specific sign pattern. Then following the same line of reasoning as in Section 3.3, we
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have

P1 = PK,−, (3.8.4)

P2 ≤ 2k × P1, (3.8.5)

P3 ≤
(
n

k

)

× 2k × P1, (3.8.6)

where PK,− is the probability as in (3.3.4).

We have the following lemma about the P1, P2 and P3.

Lemma 3.8.2. For any C > 1, we define ζW (δ), ζSec(δ), and ζS(δ) to be the largest

fraction ζ = k
n
such that the conditions (3.8.1), (3.8.2), and (3.8.3) are satisfied with

overwhelming probability as n → 0 if we sample the (n −m)-dimensional null-space

uniformly, where m
n
= δ. Then

ζW (δ) > 0,

ζSec(δ) > 0,

ζS(δ) > 0,

for any C > 1 and δ > 0. Also,

lim
δ→1

ζW (δ) = 1,

for any C > 1.

The proof of this lemma is given in the appendix. The numerical results of ζ

making sure that P1, P2, P3 converge to zero overwhelmingly are presented in Section

3.10.
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3.9 Analysis of ℓ1 Minimization under Noisy Mea-

surements

In the previous sections, we have analyzed the ℓ1 minimization algorithm for decoding

the approximately sparse signals. In this section, we will discuss the effect of noisy

measurements on the ℓ1 minimization for approximately sparse signals, using the

null-space characterization.

Theorem 3.9.1. Assume that an m × n measurement matrix A with rank m is

given and denote its minimum non-zero singular value as σmin. Further, assume that

y = Ax + b, with its ℓ1-norm ‖b‖ ≤ ǫ, and that w is an n × 1 vector. Let K be

any subset of {1, 2, . . . , n} such that its cardinality |K| = k and let Ki denote the i-th

element of K. Further, let K̄ = {1, 2, . . . , n} \ K. Then the solution x̂ produced by

(3.1.2) will satisfy

‖x− x̂‖1 ≤
2(C + 1)

C − 1
‖xK̄‖1 +

(3C + 1)
√
nǫ

(C − 1)σmin

,

with C > 1, if ∀ w ∈ Rn such that

Aw = 0 ,

and ∀ K such that |K| = k, we have

C
k∑

i=1

|wKi
| ≤

n−k∑

i=1

|wK̄i
|. (3.9.1)

Proof. Since

y = Ax+ b,

we can write

y = Ax∗,
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where

‖x∗ − x‖ ≤ ǫ

σmin

.

By the Cauchy-Schwarz inequality, we have

‖x∗ − x‖1 ≤
√
nǫ

σmin
.

Suppose the matrix A has the claimed null-space property. Now the solution x̂ of

(3.1.2) satisfies ‖x̂‖1 ≤ ‖x∗‖1. Since Ax̂ = y, it easily follows that w = x̂− x∗ is in

the null space of A. Therefore we can further write ‖x∗‖1 ≥ ‖x∗ + w‖1. Using the

triangular inequality for the ℓ1 norm we obtain

‖x∗
K‖1 + ‖x∗

K̄‖1 = ‖x∗‖1
≥ ‖x̂‖1 = ‖x∗ +w‖1
≥ ‖x∗

K‖1 − ‖wK‖1 + ‖wK̄‖1 − ‖x∗
K̄‖1

≥ ‖x∗
K‖1 +

C − 1

C
‖wK‖1 − ‖x∗

K̄‖1

≥ ‖x∗
K‖1 − ‖x∗

K̄‖1 +
C − 1

C + 1
‖w‖1,

where the last two inequalities are from the claimed null-space property. Relating the

first equality and the last inequality above, we have 2‖x∗
K̄
‖1 ≥ (C−1)

C+1
‖w‖1.

Since

‖x∗
K̄‖1 ≤ ‖xK̄‖1 + ‖x∗ − x‖1,

we get

‖w‖1 ≤
2(C + 1)

C − 1
‖x∗

K̄‖1

≤ 2(C + 1)

C − 1
‖xK̄‖1 +

2(C + 1)

C − 1
‖x∗ − x‖1.
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From the triangular inequality,

‖x− x̂‖1 ≤ ‖x− x∗‖1 + ‖w‖1 (3.9.2)

≤ 2(C + 1)

C − 1
‖xK̄‖1 +

3C + 1

C − 1
‖x∗ − x‖1, (3.9.3)

≤ 2(C + 1)

C − 1
‖xK̄‖1 +

(3C + 1)
√
nǫ

(C − 1)σmin
. (3.9.4)

If the elements in the measurement matrix A are i.i.d. as the unit real Gaussian

random variable N(0, 1), following upon the work of Marchenko and Pastur [MP67],

Geman [Gem80] and Silverstein [Sil85] proved that for m/n = δ, as n→∞,

1√
n
σmin → 1−

√
δ

almost surely.

Then almost surely as n→ ∞, (3C+1)
√
nǫ

(C−1)σmin
→ (3C+1)ǫ

(C−1)(1−
√
δ)
. So in this case, we have

‖x∗ − x‖1 is upperbounded by some constant times ǫ.

3.10 Numerical Computations on the Bounds of ζ

In this section, we will numerically evaluate the performance bounds on ζ = k
n
such

that the conditions (3.2.1), (3.8.1), (3.8.2) and (3.8.3) are satisfied with overwhelming

probability as n→∞.

First, we know that the condition (3.2.1) fails with probability

P ≤
(
n

k

)

× 2k × 2×
∑

s≥0

∑

G∈ℑm+1+2s(SP)

β(F,G)γ(G, SP), (3.10.1)

Recall that we assume m
n
= δ, l = (m+ 1 + 2s) + 1 and ν = l

n
. In order to make

P overwhelmingly converge to zero as n → ∞, following the discussions in Section

3.4, one sufficient condition is to make sure that the exponent for the combinatorial
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factors,

ψcom = lim
n→∞

log (
(
n
k

)
2k2
(
n−k
l−k
)
2l−k)

n
, (3.10.2)

and the negative exponent for the angle factors,

ψangle = − lim
n→∞

log (β(F,G)γ(G, SP))

n
, (3.10.3)

satisfy ψcom − ψangle < 0 uniformly over ν ∈ [δ, 1).

Following [Don06c] we take m = 0.5555n. By analyzing the decaying exponents

of the external angles and internal angles through the Laplace methods as in Sections

3.6 and 3.7, we can compute the numerical results as shown in Figures 3.1, 4.2 and

3.4. In Figure 3.1, we show the largest sparsity level ζ = k
n
(as a function of C) which

makes the probability of the condition (3.3.2) failing approach zero asymptotically as

n → ∞. As we can see, when C = 1, we get the same bound ζ = 0.095 × 0.5555 =

0.0528 as obtained for the ideally sparse signals case in [Don06c]. As expected, as C

grows, the ℓ1 minimization requires a smaller sparsity level ζ to achieves higher signal

recovery accuracy.

In Figure 4.2, we show the exponents ψcom, ψint, ψext under the parameters C = 2,

δ = 0.5555 and ζ = 0.0265. For the same set of parameters, in Figure 3.4, we compare

the exponents ψcom and ψangle: the solid curve denotes ψangle and the dashed curve

denotes ψcom. It shows that, under ζ = 0.0265, ψcom − ψangle < 0 uniformly over

δ ≤ µ ≤ 1. Indeed, ζ = 0.0265 is the bound shown in Figure 3.1 for C = 2. In Figure

3.5, for the parameter δ = 0.5555, we give the bounds ζ as a function of C for satisfying

the signal recovery robustness conditions (3.8.1), (3.8.2) and (3.8.3) respectively in

the “weak”, “sectional” and “strong” senses. In Figure 3.6, fixing C = 2, we plot

how large ρ = ζ/δ can be for different δ’s for satisfying the signal recovery robustness

conditions (3.8.1), (3.8.2) and (3.8.3) respectively in “weak”, “sectional” and “strong”

senses.
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Figure 3.3: The combinatorial, internal and external angle exponents

3.11 Conclusion

It is well known that ℓ1 optimization can be used to recover ideally sparse and ap-

proximately sparse signals in compressed sensing, if the underlying signal is sparse

enough. While in the ideally sparse case the recent results of [Don06c] have given

us sharp bounds on how sparse the signal can be, sharp bounds for the recovery of

approximately sparse signals were not available.

In this chapter we developed and analyzed a null-space characterization of the nec-

essary and sufficient conditions for the success of ℓ1-norm optimization in compressed

sensing of the approximately sparse signals. Using high-dimensional geometry, we

give a unified null-space Grassmann angle-based analytical framework for compres-

sive sensing. This new framework gives sharp quantitative tradeoffs between the
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signal sparsity and the recovery accuracy of the ℓ1 optimization for approximately

sparse signals. It can therefore be of practical use in applications where the under-

lying signal is not ideally sparse and where we are interested in the quality of the

recovered signal. As expected, the neighborly polytopes result of [Don06c] for ideally

sparse signals follows as a special case of our results. This work investigates the fun-

damental “balancedness” property of linear subspaces, and may be of independent

mathematical interest. It is also possible to generalize these results to the analysis of

compressive sensing noisy measurements in future work.
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3.12 Appendix

3.12.1 Derivation of the Internal Angles

There are two situations in the derivations of the internal angles for the skewed

crosspolytope, which are respectively given in the following two lemmas.

Lemma 3.12.1. Suppose that F is a (k−1)-dimensional face of the skewed crosspoly-

tope

SP = {y ∈ Rn | ‖yK‖1 + ‖
yK̄

C
‖1 ≤ 1},

supported on the subset K with |K| = k. Then the internal angle β(F,G) between

the (k− 1)-dimensional face F and a (l− 1)-dimensional face G (F ⊆ G, G 6=SP) is
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given by

β(F,G) =
Vl−k−1(

1
1+C2k

, l − k − 1)

Vl−k−1(Sl−k−1)
, (3.12.1)

where Vi(S
i) denotes the i-th dimensional surface measure on the unit sphere Si, while

Vi(α
′, i) denotes the surface measure for regular spherical simplex with (i+1) vertices

on the unit sphere Si and with inner product as α′ between these (i + 1) vertices.

(3.3.10) is equal to B( 1
1+C2k

, l − k), where

B(α′, m′) = θ
m′−1

2

√

(m′ − 1)α′ + 1π−m′/2α′−1/2
J(m′, θ), (3.12.2)
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with θ = (1− α′)/α′ and

J(m′, θ) =
1√
π

∫ ∞

−∞
(

∫ ∞

0

e−θv
2+2ivλ dv)m

′
e−λ

2

dλ. (3.12.3)

Proof. Without loss of generality, assume that F is a (k− 1)-dimensional face with k

vertices as ep, 1 ≤ p ≤ k, where ep is the n-dimensional standard unit vector with the

p-th element as ‘1’; and also assume that the (l−1)-dimensional face G be the convex

hull of the l vertices: ep, 1 ≤ p ≤ k and Cep, (k + 1) ≤ p ≤ l. Then the cone ConF,G

formed by observing the (l − 1)-dimensional face G of the skewed crosspolytope SP

from an interior point xF of the face F is the positive cone of the vectors:

Cej − ei, for all j ∈ J\K, i ∈ K, (3.12.4)

and also the vectors

ei1 − ei2 , for all i1 ∈ K, i2 ∈ K, (3.12.5)

where J = {1, 2, ..., l} is the support set for the face G.

So the cone ConF,G is the direct sum of the linear hull LF = lin{F − xF} formed

by the vectors in (3.12.5) and the cone ConF⊥,G = ConF,G
⋂
L⊥
F , where L

⊥
F is the

orthogonal complement to the linear subspace LF . Then ConF⊥,G has the same

spherical volume as ConF,G.

Now let us analyze the structure of ConF⊥,G. We notice that the vector

e0 =

k∑

p=1

ep

is in the linear space L⊥
F and is also the only such a vector (up to linear scaling)

supported on K. Thus a vector x in the positive cone ConF⊥,G must take the form

−
k∑

i=1

bi × ei +
l∑

i=k+1

bi × ei, (3.12.6)
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where bi, 1 ≤ i ≤ l are nonnegative real numbers and

C
k∑

i=1

bi =
l∑

i=k+1

bi,

b1 = b2 = · · · = bk.

That is to say, the (l − k)-dimensional ConF⊥,G is the positive cone of (l − k)

vectors a1, a2, ..., al−k, where

ai = C × ek+i −
k∑

p=1

ep/k, 1 ≤ i ≤ (l − k).

The normalized inner products between any two of these (l − k) vectors is

< ai, aj >

‖ai‖‖aj‖ =
k × 1

k2

C2 + k × 1
k2

=
1

1 + kC2
.

(In fact, ai’s are also the vectors obtained by observing the vertices ek+1, . . . , el from

Ec =
∑k

p=1 ep/k, the epicenter of the face F .)

We have so far reduced the computation of the internal angle to evaluating

(3.12.1), the relative spherical volume of the cone ConF⊥,G with respect to the sphere

surface Sl−k−1. This was computed as given in this lemma [VS92, KBH99] for the pos-

itive cones of vectors with equal inner products by using a transformation of variables

and the well-known formula

Vi−1(S
i−1) =

iπ
i
2

Γ( i
2
+ 1)

,

where Γ(·) is the usual Gamma function.

Instead, in this chapter, we will give a proof of (3.12.2) which can directly lead to

the probabilistic large deviation method of evaluating the internal angle exponent in

[Don06c].

First, we notice that ConF⊥,G is a (l − k)-dimensional cone. Also, all the vectors
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(x1, . . . , xn) in the cone ConF⊥,G take the form in (3.12.6). From [Had79],

∫

Con
F⊥,G

e−‖x‖2 dx = β(F,G)Vl−k−1(S
l−k−1)

×
∫ ∞

0

e−r
2

rl−k−1 dx = β(F,G) · π(l−k)/2, (3.12.7)

where Vl−k−1(S
l−k−1) is the spherical volume of the (l − k − 1)-dimensional sphere

Sl−k−1. Now define U ⊆ Rl−k+1 as the set of all nonnegative vectors satisfying:

xp ≥ 0, 1 ≤ p ≤ l − k + 1,

l−k+1∑

p=2

xp = Ckx1

and define f(x1, . . . , xl−k+1) : U → ConF⊥,G to be the linear and bijective map,

f(x1, . . . , xl−k+1) = −
k∑

p=1

x1ep +
l∑

p=k+1

xp−k × ep.

Then

∫

Con
F⊥,G

e−‖x′‖2 dx′

=

√

l + (C2 − 1)k

C2k

∫

∑l−k+1
p=2 xp=Ckx1,xp≥0, 2≤p≤l−k+1

e−‖f(x)‖2 dx2 · · · dxl−k+1

=

√

l + (C2 − 1)k

C2k

∫

∑l−k+1
p=2 xp=Ckx1,xp≥0, 2≤p≤l−k+1

e−kx
2
1−x22−···−x2l−k+1 dx2 · · · dxl−k+1, (3.12.8)

where
√

l+(C2−1)k
C2k

is due to the change of integral variables.

Now we define a random variable,

Z = X2 +X3 + · · ·+Xl−k+1 − CkX1,

where X1, X2, · · · , Xn are independent random variables, with Xp ∼ HN(0, 1
2
), 2 ≤
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p ≤ (n− k + 1), as half-normal distributed random variables and X1 ∼ N(0, 1
2k
) as a

normal distributed random variable. Then by inspection, (3.12.8) is equal to

√
π
l−k+1

2l−k
×
√

l + (C2 − 1)kpZ(0),

where pZ(·) is the probability density function for the random variable Z = X2+X3+

· · · + Xl−k+1 − CKX1 and pZ(0) is the probability density function pZ(·) evaluated
at the point Z = 0.

Use the notation

GX(λ) =

∫ ∞

−∞
eiλxpX(x) dx

as the characteristic function for any random variable X , where pX(x) is the proba-

bility density function of X . Then from the independence of X1, X2, . . . , Xl−k+1, the

characteristic function for Z is equal to

GZ(λ) = GX2(λ)
l−k ×GX1(λ).

Expressing the probability density function pZ(x) in the Fourier domain, we have

pZ(0) =
1

2π

∫ ∞

−∞
GZ(λ).

Combining this with (3.12.7) gives us the desired result.

Now we have only considered the internal angle β(F,G) when G is not the whole

skewed crosspolytope. The following lemma discusses the special case when G = SP.

Lemma 3.12.2. Suppose F , K and SP are defined in the same way as in the

statement of Lemma 3.12.1. Then the internal angle β(F, SP) between the (k − 1)-

dimensional face F and the n-dimensional skewed crosspolytope SP is given by
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∫ 0

−∞

∫ ∞

−∞
e−

C2kλ2

4

(∫ ∞

0

e−µ
2+iµλ dµ

)n−k

2n−k−1

√
π
n−k+2

e−iλz dλ dz.

Proof. We use the same set of notations as in the proof of Lemma 3.12.1. Without loss

of generality, assumeK = {1, . . . , k}, F is the (k−1)-dimensional face supported onK

and G = SP. So the cone ConF,G is the direct sum of the linear hull LF = lin{F−xF}
formed by the vectors in (3.12.5) and the cone ConF⊥,G = ConF,G

⋂
L⊥
F , where L

⊥
F is

the orthogonal complement to the linear subspace LF . Then ConF⊥,G has the same

spherical volume as ConF,G.

Following similar analysis in Lemma 3.12.1, the cone ConF⊥,G is the positive cone

of 2(n− k) vectors a1±, a2±, ..., an−k± , where

ai± = ±C × ek+i −
k∑

p=1

ep/k, 1 ≤ i ≤ (n− k).

This also means that ConF⊥,G is a (n − k + 1)-dimensional cone. Also, all the

vectors (x1, . . . , xn) in the cone ConF⊥,G take the form

x1 = x2 = · · · = xk ≤ 0,
n∑

p=k+1

|xp| ≤ Ck|x1|.

From [Had79],

∫

Con
F⊥,G

e−‖x‖2 dx = β(F,G)Vn−k(S
n−k)

×
∫ ∞

0

e−r
2

rn−k dx = β(F,G) · π(n−k+1)/2, (3.12.9)
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where Vn−k(S
n−k) is the spherical volume of the (n − k)-dimensional sphere Sn−k.

Now define U ⊆ Rn−k+1 as the set of all the vectors taking the form:

{x1 ≥ 0,

n−k+1∑

p=2

|xp| ≤ Ckx1},

and define f(x1, . . . , xn−k+1) : U → ConF⊥,G to be the linear and bijective map,

f(x1, . . . , xn−k+1) = −
k∑

p=1

x1e
p +

n∑

p=k+1

xp−k × ep.

Then

∫

Con
F⊥,G

e−‖x′‖2 dx′ =
√
k

∫

U

e−‖f(x)‖2 dx

=
√
k

∫ ∞

0

∫

∑n−k+1
p=2 |xp|≤Ckx1

e−kx
2
1−x22−···−x2n−k+1 dx2 · · · dxn−k+1 dx1, (3.12.10)

where
√
k is due to the change of integral variables.

By inspection, (3.12.10) is equal to

√
π
n−k+1

P (X2 +X3 + · · ·+Xn−k+1 − CkX1 ≤ 0),

where X1, X2, . . . , Xn are independent random variables, with Xp ∼ HN(0, 1
2
), 2 ≤

p ≤ (n− k + 1), as half-normal distributed random variables and X1 ∼ N(0, 1
2k
) as a

normal distributed random variable.

Expressing the probability density function of Z = X2+X3+· · ·+Xn−k+1−CKX1

in the Fourier domain, we can simplify (3.12.10) to

∫ 0

−∞

∫ ∞

−∞
e−

C2kλ2

4

(∫ ∞

0

e−µ
2+iµλ dµ

)n−k

2n−k−1

√
π

e−iλz dλ dz
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Combining this with (3.12.9) gives us the desired result.

3.12.2 Derivation of the External Angles

Lemma 3.12.3. Suppose that F is a (k−1)-dimensional face of the skewed crosspoly-

tope

SP = {y ∈ Rn | ‖yK‖1 + ‖
yK̄

C
‖1 ≤ 1}

supported on a subset K with |K| = k. Then the external angle γ(G, SP) between a

(l − 1)-dimensional face G (F ⊆ G) and the skewed crosspolytope SP is given by

γ(G, SP) =
2n−l
√
π
n−l+1

∫ ∞

0

e−x
2

(

∫ x

C

√

k+ l−k

C2

0

e−y
2

dy)n−l dx. (3.12.11)

Proof. Without loss of generality, assume K = {n − k + 1, · · · , n}. Consider the

(l − 1)-dimensional face

G = conv{C × en−l+1, ..., C × en−k, en−k+1, ..., en}

of the skewed crosspolytope SP. The 2n−l outward normal vectors of the supporting

hyperplanes of the facets containing G are given by

{
n−l∑

p=1

jpe
p/C +

n−k∑

p=n−l+1

ep/C +

n∑

p=n−k+1

ep, jp ∈ {−1, 1}}.

Then the outward normal cone c(G, SP) at the face G is the positive hull of these

normal vectors. Thus

∫

c(G,SP)

e−‖x‖2 dx = γ(G, SP )Vn−l(S
n−l)

×
∫ ∞

0

e−r
2

rn−l dx = γ(G, SP).π(n−l+1)/2, (3.12.12)

where Vn−l(S
n−l) is the spherical volume of the (n− l)-dimensional sphere Sn−l. Now
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define U to be the set

{x ∈ Rn−l+1 | xn−l+1 ≥ 0, |xp| ≤
xn−l+1

C
, 1 ≤ p ≤ (n− l)}

and define f(x1, · · · , xn−l+1) : U → c(G, SP) to be the linear and bijective map

f(x1, · · · , xn−l+1) =

n−l∑

p=1

xpe
p +

n−k∑

p=n−l+1

xn−l+1

C
ep

+

n∑

p=n−k+1

xn−l+1 × ep.

Then

∫

c(G,SP)

e−‖x′‖2 dx′

=

√

k +
l − k
C2

∫

U

e−‖f(x)‖2 dx

=

√

k +
l − k
C2

∫ ∞

0

∫ xn−l+1
C

−xn−l+1
C

· · ·
∫ xn−l+1

C

−xn−l+1
C

e−x
2
1−···−x2n−l−(k+ l−k

C2 )x2n−l+1 dx1 · · · dxn−l+1

=

√

k +
l − k
C2

∫ ∞

0

e−(k+ l−k

C2 )x2

×
(
∫ x

C

− x
C

e−y
2

dy

)n−l

dx

= 2n−l
∫ ∞

0

e−x
2

(
∫ x

C

√

k+ l−k

C2

0

e−y
2

dy

)n−l

dx,

where
√

k + l−k
C2 is due to the change of integral variables. Combining it with (3.12.12)

leads to the desired result.
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3.12.3 Proof of Lemma 3.5.1

Consider any fixed δ > 0. First, we consider the internal angle exponent Ψint, where

we define γ′ = ρδ
C2−1
C2 ρδ+ ν

C2

. Then for this fixed δ,

1− γ′
γ′

≥
C2−1
C2 ρδ + δ

C2

ρδ
− 1,

uniformly over ν ∈ [δ, 1].

Now if we take ρ small enough,
C2−1
C2 ρδ+ δ

C2

ρδ
can be arbitrarily large. By the asymp-

totic expression (3.5.7), this leads to large enough internal decay exponent Ψint. At

the same time, the external angle exponent Ψext is lowerbounded by zero and the

combinatorial exponent is upperbounded by some finite number. Then if ρ is small

enough, we will get the net exponent Ψnet to be negative uniformly over the range

ν ∈ [δ, 1].

