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ABSTRACT

We have examined multiple bonds (o, 7, and §) to transition metals
and find that intra-atomic exchange forces on these metals are crucial
for correct prediction of ground states and that a proper description of
these terms is required for a quantitative understanding of bond ener-
gies.

Our calculations on models for bridged Fe porphyrin dimers show
that intra-atomic exchange forces on the Fe's are critical to the explana-
tion for the dramatic differences in the Fe-Fe coupling for u-oxo and u-
nitrido bridged Fe porphyrin dimers. The qualitative bonding concepts
obtained are used to predict properties of the u-carbido bridged Fe por-
phyrin dimer.

In most cases, the interactions responsible for bonding lead to
antiferromagnetic coupling between the d orbitals localized on adjacent
centers, resulting in overall low-spin couplings. However, some extended
metal systems (eg. metallic Ni) lead to net ferromagnetic interactions
between d orbitals localized on different centers. In order to elucidate
these effects, we have examined the direct and indirect d-d couplings in
the Ni, cluster as a function of bond distance. We find that ferromagnetic
coupling dominates in a region of bond distance around the bulk Ni value
of 2.5 li with antiferromagnetic coupling dominating for short R (by 2.0 11)
and for long R (by 3.5 K). The dominant interactions responsible for fer-
romagnetic coupling involve spin polarization of the conduction band (s-
like), supporting a model for ferromagnetism in bulk metallic systems

very similar to the Ruderman-Kittel model for magnetic impurities.

The dimers Crp and Mo, provide the most dramatic illustration of

the importance of exchange forces in bonding. With six unpaired



electrons on each atom, there is the potential for up to siz covalent
bonds. However, formation of d -d covalent bonds requires a concomi-
tant loss in intra-atomic d—d exchange energy. The net result is a double
well where the long-F minimum (3 5) is dominated by s —s pairing (no loss
of intra-atomic d-d terms) while the short-F minimum (1.7 to 1.9 R)
involves a strong quintuple bond of d orbitals plus an antibonding s-—s
interaction. To properly handle the intra-atomic exchange terms during
this transition from long R with local high-spin coupling to small R with
dominant singlet pairing within bonding pairs presents a formidable chal-
lenge to ab tnifio computation. To carry out such studies, we have
extended the GVB and related approaches of ab inifio calculations and
have also developed a simple approximate method of including the elec-
tron correlation missing in GVB wavefunctions that provides a quantita-

tively accurate description of these systems.

The effects studied here should be of comparable importance for
multiple bonds involving transition metals, lanthanides, and actinides
bonding to each other and to such ligands as CRp, CR, O, N, and NR.
Correlation terms beyond GVB are most important for the least elec-
tronegative ligands. Thus, the proper treatment of intra-atomic
exchange and of interatomic d-d coupling should be of considerable
importance in studies of heterogeneous and homogeneous catalytic sys-

tems.
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Introduction to Thesis

In this thesis, we examine several different chemical systems in
which exchange forces are important. Each system involves a significant
theoretical challenge. Even a qualitative understanding requires that we
allow the unpaired d orbitals on an atom to be high-spin coupled (since
this is optimal for the free atom). However, to describe the bond pairing
of d orbitals on different atoms requires that we allow also low-spin cou-
pling of orbitals on different centers. Thus, for an unbiased treatment of
bonding, we must optimize the spin-coupling when solving for the various
wavefunctions. For example, with two Mo atoms in the s'd® ground state,
there are 132 possible spin couplings corresponding to an overall singlet
state! When I initially attacked these problems, our computer codes
could treat the coupling of only six electrons (leading to five possible spin
couplings for the singlet). In order to tackle the problems of interest, I
developed a new series of algorithms and codes which allow the spin cou-

plings of an arbitrary number of electrons to be tl:eat.ed (see Appendix A).

After developing the ability to fully optimize the spin coupling of
our systems, we found that it was not accurate to use the orbitals from a
GVB-PP calculation (our usual approach to calculating optimal orbitals),
rather it is necessary to optimize the orbitals while simultaneously calcu-
lating the optimal spin coupling. In this, we made use of the recently
developed general MCSCF program (GVB3) which allows one to optimize
the orbitals for an arbitrary CI wavefunction. However, for the systems of
interest, the data required to tell the program how to do this are prohibi-
tively complicated to construct manually. Consequently, I developed pro-
grams (see Appendix B) to generate energy expressions (the data needed

by GVB3) for wavefunctions having optimal spin coupling for any number
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of electrons. Unfortunately, for cases with more than 250 configurations,
these energy expressions were too lengthy for use in our MCSCF program
(GVB3). Consequently, I developed a new series of programs (see Appen-
dix C) to generate density matrices for these wavefunctions. This
resulted in an efficient procedure for optimizing the orbitals for very
complicated wavefunctions having up to 30,000 configurations and made

the studies in this thesis possible.

This persistent attack on the theoretically challenging problem of
metal-metal multiple bonds has resulted in significant advances in state-
of-the-art ab initio methods of electronic structure theory. These
advances are also proving useful for examining other systems in which
the spin coupling among the valence electrons deviates significantly from
perfect-pairing.

With these methods, we have been able to examine such systems
as Cr; and Mo, in the limit where all possible ways to couple the sd5 state
of the atoms are optimized self-consistently in the molecule. At this level
of description, we obtain excellent agreement with spectroscopic results
on Mo, (R,=1.93 A and w, =477 cm™! versus our values R,=1.97 A and
w, =455 cm™!) but very serious errors for Cr, (R, =1.68 A and e =470 cm™!
versus our values R,=3.08 A and w,=110 cm™1). Since the correlation
terms included here would have been quite adequate for accurate treat-
ment of bonds between non transition-metal atoms, we examined closely
the electron correlation terms omitted in the current studies. The result
is a simple procedure for correcting GVB wavefunctions based entirely
upon correlation errors in the atoms. For such test systems as H; and N,
this results in quantitatively accurate potential curves. For Cr; these

calculations lead to the prediction of a double well in the ground-state



.

potential curve with the inner minimum at 1.63 A (observed at 1.68 R) and
the outer minimum at 3.0 A (as found in the uncorrelated results). This
method of atomic correlation correction {GVB-ACC) provides the promise
of quantitative accuracy from simple (GVB) wavefunctions and hence may

be of quite general utility.
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CHAPTER 1
Electronic States of Porphyrin Dimers

1. Introduction

The oxidation and spin states of the irons in (FeTPP);N are experi-
mentally ambiguous, despite numerous physical measurements, and
seem to differ markedly from the properties of (FeTPP),0, a well charac-
terized dimer. In order to obtain a qualitative understanding of the
bonding in (FeTPP);N and of why it differs so markedly from that of
(FeTPP)20, I have examined both bridged porphyrin dimers using accurate
ab initio wavefunctions on simple models, [ Fe~N—~Fe ]** and [ Fe—0-Fe J**,
with appropriate restrictions on electronic occupations to account for
the ligand field effects of the porphyrins. The electronic description of
the bonding which emerges provides a good quantitative description of
the magnetic interactions in these dimers. Our simple model does not
provide a precise description of the charge transfer in the real porphyrin
dimers; however, it allows us to assign electronic configurations based on
comparison to experimental properties and leads to a qualitative descrip-
tion of the bonding. The qualitative ideas obtained from these studies

were used to predict the nature of the bonding in the dimer (FeTPP).C.
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II. Summary of Results

A. Qualitative Description of Bonding
Ground-state Fe atom has the valence electron configuration

3d%4s? with net spin S=2. In a ferrous Fe-heme complex,

the d_. 2 orbital is greatly destabilized (due to overlap with the N lone
pairs) while the d_; orbital is slightly destabilized. The remaining three
orbitals (dg,, dz, dy;) have similar energy (with d, and d; degenerate).
In denoting the orbital occupations of these states, we shall use a qualita-

tive energy diagram of the form

- d.a_,e
- d’z
- - d,, dvz
- day
and dispense with the labels. The two lowest wavefunctions (S=2) are
a a
a L
af a4 X 2
a o8
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The left form is lower than the right and is also most favorable for bond-
ing to various ligands. Consequently, we will discuss only this high-spin

wavefunction (denoted g).

For the atom, intermediate- and low-spin wavefunctions such as

a

e a eiL-—sﬂt
aB ag
t s

would be much higher than g (83 kcal for ¢ and 113 kcal for s). However,

the destabilization of d 22 and of d_ by the heme ameliorates these

difficulties, leading to the spectrum (total energies)

Fells 43
Felt 13
Fellg 0

The factors dominating these energy differences are

NET
LIGAND ATOMIC EXCITATION
FIELD EXCHANGE ENERGY

s 0 0 0
t 0 -30 -30
q 70 -113 -43

Thus, the ligand field factors strongly favor low spin, and high-spin
configurations remain the ground states only because of the large

exchange energies associated with high-spin coupling.

Covalent spin pairing of the d orbitals with open-shell orbitals on
N and O ligands leads to a decrease in the atomic exchange terms and
hence can lead to a change in the effective atomic spin configuration in
the molecule. Thus, we will find that covalent interactions with bonding
ligands can rearrange these levels so that g, t, and s are all candidates

for the ground state in bridged dimers.
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Similar considerations for Fe® lead to three spatial configurations

- - a
- [ 38 x
af a2 a a a &
af af a
Felld Fellg Fells

corresponding to low spin (S=1/2), intermediate spin (S=3/2), and high

spin (S=5/2), respectively. Here the atomic separations are large

Felld 191
Felly 118
Fells 0

Summarizing, in a ferrous Fe-heme complex, there are three

configurations of the d electrons to consider:

2

o

- . a

af o8 af a o @
ag a8 a
Fels Fellt Fellg

These all involve six electrons in d orbitals but differ in the net spin (s=0
for s, S=1 for t, and S=2 for g). Although these different states have
atomic energies separated by up to 113 kcal, the ligand field effects due
to the porphyrin put all these within 43 kcal. These same ligand field
effects destabilize most other configurations for the Fe.

When the complex is oxidized, one of the two Fe's is ferric Fe

which has three basic possibilities:
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- - a
- a -
a8 a a o
af af a
Felld Fellg Fells

We have considered dimers with the bridging atoms N and 0. The
structure of the dimer depends on pairing of the bridging atom with the
two Fe atoms and can modify the relative positions of the s, t,q ord, q, s
states. These effects of the bridging ligand should be thought of as spin
coupling effects rather than as ligand field effects. The ground state of O

atom has the configuration 2p*:

a8 . a
O anion is

a8 2f  a
The ground state of N atom is 2p%:

a a a
while the N anion

a8 a o
is not stable.

We have examined two possible coupling schemes for the case of
two Fe-hemes bridged by a nitrogen atom. Assuming both Fe’'s to be
high-spin, qg (the highest d orbital on each Fe is occupied), we find that
the best state has the form



a o

e 8. -5
ag & g B a a8

a a

Fellg N Fellg

This diagram is to be interpreted as follows: There are three electrons in
z orbitals: the left Fe has d_, with a spin, the right Fe has d_g with a spin,
while the central N has p, with g8 spin. Thus, there is spin pairing (bond-
ing) of the N p, with both Fe d_; orbitals, a three-center three-electron o-

bond. There are four electrons in z orbitals: the left Fe has two eiec-
trons in d;, (with both a and g spins), while the right Fe has one electron
in d.; (a spin), and the N has one electron in p; (8 spin). The g-a spins on
the two singly-occupied z orbitals indicate a two-electron m;-bond
between N and the right Fe. A similar situation prevails for the y orbi-
tals, except that the m,-bond is between the N and the left Fe. Because of
the bonding effects, the spins of the two Fe's should each be opposite that
of the N, and hence the Fe spins should be parallel. The result is that the
d. and d_; . orbitals (6-like with respect to the Fe-N-Fe axis) are coupled
with their spins parallel, leading to a net S=5/2 state. This coupling is
indirect, since the coupling results from intraatomic exchange to other
Fe orbitals (o and n) whose spins are coupled via the N. The net boﬁding
is a three-electron three-center o-bond plus two N-Fe n-bonds. The
wavefunction shown is one of two equivalent resonance configurations.
Assuming the Fe's are lower spin (the highest d orbital on each Fe is
empty), the best state is ¢¢:
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g e

a

af  a g B8 a af
af af
Felt N Felt

Here, there is a n;-bond to the right, a m,~-bond to the left, plus a three-
electron o-bond (all just as in gg). However, the two low-lying (Fe-N-Fe) &
orbitals are each doubly-occupied, leading to a net S=1/2 state. Again,

there are two resonance configurations.

The two states Fellq-N-Felly and Felt—-N-Fet each have two n-
bonds plus a Fe-N-Fe three-electron o-bond. Thus, since g is better than
t, one might expect for Fellq—N-Fellq to be the lower state. However, this
ignores the changes in intraatomic exchange energies that necessarily

accompany interatomic spin pairing (bonding). This is illustrated below:

ENERGY CHANGES
INTRINSIC EXCITATION  CHANGE IN NET

BOND OF INTRAATOMIC CHANGE
ENERGY ISOLATED EXCHANGE IN

(o+2m) HEMES ENERGY ENERGY
Fellg-N-Fellq -100 0 88 -12
Fellt—-N-Fellt -100 2x13 22 -42

Thus, even though the gq state is stable by 26 kcal with respect to ¢ for
the separated dimer, the N-bridged dimer is expected to be t-N-t. This is
because the spin pairing of three Fe d electrons with the three unpaired
N p orbitals leads to a loss of 88 kcal of exchange for gg but only a 22 keal
loss for tt.

Similar considerations apply also to O, but the result is quite

different. Assuming the tt state (with the highest d-orbital on each Fe
empty), which we find to be optimal for the nitrogen bridge, we obtain
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a af J:
af o« a B B. af
1.8 af
Fell 0 Fellt

On the other hand, assuming the Fe's are high-spin, gg (highest & occu-

pied), we find equivalent Fe's with resonance configurations like

@ B
-3 aB B
e a a af B B
o B

Fellg 0 Fells

Our calculations show that the ground state of oxygen-bridged Fe-hemes
is this [g0~s] configuration. Unlike the nitrogen bridge, oxygen accepts

an extra electron, and the Fe's are high-spin.

B. Charge Distribution and Spin Coupling
The dimer (FeTPP);0 has been well characterized experimentally

and has usually been described as IlIs-0~2-IlIs

|D
[

Fells 0?- Fellls
Our electronic structure [q0~s] for this dimer is consistent with high-spin
Fe's (highest d occupied). We also find two sets of five high-spin electrons

coupled antiferromagnetically; however, one of the high-spin electrons is

on the oxygen!
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& B
a aB_ B
af o a af B B
a 8

Fellg o Fells

Thus, we conclude that the O-bridged Fe dimer usually formulated as
s0%"s should instead be formulated as [g07s].

The dimer (FeTPP),N contains the only known u-nitrido bridge
between two first-row transition metals. Experiments have resulted in
disagreement about the oxidation and spin states of the Fe's. 1™
Currently, both Fe’'s are thought to be Fe!. Some experiments indicate

high-spin Fe's

o B
a - -2
a a o af g B
- B

Fells N2- Fellls

while other experiments indicate lower-spin Fe's, e.g.,

a a _o_tﬂ_”gi g £
[3: af
Felly N2 Fellg

Our results indicate that the Fe's of this dimer are indeed lower-spin;

however, we find that each Fe is best described as Fel, not Fell!:
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a

af a g B a af
af af_
Fellt N Fellt

Although the coupling of the Fe’s has been considered as strongly antifer-
romagnetic, we find that they are actually coupled ferromagnetically.
However, the spin pairing with the N orbitals leads to a net singlet state.

C. High- Spin versus Lower- Spin Irons

In order to understand why the u-oxo dimer has high-spin Fe’'s
while the u-nitrido dimer has lower-spin Fe's, we must understand the
effects of spin pairing to open-shell ligands. Ligand field and crystal field
arguments generally suppose closed-shell ligands, so that the effects on
the metal can be described in terms of stabilization or destabilization of
each metal orbital (indicated by the vertical ordering in the above
diagrams). However, if there are singly-occupied orbitals on the ligands
which spin pair to singly-occupied d orbitals on the metal, there can also
be changes in the intraatomic exchange energy on the metal. Thus, for
an atom with several high-spin electrons, bonds to that atom must lead to
a loss in atomic exchange energies. The more high-spin electrons the

atom has, the larger this effect of weakening the bond.

Consider first the u-nitrido complex. The ground state of a four-
coordinate Fel-heme is high-spin (g), but this state leads to weaker bonds
than would the (excited) lower-spin states. Whether the ground-state
configuration for Fe's in the u-nitrido complex are high-spin or lower-spin
depends on whether the increase in bond strength for the lower-spin

states can make up for the excitation energy from the (ground) high-spin
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states. Our calculations show that both Fe's are in excited, lower-spin
states. Thus, the stronger bonds more than compensate for the excita-

tion energy of both Fe's.

Let us now consider the magnitude of the exchange forces in the

p-nitrido dimer. Nitrogen can form three bonds, but to do so, it must
lose 27 kcal (g-K,,) of exchange energy. If both Fe's are in the ground

high-spin state, they must lose 88 kcal (4K4) of exchange energy to make
three bonds to the nitrogen. If we excite one of the Fe's to a lower-spin
state (a penalty of 13 keal), the Fe's must lose only 44 kcal (2K4) to make
the same bonds. If both Fe's are promoted to the excited state (costing
26 kcal), the Fe's need sacrifice only 22 kcal (1Kg). Thus, assuming the
same three bonds for each case, we find that the lowest energy is

obtained when both Fe's are in excited lower-spin states.

Table 1. Estimated Full-Bond Spectrum (kcal) for Fe®! N Fel

Structure Fe Excitation | Fe Exchange Loss | Total Energy Loss
Fe“t=N—F'.ent 26 22 48
Fellt=N-Felq 13 44 57
Fe“q=N—F;enq 0 88 88

The relative energies estimated above are not quantitative,
becausg we assurned that bonds would be formed regardless of how much
exchange energy must be lost. However, the system could choose not to
make bonds and thus not have to sacrifice exchange energy. This
extreme would result in relative energies approximately given by the
excitation energies of the Fe's. The other extreme of making full bonds

results in such a large loss of exchange energy that the order of states is
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reversed. In the actual dimer, each state reaches a compromise by mak-
ing partial bonds which require only a partial loss of exchange. The order
of states depends on the compromise bond strengths. No matter what
compromise is reached for each state, the Fe-N bonds are strongest when
both Fe's are in excited lower-spin states, intermediate strength when
only one Fe is excited, and weakest when neither Fe is excited. Qur cal-
culations show that the differential bond strength is large enough that

both Fe's are excited in the ground state dimer.

Consider now the u-oxo dimer. Our calculations indicate that both
Fe’s are in the ground high-spin state. Thus, the stronger bonds of the
excited lower-spin state do not compensate for the excitation energy.
The oxygen atom can make only two bonds, whereas nitrogen can make
three. Perhaps the smaller bonding capacity of the u-oxo group explains
why the bonds of the excited lower-spin Fe’'s are not strong enough to sta-
bilize this state relative to ground high-spin Fe's. Another important fac-
tor in the stability of the u-oxo dimer with high-spin Fe's is that the oxy-
gen is willing to accept an electron from the Fe's, allowing an Fe ferric
center having five singly-occupied orbitals, with the concomitant large

increase in exchange energy stabilization.

Let us now assume the u-oxo dimer makes a full bond to each Fe.
Oxygen can form two bonds at the expense of 11 kcal (-é—-K,,,) exchange

energy. If both Fe’'s are in the ground state, they must lose 66 kcal {3Kyy)
to bond to the oxygen. If one Fe is excited, the Fe exchange loss is 44
kcal (2Ky;), and if both Fe's are excited, the exchange loss is 22 kcal

(1Kaa)-
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Table 2. Estimated Full-Bond Spectrum (kcal) for Fel O Fell

Structure Fe Excitation | Fe Exchange Loss | Total Energy Loss
F.e“t-O-F.e“t 26 22 48
F_ent.—O-—F.‘-enq 13 44 57
Fe“q—O—Ft.enq 0 66 66

Our calculations show that the u-oxo bond strengths are too small
to yield the above predictions. In fact, we find that the ground state
dimer chooses to be bridged by 0-, which can make only one bond.
Counting exchange terms, we predict that it is more difficult to oxidize
Felt to Felly than to oxidize Felg to Fellls by 22 kcal (1Kyy). If Fel't is mak-
ing full bonds (such that the spins of the two open shells are randomly
oriented), it is 44 kcal (2K44) more difficult to oxidize Fet than Fellg. Our
calculations show that the u-oxo group does oxidize Fely but not Felt.
The ability of the u-oxo group to accept an extra electron adds to the sta-
bility of the ground state of u-oxo dimer with high-spin Fe's because of
the additional exchange stabilization of ionic configurations for high-spin

Fe’'s relative to lower-spin Fe’s.

Let us now consider the best ionic configurations with 0~ which
result from the possible combinations of high-spin and lower-spin Fe's. If
both Fe’s are high-spin, then the oxidation of one of the Fe's will break
the Fe-O bond to the other Fe. The remaining Fe-O bond requires no
exchange loss from 0, but the oxidized Fe must lose 44 kcal (2Ky) to
make the bond. If one Fe is lower-spin, then the high-spin Fe will oxidize
to break the Fe-O bond to the lower-spin Fe. This state is higher by the
excitation energy (13 kcal) to the lower-spin Fe. Note that if the lower-
spin Fe were to oxidize and break the Fe-O bond to the high-spin Fe, the



oxidized lower-spin bond must lose only 22 kcal (1K44) to make the bond.
However, it is at least 22 kcal (1K) more difficult to oxidize Felt to Fellg
than to oxidize Felly to Fe's. Thus, the high-spin Fe will oxidize. If both
Fe's are lower-spin, then the oxidation of one of the Fe’s will break the
Fe-0 bond to the other Fe. The remaining Fe-O bond requires only 22 kcal
(1Kgq) exchange loss on the oxidized Fe. The excitation energy for this
state includes the 13 kcal for exciting each Fe to lower-spin plus the addi-

tional exchange loss of at least 22 kcal (1Ky;) for oxidizing a lower-spin

relative to a high-spin Fe.
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Table 3. Estimated Full-Bond Spectrum (kcal) for Fell 0~ Fel

Structure Fe Excitation | Fe Exchange Loss | Total Energy Loss
F_e"t o-—pjgmq 26+22 22 70
Fellt 0"—Fels 13 44 57
Fellq 0‘-—F?ms 0 44 44

Thus, we see that strong bonding cannot stabilize excited-state Fe's.

Both Fe’s must be high-spin.
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JIl. Calcuiational Details

A. The Model

Our mode! is the simplest possessing the features required in a
qualitative picture of the bonding in bridged porphyrin dimers. For both
(FeTPP),0 and (FeTPP).N, the symmetry is approximately Dy. We remove
the porphyrins, leaving only the [ Fe—O-Fe ]** and [ Fe~N-Fe ]** units to
be included explicitly. However, the orbital occupations are restricted in

such a way as to account for the effects of the porphyrins.

The main effect the porphyrin ligand has on Fe?* is to break the
five-fold degeneracy of the d orbitals (only the d, degeneracy remains).
The biggest ligand field effect is to destabilize one of the two dg orbitals
(dza—‘yZ)' We include this effect by considering only the specific electronic
configurations that would be allowed in the full porphyrin dimer. Since
each state has a fixed number of electrons of each orbital type, ligand-

field energy corrections are simple to apply.

a. Symmelry Consideralions

Before proceeding, we must consider a complication arising from
the difference in symmetry between the prophyrin dimer and our model.
Our model leads to D., symmetry; however, the real system will have Dy,
for the eclipsed dimer and D, for the staggered dimer. In the case of
Dy, there is no problem, because each orbital symmetry of Do, maps
into a separate symmetry in Dy,. The orbital symmetries correlate as fol-

lows:
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However, for D,4. there is a problem. The following table shows

how the orbital symmetries correlate:

Dan D4 Couplings
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6; eé‘ G-]
s ez «
where the superscript + or - indicates the parity of reflection in the zz

plane of Dyq. The important point to notice here is that the ligand field of
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the two porphyrins allows the mixing of orbitals §; with 64 and of 6; with
bu-

With two high-spin Fe’s, each Fe has two singly-occupied &-
orbitals, leading to two 6-bonds. The D, ligand field of the two porphy-
rins destabilizes one of the é-orbitals in each é-bond. This can cause
some transfer of charge from the destabilized orbital in each bond,
resulting in one &-bond partially localized on the left Fe and the other 4-
bond partially localized on the right. In the case that the §-bonds are
fully localized, each Fe has one doubly-occupied and one empty 6-orbital,
so that the system has converted the two high-spin Fe's into lower-spin
Fe's. Electronic configurations with symmetric é-bonds (high-spin Fe's)
should not interact strongly with configurations having fully localized 4-
bonds (lower-spin Fe’s). Thus, we expect the states of a porphyrin dimer

to have either nearly symmetric or fully localized é-bonds.

In our model, we can calculate a state with two high-spin Fe's very
cleanly. In the absence of the porphyrins, our é-bonds are perfectly sym-
metric, so we can use 6, and &, orbitals. However, a state with two lower-
spin Fe's cannot be obtained straightforwardly, because we do not have
the ligand field of the porphyrins to keep the 6-bonds localized. To solve
this problem, we have chosen to put all four electrons in one §-space,
leaving the other é-space empty. This is equivalent to rotating the por-
phyrins to an eclipsed configuration, resulting in D, symmetry. This
change results in slightly more repulsion between the é-electrons on
opposite Fe's; however, all other interactions in our model are left invari-
ant. The o- and m-orbitals cannot distinguish between the Dy and Dy

fields.
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b. Spin Stales

Our wavefunctions have Fe's which are very cleanly either high-
spin or lower-spin. To compare states of a dimer having Fe's with
different spins, we must determine the relative ligand-field stabilization
energy for each type of Fe. To do this, we calculate the energy of an iso-
lated Fe ion having each d-configuration. Knowing the relative energies
of the corresponding Fe-heme states, we can determine the relative sta-
bilization energy for placing each type of Fe ion in a heme. This is only a
one-center correction at each Fe. Thus, it cannot be used to compare
dimers with different bridging ligands or even to compare the same
dimer at different geometries. However, it is sufficient to correct the
energies of different states of the same dimer at the same geometry, and

this is all we need to determine the ground state of each dimer.

Let us now consider how our model should differ irom the full sys-
tem with porphyrins included. Adding the negatively charged porphyrin
ligands around the Fe's would modify the electronic charge distribution,
making the bridging ligands more negative. Since the porphyrins par-
tially neutralize the Fe's, the d-orbitals should become larger. This would
make d-d exchange integrals smaller and make d-bonds stronger. Thus,
adding the porphyrins would have a tendency to favor lower-spin versus
high-spin Fe’s. Recall too that our model has a slight bias against lower-
spin Fe's because we treat their é-electrons as if the porphyrins were
eclipsed. However, the dominant effect is probably that the porphyrins
would promote oxidation of the Fe's. Exchange forces make high-spin
Fe's more easily oxidized than lower-spin Fe's. Thus, the net effect of

adding the porphyrins would be to favor high-spin Fe’s.
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B. Geometries

Our geometries are based upon crystal structures for (Fe'I‘PP)go5
and (li‘e'l‘l:’P)zN.2 The Fe-O bond length is 1.763 Z while the Fe-N bond
length is 1.661 A. We have calculated both systems as linear, though the
crystal structure for (FeTPP);0 has an Fe-O-Fe angle of 174.5°. The crystal

structure for (FeTPP)N has a linear Fe-N-Fe bridge.

