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ABSTRACT

I. The low-lying excited states of He, have been examined using pro-
jected Generalized Valence Bond wavefunctions. Two types of inter-
actions are shown to be important in understanding the anomalous maxima
and the general shapes of the curves. The interaction between core
orbitals on opposite centers is important at small R whereas at large R
the dominant interaction is between core and Rydberg orbitals on opposite
centers. The latter effect is expressible in terms of the exchange kinetic
energy and arises from the repulsion between singlet coupled pairs of
orbitals. This is described simply in terms of the shapes of the Rydberg
orbitals. The results in general agree favorably with experiment where

such comparison can be made.

II1. Localized wavefunctions obtained from applying an external
localization criterion to orbitals resulting from the GF method are
reported for H,O, OH, and O. The shapes and angles.between the orbitals
are described in some detail. It is shown that the resulting GF orbitals

change in a chemically reasonable manner as we proceed from O to OH

to H,0.
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PART 1

PRCJECTED Gl WAVEFUNCTIONS FOR He,



A. INTRODUCTION

In the recent past considerable progress has been made here
at Caltech in developing wavefunctions which not only provide a near
quantitative description of chemical systems but which most importantly

1la

provide for a readily interpretable description. This latter emphasis

has led to the development and application of improved independent

1b Such wavefunctions consist of orbitals each

particle wavefunctions.
of which is viewed as containing an electron which moves in an average
field due to all the other electrons. This interpretation is a direct

1 . )
¢ Each electron is considered

consequence of the variational principle,
as a separate interacting entity allowing for a description of just what
the individual electrons are doing in atoms and molecules. This feature
of independent particle wavefunctions has been shown to provide a
powerful interpretive tool for understanding chemical systems. 2 The
development of the Generalized Valence Bond or GI method has further
enhanced this interpretability by overcoming many of the problems
associated with Hartree-Fock wavvefunctions. Thus our objective has
been not to calculate wavefunctions, etc. to umpteen decimal places

but instead to provide an understanding of chemical systems which often
cannot be attained experimentally or by other theoretical methods.

The excited states of He, investigated here by the spatially projected

Gl method afford one such opportunity. These states have several
characteristics which although discovered experimentally have

remained only poorly understood. Some of these are discussed



immediately below while others are discussed in later sections.

In 1924 Theodore Lyman3 reported his observations of the
spectra excited by a continuous discharge through helium gas. In
addition to seeing a line at 584.4 A corresponding to the 1 'S — 2 'p
étomic transition, he also saw a "line'" of diffuse character (sometimes
shaded toward the red) at 600.3+0.6A. Although Lyman expressed
some doubt that the 'line' was due to helium he found that as the purity
of the helium was increased the intensity of the line did not change
much with respect to the lines of the 1 'S = n 'P series. Also, the line
did not, in general, overlap the dipole forbidden line 1 'S ~ 2 'S at
601.4A. This forbiddén line was only present in viclent disruptive
discharges whereas the "line'" at 600, 3 was strong in continuous
discharges. Lyman could offer no explanation for the origin of the
"line".

Unfortunately, progress was slowed by the presence of a Ne
line, (2p)® 'S = (2p)° (5s) 'P, which falls at 600,03 A. Since Ne is a
frequent impurity 4 in He, it could be excited by collisions with excited
He atoms. As a result several workers %a proposec{ that the line
observed by Lyman was a Ne line. The origin of Lyman's anomalous
5b, ¢

line was finally attributed to He after investigations of more highly

purified gas.

In 1935, J. L. Nickerson6 confirmed the helium origin of the
line and found that the intensity of the 600 A band varied approximately'
as the first power of the current (although he did not state the range of

current). From this he concluded that the band came from a molecular



state formed from a ground state atom and an atom excited by collision
with an electron. In view of Kruger's dc work, in which it was found

that the forbidden line at 601.4 A never appears without the band, the
pertinent excited atomic state was taken to be 2 'S. Nickerson also
identified other bands arising from transitions between lower vibrational
levels of this molecular state (A 12;;) to the repulsive X 12; as comprising

the continuum observed by Hopfield. 72

Now Nickerson was left with one problem. The molecular tran-
sition A IE; - X IE; at 600,019 A occurs with an energy of 385 cm ™’
greater than the forbidden atomic transition. This led Nickerson to
consider the possibility of a maximum in the upper A state occurring
at large internuclear distances (above the nearly horizontal part of the
ground state curve). But there are no curves of the same symmetry
near enough to the A state to result in an avoided crossing leading to a
potential maximum. Thus Nickerson ended his paper without being able
to offer an explanation for the crigin of the 600 A band.

Since this early work there have been many theoretical and
experimental investigations into the eXcited states of He,. Most of these
will be discussed later. It has now been well established that although
the ground state of He, is primarily repulsive (exhibiting only a van der
Waals minimum of 8.75 X 107* eV at 2. 9&)7b many of the excited states
are bound with respect to the corresponding excited states
of the separated atoms. We will show here that many of the curves have
potential maxima between 1.5 A and 3.5 A and in addition have a mini-

mum near 1A with a binding energy of up to 2 eV.



The primary objective of this investigation is to examine the
nature of the interactions responsible for the shapes of the excited state
potential curves. Since Nickerson's paper, several theoretical and
experimental investigations have confirmed the existence of a potential
hump in the A 123 state of He,. But in spite of this there has still been
no explanation offered for its origin. Such an explanation, in terms of
nonbonding interactions, is offered here. In addition, the origin of the
maxima in other curves and the other interactions leading to their
general shapes is also discussed. 8

In the following section we will first discuss the wavefunctions,
their general characteristics, and other details of the method. In
section C the resulting potential curves, orbitals, etc. are presented,
the nature of the important interactions are explained, and the results
are compared with spectroscopic data and calculations reported by
others. In section D we discuss the application of the ideas discussed
here to two additional systems. Finally, in the last section we will
discuss dissociative recombination and associative ionization in terms

of our potential curves and the observations of others.

B. THE WAVEFUNCTIONS

1. Form of the Wavefunctions

The Hartree-Fock (HF) method for electronic wavefunctions leads
to orbitals in terms of which the wavefunction may be readily interpreted,

but for many systems, including the excited states of He,, it leads to an



improper description at large R. In these cases the HF wavefunction
does not dissociate to the correct separated atom limit. The config-
uration interaction (CI) method can lead to a proper description of the
potential curves but cannot be interpreted as easily as HF. Here we use
wavefunctions closely akin to valence bond (VB) wavefunctions except
that a different orbital is used for each electron, we solve for all orbitals
self-consistently at each internuclear distance, and there are no ortho-
gonality constraints between orbitals. Such wavefunctions are referred
to here as generalized valence bond (GVB) wavefunctions, or more
spécifically, as spatially projected G1 wavefunctions.

In this description the wavefunction for an excited singlet state of

the He atom is described as
Al ez (e (2) + ¢ (1)¢s(2)] B} (1)

(where A is the antisymmetrizer) and denoted as in Fig. 1a. Here ¢
is a 1s-like core orbital and v is the excited orbital (v = 2s for the 2 's

state and v = 2p for the 2 'p state, see Fig. 2). Orbital gbé is very
nearly the same for the various states of the He atom. The ground state
also has the form in (1) but in this case both orbitals are 1s-like core

orbitals.
At large R the GVB wavefunction for the ground state of He, has

the forin
ALS berg Per e[ OopPory + GorpboplaBatt ,  (2)

which we will denote as in Fig. 1b, where ¢c£ and ¢c’£ and He 1'S

orbitals on the left and q’)cr and (pc'r are He 1 'S orbitals on the right.



For the case of an unexcited atom on the left and an excited one on the
right, the wavefunction is denoted as in Fig. lc, where the ¢ is not quite
equivalent to ¢ or ¢’. The wavefunction of Fig. l¢ must be combined
(as in Fig. 1lde) with another having inversions of these orbitals to
obtain excited states having g or u symmetry. The wavefunctions of

Fig. 1lde are now written as (omitting the normalization constant)

- Yo u = d{([¢cﬁ¢c’£ * (bc'!ld)cﬁ][(pérqbvr + Oyl
| £ [P0 Oorp + PorpPorl[D5Pyp + Dyp®sd)@Bast (3)

cr' Ccr

Thus for each internuclear distance we take the wavefunctions of the
excited states of He, to have the form shown in (3) and Fig. 1d or 1le,
and we solve for the orbitals self-consistently. As a result the orbitals
for a g state (Fig. 1d, + sign in (3) are not exactly the same as those
for the corresponding u state (Fig. le, - sign in (3)). The core
orbitals (¢, ¢’, and ¢) change only very slightly from state to state, and
in our discussions we will ignore changes in the core orbitals (see Fig. 3)."
The wavefunction shown in (3) can also be written as:

‘I’g,u - Pg,uq‘lydjcﬁcbcﬁ’qbérqbvr afap 4)
As a result our wavefunction is the same as the Gl wavefunctionga except
for the presence of the spatial projection operator, Pg,u (Pg,u =1z
i(1)i(2)i(3)i(4) ) where i is an inversion operator. Thus, just as with the
G1 wavefunction, we retain an independent particle interpretation of the

orbitals. This proofgaof this is the same as that for the Gl wavefunction
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with the replacement of P_ G/ for G'. Also the proofs'®? for the

g,u
existence of uppers bounds on the exact energies for excited states cal-
culated by G1 wavefunctions can easily be extended to cover the
self-consistent projected wavefunctions discussed here. Our approach
to solving for the self-consistent orbitals in a CI-like manner (see below)
makes for an obvious application of the Hylleraas-Undheim and McDonald
Theozr'ern11 for upper bounds to the exact excited energies calculated by
our SCF wavefunctions. Note that such an application cannot be made

for the wavefunctions constructed from orbitals which are not

determined self-consistently.

2. Method
In order to solve for the orbitals the wavefunction was written as
a CI wavefunction by expanding one of the four orbitals in terms of its

basis functions;

N

_ Y vr

\I’g,u = Pg,uGl Z Cl ¢C£¢c£:¢5rxl) QBO!B (5)
1

We proceed in the usual manner by foi'ming the Hamiltonian matrix
except that now the matrix is formed over the following functions (when

solving for cpv)
P qub b 1= (6)
g, u”1 Pee®ee’ Perki

Expanding Gz/, each matrix element is now given by
_ v ‘
Hij - <¢C£¢CQ' ¢ErXi lH ,Pg’ uoll¢c£¢cﬁ’¢6rxj> . (N

Thus for N basis functions we need to calculate N(N+1) G1 energies in



order to form the H matrix. In addition, we also calculate the N(N+1)
elements of the overlap matrix, S, over the functions shown in (6).

For each orbital we solve the matrix equation
HC = SCA . (8)

The new orbital is then placed into (8) and we solve for another orbital.
This continues until all four orbitals have converged. Since we solve
for one orbital at a time all of the needed integrals do not change when
we proceed to solve for another orbital. The current program provides
for eliminating the recalculation of these integrals although the time
savings is small. In addition, this approach does not involve third and

fourth order density matrices (see section C. 2.) and is considerably

9c, 10a Nevertheles‘s, its major draw-

simpler than other approaches.
back is that we solve for only one orbital at a time leading to a consider-
able time expenditure before convergence is reached. The time needed

to solve for one orbital is roughly N(N+1)/12 seconds on an IBM 370/155

computer.

3. Basis Set

The basis set consisted of 6 s-type, 2 p-type, and 1 d-type con-
tracted Gaussian on each He cons;tructed from a primitive set of 13 1s-
type, 6 2p-type, and 4 3d-type Gaussians. The exponents and contraction
coefficients are shown in Tables I and II. The first ten exponents in the
s set were obtained from Huzinaga. 12 Three additional diffuse basis
functions were édded keeping the ratio of the exponents constant. The

first five p exponents shown in Table II were taken from Table VI of

Huzinaga12 and scaled by a factor of 1.06524 to be appropriate for He.
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The scale factor was‘ obtained using an estimate of the He 2p orbital
energy obtainedlfrom Moore. 13 The sixth p exponent was determined
from the ratio of the fourth and fifth exponents. Finally the four d
exponents were taken from the set of 3s exponents given in Table VII of
Huzinaga and were rescaled by a factor of 1. 001146 in order to be
appropriate for He.

The contraction coefficients were determined from G1 calculations
on the atomic states using the primitive basis. The 1s and 1s’ contrac-
tions were determined from a 13s calculation on 1 'S giving an energy of
-2.877985 a.u. The 1s and 2s contractions are the two orbitals obtained
from a 13s calculation on 2 °S giving an energy of -2.143465 a.u. The
3s is the valence orbital also obtained from a 13s calculation on 3'S
yielding an energy of -2.059201 a.u. The thirteenth s primitive was
allowed to remain free. The p contfaction was determined from a
(4s, 6p) calculation. Here the 4s set consisted of the Ig, 2s, 3s and s”
functions shown in Table I. This contraction was used because the early
exploratory calculations were done with Bob Ladner's G1 progra{mgc
which festricted the number of basis functions to 14 and necessitated
an unsymmetrical basis set on the nuclei. This contraction was kept
for the symmetrical basis used here and differs by only 3 X 107° a.u.
from the energy calculated for 2'P with a (6s, 6p) basis. The energy
for (4s, 6p) 2'P was -2.122410 a.u. The last p function was left free.
The d contraction was obtained from a (4s, 4d) calculation on 3'D.

The s set was the same as that used for 2'P. We obtained an energy of
~2,054738 a.u. for 3'D. This was 3 X 10™* a.u. worse than that for
(6s; 4d). It should be pointed out that the d functions used here are
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2
26T ).

3, (L.e., « 2

C. INTERPRETATION

There are essentially two types of interactions responsible for
the shapes of the He,* potential curves. There is a long range exchange
interaction (R > ~ 5.0 Bohr) which often results in small repulsive
maxima and a short range interaction (R < =~ 5.0 Bohr) which determines
the shape of the curves at small R. In order to understand these effects
this analysis of the excited states will utilize two types of potential
curves. The first type, to be discussed later, is obtained from fully
self-consistent results using the wavefunction shown in (3) and Fig. 1lde.
The second type is obtained from a frozen orbital (FO) wavefunction.
This wavefunction is that shown in (3) and Fig. 1de except that at each
internuclear separation, R, the orbitals are now restricted to be those
self-consistently obtained at R = . The FO curves will be seen to be

quite useful in that they exhibit many of the important features of the SCF

curves and allow us to understand the pertinent interactions without
having to consider the simultaneous self-consistent readjustment of the
orbitals. In addition, the gross features of several of the self-consistent
curves Will be seen to arise from avoided crossings of FO curves.
Before proceeding further we note that FO potential curves will be
designated as ¢, = nf or v = nf, 1’32; 4 (FO) while SCF curves are

designated as 1,325 o () where nf is the R = = limit of the Rydberg

orbital.
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1. Short Range Interaction--The Three Electron Core
14a

In Fig. 4 we show several FO curves corresponding to the

approach of a ground state He atom to He(ls, 2s) 'S, He(ls, 2p) 1P,
He(ls, 3s) 'S, He(ls, 3p) 'P, He(ls, 3d) 'D, and He™(1s) °S. We note
that without exception as R is decreased each state due to the inversion
symmetry splits into two states one of which is repulsive while the other
is attractive. Note also that the three electron FO curves show the
purely repulsive nature of the 22; state of He: and the attractive nature
of 22:;. |

In order to understand these short range interactions we must
first consider the large size of the excited Rydberg orbitals compared tc
the three core-like orbitals. This is shown in Table III where we have
chosen (zz)% somewhat arbitrarily as an indication of the relative sizes
of the orbitals. We see that the smallest of the Rydberg orbitals, the 2s
orbital, is more than four times "larger' than the 1s’ He core orbital.
Thus as the two He centers approach each other in F1g 4, for R less
than the size of gbv, but greater than the size of the core orbitals we find
that ¢>v is approximately equally shared by both heliums and where ¢>V
was a separated atom s or d orbital we can take qbvr ~ ¢>V£ in the wave-
functions denoted by Fig. 1de. For these g states the wavefunction can
now be written as in Fig. 1f. Factoring qbv out of the wavefunction leads
to the three electron wavefunction shown in Fig. 1g. This describes the
repulsive 22; state of He;r already mentioned and shown in Fig. 4. The
same procedure applied to Fig. le leads to the attractive three electron

°Z) state shown in Fig. 1h.
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Consider now the v = 2s FO curves shown in Fig. 4. In the u
state, which is denoted as the A state, the interaction of the three core
orbitals is attractive aiid as a result the 4 electron curve is attractive.

In the corresponding g state the core orbitals interact repulsively leading
to a repulsive 4 electron curve. This may also be viewed by noting that

we may write our wavefunction as

v o =G'% S, . BB (9)

where we have

By 0 = DopPerpPapBip £ Ourborpbsy by (10)

g,u crvr

and the orbitals are those obtained self-consistently at R = . Taking

(pvg and ('bvu to be symmetry functions we have:

by = Cl¢vg - Coby

(11)
Substituting (11) into (10) we obtain
%, = C1<I>’éq?vg+ czqﬂcpw , (12)
_ + +
o, = lebuqbvg + Cz<I>ggi>Vu (13)
where we have for the spatial He’zF wavefunctions
. ‘
q)g - ¢c£¢c’2¢5r * PerPerr®ey (14)
-
e, = ¢ci¢c'£¢6r PerPerrPay (15)
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From normalizaﬁon of ¢v£ and ¢VI' and their overlap we determine C,

and C,:

Ci = (L+8,)/2, C;=(Q-85;)/2 (16)

where Sy = (o ,/¢ ).
Thus from the overlap of the excited orbital with its inversion on the

opposite center one can determine at a particular R the amount of g or

u core character in our wavefunction. At R =« we have from (16)

Cf =0.5and Ci =0.5. The values of Cf and Cz are important for distances
smaller than about 8.0 Bohr where the 22:; and 22; Heg curves begin to
split appreciably (see Fig. 4). From Table IV we see that for the v =2s
FO wavefunction Sﬂ_r increases with decreasing R leading to a large value
of C, at R = 2.2. Thus the frozen wavefunction for v = 2s has almost
entirely a repulsive g core for the 4 electron g state and an attractive

3 electron u core for the 4 electron u state. This leads the v =2s

lz'é (FO) state to be totally repulsive while the v = 2s '123 (FO) state is

attractive as shown in Fig. 4. Note also from Table IV that the FO and

+
g

at small distances. This is also seen in Figs. 5 and 6 whei-e we show the

SCF results are similar for v = 2s 12:“1 but quite different for v =2s 's

SCF and FO curves together.’ Thus the FO results provide for a reason-
able description of the A state but are not adequate for v =2s 12; at small
distances. We will come back to this later.

For v = 2p and R less than the size of v but greater than the siie_

of core orbitals we can take ¢)vr = '(Pvﬁ' Thus our wavefunction now
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takes the fcrm shown in Fig. 1jk and the results are qualitatively the
opposite from v = 2s. We now find that the 4 electron g state has the
attractive core while the u state has the repulsive core. This is shown
in Fig. 4. The large barrier in the v =2p 12; (FO) curve is due to an
exchange effect which will be discussed later. Note that for v = 2p in
Table IV, S!Zr is positive at large distances but decreases and becomes
increasingly negative at smaller R. At large distances only the two
lobes of the same sign overlap whereas (retaining the same phases) at
smaller distances lobes of opposite sign overlap leading to a negative

overlap as shown below.

Small R Large R

From Table IV we see that this results in 12; (FO) .having mostly un-
favorable core at large R and favorable core at small R. Thus at large
R (e.g., 5.8 Bohi‘) where 22; and 22:; are already split we would expect
12’; (FO) to be first more repulsive than 12; and then cross 12+u falling
beneath it at smaller R. This does indeed happen and can be seen in

Fig. 4. But it must be pointed out that this provides iny a small contri-
bution (~ 12%) to the splitting of lzg (FO) and "z (FO), v =2patR =5.8.

~ This is because C, and C, are quite close to 0.5 and 22; and 22:“1 are
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nearly equally split at R = 6.2, 5.8 as seen in Table IV. In addition we
see from Fig. 2 that the v = 2p curves start to split appreciably before
22; and 22;; split. Thus the splitting of these curves at large R and the
major contribution at smaller R (> 4.2 a,) appear to be an effect of the
spatial projection involving d)v.

From Table IV we see that for v =3p, C, > C, for R < 8.0 and
as a result we would not expect this effect to cause the ¥O curves to
cross as we did for v = 2p. But as in the case of v =2p we find lEg to
be attractive at small R and 12; to be repulsive.

From Fig. 4 we see that for the n = 3 states the splitting of the

states occurs at nearly the same R as for st in agreement with what

g,u
has been said above. Data for v = 3s and 3d are also shown in Table IV

and the conclusions are as expected.
These results apply equally well to °Z states. For R small

enough so that (Pvr & (pvﬂ or ¢vr ~ '¢v£ these states llead to the same

+
_ _ g
From the above considerations we expect that for FO, v = npm,

combinations of 22; and *Z” components of He2+ as for the 'Z states.