3.12.4 Proof of Lemma 3.5.2

We will show that for fixed C > 1, with ρ(δ) = log(1/δ)−(1+η) and some δ0 > 0,

Ψnet(ν; ρ(δ), δ) < −δ, δ < δ0, ν ∈ [δ, 1).

To this end, we need to get the asymptotic of Ψint(ν), Ψext(ν) and Ψext(ν) as δ → 0

and ρ(δ) = log(1/δ)−(1+η).

With

H(ν) +H(ρδ/ν)ν = H(ρδ) +H(
ν − ρδ
1− ρδ )(1− ρδ),

from its definition, Ψnet(ν; ρ, δ) is equal to

H(ν)−Ψext(ν)− ξγ′(yγ′)(ν − ρδ) + ρδ log(2) +H(ρδ/ν)ν.

From the derivation (or the expression) of the external angle γ(G, SP) in this

chapter, γ(G, SP) is a decreasing function in C. So we can upperbound γ(G, SP)
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uniformly in ν ∈ [δ, 1], for any C ≥ 1, by

2n−l
√
π
n−l+1

∫ ∞

0

e−x
2

(

∫ x√
l

0

e−y
2

dy)n−l dx,

namely the expression for the external angle when C = 1.

Now define Ω(ν) = H(ν)−ΨC=1
ext (ν), where ΨC=1

ext (ν) is the external exponent when

C = 1. Then from the asymptotic formula (3.5.3), we have

H(ν)−Ψext(ν) ≤ Ω(ν) ∼ 1

2
log(log(

1

ν
))ν,

as ν → 0.

So Ψnet(ν; ρ, δ) is no bigger than

Ω(v)− ξγ′(yγ′)(ν − ρδ) + ρδ log(2) +H(ρδ/ν)ν.

From [Don06c], for a certain δ1, if δ < δ1,

H(ρδ/ν) ≤ H(ρ)δ + 2ρ(ν − δ),

so we have Ψnet(v)

Ψnet(v) ≤ K(ν; ρ, δ) + [ρδ log(2) +H(ρ)δ] + 2ρ(ν − δ),

where K(ν; ρ, δ)
.
= Ω(v)− ξγ′(yγ′)(ν − ρδ).

As we will show later in Lemma 3.12.4, K(v; ρ, δ) is a concave function in ν ∈ [δ, 1]

if δ < δ2. Also, we will show that for δ < δ3,

K ′(δ; ρ, δ) ≤ −η/4 log(log(1
δ
)), (3.12.13)

K(δ; ρ, δ) ≤ −δ × η/4 log(log(1
δ
)), (3.12.14)
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where K ′(ν; ρ, δ)
.
= ∂K(ν;ρ,δ)

∂ν
. So there exists a δ4 > 0 so that for any 0 < δ < δ4,

K ′(δ; ρ, δ) < −2ρ.

Also there exists a δ5 > 0 so that for any 0 < δ < δ5,

K(δ; ρ, δ) + ρδ log(2) +H(ρ)δ < −δ.

Then by the concavity of K(ν; ρ, δ), if δ < min (δ1, δ2, δ3, δ4, δ5),

Ψnet(ν) ≤ −δ,

uniformly over the interval ν ∈ [δ, 1].

Now we need to prove (3.12.13) and (3.12.14). As computed in [Don06c],

Ω′(v) ∼ 1

2
log(log(

1

δ
)), ν → 0.

By (3.5.7), we know that as δ → 0, and with ν = δ,

ξγ′(yγ′) ∼
1

2
log(

1

C2ρ
) ∼ 1

2
log(log(

1

δ
))(1 + η).

Hence for δ < δ6,

ξγ′(yγ′)(ν − ρδ) ≥ (1 +
η

2
Ω(δ)). (3.12.15)

Following this, there exists a δ7 > 0 so that for δ < δ7,

K(δ; ρ, δ) ≤ η

4
log log(

1

δ
).

Also, from the asymptotic of Ω′(ν) and the asymptotic of the derivative of ξγ′(yγ′)(ν−
ρδ) in the following Lemma 3.12.4, we can further have

K ′(δ; ρ, δ) ≤ −η/4 log(log(1
δ
)).
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Lemma 3.12.4. If ρ and δ are small enough, K(ν; ρ, δ) is concave as a function of

ν.

Proof. We define

Υ(ν; ρ, δ) = ξγ′(yγ′)(ν − ρδ).

Since K(ν; ρ, δ) = Ω(ν)− Υ(ν; ρ, δ) and Ω(ν) is a concave function in ν, we only

need to show that Υ(ν; ρ, δ) is a convex function in ν.

Recall that γ′ = ρδ
C2−1
C2 ρδ+ ν

C2

and we first look at ∂γ′

∂ν
:

∂γ′

∂ν
= − ρδ

C2−1
C2 ρδ + ν

C2

× 1

(C2 − 1)ρδ + ν
.

So

∂Υ(ν; ρ, δ)

∂ν
= ξγ′(yγ′) +

∂ξγ′(yγ′)

∂γ′
· ∂γ

′

∂ν
· (ν − ρδ)

= ξγ′(yγ′)−
∂ξγ′(yγ′)

∂γ′
· γ′ · 1− ρδ

ν

(C2 − 1)ρδ
ν
+ 1

.

If we define Ξ =
1− ρδ

ν

(C2−1) ρδ
ν
+1

and Π = 1
(C2−1)ρδ+ν

, we can have

∂2Υ(ν; ρ, δ)

∂ν2

=
∂ξγ′(yγ′)

∂γ′
∂γ′

∂ν
− ∂2ξγ′(yγ′)

∂γ′2
· ∂γ

′

∂ν
· γ′ · Ξ

−∂ξγ′(yγ′)
∂γ′

· ∂γ
′

∂ν
· Ξ− ∂ξγ′(yγ′)

∂γ′
· ∂Ξ
∂ν
· γ′

=
∂ξγ′(yγ′)

∂γ′
· (−γ′) · (1− Ξ) · Π

−∂ξγ′(yγ′)
∂γ′

· γ′ · ∂Ξ
∂ν

+
∂2ξγ′(yγ′)

∂γ′2
· γ′2 · Π

= −∂ξγ′(yγ′)
∂γ′

· γ′2 · Π− ∂ξγ′(yγ′)

∂γ′
· γ′2 · Π

+
∂2ξγ′(yγ′)

∂γ′2
· γ′2 · Ξ · Π.
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It has been shown in [Don06c] that as γ → 0,

∂ξγyγ
∂γ

∼ −γ
−1

2
,

∂2ξγyγ
∂γ2

∼ γ−4

4
.

So from the definition of γ′, there exists a small enough ρ0 such that for any

ρ < ρ0,
∂2Υ(ν; ρ, δ)

∂ν2
> 0, ν ∈ [δ, 1], (3.12.16)

which then implies the concavity of K(ν; ρ, δ).

3.12.5 Proof of Lemma 3.5.3

Proof. Suppose instead that ρN (δ;C) >
1

C+1
. Then for every vector w from the null-

space of the measurement matrix A, any ρN ;C fraction of the n components in w

take no more than 1
C+1

fraction of ‖w‖1. But this can not be true if we consider the

ρN (δ;C) fraction of w with largest magnitudes.

Now we only need to prove the lower bound for ρN (δ;C). we argue that

ρN (δ;C) ≥
ρN(δ;C = 1)

C2
.

We know from Lemma 3.5.1 that ρN(δ;C) > 0 for any C ≥ 1. Denote ψnet(C),

ψcom(ν; ρ, δ, C), ψint(ν; ρ, δ, C) and ψext(ν; ρ, δ, C) as the respective exponents for a

certain C. Because ρN (δ;C = 1) > 0, the net exponent ψnet(C = 1) is negative

uniformly over ν ∈ [δ, 1]. By examining the formula 3.3.13 for the external angle

γ(G, SP), where G is a (l − 1)-dimensional face of the skewed crosspolytope SP, we

have γ(G, SP) is a decreasing function in both k and C for a fixed l. So γ(G, SP) is

upperbounded by
2n−l
√
π
n−l+1

∫ ∞

0

e−x
2

(

∫ x√
l

0

e−y
2

dy)n−l dx, (3.12.17)
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namely the expression for the external angle when C = 1. Then for any C > 1 and

any k, ψext(ν; ρ, δ, C) is lowerbounded by ψext(ν; ρ, δ, C = 1).

Now let us check ψint(ν; ρ, δ, C) by using the formula 3.5.5. With

γ′ =
ρδ

C2−1
C2 ρδ + ν

C2

,

we have
1− γ′
γ′

= − 1

C2
+

ν

C2ρδ
. (3.12.18)

Then for fixed δ and ν, if we take ρ = ρN (δ;C=1)
C2 , then 1−γ′

γ′ is an increasing function

in C. So from its definition ξγ′(yγ′) is an increasing function in C. This further implies

that ψint(ν; ρ, δ) is an increasing function in C if we take ρ = ρN (δ;C=1)
C2 .

Also, for fixed ν and δ, it is not hard to show that ψcom(ν; ρ, δ, C) is a decreasing

function in C if ρ = ρN (δ;C=1)
C2 .

Thus for any C > 1, if ρ = ρN (δ;C=1)
C2 , the net exponent ψnet(C) is also negative

uniformly over ν ∈ [δ, 1]. Lemma 3.5.3 then follows.

3.12.6 Proof of Lemma 3.8.2

Proof. First, we notice that for any C > 1,

ζW (δ) ≥ ρNδ,

ζSec(δ) ≥ ρNδ,

ζS(δ) = ρNδ,

so by Lemma 3.5.1,

ζW (δ) > 0,

ζSec(δ) > 0,

ζS(δ) > 0.
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Now we will prove

lim
δ→1

ζW (δ) = δ.

As discussed in previous sections, we know that the decay exponent for the probability

that the condition (3.8.1) is violated is equal to

H(
ν − ρδ
1− ρδ )(1− ρδ)− ξγ′(yγ′)(ν − ρδ)−Ψext(xν).

But from the derivations of the exponents, we know that

0 = lim
δ→1

sup
ν∈[δ,1)

Ψext(xν),

0 = lim
δ→1

sup
ν∈[δ,1)

H(
ν − ρδ
1− ρδ ),

ξγ′(yγ′)(ν − ρδ) ≥ ξγ′(δ)(yγ′(δ))(1− ρ)δ > 0, ν ≥ δ,

where

γ′(δ) =
ρδ

C2−1
C2 ρδ + δ

C2

=
ρ

C2−1
C2 ρ+ 1

C2

.

Noticing that ξγ′(δ)(yγ′(δ))(1− ρ) > 0 is only determined by ρ, for any 0 < ρ < 1,

there exists a big enough δ < 1, such that

H(
ν − ρδ
1− ρδ )(1− ρδ)− ξγ′(yγ′)(ν − ρδ)−Ψext(xν) > 0,

uniformly over [δ, 1]. Then it follows that

lim
δ→1

ζW (δ) = 1.
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Chapter 4

The Weighted ℓ1 Minimization

Algorithm

4.1 Introduction

Compressed sensing is an emerging technique of joint sampling and compression that

has been recently proposed as an alternative to Nyquist sampling (followed by com-

pression) for scenarios where measurements can be costly [RIC]. The whole premise

is that sparse signals (signals with many zero or negligible elements in a known basis)

can be recovered with far fewer measurements than the ambient dimension of the

signal itself. In fact, the major breakthrough in this area has been the demonstration

that ℓ1 minimization can efficiently recover a sufficiently sparse vector from a system

of underdetermined linear equations [CT05].

The conventional approach to compressed sensing assumes no prior information on

the unknown signal other than the fact that it is sufficiently sparse in a particular ba-

sis. In many applications, however, additional prior information is available. In fact,

in many cases the signal recovery problem (which compressed sensing attempts to

address) is a detection or estimation problem in some statistical setting. Some recent

work along these lines can be found in [MDB] (which considers compressed detection

and estimation) and [JXC08] (on Bayesian compressed sensing). In other cases, com-

pressed sensing may be the inner loop of a larger estimation problem that feeds prior

information on the sparse signal (e.g., its sparsity pattern) to the compressed sensing
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algorithm.

In this chapter we will consider a particular model for the sparse signal that as-

signs a probability of being zero or nonzero to each entry of the unknown vector.

The standard compressed sensing model is therefore a special case where these prob-

abilities are all equal (for example, for a k-sparse vector the probabilities will all be

k
n
, where n is the number of entries of the unknown vector). As mentioned above,

there are many situations where such prior information may be available, such as in

natural images, medical imaging, or in DNA microarrays where the signal is often

block sparse, i.e., the signal is more likely to be nonzero in certain blocks rather than

in others [SPH].

While it is possible (albeit cumbersome) to study this model in full generality, in

this chapter we will focus on the case where the entries of the unknown signal fall into

a fixed number T of categories: in the ith set Ki (with cardinality ni) the probability

of being nonzero is Pi (Clearly, in this case the sparsity1 will, with high probability, be

around
∑T

i=1 niPi.) This model is rich enough to capture many of the salient features

regarding prior information. The signal generated based on this model could be the

vector representation of a natural image in some linear transform domain (e.g., DFT,

DCT, DWT ... ) or the spatial representation of some biomedical image, e.g., a brain

fMRI image. Although the latter is not essentially sparse, the difference of the brain

image at any moment during an experiment and an initial baseline image of inactive

brain mode is indeed a sparse signal which demonstrates the additional brain activity

during the specific course of experiment. Moreover, depending on the assigned task,

the experimenter might have some prior information, for example in the form of which

regions of brain are more likely to be involved in the decision making process. This can

be captured in the above nonuniform sparse model. DPCM encoders are example

of systems that are based on encoding only the difference of consecutive samples

which results in more efficient coding rates [Cut]. In a similar fashion, this model is

applicable to other problems like network monitoring (see [CPR] for an application

1Quantitatively speaking, by sparsity we mean the number of nonzero elements of a vector x.
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of compressed sensing and nonlinear estimation in compressed network monitoring),

DNA microarrays [MBSR, ES, VPMH], astronomy, satellite imaging and a lot more.

In this chapter we do the analysis for the case where there are only two categories

of entries (T = 2) and show that even for that case the performance is going to

be boosted significantly by making use of the additional information. While it is

in principle possible to analyze this model with more than two categories of entries

(T > 2), the analysis becomes increasingly tedious and we leave it as feature work.

An interesting question would be to characterize the gain in recovery percentage as

a function of the classes T to which we can classify the signal entries.

The contributions of this chapter are the following. We propose a weighted ℓ1

minimization approach for sparse recovery where the ℓ1 norms of each set are given

different weights wi (i = 1, 2). Clearly, one would want to give a larger weight to

those entries whose probability of being nonzero is less (thus further forcing them to

be zero).2 The second contribution is to compute explicitly the relationship between

the pi, the wi, the
ni

n
, i = 1, 2 and the number of measurements so that the unknown

signal can be recovered with overwhelming probability as n→∞ (the so-called weak

threshold) for measurement matrices drawn from an i.i.d. Gaussian ensemble. The

analysis uses the high-dimensional geometry techniques first introduced by Donoho

and Tanner [Don06c, DT05a] (e.g., Grassman angles) to obtain sharp thresholds for

compressed sensing. However, rather than use the neighborliness condition used in

[Don06c, DT05a], we find it more convenient to use the null space characterization of

Xu and Hassibi [XH08, SXH08a]. The resulting Grassmanian manifold approach is

a general framework for incorporating additional factors into compressed sensing: in

[XH08] it was used to incorporate measurement noise; here it is used to incorporate

prior information and weighted ℓ1 optimization. Our analytic results allow us to

compute the optimal weights for any p1, p2, n1, n2. We also provide simulation results

to show the advantages of the weighted method over standard ℓ1 minimization.

2A somewhat related method that uses weighted ℓ1 optimization is Candes et al [CWB08]. The
main difference is that there is no prior information and at each step the ℓ1 optimization is re-
weighted using the estimates of the signal obtained in the last minimization step.
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This chapter is organized as follows. In the next section we describe the model and

state the principle assumptions of nonuniform sparsity. We also sketch the objectives

that we are shooting for and clarify what we mean by recovery improvement in the

weighted ℓ1 case. In section 4.3, we go briefly over our critical theorems and try to

present a big picture of the main results. Sections 4.4 and 4.4.4 are dedicated to the

derivation of these results in concrete. Finally, in section 4.5 some simulation results

are presented and compared to the analytical bounds of the previous sections.

4.2 Problem Description

The signal is represented by a n×1 vector x = (x1, x2, ..., xn)
T of real valued numbers,

and is non-uniformly sparse with sparsity factors P1, P2, ..., PT over the (index) sets

K1, K2, ..., KT , Ki ∩ Kj = ∅ i 6= j and
⋃T
i=1Ki = {1, 2, ..., n}. By this, we mean

that for each index 1 ≤ i ≤ n, if i ∈ Kj then xi is a nonzero element (with an

arbitrary distribution say N (0, 1)) with probability Pj , and zero with probability 1−
Pj independent of all other elements of x. The signal is thus non-homogenously (non-

uniformly) sparse over the sets K1, ..., KT . In Figure 4.1, the support set of a sample

signal generated based on the described nonuniform sparse model is schematically

depicted. The number of classes is consider to be T = 2 in that case with the two

classes having the same size n
2
. The sparsity factor in the first class (K1) is P1 = 0.3,

and in the second class (K2) is P2 = 0.05. In fact the signal is much sparser in the

second half than it is in the first half. The advantageous feature of this model is

that all the resulting computations are independent of the actual distribution on the

amplitude of the nonnegative entries. However, as expected, it is not independent of

the properties of the measurement matrix. We assume that the measurement matrix

A is a m × n (m
n
= δ < 1) matrix with i.i.d standard Gaussian distributed N (0, 1)

entries. The observation vector is denoted by y and obeys the following:

y = Ax. (4.2.1)
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Figure 4.1: Illustration of a non-uniformly sparse signal

As mentioned in Section 4.1, ℓ1-minimization can recover a vector x with k = µn

non-zero entries, provided µ is less than a known function of δ. ℓ1 minimization has

the following form:

min
Ax=y

‖x‖1. (4.2.2)

Please see [Don06c] for the exact relationship between µ and δ in the case of

Gaussian measurements. (4.2.2) is a linear programming and can be solved polyno-

mially fast (O(n3)). However, it fails to encapsulate additional prior information of

the signal nature, might there be any such information. One might simply think of

modifying (4.2.2) to a weighted ℓ1 minimization as follows:

min
Ax=y

‖x‖w1 = min
Ax=y

n∑

i=1

wi|xi|. (4.2.3)

The index w is an indication of the n×1 positive weight vector. Now the question

is what is the optimal set of weights, and can one improve the recovery threshold using

the weighted ℓ1 minimization of (4.2.3) with those weights rather than (4.2.2). We

have to be more clear with the objective at this point and what we mean by extending

the recovery threshold. First of all note that the vectors generated based on the model
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described above can have any arbitrary number of nonzero entries. However, their

support size is typically (with probability arbitrary close to one) around n1P1+n2P2.

Therefore, there is no such notion of strong threshold as in the case of [Don06c].

We are asking the question of for what P1 and P2 signals generated based on this

model can be recovered with overwhelming probability as n → ∞. Moreover we are

wondering if by adjusting wi’s according to P1 and P2 can one extend the typical

sparsity to dimension ratio (n1P1+n2P2

n
) for which reconstruction is successful with

high probability.

4.3 Summary of Main Results

We address two main questions in this chapter. First we want to know how much

the weighted ℓ1 minimization approach help improve the performance of the recovery

(decrease the misdetection probability). Second, using the answer to the first ques-

tion, we are interested to know what the optimal choice of the set of weights (wis )

is. Given that the signal is generated based on the model of section 4.2, the natural

question is for which regimes of the problem parameters is the recovery with weighted

ℓ1 minimization almost surely successful. In other words given that the ratio, the vec-

tor w and the probabilities P1 and P2 are fixed, what is the minimum number of

measurements to dimension ratio (i.e. minimum ratio δ = m
n
) that guarantees the

weighted ℓ1 minimization of 4.2.3 successfully retrieves the signal almost surely as

n → ∞. Based on that characterization, the optimal set of weights would be those

that result in smaller recovery threshold for δ.

To this end, in the first place, we try to understand how the misdetection (failure

recovery) event is related to the properties of the measurement matrix. For the

non-weighted case, this has been considered in [SXH08a] and is known by the null

space property. we generalize this result to the case of weighted ℓ1 minimization, and

mention a necessary and sufficient condition for (4.2.3) to recover the original signal

of interest. The theorem is as follows.



134

Theorem 4.3.1. Let x0 be a n×1 vector supported on the set K ⊆ {1, 2, ..., n}. Then
x0 is the unique solution to the linear programming minAx=y

∑n
i=1wi|xi| with y = x0,

if and only if for every Z in the null space of A the following holds
∑

i∈K wi|Zi| ≤
∑

i∈K wi|Zi|.

This theorem will be stated and proven in section 4.4. As will be explained in

section 4.4.1, Theorem 4.3.1 along with the known facts on the null space of random

Gaussian matrices, help us interpret the probability of recovery error in terms of a high

dimensional geometrical event called the complementary Grassman angle; namely

that a uniformly chosen (n − m)-dimensional subspace Ψ shifted by the point x,

(Ψ+x), intersects the skewed weighted crosspolytope SPw = {y ∈ Rn |∑n
i=1wi|y|i ≤

1} nontrivially at some other point besides x. The fact that we can take for granted

without proving is that due to identical distribution of all entries of x in each of the

sets K1 and K2, the entries of the optimal weight vector only takes two values W1

and W2 depending on their index. In other words

∀i ∈ {1, 2, . . . , n} wi =







W1 if i ∈ K1,

W2 if i ∈ K2.
(4.3.1)

Leveraging on the existing techniques for computation of complementary Grass-

man manifold [San52, McM75] and theorems of typicality we will be able to state

and prove the following theorems along the same lines, which essentially provides the

answer to our first key question.

Theorem 4.3.2. Recall that n1 = |K1| and n2 = |K2| are the set sizes defined earlier.

Also, let E be the event that a random vector x0 generated based on the sparsity model

of section 4.2 is recovered by the linear programming of (4.2.3) with y = x0. For every
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ǫ > 0 there exists a positive constant cǫ so that:

P(Ec) ≤ O(e−cǫn) +

n1(P1+ǫ)∑

k1=n1(P1−ǫ)

n2(P2+ǫ)∑

k2=n2(P2−ǫ)












∑

0 ≤ t1 ≤ n1 − k1

0 ≤ t2 ≤ n2 − k2

t1 + t2 > m − k1 − k2 + 1

2t1+t2+1

(
n1 − k1
t1

)(
n2 − k2
t2

)

β(k1, k2|t1, t2)γ(t1 + k1, t2 + k2)













(4.3.2)

where β(k1, k2|t1, t2) is the internal angle between a (k1 + k2 − 1)-dimensional face

F of the weighted skewed crosspolytope SPw = {y ∈ Rn|∑n
i=1wi|yi| ≤ 1} with k1

vertices supported on K1 and k2 vertices supported on K2 and a (k1+k2+ t1+ t2−1)-

dimensional face G that includes F and has t1 + k1 faces supported on K1 and the

remaining vertices supported on K2. γ(d1, d2) is the external angle between a face G
supported on set L with |L ∩ K1| = d1 and |L ∩ K2| = d2 and the weighted skewed

crosspolytope SPw.

