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Abstract

This thesis presents the path-integral formulation of the nuclear shell

model using the Hubbard-Stratonovich transformation, which linearizes

the two-body interaction by auxiliary fields. The path-integral was eval-
uated via Monte Carlo. The method scales favorably with valence-
nucleon number and shell-model basis: full-basis calculations can be
done up to the rare-earth region, which cannot be treated by other meth-
ods. Observables are calculated for the ground state and in a thermal
ensemble. Dynamical correlations are obtained, from which strength
functions are extracted through the Maximum Entropy method. Ex-
amples in the s-d shell, where exact diagonalization can be carried out,
compare well with exact results. The “sign problem”, which is generic
to fermion Monte Carlo calculations, is proved to be absent in a wide
class of interactions including the attractive pairing-plus-multipole in-
teractions. The formulation is general for interacting fermion systems
and is well suited for parallel computation. The method has been im-
plemented on the Intel Touchstone Delta System, achieving better than

99% parallelization.
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I. INTRODUCTION
A. Interacting fermions

Interacting fermions are ubitquitous: nucleons in nuclei, electrons in atoms and
condensed matter, quarks in hardrons. They consitute a large part of the physical
problems in understanding matter. The exact treatment of the interacting fermions
from first principles quantum mechanics is unrealistic apart from extremely simple
systems, such as two-body system and three-body non-relativistic problems. Approx-
imations have to be sought.

The idea of quasi-particles (independent particles dressed with effective mass and
charge from interaction with the medium) proved to be successful in the early devel-
opment of many branches of physics. In solid-state systems, the picture of indepen-
dent electrons and holes moving in conduction and/or covalent bands give rise to a
successful description of metals and semiconductors, where interactions between the
particles are either unimportant, or can be handled within perturbation (scattering)
calculations. In the nucleus, the independent particle picture of the early nuclear
shell model explained a vast amount of nuclear data, such as abundances, and spins
[1]. However, as the understanding becomes more sophisticated, there are examples
where the simple picture is invalid. For example, in transition metals and magnetic
materials, (or more specifically the high-temperature superconducting oxides), there
is a strong correlation among electrons, and treatments that account for many-body
effects are necessary. One example is the Hubbard model [2] in which the effect of
Columb repulsion is simplified to a constant on-site repulsion for electrons on the
same atomic orbital. Similarly, quantitative predictions for nuclear excitation spec-
tra, transition rates, and electromagnetic moments can only be made by considering

the residual interaction of the valence nucleons.



In these examples, the Hubbard model and the nuclear shell model, although the
model space is drastically truncated to incorporate only the physically significant
degrees of freedom, exact solutions of the model can only be had in simple or small
systems: 4 X 4 lattice in the Hubbard model, 0s-1d nuclei in the nuclear she]_l model.
The major limit is the combinatorial scaling of the Fock space with the single particle
basis and number of valence particles in exact diagonalization calculations. It is a
general challenge to develop methods to calculate strongly interacting many-fermions
systems, where perturbation expansions are invalid. Different quantum Monte Carlo
methods have been proposed in the last twenty years to treat quantum problems with
stochastic methods [3] rather than direct diagonalization. Attempts like the Green’s
function Monte-Carlo method and related path-integral Monte-Carlo method, are
limited in application to fermionic system, mainly due to the existence of nodes
in femionic wavefunctions that arise from the antisymmetry properties in particle
exchange [4]. Since the exchange symmetry is non-local, it is difficult to handle it
in a local approach like the Green’s function method. Results are usually obtained
in the fixed node approximation [4], which generates an upper bound for the ground
state energy.

The auxiliary field Monte Carlo method (AFMC) [5] was proposed as a way of han-
dling interacting fermions. It is based on a Monte Carlo evaluation of a path-integral
obtained by the Hubbard-Stratonovich transformation of the partition operator. The
many-body wavefunction is represented by a set of single-particle wavefunctions evolv-
ing in fluctuating external fields. The method therefore enforces the Pauli principle
exactly by using the Slater-determinant of single-particle wavefunctions, and involves
a mild scaling of storage and computation time with the single-particle basis. The
method is also applicable to bosonic systems, although it was most noted for han-
dling fermion systems, which are difficult to deal with by other methods. Both finite

temperature and ground state properties can be obtained. The AFMC method has



been applied to condensed matter systems such as the Hubbard Model, yielding much
information about the electron correlations and magnetic properties.

Inspired by the success of the AFMC method in the Hubbard systems, we have
applied the method to the nuclear shell model, which involves a a general two-body
interaction rather than a simple on-site repulsion. Through these studies, we hope to
develop a new method for studying the nuclear shell model, as well as to understand
the power and limits of the auxiliary field Monte Carlo method for treating general
fermionic systems. To put the work in better perspective, I will first review the
nuclear shell model and what we hope to get from the Monte Carlo calculations. A
detailed discussion of the nuclear shell model can be found in [6] and a review of the

status of the model can be found in [1] [7].

B. The nuclear shell model

The early nuclear shell model describes nucleons as moving independently in an
effective spherical potential generated by the interaction among them. The intro-
duction of a strong [ - s spin orbit force established the success of the model by its
explanation of magic nuclei and the prediction of spin and parity for simple nuclei.
Fig. 1 depicts the schematic single-particle orbitals with spin-orbit coupling, labelled
by orbital and total angular momentum (I,5) [8]. The model explains the magic
proton and neutron numbers observed in the nuclear abundances: the numbers cor-
respond to the closing of major shells, above which a large gap exists for excitations,
leading to especially stable 0% nuclei. It also predicts the spin and parity of nuclei
where a single valence nucleon exists outside a closed shell, the values being just
the spin and parity of the orbital. Predictions for more complicated nuclei can be
made by considering the residual-interaction (i.e., that not included by the effective

potential) among the valence nucleons outside a closed inert core of shells. Thus, the



nuclear shell model is a drastic truncation of the original problem, in which nucleons
interact through a short range attraction and hard core repulsion, to a model space of
valence nucleons in limited discrete orbitals, interacting with a much more tractable
effective interaction.

However, exact calculations can still only be carried out in small nuclei or in
systems with very few valence nucleons, because of the exponential growth of the di-
mension of the Fock space with the number of active orbitals or the number of valence
nucleons. Various approximations has been used to treat more complicated nuclei,
including mean-field methods: Hartree-Fock and Hartree-Fock-Bogoliubov method
with various projection schemes for particle number and angular momentum. Boson
approximations (interacting boson models) have been suggested for the lowest 0% and
2* nucleon pairs, to further truncate the shell model space [9]. These approximations
were good for some nuclei.

The development of high performance computers extended the domain of nuclei
that can be treated by exact diagonalization. The most successful examples are the
systematic studies of s-d shell nuclei by Brown and Wildenthal [10] using a full-basis
diagonalization of the s-d shell (i.e. keeping all the possible configurations of the va-
lence nucleons in the s-d shell). The 63 matrix elements in the two-body Hamiltonian
are fitted to 400 energy levels in different nuclei. Forty-seven linear combinations
of the matrix elements are well determined from the fit, with the remaining less-
well-determined combinations taken from G-matrix calculation. This set of matrix
elements, with a simple scaling of A=%3, can well describe all A=21-35 nuclei, cor-
rectly giving the lowest six to ten levels for each possible spin. Quadrupole moments,
electric form factors and strength functions are also found to be in good agreement
with experimental values. The method demonstrated the power of the shell model
when full-basis calculations can be carried out in a truncated space that is large

enough, usually consisting of at least one major shell for each nucleon type. However,



full-basis calculations cannot be carried out in higher shells, except for cases in which
either the proton or neutron shell is closed. For example, the largest calculation in the
s-d shell is 28Si, where the number of J = 0, T = 0 states is 839. For the ®Zn in the
middle of the next shell, (i.e., the f-p shell), the corresponding number is 5,053,574.
Therefore, while the exact diagonalization method has established the success of the
microscopic nuclear shell approach, it is not feasible for medium and large nuclei [11].

I propose in this thesis the auxiliary field Monte-Carlo Method as another route
to the nuclear shell model. Full-basis ground state calculations will fit in present-day
high performance computers (e.g., the Delta system), for nuclei up to the rare-earth
region, because of the moderate scaling of the computational effort (see next section).
Finite temperature and ground state properties can be calculated within the same
framework. It is a stochastic method and would be especially suitable for imple-
mentation on a parallel computer where each processor represents an independent
Metropolis walker. The applications demonstrated below have been implemented on

the Touchstone Delta (512 i860 nodes) and Gamma system (64 nodes) at Caltech.

C. Organization

The presentation is organized as follows. Section II introduces the Hubbard-
Stratonovich (HS) transformation of the partition operator exp(-—ﬁff ) to a path inte-
gral in auxiliary fields, and briefly reviews previous work of this method on interacting
fermions. Particular attention is paid to the Monte Carlo studies on Hubbard model
and comparison is made with the nuclear problem. The transformation requires that
the Hamiltonian H be cast as a quadratic form in an appropriate set of one-body
operators. Section III discusses two ways in which this can be achieved, using either
particle density or pairing operators. The symmetries of the nuclear shell model, in-

cluding rotation and isospin, determine the particular choice for the set of operators



there. The partition operator can be used to extract information about the system
at finite temperature or in its ground state. In section IV, after a brief review of
the known formula for calculating static observables in the ground-state projector
formalism and the grand-canonical ensemble, various new methods are introduced for
treating the canonical ensemble, which is important for nuclear systems. Section V
discusses the measurement of dynamical correlations and extraction of strength func-
tions which can yield information about the ground state and excited states. Section
VI describes the computational algorithms for implementations and compares the
efficiency of different sampling schemes. Applications to nuclei in different shells are
discussed in Section VII. Finally, I will conclude in section VIII. Much of the material
in section II to section VIII is in a preprint submitted to Physical Review C. This
project was done in collaboration with D. J. Dean, C. W. Johnson, S. E. Koonin, and

W. E. Ormand.



II. AUXILIARY-FIELDS PATH INTEGRAL

Given some many-body Hamiltonian H , we seek a tractable expression for the

imaginary time evolution operator:
U = exp(—BH) . (2.1)

Here, @ has units of inverse energy and 8~! can be interpreted. as a temperature.
It is also clear that U can be interpreted as the quantum evolution operator for an
imaginary time (8. (Here and throughout, we take A = 1 and all nuclear energies are
measured in units of MeV and temperature measured in units of (MeV)~1.) We will
refer to U as the evolution operator hereafter. The operator H is usually a generalized
Hamiltonian and might contain terms beyond the true Hamiltonian, such as —uN in
the grand-canonical ensemble or —wJ, if we are ‘cranking’ the system.

There are two formalisms for extracting information from the evolution operator:
the “thermal” formalism (on which we will concentrate) and the “zero-temperature”
formalism (to which the thermal formalism reduces in the limit 8 — oo0). In the

thermal formalism, we begin with the partition function
Z="Tr exp(—ﬂﬁ) (2.2)
and then construct the thermal observable of an operator O:
A 1. A o
(0) = 51T [0 exp(-51)] . (2.3)

Here, the trace Tr is over many-body states of fixed (canonical) or all (grand-
canonical) particle number. In the zero-temperature formalism we begin with a trial
wavefunction 1)y and use the evolution operator to project out the ground state, as-

suming that 1o is not orthogonal to the ground state. The expectation value of O is

then given by



(3.4)

<0> — b <’¢’o Iexp(——gﬁ)OAexp(—gfI)l'xﬁo)
f—oo (%o |exp(—BH)| o)
In this section, we describe how to write I/ in a form that allows Eqgs. (2.3) or (2.4)

to be evaluated.

A. Path integral formulation of the evolution operator

We restrict ourselves to generalized Hamiltonians that contain at most two-body

terms. The Hamiltonian H can then be written as a quadratic form in some set of
‘convenient’ operators O,

H=Y e0,+ %zaj V.02, (3.5)

[+

where we’ve assumed that the quadratic term is diagonal in the Oq. The meaning of
‘convenient’ will become clear shortly, but typically it refers to one-‘body’ operators,
either one-particle (‘density’) or one-quasiparticle (‘pairing’). The strength of the
two-body interaction is characterized by the real numbers V.

For H in the quadratic form (2.5), one can write the evolution operator Uasa

path integral. The exponential is first split into NV, ‘time’ slices, 8 = N;AQ, so that
s a 1N:
U = [exp(-ABH)] ™ . (3.6)

Then perform the Hubbard-Stratonovich (HS) transformation on the two-body term

for the n’th time slice to give [12],

o 1/2
exp (—Aﬂfl) 'z/_ Hdaa,, (Aiirva')

1 A A
exp (—AﬂZ(—z-[VaIa'gn + 80 Va0anOa + ea(')a)) , (3.7)

where the phase factor s, is +1if V, < 0 and is +2 if V, > 0. Each real c-number

Oon 18 the auziliary field associated with @a at time slice n.



The approximation (2.7) is valid through order ApB, since the corrections are

commutator terms of order (AB)%. The evolution operator is then
0 = [exp (-288H)]" / D¥[0]G(0) exp (~ABhy (a4 )) ... exp (—ABhy, (71)) (3.8)
where the integration measure is

DNt[o] = HHd a,,( 22/ ')% , ‘ (3.92)

n=1 a

the Gaussian factor is

G(o) = exp (— g,,: %W;Iain) , (3.9b)
and the one-body Hamiltonian is
ho(Ta) =Y (€a + $aVaOan) Oa . (3.10)
It is sometimes convenient to employ a continuum notation,

U= [Dlolexp (—% / ? i ;]Valai(r)) x [Texp (- / ? i iz,,(r))] . (3.11)

where 7 denotes time-ordering and

Dlo] = Jim_ DM o] , (3.12)
T exp (— /Oﬂ dr iz,('r)) = Nl,igloo lj;exp (—Aﬁ iz,,(r,,)) . (3.13)

In the limit of an infinite number of time slices Eq. (2.8) is exact. In practice one
has a finite number of time slices and the approximation is valid only to order AB.
The case of only one time slice is known as the Static Path Approximation (SPA);
previous work on the SPA and its extensions can be found in [13] and [14].

Rewriting the evolution operator as a path integral can make the model space

tractable. Consider the case where the @, are density operators. Then Eq. (2.1) is
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an exponential of two-body operators; it acts on a Slater-determinant to produce a
sum of many Slater-determinants. In contrast, the path-integral formulation (2.8)
contains only exponentials of one-body operators which, by Thouless’ theorem [15],
takes a Slater-determinant to another single Slater-determinant. Therefore, instead
of having to keep track of a very large number of determinants (often many thou-
sands for modern matrix-diagonalization shell model codes such as OXBASH [16]),
we need deal only with one Slater-determinant at a time. Of course, the price to be
paid is the evaluation of a high-dimensional integral. However, the number of aux-
iliary fields grows only quadratically with the size of the single particle basis while
the corresponding number of Slater-determinants grows exponentially. Furthermore,

the integral can be evaluated stochastically, making the problem ideal for parallel

computation.