1Hg will be attractive at small R and 1Hu will be repulsive while the
reverse will hold for v = ndr. For v = 2pw, 3pm and 3dr these predic-

tions have been confirmed for 3E-ﬁu and lﬂ.u states by the CI calculations

15 16

of B. K. Gupta and F. A. Matsen, *“ and those of J. C. Browne.

17 pas observed experimentally that the v = 2pn 3IIu

In addition, Ginter
state appears to have a large maximum since the fourth vibrational level
is observed which is at an energy approximately equal to the separated atom

1s® 'S +(1s, 2p) P limit. As predicted here (and confirmed by
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calculations in Refs. 15 and 16) a large maximum in v = 2pw 3Eu or
lIlu would be caused by the repulsive v = 2pr curve avoiding a curve
crossing with the attractive curve of the same total symmetry from
v = 3da. The above results have also been confirmed by calculation
for v = 2p ‘i and 'li by B. K. Gupta et al, *°
Thus in sumimary we see that of the two couplings resulting
from a specific excited state of He, one leads to attractive He2+-1ike
core-core interactions and one leads to repulsive core-core inter-
actions. The sign of the resulting interaction depends upon the
3,lz+

4 is favorable for v = 2s, 3s, 3dand Sipt

symmetry of qbv, i.e., g

is favorable for v = 2p, 3p, 4f. In addition for v = 2p >'1I o 18
favorable and for v = 3d 3’IHu is favorable. Further experimental and
theoretical results relating to the discussion here will be presented

when we discuss the SCF curves in section C. 3.

N m" C)k :3 L\N"«?
{‘Dm.. TI8AR f“\\ !”“\U

el

e
\73
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2. Exchange Interactions Involving the Rydberg Orbital

A wavefunction of the form shown in Fig. 1b consisting of a
singlet pair on the left and a singlet pair on the right leads to a repulsive
interaction in the energy curve (the well-known repulsion of closed shells)
as long as van der Waals correlation effects are ignored. Thus con-
sidering the excited states in the form shown in Fig. lc, we would
expect all of these states to be repulsive for large R (assuming the
orbitals to be o-like, i.e., not orthogonal by symmetry).

We will proceed to examine this repulsive effect by considering

the exchange kinetic energy, T*. We define T™ as
™ = 17 - ¢! (17)

where T is the total kinetic energy and T(32 is a classical kinetic energy

defined by
cl <
™ = ) Glylo . (18)
i=1
Here n is the number of electrons and ’ci =- 3 V?. TCﬂ is therefore the

total kinetic energy for a classical Hartree-type wavefunction which does

not invoke the Pauli principle.

C. W. Wilson and W. A. Goddard III19 have discussed the im-
portance of the exchange kinetic energy in bonding. In a study of H,,
He, (X 12’&) and six other small molecules they found that T* was the
important factor in determining bond formation. It is well-known that

the total kinetic and potential energies are poor indicators of binding.
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In addition a partition of the potential energy into nuclear-nuclear,
nuclear-electron and electron-electron terms is not useful since, e.g.,
for He, these terms vary approximately as 4/R, -8/R, 4/R, respectively
at large R whether or not the system is bound. But for H, Wilson and
Goddard found that for a partition of the total energy into an exchange

cl

part, EX, and a classical part, E*~, that the exchange part dominated

the classical part and for H, AEX provided two-thirds of the binding
energy (for SCF wavefunctions AE% did not always dominate AECQ
other systems). A further partition of E¥ into V¥ , the nuclear-electron

exchange energy, Z}é 'L the exchange part of the electron-electron energy
and TX showed that T* dominated V= and 2:2 and in addition had the cor-
rect sign to determine bonding for all the systems considered. Here v
is defined as in (17) and (18) except that we replace ti with -zA/rAi

/rBi where A and B denote the nuclei and z is the nuclear charge.

We define 2& as

gcl (19)

X
2 el " “el

eﬁz

where
2c£ = E (ij ]— lip (20)

and involves only coulomb integrals. Also it was found that for H, T

was quite insensitive to self-consistent adjustment of the orbitals and in
addition, for all molecules studied, the general conclusions reached

from consideration of TX were the same for SCF and frozen wavefunctions.
Before proceeding with a discussion of exchange effects in He;k it is

important to show that these ideas are also valid for He:.



20

In Tables V-X we show the partition of the energy and the changes
in the various components as R is decreased from infinity. Since we are
interested in explaining the origin of maxima which occur in the potential
curves at large R we only give energies at large R. In addition, in order
to simplify the discussion we have calculated the energies in Tables V,
VI, VII-X with frozen unprojected wavefunctions. Since we are at large
R these energies are similar to those obtained from projected

SCF wavefunctions. - In Table VII we show for comparison scme

SCF energies.

First we note from Tables V-X that for the frozen wavefunctions
ECQ (ECﬂ = TC!Z + VCQ + 22%) opposes E, decreasing when E increases
and increasing when E decreases. In all frozen cases AEC!Z remains
negative at these distances. On the contfary the total exchange energy

EX (EX =T+ V4 ZZ ﬂ_) parallels E for the frozen wavefunctions. Also

cl

AE® dominates AE®" and therefore also dominates the total frozen energy.

But in agreement with the results of Wilson and Goddard we find these

resuits change considerably for SCF wavefunctions. In Table VII we see

that with the exception of 1'2:’1 (2p) AECIZ is positive. "In addition AEX,

although remaining positive here for AE positive, no longer always dom-

et _ AE% partition is somewhat
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inates AECY and thereby AE. Thus the AE
erratic for these excited states and appears to confirm earlier results

on other systems.

Further examination of the tables shows that for the frozen wave-
functions AT™ always dominates AE® and AE. In addition it has the

same sign as AE and always parallels AE. The remaining parts of the
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frozen exchange.energy, AV and /_\.Z‘zﬂ always have a sign opposite to

AE and always change in opposition to AE. For the SCF wavefunctions
we see that both AV™ and A2e4™ are somewhat erratic. Nevertheless
AT® remains positive and is always greater than AE (although SCF effects
have reduced ATX/ AE). The relevance of AT to bonding is further shown
in Figs. 8,9 and 10 where we show AT® and E for the frozen and SCF
wavefunctions of C 12; (28), 12; (2p), and IE; (3s). From the Figures

it is seen that TX always follows E. This occurs even for the multiple
minima in the SCF IE; (3s) curve. Thus T appears to play an important
role here in determining bonding. We will now proceed to analyze the
maxima in our potential curves at large R in terms of pair-wise contri-
butions to T™.

It has been sh.own19 that for a spatially unprojected G1 wave-

function we can write,

n
X _ X
T = % Ty (21)
i>j
where
x __1 ]
Tij = - X SijDiTij . (22)

Here N is the normalization constant for the total wavefunction, Si i is

the overlap integral between orbitals i and j and 'rij is given by

T = b+t - 2t/5;; (23)

where tii is the integral shown in (17). D{ is a first-order density
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ma.trix.ggL D% is expressed in terms of orbital cverlaps and is important
here because of the non-orthogonality of the orbitals. Thus for the

spatially unprojected wavefunction we can express the total kinetic

energy as

2

T—I%Djt (24)
N L Pl

Note that for a Hartrée—Fock wavefunction we have D} = 5ij in (24). In
addition to overlaps, Di also contains the coefficients, Uy, o, of the per-
mutation o which appears in the spatial part of the G, operator shown
in (4). In evaluating spin independent energy integrals over G, wave-
function we only need to considerga part of the G, operator, namely O,.
Thus for the total overlap in the denominator of a G, energy expression

we write
DENOM = (& |0}, ®) (25)

where @ is a product of spatial orbitals (& = ¢,¢,... ¢;) and

Oy = Z Ujio0 - (26)
o
In (26) o is an operator which permutes the electrons in ¢ and Uy, 4
is the 11 element of the matrix representation for o.  QOj, differs from
the usual Ouga by a constant factor. Getting back to D{ we

also definega Dg as the coefficient of qu*(j)qbi*(j) in



23

@|Y U, 00f (27)
o
where the dagger indicates that we do not integrate over electron j.
In order to understand the nature of the pairwise contributions in Eq.
(22) let us further examine D{. For a four electron, spatially unpro-

jected G1 wavefunction we have the general expression

] _ . . L. s
o) = 8;; Uuli, ) + 2, Uik, 1, 1)8y58y 4

k#j,1
+ULEDEDS,S; + L Unlo 45,0888, - (28)
k4
k,£#i,]

Substituting for the U;,'s and ¢, ¢/, ¢ and v(where ¢, ¢’ are core
orbitals on the left He and ¢, v are the core and valence orbitals on the

right He) for i,j we obtain the Dg's that concern us here:

D' =-1s -1g.g 1g ,s

c cv ccev cc'Velv
+ SZIESCV -+ SCIVSCIE cC - % SEVSCC'SC'(-Z (298.)
DY, =-1s, -1gs,s -1g .5
c’ 2Pc'v ~ 2%c’cPev T 2 Pee’Vev
2 1 _ _
+ S‘cc':Sc’V + chscésc’c': T2 chsccscc' (29b)
D¢ =-1s.--1g ,5,--1g s
c 2 Pcc - 2%ce’c’ec T 2 ceviey
2 1
+ Sc'chE + Sc'c':sc'vscv T2 Sévsc'vscc' (29¢)
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o1

Der = - 2 Serg - %Scc’scé B %SC'VSEV
+ SZVSC'E * SeeSevSery - z SevSevSee! (294)
D¢ =8 ,-4S.-5,.-%S. S,
c ce ccc’c cvie’v
+ S?:VScc’ - %SC'ESEVSCV - %Sc’vSE\}ScE -~ (29e)
2':, = Sav - z SeeSev - z Ser&Sery
+ Sf:c’s(':v -z chScc'Sc'E -z ServSeeScd (291)

Note that in Eq.s (29) there are two patterns of signs. Equations
(29a)-(29d) have the same pattern and are for density matrices between
orbitals in different rows of Fig. lc. Equations (29e) and (29f) have a
different pattern of signs and are for density matrices between orbitals
in the same rows of Fig. lc.

Now let us examine (29) to see which terms are important for
He,. As an example ‘we use the FO unprojected wavefunction at R = 6. 2
for v =2s. There are six overlaps to consider in (29) and of these,
those involving one center are constant with R for the FO wavefunctions
and relatively large: S o' 0.8789 and S(-:V = -0.0814 (for SCF
c 'z (2s) S

g c
involving overlap between the core orbitals on the left and the Rydberg

(¢
et = 0.8785 and SEV =-0.0791), In addition, those

orbital on the right are also relatively large: ch = 0.08460 and Sc’v =

et B B
0.1601 (for SCF C Eg, Scy; =0.02739 and Sc'v =0.06423). Thus SC}?‘
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relaxation of the orbitals tends to substantially reduce ch and Sc’v'
This decreases the magnitude of the maximum in the SCF potential
curve compared to FO. The smallest overlaps are those between cores
on opposite centers: Sea = 0.00057 and Sc'é =0.00220 {compared to
S.g = 0.00060, S,/z =0.00014 for C lzg SCF). Now returning to (29a)
the terms on the right-hand side (proceeding from left to right) are
given by -0.04230, 0.00002, -0.07033, 0.C0000, 0.00000, 0.00000.
For C lzg SCF we obtain -0.01369, 0.00005, -0.02821, 0.00600,
0.00000, 0.00001. Thus both SCF and frozen wavefunctions allow us to
replace (29a) with a good approximation:

DY ~ -1(s

c V+S 1S’)

Cc cc cv

Since S ce! X 1 we can make a further approximation and take

v o _ 1 - _q
D, ~ Z(ch+ Sc'v) = Sc,c',v . (30a)

Thus Dg is given by the opposite sign of the average of the overlaps of
the Rydberg orbital with the cores on the opposite center. Similar con-

siderations follow for Dg, and we also obtain

DV, ~ -8 ’ . (30b)

Since S/, > S,, We expect (30b) to be a slightly better approximation
than (30a). For the FO wavefunction we find (from Eq.s 29a and 29Db)

v v S _ et
D, =-0.1125, D, =-0.1171 and -§, ., _ =-0.1223. For SCF C 'Z}
we have similarly DY = -0.04188, D}, = -0.04412 and -5, ., =-0.04581.

Because of the negative sign (due to v and c,c’ being in different rows of
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Fig. 1c) in Eq.s (30a) and (30b) and because S, remains positive

c,c’,v
and increases as we decrease R at these distances, T and TX,

will lead to increasing p051t1ve contributions to T™ as R decreases.
From Table XI we see that these pairwise contributions are indeed the
dominant contributions to T at large R. It is also seen in Table XI
that both Toyr Toly? and N vary only slowly with distance compared to

S./.. Th i
ch and Serv Thus we may write

x —
ch « chscc'v (31)

X
T2, ocSc;VSCC . (32)

Equations (31) and (32) express the repulsive interactions in the energy
due to the overlap of singlet coupled pairs on opposite heliums. Since
the core orbitals are quite localized about their centers (see Fig. 3) we
should therefore be able to predict the location of maxima in our frozen
curves from a knowledge of the amplitude of the Rydberg orbital as a
function of the distance from its center. These amplitudes are shown
in the plots of Fig. 3. We will come back to this later.

In Eq. (29c) we'find that the terms on the right-hand side are
given by -0.00028, -0.00096, ' 0.00343, -0.00001, -0.00003,
0.00570. Thus we may write (29c) roughly as

D ~ -1s s -1s5. 5,5

c cv ev cve’viee!
Taking Scc' ~ 1 we have,
& 1 o -
D, ~ - SCV( + S, ) = ch§c v (30c)
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Because of the first two terms on the right-hand side of Eq. (29c¢),

Eqg. (30c) is not as good an approximation as Egs. (30a) and (30b). For
this reason Eq. (30c) is only reasonable at large distances. Because
Sgy 18 negative, we note from Eq. (22) Tf:{E: will be negative at large
distances (see Table XI). But at smaller distances ScE and Sc’E will be
large and the first two terms in (29¢) will overwheim the other terms as
ch and Sc'v become small. Nevertheless at the large distances of
interest here, SC(—: is small and because of the factor S(—:v, DS will be
small compared to DZ and T:é(-: is negligible compared to T)c{v (see Table
XI). Similar considerations follow for DS, in Eq. (29d).

The major contribution to,,DCc, in Eq. (29e), See’
remains constant with R. The third term adds a small negative
contribution which is a factor of about 100 smaller than Sc ol All other
terms can be neglected except for the fourth term on the right-hand side
of Eq. (29¢) which is positive and constant with R. Since Toc! is con-
stant with R we find that the most rapidly changing term in Eq. (22) is
N and this leads to the small negative or bonding character of
AT}C{, o With R.

For Dg we see in Eq. (29f) that the first and fourth terms are
constant with R and provide the major contributions. All other terms
in Dg are at least a factor of 100 smaller. Because 7T is negative here
N now causes T:é{v to increase with R. Nevertheless ATE—:(V is small
compared with Ti{v and Ti:('v'

Returning to the FO curves in Fig. 4 we now have enough infor-

mation to discuss their general shapes and the maxima. In Table XII
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we show the energies obtained for ¥FO 12; and 12;. From Table XII
we see that for v =2s at, e.g., R =10.0 Bohr, both 12; and 123 are
still split by the same amount (0.00076 a.u.) as at R = « while the
potential curves of both states are 0.00032 a.u. above their energies
at R = . Because this splitting is approximately constant with R at
large distances and because both curves are approximately equally
repulsive, the major contribution to the rise in the curves is not due to
the spatial projection operator at these large distances.

As a result we have discussed v = 2s above with the results of an

FO spatially unprojected wavefunction. For such a wavefunction Eq. (21)

1t
s

holds. As discussed above the rise in both the v = 2s IZ; and g curves
is due to the interaction between the diffuse Rydberg orbital and the core
14b

orbitals on the opposite He. In Fig. 2 we see that the 2s orbitals
for 12; and IZ:’I have their maximum amplitudes near 2. 25 Bohr and

2.52 Bohr, respectively. Nevertheless, from about 3.5 Bohr out to

R = « both curves are quite similar. Thus both the g and u v =2s
orbifals should have increasing and equal overlaps With the core orbitals
on the opposite center as R is decreased. We expect this interaction to
be increasingly répulsive until 3.25 Bohr and 2.52 Bohr where it will
reach a maximum for the g and u curves, respectively. At smaller
distances the overlap of the Rydberg orbital with the dpposite cores will
also decrease and this interaction will be less repulsive (for R > 1.5
Bohr for 12; (FO) and R > 0.5 Bohr for IZ; (FO)). Now since the core
20(

orbitals are quite localized”™ (see Fig. 3) and therefore somewhat

spiked in shape relative to the-diffuse Rydberg orbital we expect to find
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that the overlap between the Rydberg orbital and the opposite cores will
be approximately directly proportional to the amplitude of Rydberg
orbital. We find that at. R =10.0, 8.0, and 6.2 Bohr, the amplitudes
for all three orbitals shown in Fig. 3(b) are 0.00399, 0.00899, and
0.01758 a.u., respectively. The equal amplitudes of all three orbitals
further justifies our use of the spatially unprojected wavefunction to
analyze T* at these distances. These numbers all differ by a factor of
about 5 from the values of SCv and a factor of 10 from the values of Sc’v
éhown in Table XI. Thus the overlap of the Rydberg orbital with the
opposite cores is to a good approximatiori directly proportional to the
amplitude of the Rydberg orbital. Thus we have related the repulsive
interaction described here to the shape of the Rydberg orbital. This
will prove useful in understanding the magnitude of this repulsive inter-
action in the higher excited states. |

In Fig. 4 we see that v = 2s IEZ (FO) reaches a maximum
(0.00471 a.u.) at 4.89 Bohr. Beyond this point the favorable core-core
interaictions (223) already discussed overwhelm the unfavorable inter-
actions of the Rydberg orbital and the potential curve falls to give a
minimum near 2.3 Bohr. On the other hand for v =2s IZ; (FO) the
repulsive interactions involving the Rydberg electron at large R are
supplemented at smaller R (R < =~ 6.2 Bohr) by repulsive (z}ig) core-
core interactions. As a result 12; (FO) is totally repulsive as seen in
Fig. 4. This is also shown in Fig. 7 where we have plotted 22; (FO) so
as to have the same R = » limit as v = 2s "7 (FO). Here we see that

g
's* rises before 22; because of the repulsive Rydberg core interactions.
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At smaller R(R < 3.2 Bohr) the Rydberg orbital has a reduced over-
lap with the cor.es on the opposite center and essentially surrounds
both centers. The Rydberg interactions then become less important
and both curves approximately coincide, showing the repulsive

core-core interactions.

For v =2p, as described in Ref. 14 12;, 12:’1 and =% wave-
functions all yield identical energies and orbitals at R = ©. In
Fig. 4 we note that the v =2p lE; (FO) curve has a2 much larger
maximum (0.03783 a.u.) than v = 2s 123 (FO) at smaller R, 3.92
Bohr. In addition both u and g curves rise at large R and the
splitting remains small until about 4 Bohr. Thus this rise at
large R cannot be due to the spatial projection operator. Its origin
can be understood by examining Table XI and Fig. 2b.

To understand the size of the hump in v = 2p 12; (FO) we
once again refer to the shape of the Rydberg orbital. We see in
Fig. 2b that the amplitude of ¢>v = 2p reaches a maximum at
2.16'Bohr (this is quite similar to a hydrogenic 2p which has its
maximum at 2.0 Bohr) and is always greater in amplitude than
c,bv = 2s for distances greater than 2.16 Bohr. For ¢v = 2p,
the amplitudes at R = 10.0, 6.2, and 4.2 are 0.00706, 0.02849,
and 0.05113, respectively. The square of these amplitudes are

approximately directly proportional to T cv and Tc'v. Assuming

equal proportionality factors, we take the square of the ratio
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of the amplitudes of qbv =2p to qbv =2s at R =10,0, 6.2, and obtain
3.131 and 2. 626, respectively. The corresponding ratios of Tgv
are 3.028, 2.454  while for Ti:{’v they are 2.901 and 2. 307,
respectively. Thus we see that we can account for the difference in the
fnagnitude of the maxima for qb_v = 2s and ¢v = 2p by simply considering
the shapes of the two orbitals.