We are actually interested in the regimes that lead the above upper bound to decay

to zero as n→∞, which entails the cumulative exponent in (4.4.12) be negative. We

are able to calculate upper bounds on the exponents of the terms in (4.4.12) by using

large deviations of sums of normal and half-normal variables. More precisely, for

small enough ǫ1 and ǫ2, if we assume that the sum of the terms corresponding to a

particular t1 and t2 in (4.4.12) is denoted by F (t1, t2) then we are able to find and

compute an exponent function ψtot(t1, t2) = ψcom(t1, t2)− ψint(t1, t2) − ψext(t1, t2) so
that 1

n
logF (t1, t2) ∼ ψ(t1, t2) as n → ∞. Note that ψcom(., .), ψint(., .) and ψext(., .)

are the contributions to the exponent by combinatorial, internal angle and external

angle terms respectively. Next, we state a key theorem that enables us to provide the

answer to the second main question. Note that we will denote by δ the ratio m
n
and

by γ1 and γ2 the ratios n1

n
and n2

n
respectively.
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Theorem 4.3.3. If γ1, γ2, P1, P2, W1 and W2 are fixed, there exists a critical thresh-

old δc = δc(P1, P2,
W2

W1
) such that if δ = m

n
≥ δc, then the R.H.S. of (4.3.2) (the

upper bound on the probability of failure) decays exponentially to zero as n → ∞.

Furthermore, δc is given by

δc = min{δ | ψcom(t′1, t′2)− ψint(t′1, t′2)− ψext(t′1, t′2) < 0 ∀ 0 ≤ t′1 ≤ γ1(1− P1),

0 ≤ t′2 ≤ γ2(1− P2), t
′
1 + t′2 > δ − γ1P1 − γ2P2},

where ψcom, ψint and ψext are obtained from the following calculations:

1. (Combinatorial exponent)

ψcom(t
′
1, t

′
2) = log 2

(
2∑

i=1

(

γi(1− Pi)H(
t′i

γi(1− Pi)
) + t′i

))

(4.3.3)

where H(.) is the Shannon entropy function defined by H(x) = −x log2 x− (1−
x) log2(1− x).

2. (External angle exponent) Let g(x) = 2√
π
e−

x2

2 , G(x) = 2√
π

∫ x

0
e−y

2
dy. Also

define C = (t′1 + γ1P1) + W 2(t′2 + γ2P2), D1 = γ1(1 − P1) − t′1 and D2 =

γ2(1− P2)− t′2. Let x0 be the unique solution to x of the following:

2C − g(x)D1

xG(x)
− Wg(Wx)D2

xG(Wx)
= 0.

Then

ψext(t
′
1, t

′
2) = Cx20 −D1 logG(x0)−D2 logG(Wx0). (4.3.4)

3. (Internal angle exponent) Let b =
t′1+W

2t′2
t′1+t

′
2

and ϕ(.) and Φ(.) be the standard

Gaussian pdf and cdf functions respectively. Also let Ω′ = γ1P1 +W 2γ2P2 and

Q(s) =
t′1ϕ(s)

(t′1+t
′
2)Φ(s)

+
Wt′2ϕ(Ws)

(t′1+t
′
2)Φ(Ws)

. Define the function M̂(s) = − s
Q(s)

and solve for

s in M̂(s) =
t′1+t

′
2

(t′1+t
′
2)b+Ω′ . Let the unique solution be s∗ and set y = s∗(b− 1

M̂(s∗)
).

Compute the rate function Λ∗(y) = sy − t′1
t′1+t

′
2
Λ1(s)− t′2

t′1+t
′
2
Λ1(Ws) at the point

s = s∗, where Λ1(s) = s2

2
+ log(2Φ(s)). The internal angle exponent is then
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given by

ψint(t
′
1, t

′
2) = (Λ∗(y) +

t′1 + t′2
2Ω′ y2 + log 2)(t′1 + t′2). (4.3.5)

Theorem 4.3.3 is a very powerful result, since it allows us to analytically find

the optimal set of weights for which the fewest possible measurements are needed

to recover the signals almost surely. In fact, all we have to do is to find for fixed

values of P1 and P2, the ratio W2

W1
for which the critical threshold δc(P1, P2,

W2

W1
) from

Theorem 4.3.3 is the smallest. We discuss this by some examples in Section 4.5. An

example illustrations of the combinatorial, internal angle and external angle exponent

as functions of t′1 and t′2 is given in Figure 4.2. There, it has been assumed that

γ1 = γ2 = 0.5, P1 = 0.05, P2 = 0.3 and W2

W1
= 1.5. Note that δ is not directly involved

in the value of ψcom, ψint and ψext for fixed t
′
1 and t

′
2. However, it plays an important

role as for the constraints that it imposes on the region of valid t′1 and t
′
2 (see Theorem

4.3.3).

As mentioned earlier, using Theorem 4.3.3, it is possible to find analytically the

optimal ratio W2

W1
. For P1 = 0.3 and P2 = 0.05, we have numerically computed

δc(P1, P2,
W2

W1
) as a function of W2

W1
and depicted the resulting curve in Figure 4.3. This

suggests that W2

W1
= 2.5 is almost the optimal ratio we can choose. We compare this

to the simulation results.

4.4 Derivation of the Main Results

We first mention the typicality and bound the error probability assuming that the

nontypical portion decays exponentially. We then state the null space condition and

relate the failure event to a corresponding event on the skewed weighted polytope

SPw and consequently the Grassman manifold and the summation formula in which

internal and external angles show up.

Let x be a random sparse signal generated based on the non-uniformly sparse

model of section 4.2 and be supported on the set K. For ǫ > 0 we call K ǫ-typical

if ||K ∩K1| − n1P1| ≤ ǫn and ||K ∩K2| − n2P2| ≤ ǫn. Interchangeably, we may
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Figure 4.2: A plot of asymptotes of external angle, internal angle and combinatorial
factor exponents for γ1 = γ2 = 0.5, P1 = 0.05, P2 = 0.3 and W2

W1
= 1.5

also call x ǫ-typical. Let E be the event that x is recovered by (4.2.3). Then by

conditioning we have

P(Ec) = P(Ec|K is ǫ-typical)P(K is ǫ-typical)

+P(Ec|K not ǫ-typical)P(K not ǫ-typical).

According to the law of large numbers, for any fixed ǫ > 0, P(K not ǫ-typical)

will decay exponentially as n grows. So, in order to bound the probability of failed

recovery, we may assume that K is ǫ-typical for any small enough ǫ. In other words

for any ǫ > 0,

P(Ec) = P(Ec ∧K is ǫ-typical) +O(e−cǫn). (4.4.1)
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In order to bound the conditional error probability P(Ec|K is ǫ-typical) we adopt

the idea of [SXH08a] to interpret the failure recovery event (Ec) in terms of an event

on the null space of the measurement matrix A.

Theorem 4.4.1. Let x0 be a n×1 vector supported on the set K ⊆ {1, 2, ..., n}. Then
x0 is the unique solution to the linear programming minAx=y

∑n
i=1wi|xi| with y = x0,

if and only if for every Z in the null space of A the following holds
∑

i∈K wi|Zi| ≤
∑

i∈K wi|Zi|.

Proof. This is almost identical to the proof of Theorem 1 of [SXH08a] or Theorem 1

of [XH08] in which ℓ1 norm is replaced by the weighted ℓ1 norm (which is still a valid

norm).

From this point on, we follow closely the steps towards calculating the upper

bound on the failure probability from [XH08], but with appropriate modification.

Particularly, we are dealing with a weighted skewed crosspolytope SPw instead of the

regular skewed crosspolytope SPw, in which all the weights (wis) are equal to one.

The key in our derivation is the following lemma.

Lemma 4.4.1. For a certain subset K ⊆ {1, 2, ..., n} with |K| = k, the event that

the null-space N (A) satisfies

∑

i∈K
wi|Zi| ≤

∑

i∈K

wi|Zi|, ∀Z ∈ N (A). (4.4.2)

is equivalent to the event that ∀x supported on the k-set K (or supported on a subset

of K):
∑

i∈K
wi|xi + Zi|+

∑

i∈K

wi|Zi| ≥
∑

i∈K
wi|xi|, ∀Z ∈ N (A), (4.4.3)

Proof. First, let us assume that
∑

i∈K wi|Zi| ≤
∑

i∈K wi|Zi|, ∀Z ∈ N (A). Note

that by assumption wis are all nonnegative. Using the triangular inequality for the
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weighted ℓ1 norm (or for each absolute value term on the L.H.S.) we obtain

∑

i∈K
wi|xi + Zi|+

∑

i∈K

wi|Zi| ≥
∑

i∈K
wi|xi| −

∑

i∈K
wi|Zi|+

∑

i∈K

wi|Zi|

≥
∑

i∈K
wi|xi|.

thus proving the forward part of this lemma. Now let us assume instead that ∃Z ∈
N (A), such that

∑

i∈K wi|Zi| >
∑

i∈K wi|Zi|. Then we can construct a vector x

supported on the set K (or a subset of K), with xK = −ZK (i.e., xi = −Zi ∀i ∈ K).

Then we have

∑

i∈K
wi|xi + Zi|+

∑

i∈K

wi|Zi| = 0 +
∑

i∈K

wi|Zi| <
∑

i∈K
wi|xi|,

proving the inverse part of this lemma.

4.4.1 Upper Bound on the Failure Probability

Knowing Lemma 4.4.1, we are now in a position to derive the probability that con-

dition (4.4.2) holds for the sparsity |K| = k, if we uniformly sample a random

(n − m)-dimensional subspace Ψ from the Grassmann manifold Gr(n−m)(n). From

the previous discussions, we can equivalently consider the complementary proba-

bility P = P (Ec ∧ K is ǫ-typical), namely the probability that a ǫ-typical subset

K ⊂ {1, 2, ..., n} with |K| = k, and a vector x ∈ Rn (with a random sign pattern)

supported on the set K (or a subset of K) fail the condition (4.4.3). Due to the vector

linear proportionality in the linear subspace Ψ, we can restrict our attention to those

vectors x from the weighted crosspolytope

{x ∈ Rn |
n∑

i=1

wi|xi| = 1}

that are only supported on the set K (or a subset of K).

Since K is assumed to be ǫ-typical set and x has one particular sign pattern (i.e.
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is drawn randomly), unlike [XH08] we do not need to upper bound the probability P

by a union bound over all the possible support sets K ⊂ {1, 2, ..., n} and all the sign

patterns of the k-sparse vector x. Instead, we can write

P ≤
∑

K ǫ-typical

PK,−, (4.4.4)

where PK,− is the probability that for a specific support set K (which is epsilon typical

here), there exist a k-sparse vector x of a specific sign pattern which fails the condition

(4.4.3). By symmetry, without loss of generality, we assume the signs of the elements

of x to be non-positive.

So now we can focus on deriving the probability PK,−. Since x is a non-positive

k-sparse vector supported on the set K (or a subset of K) and can be restricted to the

weighted crosspolytope {x ∈ Rn | ∑n
i=1wi|xi| = 1}, x is also on a (k−1)-dimensional

face, denoted by F , of the weighted skewed crosspolytope SPw:

SPw = {y ∈ Rn |
n∑

i=1

wi|yi| ≤ 1}. (4.4.5)

The subscript w in SPw is an indication of the weight vector w = (w1, w2, . . . , wn)
T .

Now the probability PK,− is the probability that there exists an x ∈ F , and there

exists a Z ∈ Ψ (Z 6= 0) such that

∑

i∈K
wi|xi + Zi|1 +

∑

i∈K̄

wi|Zi|1 ≤
∑

i∈K
wi|xi| = 1. (4.4.6)

We start by studying the case for a specific point x ∈ F and, without loss of generality,

we assume x is in the relative interior of this (k − 1) dimensional face F . For this

particular x on F , the probability, denoted by P ′
x, that ∃Z ∈ Ψ (Z 6= 0) such that

∑

i∈K
wi|xi + Zi|1 +

∑

i∈K̄

wi|Zi|1 ≤
∑

i∈K
wi|xi| = 1, (4.4.7)

is essentially the probability that a uniformly chosen (n−m)-dimensional subspace Ψ
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shifted by the point x, namely (Ψ+x), intersects the weighted skewed crosspolytope

SPw = {y ∈ Rn |
n∑

i=1

wi|yi| ≤ 1} (4.4.8)

non-trivially, namely, at some other point besides x.

From the linear property of the subspace Ψ, the event that (Ψ+ x) intersects the

skewed crosspolytope SPw is equivalent to the event that Ψ intersects nontrivially

with the cone SPConew(x) obtained by observing the weighted skewed polytope SPw

from the point x. (Namely, SPConew(x) is conic hull of the point set (SPw−x) and

of course SPConew(x) has the origin of the coordinate system as its apex.) However,

as noticed in the geometry for convex polytopes [Grü68, Grü03], the SPConew(x) is

identical for any x lying in the relative interior of the face F . This means that the

probability PK,− is equal to P ′
x, regardless of the fact x is only a single point in the

relative interior of the face F . (The acute reader may have noticed some singularities

here because x ∈ F may not be in the relative interior of F , but it turns out that the
SPConew(x) in this case is only a subset of the cone we get when x is in the relative

interior of F . So we do not lose anything if we restrict x to be in the relative interior

of the face F .) Namely we have

PK,− = P ′
x.

Now we only need to determine P ′
x. From its definition, P ′

x is exactly the comple-

mentary Grassmann angle [Grü68] for the face F with respect to the polytope

SP under the Grassmann manifold Gr(n−m)(n):
3 the probability of a uniformly dis-

tributed (n−m)-dimensional subspace Ψ from the Grassmannian manifold Gr(n−m)(n)

intersecting non-trivially with the cone SP-Cone(x) formed by observing the skewed

crosspolytope SP from the relative interior point x ∈ F .
Building on the works by L. A. Santalö [San52] and P. McMullen [McM75] in high

3A Grassman angle and its corresponding complementary Grassmann angle always sum up to
1. There is apparently inconsistency in terms of the definition of which is “Grassmann angle” and
which is “complementary Grassmann angle” between [Grü68],[AS92] and [VS92] etc. But we will
stick to the earliest definition in [Grü68] for Grassmann angle: the measure of the subspaces that
intersect trivially with a cone.
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dimensional integral geometry and convex polytopes, the complementary Grassmann

angle for the (k − 1)-dimensional face F can be explicitly expressed as the sum of

products of internal angles and external angles [Grü03]:

2×
∑

s≥0

∑

G∈ℑm+1+2s(SP)

β(F ,G)γ(G, SPw), (4.4.9)

where s is any nonnegative integer, G is any (m + 1 + 2s)-dimensional face of the

skewed crosspolytope (ℑm+1+2s(SP) is the set of all such faces), β(·, ·) stands for the
internal angle and γ(·, ·) stands for the external angle.

The internal angles and external angles are basically defined as follows [Grü03,

McM75]:

• An internal angle β(F1,F2) is the fraction of the hypersphere S covered by

the cone obtained by observing the face F2 from the face F1.
4 The internal

angle β(F1,F2) is defined to be zero when F1 * F2 and is defined to be one if

F1 = F2.

• An external angle γ(F3,F4) is the fraction of the hypersphere S covered by the

cone of outward normals to the hyperplanes supporting the face F4 at the face

F3. The external angle γ(F3,F4) is defined to be zero when F3 * F4 and is

defined to be one if F3 = F4.

In order to calculate the internal and external angles, it is important to use the

symmetrical properties of the weighted crosspolytope SPw. First of all, SPw is noth-

ing but the convex hull of the following set of 2n vertices in Rn

SPw = conv{± εi
wi
| 1 ≤ i ≤ n} (4.4.10)

where εi 1 ≤ i ≤ n is the standard unit vector in Rn with the ith entry equal to 1.

Every (k − 1)-dimensional face F of SPw is just the convex hull of k of the linearly

4Note the dimension of the hypersphere S here matches the dimension of the corresponding cone
discussed. Also, the center of the hypersphere is the apex of the corresponding cone. All these
defaults also apply to the definition of the external angles.
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independent vertices of SPw. We then say that F is supported on the index set

K of the k indices corresponding to these vertex indices. More precisely, if F =

conv{j1 εi1wi1
, j2

εi2
wi2
, . . . , jn

εik
wik

} with ji ∈ {−1,+1} ∀1 ≤ i ≤ k, then F is supported

on the set K = {i1, i2, . . . , ik}. The particular choice of wis as in (4.3.1) makes SPw

partially symmetric. Two faces F and F ′ of SPw that are respectively supported onK

andK ′, are geometrically identical.5 if |K∩K1| = |K ′∩K1| and |K∩K2| = |K ′∩K2|.6

In other words the only thing that distinguishes the faces is the proportion of their

support sets that is located in K1 or K2. Therefore for two faces F and G with F
supported on K and G supported on L (K ⊆ L), β(F ,G) is only a function of the

parameters k1 = |K ∩K1|, k2 = |K ∩K2|, k1 + t1 = |L∩K1| and k2 + t1 = |K ∩K2|.
So, instead of β(F ,G) we write β(k1, k2|t1, t2) and similarly instead of γ(G, SPw) we

just write γ(t1 + k1, t2 + k2). Using this notation and recalling the formula (4.4.9),

we can write

PK,− = 2
∑

s≥0

∑

G∈ℑm+1+2s(SP)

β(F ,G)γ(G, SPw)

=
∑

0 ≤ t1 ≤ n1 − k1

0 ≤ t2 ≤ n2 − k2

t1 + t2 > m − k1 − k2 + 1

2t1+t2+1

(
n1 − k1
t1

)(
n2 − k2
t2

)

β(k1, k2|t1, t2)γ(t1 + k1, t2 + k2)

(4.4.11)

where in (4.4.11) we have used the fact that the number of faces G of SPw of dimension

l − 1 = t1 + t2 that encompass F and have k1 + t1 vertices supported on K1 and the

rest k2 + t2 vertices supported on K2 is 2t1+t2
(
n1−k1
t1

)(
n2−k2
t2

)
. Now we can apply the

union bound of (4.4.4) to get the following result.

Theorem 4.4.2. Let E be the event that a random vector x0 generated based on the

sparsity model of section 4.2 is recovered by the linear programming of (4.2.3) with

5This means that there exists a rotation matrix θ ∈ Rn×n which is unitary, i.e., θT θ = I, and
maps F isometrically to F ′, i.e., F ′ = θF .

6Remember that K1 and K2 are the same sets as defined in the model description of section 4.2.
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y = x0. For every ǫ > 0 there exists a positive constant cǫ so that:

P(Ec) ≤ O(e−cǫn) +
n1(P1+ǫ)∑

k1=n1(P1−ǫ)

n2(P2+ǫ)∑

k2=n2(P2−ǫ)













∑

0 ≤ t1 ≤ n1 − k1

0 ≤ t2 ≤ n2 − k2

t1 + t2 > m − k1 − k2 + 1

2t1+t2+1

(
n1 − k1

t1

)(
n2 − k2

t2

)

β(k1, k2|t1, t2)γ(t1 + k1, t2 + k2)














(4.4.12)

where β(k1, k2|t1, t2) is the internal angle between a (k1+k2−1)-dimensional face F of SPw

with k1 vertices supported on K1 and k2 vertices supported on K2 and a (k1+k2+t1+t2−1)-
dimensional face G that includes F and has t1+k1 faces supported on K1 and the remaining

vertices supported on K2. γ(d1, d2) is the external angle γ(d1, d2) is the external angle

between a face G supported on set L with |L∩K1| = d1 and |L∩K2| = d2 and the weighted

skewed crosspolytope SPw.

Proof. Apply (4.4.11) to the R.H.S. of (4.4.4) and then replace in (4.4.1) to get the

desired result.

In the following subsections we will try to evaluate the internal and external

angles for a typical face F , and a face G containing F , and try to give closed-form

upper bounds for them. We combine the terms together and compute the exponents

using Laplace method in section 4.4.4 and derive thresholds for nonnegativity of the

cumulative exponent.

4.4.2 Computation of Internal Angle

In summary, the main result of this section is the following theorem.

Theorem 4.4.3. Let Z be a random variable defined as

Z = (k1W
2
1 + k2W

2
2 )X1 −W 2

1

t1∑

i=1

X ′
1 −W 2

2

t2∑

i=1

X ′′
1 ,
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whereX1 ∼ N(0, 1
2(k1W 2

1+k2W
2
2 )
) is a normal distributed random variable, X ′

i ∼ HN(0, 1
2W 2

1
),

1 ≤ i ≤ t1, and X
′′
i ∼ HN(0, 1

2W 2
2
) 1 ≤ i ≤ t2 are independent (from each other and

from X1) half normal distributed random variables. Let pZ(.) denote the probability

distribution function of Z and C0 =
√
π

2l−k

√

(k1 + t1)W 2
1 + (k2 + t2)W 2

2 . Then,

β(k1, k2|t1, t2) = C0pZ(0). (4.4.13)

We will try in this whole section to prove this theorem. Suppose that F is a

ǫ-typical (k − 1)-dimensional face of the skewed crosspolytope

SPw = {y ∈ Rn |
n∑

i=1

wi|yi| ≤ 1}

supported on the subset K with |K| = k = k1 + k2. Let G be a (l − 1)-dimensional

face of SPw supported on the set L with F ⊂ G. Also, let |L ∩ K1| = k1 + t1 and

|L ∩K2| = k2 + t2.

First we can prove the following lemma:

Lemma 4.4.2. Let ConF⊥,G be the positive cone of all the vectors x ∈ Rn that take

the form:

−
k∑

i=1

bi × ei +
l∑

i=k+1

bi × ei, (4.4.14)

where bi, 1 ≤ i ≤ l are nonnegative real numbers and

k∑

i=1

wibi =
l∑

i=k+1

wibi
b1
w1

=
b2
w2

= · · · = bk
wk

Then

∫

ConF⊥,G

e−‖x‖2 dx = β(F ,G)Vl−k−1(S
l−k−1)

∫ ∞

0

e−r
2

rl−k−1 dx = β(F ,G) · π(l−k)/2,

(4.4.15)

where Vl−k−1(S
l−k−1) is the spherical volume of the (l − k − 1)-dimensional sphere
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Sl−k−1.

Proof. Given in Appendix 4.6.1.

From (4.4.15) we can find the expression for the internal angle. Define U ⊆ Rl−k+1

as the set of all nonnegative vectors (x1, x2, . . . , xl−k+1) satisfying:

xp ≥ 0, 1 ≤ p ≤ l− k + 1 (
∑k

p=1w
2
p)x1 =

∑l
p=k+1w

2
pxp−k+1

and define f(x1, . . . , xl−k+1) : U → ConF⊥,G to be the linear and bijective map

f(x1, . . . , xl−k+1) = −
k∑

p=1

x1wpεp +

l∑

p=k+1

xp−k+1wpεp

Then

∫

ConF⊥,G

e−‖x′‖2 dx′ =

∫

U

e−‖f(x)‖2 df(x)

= |J(A)|
∫

Γ

e−‖f(x)‖2 dx2 · · · dxl−k+1

= |J(A)|
∫

Γ

e−(
∑k

p=1 w
2
p)x

2
1−

∑l
p=k+1w

2
px

2
p−k+1 dx2 · · · dxl−k+1. (4.4.16)

Γ is the region described by

(

k∑

p=1

w2
p)x1 =

l∑

p=k+1

w2
pxp−k+1, xp ≥ 0 2 ≤ p ≤ l − k + 1, (4.4.17)

where |J(A)| is due to the change of integral variables and is essentially the determi-

nant of the Jacobian of the variable transform given by the l× (l−k) matrix A given

by

Ai,j =







− 1
Ω
wiw

2
k+j 1 ≤ i ≤ k, 1 ≤ j ≤ l − k,

wi k + 1 ≤ i ≤ l, j = i− k,

0 otherwise.

