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Abstract

The goals of this research are twofold: First, to develop methods and tools for
studying problems in chemistry, material science and biology, as well as accurate
prediction of the properties of structures and materials of importance to those fields.
Second, use those tools to apply the methods to practical problems. In terms of
methodology development this thesis focuses on two topics: One: Development of a
massively parallel computer program to perform electronic, atomic, molecular levels
simulations of problems in chemistry, material science and biology. This computer
program uses existing and emerging hardware platforms and parallel tools and is based
on decades long research in computer modeling and algorithms. We report on that
development in Chapter 3. Two: Development of tools for Molecular Dynamics
éimulation and methods and tools for course-grained meso-scale modeling of transport
properties and especially diffusion of gas penetrants in polymers. We have formulated a
new method for extracting coarse-grained information from short (0.2-0.5 nanoseconds
[ns]) MD simulations and use this in a meso-scale simulation to calculate diffusion
constants in polymer matrices. This is a grid-based method, which calculates the average
probability of each grid point of being a void and performs constrained and biased Monte
Carlo (MC) dynamics to reach much longer time regimes than possible in MD. The MC
method mimics the three regimes of mean square deviation (MSD) behavior seen in MD,
thus accounting for the proper mobility of the voids and the compressibility of the
polymer matrix. Theoretical discussions and justification for the method is presented in

chapter 6. Initial results on He diffusion in a low-density polyethylene (PE) matrix are



presented in chapter 7. The behavior at different temperatures follows closely the trend

observed from calibrating long term MD for this particular system.
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Chapter 1 Introduction

1.0 Polymers as example of amorphous media

The most common example of amorphous media considered in this thesis is a
polymer.

1.1 Why Diffusion in Polymers

Various industrial applications of polymers involve diffusion of gases through
polyrnersi. Membrane separation of gases in the gas and oil industry has become as wide
spread as more traditional methods based on absorption, pressure-swing adsorption or
cryogenics. The membrane process has certain benefits compared to the cryogenic
process, for example lower investment cost and easier operation. Very important
applications in the food industry involve impeding the diffusion of gases through thin
polymer film;, commonly used as packaging food wrappers or protective coatings. More
applications are anticipated in the burgeoning field of biotechnology, such as biosensors,
controlled release and bioreactors. Moreover, the effects of the interaction between glassy
polymers and small molecules are of practical interest to chemical engineers, due to the
inherent sorption and transport of gases present in most processes they encounter. The
design of new polymer materials would benefit greatly from reliable predictions of the
diffusion properties from atomic models. Both experimental and theoretical data have
been unreliable in the past. Experimental data have not been consistently reproduced
between different reporting laboratories. Theoretical predictions have achieved an order
of magnitude accuracy at best. Moreover, theoretical methods that are not based on

molecular dynamics do not account for the atomistic details that distinguish one polymer
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from another. On the other hand, molecular dynamics methods, which take into account
atomistic details, can not achieve the time scales of simulation necessary to compute
diffusion reliably. We have addressed this problem in this thesis and offer a solution to

the challenge of large time scale simulation of gas diffusion in polymers.

1.2 The need for coarse-grained methods

The polymers typically exist in one of two states: glassy and rubbery. The
underlying difference between those two states comes from the amount of rotation around
the chain axis, which the polymer segments experience. In the glassy state there is very
limited amount of rotation going on. Glassy polymers are usually dense, hard structures
with very little internal void space through which a penetrant can move about. Diffusion
rates are usually very small, but depend largely on the size of the penetrant.

In rubbery state, the polymer chains exhibit a lot more mobility and are thought to
participate in the diffusion process themselves. More free volume is available to potential
penetrants to move through. Thus diffusion rates are generally higher in rubbery state
than in glassy state. At sufficiently high temperatures a gas molecule in the polymer melt
might behave similarly to being in a liquid.

In molecular dynamics (MD) simulations we usually place a particle in the
polymer and track its motion. The small diffusion rates in the glassy state mean that it

will take a very long time for the penetrant particle to diffuse a significant distance away.

o
Without the tracked particle moving from its initial position about 100 angstroms ( A ,) it
is difficult to obtain reliable statistics. This requires simulation times of the order of

microseconds to milliseconds. Using state-of-the-art simulation programs on today’s
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supercomputers allows up to tens or hundreds of nanoseconds of simulation. Thus, it is
desirable to develop a method to simulate the motion of the tracked particle on a much
larger timescale. This method will, by necessity, involve a course-grain description of the
underlying polymer, extracting only features, which are relevant to the penetrant motion.
This reflects the specifics of the gas diffusion process in polymers, which differs a lot
from the diffusion process in gases or liquids in that there is very low concentration of
penetrant particles which move among the very different, relatively rigid polymer atoms.

This difference in the underlying structure leads naturally to attempts to find methods for
course-graining of the system. One such method is the Monte Carlo Void Method, being

described in this thesis. It is briefly described in the next section.

1.3 The Monte Carlo void method

The basic idea behind the Monte Carlo Void Method is to replace the description
of the motion of the polymer with description of the dynamics of the free volume inside
that polymer. During that coarse-graining some information about the polymer motion
will be lost. However, the free volume information that is extracted will be sufficient and
relevant in providing an input to a framework for describing the penetrant motion alone

via a much faster method, thus allowing much longer time scales to be achieved.

1.4 The challenges

Attempts have been made to explore the motion of a particle within the free

volume of a polymer. De Gennes" compared the motion of a tracer particle in a lattice
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where a number of the sites are blocked by other particles with the random walk of an ant
in a labyrinth. Using molecular mechanics it is possible to extract the free volume of a
polymer matrix and perform the ant-in-a-labyrinth kind of motion in it. It is easy to see
that this approach lacks dynamics. The thermal motion of the polymer is not taken into
account. In that case, a finite size penetrant often gets blocked in the polymer chains
without performing any long-range motion (see description of failed attempts, which
considered a rigid polymer matrix in Section 5.2.2.) Our idea is to account for the
polymer motion by introducing proper averaging of the free volume over the dynamic
evolution of the polymer. A few of the questions that need to be answered are:

- What time scale should we use for averaging the polymer motion?

- How often shall we sample the polymer?

- How do we extract the free volume of static snapshot of the polymer?

- What is the exact procedure for averaging the above free volumes?

- How do we use that average to jumpstart a random walk (e.g., what are the

probabilities for the transitions)?

- How do we translate back the random walk step to real time?

- How do we account for differences in particles that have same geometry but

differ in electric charge?

The rest of the thesis addresses the above issues. The most difficult issue is about
translating the random walk step to time. We define a conversion timescale, in which one
random walk step corresponds to a certain amount of time. To determine its value we
develop a framework of matching random walk simulations to short term molecular

dynamics simulation, based on comparing the mean-square deviation functions computed
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for the penetrants. We are able to develop a random walk simulation, which matches very
closely the MD simulation. An example of mean-square deviation plots from MD and
from Monte Carlo simulations is shown in Figure 1.1. What is remarkable is that the
shape of one of the curves agrees very well with the MD curve. The curve labeled MD is
obtained from MD simulations for 10ns, which took about 3 months. The other curves are
obtained through Monte Carlo simulations at various probe radii (the one labeled 07 at
0.7 10"° m, etc.) Those runs took usually a couple of hours. We see that the 1.3 curve
agrees with the MD curve everywhere (e.g. both in the initial anomalous region and in
the linear Fickian region; these plots do not show ballistic area.) The other curves do not
agree with the MD curve in any region. This implies that we have a method for obtaining
the MD 10ns curve, without running MD for all this time. First we run MD for about 400
ps, to obtain equilibration (200 ps) and enough sampling (another 200 ps) to extract the
void data. Then on the extracted voids we run Monte Carlo Dynamics (MCD) with
various probe radii in the range (0.7-1.8 10" m.) For each of those we compute the
mean-square-deviation curves (MSD) One of the MCD MSD curves will match the MD
one very closely in shape. From this match we obtain the correct probe radius, the

conversion scale in terms of time per MC step and the predicted diffusion coefficient.

1.5 Summary of the other sections

A reader who is interested in the applications can go directly to Chapter 7.
Chapter 2 reviews very briefly the Molecular Dynamics methods of computer simulation.

It also describes the parameters that were used in the simulation model. Chapter 3
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describes the development of the general-purpose computational tools for molecular
dynamics. Chapter 4 describes the graphics user interface toolkit for diffusion simulation
and analysis of light gases in polymers. Chapter 5 contains the theoretical background
and brief review of theoretical models for diffusion. Chapter 6 is a self-contained paper
which explores, through the use of random walks on idealized model artificially
generated free volumes, the relevance of random walks through the generalized free
volume of a polymer for prediction of diffusion properties. Chapter 6 also defines in
more detail the Monte Carlo void method being developed in this thesis. Chapter 6 is a
multiauthor paper and was exclusively written by the thesis author with help from
Siddharth Dasgupta and William A. Goddard III. Chapter 7 is another self-contained
paper, which describes in more detail the application of the methodology developed in
this thesis to diffusion of gases in amorphous polymers and more specifically to Helium
diffusion in polyethylene.

Chapter 7 is a result of collaboration between the author of the thesis, other
graduate students and staff members under the supervision of Professor W. A. Goddard.
Guanghua Gao did the development of the torsional forcefields for Polyethylene (PE).
Michael Belmarez generated PE structures and performed many molecular dynamics
simulations of PE and especially studied the torsional flips in the polymer chains. Seiichi
Kashihara brought a practical approach to the problem by analyzing industrial polymers,
copolymers and mixes. Most of the method development and the particular analysis of He

diffusing in PE was performed by the thesis author with help from Siddharth Dasgupta.
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Figure 1.1. Mean square displacement curves obtained from a MD run at 400K at
MC runs at various temperatures.

"Vieth, W.R., Diffusion In and Through Polymers, Hanser Publishers, 1991
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Chapter 2 Molecular Dynamics

2.1 Introduction

Molecular dynamics has become a powerful tool for simulating chemical and
biological systems of sizes much larger than what is possible with first principle quantum
mechanics calculation. Systems of up to millions of atoms have been simulated in
atomistic detail. Forcefields are usually fitted to experimental data (e.g., vibrational
frequencies) and detailed results from quantum mechanical calculations. With the
increase of available computational power and the development of faster quantum
mechanical simulation methods (e.g., Jaguar',) it is possible to obtain better than ever
calibrated forcefield parameters optimized for polymers by fitting to quantum mechanics
computations on chains involving a few monomers. More powerful methods (e.g.,
CMM?", Ewald summation') for non-bond, long-range interactions (e.g., electrostatic and
van der Waals) have also become widely implemented in simulation software. On the
other hand, better methods have been developed for numerical integration of the
equations of motion. By introducing coupling with external heat or pressure bath, it is
possible to obtain more realistic simulations leading to generation of constant volume and
temperature and Gibbs (constant volume and pressure) ensembles” in addition to the
microcannonical ensemble (constant energy and volume.) All of the above simulations
also hold the number of particles constant. The constant energy and pressure ensemble
(known as NTP or TPN) is of especial importance, since it corresponds to the conditions
in which most experiments are conducted. Molecular Dynamics methods have been

described extensively”""" so we will only touch on the relevant points for this study.



2.2 Force fields

All of our simulations use standard forcefields, such as DREIDingVi“, AMBERY,
or the Universal Force Field (UFF*). For detailed description of the forcefield for
polyethylene, see Section 2.2 in Chapter 7. For polyvynildenechoride we used the UFF
forcefield for the bond and angle parts, DREIDing II for the van der Waals parts and the
torsional potentials were again determined from quantum chemical calculations.
Forcefields for mixtures of two polymers, such as PVC and PVDC, also used torsions
calibrated from quantum mechanic computations on lower mass alkanes with selected

hydrogen atoms replaced by Cl.

2.3 Integration parameters

All of our simulations used 1 fs as a timestep, because of the presence of explicit
hydrogen atoms. Using united atom approach in which the hydrogen in the methyl group
is collapsed onto the carbon atom allows for larger timesteps, but it leads to about two
orders of magnitude overestimation of the diffusion constant, primarily because of
overestimation of the free volume. This is discussed further in Chapter 5, Section 5.2.2.
We used the Nose-Hoover method for heat bath coupling to keep the system at the
desired temperature. The heat bath coupling parameter, which controls the rate of transfer
of kinetic energy from the system to the bath and vice versa and thus the rate of
equilibration, was set to 10 times the timestep, or 10 fs. Previous studies have shown that

this value is small enough to assure fast equilibration (of the order of a few hundred
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steps), while by not being too small allows the system to explore different states in phase

space, thus ensuring a degree of ergodicity"i.

2.4 Generation of polymers

All polymers were generated using the Amorphous Polymer Builder module of
Cerius2™, which implements the Rotational Isomeric State theory to select the torsional
distributions from specified gauche-trans barriers. This build procedure is followed by
minimization to remove occasional bad contacts, which lead to huge non-bond energies
between atoms that happen to be too close. Then the structure is equilibrated for at least
100ps. If the initial structure was simulated at 400K temperature, when we lower the
temperature to 350K we again equilibrate for 100ps, before doing a production run. Then
we take the structure from the end of the production run and equilibrate it at 300K,

proceeding in similar manner until we obtain production runs over a range of

temperatures.

! http://www.psgvb.com/publications.html, Schrodinger, Inc., Portland, OR

i Ding H.Q., Karasawa N. and Goddard IIl W.A., J.Chem.Phys.,97, 4309-4315(1992);
Ding H.Q., Karasawa N. and Goddard IIl W.A., Chem. Phys. Lett., 196, 6-10 (1992)
il Raraswa N. and Goddard III W.A., J.Phys.Chem., 93(21), 7320-7327 (1989)
¥ Nose S., Progress of Theoretical Physics Supplement, 103, 1-46(1991)
¥ Allen M.P, and Tildesley D.J., Computer Simulation of Liquids, Oxford University Press, 1987
vi Biograf 3.2.1 Reference Manual, Molecular Simulations, Inc., Burlington, MA, 1993
¥i Lim, K.T., Brunett S., Iotov M., McClurg R., Vaidehi N., Dasgupta S., Taylor S. and Goddard, W.A. III,

Journal of Computational Chemistry, 18(4) 501-521 (1997)



¥iit Mayo S.L., Olafson B.D., Goddard III W.A., J.Phys.Chem. v94(26), 8897-8909(1990)

* Weiner S.J., Kollman P.A., Nyuyen D.T and Case D.A., J.Comp. Chem., 106, 230-252(1986)

* Rappe A.K., Casewit C.J., Colwell K.S., Goddard III W.A. and Skiff W.M., J.Am.Chem.Soc.,114(25),
10024-10035(1992)

X 1im, K.T., Ph.D. Thesis, Caltech, 1995

i hitp://www.biosym.com, BioSym, San Diego, CA
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Chapter 3 Massively Parallel Molecular Simulation Program

3.1 Introduction
The work on developing our primary simulation tool builds up on many years of
work in the Materials and Process Simulation Center at Caltech' and particularly the
programming efforts of Kian-Tat Lim" and is more extensively described by Lim et al. ™
More recently, the MPSim program has been used for a wide variety of other
general purpose molecular dynamics simulations, including study of nanotubes by Gao"
and study of the mechanism of phosphoglycerate kinase (PGK) enzyme by Vaidehi et

al.’

3.2 Structure of the MPSim program

The basic structure of the MPSim program is shown on Figure 3.1. Figure 3.2

depicts the structure of the energy evaluator.

3.3 Message-passing implementation

The original design of the message passing implementation was to use active
messages. Active messages were the preferred model for programming the experimental
fine grain J- and M-machines from MIT. The low latency of the active messages
programming model, along with its natural, asynchronous, multithreaded style of
programming made this model a prime candidate for preferred programming model for

the then-upcoming generations of supercomputers.