As seen in Fig. 2b, qbv = 2p continues to rise in amplitude at
smaller distance. At R =4.2 the amplitude of ¢, =2pis 1.64 times
larger than that for ¢>V = 2s. Thus we would expect TX and therefore
AE to be roughly 2.7 times larger for ¢>V = 2p than qbv =2s. Upon
examining Fig. 4 and Table XII we see that AE for cbv = 2p is about a
factor of 9 greater than AE for cj)v = 28. 'This factor can be understood
by reexamining the core-core interactions which we discussed pre-
viously. Table XIII shows that at R = 4.2 Bohr 22; and 22:; are split
from E(«) by about 0.013 a.u. But the effect of the core is quite dif-
ferent for v =2sand v = 2p. At R = 5.0 for v = 2p (see Table IV), there
are almost equal amounts of favorable and unfavorable core. As a
result the important interaction here is the T* interéction 6f the Rydberg
orbital and the core-core interaction plays only a small role. Never-
theless the latter interaction eventually becomes important at smaller
R and causes gbv =2p 12‘; (FO) to fall for R < 3.9 Bohr. In contrast to
this Table IV shows that qbv =28 123 (FO) already has a substantial pre-
dominance of favorable core and little unfavorable core near R = 5.0,
Here the core-core interactions are important and begin to overwhelm

the TX Rydberg interactions at R = 5.0 Bohr causing the maximum in
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the ¢V = 2s curve to occur at larger R than for gbv = 2p. In addition,
the difference in the variation with R of overlaps of Rydberg orbitals
on opposite centers cavses the core-core interaction to be important
at smaller R for qbv = 2p as compared to cbv = 2s. This allows the
unfavorable T interaction of qbv = 2p with the oppoSite cores to give
rise to a substantially larger maximum at smaller R for ¢ v = 2p. This
is quite clearly shown in Fig. 7 where the large T Rydberg-core
_interaction causes the v = 2p IE: (FO) curve to rise sooner than
22; (FO) and indeed to be much more repulsive than v = 2s 12’; (FO).
For the n = 3 FO curves we proceéd with a similar analysis.
From Fig. 2 we see that the ¢_ = 3s IE;, 12‘; and '27 orbitals are
quite similar for r > 3 Bohr. This is also true for ¢, = 3d and holds
at all r for qbv = 3p as already discussed. Note that since the maximum
amplitude for these orbitals occurs af large r we expect to find a
maximum in the potential curves at large R. Since the core splitting
is negligible at these distances we shoqld find that the distances at
which there is a maximum in the amplitude of the orbital should be
approximately the internuclear distance where there is a maximum in
the potential curve. In addition, -except for qbv = 3d, the amplitudes
are less than those for the n = 2 orbitals and hence we would expect to
find only small maxima.
Examination of the spline-fitted curves shown in Fig. 4, obtained
from the points shown in Table XII, shows that the maximum in the |
¢ \'4

(the spline fitted curve is flat to six decimal places in the energy here).

= 3s, 12; (FO) potential curve is 0.00267 a.u. for 9.76-9.83 Bohr
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Note that this fit is mainly based on the three points at R = 15.0, 10.0

and 8.0. For ¢V = 3s, 12:"1 (FO) we have a maximum of 0.00259 a.u.

+
g

have maximum amplitudes at 9.80 Bohr and thus the correlation to the

at 9.78-9.85 Bohr. Figure2c shows that for qbv = 3s both IZ:; and '

maximum in the potential curves is quite good.

Similarly for ¢ v = 3p the maximum in the lzg (FO) potential
curve is 0.00283 a.u. at 10.47-10.54 Bohr. While in 123 (FO) it is
0.00300 a.u. at 10.51-10. 54 Bohr. The maximum in qbv = 3p comes at
11.00 Bohr. For 12; (FO) the energy at R = 11.0 Bohr is 0.00279 a.u.
above the value at R = < and thus considering that we use only 3 points
at wide separation in our spline fit the agreement between the position
of the amplitude maximum and the energy maximum is quite good.

. From Table IV we see that at R = 5.8 Bohr there is a predom-
inance of favorable core for d)v = 3s,3d 12: and ¢V =3p IE;. Thus for
the n = 3 states the core splitting will become evident in the potential
curves near this R. Figure 2d shows that the amplitude of ¢V = 3d has
a maximum at 5.65 Bohr. As a result the FO potential curve will cross
¢V = 3p and will be increasingly repulsive until the splitting of the cores
becomes important near 5.8-6.2 Bohr. This is indeed the case as seen
in Fig. 4. Just as the slope of the potential curve begins to decrease
near 6.0 Bohr as the unfavorable T™ Rydberg-core interaction reaches
a peak the interaction of the corés splits the g and u potential curves.
Note though that the qbv = 3s, 3p curves have zero amplitude near 5.5
Bohr and 6.3 Bohr, respectively. Thus the unfavorable T Rydberg-

core interactions wjll decrease to zero here and the potential curves:
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will begin to fall close to the R = « energies just as the core splitting
becomes important. This is shown in Figs. 4 and 7.

This concludes the discussion of the frozen curves. We have
seen that by considering the symmetry of the 3 electron core and the
overlap of Rydberg orbitals on opposite centers we have been able to
account for the shapes of the potential curves at R < =6.2 Bohr. By
considering the exchange kinetic energy between the Rydberg orbital on
one center and the core orbitals on the other center as determined by
the shape of the Rydberg orbital we have been able to account for the
energy variation at large R. These results will be essential to our

discussion of the SCF orbitals in the next section.

3. The SCF States

The total energies for the SCF states are given in Tables XIV
and XV. These energies are plotted in Fig. 11 and with the frozen
energies in Figs. 5 and 6. Also the positions and magnitude of the
inaxima and minima in the SCF states are summarized in Table XVI.

In Tables XVII and XVIII we show some orbital coeff-icients'.

a. The A 'Z! state.

The A IE:; state has been the most widely discussed excited
state of He,. It is the second lowest excited state (lying above a 32:;)
and is the source of the 600 A bands mentioned in the Introduction.

1
21a,b, 22 and emission™ 23, are

These bands, seen in both absorption
due to transitions between X IE; and quasibound vibrational levels of

the A state which lie above the”dissociation limit and below the maximum
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in the A state potential curve. In addition much interest has centered
on the A state bécause through transitions to the repulsive X 12; state
it provides for a continuum light source24 in the windowless vacuum
ultraviolet (~ 600-1100 fi). In spite of this interest and as mentioned in
the Introduction, little has been previously reported toward under-
standing the origin of the maxima and the general shapes of the He,
excited states.

In Fig. 6 we see that the FO curve and the SCF curve for A 12;
are quite similar and indeed the FO curves provide for a reasonable
description of the A state. Because the FO curve reproduces the maxi-
mum in the A state, this maximum cannot be due to an avoided curve
crossing. This is also seen by inspection of the right-hand column of
Fig. 12 where we show a contour plot of the cl)V orbital in a plane con-
taining the He nuclei. We see that the d)v orbital retains its 2s character
at all distances while polarizing away from the incoming He as R is
decreased. Note that at small R, cPV encloses the two He nuclei. The
rise in .the potential curve is caused by the nonbonding interaction
expressed in terms of T* and the overlaps between the Rydberg orbital
and the cores on the opposite center. This has been discussed in
Section C2. SCF readjustment of the orbitals reduces the size of the
maximum by about one-half to 0.00223 a.u. (0.0607 eV). This is
reflected by the decrease in T* which is shown at R = 6.2 in Tables V
and VII for the FO and SCF wavefunctions, 'respectively. In addition,
ch decreases from 0.085 for the FO wavefunction to 0.018 for the SCF

wavefunction. (Note that because the SCF wavefunction contains a



36

spatial projection operator, Egq. (21) which is appropriate for a
spatially unprojected wavefunction does not apply.) Compared to the
FO wavefunction the maximum now comes at larger R (by about 1 Bohr)
at 5.82 Bohr and is quite broad as seen in Table XV. Since we would
expect the atomic contribution to the correlation energy to remain
approximately constant between infinity and R = 5.8 Bohr our value for
the magnitude of the maximum is probably of the order of 10 to 20%
larger than the actual value. There have been several experimental
estimates for the maximum. By fitting a potential for the A state to
intensity data taken from the spectra of Tanaka and Yoshino,ZIa Sando
and Dalgarn025 predict a hump height of 0.649 eV = 0.01 eV at 3.1 A
(5.86 Bohr). In addition their curve is quite broad in the vicinity of
the maximum in agreement with the curve calculated here. Other
experimentally derived estimates are 0.05 = 0.01 eV,26 0.059 eV,ma1
0.03+0.03eVat3.0%0.34270.05evat3.14,28 and 0.06 ev.21P
Thus the position and magnitude of the maximum calculated here is
in excellent agreement with the experimental results.

There have also been a number of theoretical calculations on

29 Lerformed the first such cal-

the A state. Buckingham and Dalgarno
culation obtaining a maximum of 0.26 eV at about 4 Bohr. They used
a wavefunction which was similar to the FO wavefunction discussed
here except that each orbital was represented by a single Stater basis
function. They pointed out that electron exchange was important at

large distances and that the maximum which they obtained arose from

the "overlapping of the electron distributions of the separate atoms."
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They did not go into any further detail on this and did not present a
detailed partition of the energy.

Browne30 used 2 2-term CI wavefunction for the A state. Using
orbitals constructed from single basis functions with optimized expo-
nents, he obtained a hump height of 0.174 eV at 5.0 Bohr and a minimum
at 2.07 Bohr with D, = 1.9 eV. Allison, Browne, and Dalgarn031
investigated the A state with a 3-term CI wavefunction in which their
orbitals were also constructed from basis functions. One of their con-
figurations contained a diffuse (Slater exponent = 0.485) 2p basis function
for the Rydberg orbital. They obtained a ‘smaller hump than Browne of
0.084 eV at 6 Bohr. Scott et al. 32 used both a 4 and 17-term CI wave-
functions obtaining maxima of 0.154 eV and 0.153 eV at 5.26 Bohr and
9.22 Bohr. Note though that although the 17-term wavefunction pro-
vided for additional polarization of the core (with tight po functions)
over that found in the 4-term wavefunction, it did not provide for much
additional polarization of d)v. This may explain why both CI wave-
functions gave similar barrier heights. He obtained D, = 1.62 eV for
the 4-term wavefunction and 1.72 eV for the 17-term wavefunction

demonstrating in part the effect of the additional core polarization in

33

the larger wavefunction. S. Mukamel and U. Kaldor*"" have performed

two CI calculations using 209 and 124 configurations. The former wave-
function had a tight 2po function (exponent = 2.462) and no other
polarization functions. It gave a hump of 0.087 eV at 5.3 Bohr and a

D, of 2.306 eV with a minimum at 1.966 Bohr. The 124-term wave-

function had a tight 2pm function and no 2po's. It gave a larger value
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for the maximum (0.1487 eV at 5.1 Bohr) and a smaller De (1.947 eV
with a minimum at 2.01 Bohr). The many interacting terms in these
wavefunctions makes it somewhat difficult to make a definitive state-
ment although it appears that the lack of 2po's in the 124-term wave-
function probably contributed in large part to the worse value for De
and the maximum.

The D, [De =E(R =) - E(R = RMIN)] given by our calculation
(see Table XVI) is 1.883 eV (with RyrN = 2.07 Bohr) and is not in good

agreement with the experimentally derived values of 2.345 £ 0.005 e—V26

28,34 e have performed a full CI calculation at R = 2. 2

and 2.50 eV.
Bohr for the A state. The CI wavefunction (having 160 configurations)
was constructed frcm the eight occupied orbitals of the SCF wave-
function obtained at R = 2.2 Bohr. (The SCF wavefunction is equivalent
to an 8-term CI wavefunction built from the SCF orbitals.) The energy
of the CI wavefunction was only 0.00043 Bohr lower than the SCF
energy. Since the CI wavefunction includes configurations which con-
tain the GF spin coupling in addition to the Gl spin coupling this result
indicates the unimportance of spin couplings other than Gl at this dis-
tance (using projected G1 orbitals). Thus in line with the discussion of
other calculations given above it appears that the absence of tight 2po's
in our basis set which are needed for core polarization at small dis-
tances is in large part the cause of the error in De’

Since there are no avoided curve crossings involved in deter-

mining the shape of the A IZ; potential and since the Rydberg orbital is
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quite diffuse we would expect the binding to be determined almost
entirely by the three electron core. Thus we obtain De =0.07229 a.u.
(1.967 eV) with Ryq = 2.18 Bohr for X “Z (see Table XIII). Thus

D, and Ry differ by about 5% from values calculated for A 12;. vThis

35

idea is further supported by the work of Ginter and Battino™ "~ who find

from their spectral data and the atomic term levels of Moore13 that

the D, values for the A state and X 223 differ by only 5 cm”™" (0.0006 eV).

Our calculated Ry o is 2.07 Bohr which is about 5% larger than
the experimental value of 1.963 Bohr. Typically, GVB wavefunctions
lead to an R e about 3-8% larger than the experimental value.

Calculating-the experimental ionization energy of A 12; from
the estimate of the height of N =0, v = 0 level of the X °Z] ground state
above N =0, v =0 level of A 1?3; given by Ginter and BattinoS° and the
zero point energies36’ 37 we obtain 0.14606 a.u. From the SCF curves
we obtain 0.14114 or an error of about 3.4%. This reflects a roughly
equal treatment of the cores near R = RMIN and the correlation error
at R = » for both states.

In order to see a free-bound transition in absorption from X IE;
it is necessary that the ground state not become appreciably repulsive
until R is less than the position of the maximum in the upper state. At
300°K we find KT = 9.5 X 10™* a.u. which corresponds to about R = 4.2
Bohr on the XIZ; curve (see Fig. 11). This is within the maximum
calculated for the A state but not within the maxima célculated for
.several higher states. We will return to this later in order to explain
the absence of certain bands in the absorption spectra. By correcting

for the difference in the correlation error at R = © in X IE; and Alzj1
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using atomic energies from Moore13 we find that at R = RMAX for
A 12:; and T = 300 °K the transition X 12; — A 12:“1 occurs at 601.01 A,
This is quite close to the first absorption line seen by Tanaka and

Yoshino?1?® at 600.012 A.

b. The C lZg state.

In our discussion of the FO curves we observed that the g state
arising from (bv = 2s was totally repulsive due to the repulsive Rydberg-
core interaction at large R (as in A 12:;) and repulsive core-core inter-
action at small R. Since there are higher FO g states which have
attractive core-core interactions it is natural to expect the SCF curves

to exhibit an avoided crossing near where the FO curves cross. This

+

can be seen to be the case in Fig. 5 where the FO curve for ¢V = 28 lZg

crosses with the attractive curve for qbv =2p lZg. In addition the SCF

+ . . . _ :
, is attractive with Rmin = 2.17 Bohr and

g
D, = 0.02368 a.u. (0.64437 eV). A large maximum occurs at R = 3.90

curve for (Pv =2s, C 's

Bohr with E__,_ = 0.00798 a.u. (0.21660 eV). Note that the FO curves
cross at R = 3.29 Bohr near the maximum in the SCF curve. The
avoided curve crossing is further shown in the left-hand column of
Fig. 12 where we show d)v for th;e SCF state. Note that (except for the
inner node14b in qbv for C 12; which is present at R = o) d)v for both

C lZg and A IZE are quite similar for R > ~5.4 Bohr. Both orbitals
polarize away from the opposite center as R decreases reducing their

overlap with the opposite core orbitals. For R < 5.4 Bohr, qbv for

c izt changes smoothly to a 2p orbital reflecting the avoided curve
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crossing while q‘av for A 12; remains a 2s orbital. The effect of the
avoided crossing was noted earlier when we examined the
occupation numbers for the three electron core of the SCF C 12; state
in Table IV. At small R the FO v = 2s g curve has mostly unfavorable

core whereas the SCF curve has mostly favorable 22; core.

36

Ginter™ "~ has reported eleven bands for the transition C IZ; —

A 12;. He finds R = 2.072 a.u. which is about 5% smaller than the

min
value calculated here. Although no value for De is reported, Ginter
has been able to observe the emission spectra only to v =5 in the C
state. He also suggests that the similar ¢ 32; state predissociates by

E i)

v =5 or 6. This is an indication of the smaller well depth (Emax' min
in the C state compared to the A state. For the C state our calculated
well depth is about one~third the size of that for the A state. From
the Deslandrestable and the w e given by Ginter one can estimate a
lower bound on the experimental well depth of 0.03555 a.u. This value
is about 12% larger than that calculated here (see Table XVI). As seen
in Fig. 5 the small well depth in the C state occurs because the bottom
of the well for (pv =2p lEg (FO) does not fall very much below the v = 2s,
R = « limit. From the zero point energies and Y (0-0) Ginter reports
11050.8 ¢cm™" (0.050351 a.u.) for the difference between the minima of

the C and A states. We calculate 0.046279 a.u. or an error of about

8%.

Buckingham and Dalgarno29 used the same method previously

described in their calculation on the A state and obtained a totally

repulsive potential for the C state. This is reasonable since their
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wavefunction was similar to the FO wavefunction reported here.

31

Allison, Browne and Dalgarno”™ performed a 5-term CI calculation

on the C'state and also obtained a totally repulsive curve. Their choice
of configurations did not allow for the avoided curve crossing described
ébove. The only previous calculation giving an attractive well was by

J. C. Brcwne30 who reported single configuration FO-type calculations

for ¢ v 2s,2p 32;, a two configuration calculation on ¢ 32; and a 3

1t c . . .
configuration on C Eg. His single configuration calculations showed

the attractive nature of ¢_ = 2p 3yt

g
totally repulsive curve for ¢V = 2s 123;; (FO). His two and three config-

(FO) with a large maximum and the

uration calculations showed the avoided crossing arising from the

crossing of the single configuration curves. Although his potential
curve for C ‘=" was not smooth in the vicinity of the maximum he

reported a hump of =~ 0.7eVatR =4.5a.u.

38 has offered an explanation for the appearance of large

Mulliken
maxima in some of the He, potential curves. He claims that states for
which the principal quantum number of the Rydberg orbital at the
united atom limit is greater than the corresponding éuantum number
at the separated atom limit will have large '"obligatory" humps. He
takes the united atom limit of the Rydberg orbital to be important near
Re' For cases in which the Rydberg orbital is unpromoted large humps
are not expected (e.g., A 123). For the C state, Mulliken takes the
united atom limit of the Rydberg orbital (based on the H: correlation
diagram) to be 3po and thus expects a large hump since ¢V =2s at

R = ©». We have seen though that the repulsive part of the potential
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curve arises from the unfavorable Rydberg-core interactions and are
indeed present in the FO curve with (l)v =2s. The SCF energy curve
for the C state falls as the Rydberg orbital becomes 2p-like. The
orbital remains 2p-like (although diffuse) and unpromoted into our
smallest separation at 1.8 Bohr beyond the minimum. It is interesting

36 has observed that the term defect {assuming a

to note that Ginter
principal quantum number n = 3) for the C state is quite large (6 =0.715).

(The term defect, 8, is defined by

T = 0.5/(n-5)° (32)

where T is the difference between the energies of the v = 0 levels of
the C and X 22; states.) In view of the results reported here this is
quite reasonable since the Rydberg orbital is 2p-like at R e and not 3p-

like as had been previously assumed (see Figs. 12 and 133a). 38, 38, 39

c. The 12; (2p) state.

As has been previously discussed the FO curve for v = 2p 12;
rises to high maximum due to the core-core interactions and a repulsive
Rydberg-core interaction. At smaller R it falls to a minimum due to
the attractive core-core interacti-ons. In Fig. 5 we see that the SCF
curve has essentially the same shape as the FO curve with a maximum
at R = 3.52 Bohr (see Table XVI) of almost equal magnitude (0.03769 a.u.
compared to 0.03783 a.u. for the FO curve). Near the minimum though

the SCF curve cannot be 2p like since the lower C 12; state has all the

2p character. As a result the 12; (2p) SCF curve obtains 3p character
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from the only other attractive g FO curve shown in Fig. 5. This is
clearly shown in the left-hand column of Fig. 14 where we see that the
2p orbital begins to change for R < 4.2 Bohr to a 3p orbital. The mini-
mum in the v = 3p 12; (FO) curve falls above the separated atom v = 2p
limit and as a result the well for 12; (2p) is not as deep as that for the
A state. In fact, the minimum of the 12; (2p) SCF curve is 0.00564 a.u.
above the separated atom limit.

There are no experimental results reported for this state.

It is interesting to note here that in his experimental study of the
excited states of He, Gin‘cer35 did not correlate the separated atom
12; (2p) state with any molecular state. Nevertheless he speculated that
it might correlate with a state denoted as 4po 12; which is the next
molecular state above those which correlate with all the other n =2
separated atom levels. This state would have its v = 0 level at several
hundred cm™" below the 1s” + (1s, 2p) *P limit.

Considering our error of about 25% (see the discussion of A 1EE)
in D(; this would be a very reasonable description and indeed our 12; (2p)

35

state is the state which Ginter™" refers to as 4po. Nevertheless we have

seen that the Rydberg orbital is 3po-like (see Fig. 13b) and not 4po-
like. It is a diffuse 3po having maxima at ~4.1 and ~13.2 Bohr from
the midpoint between the two heliums at R = 2.2 Bohr (compared to 1.75
and 10.24 Bohr for an H atom 3p orbital). The potential curve is similar
in shape to that for the C state. |
We have earlier mentioned a three term CI calculation on C 12; v
30

by Browne. For this wavefunction he plots not only the energy curve

corresponding to the root appropriate to the C state but also the curve
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obtained from the next root. This latter root of the CI matrix corresponds
to '=7 (2p). But since there are no 3p orbitals in his basis (which was
not meant to describe this state anyway) his energy curve does not have
an attractive well. Instead the curve rises to a plateau near 4 Bohr and
then (when 3p character is needed) it rises again to become totally repul-
sive. In the absence of 3p character the Rydberg orbital for this repulsive
part of the curve will be 2s-like since this curve corresponds to the
upper part of the avoided crossing which gave rise to the C state dis-
cussed earlier. This repulsive 2s character will be referred to later
when we discuss the higher states.