(4.4.18)
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where Ω =
∑k

p=1w
2
p. Now |J(A)| =

√

det(ATA). By finding the eigenvalues of ATA

we obtain

|J(A)| = W t1
1 W

t2
2

√

Ω + t1W 2
1 + t2W 2

2

Ω
(4.4.19)

Now we define a random variable

Z = (

k∑

p=1

w2
p)X1 −

l∑

p=k+1

w2
pXp−k+1,

whereX1, X2, . . . , Xl−k+1 are independent random variables, withXp ∼ HN(0, 1
2w2

p+k−1
),

2 ≤ p ≤ (l−k+1), as half-normal distributed random variables andX1 ∼ N(0, 1

2
∑k

p=1 w
2
p

)

as a normal distributed random variable. Then by inspection, (4.4.16) is equal to

CpZ(0), where pZ(·) is the probability density function for the random variable Z

and pZ(0) is the probability density function pZ(·) evaluated at the point Z = 0, and

C =

√
π
l−k+1

2l−k

l∏

q=k+1

1

wq

√
√
√
√

k∑

p=1

w2
p |J(A)| =

√
π
l−k+1

2l−k

√

(k1 + t1)W
2
1 + (k2 + t2)W

2
2 .

(4.4.20)

Combining these results, the statement of Theorem 4.4.3 follows to be true.

4.4.3 Computation of External Angle

Theorem 4.4.4. The external angle γ(G, SPw) = γ(d1, d2) between the face G and

SPw, where G is supported on the set L with |L∩K1| = d1 and |L∩K2| = d2 is given

by

γ(d1, d2) = π−n−l+1
2 2n−l

∫ ∞

0

e−x
2

(
∫ W1x

ξ(d1,d2)

0

e−y
2

dy

)r1 (∫ W2x
ξ(d1,d2)

0

e−y
2

dy

)r2

dx,

(4.4.21)

where ξ(d1, d2) =
√∑

i∈L w
2
i =

√

d1W 2
1 + d2W 2

2 r1 = n1 − d1 r2 = n2 − d2.

Proof. Without loss of generality, assume L = {n−l+1, n−l+2, . . . , n} and consider
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the (l − 1)-dimensional face,

G = conv{ εn−l+1

wn−l+1
, . . . ,

εn−k
wn−k

,
εn−k+1

wn−k+1
, . . . ,

εn
wn
}

of the skewed crosspolytope SP. The 2n−l outward normal vectors of the supporting

hyperplanes of the facets containing G are given by

{
n−l∑

i=1

jiwiεi +

n∑

p=n−l+1

wiεi, ji ∈ {−1, 1}}.

Then the outward normal cone c(G, SP) at the face G is the positive hull of these

normal vectors. Thus

∫

c(G,SP)
e−‖x‖2 dx = γ(G, SP )Vn−l(Sn−l)

∫ ∞

0

e−r
2

rn−l dx

= γ(G, SP).π(n−l+1)/2, (4.4.22)

where Vn−l(S
n−l) is the spherical volume of the (n− l)-dimensional sphere Sn−l. Now

define U to be the set

{x ∈ Rn−l+1 | xn−l+1 ≥ 0, |xi/wi| ≤ xn−l+1, 1 ≤ i ≤ (n− l)},

and define f(x1, . . . , xn−l+1) : U → c(G, SP) to be the linear and bijective map

f(x1, . . . , xn−l+1) =
n−l∑

i=1

xiεi +
n∑

i=n−l+1

wixn−l+1εi.

Then

∫

c(G,SP)
e−‖x′‖2 dx′ = |J(A)|

∫

U
e−‖f(x)‖2 dx

= |J(A)|
∫ ∞

0

∫ w1xn−l+1

−w1xn−l+1

· · ·
∫ wn−lxn−l+1

−wn−lxn−l+1

e−x
2
1−···−x2n−l−(

∑n
i=n−l+1 w

2
i )x

2
n−l+1 dx1 · · · dxn−l+1

= |J(A)|
∫ ∞

0
e−(

∑n
i=n−l+1 w

2
i )x

2

(∫ W1x

−W1x
e−y

2
dy

)n1−d1 (∫ W2x

−W2x
e−y

2
dy

)n2−d2
dx. (4.4.23)
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A is the n× (n− l + 1) change of variable matrix given by

A =




In−l 0

0 wL



 ,

where wL = (wn−l+1, wn−l+2, . . . , wn)
T . Therefore

J(A) =
√

det(ATA) =
√

d1W
2
1 + d2W

2
2 .

Using this equation and a change of variable for x (replace ξx with x) in (4.4.23),

along with (4.4.22), completes the proof.

4.4.4 Derivation of the Critical δc Threshold

We begin by summarizing all the results that we have proven so far and what we are

trying to show next. We proved in Section 4.4.1 that the probability of the failure

event is bounded by the formula,

P(Ec) ≤ O(e−cǫn) +
n1(P1+ǫ)∑

k1=n1(P1−ǫ)

n2(P2+ǫ)∑

k2=n2(P2−ǫ)













∑

0 ≤ t1 ≤ n1 − k1

0 ≤ t2 ≤ n2 − k2

t1 + t2 > m − k1 − k2 + 1

2t1+t2+1

(
n1 − k1

t1

)(
n2 − k2

t2

)

β(k1, k2|t1, t2)γ(t1 + k1, t2 + k2)














.

(4.4.24)

Furthermore, in Sections 4.4.2 and 4.4.3, we gave respectively expressions for the

internal angle β(t1, t2|k1, k2) and external angle γ(t1+ k1, t2, k2) terms that appear in

the upper bound for the probability of misdetection in (4.4.24). Now our objective is

to show that the R.H.S of (4.4.24) will exponentially grow to 0 as n → ∞ provided
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that δ = m
n
is greater than a critical threshold δc, which we are trying to evaluate. To

do this end we bound the exponents of the combinatorial, internal angle and external

angle terms in (4.4.24), and find the values of δ for which the net exponent is strictly

negative. The maximum such δ will give us δc. Starting with the combinatorial term,

we use Stirling approximating on the binomial coefficients to achieve the following as

n→∞ and ǫ→ 0,

1

n
log

(

2t1+t2+1

(
n1 − k1
t1

)(
n2 − k2
t2

))

→

log 2

(

γ1(1− P1)H(
t′1

γ1(1− P1)
) + γ2(1− P2)H(

t′2
γ2(1− P2)

) + t′1 + t′2

)

(4.4.25)

where t′1 =
t1
n
and t′2 =

t2
n
.

For the external angle and internal angle terms we prove the following exponents.

1. Let g(x) = 2√
π
e−

x2

2 , G(x) = 2√
π

∫ x

0
e−y

2
dy. Also define C = (t′1+γ1P1)+W

2(t′2+

γ2P2), D1 = γ1(1 − P1) − t′1 and D2 = γ2(1 − P2) − t′2. Let x0 be the unique

solution to x of the following:

2C − g(x)D1

xG(x)
− Wg(Wx)D2

xG(Wx)
= 0.

Define

ψext(t
′
1, t

′
2) = Cx20 −D1 logG(x0)−D2 logG(Wx0). (4.4.26)

2. Let b =
t′1+W

2t′2
t′1+t

′
2

and ϕ(.) and Φ(.) be the standard Gaussian pdf and cdf func-

tions respectively. Also let Ω′ = γ1P1 + W 2γ2P2 and Q(s) =
t′1ϕ(s)

(t′1+t
′
2)Φ(s)

+

Wt′2ϕ(Ws)

(t′1+t
′
2)Φ(Ws)

. Define the function M̂(s) = − s
Q(s)

and solve for s in M̂(s) =

t′1+t
′
2

(t′1+t
′
2)b+Ω′ . Let the unique solution be s∗ and set y = s∗(b − 1

M̂(s∗)
). Compute

the rate function Λ∗(y) = sy − t′1
t′1+t

′
2
Λ1(s) − t′2

t′1+t
′
2
Λ1(Ws) at the point s = s∗,
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where Λ1(s) =
s2

2
+ log(2Φ(s)). The internal angle exponent is then given by:

ψint(t
′
1, t

′
2) = (Λ∗(y) +

t′1 + t′2
2Ω′ y2 + log 2)(t′1 + t′2). (4.4.27)

and we prove the following lemmas

Lemma 4.4.3. Fix δ, ǫ > 0. There exists a finite number n0(δ, ǫ) such that

1

n
log(γ(t1 + k1, t2 + k2)) < −ψext(t′1, t′2) + ǫ, (4.4.28)

uniformly in 0 ≤ t1 ≤ n1 − k1, 0 ≤ t2 ≤ n2 − k2 and t1 + t2 ≥ m − k1 − k2 + 1,

n ≥ n0(δ, ǫ).

Similarly, we have

Lemma 4.4.4. Fix δ, ǫ > 0. There exists a finite number n1(δ, ǫ) such that

1

n
log(β(t1, t2|k1, k2)) < −ψint(t′1, t′2) + ǫ, (4.4.29)

uniformly in 0 ≤ t1 ≤ n1 − k1, 0 ≤ t2 ≤ n2 − k2 and t1 + t2 ≥ m − k1 − k2 + 1,

n ≥ n1(δ, ǫ).

These lemmas are proven in the Appendix 4.6.2 and 4.6.3 using Laplace method

and large deviation method. Combining Lemmas 4.4.3 and 4.4.4, Eq. (4.4.25) and

the bound in (4.4.24) we readily get the critical bound for δc as in the Theorem 4.3.3.

We simply repeat the statement here once more.

Theorem 4.4.5. If γ1, γ2, P1, P2, W1 and W2 are fixed, there exists a critical thresh-

old δc = δc(P1, P2,
W2

W1
) such that if δ = m

n
≥ δc, then the R.H.S of (4.3.2) (the upper

bound on the probability of failure) decays exponentially to zero as n→∞. Further-

more, δc is given by

δc = min{δ | ψcom(t′1, t′2)− ψint(t′1, t′2)− ψext(t′1, t′2) < 0 ∀ 0 ≤ t′1 ≤ γ1(1− P1),

0 ≤ t′2 ≤ γ2(1− P2), t
′
1 + t′2 > δ − γ1P1 − γ2P2}
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where ψcom, ψext, ψint are computed as in (4.4.25), (4.4.27) and (4.4.26) respectively.

4.5 Simulation Results

We demonstrate by some examples that appropriate weights can boost the recovery

percentage. We fix P2 and n = 2m = 200, and try ℓ1 and weighted ℓ1 minimization for

various values of P1. We choose n1 = n2 =
n
2
. Figure 4.5a shows one such comparison

for P2 = 0.05 and different values of w2. Note that the optimal value of w2 varies

as P1 changes. Figure 4.5b illustrates how the optimal weighted ℓ1 minimization

surpasses the ordinary ℓ1 minimization. The optimal curve is basically achieved by

selecting the best weight of Figure 4.5a for each single value of P1. Figure 4.6 shows

the result of simulations in another setting where P2 = 0.1 and m = 0.75n (similar

to the setting of the previous section). It is clear from the figure that the recovery

success threshold for P1 has been shifted higher when using weighted ℓ1 minimization

rather than standard ℓ1 minimization. Note that this result very well matches the

theoretical results of Figures 4.3 and 4.4.

4.6 Appendix. Proof of Important Lemmas

4.6.1 Proof of Lemma 4.4.2

Without loss of generality, assume that K = 1, 2, ..., k and F is a (k− 1)-dimensional

face with k vertices as εp
wp
, 1 ≤ p ≤ k, where εp is the n-dimensional standard unit

vector with the p-th element as ‘1’; and also assume that the (l− 1)-dimensional face

G be the convex hull of the l vertices: εp
wp
, 1 ≤ p ≤ l. Then the cone ConF,G formed

by observing the (l − 1)-dimensional face G of the skewed crosspolytope SP from an

interior point xF of the face F is the positive cone of the vectors:

εj
wj
− εi
wi
, for all j ∈ J\K, i ∈ K, (4.6.1)
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and also the vectors

εi1
wi1
− εi2
wi2

, for all i1 ∈ K, i2 ∈ K, (4.6.2)

where L = {1, 2, ..., l} is the support set for the face G.

So the cone ConF,G is the direct sum of the linear hull LF = lin{F − xF} formed

by the vectors in (4.6.2) and the cone ConF⊥,G = ConF,G
⋂
L⊥
F , where L⊥

F is the

orthogonal complement to the linear subspace LF . Then ConF⊥,G has the same

(relative) spherical volume as ConF,G, and by definition the internal angle β(F,G) is

the relative spherical volume of the cone ConF,G. Now let us analyze the structure of

ConF⊥,G. We notice that the vector

ε0 =

k∑

p=1

wpεp

is in the linear space L⊥
F and is also the only such a vector (up to linear scaling)

supported on K. Thus a vector x in the positive cone ConF⊥,G must take the form

−
k∑

i=1

bi × ei +
l∑

i=k+1

bi × ei, (4.6.3)

where bi, 1 ≤ i ≤ l are nonnegative real numbers and

k∑

i=1

wibi =
l∑

i=k+1

wibi,

b1
w1

=
b2
w2

= · · · = bk
wk
.

Now that we have identified ConF⊥,G we try to calculate its relative spherical

volume with respect to the sphere surface Sl−k−1 to derive β(F,G). First, we notice

that ConF⊥,G is a (l − k)-dimensional cone. Also, all the vectors (x1, . . . , xn) in the
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cone ConF⊥,G take the form in (4.6.3). From [Had79],

∫

Con
F⊥,G

e−‖x‖2 dx = β(F,G)Vl−k−1(S
l−k−1)

×
∫ ∞

0

e−r
2

rl−k−1 dx = β(F,G) · π(l−k)/2, (4.6.4)

where Vl−k−1(S
l−k−1) is the spherical volume of the (l − k − 1)-dimensional sphere

Sl−k−1 and is given by the well-known formula

Vi−1(S
i−1) =

iπ
i
2

Γ( i
2
+ 1)

,

where Γ(·) is the usual Gamma function. This completes the proof.

4.6.2 Proof of Lemma 4.4.3

Let G denote the cumulative distribution function of a half-normal HN(0, 1/2) ran-

dom variable, i.e. a random variable X = |Z| where Z ∼ N(0, 1/2), and G(x) =

P{X ≤ x}. Since X has density function g(x) = 2√
π
exp(−x2), we know that

G(x) =
2√
π

∫ x

0

e−y
2

dy; (4.6.5)

and so G is just the classical error function erf(·). We now justify the external angle

exponent computations in Theorem 4.3.3 and Lemma 4.4.3 using Laplace methods

[DT05a]. Using the same set of notations as in Theorem 4.3.3, let t1 = t′1n, t2 = t′2n.

Also define C = (t′1 + γ1P1) + W 2(t′2 + γ2P2), D1 = γ1(1 − P1) − t′1 and D2 =

γ2(1− P2)− t′2. Let x0 be the unique solution to x of the following:

2C − g(x)D1

xG(x)
− Wg(Wx)D2

xG(Wx)
= 0 (4.6.6)

Since xG(x) is a smooth strictly increasing function ( ∼ 0 as x → 0 and ∼ x as

x→∞), and g(x) is strictly decreasing, the function g(x)D1

xG(x)
+ Wg(Wx)D2

xG(Wx)
is one-one on

the positive axis, and x0 is a well-defined function of t′1 and t′2. Hence, we denote it
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as x0(t
′
1, t

′
2).

Then

ψext(t
′
1, t

′
2) = Cx20 −D1 logG(x0)−D2 logG(Wx0). (4.6.7)

.

To prove Lemma 4.4.3, we start from the explicit integral formula

γ(d1, d2) = π−n−l+1
2 2n−l

∫ ∞

0

e−x
2

(
∫ W1x

ξ(d1,d2)

0

e−y
2

dy

)r1 (∫ W2x
ξ(d1,d2)

0

e−y
2

dy

)r2

dx,

(4.6.8)

After a changing of integral variables (noticing thatW1 = 1,W2 = W , n1−d1
n

= D1,

and n2−d2
n

= D2 ), we have

γ(t1 + k1, t2 + k2) =
√

Cn/π

∫ ∞

0

e−n(Cx
2−D1 log(G(x))−D2 log(G(Wx)) dx. (4.6.9)

This suggests that we should use Laplace’s method; we define

ft′1,t′2,n = e
−nψt′

1
,t′
2
(y) ·

√

Cn/π, (4.6.10)

with

ψt′1,t′2(y) = Cy2 −D1 log(G(y))−D2 log(G(Wy)).

We note that the function ψt′1,t′2 is smooth and convex. Applying Laplaces method

to ψt′1,t′2 , but taking care about regularity conditions and remainders as in [DT05a],

gives a result with the uniformity in (t′1, t
′
2).

Lemma 4.6.1. For t′1, t
′
2, let x0(t

′
1, t

′
2) denotes the minimizer of ψt′1,t′2. Then

∫ ∞

0

ft′1,t′2,n(x) dx ≤ e
−nψt′

1
,t′
2
(x0(t′1,t

′
2))(1 +Rn(t

′
1, t

′
2)),

where for any δ, η > 0,

sup
0≤t′1≤γ1−ρ1,0≤t′2≤(γ2−ρ2),δ−ρ1−ρ2≤t′1+t′2≤(1−ρ1−ρ2−η)

Rn(t
′
1, t

′
2) = o(1) as n→∞,
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where ρ1 = k1/n, ρ2 = k2/n, n1/n = γ1 and n2/n = γ2.

In fact, in this lemma, the minimizer xo(t
′
1, t

′
2) is exactly the same x0(t

′
1, t

′
2) defined

earlier in (4.6.6) and the corresponding minimum value is the same as the defined

exponent Ψext:

ψext(t
′
1, t

′
2) = ψt′1,t′2(xt′1 , xt′2). (4.6.11)

In fact, we can derive Lemma 4.4.3 from Lemma 4.6.1. We note that as t′1 + t′2 +

γ1 + γ2 → 1, x0(t
′
1, t

′
2) → 0 and ψext(t

′
1, t

′
2) → 0. For given ǫ > 0 in the statement

of Lemma 4.4.3, there is a largest ηǫ < 1 such that as long as t′1 + t′2 + ρ1 + ρ2 > ηǫ,

ψext(t
′
1, t

′
2) < ǫ. Note that γ(G, SP) ≤ 1, so that for t′1 + t′2 + ρ1 + ρ2 > ηǫ,

n−1 log(γ(t1 + k1, t2 + k2)) ≤ 0 < −ψext(t′1, t′2) + ǫ,

for n ≥ 1. Applying the uniformity in t′1, t
′
2 given in Lemma 4.6.1, we have as n→∞,

uniformly over the feasible region for t′1, t
′
2,

n−1 log(γ(t1 + k1, t2 + k2)) ≤ −ψext(t′1, t′2) + o(1). (4.6.12)

Then Lemma 4.4.3 follows.

4.6.3 Proof of Lemma 4.4.4

Recall Theorem 4.4.3. By applying the large deviation techniques as in [DT05a], we

have

pZ(0) ≤
2√
π
× 1√

Ω
·
(∫ µm′

0

ve−v
2−m′Λ∗(

√
2Ω

m′ v) dv + e−µ
2
m′

)

, (4.6.13)

where Ω is the same as defined in Section 4.4.2, W1 = 1, W2 = W , m′ = t1 + t2,

µm′ = (t1+ t2W )
√

1
πΩ

is the expectation of 1√
Ω′ (W

2
1

∑t1
i=1X

′
i−W 2

2

∑t2
i=1X

′′
i ), (X

′
i and

X ′′
i are defined as in Theorem 4.4.3), and

Λ∗(y) = max
s

sy − t1
t1 + t2

Λ1(s)−
t2

t1 + t2
Λ2(s),
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with

Λ1(s) =
s2

2
+ log(2Φ(s)),

Λ2(s) = Λ1(Ws).

In fact, the second term in the sum can be argued to be negligible [DT05a]. And after

changing variables y =
√
2Ω
m′ v, we know that the first term of (4.6.13) is upperbounded

by

2√
π
· 1√

Ω
· m

′2

2Ω
·
∫ t1+t2W

t1+t2

√
2/π

0

ye−m
′(m

′
2Ω

)y2−m′Λ∗(y) dy. (4.6.14)

As we know, m′ in the exponent of (4.6.14) is t1 + t2. Similar to evaluating the

external angle decay exponent, we will resort to the Laplace’s method in evaluating

the internal angle decay exponent.

Define the function

ft1,t2(y) = ye−m
′(m

′
2Ω

)y2−m′Λ∗(y),

if we apply similar arguments as in proving Lemma 4.6.1 and take care of the unifor-

mity, we have the following lemma.

Lemma 4.6.2. Let yt1,t2∗ denotes the minimizer of (m
′

2Ω
)y2 + Λ∗(y). Then

∫ ∞

0

ft1,t2(x) dx ≤ e
−m′

(

(m
′

2Ω
)yt1,t2∗2+Λ∗(yt1,t2∗)

)

· Rm′(t1, t2)

where for η > 0

m′−1 sup
t1,t2

log(Rm′(t1, t2)) = o(1) as m′ →∞.

This means that

pZ(0) ≤ e
−m′

(

(m
′

2Ω
)yt1,t2∗2+Λ∗(yt1,t2∗)

)

· Rm′(t1, t2),

where

m′−1 sup
(t1+t2)

n
∈[δ−ρ1−ρ2,1]

log(Rm′(t1, t2)) = o(1) as m′ →∞.
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Now in order to find a lower bound on the decay exponent for pZ(0),(ultimately

the decay exponent ψint(t
′
1, t

′
2)), we need to focus on finding the minimizer yt1,t2∗ for

(m
′

2Ω
)y2 + Λ∗(y). In this way, by setting the derivative of (m

′

2Ω
)y2 + Λ∗(y) with respect

to y to 0, and also noting the derivative Λ∗′(y) = s, we have

s = −m
′

Ω
y. (4.6.15)

At the same time, the s maximizing Λ∗(y) must satisfy

y =
t1

t1 + t2
Λ′

1(s) +
t2

t1 + t2
Λ′

2(s), (4.6.16)

namely, (by writing out (4.6.16)),

y =
t1 +W 2t2
t1 + t2

s+Q(s), (4.6.17)

where Q(s) is defined as in Theorem 4.4.3.

By combining (4.6.15) and (4.6.16), we can solve for the s and y, thus resulting

in the decay exponent for ψint(t
′
1, t

′
2) as calculated in Theorem 4.4.3.
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Figure 4.5: Successful recovery percentage for weighted ℓ1 minimization with different
weights in a nonuniform sparse setting. P2 = 0.05 and m = 0.5n
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Figure 4.6: Successful recovery percentage for different weights. P2 = 0.1 and m =
0.75n
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Chapter 5

An Analysis for Iterative

Reweighted ℓ1 Minimization

Algorithm

It is now well understood that ℓ1 minimization algorithm is able to recover sparse

signals from incomplete measurements [CT05, Don06c, DT06b] and sharp recover-

able sparsity thresholds have also been obtained for the ℓ1 minimization algorithm.