Im-2

aipelr) aiebnluon

wedse( isedealg

Ndl
sqqio

NA3
[BIUOUBIOIINN

NAL

1BAOOH-BSON

1 ﬁ 8_Eac>o wnugyinby

I

I

SISZUUIUIN __ so1weuig

I

J

I

siolelnwIg ! To~m:_m>w ABisug pue 92104 w

]

‘cormE_S\ : ; I
S|00) uoieziENSIA : sisAjeuy Asojoefes] : : suoneolddy

. i : SaUNN0J JBALQ

- |

D_mc_m«xm co:mo_csEEoo_moo_En:\n_o;,
5|00 sisAleuy 8NPON B|qeIN0EXT UOHEINWIS

[ J
I

afenbuer uonduosse( eoepsiu;
aoep8Il| Jesn solydeln

wisdwW

sjuouoduwo)) wesAS WeISorJ WISJIN

Figure 3.1 MPSim program system components.



Ir-3

.v.. mc__u_w_D

eauy
dniag “
_ spuog usbBoipAH _III
_ uoIsIo | _Il
_ UOISIBAU] Tll
ostuouneH _ _ ouis0) ;
| ]|
_ m_m_c< T
oluowIBH _ _ 8SIoN _
L I
I
[ e b

sjuouodwo)) 9010, pue A3I1oug

44 eouajep

4

L JBAI0S UBWIZ)I0Q UOSSI0d —

WIWNOH

ymmm_aw,

prem3 H

WIND H

§ spouyien _m:o_umSnEoof

S3UO pleuus’

e

asI0N

gdx3

_ dnjeg

_lll.h sadA )

MPA ‘quonos
puog-uoN

WIS Ul Jojenieas easo4 pue AB1aug

Figure 3.2 MPSim program energy and force components.



II1-4

On the other hand, recent development in parallel programming has placed
emphasis on more traditional message-passing models, such as PVM, NX, and MPI. MPI
especially has been adopted as the de facto standard with support from all vendors.
Native active-message libraries did not materialize for machines to which we have access
(Cray T3D, Intel Paragon, and Silicon Graphics). Therefore, we have decided to proceed
with using the MPI message-passing library. This ensures high degree of portability and
allows for future optimization by using more advanced collective operations provided by
the MPI library.

As a first implementation we have preserved the active-message paradigm and
‘especially the “pull” strategy as described in Lim et al. Here is an example of using the

“pull” strategy to compute the kinetic energy of a system.

For each node compute its local kinetic energy.

If I am not node 0, then {
Send my local kinetic energy to node 0 and
Wait for receiving back the global kinetic energy.
}

Else {

Start a loop for receiving from N-1 nodes a double number and add them together.

Broadcast the global energy to all nodes.
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The above algorithm can be optimized by using the MPI global operations, such as

MPI_Reduce. The flow chart for the current implementation using the simplest MPI calls

is given in Appendix A.

3.4 Shared memory implementation

Portable shared memory programming model

Shared memory programming models have the advantage of greatly simplifying
the initial parallel-programming task. However, attention must be paid to the actual
location of data, to ensure high parallel efficiency without extensive rewriting of code.
Another challenge comes from the fact that there is no standard for shared memory
programming. In contrast there are many standards for message-passing programming,
e.g., MPI or PVM. Since portability is extremely important for us, we have attempted to
formulate a simple shared memory programming model which presents to the program
standardized interface and hides low level machine specific features from the rest of the
program. The idea is that the standardized interface consists in a number of machine
independent function calls, which then provide the necessary machine dependent code in
the body of the function. A shared memory programming model requires two Kinds of
software support: locks and barriers. Barriers are generally provided by all thread
libraries, so we just implement a do_sync() function which does barrier check in and
immediately follow it by check out. Locks are handled differently on different machines.
For example, on SGI architectures they need to be allocated from arena space, whereas

on KSR machines any processor can lock any 128-byte subpage of memory.
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To ensure portability we define a set of macros:
lock_structure(a)
unlock_structure(a)
lock_variable(a)

unlock_variable(a)

Then on each machine we expand those macros to do the proper machine-

dependent code. The exact expansion is given in Appendix B.

Care must be taken also in dealing with private data, which is generally used to compute
global sums. (Each CPU computes its own value for the data, which are later added

together globally.) The following macros are defined to help with global sums:

def_local (Type,a);/*defines a of type Type and local for each CPU*/

local(a) = 5 ; /* assigns our local copy of a to 5 */

global_sum (g,a) ; /* sums all local a’s globally */

Efficiency considerations for shared memory on various machines

Just as for sequential programs it is important to keep data local in order to avoid
cache thrashing (also known as false cache sharing.) On the KSR computer 128-byte
subpages tend to migrate to the processor that needs them most often. That means we
should make sure we dont have two processors accessing the same 128-byte subpage

with approximately the same frequency.
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On the SGI Power Challenge and Origin architecture a memory page is 16K.
This presents a particular problem with the implementation of private data. On the SGI
machine there is no "private" primitive so we implement private variables as arrays. Our
implementation of the "local(private_a)" macro expands to private_a [my_cpu], where
private_a is defined as an array of dimension the maximum number of CPUs. To ensure
efficient memory management it is necessary that each element of the array be of size
16K (one page.) Thus it is more efficient to group all private variables in a structure and

then have just one array of structures.

3.5 Implementation on machines that provide one-sided communication
Some machines, like the Cray T3D, provide one-sided communication (shared
memory get and put in Cray’s parlance). This programming model is somewhere in the
middle between the shared memory and message passing programming models. The
algorithm presented in Figure 3.3 was designed to perform non-local updates. It can be
shown that this algorithm terminates for all processors and produces the correct updated
value of X. Moreover, for most of the cases when there is no contention for simultaneous
update from two processors, this algorithm is much faster than the traditional, message

passing approach which would require sending, receiving and processing a request.
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Inputs: dx , x dx
dx - value to add

X — address to update

I

X->old X

v

Old_X +dx -> new_X

I

Atomic swap (the two values are
swapped by the operating system,
guaranteeably that no other
processors get in the way)
New_X <> X

'

New_X - 0Old_X -> dx

'

No, another processor is
doing a simultaneous
update, so we need to
correct the X value.

Figure 3.3 Common location update algorithm for architectures that provide

one-sided communication.
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3.6 Performance results

3.6.1 Performance on shared-memory architectures
The scaling performance of the MPSim program on the Kendall Square Research

shared memory computer is shown in Figure 3.4a.

Speedup for 480K rhv virus, CMM
1 i I 1 i 1
VFF step —o— |
CMM step -+—~"

14 ,

Speedup

! 1 !
8 10 12

Figure 3.4a Performance on the Kendall Square computer.
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3.6.2 Performance on message-passing architectures

The performance of the MPSim program on a number of message passing
architectures is shown in Figure 3.4b.

8.1 ——— :
Straight line
KSR shared
memory
8.81 | J
SGI Power
Challenge , |
_A.‘%2X1068t0m5 T3D ]
8.001 | ¥ ]
10%atoms T3D
L .
ks —— - P
v L \LKSR MPI ]
e.0081 — . P o —
1 18 108 1e00

cpu’s

Figure 3.4b. Comparative performance on various architectures using message-passing libraries.
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3.7 Programming interface description for addition of new modules

The program provides general-purpose force and energy evaluation engine and a
set of bookkeeping utilities, so that other modules can be added with relative ease. The
flowchart on Figure 3.5 is an example how a driver that implements a different
integration method (these are sometimes called movers since they move the atoms to new
positions). A pseudo-code implementing this algorithm is given in Appendix C. It is also
possible to interface to the program via a macro language, which is described in

Appendix D.
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Initialize all
utilities.

Read Force Field;

Read Structure;

Set up Energy Expression;
Compute degrees of freedom;
Initialize velocities

v

Set up non bonds »
Set up hydrogen bonds

v

Calculate Potential Energy and Forces
(optionally compute stresses, if necessary)

v

Perform the moving operation

v

Perform bookkeeping operations:
Load balancing, lists reassignment,
Garbage collection and saving of
desired dynamics variables.

'

Check termination
condition: number
of iterations,

desired RMS, etc.

—_

Need new
setups?

New module. All
the other modules

are implemented in
MPSim as libraries.

End

Figure 3.5 Flowchart for the API interface to the MPSim program.
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Chapter 4 Suite of Programs for Diffusion Simulation

This chapters documents the suite of programs for analysis and visualization of
the free volume in a polymer as well as performing Monte Carlo diffusion simulations
with it. Those programs are unified in a graphics user interface for the X windows

system. Description of the command line interface is given in Appendix E.

4.1 File formats

Table 4-1 summarizes the most commonly used file formats.

Table 4-1 File formats used by the void manipulation utilities

ExXtension created by description

.bgf POLYGRAF biograf coordinate file format

.par POLYGRAF biograf force field file format

.voids vgen, voids description of voids in structure.
.track MPSim tracks specific atoms more often

.snap MPSim tracks all atoms but less often

.cvoid cvoid description of clusters in .voids file

The .par and .bgf files are described in the Polygraf Reference Manual. The .track and

.snap files are described in another chapter of this thesis.

The void files describe generalized free volume (described in Chapter 6)
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Utilities are available for manipulation of void files as scalar fields.

4.1.1 Generalized free volume format file

The format is one line per void point, listing the X, y and z coordinates of the
point and then an integer describing the void multiplicity at this point. To obtain the
representation described in Chapter 5, this integer needs to be rescaled by the number of
snapshots that were used in obtaining that file. This and other useful information can be
found in the trailer of the file (in order to preserve compatibility with existing software a

trailer, rather than a header, was chosen.)

Here is an example of the trailer:

n_points = 28186, total volume = 615.444
Created by iotov on teijin on Fri Feb 7 03:05:45 PST 1997

by extracting from MD run data.

FF /net/ksr2/templ/iotov/400K/harmpethmecxxlj~He.ff
BGF /net/ksr2/templ/iotov/400K/PEdynRealHelns.bgf
Penetrant Diameter 2

Center Mode 2

Snapfiles used He_400K.snap9804999 He_400K.snap9809999
He_400K.snap9814999% He_400K.snap9819999 He_400K.snap9824999
He_400K.snap9829999 He_400K.snap9834999 He_400K.snap9839999
He_400K.snap9844999 He_400K.snap9849999 He_400K.snap9854999
BGF file was not considered.

First 2408 atoms processed.
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nfiles 10

The nfiles field shows how many files were processed. Center mode specifies if
soft core or hard core potential is being used. n_points can be used for parsing where the
void data ends. The volume is computed taking into account the unit cell size. Since we

have used 100x100x100 grids, in this case, this translates into about 28% free volume.

4.2 Void extraction facility

The void extraction program creates voids from a single file structure or multiple
snapshots obtained from dynamics simulation of the same structure. The output is a
generalized free volume format file. The inputs are the names of the files to process, the
hypothetical penetrant diameter and a center mode flag, which described what kind of

potential is used for the van der Walls repulsion interaction (soft or hard core.)

4.3 Void creation utilities

These utilities create artificial voids useful in modeling. Voids can be in spherical

or cylindrical form. The format of the description file is:

VOID index center_x center_y center_z radius

RATE indl ind2 radius disp_x disp_y disp_z
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\-

Figure 4.1 Example of void visualization.

VOID defines a sphere with the given center and radius.

RATE defines a cylinder of the given axial radius going through the
centers of voids indl and ind2 and of height equal to the distance
between those two centers. The displacement shows that the cylinder is

to be connected to the translated image of void ind2.

4.4. Void analysis utility
This utility takes as input a generalized free volume file. It separates the voids

into connected clusters. It also prints statistics for them, checks for percolation, and
outputs a cluster void file, in which the number of the void they belong to labels the

points. That file can be visualized later. An example is shown in Figure 4.1.
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4.5 MSD and SD computation

Mean Square Deviation (MSD) computation proceeds according to Section 2.3 in
Chapter 6. This is inherently an O(n’) process and thus is the bottleneck of the
computation for large number of Monte Carlo steps with processing trajectory of 100,000
steps taking as long as 1.5 hours on a 250 Mhz Silicon Graphics R4010 processor. Square

Deviation (SD) without averaging is computed in the same way.

4.6 Angle analysis

To verify that a penetrant has explored enough of the available space we
computed the angular statistics of all pairwise vectors betweer‘l positions of the penetrant
for all timesteps. Then we mapped the space angles onto spherical coordinates. If the
particle is moving the same amount in all directions, which is what we want to verify, we

expect the @ dependence to be uniform and the 6 dependence to be proportional to

1 +sin(@ e . o .
———(——l. Plots are smoothed via filtering through a density estimation routine. To

obtain a qualitative measure if the obtained probability densities conform to our expected
formula we feed them into a Kolmogorov-Smirnov' probability estimation routine, thus

obtaining a numerical value for the quality of the random walk sampling.

4.7 Force Visualization

An AVS module was developed which produces ‘hedgehog’ type visualization of

the potential field and its gradient. The field and its gradient are computed by inserting a
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hypothetical probe particle on a 100x100x100 grid and varying its location to scan all 1
million points. Another way to compute the field, the gradient and its derivative is to get
them directly from the CMM algorithm. In this case the octtree decomposition for the
CMM implementation mandates using a grid size of a power of two. Either 64x64x64 or
128x128x128 (corresponding respectively to CMM Levels 6 and 7) are quite feasible for

systems of a few tens to a few hundreds thousands of atoms.

4.8 Void visualization

A perl script that produces Open Inventor ™ 3D scene representing the voids is
listed in Appendix F. It is possible to visualize either cluster .cvoid file or generalized
volume file .void format file. When visualizing a cluster .cvoid file, the colors of the
clusters corresponds to their index, e.g. different clusters are different colors. When
visualizing a generalized volume .void file the color corresponds to the void density at
this point, e.g. red means this point belongs to a void with high probability. Examples is

shown in Figure 4-1.

4.9 Track file visualization

A perl scripts was developed that produce Open Inventor ™ 3D scene description

file for either static scene or animation of the particle trajectories.

4.10 MCD simulation utility

The Monte Carlo Dynamics Utility performs random walk on the generalized free

volume format of Section 4.1.1. The probability for the jump to a neighbor is determined



V-7
by the void values on the current position, its neighbors and the history (where the

particle comes from.) The exact formula and comments are given in Chapter 6, Section

2.1

The input parameters are shown in table 4-2.

Table 4-2 Control Parameters for the Random Walk Algorithm

STEPS Integer number of steps to run for
PENETRANTS | Integer number of penetrants to simulate
SELF Yes/No/ are self transitions allowed and should we
Double double the self-probability ? This is
necessary for 1d-parts of 2d random walks.
MOMENTUM | cos/no/fast | how biased the random walk is.
DIRECTIONS | 6 or 27 nearest neighbors only or include next
nearest ones, too.
TRACK Integer tracking frequency.
PROJECT Name base name for output files.
ABSOLUTE Yes/No renormalize to global maximum
START three user placement of the penetrants
numbers
PERCOLATE | Yes/No detect percolation

The flowchart for the algorithm is shown on Figure 4.2. A practical introduction
to random walks is given in Binder and Heermann'. Our modifications include adding a
bias, which mimics free particle motion, experimenting with different number of
neighbors and considering jump rates that are function of the particle position. It is
exactly in the jump rates, which are function of the grid location that the connection to

the physical system being modeled is made. Another significant development is including
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consideration of the rotational degrees of freedom, a method for which is proposed in

Inputs:
Free volume file
. Number of penetrants
Number of steps
Transition parameters
visited? .

Record position as visited.  [¥

Section 4.11.

Select large void and
———®»{ unvisited location to place
the particle in.

N

Already

A 4
+ Record onset of
Make a random jump percolation in that
according to jump rates. particular
direction

Maximum
number of steps
reached?

All void points

Exit
visited?

Figure 4.2 flow-chart for the Monte Carlo Dynamics algorithm
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4.11 Extension of the random walk to electrically charged penetrants

4.11.1 Case of a point-like particle

We bias the random walk jump probabilities by taking into account the

electrostatic force acting on the random walker. There are a few different ways we could
. . . . . i4
do that. One way is by adding a term to the jump probability, proportional to Oce—ﬁ.
Here W is the particle energy in the electric field produced by the polymer. This is the
traditional Boltzmann method. Another way is to bias all terms with respect to the angle
— —_ g
that they subtend to the field gradient on the grid point B COS( r - Y O)‘ E ) .