Once again we see that a promotional effect38 is not important
here. Indeed the v = 2p FO curve shows both a high maximum (nearly

equal in magnitude to that of the SCF curve) and an attractive well.

d. The 12; (2p) state.

In order to understand the nature of the SCF 12; (2p) state we
will refer to the FO curves shown in Fig. 6. As has already been
described the 12; (2p) FO curve is  totally repulsive. Note that near
4 Bohr this curve crosses both thé attractive v = 3s and v = 3d 12; FO
curves. From Fig. 14 we see that the Rydberg orbital becomes pre-
dominantly 3d-like for R < 4.2 Bohr and does not become 3s-like until
R < 2.2 Bohr. Thus the SCF Rydberg orbital is predominantly 3d-like
at the larger distances even though the v = 2p FO curve crosses the
‘corresponding v = 3s curve. In order to éxplain the avoided crossing in

the SCF curve the interaction Hamiltonian and overlap matrix elements

between the v = 2p and v = 3s, 3d FO wavefunctions have been calculated.
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At R = 3. 8 Bohr we obtain for the total ¥O wavefunctions:

i - Yl ’ _
(<I>2P;H(<i>3s> = 0.01628, (®y [H|®5) = 0.00158

| = . 'y
(@2p1H(i>3d> = -0.44638, (@2le|<I)3d> = ~0.02755
<<z>2p]<1>35> = -0.00245, (@2p|@3d> = 0.06980 (33)

where <I>2p, <I>3s and @3 q are IE:; (FO) wavefunctions appropriate to the
R == ¢ = 2p,3s,3d states. Also By, = N(Bg, - (®2p!@3£> Do) 1€,
¢2p and 'I>3' g are orthonormal, In this manner the matrix elements of
(I)zp and @3112 over H in (33) are more closely related to the energy
splitting due to their interaction. They are larger by a factor of
(1-82)1/2, where S is their overlap, from the actual splitting. We see
here that the Hamiltonian matrix element for the inferaction of the ¢ v
2p IE:; (FO) with qbv = 3d IEE (FO) is about 29 times larger than that for
interaction with the ¢ v 3Su state. The overlaps differ by a factor of
28. This cbnfirms our observation of the 3d nature of the Rydberg
orbital in Fig. 14. We now look further at the overlaps in (33) in order
to understand this interaction. We will separate our ¥O wavefunctions
into two parts and consider each part Aseparately. Due to the spatial
projection operator we write (I)V = e - @5 where @? is the result of
operating on the G1 wavefunction with the identity operator part of the
projection operator shown in section B. 1. @‘},3 results from operating
with the inversion operators. We first consider the unprojected part

of the overlaps in (33) and we find that at R = 3. 8 Bohr they differ by a

factor of about 2:
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0. 04930

A A
(%, | @5

A AL (34)
<<I>2plq>3s> = -0.02644

Upon expanding the O,, operator and examining the terms contributing to
(34) we find that the factor of 2 arises from the difference in the overlap
of the d)v = Bdu and cbv = 3Su orbitals with the cbc and qbc, orbitals on the
opposite center. For example at R = 3.8, we have (keeping the phases

shown in Fig. 3)

(¢C,Ll¢3dR> = 0.17182, <¢C,LI¢>3SR> = -0.09448 .  (35)

This is understood by considering that the amplitudes of the q’)v = 3du
and 3su orbitals at 3.8 Bohr from their centers 2lso differ by a factor
of 2 and are 0.02567 and -0.01317 a.u., respectively. From the pro-
jected contribution to the overlaps we obtain
A 1B, _
(@5, |®5,) = -0.02050

(36)
’ <<1>§p[<1>§’s> = -0.02399

The important terms contributing to (36) involve overlaps between

R
nitude and have the same sign

¢, =2p; and ¢_ = 3d,,3s,. These overlaps are nearly equal in mag-
v L v R

( > = 0.35992, ( ) = 0.39873 37
<IJZpL'(deR ¢2pL’¢3sR (37)

leading to the nearly equal overlaps in (36). Subtracting the results in
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(36) from those in (34) we obtain the results in (33). Thus at distances
near the FO curve crossings the signs of the overlaps between the 3d
orbital on one center and the cores and 2p orbitals on the other center

are the same while they are opposite for the 3s orbital.

This mathematical explanation accounts for the difference in overlaps
shown in (33) and helps explain why 12:; (2p) becomes 3d-like and not
3s-like for ~2.2 Bohr <R < ~4,2 Bohr. Note though from Fig. 14
that for R < 2.2 Bohr, ¢, becomes 3s-like. This is explained by the
avoided crossing near their minima of the IEE (3s) and IE:; (2p)
curves. From his experimental data Ginter 35 bhas commented on the
"crossing'' of these states. Our IES (2p) and 12:’1 (3s) states are
denoted at large R as his F and D states, respectively. At large R
his F state has a large hump and in fact crosses the D state near 2.5 A.
Thus the minimum of the experimental 20 D state falls about 676 cm™*
’below the minimum in the F state (our calculated IE‘: (2p) lies 410

em™ below 12:"1 (3s) at the min_imum). Although our SCF curves
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cannot cross they show that both states only weakly avoid each other for
R < ~ 2.6 Bohr and may come even closer than shown in Fig. 6 if we

had calculated mere points on our potential curve in this region. Indeed
we see from Figs. 14 and 15 that the IEE (2p) and IEE (3s) Rydberg
orbitals switch character near 2.2 Bohr offering additional evidence of
the avoided crossing in these calculated curves. Our calculated RMIN
(or Re) is 2.17 Bohr and agrees favorably with the value of 2.06 Bohr
given by Ginter.41 There are no accurate experimental data for D, and the
magnitude and position of the maximum.

As a further check on the potential curve the experimental value
for the energy difference between the minima of A 123 and D 123 is
1869542aand 187114‘O cm”™'. The difference calculated here between the
minima in the potential curves for A ‘12:; and 123 (2p) is 18182 cm'l, an
error of about 0.002 a.u. or only about 3%.

In our discussion of the SCF A 123 state we noted that a tempera-
ture of 300°K correspohded to a distance of about 4.2 Bohr on the ground
state X lE; curve. Since the hump in the A state came at about 5.8 Bohr
we expect to see transitions in absorption spectra between the ground
state and high bound or quasibound levels of A 12:’1. But note that for
12; (2p) the maximum now falls at 3.77 Bohr and thus in absorption at
300 °K we should expect to see mostly free-free or continuous spectra
for this state. Indeed in their étudies of the absorption spectra of He,

21a report finding no bands near the

at 77°K, Tanaka and Yoshino
584.33 A line corresponding toc 1s2p 'P - 15*'S. As a matter of fact

they report no bands between 600 A and 540.76 A . (The latter has
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IE; (3s) as the upper state and is discussed below.) This is understood
from examination of Fig. 6,

38 correctly describes this state as being

Although Mulliken
3do-near the equilibrium separation we see that promotional effects are
unimportant in causing the maximum. 3do character was necessary

though in order that the curve have an attractive well.

e. The lzj; (3s) state.

42b

From Fig. 6 and the right-hand column of Fig. 15 we see that

this state is analogous to the A state. The FO wavefunction provides a
good qualitative description of this state. In the SCF wavefunction the
Rydberg orbital remains 3s-like until about 2.2 Bohr when the near
degeneracy with 12:’1 (2p) mixes in 3d character. This has been dis-
cussed above. Thus the curve is quite similar in shape to the A state
and has a calculated D, = 0.06916 a.u. compared to 0.06920 a.u. for
the A state. The calculated Re for this state is 2.19 a.u. compared to

40 Also we find that there is a small

‘the experimental value of 2.02 a.u.

maximum of 0.00015 a.u. in the spline fitted potential curve for this

state (see Table XVI) at R =11.38 - 11.54 Bohr. This maximum is

much larger in the FO curve and is due to the unfavorable overlap of

the outer maximum of ¢ v - 3s with the cores on the opposite center.
Tanaka and Yoshino4’ 21a have reported a band in absorption at

540.77 A. This comes at an energy slightly greater than the atomic line

at 540.94 A corresponding to 1s3s 's— 157 s, They also report that

this band was quite similar in appearance to the band at 600 A which
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arose from transitions to quasibound levels of the A state. Thus they
propose that the 12; (3s) (D l'Z:Ll) state has a hump of about 60 em”™’ or
0.00027 a.u. Their predicted hump is larger than our calculated max-
imum and may be due in part to the limited number of points used in

our spline fit near the maximum.

f. The lzg (3s) state.

At large R this state is degenerate with 12:,; (3s) and as a result
shows the same maximum near 11.50 Bohr (see Table XVI). The
potential curve falls (see Table XIV) as R decreases to less than the
distance to the outer maximum in qbv = 3s. We see from Fig. 5 that as
R is decreased the repulsive core v = 3s 12; (FO) curve rises and
crosses the attractive curve resulting from v = 3p IZ);T: near 5 Bohr.
This results in an avoided crossing of the SCF curves causing a maxi-
mum for 12’; (3s) and a small dip for ng (3d). Figure 15‘4‘2b shows
this 3p character mixing into the 3s orbital at R =4.2 and R = 3.4
Bohr. For smaller R there is apparently a strong interaction with
the repulsive core FO state arising from q’JV = 2s. This leads to another
maximum in the curve néar 3 Bohr. Now in order for 12; (35) to be
attractivé near Re it must have an. avoided crossing with a higher state
in order to obtain favorable 32; core. Since there are no remaining
favorable FO curves shown in Fig. 5 we must go to the n =4 levels.

The ¢>V = 4f, 4p 12; (FO) states would both provide favorable core.
These state513 are separated by only 39 cm™ at R = © with d)v = 4f being
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the lower of the two. (c;bv = 5f, 5p are about 2200 cm” ' above these states
and could also mix although our basis set will not provide a good des-
cription 'of these orbitals.) From Fig. 15 we see that IE; (3s) becomes
4f-like near R e Note though that our basis set does not contain any 4f
basis functions and that the 4f orbital shown in Fig. 15 is somewhat
tighter than a hydrogenic 4f which has its maximum near R = 12.0 Bohr.
The inclusion of n =4 basis functions could improve the potential curve in

this region.
1+
g. The Z)g (3d) state.

In the calculations here (see section B3) we find the (1s, 3d) 'D
atom state to be 0.00059 a.u. lower than (1s, 3p) 'p. Experimentl?’
shows the 'D state to be 0.00047 a.u. lower than 'P. In the discussion of
the FO curves we noted that the v = 3d curves rise steadily until R
reachnes the distance corresponding to the maximum in the 3d orbital
near 6 Bohr. After this point the core-core interactions became impor-
tant. For ¢ v 3p the unfavorable Rydberg-core interaction had a maxi-
mum near 11 Bohr corresponding to the distance to ’;he maximum in the
outer lobe of this orbital. For R < 11 Bohr ¢v = 3p falls until about 6
Bohr corresponding to the outer node in the orbital. At this point the
energy is near the R = « value. Naturally we expect this to lead to an
avoided crossing of the SCF curves. From Fig. 2d we see that the
amplitudes of the qbv = 3p and ¢V = 3d orbitals cross at 12.22 Bohr.
Thus we would expect the FO energy curves to cross near this distance

and indeed the crossing comes at 12.15 Bohr. Note that the amplitude



53

plot for the qbv = 3d orbital is steeper than qbv = 3p and correspondingly
the FO energy curve is steeper in the region. Surprisingly though the
maximum in the SCF l,.‘?g (3d) curve does not come until R = 8.2 Bohr.
This can be explained by the near degeneracy of the states for
qbv = 3p and ¢V =3d at R = «». Because of this the orbitals for very
large R (15 Bohr < R < =) are represented by approximately orthogonal
linear combinations of qbv = 3d, 3p. The orbitals shown at R = 15 Bohr
for lEg (3d) and 12; (3p) in Figs. 16 and 17 are virtual orbitals taken
from lE'é (3s). The orbitals shown are go_od approximations to the
appropriate SCF orbitals. The orbital for the lowest energy combination
is shown at R = 15 Bohr in Fig. 16a. We see that this orbital is sig-
nificantly polarized away from the opposite He and causes the maximum
in the SCF curve to come at much smaller R than that which would be
predicted from the crossing of the FO curves. For the higher IE; (3p)
state the orbital is just as in Fig. 16a except that it is polarized toward
the opposite He (see Fig. 17). Thus for the latter state this energy
curve is more repulsive in this region. Note that this did not occur at
very large R for ¢ v 2s, 2p because of their large energy separation.
In Fig. 16a we see that the 3p character begins to become dominant in
the Rydberg orbital near 10 Bohr. The FO curves now separate con-
siderably and are no longer nearly degenerate. The orbital now remains
3p-like until 4.2 Bohr. From Fig. 5 we see that between 8.0 and 4.2
Bohr the potential curve falls as it follows that for FO q5v =3p 12;.
Near 5 Bohr there is a crossing of qbv =3s, 3p IZ;. This results in an

avoided crossing of the SCF curves and leads to a small well at R =5.2
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Bohr of 0.00210.a.u. The avoided crossing causes 3s character to
mix into 12‘{; (3d) as is seen at R = 4.2 in Fig. 16b. Note that the
orbital is now roughly g-like necessitating unfavorable 22; core. Thus
the potential curve rises. In order to fall to a minimum at Re it must
mix in favorable character from an n = 4 FO state. We see from

Fig. 16b that 4f character mixes into ¢>V between 3.8 and 3.0 Bohr
causing it to fall from a maximum at 3.8 Bohr. At 3.0 Bohr IE; (3d)
becomes nearly degenerate with the rising 12; (3s). The 4f character
is then transferred to lZg (3s) and it becomes attractive. Now 12; (34)
mixes in favorable 4p character and falls to a minimum at 2.17 Bohr.
Once again the inclusion of n =4 basis functions in this region could

improve our description.

h. The lzg (3p) state.

Some of the orbitals for this state are shown in Fig. 17. The
polarization of the Rydberg orbital toward the incoming He has been dis-
cussed in the previous section. At R = 6.2 Bohr the FO curves are no
longer nearly degenerate as they were for very large R and ¢V is dom-
inated by 3d character. Near R =4.2 Bohr ¢>V mixes in some 4f
- character (compare R = 3.0 for 12; (3s) in Fig. 15). At R = 3.4 Bohr
4p character, as expected, becomes evident. For smaller R this
character is lost to the lower states and we must resort to the states
resulting from ¢>V = 5f, 5p (or higher stateé) in order that the 12; (3p)
have an attractive core and thus fall below the curve for 22;. Our

basis set though does not contain any functions appropriate for the
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n =4 or n =5 separated atoms and hence we would expect it to give a
very poor description of such an orbital. Although the Rydberg orbital
eventually becomes 5p-like at R = 1.8 (see Fig. 17) it becomes approx-
imately g-like at R = 2.6 due to the unfavorable interaction with the
repulsive curve arising from v = 2s 12; (FO). Thus our basis set is
unable to build in 5p character near R = 3.4 Bohr. Instead near R = 2.2
Bohr 5p character begins to become evident and the slope of the potential
curve decreases. Finally the curve follows the inner wall of the poorly
described gbv = bp 12; (FO) potential well. In summary then it appears
that one would at least need atomic basis functions appropriate ton = 4
and 5 in order to obtain a good description of this state. Because of the

great crowding of 4 electron states just below the He: ZZ; minimum one

may even need basis functions appropriate for n > 5.
i. The 'Z; (3d) state.

| For R >6.2 Bohr this state is degenerate with 12; (3d) and the
reader is referred to section g for a discussion of the latter state at
these distances. For R < 6.2 Bohr the SCF curve for 12:’1 (3d) begins
to follow the repulsive v = 3p 12; (FO) curve. The latter curve crosses
for the second time that for v = 3d IE; (FO). The effect on the SCF
curve is shown at R = 4.2 and 3.8 Bohr of Fig. 16b whére 3d character
becomes evident in the Rydberg orbital. At these distances though 3d
character, as we have already seen, becomes important in 12; (2p). As
a result IE; (3d) must mix with states having n = 4 Rydberg orbitals in

order to have an attractive potential well near R o Figure 16b shows
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that near R = 3.8-3.4 Bohr 4d character becomes important. The
absence of 4s character here may be due to the same factors used

to explain the absence of 3s character in 12; (2p) at large distances.

j. The 12{“; (3p) state.

For R > 6.2 Bohr the description of this state is the same as
that for lZ; (3p) and is found in section h. Neavr R =4.2 Bohr (see
Figs. 6 and 17) this curve begins to rise as it obtains unfavorable
core from v = 3p IE:; (FO). At smaller R it approaches the repulsive
curve for v =2p 123 (FO) and rises even further. The mixing of 2p
character into the Rydberg orbital is shown at R = 3.4 Bohr in
Fig. 17. At R = 2.6 Bohr favorable 4s-like character becomes
evident in the Rydberg orbital and the potential curve begins to drop.
Our basis set though is not adequate for this state and as for IZJ; (3p)
the inclusion of basis functions appropriate for atomic orbitals with

n > 4 is necessary for a good description.

4. Summary

In conclusion we see that ~because of the independent particle
nature of the projected Gl wavefunctions we have been able to provide
a highly interpretable and meaningful description of the excited states

of He,. Two types of interactions have been shown to be important in
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understanding the shapes of the potential energy curves. Interaction
between core orbitals on opposite centers is dominant at
small R whereas at larze R the significant interaction is between
Rydberg and core orbitals on opposite centers. The former interaction
leads to repulsive and attractive FO potential energy curves which in
turn leads to avoided crossings of SCF curves. The FO curves are
therefore essential to understanding the SCF curves at small R. At
large R where spatial projection is not important we have found that the
unfavorable Rydberg-core interactions can be understood through
examination of the exchange part of the kihetic energy. Through
partitioning of the exchange kinetic energy into pairwise contributions
we find that the unfavorable Rydberg-core interactions can be described
in terms of Rydberg-core overlaps. _Furthermore we found that this
interaction can be understood from simply a knowledge of the shape of
the Rydberg orbital. Indeed for the n = 3 states where the maxima
occurred at large enough R where core-core interactions can be
neglected we find that the maxima and shape of the FO potential energy
curves correlate well with the amplitudes of the Rydberg orbitals. The
same approach is used to explain.the origin of the maxima in the SCF
curves (with slight variations due to the SCF readjustment of the
orbitals).

The only available experimental estimate of a maximum in a
He2* potential energy curve is that for the A state. We have seen that '
the value calculated here is quite close to the experimental result. We

expect the calculated maximum in the C state to be equally reliable
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while those in th‘e stétes arising from a ¢>v = 2p separated atom orbital
may be slightly less quantitatively reliable. For most of then =3 |
states our description for R < ~ 6.2 Bohr could be improved through
the (financially obliterating) inclusion of basis functions appropriate for

n = 4 atomic orbitals.

D. APPLICATION TO OTHER SYSTEMS

The ideas presented here concerning FO curves and Rydberg-core
‘interactions can be used to qualitatively describe and predict shapes of
excited state potential curves of other systems. Here we will consider

H, and HeH.

1. Excited States of H,

As in He, the excited orbitals of H, are diffuse compared to the
core orbitals. In addition the ion core has both an attra'ctive and repul-
sive state ariéing from the lowest state at R = . Thus H, provides for
an ideal application of the ideas discussed here.

.Nevertheless ~1:hough there are some significant differences.
rFirst we note that the total T= for this system is simply the single pair-
wise term shown in Eq. (22). In addition, for the singlet excited states

Df =S,and N =1+ sz. Thus at large enough distances where we can

ignore the projection operator we have
TE = -(1/(1+S5,))S5,7, . (38)

Before proceeding further we remind the reader of the work of Wilson
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and Goddard19 where it was shown that Eq. (38) dominated the energy
and was the important term in determining bonding for the ground state
of H,. We see that as R decreases and S,, increases, T will decrease.
This should cause the total energy to decrease. Thus as opposed to He,
we should not expect to find any Rydberg-core type maxima in the
singlet excited states of H,. In He, we encountered maxima arising
from the unfavorable interaction between two singlet coupled pairs of
electrons whereas in H, we consider the favorable interaction in a
Single singlet coupled pair. These ideas have been discussed for H, by
Goddard and Ladner. 43

Now consider FO potential curves arising from H(1ls)+ H(2s or
2p). Taking the excited H atom orbitals to be either 2s or 2p at R =
(unhybridized) we find that the FO curve arising from qbv = 2p should
fall more rapidly than that due to ¢V = 2s in view of Eq. (38) and the
greater overlap of qbv = 2p with the opposite core orbital. This effect
is enhanced further by the fact that projected G1 calculations on Hzloa’b
show these orbitals to be hybridized. As a result the upper curve
remains relatively flat at large R while the lower curve is attractive.

A further more quantitative consideration is that in H, the splitting

+
g

example, at R ~ 7.7 Bohr these states are already split by 0.005 a.u.

of the ion core into 22‘“; and °Z" occurs at larger R than in He,. For

44

whereas this does not occur until approximately R = 6.0 Bohr in He,.