However, even though iterative reweighted ℓ1 minimization algorithms or related algo-

rithms have been empirically observed to boost the recoverable sparsity thresholds for

certain types of signals, no rigorous theoretical results have been established to prove

this fact. In this chapter, we try to provide a theoretical foundation for analyzing the

iterative reweighted ℓ1 algorithms. In particular, we show that for a nontrivial class of

signals, the iterative reweighted ℓ1 minimization can indeed deliver recoverable spar-

sity thresholds larger than that given in [Don06c, DT06b]. Our results are based on

a high-dimensional geometrical analysis (Grassmann angle analysis) of the null-space

characterization for ℓ1 minimization and weighted ℓ1 minimization algorithms.

5.1 Introduction

In this chapter we are interested in compressed sensing problems. Namely, we would

like to find x such that

Ax = y, (5.1.1)
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where A is an m×n (m < n) measurement matrix, y is a m× 1 measurement vector

and x is an n× 1 unknown vector with only k (k < m) nonzero components. We will

further assume that the number of the measurements is m = δn and the number of

the nonzero components of x is k = ζn, where 0 < ζ < 1 and 0 < δ < 1 are constants

independent of n (clearly, δ > ζ).

A particular way of solving (5.1.1) which has recently generated a large amount

of research is called ℓ1-optimization (basis pursuit) [CT05]. It proposes solving the

following problem

min ‖x‖1
subject to Ax = y. (5.1.2)

Quite remarkably in [CT05] the authors were able to show that if the number of the

measurements is m = δn and if the matrix A satisfies a special property called the

restricted isometry property (RIP), then any unknown vector x with no more than

k = ζn (where ζ is an absolute constant which is a function of δ, but independent of

n, and explicitly bounded in [CT05]) non-zero elements can be recovered by solving

(5.1.2). Instead of characterizing the m × n matrix A through the RIP condition,

in [Don06c, DT06b] the authors assume that A constitutes a k-neighborly polytope.

It turns out (as shown in [Don06c]) that this characterization of the matrix A is in

fact a necessary and sufficient condition for (5.1.2) to produce the solution of (5.1.1).

Furthermore, using the results of [VS92][AS92][KBH99], it can be shown that if the

matrix A has i.i.d. zero-mean Gaussian entries with overwhelming probability it also

constitutes a k-neighborly polytope. The precise relation between m and k in order

for this to happen is characterized in [Don06c] as well.

In this chapter we will be interested in providing the theoretical guarantees for the

emerging iterative reweighted ℓ1 algorithms [CWB08]. These algorithms iteratively

updated weights for each element of x in the objective function of ℓ1 minimization,

based on the decoding results from previous iterations. Experiments showed that

the iterative reweighted ℓ1 algorithms can greatly enhance the recoverable sparsity
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threshold for certain types of signals, for example, sparse signals with Gaussian en-

tries. However, no rigorous theoretical results have been provided for establishing this

phenomenon. To quote from [CWB08], “any result quantifying the improvement of

the reweighted algorithm for special classes of sparse or nearly sparse signals would be

significant.” In this chapter, we try to provide a theoretical foundation for analyzing

the iterative reweighted ℓ1 algorithms. In particular, we show that for a nontrivial

class of signals, (It is worth noting that empirically, the iterative reweighted ℓ1 algo-

rithms do not always improve the recoverable sparsity thresholds, for example, they

often fail to improve the recoverable sparsity thresholds when the non-zero elements

of the signals are “flat” [CWB08]), a modified iterative reweighted ℓ1 minimization

algorithm can indeed deliver recoverable sparsity thresholds larger than those given

in [Don06c, DT06b] for unweighted ℓ1 minimization algorithms. Our results are based

on a high-dimensional geometrical analysis (Grassmann angle analysis) of the null-

space characterization for ℓ1 minimization and weighted ℓ1 minimization algorithms.

The main idea is to show that the preceding ℓ1 minimization iterations can provide

certain information about the support set of the signals and this support set informa-

tion can be properly taken advantage of to perfectly recover the signals even though

the sparsity of the signal x itself is large.

This chapter is structured as follows. In Section 5.2, we present the iterative

reweighted ℓ1 algorithm for analysis. The signal model for x will be given in Section

5.3. In Section 5.4 and Section 5.5, we will show how the iterative reweighted ℓ1 min-

imization algorithm can indeed improve recoverable sparsity thresholds. Numerical

results will be given in Section 5.6.

5.2 The Modified Iterative Reweighted ℓ1 Mini-

mization Algorithm

Let wti, i = 1, ..., n, denote the weights for the i-th element xi of x in the t-th iteration

of the iterative reweighted ℓ1 minimization algorithm and let Wt be the diagonal



166

matrix with wt1, w
t
2, ..., w

t
n on the diagonal. In the paper [CWB08], the following

iterative reweighted ℓ1 minimization algorithm is presented:

Algorithm 6 [CWB08]

1. Set the iteration count t to zero and wti = 1, i = 1, ..., n.

2. Solve the weighted ℓ1 minimization problem

xt = argmin ‖Wtx‖1 subject to y = Ax. (5.2.1)

3. Update the weights: for each i = 1, ..., n,

wt+1
i =

1

|xti|+ ǫ′
, (5.2.2)

where ǫ′ is a tunable positive number.

4. Terminate on convergence or when t attains a specified maximum number of
iterations tmax. Otherwise, increment t and go to step 2.

For the sake of tractable analysis, we will give another iterative reweighted ℓ1 min-

imization algorithm , but it still captures the essence of the reweighted ℓ1 algorithm

presented in [CWB08]. In our modified algorithm, we only do two ℓ1 minimization

programming, namely we stop at the time index t = 1.

This modified algorithm is certainly different from the algorithm from [CWB08],

but the important thing is that both algorithms assign bigger weights to those ele-

ments of x which are more likely to be 0.

5.3 Signal Model for x

In this chapter, we consider the following model for the n-dimensional sparse signal

x. First of all, we assume that there exists a set K ⊂ {1, 2, ..., n} with cardinality

|K| = (1 − ǫ)ρF (δ)δn such that each of the elements of x over the set K is large

in amplitude. W.L.O.G., those elements are assumed to be all larger than a1 > 0.

For a given signal x, one might take such set K to be the set corresponding to the
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Algorithm 7 The Modified Iterative Reweighted ℓ1 Minimization Algorithm

1. Set the iteration count t to zero and wti = 1, i = 1, ..., n.

2. Solve the weighted ℓ1 minimization problem

xt = argmin ‖Wtx‖1 subject to y = Ax. (5.2.3)

3. Update the weights: find the index set K ′ ⊂ {1, 2, ..., n} which corresponds
to the largest (1 − ǫ)ρF (δ)δn elements of x0 in amplitudes, where 0 < ǫ < 1
is a specified parameter and ρF (δ) is the weak threshold for perfect recovery
defined in [Don06c] using ℓ1 minimization (thus ζ = ρF (δ)δ is the weak sparsity
threshold). Then assign the weight W1 = 1 to those wt+1

i corresponding to the
set K ′ and assign the weight W2 = W , W > 1, to those wt+1

i corresponding to
the complementary set K̄ ′ = {1, 2, ..., n} \K ′.

4. Terminate on convergence or when t = 1. Otherwise, increment t and go to
step 2.

(1− ǫ)ρF (δ)δn largest elements of x in amplitude.

Secondly, (let K̄ = {1, 2, ..., n} \ K), we assume that the ℓ1 norm of x over the

set K̄, denoted by ‖xK̄‖1, is upperbounded by ∆, though ∆ is allowed to take a

non-diminishing portion of the total ℓ1 norm ‖x‖1 as n→∞. We further denote the

support set of x as Ktotal and its complement as K̄total. The sparsity of the signal x,

namely the total number of nonzero elements in the signal x is then |Ktotal| = ktotal =

ξn, where ξ can be above the weak sparsity threshold ζ = ρF (δ)δ achievable using

the ℓ1 algorithm.

In the following sections, we will show that if certain conditions on a1, ∆ and the

measurement matrix A are satisfied, we will be able to recover perfectly the signal x

using Algorithm 7 even though its sparsity level is above the sparsity threshold for

ℓ1 minimization. Intuitively, this is because the weighted ℓ1 minimization puts larger

weights on the signal elements which are more likely to be zero, and puts smaller

weights on the signal support set, thus promoting sparsity at the right positions. In

order to achieve this, we need some prior information about the support set of x,

which can be obtained from the decoding results in previous iterations. We will first
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argue that the equal-weighted ℓ1 minimization of Algorithm 7 can sometimes provide

very good information about the support set of signal x.

5.4 Estimating the Support Set from the ℓ1 Mini-

mization

Since the set K ′ corresponds to the largest elements in the decoding results of ℓ1

minimization, one might guess that most of the elements in K ′ are also in the support

set Ktotal. The goal of this section is to get an upper bound on the cardinality of the

set K̄total ∩ K ′, namely the number of zero elements of x over the set K ′ . To this

end, we will first give the notion of “weak” robustness for the ℓ1 minimization.

Let K be fixed and xK , the value of x on this set, be also fixed. Then the solution

produced by (5.1.2), x̂, will be called weakly robust if, for some C > 1 and all possible

xK̄ , it holds that

‖(x− x̂)K̄‖1 ≤
2C

C − 1
‖xK̄‖1,

and

‖xK‖1 − ‖x̂K‖1 ≤
2

C − 1
‖xK̄‖1.

The above “weak” notion of robustness allows us to bound the error ‖x− x̂‖1 in

the following way. If the matrix AK , obtained by retaining only those columns of A

that are indexed by K, has full column rank, then the quantity

κ = max
Aw=0,w 6=0

‖wK‖1
‖wK̄‖1

,

must be finite (κ <∞). In particular, since x− x̂ is in the null space of A (y = Ax =
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Ax̂), we have

‖x− x̂‖1 = ‖(x− x̂)K‖1 + ‖(x− x̂)K̄‖1
≤ (1 + κ)‖(x− x̂)K̄‖1
≤ 2C(1 + κ)

C − 1
‖xK̄‖1,

thus bounding the recovery error. We can now give necessary and sufficient condi-

tions on the measurement matrix A to satisfy the notion of weak robustness for ℓ1

minimization.

Theorem 5.4.1. For a given C > 1, support set K, and xK , the solution x̂ produced

by (5.1.2) will be weakly robust if, and only if, ∀w ∈ Rn such that Aw = 0, we have

‖xK +wK‖1 + ‖
wK̄

C
‖1 ≥ ‖xK‖1. (5.4.1)

Proof. Sufficiency: Let w = x̂ − x, for which Aw = A(x̂ − x) = 0. Since x̂ is

the minimum ℓ1 norm solution, we have ‖x‖1 ≥ ‖x̂‖1 = ‖x + w‖1, and therefore

‖xK‖1 + ‖xK̄‖1 ≥ ‖x̂K‖1 + ‖x̂K̄‖1. Thus,

‖xK‖1 − ‖xK +wK‖1 ≥ ‖wK̄ + xK̄‖1 − ‖xK̄‖1
≥ ‖wK̄‖1 − 2‖xK̄‖1.

But the condition (5.4.1) guarantees that

‖wK̄‖1 ≥ C(‖xK‖1 − ‖xK +wK‖1),

so we have

‖wK̄‖1 ≤
2C

C − 1
‖xK̄‖1,

and

‖xK‖1 − ‖x̂K‖1 ≤
2

C − 1
‖xK̄‖1,
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as desired.

Necessity: Since in the above proof of the sufficiency, equalities can be achieved

in the triangular inequalities, the condition (5.4.1) is also a necessary condition for

the weak robustness to hold for every x. (Otherwise, for certain x’s, there will be

x′ = x +w with ‖x′‖1 < ‖x‖1 while violating the respective robustness definitions.

Also, such x′ can be the solution to (5.1.2)).

We should remark (without proof for the interest of space) that for any δ > 0,

0 < ǫ < 1, let |K| = (1 − ǫ)ρF (δ)δn, and suppose each element of the measurement

matrix A is sampled from i.i.d. Gaussian distribution, then there exists a constant

C > 1 (as a function of δ and ǫ), such that the condition (5.4.1) is satisfied with

overwhelming probability as the problem dimension n → ∞. At the same time, the

parameter κ defined above is upperbounded by a finite constant (independent of the

problem dimension n) with overwhelming probability as n → ∞. These claims can

be shown by using the Grasamann angle approach for the balancedness property of

random linear subspaces in [XH08].

In Algorithm 7, after equal-weighted ℓ1 minimization, we pick the set K ′ corre-

sponding to the (1−ǫ)ρF (δ)δ largest elements in amplitudes from the decoding result

x̂ (namely x0 in the algorithm description) and assign the weights W1 = 1 to the

corresponding elements in the next iteration of reweighted ℓ1 minimization. Now we

can show that an overwhelming portion of the set K ′ are also in the support set Ktotal

of x if the measurement matrix A satisfies the specified weak robustness property.

Theorem 5.4.2. Supposed that we are given a signal vector x ∈ Rn satisfying the

signal model defined in Section 5.3. Given δ > 0, and a measurement matrix A which

satisfies the weak robustness condition in (5.4.1) with its corresponding C > 1 and

κ <∞, then the set K ′ generated by the equal-weighted ℓ1 minimization in Algorithm

2 contains at most 2C
(C−1)

a1
2

‖xK̄‖1+ 2Cκ
(C−1)

a1
2

‖xK̄‖1 indices which are outside the support

set of signal x.
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Proof. Since the measurement matrix A satisfies the weak robustness condition for

the set K and the signal x,

‖(x− x̂)K̄‖1 ≤
2C

C − 1
‖xK̄‖1.

By the definition of the κ <∞, namely,

κ = max
Aw=0,w 6=0

‖wK‖1
‖wK̄‖1

,

we have

‖(x− x̂)K‖1 ≤ κ‖(x− x̂)K̄‖1.

Then there are at most 2C
(C−1)

a1
2

‖xK̄‖1 indices that are outside the support set of

x but have amplitudes larger than a1
2
in the corresponding positions of the decoding

result x̂ from the equal-weighted ℓ1 minimization algorithm. This bound follows easily

from the facts that all such indices are in the set K̄ and that ‖(x−x̂)K̄‖1 ≤ 2C
C−1
‖xK̄‖1.

Similarly, there are at most 2Cκ
(C−1)

a1
2

‖xK̄‖1 indices which are originally in the set

K but now have corresponding amplitudes smaller than a1
2
in the decoded result x̂ of

the equal-weighted ℓ1 algorithm.

Since the set K ′ corresponds to the largest (1 − ǫ)ρF (δ)δn elements of the signal

x̂, by combining the previous two results, it is not hard to see that the number of

indices which are outside the support set of x but are in the set K ′ is no bigger

than 2C
(C−1)

a1
2

‖xK̄‖1 + 2Cκ
(C−1)

a1
2

‖xK̄‖1.

As we can see, Theorem 5.4.2 provides useful information about the support set

of the signal x, which can be used in the analysis for the weighted ℓ1 minimization

using the null-space Grassmann Angle analysis approach for weighted ℓ1 minimization

algorithm [KXAH09a].



172

5.5 The Grassmann Angle Approach for the

Reweighted ℓ1 Minimization

In the previous work [KXAH09a], the authors have shown that by exploiting certain

prior information about the original signal, it is possible to extend the threshold of

sparsity factor for successful recovery beyond the original bounds of [Don06c, DT06b].

The authors proposed a nonuniform sparsity model in which the entries of the vec-

tor x can be considered as T different classes, where in the ith class, each entry is

(independently from others) nonzero with probability Pi, and zero with probability

1−Pi. The signals generated based on this model will have around n1P1+ · · ·+nTPT
nonzero entries with high probability, where ni is the size of the ith class. Examples of

such signals arise in many applications as medical or natural imaging, satellite imag-

ing, DNA micro-arrays, network monitoring and so on. They prove that provided

such structural prior information is available about the signal, a proper weighted ℓ1-

minimization strictly outperforms the regular ℓ1-minimization in recovering signals

with some fixed average sparsity from underdetermined linear i.i.d. Gaussian mea-

surements.

The detailed analysis in [KXAH09a] is only done for T = 2, and is based on

the high dimensional geometrical interpretations of the constrained weighted ℓ1-

minimization problem:

min
Ax=y

n∑

i=1

wi|xi|. (5.5.1)

Let the two classes of entries be denoted by K1 and K2. Also, due to the partial

symmetry, for any suboptimal set of weights {w1, . . . ,wn} we have the following,

∀i ∈ {1, 2, . . . , n} wi =







W1 if i ∈ K1

W2 if i ∈ K2

The following theorem is implicitly proven in [KXAH09a] and more explicitly

stated and proven in [KXAH09b]
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Theorem 5.5.1. Let γ1 = n1

n
and γ2 = n2

n
. If γ1, γ2, P1, P2, W1 and W2 are

fixed, there exists a critical threshold δc = δc(γ1, γ1, P1, P2,
W2

W1
), totally computable,

such that if δ = m
n
≥ δc, then a vector x generated randomly based on the described

nonuniformly sparse model can be recovered from the weighted ℓ1-minimization of

5.5.1 with probability 1− o(e−cn) for some positive constant c.

In [KXAH09a] and [KXAH09b], a way for computing δc is presented which, in

the uniform sparse case (e.g., γ2 = 0) and equal weights, is consistent with the weak

threshold of Donoho and Tanner [Don06c] for almost sure recovery of sparse signals

with ℓ1-minimization.

In summary, given a certain δ, the two different weightsW1 andW2 for weighted ℓ1

minimization, the size of the two weighted blocks, and also the number (or proportion)

of nonzero elements inside each weighted block, the framework from [KXAH09a] can

determine whether a uniform random measurement matrix will be able to perfectly

recover the original signals with overwhelming probability. Using this framework we

can now begin to analyze the performance of the modified reweighted algorithm of

section 5.2. Although we are not directly given some prior information, as in the

nonuniform sparse model for instance, about the signal structure, one might hope

to infer such information after the first step of the modified reweighted algorithm.

To this end, note that the immediate step in the algorithm after the regular ℓ1-

minimization is to choose the largest (1− ǫ)ρF (δ)δn entries in absolute value. This is

equivalent to splitting the index set of the vector x to two classes K ′ and K ′′, where

K ′ corresponds to the larger entries. We now try to find a correspondence between

this setup and the setup of [KXAH09a] where sparsity factors on the sets K ′ and K̄ ′

are known. We claim the following upper bound on the number of nonzero entries of

x with index on K ′

Theorem 5.5.2. There are at least (1 − ǫ)ρF (δ)δn − 4C(κ+1)∆
(C−1)a1

nonzero entries in x

with index on the set K ′.

Proof. Directly from Theorem 5.4.2 and the fact that ‖xK̄‖1 ≤ ∆.
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The above result simply gives us a lower bound on the sparsity factor (ratio of

nonzero elements) in the vector xK ′,

P1 ≥ 1− 4C(κ+ 1)

(C − 1)a1ρF (δ)δ

∆

n
. (5.5.2)

Since we also know the original sparsity of the signal, ‖x‖0 ≤ ktotal, we have the

following upper bound on the sparsity factor of the second block of the signal xK̄ ′,

P2 ≤
ktotal − (1− ǫ)ρF (δ)δn+ 4C(κ+1)∆

(C−1)a1

n− (1− ǫ)ρF (δ)δn
. (5.5.3)

Note that if a1 is large and 1 ≫ ∆
a1n

(Note however, we can let ∆ take a non-

diminishing portion of ‖x‖1, even though that portion can be very small), then P1 is

very close to 1. This means that the original signal is much denser in the block K ′

than in the second block K̄ ′. Therefore, as in the last step of the modified re-weighted

algorithm, we may assign a weight W1 = 1 to all entries of x in K ′ and weight W2 =

W , W > 1 to the entries of x in K̄ ′ and perform the weighted ℓ1-minimization. The

theoretical results of [KXAH09a], namely Theorem 5.5.1 guarantee that as long as δ >

δc(γ1, γ2, P1, P2,
W2

W1
) then the signal will be recovered with overwhelming probability

for large n.1 The numerical examples in the next section do show that the reweighted

ℓ1 algorithm can increase the recoverable sparsity threshold, i.e., P1γ1 + P2γ2.

5.6 Numerical Computations on the Bounds

Using numerical evaluations similar to those in [KXAH09a], we demonstrate a strict

improvement in the sparsity threshold from the weak bound of [Don06c], for which

our algorithm is guaranteed to succeed. Let δ = 0.555 and W2

W1
= 3 be fixed, which

1We should remark that this only holds if the Gaussian random matrix is sampled independently
from the signal to be decoded in the weighted ℓ1 minimization. In the iterative reweighted ℓ1
minimization, we do not have this independence. However, this can be accounted for by using a
union bound over the possible configurations of the set K ′. Using similar arguments as in Theorem
5.4.2, we can show that the exponent for this union bound can be made arbitrarily small if 1≫ ∆

a1n
,

which can be outweighed by the Grassmann Angle exponent.
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Figure 5.1: Recoverable sparsity factor for δ = 0.555, when the modified reweighted
ℓ1-minimization algorithm is used.

means that ζ = ρF (δ)δ is also given. We set ǫ = 0.01. The sizes of the two classes

K ′ and K ′ would then be γ1n = (1 − ǫ)ζn and γ2n = (1 − γ1)n respectively. The

sparsity ratios P1 and P2 of course depend on other parameters of the original signal,

as is given in equations (5.5.2) and (5.5.3). For values of P1 close to 1, we search over

all pairs of P1 and P2 such that the critical threshold δc(γ1, γ2, P1, P2,
W2

W1
) is strictly

less than δ. This essentially means that a non-uniform signal with sparsity factors

P1 and P2 over the sets K
′ and K ′ is highly probable to be recovered successfully via

the weighted ℓ1-minimization with weights W1 and W2. For any such P1 and P2, the

signal parameters (∆, a1) can be adjusted accordingly. Eventually, we will be able

to recover signals with average sparsity factor P1γ1 + P2γ2 using this method. We

simply plot this ratio as a function of P1 in Figure 5.1. The straight line is the weak

bound of [Don06c] for δ = 0.555 which is basically ρF (δ)δ.
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Chapter 6

Null Space Conditions and

Thresholds for Rank Minimization

Evolving from compressive sensing problems, where we are interested in recovering

sparse vector signals from compressed linear measurements, in this chapter, we will

turn our attention to recovering matrices of low ranks from compressed linear mea-

surements. Minimizing the rank of a matrix subject to constraints is a challenging

problem that arises in many applications in machine learning, control theory, and

discrete geometry. This class of optimization problems, known as rank minimization,

is NP-HARD, and for most practical problems there are no efficient algorithms that

yield exact solutions. A popular heuristic replaces the rank function with the nu-

clear norm—equal to the sum of the singular values—of the decision variable and has

been shown to provide the optimal low rank solution in a variety of scenarios. In this

chapter, we assess the practical performance of this heuristic for finding the minimum

rank matrix subject to linear constraints. Our starting point is the characterization

of a necessary and sufficient condition that determines when this heuristic finds the

minimum rank solution. We then obtain conditions, as a function of the matrix di-

mensions and rank and the number of constraints, such that our conditions for success

are satisfied for almost all linear constraint sets as the matrix dimensions tend to in-

finity. Finally, we provide empirical evidence that these probabilistic bounds provide

accurate predictions of the heuristic’s performance in non-asymptotic scenarios.
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6.1 Introduction

The rank minimization problem consists of finding the minimum rank matrix in a

convex constraint set. Though this problem is NP-Hard even when the constraints

are linear, a recent paper by Recht et al. [RFP] showed that most instances of the

linearly constrained rank minimization problem could be solved in polynomial time

as long as there were sufficiently many linearly independent constraints. Specifi-

cally, they showed that minimizing the nuclear norm (also known as the Ky Fan

1-norm or the trace norm) of the decision variable subject to the same affine con-

straints produces the lowest rank solution if the affine space is selected at random.