B. Monte Carlo evaluation of the path integral

Formulating the evolution operator as a path integral over auxiliary fields reduces
the problem to quadrature. For a limited number of auxiliary fields, such as in the
SPA with only a quadrupole-quadrupole interaction, the integral can be evaluated by
direct numerical quadrature. However, for more general cases (typically hundreds of
fields), the integral must be evaluated stochastically using Monte Carlo techniques.

Using the one-body evolution operator defined by
- T2 A
U,(12,71) =T exp (—/ dr h,(‘r)) , (3.14)
n

we can write Eq. (2.3) or (2.4) as

IDle] G(o) (0(2)) {(e)

(0) = —rpE1em (3.15)

For the zero-temperature formalism
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¢(o) = (%o [U+(8,0)| o) (3.16)

and

(¥0|0(8,8/2) 0 U.(B/2,0)| o)
(v |0.(8,0)| ¥o)

while for the thermal formalism (canonical and grand-canonical),

, (3.7)

(O(0)) =

((o) = T1[0,(8,0)], (3.18)

and
T [07,(8,0)]

(0), =%, U.(8,0) (319

To evaluate the path integral via Monte Carlo techniques, we must choose a nor-
malizable positive-definite weight function W,, and generate an ensemble of statis-
tically independent fields {o;} such that the probability density to find a field with

values o; is W,,. Defining the ‘action’ by
1 B .
So =X 51Val [ dr ou(r)? —~1n((o), (3.20)

the required observable is then simply

_ID](0) e x3::(0) @

O)=—Tppre= =" Ime (3:21)
where N is the number of samples,
&; = e 5 |W; (3.22)

and S; = S,,, etc. Ideally W should approximate exp(—S) closely. However, exp(—S)
is generally not positive and can even be complex. In some cases, $; may oscillate
violently, giving rise to a very small denominator in Eq. (2.21) to be cancelled by a very

small numerator. While this cancellation is exact analytically, it is only approximate
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in the Monte Carlo evaluation so that this ‘sign problem’ leads to large variances in

the evaluation of the observable.

There are several possible schemes for both the choice of W and the sampling of
the fields. We typically choose W = |exp(—S5)| and generate the samples via random

walk (Metropolis) methods.

C. Discrete Hubbard-Stratonovich transformation

The idea of a discrete HS transformation was first proposed and implemented
in Monte Carlo calculations of the Hubbard Model [17] , which is described by the
Hamiltonian

H= Mt ala;, + SN U ning,. (3.23)

<ij> i
Here a!_, a;, are the fermion creation and annihilation operators for localized electron
orbitals on lattice sites 7+ and j. The first term in the Hamiltonain describes the hop-
ping of electrons to nearest neighboring sites while the second term approximates the
Columb repulsion of electrons by a simple on-site repulsion. To linearize the on-site

repulsion, one field, z;, is introduced per site. In the continuous HS transformation
e~ ABY Unipniy _ /H /A'B/41rdzie—%Aﬂz?e—AﬁUEi{zi(nn—nu)+(nn+m'l)}. (3.24)

However, since the occupation number n,,, is discrete, either 0 or 1, there is a discrete -

transformation that can also linearize the action:

e~ A8Y Unipniy _ 1 S Y etV (3.25)
2.1:1=:}:1 rn=%1

where
V(:B) = UZA;(niT —_ n,-l):v,-, (3.26)

and
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A; = 2tanh™! (/tanh(ATU/2)/AB U. (3.27)

A similar discrete transformation can also be carried out when the on-site interaction
is attractive. In these discrete HS transformations, the auxiliary fields are like spin
variables with discrete values. In all comparative studies of discrete and continuous
HS transformation, the discrete version has been found to perform better in Monte
Carlo calculations in having small de-correlation length in the random walk.

For a general fermionic interaction, as in the nuclear shell model, the two-body
interaction is give by (2.5) where O, is a general operator bilinear in the fermion
creation and annilhilation operator. The operator is not described by simple discrete
values and therefore an exact transformation like that in (2.25) cannot be found.
Noting that (2.8) is an approximation good to the order AfB due to the corrections
by commutator terms, it is sufficient to consider a transformation good to a certain
order in AB. Expanding the exp(Aﬂ(%g@z)) and seeking approximation to a finite

order,

/ dy f(a’)eAﬂ(g"é) o~ exp (Aﬂ%géz) (3.28a)

A A 1 A 1 A
/ dy (o) (1+ AB(gO%) + (AB)*/26°0* +..) =1+ 3ABg0* + 2(AB) g 0" + ..
(3.28Db)
we can use a finite sum of delta-functions for f(o), by matching the expression order
by order in Af, up to the order desired. This will give rise to a discrete sum from

the integration of the delta-functions. For example, to reproduce the left-hand side

of (2.28b) to first order, the requirement on f(o) is

/ f(o)do =1 (3.29a)

/ f(o)o do =0 (3.29b)
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/ f(o)o? do = 1/(g AB). (3.29¢)
We can therefore choose two delta-functions

£(0) = 38(c — 1/(s AB))+ 38(c +/1/(s AB)) (330)

To reproduce the left-hand side to the (AB)? term, we can choose

7(0) = 28(0) + 38(c - v Zﬂ))+ 550+ Aﬁ)) (3.31)

More delta-functions will be needed to reproduce the higher-order terms.

I will compare the discrete and continuous HS transformation in the nuclear shell
model in section VI, and come to the conclusion that the continuous HS transforma-
tion performs as well as the discrete transformation after an efficient random walk
is introduced in the former case. The new random walk is found to be at least ten
times more efficient than the conventional sampling scheme used in the continuous
HS transformation, when applied to sd shell nuclei. The conclusion that the discrete
transformation is better for Monte Carlo calculations in the Hubbard Model, may be

due to the inefficient sampling scheme used on the previous continuous transformation

studies.

D. Previous application in nuclear physics

Calculations using the auxiliary field path-integral have been mainly done in the
static path approximation (SPA) by direct numerical integration [13]. The level den-
sity, quadrupole deformation, and strength functions was calculated for exactly solv-
able models like the Lipkin model, monopole pairing force and quadrupole interaction
in the Elliott SU(3) model, where analytical results exist and the SPA was shown to
give a good description at high temperature. This can be understood from the fact

that the lowest-order corrections are the comutators among different quadratic forms
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and the one-body part of the Hamiltonian in (2.5), which are of order 8% . When com-
pared to the mean field approximation, SPA is found to give a higher level density at
high temperature, close to the exact result, but it converges to the value for the mean
field approximation at low temperature. Therefore while SPA can account for the
thermal fluctuations at high temperature, it misses important quantum fluctuations
at low temperature, since time-dependent fields are left out.

The RPA-SPA approximation [14] is an attempt to incorporate the quantum fluc-
tuations of the finite-frequency Fourier component of the fields by taking account into
the curvature of the free-energy around the static path. In the simplest case where
there is only one quadratic term in the Hamiltonian, the auxiliary field is described
by just o(t). When a resolution of A is used for the imaginary time, the free energy

can be expressed in the Fourier component of the fields,

& =Y, e“tia(t;), (3.32)
]
and free energy is approximated by
. - 1 o _,
F(O’o, 01,072, ...) o~ F(O‘o, 0, 0, 0, ..) + = Z —‘:'2‘|500" (3.33)
2 i#0 30',-

when this expression is substituted into the path integral, the Gaussian integration
over the finite Fourier components can be carried out analytically, leaving the inte-
gration over the static field &y to be done numberically. Notice that the Gaussian
integration over &; contributes a factor depending on 6. This method has been ap-
plied to a pure pairing interaction and was shown to improve the SPA. However, the
approximation breaks down at low temperatures where the static path is unstable to
quantum fluctuations, in which case a negative curvature for some Fourier components
appears and invalidates the Gaussian approximation. Both the SPA and RPA-SPA
methods via direct integration fashion have been limited to simple interactions with

a few quadratic terms, due to the limited number of integrations that can be carried

out.
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E. Previous applications in Hubbard Model

Monte Carlo calculations for many time slices have been applied to several
Hubbard-type systems with on-site repulsion [3], including the Hubbard model (2.23)
in various dimensions, the Emery model (also known as three-band Hubbard model),
and the Anderson model. The 3-D Hubbard model was originally proposed for study-
ing transitional metals where strong correlation exist among electrons. After the
discovery of copper-oxide superconductors, the 2-D Hubbard model has been under
intensive study with the expectation that it captures the physics on the Cu-O plane.
Since the parameter U/t of the superconducting system lies in an intermediate region
where analytical expansions break down, the auxiliary-field Monte Carlo calculations
have played an important role in giving exact results in finite lattices, resulting in
much understanding of the system. We will concentrate on the applications to the
2-D Hubbard model, where many results are available.

The systems studied in the 2-D Hubbard model range from the 4 x 4 lattices
to 16 x 16 lattices, with parameter U/t ranging from 0 to 10. Since one wants to
study the properties of the bulk system, it is desirable to make the lattice as large as
possible to avoid finite size effects. Extrapolation is usually done in the lattice size for
physical observables to reach the continuum limit. In particular, the magnetic and
pairing susceptibility should diverge as the system size tends to infinity to signal a
phase transition. Both the zero-temperature formalism and grand canonical ensemble
are used in the Monte Carlo calculations. A resolution of A = 0.125/t is necessary
to obtaining an accuracy of several percent. For the above system sizes, it takes
B > 10/t to reach the ground state, amounting to 80 time slices in the path-integral.
Numerical instability easily sets in, due to the long propagation of matrices. In the
ground state formalism, the calculation can be stabilized by orthogonalization of

the single particle wavefunctions as they are propagated [5]. In the grand canonical
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ensemble, a modified Gram-Schmidt factorization [22] is introduced which separates
the diverging singular values of the matrix. These methods enable calculations to be
carried out with many time slices to reach the ground state.

Various physical observables have been obtained from the calculations, including
the momentum distribution, double occupany, magnetic correlation and susceptibility,
and pairing correlation and susceptibility. Dynamical imaginary time correlations
were also measured from which strength functions were reconstructed by various
methods. Among these is the MaxEnt method [18] [19] [20], which seems to be the
most successful. We will also use this method for the nuclear problem. A brief
description of MaxEnt is given in Appendix C.

The major problem met in these calculations is the sign problem associated with
negative contributions to the path integral. In the half-filled 2-D Hubbard model,
where one electron occupies each lattice site on average, the particle-hole symmetry
enforces positivity in the path-integral. In this case, stable calculations have been
done up to 16 x 16 lattices for the ground state. Unfortunately, the average sign
deteriorates quickly as the system is doped away from half-filling. Calculations at low
temperacture is particularly difficult as the average sign decreases exponentially with
the inverse temperature 3. The problem is also more severe for larger systems. For the
physically interesting region relevant for superconductivity, where 0.7 < {n) < 0.95
per lattice site, it is difficult to go beyond an 8 x 8 lattice with 8 = 8/t. It is interesting
to note that the average sign increases again at doping level (n) = 0.5, allowing more

stable calculations there.

F. Comparison of application to the Hubbard model and nuclear shell model

As noted above, since the Hubbard model is studied to understand the bulk ma-

terial, a large lattice is desirable. For a lattice size of 16 x 16, the number of single
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particle states is already 256, which corresponds to the matrix dimension in the cal-
culation. In comparision, the calculation of a nuclear shell model can involve smaller
matrices; the matrix size for sd, fp and rare-earth nuclei are only 12, 20 and 44 for
full-basis, one oscillator shell calculations. Hubbard model calculations also need
many time slices to reach the ground state. The main reason is the presence (.>f differ-
ent scales in the Hamilitonian caused by a large U/t ratio, and a large commutator
term (which gives rise to a correction for a finite number of time slices) from the
repulsion and hopping term, which are diagonal in conjugate base. On the other
hand, the nuclear shell model is found to behave much better in the extrapolation
to continuous path integral. A AB value of 1/8 MeV~! with 8 = 3, which amounts
to 24 time slices, can result in good ground state calculations for s-d shell nuclei. In
the examples we have studied, there is no need for matrix stabilization. These two
factors, smaller matrix size and smaller number of time slices used, are favorable to
nuclear shell-model calculations.

On the other hand, since the shell model calculations involve interactions among
all single particle states (versus the on-site repulsion in the Hubbard model), the
number of auxiliary fields introduced in each time slice is N? versus N,, where N,
is the number of single particle states. Therefore the shell model calculations in
general involve a higher dimensional integral in the auxiliary fields, although this
factor would not introduce much more time in the Monte Carlo algorithm. The
more time consuming part in the nuclear shell model calculation comes from the
exponentiation and multiplication of matrices which are not sparse, as they are in the
Hubbard model calculations.

The Hubbard model suffers from severe sign problem away from half-filling due to
the strong repulsive character of the interaction (c.f. the attractive Hubbard model
which has no sign problem). We analyze the sign problem in Section VII and find

that an interaction with a strong enough pairing character leads to positive definite



19

path integral. The nuclear-shell model is characterized by strong pairing interaction.
We have found that a phenomenological pairing plus attractive multipole interac-
tion, including the popular Pairing Plus Quadrupole interaction, gives rise to positive
definite path integral. This characteristic is particularly favorable for Monte Carlo
calculations of the nuclear shell model. |

Finite size and shell structure are two important features that distinguish the
studies of nuclei from bulk system such as Hubbard model. The grand canonical
ensemble is used to study thermal or ground state properties in the Hubbard model,
because the particle number fluctuation is not significant in a large system. In nu-
clei, particularly for small and medium sizes, grand canonical ensemble gives only
the average properties of neighboring nuclei which can be very different from each
other. In this respect, we introduce several methods in calculating canonical ensemble

observables in the auxiliary-field Monte Carlo in Section III.
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III. DECOMPOSITIONS OF THE HAMILTONIAN

To realize the HS transformation, the two-body parts of H must be cast as a
quadratic form in one-body operators @,. As these latter can be either density
operators or pair creation and annihilation operators (or both), there is considerable

freedom in doing so. In the simplest example, let us consider an individual interaction

term,
ﬁ = a.ta,fa a
1 @ole4d3 (3.1)

where a,t,a.; are anti-commuting fermion creation and annihilation operators. In the

pairing decomposition, we write (using the upper and lower bracket to indicate the

grouping)
3 t t
H = ajaja4a;3 (3.2a)
1 44 2 1. 44 2, 1oty
= z(alaz + azaq)” — Z(alaz — azaq)” + —2-[ala,2, asay) . (3.2b)

The commutator is a one-body operator that can be put directly in the one-body
Hamiltonian h,. The remaining two quadratic forms in pair-creation and -annihilation
operators can be coupled to auxiliary fields in the HS transformation.