One interesting question about the geometry of these systems is
why the Fe-N-Fe bridge is linear while the Fe-O-Fe bridge is slightly bent.
This difference has been rationalized with Walsh diagrams;6 however, the
prediction is not unambiguous, requiring assumptions about relative
energetics. The same analysis for a nitrogen bridge could also lead to a
bent geometry (depending on assumptions about relative energetics).
Thus, this simple MO analysis does not lead to a qualitative prediction of

geometry.

One way to rationalize a linear Fe-N-Fe bridge would be if the
nitrogen made double bonds to each Fe. Although explaining the linear
bond (N* orbitals the same as in diazomethane or as the C in COg), this
would require transferring an electron from the nitrogen 2p, to an iron
3d,! However, the result would be a spin distribution inconsistent with
experiment, and hence we conclude that the linearity of the Fe-N-Fe

bridge requires new quantitative and qualitative theoretical investigation.

Another interesting geometrical question is why the nitrido bridge
is symmetric, i.e. equal Fe-N bond lengths. Numerous asymmetrical as
well as symmetrical M-N-M bridges exist. The factors responsible for the

formation of a symmetrical vs. asymmetrical bridge are not understood.

Related to the question of a symmetric nitrido bridge is the very

existence of the bridge. Why is this the only known example of a nitrido
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bridge between two first-row transition metals?

Geometric parameters from crystal structures of (FeTPP);0 and
(FeTPP) N indicate the forces on the atoms of the Fe-O-Fe and Fe-N-Fe
bridges. For both the oxygen and the nitrogen bridge, each iron is dis-
placed from the mean plane of the porphinato nitrogens toward the
bridging ligand. The bridging ligand obviously exerts an attractive force
on each iron. Why is each iron pulled out of the heme? For the nitrogen
bridge, the porphyrins are too far apart to repel each other significantly.
Nonbonded repulsions between the bridging nitrogen and the porphinato
nitrogens must be responsible for the irons being pulled out of the
hemes. For the oxygen bridge, the porphyrins are even farther apart.
Nonbonded repulsions between the bridging oxygen and the porphinato

nitrogens must be pulling the irons out of the hemes.

The nitrogen bridge is found to exert more force on the irons than
the oxygen bridge exerts. This is predicted by the capacity of nitrogen to
make more bonds than oxygen. This is supported by the smaller distance
observed between the bridging nitrogen and each iron than between the
bridging oxygen and each iron. However, why the oxygen ligand pulls
each iron 0.50 A out of the mean plane of the porphinato nitrogens while
the stronger nitrogen ligand pulls each iron only 0.32 A out of the plane

has heretofore not been explained.

Our results show that the irons of the u-oxo dimer are different
from the irons of the u-nitrido dimer. We find that the é-orbital pointed
toward the porphinato nitrogens is singly-occupied in each iron of the u-
oxo dimer but empty in each iron of the p-nitrido dimer. When this orbi-
tal is occupied, the iron is easier to pull out of the heme plane. Thus, the

weaker oxygen bridge can pull each of its high-spin irons 0.50 Z out of the
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plane, but the stronger nitrogen bridge can pull each of its lower-spin
irons only 0.32 K out of the plane. Structural evidence for our theoretical
electronic structures includes the hole size of each porphyrin. The width
of the mean plane of porphinato nitrogens is larger in the u-oxo dimer
than in the w-nitrido dimer. This difference in hole size is due to the
occupation of the iron §-orbital pointed toward the porphinato nitrogens.

When this orbital is occupied, the porphyrin hole expands.

It is interesting to note that the structural data for (FeTPP);N have
been considered inconclusive regarding the character of each iron. Con-
fusion has arisen because the porphyrin hole size and out-of-plane dis-
placement of the iron in (FeTPP);N are consistent with both low-spin d°
and high-spin d* configurations. Thus, whether the irons in (FeTPP);N are
high-spin or low-spin has been considered unanswered from structural
data. Notice that the consistent d-configurations each have the é-orbital
pointed toward the porphinato nitrogens empty. We find that the occupa-
tion of this orbital is a dominant factor in determining hole size and out-
of-plane displacement. The structural data for (FeTPP);N clearly indicate

that this orbital is empty in each iron.
C. Wavefunctions

a. Bastis Sets

The Ar core of each Fe atom is replaced by an ab initio effective
potential. The basis is constructed from the Wachters Fe basis.” Of the
14 s gaussians, 10 core functions are removed, and the remaining four
valence s primitives are contracted DZ (3,1). All p functions are elim-
inated, but a single p gaussian (¢=0.1) is added to allow polarization of

the valence s-space. The five d gaussians are contracted DZ (4,1). Each
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Fe basis is (4s 1p5d/2s 1p2d).

Each bridging ligand, N and O, is described with Dunning’s (3s2p)
contraction of Huzinaga's (9s5p) basis set.? To allow the bridging ligand
to become negatively charged, we also add negative ion functions. To N,
we add a diffuse s gaussian (¢=.066) and a diffuse p gaussian (¢=.045). To
0, we also add a diffuse s gaussian (¢=.088) and a diffuse p gaussian

(¢=.080). Each bridging ligand basis is (10s6p/ 453p).

b. Symmelries

Each dimer model, Fe-N-Fe and Fe-O-Fe, has a total of 47 con-
tracted Cartesian gaussian functions. For [Fe—-N-Fe]*', 19 electrons are
explicitly included (six from each Fe®* and seven from N). For
[Fe—0-Fe]**, 20 electrons are explicitly included. In all cases, the 1s and
2s core electrons of the bridging ligand are uncorrelated but solved for
self-consistently. All wavefunctions have at least D,, symmetry, and sym-
metry orbitals are used in the MCSCF. The configurations in each MCSCF
include all symmetry-allowed (Dg,) products of full CI's in each sym-
metry. In all cases, each n-space has four electrons in three orbitals.
For two high-spin irons, each é-space has two electrons in two orbitals.
For two lower-spin irons, one é-space has four electrons in two orbitals,
and the other é-space is empty. For the nitrogen ligand, the o-space has
three electrons in three orbitals. For the oxygen ligand, the o-space has

four electrons in three orbitals.

The completeness of our wavefunctions can be seen from the

lower states.
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Table 4. Fellq—N~-Felq Wavefunctions

Spin Spatial Spin
S Configs Eigenfns
5
2 640 3678
3
> 292 8380
= 1132 8764

Table 5. Fellq—0—Felq Wavefunctions

Spin Spatial Spin
S Configs Eigenfns
1 968 7414

0 978 4137
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IV. Results and Discussion

In order to describe the spin states of the bridged dimers, it is
necessary to use a more precise description of spin coupling than con-
tained in the simple orbital diagrams with a's and g's. To do this, we
employ Young tableaux which permit a quantitative discussion of orbital

couplings.
A Fellg-N-Fellq

a. Analysis with High- Spin Coupling on Each Atomn
Consider first the p-nitrido dimer. What are the lowest states at long

Fel-N-Fel separation? Each Fe would be in its ground S=2 state, and

nitrogen would be in its ground S= g—state. The optimum coupling of the

N with either Fe should have their spins opposite (leading to S=é—), and

hence the state with maximum bond coupling between nitrogen and each

iron occurs when the coupling between the irons is high spin (ferromag-

netic), leading to a net total spin of S= -2——
Next, we will use diagrams to examine exactly this case of

Fel-N-Fell at long separation. We shall use t=left, r=right, and c=center

to represent the singly-occupied orbitals on the left and right irons and

9 and —7—have the

center nitrogen. The states with total spin S=%, > 5

form:
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s=i s=% s=L
L L L

Iz lz lz

ls ls ls

ls ly Ly

L Ty Ty

Tz T2 T2

Ts T3 Ts | &1
Ts Te | O Ty | C2
c, P cs
€2 Cs

€3

where sequential orbitals in the same column are coupled high-spin. The

total spin S is just half the number of rows with one element, so that the
first diagram has total spin of S=-121—. The other two diagrams have one or

two rows with two orbitals in the same row. This indicates spin pairing of
the two columns to yield a net spin corresponding to half the number of

rows having one entry. This way of using tableaux is nonstandard and is

described further in Appendix I. The state with S=2—, expected (vide

supra) to be the lowest in energy, can be written three ways, all with

equivalent meanings:
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s=z 5 S=5
L Lo Lo
lp Il | cg lz | ce
ls lg | c3 lsg | cg
L = | L = | L
LS Ty T
re | C) T2 T
Ts | C2 T3 T3
Ty | Ca Ts Ts
(a) (b) ()

The first tableau (a) is a natural way to represent this state, similar to

the representation of the states of higher total spin. The second tableau

(b) is the standard representation (see Appendix I). The third tableau is

of the form we will find useful for representing states of lower total spin.

The corresponding states with S=

Using the same Fe

g—and é—are:
s=% s=1
i | o L, | o,
le | c2 la | ce
ls | cs Is |
s | 11 ly [ T2
T2 C3 | T3
Ts Ts
Ty

and N orbitals for all spin states, the energies
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of the above states can all be evaluated in terms of permutational matrix
elements U; that are implied by the form of the tableau (see Appendix I).
The result is
E-FEq=UgpEy + UgEyg + Uy Fore
= Uy By + U By
where Ugy=U, and E =FE,. and where E, is some constant while the Ej;
include various one- and two-electron exchange energies. The Uy may
range from -1 (high-spin coupling) to +1 (low-spin or bond coupling), and

for the cases of interest here they are

Table 8. Long-R Uy's
S U;,- Uk = U,.c
11 - -

5 1 1

o - - —_
5 1 0.54186
7 _ _ _

5 1 0.18
5 _

) 1 +0.125
3 .

5 0.5 0

é— 0.125 -0.125

The E, term dominates and is negative so that maximum U is best for

bonding (corresponding to maximal antiparallel coupling of the I and ¢
orbitals). Thus, from Table 6, we expect the energy ordering S =%-lowest,

= S=;i,—, S=-?—, S=-g—-. S=—1§1—(highest). Indeed, this is exactly the ord-

“2 2
ering found for high-spin irons, even at the short experimental geometry

of (FeTPP);N, as indicated in Table 7:
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Table 7. Calculated Felq—N-Fellq Spectrum

F(em™!)

14212

5978

0

379

l\JlH m|ca N|cn lez m|co W

1905

b. Analysis of Marximal Bonding Interactions

Although this analysis predicts the proper spectrum of spin
states, the assumption that the coupling on each center remains high-
spin after including Fe-N bonding is not valid. For maximum bonding we
would want S=0 for the two electrons in each bond pair, and this neces-
sarily means that the spins on an atom are no longer high-spin. The
stronger the bonding, the greater this effect. Thus, there is a comprom-
ise in the spin coupling between low-spin for interatomic (bond pairing)

and high-spin for intraatomic.

We will analyze this effect for the o, 7, and 6 spaces separately.
Consider first the sigma orbitals o, o,, and g.. The high-spin coupling of
these orbitals
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42’4-

o

Oy

Oc

leads to a very high energy corresponding to an antibond between the N

and each Fe. When possible, these orbitals will couple into the doublet

"Ly

1]

Oy

O¢

since this leads to o, having the opposite spin from g, and o, (U =Uy=+},

U,=-1). There is a second doublet

PEd

4]

Oy

O¢c

(which singlet couples g; and o,). But this has Uy =Upy=-%, Uy,=+1 so that

it maximizes high-spin character

between N and the Fe's and conse-

quently is very bad energetically; it is never a major contributor to any

low-lying state. Thus, the o-space
the irons.

Consider next the é-space.

there are three possible couplings:

exerts a ferromagnetic force between

With four singly-occupied & orbitals,



and

Considering only the direct §,—6, interactions, there are overlap terms
favoring S=0 and two-electron exchange terms favoring S=2 with the S=0
expected to be slightly lower. Thus, the 6-space is weakly antiferromag-
netic. However, these interatomic couplings in the §-space are much
smaller than the intraatomic couplings keeping the spins in the é orbitals
on each Fe high-spin coupled to the ¢ and n orbitals on the same center.
Thus, the -6 coupling is dominated by indirect interactions through the
o- and n-spaces, leading to a net ferromagnetic interaction.

Finally, we consider the n-space. This is more complicated
because we must consider resonance of two spatial configurations. The

two cases are
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I (Feydz)?(Np; -Fe,dz,)

(Feydyz —Npy )(Fe, dys )2

with a N-Fe, m,-bond and a N-Fe; m,-bond and

I (Fe;de —Np; )(Ferdz)?
(Fey dys )2(Npy ~Ferdy,)

with a N—Fe; m,-bond and a N-Fe, m,-bond. Thus, there are two resonance

states
I +1

and ignoring for the moment the doubly-occupied d orbitals, we might

write the pairing for I+l for $=0 as

15y
nt | nd | nd | nd
= +
T - - +
iy | me e | 7 ny | 7g

which we collect into one diagram as indicated on the left. Similarly for
S=1 and S=2 we obtain
T

it )

and
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Maximal bonding occurs, of course, with S=1 leading to two n-bonds.

Summarizing, to maximize Fe-N bonding the ¢ and = interactions
lead to ferromagnetic coupling of the spins on the two Fe’s, while the ¢
interactions favor antiferromagnetic coupling. However, the former dom-

inate, so that the net coupling of the Fe spins is ferromagnetic.

c. Analysis of the Optimal Coupling
We are now ready to analyze the actual spin couplings at the

experimental gedmetry. To maximize bonding, the high-spin state
(s= -lél——) is the product (properly antisymmetrized)
(4 n §
(ENEENEE]) » 757

leading to an overall *L; state



with Ueg=Ug=~1 and Up=-1.

For the lowest S =-g—state, we maximize the o-bonding with a con-

comitant sacrifice of intraatomic exchange and n-bonding. The o-space is

a nearly pure gerade doublet:

w ]
(BEH)(CLF)EES) » 1087
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4] O

leading to Up=U,=+% and U,=-1 for the o orbitals and Uy=-1 for non o
orbitals. If the o orbitals were coupled to the n and 4 orbitals so as to
avoid any loss of intraatomic exchange, the o- and n-bond couplings
between iron and nitrogen would have been U;,=-0.5416. Instead, each o-
bond coupling approaches the maximum of +0.5, while the n-bond cou-
plings go to the minimum of -1.0. The exchange coupling between the
nitrogen p, and p,'s goes from -1.0 to —0.3, and the coupling between
each iron d, and the other iron d's goes from -1.0 to —0.83. The o-bonding
is so important that it has been maximized at the expense of n-bonding

and intraatomic exchange.

For a net spin of S=%—, we can have

o o §
(*24) (P2 ()

leading to an increased amount of n-bonding along with the s-bonding
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For S=2,

the system can now have the maximum bonding in both the ¢

and m spaces
q L [
(CZHESCES)

leading to

This maximal o- and n-bonding can be retained in the remaining

lower spin states. The lowest S =g—state begins to increase the §-bonding:
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This increase in 6-bonding frustrates the indirect ferromagnetic interac-

tions through thé o- and nspaces. These indirect interactions are ener-

getically more important than the direct §-bonding, so the S =g—state is

higher in energy. Finally, we come to the S=%— state, which maximizes

the §-bonding:
& | o
6 | 67
nt | nd
e | mg
op | Oc
oy

This state further frustrates the indirect ferromagnetic interactions

through the o- and n-spaces, and hence is even higher in energy.

The above analysis sets the stage for considering the actual spin
coupling computed from the optimal wavefunctions of this system. To do
this analysis, we have evaluated the net spins in the o, m, and & spaces by

evaluating <5%> for the electrons in each space (see Appendix D). If the
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electrons in a given space are coupled to form an eigenfunction of spin,

then <§%> = S(S+1). In the o-space, the value of <8?>, can be as small as

0.75 for S=é—or as large as 3.75 for S=g-. The value of <5%>, gives the

density of each spin in the o-space, so that, for example, a state where
the o-space is half S=-é—-and half S=g—would yield <5§%>,=2.25. Hence, a

value below 2.25 means the o-space is mostly doublet, while a larger value

means the o-space is mostly quartet.

In the n-space or é-space, the value of <5% can be as small as 0
for S=0 or as large as 6 for S=2. For a pure S=1 state, we obtain <§2>=2.
Unfortunately, the value of <5§%> does not give the density of each spin in
the n-space or é-space. Thus, a value smaller than 1 means the space
must be mostly S=0, while a value larger than 4 means the space must be
mostly S=2. Unfortunately, for <5%> between 1 and 4, we can not
rigorously distinguish (in this analysis) between a state that is mostly
S=1 and a state with no S=1 character but an appropriate average of S=0
and S=2. However, in all cases for which we have found values in this
range, an analysis of the total spatial and spin symmetries indicates that

the net spin is clearly mostly S=1.
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Table 8. Calculated Fellq—N-Fellq Spin Coupling
TOTAL | EXPECTATION VALUES | DOMINANT SPIN | DEDUCED SYMMETRY

S <8%, <8, <8, S, S, S; o ™ s

L V3w 600 600 |3 2 2 |« g sy
2 * : : 2 g g 7
2 | o8 597 600 | 2 2 |% %
2 |os 250 88 1 2 |=; wm oL
5 | o83 o074 514 |z o 2 W m oog
3 |os o069 245 | & 0 1 | o oow
L | o7 oe o097 |3 o0 0 T L g

Besides obtaining the dominant spin of each space, we can also

obtain the bond couplings. These tell us even more about the spin cou-

pling.

Table 9. Fellq—-N-Fellq Bond Couplings
S U, U,
11
) 1.00 1.00
9 - -

5 0.99 1.00
7 - -

5 0.13 0.89
7]

3 +0.83 -0.79
3 +0.64 -0.11
2

-é— +0.63 +0.26

The values of U, are approximately what our tableaux would predict:
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Uy,=-1 for s=2 U,=0 for S=7—, and U,,=é—for s=2, ; and é— For S==

2’ 2 2’

Ay
n

3
2 ?
little valence-bond (G1) S$=0 character:

L

Y because the n-space has a

and %—, the value of U, slightly exceeds

Wy T mong L
= +
Try T L LY
For S=;—, the value given for Uy is actually the average of U,.=-0.05 and

U -=-0.22. The two n-bond couplings are slightly different because the n-

space has a little G1 S=1 character:

+ + + + + +
"‘ r "c "‘, ﬂc ﬂr "c
Trd = | e + |
Te e Tie

When this G1 S=1 coupling contributes, the n* and n~ orbital shapes
become inequivalent.

The values of Uy are close to what our tableaux would predict:

and U5=é—for S=-l-. Because

Us=—1 for S= 9 7 and -g—, Us=0 for .S'='3 5

bonding interactions are very weak in the §-space, G1 character is negli-

gible. The largest deviation from our tableaux occurs with U;=+0.28 for

s=1 Because of indirect ferromagnetic interactions, the é-space does

2"
not want to be singlet. The value of <5%>; = 0.97 indicates a significant

deviation from S=0.



B. Fellt —N-Fellt

a. Analysis with High- Spin Coupling on Each Afom

Consider now forming stronger bonds between the nitrogen and
each iron. Exciting each iron from its ground high-spin state to the
excited lower-spin state, we obtain much larger bond couplings. Examin-
ing just the singly-occupied orbitals on the left and right irons and center

nitrogen, consider the lowest state for each total spin at large distances:

s=L 5= s=2 s=L
i ' l L | o
iy iy Iy lz | co
T L Ty | €1 Ty | €3
Tg Te | €, Tz | €2 Te
e, Ca Cg

Ce Ca

€3

The bond couplings between the nitrogen and each iron should dominate

the relative energies of these states.
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Table 10. Long-R t-N—-t Uy;'s
S Uiy Uie=Uprc
g— -1 -1

2— -1 -0.418

2 4 0

é— -1 +0.25

At long distances, we would expect twice as much bonding in the S =-;—-

ground state of Felt-N-Fellt as in the S=%—ground state of Fellqg-N-Fell.

For these states, Ug=U, is the reciprocal of the total number of high-
spin d-electrons, of which there are eight for high-spin irons but only four

for lower-spin irons.

At the short experimental geometry of (FeTPP):N, we find that this

coupling does indeed predict the correct ordering of states.

Table 11. Calculated Fellt—N—Fellt Spectrum
S E(em™)

= 54897

= 26450

3 12544

-é— 0

However, the actual spin coupling shows that the bonding is stronger.
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b. Analysis of the Optimal Coupling

Table 12. Calculated Fellt—-N-Felt Spin Coupling
TOTAL EXPECTATION DOMINANT
S <82, <8%, S, Sn
7 3
> 3.75 6.00 > 2
5 L
5 0.81 5.94 5 2
3 1
) 0.77 2.03 7 1
1 1
> 0.77 0.05 3 0

The o- and n-spaces are each almost pure eigenfunctions of spin.
When possible, the o-orbitals couple into an almost pure doublet. The

character of the nm-bonds is given by the bond couplings:

Table 13. Felt-N-Felt Bond Couplings
S U, U_-

7 - -

= 1 1

5 -0.99 -0.99

)

3

> +0.93 -0.96

%— +0.96 +0.96

Clearly, G1 character now dominates. We can accurately

represent each state as a single tableau. The S =-Z—st.ate is the high-spin

product of a gerade S=g—a-space and the gerade resonance of a S=2 n-

space:
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4]

Oy

5

The S=’2

state maximizes the o-bonding at the expense of intraatomic

exchange and n-bonding. The o-space is an almost pure gerade doublet:

o O

Oy

Lit ;*
ny
U

ury

The maximal ¢-bonding is retained for all lower spin states. The

S=<-state increases the mbonding with the ungerade resonance of a G1

m|m

S=1 mspace:

L
a O
Or

Tir i
e

The S =-é—-state maximizes the n-bonding with the gerade resonance of a



B & (W

G1 S=0 nspace:

Ty TG

Tiri Tig
]] O¢
Oy

This is the ground stale.

The high-spin irons of Felq—N-Fellq have a great deal of exchange
stabilization energy which must be sacrificed to make strong bonds. The
o-bonding interaction is so strong that the o-space is always an almost
pure doublet when the total spin allows. The w-bonding interaction is
weaker than the o-interaction but strong enough thdt the m-space attains
the lowest spin allowed, given that the o-space is first allowed to couple
low-spin. The n-bonding interaction is strong enough to have a little Gi
character. The é-bonding interactions are so weak that G1 character is
negligible.

The lower-spin irons of Felt—N-Felt have less exchange stabiliza-
tion energy than high-spin irons, so stronger bonds can be made. The é-
electrons on each iron are coupled singlet, so no energy of exchange with
the é-orbitals is sacrificed to make strong o- and n-bonds. As with high-
spin irons, the g-space attains maximal bonding when possible. The n-
space again couples into the lowest spin allowed. However, the n-bonds
now have almost pure G1 character, so the lower-spin irons attain maxi-

mal m-bonding.
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c. Examination of the n- Resonance

We will now examine the role resonance plays in the n-bonding.

There are both favorable and unfavorable resonances:

Table 14. Relative Energies (cm™) of the

Resonant and Antiresonant States of Felt—N-Felt

S | Resonant State | Antiresonant State | AE{cm™)
z 54897 55614 717
g- 26450 29253 2803
g- 12544 19066 6522
é— 0 13248 13248

The net spin in each space is the same, as indicated in Table 15.

Table 15. Calculated Fellt—N-Fellt Spin Coupling

TOTAL FAVORABLE UNFAVORABLE
S <5%, <8, <5, <8%,
;— 3.75 6.00 3.75 6.00
-g— 0.81 5.94 0.89 5.85
g- 0.77 2.03 0.84 2.08
é— 0.77 0.05 0.79 0.55

The bond couplings are the same for S=g—and g—but quite different for

S= g—and -%—, as indicated in Table 16.
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Table 16. Felt—N-Fet Bond Couplings

TOTAL FAVORABLE UNFAVORABLE
s Ue U~ | U+ U
7
Ch 1 -1 -1 -1
2 | -093 -099| -096 -0.96
g- +0.93 -0.96 | -0.02 -0.02
%- +0.96 +0.96 | +0.67 +0.68

The favorable and unfavorable states for S=g—and g—diﬁ'er only in

the spatial symmetry of the n-space. The spin symmetries are the same.

The unfavorable S =%— state is the product of a gerade S= g—a-space and

the ungerade resonance of a S=2 n-space:

o

The unfavorable S= -g—state has an almost pure gerade doublet o-space:
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(] (o

The unfavorable m-resonance does not favor strong n-bonding. The

unfavorable S=g— state is accurately represented by the gerade reso-

nance of a S=1 n-space:

1&*

ny | w}
e

g O¢

Or

Unlike the favorable S =%—state, the n-space of this state has negligible

G1 character. The unfavorable S=;— state is dominantly the ungerade

resonance of a S=0 n-space:

nE | g
n,? 1
0; o
Oy

Unlike the favorable S =%—state, the n-space of this state has only a little

G1 character.
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C. Fe—0O—-Fe
a. Analysis Assuming High- Spin Coupling on Each Atom

1. Fellqg—0-Fellg
Consider now the u-oxo dimer. At long Fel'-0-Fel separation, the
lowest states would have each Fel in its ground S=2 state and the oxygen

in its ground S=1 state. The lowest states with S=5 and 4 have the form:

S=5 S=4

L L

L, L,

ls ls

L, Ly

T L

T2 T2

Ts T3

Ty Ts | C1
€1 Cz
Cz

The state with S=3 should be the lowest in energy:



S=3 5=3 S=3
I, L | e I, | e
l2 lz | c2 la | ce
ls ls I3
l, = i, = |l
T 1 T
T2 Te T2
s | &1 T3 T3
Ty | C2 Ts Ty

The states with $=2, 1, and O are:

S=2 S=1 S=0
L, | o, L, | e L | o,
lp | g lp | 2 I, | 7y
is ls | 7y lg | 72
lyg | 7y ly | T2 ly7s
Te T3 C2 | Ty
T3 Ts
Ts

The relative energies of these long-distance states should be dominated

by the bond couplings between the oxygen and each iron.
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Table 17. Long-R q—-0—-q Uy's
S U, Uye = Upe

5 -1 -1

4 -1 -0.375

3 -1 +0.125

2 -0.5 0

1 -0.125 -0.125

0 +0.125 -0.25

2 Fet-0-Fel't

Consider a case in which stronger bonds can be formed between
the oxygen and each iron. Larger bond couplings can be obtained if we
excite each iron from its ground high-spin state to its excited lower-spin

state. At long distances, the lowest states for §=3, 2, 1, and O are:

S=3 S=R S=1 S=0
il L, L | oy L, | o
lg lp lp | c2 lp | 7y
T1 L8} T cz | T2
T2 Tz | &1 T2

€, Ca

Ca

The bond couplings between the oxygen and each iron dominate the rela-

tive energies of these states.
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Table 18. Long-R t —0—t Uy's
S Usr Uie =Urc

3 -1 -1

2 -1 -0.25

1 -1 | +0.25

0 0 0

At long separation, we expect twice the bonding in the S=1 ground state
of Felt—0—Felt than in the S=3 ground state of Fellq—0-Fellq. The bonding
should be proportional to U, =U,,, which for these states is the reciprocal
of the total nmﬁber of high-spin d-electrons. There are eight high-spin

d-electrons in Felq—0-Fellq but only four in Felt—0-Fellt.

b. Analysis of the Optimal Coupling

At the short experimental geometry of (FeTPP);0, the character of
bonding is completely different. Even the ordering of the states has
changed from our long-distance predictions for both Fellq—0-Felq and

Felt—-0-Felt.