In both cases we need to come up with a reasonable value for the parameters o and 3 .

We chose the first way since that allows us also to treat diatomic molecules, as described

in the next subsection.
4.11.2 Case of a diatomic molecule (one with rotational degrees of freedom)

MD studies have shown that the rotational degree of freedom is independent of
the translational one™, with each getting half of the kinetic energy. The vibrational
degrees of freedom are not activated at temperatures below 1000K. If the molecule has
non-zero dipole (or quadrupole, etc. moment) it will interact with the field gradient,

introducing additional force terms into its equations of motion. For example, if the

N
electrostatic potential is ®(r) and the electric field is
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E(r) = -VO(r)

the first few terms in the energy expression for the molecule are™:

W =400~ p.EO-< >0, %1 0)

=Y Oxj

where q is the charge of the molecule p is its dipole moment and Q is its quadrupole

moment. To correct the translational motion we can then add the Boltzmann factor

ae—z. Additionally the interaction of the molecule with the electric field exerts a

torque on the molecule. In first order the torque is given by the expression ; <E .
However, we can use the same expression for W as above and perform a Boltzmann type
of jump, which we do on the joint set of coordinates, translational and rotational. We
would need to introduce a grid over the rotational degree of freedom. We do so by
introducing discrete steps on the unit sphere. We chose to work with the spherical
coordinate theta and phi. Then the configurational space for the Monte Carlo motion has
6 x 4 = 24 possible steps, since we use possible jumps to 6 neighbors and any of them can
be combined with 4 jumps = 2 x 2 jumps in the spherical coordinates ¢ and 6. It is also
possible to introduce a geodesic grid on the sphere, which does not exhibit singularities

around the poles. To be consistent we need to make sure that the step of the rotational
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motion corresponds to the step of the translational motion. We calibrate the two steps to
each other by monitoring the rotational and the translational kinetic energies and
requiring that they be the same. We fix the parameter o by computing the kinetic energy

and requiring that it correspond to the specified temperature.

" Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P., Numerical Recipes in C, Cambridge,
University Press , 1992

i Binder K., Heermann, D.W., Monte Carlo Simulation in Statistical Physics, Springer Series in Solid-State
Sciences, 80, Springer-Verlag, 1992

il Gusev, A.A., Mullerplathe F., Vangunsteren W.F., Suter, U.W., Advances in Polymer Science, 116 207-
247(1994)

¥ Jackson, J., Classical Electrodynamics, New York, Wiley, 1975
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Chapter 5 Methods for studying diffusion in Polymers

Greenfield and Theodorou' give a review of the methods for prediction of the

diffusivity of penetrants in various polymers. Another review is given by Gusev et.al"

5.1. Phenomenological models

Phenomenological models employ coarse-graining to correlate diffusivity
with physical parameters extracted from the molecular ones. These models typically
are analytical and do not involve extensive computer simulations. They can provide
some understanding and explanation of diffusion results, but do not allow for a priori
prediction of transport properties as such prediction would require detailed molecular
and atomic information for the structure of the polymer. A detailed description of the
atoms and their interactions is incompatible with many simplifications usually

necessary for analytical treatment.

5.1.1 Free volume methods

Free volume is the fraction of the volume not occupied by the polymer. This
concept has found uses in discussing physical properties such as viscosity, diffusion
in liquids, viscoelasticity, electrical conductivity, the glass transition and plastic
yielding. Early attempts to predict diffusion consist in trying to relate the diffusion

coefficient (D) of a hypothetical penetrant to the fraction of the volume that is free
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volume (voidage fraction) and possibly some other information obtained from the
detailed structure, in addition to the pure quantity, of the free volume. The free
volume theory implies that the voidage fraction is the dominant content as D is
proportional to both the kinetic velocity and the probability of finding enough free
volume for the hopping of the penetrant. (Cohen and Turnbull™.) An interesting early
result from Wakao and Smith" for diffusion in porous media is that in a random
distribution of pores the diffusion coefficient is proportional to the square of the
voidage.

More recent models have tried to take into account the distribution of the free
volume and even its dynamical redistribution as the polymer evolves performing
thermal motion with time. Takeuchi and Okazaki' have suggested a simple integral
expression of the cluster size distribution that shows very good correlation with the
self-diffusion coefficient of penetrant particles of He and O, for their hypothetical
polymer models. However, the lack of further interest in that expression by the same
or other authors, probably indicates that their model was oversimplified or unrealistic
in some other way.

Free volume distributions have been studied theoretically by using kinetic
theories and molecular dynamics. Experimental probes for free volume at molecular
and atomic scales are possible using small-angle diffraction, fluorescent spectroscopy
and positron annihilation lifetime spectroscopy, which has emerged as the unique
method providing resolution of a few Angstroms in size directly. Chow" has modeled

the size and volume distribution of holes in amorphous polymers and has provided a
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good description of the non-Gaussian spreading observed very recently in position

annihilation experiments.

5.1.2 Series of Activated jumps

For those kind of models the diffusive process is represented as a sequence of
activated hopping motions; a specific molecular mechanism is assumed and the
resulting transition dynamics is calculated. This involves some way of determining
the voids as well as the transition rates for transitions between them. The transition
state theory (TST) mentioned below is one way to do that. Another possible way is by
computing residence times and transition rates from our random walk algorithm
described in Section 6. An algorithm for extracting residence times and transition

rates is given in Appendix G.

5.2. First principle methods

5.2.1 Potential energy along a diffusion path

As early as 1973 Jagodic et al."" attempted a computer calculation of the
diffusion coefficient from the potential energy along a diffusion path. Their progress
was, however, seriously impaired by the lack of methods at that time to generate

realistic polymer structure and to compute realistic potential energy barriers.



5.2.2 Molecular dynamics methods

With the increase in computing power available in recent years, numerous
molecular dynamics studies have been performed for both polymer melts (above the
polymer glass transition temperature) and for glassy polymers. It is a lot easier to
predict the diffusion coefficients for the melts, since the mobility of the polymer and
hence of the penetrant is high enough, so that penetrant motion can be observed

within the limits for computational simulation, approximately of the order of 10 ns.

Various attempts have been made to speed up MD computations. Gusev
et.al "l employed transition-state theory (TST) to study the dynamics of light gases
dissolved in rigid microstructures of glassy polycarbonate and rubbery
polyisobutylene modeled in atomistic detail. They concluded that the rigid-matrix
approach is inadequate for studying the dynamics of light gases in dense polymers,
except He. The rigidity of the polymer was a drawback of a study by Gusev et.al”,
which considered model polymers with atoms bound harmonically to their
equilibrium positions, about which they execute independent vibrations. Again
prediction was in the correct order of magnitude for melt, but orders of magnitude too

small for glassy structures.

In the early attempts to utilize MD for predicting diffusivity considerable
popularity was enjoyed by the united force field approaches, which collapse a
hydrogen onto the carbon atoms, thus eliminating the small mass of the hydrogen
from the dynamic equations and allowing for much larger timestep in the simulations.

This however leads to orders of magnitude overestimation of the diffusion
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coefficients, which can be explained as follows. The free volume in the polymer
consists of large cavities and narrower channels which connect them. Using united
atom forcefields does not change significantly the voids, however it makes the
channels much wider, since there are no hydrogen atoms sticking out of the polymer
chains. Thus the penetrant motion through the channels proceeds largely

unobstructed.

5.3. Free volume computation

Various methods have been used for computation of the free volume of a
particular structure. We have used the following method similar to the one utilized by
Rigby and Roe". The unit cell is divided in 100x100x100 small cubes (approximate
resolution 0.3 A) Then we scan all polymer atoms and mark as occupied all cubes,
which are within a Van der Waals radius of the polymer atom. After all polymer
segments are exhausted what remains is the free volume. To take into account the
finite size of the penetrant molecule the Van der Waals radius is modified to reflect
the interaction between the penetrant and the polymer atom. The exact modification
depends on whether soft or hard core interaction is chosen. Another method for
computing free volume is Delaunay tessellation, which partitions points in space into
irregular tetrahedra such that the circumsphere of each tetrahedron is devoid of points
except those lying on the vertices. An algorithm for computing the tetrahedra is

described by Tanemure et.al™



5.4 Other approaches

Takeuchi and Okazaki*" have considered computing other correlation

functions. First they compute the Van Hove self-correlation function. They see a

shoulder or bump at about 3 A, which they infer to be the order of the cage size.

They also compute the density autocorrelation function and deduce the average
. . o
instance between two adjacent cages to be 6 A . They conclude that anomalous

o
diffusion is seen at spatial scale between those two spatial characteristics 3A and 6 A .
These are very interesting approaches and in our opinion they are worth applying on

polymers modeled with realistic forcefield.

! Greenfield M.L. & Theodorou,D.N. Macromolecules, 26,5461-5472(1993)

% Gusev A.A., Muller-Plathe F., van Gunsteren W.F and Suter U.W., Advances in Polymer Science,
116, 207(1994)

i Cohen M.H. and Trunbull D., J.Chem.Phys., 31, 1164(1959)

" Wakao N. and Smith J.M. , Chem.Engng. Sci., 17, 825-834(1962)

¥ Takeuchi H. and Okazaki K., Makromol. Chem., Macromol.Symp., 65, 81-88(1993)
i Chow T.S., Macrom. Theory Simul., 4, 397-404 (1995)

" Jagodic F., Borstnik B. and Azman A., Makroml.Chem., 173,221-231(1973)

" Gusev A.A., Arizzi S., Suter U.W, J.Chem.Phys., 99(3), 2221(1993)

* Gusev A. A. and Suter UW., J. Chem.Phys.,99,2228-2234(1993)

* Rigby D. and Roe R.J., Macromolecules, 23, 5312 (1990)

* Tanemura M., Ogawa T. and Ogita N., J. Comput. Phys., 51, 191(1983)

i Takeuchi-H, Okazaki-K, Molecular Simulations, 16 (1996)
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Chapter 6 Diffusion of Gases in Amorphous Polymers:
The Monte Carlo Void Method

Mihail lotov, Siddharth Dasgupta,* and William A. Goddard III*

Materials and Process Simulation Center, Beckman Institute (139-74)
Division of Chemistry and Chemical Engineering
California Institute of Technology, Pasadena, California 91125

Abstract

We propose a method for studying diffusion in amorphous structures based on biased random walk in
the free volume extracted from a polymer ( “the Monte Carlo Void Method”). We analyze a number of
simple free volume structures not derived from realistic polymers and show that the biased random
walk method is offering intuitively realistic description of the particle motion and present a framework

for computing diffusion coefficients.

1.0  Introduction

The diffusion of gases in polymers is of major importance to the polymer
industryi. For example, various applications in the food industry involve impeding
the diffusion of gases (such as Hy, Oy, CO,, H>0, and CH,) through thin polymer
films". The design of new copolymers, new monomers, or new blends to selectively
impede the diffusion of some gases while allowing others (O, versus N, CO, versus
O, H,O versus O;) underlies a number of potential applications. The design and
optimization of the selectivity of polymer membranes for diffusion would be greatly

facilitated if reliable predictions of diffusivity could be made rapidly in advance of
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synthesis and experiment. The time scale for diffusion (Usec to msec) is far too long
for routine applications of molecular dynamics (MD). This has made it difficult to
obtain reliable diffusion data from theory'. In addition, it is not easy to obtain
reproducible data on gas diffusion in polymers from experiment. As a result there is
little in the way of reliable predictions on how to design polymer films to achieve
specific diffusion properties.

The permeability (P) of a gas through a membrane can be written as'"
P=DS (1)

where D is the diffusion coefficient and S is the solubilit}}. Generally, only P is
available experimentally, but D and S depend differently on the various design
parameters. Thus, it is useful to be able to independently measure each. In this paper
we will focus on D.

In the long time limit for a three-dimensional system, Einstein showed that the

total distance R traveled in a time (t) is given by Equation (2) (the Einstein relation)

<R*>=6Dt ast— oo (2)

where < > designates averaging over the ensemble of starting and ending points for
the given time interval t. To use theory to predict D for a gas X in a polymer, it is
necessary to carry out a number of MD calculations (each starting with X in various

sites) for times sufficiently long that (2) is obeyed.

The problem with using MD to study gaseous diffusion is the time scale. It is
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necessary for the calculation to proceed for a time t sufficiently long that the Einstein
relation (2) is valid. Even for simple gases in polymers, the relevant times are often
on the order of microseconds (Us) or longer. Since the MD time step is ~1
femtosecond (fs), a total time of psec requires ~1 billion steps. For a polymer of
realistic molecular weight, this requires very long times on even the largest
supercomputer. Consequently, it is usually not practical to use MD to obtain reliable
values for D.

It is desirable, therefore, to develop another framework for simulating the
motion of the penetrant particle, one that will be faster and .will concentrate on the
diffusion relevant motion only, using a coarse-grain description of the surrounding
system. For well-ordered media (e.g., crystals) the motion of the diffusing penetrant is
usually modeled in terms of jumps between vacancies of the crystal structure. No
ordered structure exists for amorphous system, but it is still possible to study the free
volume in such a system — the locus of all points accessible to a hypothetical
penetrant of a given radius. This is usually a complex irregular geometric shape with
rich structure in which features like cavities, channels, dead-ends, etc., can be
discerned.

Thus, we consider a Monte Carlo (MC) process in which a pseudo particle
moves unrestricted, or partially restricted, within the free volume and is prohibited
from leaving it (i.e., it encounters an infinite potential outside of it). In this paper, we
will study model systems that are not based on realistic polymers, but are better suited
for simulation and analysis.

Section 2.0 defines the generalized free volume concept. Section 2.1 presents
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the Monte Carlo void diffusion method (MCVD). Sections 3.1-3.4 apply the method
to study diffusion in simple model systems. Section 3.5 makes a connection to MD.
Section 3.6 attempts to explain the origin and the behavior of the anomalous
diffusion. Section 4.0 discusses how those results might be applied for studying

realistic polymers.

2.0 Generalized free volume concept

The free volume is defined as the collection of points accessible to a penetrant
of a given radius. Thus it can be viewed as a scalar field defined on the unit cell and
which has value 1 when the point is considered to belong to the free volume and
value O otherwise.

"~ We can perform operations like addition or subtraction on such scalar fields
and multiplication by a number.

When we take consecutive snapshots of the simulated structure and add
together the free volume scalar fields for each of them and divide by their total
number, we obtain the generalized free volume, which is again a scalar field valued
between O and 1, but now it can accept also values other than 0 and 1. This average
free volume contains not only static but also dynamic information about the simulated
structure. It can be argued that the value of the free volume is related to the potential
energy of the penetrant in that the higher the free volume value, the lower the
potential energy is. At points where the free volume field is O, the penetrant

experiences infinite potential and is prohibited from going there.
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2.1 The Monte Carlo Void Diffusion (MCVD) Model

In our approach we compute the free volume fields on a 100x100x 100 rectangular
grid. It appears, then, that this free volume field can be viewed as a probability grid
for performing a biased random walk. Given that void probability grid we will
consider a random walk (in which a particle on a grid point moves to an adjacent grid
point. We assume the probability to be proportional to the void weight (1 if always a
void to O if never a void). Figure 15 shows a MD trajectory within a void (at 1fs
resolution). In order for a random walk process to mimic this, we include a bias in
the jump probability with an angular dependence based on, the last previous step
direction. We find that a simple cosine term (of the angle between the last step and
the next jump directions) leads to a smooth linear trajectory within a cavity with the
particle changing direction mostly only on reaching the edge of the void. This
mimics the MD trajectory as indicated in Figure 15. This bias helps mimic the initial
ballistic region of MD where 1 is proportional to t*. Non-biased random walk yields
r? proportional to t. Figure 16 demonstrates how the r* MSD curves differ for two
simulation runs, one of which is ran without momentum and the other with a fast
momentum term. The initial ballistic region is apparent in the latter case and missing
for the non-momentum case. Fast momentum term means the bias shown on Figure
14d. The normal momentum term curve will fall somewhere between the two curves.