In the density decomposition, there are two ways to proceed: we can group (1,3)

and (2,4) to get

R —~N—
H= a1a3 a;a‘; ——a{a4623 (3.3a)
——
1 1 1
= —a1a4523 + 5[@1&3,(1;0,4] + Z(a}aa -+ a§a4)2 - Z(a}‘a@ — 0264)2 ) (3.3b)

or group (1,4) and (2,3) to get
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R —~N—
H=-— 0,10.4 a;aa +a,{a3624 . (3.48.)
S
1 1 1
= 0,10.3524 - 5[0,{0,4, a;d;;] — Z(a1a4 + a§a3)2 + Z(a{a‘; - G;aa)2 . (3.4b)

Again the commutator terms are one-body operators, but now the quadrafic forms
are squares of density operators that conserve particle number. We refer to Eq. (3.3)
as the ‘direct’ decomposition and Eq. (3.4) as the ‘exchange’ decomposition.

For any general two-body Hamiltonian, we can choose the pairing or density de-
compositions for different parts of the two-body interaction. Moreover, even within
a pure density break-up decomposition, there is still freedom to choose between the
direct and exchange formulations. Although the exact path integral result is indepen-
dent of the scheme used, different schemes will lead to different results under certain
approximations (e.g., mean field or SPA). The choice of decomposition will also affect
the rate of convergence of our numerical result as N; — oo, as well as the statistical
precision of the Monte Carlo evaluation. Most significantly, it affects the fluctuation
of & in Eq. (2.21) and thus determines the stability of the Monte Carlo calculation.
(See Section VI below.)

In the application of these methods to the nuclear shell model, it is particularly
convenient to use quadratic forms of operators that respect rotational invariance,
isospin symmetry, and the shell structure of the system. We introduce these in the

following subsections for both the density and pairing decompositions.

A. Density decomposition

We begin by ignoring explicit isospin labels, and by writing the rotationally in-

variant two-body Hamiltonian for a fermionic system as

|
H =3 55" Vi(ab,ed) Y Ab s (ab)Asn(cd)
abed J M
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- % STl + )1+ )2 Vi (abycd) 3 Al (ab) Aae(ed) (3.5)

where the sum is taken over all proton and neutron single-particle orbits (denoted by

a,b,c,d) and the pair creation and annihilation operators are given by

Aby(ab) = Y GamajsmslIM)al, 0l = —[al, x al]™™ (3.6a)
MaMmy

An(ab) = Y (Jamaisms|I M)ajum,@jym, = [az, X az]"™ . (3.6b)
Mamy

The Vj(ab,cd) are the angular-momentum coupled two-body matrix elements of a

scalar potential V(7,7,) defined as
Vi(ab, ed) = ([ia(71) X i3 (R)]M [V (7L ) |5 (1) x ()™M, (37)

(independent of M) while the anti-symmetrized two-body matrix elements of

V#(ab, cd) are given by
Vi (ab, cd) = [(1 + 8a)(1 + 8ea)] ™/ [Vi(ab, ed) — (—1)+~7Vy(ab,de)| . (3.8)

Before continuing with the discussion regarding the density decomposition, we
note that for fermionic systems the two-body Hamiltonian is completely specified by
the set of anti-symmetrized two-body matrix elements V7 (ab, cd) that are the input
to many standard shell model codes such as OXBASH [16]. Indeed, we can add to the
V#(ab,cd) any set of (unphysical) symmetric two-body matrix elements V;(ab,cd)

satisfying
V5 (ab,cd) = (—1)*2~ IV (ab, dc), (3.9)

without altering the action of H, on any many-body fermionic wave function. Note,
however, that although the V(ab, cd) do not alter the eigenstates and eigenvalues of

the full Hamiltonian, they can (and do) affect the character of the decomposition of
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H, into density operators, as is shown below. In what follows, we define the set of

two-body matrix elements V}V(ab,cd) that may possess no definite symmetries as
V¥ (ab,cd) = V;*(ab,cd) + V5 (ab,cd) , (3.10)
allowing us to write the two-body Hamiltonian as

Z 311+ 8as)(X + 80a)]? V¥ (ab, cd) ZA ba(ab)An(ed) . (3.11)
abcd J
To obtain the density decomposition of H,, we perform a Pandya transformation
to recouple (a,c) and (b,d) into density operators with definite multipolarity

ﬁKM(ab) = E (jama,jbmblKM)a’}amaa'jbmb ’ (3'12)

Mgq,Mmyp

where @, = (—1)**™*a;,m,. Then H; can be rewritten as

H,=H,+ A ; (3.13)

! = = EZEK(ac,bd)Z( DM pxe_m(ac)pxar(bd) (3.14)

abcd K
where the particle-hole matrix elements of the interaction are
5 Ja 36 J
Exg(ac,bd) = (—1)7+% }:( 1)7(2J +1)
Jd jc K
1
x  V}(ab, ed)\/(1 + 8ab)(1 + b.a) (3.15)

and fI{ is a one-body operator given by

2 ! oo(a,d) (3.16a)

with
— _.1_ —1\/+datis __1__ N
da=—7 zb:z]:( 1)/ +iatin(2] + 1)mv, (ab, bd)y/(1 + bap)(1 + 6cd) . (3.16D)
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Note that adding symmetrized matrix elements is equivalent to using the exchange
decomposition for some parts of the interaction. The freedom in choosing the com-
binations of direct and exchange decomposition is then embodied in the arbitrary
symmetrized part of the matrix elements.

Introducing the shorthand notation i = (ac),j = (bd), we can write Eq. (3.14) as
. 1 .. . o\ & . .
Hy=33. 3 Ex(i, ) (1) preae(3)pr-me(d) - (3.17)
ii K
Upon diagonalizing the matrix Ex(%,j) to obtain eigenvalues Ak, and associated

eigenvectors vka, we can represent Hj as

= %E Ak (@) (=DM pxm(e)pr-m(e) , (3.18)
Ka
where
prem(a) = 3 prem(i)vra(d) - (3.19)

Finally, if we define

Oxcne(er) = \/Tfi—'é;;_) (prom(@) + (~1)™ prc-ne(@0) (3.200)
Pym(o) = —m (hrm(@) — (1) px-()) , (3.20b)
then IAﬁ becomes
By = 2 Me(@) 3 (Qhen(@) + Phae(0) - (3:21)
Ko M>0 _

This completes the representation of the two-body interaction as a diagonal quadratic
form in density operators. We then couple auxiliary fields oxar(a) to QKM and
txm(a) to Pxas in the HS transformation. (The latter is not to be confused with the
“imaginary time” 7.) In the treatment thus far, protons and neutrons were not dis-

tinguished from each other. Although the original Hamiltonian H, conserves proton
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and neutron numbers, we ultimately might deal with one-body operators pxas(ap, bn)
and pxar(a@n, by) (n,p subscript denoting neutron and proton) that individually do not
do so. The one-body Hamiltonian ko, appearing in the HS transformation then mixes
neutrons and protons. The single-particle wavefunctions in a Slater determinant then
contain both neutron and proton components and neutron and proton num.bers are
not conserved separately in each Monte Carlo sample; rather the conservation is en-
forced only statistically.

It is, of course, possible to recouple so that only density operators separately
conserving neutron and proton numbers (fxn(ap,bp) and pxar(an, b)) are present.
To do so, we write the two-body Hamiltonian in a manifestly isospin-invariant form,

- 1
Hy=73 3 [(1+8a)(1+ 8ca)]'/? ViT(ab, cd) Al pprr.(ab) Aszomrs(ed) ,  (3:22)
abed J

where, similar to the previous definition (3.6), the pair operator is

. . 1, 1
A rpri@d) = 3 Gama, jomplT M) (Gtar 5tel TT) 8l mptySamets - (3:23)
Mmg,Mmp
Here (%,ta), etc. are the isospin indices with ¢, = —% for proton states and ¢, = %

for neutron states, and (7T'T;) is the coupled isospin quantum number. The two-body
Hamiltonian can now be written solely in terms of density operators that conserve

the proton and neutron numbers. Namely,

H,=H + 1, (3.24)
where
H = Z;tz ¢ spoo(a,d) , (3.25)
ad t=pmn
with

1 Tdiatin 1
=7 Xb: %:(_1) Hatio (9] 4 1)\/-2TJ—.G__J:VJ,NT=1(ab, bd)y/(1 + a)(1 + bca)

(3.26)
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and

-

Hy=23% > Exr(ac,bd)lpr,r(i) x prr(i))"=" - (3-27)

abed K,T=0,1

DN =t

We define pxpr as
prmr = prmp+ (1) Prcrin (3.28)

and the Ex 7 are given by

. Ja J
Ex 1—o(ac,bd) = (—1)7+ 3" (-1)’(2J + 1) { _ X } \[(1 + 6ap)(1 + 6oa)
J

Jd jc
1 1
x5 [Vﬁ,=l(ab, od) + 5 (Vr—o(ab cd) — Vip_y(ab, cd))] . (3.29)

" Ja J
Exr=1(ac,bd) = —(=1)"* 33(-1)7(2J +1) { ; K } V(L + 6a)(1 + bea)
J

Jd jc
x% (Vi#r—o(ab, cd) — Viir_ (ab, cd)) . (3.30)

In this isospin formalism, since A rm7.(ad) = (—1)Jat3e=I+T A ;1 0r7,(ba), the
definition of symmetric and antisymmetric parts of V.(abd,cd), Vjr(ab,cd), and

V#-(ab, cd) become
VitA(ab,cd) = 5 [VA(ab,od) & (~1) 4TIVl (o, cd)] (3.31)

Note that in these expressions, there is less freedom in manipulating the decom-
position since we have to couple proton with proton and neutron with neutron in
forming the density operators. Also, note that Ex r-o(ac,bd) — Ex,r=1(ac,bd) is an
invariant related only to the physical part of the interactions, (Vi + Vir_o). We
can choose all Ex -1 to be zero in the above (by setting V7, = Vi) leaving
Ex 1—o completely determined by the physical matrix elements. In that case, we can
halve the number of fields to be integrated. However, while introducing the isovector
densities requires more fields, it also gives more freedom in choosing the unphysical

matrix elements to optimize the calculation.
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If we now diagonalize the Exr(%,7) as before and form the operators

1

Qumr(e) = m(ﬁKM,T(a) +(-1)Mpx-_mr()), (3.32)
Prmr(a) = —m(ﬁxmr(a) —(D)Mppa(a), (333

the two-body part of the Hamiltonian can finally be written as

B = LS der(@) 3 (Genr() + Bhagal@) - (3.34)
KT « M>0

In this decomposition, the one-body Hamiltonian o of the HS transformation
does not mix protons and neutrons. We can then represent the proton and neutron
wavefunctions by separate determinants, and the number of neutrons and protons will
be conserved rigorously during each Monte Carlo sample. For general interactions,
even if we choose nonzero Ex - matrix elements, the number of fields involved are
half that for the neutron-proton mixing decomposition. Also the matrix dimension is
halved due to the separation of neutron and proton wavefunctions. These two factors
add together to speed up significantly the computation. In this sense, this formalism
is more favorable. There is, however, a reduction in the degrees of freedom regarding

the symmetric matrix elements V7 as compared to those decompositions that mix

protons and neutrons.

B. Pairing decomposition

In nuclei where the pairing interaction is important, it is natural to cast at least
part of the two-body interaction as quadratic forms in pair creation and annihilation
operators. We demonstrate this for the case where the Hamiltonian is written in the

isospin formalism. Upon diagonalizing V(ab,cd) in Eq. (3.22), we can write

Hy = > Ar(a) 3 ATIT;MT,(O‘)AJT;MTZ(Q) ) (3.35)
JTa MT,
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where
Al (e) = ZvJTa(i)ATIT,MTz(i) . (3.36)

Separating ATA into commutator and anticommutator terms, we have

A 1
{ = E Z AJT(a) Z [AtJT;MT,(a%AJT;MT,(a)] ; (3-38)
JTo MT,
- 1
Hy=53 dr(@) ) {Airmr (@) Az (@)} - (3.39)
JTa MT,

ff{ is a one-body operator that can be put in H,. The remaining two-body term can

be written as a sum of squares by defining

Quranm(e) = 5 (Abran(e) + Arer,(e)) 3 (3.408)
Prrar (@) = =5 (Abraen(0) = Arrarn(@) (3.40b)
so that
ﬁz’r = %Z'\JT(O‘) Z (Q.ZIT;MT,(a) +P .?T;MT,(a)) . (3.41)
JT MT,

As in the density decomposition, we can then couple the o and 7 fields to @ and P,
respectively.

Note that in the pairing decomposition, the one-body Hamiltonian A(7) used
in the path integral is a generalized one-body operator that includes density, pair-
creation and pair-annihilation operators. The wavefunction is then propagated as a
Hartree-Fock Bogoliubov state, rather than a simple Slater determinant.

In this decomposition, neutrons and protons are inevitably mixed together in the

one-body Hamiltonian by (consider the @Q,P terms for T' = 0). In fact, h, also does
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not conserve the total number of nucleons; rather the conservation is only statistical

after a large number of Monte Carlo samples.

For simplicity, we have described how to decompose the Hamiltonian solely in
density operators or solely in pair operators. However, it is straightforward to mix
the two decompositions with the choice depending on the type of interactions involved.

Consider the ‘Pairing plus Quadrupole’ model, namely
- t 1
i, = —gP'P-2xQ-Q, (3.42)

where P!, P are the monopole pair creation and annihilation operator and Q) is the

quadrupole-moment operator,

Pt =3%"alal, (3.43)

Qu=_(alQulB) alas . (3.44)
ob

Naively, it would be most convenient to use pairing decomposition for the pairing
interaction and the density decomposition for the quadrupole interaction. This would
require only 8 fields for each time slice in the HS transformation. The pure pairing or
pure density decompositions would be much more complicated, as the former would
require rewriting the quadrupole interactions in terms of pair operators and the latter
would require rewriting the pairing interaction in terms of density operators. The

numerical examples given in Section VI below will illustrate the behavior of such

forces under different decompositions.
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IV. CALCULATION OF STATIC OBSERVABLES

In the previous sections, we expressed the evolution operator for a two-body
Hamiltonian as a path integral over auxiliary fields in which the action involves only
density and pair operators. In this and the following section, we show how to extract
observables from this path integral. The merit of this method will be clear from
the compact formulae involved, which require handling only relatively small matrices
of dimension N, or 2N,, depending on the type of decomposition used. We derive
formulae for three different approaches that use the evolution operator to obtain in-
formation about the system: the zero-temperature formalism, the grand-canonical
ensemble, and the canonical ensemble. The zero-temperature and grand-canonical
ensemble methods have been applied, with the density decomposition, to other phys-
ical systems such as the Hubbard Model [17]. However, we believe that the canonical
ensemble treatment presented here is novel.