1. Fellt-0-Fellt
Consider first the simpler case of Fellt—0-Fellt. The lowest state is

not S=1, as we had predicted for long separation, but rather S=0.
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Table 19. Calculated Felt—0-Felt Spectrum
S E(cm™)

3 11104

2 7164

1 2957

0 0

Let us now look at the actual spin coupling computed for this sys-

tem. In the o-space, we now have four electrons. The dominant

configuration has o, doubly-occupied with o, and o, singly-occupied. The

singlet coupling of these orbitals is gerade,

a Oy

while the triplet coupling of these orbitals is ungerade.

L]

oy

The value of <5§2>, is 0 for 5=0 and 2 for S=1. The value of <5%>, gives the

density of each spin in the o-space. When the o-space is half S=0 and half

S=1,<8%,=1.
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Table 20. Calculated Fe"t—0-Fet Spin Coupling
TOTAL EXPECTATION DOMINANT
S <§%, <5%, S, Sy
3 2.00 6.00 1 2
2 0.8 4.65 0 2
1 0.39 1.69 0 1
0 0.14 0.14 0 0

The ¢ and = spaces are not very pure eigenfunctions of spin for the states
of total S=1 and 2. We can now look at the bond coupling between the
singly-occupied c-orbitals. The n-bond couplings give a more complete
description of the spin coupling.

Table 21. Fet—0-Felt Bond Couplings
s U, U,

3 -1 -1

2 +0.32 -0.70

1 +0.61 +0.14

0 +0.88 +0.82

The S =3 state is the high-spin product of an ungerade S=1 o-space

and the gerade resonance of a §=2 n-space:
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]

The S=2 state is 66%

with 34% long-distance character.

| T

fic’

This mixture matches the observed Uy,=+0.32,
+0.32 = +1(.66) —1(.34)
and predicts U,=-0.74,
-0.74 = —1(.66) —0.25(.34)

which is close to the observed U,=-0.70.
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The S=1 state is 80%

(/] Oy

i

w¥ | w}
Uy

with 20% long-distance character.

g Tic
oy | 7g
i
¢

This mixture matches the observed U,=+0.61,
+0.80 = +1(.80) ~1(.20)
and predicts U,=+0.05,
+0.05 = 0(.80) +0.25(.20)

which is close to the observed U,=+0.14.

The $=0 state is dominantly

+]] Oy
+ +
My g
fipp Mg

with some long-distance character.
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This mixture would predict equal U, and Uy, and the observed values are

almost equal. The observed U,=+0.88 is only slightly larger than the

observed U,=+0.82 because of a very small amount of

O'g 0"-
nft | e
ny | wg

These three tableaux overlap, so no quantitative decomposition of the

S=0 wavefunction will be given.
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2. Fellq—0-Fellq

Consider the actual spin coupling of Fellq—0-Fellq at the experi-
mental geometry of (FeTPP);0. The lowest state is not §=3, as predicted
for long distances, but rather S=0. In fact, the spectrum of states at long
separation (see Table 17) looks completely different from the spectrum

at the experimental distance:

Table 22. Calculated Fellq—0-Felq Spectrum (Energies in em™)
Spin Short-R Spectrum Heisenberg Spectrum

S (Fe-O 1.763 A) (J=—200 cm™)

5 4919 6000

4 3684 4000

3 2347 . 2400

R 1203 1200

1 402 400

0 0 0

This spectrum looks very much like the Heisenberg coupling between two

sets of five high-spin electrons, where the relative energies are given by
Eg = Eq — JS(S+1)

with total spins of $=0, 1, 2, 3, 4, 5. A simple check on the validity of this

formula is to evaluate the Heisenberg coupling constant J for each S>0
using

Js = (Eg—FEs)/ (S%+S)
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Table 23. Heisenberg Coupling Constant for Fellq—0-Fellq

Js(em™)

-164
-184
-196
-200

nNOow b o] W

1 -201

Alternatively, as indicated in Table 22, we can calculate an excellent fit to

the entire spectrum using J=-200 em™. This description in terms of two
S= -g—Fem’s antiferromagnetically coupled through a bridging 0? is quite

compelling and is the model most often used to describe the spin states

of the oxo-bridged Fe dimer.

Our computed Heisenberg constant is comparable to experimen-
tally determined exchange parameters.f A least-squares fit to the tem-
perature dependence of a Knight shift yields an exchange constant of
~155+25 em™! for (FeTPP)z0 and —168+25 cm™! for (FeTpMPP)ZO.Q In Table 24,

we compare our best value of J with experimental values.

Table 24. Comparison of J Values

SOURCE J(em™)

THEORY Fel-0-Fel -201
EXPER. (FeTPP),0 -155+25
EXPER. (FeTpMPP),0 | -168x25

The agreement with experiment, 25%, is excellent given that the calcula-

+ The experimental constants are defined to correspond to twice our value. Thus,
the values quoted are divided by two.
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tion is purely ab initioc and on a model in which the porphyrins are elim-
inated! In addition to any effects on J due to excluding the porphyrins
from our model, we have also chosen Fe-O-Fe to be linear, which should
lead to a larger exchange constant. [The real system has an Fe-O-Fe bond

angle of 174.5°.]

Compelling as is the above interpretation, we find that the charge
distribution in the oxo-bridged dimer does not correspond to 0%~ but
rather to O-. Still, the spin coupling would appear to be the same as that
expected for 0?, as we shall see. The spin analysis in Table 25 demon-
strates that the total coupling cannot be qualitatively described as the

product of separate o, m, and é couplings.

Table 25. Calculated Spin Coupling for Fellqg-0-Fellq

TOTAL EXPECTATION DOMINANT
S <§%>, <5, <85 | S, S. Ss
5 2.00 6.00 6.00 1 2 2
4 1.58 4.23 4.61 1 2 2
3 1.22 2.84 3.41 1 1 1
2 0.94 1.90 2.35 0 1 1
1 0.75 1.31 1.56 0 1 1
0 0.67 1.03 1.14 0 1 1

Note in Table 25 that for S=4, 1, and 0, the dominant spins of each space
do not sum to the total spin. This rule was never violated in the cases we
examined previously. The violation in this case occurs because the total
coupling is qualitatively the product of two sets of high-spin electrons,
each spanning the o, 7, and 6 spaces. The calculated bond couplings are

shown in Table 26
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Table 26. Felq—0-Feq Bond Couplings
S U, Ugp Us Heisenberg Coupling
5 -1 -1 -1 -1
4 -0.58 -0.56 -0.65 -0.6
3 -022 -0.19 -0.35 -0.28
2 +0.06 +0.08 -0.09 -0.04
1 +025 +0.26 +0.11 +0.12
0 +033 +0.34 +0.22 +0.2

where we see that for each spin, the o- and n-bond couplings are almost
equivalent, while the 6-bond couplings are smaller (either less positive or
more negative). Pure Heisenberg coupling would be as indicated in Table
26. For S>0, the o- and n-bond couplings are larger and the é-bond cou-
plings are smaller than the Heisenberg bond couplings. For $=0, even
the §-bond couplings are larger than the Heisenberg bond couplings. We
shall see later that these deviations are to be expected. Thus, it appears
that the spin coupling is dominantly Heisenberg coupling, although the

charge distribution seems inconsistent with this coupling.

c. Charge Distribution versus Spin Coupling

As discussed above, the charge distribution for Fel 02~ Fell is

5

5 spins coupled to yield an antiferromag-

expected to yield two sets of S=

netic Heisenberg spectrum of states. However, the charge distribution
indicates 0~ rather than 0?* . For example, Mulliken populations for our
wavefunctions show that for high-spin irons, the bridging oxygen is 07,
and the populations of p;, p,, and p, are nearly equal. In each of the g,
n*, and n~ spaces, four electrons are distributed as follows: d;(1.2), p(1.5),

d.(1.2). Note that this population analysis of the ground state (S=0)
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yields about half a negative charge on the bridging oxygen. The same
analysis of the highest excited state (S=5) yields a full negative charge.
Thus, we shall next explore the spin couplings to be expected of
Fel-O0~-Fell. Here, of course, we must include the resonance of
Fel-0~—Fe with Fell-0~—Fell. Looking now at just the ¢ and n spaces, we

can view this system as the resonance of six equally contributing

configurations:
o 2B =2 I -5 - af
ot 2 a8 B a  af I
~ % a8 B a o8 B
s, o o8 B o a8 B
o 98 a B a B ag
~ o o B a o8 8
s, & o8 B a o8 B
nt 2 af B a a8 g
~ o8 o B a B a8
Fell 0~  Fel Fell 0~ Fel

Assuming all configurations are equal in each of the o, n*, and = sym-

metries, the doubly-occupied orbital would have the character of g—pc,

-é——d,, and é—d, for all three symmetries (o, n*, and n~). In addition, one

singly-occupied orbital would have the character 2—d‘ and %—pc, while the
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other singly-occupied orbital would be %—d, and g Pe- Because each

singly-occupied orbital is dominantly d; or d,, this Fe!-0"—Fe' resonance
case would yield a Heisenberg coupling similar to that expected for
Fel 02~ Fell. Thus, the observed Heisenberg spectrum does nof distin-
guish between these descriptions. However, the strength of the Heisen-
berg coupling is sensitive to the charge distribution. Our computed cou-
pling constant appears to be slightly too strong. Adding porphyrins with
the negatively charged porphine nitrogens will tend to reduce the Fe (less
positive charge), which should in turn allow more charge to transfer onto
the oxygen by localizing the doubly-occupied orbitals more on the oxy-
gen. This would localize the singly-occupied orbitals more on the irons,
making the interactions between the singly-occupied orbitals weaker.
Thus, for our model system, we expect a coupling constant slightly too

large. The states with S=5, 4, and 3 look like:

S=5 S=4 S=3
4 4 4

P 73 la

ls ls ls

A Ly Ly | M
s ls | ™ ls | Te
T ) T3
T2 T3 Ta
T3 Ty Ts
Ty Ts

Ts
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The states with S=2, 1, and 0 look like:

S=2

L

le

g | m;

ly [ T2

Is | s
Ta
Ts

We are now in a position to understand why our bond couplings
deviate from ideal Heisenberg bond couplings. For Felt—O-Felt, the spin
coupling is dominated by strong o- and n-bonding. However, for
Fellq—0-Felq, the spin coupling is dominated by exchange interactions on
the irons. This exchange energy makes Felq easier to ionize than Felt,
which results in the reduced bridge O~. Reducing the oxygen bridge
localizes the singly-occupied orbitals on the irons, which makes the
Heisenberg coupling more favorable. Even though Heisenberg coupling
dominates, we should expect some contribution from strong o- and m-
bonding. Suppose that in each configuration, the singly-occupied O~ p-
orbital were strongly bonded to the overlapping Fe d-orbital. We shall

llustrate for S=0:

S=1
L
I, | my
Is | T2
ly | T3
ls | Ta
Ts

S=0
L, | my
lp | T
lg | T3
la | 7T
ls | 5
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Or  Oc Ty TG Ty Te
ot | ot o oy g, Oy
o | ny + | Ty + nt | ot
6t | 6F 6" | 67 & | &F
6 | 6, 6 | 67 6 | 6F

For this coupling, Us=0.25, but the magnitude of U;=U, is not easily
determined, because the tableaux overlap. A crude estimate is

U,=U,=0.5, which we obtain by assuming
2 1
0.5 = 5{0.25) + 5{+1)

We shall not attempt a quantitative analysis, because these tableaux over-

lap not only each other but also the 5=0 Heisenberg tableau.

For all S<5, we should expect some contribution from strong o-
and n-bonding. For each spin, we can write this contribution as a linear
combination of tableaux, each with strong bonding in one of the o, #*, or

n~ spaces. For S=4 and 3, these tableaux are:
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S=4 S=3
L n L n
le i
lg ls
Ly L
s ls | re
T2 T3
T3 Ty
Ts Ts
To

For S=2, 1, and 0, the tableaux become:

S=2 S=1 S=0
L L n L, n
Lz l2 lz | 72
Is lg | 72 ls | 73
1, | 2 I, | 79 ly | Ts
Ils | Ts Is | 74 ls | Ts

Ty Ts
Ts

Using the same analysis as we illustrated for S=0, we estimate the follow-

ing bond couplings for strong o- and m-bonding:
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Table 27. Strong Bond Couplings
S  Ug=Ug Us Heisenberg Coupling
5 -1 -1 -1
4 -03 -1 -0.6
3 0 -0.5 -0.28
2 +0.25 -0.125 -0.04
1 +0.416 +0.125 +0.12
0 +0.5 +0.25 +0.2

Note that for <5, all U,=U, are larger and most U, are smaller than for
Heisenberg coupling. The exceptions are that Us for S=1 is almost equal
to and that U; for S=0 is larger than the corresponding Heisenberg cou-
plings. The contribution of these configurations with strong o- and =-
bonds explains the deviations of our calculated bond couplings from the

ideal Heisenberg couplings.



V. Conclusion

From these studies of bridged porphyrin dimers, we have learned

that the well-characterized dimer (FeTPP).0 has the Heisenberg spin cou-
pling expected for two ferric high-spin (S=g% centers antiferromagneti-

cally coupled through a bridging 0*~. However, we find the charge distri-

bution corresponds to 0~

Contrary to some previous studies, we have found that the iron
centers in (FeTPP);N are less oxidized than in the oxygen-bridged dimer.
The system is qualitatively best described as two ferrous centers bridged

by a newutral nitrogen.

The spin-state of the Fe’s in the nitrogen-bridged dimer is neither

low-spin nor high-spin. Instead, we find that each iron is intermediate-
spin (S=1) yielding a net spin of S=-‘é—for the complex (in agreement with

experiment). The remarkable difference between the oxygen-bridged
dimer with high-spin Fe’s and the nitrogen-bridged dimer with
intermediate-spin Fe’s arises from the difference in occupation of the
d,g_vg orbital.

The Fe-Fe coupling for the nitrido coupled dimer is not strongly
antiferromagnetic, as had been assumed. Each iron is coupled antifer-

romagnetic to the bridging nitrogen, so the Fe-Fe coupling is actually fer-
romagnetic! Indeed, we find that were the Fe's in a high-spin state, the

bridging nitrogen would couple the Fe's to yield a total spin of §= g—
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CHAPTER 2
Origin of Ferromagnetism in Nickel

1. Introduction

In this investigation, we shall seek to understand the exchange
forces responsible for ferromagnetism. Of the magnetic elements, we
have selected nickel for this study, because of its relative simplicity.
However, the electronic structure of nickel is not simple. Theoretical
methods disagree on the atomic configuration of Ni in the metal. The
most common assumption by solid-state theorists is that the average
configuration is d%4, so that 0.6 electrons per Ni are free to be ferromag-
netically coupled. This is thought to explain the observed moment/atom
4m = 0.8 up at 0°K. However, our calculations on small clusters indicate
that all of the atoms have d® configurations. Even so, we find that this too
agrees with the oberved moment/atom, because half our d® centers are
nonmagnetic. We have elucidated the exchange forces responsible for

both magnetic and nonmagnetic d® centers.

Starting with Slater,! the exchange forces responsible for fer-
romagnetism in the elements have been illustrated in a plot of the energy
of magnetization k7; (Boltzmann constant times Curie temperature)
versus the ratio R/r (atomic separation / diameter of unfilled shell). For
small R/r (Sc to Mn), the exchange coupling is negative. For larger R/,
the coupling becomes positive at Fe, reaches a maximum at Co,
decreases at Ni, and finally approaches zero as R/r-+=. Our calculations
lead to a quite similar plot for Ni. We find that the exchange coupling
versus R (atomic separation) is negative for small R, positive for R near

the optimal value of 2.5 R and negative for large R. This change at large
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R is a consequence of the Mott transition, and it serves as strong evi-
dence for the model we shall propose for the exchange forces responsible

for ferromagnetism.

» K

Figure 1. J (exchange coupling) versus R (atomic separation).
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II. Preliminary Investigation of Iron

A. Discussion

In our quest for an understanding of ferromagnetism, we quite
naturally turned first to iron. Our goal is to identify and understand the
exchange forces responsible for magnetism. We generated a model for
the interactions in solid iron, and reached some definitive conclusions

regarding the origins of ferromagnetism.

Our model shows conclusively that direct d—d exchange interac-
tions are very weak for iron and are antiferromagnetic. Therefore, the
magnetism of iron must be due to indirect exchange interactions. Our
model supports the observation that magnetism in transition metals
occurs only on the right side of the first row. This is because the direct
d—d interactions must be much smaller than the indirect interactions,
thus favoring the case where d's are smallest with respect to the s’s. Our
model supports the idea that a ferromagnetic system should become
antiferromagnetic at shorter R since the direct d—d interactions will
become much more important. In addition, we find that the system
becomes antiferromagnetic at large R (corresponding to the Mott metal-

insulator transition).

Our model has also led to some general conclusions about
transition-metal dimers. We find that for dimers like Fep, indirect s—d
interactions dominate over direct d -d interactions. The indirect interac-
tions can be ferromagnetic or antiferromagnetic. When there is an odd
number of s electrons, the interaction is ferromagnetic. When the
number of s electrons is even, the interaction is antiferromagnetic. If
the ground state of Fe; is made of an excited s'd” state and a ground s%a®

state, then the dimer should be ferromagnetic. However, if the ground
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state of Fe; is made of two excited s'd7 states, as is likely, then the dimer

should be antiferromagnetic.

Our conclusions regarding the origin of magnetism have shown
that a dimer is unlikely to provide an accurate model of ferromagnetism.
We must examine larger clusters to see what magnetic forces are dom-
inating in the solid. Because of the large number of unpaired spins in Fe,
we have chosen to examine a larger cluster of Ni to identify these mag-

netic forces.
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B. Calculational Details

Solid iron has bee symmetry. Each atom is in a site of 0, sym-
metry with eight nearest neighbors and six next-nearest neighbors. The
d orbitals of each atom are split into two e, orbitals (e.g., d_z 2 and d,2)
and three destabilized tg, orbitals (e.g., dsy, dz, dy ). Cluster calculations
on nickel lead us to believe that each iron contributes one conduction s
electron, leaving a d? configuration. The lowest d7 state is *#. In an G,
field, the seven components of this state split into *7,, (g22t4?),
4Ty, (ets), and *4g (eft3). Since the £z, orbitals are destabilized, the
*A,, state is best.?

In bece iron, each nearest-neighbor dimer is in a site of Dgy sym-
metry. For each atom, we can choose any combination of the e; doubly-
occupied orbitals and any combination of the tg; high-spin orbitals
without changing the state. Since the internuclear axis of our dimer is a
Cs axis, we shall choose d orbitals with Cg quantization. We shall denote
the parity of reflection in one of the three o4 planes with a + or -. An
orbital which is sigma with respect to the internuclear axis is labeled with
a 0. On each center, we have tg, t,, £, e,, and e_. Plus and minus combi-
nations of orbitals of the same local symmetry yield orbitals of Dgg sym-

metry:
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localized orbs | Dgq orbs
tg £ tg Qg . T2y
t, + ¢, e . ey
t_+t_ e . ey
e, +e, e ey
e_te_ gg . ey

We have optimized orbitals for a GVB wavefunction having the
above Dg4 orbital symmetries. The s orbitals were coupled into a singlet
pair, and all singly-occupied d orbitals were coupled high spin. The Ay,
and Az, symmetries each contain a singly-occupied combination of sigma
d’s and a natural orbital of the s-pair. The self-consistent mixing of these
orbitals yields little s—d hybridization. Each of the four £ symmetries
contains one doubly-occupied orbital and one singly-occupied orbital.
The self-consistent mixing of these orbitals yields an almost pure doubly-
occupied combination of e's and an almost pure singly-occupied combina-

tion of ¢#’s.

A clever aspect of this model is how we obtain a *4, (ejts,)
configuration at each atom without having an 0, field about that atom.
Our model has D., symmetry, but we use Dgq orbital symmetries. This
allows the m and 6 orbitals to mix. Given our occupation of these orbitals,
they do mix, and our wavefunction has D3y symmetry, not D.,. This
reduction in symmetry occurs because of intraatomic forces. Only one
combination of m and ¢ orbitals in each of the four F symmetries of Dgq
will yield pure *F symmetry on both atoms. Any other combination will

mix in an excited 4P state.

We have performed various CI calculations with these orbitals.
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Since the orbitals have only Dy symmetry, the largest abelian subgroup

we can use is Cp,. The symmetries correlate as follows:

Dsg Cap
Ay Ef | A
Ay Ef | B,
Alu ’ Eu— Au
AZu ' EI: Bu
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C. Results

Our model is capable of giving quantitatively the direct d—d
exchange interactions in bulk iron. Since the s electrons will be delocal-
ized in bulk iron, the indirect exchange effects we calculate will be appli-
cable only to the dimer. We can eliminate any indirect exchange interac-
tions by kee>ping the s electrons coupled singlet. We have accomplished
this by simply freezing the PP s-bond from the SCF. The six high-spin
orbitals from the SCF are used as natural orbitals for (3/68)RCI's.

The nearest-neighbor distance in bulk iron is 2.5 A. We find that
the direct d—d exchange between nearest neighbors:is anliferromag-
nefic. For a Heisenberg spectrum of states, the energy of each excited

state of spin S is determined by a single constant J:
Eg = Eg—JS(S+1)

We can test the validity of this formula by determining the value of J for

each excited state:
J = (Eq~Es)/ (S*+S)

At 2.5 K, the value is constant.

Table 1. Direct Exchange @ 2.5 A
S E(cm™) J{cm™)

3 _277 -23

2 134 -22

1 44 -22

0 0

The value of this coupling constant can be applied simultaneously

to each of the eight nearest neighbors. We have shown not only that the
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d-configuration at each iron is eft¥ but also that the spin coupling
retains local S=3/2 character in each atomic d-shell. Thus, the interac-
tion is isotropic. The direct d-d exchange is definitely antiferromag-
netic. The energy for $=3 is simply the SCF energy. Optimizing the orbi-
tals for the other states would increase the magnitude of the coupling
constant. Moreover, additional correlation would differentially favor the

lower spin states. .

At longer R, the coupling remains antiferromagnetic but falls off

rapidly:
Table 2. Direct Exchange @ 3.0 A
S E(cm™) J(em™)
3 44.1 -3.7
4 21.9 -3.7
1 7.2 -3.6
0 0

The value of J is expected to have exponential behavior:

J.._.ae—-bR

We find a=-213000 cm™ and b=3.65 A'. At shorter R, the coupling

becomes strongly antiferromagnetic:



Table 3. Direct Exchange @ 2.0 A
S E(cm™) J(cm™!)

3 1974 -164

2 808 -135

1 241 -121

0 0

At this short distance there is significant deviation from Heisenberg cou-
pling. Using our exponential parameters, we would have predicted
J=—144 cm™, |

These calculations show conclusively that direct’ d~-d exchange
interactions in bulk iron are antiferromagnetic. Thus, the magnetism of
iron must be due to indirect exchange. We have looked at indirect
exchange in the dimer by allowing the s-bond to spin polarize. The ener-
gies were obtained from (4/8)RCI's.

Table 4. Dimer Exchange @ 2.5 A
S E(cm™) J(cm™)

3 1280 -107

2 591 -99

1 188 -94

0 0

The exchange we see here is the sum of direct and indirect effects.
Indirect exchange is obviously antiferromagnetic and larger in magnitude
than direct exchange at this distance. Allowing the s-pair to spin polarize
has caused a deviation from Heisenberg coupling. If the s-pair had

rermained singlet or if the s-pair had spin polarized sufficiently that each
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s orbital had coupled high-spin to its d-shell, Heisenberg coupling would
have resulted. The valence s orbitals are more diffuse than the d orbi-
tals. At this distance, the s—s overlap is sufficiently large to cause sub-
stantial singlet coupling of the s-pair. However, the s-pair will never be
perfectly singlet coupled, because the atomic s-d exchange is large.

Thus, Heisehberg coupling will be observed only at larger distance.
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1II. Calculational Details

The model we have chosen is perhaps the simplest possible to
show the origins of magnetism in nickel. Ni; has localized s orbitals and
so does not serve to model a metallic system. Nig can have delocalized
orbitals in the triangular geometry, but the s electrons can lead to spin
polarization without indirect exchange. Hence, this system does not offer
a useful model for magnetic coupling in metallic systems. However with
Niy, we do find delocalized s orbitals coupled dominantly into a singlet.
These bonding electrons correspond to the s band of metallic nickel. The
geometry we have selected is a section of the fec bulk. It is a rhombus
having all four edges and the shorter diagonal equal to the bulk nearest-
neighbor distance of 2.5 A McAdon and Goddard® have shown from exten-
sive studies on Liy (and other metal clusters up'to Li,s) that the bonding
orbitals localize between atoms favoring a rhombic structure in order to
maximize singlet pairing of these orbitals. We expect it also to be the
best for Niy, because the s orbitals dominate the bonding, and indeed the

final wavefunctions

resemble those of Li,. Thus, this model represents not only a section of
the fcc bulk but also the best symmetry for Ni,. In fact, it represents
nearly the optimal geometry for Niy,. Optimizing the scale of this cluster
(uniform expansion) leads to an optimal nearest-neighbor distance of 2.5

A quite close to the value of bulk Ni (2.49 .&)

In our rhombochedral Ni, (D) cluster, the spin coupling of the s

electrons is singlet. The one-electron bond orbitals are coupled in singlet
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pairs parallel to the shorter diagonal. This coupling induces strong
indirect antiferromagnetic coupling between the d-holes across the
shorter diagonal, but not between the d-holes across the longer diagonal.
Consequently, the ground state at the optimal geometry for Ni, is triplet,
which makes this cluster an ideal model for studying the origin of magne-
tism in nickel.

The assumption of d® character on each Ni is based on results of a
series of calculations by the Goddard group, Ni2,4 NiCHg,5 and Ni(110) and
Ni(lll)6 where clusters up to Ni,g show d® character on each metal. These
ideas have also been confirmed by others, e.g. Basch, Newton, and
Moskowitz’ on square Ni,. It should be noted that our basis is biased in

favor of d'%(vide infra), yet the Ni, cluster still has d® character.

We find that the optimum four MO’s for describing the s-space are
(2. big, ba, bg), which span the four irreducible representations
expected from four bond functions, whereas (a,. a,, by, bg,) would be
expected from a linear combination of s-orbitals. The antibonding orbital
b,, must be dominantly p. Because all the MO's are describing linear
combinations of bond functions, each MO has appreciable p character,

resulting in 4p orbitals being important to cluster cohesion energy.

For Nig (D2,), we find that the optimal d-holes span the sym-
metries (a,, by, ay, ba,).T We find that a single SCF with no symmetry
restrictions can predict the optimal d-holes. The s-electrons are
described with two GVB pairs, and the d-electrons are described with four
average-field Hamiltonians, each having five orbitals. Each set of five

orbitals becomes the five d’s localized on a single nickel atom. The

t Basch, Newton, and Moskowitz found that the d-holes span the same irreducible
representations as the S-orbitals for certain nickel clusters, specifically for
Niy (D4p). However, we find that for our cluster, this is not true.
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Hamiltonians correspond to the quintet coupling of the four d-holes in
the average of all 5*=625 configurations. The highest occupied eigenvec-
tor of each average-field Hamiltonian is taken to be the optimal d-hole on
that nickel atom. The optimal d-holes across the shorter diagonal are d,,
so that they are & with respect to that axis and antisymmetric upon
reflection in the plane of the nuclei. These d-holes span the irreducible
representations By and 4, for Dy . The optimal d-holes across the longer

diagonal are d_. e SO that they are 6 with respect to that axis and sym-

metric upon reflection in the plane of the nuclei. These d-holes span the

irreducible representations 4; and Bz,.