The nuclear norm of a matrix—equal to the sum of the singular values—can be op-

timized in polynomial time. This initial paper initiated a groundswell of research,

and, subsequently, Candès and Recht showed that the nuclear norm heuristic could

be used to recover low-rank matrices from a sparse collection of entries [CR09], Ames

and Vavasis have used similar techniques to provide average case analysis of NP-

HARD combinatorial optimization problems [AV09], and Vandenberghe and Zhang

have proposed novel algorithms for identifying linear systems [LV08]. Moreover, fast

algorithms for solving large-scale instances of this heuristic have been developed by

many groups [CCS08, LB09, MGC08, MJCD08, RFP]. These developments provide

new strategies for tackling the rank minimization problems that arise in Machine

Learning [YAU07, AMP08, RS05], Control Theory [BD98, EGG93, FHB01], and di-

mensionality reduction [LLR95, WS06, YELM07].

Numerical experiments in [RFP] suggested that the nuclear norm heuristic signif-

icantly out-performed the theoretical bounds provided by their probabilistic analysis.

They showed numerically that random instances of the nuclear norm heuristic exhib-

ited a phase transition in the parameter space, where, for sufficiently small values of

the rank the heuristic always succeeded. Surprisingly, in the complement of this re-

gion, the heuristic never succeeded. The transition between the two regions appeared

sharp and the location of the phase transition appeared to be nearly independent of

the problem size. A similar phase transition was also observed by Candès and Recht
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when the linear constraints merely constrained the values of a subset of the entries of

the matrix [CR09].

In this chapter we provide an approach to explicitly calculate the location of this

phase transition and provide bounds for the success of the nuclear norm heuristic

that accurately reflect empirical performance. We present a necessary and sufficient

condition for the solution of the nuclear norm heuristic to coincide with the minimum

rank solution in an affine space. This condition is akin to the one in compressed

sensing [SXH08a], first reported in [RXH08b]. The condition characterizes a partic-

ular property of the null-space of the linear map which defines the affine space. We

then show that when the null space is sampled from the uniform distribution on sub-

spaces, the null-space characterization holds with overwhelming probability provided

the dimensions of the equality constraints are of appropriate size. We provide explicit

formulas relating the dimension of the null space to the largest rank matrix that can

be found using the nuclear norm heuristic. We also compare our results against the

empirical findings of [RFP] and demonstrate that they provide a good approximation

of the phase transition boundary especially when the number of constraints is large.

6.1.1 Main Results

Let X be an n1 × n2 matrix decision variable. Without loss of generality, we will

assume throughout that n1 ≤ n2. Let A : Rn1×n2 → Rm be a linear map, and let

b ∈ Rm. The main optimization problem under study is

minimize rank(X)

subject to A(X) = b .
(6.1.1)

This problem is known to be NP-HARD and is also hard to approximate [MJCD08].

As mentioned above, a popular heuristic for this problem replaces the rank function

with the sum of the singular values of the decision variable. Let σi(X) denote the i-th

largest singular value of X (equal to the square-root of the i-th largest eigenvalue of

XX∗). Recall that the rank of X is equal to the number of nonzero singular values.
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In the case when the singular values are all equal to one, the sum of the singular

values is equal to the rank. When the singular values are less than or equal to one,

the sum of the singular values is a convex function that is strictly less than the rank.

This sum of the singular values is a unitarily invariant matrix norm, called the nuclear

norm, and is denoted

‖X‖∗ :=
r∑

i=1

σi(X) .

This norm is alternatively known by several other names including the Schatten 1-

norm, the Ky Fan norm, and the trace class norm.

As described in the introduction, our main concern is when the optimal solution

of (6.1.1) coincides with the optimal solution of

minimize ‖X‖∗
subject to A(X) = b .

(6.1.2)

This optimization is convex, and can be efficiently solved via a variety of methods

including semidefinite programming. See [RFP] for a survey and [CCS08, LV08,

MGC08] for customized algorithms.

We characterize an affine rank minimization problem (6.1.1) by three dimension-

less parameters that take values in (0, 1]: the aspect ratio γ, the constraint ratio µ,

the rank ratio β. Without loss of generality, we will assume throughout that we are

dealing with matrices with fewer rows than columns. The aspect ratio is such that

the number of rows is equal to n1 = γn2. The constraint ratio is the ratio of the

number of constraints to the number of parameters needed to fully specify an n1×n2

matrix. That is, the number of measurements is equal to µγn2
2. Generically, in the

case that µ ≥ 1, the linear system describing the constraints is overdetermined and

hence the minimum rank solution can be found by least-squares. The rank ratio is

the ratio of the number of rows to the rank of the matrix so that the rank is equal

to βn1 = βγn2. The model size is the number of parameters required to define a low

rank matrix. An n1 × n2 matrix of rank r is defined by r(n1 + n2 − r) parameters
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(this quantity can be computed by calculating the number of parameters needed to

specify the singular value decomposition). In terms of the parameters β and γ, the

model size is equal to β(1 + γ − βγ)n2
2. We will focus our attention to determining

for which triples (β, γ, µ) the problem (6.1.2) has the same optimal solution as the

rank minimization problem (6.1.1).

Whenever µ < 1, the null space of A, that is the set of Y such that A(Y ) = 0, is

not empty. Note that X is the unique optimal solution for (6.1.2) if and only if for

every Y in the null-space of A

‖X + Y ‖∗ > ‖X‖∗ . (6.1.3)

The following theorem generalizes this null-space criterion to a critical property that

guarantees when the nuclear norm heuristic finds the minimum rank solution of

A(X) = b as long as the minimum rank solution is sufficiently small. Our first

result is the following.

Theorem 6.1.1. Let X0 be the optimal solution of (6.1.1) and assume that X0 has

rank r < n1/2. Then

1. If for every Y in the null space of A and for every decomposition

Y = Y1 + Y2,

where Y1 has rank r and Y2 has rank greater than r, it holds that

‖Y1‖∗ < ‖Y2‖∗,

then X0 is the unique minimizer of (6.1.2).

2. Conversely, if the condition of part 1 does not hold, then there exists a vector

b ∈ Rm such that the minimum rank solution of A(X) = b has rank at most r

and is not equal to the minimum nuclear norm solution.
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This result is of interest for multiple reasons. First, it gives a necessary and suffi-

cient condition on the mapping A such that all sufficiently low rank X0 are recover-

able from (6.1.2). Second, as shown in [RXH08b], a variety of the rank minimization

problems, including those with inequality and semidefinite cone constraints, can be

reformulated in the form of (6.1.1). Finally, we now present a family of random equal-

ity constraints under which the nuclear norm heuristic succeeds with overwhelming

probability. We prove both of the following two theorems by showing that A obeys

the null-space criteria of Equation (6.1.3) and Theorem 6.1.1 respectively with over-

whelming probability.

Note that for a linear map A : Rn1×n2 → Rm, we can always find an m × n1n2

matrix A such that

A(X) = A vecX . (6.1.4)

In the case where A has entries sampled independently from a zero-mean, unit-

variance Gaussian distribution, then the null space characterization of Theorem 6.1.1

holds with overwhelming probability provided m is large enough. We define the

random ensemble of d1 × d2 matrices G(d1, d2) to be the Gaussian ensemble, with

each entry sampled i.i.d. from a Gaussian distribution with zero-mean and variance

one. We also denote G(d, d) by G(d).

In order to state our results, we need to define a function ϕ : [0, 1] → R that

specifies the asymptotic mean of the nuclear norm of a matrix sampled from G(d1, d2)

(d1 ≤ d2).

ϕ(γ) :=
1

2π

∫ (1+
√
γ)2

(1−√
γ)2

√

(z − s1)(s2 − z)
z

dz (6.1.5)

The origins of this formula will be described in Section 6.3.4. We can now state our

main threshold theorems. The first result characterizes when a particular low-rank

matrix can be recovered from a random linear system via nuclear norm minimization.

Theorem 6.1.2 (Weak Bound). Set n1 ≤ n2, γ = n1/n2, and let X0 be an n1 × n2

matrix with of rank r = βn1. Let A : Rn1×n2 → Rµn1n2 denote the random linear
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transformation

A(X) = A vec(X) ,

where A is sampled from G(µn1n2, n1n2). Then whenever

µ ≥ 1−
(

ϕ

(
γ − βγ
1− βγ

)
(1− β)3/2

γ
− 8

3π
γ1/2β3/2

)2

, (6.1.6)

there exists a numerical constant cw(µ, β, γ) > 0 such that with probability exceeding

1− e−cw(µ,β,γ)n2
2+o(n

2
2),

X0 = argmin{‖Z‖∗ : A(Z) = A(X0)} .

In particular, if β,γ, and µ satisfy (6.1.6), then nuclear norm minimization will

recover X0 from a random set of µγn2
2 constraints drawn from the Gaussian ensemble

almost surely as n2 →∞.

Formula (6.1.6) provides a lower-bound on the empirical phase transition observed

in [RFP]. Note that this theorem only depends on the null-space of A being selected

from the uniform distribution of subspaces. From this perspective, the theorem states

that the nuclear norm heuristic succeeds for almost all instances of the affine rank

minimization problem with parameters (β, γ, µ) satisfying (6.1.6). A particular case

of interest is the case of square matrices (γ = 1). In this case, the Weak Bound (6.1.6)

takes the elegant closed form:

µ ≥ 1− 64

9π2

(
(1− β)3/2 − β3/2

)2
. (6.1.7)

The second theorem characterizes when the nuclear norm heuristic succeeds at

recovering all low rank matrices.

Theorem 6.1.3 (Strong Bound). Let A be defined as in Theorem 6.1.2. Define the
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two functions

f(γ, β, ǫ) =
ϕ
(
γ−βγ
1−βγ

)

γ−1(1− β)3/2 − 8
3π
γ1/2β3/2 − 4ǫϕ(γ)

1 + 4ǫ
(6.1.8)

g(γ, β, ǫ) =

√

2βγ(1 + γ − βγ) log
(
3π

2ǫ

)

. (6.1.9)

Then there exists a numerical constant cs(µ, β) > 0 such that with probability exceed-

ing 1− e−cs(µ,β)n2+o(n2), for all γn× n matrices X0 of rank r ≤ βγn,

X0 = argmin{‖Z‖∗ : A(Z) = A(X0)},

whenever

µ ≥ 1− sup
ǫ>0

f(β,ǫ)−g(β,ǫ)>0

(f(β, ǫ)− g(β, ǫ))2 . (6.1.10)

In particular, if β, γ, and µ satisfy (6.1.10), then nuclear norm minimization will

recover all rank r matrices from a random set of γµn2 constraints drawn from the

Gaussian ensemble almost surely as n→∞.

Figure 6.1 plots the bound from Theorems 6.1.2 and 6.1.3 with γ = 1. We call

(6.1.6) theWeak Bound because it is a condition that depends on the optimal solution

of (6.1.1). On the other hand, we call (6.1.10) the Strong Bound as it guarantees

the nuclear norm heuristic succeeds, no matter what the optimal solution, as long

as the minimum of the rank minimization problem is sufficiently small. The Weak

Bound is the only bound that can be tested experimentally, and, in Section 6.4,

we will show that it corresponds well to experimental data. Moreover, the Weak

Bound provides guaranteed recovery over a far larger region of the (β, µ) parameter

space. Nonetheless, the mere existence of a Strong Bound is surprising in and of itself

and results in a much better bound than what was available from previous results

(c.f., [RFP]).
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Figure 6.1: The Weak Bound (6.1.6) versus the Strong Bound (6.1.10)

6.1.2 Related Work

Optimization problems involving constraints on the rank of matrices are pervasive

in engineering applications. For example, in Machine Learning, these problems arise

in the context of inference with partial information [RS05] and Multi-task learn-

ing [AMP08]. In control theory, problems in controller design [EGG93, MP97], min-

imal realization theory [FHB01], and model reduction [BD98] can be formulated as

rank minimization problems. Rank minimization also plays a key role in the study

of embeddings of discrete metric spaces in Euclidean space [LLR95] and of learning

structure in data and manifold learning [WS06].

In certain instances with special structure, the rank minimization problem can

be solved via the singular value decomposition or can be reduced to the solution

of a linear system [MP97, PK00]. In general, however, minimizing the rank of a

matrix subject to convex constraints is NP-HARD. Even the problem of finding the

lowest rank matrix in an affine space is NP-HARD. The best exact algorithms for

this problem involve quantifier elimination and such solution methods require at least
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exponential time in the dimensions of the matrix variables.

Nuclear norm minimization is a recent heuristic for rank minimization introduced

by Fazel in [Faz02]. When the matrix variable is symmetric and positive semidef-

inite, this heuristic is equivalent to the “trace heuristic” from control theory (see,

e.g., [BD98, MP97]). Both the trace heuristic and the nuclear norm generalization

have been observed to produce very low-rank solutions in practice, but, until very

recently, conditions where the heuristic succeeded were only available in cases that

could also be solved by elementary linear algebra [PK00]. As mentioned above, the

first non-trivial sufficient conditions that guaranteed the success of the nuclear norm

heuristic were provided in [RFP].

The initial results in [RFP] build on seminal developments in “compressed sensing”

that determined conditions for when minimizing the ℓ1 norm of a vector over an affine

space returns the sparsest vector in that space (see, e.g., [CT05, CRT06, BDDW08]).

There is a strong parallelism between the sparse approximation and rank minimization

settings. The rank of a diagonal matrix is equal to the number of non-zeros on the

diagonal. Similarly, the sum of the singular values of a diagonal matrix is equal to

the ℓ1 norm of the diagonal. Exploiting the parallels, the authors in [RFP] were able

to extend much of the analysis developed for the ℓ1 heuristic to provide guarantees

for the nuclear norm heuristic.

Building on this work, Candès and Recht showed that most matrix low rank ma-

trices can be recovered from a sampling of on the order of (n1.2r) of the matrices

entries [CR09] using nuclear norm minimization. In another recently provided exten-

sion, Meka et al. [MJCD08] have provided an analysis of the multiplicative weights

algorithm for providing very low-rank approximate solutions of systems of inequali-

ties. Ames and Vavasis have demonstrated that the nuclear norm heuristic can solve

many instances of the NP-Hard combinatorial optimization problems maximum clique

and maximum biclique [AV09].

Focusing on the special case where one seeks the lowest rank matrix in an affine

subspace, Recht et al generalized the notion of “restricted isometry” from [CT05]



186

to the space of low rank matrices. They provided deterministic conditions on the

linear map defining the affine subspace which guarantees the minimum nuclear norm

solution is the minimum rank solution. Moreover, they provided several ensembles of

affine constraints where this sufficient condition holds with overwhelming probability.

They proved that the heuristic succeeds with large probability whenever the number

m of available measurements is greater than a constant times 2nr log n for n × n

matrices. Since a matrix of rank r cannot be specified with less than r(2n− r) real
numbers, this is, up to asymptotic scaling, a nearly optimal result. However, the

bounds developed in this chapter did not reflect the empirical performance of the

nuclear norm heuristic. In particular, it gave vacuous results for practically sized

problems where the rank was large. The results in the present work provide bounds

that much more closely approximate the practical recovery region of the heuristic.

The present work builds on a different collection of developments in compressed

sensing [DT05a, DT05b, SXH08a]. In these papers, the authors study properties

of the null space of the linear operator that gives rise to the affine constraints. In

[Don06c, DT05a], the authors think of the constraint set as a k-neighborly polytope.

It turns out that this characterization of the matrix A is in fact a necessary and suffi-

cient condition for the ℓ1 minimization to produce the sparest solution. Furthermore,

using the results of [VS92], it can be shown that if the matrix A has i.i.d. zero-mean

Gaussian entries with overwhelming probability it also constitutes a k-neighborly

poly-tope. The precise relation between m and k in order for this to happen is

characterized in [Don06c] as well. It should also be noted that for a given value m

i.e. for a given value of the constant α, the sparsity bound is significantly better in

[Don06c, DT05a] than in [CT05]. Furthermore, the values of sparsity thresholds ob-

tained for different values of α in [Don06c] approach the ones obtained by simulation

as n −→ ∞. Our null-space criteria generalizes the concept of the same name in

Compressed Sensing.

Unfortunately, the polyhedral analysis of Donoho and Tanner does not extend to

the space of matrices as the unit ball in the nuclear norm is not a polyhedral set.
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Figure 6.2: The unit ball of the nuclear norm. The figure depicts the set of all matrices
of the form of equation (6.1.11) with nuclear norm less than one.

Figure 6.2 plots a simple three dimensional example, depicting the unit ball of the

nuclear norm for matrices parameterized as






X : X =




x y

y z



 , ‖X‖∗ ≤ 1






. (6.1.11)

In order to extend null-space analysis to the rank minimization problem, we need to

follow a different path. In [SXH08a], the authors provide a probabilistic argument

specifying a large region where the minimum ℓ1 solution is the sparsest solution. This

works by directly estimating the probability of success via a simple Chernoff-style

argument. Our work follows this latter approach, but requires the introduction of

specialized machinery to deal with the asymptotic behavior of the singular values

of random matrices. We provide a sufficient statistic that guarantees the heuristic

succeeds, and then use comparison lemmas for Gaussian processes to bound the ex-

pected value of this heuristic (see, for example, [LT91]). We then show that this

random variable is sharply concentrated around its expectation.
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6.1.3 Notation and Preliminaries

For a rectangular matrix X ∈ Rn1×n2, X∗ denotes the transpose ofX . vec(X) denotes

the vector in Rn1n2 with the columns of X stacked on top of one and other.

For vectors v ∈ Rd, the only norm we will ever consider is the Euclidean norm

‖v‖ℓ2 =
(

d∑

i=1

v2i

)1/2

.

On the other hand, we will consider a variety of matrix norms. For matrices X

and Y of the same dimensions, we define the inner product in Rn1×n2 as 〈X, Y 〉 :=
trace(X∗Y ) =

∑n1

i=1

∑n2

j=1XijYij. The norm associated with this inner product is

called the Frobenius (or Hilbert-Schmidt) norm || · ||F . The Frobenius norm is also

equal to the Euclidean, or ℓ2, norm of the vector of singular values, i.e.,

‖X‖F :=

(
r∑

i=1

σ2
i

) 1
2

=
√

〈X,X〉 =
(

n1∑

i=1

n2∑

j=1

X2
ij

) 1
2

The operator norm (or induced 2-norm) of a matrix is equal to its largest singular

value (i.e., the ℓ∞ norm of the singular values):

‖X‖ := σ1(X).

The nuclear norm of a matrix is equal to the sum of its singular values, i.e.,

‖X‖∗ :=
r∑

i=1

σi(X) .

These three norms are related by the following inequalities which hold for any matrix

X of rank at most r:

||X|| ≤ ||X||F ≤ ||X||∗ ≤
√
r||X||F ≤ r||X||. (6.1.12)
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To any norm, we may associate a dual norm via the following variational definition

‖X‖d = sup
‖Y ‖p=1

〈Y,X〉 .

One can readily check that the dual norm of the Frobenius norm is the Frobenius

norm. Less trivially, one can show that the dual norm of the operator norm is the

nuclear norm (See, for example, [RFP]). We will leverage the duality between the

operator and nuclear norm several times in our analysis.

6.2 Necessary and Sufficient Conditions

We first prove our necessary and sufficient condition for success of the nuclear norm

heuristic. We will need the following two technical lemmas. The first is an easily

verified fact.

Lemma 6.2.1. Suppose X and Y are n1 × n2 matrices such that X∗Y = 0 and

XY ∗ = 0. Then ‖X + Y ‖∗ = ‖X‖∗ + ‖Y ‖∗.

Indeed, if X∗Y = 0 and XY ∗ = 0, we can find a coordinate system in which

X =

∥
∥
∥
∥
∥
∥




A 0

0 0





∥
∥
∥
∥
∥
∥
∗

and Y =

∥
∥
∥
∥
∥
∥




0 0

0 B





∥
∥
∥
∥
∥
∥
∗

,

from which the lemma trivially follows. The next lemma allows us to exploit Lemma 6.2.1

in our proof.

Lemma 6.2.2. Let X be an n1 × n2 matrix with rank r < n1

2
and Y be an arbitrary

n1×n2 matrix. Let P c
X and P r

X be the matrices that project onto the column and row

spaces of X respectively. Then if P c
XY P

r
X has full rank, Y can be decomposed as

Y = Y1 + Y2,
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where Y1 has rank r, and

‖X + Y2‖∗ = ‖X‖∗ + ‖Y2‖∗.

Proof. Without loss of generality, we can write X as

X =




X11 0

0 0



 ,

where X11 is r × r and full rank. Accordingly, Y becomes

Y =




Y11 Y12

Y21 Y22



 ,

where Y11 is full rank since P r
XY P

c
X is. The decomposition is now clearly

Y =




Y11 Y12

Y21 Y21Y
−1
11 Y12





︸ ︷︷ ︸

Y1

+




0 0

0 Y22 − Y21Y −1
11 Y12





︸ ︷︷ ︸

Y2

.

That Y1 has rank r follows from the fact that the rank of a block matrix is equal to

the rank of a diagonal block plus the rank of its Schur complement (see, e.g., [HJ91,

S2.2]). That ‖X1 + Y2‖∗ = ‖X1‖∗ + ‖Y2‖∗ follows from Lemma 6.2.1.

We can now provide a proof of Theorem 6.1.1.

Proof. We begin by proving the converse. Assume the condition of part 1 is violated,

i.e., there exists some Y , such that A(Y ) = 0, Y = Y1+Y2, rank(Y2) > rank(Y1) = r,

yet ‖Y1‖∗ > ‖Y2‖∗. Now take X0 = Y1 and b = A(X0). Clearly, A(−Y2) = b (since Y

is in the null space) and so we have found a matrix of higher rank, but lower nuclear

norm.

For the other direction, assume the condition of part 1 holds. Now use Lemma 6.2.2

with X = X0 and Y = X∗−X0. That is, let P
c
X and P r

X be the matrices that project
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onto the column and row spaces of X0 respectively and assume that P c
X0
(X∗−X0)P

r
X0

has full rank. Write X∗ − X0 = Y1 + Y2 where Y1 has rank r and ‖X0 + Y2‖∗ =

‖X0‖∗ + ‖Y2‖∗. Assume further that Y2 has rank larger than r (recall r < n/2). We

will consider the case where P c
X0
(X∗ −X0)P

r
X0

does not have full rank and/or Y2 has

rank less than or equal to r in the appendix. We now have:

‖X∗‖∗ = ‖X0 +X∗ −X0‖∗
= ‖X0 + Y1 + Y2‖∗
≥ ‖X0 + Y2‖∗ − ‖Y1‖∗
= ‖X0‖∗ + ‖Y2‖∗ − ‖Y1‖∗ by Lemma 6.2.2.

But A(Y1 + Y2) = 0, so ‖Y2‖∗ − ‖Y1‖∗ non-negative and therefore ‖X∗‖∗ ≥ ‖X0‖∗.
Since X∗ is the minimum nuclear norm solution, implies that X0 = X∗.

For the interested reader, the argument for the case where P r
X0
(X∗−X0)P

c
X0

does

not have full rank or Y2 has rank less than or equal to r can be found in the appendix.