The zero-temperature approach can be used only to extract ground-state infor-
mation. On the other hand, the grand-canonical ensemble allows finite-temperature
calculations, but fluctuations in particle number can be very significant in a system
with a small number of single-particle states. Thus, the canonical ensemble is par-
ticularly important in nuclear systems, where the particle number is small and shell
structure is prominent. The grand-canonical ensemble yields information averaged
over neighboring nuclei, which can have very different properties.

The canonical ensemble is more difficult than the other two approaches in two
respects. First, the canonical (fixed-number) trace of U, is more difficult to com-
pute than the wavefunction overlap of the zero-temperature formalism or the grand-
canonical trace. Second, observables are more difficult to extract since Wick’s theorem
does not apply. We suggest three different methods to handle the canonical ensemble:

the fugacity expansion, the Fourier extraction and the integration over real coherent
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states. The coherent-state integration method can be applied to calculate canonical
trace of any particle number involving only a negligible increase in computation time
relative to the zero-temperature and grand-canonical approaches. Unfortunately, its
utility is hampered by the sign problem. On the other hand, the fugacity expan-
sion which is suited to calculating nuclei with a small number of valence particles
or holes, where the calculation is numerically stable, is less susceptible to the sign
problem. The Fourier extraction also shows good “sign” statistics and is numerically
stable around mid-shell calculations, and therefore suitable for the region where the
fugacity expansion fails.

For each approach, we also derive the general formulae when pair operatoi's (as
well as density operators) are present in the single-particle Hamiltonian; i.e., when a
pairing decomposition is used for some or all of the interaction terms. As far as we
know, there is no known general formulae for the pairing decomposition formalism.
Using the fermion coherent state formalism [21], we derive in Appendix A a set of
formulae for the calculation of observables that are similar to the well-known formulae
for a pure density decomposition. Thus, our methods can be extended to calculations

using general one-body operators in the HS transformation. This only doubles the

dimension of the matrices involved.

A. Zero-temperature formalism

We begin with ‘zero-temperature’ observables. The trial wavefunction 1o in
Eq. (2.4) is, in principle, any state not orthogonal to the ground state. In prac-
tice, it is most conveniently a Slater-determinant. If we have N, m-scheme orbitals
available and N, indistinguishable particles, 1, is constructed from N, single-particle
wavefunctions, each of which is a vector with N, components, and we write 1, as

a Slater-determinant of a N, x N, matrix, 4. In the pure density decomposition,
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consider the one-body Hamiltonian h= ]ll,-ja]f a; (sums over the indices ¢, 7 from 1 to

N, are implicit). The evolved wavefunction,
[6(AB)) = exp (—ABR) [to) (4.1)

is then a Thouless transformation of the original determinant, the new state being

represented by the matrix exp(—ASM)¥,. We can therefore represent the product

of evolution operators by N, x N, matrices
exp (—A,Biz,.) ...€Xp (—Aﬂizl) — exp (—ABM,)...exp(—ABM,) . (4.2)

Let us now consider the overlap function in Eq. (2.16). Let U,(72,71) be the
matrix representing the evolution operator ﬁg(Tz,Tl). Choosing some value 7 of the
imaginary time at which to insert the operator 0, we introduce the right and left

wavefunctions ¥g (7) defined by

[¥r(r)) = U.(7,0) 4ho) , (4.32)
[L(r)) = UH(B,7) o) - (4.3b)

Then the required overlap in Eq. (2.16) is

(%0 |0+(8,0)| o) = (brltr) = det [T} T] (4.4)
where
Wr(r) = U,(r,0)®o, ¥(r) = Ul(B,7)T, (4.5)

are the matrices representing g and 1. Note that if there are two distinguishable
species of particles — protons and neutrons — and we use a decomposition that
conserves the numbers of neutrons and protons, then there is a separate determinant

for each set of single-particle wavefunctions and the total overlap is the product of

the proton and neutron overlaps.
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With the basic overlap on hand, we now turn to the expectation value of an
operator O for a given field configuration (i.e., Eqs. (2.15) and (2.19)). By Wick’s
theorem, the expectation value of any N-body operator can be expressed as the sum

of products of expectation values of one-body operators. Hence, the basic quantity

required is

(afas) = [\IIR CRDE w;]ba . ~ (4.6)

(A straightforward derivation of this expansion can be found in [22]). Again, the
decomposition separately conserves proton and neutron numbers, the expectation
values for proton and neutron operators are given by separate matrices.

These formulae can be extended to the case where pair operators are present in

the one-body Hamiltonian; i.e., when h is of the form

N,
h = E(@,-ja}faj + A.-,-af-a} -+ A.-,-a..-a.j) , (4.7)

iy=1
where ©,A, and A are general N, x N, complex matrices. Our first task is to find

a simple expression for (¥o|U,(8,0)[40) where U,(8,0) = 1Y, exp(—ABh,,). Us-
ing the fermion coherent state representation and Grassman algebra, we derive the
expressions in Appendix A. Here we simply state the results.

If the trial wavefunction 1o is a quasi-particle vacuum, such that §;|1bo) = 0 where

Bi = Zj uija; + 'v,-ja,:-, then

N .
(¢o| H exp ("Aﬁhn)l“/’o)

n=1 2
= det [('u* uv* ) U,(5,0) ( T)}

u

N

exp (—%ﬂ Igvj Tr[@,.]) . (48)

n=1

where
U,(B,0) = exp(—ABMy,)... exp(—ABM,) , (4.9)

is the matrix representing the evolution operator I)’,(ﬂ,O), and M, is the 2N, x 2N,

matrix representing b
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0, A,—AT
M, = : (4.10)
An—AT  —OF

Here, the evolution operator 17,(1'2,1-1) is represented by a 2N, x 2N, matrix and
the many-body wavefunction is represented by a 2N, x N, matrix independent of the

number of particles present. In analogy to Egs. (4.3-4.6), we can write
t i AB X,
(%o [02(8,0)| $o) = (brlpn) = det [¥1 x|  exp (=7~ 3 Tx[On] ) (4.11)
n=1

where

¥ = U,(1,0) (vT) ¥, = UlH(B,7) (vT) . (4.12)

u
To calculate the expectation value of a generalized one-body operator, we proceed

as in the pure density case. Let

oy = 4, 1= 1, ...,N, (4.133.)

cisN, =al, i=1,..,N,. (4.13b)

Then the one-quasiparticle density matrix is

(YL |Pas| ¥r)
< a® >  (YLlvr)

= -;— [\I’R(‘I'Lf‘I’R)—l‘I’Lt]ba

1[/0 1 0 1
-3 Tp( Oy Og) 10! + b
10 1 0/],

= [Zr(TlwR)1E}] . (4.14)

The final step follows from the properties of U in Eq. (A20). Note that both the
overlap and the Green’s function are similar to those of the density decomposition.
However, the enlarged dimension of the representation matrices causes the overlap

to be the square-root of a determinant rather than just a determinant. We know
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of no simple way to determine the sign of the square root. Computationally, it can
be traced by watching the evolution of (30| U (7,0)|tho) as U, is built up from 0
to B (Appendix B), although at the expense of more computation time. Also, the
linear dimension of the matrix used in the calculation is twice that for the pure
density decomposition case. Therefore, the introduction of the pairing decomposition
is costly. However, there lies the potential for more effective sampling in the Monte-
Carlo calculation when the interaction has a strong pairing character. It also offers

greater freedom in the decomposition, which might be used to mitigate the sign

problem.

B. Grand-canonical ensemble

For the grand-canonical ensemble, the trace in Eq. (2.18) is a sum over all possible
many-body states with all possible nucleon numbers, and a chemical potential in H

is required. For the pure density decomposition, the many-body trace is given by
((0) = TrU,(8,0) = det (1 + U,(8,0)) , (4.15)

which can be proved by expanding the determinant [22].

For the expectation value of a one-body operator, one can recapitulate exactly

the argument of the zero-temperature development and obtain

(alas), = [(1+U(8,0)7 Us(8,0)], - (4.16)

We have extended these formulae to decompositions that involve pairing operators
(Appendix A). The results are given in terms of the 2N, x 2N, matrices M,, U(8,0)
(4.9, 4.10), representing the Hamiltonians h, and the evolution operator U (ﬁ ,0),

namely

Tr [ﬁ(ﬂ,ﬂ)] =det[1 + U(ﬁ,O)]% exp (—%Tr[@n]) . (4.17)
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To motivate this formula, consider the simplest case of one time slice where U=

exp(—k) and A is Hermitian and in the form (4.7). Then, k can be diagonalized by a

HFB transformation

.1, © A-AT o, 1 .
h=§(a a)(A—AT T ) (¢ a )+§Tr[®] (4.18a)
= Ze;ﬂ;fﬂi - %ei + %Tr[@] | (4.18b)
where
B _(m v* a 1
Bt B v u* at (#.19)
and

(61 0 0 0 \
0 e 0 0
_ A - : . . (420)
0 0 — 0
0 0 0 -—e
\ e,

In the diagonal form, 'i‘r[exp( —iz)] can be easily identified as

[T + )b Je ™ =TT /(1 + emer)(1 + ew)e 4™

= det[(1 + e M)3]e~2 O] | (4.21)

due to the invariance of the determinant with respect to similarity transformations.
Here, as in the overlap formulae for zero-temperature approach, the grand-canonical
trace is given as the square root of a determinant, so that the evolution of the sign is

important (Appendix B). The formula for the observables can be calculated from
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(ates), = [(1+0(8,0)7 UEB,0),,

1[(0 1 01 1
—_2' [( ) (1 +U(ﬂ70))_1U(ﬂa0) ( )] + Eﬁab
10 1. 0/],

= [a+U(g,0))™ U(B,0)], - - (422)

C. Fugacity expansion for the canonical ensemble

As mentioned in the beginning of this section, the grand-canonical ensemble may
lead to large fluctuations in the particle number for systems with few particles. It
is particularly undesirable for nuclear systems exhibiting shell structure. While the
particle number does not fluctuate in the zero-temperature approach, that formalism
can only give ground-state results. Therefore, the canonical ensemble is important
for studying thermal behavior.

In the canonical ensemble, we have to find the trace of U,(83,0) over all states
with a fixed particle number N, (actually fixed proton and neutron numbers). We
discuss two methods of achieving this: the fugacity expansion presented here and the
integration over real coherent states presented in the following subsection.

Consider first the case when only density operators are present in the one-body
Hamiltonian k. From the grand-canonical ensemble formulae (4.16), we can see that
the canonical trace is just the sum of all the N, x N, sub-determinants. More explic-
itly, we consider the fugacity ezpansion: for some parameter A, let

Z(B,1) = TrAMe 27 = 3" AN 7y, (B) . (4.23)
N,

In our matrix representation,
TrANT,(8,0) = det(1 + AU) . (4.24)

Consider the expansion of Eq. (4.24) in powers of A: The coefficient of ANv is just the



38

canonical trace of U,(8,0) over N, particles. Therefore, det(1+AU) is the generating

function for the canonical trace. Thus,

Zw,(8) = [ DlolG(o)em. (@) (4.25)
where |
det (1 + AU, (8,0)) = 3 AV ¢, (o) - : (4.26)
Ny

The trick now is to find simpler expressions for {y,, instead of doing the explicit sum

over the determinants. To do this, write

det(1 + AU) = exp Tr ln(1 + AU) = exp (f; -(-’172—"_1,\" Tr [U"]) . @)
. n=1 '
This expansion converges to the generating function because Z(8,A) is a polynomial
in ) of finite order. The coefficient of A" in the exponential is readily found. For a
given particle number N,, we only need to calculate up to the value of Tr[UN*] and
the coefficient of AN can be extracted accordingly.
For one-body expectation values, using again the grand-canonical trace as the

generating function for calculating observables and collecting all terms with coefficient
ANy we arrive at
Ny
(ohas), i, = 21 (0o )/ () (4.28)
The expectation value of two-body operators, (pabpcd(7))y,, is nontrivial as Wick’s
theorem must be modified; but again one must simply collect the terms with coeffi-
cient AM and obtain

Ny (Noy—n
(ataualas) ,, = 3-{ 3 [(=1"* (U UZ ~ ULUE) fro-mn(0)/ ()]

n=1 \ m=1

H(1 U0} ()} (429)
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This form of the fugacity expansion works best for N, < N,/2 (mostly empty model
spaces). When N, > N,/2 (mostly filled spaces), it is more efficient to expand in the

fugacity of the hole states. In this case, we define
Z,(B,2) = Tr[AN-—V Ve—8H] | © (4.30)
and as in Eq. (4.24),
TrAN-N{(8,0; 0)] = det[A + U] . (4.31)
The coefficient of AV is the partition function for N holes,
det[A + U] = det[U] exp(D n( 1) AT [U™™) = Z/\NCN , (4.32)

n>1

where the expectation value of a one-body operator is
N
{Pii) N botes = D_(—1)"U3 (N _n /v (4.33)
n=0
and the expectation of a two-body operator is

N
(PiiPrI)N notes = 3 8ik(—1)"Ur"Cn_n/CN)

n=(‘)N—-n
HE O™ UFUE" = U Ui Cheomal e - (434)

m=0
When pairing operators are involved, we use Eq. (4.17) for the grand-canonical
trace, which becomes the generating function for the corresponding canonical trace.

As an illustration, we display the formula for the expansion in particle fugacity,

Tr [AVD] = det F(; (1)) + ('\01 101) U]_/\Ez‘
(10 ,\1):) St §12\7%
=det_(o 1)+(0 i)(sn S)] ’
/1 1 812\l /s g\’
S 8| () Y I |

N

o

[
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e ()]

= det [s”]% exp (% S Te[Y"] (—1)"-1%) , (4.35)

where the definitions of S'*,S%, 82!, S22 are obvious, and

1 s\~ /st 0
0 Szz Sz1 1
The expectation values of one- and two-body operators can then be derived as in the

pure density decomposition.

D. Fourier extraction of canonical ensemble

The fugacity expansion is found to work well for nuclei where the number of holes
or number of particles is less than 5 in the sd and fp shell; but near mid-shells, the
calculation suffers from numerical instability. The fugacity expansion there involves
small differences resulting from the cancellation of large numbers, that are near or

above the floating point accuracy of a 64-bit machine. We therefore investigated the

Fourier method, which is suited to mid-shell nuclei.