Table 5. Symmetries of MO’s for Ni, (Dg,)
orbitals irreducible representations spanned
s’s a, a, bay bgy
one-electron bonds | a, by bay bsy
optimal d-holes a, by ay boy

We use several types of self-consistent muti-configurational
wavefunctions. The best is often termed a Complete Active Space SCF
(CASSCF). Here all eight active electrons (2 per nucleus) are described
with a full CI in eight orbitals, and these orbitals are then calculated self-
consistently. Four of these orbitals describe sp-like one-electron bonds
between each metal (a;.b,,b24.b34), and the other four orbitals describe
localized d-holes, one on each metal, (a;,b5;,a,,b2,). The other d-orbitals
are taken as doubly-occupied but are solved for self-consistently along
with the other orbitals. These CASSCF’s give us our most reliable state
energies. However, we would like wavefunctions with greater interpreta-

bility. We have found that very little energy penalty is paid to restrict all
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configurations in our MCSCF to have four electrons in the four orbitals
describing the one-electron bonds, two electrons in the two orbitals
describing the d-holes across the shorter diagonal, and two electrons in
the two orbitals describing the d-holes across the longer diagonal. This
reduces the CASSCF wavefunction to the GVB form, allowing us to inter-
pret the wavefunction. This permits us to evaluate quantitatively the
spin-polarization of the s-space, as well as all transposition Uj;'s among
the four d electrons. This interpretable wavefunction allows us not only
to measure spin-polarization in the s-space but also to restrict the

wavefunction to eliminate this spin coupling and hence evaluate its effect.

We should comment here on orthogonality restrictions. Ortho-
gonality of orbitals that are doubly-occupied in all configurations of a
wavefunction is justified by the Pauli Principle. However, one cannot in
general require orthogonality of the orbitals unless a complefe CI among
these orbitals is included. Thus for the CASSCF, including as one does all
allowed configurations among the non-doubly-occupied orbitals, ortho-
gonality between the eight active orbitals is no restriction. However,
when using only a subset of these CI configurations, the orthogonality of
our orbitals can become a restriction. Thus when viewing our wavefunc-
tion in terms of one-electron orbitals, one might ask what orthogonality
restrictions are being imposed on these one-electron orbitals. For-
tunately, in the case of interest the symmetry is such that the d orbitals
have no orthogonality restrictions. For the sp-bond space we include the
full set of configurations, so we avoid possible orthogonality restrictions.
The only restrictions remaining are between the d orbitals and the bond
orbitals. These arise because we impose orthogonalily between two g,

MO’s (one d-like, one sp-bond like) and between two bz, MO’s (one d-like,



-8Te

one sp-bond like). Thus, we artificially restrict the one-electron bonds to

be orthogonal to the d-holes on the atoms defining the longer diagonal.

We should point out that at long distances, the s electrons localize
on the atoms. This is seen in our calculations when gy is preferred to b 19
as the antibonding MO. It is very important to choose the optimal anti-
bonding MO, for it can completely alter the spectrum of states. We obtain
totally different results at 3.5 Zwith the two different antibonding MO's.

The Ar core of each Ni atom is replaced by an ab initic effective
potential® We use 4s and 4p basis sets contracted DZ (3,1) from four
gaussians. These basis sets have previously been used with the nickel
one-electron modified effective potential.9 We use a d basis contracted
MBS for d!® from five gaussians.m This basis favors the d1° state. The
experimental splitting from the ground s!d® state to the d!° state is 1.86
eV,!! while the computed splitting with our basis is 1.79 eV. This good
agreement is the result of our MBS d contraction for the d!© state.
Numerical Hartree-Fock gives a splitting of 4.19 eV. 12 In our basis, the
Hartree-Fock energy of ground-state Ni s!'d? is -38.9488788 hy. Thus, the
limit at infinite separation for our Ni, cluster is -155.795515 h,,.



IV. Results

A. State Energies

Prior to testing the optimal d-hole occupations, we followed the
general findings of Basch, Newton, and Moskowitz. We assumed the d-
holes to span the same irreducible representations as the s’s. For a gen-
eral survey, we used a simple °B,, SCF in which the MO’s for the d-holes
(ag.a;.bzy.bsy) Were singly-occupied and the MO’s for the one-electron
bonds (ay.b,;.bau.bsu) Were given all symmetry-allowed occupations of
four electrons. These eight MO's were used for CI calculations having all

symmetry-allowed occupations of eight electrons in eight orbitals. These

results are listed below:
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Table 6. Preliminary SCF Energies (+155 hg)

State

2.0A

25A

3.0A

35A |

531;,

-.849680

-.956066

-.866981

-.792058

Table 7. Preliminary CI Energies (+155 hg)

State | 2.0A 25A 3.0 A 35A
g,y | -.852085 | -.956792 | -.868555 | -.793849
By, | --851533 | -.956048 | -.868720 | -.793960
Sp., | -.850892 | -.957097 | -.868884 | -.794105
5B, | -.850398 | -.957257 | -.869049 | -.794232

14, | -.852177 | -.957710 | -.869927 | -.795445

38, | -.852247 | -.957715 | -.869927 | -.795445

We obtained MCSCF wavefunctions corresponding to the above CI's:
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Table 8. Preliminary SCF Energies (+155 hg)
State | 2.0A 25A 3.0A 3.5A
1B,y | -.852679 | -.957256 | -.868627 | -.793907
8B,y | -.851818 | -.957459 | -.868790 | -.794047
3Bsy | -.850974 | -.957667 | -.868953 | -.794182
°B,y, | -.850424 | -.957889 | -.869117 | -.794317
14, -.852301 | -.958517 | -.870135 | -.795722
8Bz, | -.852368 | -.958522 | -.870135 | -.795716%

Using the same MO's for the d-holes (a;.a;.b2,.b5,), we tried using
bonding MO’'s not for one-electron bonds but for localized s orbitals
(ag.ay.bzy.bs,). For all geometries, we optimized an MCSCF for %4, with all
symmetry-allowed occupations of eight electrons in eight orbitals. CI cal-
culations for other symmetries were also obtained. We find that for dis-
tances as large as 3 R, the six lowest-lying states correspond to one-
electron bonds coupled '4;. These are lower than the lowest state com-
puted with MO’s consistent with localized s orbitals. However, by 3.5 1§
we find that the six lowest-lying states correspond to localized s orbitals

coupled 'B,;. We show these six calculations at all distances:

+ Note that the last entry in Table 8 is not fully converged. The converged energy

should be -.795722, as evidenced by the preliminary CI energies in Table 7.
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Table 9. s-Orbital CI Energies (+155 hg)

State | 2.0A 2.5A 3.0A 3.5A
184 -.824008 | -.931062 | -.852263 | -.816672
3B | -.825176 | -.931273 | -.852694 | -.817406
3Bs, | -.823359 | -.931788 | -.852930 | -.818295

54 -.822146 | -.929325 | -.856847 | -.819115
aA, -.816743 | -.924978 | -.856250 | -.820840
14, -.825114 | -.932099 | -.855838 | -.821573

Were it not for the bonding transition between 3.0 and 3.5 A from
delocalized one-electron bond orbitals to localized s orbitals, the cluster
would remain ferromagnetic at large distances. However, with localized
orbitals, the ground state is singlet. Unfortunately, our attempts at
describing localized s orbitals at small distances have resulted in

significant one-electron bond character.

At 25 R, we used an average-field SCF to determine that the
optimal d-holes do not span the same irreducible representations as the
s orbitals. The optimal d-holes across the shorter diagonal span the
irreducible representations Bs, and A,. The optimal d-holes across the
longer diagonal span the irreducible representations 4; and B,. We have
performed three different MCSCF calculations for each of the six low-lying
states at 2.5 R Each uses four MO's (a,,bg;.ay,bz,) to describe the d-holes
and four MO’s (a;,b,;,b2,b3,) to describe the one-electron bonds. In the
first MCSCF, we use all symmetry-allowed configurations of eight elec-
trons in these eight orbitals. In the second MCSCF, we include only the
configurations having four electrons in the four MO’s describing the one-

electron bonds and two electrons in each pair of MO's describing the d-



holes across a diagonal. In the third MCSCF, we further restrict the four
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electrons in the one-electron bonds to be coupled singlet.

Table 10. Three SCF Energies (+155 hg) @ 2.5 A

State | No Restrictions | Occupation Rest. | Occ + Spin Rest.
By - -.960800 -.960595 -.959800
5By -.961017 -.960809 -.959916
3B -.961226 -.961018 -.960027
°Byy -.961450 -.861249 -.960165

14, -.962803 -.962597 -.960083
3B -.962809 -.962603 -.960074

Note that these six states are all lower than the lowest state having d-
holes which span the same irreducible representations as the s orbitals.
The occupation restrictions above can be seen to cost very little energy
and to leave the relative energies of the states unchanged. These occupa-
tion restrictions permit a rigorous evaluation of the spin coupling among
the d electrons as well as the spin polarization of the s electrons. Res-
tricting the s electrons to be coupled singlet can be seen to change com-

pletely the relative energies of the states.

We can fit the energies of these states with effective Heisenberg
coupling constants. The two lowest states are sufficient to find the cou-

pling between d’s across the longer diagonal:

Ji = B E('4)-E(*Bzy)]

The second and fourth lowest states are sufficient to determine the cou-

pling between d’s across the shorter diagonal:

Jo = HE('4)-E("Bs)]



The four lowest states are sufficient to determine all the couplings
between the d’s. The couplings between d's across each of the four edges

are the same:

The fifth state permits a check on the validity of J,:

Jo = HE(Bau)-E('Ag)~E(°B1g)+E (*Bsy)]
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Jo' = X[E(Bg)—E(°By,)]

The sixth state permits a second check on J,:

Jo' = %[E(lBlg)_E(sBIy)]

Table 11. Heisenberg Coupling Constants (cm™!) @ 2.5 A
Type | No Restrictions | Occupation Rest. | Occ + Spin Rest.
4 0.7 0.7 1.2
Jy -173.1 -173.3 -4.0
Je 23.9 24.7 13.9
Je! 23.8 4.1 13.7
Je" 23.8 23.5 12.7

We can see how these Heisenberg coupling constants vary with dis-

tance by using our preliminary SCF energies:

Table 12. Heisenberg Constants (em™) from Preliminary SCF'’s
Type 20A 25A 30A 3.5A
5 7.4 0.5 0.0 0.0
/e -145.8 -93.3 -129.7 -169.0
Je -67.7 23.8 18.0 14.8
Jy! -78.5 23.6 17.9 14.8
Jg" -94.5 22.3 17.9 154
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The above coupling constants at 3.5 R are for delocalized one-electron
bonds. However, at this distance, the lowest states have localized s orbi-
tals. To obtain the actual Heisenberg constants at 3.5 A: we can use our
s-orbital CI energies. Assuming the s orbitals are coupled !By in each of
the six lowest-lying states, we obtain the following equations for effective

d—d coupling constants:
Ji = HE('B1y)~E(*Hs,)]
Jo = WE(Bg)~ECBn)]

Jo = HECB3,)-E(\B1y)~E (4 )+ ECB2,)]

Jo' = U E(4)-E(°4)]

Je" = W E('A5)-E(P4)]

Table 13. Heisenberg Constants (cm™!) from s-Orbital CI's
Type 35A

Ji 178.1

Js 80.5

Je 9.4

Jo! -94.6

Je" -80.4

It is clear that the singlet ground state at 3.5 & is the result of an antifer-
romagnetic J,. However, the discrepancies between our checks for J,
force us to question our assumption that the s’s are coupled 'B,,. We
know that at very large distances, the s's will be extensively spin-
polarized, because the lowest states will consist of triplet nickel atoms

coupled in various ways. A significant component of this coupling is com-
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plicating our simplistic analysis at 3.5 &

Let us assume for the moment that the lowest states at 3.5 X are
dominantly triplet nickel atoms coupled in various ways. The lowest
three states (!4, 34,, and 54;) form an antiferromagnetic Heisenberg

spectrum:
E =a-JS(5+1)

The lowest two states yield /J=—80.4 cm™!. Note that this value was previ-

ously obtained as
Jo" = HECA)-E(C4)]

The second and third lowest states yield J=—94.6 cm™. Note that this

value was previously obtained as

B’ = 4B (CAy)-E(°4)]

The only way to obtain 34, is to couple the triplet atoms into quintets
across each diagonal, and then to couple the two quintets into an overall
triplet. Given the Heisenberg spectrum of these states, the spin coupling
must be similar for all three states. The !4, ground state must be dom-
inantly coupled into quintets across each diagonal, singlet overall
Although triplet atoms coupled into singlets across each diagonal would
have the same symmetry, this coupling must be negligible. The °4,
excited state must be dominantly coupled into quintets across each diag-
onal, quintet overall. Although two other couplings with singlet coupling
across one diagonal and quintet coupling across the other would have the

same symmetry, these couplings must make only minor contributions.

What exactly is our Heisenberg coupling constant J? The three
lowest states have two sets of four high-spin electrons coupled into

overall singlet, triplet, and quintet. The constant J which gives the
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relative energies of these states
E =a-JS(S+1)

is simply the average of all sixteen exchange constants between the two
sets of four high-spin electrons. Each set of electrons contains the s and
unpaired d on each of the two atoms across one diagonal. The sixteen
exchange constants between the two sets include four d-d interactions,
four s—s interactions, and eight s—d interactions. All of these interac-
tions are along the edges of the cluster, so our constant J is really J;.
Note that this interpretation of / maps into the interpretation of J, as an
effective Heisenberg coupling between d’s with the s's coupled dom-
inantly !B,,. At long distances, the spins of the d’s cannot move indepen-
dently from the spins of the s’s. For all low—lying.states, each unpaired d
must remain parallel to the s on _the same atom. Thus, a formal Heisen-
berg coupling between d’s is really an effective Heisenberg coupling
between triplet s'd® units.

Let us now view the exchange force responsible for the ferromag-
netic nature of our cluster at small distances and the antiferromagnetic

nature at large distances:

Table 14. Exchange Coupling (cm™!) vs. Atomic Separation

Type | 2.0A 25A 3.0A 3.5A co

Je -68 24 18 -80 0
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~-108.8 —

Figure 2. J (exchange coupling) versus R (atomic separation).
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B. Spin Coupling
Ideal Heisenberg couplings are given below for each of the six

low-lying states of our cluster.

Table 15. Ideal Heisenberg Couplings
State U, U, U
o +% -1 -1
3By, 0 -1 -1
SBsu % -1 +1
5By -1 -1 -1
14, % +1 +1
%Beu -% +1 -1

The actual couplings are very close to ideal:

Table 16. Actual d —d Couplings

State U, U, U

1B, +.493 -.986 -1.000

1/, -005 -981 -.999
%Ba  -500 -.977  +.999
55, -993 -974 -1.000
14,  -500 +.951 +.999
Bp  -497 +.952 -1.000

The discrepancies arise because of spin-polarization of the s-space:
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Table 17. Spin-Polarization of s-Space
State = <5%>. <5%>4 <§%,
1By 0 .014 .014
i 2 1.999 .019
SBay 2 1.978 .023
By 8 5.947 .027
14, 0 .049 .049
3B 2 2.037 .049

Note that the spin moments of the d and s spaces can be parallel,
antiparallel, or orthogonal. We shall investigate the origin of each case
shortly.

The spin-polarization of the s-space occurs by mixing in
configurations having triplet coupling in the s-space. If the density of
configurations having singlet coupling is p, and the density of
configurations having triplet coupling is pz, then

<5%>, = 0p, + 2p;
We take the total wavefunction to be an eigenfunction of spin.
<§z>g°¢ = S(S+1)

If the triplet excitation in the s-space leaves the spin of the d's

unchanged,

<§%>4 = S(S+1)p; + S(S+1)p2
= S(S+1)
then the spin moment of the s-space neither adds to nor subtracts from
the spin moment of the d-space. We say that the moments are orthogo-

nal, although we do not mean that the spin vectors are at a right angle.
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This would lead to
<8%>,, = <8754 + <52,
H the triplet excitation in the s-space is accompanied by a simultaneous

increase in the spin of the d’s,

<§%>4 = S(S+1)p, + (S+1)(S+2)pz
= S(S+1) + 2(S+1)p2

then the s and d moments are antiparallel. If the triplet excitation in the

s-space is accompanied by a simultaneous decrease in the spin of the d’s,

<8%>4 = S(S+1)p; + (S-1)Spz
= S(S+1) - 2Sp,

then the s and d moments are parallel. In all cases except the ground

state, the mechanism of spin-polarization is cleanly one of the three

mechanisms.

Table 18. Spin-Polarization of s-Space
State  <8%>., <5%>, <5%>,
1By 0 0+2pz 2pe
3By 2 2+0p, Rp2
*Bau 2 2~2p2 2pz
By 6 6-4pz 2pz
YAy 0 0+2pz  2pz
B 2u 2 R+7? pg Rp2

Moreover, each observed d—-d coupling for a given state is simply p, times
the ideal coupling for that state symmetry plus p; times the ideal cou-

pling for a second symmetry:
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Table 19. Actual d -d Couplings

State Us U, U

By +¥o1—¥p:  —lpitlpz -1
o Op1—¥pz —lpatlpz -1

3Bsu ~¥ —1py+lpe  +1
Big -1p;—¥pz —1prtipa -1
Ay - +1py—1pz  +1

SBzu —¥p1+?p2  +1lpy—lpz -1

The second symmetry is related to the first simply by a change in the
sign of Uj,. We shall see that this is the result of a simultaneous triplet
excitation of a singlet pair of one-electron bonding orbitals coupled paral-
Alel to the shorter diagonal. The spatial symmetry of the second state is
related to the first by a change in the parity of reflection in the plane
perpendicular to the shorter diagonal. The value of U; remains
unchanged. For all states except the ground state, the change in sign of
U, uniquely defines the spin symmetry of the second state.

For the ground state, the change in sign of U; yields three possi-
ble spins for the d’s: 0, 1, and 2, with U, = +}, O, and -1, respectively.

Each of these states contributes a fraction to the density pg:
pz=JSotf1+S2
We have two other relationships for these fractions:
<885, = 2-2f o+0f 1+4S 2
and
U, = Vo1 +thf ot0f 1—1f 2

Unfortunately, these two relationships are linearly dependent. Thus,
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each fraction cannot be uniquely determined from these data.
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V. Discussion

A. Exzchange Coupling Constanis

In this system, we have one unpaired d electron on each of four
centers. These d electrons are well localized, and the interatomic over-
laps between them are very small. This situation is ideal for describing

all low-lying states with a model Heisenberg Hamiltonian:
Bys = RTS8
55

If we include all six Ji;'s between the four unpaired d electrons, then we
should be able to describe the energetics of all low-lying states: two
singlets, three triplets, and one quintet. Because of symmetry, we have
only three different Jy’s. The exchange coupling along each edge, J,, is
the same. The exchange across the shorter diagonal, J;,, and the

exchange across the longer diagonal, J;, are different.

We have calculated all six low-lying states, and we find that their
energies are fit precisely with the following couplings: J,=24 cm™ (fer-
romagnetic), Jo,=-173 cm™! (strongly antiferromagnetic), and J;=0.7 cm™!
(negligible). These couplings are significant because they gix}e an indica-
tion of why nickel is ferromagnetic and why nickel has only about half a
magnetic electron per center. We wish to learn what causes each of these
couplings.

An explanation of how these constants were fit is in order. The
expectation value for transposing the spatial coordinates of two electrons

shall be denoted as Uj;. Using the relation
L’ij = "%“2(5‘}_'@‘3’3’

we can write the expectation value of thes Heisenberg Hamiltonian



(shifted by a constant energy) as

Fopr = 14 Uy
55

By symmetry, the Uy's for each of our six low-lying states are fixed. The
spatial wavefunction must be either symmetric or antisymmetric to
reflection in each of the three planes of symmetry. Reflection in the
plane of the electrons leaves the wavefunction unchanged. One reflection
transposes two electrons across the shorter diagonal, so U;=+1. Another
reflection transposes two electrons across the longer diagonal, so U;=+1.
Given that two electrons, 1 and 2, are triplet coupled (U,;=-1), then for
any third electron, U;s=Ug. Given that two electrons, 1 and 2, are singlet
coupled (Uyz=+1), then for any third electron, U,s=Uz=-% For a given
state, the coupling across each diagonal is either singlet or triplet, so the
couplings along each edge U, must be equal. When one of the diagonal
couplings is singlet, U,=-)%. When both diagonal couplings are triplet,
U, =-1,0,+¥% for total spin quintet, triplet, and singlet, respectively.

We find that three constants J,, J;, and J; make a good fit to the
relative energies of our six states (a fit of five values with three parame-
ters). These constants are not simply parameters to fit energies. These
couplings really do represent to a good approximation the actual forces
encountered when changing the relative orientations of these four spins.
However, these couplings need not be the result of direct exchange forces
between the d's. The s’s do not remain perfectly singlet and totally sym-
metric. They spin polarize slightly in response to the various orientations
" of the four d spins. The s space remains over 97% singlet in each of the
six low-lying states, so the magnitude of spin polarization is quite small.
However, the magnitude of this effect on our observed coupling constants

remains to be determined. The actual Uy's between the d’s deviate only
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slightly (at most 5%) from our predictions based on a totally symmetric
singlet s space. Thus, our model Heisenberg wavefunctions are fairly
accurate representations of the spin coupling among the d’'s in these
states, and our coupling constants based on this model are fairly accu-
rate representations of the actual forces encountered when changing the

relative orientations of the d spins.

We wish to determine how much of our observed coupling con-
stants is the result of direct exchange forces between the d’s and how
much is the result of indirect exchange through spin polarization of the
s-space. We can eliminate the possibility of indirect exchange by res-
tricting the s-space to be rigorously singlet coupled (see Appendix E). We
have calculated SCF wavefunctions with perfectly singlet s electrons for
all six low-lying states. The energies of these restricted wavefunctions
are accurately given by the following couplings: J,=14cm™ (ferromag-
netic), J,=—4 cm™! (negligible), and J;=1.2 cm™ (negligible). These cou-
plings are the direct exchange interactions between the d’'s. The only
significant value is the ferromagnetic exchange along each edge.

The differential energies of our unrestricted wavefunctions are
the result of direct exchange forces between the d’'s plus indirect
exchange forces which arise through the spin polarization of the s’s. We
can describe the combined effect of direct and indirect exchange with
three coupling constants. The differential energies of our restricted
wavefunctions with singlet s's are the result of direct exchange only. The
three coupling constants that describe these energies are the direct
exchange interactions between the d’s. We can obtain the indirect
exchange interactions between the d’s as the total exchange minus the

direct exchange. The indirect exchange couplings are: J,=10cm™! (fer-
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romagnetic), Jy=—169 cm™! (strongly antiferromagnetic), and J;=-0.5cm™!

(negligible). Thus, indirect exchange accounts for all the strongly antifer-
romagnetic force across the shorter diagonal. Indirect exchange also

accounts for about half the ferromagnetic force along each edge of the

cluster.
Table 20. Measured Exchange (Total = Direct + Indirect)
Type Total Direct Indirect
Je(cm™) 24 14 10
Jy(em™) -173 -4 -169
Ji(em™) 0.7 1.2 -0.5

We observe two types of indirect exchange in this cluster. A very
strong antiferromagnetic indirect exchange occurs across the shorter
diagonal, and a much weaker ferromagnetic indirect exchange occurs
along each edge. We wish to understand the mechanism that gives rise to
each type of indirect exchange. Qualitatively, we can describe the

mechanism for each of these effects with simple vector diagrams.

Consider first the indirect ferromagnetic coupling. Two d elec-
trons which favor parallel spins with the same s electron indirectly favor

parallel spins with each other:
d(t)—~——s(t)———-d(1)

In our wavefunctions, the d electrons do favor parallel spins with neigh-
boring s electrons. However, note that indirect ferromagnetic coupling
would still result if the d electrons were to favor antiparallel spins with

neighboring s electromns.

d(1)————s($)———-d(1)
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Thus, two d's which interact with the same s electron will indirectly favor

ferromagnetic coupling.

Consider now the indirect antiferromagnetic coupling. Two d
electrons which favor parallel spins with s electrons favoring antiparallel

spins indirectly favor antiparallel spins with each other:
d(t)————s()————s({)————d(})

As before, the same antiferromagnetic coupling would result even if the d

electons favored antiparallel spins with neighboring s’s.
d(t)——=-s()————s()————d(3)

Thus, two d’s which interact through an antiferromagnetic pair of s elec-

trons will indirectly favor antiferromagnetic coupling.

In order to understand the indirect exchange‘ in our cluster, we
must first know the location of the bonding s electrons and how they aré
coupled. In this cluster, the four s electrons are delocalized from the
nuclei and make one-electron bonds across the four edges. These one-
electron orbitals are coupled into singlet pairs parallel to the shorter
diagonal. The indirect J, is ferromagnetic, because the two d’s defining
each edge interact with the one-electron bond between them. The
indirect J, is antiferromagnetic, because the two d’'s defining the shorter
diagonal interact through the two singlet pairs of one-electron orbitals

parallel to the shorter diagonal.

Now let us consider these indirect mechanisms in a more precise
way. We wish to understand why the indirect antiferromagnetic exchange
in our cluster is an order of magnitude stronger than the indirect fer-
romagnetic exchange. We need to know the relative magnitudes of

indirect exchange to be expected from different mechanisms in order to
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predict which effects will dominate in other systems.

Consider first the indirect antiferromagnetic coupling. We shall
see what indirect exchange results when two d’s interact through an anti-

ferromagnetic pair of s electrons:
dy~—(Joa)—~S1——(Ju )——S2——(Joa)——02

The energy difference between singlet and triplet states will be twice the
indirect exchange. To solve for the optimal singlet, we choose the follow-

ing basis:

S, Sz s; | 4y

d, dg sz | d2

In this basis, the Hamiltonian matrix is

"\/BJ“ —~Jeg+Jsd

The energy of the optimal singlet is
E(S=0) = V(e =Tea?+3(/ea}*

To solve for the optimal triplet, we choose the following orthogonal basis:

sy Sz d, dg s
d, 8§y sz | 4y
dg Sz d;

Note that



d, dg s | dy s, | dg
s, = %— LY) + \/_g— Sa
P d; d,
and that
s s, | dy s; | de
sp | dy | = \/-%- Sp - '\/_;— S5
dy dp d,

We have chosen this basis because it simplifies the Hamiltonian matrix:

Joe=Jig —Jug 0
—Jad ~Jos—Jsa 0

The energy of the optimal triplet is
E(5=1) = ~Jua—V s )+ {Vsa )*
To calculate the indirect exchange J4 between d, and d;, we take
Jag = WE(S=0)—-E(S=1)]

However, rather than using the precise energy expressions, let us use our
knowledge of the relative magnitudes of these exchanges to obtain
simpler energy expressions. The s electrons are assumed to be strongly
antiferromagnetic, so they want to be singlet coupled. Thus, the first
function in our chosen basis set should dominate for both singlet and tri-
plet. Note that when the s’s are perfectly singlet coupled, the singlet and
triplet states are degenerate. (Observe that the first matrix element in

each Hamiltonian is J4—J,4.) Both singlet and triplet states obtain lower
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energy by spin-polarizing the s's. This involves mixing in an excited state
with the s’s triplet coupled. This excitation energy is roughly twice the
magnitude of J,, and we assume it to be very large compared with the
magnitude of of J4. For both singlet and triplet, we shall approximate
the energy lowering as the square of the off-diagonal Hamiltonian matrix
element colmecting the two states divided by the excitation energy. The

approximate energy of the singlet is

_ 3(J5a)?
E(S=0) ™ Ju~Jua= 57— 07—
The approximate energy of the triplet is
_ (Joa)?
E(S=1)~ J.,—J,d—_—zr

Thus, the approximate indirect exchange is

Note that we have about the same antiferromagnetic Jg whether J;4<0 or
Jz3>0. (However, our results show that changing the sign of J,q4 does not
give exactly the same J4g3. For negative J4, the indirect coupling should

be stronger.)