A second issue concerns which neighboring points are allowed for the jump.
Simplest choices might be
a) only the 6 nearest neighbor points (forward, backward, up, down, right, left),

b) the 18 points also including next nearest neighbors, or
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¢) the 26 points also including third nearest neighbors.
We chose case ¢ since it efficiently spans the solid angle choices, allowing
channels in diagonal direction to be found. Thus, starting at point G(ly,ly,1,) with the

previous point at pq;, 1;,1;) (where || . 7]=0, but at least one is nonzero), then we

calculate the probability for

G(l:,l;,l:) = W(.,17 l:)[qcos(r-—l) -(1:’—1”)+(1—q)j|

x*tyo

where g can be taken from O to 1 (we used g = %).

The larger the value or g, the more strongly the next movement is biased to be
in the direction of the last movement - thus more close resembling dynamics motion
at short distances. For q=0, we have an unbiased random walk, and for q=1, we have
0 probability of going backward on any step, so all back turns will be by necessity
smooth curvilinear trajectories. Thus, q can be thought of as a smoothing factor.
Figure 14 a,b,c.d, shows the bias in a polar diagram where the radius is proportional
to the probability to select that direction, values of q=0,0.5,1 and also a case in which

the whole term in the braces is squared to assure even more forward-biased walk.
3. Model problems
Unless otherwise specified, all of our simulation runs are done with the

following settings. Unit cell size 100 A. The free volume structures are simple, e.g.,

only O and 1 values are allowed, either void or not. When visualizing them, the void
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part is shown, i.e. this is the part that is accessible to the particles. Grid size was
100x100x100. Run time was 1,000,000 steps. Sampling positions were done every
1000 steps. For Sections 3.1 to 3.5, transitions were made in 26 neighboring
directions. Five particles were placed randomly in the voids and their motion was
followed, then mean-squared deviation was computed for each of them and an
average of the five was taken. For all the later sections, no momentum was used and a
single particle was followed. Not using momentum bias allows for easier theoretical

analysis.

3.1  Finite sphere

Figurel shows a simulation run of a finite sphere. This simulations involves
10,000 steps and is sampled every timestep. As expected after the ballistic region, the
mean-squared deviation saturates to a value of the order of the diameter of the sphere.
It can be shown analytically that the square root of the saturated mean-square
deviation is equal to twice the radius of gyration of the sphere or sqrt(6/5) ~= 1.095
of the radius of the sphere, for constrained Brownian motion without a momentum
term. The value from numerical simulations is actually about 1.7% lower, which is
probably a finite size effect, since the analytical value of 1.095 is computed for sphere
of infinite radius. In the actual simulation on Figure 1, a momentum term is present
which leads to an even higher value, since more rapid movement away from previous

positions is favored.
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3.2  Sphere with periodic connections

Figures 2,3 and 4 show simulations of the same sphere, but when connected to
its own translated image across the periodic boundary. The difference between them
is that in Figure 2 there is a connection in only 1 dimension, in Figure 3 in two
dimensions and in Figure 4 in all three dimensions. The diffusion constant increases
respectively from 110 to 225 and 320, as might be expected for diffusion through
independent channels, e.g., the diffusion in three dimensions is three times as fast as

the one in one dimension (those diffusion constants are in A%iteration units).

3.3 Fine-grained simulation

Figure 5 shows a simulation run for the same system as in Figure 4, but
sampled every timestep. This more fine grained sampling shows the three distinct
regions of diffusion: the initial ballistic region, the “anomalous” region in which the
mean-squared deviation is not proportional to the time, but to a fractional power of it
(from around 25 steps to around 300 steps) and the Fickian region, when linear

proportionality is achieved.

3.4 Cylinders

Figures 6, 7, 8, 9 show the results from simulation runs for longitudinally and
transversely connected cylinders in one and two dimensions. Just as expected the

diffusion coefficient is highest in the longitudinally connected cylinders and smaller
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in the one dimensionally transversely connected case, in which case the cylinder acts

as a capacitor which slows down the moving particle.

3.5 Connection to Molecular Dynamics

It is interesting to look at a plot of the displacement of a particle from its
initial position as a function of the simulation time. Figure 13a shows such a plot for a
system similar to the one in Figure 2 but with channel width of two. The typical
behavior of the penetrant is spending quite some time in one of the spheres and then
rather quickly moving through a channel to another spheré. Figure 13b shows a
similar plot obtained from a molecular dynamics simulation of a He particle in PE at
450k. We find it very interesting that the two plots in Figuresl3 a and b look so
similar. It can be concluded then that the underlying motion of the He penetrant in PE
consists of rambling in a cavity for a while and then quickly moving to another one. It
looks quite plausible that that motion can be modeled through a random walk as
described above on an appropriately defined void structure extracted from‘the

structure of the polymer.

3.6  Origin and behavior of the anomalous diffusion region

In recent years, a lot of attention has been directed toward study of the
anomalous diffusion, in which the mean r* is proportional to a fractional power of t,

like . This has been demonstrated in long MD simulations” ¥ and also
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experimentally observed in single-molecule microscopy on model membranes™.

Some of the possible explanations have attributed the anomalous diffusion to
single file diffusion for which evidence have been observed in zeolites" .
We will demonstrate, however, that the anomalous diffusion is due to the

restricted geometry of the particle motion.

3.6.1. Spheres connected via cylindrical channels.

To see how the anomalous diffusion region arises, we studied the system on
Figure 2, and we varied the width of the channel. Thus we had on one end spheres
connected with very thin channels, and at the other end the channel was
encompassing the spheres totally and the system looked like an infinite cylinder of
radius 20. The results are summarized in the following table:

Table 1. Results from simulation of spheres connected via cylindrical channels.

Channel | Einstein Ballistic Anomalous anomalous Crossover Crossover
width diffusion rate intersect exponent time distance ({A?]
(in A) (A*/step) (A%*/step) (steps) (steps)

2 0.70 35 250 .15 10 450

4 2.2 35 160 .30 7 750

8 7 34 70 .58 5 2500

12 12 35 62 .65 5 1000

20 13 36 70 .7 10 4000
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The first crossover term is for transition from ballistic to anomalous diffusion,
and the second one is for transition from anomalous to linear Einstein diffusion. We
see that the crossover to Einstein diffusion happens well before 10000 A%, which is
the square size of the unit cell. This would imply that the use of unit cell does not

interfere with the diffusion rate computation.

Figure 10a shows the diffusion coefficient as a function of the channel radius. Figure

10b shows the anomalous diffusion exponent as a function of the channel radius.

3.6.2 Infinite cylinders

To make sure that the anomalous diffusion observed is not an artifact of the
underlying periodicity of the structure imposed by using a repeated unit cell, we also
studied diffusion in cylinders. Since they are similar to each other, it does not matter
in what size unit cell they are embedded. The following table shows the results for

infinite cylinders of different radii.

Table 2. Results from simulation of infinite cylinders.

Width of Diffusion Ballistic Anomalous Anomalous Crossover Crossover
Channel Rate rate Rate exponent time distance
(in a) (A*/step) (A*/step) (A*/step) (steps) (a)

2 15 - 20 .7 - 30

4 13 - 25 .7 - 150

8 12 33 40 .7 2 50

12 13 35 50 .7 4 100

20 13 36 70 .7 10 300

30 14 36 80 .7 15 300
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As expected the anomalous exponent is independent of the width of the
cylinder. Apparently it is a property inherent to the cylindrical shape. The crossover
to the Einstein diffusion increases with the size of the cylinder, since the particle
needs time to reach one edge from the other. For the first two cases the cylinder is so

narrow that no ballistic region is observed.

3.6.3 Infinite strip

To further explore the hypothesis that anomalous diffusion is due to
obstructions, we consider the simplest possible system: 80-unit wide infinite planar
strip. This can be viewed as the product of an infinite line and a finite 80-unit long
linear stretch. The MSD plots for those three structures are shown in Figures 11 a, b,
and c. As expected the anomalous region is well present in the case of the infinite
planar strip. It is spatially located between 750 and 10000 A% which correlates
favorably with the size of the stretch in the finite, dimension 80, the square of which
falls in the middle of that region. On Figure 11a, the saturation point for the finite
stretch is twice the radius of gyration of the finite stretch, which is the square of its
length divided by six. Figure 12 shows the same behavior for a 20x20 rectangular
tube.

In an atterhpt to analyze the above case, we try to model the saturation curve
of F igufe 11a, with a simple ramp-like function. Since <> =<x>+ <y*> we need to

" add the saturation curve and a straight line to see how the infinite linear strip MSD
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function would look. The results are shown in Figure 17. While the transition curve in
the anomalous region is not really linear, its character is obviously due to the
saturation of the y* MSD function. It is our believe that more realistic modeling of the
saturation curve with a concave curve more like the one in Figure 11a, will lead to a

linear function in the anomalous region.

4.0 Discussion and Conclusions

We conclude that the described biased random walk method can be used to
coarse-grain molecular dynamics and simulate motion of penetrants in amorphous
polymers. We have shown also that the anomalous region appears for even very
simple systems and appears to be due to the restrictions that the void matrix imposes
on the motion in some directions. In general, the more restrictions there are, the lower
the anomalous exponent that we observe. In the case of free space there is no
anomalous exponent (e.g., it reaches one). It is very interesting also to observe that
anomalous region is observed also in a system practically identical to a Zeolite,
namely a tube, where the restriction is perpendicular to the axial direction. For an
arbitrary system, it will be extremely interesting to see how the fraction by which the
diffusion coefficient is reduced and the anomalous exponent depend on the void
structure. It might be possible to find a numeric relationship expressing the above two
’quant'ities in terms of geometric quantities pertaining to the void matrix, for example,

porosity, tortuosity or fractal dimension.
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F igure 9. 2D PBC transversely connected cylinder.
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Figure 14a. Random walk Bias at q=0.5.
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Figure 14b. Random walk Bias at q=0.0 (no bias).
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Figure 14¢. Random walk Bias at q¢=1.0 (no backward motion).
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Figure 14d. Random walk Bias at q=0.5 and the term squared to point even sharper in forward
direction.
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Abstract

The diffusion of small molecules in polymer matrices involves time scales
(microseconds [us] to milliseconds [ms]) far too long for routine molecular dynamics
(MD) simulations. We have formulated a new method to extract coarse-grained
information from short (1-2 nanoseconds [ns]) MD simulations and use this in a
mesoscale simulation to calculate diffusion constants in polymer matrices. It uses a
grid to calculate the average probability of each grid point of being a void and does
constrained Monte Carlo (MC) dynamics to reach much longer time regimes than
possible in MD. The MC method mimics the three regimes of mean square deviation
(MSD) behavior seen in MD, thus accounting for the proper mobility of the voids and
the compressibility of the polymer matrix. Initial results on He diffusion in a low-
density polyethylene (PE) matrix are presented. —The behavior at different
temperatures follows closely the trend observed from calibrating long term MD for

this particular system. Details of the methodology are discussed in this paper.

*Permanent Address: Asahi Chemical Industry Co., Ltd., 2-1 Samejima, Fuji,
Shizuoka 416, Japan '
* Authors to whom correspondence should be sent: e-mail: sdg@wag.caltech.edu and
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1.0 Introduction

The diffusion of gases in polymers is of major importance to the polymer
industry.! For example, various applications in the food industry involve impeding
the diffusion of gases (such as H,, O,, COZ, H,O, and CH,) through thin polymer
films.> The design of new copolymers, new monomers, or new blends to selectively
impede the diffusion of some gases while allowing others (O, versus N,, CO, versus
0,, H,0 versus O,) underlies a number of potential applications. The design and
optimization of the selectivity of polymer membranes for diffusion would be greatly
facilitated if reliable predictions of diffusivity could be made rapidly in advance of
synthesis and experiment. The time scale for diffusion (us to ms) is far too long for
routine applications of molecular dynamics (MD). This has made it difficult to obtain
reliable diffusion data from theory.® In addition, it is not easy to obtain reproducible
data on gas diffusion in polymers from experiment. As a result there is little in the
way of reliable predictions on how to design polymer films to achieve specific
diffusion properties.

The permeability (P) of a gas through a membrane can be written as*

" P=DS
1)

where D is the diffusion coefficient and S is the solubility. Generally only P is
available experimentally, but D and S depend differently on the various design
parameters. Thus, it is useful to be able to independently measure each. In this paper
we will focus on D.

In the long time limit for a three-dimensional system, Einstein showed that the

total distance (R) traveled in a time (t) is given by Eq. (2) (the Einstein relation)

<R>=6Dt ast—>

)

where < > designates averaging over the ensemble of starting and ending points for
the given time interval t. To use theory to predict D for a gas X in a polymer, we
carry out a number of MD calculations (each starting with X in various sites) for

times sufficiently long that (2) is obeyed.
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Some typical results are shown in Figure 1. Figure 1a shows that for He in PE
a 1.5 ns run leads to a reliable D while Figure 1b shows that for O, in a PVC/PVDC
copolymer, 1.5 ns of MD is not even close to satisfying Eq. (2). (We estimate that
this latter case requires a ps time scale.) The problem with using MD to study
gaseous diffusion is the time scale. It is necessary for the calculation to proceed for a
time t sufficiently long that the Einstein relation (2) is valid. Even for simple gases in
polymers, the relevant times are often on the order of ps or longer. Since the MD
time step is ~1 femtosecond (fs), a total time of ps requires ~1 billion steps. For a
polymer of realistic molecular weight this requires very long times on even the largest
supercomputer. Consequently, it is usually not practical to use MD to obtain reliable
values for D.

In order to gain insight about the features of an amorphous polymer
dominating the diffusional properties, we carried out MD studies of various gases
diffusing through various polymers. Typical results are shown in Figure 2. Figure 2a
shows the trajectories for 5 He atoms diffusing for 1.5 ns in PE. Here the atoms of
the polymer are not shown. We see that there are three-dimensional regions (referred
to here as felicitons) in which the gases spend significant times (~20-70 picoseconds
[ps]) separated by pseudo one-dimensional channels where they spend shorter times (
~5 to 20 ps). On the other hand, Figure 2b shows the trajectory for 50, diffusing for
1.5 ns in PVC/PVDC. Here we see that each O, remains within a feliciton, with no
channels connecting them.

The felicitons are regions that better accommodate the diffusing particle -
because this region has more available free volume or a higher compressibility. Thus,
one can think of the polymer as consisting of felicitons connected by channels with
the diffusing particle hopping from feliciton to feliciton through the connecting
channels. We should emphasize that this feliciton/channel concept of diffusion is
dynamic. At any instant there are no large voids in the polymer. However, averaged
over the time scale that a particle can diffuse through a region of the polymer, there
are some regions - felicitons and channels - better able to accommodate the particle
than others. This framework of felicitons and channels then controls the diffusion. If
insufficient channels connect the felicitons, there may not be the percolation
necessary for long-range diffusion. '

Numerous calculations on different gas molecules diffusing in various
amorphous polymers give results such as in Figure 2. We also find that the regions
occupied by the diffusing particles are defined by the dynamics of the polymer even
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without the particle! Thus, Figure 3 shows the dynamical void distributions in the
two polymers of Figure 1 and Figure 2. Here we partitioned the unit cell into one
million cells (100x100x100) and examined the voids over a period of 200 ps. Every
5 ps we examined whether a probe of 1A radius would contact any part of the
polymer. The color code in Figure 3 indicates the fraction of the times that there was
a void of at least 1A radius at that site. Here we see that the void analysis leads to an
excellent match with the felicitons and channels extracted from the MD.