Recall that the grand canonical overlap function of (4.27) Let us define ¢, =

2xm/N,. Then we may write
. N' .
m(0) = det[1 + e“mU(a)] = Y e*"N{n(o). (4.37)
N=0

Using the fact that

1 &

—ﬁ- z ei¢mK = SKO’ (4.38)
. m=1
we see that for 0 < A < N,,
1 N .
Ca(o) = oA 3 emmA det[1 + e“mU(o)]. (4.39)

8 m=1
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We also find expection values of the density operators in the same manner. For the

one body densities we obtain

1 & ia m m
(Pab(a))A = m‘)’ Z e~i4¢ "7m(°')'7ab(o')a (4'40)

m=1

and for the two body density operators

1 Ne .
(Pab()pcd(0))a = ANC) > e (o)

m=1

x [ (o)1) — Yaa(o G (0) + Secvza(o)]; (4.41)
where
(o) = [(1 + € U(0)) " e U(0)]sa- (4.42)

A direct calculation of the determinants in Eqn. (4.39) is an N process due to the
N, ¢m’s present. However, we can choose to first diagonalize U to give eigenvalues

¢:; the diagonalization is a N? process. Then 7,(o) can be writen as a direct product

Tm(0) = TI(L + &), (4.43)

Similarly the density operator can be written in terms of the transformation matrix,
T = zk: Ser(1 + ei¢m£k)'lei¢“£ks,:,,1 (4.44)

where
Sdiag(¢1,€2,...)St = U. (4.45)

We have performed canonical calculations of mid-sd shell using the Fourier ex-
traction method, and we have also performed preliminary canonical calculations in
the mid-fp shell; these indicate that the extraction method works there as well. The
method fails at small number of particle or holes; i.e., those nuclei where the fugacity

expansion works well. This can be understood from Eqn. (4.24). The dominant
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contributions in the sum comes from mid-shell overlap functions, due to the large
number of contributing configurations there. It is very difficult to extract relatively
small overlap functions for nuclei at the beginning or the end of the shell. The fu-
gacity and the Fourier expansion are thus complementary to each other in the shell
model space. For sd and fp shell nuclei, we have found that for the number of particles

or holes for individual kind of nucleons great than five, the Fourier expansion works

well.

E. Canonical ensemble via coherent states

We make use of the operator

. XNX
J=C/deph | XN I& ’
i det(l+ XTX)EH

which can be shown [23] to be a resolution of unity in the Hilbert space of N, fermions

(4.46)

occupying N, levels. Here, X, are the real integration variables, |X) are the real

coherent states

1X) = exp(} Xpha;ah)lﬂ), h=1,..,N,;; p=N,+1,...,N,, (4.47)
hp

|0) is the N,-fermion state with the levels 1, ..., N, occupied and C is a normalization

constant,

N, —
c= I Cp Cp=n™T (g- + 1) /T (p 2N v 1) . (4.48)

p=Ny+1

The canonical trace can then be cast in a form of expectation with integration over
the variables X,,. For any operator 0,

(X]01X)

4.49
det(1 + XTX)7 41 (449

T1[0] = C/dX

where dX = [, dXpn. The thermal canonical expectation is then



43

Tr[OePH]

Tr[e—PH]

_ I D[o]G(0)dX (X |U,(B,0)0]X)/ det(1 + XTX)N+/2+1
T [ D[o]G(o)dX(X|U,(B,0)|X)/ det(1 + XTX)Ne/241

(0) =

(4.50)

We can use the formulae for the overlap and the expectation of observables in the zero-
temperature formalism, except that we also have to do the integration over the fields
Xpn with Monte Carlo sampling. But the number of fields X, only goes as N? which
is about the same as the number of o fields in one time slice. Therefore, introducing
the coherent-state integration is not much more computationally expensive than the
zero-temperature formalisﬁl. The advantage of coherent states is that we do not have
to find Tr[U(B,0)"], which can be numerically unstable when the number of particles
present is large. However, the integration of the coherent states may aggravate the

sign problem as will be discussed in Sections VI and VII.
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V. DYNAMICAL CORRELATIONS

In the previous section, we discussed how to extract the expectation value of one-
body operators {O) and, by use of Wick’s theorem and its extension to the canonical
case, equal-time two-body operators (/iB), etc. A great deal of the interesting physics,
however, is contained in the dynamical response function (O1(£)O(0)) where O(t) =
eHtOeift. In our framework, we evaluate the imaginary-time . response function
(Ot(i7)0(0)) and deduce the associated strength function f,(E).

In the zero temperature formalism, the strength function is
fo(E) = 2}:5(15 — E; + E)|(fI01)1* (5.1)
where 1 is the ground state, while in the canonical or grand-canonical ensemble,
folE) = 5 S 8(8~ By + B |f10K)F (52)

Thus, the imaginary-time response function is related to the strength function by a

Laplace transform,
R(r) = (0Y(r)O(0)) = /_ ‘: f5(E)e~"EdE . (5.3)

Recovering the strength function, through inversion of the Laplace transform, is
an ill-posed numerical problem. Different methods have been proposed to tackle this
problem [24,20]. We resort to making the best “guess” for the strength function via
the Classic Maximum Entropy (MaxEnt) method [18,19], which was first introduced
to recover strength functions in Monte Carlo calculations by Silver et al. [20] and then
widely used in similar condensed matter simulations. It is in essence a least-squares
fit biased by a measure of the phase space of the strength function. In MaxEnt
methods, the function to be minimized is %xz — a8, where x? is the usual difference
squared, S is the entropy of the phase space (not to be confused with the action in the

auxiliary fields Monte Carlo), and a is a Lagrange multiplier. In Classic MaxEnt a is
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determined self-consistently. The method, described briefly in Appendix C, also can
yield error estimates for the extracted strength function. Considering (fi(zr)f?(ﬂ)),
we write the thermal expectation as a path integral

Tr[e~(B-"H je-H B

(A(ir)B(0)) = Fao o]
_ I DlolGlo)ul0,(8, 0 MRG0 (5.4
I D[o]G(o)Tx(T,(B,0)]
and define
0, () = U,(r,0)"10U,(r,0) (5.5)
so that
. IDlelG(o)e{0.(8,0)) =R 2
AEnEO) = D16V Ei0.(8,0) (500
— J Dlo]e=5)(A,(r)B,(0)) ] (5.6b)

J D]o]e-50)

We now proceed to find 0,(1'). For the purpose of illustration, we show the
formulae for the pure density decomposition; formulae for the general case can be

derived similarly. For the simplest case when 0= a:f or O = a;, it can be shown that

[22]
ol (nAB) = 3 [Us(nAB,0) " a; (5.7a)
a,.-,(nAﬂ) = Z:U,(nAﬁ,O);ja,- . (57b)

In this way, the creation and annihilation operators can be ‘propagated’ back to
7 = 0. Any operator O,(’r) can be first expressed in a,(7) and a',(7) and therefore
can be propagated back and expressed in a and a!. For example, suppose 0= C;ja,!aj

is a one-body operator. Then
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O, (r) = U,(r,0)*0U,(r,0) (5.8)
= [U,(r,0)"1CU,(r,0)];ala; . (5.9)

Thus, the response function can be measured in the same way as the static observ-

ables.
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VI. COMPUTATIONAL DETAILS AND ILLUSTRATIONS
A. Monte Carlo methods

Monte Carlo evaluation of the path integral requires a weight function. We have
tried two different choices for the weight function, each with advantages and disad-
vantages.

One choice for the weight function is a Gaussian, with the the static mean-field
solution as the centroid, and the widths given by the RPA frequencies. Thus, much
of the known physics is embodied in the weight and the Monte Carlo evaluates cor-
rections to mean-field +RPA. Further, it is simple to efficiently generate random field
configurations with a Gaussian distribution. However, Gaussian sampling has several
disadvantages. First, finding the RPA frequencies can be extremely time consuming
since we have to calculate and diagonalize the curvature matrix E:%:;S at the
mean-field solution where a, 4 run through the number of quadratic terms in the
Hamiltonian and 1,7 run through the number of time slices. For any general interac-
tion, the curvature matrix is of the dimension N2N;. Second, the Gaussian has to be
modified when there is spontaneous symmetry breaking in the mean fields (such as
quadrupole deformations), otherwise the Goldstone modes in the the RPA frequencies
(e.g., zero eigenvalues corresponding to shape rotations) will destroy the normaliz-
ability of the weight function. Finally, multiple mean-field solutions well separated
from each other can also pose a problem, in which case multiple Gaussians may be
needed.

A more satisfactory route is to choose | exp(—8)| = G(c)|¢(U,(8,0)| as the weight
function and to use a stochastic random walk such as the Metropolis algorithm to

generate the fields. The expectation of an observable is then given by Eq. (2.21)

where
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®; = exp[—iIlm(S;)] . (6.1)

The Metropolis algorithm is free of the disadvantages for the Gaussian weight func-
tion, in that it will eventually sample the entire space where | exp(—&)]| is significant.
The main disadvantage of Metropolis is its inefficiency as currently implemented and

the “sign problem.” Let us define the denominator of Eq. (2.21) by (®), therefore
1 . .
(®) = N Zexp[-——zIm(S.-)] . (6.2)

If (®) < 1, the large fluctuations swamp the results with noise. This ‘sign problem’
will be addressed in detail in the examples illustrated below.

For the Metropolis algorithm, we take random steps in the fields time-slice by
time-slice, following a sweeping procedure introduced by Sugiyama and Koonin [5].
For the Monte Carlo results to be valid, one requires that the points in the random
walk are both distributed as the weight function and are statistically independent.
The first requirement translates into starting the fields in a region of statistically
significant weight; if the initial configuration is far from there, a number of initial
thermalization sweeps are usually needed to relax the fields to this region. The
second requirement means that between samples, the walker must sweep through the
fields many times to de-correlate the samples. The number of thermalization sweeps
and decorrelation sweeps increases with system size. The choice of random walk
procedure greatly affects the sampling efficiency. In the early stage of investigation,
we allowed the fields o, at a time-slice to change with equal probability within a
certain step size. The acceptance probability is then given by the ratio of the weight
| exp(—S)| of the old and new configurations. The step size is chosen to produce
average acceptance probability of 0.5. In the calculation of sd-shell nuclei described
below, it needs approximately 2000 thermalization sweeps and up to 200 decorrelation
sweeps between samples. Lately, we use another random walk, the hybrid-Gaussian

walk, in which a fixed number of fields are randomly chosen for updating. The ones
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chosen are generated from the Gaussian distribution in Eq. (2.9b) while the remaining
ones are kept at the previous values. The acceptance probability is then given by the
ratio of ¢ in the new and old configurations. This random walk needs only around 200
thermalization sweeps and 10 decorrelation sweeps, a factor of 10 more efficient than
the previous method. In addition, the existence of boundaries, where | exp(—S)| = 0,
can prevent the first random walk to cross while it does not pose any barrier to the
second one. The auto-correlations for various observables in consecutive sweeps in the
random walk is shown in Fig. 2 for the different sampling schemes, for a calculation
on Mg?* with the Hamiltonian (6.7). The calculation was done for 8 = 3 with 24 time
slices, in the zero-temperature formalism. Note that scalar observables (H), (J?), and
(@?) decorrelates much faster than observable {(Q.).

The walker can thermalize faster if it starts from a configuration where the weight

W (o) is large. Usually we choose the static mean fields for the starting point. These

are given by

Oap = 0ay n=1,N; (6.3a)

To = —845ign(Va){Oa)s - (6.3b)

One can show that for canonical and grand-canonical calculations, the static mean

field 7, is a saddle point of the weight function,

804
For the zero-temperature approach, we also choose the self-consistent field solution
7, although Eq. (6.4) is not rigorously satisfied. This is preferable to starting the
fields at zero, which may be far from configurations of significant weight.

The mean field solution (6.3) can be found iteratively

{Ga}irt = —sasign(Va)(Oa)s: - (6.5)
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For the systems we have tested, Eq. (6.5) usually converges within 100 interactions
starting from &, = 0. For larger systems and at lower temperature, convergence is

slow and sometimes unstable or barely stable. In that case taking

A

Ooi = —845180(Vo){Oa)o=0 . (6.6)

for a starting configuration also leads to a shorter thermalization time than the choice

of o =0.

B. Comparison of continuous and discrete HS transformation

The discrete HS transformation mentioned in Section II has also been carried
out. In the trial step, a fixed number of fields are randomly chosen for updating
with the new discrete value generated according to the function f(o) in (2.28). The
acceptance probability is then given by the ratio of ( in the new and old configuration.
We have tﬁed the discrete transformations of (2.30) and (2.31), which give rise to
approximation to order AB and (AB)? respectively, in calculations of 2*Mg and *Ne.
As can be seen from Fig. 2, both methods are found to have short thermalization
and decorrelation lengths similary to the continuous transformation in the hybrid-
Gaussian random walk. We conclude that the continous transformation performs as
efficiently as the discrete transformation in the cases studied. The previous conclusion
from the Hubbard model calculations that the discrete transformation is superior may
be due to the inefficient random walk used in the continuous transformation studies.

The convergence in A also depends on the transformation scheme due to the
different levels of approximation to the many-body evolution operator. The two-
value transformation is found to converge slower in AB to the exact result, while
the three-value transformation converges as well as the continuous transformation.
An example of the convergence behavior of different schemes is shown in Fig. 3, in

calculations of Mg?* in the zero-temperature formalism at 8 = 3.
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C. Examples

We now describe several examples to demonstrate the method in calculating prop-
erties of nuclei. Two major considerations arise in the implementation, namely the
choice of decomposition scheme and the choice of ensemble. Different decomposition
schemes involve different dimensions of matrices and numbers of fields, which control
the computational speed. Also, the rates of convergence as A3 — 0 are different and
determine the number of time slices to be used. Last, but not least, the choice also
affects the “sign problem” associated with the statistical stability of the calculation.
Comparison of different decomposition schemes will be made in examples 1 and 2 be-
low. The choice of ensemble among zero-temperature, canonical, and grand canonical
ensembles usually do not affect the above issues. Instead, it depends on the kind of
properties to be calculated. The zero-temperature formalism with a good trial wave-
function is effective in projecting out the ground state and is suitable for calculating
ground-state static observables. For calculating finite temperature properties, the
canonical ensemble is physically most relevant but also is most difficult to implement.
Examples 1, 2, and 3 use grand canonical, zero-temperature, and canonical ensemble,
respectively, for demonstration.