We should remark that our approximate results equate to
second-order perturbation theory. The indirect exchange calculated by
Ruderman and Kittel is similarly based on second-order perturbation
theory, but only excitations of the conduction electrons were considered

by them.13 Note that in our model, both s and d electrons are excited.

Consider now the indirect ferromagnetic coupling. We shall calcu-
late what indirect exchange results when two d’s interact with the same s

electron. We recognize that this s is a mernber of an antiferromagnetic
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pair of s electrons:
§1=—(Ja )——52
However, only one of the s’s interacts with the two d’s:
dy——(Jsa)——s2——(Jsa)——dz

Again, the energy difference between singlet and triplet states will be
twice the indirect exchange. To solve for the optimal singlet, we use the

following basis:

s; Sz s, | dy

d, dj sz | da

In this basis, the Hamiltonian matrix is

sy 0

0 '-J,, +Jgg

Thus, the energy of the optimal singlet is simply
E(S=0) = Jyg—Jiq

There is no spin-polarization of the s’s. To solve for the optimal triplet,

we use the following basis:

s; S §1 d, dp
d, sz | d; 5
dz da §a

The second and third functions have been previously defined. Their order

has been reversed here to factor the Hamiltonian matrix:



Jss “Vsd \/ZJ &d 4]
NI e 0

The energy of the optimal triplet is
E(5=1) = ~YJsa ~V(Ves ~FoJsa)*+2(Vsa?
As before, the indirect exchange J4; between d, and d; is
Jus = HE(S=0)-E(5=1)]
The s’s do not spin-polarize in the singlet state, so the energy remains
E(S=0) = Jp—Jug

The triplet state does obtain energy lowering by mixing in an excited
configuration in which the s's are triplet coupled. We can approximate
the energy lowering as the square of the off-diagonal Hamiltonian matrix
element connecting the two configurations divided by the exitation

energy. The approximate energy of the triplet is

2(Jsd )2

E(S=1) A Ju-Ju—m
s

Thus, the approximate indirect exchange is

(Jea)?
-y

J“N'l'

Note that here too we have nearly the same ferromagnetic Jg whether
Joa <0 Or J,4>0. (As before, our results show that changing the sign of Juq
results in slightly different Jg4. A negative J,4 should yield slightly

stronger indirect coupling.)

At this point, we must recognize that our model gives the same

magnitude of indirect exchange for both ferromagnetic and
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antiferromagnetic mechanisms. However, in our cluster, we observe
indirect antiferromagnetic exchange an order of magnitude stronger

than the indirect ferromagnetic exchange. Why is there a discrepancy?

In our cluster, the indirect ferromagnetic exchange is compli-
cated by the fact that not just one of the antiferromagnetic pair of s elec-
trons interacts with the two d’s. One of the d’s interacts with just one s

electron:
§1~=(/)——S2——(Jpa)—d,

However, the other d interacts symmetrically with both s’s:
§1——(Jsa')——da——(Jea') 52

We shall distinguish between the different J,4 interactions, because we
shall find that J;4 will be responsible for the same second-order energy
lowering in both singlet and triplet, whereas Jg' will have no effect
through second-order. Moreover, in our cluster, J,4 and J,4' are not
required to have exactly the same values. We solve for the optimal

singlet with the following basis:

& S s | dy

dl dz Sg dg

In this basis, the Hamiltonian matrix is

T 5
Jos —Volsa —sa - Vsd
Birw | Tt W+l

To solve for the optimal triplet, we use the standard basis:
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s, S2 s, | dy s dz
dl Sa Sy
d; d d,

In this basis, only one excited configuration interacts directly with the
first. The Hamiltonian matrix is

Jos ~Yolsa =T’ %sd 0
=
!23—"“ ~Jos +}‘5J:¢““g‘lfu' "2—3'&'73«1'
0 By | daduat Bl

Looking at the singlet Hamiltonian matrix, we see that the second-order

energy is

X(Jaa)?
R gy +Jpqg +R2Jcq’

E(S=0)® Jg s —Jsa'~

Looking at the triplet Hamiltonian matrix, we see that the second-order
energy is

X(Jsa)?
R+ o= E

E(S=1) N Jpy~YoJsa—Jsa'—

To the order of this analysis, J4=0. If /,4'>0, as it is in our wavefunctions,
then we see that the triplet state is slightly more stable than the singlet.
The triplet state also has additional energy stabilization from the third
configuration, which does not contribute to second-order. Thus, we
expect a weak indirect ferromagnetic Jgy.

To understand why the ferromagnetic indirect exchange is so

weak, we should consider the fact that only J,4 is responsible for the

second-order energy lowering of both singlet and triplet. Through
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second-order, Jyq' has no effect on the energy lowering. Our results show
that when a d interacts symmetrically with two antiferromagnetic s's,
the spin-polarization of those s’s cannot make the sum of those interac-
tions more favorable through second-order. Thus, the Jy4' interactions in
our model are largely impotent. In fact, if we entirely eliminate the Jg4'
interact.ions:, we find that the singlet and triplet Hamniltonian matrices
become identical (the triplet matrix rigorously factoring into a 2x2 and
1x1). Since d; no longer interacts with the other three electrons, the
singlet matrix and triplet matrix each reduce to the same three-electron
doublet matrix. In our model, we see that the two J3;' interactions actu-

ally cancel. Consider first all the interactions:
e O e e C/) o
and
§1——(Vaa)——d2——(J/sa")——52
If we eliminate the J,4' interaction between d; and s;, we are left with
da——(Joa ) =51 (Jus) ——52——(Joa)——d,

which yields a second-order antiferromagnetic Jg. If we eliminate the

J.q' interaction between d; and s,, we have
s1——(Ja)——S2
and
dg——(Jaa")——52——(Jua)——y

which yields a second-order ferromagnetic Jgg. The interaction between
d, and s, yields an indirect antiferromagnetic Jg, and the interaction
between d; and s, yields an indirect ferromagnetic J44. To second order

in energy, these interactions cancel. (To higher order, Jg is
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ferromagnetic.) Thus, the spin-polarization of two antiferromagnetic s's
cannot yield a strong indirect exchange interaction between two d's if

one of the d’s has the same interaction with both s’s.
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B. Ezchange Coupling vs. Distance

In 1930, Slater! proposed that the exchange coupling responsible
for ferromagnetism is zero at infinite internuclear distance, reaches a
maximum as internuclear distance is decreased, then goes to zero and
changes sign. In 1951, Zener!* proposed that this change in sign results
because difect exchange dominates at small distance while indirect
exchange dominates at large distance. Zener thought that indirect cou-
pling via the conduction electrons was always positive. However, we find
that at large distance, the indirect coupling is negative. Thus, as internu-
clear distance is increased, the exchange coupling goes from negative to

positve to negative, approaching zero as R -+,

Ruderman and Kittel have shown that indirect exchange can be
positive or negative. The RKKY interaction is oscillatory, being positive at
small distance, oscillating between negative and positive at larger dis-
tances, approaching zero as K-+«. However, the the change in sign we see
at large distance is not due to this effect. In our cluster, the indirect
exchange changes in sign only once. This sign change arises from a local-
izing of the bonding orbitals onto each atom as the internuclear distance
is increased. This bonding transition in our cluster corresponds to the

Mott transition between conductor and insulator.

We have seen that the ground state of our model cluster is S=1,
even though ferromagnetic coupling of all four d? centers would result in
S=2. We have seen how the dominant resonance bonding structure gives
the observed spin coupling of the d’s via an indirect mechanism. For the
solid (fcc) structure, we propose that dominant resonance bonding struc-
tures would also give less than maximal spin coupling of the d's. Of

course, the resonant combination of all bonding structures would give a
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symmetric coupling of all centers, such that all centers would be
equivalent, each having partial magnetic and partial nonmagnetic charac-

ter.

The magnetism of the iron transition series has been thought
inconsistent with localized spins, since the number of Bohr magnetons
per atom is usually far from integer. This thinking is the result of the
limited conceptual model afforded by Hartree-Fock theory. The unfilled
d-shells do not have to be coupled to maximal spin (ferromagnetic) or to
minimal spin (antiferromagnetic). The ground state could be coupled to

less than maximal spin and still be ferromagnetic.

The relative orientation of the magnetic moments of the s and d
spaces is a matter of some theoretical controversy. Zenerl4 predicted
that the coupling between conduction electrons and inner-shell d elec-
trons is ferromagnetic. This is based on the positive exchange integral

between atomic s and 2 orbitals. However, the RK.KY. effect!?

predicts
the interaction to be antiferromagnetic. Viewing the conduction band as
having 'up’ and 'down’ spin electrons, and the d-states as having excess
'up’ electrons, the 'down’ spin s-electrons are more stabilized by virtual
excitations into the empty d-states. Hence, the s and d spaces are

predicted to favor antiparallel spins.

For the iron group metals, the magnetic moment of the conduc-
tion band is parallel to that of the d electrons. For the rare earth metals,
the conduction-band moment is antiparallel to that of the f electrons.
Hence, neither of the above theories is totally correct. Our calculations
show that both parallel and antiparallel moments can result. We have

analyzed our calculations to determine what conditions give each case.

In our wavefunctions, the s and d spaces can be taken orthogonal
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with very little energy loss and without changing the relative energies of
the low-lying states. In these restricted calculations, the s and d charac-
ter is allowed to mix via hybridization, but the orbitals of one space are
orthogonal to the orbitals of the other, and the electrons of one space are
not allowed to excite into the other space. Thus, the local interaction
between s And d spaces must be ferromagnetic. However, the tota}l mag-
netic moments of the two spaces are not necessarily parallel. We find
that the orientation of the two moments depends on the character of s —d
correlations responsible for spin polarizing the s space. An excitation
which increases the spin of the s space but leaves the spin of the d space
unchanged will yield orthogonal s and d moments. An excitation which
increases the spin of the s space but decreases the spin of the d space
will yield parallel moments. An excitation which simultaneously increases
the spin of the s and d spaces will yield antiparallel moments. Note that
antiparallel moments can occur only when the d space is coupled to less

than maximal spin.

Consider now extrapolating our results for this cluster to other
clusters, and finally to infinite latices. Using the elementary mechanisms
of indirect exchange we found in our cluster, we can predict the magnetic
properties of other systems. The biggest problem we will have is deciding

which resonanting valence bond structures of the s-space will dominate.

General statements can be made regarding the magnetic proper-
ties of any cluster. At large internuclear separation, the s electrons
localize on each center. The largest interaction is the ferromagnetic s ~d
exchange on each atom. The next largest interaction is the antiferromag-
netic s—s exchange between atoms. Since the s and d spins on each

atom stongly favor parallel orientation, the antiferromagnetic exchange
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between s electrons on different atoms yields an antiferromagnetic clus-
ter. As the internuclear distance is decreased, the s electrons delocalize
to give the possibility of indirect ferromagnetic interactions between d’s.
In general, the centers will not be totally ferromagnetic. Only centers
related by spatial symmetry must have the same percent magnetic and
nonmagnet.ié character. To predict the dominant character of each
center, one can look at the dominant bonding configuration(s) and apply

the indirect exchange mechanisms we learned from Nig.

Consider an infinite chain of nickel atoms. At long internuclear
distance, the s electrons will localize on each atom, and the chain will be
nonferromagnetic. At smaller internuclear distance, the s electrons will
delocalize and form one-electron bonds between the atoms. If the inter-
nuclear distance is not too small, indirect exchange will dominate. We
can assess the magnetic properties of this chain by looking at the dom-
inant interactions. Our view of indirect exchanges in this system is radi-
cal in two respects. First, we view nearest neighbor interactions alone as
inadequate to model ferromagnetism. Second, we find that next-nearest
neighbor interactions are stronger than nearest neighbor interactions. In
fact, we find that antiferromagnetic next-nearest neighbor exchanges are
an order of magnitude stronger than ferromagnetic nearest neighbor
exchanges. Assuming the nearest neighbor exchange to be a perturba-
tion on the next-nearest neighbor exchange, we predict the d-cores to be
spin-coupled into two singlet next-nearest neighbor chains. Thus, a chain
of nickel atoms will be singlet.

This view of a chain of nickel atoms is supported by model Heisen-

berg Hamiltonian calculations. We have considered rings of spin 1/2 d-

cores bound togeiher by one-electron bonds. The one-electron bonds
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have nearest-neighbor antiferromagnetic exchanges, Js, so they prefer
to be coupled singlet. Each spin 1/2 d-core has a small ferromagnetic
exchange, Jyq, with each of its two neighboring one-electron bonds. We
have chosen J,q = —0.1J5, S0 the results should be consistent with our
indirect exchange mechanisms derived for the perturbative spin polariza-
tion of a singlet s-space. For a four-atom ring, we obtain a singlet ground
state.} From the excited triplet and quintet states, we can calculate the
effective exchange integrals between the d-cores. We find the antifer-
romagnetic next-nearest neighbor exchange to be 50 times as large as
the ferromagnetic nearest neighbor exchange. For a six-atom ring, we
also obtain a singlet ground state, with an antiferromagnetic spectrum of

excited states.

We could modify the relative values of J, and J,g in our model to
change these results. Obviously, if /o4 were to dominate, the ground state
would be high spin. However, we believe our antiferromagnetic results to
properly model actual rings of nickel atoms. There are two important
lessons to be learned from this result. First, next-nearest neighbor
interactions can be larger than nearest neighbor interactions. Second,
an indirect interaction between two d’s is effectively canceled if the two
antiferromagnetic s’s being spin polarized have the same s—d exchange
with one of the d’s. This is why indirect nearest neighbor exchanges are

so small for rings and chains of nickel atoms.

Our model Dy, cluster has led us to think about indirect coupling
as the result of very small spin polarization of a singlet s-space. This
leads to a vstrong antiferromagnetic mechanism, but only a very weak
Walculations (biased for high-spin) on a square Dy, cluster of nickel

atoms yield a septet ground state. Resolving the issue of the ground state for a
square nickel cluster deserves further study.
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ferromagnetic mechanism. In fact, this model does not give a satisfac-
tory explanation of strong ferromagnetic interactions. For larger clus-
ters, the one-electron bond orbitals should be very easily excited to
higher spin states. Substantial spin-polarization of this space should
yield strong indirect ferromagnetic interactions between d cores in
exactly thé manner postulated by Zener. The problem with Zener's
analysis is that it predicts indirect coupling to be always ferromagnetic.
We find that when the valence electrons are located on each atom, as in
an insulator, the indirect coupling is antiferromagnetic. Only when the
valence electrons are located between the atoms, as in a conductor, do

we find ferromagnetic indirect coupling.

In our model, we obtained very little spin-polarization in the s-
space, so we examined the elementary indirect exchange mechanisms in
that limit. Recall that we obtained the same magnitude effect for both
the ferromagnetic and antiferromagnetic mechanisms. Consider now
these mechanisms in the limit of large spin-polarization in the s-space.
To do so, we can simply take J, = 0 in our exact energy expressions. For
the antiferromagnetic mechanism, we see that the singlet and triplet
states are degenerate with E = —2Jg. Thus, the antiferromagnetic
mechanism becomes very weak for large spin-polarization. For the fer-
romagnetic mechanism, we see that the energy of the singlet is £ = —Jgq,
while the energy of the triplet is £ = —RJyg. Thus, the ferromagnetic
mechanism becomes very strong for large spin-polarization. Hence, the
indirect ferromagnetic forces we see in our cluster can become dominant

for larger clusters with bonding orbitals farther separated.

Consider the magnetism of bcc iron. A Heisenberg Hamiltonian

with nearest neighbor antiferromagnetic exchange and next-mearest
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neighbor ferromagnetic exchange would yield an antiferromagnetic
ground state. Now consider a Heisenberg Hamiltonian with nearest
neighbor ferromagnetic exchange and next-nearest neighbor antifer-
romagnetic exchange. Furthermore, consider the possibility that the
next-nearest neighbor antiferromagnetic exchange may be larger than
the nearest ;neighbor ferromagnetic exchange. To our knowledge, such
Heisenberg Hamiltonians have never been considered. We expect that for
dominant nearest neighbor exchange, the ground state will be high spin.
For dominant next-nearest neighbpr exchange, the ground state will con-
sist of two interpenetrating simple-cubic singlet lattices. For comparable
magnitudes of nearest neighbor and next-nearest neighbor exchange, we

hope for a ground state of intermediate spin.

Our results lead to interesting deviations from the Ruderman-
Kittel interaction. First, let us get a physical understanding of why con-
duction electrons respond to a local spin perturbation by spin polarizing
with oscillations having a characteristic wavelength equal to half the de
Broglie wavelength of the highest-energy conduction electrons. To
become acclimated to thinking about this problem, first consider a one-
dimensional electron gas with one electron per unit length. If the elec-
trons were in the high- spin state, the highest-energy occupied orbital

would have a wavelength of two units.
+ - + - +

One can combine this band of high-spin orbitals (unitary transformation)

to yield localized orthogonal orbitals separated by one unit.
a a a4 ¢ o

Consider now the singlet state desaribed with a UHF wavefunction. The
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highest-energy occupied orbital of each spin has a wavelength of four

units.
+ - - -+ (1)

Linear combinations of orbitals with like spin can yield localized orbitals
of like spin separated by two units. Electrostatic repulsion between the
electrons of different spin leads to an interleaving of these two chains of
localized orbitals such that orbitals of different spin are separated by one

unit.
a f a B a (R)

The orbitals of different spin can have spatial overlap, leading to net
bonding. Viewing the conduction electrons in this localized representa-
tion, we can easily see how they should respond to a local spin perturba-
tion. Recall from (1) that the de Broglie wavelength of the highest-energy
conduction electrons is four units. Assume that a local spin perturbation
attracts an a-spin conduction electron. Then the conduction electrons
will be spin-polarized with g-spin electrons dominating at one unit from
the perturbation and a-spin electrons dominating at two units, as sug-
gested by (2). Thus, the oscillation of spin polarization has a wavelength
of two units, half the de Broglie wavelength of the highest-energy conduc-

tion electrons.

In a real system, the conduction electrons do not have uniform
density at each point in space. Consider a string of atoms, each contri-
buting one conduction electron. When the lattice spacing is small, the
conduction electrons will have maximum density between the atoms.
When the lattice spacing is large, the valence electrons will localize on the

atoms, and the system will become an insulator. If each atom has an
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unfilled inner shell, then the valence electrons will receive a local spin
perturbation at each atom. When we considered an electron gas, we
assumed that a local spin perturbation attracting an a-spin electron
would result in an a-spin electron sitting on the sile of perturbation.
However, when the perturbation is located on the atoms and the conduc-

tion electrohs are located between the atoms, this cannot occur.

First we consider the case in which the valence electrons are
located on the atoms. For our string of atoms, this would occur at
sufficiently large lattice spacing that the system is an insulator. Thus we
assume that the valence electrons are localized on the atoms, and we
assume that the valence electrons are described with a UHF wavefunc-
tion. The highest-energy occupied orbital of each spin has a wavelength
of four lattice spacings (1). Taking linear combinations of orbitals with
like spin, we can obtain localized orbitals of like spin separated by two
lattice spacings. FElectrostatic repulsion between the electrons of
different spin leads to an interleaving of these two chains of localized

orbitals such that orbitals of different spin are separated by one lattice
spacing.
a f a g o

Thus, the indirect coupling between nearest neighbor inner shells is
gntiferromagnetic, and the coupling between nezl- nearest neighbors s
ferromagnetic. The indirect coupling oscillates with a wavelength of two
lattice spacings.

Consider now our string of atoms at sufficiently small lattice spac-
ing that the system is a conductor with the conduction electrons located

between the atoms. The localized representation of a UHF description of

the conduction electrons in our string of atoms has orbitals localized
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between the atoms.
o e ﬁ e X o ﬂ s Qe ﬁ

We find that the nearest neighbor interaction between inner shells
(located at atoms) should be very weak, due to the cancellation of strong
indirect ferromagnetic and antiferromagnetic forces. However, the
next-nearest neighbor interaction should be strongly antiferromagnetic.
Our results are opposite to the predictions of Ruderman and Kittel, who
predict that the nearest neighbor interaction should be the strongest and
antiferromagnetic. (We find this interaction to be very weakly ferromag-
netic.) Ruderman and Kittel predict the coupling between next-nearest
neighbors to be ferromagnetic. (We find this next-nearest neighbor

interaction to be strong and antiferromagnetic.) In fact, we obtain the

opposite interaction from Ruderman and Kittel for all larger spacings.
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V1. Conclusion

Our calculations show that the exchange forces responsible for
ferromagnetism are not direct d-d interactions but rather indirect

through the conduction band.

We find that nearest-neighbor interactions are ferromagnetic,
while next-nearest-neighbor interactions are aentiferromagnetic, being
opposile to the prediction of RKKY theory. Indeed, these antiferromag-
netic next-nearest-neighbor interactions can be larger than the fer-

romagnetic nearest-neighbor interactions!

In our Nig model cluster, four S=1/2 d° centers couple to a total
spin of S=1. This calculation is consistent with all atoms in bulk Ni being

d® while the observed moment/atom is only u,, = 0.6 up at 0°K.

We find ferromagnetism for only a short range of atomic separa-
tion. At short R, direct antiferromagnetism arises from d-d interac-
tions. At large R, indirect antiferromagnetism arises from the Mott tran-

sition.
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CHAPTER 3
Multiple Bonding in Transition-Metal Dimers

I. Introduction

When we began our study of metal-metal multiple bonding, the
goal was to study the quadruple bond attributed to such complexes as
[MozClg]*~ and [Crz(CHs)g]*~. To our dismay, calculations on model com-
plexes expected to have Cr-Cr quadruple bonds e.g., H,Cr—CrHz, had no
bond strength! Our wavefunctions at that time were inadequate to allow
the optimal spin coupling of the eight bonding electrons, so a major pro-
gramming effort was undertaken to increase the flexibility of our
wavefunctions. However, after achieving this goal, we found that
HoCr—CrHs still had no bond strength. Of course, most experimentally
observed systems with quadruple bonds are ionic species, so that we
could not make direct comparisons. The only neutral species are the
structures with bridging carboxylate ligands, which do not permit an
evaluation of the direct metal-metal bonding interactions. Thus, there is
no observed quadruple-bond species to provide an unambiguous metal-
metal bond strength. Our theoretical quadruple-bond meodels were
dimers of CrH; and Cx;CIZ in both D,, and Dy geometries. These models
should have yielded Cr-Cr quadruple bond strengths; however, no
significant bonding was found even after allowing optimal spin coupling.
We then questioned the validity of our models for describing the experi-

mentally observed systems.
At this point, we were led to consider eliminating the ligands and

describing the bonding interactions in the dimer. Despite the apparent

simplicity of this system, it is theoretically more challenging than the
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quadruple-bond, for it can have a formal sextuple bond. This requires the
optimal spin coupling of twelve bonding electrons. Another major pro-
gramming effort was required to remove from our codes certain depen-
dencies that increase geometrically with the number of optimally coupled
electrons. Once this goal was accomplished, we were able to examine Crs.
This species is the most challenging theoretically of the transition-metal
dimers, for it contains the maximal number of valence electrons requir-

ing optimal spin coupling in the ground state.
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II. Discussion

When we began this investigation, the experimental data for Cr;
were very uncertain. The dimer was thought to have been observed in
three environments. The first was was in matrix isolation studies of Cr
atoms in Ar matrices.! This yielded an absorption band from the ground
state. Resonance Raman spectra using this band yielded a vibrational
frequency which we now know to be incorrect. The second was in equili-
brium with the monomer over the metal heated in a Knudsen cell.? This
yielded a bond energy for the dimer, but only with assumed molecular
parameters. The estimates of vibrational frequency and bond distance
were quite rough, and excited electronic states were assumed to have no
thermal population. These estimates were of course inaccurate; hence,
so was the bond energy. The third experiment involved photodissociation
of the heinlac::lrbonyl.3 This yielded a bond distance if the observed
species was assumed to be Cr;. The experimentalists could not determine
whether the observed species was CrO;, CrCz; or Crp! However, recent
experiments show that this bond distance is in fact accurate. Thus, the
one experimental value which proved to be accurate was mainly disre-

garded by many researchers.

Consider now the theoretical difficulties of describing Cr; (Figure
1). The HF description makes a severe correlation error, forcing far too
much ionic character in each bond. The HF wavefunction for Cr, is over
20 eV above the energy of the HF atoms! The wavefunction cannot disso-
ciate properly, resulting in even worse energies at larger distances. The
UHF wavefunction for Crp; does allow for proper dissociation; however, it
cannot properly describe bonding. The UHF wavefunction describes

high-spin coupling on each atom, but with a molecular coupling that is a
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mixture of spin states from S=0 to S=6! Moreover, the UHF wavefunction
is incapable of describing strong bonding interactions without giving up
the favorable spin coupling on each atom and building in too much ionic
character, in short, without collapsing into the HF wavefunction. The
GVB-PP wavefunction describes strong bonding interactions with optimal
ionic chara;:ter in each bond. This wavefunction has strong-bond charac-
ter at all distances. The GVB-PP wavefunction dissociates to neutral
atoms but with the unpaired electrons having spins oriented randomly on
each atom. Thus, the SCF wavefunction which dissociates properly can-
not describe strong bonding, and the SCF wavefunction which can

describe strong bonding does not dissociate properly.

Using orbitals from GVB-PP and UHF wavefunctions, we examined
Cl wavefunctions allowing for the optimal spin coupling of all twelve
valence electrons and dissociating to high-spin HF atoms. To our
surprise, the dimer was unbound at small distances where d—-d bonding
was expecied, and only weakly bound at large distances where only s-s
bonding was expected. We then decided that the orbitals might undergo
significant shape readjustments if optimized self-consistently with the
optimal spin coupling of our CI wavefunctions. At this time, we had a gen-
eral MCSCF program into which one could give hand-generated energy
expressions. A significant programming effort was undertaken to write a
program which generates the symbolic energy expression for a CI
wavefunction. Only small CI's (less than approx. 250 configurations) could
be handled by this approach. Unfortunately, this allowed us to solve for
only the higher-spin excited states of the dimer. The ground state was
too large. A more efficient vrocedure allowing for large CI's was con-

ceived. The implementation of this approach required another significant
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programming effort to write a program which generates the one- and
two-electron density matrices for a ClI wavefunction. Having completed
this task, we could perform MCSCF calculations with thousands of
configurations. We tried a 6000-configuration MCSCF for Cr; which allows
proper dissociation to high-spin HF atoms, optimal spin coupling of all
twelve valeﬁce electrons, interpair correlations among the six bonds, and
all intrapair correlations in the s-s bond leading to van der Waals
interactions at long distances. The same result was obtained: unbound
where d—d bonding was expected and only weakly bound where s —s bond-
ing was expected (GVB-vdw in Figure 1).