6.3 Proofs of the Probabilistic Bounds

We now turn to the proofs of the probabilistic bounds (6.1.6) and (6.1.10). We first

provide a sufficient condition which implies the necessary and sufficient null-space

conditions. Then, noting that the null space of A is spanned by Gaussian vectors, we

use bounds from probability on Banach Spaces to show that the sufficient conditions

are met. This will require the introduction of two useful auxiliary functions whose

actions on Gaussian processes are explored in Section 6.3.4.

6.3.1 Sufficient Condition for Null Space Characterizations

The following theorem gives us a new condition that implies our necessary and suffi-

cient condition.
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Theorem 6.3.1. Let A be a linear map of n1 × n2 matrices into Rm. Suppose

that for every Y in the null-space of A and any projection operators P and Q onto

r-dimensional subspaces of Rn1 and Rn2 respectively that

‖(I − P )Y (I −Q)‖∗ ≥ ‖PY Q‖∗ . (6.3.1)

Then for every matrix Z with row and column spaces equal to the range of Q and P

respectively,

‖Z + Y ‖∗ ≥ ‖Z‖∗,

for all Y in the null-space of A. In particular, if (6.3.1) holds for every pair of

projection operators P and Q, then for every Y in the null space of A and for every

decomposition Y = Y1 + Y2 where Y1 has rank r and Y2 has rank greater than r, it

holds that

‖Y1‖∗ ≤ ‖Y2‖∗ .

We will need the following lemma.

Lemma 6.3.2. For any block partitioned matrix,

X =




A B

C D



 ,

we have ‖X‖∗ ≥ ‖A‖∗ + ‖D‖∗.

Proof. This lemma follows from the dual description of the nuclear norm:

‖X‖∗ = sup







〈


Z11 Z12

Z21 Z22



 ,




A B

C D





〉
∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥




Z11 Z12

Z21 Z22





∥
∥
∥
∥
∥
∥

= 1






. (6.3.2)
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and similarly,

‖A‖∗ + ‖D‖∗ = sup







〈


Z11 0

0 Z22



 ,




A B

C D





〉
∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥




Z11 0

0 Z22





∥
∥
∥
∥
∥
∥

= 1






.

(6.3.3)

Since (6.3.2) is a supremum over a larger set that (6.3.3), the claim follows.

Theorem 6.3.1 now trivially follows.

Proof of Theorem 6.3.1. Without loss of generality, we may choose coordinates such

that P and Q both project onto the space spanned by first r standard basis vectors.

Then we may partition Y as

Y =




Y11 Y12

Y21 Y22





and write, using Lemma 6.3.2,

‖Y − Z‖∗ − ‖Z‖∗ =

∥
∥
∥
∥
∥
∥




Y11 − Z Y12

Y21 Y22





∥
∥
∥
∥
∥
∥
∗

− ‖Z‖∗

≥ ‖Y11 − Z‖∗ + ‖Y22‖∗ − ‖Z‖∗
≥ ‖Y22‖∗ − ‖Y11‖∗

which is non-negative by assumption. Note that if the theorem holds for all projection

operators P and Q whose range has dimension r, then ‖Z + Y ‖∗ ≥ ‖Z‖∗ for all

matrices Z of rank r and hence the second part of the theorem follows.

6.3.2 Proof of the Weak Bound

Now we can turn to the proof of Theorem 6.1.2. The key observation in proving this

lemma is the following characterization of the null-space of A provided by Stojnic et

al. [SXH08a]
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Lemma 6.3.3. Let A be sampled from G(µn1n2, n1n2). Then the null space of A is

identically distributed to the span of n1n2(1−µ) matrices Gi where each Gi is sampled

i.i.d. from G(n1, n2). In other words, we may assume that w ∈ ker(A) can be written

as
∑n1n2(1−µ)

i=1 viGi for some v ∈ Rn1n2(1−µ).

This is nothing more than a statement that the null-space of A is a random

subspace. However, when we parameterize elements in this subspace as linear com-

binations of Gaussian vectors, we can leverage Comparison Theorems for Gaussian

processes to yield our bounds.

LetM = n1n2(1−µ) and let G1, . . . , GM be i.i.d. samples from G(n1, n2). Let X0

be a matrix of rank βn1. Let PX0 and QX0 denote the projections onto the column

and row spaces of X0 respectively. By Theorem 6.3.1 and Lemma 6.3.3, we need to

show that for all v ∈ RM ,

∥
∥
∥
∥
∥
(I − PX0)

(
M∑

i=1

viGi

)

(I −QX0)

∥
∥
∥
∥
∥
∗

≥
∥
∥
∥
∥
∥
PX0

(
M∑

i=1

viGi

)

QX0

∥
∥
∥
∥
∥
∗

. (6.3.4)

That is,
∑M

i=1 viGi is an arbitrary element of the null space of A, and this equation

restates the sufficient condition provided by Theorem 6.3.1. Now it is clear by ho-

mogeneity that we can restrict our attention to those v ∈ RM with Euclidean norm

1. The following lemma characterizes when the expected value of this difference is

nonnegative.

Lemma 6.3.4. Let n1 = γn2 for some γ ∈ (0, 1] and r = βn1 for some β ∈ (0, 1].

Suppose P and Q are projection operators onto r-dimensional subspaces of Rn1 and

Rn2 respectively. For i = 1, . . . ,M let Gi be sampled from G(n1, n2). Then

E
[

inf
‖v‖ℓ2=1

∥
∥
∥
∥
∥
(I − P )

(
M∑

i=1

viGi

)

(I −Q)
∥
∥
∥
∥
∥
∗

−
∥
∥
∥
∥
∥
P

(
M∑

i=1

viGi

)

Q

∥
∥
∥
∥
∥
∗

]

≥
((

ϕ

(
γ − βγ
1− βγ

)

+ o(1)

)

(1− β)3/2 − (ϕ(1) + o(1))γ3/2β3/2

)

n
3/2
2 −

√

Mn1,

(6.3.5)

where ϕ is defined as in (6.1.5).
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We will prove this lemma and a similar inequality required for the proof of the

Strong Bound in Section 6.3.4 below. But we now show how using this Lemma and

a concentration of measure argument, we can prove Theorem 6.1.2.

First note, that if we plug in M = (1−µ)n1n2, divide the right hand side by n
3/2
2 ,

and ignore the o(1) terms, the right hand side of (6.3.5) is non-negative if (6.1.6)

holds. To bound the probability that (6.3.4) is non-negative, we employ a pow-

erful concentration inequality for the Gaussian distribution bounding deviations of

smoothly varying functions from their expected value.

To quantify what we mean by smoothly varying, recall that a function f is Lipshitz

with respect to the Euclidean norm if there exists a constant L such that |f(x) −
f(y)| ≤ L‖x−y‖ℓ2 for all x and y. The smallest such constant L is called the Lipshitz

constant of the map f . If f is Lipshitz, it cannot vary too rapidly. In particular, note

that if f is differentiable and Lipshitz, then L is a bound on the norm of the gradient

of f . The following theorem states that the deviations of a Lipshitz function applied

to a Gaussian random variable have Gaussian tails.

Theorem 6.3.5. Let x ∈ RD be a normally distributed random vector with zero-mean

variance equal to the identity. Let f : RD → R be a function with Lipshitz constant

L. Then

P[|f(x)− E [f(x)]| ≥ t] ≤ 2 exp

(

− t2

2L2

)

.

See [LT91] for a proof of this theorem with slightly weaker constants and a list

of several references to more complicated proofs that give rise to this concentration

inequality. The following lemma bounds the Lipshitz constant of interest

Lemma 6.3.6. For i = 1, . . . ,M , let Xi ∈ RD1×D2 and Yi ∈ RD3×D4 with D1 ≤ D2

and D3 ≤ D4. Define the function

FI(X1, . . . , XM , Y1, . . . , YM) = inf
‖v‖ℓ2=1

∥
∥
∥
∥
∥

M∑

i=1

viXi

∥
∥
∥
∥
∥
∗

−
∥
∥
∥
∥
∥

M∑

i=1

viYi

∥
∥
∥
∥
∥
∗

.

Then the Lipshitz constant of FI is at most
√
D1 +D3.
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The proof of this lemma is straightforward and can be found in the appendix.

Using Theorem 6.3.5 and Lemmas 6.3.4 and 6.3.6, we can now bound

P

[

inf
‖v‖ℓ2=1

∥
∥
∥
∥
∥
(I − PX0)

(
M∑

i=1

viGi

)

(I −QX0)

∥
∥
∥
∥
∥
∗

−
∥
∥
∥
∥
∥
PX0

(
M∑

i=1

viGi

)

QX0

∥
∥
∥
∥
∥
∗

≤ tn
3/2
2

]

≤ exp

(

−1
2

{

ϕ

(
γ − βγ
1− βγ

)
(1− β)3/2

γ
− 8

3π
γ1/2β3/2 −

√

1− µ− t

γ

}

n2
2 + o(n2

2)

)

.

(6.3.6)

Setting t = 0 completes the proof of Theorem 6.1.2. We will use this concentration

inequality with a non-zero t to prove the Strong Bound.

6.3.3 Proof of the Strong Bound

The proof of the Strong Bound is similar to that of the Weak Bound except we prove

that (6.3.4) holds for all operators P andQ that project onto r-dimensional subspaces.

Our proof will require an ǫ-net for the projection operators. By an ǫ-net, we mean a

finite set Ω consisting of pairs of r-dimensional projection operators such that for any

P and Q that project onto r-dimensional subspaces, there exists (P ′, Q′) ∈ Ω with

‖P −P ′‖+ ‖Q−Q′‖ ≤ ǫ. We will show that if a slightly stronger bound than (6.3.4)

holds on the ǫ-net, then (6.3.4) holds for all choices of row and column spaces.

Let us first examine how (6.3.4) changes when we perturb P and Q. Let P , Q,

P ′ and Q′ all be projection operators onto r-dimensional subspaces of Rn1 and Rn2
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respectively. Let W be some n1 × n2 matrix and observe that

‖(I − P )W (I −Q)‖∗ − ‖PWQ‖∗ − (‖(I − P ′)W (I −Q′)‖∗ − ‖P ′WQ′‖∗)

≤‖(I − P )W (I −Q)− (I − P ′)W (I −Q′)‖∗ + ‖PWQ− P ′WQ′‖∗
≤‖(I − P )W (I −Q)− (I − P ′)W (I −Q)‖∗

+ ‖(I − P ′)W (I −Q)− (I − P ′)W (I −Q′)‖∗
+ ‖PWQ− P ′WQ‖∗ + ‖P ′WQ− P ′WQ′‖∗

≤‖P − P ′‖‖W‖∗‖I −Q‖ + ‖I − P ′‖‖W‖∗‖Q−Q′‖

+ ‖P − P ′‖‖W‖∗‖Q‖+ ‖P ′‖‖W‖∗‖Q−Q′‖

≤2(‖P − P ′‖+ ‖Q−Q′‖)‖W‖∗ .

Here, the first and second lines follow from the triangle inequality, the third line

follows because ‖AB‖∗ ≤ ‖A‖‖B‖∗, and the fourth line follows because P , P ′, Q,

and Q′ are all projection operators. Rearranging this inequality gives

‖(I − P )W (I −Q)‖∗ − ‖PWQ‖∗ ≥ ‖(I − P ′)W (I −Q′)‖∗ − ‖P ′WQ′‖∗
− 2(‖P − P ′‖+ ‖Q−Q′‖)‖W‖∗ .

(6.3.7)

Let us now suppose that with overwhelming probability

‖(I − P ′)W (I −Q′)‖∗ − ‖P ′WQ′‖∗ − 4ǫ‖W‖∗ ≥ 0 (6.3.8)

for all (P ′, Q′) in our ǫ-net Ω. Then by (6.3.7), this means that ‖(I − P )W (I −
Q)‖∗−‖PWQ‖∗ ≥ 0 for any arbitrary pair of projection operators onto r-dimensional

subspaces. Thus, if we can show that (6.3.8) holds on an ǫ-net, we will have proved

the Strong Bound.

To proceed, we need to know the size of an ǫ-net. The following bound on such a

net is due to Szarek.
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Theorem 6.3.7 (Szarek [Sza98]). Consider the space of all projection operators on

Rn projecting onto r-dimensional subspaces endowed with the metric

d(P, P ′) = ‖P − P ′‖.

Then there exists an ǫ-net in this metric space with cardinality at most
(
3π
2ǫ

)r(n−r/2−1/2)
.

With this covering number in hand, we now calculate the probability that for a

given P and Q in the ǫ-net,

inf
‖v‖ℓ2=1

∥
∥
∥
∥
∥
(I − P )

(
M∑

i=1

viGi

)

(I −Q)
∥
∥
∥
∥
∥
∗

−
∥
∥
∥
∥
∥
P

(
M∑

i=1

viGi

)

Q

∥
∥
∥
∥
∥
∗

≥ 4ǫ sup
‖v‖ℓ2=1

∥
∥
∥
∥
∥

M∑

i=1

viGi

∥
∥
∥
∥
∥
∗

.

(6.3.9)

As we will show in Section 6.3.4, we can upper bound the right hand side of this

inequality using a similar bound as in Lemma 6.3.4.

Lemma 6.3.8. For i = 1, . . . ,M let Gi be sampled from G(γn, n) with γ ∈ (0, 1].

Then

E
[

sup
‖v‖ℓ2=1

∥
∥
∥
∥
∥

M∑

i=1

viGi

∥
∥
∥
∥
∥
∗

]

≤ (ϕ(γ) + o(1))n3/2 +
√

γMn . (6.3.10)

Moreover, we prove the following in the appendix.

Lemma 6.3.9. For i = 1, . . . ,M , let Xi ∈ RD1×D2 with D1 ≤ D2 and define the

function

FS(X1, . . . , XM) = sup
‖v‖ℓ2=1

∥
∥
∥
∥
∥

M∑

i=1

viXi

∥
∥
∥
∥
∥
∗

.

Then the Lipshitz constant of FS is at most
√
D1.

Using Lemmas 6.3.8 and 6.3.9 combined with Theorem 6.3.5, we have that

P

[

4ǫ sup
‖v‖ℓ2=1

∥
∥
∥
∥
∥

M∑

i=1

viGi

∥
∥
∥
∥
∥
∗

≥ tn
3/2
2

]

≤ exp

(

−1
2

(
ϕ(γ)

γ
−
√

1− µ− t

4ǫγ

)2

n2
2 + o(n2

2)

)

.

(6.3.11)

Let t0 be such that the exponents of (6.3.6) and (6.3.11) equal to each other. Then
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we find after some algebra and the union bound

P




 inf

‖v‖ℓ2=1

∥
∥
∥
∥
∥
(I − P )

(
M∑

i=1

viGi

)

(I −Q)
∥
∥
∥
∥
∥
∗

−
∥
∥
∥
∥
∥
P

(
M∑

i=1

viGi

)

Q

∥
∥
∥
∥
∥
∗

≥ 4ǫ sup
‖v‖ℓ2=1

∥
∥
∥
∥
∥

M∑

i=1

viGi

∥
∥
∥
∥
∥
∗






≥P




 inf

‖v‖ℓ2=1

∥
∥
∥
∥
∥
(I − P )

(
M∑

i=1

viGi

)

(I −Q)
∥
∥
∥
∥
∥
∗

−
∥
∥
∥
∥
∥
P

(
M∑

i=1

viGi

)

Q

∥
∥
∥
∥
∥
∗

> t0n
3/2
2 > 4ǫ sup

‖v‖ℓ2=1

∥
∥
∥
∥
∥

M∑

i=1

viGi

∥
∥
∥
∥
∥
∗






≥1− P




 inf

‖v‖ℓ2=1

∥
∥
∥
∥
∥
(I − P )

(
M∑

i=1

viGi

)

(I −Q)
∥
∥
∥
∥
∥
∗

−
∥
∥
∥
∥
∥
P

(
M∑

i=1

viGi

)

Q

∥
∥
∥
∥
∥
∗

< t0n
3/2
2






− P




4ǫ sup

‖v‖ℓ2=1

∥
∥
∥
∥
∥

M∑

i=1

viGi

∥
∥
∥
∥
∥
∗

> t0n
3/2
2






≥1− 2×

exp






1
2




ϕ
(
γ−βγ
1−βγ

)

γ−1(1− β)3/2 − 8
3π
γ1/2β3/2 − 4ǫϕ(γ)

1 + 4ǫ
−
√

1− µ





2

n2
2 + o(n2

2)




 .

Now, let Ω be an ǫ-net for the set of pairs of projection operators (P,Q) such that

P (resp. Q) projects Rn1 (resp. Rn2) onto an r-dimensional subspace. Again by the
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union bound, we have that

P




∀P,Q inf

‖v‖ℓ2=1

∥
∥
∥
∥
∥
(I − P )

(
M∑

i=1

viGi

)

(I −Q)
∥
∥
∥
∥
∥
∗

−
∥
∥
∥
∥
∥
P

(
M∑

i=1

viGi

)

Q

∥
∥
∥
∥
∥
∗

≥ 4ǫ sup
‖v‖ℓ2=1

∥
∥
∥
∥
∥

M∑

i=1

viGiQ

∥
∥
∥
∥
∥
∗






≤ 1− 2 exp

(

−
{

1
2

(

f(β, γ, ǫ)−
√

1− µ
)2

− 1
2
g(β, γ, ǫ)2

}

n2
2 + o(n2

2)

)

where

f(γ, β, ǫ) =
ϕ
(
γ−βγ
1−βγ

)

γ−1(1− β)3/2 − 8
3π
γ1/2β3/2 − 4ǫϕ(γ)

1 + 4ǫ
(6.3.12)

g(γ, β, ǫ) =

√

2βγ(1 + γ − βγ) log
(
3π

2ǫ

)

. (6.3.13)

Finding the parameters µ, β, γ, and ǫ that make the terms multiplying n2
2 negative

completes the proof of the Strong Bound.

6.3.4 Comparison Theorems for Gaussian Processes and the

Proofs of Lemmas 6.3.4 and 6.3.8

Both of the two following Comparison Theorems provide sufficient conditions for

when the expected supremum or infimum of one Gaussian process is greater to that of

another. Elementary proofs of both of these Theorems and several other Comparison

Theorems can be found in S3.3 of [LT91].

Theorem 6.3.10 (Slepian’s Lemma [Sle62]). Let X and Y by Gaussian random

vectors in RN such that







E [XiXj ] ≤ E [YiYj] for all i 6= j

E [X2
i ] = E [Y 2

i ] for all i



201

Then

E [max
i
Yi] ≤ E [max

i
Xi] .

Theorem 6.3.11 (Gordan [Gor85, Gor88]). Let X = (Xij) and Y = (Yij) be Gaus-

sian random matrices in RN1×N2 such that







E [XijXik] ≤ E [YijYik] for all i, j, k

E [XijXlk] ≥ E [YijYlk] for all i 6= l and j, k

E [X2
ij] = E [X2

ij] for all j, k

Then

E [min
i

max
j
Yij] ≤ E [min

i
max
j
Xij ] .

The following two lemmas follow from applications of these Comparison Theorems.

We prove them in more generality than necessary for the current work because both

lemmas are interesting in their own right. Let ‖ · ‖p be any norm on D1×D2 matrices

and let ‖ · ‖d be its associated dual norm (See Section 6.1.3). Again without loss

of generality, we assume D1 ≤ D2. Let us define the quantity σ(‖ · ‖p) to be the

maximum attainable Frobenius norm of an element in the unit ball of the dual norm.

That is

σ(‖ · ‖p) = sup
‖Z‖d=1

‖Z‖F , (6.3.14)

and note that by this definition, we have for G ∈ G(D1, D2)

σ(‖ · ‖p) = sup
‖Z‖d=1

EG
[
〈G,Z〉2

]1/2

motivating the notation.

This first lemma is now a straightforward consequence of Slepian’s lemma

Lemma 6.3.12. Let ∆ > 0 and let g be a Gaussian random vector in RM . Let
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G,G1, . . . , GM be sampled i.i.d. from G(D1, D2). Then

E
[

sup
‖v‖ℓ2=1

sup
‖Y ‖d=1

∆〈g, v〉+
〈

M∑

i=1

viGi, Y

〉]

≤ E [‖G‖p] +
√

M(∆2 + σ(‖ · ‖p)2) .

Proof. We follow the strategy used to prove Theorem 3.20 in [LT91]. LetG,G1, . . . , GM

be sampled i.i.d. from G(D1, D2) and g ∈ RM be a Gaussian random vector and

let γ be a zero-mean, unit-variance Gaussian random variable. For v ∈ RM and

Y ∈ RD1×D2 define

QL(v, Y ) = ∆〈g, v〉+
〈

M∑

i=1

viGi, Y

〉

+ σ(‖ · ‖p)γ

QR(v, Y ) = 〈G, Y 〉+
√

∆2 + σ(‖ · ‖p)2〈g, v〉 .

Now observe that for any M-dimensional unit vectors v, v̂ and any D1×D2 matrices

Y , Ŷ with dual norm 1

E [QL(v, Y )QL(v̂, Ŷ )]− E [QR(v, Y )QR(v̂, Ŷ )]

=∆2〈v, v̂〉+ 〈v, v̂〉〈Y, Ŷ 〉+ σ(‖ · ‖p)2 − 〈Y, Ŷ 〉 − (∆2 + σ(‖ · ‖p)2)〈v, v̂〉

=(σ(‖ · ‖p)2 − 〈Y, Ŷ 〉)(1− 〈v, v̂〉) .

The first quantity is always non-negative because 〈Y, Ŷ 〉 ≤ max(‖Y ‖2F , ‖Ŷ ‖2F ) ≤
σ(‖ · ‖p)2 by definition. The difference in expectation is thus equal to zero if v = v̂

and is greater than or equal to zero if v 6= v̂. Hence, by Slepian’s lemma and a

compactness argument (see Proposition 6.6.1 in the Appendix),

E
[

sup
‖v‖ℓ2=1

sup
‖Y ‖=1

QL(v, Y )

]

≤ E
[

sup
‖v‖ℓ2=1

sup
‖Y ‖=1

QR(v, Y )

]

which proves the lemma.

The following lemma can be proved in a similar fashion

Lemma 6.3.13. Let ‖ · ‖p be a norm on RD1×D1 with dual norm ‖ · ‖d and let ‖ · ‖b be
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a norm on RD2×D2. Let g be a Gaussian random vector in RM . Let G0, G1, . . . , GM

be sampled i.i.d. from G(D1) and G
′
1, . . . , G

′
M be sampled i.i.d. from G(D2). Then

E
[

inf
‖v‖ℓ2=1

inf
‖Y ‖b=1

sup
‖Z‖d=1

〈
M∑

i=1

viGi, Z

〉

+

〈
M∑

i=1

viG
′
i, Y

〉]

≥E [‖G0‖p]− E
[

sup
‖v‖ℓ2=1

sup
‖Y ‖b=1

σ(‖ · ‖p)〈g, v〉+
〈

M∑

i=1

viG
′
i, Y

〉]

.

Proof. Define the functionals

PL(v, Y, Z) =

〈
M∑

i=1

viGi, Z

〉

+

〈
M∑

i=1

viG
′
i, Y

〉

+ γσ(‖ · ‖p)

PR(v, Y, Z) = 〈G0, Z〉+ σ(‖ · ‖p)〈g, v〉+
〈

M∑

i=1

viG
′
i, Y

〉

.