Finally, we choose a particular nucleus 2°Ne to demonstrate the calculation of
dynamical responses of different operators and recover the strength function by the
MaxEnt Method. The examples shown below were done with 3000 to 6000 samples

on the Touchstone Gamma and Delta systems at Caltech.
Example 1: Monopole pairing interaction in the sd shell

We have described the considerable flexibility in writing the two-body interaction
in quadratic form; e.g., density versus pairing decomposition and direct versus ex-

change decomposition. To illustrate this flexibility, we consider protons only in the
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sd-shell, and keep only the J = 0 terms in Eq. (3.5); the values of V;—o and single
particle energies are taken from the Wildenthal interaction [10]. First, we recouple
the Hamiltonian into a quadratic form in the density operators in Eq. (3.21); because
all possible density operators are required, there are 144 fields for each time slice.
Second, we use the pairing decomposition in Eq. (3.41); after dia.gona.]izatio.n only 6
fields are required. Finally, we write the two-body interaction as H, = %ffz + %ﬁz
and decompose the first half using densities and the second half using pairs; the total
number of fields in this case is 150. It turns out that for protons only, this system
is 99% free of the sign problem (i.e., Real (%;) > 0, 99% of the time), independent
of the decomposition. All three calculations were performed in the grand-canonical
ensemble using a Gaussian weight function around the static mean field, at an in-
verse temperature of B = 1 (here and henceforth, we measure all physical energies
in MeV) and fixed chemical potential. The expectation value of the proton number,
energy, and J? are given in Fig. 4 as a function of AB. As the number of time slices
increases towards infinity (i.e., A — 0), all three decompositions converge to the
exact answer, demonstrating their mutual equivalence in the continuum limit. Note,

however, the different rates of convergence.

Example 2: #Mg with schematic forces

Next we consider sd-shell nuclei with a schematic Pairing + Multipole density

interaction, where the multipole force is separable. It is the same interaction used in

[25]. Therefore

u 1
H=-g ) P }xPTz - EXoﬁo.Oﬁo,O
T,=—1,0,1

1 1
—gX2 > Aempe,-m(—1)M — 3X4 3" bampa-m(—1)M (6.7)
M M

where
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11 -
Pr, = Z (—t1§t2|1Tz)aimtxaimt2 (6.8)
jmiita
and
Prm = 3 ax(f1iz)prMmr=0(d1,72) - . (6.9)

This Hamiltonian was also decomposed in several ways. We first decomposed the
pairing interaction as pair operators and the multipole force as deﬁsity operators. In
this way, the number of fields is kept to a minimum, only 21 fields per time slice. The
pair-operator Pr,_o mixes protons and neutrons and therefore one matrix representing
the mixed neutrons and protons wavefunction is needed. Also, the pairing breakup
approach needs a matrix representation whose dimension is 2Ns. Therefore, the
matrix involved in this decomposition is 48 x 48. We calculated Mg (4 valence
protons and 4 valence neutrons in sd-shell) in the zero-temperature formalism; i.e.,
using the evolution operator at large B to project out the ground state from a trial
state 1. Since  is Hermitian (here 5 has the property p‘}(, a = Pr,-m(—=1)M), in the
static path { = (v exp(—ﬂiz.)h/zo) is always positive definite and ®; = 1. However,
for calculations with more than one time slice ($) becomes very small. Therefore, we
can only obtain sensible results in the SPA. These results turned out to be extremely
good, relaxing to the right energy and angular momentum (Fig. 5). However, the
success of the static path is case-specific and not well understood. We have also
tried using just the monopole, quadrupole, and hexadecupole interactions in the case
with only 4 protons in the sd-shell (**Mg), in which the static path relaxes to an
energy 2 MeV higher than the ground state, showing that the static path is not as
satisfactory in this case.

In a second scheme, we transformed the pairing part of the interaction (6.7) into
a quadratic form in the density operators. In the transformation, we use only density

operators that conserve proton and neutron numbers (3.24-3.34), and we choose all
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Ek 7—1 elements in Eq. (3.27) to be zero so that only isoscalar density operators are
present in the quadratic form.

Now the interactions are in a much more complicated form due to the Pandya
transformation of the pairing interaction. One needs 144 fields in the pure density
decomposition as compared to 21 fields needed in the first decomposition. However, an
advantage lies in the separation of the Slater-determinants for protons and neutrons
since only density operators that separately conserve neutron and proton numbers
are present. In the sd-shell, the dimension of matrix involved is only 12 X 12. For
this particular interaction, an even more desirable property of the second scheme is
that the eigenvalues Ak qin Eq. (3.34) found by diagonalizing Ek in Eq. (3.27) has
the property sign(Ax) = (—1)K*'. We prove in the next section that this property
guarantees (o) to be positive definite for even-even nuclei if a suitable trial state is
chosen. This allows the calculations to be carried out with any number of time slices
without any sign problem.

We performed the calculation using the zero-temperature formalism at different 8
and A values, choosing first the Hartree Slater-determinant as the trial wavefunction.
The SPA calculation and the one with AB = 0.125 are shown in Fig. 6. We have also
performed calculations at AB = 0.5 and Af = 0.25. They are not shown but they lie
between the SPA and the AB = 0.125 results, and show a convergence to the result
at AS = 0.125. At AB = 0.125, the energy relaxes to the right energy whereas the
SPA also relaxes but to a much higher energy.

Next we tried a different trial wavefunction o, with the orbital (j,m) =
(3,%£1),(2,4£32) occupied. A different relaxation curve is traced out by the calcu-
lations at AB = 0.125, converging to the same exact result. Therefore, in using the
zero-temperature approach to project out the ground state, the choice of the trial
state is important for determining the rate of relaxation, although the final result is

independent of the trial state as expected. In this case, although the Hartree state is
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lower in energy than the maximal prolate state (compare (H) at 8 = 0), it contains
some high angular momentum components (compare (J?) at 8 = 0), so that it relaxes

more slowly and reaches the ground state at a larger value of 3.
Example 3: Canonical calculations on 2°Ne and ?*Mg

Next, we demonstrate the canonical ensemble for the same interaction (6.7) using
the pure density breakup as described in Example 2. We calculate *°Ne because it is
small enough to allow for an exact diagonalization to give all the states of H, since
we are concerned with both the ground-state and thermal properties. The canonical
trace for this path-integral in also positive definite (see Section VII), allowing the
calculations to be done using many time slices without any sign problem.

The results for calculations with A8 = 0.25,0.125, and 0.0625 are shown in Fig. 6.
The convergence as a function of A is also apparent. Note that particular attention
should be given to the extrapolation at high temperature. However, it is not hard to
increase the number of time slices to improve the A effect at high temperature. For
example, for 8 = 0.5, AB = 0.0625 amounts to only 8 time slices. Similar results on
24Mg in the canonical ensemble are shown in Fig. 7. The relaxation to the ground
state can be compared with the zero-temperature result in Fig. 5, however, now the
results at small values of 3 are also physically significant.

In the calculation of *°Ne, the fugacity expansion method is numerically stable.
However, instabilities appear for sd-nuclei when the number of proton or neutron
valence particles (or holes) is greater than 4. The instability is signalled by the
deviation of (N,) and (N,) from the exact integers. In those cases, the expansion
in Eq. (4.27) or (4.35) gives the canonical trace as the small difference between very
large numbers. Therefore, the mid-shell nuclei cannot be calculated directly by those
equations. We have tried the Fourier expansion technique to extract the canonical

trace that gives satisfactory preliminary results [26]. The real coherent-state method
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for the canonical trace for 2*Mg gives the same results as the fugacity expansion
approach. However, (®;) is not always unity due to the coupling to the field X,
for integration of the coherent states in Eq. (4.49) (as will be explained in the next
section). It changes from 0.70 to 0.23 for B changing from 0.5 to 1.0 at AS = 0.25.
In the canonical ensemble, we can also study rotating nuclei by adding a I;agrange
multiplier to the Hamiltonian, H' = H — wJ,, where J, is the z component of the
angular momentum. The calculations at 8 = 1 for 20Ne with A8 = 0.125,0.0625,
and 0.03125 are shown in Fig. 8, where the convergence to the exact results can
be seen. The moment of inertia fitted from the three sets of data are 5.10, 5.30,
and 4.95, compared to 4.74, which is the value from the exact curve. In adding the
term linear in J,, we break the time reversal symmetry of iz.(a), which is related to
the sign properties of the weight function {(o). (@) decreases from 1 to 0.55 when
w is increased from 0 to 1.5 at AB = 0.125 while it decreases from 1 to 0.52 at

AB = 0.03125.

Example 4: Response and strength functions for ?°Ne

Finally, we would like to obtain the imaginary-time response function and then
reconstruct the strength functions. The calculation for ?*Ne is expansion method.
The canonical ensemble is more suitable than the zero temperature formalism for
measuring the dynamical response, because in the latter case many boundary time
slices are needed to project out the ground state on both the left and the right, and
extra time slices would have to be introduced in the middle to measure the response.
In contrast, in the canonical ensemble, full use can be made of every time slice.
We choose 8 = 2.5; from Fig. 6, the system has already reached the ground state
at this low temperature. We calculate the response function at Af = 0.125 and

AB = 0.0625 for the one-body operators, namely the isovector- and the isoscalar-

quadrupole operator Q, = @, — @n, Qs = Qp + Q@n, and the isovector and isoscalar
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angular momentum operator J, = J, — Jn,J; = Jp + Jn. We choose this particular
1% operator purely out of convenience. J, is just the total angular momentum, which
we verified to produce a constant zero response. The response functions are shown in
a semi-log plot in Fig. 9(a,c,e). The response functions for these Hermitian operators
are symmetric about 7 = 8/2, so it is shown only up to 7 = /2. The slope of the
plot is approximately the energy of the dominant strength. The J, and @, response
relax more rapidly than the @, response, indicating that the two isovector operators
connect to states with higher excitation energy than does the @, operator. Since 2°Ne
has a J = 0, T = 0 ground state, the excited states connected by an operator will
carry the same J and T' quantum numbers as the operator. The plots are consistent
with the fact that there is a low lying 2% state.

The MaxEnt reconstructions of the most probable strength function for the differ-
ent one-body operators are shown in Fig. 9(b,d,e). The reconstruction is performed
for each set of response functions measured at individual AS values. The figures
show the convergence in Af of the resulting strength functions to the exact strength
function. Note the movement of the peaks towards the exact position and also the
decrease in the widths as AS decreases. The average n'* moments are found in the

Monte Carlo integration of all the possible distributions of f;. The n**-moment of the

strength function is defined by
M, = o f(wi). (6.10)

The errors are also determined in the Monte Carlo integration. The 1% and 2?®
moment (M;) of the strength functions are listed in Table 1 for different operators
and different AB. The extrapolated moments (A8 — 0) and the exact results for the
ground state transitions are also shown.

The single-particle pick-up and stripping response functions for different orbitals

are given in a semi-log plot in Fig. 10(a,c,e) and Fig. 11. The strength functions
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extracted from these responses are related to the excitation spectrum in the neigh-
boring nucleus with particle numbers differing from the original nucleus by one. The
strength function is just the probability to find the nuclei at a certain final energy
when the specified particle is added to or removed from the nucleus. The ground
state of 2°Ne is isoscalar, therefore the stripping and pick-up responses are the same
for protons and neutrons. The final states carry the same angular momentum as the
single particle that is added or removed. We see from Fig. 10 that the pick-up and
stripping responses for the j = % orbital and also the pick-up response for the j = %
orbital converge to the exact results as A8 tends to zero. The MaxEnt reconstruction
of the corresponding strength functions in Fig. 10(b,d,e) also show a convergence to
the exact results. The extracted moments are also listed in Table 1. The responses
for the 57 = % orbital show an anomalous behavior, starting close to the exact result
at 7 = 0, and then, with a sudden change in slope, follow the responses of the j = g
orbital. A possible reason is that angular momentum is not strictly conserved in the
calculation (not conserved in every sample). The J = 3 states for °Ne and *Ne
nuclei are much lower in energy than the J = % states (because the j = -g— orbital
is lower than the j = % orbital by 5.6 MeV). Therefore, if a small admixture of the
| J = g states “leaks” into the intermediate states for the j = 3/2 response, it will
dominate with an exponentially growing correlation function. (The j =  orbital is

much closer to the j = g orbital in comparison, only higher by 0.8 MeV).
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VII. THE SIGN PROBLEM AND FUTURE DEVELOPMENTS

We have seen in the examples above that the sign properties for the function
G(o){(c) are extremely important for the stability of the calculation, and may frus-
trate attempts to apply the Monte Carlo path integral to any general two-body in-
teraction. In general, if we choose an arbitrary two-body interaction and arbitrarily
decompose it via pair or density operators, (®) — 0 quickly as [ increases or as
the number of time slices N; increases at a fixed value of 8. For example, with the
Wildenthal interaction and for any calculation for # > 1 with more than three time
slices, the noise due to the sign completely swamps the signal. This “sign-problem”
is a well-known problem existing in auxiliary-field path-integral calculations [27] and
quantum Monte Carlo for fermions in general. Generally, if there is no explicit sym-
metry to enforce the positivity of {,, (®) decays exponentially as a function of 3. The
problem is more severe when using a finer resolution for AB. Therefore, it is very dif-
ficult to calculate low-temperature properties. Only a handful of interacting fermion
systems are known to give rise to positive definite path-integral: the one-dimensional
Hubbard Model, the half-filled Hubbard Model, and the attractive Hubbard Model at
any dimension and filling [3]. We will show in the following that an important class
of interactions for the nuclear shell model has positive definite path-integral represen-
tation for even-even nuclei. This may serve as a starting point in understanding and
controlling the ‘sign problem’. It makes use of the symmetry between time-reversed
single-particle orbitals to enforce the positivity of the path-integral.

We first introduce the ‘time-reversed’ partner of an operator. Define the time-

reversed partner of the creation and annihilation operator to be

&j,m = Qjm = (—1)j+"'aj,_m (7.16.)

1

atim = alp = (=1y*™al_ .. (7.1b)
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Note that

Qjm = (7.2)

Ajm = —Qjim

due to the spin-half statistics.
The class of Hamiltonian found to give rise to positive-definite path integral pos-

sesses the form

A

1 - . =
H= -3 Y XaPaba + €apa + €npa (7.3)

where xo > 0, e, can be generally complex, and p, is a general density operator of

the form
Pa = ZC’,-_,-afa,j . (74)
1]

Note the requirement of a negative coupling constant for the density operator with its

time-reversed partner and the time-reversal invariant form of the remaining one-body

part.
For application to the shell model, we refer to Eq. (3.17), so that in the density

decomposition,
Frena(@) = pre-ne(@)(~1)FHM . (7.5

The requirement of a negative coupling constant for the density operators leads to a

sign rule for the Ax,, namely
Sign(Axa) = (~1)F* (7.6

As we will show below, the Hamiltonian (7.3) gives rise to A(t) (in the action of
the path-integral) symmetric in time-reversed orbitals. Time-reversed pairs of single-
particle orbitals then pick up complex-conjugate phases in the propagation, guaran-

teering a positive definite overlap function (.
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After the HS transformation on Eq. (7.3), the linearized Hamiltonian is
h= Zxa ((O'a + i7a)pa + (0'0, - iTa)ﬁa) + €apa + €4fa - (77)

Therefore p and j couple to complex-conjugate fields. (If some part of the coupling
does not satisfy (7.6), then there will be terms in h that are of the form (0o +i7a)pa+
i(0n — iTa)Pa, and the above statement is not true.)