At this point, we made many attempts to find either a basis set
deficiency or missing correlation. The 3s,3p,3d-space was given 3—¢ free-
dom, a diffuse d function was included, f functions were optimized, and
even bond functions were tried. A full-Cl in the twelve valence orbitals
yielded very little improvement. Various excitations into the virtual orbi-
tals were explored. At each step, we ran into the limits of our program
capabilities. The problem was simply too large to permit the inclusion of
additional classes of correlation without exceeding program limitations.
The energy lowering from subsets of these excitations could not be
assumned additive. We were faced with the fundamental problem of the
variational method: we had no way to determine how close our bond
energy was to the accurate value. One thing was certain: we had optim-
ized a wavefunction sufficiently general to permit strong d—d bonding,
and the system chose to make only a single s—s bond. Having found the
basis set to be adequate and having tested for additional” correlation
within our program limitations, we decided that the d-d bonding was

apparently too weak to overcome repulsive interactions at short dis-
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t.ance.4

We decided to test our approach with Moz,. For Mo atom, the
valence d orbitals are more diffuse relative to the size of the valence s
orbital and core p orbitals than for Cr atom. This is because the d orbi-
tals of Cr apom have no radial node. Thus, we expect that d—d bonding in
Moz should be more important than in Crp. At first, the picture looked
very much the same for Mo, as for Cr;. However, when we optimized a set
of f functions, Moz became bound at short distance. A potential surface
revealed two minima: one at short distance (d-d bonding) and another
at long distance (s —s bonding) (GVB-vdw in Figure 2a). Thus, it was clear
that our method was capable of describing d -d bonding and did so for
Maz.5 It was also clear that d—d bonding should be less important in Cr;

and might not even produce a bound minimum at short distance.

The double well of Mo; required an explanation, and the first
thought was an avoided crossing between two states. This idea was
quickly dismissed with an excited-state calculation. In fact, avoided
crossings have been observed to produce double wells in potential curves
of ezcifed electronic states for many systems, but not for the ground
state. The ground state of a dimer always gets the maximal bonding at
each internuclear distance. Even though the character of the ground
state may change radically with distance, the ground-state potential
curve seems always to be able to drop monotonically as the optimal bond
distance is approached. Thus, the double well we found in the ground
state of Moy was unique and required new understanding for an explana-
tion. We knew that the bonding was changing with distance, but we had
no way to determine just what changes were occurring. The wavefunction

for the ground state was not easily interpreted, because hundreds of
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state wavefunction (GVB-vdw) and the corresponding HF and UHF
wavefunctions. (b) The potential curves (GVB-vdw) for Mo;. (c) The spin
coupling (Uy;) for each bond of Mo,. (d) The overlap between bonding orbi-

tals of Mos.
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configurations made significant contributions, and no one configuration
made a large contribution. We decided that an analysis of the spin cou-
pling was required to understand the character of the wavefunction. This
required writing a new program to analyze the coupling between elec-
trons in a CI wavefunction. Such analysis of Mo; revealed that only s—s
bonding waé occurring at the outer minimum, but d-d bonding was
occurring at the inner minimum. The bond couplings are shown in Figure
2c. The puzzling question was why the two wells were separated by a
hump. Analysis of bond overlaps provided an answer. We found that the
s—s overlap reached a maximum at the outer well of the potential curve.
The bond overlaps are shown in Figure 2d. Thus, as the bond distance is
decreased from the outer well, the s —s bond is being pushed up its inner
repulsive wall before d —d bonds have sufficient overlap to compensate for

this repulsion and cause an inner well.

Our result for Crp; with a long, weak s—s bond and no d-d bonds is
logically consistent with our result for Mo, with a long, weak s—-s bond but
short, strong d-d bonds. At long distance, the s—s bond is only 1/6 as
strong as a simple s—s bond, because the s electron on each center is
one of six high-spin electrons on that center. A strong s-s bonding
interaction requires sacrificing s-~d exchange interactions on both
centers. Thus, we expect a weak s-s bond. The d-d bonds can occur
only at short distance where there is strong electrostatic repulsion
between the two positive d-cores. Thus, the d-d bonds must be strong to
overcome this repulsion, and we have good reason to expect only weak
d~d bonds for Cr;. As the bond distance is decreased and d—-d bonds first
begin to form, each d—-d bond is less than 1/5 as strong as a simple d—d

bond, because even if the s—s bond is strong, each d electron is one of



~138-

five high-spin electrons on a center. A strong d-d bonding interaction
requires sacrificing large intraatomic d ~d exchange interactions. For Cr
atom, these d—d exchange interactions are larger than for Mo atom.
More importantly, the difference in radial extent between the diffuse
valence s orbital and the tight valence d’s is greater for Cr atom than for
Mo atom. Comparing Cr; with Mo,, we expect Cr; to have more unshielded
electrostatic repulsion between the d-cores and weaker d~d bonds to try
to overcome that repulsion. Hence, even though we find the ground state
of Moz to have a short bond distance with d -d bonds, it is perfectly rea-
sonable to expect the dimer of smaller isoelectronic Cr atoms to have a

longer bond distance with only a single s —s bond.

When we presented our Cr; results,? they were consistent with all
the firm experimental data at that time. We corrected the experimental
dissociation energy with our molecular partition function, and obtained
1.0£0.3 eV. Our computed bond energy was 0.3; eV, so we had a
discrepancy. However, since effusion flow was not maintained in the
experiments, we doubted the accuracy of the experimental dissociation
energy.2 Our bond distance of 3.04 1‘; was completely different from the
experimental distance of 1.7 A obtained from photodissociation of
Cr(CO)a.3 However, this experimental band could have been Cr0O; or CrC,.
We and other researchers considered it unlikely that this band was due to
Crz. The most reliable experimental data on Cr; came from matrix isola-

tion studies of Cr atoms in Ar matrices.l

An absorption band was con-
vincingly assigned to the ground state of Cr;. Our lowest dipole-allowed
transition, 'Tf«<'T} (Figure 3), corresponded very closely with this
observed transition, and was even consistent with expected matrix shift

for that transition. Our calculations were consistent with all known
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experimental data, given the stated experimental uncertainties.

Soon after we published our result for Crp, a new experimental
technique, resonant two-photon ionization spectroscopy, was used to
show conclusively that the bond distance is short, about 1.7 A6 We first
considered the possibility that a long-lived excited state with strong d—d
bonding was being observed. An excited state consistent with this
hypothesis would have at least one of the atoms excited to the df
configuration, thereby eliminating the electrostatic repulsion between
two positive d® cores. Our potential curves for these excited states did
not yield very attractive wells at short distance, however. Thus, we were
faced with the fact that our computed d—-d bonds were simply not strong
enough to explain the experimental spectrum. We then examined the
experiment more closely and determined that the lower state in the
observed transition must be either I or £;. It was likely that any spin
multiplicity could be observed with the spectral resolution, so both states
were assumed singlet. Given that the vibrational and rotational degrees
of freedom are cold, it is likely that the lower state in this electronic
transition is indeed the ground state. All of our computed states have
d—d bonds which are too weak, and increased d —d bonding should lower
all our states by roughly the same amount. Thus, we can confidently say
that the lowest state we compute for Crg, 'I7, is indeed the ground state.
We consider this to be the most likely lower state in the observed transi-

tion.

After the bond length was proved short by resonant two-photon
ionization spectroscopy, Kok and Hall” published CI calculations which
yield a short bond length for Cr,. These calculations are inconsistent.

The first inconsistency is that the basis set includes bond functions at the
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midpoint of the bond. This method effectively increases the size of the
basis over the atom-centered functions when the interatomic distance is
small and thus artificially biases the calculation toward small bond dis-
tance. The second inconsistency is that the wavefunction does not prop-
erly dissociate to ground state atoms. The orbitals were optimized by a
method aln;ost. equivalent to GVB-PP, and the CI included all single and
double excitations from the 64 PP-configurations into the twelve valence
orbitals, a total of 3520 configurations. This CI does not dissociate to
high-spin HF atoms. Based on our calculations, we know that this calcula-
tion must in fact have higher energy than HF atoms. Thus, the bond
length obtained from this calculation is simply an artifact of improper

dissociation.

For a consistent calculation, the wavefunction must properly dis-
sociate to ground state atoms. Including only the configurations neces-
sary to permit dissociation to HF atoms, we obtain a long, weak bond. To
improve this result, we shall try to include as many as possible additional
configurations consistent with HF atoms. Note that the biggest CI con-
sistent with HF atoms would be a full GVB-CI in the twelve valence orbitals
times singles into the virtuals plus an RCI in the twelve valence orbitals
times intrapair doubles into the virtuals. This prescription insures that a
double excitation into the virtuals results from a single on one atom
times a single on the other. We tried localizing orbitals to permit more
types of correlation consistent with HF atoms; however, tests with the
high-spin state, for which localization was unambiguous, revealed
significant contamination of intraatomic correlation. Thus, the GVB-CI
times singles plus RCI times intrapair doubles is the largest reliable CI.

Uniortunately, with current program limitations, we can include only a
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small fraction of these configurations.

We now face the problem of trying to include sufficient correlation
to describe d -d bonding accurately. At the experimental bond distance
(we used 3.2 ap), the 8000-configuration MCSCF we published is unbound
by 1.46 eV. _This includes core relaxation (worth 6.7 mh), f-polarization
functions (worth 18.5 mh), and van der Waals correlations (worth 15.0
mh). The best calculation we have to date is unbound by 0.74 eV. This
number was obtained by freezing the twelve GVB natural orbitals from a
1516-configuration MCSCF, optimizing four virtual é-orbitals in a 11364-
configuration MCSCF including vertical singles and intrapair doubles only
in the é-space, optimizing four virtual n-orbitals in a 11364-configuration
MCSCF including vertical singles and intrapair doubles only in the n-
space, optimizing four virtual o-orbitals (two s and two d) in a 11364-
configuration MCSCF including vertical singles and intrapair doubles only
in the o-space, and finally performing the 31060-configuration CI which
includes vertical singles and intrapair doubles from the GVB wavefunction
into optimized virtuals. This wavefunction treats all pairs equivalently

and includes all types of correlation consistent with HF atoms.

What are the important configurations we are excluding? From a
full GVB-CI on Mo, we know that only about 5 mh lowering can be
expected from a GVB-CI over an RCI. Since our virtual orbitals are optim-
ized, we can assume that no other singles would be important. However,
there are many intrapair doubles which we have excluded from our calcu-
lation. One such omission is the angular correlation of the s-s bond. We
would have to include intrapair doubles from the s—s bond into four vir-
tual p,-orbitals in order to make our largest calculation include all 6000

conﬁgﬁrations of our published wavefunction as a subset. These addi-
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tional correlations were not included because of the current limitation of
32767 configurations in our CI program. This limitation could be
removed; however, assuming we had included these p, configurations and
also the GVB-CI configurations, Cr; at this distance would still have been
unbound. There are an enormous number of intrapair doubles from the
d-d bonds bwhich we have omitted. These include excitations into virtual
p and f orbitals. We have tried to identify virtuals of dominant impor-
tance, but it seems that small amounts of energy lowering come from
many sources. The simultaneous inclusion of all these effects is currently

beyond ab initio state-of-the-art technology.

We expect that in the not-so-distant future, a direct-CI approach
could yield an accurate ab inifio description of Cr;. To be useful, this
method would have to be efficient for restricted excitations from a
multiconfigurational reference. Such programs are certain to be
developed. However, before such methods become available, and even
after, we shall want an approach which will not require an enormous
amount of computing to obtain a reliable description of metal-metal

bonding.

An approximate technique might give us reliable results if we are
careful to mimic the missing electron correlation and not simply intro-
duce a parameter to fit the experimental bond energy. What can we learn
about the missing correlation? Let us look at our largest calculation:
vertical singles and intrapair doubles from the GVB wavefunction. We
have separate energy contributions from each orbital symmetry. Includ-
ing the vertical excitations in just the é-orbitals results in 21.0 mh energy
lowering from GVB. Excitations in just the m-space yield 14.1 mh lower-
ing. The o-space gives only 9.4 mh. These effects are not quite additive.
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The sum of these energy lowerings is 44.5 mh, whereas the actual energy
lowering obtained in our large CI over GVB is only 41.4 mh. Note that the
energy lowering is largest in the 6-space. It is interesting that the weak-
est bonds should have the largest correlation corrections. What are the
important correlations beyond GVB? Examining the excitations into the
virtual 6-orbitals, we find that vertical singles into the virtuals are actu-
ally more important than vertical intrapair doubles. This is remarkable,
since single excitations from optimized MCSCF orbitals should not be
important. We find the most important type of virtual excitation to be a
vertical single from a bond pair whose electrons in this configuration are
coupled ungerade singlet. This type of excitation aids a bond pair which
is instantaneously in an ionic configuration. Thus, we have identified the
dominant correlation error with ionic configurations in the bond pairs.
Since ionic configurations contribute much less in weaker bonds, why do
we obtain the largest energy lowering in the &-bonds? Consider the
energy lowerings we obtain at 0.2 ag longer distance. The é-lowering
decreases from 21.0 to 19.8 mh, the n-lowering increases from 14.1 to
15.4 mh, and the o-lowering also increases from 9.4 to 9.9 mh. These data
show conclusively that the &-bonds are not different because of sym-
metry. When the internuclear distance is increased, the ionic character
in each bond pair decreases to zero, but the energy lowering resulting
from correlating these ionic configurations increases to a maximum
before decreasing to zero. The interpretation of this is not unambiguous,
because at small distance, ionic and covalent configurations overlap.
Note that the virtual excitations we have tried result in about the same
total energy lowering at 3.2 and 3.4 aq, so these excitations yield roughly

a constant energy correction near the experimental minimum. This
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behavior cannot be typical for the excitations we are excluding. Since
the GVB wavefunction is repulsive at the experimental bond distance, the
maximal energy lowering from the sum of all excitations beyond GVB

must occur at smaller distance than experimental.

We have developed an approximate method to mimic the excita-
tions beyond GVB. This method recognizes that the dominant correlation
error arises from ionic configurations in the bond pairs. The energy
correction for ionic configurations is uniquely determined by atomic
correlation error. We have applied this atomic correlation correction
(ACC) to the d—d bonds of our 6000-configuration MCSCF for Crz. The s—s
bond is assumed to be adequately correlated with eight natural orbitals.
This ACC method yields precisely the same long-distance minimum as our
ab inifio calculation, but it also gives a short-distance minimum
corresponding to experiment (Figure 4). Thus, we obtain a double

minimum for Crp!
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II1. Approximate Method

We have found that very extensive ab inifio calculations fail to
account for the short bond distance of Cr;. We have found further that
the dominant correlation error beyond GVB is associated with ionic
configurations in the bond pairs. We desire an approximate method to

correct for this correlation error.

A. Development with Hy
We shall outline the steps we have taken in developing such an
approximate method. For simplicity, let us consider Hz. At infinite dis-
tance, the exact wavefunction is covalent
‘I’cw = [¢L¢r + ¢r¢l](aﬂ - ﬂa)

where ¢; and ¢, are singly-occupied orbitals on the left and right centers.
At small distances, we find that this valence-bond covalent wavefunction

wants to mix with an ionic wavefunction
¥im = [p101 + ¢ror](af — Bo)
Because ¢, overlaps ¢,, the covalent and ionic wavefunctions overlap.
The MO wavefunction has two electrons in a bonding orbital
¥ = @1+ ¢r

This MO wavefunction is restricted to have equal amounts of ionic and

covalent character (ignoring normalization):
Yuo = ¢gpg(aB = Ba) = Yooy + ¥ign
Consider now the optimal mixture of ionic and covalent character:
Yor = CG¥eow + GVion

The easiest way to solve for this CI wavefunction is with two orthogonal



~148-
configurations: two electrons in a bonding orbital

¢y=¢l+¢r

and two electrons in an antibonding orbital.
Pu =%~ Pr

The GVB wavefunction optimizes the shape of the orbitals for this
two-configuration CI. A particular linear combination of the natural orbi-
tals yields one-electron orbitals

P1=9g + Ay
?'r = @5 —Apu
With these orbitals, the GVB wavefunction can be written in covalent

form:
Yos = [¢19r + ¢'re'1J(af — Bo)

However, the GVB wavefunction is really a mixture of covalent and ionic

character:
YovB = CVeov + G V¥ign

As the bond is broken (R-«), the GVB wavefunction goes to the
covalent wavefunction (G;-+0). At large R, the GVB description is exact,
but at finite ® there are additional electron correlation effects not expli-
citly treated in the GVB wavefunction. Important additional effects can
be seen to arise in the ionic part of the GVB wavefunction, since doubly-
occupied atomic orbitals typically have about 1 eV of correlation energy.
This leads to less than optimal mixing of the ionic terms into the GVB

wavefunction.

We wish to build into the GVB wavefunction a correction for the

atornic correlation error in the ionic part of the wavefunction. First, we
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must define the covalent and ionic character. Unfortﬁnately, localized
atomic orbitals are not uniquely defined by this wavefunction. Consider A
as an arbitrary parameter for generating localized orbitals to interpret
the wavefunction. The value of A determines how much ionic character
we interpret the wavefunction to have. The A which yields GVB orbitals is
too small, since the GVB one-electron orbitals are more delocalized and
have higher overlap than atomic orbitals. This value always gives zero
ionic character. We shall take A = 1, since this will yield orthogonal local-
ized orbitals. This value might be considered too large, since localized
atomic orbitals would have nonzero overlap at finite distances. As a
result, the value A =1 could yield an overestimate of ionic character.
However, we shall be certain to formulate this method so as not to
overestimate ionic character (see Appendix VII)." The value A = 1 is unique
in providing orthogonal localized orbitals. This makes energy corrections
for ionic and covalent configurations unambiguous, since ionic and
covalent configurations are orthogonal. Most important, the two ionic
configurations are orthogonal to each other, and we avoid the possibility
of any double counting of ionic energy corrections. We shall see that
orthogonal localized orbitals do in fact give us precisely the estimate of
ionic character necessary for a nearly quantitative ionic energy correc-
tion.

How shall we apply an energy correction to this wavefunction?
Consider H; at infinite separation. The covalent wavefunction is exact,
and no correlation error exists. However, the ionic wavefunction has a
correlation error equal to that of H™. We wish to correct the energy of the
ionic wavefunction relative to the covalent wavefunction. This correction

involves both the IP (ionization potential) and EA (electron aflinity) of H
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atom. The excitation energy from the covalent to the ionic wavefunction

is IP-EA. The experimental excitation energy (hartrees) is
0.472249 = 0.5 — 0.027751
while the numerical Hartree-Fock excitation energy is
0.512073 = 0.5 — (—0.012073)

Thus, the correlation error is 0.039824 hartrees in the ionic wavefunction.

In our molecular calculation, we use a finite basis of atom-
centered functions. The ionic wavefunction has a more severe basis
deficiency than the covalent wavefunction. Consider again H; at infinite
separation. Given our Huzinaga 6-gaussian basis contracted 3-¢, the

Hartree-Fock excitation energy is
0.523304 = 0.499940 — (~0.023364)

Thus, the basis error is 0.011231 hartrees greater in the ionic wavefunc-
tion than in the covalent wavefunction. We could lower the energy of our
ionic conﬁgufations by 0.051055 hartrees and thereby correct for both

correlation and basis error.

How shall we actually make this energy correction? We shall per-
form a two-configuration MCSCF on H; using inversion symmetry. All
quantities are evaluated strictly ab inific except that a constant of
energy is added to ionic configurations in the CI. The orbitals respond
only indirectly to this energy correction, as there will be more ionic char-
acter in the CI wavefunction. If the CI does not permit a mixing of
covalent and ionic character (as in I} HF), then the orbitals do not
respond at all to this correction. In terms of our localized orthogonal
orbitals ¢, and ¢,, ionic configurations have two-electron energy J,; or J,...

The covalent configurations use other two-electron integrals. Thus, if we
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add our constant energy of correction to Jy and J, we will properly sta-
bilize ionic configurations relative to covalent configurations. Since we
are using symmetry, we must determine the correction to be added to
each two-electron integral over natural orbitals. By expanding each
integral over natural orbitals into integrals over localized orthogonal
orbitals, we Vﬁnd that to add a constant energy to Jy and J,,, we must add
half that constant to each of the integrals Jg, Jyu, Jgu, and Kn. These
constants are added only to the integrals used in setting up the CI
matrix. Thus, the orbital optimization is not directly affected. Indeed,
the energy correction to be applied is independent of orbital shapes,
although orbital shapes may change in response to an increase in ionic

character of the CI.

Our results for the ground state of Hp are extremely encouraging!
We used our 3—¢ s basis plus a p gaussian of exponent 1.1 for a wide range
of distances. The correlation correction was -0.039824 h, and the correla-

tion plus basis correction was -0.051055 h.

Table 1. Results for Hy
Wavefunction Ruin(ag) | Emn(h) | kmm(aw.)
GVB 1.43 -0.151 0.34
GVB(corr.) 1.42 -0.167 0.35
GVB(corr.+basis) 1.42 -0.172 0.36
EXACT 1.40 -0.174 0.37

The curves were plotted out to 6 a; and they show excellent behavior.
The correlation-corrected curve lies between GVB and EXACT, but much
closer to EXACT (Figure 5). The curve with both correlation and basis
correction lies almost on top of EXACT (Figure 6). The fine quality of this
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Figure 5. Hp'Z} ACC(-.039824 h) (dashed) compared with GVB (upper
solid) and EXACT (lower solid).
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Figure 6. Hz!Zy ACC(-.051055 h) (dashed) compared with GVB (upper
solid) and EXACT (lower solid).
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simple correction is astonishing.

At this time, we should point out that this method does have a
flaw. When the amount of ionic character in the wavefunction becomes
very large, the orbitals respond by effectively reducing the actual ionic
character. This may be accomplished by the bonding and antibonding
orbitals developing different radial extent. The HF wavefunction for the
1Z4 excited state of H; is a good example. At long distances, the singly-
occupied bonding orbital becomes diffuse to maximize bonding and the
singly-occupied antibonding orbital becomes tight to minimize antibond-
ing. However, at short distances, the singly-occupied bonding orbital
becomes tight to approach a He 1s orbital and the singly-occupied anti-
bonding orbital becomes diffuse to approach a He 2p orbital. The HF
curve for this state has a single minimum but does reveal this transition
in orbital shapes with an inflection point on either side of the transition.
The exact potential curve for this excited state does not contain these
inflections. Thus, they are an artifact of the HF wavefunction. We should
desire our approximate technique to correct this artifact of HF. How-
ever, our method allows for only a constant correction to this curve.
Thus, the shape of the potential must remain the same. Since our
method assumes the bonding and antibonding orbitals to have the same
radial extent, we apply the full ionic correction at all internuclear dis-
tances. We expect and observe that we overcorrect this curve at all dis-
tances except where the orbital transition occurs (using correlation plus

basis correction of -0.051055 h) (Figure 7).
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Table 2. Results for Hp T}

Wavefunction Roin(ag) | Fmin(h) | kmin(aw.)

HF 2.10 +0.281 0.077
HF(corr.+basis) 2.10 +0.230 0.077
EXACT 2.43 +0.243 0.033

We see that our approximate method yields excellent results for
the ground state of H,. However, we also see that the !ZJ ionic excited
state has some difficulties. For this excited state, our method retains the
artifacts of Hartree-Fock: a bond distance too short and a force constant
too strong. The problem with this excited state is seen to be that our
energy correction is independent of orbital shapes. Our method of assign-
ing ionic character with orthogonal localized orbitals seems consistent.
We overcorrect only when the bonding and antibonding orbitals develop
different atomic character in order to reduce the ionic nature of the
bond. The open-shell singlet Hartree-Fock wavefunction is fully ionic
when the atomic character of bonding and antibonding orbitals is the
same. However, if the atomic character is orthogonal, say 1s and 2s,
then the Hartree-Fock wavefunction is half ionic and half covalent (ignor-
ing normalization). Moreover, the covalent half has one excited atom 2s!,
and the ionic half has one excited ion 1s!'2s!. Thus, by developing
different bonding and antibonding character, the open-shell singlet
wavefunction can reduce its ionic character to half, and the remaining

ionic character has less correlation error than the ground-state ion.

Let us consider a way to eliminate the flaw in our approximate
method. We want to add our energy correction to ionic configurations

only when the orbital shapes are consistent with closed-shell ionic char-



-157-

acter. Rather than add a constant correction independent of orbital
shapes, we shall use a projection operator such that the ionic correction
is applied to only the desired configurations. Consider the following two-

electron projection operator:

Glewpi><eio] + Gleror><erer |

This operator could be used to modify AO two-electron integrals prior to
MCSCF. Thus, this projected ionic correction would directly affect both

the CI wavefunction and the orbital shapes.

Consider applying this projection approach to Hz. If we choose ¢
to be the HF orbital of H-, then the energy correction is precisely the
same as we previously derived. If we choose ¢ to be the HF orbital of H,
then the ionic energy correction must be determined iteratively, for the
HF orbital of H™ will change with a change in the energy constant being
projected. In order to avoid any double counting of the ionic correction
at small distances, we should take ¢; and ¢, to be symmetrically orthogo-
nal. To test this approach, we should transform our AO integrals into
integrals over orthonormal MO’s. Using symmetry, we take the first two
MO’s to be

$g =% tor
and
$u =% — Pr
The other MO's are Schmidt orthogonalized to these two. We add half our

ionic energy correction to each of the four two-electron integrals Jgy, Ju,

Jpw, 8nd Ky,. No other two-electron integrals are affected by the projec-

tion operator. These modified integrals over MO's can now be used

straightforwardly in any MCSCF calculation. The bonding and antibonding
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orbitals can mix in any character they wish. However, the full ionic
energy correction will be applied only when both bonding and antibonding

orbitals are linear combinations of ¢; and ¢,.

For the excited state of H;, we have obtained dramatically
improved results with projection. Projecting the correlation plus basis
correction of -0.051055 h through H~ HF orbitals, we find that the
minimum is no longer overcorrected. Projection produces remarkable
agreement with the exact curve at small distances (Figure 8). Note that
the projected results must be higher in energy than the unprojected
results at all distances. Thus, the projected curve must depart from the
exact curve where the unprojected curve is above exact. The projected
and unprojected curves almost meet where the HF wavefunction is almosf
purely ionic. This occurs where the HF wavefunction experiences an orbi-
tal transition as the internuclear distance is changed. The artifactual
shape of the HF curve continues to plague us, but projection has pro-

duced a curve whose shape is much closer to exact.

Table 3. Results for H; 'L}

Wavefunction Roin(ag) | Emin(h) | Emnaw.)