Let v and v̂ be unit vectors in RM , Y and Ŷ be D2 × D2 matrices with ‖Y ‖b =

‖Ŷ ‖b = 1, and Z and Ẑ be D1 ×D1 matrices with ‖Z‖d = ‖Ẑ‖d = 1. Then we have

E [PL(v, Y, Z)PL(v̂, Ŷ , Ẑ)]− E [PR(v, Y, Z)PL(v̂, Ŷ , Ẑ)]

=〈v, v̂〉〈Z, Ẑ〉+ 〈v, v̂〉〈Y, Ŷ 〉+ σ(‖ · ‖p)2 − 〈Z, Ẑ〉 − σ(‖ · ‖p)2〈v, v̂〉 − 〈v, v̂〉〈Y, Ŷ 〉

=(σ(‖ · ‖p)2 − 〈Z, Ẑ〉)(1− 〈v, v̂〉) .

Just as was the case in the proof of Lemma 6.3.12, the first quantity is always non-

negative. Hence, the difference in expectations is greater than or equal to zero and

equal to zero when v = v̂ and Y = Ŷ . Hence, by Gordan’s Lemma and a compactness

argument,

E
[

inf
‖v‖ℓ2=1

inf
‖Y ‖b=1

sup
‖Z‖d=1

QL(v, Y, Z)

]

≥ E
[

inf
‖v‖ℓ2=1

inf
‖Y ‖b=1

sup
‖Z‖d=1

QR(v, Y, Z)

]

completing the proof.

Together with Lemmas 6.3.12 and 6.3.13, we can prove the Lemma 6.3.4.
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of Lemma 6.3.4. For i = 1, . . . ,M , let Gi ∈ G((1 − β)γn2, (1 − βγ)n2) and G′
i ∈

G(γβn2, γβn2). Then

E
[

inf
‖v‖ℓ2=1

∥
∥
∥
∥
∥

M∑

i=1

viGi

∥
∥
∥
∥
∥
∗

−
∥
∥
∥
∥
∥

M∑

i=1

viG
′
i

∥
∥
∥
∥
∥
∗

]

= E
[

inf
‖v‖ℓ2=1

inf
‖Y ‖=1

sup
‖Z‖=1

〈
M∑

i=1

viGi, Z

〉

+

〈
M∑

i=1

viG
′
i, Y

〉]

≥ E [‖G0‖∗]− E
[

sup
‖v‖ℓ2=1

sup
‖Y ‖=1

σ(‖ · ‖∗)〈g, v〉+
〈

M∑

i=1

viG
′
i, Y

〉]

≥ E [‖G0‖∗]− E [‖G′
0‖∗]−

√
M
√

σ(‖ · ‖∗)2 + σ(‖ · ‖∗)2

where the first inequality follows from Lemma 6.3.13, and the second inequality follows

from Lemma 6.3.12.

Now we only need to plug in the asymptotic expected value of the nuclear norm

and the quantity σ(‖ · ‖∗). Let G be sampled from G(D1, D2). Then

E‖G‖∗ = D1Eσi = ϕ

(
D1

D2

)

D
3/2
2 + q(D2) (6.3.15)

where ϕ(·) is found by integrating the Marvcenko-Pastur distribution (see, e.g., [MP67,

Bai99]):

ϕ(γ) =
1

2π

∫ s2

s1

√

(z − s1)(s2 − z)
z

dz

s1 = (1−√γ)2

s2 = (1 +
√
γ)2 .

and q(D2)/D
3/2
2 = o(1). Note that ϕ(1) can be computed in closed form:

ϕ(1) =
1

2π

∫ 4

0

√
4− t dt = 8

3π
≈ 0.85 .
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For σ(‖ · ‖∗), a straightforward calculation reveals

σ(‖ · ‖∗) = sup
‖H‖≤1

‖G‖F =
√

D1 .

Plugging these values in with the appropriate dimensions completes the proof.

Proof of Lemma 6.3.8. This lemma immediately follows from applying Lemma 6.3.12

with ∆ = 0 and from the calculations at the end of the proof above. It is also an

immediate consequence of Lemma 3.21 from [LT91].

6.4 Numerical Experiments

We now show that these asymptotic estimates hold even for moderately sized matrices.

For simplicity of presentation, we restrict our attention in this section to square

matrices with n = n1 = n2 (i.e., γ = 1). We conducted a series of experiments for

a variety of the matrix sizes n, ranks r, and numbers of measurements m. As in the

previous section, we let β = r
n
and µ = m

n2 . For a fixed n, we constructed random

recovery scenarios for low-rank n×n matrices. For each n, we varied µ between 0 and

1 where the matrix is completely determined. For a fixed n and µ, we generated all

possible ranks such that β(2 − β) ≤ µ. This cutoff was chosen because beyond that

point there would be an infinite set of matrices of rank r satisfying the m equations.

For each (n, µ, β) triple, we repeated the following procedure 10 times. A matrix

of rank r was generated by choosing two random n× r factors YL and YR with i.i.d.

random entries and setting Y0 = YLY
∗
R. A matrix A was sampled from the Gaussian

ensemble with m rows and n2 columns. Then the nuclear norm minimization

minimize ‖X‖∗
subject to A vecX = A vec Y0

was solved using the freely available software SeDuMi [Stu99] using the semidefinite

programming formulation described in [RFP]. On a 2.0 GHz Laptop, each semidef-
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inite program could be solved in less than two minutes for 40 × 40 dimensional X .

We declared Y0 to be recovered if

‖X − Y0‖F/‖Y0‖F < 10−3 .

Figure 6.3 displays the results of these experiments for n = 30 and 40. The color

of the cell in the figures reflects the empirical recovery rate of the 10 runs (scaled

between 0 and 1). White denotes perfect recovery in all experiments, and black

denotes failure for all experiments. It is remarkable to note that not only are the

plots very similar for n = 30 and n = 40, but that the Weak Bound falls completely

within the white region and is an excellent approximation of the boundary between

success and failure for large β.

6.5 Discussion and Future Work

Future work should investigate if the probabilistic analysis that provides the bounds

in Theorems 6.1.2 and 6.1.3 can be further tightened at all. There are two particular

regions where the bounds can be improved. First, when β = 0, µ should also equal

zero. However, in our Weak Bound, β = 0 tells us that µ must be greater than

or equal to 0.2795. In order to provide estimates of the behavior for small values

of µ, we will need to find a different lower bound than (6.3.5). When µ is small,

M in (6.3.5) is very large causing the bound on the expected value to be negative.

This suggests that a different parametrization of the null space of A could be the

key to a better bound for small values of β. For large values of β, the bound is

a rather good approximation of empirical results, and it might not be possible to

further tighten this bound. However, it is still worth looking to see if some of the

techniques in [DT05a, DT05b] on neighborly polytopes can be generalized to yield

tighter approximations of the recovery region. It would also be of interest to construct

a necessary condition, parallel to the sufficient condition of Section 6.3.1, and apply

a similar probabilistic analysis to yield an upper bound for the phase transition.
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Figure 6.3: Random rank recovery experiments for (a) n = 30 and (b) n = 40. The
color of each cell reflects the empirical recovery rate. White denotes perfect recovery
in all experiments, and black denotes failure for all experiments. In both frames,
we plot the Weak Bound (6.1.6), showing that the predicted recovery regions are
contained within the empirical regions, and the boundary between success and failure
is well approximated for large values of β.
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The comparison theorem techniques in this chapter add a novel set of tools to the

behavior of the nuclear norm heuristic, and they may be very useful in the study of

other rank minimization scenarios. For example, the structured problems that arise

in control theory can be formulated in the form of (6.1.1) with a very structured

A operator (see, e.g., [RXH08b]). It would be of interest to see if these structured

problems can also be analyzed within the null-space framework. Using the particular

structure of the null-space of A in these specialized problems may provide sharper

bounds for these cases. For example, a problem of great interest is the Matrix Com-

pletion Problem where we would like to reconstruct a low-rank matrix from a small

subset of its entries. In this scenario, the operator A reveals a few of the entries of

the unknown low-rank matrix, and the null-space of A is simply the set of matrices

that are zero in the specified set. The Gaussian comparison theorems studied above

cannot be directly applied to this problem, but it is possible that generalizations exist

that could be applied to the Matrix Completion problem and could possibly tighten

the bounds provided in [CR09].

6.6 Appendix

6.6.1 Rank-Deficient Case of Theorem 6.1.1

As promised above, here is the completion of the proof of Theorem 6.1.1

Proof. In an appropriate basis, we may write

X0 =




X11 0

0 0



 and X∗ −X0 = Y =




Y11 Y12

Y21 Y22



 .

If Y11 and Y22 − Y21Y
−1
11 Y12 have full rank, then all our previous arguments apply.

Thus, assume that at least one of them is not full rank. Nonetheless, it is always
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possible to find an arbitrarily small ǫ > 0 such that

Y11 + ǫI and




Y11 + ǫI Y12

Y21 Y22 + ǫI





are full rank. This, of course, is equivalent to having Y22 + ǫI − Y21(Y11 + ǫI)−1Y12



210

full rank. We can write

‖X∗‖∗ = ‖X0 +X∗ −X0‖∗

=

∥
∥
∥
∥
∥
∥
∥






X11 0

0 0




+






Y11 Y12

Y21 Y22






∥
∥
∥
∥
∥
∥
∥
∗

≥

∥
∥
∥
∥
∥
∥
∥






X11 − ǫI 0

0 Y22 − Y21(Y11 + ǫI)−1Y12






∥
∥
∥
∥
∥
∥
∥
∗

−

∥
∥
∥
∥
∥
∥
∥






Y11 + ǫI Y12

Y21 Y21(Y11 + ǫI)−1Y12






∥
∥
∥
∥
∥
∥
∥
∗

= ‖X11 − ǫI‖∗ +

∥
∥
∥
∥
∥
∥
∥






0 0

0 Y22 − Y21(Y11 + ǫI)−1Y12






∥
∥
∥
∥
∥
∥
∥
∗

−

∥
∥
∥
∥
∥
∥
∥






Y11 + ǫI Y12

Y21 Y21(Y11 + ǫI)−1Y12






∥
∥
∥
∥
∥
∥
∥
∗

≥ ‖X0‖∗ − rǫ+

∥
∥
∥
∥
∥
∥
∥






ǫI − ǫI 0

0 Y22 − Y21(Y11 + ǫI)−1Y12






∥
∥
∥
∥
∥
∥
∥
∗

−

∥
∥
∥
∥
∥
∥
∥






Y11 + ǫI Y12

Y21 Y21(Y11 + ǫI)−1Y12






∥
∥
∥
∥
∥
∥
∥
∗

≥ ‖X0‖∗ − 2rǫ +

∥
∥
∥
∥
∥
∥
∥






−ǫI 0

0 Y22 − Y21(Y11 + ǫI)−1Y12






∥
∥
∥
∥
∥
∥
∥
∗

−

∥
∥
∥
∥
∥
∥
∥






Y11 + ǫI Y12

Y21 Y21(Y11 + ǫI)−1Y12






∥
∥
∥
∥
∥
∥
∥
∗

≥ ‖X0‖∗ − 2rǫ,

where the last inequality follows from the condition of part 1 and noting that

X0 −X∗ =




−ǫI 0

0 Y22 − Y21(Y11 + ǫI)−1Y12



+




Y11 + ǫI Y12

Y21 Y21(Y11 + ǫI)−1Y12



 ,
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lies in the null space of A(·) and the first matrix above has rank more than r. But,

since ǫ can be arbitrarily small, this implies that X0 = X∗.

6.6.2 Lipshitz Constants of FI and FS

We begin with the proof of Lemma 6.3.9 and then use this to estimate the Lipshitz

constant in Lemma 6.3.6.

Proof of Lemma 6.3.9. Note that the function FS is convex as we can write as a

supremum of a collection of convex functions

FS(X1, . . . , XM) = sup
‖v‖ℓ2=1

sup
‖Z‖<1

〈
M∑

i=1

viXi, Z〉 . (6.6.1)

The Lipshitz constant L is bounded above by the maximal norm of a subgradient of

this convex function. That is, if we denote X̄ := (X1, . . . , XM), then we have

L ≤ sup
X̄

sup
Z̄∈∂FS(X̄)

(
M∑

i=1

‖Zi‖2F

)1/2

.

Now, by (6.6.1), a subgradient of FS at X̄ is given of the form (v1Z, v2Z, . . . , vMZ)

where v has norm 1 and Z has operator norm 1. For any such subgradient

M∑

i=1

‖viZ‖2F = ‖Z‖2F ≤ D1

bounding the Lipshitz constant as desired.

Proof of Lemma 6.3.6. For i = 1, . . . ,M , let Xi, X̂i ∈ RD1×D2, and Yi, Ŷi ∈ RD3×D4 .

Let

w∗ = arg min
‖w‖ℓ2=1

‖
M∑

i=1

wiX̂i‖∗ − ‖
M∑

i=1

wiŶi‖∗ .
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Then we have that

FI(X1, . . . , XM , Y1, . . . , YM)− FI(X̂1, . . . , X̂M , Ŷ1, . . . , ŶM)

=

(

inf
‖v‖ℓ2=1

‖
M∑

i=1

viXi‖∗ − ‖
M∑

i=1

viYi‖∗
)

−
(

inf
‖w‖ℓ2=1

‖
M∑

i=1

wiX̂i‖∗ − ‖
M∑

i=1

wiŶi‖∗
)

≤‖
M∑

i=1

w∗
iXi‖∗ − ‖

M∑

i=1

w∗
i Yi‖∗ − ‖

M∑

i=1

w∗
i X̂i‖∗ + ‖

M∑

i=1

w∗
i Ŷi‖∗

≤‖
M∑

i=1

w∗
i (Xi − X̂i)‖∗ + ‖

M∑

i=1

w∗
i (Yi − Ŷi)‖∗

≤ sup
‖w‖ℓ2=1

‖
M∑

i=1

wi(Xi − X̂i)‖∗ + ‖
M∑

i=1

wi(Yi − Ŷi)‖∗

= sup
‖w‖ℓ2=1

‖
M∑

i=1

wiX̃i‖∗ + ‖
M∑

i=1

wiỸi‖∗

where X̃i = Xi− X̂i and Ỹi = Yi− Ŷi. This last expression is a convex function of X̃i

and Ỹi,

sup
‖w‖ℓ2=1

‖
M∑

i=1

wiX̃i‖∗+‖
M∑

i=1

wiỸi‖∗ = sup
‖w‖ℓ2=1

sup
‖ZX‖<1

sup
‖ZY ‖<1

〈
M∑

i=1

wiX̃i, ZX〉+〈
M∑

i=1

wiỸiZY 〉

with ZX D1×D2 and ZY D3×D4. Using an identical argument as the one presented

in the proof of Lemma 6.3.9, we have that a subgradient of this expression is of the

form

(w1ZX , w2ZX , . . . , wMZX , w1ZY , w2ZY , . . . , wMZY )

where w has norm 1 and ZX and ZY have operator norms 1, and thus

M∑

i=1

‖wiZX‖2F + ‖wiZY ‖2F = ‖ZX‖2F + ‖ZY ‖2F ≤ D1 +D3

completing the proof.
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6.6.3 Compactness Argument for Comparison Theorems

Proposition 6.6.1. Let Ω be a compact metric space with distance function ρ. Sup-

pose that f and g are real-valued function on Ω such that f is continuous and for any

finite subset X ⊂ Ω

max
x∈X

f(x) ≤ max
x∈X

g(x) .

Then

sup
x∈Ω

f(x) ≤ sup
x∈Ω

g(x) .

Proof. Let ǫ > 0. Since f is continuous and Ω is compact, f is uniformly continuous

on Ω. That is, there exists a δ > 0 such that for all x, y ∈ Ω, ρ(x, y) < δ implies

|f(x)− f(y)| < ǫ. Let Xδ be a δ-net for Ω. Then, for any x ∈ Ω, there is a y in the

δ-net with ρ(x, y) < δ and hence

f(x) ≤ f(y) + ǫ ≤ sup
z∈Xδ

f(z) + ǫ ≤ sup
z∈Xδ

g(z) + ǫ ≤ sup
z∈Ω

g(z) + ǫ .

Since this holds for all x ∈ Ω and ǫ > 0, this completes the proof.
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Chapter 7

Conclusions and Future Work

Compressed sensing is a very active area of research which holds great promise for

acquiring and processing massive data efficiently and accurately. Given signals or

objects with sparse contents relative to its dimension, compressed sensing seeks to re-

construct the signals from as few non-adaptive linear measurements as possible. With

its deep roots in fundamental theories and its great promise for various applications,

the area of compressive sensing has seen an explosion of research activities recently

and has attracted researchers from applied mathematics, optimization theory, infor-

mation theory and mathematical statics. By now the area of compressive sensing

has continued to thrive and has already had impacts on a diverse area of fields, in-

cluding signal processing, medical imaging, function approximation, radar, MRI and

high-speed analog-to-digital conversion. In this concluding chapter, we summarize

our observations and point out directions for future work.

7.1 Summary and Directions for Future Work

7.1.1 Expander Graphs for Compressive Sensing

In Chapter 2, we proposed an expander graph based compressive sensing scheme,

which, for the first time, comes, all at the same time, with explicit constructions of

sensing matrices, linear complexity decoding algorithms and optimally scaling sparsity

recovery capability. In compressive sensing, random measurement matrices are gener-
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ally used and ℓ1 minimization algorithms, such as Basis Pursuit algorithms, often use

linear programming or other optimization methods to recover the sparse signal vec-

tors. However, explicitly constructible measurement matrices providing performance

guarantees were elusive and the ℓ1 minimization methods have not yet had strong

polynomial-time algorithms and are very demanding in computational complexity for

some applications. Later on, it has been shown that the expander-graph based mea-

surement matrices can further lead to fast and robust sparse signal recoveries with

ℓ1-minimization or iterative algorithms [BGI+08, BI08, IR08, BIR08].

However, unlike the case of dense sensing matrices satisfying the restricted isom-

etry conditions [CT05] or matrices with null spaces as almost Euclidean subspaces

[GLR08], it is not known whether the expander-graph based schemes will be able to

provide approximation guarantees with respect to ℓ2 norm. It is then very interesting

to validate or disprove the approximate guarantees in ℓ2 norm for expander-graph

based compressive sensing. Meanwhile, it has been observed empirically that ℓ1 min-

imization for binary and sparse matrices has similar sparsity recovery thresholds as

dense measurement matrices, but there are not results theoretically proving this phe-

nomenon while the exact sparsity thresholds have been established for dense random

Gaussian measurement matrix [Don06c].

7.1.2 Grassmann Angle Analytical Framework for Subspaces

Balancedness

ℓ1 minimization algorithm, namely basis pursuit algorithms, generally give better

sparsity recovery performances than known greedy decoding algorithms in compres-

sive sensing. In Chapter 3, starting from a necessary and sufficient null-space bal-

ancedness condition for achieving a certain signal recovery accuracy, using high-

dimensional geometry, we gave a unified null-space Grassmann angle-based analytical

framework for ℓ1 minimization in compressive sensing. Sharp bounds on the bal-

ancedness property, namely the property that any small portion of every vector from

a certain subspace only takes a small portion of the ℓ1 norm, have been derived in
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this thesis, thus giving sharp quantitative tradeoffs between the signal sparsity and

the recovery accuracy of the ℓ1 optimization for approximately sparse signals. Our

result is tight for the weak balancedness discussed in this thesis and while for the

strong and sectional balancedness discussed in this thesis, our result is tight up to

one use of union bounding.

It is of great theoretical interest to develop methods to get even tighter bounds for

the balancedness property of linear subspaces, which is of both mathematical interest

and also of practical interest in compressive sensing. In Chapter 3, we are mainly

concerned with the achievable (lower) bounds on the sparsity level such that the

balancedness of linear subspaces holds. In fact, tight upper bounds on the sparsity

level over which the linear subspaces balancedness property can not possibly hold

might be interesting as well. One may also wonder how to extend the Grassmann

angle methods or to develop new methods in studying the almost Euclidean subspaces

[GLR08].

7.1.3 Weighted ℓ1 Minimization Algorithm

In Chapter 4, we looked at the problem of compressive sensing with prior information.

The conventional approach to compressed sensing assumes no prior information on

the unknown signal other than the fact that it is sufficiently sparse over a particular

basis. In many applications, however, additional prior information is available. In

Chapter 4, we considered a particular model for the sparse signal that assigns a prob-

ability of being zero or nonzero to each entry of the unknown vector. The standard

compressed sensing model is therefore a special case where these probabilities are all

equal. Following the introduction of the null-space Grassmann angle-based analytical

framework in this thesis, we were able to characterize the optimal recoverable sparsity

thresholds using weighted ℓ1 minimization algorithms with the prior information.

We should notice that in Chapter 4, we used the widely used Gaussian measure-

ment matrix ensemble, where the Grassmann angle-based framework applies, and it

would be of interest to study weigthed ℓ1 minimization algorithm with other mea-
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surement matrix ensembles as well as other forms of prior information.

7.1.4 An Analysis for Iterative Reweighted ℓ1 Minimization

Algorithm

In Chapter 5, we presented a way of analyzing the Iterative Reweighted ℓ1 Minimiza-

tion Algorithm and tried to provide a theoretical foundation for analyzing such a type

of algorithms. In particular, we showed that for a nontrivial class of compressible sig-

nals, the iterative reweighted ℓ1 minimization can indeed deliver larger recoverable

sparsity thresholdsthan the ℓ1 minimization does. Again, our results were based on

the null-space Grassmann angle-based analytical framework.

Although some insights have been given about how the iterative reweighted ℓ1

minimization increases the recoverable sparsity thresholds for a certain class of signals

under the Gaussian measurement matrix ensemble, we would like to see eventually

the analysis for more general measurement matrices and more general compressible

signals such as Gaussian distributed signals.

7.1.5 Null Space Conditions and Thresholds for Rank Mini-

mization

In Chapter 6, we worked on the problem of recovering matrices of low ranks from

compressed linear measurements through a heuristic of nuclear norm minimization.

We assessed the practical performance of this heuristic for finding the minimum rank

matrix subject to linear constraints. By characterizing a necessary and sufficient

condition for the nuclear norm minimization to succeed, we provided the probabilistic

performance bounds on the ranks as a function of the matrix dimensions and the

number of constraints, for which the nuclear norm minimization heuristic succeeds

with overwhelming probability. The performance bounds we derived are tight in some

regimes, especially the number of measurements and provided accurate predictions of

the heuristic’s performance in non-asymptotic scenarios.
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Future work along this line should investigate if the probabilistic analysis that

provides the bounds in Chapter 6 can be further tightened, for Gaussian measurement

ensembles or for measurement ensembles from other distributions. A problem of great

interest is the Matrix Completion Problem where we would like to reconstruct a low-

rank matrix from a small subset of its entries. It is possible that generalizations of

our work exist that could be applied to the Matrix Completion problem.

7.2 Discussion

There are many interesting open problems from compressive sensing which are closely

related to the topics studied in this thesis. One prominent one is the seeking of sharp

analysis for non-Gaussian measurement matrix. It has been observed in empirical

experiments that almost all the considered ensembles of measurement matrices seem

to have the same sparsity recovery threshold, and it is thus natural to wonder whether

a universal law can be established for this phenomenon. Till now, only the sparsity

recovery threshold for Gaussian measurement ensemble matrix has been precisely

established. We have shown that for a certain class of signals, the iterative reweighted

ℓ1-minimization algorithm can indeed increase the sparsity threshold compared with

the standard ℓ1-minimization algorithm, but it remains a big open problem whether

there exists a polynomial-time optimization algorithm which can provably deliver

larger sparsity recovery thresholds than the standard ℓ1-minimization algorithm for

arbitrary signals.
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