10a

The core orbital in H, is more diffuse than those in He,. In

addition as opposed to He, 22; is now the attractive core whereas

22; is totally repulsive. Now for the FO curves corresponding
to qbv = 2p we expect both lEg and 122: curves to fall at
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large R due to Eq. (38). At small R the core-core interactions become
important. At small R, just as for He,, Sip (as in Eq. (16)) becomes
negative. This occurs for R ~ 5.5 Bohr (see Table IV) in He, and
sheould occur at about the same distance for H,. Now using Eq.s (12) and
(13) for H, with

@; = (bog+ 0oy Py = (Dep - Doy

we see thatfor R < ~5.0 Bohr we have CZ >Cf (in Eq. (16)) and there-

+
g
we have favorable core. Thus IE; should continue to be attractive at

fore for 12 we have unfavorable core in the wavefunction while for 12:;

smaller distances while 12; will become repulsive. This is shown in
the rough qualitative sketch in Fig. 18. For 5.5 < R < 7.7 there are
roughly equal amounts of favorable and unfavorable core in the wave-
function (see Table IV) and thus for tj)v = 2p,core-core interactions as
in He, will not be important at these distances.

For qbv =2s, Eq. (38) should add attractive character to the FO
curvé for IE; and 12;. In addition since Sz r remains positive at all
distances we should obtain increasingly favorable core for 12; and
unfavorable core for 123 as R is decreased. These curves are sketched
roughly in Fig. 18. Also based in the results in Ref. 10a we have added
the curves for v = 3d 12; (FO) and v = 3p 12:; (FO). The shapes of
these curves also follow from the qualitative considerations given above.
In Fig. 18 we have also roughly sketched the SCF curves with the

avoided crossings based on the crossings of the FO curves. We see

that we reproduce the double minima in the E, F 12; and H 12; states.
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In addition there is a maximum in the SCF curve for B’ IE; state while
B 123 is smooth without a maximum. These shapes are verified by

1 .
projected GI calculations on H,. Oa,b The reader is referred to Refs.

10a and 10b for a detailed discussion of the excited states of H,.

2. Two Excited States of HeH

For HeH the molecular symmetry is now COOV and as a result the
spatial projection operator which we have considered for He, and H, is
no longer of any importance. Nevertheless a similar approach can be
used. Here we discuss the lowest two singlet excited states of HeH.

19 have discussed the repulsive ground state

Wilson and Goddard
of HeH. The term in T> representing the pairwise interaction between

the orbital on H and an orbital on He is given to a good approximation by:
T ~ (1/N)si 7y, . (39)

Thus we see that, unlike Eq. (38), Tﬁ now increases as S;, increases
(N and 73, vary only slowly with R). For the excited states of HeH
Eq. (39) also applies and as a result we expect to find energy
maxima at large R just as in the excited states of He,.

| Before proceeding further it is necessary to consider the ion
core since it will provide the major contribution to thé energy at small
distances. From the ground state of the separated atoms (He(ls)2 + HY
we obtain only one molecular state, °S. We expect this state to be

attractive and to have a dissociation energy in the same ballpark as

45b a

He;. The calculated values for HeH' are 2.04 eV, 492 4 93 ev, nd
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45¢

2.28 eV™"" compared to 2.50 ey28,34,30

for He2+. The lowest excited
statesé'6 of HeH" arise from the separated atom limit He'(1s) + H(ls).
These have only shalloyg,} minima (< 0.1 eV) and lie about 0.38 a.u. aboveb
the ground state. Therefore we can neglect these core states in
discussing the low lying states of HeH. At small R we expect the HeH
excited states considered here to have minima of about 2 eV,

Now at Re once again most of the amplitude of the Rydberg
orbital will enclose the nuclei and the core. But since we have no inver-
sion symmetry here the Rydberg orbital is not required to be g or u at
R, as it was in He,. As a result in the molecular states arising from
He(ls)2 + H(2s or 2p) the orbitals are allowed to be hybrids at R,. Since
qbv = 28,2p on H are degenerate at R = © we will take the FO orbitals to
be hybrids with one state having an orbital pointing toward the incoming
He while the other is polarized in the -opposite direction (as for qbv = 3p,
3d in He, and ¢>V = 2s,2p in H,). According to Eq. (39) the orbital
pointing away irom the incoming He will have the lower potential curve
at lafge R. At smaller R this curve Wili be attractive with De ~ 2 eV
(assuming only a small unfavorable Rydberg core interaction for this
state).

The upper state will show a much larger hump due to its greater
overlap with the cores on the opposite He. At small R it should also
have a potential well except that we must add the attractive core inter-
action to the repulsive Rydberg-core interaction to determine the well
depth. Full CI calculations have been reported‘r7 for these two states,

confirming the qualitative descripticn given here. The lbwer state has
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De = 2.5 eV with no hump indicating that the orbital is polarized con-
siderably away from the opposite He with the core being dominant in
determining the shape of the potential curve. For the upper state there

is a large hump of 0.85 eV at 3.8 Bohr. This hump is comparable in
magnitude and position to that obtained for ¢v =2p 12; in He, (1.03 eV

at 3.5 Bohr)! In addition the curve has a well depth (below E(=)) of 0.63 eV

at 1.6 Bohr compared to 0.70 eV at 2.05 Bohr for the same He, state.

E.1. Dissociative Recombination

In order to explain large atmospheric and experimentally observed48

electron-ion recombination coefficients Bates49 proposed the process of

dissociative recombination

AB  + e - AB - A"+ B (40)

and described it in terms of the intersection of an attractive ion potential

50 The latter curve necessarily

curve and a repulsive nbeutral curve,
has an excited ion core in order to cross the potential curve for the
ground state ion, AB". 1Inthe mechanism for generating AB" in Eq.
(40) via a radiationless transition the incoming electron excites an
electron of the ion to a high lying level while it is captured in a
previously unoccupied level. From a knowledge of the location of the
crossing of the potential curves for AB* and AB”, the electron energy,

and the shapes of the curves one can then consider the relevant

Franck-Condon factors and discuss the likelihood of dissociative
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recombination (DR). What makes DR attractive in explaining large
recombination coefficients is the fact that it can provide a very efficient
means of removing electrons. Namely, once the state AB’ is formed
it can be expected to move past the crossing point in a time which is of

20

the order of 107° to 107" sec. Once past the point where the

diabatic curve is lower in energy than the ion curve autoionization
(with lifetimes of about 10™™ sec 50) would be impossible and dissoci-
ation, without other complicating effects, is assured.

Now we ask: Do our potential curves provide a route for
dissociative recombination (DR) in He,? All of the SCF curves (see
Fig. 11) involve, of cburse, single excitations and have the favorable
22; core at R. As a result all of the properly described adiabatic
curves are lower in energy at R than the ion. In addition, at R = <
the lowest doubly occupied neutral state lies about 16 eV above He + He'
and it is unlikely that these states can provide a mechanism for DR in

He,. The possibility of doubly excited separated atom ionic states

38a

being of some importance has been discussed by Mulliken although

. . 51. . . . ) .
with more recent reservations. This will be discussed in section

E. 2.
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At this point we will take a short sidetrack. Returning to the
adiabatic states discussed previously we can view these qualitatively in
terms of a CI wavefunciion in which each of the configurations is com-
posed of frozen orbitals. For some of the states one need only consider
two FO configurations in order to get a reasonable qualitative description
of the adiabatic state. For example, for C 12; these are the v = 2p and
v =285 12; (FO) states already discussed. In the adiabatic description
the nuclei move along the SCF potential curve infinitely slowly and as a
result the orbitals can readjust considerably in the neighborhood of
crossings of FO potential curves. By the'non-crossing rule the adiabatic
states of the same symmetry must avqid each other leading to changes
in orbital character as one moves along an adiabatic curve. It is well-
known though that such adiabatic curves are not always relevant to real
life. An example of this has already been discussed concerning the
spectral results for 127::(35) on p. 45, Further examples are discussed
by O'Malley52 and Lichten. 53 The infinitely slow change in orbital
character found in the adiabatic description may not occur (see conditions
below) and as a result the wavefunction may not be able to rearrange from
one FO wavefunction or mixture of FO wavefunctions to another mixture.
Thus only one FO wavefunction or mixture may be appropriate throughout.
We will now refer to our FO wavefunctions as diabatic wavefunctions.

The conditions under which a diatomic molecule may remain on one dia-
batic curve instead of transferring to another in the vicinity of the

crossing of these curves has been discussed by O'Malleys2 based on the

early work of Zener. o4 We can expect that near their crossing there is

a greater chance of remaining in one of the diabatic states if the nuclei are
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moving rapidly, if the slopes of both curves are quite different, and if
there is a small electronic matrix element between the two states, i.e.,
when the orbitals have a lot of readjusting to do. Since all these factors
are interrelated and much further work is needed before one can discuss
this quantitatively, the analysis below is only qualitative. The reader is
referred to Ref's. 52-55 and references therein for a further discussion
of similarly defined diabkatic curves.

From the preceding discussion it is therefore natural to inquire
as to whether these FO curves may be the diabatic states which can
offer a route for dissociative recombination in He,. We note from Figs.
5 and 6 that half of the FO curves are repulsive and intersect the outer
wall of the He;r potential well. These FO curves can therefore be
represented by the state AB’ in Eq. (40). These states can be 1oosely56
thought of as being doubly excited at small R since they involve an
excited Rydberg orbital and mostly an excited unfavorable 22’;, core.

Nevertheless these FO repulsive states dissociate to singly excited

staters at R = =,

In order to have dissociative recombination to the n = 2 levels it
is necessary to employ the repulsive curves arising from v = 2s Lsgpt
(FO) and v = 2p 1’323 (FO). Although these curves can in themselves
provide a route for DR strong interactions amongst the v = 2s and v = 2p
states could result in DR via a g curve to give v = 2p excited atoms. In
order to check this and in addition to see 1f such an interaction altered
appreciably the location of the intersection of the diabatic and ion curves

we performed a full CI on the 1’37_); states using only n = 2 basis functions.

The 1s, ls.', 2s, and 2p, basis functions of Tables I and II were used on
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each center. Thus character from n = 3 states could not interfere
adiabatically and the CI could only reproduce the avoided crossing

of the n =2 FO curves shown in Fig. 5. The result is shown in Fig. 19.
It is seen that the crossing is quite effectively avoided providing a route
for these g diabatic states to give rise to v = 2p excited atoms upon DR.
Of equal importance is the fact that the intersection of the diabatic curves

for 32; and 12; with the ion in Fig. 19 comes at roughly the same loca-

tion as the intersection of the v = 2s 12; (FO) curve with the ion (see

Fig. 20). Important experimental evidence for this process will be dis-

cussed below.
It is well-known that the DR coefficient for He, is at least two
orders of magnitude less than the values for the molecular ions of the

other rare gases. o1 In addition it has been reported57’ o8

that the visible
atomic lines coming from a He afterglow have their origin in radiative
and collisional recombination of He™ and may not be related to He2+.
These processes are described by

" Het'+ e — He* + hv
f (41)
He' + 2¢” - He* + &~

Also the molecular bands apparently arise from collisional radiative
recombination of He, 27799 (i, e., replace He" and He™ with He," and
He;< in (41)) and dissociative recombination plays only a small role
although there are some exceptions to this (e.g., compare Ref. 60 and
see below). The experimental results obtained from He discharges are
quite conflicting. The state of the art is discussed by Stevefelt and

Robben61 who point out that "useful experiments are very difficult to
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perform, and that as a corollary there are numerous errors in the
published papers. "

From our potential curves we see that if virtually all the He2+ in
these experiments is in the ground vibrational level we would not expect
DR to be important in He, since our FO curves intersect the ion curve
above v = 1 (see Fig. 20) and the Franck-Condon factors are small.
This has been a popular explanation for the small DR coefficient in He,
and our potential curves offer the first verification of this. Muliiken 38a
has remarked that since most of the excited states of He, arise from
collisional radiative recombination of He;r and since most of the spectra
observed involve v = 0 levels, most of the He2+ may very well be in this
vibrational level. This would also confirm the lack of dissociative
curves crossing the He;r curve near the bbttom of the well.

Since the DR coefficient is proportional to the Franck-Condon
factor connecting the ion and the diabatic state, let us look at the
variation of the DR coefficient with the location of the crossing between
these.states (taking the electronic matrix element to be constant) in
order to see if this is a viable explanation of the small DR cbefficient.
Assuming only the v = 0 level to be populated and taking a delta function
to represent the nuclear wavefunction the Franck-Condon factor falls
off as e'(R - Ro)*/ . Here we take a harmonic oscillatér wavefunction
for the v = 0 level. R, is the position of the minimum in the ion curve,
R is the position on the diabatic curve corresponding to the energy of
the v = 0 ion plus the electron and d is the amplitude of vibration of the

v = 0 level. For R very close to R, this factor is about 1. For the
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v =28 32; (FO) curve shown in Fig. 20 and electrons at room tempera-
ture this factor is about .0008 while for v = 2s 12; (FO) it is . 000002,
Thus Wﬁh these assumptions and assuming other factors to be equal
the position of the crossing of ion and diabatic curves as shown in Fig.
20 could easily account for the small DR coefficient in He, compared

to other molecules where the crossing may be more favorable. Indeed
from the curves shown in Fig. 20 we estimate that electron tempera-
tures near 25000°K would be necessary in order to have a favorable
Franck-Condon factor (with the v = 0 level) for dissociation on the.
v=2s 32; (FO) curve. Such electron temperatures in He glow
discharges have not yet been reported. Note that we have neglected the
effect of the electronic matrix element here and this would also have

to be considered.

Results reported by W. W. Roibertsonfs2 with more recent con-
firmation by C. B. Collins and W. B. Hurt63 has shown that there is a
strong correlation between the time decay of the intensity of the 10,830 A
line (2°P — 2%S) and the molecular light emanating from a flowing He
afterglow. These workers also report that apparently there is no similar
correlation between the molecular light and lines in the visible region
(transitions between n = 3 and n = 2 He atom states). Thus these workers
were able to show a definite dependence of the concentration of the 2°P
atoms on the concentration of He;r although with a Verjr small DR coef-
ficient. Additional results describing DR into the n = 2 levels has also
been recently reported by John‘son and Gerardo. 60 The repulsive dia-

batic curves reported here can offer a direct route for these processes.
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The curves shown in Figs. 19 and 20 for the g states and the v =

2p 1’321'1 curves in Figs. 6 and 20 provide such routes. The experi-
mental results do not distinguish between a direct DR process as
discussed here and one in which an intermediate Rydberg state is
formed by collisional and/or radiative recombination with Hez+ which
then dissociates to the atoms via the diabatic curves. Compared to the
ion such 2 Rydberg state may have a more favorable Franck-Condon
factor with the repulsive diabatic state. A serious problem with the
Rydberg state is that the transition to the diabatic state will have to
compete with autoionization. There is an obvious need for further work
here. An example of one of the many additional possibilities is dissoci-
ative recombination to v = 3s via the ‘v =28 1}3; (FO) curve and the
Izt (3s) adiabatic curve shown in Fig. 5. The calculation of electronic
and nuclear interaction matrix elemehts between the adiabatic and dia-

batic states is imperative before anything more definitive can be said.

E.2. Associative Ionization

The reverse of dissociative recombination, associative ionization

He + He* — He, + e~ (42)

64, 65

has been shown to account for the formation of He2+ at low pressures

in discharges and electron impact experiments where three body processes

He' + 2He — He2+ + He (43)
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are not important. The formation of He* precedes Eq. (42) and has

been shown06 to result from
He + ¢ — He® + 7 . (44)

Several electron impact-mass spectrometer experiments have
been reported in which the appearance potential of He;r has been
measured. Several values are 23.18 (+0.2-0.7) eV, 66 23.1+0.1 eV, 67

68 The excitation energie513 of several excited He

and 23.1 + 0.05 eV.
atom states are 20.61 eV (2'S), 19.81 eV (2°S), 21.22 eV (2'P), 20.96 eV
(2°P), 22.72 eV (3°9), 22.92 eV (31S), 23.00 eV (3°P), 23.08 eV (3 'P),
23.07 eV (3 °D and 3 1D). Thus based on the appearance potential of

I~Ie2+ experimentalists have proposed that the n = 2 excited states and the
3s level are not important in associative ionization (AI). But due to the
lack of potential curves for these states, only one mechzinism, that of
Mulliken 38a (discussed at the end of this section) has been proposed to
describe this process. The potential curves calculated here provide

an altei‘nate mechaniém to that proposed by Mulliken. For reasons
discussed in section E.1 the discussion below is only qualitative.

A look at our n = 3 repulsive FO potential curves shows that they
rise considerably with respect to R = = before crossing the attractive
22: ion curve. Considering the experimental evidence for Al it is
therefore doubtful that these are the relevant curves for this process.

We can think of an additional mechanism that may explain Al in He,. The
nuclei may follow the adiabatic curves at large R and then at small R the

potential curve may be somewhat diabatic, i.e., the orbitals do not
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readjust in the optimum adiabatic manner. Instead of favorable character
mixing in from upper states the curve may suffer an avoided crossing
with a repulsive lower diabatic state. An example of this is the SCF
potential curve which we have calculated for 12;,u (3p). Here the basis
set description was not good at small R. The orbitals were not allowed
to relax favorably and obtain character from upper states (only character
from n = 3 basis functions was allowed). As a result the four electron
curve actually crosses the ion curve. For 12; (3p) this was due to
repulsive character from v =2s 122% (FO) while for IEG (3p) it was due
tov=2p 12; (FO). These 3p SCF curvesl are menticned here as
examples of the presence of repulsive core character at these distances
and energies in the n = 3 states. Such repulsive character could be
important in other n = 3 states. Consider first the u states. The
repulsive qbv = 2p 12:; (FO) curve crosses the ion curve at E = -4, 919
a.u. This is about 0.014 a.u. (0.38 eV) above the separated atom

limit for qbv = 3d, 3p and about 0.018 a.u. (0.49 eV) above the limit for
cpv = 3s. For the g states the repulsive curve for ¢V = 28 12); (FO)

crosses the ion curve at E = -4, 93242'a.u. or about 0. 00006 a.u.

(0.0016 eV) below the separated atom limit for ¢, =3p, 0.00053 a.u.
(0.014 eV) above the limit for ¢>v = 3d and 0.00488 a.u. (0.133 eV) above
the limit for ¢>V = 3s. Therefore with electron impact energies in the
neighborhood of 30 eV or more one would not expect more than about

69 Assuming

0.02 eV to be transferred to the kinetic energy of the nuclei.
that the repulsive FO curves arising from the n = 2 levels are indeed the

correct diabatic curves for the n = 3 states this would rule out the 3s
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level and any of the IZZ molecular states as being important in AI. (The
n = 2 levels are, of course, also ruled ocut.) For the 3s levels this is
65, 68

apparenﬂy in agreement with experimental results, as already

mentioned. Wellenstein and Robertson 65 report that changes in the 3'S
population produced no observable change in molecular ion concentration.
The 3s level is additionally unlikely to participate in associative ioniza-
tion because of its low excitation cross section compared to, e.g.,

31p, 6% 70 This jeaves the ¢, = 3p, 3d levels as contributors to AL

“Although the 3 'P level would ber Vfavored we note from Fig. 5 that this
level is repulsive at large distances. Although our description of this
state is not good at smaller R the riseat large R should be a real effect
based on the overlap arguments presented in section C.2. At R = 10 Bohr,
qbv =3p 12; has risen by about 0.005 a.u. (0.14 eV) above the energy at
R = =, As a result tunneling would be necessary here in order

that qbv = 3p contribute to associative ionization. The curve for qbv =3d
is much flatter at larger R (see Table XIV) but has a maximum at R = 3.8
Bohr of 0.0044 a.u. (0.12 eV). It is possible that a ketter basis set with
n = 4 functions could reduce the size of this maximum. It is difficult
though to estimate just how much of a reduction is to be expected. Never-
theless the barrier for this state is narrower than for,qﬁV =3p 12; and
this could favor (f)v = 3d over qbv = 3p for associative ionization once
these excited states are generated by electron impact (and assuming
‘other factors are equal). Recent experim'ental resuh:s65 show the cross
section for AI for 3 'D to be the largest for the n = 3 levels and about a

factor of 7 greater than that for 3 'P. In addition triplets have lower
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cross sections than the corresponding singlets. This is reasonable
since their energies are lower than the corresponding singlets. In light
of the above discussion it is surprising that dissociative recombination
has not been observed to yield 3 'D atoms. This may be due to the fact
that in real life the energy of the R = « limit and that for the intersection
of the diabatic 2s curve with the ion may differ so as to favor AI and not
DR. Further work is needed here.