Given that the topology of felicitons and channels can be determined
independent of the diffusing particle, we asked whether we might estimate the
diffusion constants without actually considering the diffusing particle! Thus, we
consider a Monte Carlo process in which a pseudo particle migrates from one void
site to an adjacent void site. Indeed, we find that such Monte Carlo Void Diffusion
(MCVD) procedure lead to a diffusion trajectory very similar to the MD calculations,
as shown in Figure 4. -

Such MCVD calculations are many orders of magnitude faster than MD,
allowing us to easily consider time scales long enough to see diffusion even in
O,/PVC-PVDC. However, to obtain the actual diffusion constant from MCVD, we
must convert implicit time of a MC jump to the physical time. This is done by
comparing the distance vs. MC step behavior from MCVD with the distance vs. real
time behavior from MD. We find that reliable MC step to time conversion can be
obtained from even short time MD. This procedure provides a practical means of
predicting diffusion properties of gases in polymers. In this paper we will focus on
He/PE. Subsequent papers will consider other penetrants (O,, N,, H,0, CH,, C;H,,
etc.) as well as other polymer matrices - polypropylene, polyisobutane, polystyrene,
polyvinyl chloride, polyvinylidene chloride, etc.

Section 2.0 describes the diffusion of He in PE using atomistic MD. Section
3.0 describes the void analysis procedures. Section 4.0 presents the Monte Carlo
Void Diffusion method. The diffusion of He atoms in polyethylene is analyzed in
Section 5.0.

2.0 Molecular Dynamics
2.1 The Amorphous Polymers

We are interested in studying the diffusion of gases in amorphous polymers.
A system such as PE will often have a high percentage of crystalline lamella. In
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semi-crystalline polymers, the most widely accepted view’ of diffusion is the
electrical analog of porous media (amorphous region). According to this view, the
crystalline region of the polymer is impermeable. Therefore, the effective diffusion
can be derived from the diffusivity of the gas in the pure amorphous region. We
consider using different approaches to equilibrate randomized conformations of
polymers in order to provide the ensemble of structures mimicking amorphous
polymers. We have found the following procedure to be effective and used it in the
calculations reported here.

For MD calculations on amorphous polymers, we use periodic boundary
conditions (PBC) so that a finite number of independent atoms can describe an
infinite polymer system without surfaces. Our calculations allowed four independent
chains of PE per unit cell (each with 200 carbons, a molecular weight of 2802
Dalton/chain). We started by allowing each chain to have a random conformation but
with the requirement that the chain-chain interactions be reasonable.

To do this we built the initial structure’ using Rotational Isomeric State (RIS)
theory® to select the torsional distribution, assuming the trans state to be 0.8 kcal/mol
more stable than gauche, for a temperature of 400K. At the end of the growth
process, we used energy minimization to relax the structure removing initial bad
contacts. We than carried out MD to anneal the system using the MPSim’ program
developed at Caltech. These calculations used 8 cells of the KSR1 parallel computer.
An initial MD at 500K was run for 100ps to remove bad contacts. The unit cell is a
cube of volume 21835 A® (27.95 A sides), leading to a final density of 0.854 gm/cc,
which matches the density of the amorphous component of PE.*

Figure 5 shows a typical amorphous system built using this procedure
consisting of 4 chains of PE with 100 monomers (200 backbone C atoms) per chain.
For purposes of clarity, the H atoms have been removed and the various chains are

color coded to follow the chain conformation and entanglements.

2.2 Placement of the He Atoms

To locate the best places to start the penetrant He atoms, we calculated the
voids in the system. We divided the cell into a million cells (100x100x100 grid) and
at each grid point checked for the presence of nearby polymer atoms. Here we count
a microvoid at a potential grid point if there was no polymer atom whose van der
Waals radius was within 1.0A - the probe radius - of the grid point. The contiguous

microvoids were collected together to form a macrovoid which is characterized by the



VII-6

centroid and radius of the largest single sphere that fits within the macrovoid. The
program reports the centroids of these voids in descending order of size, Table 1. A
probe radius of 1.0 A leads to the voids shown in Figure 3. We then placed He atoms
near centers of the voids. The simulations used 5 He atoms per unit cell, but we
turned off the He-He interactions. This allows us to obtain good statistics while
avoiding artifacts that might arise from the He-He interactions.’

MD simulations were then carried out at various temperatures using MPSim.
Since explicit H atoms are described, a time step of 1 fs was used for the MD. The
trajectory of the PE chains and the He atoms was saved at 1ps intervals.

We used the MS force field (FF) for PE, which gives excellent agreement''
with experimental data for crystalline PE. However, the torsional potential about the
C-C bond was determined from quantum chemical calculations on n-pentane.'” The

typical calculation on 8 cells of the KSR1 leads to 50 ps of MD per day.

2.3 Analysis of the Diffusion

Figure 6 shows the track of the 5 He atoms in a 10 ns simulation. It is quite
clear that the He atoms spend most of their time traversing the felicitons, occasionally
hopping through a channel to an adjacent feliciton.

To calculate the mean square displacement (MSD) with time, we considered
each ps step of the 10 ns trajectory to be a possible starting point. Thus,

R’(x)= ilR(t0 +1) - Rt )’ Ti:l

ty =0 t, =0

where T is the total time. This leads to a sampling size that decreases from 10* at T =
1 psto 1 att=10ns. Thus, the value of <R’>>(1) is not expected to be reliable for t
>> 1/2 T. To determine whether the system is in the diffusing region where the
Einstein relation (2) holds, we plot log <R*> vs. log 1, which should have a slope of
unity. Indeed, Figure 7 shows diffusive behavior for T > 0.1 ns averaged over all 5 He
atoms. The intercept gives 6D which leads to D = 1.77 A%/ps = 29.5 x 10 cm*/sec.
The diffusion coefficient of He in LDPE (p = 0.914 g/cc) at 25°C is 6.8x10°
cm?/sec and in HDPE (p = 0.964 g/cc) at 25°C is 3.07x10° cm*/sec.” Allowing for
the"difference in density, polymer length, system size and temperature, our calculated

value is in the expected range.
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Figure 7 shows that the Einstein relation (2) is satisfied above times of ~100
ps, corresponding to diffusion length of ¥< R* > ~ 13A (indicated by the line with
long dashes). The shorter time scale region is asymptotic to the short dashed line
where <R”> is proportional to t"?>. The analysis in Figure 7 used trajectory data that
was saved only at 1ps intervals during the 10 ns MD run. Consequently, this does not
allow an analysis of the early time behavior below ~5 ps. To examine the early
region, we ran the MD for 95 ps and saved the trajectory every fs. This leads to
Figure 8a. Up to <R*> ~ 0.25 A? and times up to ~0.03 ps, the distance increases
rapidly with time (SR*> o< t? or R = vt where v ~ 506 A/ps is the velocity). This is the
ballistic regime, before the particle hits a wall. From <R>> ~ 4A to 12A and time
from ~0.25 ps to ~4 ps, the trajectory fits the <R*> oc t'? line quite well. This is the
anomalous diffusion region, corresponding to intra-feliciton motion. During this time
the motion is primarily within felicitons, suggesting an average feliciton size of 12A
diameters. We find such an anomalous diffusion region (where <R>> oc t'?) for

diffusion in all amorphous polymers.

3.0 Void Analysis

As discussed in the Introduction, our MD studies of diffusion always show
well-defined feliciton regions separated by channels in which the gas particle spends
considerable time. We can define void analysis procedures that lead to the same
regions in space that the gas particle samples during diffusion.

The question is what size to use for the probe radius in defining the void
region. In Figure 9 we show the void analysis for various sized probes from 0.3 to
1.3A. This analysis can be compared to the diffusion trajectory in Figure 2a, which
has the same orientation. We see that probe radius of 0.9A leads to a definition of the
felicitons that matches the dynamics trajectory well. By running MD for 500 ps (the
first 300 ps to adequately equilibrate the system and then 200 ps for sampling), we
extract snapshots at 5 ps intervals to give 40 snapshots spread over 200 ps. Then we
calculate whether there is a void larger than the probe radius at each of the 1,000,000
- grid points. Each grid point is then weighted by the fraction of the 40 snapshots that
it is a void. This weight embodies atomistic information about the polymer matrix

like compressibility, porosity, and dynamical behavior.
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4.0 The Monte Carlo Void Diffusion (MCVD) Model

Given the void probability grid from Figure 3 we will consider a random walk
in which a particle on a grid point moves to an adjacent grid point. We assume the
probability to be proportional to the void weight - 1 if always a void to 0 if never a
void. Figure 10 shows a MD trajectory within a void at 1 fs resolution. In order for a
random walk process to mimic this, we include a bias in the jump probability with an
angular dependence based on the last previous step direction. We find that a simple
cosine term, of the angle between the last step and the next possible jump direction,
leads to a smooth linear trajectory within a feliciton with the particle changing
direction mostly on reaching the edge of the feliciton. This mimics the MD trajectory
as indicated in Figure 8b.

A second issue concerns which neighboring points are allowed for the jump.
Simple choices are
a) only the 6 nearest neighbor points (forward, backward, up, down, right, left),
b) the 18 points also including next nearest neighbors, or
c¢) the 26 points also including third nearest neighbors.
We chose case ¢ since it efficiently spans the solid angle choices, allowing channels
in diagonal direction to be found. Thus, starting at point G(1,,1,,1,) with the previous
point at P(l,, I.,1,) (where |1i - li'l = 0,1 but at least one is nonzero), we then

calculate the probability as

G(IL. 1, 1)) = wa:,l;,l:)[qcosq*— 1)-(1j—1‘)+(1—q>}

where q can have values from 0 to 1 (we use q = 1/2).

5.0 Results: He/PE

Our model system was 4 chains of PE, each with 200C, MW=2802 Dalton, in
a PBC box. Figure 7 shows the MD diffusion of 5 He atoms for 10 ns. This can be
compared with the MCVD results in Figure 4, which parallels the MD simulation
quite closely. The MD analysis showed three distinct regimes of diffusion
e - carly ballistic regime where the penetrant fills up the voids very rapidly
e middle anomalous regime where the penetrant occasionally finds channels to

adjacent voids, but is still quite directional

e late Fickian regime where the jumps between voids are isotropic in nature
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This behavior can be better seen in Figure 8A from MD and Figure 8B from MCVD.
It is particularly gratifying to note that the anomalous regime and the Fickian regime
exhibit similar time dependence in both simulations.
The last problem concerns converting the MCVD step to an actual time.
There are 3 possibilities for doing this
1. If MD for sufficiently long times is available, then one can obtain the diffusion
constant from the Fickian regime of the MSD plot. By matching this diffusion
constant to that from MCVD gives the conversion from MC step to actual time.
This is equivalent to matching the intercepts of the Fickian regimes.
2. One can match the crossover point from the anomalous regime to the Fickian
regime.
3. One can match the intercepts of the anomalous regime from MD and MCVD.
The problem with the first method is that if MD can be done long enough to get a
reliable diffusion constant, then there is not much need for a faster method. In most
cases, it is not practical to do the MD for sufficiently long times. If there is a clean
crossover from MD and MCVD, then one can also use the second method. The third
method is the easiest to access from the MD simulations since on the ps to ns time
scale, most polymer systems show the anomalous behavior. For He/PE we have
sufficiently long dynamics to use all 3 methods and we show in Table 2 the MD to
MCVD time constant for all 3 cases. We see that while the diffusion constant
changes by a factor of 15 between the temperature extremes (1.77 @ 400K - 0.12 @
200K) the time conversion factor remains relatively constant within a factor of 2. The
time conversion is most reliable by matching the slopes of the Fickian regime, but as
noted above, this time domain will not be readily accessible for most cases of interest,
where either the system will be too large for sufficiently long dynamics, or it will be
too rigid for showing much diffusion within the MD run. The crossover point is
difficult to define unless a clear Fickian regime can be observed. The cleanest
operational procedure is to use the slopes of the anomalous regime, which is easily
accessed from doing short (~ 500 ps) dynamics. As the last column in Table 2 shows,
the ratio of the time conversion from this regime to the Fickian regime is relatively
constant. Under ideal circumstances, it would have been exactly the same at all
temperatures.  For the purposes of extracting an order of magnitude diffusion
constant, and more importantly understanding the physical parameters' controlling

diffusion, it is sufficiently accurate to determine the conversion factor from the
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anomalous regime. Consequently we use the third method which leads to a time
conversion of 3.6fs/MCVD step.

6.0 The Discussion of Voids
6.1 Free Volume Concepts

Given the behavior of the penetrant molecule in the polymer matrix from MD,
can we model this by the mobility and dynamics of the voids itself? The free volume
approaches essentially treat diffusion as the redistribution of space unoccupied by the
polymer matrix."*  An alternative approach called the Transition State Theory
(TST)" is to treat the process as a sequence of activated hopping between adjacent
sorption sites. While Suter and co-workers were successful in simulating the
diffusion of helium in glassy polycarbonate and melt polyisobutylene,'® the method
failed for hydrogen and larger penetrants, primarily due to the rigidity of the imposed
polymer network. They did MD to extract amplitude of short time vibrational
motion, but the atoms essentially were fixed in space with small amplitude motions
about their mean positions. Greenfield and Theodorou'’ analyzed the geometric
properties of the sorption sites and their connectivities as a prelude to a more
atomistically correct input to the TST model. They observed that free volume rapidly
rearranged in the melt, while they were much more rigid in the glass with occasional
channel openings in between them. Our idea is based on the fact that if one can do
MD for times longer than the characteristic times for void fluctuations, whether they
be redistributions in the melt, or thermal fluctuations in the glassy state, then one can
extract this information averaged over many static snapshots of the system and use
this information to coarsen the model. The simplest way to measure fluctuations is to
measure all the voids and average them. Figure 11a shows the voids in the PE as a
function of MD time at 1ns intervals. Each distinct void is color coded for clarity. At
400K, in the melt the voids are redistributed rapidly and carry the penetrant molecule
with it. At the lower temperature of 150K, similar analysis shows that the voids do
not redistribute as rapidly but show fluctuations about their mean position, Figure
11b.

6.2 Probe Radii
At 0.0A probe radius the free volume consists mainly of one big percolative

void, whereas at larger probe radii isolated voids begin to emerge. If the probe size is
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too large, then there are very few voids, which stay isolated with no channel openings
and closings. Obviously, there is an ideal probe size for extracting the void
information and it has to be related to the percolation properties of the system.
Takeuchi showed'® that if one measures the free volume as a function of the
decreasing probe size, then at approximately the probe size that leads to 5.5% free
volume, the system shows percolative channels. Greenfield and Theodorou reached
similar conclusions.” We have analyzed the free volume as a function of probe radii,
which is shown in Figure 12a. As expected, the free volume is a smoothly decreasing
function of increasing probe size. 5.5% free volume occurs at approximately 0.75A
probe radius. In addition to analyzing a static snapshot, we have also analyzed a
collection of snapshots from the MD and can measure what fraction of them are
percolative at a specific probe radius, which is shown in Figure 12b. The change
from all snapshots being percolative to none being percolative is quite sharp, between
0.6 and 1.0 A. Another view of this is shown in Figure 12c where the fraction of
percolative snapshots is plotted against the free volume available in them.
Corroborating the results of Takeuchi, we find that at above 5.5% free volume, 50%

of the snapshots show percolative channels.

6.3 Percolation

We have two ways of analyzing percolation. One method is to start in the
largest cavity and perform the grid walk algorithm, marking each visited point and
counting transitions across the unit cell boundary. If we visit a marked point a second
time after a transition across a cell boundary that implies a percolative channel exists.
If percolation does not happen within a large number of steps, typically 10M, we
assume that the probability of a percolative channel existing is quite small. There can
be very narrow channels of percolation, but these will be insignificant in the diffusion
process. Now we start the percolation analysis in another cavity until all major
cavities are analyzed. This algorithm is simple and very fast for porous systems with
well-defined percolative channels provided the initial placement is in the right cavity.
If repeated starts are required in many cavities then this method slows down
substantially. It is also non-deterministic since random grid walk is performed and
the maximum number of steps is also arbitrary and can affect the outcome. Although
this determinism is physically ihsigniﬁcant as discussed above, we have devised a
- second algorithm, which is deterministic with a well-defined termination. In this

recursive algorithm, similar to finding a path in a labyrinth, we explore all neighbors
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that have not been marked as visited. If the algorithm gets stuck then it recurses back
to the previous branch point and takes a different branch. If all branches from the last
branch point is marked visited, then the recursion steps further back to the earlier
branch point. If this leads to the initial starting point, then a new starting point is
chosen from among the points that have not been marked. Using the number of
unmarked points as a metric, it is easy to show that this algorithm will terminate after
a fixed number of steps. This number of steps might be quite large for porous
systems with large free volume. Both algorithms produce track files, which can be
visualized to show the actual trajectory of the probe.