We represent the vector space in the single-particle wavefunction as

jm
( ) ,ym>0, (7.8)

jm
with states with m > 0 in the first half of the vector and their time reversed orbitals
in the second half. Due to Eq. (7.3) and the fact that time reversed operators are

coupled to complex conjugate fields, the matrix M; representing k; has the following

structure,
A; B;
M; = , (7.9)
-By A}
and one can easily verify that the total evolution matrix
N P Q
U = [] exp(—-M;AB) = , (7.10)
i=1 —Q* P

possesses the same structure, where A, B, P, Q are matrices of dimension N, /2. One
can show that this matrix has pairs of complex conjugate eigenvalues ¢, €* with eigen-

u —v*
vectors ( ) and ( ) In the case where € is real, it is a double root since the

v u*

two eigenvectors are distinct.

For the grand-canonical ensemble, the overlap function is given by

d voQ i 1 7.11
= det[1 =T+« €)>0. :
¢ = det] +(_Q* P*)] [0 +e)(t+e)> (7.11)

If only particle-type (neutron-proton) conserving density operators are present in
Eq. (7.3), wavefunctions are represented by separate Slater-determinants for the in-

dividual type. In this case, the individual matrix possesses the structure (7.9), and

therefore ¢ = {, X {» > 0, since {, > 0 and {, > 0.
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In the zero-temperature formalism, if the trial wavefunction for an even number

of particles is chosen to consist of time-reversed pairs of single-particle states,

a b
¥, = R (7.12
—b* a* )

where a,b are matrices with dimension (N; X ]—gl), then ‘I’I,U\I'o is a N, x N, matrix

with the structure (7.10). Therefore, the overlap function
¢ = det[TUT,] > 0. (7.13)

If only particle-type conserving operators are present, then with even-even nuclei,
time-reversed pairs of trial wavefunctions can be chosen for both protons and neu-
trons, giving rise to { = (, X {, > 0. Notice that, while the overlap function is
positive definite in the grand-canonical ensemble for any chemical potential and thus
any average number of particles, it is only true for an even (or even-even if involv-
ing type-conserving decomposition) system in the zero-temperature formalism with a

suitable trial wavefunction.

In the canonical ensemble for N particles, a fixed number trace is involved and

therefore

¢ (Hexp(—M,-Aﬁ)) = Z €i1€i2.--Eip - (7.14)

i i1£i2¢dN

We have found empirically that ¢ is positive definite for even-even system, although
we lack a rigorous proof. A special case of the Hamiltonian (7.2) exists in which the
overlap function is positive definite also for odd-odd N = Z nuclei. The required
condition is that only isoscalar-density operators are present in Eq. (7.2). This leads
to a further symmetry that protons and neutrons couple to the same field in Eq. (7.7).
Therefore, the evolution matrices Up, = U, = U. In the zero-temperature formal-

ism, if we choose the trial wavefunction for proton and neutrons to be time reversed

partners of each other, so that
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a —b*
Wop = Lo = (7.15)
b a*

(p = det[T} UT,,]

then

= det[a'P a+a'Q b—b'Q*a+ b'P*b] =} . (7.16)

Therefore ¢ = {, X {» > 0. On the other hand, for the canonical ensemble, one can
prove that Eq. (7.13) is real. Given that {, = {,, { is a square and, therefore, is
positive.

For a system with general form (7.3), if we use the integration of real coherent
states to sum the canonical trace, then there is an extra operator exp(Xpha;,ah) mul-
tiplying the evolution operator. Time-reversed states couple to different real fields in
the extra operator, and a sign problem arises as seen in Example 3.

Cranking also causes the sign to deviate from unity. In cranking, the Lagrange
multiplier term wJ, is added to kh in Eq. (7.7), destroying the property that time-
reversed operators will be coupled to complex-conjugate numbers (because J, = -J.).
Notice, however, that cranking with an imaginary Lagrange multiplier iwJ, observe
the time reversed symmetry and will give rise to positive path-integral.

In summary, for system (7.3), the above proof guarantees the overlap function to
be positive for any nuclei in the grand canonical ensemble, and for even-even nuclei
in either the canonical ensemble or zero-temperature formalism (with suitable trial
wavefunction). It also guarantees the positivity for odd-odd N = Z system when
only isoscalar density operators are involved.

The Hamiltonian (6.7) satisfies (7.6) upon transformation of the paring interaction
to density coupling, and involves only isoscalar operators. Therefore, ( is positive for
even-even and N = Z nuclei. For other systems, (®) decreases as a function of .

At AB = 0.0625, (&) = 0.4 at 8 = 1.5 for 2Na and (®) = 0.2 at 8 = 2.0 for **Na.
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The sign properties of (6.7) even for odd A nuclei are still much better than that
of a general interaction violating criteria (7.6). For example, using the Wildenthal
interaction, (®) drops to several percent at § = 1 for any nucleus.

Arbitrary two-body interactions do not satisfy the sign rule (7.6). When the rule
is violated, (®) rapidly decreases as a function of 8. Note that monopole; pairing
plays an important role here. The pairing interaction can be written as

-9y, a;'aj(;*,-&j . (7.17)
ij
It produces a constant shift in every x; in Eq. (7.3). It may be seen also from the

multipole decomposition of the pairing force, which is
—9 Y (-1)¥prar(a)pr-m(a)(=1)" . (7.18)

Therefore, if pairing interaction is strong enough compared to the remaining interac-

tions, the sign rule can be satisfied.

VIII. CONCLUSION

We have developed a general framework for carrying out auxiliary-field Monte
Carlo calculations on the nuclear shell model. In this framework we evaluate ground
state or thermal observables, using pairing or density fields or both.

Although the use of pairing fields naturally encompasses important physics, these
calculations are more difficult due to the larger matrix dimension needed and the
extra effort to keep track of the sign of the overlap function as the wavefunction
is propagated. Furthermore, for calculations with multiple time slices, the Monte
Carlo method with pairing fields suffers from severe sign problem. The use of pairing
fields is suitable for carrying out static path or two-time-slice calulations where the

linearized Hamiltonian is Hermitian, thereby enforcing the positivity of the overlap
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function. This can be easily verified by observing that for Hermitian h,h,, and ko,

with real eigenvalues E;, E; and E;,,

’i‘r[e—ﬁi‘] =Y e 5 >0, (8.1)

and
Trle=fhee=3h] = 5 &35 (i, e~ 77 i,) > 0. (8.2)
fa ‘
In these cases, there is no sign problem and also there is no need to keep track of the
evolution of the sign.

For the density decomposition, we have found a class of interactions which give rise
to a positive definite integrand upon the HS transformation. For these interactions,
stable calculations can be carried out for many time slices to extrapolate (A —
0) exact results. This class of interactions includes phenomenological pairing plus
multipole interaction which is widely used in studying nuclei. We have carried out
calculations with this type of interactions in the s-d shell, demonstrating thé power
of the method in calculating both ground state and finite temperature, and both
static and dynamical properties. High-spin nuclei were also studied by cranking. The
calculations converge to the exact results (as found by direct diagonalization) with
increasing number of time slices. Although the nuclear wavefunction is not explicitly
found in these calculations, many nuclear properties can be obtained.

For general interactions in the shell model, it appears that the sign or phase
property of the integrand is the major controlling factor to the successful application
of the Monte Carlo sampling. Successful calculations are usually confined to high
temperature studies. We have demonstrated the freedom one has in the decomposition
scheme of the two body interaction and found that the behavior of the sign can be
different in the various schemes. The next crucial step is to explore whether we

can manipulate these degrees of freedom to enable stable calculations of nuclei using

general forces.



66

APPENDIX A: FORMULAE FOR OVERLAP IN THE PRESENCE OF

PAIRING FIELDS

We consider operators of the form
U= exp(—AﬁizN,) exp(——AﬂizM_l)... exp(—Aﬂizl) (A1)
where each k; is a quadratic operator

Ns
he = Y O(t)ijala; + At)ijalal + A(t)ija:a;. (A2)

£,3=1
Here a;, a,t are the fermion anihilation and creation operators. V; is the total number

of time-slices (A8 = B/N:), and N, is the total number of (m-scheme) single particle

states. Without loss of generality, we choose A, A to be anti-symmetric (A = —AT

etc.). We follow the development of Berezin [21], who considered the special case

U= exp(—z'izt) with & Hermitian; we take the general case.
We calculate the grand-canonical trace
Tr0 = 3 (i|U]s) (A3)

(the sum is over all states of all particle number) by using the fermion coherent state

(FCS) representation of unity, [28]
1= [T] dadts exa(~ 3 £:£)IENEL (A9)

Here £, are Grassman varibles and the |¢) are fermion coherent states. Then
Tl = [ ] deadts ex(~ 2 64 EITE)- (A5)

We need the FCS representation of U. In what immediately follows we show that

if U is the matrix representation of U, that is
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U11 U12
U= ( ) (A6a)
U y22
= exp(—M(N;)AB) exp(—M(N; — 1)AB)...exp(—M(1)AS), (A6D)
where
B O(t) 2A(t)
M= (2A(t) —@T(t)) | 0
then
(7 c 1 . B11 Blz £ AS
wo-cmlie o 2)()) o
with
B! — U”_lUn, Bz - _y22! (A92)
B2 — (Uzz—l)T, B2? — ytzy22~! (A9b)
and
Ne
C = det(U??): exp(—AT'B z_j TrO(n)). (A10)

In this case the trace becomes a Gaussian integral over Grassman variables; the result
is given beginning with equation (A29) below. Before coming to that point we must

derive equations (A8-A10).
Towards this end we employ the standard rules for operating on |£), (| with at, a:

(€10 dul¢) = (€€} (Alla)
]
(€lUagl¢) = (£IUI£)£ (A11b)

(€lalUle) = &(¢IU1€) (Allc)
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(€laalE) = 5o (E101E)- (a114)

Next, we derive expressions for a.U, alﬂ , as linear combinations of U i 3 U al. Then,
with the ansatz (A8) of (¢ |U|¢ ) as a Gaussian in the Grassman variables ¢,£*, we use

(A11) to derive the elements B of the Gaussian given in (A9).

To do this, we introduce the operators b, b (which are not necessarily Hermitian

conjugates)

bo = U tanl, b,=U"a'l. (A12a)

Then
a U = 0ba, a,:‘,(j = Iﬁ)a, (A12b)

and we want to find b,b as linear combinations of at,a.

Define

ao(7T) = ehTagehT (A13)
Then
d -
£ 4ulr) = lhoaa(r), (A14)

and similarly for a}(7). Putting all the a,(7),al(7) into a single vector, and using

the representaion (A2) for &, one finds

d [ o) ) ( a(t) )
il = -M Al5
dr (a*(f) al(r) (A19)

with M given by (AT).
Solving the differential equation (A15),

a(T) a
(af(r)) = exp(—Mr) (a,'f) . (A16)
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and so in general

a

at

b . . . .
(_) = exp(ABh,)...exp(ABhN,) ( ) exp(—ABhN,)...exp(—ALk,)

b

= exp(—ABM,;)...exp(—ABMNn,) ( ) )

at
U11 Ulz a
_ ( ) ( ) . (a17)
U21 Uzz at .
Then clearly (with implicit summation on v),

by = U0, + U2, 0} (A18a)

be = UH, 0, +U*, al (A18b)

v

Inserting (A18) in (A12b), and using the ansatz (A8), one can straightforwardly

derive the B’s in terms of the U’s as given in (A9).
Although we do not show it in detail, we note that B is antisymmetric (BuT =

—B12,B2!7 = _B!2, etc.); which can be proved using

01 01
( )M( ):—MT (A19)
10 10

0 1 0 1
( )U( ):(U-l)T. (A20)
10 10

Now we must show the normalization C is of the form (A10). To do this, we find

and

a differential equation for C. Letting

fjn+1 = exp(—Aﬂiz"+1)ﬂn (A21)
we define

Un(t) = exp(—thnt1)Un (A22)
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(s0 Uny1 = Un(AB)). Taking the expectation value of (A22) between FCS’s, invoking
(A11) and equating the parts independent of {,{*, one obtains,

ditlnc,.(t) = —Tr (A(n + 1)B#,(2)) - (A23)
If one differentiates (A10), one obtains

A ur iy L d o 1
ZI“Ca(t)” = STr2InU,(t) - STr@pia. (A24)

Using U,(t) = exp(—Mp41t)Uy, one arrives at

d
EU”,, = —2A,1 U, + O, U*? (A25)

and (A24) becomes (A23). Thus the expression (A10) satisfies the differential equa-
tion for C. The only thing left is the overall normalization. This is found by choosing

M = 0 so that U = 1,C =1, then
(€1T1¢) = exp(— ) €xta) (A26)

which is (¢|¢). Thus we have established the form (A8) for (¢ |U1¢).
The integral (A5) is straightforward (see Berezin [21]; the magnitude is

B! B2 _1\:
. (A27)

Trl = Cdet (
B21 + 1 B22
The phase of Trl/, though critical, is more difficult to obtain; see Appendix B for

details.

One can rewrite (A27) into a compact form. The constant C contains the factor
det(S?2)z, which can be written using
U2z yr2 u2? 227
det U?2 = det = det (=), (A28)
0 1 1 0

Then, introducing (A28), into (A27), after some algebra and using relationships

from (A20) one arrives at
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. 1 ’ Aﬁ N
TrU = det(1 + U)? exp(——z—Tr > 0(n)) (A29)

(where, again, U is the matrix in (A6) representing the evolution operator 0).

As for the density case, one can introduce a fugacity expansion to project out

exact particle number: take

R .. A0 ' A,B N, .
Tr(ANU) = det(1 + ( . ) U)? exp (“T 3 Tr@(n)) ANa/2, (A30)
0 by n=1

Because the matrices 1, U are of dimension 2N, x 2N,, one can write ANe/2

1 0\:
det \ and (A30) becomes

0
1 0 A0 b Aﬂ N;
det ((0 /\) + (0 1) U) X exp (——{;TrG(n)) . (A31)

This can be expanded into a polynomial in A, which then gives the canonical ensemble.
Finally, we give the expectation value of (1/1,](3' [#¢). First we note that the vacuum

expection value (0|[7 |0) is the term in (A31) independent of A, which clearly is
1
. 1 0 \:2 AB
(0|U|0) = det (0 U”) exp (_T zﬂ:‘l‘r@(n)>

_ 2\ o (28
= det ((0 1)U(1)) exp(— 5 En:TrG)(n)) (A32)

Any quasi-particle excitations can be represented as Hatree-Fock Bogoliubov vacua for
properly defined new quasi-particle opertors. That corresponds to doing a similarity

transformation on the matrices. If [1);) is the vacuum to the quasi-particle annihilation

operator G;, i.e.,

Bilds) =0, B; = wija; + vijal, (A33)

then
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(el Uloe) t
u v ut v7 0
= det ((O 1)(V* u*)U(v* uT) (1)) X exp (——-Az—ﬂZTr@(n))

= det (( v u*)U (:T)) exp (-——Az—'B ;Tr@(n)) . (A34)

APPENDIX B: FINDING THE SIGN OF OVERLAP IN PRESENCE OF

PAIRING FIELDS

The formulae for calculating the overlap (,(8) = (1/}1,][7 (8,0;0)|¢r) in the zero-
temperature formalism, Tr[ﬁ,(ﬂ, 0)] in the thermal formalisms, all involve the square
root of a determinant, leaving the phase of {,(3) undeterminted by a factor of £1.
This ambiguity is irrelevant for the Monte Carlo random walk inasmuch as we typ-
ically take |(| as the weight function, but the phase must be known unambiguously
for calculation of observables as important cancellations may result.