HF 2.10 +0.281 0.077
HF(corr.+basis) 2.10 +0.230 0.077
HF (project HY) 2.27 +0.246 0.083

EXACT 2.43 +0.243 0.033

How might we further improve these results? The short bond dis-
tance and strong force constant cannot be further improved without
making the curve more stable where the HF orbital transition occurs. At

this transition, the HF wavefunction becomes almost purely ionic. The HF
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Figure 8. H, !5} ACC(-.051055 h, H™ projected) (upper dashed) compared

with ACC(-.051055 h) (lower dashed), HF (upper solid), and EXACT (lower

solid).
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wavefunction is too restrictive to allow the optimal mixing of ionic and
covalent character. The exact wavefunction has maximal ionic character
at this distance, but the exact wavefunction has more covalent character
than HF. Thus, to improve our results, we must do more than stabilize
the almost purely ionic character of the HF wavefunction at this distance.
We must also try to correct for the restriction that the HF wavefunction
cannot optimally mix in covalent character. We cannot obtain an energy
lower than the unprojected -0.051055 h result without applying a stronger
energy correction. If we choose any orbital other than the H™ HF orbital
for our projection operator, the energy correction will be stronger than
-0.051055 h. The energy correction will have to be solved iteratively to
obtain the desired energy for H™. In our basis, we desire an energy of

-0.527631 h for H™ in order to match the experimental IP-EA:
0.472249 = 0.489940 — (—0.499940 + 0.527631)

If we select the HF orbital of H atom for our projection, then we find
iteratively that an energy correction of -0.060972 h yields the proper

excitation energy.

Projecting an ionic correction of -0.060972 h through H atom orbi-
tals, we find that the problem at the HF orbital transition appears partly
corrected (Figure 9). However, the spectroscopic constants are only

slightly improved.
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Figure 9. Hp 2} ACC(-.060972 h, H projected) (upper dashed) compared
with ACC(-.051055 h) (lower dashed), HF (upper solid), and EXACT (lower
solid).
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Table 4. Results for Hp 1T}

Wavefunction Repin(ag) | Fmin(h) | kmin(aw.)

HF 2.10 +0.281 0.077
HF(corr.+basis) 2.10 +0.230 0.077
HF (project H) 2.27 +0.246 0.063
HF(project H') 2.29 +0.242 0.063
EXACT 2.43 +0.243 0.033

The insensitivity of these results to the orbital being projected is
encouraging. The safest approach would be to project through the orbital
yielding the weakest (noniterative) energy correction. However,
improved results might be obtained with another orbital having a
stronger (iterative) energy correction. Consider the ground state of Hp

using these two projections (Figures 10 and 11).

Table 5. Results for Hp

Wavefunction Rpin(ag) | Enm(h) | Emm(aw.)
GVB 1.43 -0.151 0.34
GVB(corr.) 1.42 -0.167 0.35
GVB(corr.+basis) 1.42 -0.172 0.36

GVB(project H) 1.43 -0.165 0.34
GVB(project H') 1.42 -0.175 0.36
EXACT 1.40 -0.174 0.37

We may find that projecting through ground-state singly-occupied orbi-

tals will yield the best overall agreement with exact potential curves.

In the examples to follow, we shall use projection to assess how

much we may be overcorrecting for the ionic character in our unpro-
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jected method. Thus, we shall consider projection as a test of the accu-
racy of our unprojected results. As a test, we shall take the same ionic
energy correction used in the unprojected calculations and project that
correction through the orbitals which give the lowest energy. The over-
correction for ionic character cannot be larger than the difference
between pfojected and unprojected energies. Thus, we want projection
orbitals which yield the lowest projected energy. For the excited ionic
state of Hp, projecting through H™ orbitals would be expected to yield the
lowest energy. However, for the ground state of H;, projecting through H
orbitals would be expected to yield the lowest energy. Consider the
ground state of Hp with the correlation plus basis correction of -0.051055
h (Figure 6). Our projection test (Figure 12) proves that overcorrection

for ionic terms in the ground state, unlike the excited state, is an

insignificant problem.
Table 6. Results for Hp
Wavefunction Romn(ag) | Eom(h) | kmnaa.)
GVB 1.43 -0.151 0.34
GVB(project H') 1.42 -0.171 0.35
GVB(corr.+basis) 1.42 -0.172 0.38
EXACT 1.40 -0.174 0.37
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B. Mulliple- Bond Test with N,

We have demonstrated that our approximate method is excellent
for H;. However, we must show that the method also yields accurate
results for multiple bonds. N; has been selected for this test. We need to
obtain ionic corrections for each of the p—p bonds. These corrections
shall be obtained from atomic calculations and thus apply rigorously only
to infinite separation. However, we find that excellent results are
obtained by applying this atomic correction over the full potential sur-

face. The covalent wavefunction of N; has two ground-state atoms:

(Ps)l - (ps)r

An ionic configuration in one of the p—p bonds yields a cation and an
anion:

(pz)l - (P‘)r
The anion is not thought to be stable relative to the ground-state atom.

The experimental estimate for the excitation energy from the covalent to

ionic configuration, IP-EA (eV), is

14.63 = 14.56 — (—0.07)
HF calculations in our basis yield

16.02 = 14,00 — {—2.02)

Thus, the energy correction to ionic configurations in the p—p bonds
should be 1.38 eV. This correction is for both correlation and basis set
errors, which are larger for the ionic configurations than for the covalent

8 contraction of the

wavefunction. Our basis is the (9s5p/3s2p) Dunning
Huzinaga basis for N atom plus a set of diffuse s and p gaussians

(¢, =0.086, {p =0.045) and a set of d polarization functions (¢4 =0.76).
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Consider the correlation errors we are correcting. The error in
our HF IP is simply the correlation error between the electron being ion-
ized and all other electrons in the atom. The error in our HF EA is the
correlation error between the electron being added and all other elec-
trons in the anion. The part of this correlation error that is between the
added electron and electrons in other orbitals is nearly the same as the
correlation error in the HF IP. The correlation error in an iomic
configuration is larger than the correlation error in the covalent
wavefunction because of the correlation error between the two electrons
in the doubly-occupied p orbital of the anion. Thus, our correlation
correction is simply an intrapair correction. The basis correction is
mostly an intrapair correction, because a doubly-occupied p orbital
wants to be more diffuse than a singly-occupied p orbital. We shall apply
an ionic correlation plus basis correction of 1.39 eV to each p-p bond.
Since this ionic correction is an intrapair correction, the correction
applied to one bond pair is independent of the correction applied to

another pair.

We have chosen to treat N; with symmetry. Each bond is
described with a bonding and an antibonding orbital. The wavefunction
includes all symmetry-allowed configurations with two electrons in each
of the three bonds and the rest of the electrons in HF core. We consider
this MCSCF to be the proper ab initio wavefunction upon which to base an
approximate correction for the correlation error associated with ionic
configurations. We may refer to this MCSCF as a GVB wavefunction; how-
ever, this MCSCF includes interpair correlations not included in GVB,
which are found to be important for N,. Because of interpair correla-

tions, an ionic configuration in one bond may be correlated with ionic
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configurations in the other bonds to partially neutralize the charge
transfer. To the extent that our ionic correction of 1.39 €V is strictly an
intrapair correction, we wish to correct the energy of a CI configuration

by the full 1.39 eV for each ionic p —p bond.

For our unprojected method, we modify the MCSCF procedure by
correcting the integrals used to set up the CI matrix. Each of the three
p—p bonds is described with a bonding and an antibonding orbital. We
add -(1.39/2) eV to each of the integrals Jpg, Juu, Jpu, and K, for each of
the three p—p bonds. Thus, we modify twelve of the two-electron
integrals used to construct the ClI matrix. This method applies the full
ionic correction regardless of orbital shapes. Possible overcorrection of

ionic terms can be tested with projection.

Our projection test involves projecting the same correction of 1.39
eV through atomic p orbitals. For each of the p—p bonds, we apply the

projection operator

G e ><pipi | + G 1prpr><p,py |

This projection is actually accomplished with symmetry orbitals. We take
symmetry combinations of afomic p orbitals and orthogonalize these
MO’s to the core functions from our unprojected method. Thus, the p
orbitals in our projection operator are atomic p orbitals which are
orthogonalized to the molecular core and symmetrically orthogonalized
to each other. We freeze the core to prevent any artifactual energy
lowering resulting from HF core orbitals rotating with bonding orbitals.
However, a test of this effect at R, results in negligible energy lowering

upon relaxing the core.

Our calculations were peformed at five distances: the experimen-

tal R, and two points at 0.05 A increments on either side of A;. A spline
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fit was used to obtain equilibrium parameters.

Table 7. Results for N,

Wavefunction R,(f\) D,(eV) | w,(em™)

GVB-PP 1.112 | 6.72 2379
GVB-AI 1.122 | 8.36 2334
'GVB-CC 1.118 | 10.09 2373
GVB-PC 1.119 | 10.0 2366
EXACT 1.0977 | 9.901 | 2358

These results are extremely encouraging. We find that possible over-
correction of ionic terms is not a significant problem. All our computed
spectroscopic parameters are brought close to the experimental values.
Comparing our results with those of Dunning,9 we expect a more flexible
basis to contract our bond distance by 0.019 K, increase our dissociation
energy by 0.22 eV, and increase our vibrational frequency by 11 em™.
The ab inifio calculation, GVB-AI, should have a longer bond distance,
smaller dissociation energy, and smaller vibrational frequency than
experimental. The GVB calculation with constant correction for ionic
terms, GVB-CC, yields a slightly shorter bond distance and slightly larger
vibrational frequency than GVB-AL. The bond energy is corrected by 1.7
eV to be within a few tenths eV of the experimental bond energy. The
GVB calculation with projected correction for ionic terms, GVB-PC, yields
almost the same parameters as GVB-CC. Thus, the overcorrecting of

ionic terms is not a significant problem here.
Dunningg has plotted the experimental RKR curve for N, with the

equivalent of our GVB-AI curve. The experimental curve was extrapolated

beyond the highest observed vibrational level. This extrapolation yields a
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larger energy difference between GVB-AI and RKR at larger internuclear
distances than where the extrapolation first begins. We would expect that
our method would apply a smaller energy correction as the internuclear
distance is increased, suggesting that our corrected curve will also devi-
ate from the extrapolated region of the RKR curve. It will be interesting
to carry out calculations in this region to determine whether the problem

is with the calculation or with the RKR extrapolation.
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C. Results for Cr; and Mo,

We have tried our approximate method (without projection opera-
tors) on Crp, and we obtain extremely encouraging results. How shall we
obtain ionic corrections for this system? Just as for Hp, we shall consider
Cr. at infinite separation. In this way, we shall obtain the atomic correc-
tion for correlation error which we shall apply over the full potential sur-

face. The covalent wavefunction has two ground-state atoms:

(s'a®); - (s'd%),
Ionic configurations in the s—s bond have one ground-state Cr* and one
ground-state Cr™:

(s°d%), - (s%d®),
To determine the ionic correction in the s-s bond, we simply find the
error in our excitation energy from the covalent to the ionic wavefunc-
tion:

E(s%d%) + E(s?d%) - 2E(s'd®) = IPg — FAq

The experimental excitation energy, IP-EA (eV), is

8.11 =8.77 — 0.68
while HF calculations in our basis yield

6.77 = 5.95 — (~0.82)

Thus, the energy correction to ionic configurations in our s—s bond
should be 0.66 eV. This corrects for the greater correlation and basis
errar in the ionic wavefunction than in the covalent wavefunction. (Note
that numerical Hartree-Fock results were not readily available for Cr-.

Thus, we were unable to separate correlation error from basis error.)
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How shall we obtain the ionic correction for a d —d bond? An ionic
configuration in one d-d bond has an excited-state Cr* and an excited-

state Cr™:
(s'd*) - (s'd®),
To determine the ionic correction in a d~d bond, we simply find the error
in our excitation energy from the covalent to the ionic wavefunction:
E(s'd*) + E(s'd®) - 2E(s'd®) = IPy — FA,

The IPg is simply the ionization potential of a d electron from the ground
state. The EAg is the electron affinity of the ground state for adding a d
electron. This electron aflinity is negative both theoretically and experi-
mentally. When we add a d electron to the ground s!'d® configuration to
give s'd%, the valence s electron ionizes to yield s°d®. Thus, —EAg is the
excitation energy from s'd® to s%°d%® Experimentally, the excitation
energy from the covalent to the ionic wavefunction (with a continuum s

electron from Cr™), IPg ~ EAg (eV), is
12.69 = 8.29 — (—4.40)
Numerical Hartree-Fock calculations yield
14.09 = 7.06 — (—7.03)

Thus, the correlation error is 1.40 eV greater in the ionic wavefunction
than in the covalent wavefunction. In our basis, the Hartree-Fock excita-

tion energy is
14.43 = 7.42 — (—7.01)

To correct for both basis and correlation error, we can apply 1.74 eV

energy correction to ionic configurations in d —d bonds.
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Before we had arrived at this very logical procedure for obtaining
ionic corrections, we had obtained an almost identical result from an
alternative approach. To find the intrapair correlation error in a doubly-
occupied d orbital, we examined the error numerical Hartree-Fock calcu-
lations make in ionizing an electron from a doubly-occupied d versus the
error in ionizing a singly-occupied d. Numerical Hartree-Fock predicts
that ionizing an electron from the doubly-occupied d orbital of Cr d8 to
give Cr d° results in 1.12 eV energy lowering. Experimentally, however,
this process is 2.36 €V endothermic. Thus, there is a total of 3.48 eV
correlation error in describing this ionization. Numerical Hartree-Fock
predicts that ionizing an electron from a singly-occupied d orbital of V a5
to give V d* costs 2.54 eV. Experimentally, this process costs 4.26 eV.
Thus, there is only 1.72 eV correlation error in describing this ionization.
The difference in correlation errors between these two ionizations, 1.76
eV, is the correlation error between the two electrons in the doubly-
occupied d orbital. This is the value we used for the energy correction of
ionic terms in d-d bonds of Cr;. The new value of 1.74 eV we obtain from
just Cr states (not V) is so close that the Cr; results should be virtually

identical.

How did we apply this ionic correction to Crp? First, we decided to
treat the s-s bond fully eb inifio and thus to test only the d—d effect.
The s—s bond was described with eight orbitals including all correlations
leading to van der Waals interactions at large distances. It would be
interesting to test the s—s effect, as our correction would not properly
mimic the covalent van der Waals interactions but would properly mimic
the correlations of ionic terms. An ionic correction of 1.76 eV was applied

to each d—d bond. The ionic correction we have chosen is strictly an
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intrapair correction. The ionic correction applied to one pair is indepen-
dent of the correction applied to another pair. Thus, the energy of a
given CI configuration must be corrected by 1.76 eV for each ionic d—d
bond. The simplest way to apply this correction to ionic configurations in
the CI is to modify the integrals used to set up the CI matrix. Each d-d
bond is described with a bonding and an antibonding orbital. We add
-0.88 eV (-1.76/2) to each of the integrals J,y, Juu, Jgu, and K, for each of
the five d—d bonds. Thus, we add the same constant energy correction to
twenty of the two-electron integrals used to set up the CI matrix.

Our preliminary results for the ground state of Cr; are quite
promising. We applied an unprojected ionic correction of 1.76 eV to each
d-d bond. (An almost identical value of 1.74 eV corresponds to our most

rigorous derivation of a correlation plus basis correction.)

Table 8. Results for Crg
Wavefunction Ren(A) | Emin(eV) | we(em™)
GVB-vdw 3.06 -0.35 110
GVB-vdw(corr.+basis) 1.63 -1.39 690
EXPERIMENT 1.68 -1.56 470

Our approximate correction yields the same long-distance minimum as
was obtained in a fully ab inifio calculation. However, this method also
yields a short-distance minimum which corresponds to the experimen-
tally observed well (Figure 13). A substantial hump is found between
these two wells. This is very strong evidence that the ground state of Cr;

has a double well.

Note that our bond distance is a little too short and our vibrational

frequency is too large. We have already seen in Hp that this is to be
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Figure 13. Comparison between ab initio (upper) and ACC (lower) poten-

tial curves for Cr,.
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expected when an unprojected ionic correction is being applied and the
orbitals readjust to reduce the actual ionic character. Unlike Hp, the
ground state of Cr; can have substantial open-shell singlet character in
the bond pairs. This ionic character is responsible for interpair correla-
tions in the ground state of Crz. Thus, the artifacts we observed in the
excited state of H; may be evident in the ground state of Cr,. However,
the double well is nof an artifact. If we were to apply a projected ionic
correction, we would necessarily obtain a potential curve that is less
stable at all distances than our unprojected results. Since the outer
minimum of Cr; is obtained without any ionic correction, the hump would
remain, and Crp would still have a double well. Thus, we would expect pro-
jected ionic corrections to give us virtually the same results but with

improved spectroscopic constants for the inner well.

We attemnpted to apply unprojected ionic corrections to the
excited 'L} state of Crp,. Unfortunately, the problems we encountered in
the excited state of H; seem quite evident here as well. We first tried the
3408-configuration MCSCF we used to obtain the dipole-allowed transi-
tions from our 8084-configuration MCSCF of the ground state at the outer
minimum. For the I} excited state, this wavefunction restricts the 4s
and 4p, electrons to be orthogonal. At long distance, this orthogonality
restriction is not very important. However, at short distance, it becomes
necessary to include CI configurations in which these two electrons are
allowed to overlap in the 4s-space. With our unprojected ionic correction
for the d—d bonds, we observe that the !} state develops dominant §-+6°
character. The experimental transition is 21750 em™!, whereas our calcu-
lations lead to an excitation of 16000 ecm™. It appears that our unpro-

jected iomic correction for the d-d bonds is overcorrecting for the
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excited 'X} state of Cr; in the same way that it overcorrects for the

excited 'L} state of H,.

We decided to test the effect of projection on our Cr; potential.
For direct comparison, we used the same ionic correction of 1.76 eV for
each d-d bond. We selected the d orbitals from the ground s'd5 state for
projection. The test was made at 3.2 a4, the experimental minimum. The
effect of projection on the ground state was only 1.0 mh. The effect on
the excited 'ZJ state was only about 1.3 mh. (The unprojected result had
not been fully converged. Otherwise, we should have obtained an effect of
1.5 mh, as explained shortly.) Thus, Cr; does not suffer the large projec-
tion errors we encountered for the excited £} state of H,. The ground-
state curve is virtually identical, except that the inner well should have
slightly improved spectroscopic constants. The ground-state curve
definitely has a double well. The excited state is also virtually unchanged
with projection. This state retains dominant §+6° character with projec-
tion. At 3.2 aq, we make 2.07 ionic d-d corrections for the ground state
and 3.08 ionic d—d corrections for the excited state. Clearly, the excited
state has an additional ionic d—d bond. This is why we expected for the
excited state to have 3/2 the effect of projection as the ground state.
The excitation energy to the excited state is still too small with projec-
tion. However, we expect this to dramatically improve with refinements
of our approximate method. Further refinements are expected to yield
smaller ionic energy corrections than we have obtained in this test.
Since the excited state has one more ionic d—d correction than the
ground state, we expect these refinements to increase the state splitting.
The correction constant should be weaker (-1.74 eV), and the d orbital

used for projection should be more diffuse. The latter change is expected
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to yield significantly improved results.

We shall now consider some improvements in our approximate
method as applied to Crp. Let us consider making ionic corrections in the
s—s bond as well as in the d—d bonds. We then have a projection operator

for ionic terms in the s—s bond
G sisi><sisy| + G [spsy><sp 5y |
and each of the d —d bonds

G lddy><did; | + C4|drdr><d, d, |

If we choose the s orbital being projected to have the shape of the
valence s orbital in s?d5, then G = -0.66 eV. If we choose the d orbital
being projected to have the shape of the doubly-occupied d orbital in
s%d® then C; = -1.74 €V. Another alternative is to choose the valence
orbitals of s'd% but this choice requires an iterative determination of G
and C;. Perhaps the best s orbital to use is from an SCF which is the
average of s°d° and s%d5. This corresponds to the actual ionic limit in our
symmetry-restricted calculation. The value of C; could be determined
noniteratively, once the energy of this SCF is known. Perhaps the best d
orbital to use is from an SCF which is the average of s'd* and s'd®. The
valence s orbital should be stable in this SCF. This should correspond to
an actual ionic limit in our symmetry-restricted calculation. The value of
Cy; could be determined noniteratively, if the experimental energy for
s'd® were known. Unfortunately, a resonance corresponding to this
unbound state is not known. The answer may be to use an SCF which is

the average of s!'d* and s%®.

The approximate method of projecting ionic energy corrections

through symmetrically orthogonalized valence orbitals can be extended
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to general multicenter heteroatom bonding. The possibilities for obtain-
ing accurate bonding interactions in complicated transition-metal sys-
tems are very exciting. The main difficulty will be to obtain the neces-
sary experimental IP's and EA's for ionic corrections. These quantities
can be so difficult to determine accurately even for an atom that we do
not wish to.depend on theoretical estimates of the exact IP's and EA's.
For Cr;, we were able to obtain the necessary ionic correction energy
even though the desired experimental EA was not known. Undoubtedly,
similar creative applications of the known experimental data will be use-

ful for other systems as well.

We were so encouraged by the approximate results for Cr; that we
decided to see how much bonding would be obtained for Mo;. The calcula-
tion was performed exactly like that for Cr,. We applied an ionic correc-
tion to each d-d bond. Our ionic correction was obtained in precisely the
same way that the correction of 1.76 eV was obtained for Cr. We obtained
the intrapair correlation error in a doubly-occupied d orbital by examin-
ing the error numerical Hartree-Fock calculations make in ionizing an
electron from a doubly-occupied d versus the error in ionizing an elec-
tron from a singly-occupied d. Ionizing an electron from the doubly-
occupied d orbital of Mo d® to give Mo d° costs 3.92 eV experimentally,
but only 1.95 eV with numerical Hartree-Fock. Thus, there is 1.97 eV
correlation error in describing this ionization. Ionizing an electron from
the singly-occupied d orbital of Nb d° to give Nb d* costs 5.46 eV experi-
mentally, but only 4.49 eV with numerical Hartree-Fock. Thus, there is
0.97 eV correlation error in describing this ionization. The difference in
correlation errors between these two ionizations, 1.00 eV, is the correla-

tion error between the two electrons in the doubly-occupied d orbital. We



-181-

used this value, 1.00 €V, for the energy correction of ionic terms in d—-d

bonds of Mos.

We calculated four geometries for Mo,: experimental R,, points
0.1 & on either side of R,, and 2.2 ;L We compare the parameters from

the spline-fit of the same four points of the ab initio calculation.

Table 9. Results for Mo,

Wavefunction Reoin(A) | Ean(eV) | we(em™)

GVB-vdw 1.87 -1.41 459
GVB-vdw(1eV CC) 1.94 -3.27 532
EXPERIMENT 1.93 -4.20 477

These results are quite encouraging. Even with this crude estimate for an

ionic correlation correction, we have obtained good results.
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IV. Conclusion

Now that we have used the atomic correlation correction (ACC) to
look at Crp and Moz, we should compare with other approximate methods.
The most sophisticated approximate method applied to Cr; or Mo, is the
local-spin-density (LSD) approach. For these molecules, LSD yields excel-
lent bond distances and reasonable bond energies.10 However, the shapes
of the curves are questionable. This method does not describe the
changes in spin coupling that occur with internuclear distance. We know
that at large distances, the d -d bond couplings lead to less than 1/5
maximal bonding. However, the LSD method does not account for this
factor. Since the parameters in LSD lead to a nearly proper bond energy
(about 20% high) at R,, where the d—d bond coupling is near unity, the
LSD method must overestimate d~d bonding at longer R. The curve for
Crz looks especially suspicious. As the molecule dissociates from R,, the
energy appears to increase linearly. It is even possible that the curve
has a discontinuous slope near the minimum. Such a discontinuity is
expected at the point where UHF degenerates to HF (at which point the

system changes from a net spin density to no spin density).

Looking critically at our own results, we see that both Cr, and Mo,
have bonds that appear to be a bit too weak. The experimental bond
energy for Cr; is quoted as 36+7 kcal = 1.56+.3 ev.? However, using the
latest parameters (gp=1, w,=470 cm™!, r,=1.68 g&),u this third law value
should be corrected to 45+7 kcal = 1.95+.3 eV. Thus, our bond energies of
1.39 eV and 3.27 eV for Cr,; and Mo, are about 0.6 eV and 0.9 eV too small,
respectively. Coupled with the fact that our vibrational frequencies are
too large for these molecules, we must ask what effect is missing. One

simple answer is that we are not applying full correlation correction to
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the s—s bond. This could significantly improve our results. Another
answer is that we still have errors in atomic state splittings. Should the
ground state wish to mix in some atomic d® character, our correction
scheme does not fully account for the correlation error in this state rela-
tive to the ground s'd® state. Experimentally, this excitation is 4.40 €V,
while HF in‘ our basis gives 7.03 eV. With the intrapair correction of 1.76
eV used for Cr;, we would calculate an excitation energy of 5.27 €V, still

0.87 eV high.

The ACC calculation could also be improved by including both d
and s projected ionic corrections. Fortunately, our error in the s-IP (0.82
eV) is very close to our error in the d-IP (0.87 €V). Thus, we can project
IP-EA corrections into s and d orbitals independent from where the elec-
trons are ionized. We can then allow electronic excitations befween the
two o-bonds. This calculation should yield full correlation in the s—s bond
and allow the correlation-corrected d® state to optimally contribute to

the bonding.

We expect improv_ed calculations such as those described above
will yield potential curves for Cr, and Mo, in much better agreement with
the experimental bond energies and vibrational frequencies. The double
well of ground-state Mo, will likely be washed out by the correlation
correction. However, the double well will surely remain in the triplet or
quintet state. It appears that the double well of ground-state Cr, will sur-

vive any further irnprovements in the calculations.
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Conclusion to Thesis

We now understand what has made metal-metal multiple bonds so
difficult to treat. There are two major difficulties. One has to do with the
problem of properly describing the high-spin coupling optimal within an
atom while simultaneously accounting for the couplings of spins on
different centers (which favor low-spin coupling). We have been able to
generate programs and procedures for handling this problem, albeit with
wavefunctions rapidly becoming too costly for even moderate sized sys-
tems (e.g. four transition-metal atoms). The second difficulty is the large
correlation error associated with the charge transfer into a localized d-
orbital that is an intrinsic part of covalent d-bonds. When electronega-
tive ligands such as O or N species are bonded to a transition metal, there
is significant charge transfer from the metal to the ligand, but not vice
versa. The very same correlation error which hurts charge transfer into
a d-orbital actually enhances charge transfer out of a d-orbital. Thus, we
can calculate d-bonds to electronegative ligands with reasonable accu-
racy. For more covalent d-bonds to H or C species, the error starts to
become quite significant. For purely covalent metal-metal d—d bonds,
the correlation error in bonding is far larger than we have ever before
encountered. In order to provide estimates of these effects, we have
developed the atomic correlation correction (ACC) procedure for correct-
ing ab initio GVB wavefunctions. This procedure seems to provide good

estimates of the remaining effects.
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Appendix A. CI with Arbitrary No. Open-Shell Electrons

I modified CIGEN, the configuration generator for CI calculations
written by Barry D. Olafson, to allow more than six open-shell electrons.
The default maximum number of open shells is set to six so that new
default calculations will be consistent with calculations prior to the
change. The user may override the default maximum number of open
shells to any desired value. The program will construct a table giving the
number of spineigenfunctions and the number of determinants for each
possible number of open shells with the current spin state. This table is
used to count the total number of spineigenfunctions and the total
number of determinants in the final configuration list, data which are
passed to the CI program. The CIGEN program was modified to determine
the maximum number of open shells in the final configuration list. This
number may be smaller than the override value provided by the user.
The minimal value is passed to the CI program so that it can quickly
assess whether sufficient energy expression data are available for this
computation and so that only the minimal amount of energy expression

information need be stored.