38a for Al in He, involves

The mechanism proposed by Mulliken
4 electron states with unfavorable core (1 og 103} at small R. In order
to describe the dissociation of states with favorable or unfavorable core

Mulliken uses expressicns analogous to Eqs. (12) and (13) with

&t = 10%10

g u g
and

+ _ 2

<I>u = loglou

where 10 g and 1ou are the usual symmetry molecular orbitals. From
our Orbitals (or Mulliken's) we can obtain at R = « Eqs. (12) and (13)
with C, = C, =1/¥2 or we can obtain

1
q» = 75 @g‘%g ;qsvu) (12a)

& = JQ_ (<I> -®;¢W) . - (13a)

Equations (12) and (13) correspond to dissociating to neutral separated
atoms while Eqs. (12a) and (13a) describe the ionic state (He™ + He")
at R = «, The latter state is derived by replacing ¢VI‘ with (‘bvﬁ and-

vice versa in Eq. (10). Now since Eqgs. (12) and (13) represent the
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lowest state at R = «© Mulliken argues that they should connect with the
lowest states at Re, namely those with favorable core, CI):L1 Further he
incorrectly argues thatall those states with unfavorable core at R, CI);
should dissociate to the ionic states, Eqgs. (12a) and (13a) at R = », We
have seen though that a calculation of the coefficients C, and C, on page
14 shows that states with a repulsive core do originate from neutral
separated atom states. Thus a particular neutral state at R = « will
lead to a repulsive and an attractive state while the same will happen
for a particular ionic state. Thus for ¢ = 2s SE; Mulliken correctly
describes an ionic state which arises at the He + He' limit since He™ is
unstable. This state falls rapidly crossing n = 4 and n = 3 states of the
same symmetry that arise from neutrals. Because of the unfavorable
core in these states the state becomes repulsive, crossing the n=4

and n = 3 states again in addition to the ion curve. This then offers a
mechanism for AI if the outer crossing is allowed and the inner crogsing
is avoided. The mechanism proposed here differs in that here we dis-
cussed a repulsive curve which crosses the ion curve and arises from

a lower neutral state and not an ionic state. Such non-adiabatic states
can provide a mechanism for AI and DR to lower n = 2 atom states.
Mulliken's ionic curve cannot provide this latter route. Indeed we have
found that the repulsive FO curves were necessary for an understanding
of the shapes of the SCF curves. It is interesting to note that while they
originate at different separated atomic limits both Mulliken's curve for
P = 2s ot

g
roughly the same energy. Mulliken reports that recent calculations

and the FO curve calculated here cross the ion curve at
' 51

show that his ionic curves may cross the ion curve at too large an

internuclear distance to provide an effective mechanism for DR or Al.
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Table II. Contractions for the Primitive p and d
Gaussian Basis Functions
a Contraction CoefficientsP
Type Exponents
2pZ 2p'Z 3dzz
2p,, 1.553506 0.0055170 - - - -- -
2pZ 0.368859 0.0444838 - - - - - -
2pZ 0.119213 0.2346465 - - - - - -
2p, 0.044914 0.5242484 - - - - - -
2pZ 0.018133 0.3378460 - - - - - -
2pZ 0.0073207 - - - - 1,’0 - - - -
3dz2 0.185990 - - - - - - 0.0307214
3d22 0.050033 - - - - - - 0.1468541
3dZ2 0.017912 - - - - - - 0.6334969
3dzz 0.0072191 - - - - - - 0.3418591

AThe first five p exponents and the

s |

a

exponents are scaled from

Ref. 12. See section B. 3. of the text for a discussion.

b

See text, section B. 3.
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‘ 1
Table III. {z%®) 2 for the He Atom Orbitals

1

Orbital (z°) 2
2s 3.30
2P 3.30
2sC¢ 3.17
2p, 4.35
3s 7.70
3p, 10.70
3d,, 7.43

d .

1s 0.46
15’9 0.80

aExcept as indicated all orbitals are
taken from (1s, n¢) singlet He atom calcu-
lations in the {621) basis. Distances are in Bohr.
b’l‘his orbital is from C 12; at R = .,
CThis orbital is from A 'Z! at R =..
‘dThese are the two split orbitals from

1's He.
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a

2

R Spr c’ c
v = 2s,lzg(wa
1.8 0.916 0.958 0.042
2.2 0.888 0.944 0.056
3.0 0.831 0.916 0.085
4.2 0.748 0.874 0.126
5.4 0.662 0.831 0.169
5.8 0.632 0.816 0.184
6.2 0.602 0.602° 0.801, 0.801° 0.199, 0.199°
10.0 0.309, 0.309° 0.655, 0.655° 0.346, 0.346°
v = 2s, 12:“1 (FO)
1.8 0.957 0:979 0.022
2.2 0.937 0.967 0.032
3.0 0.889 0.945 0.056
4.2 0.798 0.899 0.101
5.0 0.729 0.865 0.136
5.4 0.692 0.846 0.154
5.8 0. 655 0.828 0.173
6. 2 0.618, 0.602° 0.809, 0.801° 0.191, 0.199°
10.0 0.295, 0.309" 0.648, 0.655° 0.353, 0.346
v = 25,C 2, SCF
1.8 -0.968 0.016 0.984
2.6 -0.919 0.041 0. 960
3.4 -0. 567 0.217 0.784
4.2 0.015 0.507 0.493
6.2 0.328 0.664 - 0.336
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Table IV. (Continued)

2

R Sy, c?

v = 25,A'S] SCF
1.8 0.992 0.996 0.004
2.6 0.963 0.982 0.019
3.8 0.748 0.874 0.126
4.6 0.518 0.759 0.241
5.8 0.382 0.691 0. 309
6.2 0.369 0.685 0.316
8.0 0. 340 0.670 0.330

I+
v = 2p, Zg,u (FO)

1.8 -0.794 0.103 0. 897
2.2 -0.704 0.148 0.852
3.0 -0.506 0.247 0. 753
4.2 -0.204 0.398 0. 602
5.0 ~0.030 0.485 0.515
5.8 0.111 0.556 0. 446
6.2 0.168 0.584 0.416
10.0 0.327 0.664 0.337

v = 3s,lZg(F(H
3.0 0.848 0.924 0.076
4.2 0.743 0.872 0.129
5.8 0.594 0.797 0.203
8.0 0.413 0.707 0.294
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Table IV. (Continued)

R Ser c:
v = 3s, IZE (FO)
3.0 0.856 0.928 0.072
4.9 0.741 0.871 0.130
5.8 0.574 0.787 0.213
8.0 0.378 0.689 0.311
+ L
v 3p, Eg,u (FO)
1.8 -0.916 0.042 0.958
2.2 -0.880 0.060 0.940
3.0 -0.796 0.102 0.898
4.2 -0.661 0.170 0.831
5.0 ~0.576 0.212 0.788
5.8 0. 497 0.252 0.749
8.0 -0.322 0.339 0.661
15.0 0.129 0.565 0.436
v=:3d,lzg(FO)
3.0 0.790 0.895 0.105
5.0 0.522 0.761 0.239
5.8 0.414 0.707 0.293
8.0 0.172 0.586 0. 414
v = 3d, lz; (FO)
3.0 0.795 0.898 0.103
5.0 0.528 0.764 0.236
5.8 0.421 0.710 0.290
8.0 0.177 0.589 0. 412
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Table IV. (Continued)

2 See Egs. (1?_)sznd (13) of the text for the definition of C, and
C,. Sﬂ.r is the overlaﬁ)ﬁo-f excited orbitals on opposite centers,
All FO calculations reported here use orbitals from spatially projected
wavefunctions at R = « except as noted. See Ref. 14. Distances are

in Bohr.

bThese are calculated from orbitals obtained from spatially

‘unprojected G1 FO wavefunctions (i.e., for the separated atoms) and

are included for comparison.
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Table V. Partition of the Energy for Frozen Orbital

Unprojected G1, v = 2s a,b
15.0 10.0 8.0 6.2

5.021407 5.022747 5.027635 5.041550

1.504650 1.636955 1.732064 1.857046

1.450799 1.583456 1.680013 1.809815

-11.814170 -12.080827 -12.279554 -12.559629
-11.809264 -12.075345 -12.272277 -12.548486

0.266667 0.400000 0.500000 0.645161

- 5.021446 - 5.021126 - 5.019855 - 5.015872

- 4.834852 - 4.834944 - 4.835319 - 4.836564

- 0.235538 - 0.234199 - 0.229310 - 0.215395

0.053851 0.053499 0.052051 0.047231

- 0.004906 - 0.005483 - 0.007277 - 0.011143

0.000004 0.000324 0.001595 0.005578
0.000018 0.001357 0.006246 0.0201610

- 0.000008 - 0.000585 - 0.002379 - 0.006245

- 0.000004 - 0.000356 - 0.001804 - 0.006624

0.000006 0.000416 0.002063 0.007292

- 0.533327 - 0.799408 - 0.996340 - 1.272549

0.266659 0.399316 0.495874 0.625676

- 0.000000 - 0.000092 ~ - 0.000467 - 0.001712
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Table V. (Continued)

2 The energies here are for a spatially unprojected wave-
function the orbitals of which were obtained from unprojected G1

calculations on the separated atoms. Distances are in Boir,

bThe symbecls in the first column are defined as follows:

T = total kinetic energy; 2 el = total two electron repulsion energy;

2e2 = the classical or coulomb two electron energy, i.e., ng =

N

2 (1][ il} )3 = total electron nuclear attraction energy;

i>j T

vel- 2 (1| + -1;-1———31) where A and B are He nuclei; Z°/R =
i=1  TiA iB

nuclear repulsion energy; E = total energy with the bare nuclei and
Rl _ cﬂ. ct zcﬂ

the electrons at infinity as the energy zero; E +V od
Y S TP U _ cd. _ ct

where T _Trﬁ-?(l[v}l), T =T - T, 2e£—2eﬂ zﬁ,

V¥=v -V AE - ER) - E(»); AT = TXR) - T*() and similarly

for other A quantities.
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VI. Partition of the Energy for Frozen Orbital

Unprojected G1, v =2p2

R 15.0 10.0 6.2 4.2
T 5.000369 5.004193 5.046743 5.111709
200 1.506198 1.653447 1.901630 2.119894
zgf 1.466923 1.615267 1.878281 2.131487
v -11.773645 ~12.057064 -12.580052 ~13.146016
yel -11.823159 -12.105121 -12.617356 -13.186527
72 /R 0.266667 0.400000 0.645161 0.952381
E - 5.000411 - 4.999424 - 4.986517 - 4.962032
¢4 - 4.809960 - 4,810244 - 4.814304 - 4.823049
T - 0.279240 - 0.275417 - 0.232867 - 0.167901
zgﬁ 0.039275 0.038180 0.023349 - 0.011593
v 0.049514 0.048053 0.037304 0.040511
AE 0.000018 0.001005 0.013912 0.038397
ATX‘ 0.000078 0.003902 0.046452 0.111418
av® - 0.000035 - 0.001496 - 0.012245 - 0.009038
a2, - 0.000021 - 0.001116 - 0.015947 - 0.050889
AE® 0.000022 0.001290 0.018260 0.051491
ave! - 0.540795 - 0.822758 - 1.334993 - 1.904164
Azgﬁ 0.274125 0.422469 0.685483 0.938689
IN o - 0.000005 - 0.000289 - 0.004349 - 0.013094

function ard the definition of the symbols in the first column,

ASee the Footnotes to Table V for a description of the wave- -
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Table VII. Partition of the Energy for SCF Wavefunctions
at R = 6.2 Bohr?

C312;(2S)A% }XIZ;(ZS) 12;(2p) lZ;(Zp)
5.028 5.022 5.036 5.026
1.812 1.812 1.904 1.906
1.757 1.794 1.867 1.874

-12.504 -12.500 -12.574 -12.570

-12.492 -12.587 -12.617 -12.616
0.64516 0.64516 0.64516 0.64516

- 5.01852 - 5.02009 - 4.98882 - 4.99245

- 4.833 - 4.866 - 4.808 - 4.811

- 0.185 - 0.154 - 0.181 - 0.181

- 0.228 - 0.260 - 0.260 - 0.260
0.055 0.019 0.036 0.032

- 0.012 0.087 0.043 0.047
0.00293 0.00213 0.01161 0.00798
0.006 0.003 0.019 0.019

- 0.006 0.003 - 0.007 - 0.003
0.001 - 0.005 - 0.003 - 0.007
0.001 0.001 0.009 0.009

- 1.217 - 1.221 - 1.335 - 1.334
0.573 0.579 0.675 0. 682
0.000 - 0.002 0.017 0.007
0.001 0.001 0.002 - 0.001
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Table VII. (Continued)

A See Table V for the definition of the symbols in the first

column.



Table VIII. Partition of the Energy for Frozen Orbital
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Unprojected G1, v = 3s a

R 15.0 10.0 8.0
T 4.954142 4.960435 4.957603
2e0 1.382684 1.487751 1.547244
28 1.341866 1.450293 1.508422
v -11. 540085 ~11.782833 ~11.940350
yel ~11. 571892 ~11.814274 -11.972178
72 /R 0.266667 0. 400000 0.500000
E - 4.936593 - 4.934647 - 4.935503
gL - 4.746278 - 4.746900 - 4.746675
T - 0.262940 - 0.256646 - 0.259478
2%, 0.040818 0.037458 0.038822
VX 0.031807 0.031441 0.031828
AE 0.000702 0.002648 0.001792
ATX 0.002473 0.008767 0.005935
av® - 0.000432 - 0.000798 - 0.000411
a2%) - 0.001138 - 0.004498 - 0.003134
AEX 0.000903 0.003471 0.002390
avet - 0.540596 - 0.782978 - 0.940882
8287 0.273727 0.382154 0.440283
INO - 0.000202 - 0.000824 - 0.000599

function and the definition of the symbols in the first column.

2 3ee the Footnotes to Table V for a description of the wave-
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Table IX. Partition of the Energy for Frozen Orbital

Unprojected G1, v = 3pa

R 15.0 10.0 8.0
T 4.932155 4.935350 4.930198
2el 1.379819 1.471830 1.523920
284 1.345633 1. 439640 1. 489099
\ -11.509266 -11.736699 -11.885324
ve! -11.558024 -11.785720 -11.934717
Z? /R 0.266667 0. 400000 0. 500000
E - 4.930624 - 4.929519 -~ 4.931206
gL - 4.740152 ~ 4.750508 - 4.740055
T - 0.27341%7 - 0.270222 - 0.275374
2% 0.034186 0.032190 0.034830
v 0.048758 0.049021 0.049393
AE 0.001740 0.002845 0.001158
AT* 0.005902 0.009097 0.003945
AVE - 0.000790 - 0.000527 - 0.000155
A2%, - 0.002865 - 0.004861 - 0.002221
AE® 0.002247 0.003709 0.001569
avet - 0.558850 - 0.786546 - 0.935543
Azgﬁ 0.291676 0.385683 0.435133
AESE - 0.000507 - 0.000863 - 0.000410

4 See the Footnotes to Table V for a description of the wave-
function and the definition of the symbols in the first column.



97

Table X. Partition of the Energy for Frozen Orbital

Unprojected G1, v = 3d®

R 15.0 10.0 8.0
T 4.940030 4.955376 4.964625
2el 1.382658 1.505878 1.573875
22% 1.347907 1.479320 1.553663
4 -11.521261 -11.1788301 -11.962221
yel -11.569669 -11.835947 -12.011455
Z*/R 0.266667 0. 400000 0.500000
E - 4.931907 - 4.927048 - 4.923720
ot - 4.7391750 - 4.741282 - 4.1742447
T - 0.275315 - 0.259969 - 0.250720
2%, 0.034751 0.026558 0.020212
vX 0.048408 0.047646 0.049234
AE 0.001038 0.005897 0.009225
AT* 0.003541 0.018887 0.028136
NG - 0.000559 - 0.001321 0.000267
a2y, - 0.001648 - 0.009841 - 0.016187
AE%X 0.001334 0.007725 0.012216
avel - 0.549613 - 0.815891 - 0.991399
Azgf 0.282652 0.414065 0.488408
agcl - 0.000294 - 0.001826 - 0.002991

function and the definition of the symbels in the first column.

2 See the Footnotes to Table V for a description of the wave-
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Components of T for Unprojected Frozen Orbital G12

.664913

Table XI.
vV = .‘Zsb
R 15.0 10.0 8.0 6.2
Té{V 0.000010 0. 000855 0. 0}04049 0.013573
ch 0.002198 0.020493 0.045312 0.084598
chsc, v 0.000007 0.000630 0.003033 0.010348
ch 2.70995%7 2.629184 2.443208 2.503472
Té{’v 0.000008 0.000606 0.002682 0.008163
Sc'v 0.004558 0.041021 0.088552 0.160053
Sc’vsc,c',v 0.000015 0.001262 0.005927 0.019579
Tc,V 0.975567 0.892362 0.837961 0.764840
T?E 0.000000 0.000000 -0.000001 -0.000015
,Tzé,a 0.000000 0.000000 7 -0.000002 -0.000041
AT?C, ~-0.000002 -0.000148 -0.060696 -0.002176
.. X ~
ATEV 0.000001 0.000044 0.000213 0.000803
N 1.784186 1.782418 1.775736 1.755968
vV = ch
'T}c{v 0.000049 .0.002589 0.033302 0.086152
ch 0.004851 0.035921 - 0.132371 0.217483
chsc,c’v 0.000036 0.001916 0.025014 0.064857
T 2 2.596537 2.463818 2.310401
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Table XI. (Continued)
vV = ch
R 15.0 10.0 6.2 4.2
Tary 0.0C0037 0.001758 0.018831 0.038821
Sery 0.009875 0.070731 0.245563 0.378950
ServSe, e’y 0.000073 0.003772 0.046403 0.113009
Tory 0.930979 0.858882 0.722570 0.576653
T%: ©0.000000 0.000000 0.000001 0.000373
Thg ~0.000000 0.000000 0.000004 0.000884
AT, -0.000008 -0.000445 -0.005685 -0.014811
N 1.772438 1.7671€0 1.705058 1.604150
V= 3sd
R 15.0 10.0 8.0

T, 0.001696 0.006281 0.004307
Sey 0.029874 0.058887 0.049224
Sevie ¢y 0.001308 0.004972 0.003452
Ty 2.497045 2.416875 2.391510
Tary 0.001046 0.003480 0.002311
Sey 0.057702 © 0.109983 0.091035
ServSecty 0.002527 0.009286 0.006384
T 0.765410 0.689490 0.667765



Table XI. (Continued)
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v = 3sd
R 15.0 10.0 8.0
T 0.000000 10.000000 0.000012
T 0. 000000 0. 000000 0. 000002
AT?C, -0.000297 -0.001100 -0.000755
AT 0.000028 0.000104 0.000069
N 1.772217 1.762368 1.766547
vV = 3pe
R 15.0 10.0 8.0
T, 0.004177 0.006620 0.002886
Sev 0.047287 0.060440 0.040209
SevSe, e’y 0.003258 0.005251 0.002316
Toy 2. 456502 2.407016 2.388466
T, 0.002463 0.003646 0.001570
S.ry 0.090493 0.113307 0.075007
S 0.006234 0.009843 0.004321
Ty 0.726882 0.680016 0.670073
%= 0.000000 0.000000 0.000000
Targ 0.000000 0. 000000 0. 000000
AT/ -0.000737 -0.001169 -0.000511
AT?V ' 0. 000000 0. 006000 0. 000000
N 1.763566 1.758275 1.766267
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Table XI. (Continued)

vV = 3df
R 15.0 10.0 8.0

T, 0.002470 0.013810 0.021202
Sy 0.036108 0.087138 0.109348

evSe, ety 0.001909 0.010864 0.016873
Toy 2.485413 2.405432 2. 355089
T’c‘,v 0.001504 0.007492 0.010642
Sty 0.069608 0.162214 0.199255
ServSe, ¢’ 0.003679 0.020224 0.030745
Ty 0.753466 0.674323 0.624786
Tz 0.000000 ~0.000000 ~0.000000
Torg | 0.000000 0. 000000 -0. 000001
AT -0.000434 -0.002423 -0.003719
AT 0.000001 " 0.000007 0.000013
N - 1.7673171 - 1.743278 1.727675

AHere we take ATX = TX(R) - T%(). We denote ¢ and ¢’ as core
orbitals on the left He and ¢, v are the core and Rydberg orbitals on the
right He. Also, T}cia(w) = Té(,(—:(w) = Tgv(w) = Té{,v(m) =0.0 for all v.

T? j= AT? i for these cases. '1'ij is discussed in the text and is given by
b M -

= - 2t os
Ty =t by - 2y/850 Sy
_ 1 . . . -

Si, k=2 (€t Sjk)' N is the normalization constant for the total wave
function. See Footnote a of Table V for a description of the wavefunction.

is the overlap between orbitals i and j.

Distances are in Bohr.
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Table XI. (Continued)

PFor v =25, TZ,/(«) = -0.279466, T () = 0.043763.
CFor v = 2p, Té{c'(”> =-0.279319. This differs from that for

2 . 2 X o X 3
v = 2s because of the term SEVScc’ in D] . TEV(OO) = l‘(—:v(R) =0.0.

X
dpor v = 3s, TX /(=) = -0.279319, T (=) = 0.013906.