Percolative channels are one criterion by which to select the probe radius of
our voids. However, as the preceding analysis shows, below a particular probe
radius, most of the snapshots will show percolation. At very small probe radius, the
whole polymer will be percolative and a MC dynamics will treat this essentially as
one infinite cavity and only ballistic behavior will be observed. On the opposite end,
with too large a probe radius, there will be no percolation at all. Since we want to
include dynamical effects, such as the compressibility of the polymer, and more
importantly, channel openings and closings, in our void data, percolation is not a
sufficient criterion for choosing the probe size. A probe radius (say 1.3A) may not
show percolation in a static snapshot but the conjoint set of many snapshots might
show percolation at this large probe radius. After several initial trials, we selected a
second criterion to adopt the probe radius. Our coarsened physical model must reflect
the atomistic behavior of the MD. The coarsening of the model is at the level of
selecting voids and their mobility and compressibility. In the MSD plot, this is
reflected in the anomalous regime, where the gas molecule finds occasional channel
openings and closings between adjacent voids. The MSD from MC should mimic the
MD behavior in terms of the slope of the anomalous region. This gives a narrow
range of penetrant size where this physical relationship holds. For the cases reported
here, 0.9A was the probe radius chosen for mimicking the behavior of He atoms in
PE.

- 6.4 Length of MD for Calibration of MCVD

The final questions that needs to be answered about the spatial grid is how
long should the MD run be and how frequently does one need to take snapshots of the
system for the purpose of extracting void information. In a polymer, bonds and

angles constitute stiff degrees of fluctuations because typically the well depth for a
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bond is about 70-180 kcal/mol. While a similar well depth cannot be described for an
angle, the force constant (or curvature at the bottom of the well) for an angle is
70kcal/mol (force constants for bonds are about 700-1000 kcal/mol). In contrast, the
torsional potentials are relatively shallow with barriers being on the order of 5-10
kcal/mol and van der Waals and hydrogen bonds also constitute softer degrees of
freedom. In the case of PE, the barrier between trans and gauche conformers for the
model n-butane is about 4.02 kcal/mol. Consequently, in MD, the fluctuations are
significantly smaller in the bonds and angles than in the dihedrals. This is graphically
shown in Figure 13, where for 1 chain of PE, for a 200ps MD run the fluctuations in
selected bonds and angles are shown along with the fluctuations of all the dihedrals
along this chain. While the bond fluctuates between 1.50-1.56A and the angle
fluctuates between 102-115° there are quite a few dihedrals that undergo frequent
flips between gauche’(60°), trans (180°) and gauche’(300°) conformations.

The plot in Figure 13 shows two specific dihedrals, one of which stays
constant at gauche” while the other undergoes rapid flips. While the behavior of each
dihedral is dependent on a number of factors, on the average, the overall motion of
chains is due to rotations of dihedrals. Rearrangement of these dihedrals is the
primary cause of the void mobility because these entail motions of large segments of
the polymer chain. The dihedral motion constitutes the characteristic time/frequency
of the system under study. In the case of PE, we observe dihedral flips on the average
of 1/10ps. This indicates that one needs to do MD for sufficiently long time to cover
many such dihedral flips and we have found 200ps sufficient to sample the dynamical
motion of PE. For a polymer with a more constrained dihedral motion, like polyenes,
the characteristic time will be different. For this paper, we have run longer MD to
also inspect the longer-term diffusive behavior from MD, but in general this will not
be necessary.

The issue of how many snapshots are needed to average the properties is still
an open question. Channel openings and closings have characteristic times of 10ps
from Takeuchi MD simulations® even though he had to run 1ns MD to observe this.
In our work, we have found that 40 snapshots, at 5ps intervals are optimum for our
void extraction proceduré. If too many snapshots are averaged, then for the melt,
almost all of the space will likely be a void at some instant in time. Too few
snapshots will not span the dynamical nature of the polymer matrix adequately.

However, this question is not settled and we are continuing to investigate it.
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7.0 Discussion

The replacement of MD on gases diffusing through a real polymer with
MCVD on particles migrating through negating voids (obtained from the MD)
corresponds to a coarse gaining of the gas-phase system. In this process the details in
the atomistic description of the voids is replaced by the void probability distribution.
This is analogous to going from the quantum mechanical wavefunction and its
detailed information on electrons and nucleus to the more averaged molecular
mechanics FF comprising of balls and strings. In the case of diffusion, we are going
from the atomistic MD to a procedure based on the mesoscopic length and time scale
by averaging the voids and their mobility information. The anomalous regime in the
MD is precisely this time and length scale, and thus it is reasonable to match the
slopes for this regime.

To be useful the MD to MCVD time conversion should be the same for
different temperatures. In order to check, we carried out MD on PE at various
temperatures from 400-200K in steps of 50K. Table 3 lists the diffusion constants we
get from the slope of the Fickian part of the msd plot. We then performed MCVD on
the set of voids derived from the MD at various temperatures. Using the time
conversion factor reported above (derived at 400K), we then derived the MCVD
diffusion constants over the full range of temperatures for the MD simulations. The
normalized diffusion constants from both MD and MCVD are plotted in Figure 14.
The agreement between the MD and MCVD values is within 33%.

Thus, MCVD affords a remarkably simple method to convert short time (ns)
MD trajectories to a mesoscopic simulation (psec) using only the voids to simulate
small molecule diffusion in a polymer matrix. This should be useful above and below

the glass transition temperature T,.
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Figure Captions

Figure 1. (a) MSD from 1.5 ns MD of 5 He atoms in PE; (b) MSD from 1.5 ns of

MD of 5 O, molecules in a PVC/PVDC copolymer.

Figure 2. (a) trajectories for 1.5 ns MD of 5 He atoms in PE corresponding to the

MSD of Figure la; (b) trajectories for 1.5 ns of MD of 5 O, molecules in a

PVC/PVDC copolymer corresponding to the MSD of Figure 1b.

Figure 3. The dynamical void distributions in the two polymers of Figures 1 and 2.

The unit cell is partitioned into one million cells (100x100x100) and at intervals of 5

ps in the MD trajectory, a probe of 1A radius is used to analyze the polymer structure.

The color code indicates the fraction of the times that there was a void at that site.

Figure 4. Monte Carlo Void Diffusion (MCVD) trajectory for He in PE.

Figure 5. Typical amorphous system used in this work, consisting of 4 chains of PE
with 100 monomers (200 backbone C atoms) per chain. For purposes of
clarity, the H atoms have been removed and the various chains are color coded
to follow the chain conformation and entanglements.

Figure 6. Track of 5 He atoms in PE for a 10 ns MD.

Figure 7. MSD from 10 ns MD for 5 He atoms in PE.

Figure 8. (a) MSD from 95 ps of MD of 5 He atoms in PE with trajectories saved at
each 1 fs interval; this plot clearly shows the three different regimes of
behavior — early ballistic, middle anomalous, late Fickian (b) MSD from
MCVD at finer resolution, showing three regimes similar to the MSD from
MD.

Figure 9. Void analysis of 4 chain PE for various probe sizes ranging from 0.1 to
1.2A.

Figure 10. MD trajectory of a single He atom in PE showing smooth behavior of the

particle within a feliciton.

Figure 11. (a) Voids in PE at several time steps in the 400K MD showing rapid

redistribution of the voids in the melt; (b) Same as in (a), but at 150K, below the T, g=

220K showing slow redistribution in the glassy state.

Figure 12. (a) Free volume as a function of probe radii; (b) fraction of percolative
snapshots as a function of probe radius; (c) fraction of percolative snapshots as
a function of free volume. '

Figure 13. Fluctuations in two bonds, two angles, all torsions for 1 chain and two

selected torsions of PE from a 200ps MD run. The bond fluctuates between 1.50-1.56

A and the angle fluctuates between 102-115°.
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Figure 14. Normalized diffusion constants plotted against inverse temperature from
MD and MCVD.



Table 1. Void analysis.
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# Size Area | Asphericity | Radius of Centroid
gyration
X y z

1 | 67674 | 62312 7.76 298.3 14.7828 | 14.2896 12.8502

2 1488 1691 2.68 43.20 22.2629 | 10.2332 15.1200

3 1095 1113 2.17 36.24 5.0075 22.3579 9.1546

4 541 764 2.38 11.40 6.0731 22.7761 16.6048

5 540 445 1.39 6.60 20.3239 | 14.1350 19.5393

6 253 307 1.59 5.62 14.8523 | 16.8209 | 23.7709

7 .| 205 319 1.90 7.31 9.7171 9.4090 8.2283

8 169 220 1.49 4.79 9.4088 20.0497 13.5401

9 169 235 1.59 43.35 1.5331 4.1198 13.1631

10 160 220 1.54 4.75 10.5145 9.8926 20.6866

Table 2. Time conversion from different regimes.
Temperature Diffusion Time conversion (fs'MCVD step) Ratio
Constant®
Crossover Anomalous Fickian t.nomatous’ Lrickian

400 1.77 4.23 8.03 8.47 0.95
350 1.30 10.00 10.00 9.23 1.08
300 0.60 8.91 8.91 5.83 1.53
250 0.20 9.97 9.97 6.00 1.66
200 0.12 7.84 7.84 8.33 0.94

n units of A*ps — the He atom displacements were recorded at each 1 ps interval from the saved

trajectory.
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Table 3. Diffusion constants for He in PE from MD and MCVD. The diffusion
constants are obtained from the slopes of the Fickian regime of the respective
MSD plets and have different units.

Molecular Dynamics Monte Carlo Void Dynamics
Temperature
Absolute Normalized Normalized Absolute
400 1.77 1.00 1.00 15.00
350 1.30 0.73 0.80 12.00
300 0.60 0.34 0.23 3.50
250 0.20 0.11 0.08 1.20
200 0.12 0.07 0.07 1.00

' Schiotter N. E. and Furlam P. Y., Polymer, 33, 3323(1992); Wessling M., Boomgaard T. v. d,,
Mulder M. H. V. and Smolders C. A., Makromol. Chem., Macromol. Symp., 70/71, 379(1993)

2 Koros W. 1., ed. Barrier Polymers and Structures, ACS Symp. Ser. , 423(1990); Mohr, J. M., and
Paul D. R, J. Appl. Polym. Sci., 42, 1711(1991)

3 Gusev A.A., Arizzi S., Suter UW., J.Chem.Phys., 99(3), 2221(1993);

Gusev A. A. and Suter UW., J.Chem.Phys.,99,2228-2234(1993)

4 Crank J., The Mathematics of Diffusion, Oxford, Clarendon 1989.

5 Using the Amorphous Builder Module in Cerius2 from Molecular Simulations Inc. (San Diego,
Calif.).

S Flory P. J., Jackson C. J. and Wood J., Statistical Mechanics of Chain Molecules (New York; Oxford
University Press, 1989), 49-94

"Lim K.T., Brunett S., Iotov M., McClurg R., Vaidehi N., Dasgupta S., Taylor S. and Goddard III
W.A., Journal of Computational Chemistry, 18(4) 501-521 (1997)

¥ Mohr J. M. and Paul D. R., J. Appl. Polym. Sci., 42, 171 1(1991)

® This gives a sorption density higher than experiment. The actual solubility of He in PE is 0.054x107

(cm?*/cm®)* which converts to 3.18x 10 molecules in our simulation volume of 21835 A°%.
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10 Karasawa N., Dasgupta S. and Goddard Il W. A., J. Phys. Chem., 95, 2260(1991). The MSXX FF
is used for accurate intrachain vibrations and not required for these applications. Thus, we used the
MS FF but avoid the more complete description of the torsions.

" Lacks D. I. and Rutledge G. C., J. Phys. Chem., 98, 1222(1994)

12 Gao G., Goddard III,W. A., manuscript in preparation.

13 Polymer Handbook, New York, Wiley, 1989

" Vrentas J. and Duda J., J. Polym. Sci., Polym. Phys. Ed., 15, 403(1977); ibid, 417; ibid, 441

15 Pace R. and Datyner A., J. Polym. Sci., Polym. Phys. Ed., 17, 437(1979); ibid, 453; ibid, 465

'8 See reference 3.

17 Greenfield M. L. Theodorou D. N., Macromol., 26, 5461 (1993)

18 Takeuchi H, Okazaki K., Makromol.Chem.,Macromol.Symp., 65, 81-88 (1993)

1 Takeuchi H., J. Chem. Phys., 93, 2062 (1990); see also the previous reference.
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Figure 1. (a) MSD from 1.5 ns MD of 5 He atoms in PE. Units: x-axis — time in ps; y-axis MSD in
A%
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Figure 1. (b) MSD from 1.5 ns of MD of 5 O, molecules in a PYC/PYDC copolymer

Units: x-axis —- time in ps; y-axis MSD in A’
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Figure 2. (a) Trajectories for 1.5 ns MD of 5 He atoms in PE corresponding to the MSD of Figure 1a.
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Figure 2. (b) trajectories for 1.5 ns of MD of 5 O, molecules in a PYC/PYDC copolymer
corresponding to the MSD of Figure 1b.
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Figure 3. The dynamical void distributions in the two polymers of Figures 1 and 2. The unit cellis
partitioned into one million cells (100x100x100) and at intervals of 5 ps in the MD trajectory, a
probe of 1A radius is used to analyze the polymer structure. The color code indicates the fraction of
the times that there was a void at that site.
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Figure 4. Monte Carlo Void Diffusion (MCVD) trajectory for He in PE.
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Figure 3. Typical amorphous system used in this work, consisting of 4 chains of PE
with 100 monomers (200 backbone C atoms) per chain. For purposes of clarity, the
H atoms have been removed and the various chains are color coded to follow the
chain conformation and entanglements.
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Figure 6. Track of 5 He atoms in PE for a 10 ns MD.
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Figure 7. MSD from 10 ns MD for 5 He atoms in PE. Units: x-axis — time in ps; y-axis MSD in A’
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Figure 8. (a) MSD from 95 ps of MD of 5 He atoms in PE with trajectories saved at each 1 fs
interval; this plot clearly shows the three different regimes of behavior — early ballistic, middle
anomalous, late Fickian.

Units: x-axis — time in ps; y-axis MSD in A’
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Figure 9. Void analysis of 4 chain PE for probe sizes (from top left, first right, then down) 0.3, 0.5,
0.7,0.9,1.1, 1.3 A. '
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Figure 10. MD trajectory of a single He atom in PE showing smooth behavior of the particle within a
feliciton.
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Figure 11. (a) Voids in PE at several time steps in the 400K MD showing rapid redistribution of the
voids in the melt.
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Figure 11. (b) Same as in (a), but at 150K, below the T,= 220K showing slow redistribution in the
glassy state.
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Figure 12. (a) Free volume as a function of probe radii.
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Figure 12. (b) Fraction of percolative snapshots as a function of probe radius.
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Figure 12. (c) Fraction of percolative snapshots as a function of free volume.
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Figure 13. (a) (b) Fluctuations in two bonds, two angles, all torsions for 1 chaion and two selected
torsions of PE from a 200ps MD run. The bond fluctuates between 1.50-1.56 A and the angle

fluctuates between 102-115°.
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Figure 13. (c¢) (d) Fluctuations in two bonds, two angles, all torsions for 1 chaiun and two selected
torsions of PE from a 200ps MD run. The bond fluctuates between 1.50-1.56 A and the angle

fluctuates between 102-115°.
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Appendix A Message-passing Algorithms

A.1 Paradigms

There are many different message types used, but they fall in roughly three
categories:

Global sums, data updates and flow control.
Global sum:

Each node computes local value and sends it to node 0 for global summation.
Data update:

Each node sends a request of which data it needs from another node, then receives
the data.