I wrote a new program HAMILTON to generate the energy expres-
sion information needed by the CI program. These data had previously
been generated manually for up to six open-shell electrons and stored in
the CI program. For more than six open shells, the energy expression
data rapidly become too complex to generate manually and soon become
too lengthy even to store in the CI program. The energy expression infor-
mation generated by HAMILTON is stored in a binary data file which can
be read by the new CI program, a program with no restrictions on the

number of open shells. The new CI program reads only the information
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pertaining to the current spin state and maximum number of open shells,
leaving maximal space for storage of integrals, etc. The HAMILTON pro-
gram will generate a data file containing just the information for the max-
imal number of open shells specified for each spin. The program should
be run once at each new installation to produce a permanent data file
containing siuﬂficent. information for general use. The program can also
be run to produce a very large temporary data file for a specific case

which exceeds the limitations of the permanent file.

The program HAMILTON actually constructs Young Tableaux.
These tableaux are used to set up small pointer arrays needed by the CI
program and also to generate U matrices for the elementary transposi-
tions. The U matrices for non-elementary transpositions are generated
by matrix multiplication. The U matrix for each transposition is sym-
metric, so only the unique half of the matrix is generated and stored.
The U matrices are conveniently generated with the pair of spineigen-
functions as the most rapidly varying index. However, a CI matrix ele-
ment between a pair of spineigenfunctions is most efficiently calculated
frorn U matrices in which the transposition is the most rapidly varying
index. The U matrices are transformed into the desired form as they are
written to the data file. These matrices grow rapidly in size with the
number of open-shell electrons. They are stored as a two-byte integer
array of indices pointing to an eight-byte real array containing only the
unique elements of the U matrices. Unique elements for smaller
numbers of open shells with the same spin are generated first, so the CI
program needs to read only the first part of this array, and the file does

not contain duplicate information for smaller numbers of open shells.

The program HAMILTON constructs spineigenfunctions as a linear
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combination of determinants. These spineigenfunctions are generated in
a standard order which results from a branching diagram. The deter-
minants are also generated in a specific order so that the a—g symmetry
of the singlet determinants can be utilized in the CI program. The deter-
minants are generated with a’s and g’s stored as "on" and "off" bits in
four-byte integers. The current algorithm for generating these deter-
minants in desired order uses a loop structure which must be extended
to increase the number of g8-spins in a determinant. This loop structure
can be easily extended for more f-spins. Besides this section of code,
HAMILTON can be made to handle larger cases by simply increasing array

dimensions.

The phases of the spineigenfunctions generated by raising and
lowering operators are made consistent with the U matrices by multiply-
ing each spineigenfunction by the parity of the permutation which takes
this tableau into the GF tableau. The spineigenfunctions were generated
as an expansion of determinants each containing the product of spatial
orbitals in standard order times a different spin function. We desire the
spineigenfunctions as an expansion of determinants each having the same
spin function, the product of all a’s times the product of all g’s, with the
product of a spatial orbitals and the product of g spatial orbitals each in
standard order. The parity of the permutation which takes each deter-
minant into the desired form is multiplied by the expansion coeflicient
for this determinant in each spineigenfunction. A list of determinants as
an ordered product of a orbitals times an ordered product of g orbitals
and the corresponding expansion coefficients for the spineigenfunctions
are written to the data file. A single array contains the list of deter-

minants for a given spin, with the determinants for smaller numbers of
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open shells first. A single array contains the expansion coeflicients for
the determinants of a given spin, again with the smaller numbers of open
shells appearing first. Thus, the CI program needs to read and store only
the first part of each of these arrays.

I modified CITWO, the CI program written by Frank W. Bobrowicz,
to handle any spin state with any number of open shells. The program
had been restricted to a maximum of six open shells, with the energy
expression information for all spin states with up to six open shells stored
in the program. All arrays which could change with a different spin state
and number of open shells were changed from fixed to variable length,
and the information to fill these arrays was no longer stored in the pro-
gram but read from a data file. Thus, the new CI program has absolutely
no restrictions regarding the spin state or number of open-shell elec-

trons.
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Appendix B. MCSCF with Energy Expressions

I wrote a new program ENERGEN to generate the energy expres-
sion for a general CI wavefunction. This program is patterned after the
new CI program, so it has no restrictions regarding the spin state or
number of open-shell electrons. The CI wavefunction is defined by a
configuration list generated by the program CIGEN. Energy expression
information is read from the data file generated by the program HAMIL-
TON, the same data file read by the new CI program. The energy expres-
sion for the CI wavefunction is generated in symbolic form, valid for any
set of orthonormal orbitals and for any normalized CI vector. The start-
ing guess for the CI vector is obtained from an output file generated by
the CI program. Both the symbolic energy expression and the starting
guess for the CI vector are written to a data file to be read by GVBS.

GVB3 is a generalized MCSCF program written by Larry G. Yaffe.
Major modifications have been made by Ray Bair. Since I was the first
person to use this program for really complicated wavefunctions, I
encountered several errors and had to make corrections myself. The
first step in wavefunction optimization is to rotate the orbitals based on
the current CI vector, so a reasonable starting guess for the CI vector
must be given to GVB3. The second step is to optimize the CI vector
based on the current set of orbitals. These two steps are repeated until

the energy of the wavefunction converges.

GVBS3 calculates the energy terms arising from the core orbitals
and GVB pairs. When I wrote ENERGEN, GVB3 could not properly calcu-
late these terms if the CI included single excitations. I decided the effort
to include single-excitation matrix elements in ENERGEN was not

justified. I have since modified GVB3 to properly calculate these terms
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with the core orbitals and GVB pairs when the CI includes single excita-
tions. Single-excitation matrix elements were not then included in ENER-
GEN, because a new procedure utilizing density matrices rather than
symbolic energy expressions was found to be more efficient for large
wavefunctions. MCSCF wavefunctions with single excitations can be

optimized with this new density-matrix procedure.
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Appendix C. MCSCF with Density Matrices

This appendix describes the second generation of programs I have
developed to optimize wavefunctions having optimal spin coupling for any
number of electrons. In practice, the first-generation programs quickly
run out of space to store the massive quantity of energy expression infor-
mation needed for larger numbers of open-shell electrons. The U
matrices are the first data to become too large. This occurs when the
number of unique elements exceeds 2%-1 = 32767, the largest integer
which can be stored in the two-byte index array. Since U matrices are
not essential to calculating CI matrix elements, but rather are used to
calculate Cl matrix elements more efficiently, I decided to include U
matrices only for a smaller number of open shells than the maximum for
which the essential information must be calculated. Of this essential
information, the largest data are the expansion coeflicients for the deter-
minants which yield the spineigenfunctions. These coeflicients are gen-
erated as integers by spin raising and lowering cperators, so I decided to
store the coeflicients as two-byte integers rather than eight-byte reals.
This results in a significant reduction in the length of the energy expres-

sion information.

I modified HAMILTON to generate a data file containing all essen-
tial information for the maximal number of open shells specified for each
spin but containing U matrices for a possibly smaller maximal number of
open shells which can be specified for each spin. The determinant-
spineigenfunction transformation coefficients are stored as integers,
along with a normalization factor for each spineigenfunction. The per-
manent data file I have set up for general use contains all the information

to calculate twelve open shells for any spin but contains U matrices only
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for a maximum of eight open shells. A data file to exceed these limita-

tions for a specific case can easily be generated.

I modified the new CI program to calculate CI matrix elements
with U matrices when possible but to use determinant expansions when
the U matrices are not available. For this, [ had to write a new section of
the subroutine SEFDET to calculate diagonal matrix elements. Other
changes were required because the expansion coeflficients are stored as
integers. Because of the changes in the data file generated by HAMILTON,
the first-generation programs HAMILTON, CI, and ENERGEN are incompa-

tible with the second-generation programs.

I wrote a new program DENSITY to generate the one- and two-
electron density matrices for a general CI wavefunction. This program is
patterned after the second-generation CI program. The CI wavefunction
is defined by a configuration list generated by the program CIGEN.
Energy expression information is read from a second-generation HAMIL-
TON file. A CI vector is read from an output file generated by the CI pro-
gram. The one- and two-electron density matrices that are generated for
this CI vector are valid for any set of orthonormal orbitals. These density

matrices are written to a data file to be read by GVB3.

The first step in optimizing an MCSCF wavefunction with density
matrices is to optimize a CI vector for the current set of orbitals. The
second step is to generate the density matrices for this CI vector. The
third step is to optimize the orbitals for this CI vector. These three steps
are repeated until the energy of the wavefunction converges. Currently,
these steps are performed with separate programs. The last step of orbi-
tal optimization is performed with GVB3. This program has no knowledge

of the CI expansion. It optimizes the orbitals with density matrices. The
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density matrices for a CI vector are typically very small compared with
the corresponding symbolic energy expression. My experience has been
that symbolic energy expressions too large to store can correspond to
density matrices containing only a few hundred elements. Without this
density-matrix approach, I could not have performed the calculations in

this thesis.
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Appendix D. Spin Coupling Analysis

In order to calculate accurate wavefunctions for molecules, it is
necessary to use a wavefunction written in terms of orthogonal
configurations comprised of orthogonal one-electron orbitals. This
greatly obscures interpretation of the wavefunction. For many wavefunc-
tions, this difficulty is obviated by using GVB-PP orbitals which can be
used to interpret the GVB-RCI wavefunction in terms of VB orbital ideas.
However, this approach does mnof provide spin coﬁplmg information
required to describe magnetic couplings and bonding in transition metal
systems. To solve this problem, I wrote a new program SPINANAL based
on the second-generation program DENSITY to perform spin analyses on

CI wavefunctions.

Because of the Pauli principle, the spin coupling in the wavefunc-
tion is directly related to the permutational symmetry for the spatial
coordinates of the wavefunction. By Pauli’s principle, the expectation
value for a permutation of spin coordinates equals the expectation value
for the permutation of spatial coordinates times the parity of the permu-
tation. Since each spatial configuration of the CI wavefunction differs in
the occupation of at least one orbital and since these orbitals are orthog-
onal, no permutation of the spatial coordinates can connect different
spatial configurations. Thus, this program need calculate only the contri-
butions to the one- and two-electron density matrices involving different

spin eigenfunctions of the same spatial configuration.

The program SPINANAL allows the user to partition the wavefunction
into subsets of orbitals for each of which several properties are

evaluated:
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(1) The first property is the number of electrons in the subset. This

is just the sum of diagonal one-electron densities, <N> = E‘]D,-‘.

(2) The second property is the expectation value for the number of
two-body interactions. This is the sum of Coulomb densities,

<N(N-1)/2> = Sug.

(3) The third property is the expectation value for the sum of all spa-

tial transpositions. This is the sum of exchange densities, <‘§j?,-‘,-> = ‘Z_D,‘{.
J

(4) The fourth property is the expectation value for 52 (within the

subset), <S2>, which is related to the first three properties as follows:

<® IE’?,;,- I@) <Xl(2>:j—?i'i |x>

o (K255 >

<) Z(-¥) + 587 - S*lx>
©j i

Y<N(N-1)/2> + J<N> — <5%

it

Thus, the expectation value for 5% is 3/4 the sum of diagbnal one-electron
densities -1/2 the sum of Coulomb densities minus the sum of exchange

densities.

Note that the exchange density matrix element D§ where i#j
affects the contribution of the exchange integral Kj; to the energy, but
such exchange densities must not be included in the sum of exchange
densities used to calculate the third property. The unwanted exéhange
densities may be eliminated by excluding any contributions arising

between different spatial configurations.

When an orbital subset contains two electrons, the third property

is the bond coupling Urg for this pair of electrons (the expectation value

for transposing their spatial coordinates). In general, the third property

can be used to obtain the sum of U,q's within and between orbital sets.
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Appendix E. Restricted Spin Coupling

This appendix describes the Niy MCSCF wavefunctions in which the
s electrons are coupled rigorously singlet. Our wavefunctions can ulti-
mately be expanded as a linear combination of Slater determinants.
However, the linear degrees of freedom in our calculations are for spin-
eigenfunctions (linear combinations of Slater determinants). We use
standard spin-eigenfunctions which result from a branching diagram.
Consequently, for any standard spin-eigenfunction, the first N electrons
are coupled into a standard spin-eigenfunction. We wish to use only spin-
eigenfunctions which have the s orbitals coupled singlet. We place the s
orbitals before the d orbitals so that we can determine precisely how the
s orbitals are coupled in any spin-eigenfunction. For a given occupation
of spatial orbitals, let us now determine which spin-eigenfunctions we
shall keep. If there are no singly-occupied s orbitals, then we shall keep
all of them.

Consider now the case of two singly-occupied s orbitals. We shall
keep the standard spin-eigenfunctions which couple the first two elec-
trons singlet. Take the total spin to be singlet. For no singly-occupied
d's, we keep the one spin-eigenfunction. For two singly-occupied d’s, we
keep only the 1st of the two. For four singly-occupied d’s, we keep only
the 1st and 3rd of the five spin-eigenfunctions. Now take the total spin to
be triplet. For no singly-occupied d’'s, we omit the one spin-
eigenfunction. For two singly-occupied d's, we keep only the 1st of the
three. For four singly-occupied d's, we keep only the 1st, 3rd, and 6th of
the nine spin-eigenfunctions. Now take the total spin to be quintet. For
two singly-occupied d’'s, we omit the one spin-eigenfunction. For four

singly-occupied d’s, we keep only the 1st of the five spin-eigenfunctions.
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Consider now the case of four singly-occupied s orbitals. We shall
keep the standard spin-eigenfunctions which couple the first four elec-
trons singlet. Take the total spin to be singlet. For no singly-occupied
d’s, we keep both of the two spin-eigenfunctions. For two singly-occupied
d’s, we keep only the 1st and 2nd of the five. For four singly-occupied
d’s, we keeb only the 1st, 2nd, 6th, and 7th of the 14 spin-eigenfunctions.
Now take the total spin to be triplet. For no singly-occupied d's, we omit
all three spin-eigenfunctions. For two singly-occupied d's, we keep only
the ist and 2nd of the nine. For four singly-occupied d’s, we keep only
the 1st, 2nd, 6th, 7th, 15th, and 16th of the 28 spin-eigenfunctions. Now
take the total spin to be quintet. For no singly-occupied d’s, we omit the
one spin-eigenfunction. For two singly-occupied d's, we omit all five
spin-eigenfunctions. For four singly-occupied d’s, we keep only the 1st

and 2nd of the 20 spin-eigenfunctions.
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Appendix I. New Tableau Convention

The standard Young tableau offer a compelling, simple description
for two sets of multiplet orbitals coupled low-spin or high-spin. However,
any intermediate coupling is awkward to represent, as it requires a linear
combination of several tableaux. For example, a single tableau can

represent two triplets

a c
b d
coupled to low-spin (S=0)
alec
b|d
or to high-spin (S=R2).
a
b
c
d

However, the intermediate-spin (S=1) coupling requires the linear combi-

nation of two tableaux:

VEIv| o+ VEb
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We desire a single diagram to represent this coupling. We want
this symbol to have orbitals ¢ and d in the same column to explicitly
denote their high-spin coupling, and we want this symbol to accurately
represent the total spin for all orbitals. The diagram we have chosen is
formally a singlet tableau having blank spaces for "phantom" multiplet

electrons:

b|ec

d

These phantom electrons do not interact with any of our orbitals. They
are simply a device to permit a concise representation of our orbital cou-
plings.

Because the phantom electrons are multiplet coupled, our
diagram actually represents a linear combination of tableaux in which
the phantom electrons are permuted but all orbitals remain in the sarhe
positions. To illustrate, we shall assign the phantom electrons spatial

coordinatesi and j:

a a|i alj
= 1

bjlec| = \/—%- biec| + \/;3— b|e

d jld ifd

Since the total system including phantom electrons is singlet, the multi-
plicity of the orbitals equals the multiplicity of the phantom electrons.
Hence, the total spin of the orbitals equals half the number of phantom

positions.
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Our new convention permits a very simple picture of any two
tableaux coupled to any allowed total spin. For example, consider the fol-

lowing tableaux:

a b g h
cle i1
d j
f k

These may be coupled to S=0:

a b
C e
d| k
13
1]
h g

Here we obtain a standard tableau and find that orbitals f and 1 must be
triplet coupled. These tableaux may also be coupled to S=1,

a b

cle

d

f |k
i

1)1

h g
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or to S=2.
a b
c|e
d
f
k
i
111
h g

For each of these diagrams, one can evaluate elementary transpositions
between the orbitals from top to bottom. Notice that when these
diagrams are inverted, they yield precisely the same information. It
makes no difference which tableau is written at the top and which is at
the bottom. In all cases, the total spin equals half the number of elec-

trons needed to complete a singlet tableau.
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Appendix II. Young Tableaux

We interpret our MCSCF wavefunctions as if we have one-electron
orbitals, even though our wavefunctions are usually more general than to
permit such a simple interpretation. The most general wavefunction with
a rigorous one-electron orbital interpretation is the GVB wavefunction.
We can represent the permutational symmetry of these orbitals pictori-
ally by placing them in Young tableaux. By Pauli, the spatial and spin
permutational symmmetries are associate. Thus, we are representing not

only the spatial permutational symmetry but also the spin coupling.

We use standard tableaux in this thesis. The orbitals are assigned
numerical order, and each Young shape is filled with the orbitals such
that the orbital numbers increase to the right in each row and also
increase downward in each column. A rectangle is drawn around horizon-
tally or vertically contiguous orbitals. The Pauli principle allows no more
than two columns. Two orbitals in a horizontal rectangle are permuta-
tionally symmetric, and are singlet coupled. Orbitals in the same vertical
rectangle are permutationally antisymmetric and are multiplet coupled.
Thus, the rectangles specify the standard tableau and the orbital

sequence.

The optimal spin coupling of a GVB wavefunction can be con-
veniently expressed as a linear combination of standard Young tableaux.
These are orthogonal for a specific orbital sequence. However, to obtain a
more physical interpretation for some systems, we may choose to use
more than one orbital sequence, even though the resulting tableaux may
overlap. Note that the orbital sequence for each tableau is specified by
the rectangles in that tableau.
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Appendix ITII. U Matrices

U}, is the 4j component of the matrix representing the permuta-
tion 7 in the v irreducible representation of the symmetric group. For a
GVB wavefunction, we are interested in the permutational symmetry of
the one-electron orbitals. This determines the energy of the wavefunc-
tion and also specifies the spin coupling. For a GI wavefunction, the
matrix element for a permutation 7 of the spatial orbitals is
<> =<0X®|T|O%P>/ <0%®| O% P>

= UZ, <(I>_| 02%>/ < | 0F%>

= Ufr
Note that we may choose any r for calculating the energy of this
wavefunction, but we must choose r=i to calculate a permutation of the
spatial orbitals. A half transformation of the Wigner projection operators

is sufficient to calculate the energy of a GVB wavefunction
17
¥ = iglq Ox®

but a full transformation is required to evaluate the expectation value
for a permutation of the spatial orbitals:
I r?
= o4
¥= 123G o
The expectation value for a permutation 7 is identical with the U matrix
element for that permutation. Because of Pauli’s principle, spatial and
spin permutational symmetries must be associate:
<‘P¢I‘I’ I\I’j>=¢f<‘1’j]7mul‘l’i>
57 =¢{Usr
Thus, the expectation value for a permutation of spin coordinates is given

by the expectation value for the permutation of spatial coordinates times
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the parity of the permutation.
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Appendix IV. Bond Couplings

The interaction between two electrons can be bonding or anti-
bonding, depending primarily on the expectation value for transposing
the spatial coordinates of the two electrons:

Ury = <75
= —<7F">

= —$-2<5,§;>

Symmetric spatial permutational symmetry is bonding, while antisym-
metric spatial permutational symmetry is antibonding.

Characteristics of Limiting Values for Bond Couplings
Interaction | Bond Coupling | <#§F*> | <&§> | Spin

bonding +1 -1 -X singlet
nonbonding 0 0 -¥ 50:50
antibonding -1 +1 +¥ triplet

To first order in orbital overlaps, the exchange energy between electrons

i and j is directly proportional to Urg- Thus, the bond energy is approxi-

mately the bond coupling (U,.ﬂ) times the coupling constant (2S;hy +K;).
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Appendix V. Heisenberg Hamiltonian

The energy of a GVB wavefunction is
E = <3|H|03%>/ <¥| 028>
where
a = Lsug,r
Including all terms up to first order in orbital overlaps, we obtain the

approximate energy as

Encd|H| (U,E+‘§jU,“1‘-,~,-)@>
=<b|H |@>U‘+4§,<‘I’]H [‘;‘—,;,-@>U,“

~ JHartree .
= RHe +‘);}ij U’ii

where the exchange integral Ji; is explicitly 25;h;;+K;;. Using the Pauli
principle, U; = ¢,U,, we can write an effective spin Hamiltonian to yield

the same energy:
Hepy = E'H“"‘"“E—Ej.fqﬁ?h
In the space of spin functions,
?'f:ph = %2555
Making this substitution, we have the Heisenberg Hamilfonian:

H. = const, -2i§jJij§i'§}
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Appendix VI. Heisenberg Coupling

Consider a system of N electrons divided into two weakly interact-
ing high-spin subsystems containing m electrons and n electrons. The
total spin S may have values from |[m-n|/2 to (m+n)/2 in unit incre-
ments. We seek to evaluate the expectation value for transposing the
spatial coordinates of two electrons, one from the m set and the other
from the n set. By the Pauli principle, this is equivalent to evaluating the
negative of the exchange of the spin coordinates of the two electrons,
which is equivalent to the spin operator —%y; = —%~-2§;'§;. The sum of all
exchanges among the N = m +n electrons is

X(S) Z-74 1M(S)> = <x(5)| T (H-258) 1x(5)>
= <x(S)| Z(H) + T(EH) - 521x(5)>

= UN(N-1)/2 + ¥N — S(S+1)
= —=N(N-4)/4 — S(S+1)

The expectation value for transposing the spatial coordinates of two elec-
trons in the same set is -1, while the expectation value for exchanging
any one of the m electrons with any one of the n electrons has the same
value U for a given total spin S. The sum of all exchanges is

(=1)[m(m=-1)/2 + n(n-1)/2] + U(S)[mn]

Equating the two expressions for the sum of all exchanges leads to
U(s) = ;ml-—[—S(S+1) + ¥(m+n) + Y(m -n)?]

Thus, the exchange coupling between two sets of high-spin electrons is a

simple function of the total spin S.

We have seen that to first order in orbital overlaps, the energy of a

system of electrons is
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— pHort
E = EFi™ + 8.7 Us,

where the exchange integral Ji; is 25;hyj+K;;. For our system of two
high-spin sets of electrons, the spin-dependent contribution to the

energy is
(S) R N-Ad (s)

Substituting our value for U(S), we find that the spin-dependent energy is

E(S) = -S(S+1) e E, £ Jy]

Comparison with the equation for a Heisenberg spectrum of states

E = const. —JS(S+1)
shows that the Heisenberg coupling constant J is simply the average of
all mn exchange integrals Ji. Thus, J is explicitly

J=-L17%3
B mni=1j=1(2S"'h""" + Ky)
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Appendix VII. Comparison of Projection Operators

We shall compare possible projection operators for use in our
approximate method. Consider the homonuclear two-electron bond. We
shall consider all two-electron wavefunctions described with an atomic
orbital I on the left and an atomic orbital » on the right. The covalent

wavefunctions are

Yo = Ir + 7l
¥ V2(1+5%)

oo = Ir -7l
¥ (=5

and the ionic wavefunctions are

uU+rr

\P;’n = —————rmmr—
Ve(1+5%)

Jion = —l-l—___.LZ'—_—
¥ V2(1-5%)

The two gerade wavefunctions can mix to yield the optimum ground state.
The two ungerade wavefunctions cannot mix, since ¥g" is triplet and ¥¥»
is singlet. The ideal projection operator for correcting the energy of the

ionic wavefunctions is
ClIgfm><¥in| + [¥im><iim|]

This would correct the energy of each ionic wavefunction by C. The
energy of the triplet covalent wavefunction would be unaffected, and the
energy of the singlet covalent wavefunction would be corrected by
<¥fv|¥¥m>2C. The maximal correction for a mixture of the two gerade
wavefunctions is simply C, which is obtained when the mixture has unit
overlap with ¥} k

We desire a projection method which will allow us to modify two-

electron integrals prior to optimizing the wavefunction. The integrals J,
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and J,, are each corrected by C. The integrals (Ir [7r) and (i |ir) are each

_S?

A The integral K,

corrected by SC. The integral J;, is corrected by

is corrected by S?C when evaluated in ionic form <I(1){(2) |r(1)7(2)> but is

2
corrected by %-C when evaluated in covalent form <Z(1)r(2)|r(1)I(2)>.

Since we must choose only one correction for K., this ideal projection

cannot be performed by modifying the unigue two-electron integrals.

We have explored a pr.ojection operator which is conceptually
appealing and can be performed by modifying the wnigque two-electron
integrals:

cliti><it| + |rr><rr|]

The integrals J; and J,, are each corrected by (1+S*)C. The integrals
(ir |7r) and (U |ir) are each corrected by S(1+5%)C. The integral J,, is
corrected by 25°C. The integral K, is corrected by 25°C when evaluated
in either ionic or covalent form. Unfortunately, this operator leads to
overcorrections for some of the wavefunctions. The energy of ¥¥" is
corrected by (1-S?)C, which is an undercorrection. However, the energy
of ¥¥™ is corrected by (1+S%)C, which is an overcorrection. The energy of
the triplet ¥ is properly unaffected. The energy of ¥ is corrected by

2
%I‘-SSTC' This is an overcorrection, since for $>.577=1/+V3, the correction

is larger than C.

We have settled on a projection operator which has the same con-
ceptual appeal as the previously considered operator, can be performed
by modifying the wnigque two-electron integrals, and cannot lead to an

overcorrection:

ClITI><IT| + |TF><T7 |]
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The orbitals 7 and 7 are symmetrically orthogonalized:

and

-"-'———-—é—-—_-x—f—:—

where

_ 1-Visg

A 5

The energy of ¥¥™ is corrected by C, the ideal value. The energy of ¥} is

corrected by -if? which is less than the ideal value. The energy of the

triplet ¥g™ is properly unaffected. The energy of ¥;° is corrected by

2
I%-Z—C, which is less than the ideal value. The maximal correction for a

mixture of the two gerade wavefunctions is €. We symmetrically orthogo-

nalize the ionic and covalent gerade wavefunctions to obtain

Ypr = (W + 7)Y/ VR
a (¥ — S

and
Y = (r +7L)/ V2

a (¥FV - S¥Pm)

The purely ionic space is given the full ionic correction of €, and the
purely covalent space is given zero correction. This projection operator

is equivalent to
CLIVF™><¥™| + [¥im><¥im|]

Compared with the "ideal” projection operator, this operator chooses an

alternative orthogonalization of the overlapping ionic and covalent gerade



spaces. Symmetric orthogonalization is special in that the projection can

«215-

be applied to the unique two-electron integrals.

We shall now compare the three projection operators we have con-

sidered.

Energy Corrections from Projection Operators

Wavefunction | ¥ ¥i™ urr U ]
1 0 0 0
yin c (1-S%)C c
yjom c (1459C | =z
geow 4s® | 48° .| S .
o (1+S5?)2 1+5%2 1+5%