X X
®For v = 3p, Té‘c,(oo) = -0.279319, TZ () = T3 (R) = 0.0.
fFor v = 34, TX /(=) = -0.279319, TZ () = 0.000463.
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Table XIII. Total Energies® for FO "2}, “Z7, and SCF "Z

g

R "z, (FO) £t (FO) "= (scr)®
1.8 -4.431235 ~4.898593 ~4.93550
2.0 -4.559086 ~4.927130 e -
2.2 -4.647732 -4.937633 -4.95025
2.6 -4.753864 -4.934149 -4.93965
3.0 -4.808379 ~4.920709 -4.92410
3.4 - - - _4.91018
4.2 -4.863754 -4.890612 ~4.89203
5.0 -4.872781 _4. 882937 - -
5.8 -4.876064 _4.879854 _4.88022
8.0 -4,877855 -4.878096 - e -
10.0 ~4.877966 ~4.877985 oo
15.0 ~4.877976 -4.877976 - - -
@ ~4.877976 _4.877976 | C e -

AThe energies in the first two columns were calculated from a
(13s/13s) primitive basis shown in Table I. These are essentially
identical to those obtained from the ¢621/621) basis. Distances are in
Bohr.

bThese energies were obtained by projecting the three core
orbitals from 12; (2s) SCF calculations. The minimum in the spline

fitted curve comes at Rmin = 2.18 Bohr with Emin = -4,950269 a,u.
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Table XIV. Total Energies® for SCF 'Z¥ States
]

RP v =28 vV =2p v =238 " v = 3d v =3p
1.8  -5.02827  -4.97948 -4.04454 -4.94447 -4.85416°
2.0  -5.04221  -4.69262° -4.95854¢  _-4.95758°  _-4.86931°C
2.2  -5.04506  -4.99479°  -4.96172¢ -4.95974 -4.87278¢
2.6 -5.03646  -4.98474 -4.95348 -4.94999 -4, 884759
3.0 -5.02422  -4.97050 -4.94180 -4.939839  _4.924534
3.4 -5.01616 -4.96310 -4.94945 -4.93113 -4.91988
3.8  -5.01357 -4.98637C  -4.94473° -4.92761¢  -4.91622°
4.2  -5.01394  -4.96944°  _4.94047 -4.930029  -4.917479
4.6 -5.01506 -4.97299 -4.93786°  -4.93293¢  -4.91844
5.0 -5.01615 -4.97721 -4.93626%  -4.93486°  -4.92042°
5.4 -5.01708  -4.98157 -4.93638 -4.93490 -4,92263
5.8 -5.01786  -4.98525° -4.93690°  -4.93391¢ -4.92421€
6.2 -5.01852  -4.98882 -4.93730 -4.93338 -4.92535
8.0 -5.02047 -4.99673¢  -4.93738  -4.932529  _4.926454
10.0  -5.02123  -4.99943 -4.93720 ~4.93259  -4.92703
12.0 - = - - -5.000039 -4.93716  -4.932699  _4.928669
15.0  -5.02144 -5.00023¢ -4.93728  -4.932799  _4.930959
w0 -5.02145  -5.00043 -4.93730 ~4.93295 -4.93236

aA1 energies are in Hartrees and except as noted below in ¢ are
good to -0.00001. The states are denoted by v = n{ where nf refers to
the R = « 1limit of the Rydberg orkital.

bDistances are in Bohr."
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Table XIV. (Continued)

CThis is the appropriate virtual energy from v =2s, C 12;.
They should differ fromﬁt—he SCF energy for this state by no more than
-0.00020.

dThis is appropriate virtuai energy from v = 3s, 12; The error

estimate is the same as in b.
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Table XV. Total Energies® for SCF 12:’1 States

Rb v =28 v =2p v = 3s v = 3d v =3p
1.8 -5.08158 -4.95548 -4.99144 -4.96264 -4,91418
2.0 -5.09081 - - - - - - - - - - - - - -
2.2 -5.08975 -5.00855 -5.00668 -4.97779 -4.92454
2.8 ~-5.07466 -4.99694 -4.99538 -4.96821 -4.91170
3.0 -5.05647 - - - - - - - - - - - - - - - -
3.4 -5.04169 -4.97906 -4.96510 -4.94413 -4.92030
3.8 -5.03167 -4.97733 -4.95507 -4.93746 -4.92559
4.2 -5.02570 -4.97870 -4.94859 -4.93307 -4.92780
4.6 -5.02246 - - - - - - - - - - - - --—-
5.0 -5.02085 - - - - - - - - - - - - - - - -
5.4 -5.02017 -4.98721 -4.94076 -4.93254 -4.92704
5.8 -5.01999 - - - - - - - - - - - - - - - -
6.2 -5.02008 -4.99245 -4.93909 -4.93314 -4.92645
8.0 - -5.02130 -4.99833° -4.9371717 -4.93288 -4.92642
10.0 -5.02200 -5.00017 -4.93744 -4.93272 -4.92704
12.0 - - - - -5.00046° -4.93740 -4.93277 -4,92868°
15.0 -5.02220 -5.00047° -4.93753 -4.93282 -4.93097°

-5.02221 -5.00043 -4.93754 -4.93295 -4.93236

8

2411 energies are in Hartrees and except as noted below in ¢ are
. good to -0.00001. The states are denoted by v = n{ where nf refers to
the R = = limit of the Rydberg orbital.

bDistances are in Bohr.
CThis is the appropriate virtual energy from v = 3d, IE:;. They

should differ from the SCF energy of this state by no more than -0.00015.
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Table XVI. Extrema in the SCF Potential Curves #

b ¢ b d

State Rmin Emin Rmax Emax
A lzz (2s) 2.07 -0.06920 5.82-5. 83 0.00223
C 12; (2s) 2.17 -0.02368 3.90 0.00796
lzjl (2p) 2.17 -0.00814 3.77 0.02311
‘z; (2p) 2.19 +0. 00564 3.52 0.03769
fz; (3s) 2.19 -0.06916 11.58-11.54 0.00015
lz:g (3s) 2.24 -0.02460 2.97 -0.00442
3.47 -0.01246 5.14 0.00109
6.85-7.00 -0.00021 11.50-11.52 0.00015
‘z:; (3d) 2.19 -0.04484 4.68-4.70 0.00119
6. 47 -0.00022 9.67-9.99 0.00023
lzg (3d) 2.17 -0.02684 3.81 0.00439
5.20 -0.00210 8.16-8.23 0.00044

NI energies are in Hartrees. All energies and distances are
obtained from a spline fit of the points shown in Tables XIV and XV.

bDistances are in Bohr. Where the potential curve is flat to
the accuracy repor’ied the internuclear distances bounding the region

are shown. See Figs. 5, 6, and 11 for the location of the maxima and

minima.
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Figure 1

Tableau representing the wavefunctidns for (a) the two electron singlet
excited state of He, (b) the four electron unprojected ground state of
He,, (c) the unprojected excited states of He,, (d) the g projected
excited states, (e) the u projected excited states, (f) the g excited
states near Re with qbv =ns, nd, etc., (g} the three electron g core of
He,, (h) the three electron u core of He,, (j) the g excited states near

R, with ¢>V =2po, (k) the u excited states near R, with ¢>v = 2po.
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Figure 2
(a) Core orbitals for the He atom. ¢, and ¢, are from He 1'S while
d)a is the core orbital from He 2'S.

(b) 2s and 2p orbitals from atomic calculations and molecular calcula-

tion at R = «. See Ref. 14 for a discussion.
(¢) Same as (b) except 3s and 3p orbitals are shown.

(d) Same as (b) except 3p and 3d orbitals are shown.
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Figure 3

(a) The ccre orbitals at R = 10. 0 Bohr from the SCF 123 (2s),

12:’1 (3p), 12‘; (2s), 1‘2_.“4g'(3p) wavefunctions. ¢ and ¢, are the core
orbitals on the unexcited He while qb—c— is the core orbital on the excited
He. All the core orbitals are shown. The position of the He centers

is denoted by the triangles. (b) The same 2s (a) except R = 1. 8 Bohr.
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Figure 4

Potential energy curves for the 12; (FO) and 123 (FO) excited states of
He,. The FO wavefunctions from which these energies are calculated

are composed of orbitals solved for self-consistently using projected

wavefunctions at R = o,
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Figure 5

The FO (dashed)and SCF (solid) energy curves for the excited 12; states
of He,. Also shown is an FO curve for .22;, He; and FO and SCF
curves for 22;, He* See Table XIII for a description of the latter

curve.
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Figure 6

The FO(dashed) and SCF (solid) energy curves for the excited 12:; states
of He,. Also shown is an FO curve for Zz;, He] and FO and SCF
curves for 22‘3;, Hej See Table XIII for a description of the latter

curve.
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y

Figure 7

The totally repulsive FO energy curves for the excited states of He,
shown with the attractive 22; state and the repulsive (solid line) 22;
state of He:. The latter curve has been plotted to have the same

asymptotic limit as the four electron excited states.
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Figure &

The total energy (solid lines) and the total exchange kinetic energy

(dashed lines), T, for the 122: (FO) excited states. The T curves
o

are plotted so as to nave the same asymptotic limits as the energy

curves.
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Figure 9

The total energy (solid lines) and the total exchange kinetic energy
(dashed lines), T, for the 12; (FO) states. The T” curves are

plotted so as to have the same asymptotic limits as the energy curves.
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Figure 10

The total energy (solid lines) and the total exchange kinetic energy
(dashed lines), T, for the SCF v = 2s,2p, 3s 12; states. The T
curves are plotted so as to have the same asymptotic limits as the

energy curves.
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Figure 11

The SCF energy curves for the excited lz; and 12:’1 states of He,. Also

+
g
Table XIIi for a description of the latter curve.

~ - . . a 1 2+ -+
shown are SCF projected curves for X 2 and X Zu of He,. See
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Figure 12

Contour plots of the Rydberg orbital at several internuclear distances
+
g
internuclear axis with the two centers shown by small asterisks. The

for A 12; and C 'Z 1‘he contours are plotted in a plane containing the
node is the contour with long dashes. The positive contours are solid
lines while the negative contours are dotted. The contour interval is

0.005. Contours more negative than -. 050 are not shown. Distances

are in Bohr.
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Figure 13

Amplitude plot of ¢_ at R = 1.8 Bohr for (a) C 127;; (2s) and
(b) 'Z, (2p).
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Figure 14

Contour plots of the Rydberg orbital at several internuclear distances
for lE; (2p) and 12; (2p). The contours are plotted in a plane containing
the internuclear axis with the two centers shown by small asterisks.
The node is the contour with long dashes. The positive contours are
solid lines while the negative contours aré dotted. The contours plotted

are of absolute value 0.0, 0.0025, 0.0050, 0.0100, 0.0200, and 0.0400.

Distances are in Bohr.
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Figure 15

Contour plots of the Rydberg orbital at several internuclear distances

for 12; (3s) and 12; (3s). See the caption to Fig. 14 for turther details.
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Figure 16

(a) Contour plots of the Rydberg orbital for R = ©to R = 5.4 for IE; (3d)
and 123 (3d). See the Acaption to Fig. 14 for further details.

(b) Same as (a) exceptfor R =4.2to R =1.8.
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Figure 17

a) Contour plots of the Rydberg orbital for R =« to R = 4. 2 for
P
12;(3;:) and 12:1 {3pj. See the caption to Fig. 14 for further details.
o

(b) Same as (a) except for R=3.8to R =1.8,
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Figure 18

(a) Qualitative sketch of the O (dashed) and SCF (solid) curves for
two IEJO’, excited states of H,. (b) Qualitative sketch of the FO (dashed)

and SCF (solid) curves for two 12}; excited states of H,.
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Figure 19

CI results for the 1’SE; states of He, using only basis functions

appropriate for n = 2 atom states from Tables I and IL
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Figure 20

Potential curves for the repulsive FO diabatic states and the ZE:; SCF
ion state (see Table XI1I for a description of the latter state). Curves
for the w states are curves for 22; (FO) He," which have been adjusted

so as to have the same R = « limit as the four electron state.
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PART 11

LOCALIZED WAVEFUNCTIONS FOR H,0, OH, AND O
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INTRODUCTION

The study reported in this section was completed approximately
2% years ago. Here we are not concerned with spatial projection of the
type discussed in Part I since its use in systems of the size discussed
here would make the computing inordinately expensive. As a result we
want to compromise and use a method which although less pleasing,
nevertheless leads to reliable and meaningful results while allowing the
computing to be tractable. Here we have made use of the GF method in
which the orbitals of each spin set are taken to be orthogonal, leading to
great simplifications in the resulting wavefunctions. Since the exact
many electron wavefunction forms a basis for a representation of the
symmetry group of the molecule we want to retain such symmetry in the
many electron GF wavefunction. This in general requires that the GF
orbitals be svmmetry functions. For more complicated methods such
as G1, the projectionvoperator allows for the correct many electron sym-
metry without requiring that the orbitals be symmetry functions. Thus
the orbitals may localize into distributions which are more appealing to
our chemical intuition, i.e., bonding, nonbonding orbitals, etc. In
order to obtain such orbitals from a GF calculation we have made use
of the freedom which we have to take unitary transformations among the
orbitals of each spin set in the GF wavefunction. Such transformations
do not change the wavefunction. Here we have applied an external

localization criterion to take advantage of this property.
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It is important that in constructing our localized crbitals we
eliminate as many nonphysical restrictions as is possible. For
example, in the HF method the orbitals are required to be doubly
occupied. But there is no a priori reason why electrons must be
spatially distributed in pairs. This restriction is reiaxed in the GF
method and the orbitals can be singly occupied. Thus the orbitals
obtained here may be reasonable approximations to orbitals cbtained
using presently untractable methods based on more appropriate pro-
jection operators. As for GF such methods also utilize singly occupied
orbitals leading to the correct dissociation of the wavefunction. In
several of the systems discussed here, especially O and OH, this
advantage of GF over HF is indeed quite important. Below we report
the localized GF wavefunctions for O, OH and H,0O and we compare the
changes in the orbitals as we proceed from system to system. We will
see that the orbitals of these systems change in a reasonable and con-

tinuous way and lead to a perspicacious description of the bonding in

H,0O and OH.
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I INTRODUCTION

We have previcusly discussed the GI' method'? a
generalization of the Hartree-Fock (HIE) method for
electron‘c wavefunctions, which allows all of the spatial
orbitals to be dificrent (ie., no double occupations),
but which leads to the correct spin synmetry for the
many-electron wovefnnetion. As discussed before,® the
GT method lends to a wavelunction ecuivalent to the
one which would be obtained by optimizing the orbitals
of a spin-projected Siater detcrminant after the pro-
jection. Thus these orbitals ure equivalent to those
which would be obtained by the spin pelarized extended
Hartree-Fock (SPEHF) method.? wavefunctions
have heen previously reported {or several molecules
including H.,® LiH} Li* CH:® and CIL2 Here we
report the localized CF wavelunctions for the ground
states of HatD Cudd, O IT), and & (5F) ), and compare
the changes in the erbiiass as we proceed from () atom
to OH to 0. We will sec that ihe ds of these
systems change in a reasonable and continuous way and
lead to a perspicacious description ¢f the bending in
H,0 and OH.

17
orel

II. THE WAVEFUNCTIONS

In the HF method® the total wavefunction is a Slater

determinant
G®x, (1)

where @ is the antisymmetrizer,® ® is a product of
spatial orbitals
(D=¢la<1>¢‘ﬁa<2} i '(rbna(”.\"i‘lb' 7~'+1\/ . "i"n.‘b(-N) ) (2)
and x iz a product of one-electron spin functions
x=c(Dia2)s-a(u)5int-1) - 3(N). (3

n—,—uz)
be a sinzlet

For the H.O molecule
and in order thai the
state, we force

we have #u: ~n7=5 (
wavelunction (1)

b=, (4)

th is, we take the orbitids as deubly occupied. Hovwe-
ever, if we pal one H off to get OH4-§1, we need five
orbi ~..ls to describe OH ({our duuul ogc apied and ore

singlv occupied), and one for the iI. Thus the dis-
50C mted molecule reqquives at least siv different orbitals,

i=1,

sty

Calijornia Inst

Generalized SCF Wavefunctions for H.0, OH, and O*

. GureramanT axp Witrrast A, Gopparp 1i1f

itite of Teciinology, Pasadena, California 91108
1970)

neralized SCE calenlations using the GF method, are reported for HiO, OH,
are examined for cach of these systems. The shapes and angles between
Cuscribed In some detadl, It is sthown that the resulting GF orbitals change
ailv rersonalle manner as we proceed fron: O to O te HyO. The dipole and quadrupole nioments,
and petentials are reported for the GF wavefunctions.

and since the HiI" wavefunstion fer HoO has only five
different orbitals, the HF wavefunction for H;O cannot
possibly  dissociate into the HF wavelunction for
OH--H. Tt is this improper dissociation of HF wave-
functions which has prevented detailed examinations of
the nature of bonding by gradually bringing, e.g., OH
and H together and following the changes which occur
in the erbitals.
In order to get around this probiem we repluce the &
(1) by the group operator,’ G,¥, which simultancously
mkcs care of both the Paull principle and the spin
synmmetry, Thus we take the wavefunction as

Gf“"l’x, (5)

where ® and x are still given by Egs. (2} and (3}, but
now it is not necessa } to place restrictions on the
orbitals of q. (2) as in Egs. {4). The wavelfurction in
(3) has the rorrect spin svmmetry {or oll cheices of the
orbitals ¢+, and 9a. The Grroperator is defined in tenus
of Young’s orthogonal units® 0,7 and w;?7 which
operate on spatial and spin functions, 1especuve‘1y,7

G/ = E?vrfor/"‘*’?fry-
r

Since the many-electron Hamiltonian, 3¢, is independent
of spin, the total energy becomes’

E=(2[ 1| 0;2)/ (2| 0s®). (6)

That js, the spin terms immediately cancel out and the
energy is the sante as if the many-clectron wavefunction
were spinless with the form ~

Oy%. (7)
The Oy operator cap be written as®
Opr=(f7/nimINVYN PNy, (8)

where #7 is a constant and N, and Py are just the Young
column antisymmetrizer and row symmetrizer, respec-
tively,® for the f tableau. In this case, N; antisym-

1etrizes coordinates 1 through » and ;z—f—l through
N=n-+m, and £ysymmetrizes 1 and n-+1, 2 and n+2,
3 and 5+3, etc. Thus we can write

s -N}I) (9>
(10)

A{Tf.__ {1
Py= {1 142,

y 2y e eent n-1,

a2} e s {on, nt-m},

1803
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F1c. 1. Coordinates for 11;0. The ¥ axis is perpendicular to the
plane of the molecule.

where {}’ indicates the antisymmetrizer and {}
indicates the symmetrizer. Alternative forms for
(5) are’

Grrox=/"a[P(w;7x) ] (11)
and

Gy ®x=f"QL (0 ®) x]. (12)

From form (11) we see that the GF wavefunction is

TABL}:jI. Coefficients and exponents for the oxygen (9s, 5p, 1d)
and hydrogen (4s) Gaussian primitives.

Exponents®>  Coefficientssb Typed Contracticnb
Hydrogen
14, 2400¢ 0.03283 1s )
2.3992¢ 0.23121 15 ¢ is
0. 6534 0.81724 1s |
0. 17760 1.0 1s 1s’
Oxygen

7816. 54 0. 00203 Ls ]

1175.82 0.01544 1s

273.188 0.07377 is L

‘ 1s

81.1696 0.24761 1s |

27.1836 0.61183 1s |
3.4136 0.24120 is |
9.5322 1.0 Is 15
0.9398 1.0 is 2
0.2846 1.0 Is 2
35.1832 0.01958 2p
7.9040 0.12419 24

{ sz.ll.l

2.3051 0.39473 2p
0.7171 0.62738 2p
0.2137 1.0 2p 2peu.s
0.760 1.0 3d,2 3d.2
0.760 1.0 34, 3d,
0.760 1.0 3d, 3d.
0.760 1.0 “3d,, 3d,.
0.760 1.0 3dy. 3d,,

® s and p exponents from £. Huzinaga, Ref. 18,

b s and p contractions from T. H. Dunning, Ref. 19.

¢ These exponents have been scaled to approximate a Slater orbital
with an exponent of 1.2,

d By 3d;2 we mean Nzlexp(—¢r%), where N is a norrnalization factor;
i.e., 3d:2 is not a pure d orbital, Thus (3d 2 +3d,243d2) =Nriexp{—{r?)
is a (unncrmalized) 3s Gaussian orbiral.

AND W.
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1.5

N7/
Ny

| /|
ol

i

1.5

X

Frc. 2. One of the ¢ LG valence orbitals of O (plotted in the
plane containing ¥V¢;). The first solid contour is the node. The
other solid lines are positive contours aund the dashed lines are
negative conteurs. The interval between contours is 0.1 a.u.

like a Hartrec-Fock wavefunction in which the spin
function x is replaced by .
(13)

WiiX;
which is always an eigenfunction of S% Here we have
wij=( fr/n'm!N) PiN;P7, (14
where
Pi={1,2, «centlatl, .- N},
Ni={1, n+1}42, n4-2§" -+ {m, N}, (15)

Alternatively from Eq. {12) we could view the GF
wavefunction as one in which the @ of the HF wave-
function is replaced by Os®. Of course, using either
form (11) or (12) would stili result in the expression
(6) for the total energy after summing over all the spins
and using Eqgs. (16}, (17), and (4) of Ref. 7. Because
of the N, in (8), the orbitals {¢i.] can be taken as
orthogonal! as can the orbitals {¢a].