Flow control:

Node 0 collects done messages from all nodes, then broadcasts “go-on” message
to all of them.

Note: in this way it is possible to do without barrier synchronization calls, since the J
machine did not have them. In effect we implement our own barriers.

A.2 Pseudo-code

Main
Read ctl
Setup ee
Master_cmm
}

master_cmm .

if not nbs setup calls dyn()
else proceeds to update multipoles.
Compute multipoles

Dyn( {

Self far nearinfl;



Roundup near_atom;
Unpack near_atoms;

Calculate exclusions, torsion... no commucnication
Send partial forces home

Integratel;

Compute KE

Integrate 2;

Handle moving;

Compute farfields: is:

Calc_center for_all cells;
Checkwindow cald, which :
Combine calc_center for own
Send message CALC type for others.

At end broadcasts all done calc_type

Proceeds to :
Process CLACL_TYPE, via combine calc center
ALLDONECLACTYPE, by conter., via which exits.

Check window child _pnc
Compute multipoles or call child if can,
Send CHILD TYPE if not own
Then do update taylor of PNC_M-TYPE if not own
At end broadcasts ALL DONE CALC TYPE

Case:

~child
-master_pnc
--done by counter.

Check window parent
Combine taylor if own
Send parent type otherwise
ALL _DONE_CALC at end is broadcast
Process PARENT via parent
ALL DONE CALC via counter.
At end sends DONE CMM to 0
0 counts them and broadcasts ALL_ DONE_CMM

AT ALL DONE CMM, dyn is called.




Self far nearinfl:

Sends DONE CMM

Processing loop (while done):
ATOMS_M: master_atoms
DONE_CMM_TYPE;
Farinfl;selfinfl — no communicatino in those
And sends ack _near type to start nearinfl processing.
DONE_SELF_FAR_TYPE:
Counter, at couner finished broadcast MOVE_ON_TYPE

MOVE_ON_TYPE:sets done flasg
Ack NEAR TYPE:check window_ack newar

At exit sends DONE_SELF FAR TYPE

Check window ack near
At exit sends DONE SELF FAR TYPE

Otheiwise does atoms if own
Or sends ATOMS M _TYPE if nonlocal

Roundup near_atoms
init DestCounter(void) / * zeroed DesBuf and DestCOuer.
get near_atoms(SEND_FORCES_TYPE,MOVE_ON_TYPE);
Counter = Numnodes-1
while (Counter) {
crecv(SEND _FORCES TYPE,
expects only SEND FORCES TYPE messages and exactly one from a node.
memcpy(CellBuflinfonode()],NearMsg, (int)(sizeof( NEAR)*Size));
dumps them cirectly into CellBuf with offset of the one that are received.
}
get near atoms(int send_type,int done_type)
for all leaf cells on this CPU (iterated through leathead and ->Inext
iterate thgour 27 neighbours.
If neighbour does not reside on our CPU
add cell to buf(n,who_i_am,Dest), which does:
DestCounter[dest]++;
DestBuf[dest]++;
And puts the cell number to
DestBuf]dest]-><dest_cell

For each cpu I, which is not ours {
(outstanding is zero here)
outstanding = outstanding + DestCounter[i]; destcounter



thus outstanding shows ;

how many we are sending to this I cpu;
I f(i!=who i am) {
Csend(send_type,HeadDestBufli],sizeof NEAR)*(DestCounter[i]+1),1,0);
DestCounter[i]=0; /* this is the basic send.

}

if we did not need to send any to other nodes:
send done_type with the number outstanding in the message.

Unpack near atoms ()

For all other CPUS.

send_atoms(Index); /* this generates lots of UNPACK_FORCE_TYPE
messages*/

while (Counter !=0) {
crecv(-1,RcvMsg,sizeof(DYN_MSG));

swithc processes:

case UNPACK FORCE TYPE:
casts DYN_MSG to type NEAR_MSG
looks up atom in local hash
if not updated. updates f,v,x, and where it came from,
sets flag updated to 1. (who clears it);

NEAR MSG has another field about bond data, which is
updated into nbe arrays. (probably does not need that ?)
case MOVE ON _TYPE:
Counter--;
break;

send_atoms(int Index);
void send_atoms(int Index)

{
double TempBuf;

printf ("%d: send_atoms called.\n", who_i_am) ;

while (CellBuf[Index]->dest_cell !=NULL) {
pack_atoms(CeliBuf[Index],Index,0,UNPACK_FORCE_TYPE,0);
CellBuf[Index++;
}
if (Numnodes !=1)
csend(MOVE_ON_TYPE,&TempBuf,sizeof(double),-1,0);
csend(MOVE_ON_TYPE,&TempBuf,sizeof(double),who_i. am,0);

}

void -
send_partial forces home(void)
{ .
for all atoms in localhastable (processed via atomlist[I] and lookup atom in hash and iterator ->hnext
memcpy(ForceMsgMin->atom,A,sizeof(ATOM)); /* this is one atom */



A-5

csend(UNPACK_PARTIAL_TYPE,ForceMsgMin,sizeof NEAR_MSG_MIN), A->sen
der,0); outstanding-++;

if nothing ever was send then do csend(PARTIAL_DONE_TYPE, PartialMsg,sizeof(ATOM),0,0)

else start receiving:
case UNPACK PARTIAL TYPE:
update forces in hash and force_updated flag and
csend(ACK_UNPACK_PARTIAL TYPE,&i,
case ACK_ UNPACK PARTIAL TYPE:
. utstanding--; / decrease counter;
. if counter is zero, csend(PARTIAL DONE_TYPE,Pa

case PARTIAL DONE TYPE:
adds the message to the global PE (that’s how it is send actually)b
when PARTIAL DONE _TYPE received from all nodes,
broadcast PE back to all of them via MOVE_ON_TYPE
case MOVE_ON_TYPE:
receive the new global pe and set done to 0, so receiving loop terminates.

Integrate()

Integrate->begin
Calc_ke caluclates local ke and sends it to 0 via csend(ENERGIES_TYPE

Collect kes
On node zero: Receives ENERGIES_TYPE and adds them together then broadcast via
GLOBAL ENERGIES TYPE
On ondes other than zero: recv GLOBAL_ENERGIES_TYPE.

Integrate force2()
Integrate->force2()
Sends MOVE _ON_TYPE to 0
Then zero receives it from all,
Adds up global kinetic energy.
Broadcasts INTEGRATE VEL_TYPE on 0 and receives it on the other ones.



Appendix B Shared Memory Macro Definitions

B.1 Macro definitions for global sums

#include "locks.h"
#ifdef SGI1
#define IRIX4
#endif

$#ifdef  ksr
#define  ksr sums
#endif

#ifdef WS
#define  ksr sums
#endif

#ifndef WS

#ifdef  sgi .
#define USE SGI LOCK
#endif

fendif

#ifdef  ksr
/* both do _sync() calls are necessary */
#define global sum{g,1l) {\
do_sync() ;i\
_gspwt (&g); \
g +=1; \
_rsp(&g);\
do sync();}

#define glcbal sum6(g,1l) \
{int 1i; _gspwt(&g);for(i=0;i<6;i++)g[i]+=l[i];”rsp(&g);do_sync();}

#define local(a) a
fdefine def local(type,a) PRIVATE type a

/* the next four are called with pointers usually */
/* if not called for pointers, take the & in the call itself */

#define lock atom(a) _gspwt(a);
fdefine unlock atom(a) _rsp(a) ;
#define lock other(a) _gspwt(a)
#define unlock other(a) _rsp(a)
#define lock otherv(a) _gspwt(&a)
#define unlock otherv(a) _rsp(&a)
#else
- #ifdef WS

#define global sum(g,l) g += 1
fdefine global sumé6(g,l) {int i; for(i=0;i<6;i++)g[i]+=1[1i];}



#define local(a) a

#define def local(type,a) type a
fdefine lock atom(a)

#define unlock atom(a)

#define lock other(a)

#define unlock other(a)

#define lock otherv(a)

#define unlock otherv(a)

¥else

#ifdef  sgi /* SGI definitions */
#define paste(a,b) a##b

#define lock atom(a) setlock(a->lock)

#define unlock atom(a) unsetlock(a->lock)

#define lock other(a) setlock(paste(a, lock))
#define unlock other(a) unsetlock (paste(a, lock))
#define lock otherv(a) setlock(paste(a, lock))
#define unlock otherv(a) unsetlock (paste({a, lock))

#define global sum(g,l) {do_sync();\
if (here == 0) {
int cpu;
for (cpu = 0 ; cpu < nthreads; cpu++) \
{g += l[cpul;}I\

do_sync{();}
#define global sumé(g,1l) {do_sync();if (here == 0) {int cpu,i; for (cpu
= 0 ; cpu < nthreads; cpu++) for(i=0;i<6;i++){g[i] += 1[i][cpul;}}

do_sync () ;}

#define local(a) alhere]

#define def local(type, a) type a[MAX CPU]
#endif /* sgi*/

#endif /* else WS*/

#endif /* ksr */

B.2 Functions providing locking and mutexes

The following are examples for SGI machines using the spinlock library. Similar

functions are written using the CPS library for HP Exemplar computers.

B.2.1 Header file locks.h

#ifndef MAX CPU

/* KSR */
“#ifdef  ksr

#define MAX CPU 64
#endif



/* IRIX5 / IRIX6 / HPS000 Single Processor */
#ifdef WS

#undef MAX CPU

#define MAX CPU 1
fendif

/* IRIX6 Multi Processor */
#ifdef  sgi
#ifndef WS
#define MAX CPU 16
#endif
#endif

/* HP/Convex Exemplar Multi Processor */
#1ifdef CONVEX

fdefine MAX CPU 128
#endif

#endif

#ifdef  sgi
#include <ulocks.h>

/*

extern ulock t add force lock;

extern ulock t disp lock;

*/

extern ulock t gpole lock ;

extern ulock t add atom to cell lock ;
extern ulock t movelist lock ;

extern ulock t ave sync time lock ;

extern double lock time [MAX CPU] ;
extern double ulock time [MAX CPU] ;

void init locks (void) ;

void setlock (ulock t *lock) ;
void unsetlock (ulock t *lock) ;
ulock t getlock (void) ;

void finish locks (veoid);

fendif

#ifdef CONVEX
#include "clocks.h"
#endif

B.2.3. Implementation file locks.c

. /* DTM: According to Mihail, locks.c is not needed on the KSR */
"#ifndef WS
#ifdef  sgi



#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include "locks.h"
#include "sim.h"
#include "util.h"

extern int nthreads ;

ul
ul
ul
ul

st
st

ock t add _atom to cell lock ;
ock t movelist lock ;

ock t gpole lock ;

ock t ave sync time lock ;
atic char *filename ;

atic wusptr_t “*arena ;

double lock time [MAX CPU] = {O};

double ulock time [MAX CPU]

vO

{

#i

Il

{0};
id init locks (void)

100000000 ;

]

int sh arena size

int sh arena users = 8 ;

filename = tempnam ("/usr/tmp", "1t")

if (filename == 0) perror ("error setting temporary file") ;
£0

printf ("Setting size to %d, old value was %d\n",

sh arena_size, usconfig (CONF INITSIZE, sh arena size)) ;

printf ("Setting users to %d, old value was $d\n",

e

/~k

Iz

*/

sh arena users, usconfig (CONF_INITUSERS, sh arena users)) ;
ndif

if (usconfig (CONF INITSIZE, sh_arena_size) == -1) {
perror ("usconfig CONE_INITSIZE") ;panic ("usconfig")

) .

if (usconfig (CONF_ INITUSERS, sh arena users)== -1) {
perror ("usconfig CONF_INITSIZE") ;panic("usconfig™)

}

if (usconfig (CONF_ARENATYPE, US_SHAREDONLY)== -1y {
perror ("usconfig CONF_INITSIZE") ;panic("usconfig") ;

} /* unlink the lock file, so
it does not clutter /usr/tmp */

arena = usinit (filename) ;
if (arena == 0) perror ("spinlock usinit")

printf ("Arena size %d, max users %d\n",
usconfig (CONF GETSIZE, arena), usconfig (CONF_GETUSERS, arena))

/* add_force lock = getlock() ; */
/* disp lock = getlock() ; */



add_atommto_cell_lock = getlock() ;

movelist lock = getlock()
gpole lock = getlock () ;
ave sync_time lock = getlock ()

}

/**************************~k~k*****************************/

#ifndef WS
void finish locks (void)
{
unlink (filename) ;
free (filename) ;

}
#endif

/-k*********-k**-k****************************‘k*************/

void setlock (ulock t *lock)

{
#ifdef LOCKTIME

lock time [here] -= dclock() ;
#endif
if (ussetlock (lock) != 1) {
printf ("locking failed") ;
abort () ;

}
#ifdef LOCKTIME
lock time [here] += dclock() ;
#endif
}

/************************~k~k********************************/

void wunsetlock (ulock t *lock)
{
#ifdef LOCKTIME
ulock time [here] -= dclock() ;

#endif

usunsetlock (lock) ;
#ifdef LOCKTIME

ulock time [here] += dclock() ;
#endif
}

/*r)c**************************************************‘k*****/

ulock t getlock (void)
{

ulock t 1 = usnewlock (arena) ;

if (1 == 0) {
perror ("spinlock getlock failed")
abort ()

}

return 1 ;

/* printf ("%d lock\n", m_get myid() ) ; */
} ' '

" #endif /* __sgi */
fendif /* WS */

#ifdef CONVEX



#include "clocks.c"
#endif /* CONVEX */



Appendix C. API Interface to the MPsim Program

When implementing a new driver it is important to have the
following features correctly:

Various setups (degrees of freedom, non-bond and bond setups;
energy expression.)

Call check move and finish move once in a while (see example
below) to make sure that atoms that physically left cells to which they
were assigned are reassigned to their new cells correctly.

(Note: usually it will be necessary to call the setup nonbonds
immediately after that, to initialize the nonbond structures properly.
Bond structures depend on absolute atom number, and not on which cell
the atom is in, so it is not necessary to call bond setups.)

Lastly, load balancing may be called once in a while, if
executing on multiprocessors to redistribute the load more evenly.

Example of a main loop of a driver

calc dof() ; /* degrees of freedom (dof) goes into a global variable */
/* basic loop */

while (dyn time < dyn_steps) {

...basic loop...

setups if necessary.

calc ef all - computes energy and forces.
do_sync(). since calce_ef all does not call it at the end.

Perform moving (e.g. dynamics, minimization, something else)
write trajectory entry...

Call the functions that do load balancing and reassigning atoms between
cells and cells between processors.

do_sync() i

notmoving = (dyn time + 1) % move_ freq;

check move (!notmoving);

if {!notmoving) finish move();

if (++local (loadbal ctr) == loadbal_ intvl) {
load balance();
local (loadbal ctr) = 0;

}

do sync() ;

write snap entry if desired.



if (here == 0) dyn time ++ ;
do sync () 7

}

/* Note: can not use for, since dyn time is shared */

Basic loop to process all atoms in parallel.
example from computation of global kinetic energy
float

calc global ke(void)
{

int 1 ;
do sync();
local (ke) = calc cart ke();/* each cpu will compute it's ownKE */
do_sync(); )
if (here == 0) { /* node 0 also adds up the rigid KE */

global ke = calc rigid_ke() ;
}
global sum (global_ke, ke) ; /* node 0 will add them up */

return global ke ;

static float

calc_cart ke(void)

{
float ke, atom ke;
CELL *cell;
ATOM *atom;

ke = 0.0;

init next cell();

while ((cell = get next cell()) != NULL) {
for (atom = cell->c atom; atom != NULL; atom = atom->cnext)
{
/* this is the basic loop that goes over all the cells on this cpu

and the over all the atoms contatined in them */

if (ATOM NMOVE (atom)) continue;
atom ke = 0.0;

atom ke += atom->v[0] * atom->v[0];
atom ke += atom->v[1l] * atom->v[1];
atom ke += atom->v[2] * atom->v[2];
ke += atom->m * atom ke;

}

return (ke * 0.5);



}

/**************~k~k*****************************************************/

Loops in which atoms are processed in sequence can be done in the
following way. This has to be done on one cpu only (usually 0; cpu)

n = init next atom(};

for (i = 0; 1 < n; 1i++) {
ATOM *a = get next atom();

All the atom and cell interfaces are defined in atom.h and cell.h

ATOM a, can be tested with the following macro predicated for specific
properties:

ATOM FIXED (a) true if atom is fixed.