We determine the phase by following the evolution of {,(v) and its derviatives
with respect to T as 7 goes from 0 to 8. For example, if {,(7) were purely real, zero-
crossing (with /() # 0) would indicate a change in the phase by -1. The initial phase
at 7 = 0 is positive and real. Following the evolution is computationally expensive,
but as most of the time is spent on the random walk, where the phase is irrelevant,
the overall computational time is negligible.

In what follows we give the formulae for up to fourth derivatives for each of the

different formalisms.

Grand-canonical ensemble

Define
£(8) = G (RAB +£) = Trle~ 110, (kAB, 0)], (B1)

then



k
f(t) = det[1 + e MtU]7 exP(_% > Te[®] - ‘;"TI[@kH])

=1

1 ~Mjqt AB ¢ t
In(f) = ETr[ln(l + e )] — - > Te[0:] - ETI[@HI]-
i=1
Using the abbreviation M = My41,0 = Oy, let

G = (1+e™MU) le™MU=1- (1 +eMU)7,

oG _
ot
= —(1-G)MG.

—[1+ MU ' Me MIU[L + e MU !
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(B2)

(B3)

(B4)

(B5)

The derivatives of In(f) can be expressed in terms of the matrices G and M,

=280 _ v - S 1ef0)
w2 g;(,f ) _ %Tr[M(l _ G)MG]
gs = 3—3(,)1‘%}"—) —= —-;—T:[MGM(I — G)M(1 - 2G)]
o - 2000

= 3 T{M(1 - G)MGM(1 - GIM(1 - 2G)]

—%Tr[MGM(l - G)MGM(1 - 2G)]
—Tr[GM(1 — G)M(1 — G)MGM]

Then {,(kAB +t) is given by,

2 3 4

G(EAB +1) = F(8) = F(0)exp (g1t + 9257 + g3y + gy + )

Zero temperature formalism

(B6)

(B7)

(B8)

(B9)

(B10)



In this case

F() = C(RAB + t) =< Pule ™M1 tT(kAB, 0;0) pe >=< Prle ™+ g >

(t) = det[TreMrstTg]he= S Licy HOI-3THOL])

k .
%@- > Tr[0] - %Tr[@m]

=1

In(f) = %Tr[ln(\IlLe'M"“t‘IIR)] -
So let M = Mg41,0 = Oy, and let

G = e MWy [T e MTg] ¥,

?—?’ = e Mg [Tre Mg ' U Me M Tg[Tre M Wg]™ ¥y,

—Me_Mt‘I’R[‘I’Le—Mt ‘I’R] _I‘I’L

= GMG - MG = —(1 - G)MG.

Then

g = 28U) _ _mimg) - ;1efe),
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(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

and so on; all formulae are the same as in the grand canonical ensemble (B6-9), except

that the matrix G now has a different expression. In fact, in both cases G can be

shown to be the matrix for Green’s function, i.e.,
G,'j =< a;-a.- >
where

a;=a,t=1,..,Ns

Qi4N, = af,i =1,...,Ns.

(B17)

(B18a)

(B18b)
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Canonical ensemble
In Eq. (4.35), the undetermined sign only involves the vacuum expectation of the
ITEO < 0|U(B,0)[0 >. Once it is determined, the sign for Tr[U(8,0)] is known.

We can use the equations for the zero temperature formalism to obtain the sign of

< 0|U(8,0)/0 >.

APPENDIX C: MAXIMUM ENTROPY EXTRACTION OF STRENGTH
FUNCTION

We use the Maximum entropy (MaxEnt) method to reconstruct the strength func-
tion from the response function. Here we briefly describe the Classic MaxEnt Method,;
details can be found from the paper by Gull [19].

The MaxEnt method is a Bayesian approach for reconstruction of postive additive
images f from noisy data. In our case the image is the strength function f(w). The
noisy data are the measurement of the response function at discrete imaginary time
D; = d; + n;, where d; = R(jApB) and 7; is the noise in the data. In the absence of
any data, the most probable image is chosen to be a default model m. Skilling [18]
proved that in the absence of any data, the only consistent choice of probability for

image f is determined up to a parameter «,
pr(f) = exp(aS(f,m))/Z(a,m) (C1)

where S is the entropy of image f relative to the default model; if the image is

discretized to f;,i =1,...,7,

S(f,m) =Y (fj — m; — filog(fi/m;)) (C2)

j

Zstam)= [ EFI1F 4 explaS(f) = [ d'u explaS(u?)). (C3)
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The last step was obtained by a change of variable u; = /f;. (Zs is in no relation to

the partition function in the previous sections.)

In the presence of data, we gain some knowlege about the image. Assuming the

Gaussian distribution of error in the data D;, the probability for f is
pr(f) = exp(aS — 5N g5 (c4)
2 Zs 7y,
where
x*(f) = Y _(di(f) — Di)(d;(f) — D;)Gy5', (C5)
and G;; =< 7;n; > is the matrix of correlation of the errors in the data.
1
Z1 = [ d"D exp(-5x())- (C6)

For a given choice of a, the most probable image can be found by maximizing
aS — 1x?, giving rise to the term Maximum Entropy method. However, a is not
predetermined. Usually, people vary the value of a until the x? found at the maxi-
mum of &S — x? is approximately equal to the total number of data D;. But this
assignment of a is adhoc and, according to Gull [19], usually leads to underfitting of
the data. In the classic MaxEnt, « is fixed by maximizing probability of a given the

data set D; and the default model m, which is
p(e|D,m) «x ZoZs' 21}, (C7)
where
_ [+) 1 l 2y o0 _ l 2
Zg —[) d f [ f? exp(aS 5X )= /;ood'u exp(aS 35X )- (C8)

After a is fixed, we can obtain the most probable f by maximizing aS—1x?, or we
can obtain the average of f by a Monte Carlo sampling of f using the integrand of (C4)

as weight function. We can also obtain error information about f by the Monte Carlo



7

sampling. In our case, we would like to obtain, for example, the error in location of

the peaks in f, or the errors in different moments of w, M, = [ f(w)w"dw/ [ f(w)dw.

Let us return to our case. First of all, since the imaginary time response function
R() is taken at discrete times, we can only allow a limited amount of parameters in
the strength function f. We do that by discretizing f(w) to f; at w;. To allow for
some smoothness, we choose a Gaussian function centered around each w; instead of a
delta function . After we obtain the imaginary time response function, we determine
the relevant range of w in which the strength function is significant and then choose
Wmin and Wmaz. The w; are chosen to be evenly distributed between wp;, and wy,,,.
The number of f,,, n,,, should not exceed the number of data D; we have, which is the
total number of time slices, N't, in breaking up the imaginary time evolution operator.
We choose the width in the Gaussian, Aw to be half of the spacing between the w;’s.

For non-Hermitian operator O, the strength function f(w) is related to f; by,
g1 L N2
£0) = X fig o exp(—5(w — i)/ Au) (c9)

For Hermitian operator O, we have the property f(—w) = e7#“f(w) in the canonical

ensemble. In that case we choose
@) = 5 frexp(Gw - a)
(exp(— 5 (w — wi)*/ Aw?) + exp(—5(w + )/ M), (C10)

The response R(r) generated by f(w) is,

for non-Hermitian operators,
1
R(t) =) fiexp(—~wit + -2—1'2Aw2) (C11)
for Hermitian operators

R(r) = 3 filexp(~rw) + exp(~(8 — r)e)) exp(5(5 —7)?Au?).  (C12)
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We choose the default model m;, 7 = 1,...,n, to be constant . The normalization
is fixed by fitting to the measured response function at zero time R(0) which is related
to the total strength. The data D; is the value of R(7) for 7 = jAS measured from
the Monte Carlo sampling. The error correlation function can also be obtained.

To carry out the maximizing of function p in (C7) , we have to obtain the de-
pendence of Zs and Zg on a. To simplify the problem a little bit, Zs is found by
the saddle point approximation. S(u%,m) has the saddle point at u? = m; with the

second derivatives 5;%],,?”,,‘. = —486;;, which leads to the approximate integral of

S,
_/_: d'u exp(aS) =~ [j: du exp(—ZaZu?) = (.;;)'/2 (C13)

Therefore the the condition gf = 0 becomes

1 foo ' 1 v 1 BZS T
where the average distribution f; is given by,
1
< fi>= —/ d'u f;exp(aS — —x 2). (C15)
Zq

We do these integrals by Monte Carlo sampling of u; using exp(aS — ;x?) as
the weight function. The value a is determined by the self-consistent condition < -

S >,= —7=. When a is found, the the average distribution < f; >=< u? > and the

fluctuation 8 f; = \/ < f2 > — < fi; >? would also be given by the same Monte Carlo

as in (C15).
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FIGURES

FIG. 1. Schematic diagram of nuclear level systems with spin-orbit coupling, from [8]

FIG. 2. Auto-correlation for different observables in consecutive sweeps in different Hub-
bard-Stratonovich transformations and Monte Carlo sampling schemes. The continuous HS
transformation (2.7) was implemented in the traditional Metropolis and the hybrid-Gaussian
random walk, as described in Section VI.A. The discrete HS transformations (2.28) with

two-point (2.30) and three-point (2.31) quadrature was carried out as described in Section

VLB.

FIG. 3. The convergence behavior in (H) of different HS transformation scheme as

AB — 0. The cross at A = 0 indicates the exact result.

FIG. 4. Grand canonical ensemble for protons only in the sd shell with monopole inter-
action (all six Ej—o matrix elements of the Wildenthal interaction), at (Np) = 3.17, 8 = 1.
Shown are (H) and (J?2) as functions of AJ for three different decompositions: pure pairing
decomposition, pure density decomposition, and a half-density and half-pairing decomposi-

tion. Solid diamonds at AB are the exact results obtained by direct diagonalization.

FIG. 5. Zero-temperature calculations of 2Mg with the schematic interaction (6.7).
Note the relaxation of (H) and {(J?) as B increases. Hollow triangles are static path cal-
culations in the pure density decomposition, solid diamonds are static path calculations by
decomposing the pairing interaction into pair operators and the multipole interaction into
density operators. Solid circles and hollow squares are both calculations in a pure density
decomposition with A = 0.125, using the Hartree solution and the maximal prolate state,

respectively, as the trial wavefunction. The solid line segments indicate the exact ground

state results.
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FIG. 6. Canonical ensemble calculations of °Ne with the schematic interaction (6.7) at
AB = 0.25,0.125 and 0.0625 and the exact results; (H) and (J?) are shown as functions of

B. These calculations were done in a pure density decomposition.

FIG. 7. Similar to Fig. 6 for 2Mg.

FIG. 8. Finite temperature cranked calculations of 2°Ne with the schematic interac-
tion (6.7) in canonical ensemble using a pure density decomposition. Here 8 = 1, with

ApB = 0.125,0.0625 and 0.03125. The exact cranking curve is also shown.

FIG. 9. Canonical ensemble calculations of the response functions for 2°Ne (8 = 2.5) at
discrete imaginary time using AS = 0.125,0.0625, in a pure density decomposition. The
exact results are calculated in the ground state. (a), (c), (e) show the relaxation of isoscalar
quadrupole (Q = @, + Qy), isovector quadrupole (Q, = @, — Qn) and the isovector angular
momentum (J, = Jp — Jy,) responses. The corresponding most probable strength functions
recovered by the MaxEnt method are shown in (b), (d), (f) respectively. The exact strength
functions calculated from ground state are plotted as discrete lines with the height indicating

the integrated strength of the delta-functions.

FIG. 10. Similar to Fig. 9. but for the single-particle pickup and stripping response.
(a), (c), (e) show the imaginary time stripping response for the j = % orbital, and the pickup
responses of the j = % and j = % orbitals respectively. The corresponding most probable
strength functions recovered by the MaxEnt method are shown in (b), (d), (f) respectively.

The exact response and strength functions are calculated for the ground state.

FIG. 11. Similar to Figs. 9,10. but for the j = % orbital. This shows the imaginary time
pickup and stripping response of 7 = % orbital. The response functions are in agreement

with the exact curve for small 7 and then abruptly follows the j = % response.



TABLES

84

TABLE I. The 1st and 2nd moment of the strength function recovered by MaxEnt

calculated from (C15) for fig. 9 and 10. The extrapolated total strength and moments

(AB —) are compared with the results calculated from the ground state of 2°Ne in an exact

diagonalization approach.

Ap = 0.125 AB =0.0625 extract exact

total strength ~ 27.34 0.2 25.9+ 0.1 24.5 25.1

Q(7)- Q(0) (w) 2.33 £ 0.08 2.77 £ 0.08 3.22 3.46
(w?) 8.09 + 1.2 10.5+ 1.2 12.9 15.4

total strength  6.26 £ 0.03 6.78 %+ 0.02 7.29 6.96

Qu(T) - Q,(0) (w) 7.24 £ 0.15 7.77+0.10 8.31 8.38
(w?) 59.9 &+ 3.9 66.6 + 2.5 73.4 73.8

total strength 16.3 + 0.1 16.05 + 0.08 15.8 15.9
Jo(T) - Jo(0) (w) 8.49 £ 0.25 9.44+0.19  10.39  10.39
(w?) 89.8 + 9.04 107.7 + 6.4 125.6  119.6

total strength  1.59 & 0.01 1.62 + 0.07 1.64 1.59

Yom Y /3n(T)25/2m(0) (w) 9.84+0.12  10.32+0.09  10.80  10.98
(w?) 98.0 + 2 1075+ 1.4 117 121

total strength  4.47 + 0.01 4.42 4 0.09 4.37 4.41
¥ on @5/2m(7)al 1 (0) (w) -3.15+0.02 -3.00+£0.02 -2.86 —2.81
(w?) 10.28 £ 0.05  9.71+0.04 9.14  10.08

total strength  1.702+0.004 1.745+0.003 1.788  1.773
Yo 01/2m(7)al /2m(0) (w) -3.1940.01 -3.2240.02 —-3.25 -3.16
(w?) 1043+ 0.06 10.65+0.04  10.87  11.62
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