ATOM RIGID(a) true if atom is part of a rigid molecule.

ATOM NMOVE (a) true if atom non-movable, e.g., rigid or fixed.
ATOM TRACK(a) true if atom is being tracked.

Those properties can be set in the following way.

a->flags |= ATOM FIXED FLAG ;
a~->flags |= ATOM RIGID FLAG ;
a->flags |= ATOM TRACK FLAG ;

The read file biograf reader automatically sets the first one from
data in the .bgf file and rigid and track are set from the
corresponding keywords in the .ctl file.

ATOM *get atom (int gnum) fetches an atom by absolute number.

void add force(ATOM *const a,
' const float fx, const float fy, const float fz,
const char *const type);

/* this function adds force to the
* atom A. It can be used to
implement new terms of the forcefield.

The string type serves only debug-informational value.
All the cells interfaces are in cells.h

void assign cell (ATOM *atom); /* determines which cell this atom

: * belongs to and assigns the value in
atom->cell ‘ ‘
" void add atom to cell (ATOM *atom); /* links the atom to its appropriate
cell */



Appendix D Macro Language for MPSim

Control file for MPSim

This is a template for the ctl file with description of the keywords

in the control

(ctl) file. The meanings of the "numbers" are explained within

the file. Anything in brackets 1s optional. Select exactly one of anything in
braces. Text in angle brackets describes a parameter (usually a number). Case
and spacing are never important.

PROJECT

FF

BBOX

STRUCTURE

dreid hb
Base filename for .traj, .snap, .dbg files

This is just a name that's used to construct output
filenames.For example, i1f the project name is PE20, the
snapshot restart files are going to be saved as
PE20.snapXXXX,where xxxx is the timestep; a trajectory file
containing energy and rms force data is going to be saved as
PE20.trajl, for the first run, PE20.traj?2 for the next, etc.
BGF trajectory file is going to be saved as PE20.trj if
requested.

dreid hb.ff
This should be the filename of the forcefield parameter file.

0.00000 17.29713 0.00000 17.29713 0.00000 17.29713
{min x} {max x} {min y} {max y} {min z} {max z}

For finite, non-periodic cases, specify the minimum and
maximum coordinates in the X, Y, and Z axes. These can, and
often should, be much smaller/bigger than the actual minima
and maxima in order to make the subdivided boxes large enough
and provide room for the system to expand.

These values have impact on the precision and speed of the
various method so it might be nice to experiment. A utility
called "bbox.pl" can be used to compute the bbox dimensions
like, for example, "bbox.pl structure.bgf" would give the
results. Note: You only need that for non-periodic systems,
for periodic ones it is the size of the unit cell.

dreid hb.xtl

This should be the name of the BIOGRAF file. Initial charges
should be specified in the file. If you want to use PBC, the
.xtl file should contain a CRYSTX record. This line must come
after the FF line.



ACTN

NB_METHOD

LEVEL

CMM EXPANSION

EWALD ACC

[OneEnergy Dynamics Minimize Traj]

Selects what to compute:

Dynamics runs MD

(TPN, TVN, EVN, depending on selection)

Minimize runs minimization (conjugate gradient or steepest

descent)

OneEnergy computes energies and forces for the

Traj - run in trajectory conversion mode (see the RDTRJ

keyword then)

[CMM EWALD SPLINE]

Select a method for non bond computations.

CMM is the Cell Multipole Method.

SPLINE is the spline cutt-offs.

EWALD 1is Ewald summation for periodic systems.

Number of octree levels. This should be a number that controls
the level of subdivisionof the bounding box or unit cell.
Generally more levels will provide faster run and lower
precision (especially true for CMM).

The level, along with the bounding box size, will determine
the average number of "atoms per leaf cell" which if
too small might lead to loss of precision.

For exact non-bond calculations, use CMM with level of

zero(0) .

[centroid center qgcenter]

Determines how the multipole expansion is done.

Qcenter -
Centroid -
Center -

0.0001

Accuracy for ewald

uses charge center
uses the centroid
uses the geometric center

calculations



SPLINE CUTOFF

HB_CUTOFF

OFTEN

INTEGRATE

DYN_STEPS

MINMETHOD
MINPAR

MINCONS

8.000 8.500 9.000

These are r spline on, r spline off, and

r spline cutoff, respectively. This should only be
specified if "spline" is the chosen non-bond method.

4.0 4.5 5.0 65.0 75.0 90.0

These are the H-bond cutoff distances(dreid hb ron,
dreid hb roff, dreid_hb rcut) and angles
(dreid hb angle on, dreid hb_angle off,
dreid hb angle cut) in the DREIDII's hydrogen-bond
force field.

nbupdt freq move freq loadbal freqg temp freqg
Specifies update frequencies

nbupdt far-field CMM update or nonbond list rebuild

move atoms reallocation to cells.

loadbal loadbalancing across processors

temp Rescale the velocities to match the desired
temperature.

[TVN EVN TPN Neimo-TVN]
Specifies integration method

TVN - Constant temperature, volume and number of particles
ensemble using Nose-Hoover method.

EVN - Constant energy, volume and number of particles
ensemble.

TPN - Constant temperature, pressure and number of
particles ensemble (Gibbs).

Neimo-TVN - TVN ensemble using only torsion angles as
degrees of freedom.

100 1

The first number is the number of dynamics steps to be done.
The second number is the time step in fs.

[ Steepest Conjugate]
Selects a minimization method

0.1 500
{ rms force criteria} { number of steps}

[ Volume Pressure]
{ Constant wvolume constraint} { constant pressure constraint}



Specifies minimization constraints

PSSOLV [Yes No]
Select whether to assume explicit solvent
PSPARS <External Solvent Epsilon> <Solvent radius>

Poisson-Boltzman solvent parameters

Epsilon
Set the dielectric constant of the continuum. Default
is 80.37, which corresponds to water at 298 Kelvin (?).
Radius
Set the probe radius of the solvent, which defines the
accessibility of the solute molecule. Default value is
1.40 Angstrom, which corresponds to water.
EXTERNAL P 1.0 1.0 1.0 0.0 0.0 0.0
{xx} {yy} {zz} {zy} {zx} {(xy!}
Txx Tyy Tzz Tzy Tzx Txy are 6-components of the
external stress in atmosphere.
DYN TEMP 300.0
This is the temperature in kelvin at which to run the
simulation.
NOSEtau 0.1
This is the tau constant for the Nose-Hoover heat bath. It
looks like it should be near the shortest frequency in the
system (often 0.01 ps). If you leave it out, it defaults to
100 times the timestep. It's specified in ps, not fs.
When doing a restart you must have a
Nose tau specified in the ctl file.
GIBBS 0.1

cell mass factor for TPN dynamics

THE keyword "GIBBSpar" also works instead of the above "GIBBS" keyword as in

GIBBSpar 0.1

RIGID 1000

This number 1000 is the atom number (for example in this case
it is 1000th atom). :

The molecule of which the 1000th atom is a member is made
rigid. So one

needs to list only one atom in any molecule which the user
wants be kept

rigid. If you have more than one molecule to be made rigid (
for example



all the water molecules) one has to list an atom number in

each molecule
which is to be made rigid.
Exactly one atom per rigid molecule should be specified. You
can put more than one atom number on each RIGID line.

This also understands things like size <= 3, which will make all molecules
with
Less than 3 atoms rigid.

TRACK atom 2409 atom 2410 atom 2411 atom 2412 atom 2413 freq 1000
atom {atom number} freq {trackfile frequency}

track files are output files containing coordinates,
velocities and
forces of each of the atom listed under the keyword "TRACK" as

shown above.

"freq" is the frequency at which one wants the track files to

be written.
if the number of track atoms is too large then you may want to

write less often
and so on.

CD change working directories.
BGFtrajectory Yes/No whether to write one
BGFtrajvel Yes/No include velocities?

BGFtrajfreq number how often to write it.

For trajectory conversion mode only:

RDTRJ step number - what step was used in ps, in the simulation in which
the snapfiles were produced.

RDTRJ snap filel
RDTRJ snap file2
- lists the files that are to be processed.

RDTRJ snap filen

The foilowing 3 keywords to run the new version of MPSim(sim 2.0.3).

SETUPEEX - sets up energy expression
. DO . - runs the simulation previously selected with INTEGRATE
INFO - this will print biograf style breakup in energies and other

energy expression information.
EXIT exit the program. Otherwise at end of macrofile attempt will be



made to read from standard input.

0ld style keywords (LEVEL FREQ ACTION ONE_EF DYNAMICS
MINIMIZATION)

LEVEL

o centroid
{number of octree levels} [{center,centroid, gcenter, spline}]

New style: use NB METHOD and CMM EXPANSION in addition to LEVEL with a
number. For example the above will be written as

FREQ

LEVEL 6

NB METHOD CMM

CMM_EXPANSION centroid

nbupdt 1 move 1 loadbal 1 temp O

Same as the OFTEN keyword, except that the nbupd, move, etc,. keywords
needs to be given.

ONE_EF

Compute one energy. In the new style use ACTN.

Same as ACTN OneEnergy

DYNAMICS

1060000 1 gibbs

{number of steps} {timestep in fs} [nose] [min] [globf] [globv]
The first number is the number of timesteps. The second
number is the size of the timesteps in fs. Select "nose" for
Nose- Hoover dynamics, "min" for steepest-descent
‘minimization,neither for microcanonical dynamics. "globf"

causes the net global force to be reset to zero at each
timestep; "globv" causes the net global velocity to be reset
to zero at each timestep for Nose-Hoover or at each
temperature rescaling for microcanonical; "gibbs" for gibbs
dynamics.

Instead of "DYNAMICS" use "INTEGRATE" as shown above:
WHEN USING "INTEGRATE" KEYWORD USE ALSO "DYN_STEPS" KEYWORD AS
SHOWN ABOVE.

The above is equivalent to

~

MINIMIZATION

ACTN DYNAMICS
INTEGRATE TPN
DYN STEPS 100000 1

1 0.1 500 0



{method} {number of steps} {rms force criteria}

The first number is the method to be used in the
minimization.l stands for conjugate-gradient method, while 2
stands for steepest-descent method. (Other methods will be
implemented later). The second number 1is the convergence
criterion for the RMS forces. The third number is the maximum
number of minimization steps. The fourth number denotes cell
relaxation or not; 0 indicates constant volume.

For example, the above is equivalent to:

ACTN Minimize

MINMETHOD Conjugate

MINPAR 0.1 500

MINCONS Volume

VELSTART

NEIMO

ACTION

DEFAULTS

THREADS

[nonmin birand truerand]

nonmin option does not double the initial kinetic energy,
which is appropriate for Nose-Hoover or for minimization.

birand uses a set of initial velocities which is reproducible
given the same set of input parameters. This is the same as
using the same random seed for a given set of input
parameters.

truerand uses a truely random set of initial velocities for a

" given set of parameters.

0 0 initvel
This option is to wuse NEIMO with MPSim (no waters
vet!)always use 0 O option. If the user wants the torsion
angleswritten every timestep, then put 1 for the first
zero.initvel is for using a set of random initial
velocities.The other option readvel instead of initvel
where a set of initial dihedral velocities can be read in.

same as SETUPEEX

When the program starts the defaults are as if the following MACRO
has just been executed.

1

- for workstation version



THREADS CPUs - on computer with CPUs number of available CPUs.
(No PROJECT and LEVEL defaults, so those need to be given)
EWALD ACC .01

NB METHOD CMM

ACTN OneEnergy

CMM EXPANSION center

SPLINE CUTOFF 8 8.5 9

HB CUTOFF 4 4.5 5.0 65 75 90
EXTERNAL P 1 1 1000
SETUP_FREQS 5 5 51
INTEGRATE TPN

DYN TEMP 300

DYN STEPS 100 1

MINMETHOD Steepest

MINCONS Volume

MINPAR 1 500

NOSEtau 100DYN STEPS

PSSOLV NO

PSPARS 80.37 1.40
BGFtrajectory No

BGFtrajvel No

VELSTART nonmin birand

Relevancy dependency of the keywords:

Keyword only relevant if
SPLINE CUTOFF NB_METHOD Spline
CMM EXPANSION NB METHOD CMM
EWALD ACC NB_METHOD Ewald
EXTERNAL P INTEGRATE TPN
DYN_TEMP

DYN STEPS ACTN Dynamics
MINMETHOD

MINPAR

MINCONS ACTN Minimize
NOSEtau 7 INTEGRATE TPN or TVN
CELL_MASS INTEGRATE TPN

RDTRJ ACTN Traj



Appendix E Command Line Interface to the Diffusion Analysis
Toolkit.

The sources for those utilities are available under /ul/iotov/xgd on the MSC/WAG computers.
E.1 Void extraction

voids $parfile -$bgffile $diameter $centermode $snapfiles > Soutput_void_file
(option to disable '-' and thus include the bgf file will be added soon)
centermode: 2 is hard sphere option.

This feature extracts voids from snapshot files obtain via running MD simulations.

E.2 Create voids

vgen $bgf $rates > $voids

E.3 View voids

voidl1.pl $bgffile $voidsfile $snapshots $total > tmp.iv; ivview -q tmp.iv; rm tmp.iv

Displays voids location in blue/red mixture color. Red means more probable void, blue is less so.

The first number on the command line is the number of snapshots used to make the voidfile and
the second is for the value of the first void line (e.g., the leftmost value on the first line of the void file). For

voids generated with the 'Create Void' option, the values of 1 and 1 are good. Those are currently the only
allowable values, too. Operating on files sorted on the 4th columns is a lot faster.

'E.4 View track

genericktracksnap.pl $trackfile $bgffile >> tmp.iv; ivview tmp.iv; rm tmp.iv

Generates a picture of the movement of the atoms tracked in the $trackfile.

(Options to do animation and to select only certain atoms will be added later.)

E.5 Monte Carlo random walk simulation

gmcd <bgf> <void file> [mc.rates]

The mc.rates file format is described in Section 4.9.



E.6 Cluster void analysis

cvoid [-d] [-c size_cutoff] bgf voidfile base_outputname

-c option disables output of small voids.



Appendix F. Residence Time Extraction Algorithm

F.1 Algorithm idea

The idea of the algorithm is to collapse a feliciton to a point
with the following properties:

Coordinates X , Y, Z
residence time t,1
transition rates r,ij
transition times t, 13

F.2 Algorithm details-

The following algorithm elaborates how to extract this data from
the Monte Carlo diffusion simulation:

Inputs: voids description, transition probabilities.
Qutput: residency time and transition rates and times for each void.

1. Simulate penetrant dynamics according to the MC diffusion model.
Start in void 1.

2. Record all "leave" and "entry" events and their times.

3. Each time the following sequence of events happens:
A. Leaving void i
B. Entering void J
C. Leaving void j
D. Entering void k

Perform the following:

Add time(C) - time(B) to residency CT; time of void j
Increment counter of CRy, and total counter C;
Add time (D) - time(C) to transition time CRTj and increment counter crjx

Time (A) means the step at which event A happened.
When this is done many times (C; >> 1), compute

Residency times : T; = CT; / Cj



Transition rates : Ry = CRyx / Cj
Transition times: TRy, = CRTj / TCy
F.3 Assumptions

Leaving a void is independent of which channel the particle
entered from. This assumes enough friction in the void so the particle
forgets where it entered from.

We expect Ry, to be symmetric and the residency time distribution
to be Poisson.