1507

N

O
-1.5

F16. 3. One of the & LGE valence orbita’s 2f O /plotted in the
planc coutaining Ve, . See Fig. 4 for contour values.
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SCF WAVEFUNCTIONS FOR H.0, OH, AND O 1805
Tasre I1. The LGFE orbitels for the ground state of IO (14,) using the [521/2] basis.
a orbitals b orbitals
Core Nonbond® Bond* Core Nanbonda Bonds

H, is —0.00621 0.01120 ¢. 11743t —0.00919 0.03229 0.45442¢

1s’ 6.G0199 0.02727 0.03282t 0.00186 0.03617 0.18589%
H, is —0.00621 0.01120 —0.01164 —0.00919 0.03229 —0.038341

15’ 0.00199 0.02727 —~0.02725% 0.00186 0.03617 —0.05056"
Q s 0. 39672 0.03332 —0.03076 0.59192 0.03238 ~0.01784

1s’ 0. 48939 0.07615 —0.006834 0.47687 0.06797 —0.03351

2s —0.10933 —0.37434 0.34759 —0.04424 —0.22865 0.10239

25 —{.05620 —0.24236 0.12277 —0.07298 —0.44557 0.07584

20% 0.0 0.0 9. 56705* 0.0 0.0 0.23096*

2p, 0.0 0.0 0.11940* 0.0 0.0 0.16126*

2py 0.0 0.61435* 0.0 0.0 0.39163* 0.0

20, 0.0 0.15583* 0.0 0.0 0.42294* 0.0

2p, 0. 00359 0.41436 0.41627 0.01869 0.22249 0.20010

2p 0.00431 0. 10387 0.09161 0.01761 0.22915 0.18946

3d.s ~{1.00792 —0.02328 0.00978 0. 00387 0.00543 0.01644

3d, 0.00045 0.01034 —0.01148 0.00245 —0.02018 —0.00263

3de —0.00237 0.03462 0.03681 0.00404 0.00677 0.02104

3dss 0.0 0.0 0.03242* 6.0 0.0 0.03629*

3d,, 6.0 0.03757* 0.0 0.0 0.01069* 0.0

8 OtLer nonbonding and honding orbitals are obtained by changing the

and ¥: basis functions denoted by f{.

slgn of funciions denoted by * and interchanging the coeficients for Hi

In the GF method we requive that the energy, Eq.
. o . = ‘.
(6), be stationary under vorlations of the orbitals in $.
This resvlts in the equaiions

}Ia(/;;’a:‘ F;‘a(/)ia, 1= 1, 2, re R

}Ig;(,'}{b:egb(f;;b, 1= 1, 2, sae, M, (]6)
for the optirmum crbitals. That is, we have two one-

pariicle Hamiltonians to solve, rather than oac as in the

HF case. The construction and solution of ihese
equations hag been discussed elsewhere. 2
1.0 T ™ T T T g
OHg !
Q.8 Ce 4

Qe

. >
—_ e ]
= N -
3 o4 i
b_; o2F \‘1 E‘
= B g
3 of
3 o0 =
=
< -02 -
-0.4 .
-Q6 -
| J
10 CS s} L5

DISTANCE {a,)

¥re. 4. The LGF orbitals of O and the L GI nonhoading orbitais
of H,O and OH (each is ploited alung its axis).

As shown before, the spin projected wavefunction

Ofady an

can be written as

oadx=a[%(wjx)] - (18)
for the case M s=S. The optimum wavefunction of the
form (17; where @ and x are product functions as in
Egs. (2) and (3), has been called the spin-polarized
extended Hartree-Fock wavefunction,®* which we see

1 ! 1 -1

i 1
O.IO o5 [¥e 15 20 25
DISTANCE (a,)

Fi16. 5. Th2 LCF bending orbitals in .0 and O (each is
piotted along the iine connecting O ard H). In addition, we show
an LGE sp* O ochital ‘plotted aleng its axis) and the H orbital
appropriate for a frec hydrogen (scale 1.0).



174

1800 S. L. GUBERMAN AXD W. A. GODDARD 11
Tasre 11T, The LG m'Ln als for the ground state of O (UT; vsing the [321/27] bas
¢ orbitals b orbitals
Core Boad Nonbond Nonbends Core Doud Nenbond»
g orbitals
s 0.00679 0.17954 0.02342 0.02342 0.00856 0.38027 0. 03004
s’ 0. 00464 0.02077 0.020696 0. 02690 0.00428 5. 20088 G.07374
O s 0. 59554 ~0.020652 0.03224 0.03224 0.39472 --0.02288 0.03826

1s’ 0.43729 —0.03713 0.07219 0.07219 0.48143 -0, (H439 0.08217
2s —~0.09260 0.27039 —0.33365 —0.33363 —0.06542 G. :8047 —0.31433
25 ~—0.006813 0.11796 --0.23812 —0.23812 —0. 068047 0.01073 —0.43360
2p. 0.0 0.0 0.0 0.56487* 0.0 0.0 0. 48243*
25, 0.0 0.0 0.0 0.22615* 0.0 0.0 0.32730*
2py 0.0 0.0 —0.63225 0.32612 0.¢ 6.0 3.0
2, 6.0 0.0 —0.26113 0. 13036 0.0 0.0 0.0
2p. 0. 00888 0. 61387 0.20114 0.201i4 0.01723 0. 40859 0.20220
29, 0. 00300 0.20687 0.06933 0. 06933 0.01078 0. 19260 0. 11820
3d.2 —0.00268 —0.00470 —0.01085 —0.01083 0.GOH87 —0.00439 0.01418
3,2 ~0.002¢8 —0.00470 -0.01085 — (. 01085 0. 00487 — 0. 00439 0.0
3d.? 0.0 0.03455 0.01870 0.01870 —(. 00001 G.06755 —0.00073
3d, . 0.0 0.0 0.0 0. 02255% 0.0 0.0 0.01763*
3d, - 0.0 0.0 0. 02005 0.01302 0.0 0.0 0.0

* The coefficients of another nonbonding orbital are obtu ned from thiz

from Fgs. (18) and (11} iz equivalent to the GF

waveivnction.

Tl LOCALIZATION OF ORBITAL

Ttis well known that for a closed-stelisinglet state the
nmn):«clc:ctxon Hartree-Fock determinant remains
invariant under a unitary transformation among the
spatial orbitals.’® This property has been used" ' to
find a transformation matrix which changes the Jlartree~
Fock symmetry erbitals to more chemically reasonable
orbitals. Lennard-Jones and Pople® noticed that

orbital by changing tue sizn of the cocficients cerated ¥

cquivalent orbiiads results in an
he scll-renulsion integrals,

transformation to
increase in the sum of ¢

J(o]= 5._, sy (1)
37,
where .
W= {@i(1)0:(2) | 1/ | 9. (1) (2)). (20)
tdmiston and Ruedenberg® have discussed several

criteria which could e used to obtain the orbitals which
arc most localized. Of these they especially considered

Tasrx IV. The LGF orbitals for the ground state of O (3P) using the [321/2] basis,

¢ orbitals

b orbitals

Core Hybrids + Hybrd® Core Huybrida
Is 0. 59385 —0.03099 —0.03099 0. 39543 0.04257
1’ 0. 48841 ~0.06930 —0.006930 0.48299 - 0.09119
2s --0.09823 0.3301t 0.330i1 —0.07183 —0. 3367
25’ —0.06338 0.21487 0.21487 —Q.08343 —0. 44300
2p, 0.¢ 0.57582" 0.0 0.0 4.0
25, 0.0 0.21195* 0.0 c.0 0.0
2py, 0.0 0.0 0. 37382* 0.0 0.0
2p) 0.0 0.0 0.21195* 0.0 0.0
2p. 0.0 0.40717 —0.40717 0.0 0.50361*
2p. 0.0 0. 14987 —0. 14987 0.0 0.30313*
34, - 0.00235 0.00520 0.00320 0. 00409 0.00872
3dp —0.00235 0.06320 0.00520 0, 00409 0.0(:372
35 —0.00235 0.00320 0. 00520 0. 00109 0.00872

? Another hybad orbital is obtained by nhanging

the signs of the coefficients maried ¥,
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Q4D (42,27 [521/2]
Orbitals a b a b a b

(6] 109.5 1£0.0 109.5 180.0 109.3 180.0
011

Nonbond-Bond 105. 1 108.2 107.8 110. 4 107.1 112.7

Nonbond -Nonbend 113.3 143.6 111.1 129.2 111.6 1314.6
O i

Baud-Boud 103.2 79.2 106.9 90.3 107.4 97.8

Nenbopd-Nonbond 1144 130.3 112.1 123.1 112.0 120.9

Bond-Nonbond 109.7 108.8 169.4 108.3 109.3 108.9

* Angles between V¢, evaluated at tiw O,

the Lennurd-Jones-Tople criterion of maximizing
JLo . In addition, they proposed a simple method for
A 2 ) I3
finding the corresponding transformation matrix 0.
& S
Ruedenberg and coworkers applied this approach to a
3 b IS
number of svstems™ including H=0.% Pitzer applied a
similar method to Catls.
In order to localize GF wavefunctions, we note! that
because of the Young antisyminetrizer .V, in Bq. (8),
the GF wovcluncion transfomas as {detl s {det(??)

under unitery tra ioas v on the orbitals [d!}
ard U on the ork i Thus it we consider
23
Dig = Z (51(;[ Jt s
ju=1
m
b 7. b
Qp= Z (f)jbl’ji 3 (21)
=1

and if we take
(22)

o8

N

Fre. 6. The ¢ LGF bonding orbifal of OH. The first solid
contour is the nede. The other 2 1id Yines are nosltive centours
and the dashed Haes are negative contours. The {nterval bevween
contours is 0.95 a.u.

we obtain
052 = (detl=) (detU) 00 (23)
and

Gy = (detU®) (dei L") G, dx. (24)

Consequently, the crergy and all other properties of
the wavefunction are unchanged! by the trinsformations
of Eqs. (21).

Fer thae GIF wavefunction we determine U and L7
by maximizing

Jn[d)_}:' Z Ji-:,;’a (25)
)

and

”e

o= 22 Tu.w

i=]

(26)

respectively. That is, we use a natural extension of the
Lennard-Jones—Pople criterion for determining U, and
;. Yor open-shell restricted Hartree-Fock wave-
functions, the orbitals could also be lecalized by the

i, 7. Gae of the o LGE nonbonding orbiials of OH (plotted in
the plane containiag To;, See Iig. 4 for contour values.
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X

-1.0

Fic. 8. One of the & LGY ronbonding orbitals of OH (plotted in
the plane of these orhitais}. See I'ig. 4 for contour values.

above method if the doubly occupied orbitals were split
ard half considered as ¢, and the other half considered
as ¢a. However, there seem to have been no such
Incalizations reported for nonsinglet systems, such as
O1 and O. [Note added i proof: This appreach has
recently heen applicd to Os and NO. See D. M. Hirst
and M. E. Linington, Theoret. Chim. Acta 16, 55
(1970)7.

In order to distinguish the localized G orbitals from

the canonica! GI orbitals {ie., the solutious of Egs.
(16) 7], we denotle the former as the LG orbitals.

IV. CALCULATIONS

The calculations were carried out for the ground
states of HoO (14,5, OH (), and O (*°P}. A Siater
basis set and two contracted Gaussian basis sets
{centered on the nuclel) were investigated. The Slater
set was a minimal basis with orbital exponents optimized
for Hartree-Fock H:0.Y One of the Gaussian sets

o

1o

Fic. 9. The b LGF benling orbital of O Sce Iig. 6 for contour
o l pe)
values.

0

AND W,

A, GODDARD 111
consisted of o (9s3p/4s) primitive set of f{usctions
bused on Huzinaga’s? orbitul exponents and contracted
to o {1s2p/257] double-zeti-like basis set according to
the Dunning principles.’® This contruction increases the
HYF energy for H:O by only 0.0040 a.u. (—76.0132 a.u.
for (¢3/4) and —70.0092 .. for [42/27:.2 The secord
Gaussian set differed from the fiist in having an addi-
tional set of five d-like oxygen Gaussian orbitals,
a2, d 2, d) daey, and dy; (see Fig, 1 for the coordinates).
Here by d2 we mean NaZexp(—¢rd), where ¥V is ¢
normalization  factor., Thus  (dp0+d2+d2) =N
exp{—{r?) is a {unnormalized) pure 3s Gaussian orbital
and (2-d*—d2~d,) and (d2—d,2) are (unnoi-
malized) pure 34 Gaussian orbitals. Since this Is equiv-
alent to adding a 3s orbitai and a set of 34 orbitals ¢o
the [42/27 set, we will denote the new one as [521/2]
{by syrametry we know that the d;, orbitel cannot be

¥15. 10. One of the o LGF bonding orbitals of H;0. See Fig. 0 for
contour values.

used in the ctates considered here}. The exponert of
the d orbitals was optimized for the [52i/2] H.0
Hartree-Fock wavefunction and was found io ©
0.760. These basis sets were also used in the O and OH
alculations in order to allew consistent comparisons
between these systems.

For O and OH it was necessary to symietry average
the GI'anatrix Hamiltonians in order to obtain the
correct spatinl  symumetry for the many-electron
wavetfunction. For these systems thisis equivalent to the
averaging over degenerate states used in the Roothaan
open-shell formulation.®® For OH and O this results in
equivalent o type 7, and m, orbitals and equivalent a
type #:, Py, and p, orbitals, respectively. As discussed
below the resuiting energy zud propertics are quiie
similar to those ebtulned when these spatial svinmetry
equivalence restrictions are not applied, The spatially
unaymmetric clunctions have symmetries
propriate for the symmetry group Dgs rather thun
SC(3) for O and C;, rather than Cyu, for O,

o
(o4

wav Q

k)
Vo=
&
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Irrespective of whether apply the symmctry
cquivalence restriction, the final GF orbitads have
been restricted to be symmetry functions of the ap-
propriate group [SOG(3) for O und C,, for OH] by
choosing the trial vectors as symmetry functions.
An exception to this oceurs for the [521/2] basis where
d character mixed into the O s orbitals and § character
mixed into the O o orbitals. In these latter cases it
was necessary to apply a spatizl symme! sy restriction
in order for the GI7 urbitals to be symmetry functiors.
For the other bases it is likely that If no symmetry
restrictions whatsoever are impoesed, the GF orbitals
of O and GH would not be exactly s and p or o and =,
respectively. (This often occurs for the UHFE and GI
wavefunctions of nonsinglet systems.) However the
energy improvenient would be expected to be small and
the resulting many-clectron waveiunction would not

we

15077

-1.O

-15

F1. 11. One of the @ nonbonding orbitals of IO (plotied in
the plane perpendicular te the plane of tiw molecule). See Fig. 4
for contour values.

have the correct total symmetry {*P {cr O, 41 for OH,
and 14, for H.O). All the LGF orbiwals reperted here
arc those which were obtained from spatial syminetry
restricted GF orbitals. In addition, for H:O and for the
CH and O wavcluhctions where the symametry equiv-
alence restriction is applied the total wavelunction has
the correct spatial symmetry.

Throughout the calculations the experimental O
and .0 geometries have been assumed. These are
1.8342 a.u? and 1.8111 au® for the O-H distance
in OH and ILO, respectivelv, and 104°27 2 for the
HOH angle. The only cxception to this Is the Slater
MBS calculation on H.Q where an O~ distance of
1.8103 au. was used with an HOH angle of 105°
The coordinates and geomciry used for H:O are shewn
in Fig. 1.

The contraction coefficients {or the Gaussicn bases
are given in Table 1. The LGFE orbital coetficients in
terms of these contracted cocfiicients for the [[321/27

1809

Fic. 12. One of the b nonbonding orbitals of H;O (plotted in
the plaae perpendicular to the planc of the molecule). See Fig. 4
or contour valucs.

basis are shown in Table II for HyO, Table Iil for
OH, and Table IV for 0.2 In Tuble V we show the
angles between the LGI orbitals.

V. DISCUSSION OF THE LGF ORBITALS

For all three systems, H.0, OH, and O, there are two
orbitals (¢, and ¢r) which are essentially the same and
are referred fo as ovygen 1s-like core orbitals. Since
these orbitals are similar in 2ll three systcims we will
omit them from the following discussion. We will ulso
fimit the discussion to the results of the [521/2]
Gaussian calculation; the results for the other basis
sets are quite similar,

In Fig. 2 we show a contour plot taken in the plane
bisccting one of the four tetrahedrally oriented a
valence orbitals of the O atom. Each of these orbitals
has 759, p characier® and can reasonahly be described
as an sp° hybrid (the symmetry restriction requires the

7\
@)

2.0

2.0

Ao

T16. 13. One of the b LGY honding orbitals of H.0. Sce Tig. 6
for contour valucs.
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otal energic

Basis Gl HIF Experimental
1.0 (10, 62/42), GTO e --76.059309 —76. 4811
[521,27. GTO —76.07801 —706.03300
[42/23, GTO —76.03209 —76.0092¢
(21/1), STO —75.73384 -75.70332
OH Cade and Huo, STOP .o — 73 42083 —73.780%
[521,23, GTO —75.41488 .
[521/273, GTO —73.10992 oo
[42/27], GTO —-75.39331 ree
[42/27, GTO —75.39221
(21/1),8TO —75.10392 —75.0600%
(¢] (74), STO —74.8168% —74. 80935 —735.1101b
[52], GTO --74.81056 ore
[527, GTO —74.8054¢ .
[42], GTO —74.80325 —74.79313
[427, GTO —74.80525 ces
(213, STO —74. 54036 —74.5103¢

A-All energies are in atomic units, 1 hartree =27.2108 eV,

© P, E. Cade and W. M. Huc, Ref. 29,

€ These wavefunstions were restricted to have the correct spatial sym-
metry for the many-electron wavefunction (see Sec. IV),

1D, Neumann a2nd J. W. Moskowitz, Ref. 27.

2 T.H. Dunning, Ref. 19,

d orbitels to add to give only a 3s-like contribution).
For the b orbitals we have two orbitals separated by
180°, cach containing 30 # ch mmcr One of these
orbitals is shewn n Fig. 3; they will 1 denoted as sp

hybrids Drue to the higher percentage p character, the
o orbitals are more directed than the b orbitals, i.e.
b

on the axes of the orbitals, the ¢ crbitals have hlgher
amplitude than the & orbitals up to about 1.4 ¢. This
can be seen from inspection of Figs. 2, 3, and 4,

From Figs. 2, 5, aud 6 we see that upen formation of
a bond between an oxygen tetrahedial orbital and an
H atom tc form OH, the sp® hybrid loses amplitude from
the region of the O to the region around the H, and the
p character increases slightly to 75.5¢%. Note that since
the GIF wavelunction dissociates correctly this ¢
bonding ovbital changes continuously to an O sp?
hybrid as the H is puilea away. Concurrent to this
transfer of amplitude the axes of the remaining a
orbitals rearrange hy about two degrees (sce Table
V). Thus vpon formation of the OH bond the remaining
three valence ¢ criitals move further apart from each
other (i.e., the angle between them is greater than
tetrahedral) and closer to the ¢ bonding orbital. These
turee ¢ nonbonding orbitels of O are Auite similar to
the a tetrahedral orbitals of O (see Figs. 2, 4, and 7)
except that they have lost some p character (down to
73.59%). .

In OH we have thres coplanar valence & orbitals.
Two of the orbitals are concentrated near the O and
angle of 134.6° bruween them, instead of 180°

have an a
as in the O atom. These orhitals are similar in Qh'lpc to
the sp hybrids of O (see Figs. 3. 4, and 83, tuzir p

character has iIncreased to 91.2°%. The renu mir 1w

US. Aung, R. M. Pitzer, and . I. Chan, Ref. 30.

€ A, J. Ficeman, Rev, LMod. Ibyvs. 32, 273 (1960j.

By, A. Goddard 111, Ref. 34,

i Reference 27, Note that the eapenents and contraction scheme for the
s functions ditfers from that reoorted here.

J E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2685 (1063).

_orbital has high amplitude near the H and is strongly
bonding to O. Oace again note that since the orbitais
arc not doubly oceupicé this orbital changes con-
tmwwwh to an H Is crisital as the H is withdrown from
the O. 1 9 vwe see that this orbital is much
more concemmtcd about the bond axiz than is the a
bonding orbital. '

With the addition of a second H to form: IO we
now have a singlet system containing four ¢ and four &
valence orbitals. The second H approaches one of the
a OH nounbonding orbitals, forming a bond with
742G, p character (see Fig. 10). From: Figs. 4 and 3
we see that the new bonding orbitel is quite similar
near the O to an O atom sp* orbital and an OH ¢
nonbcndintf orbital. The ¢ bond-bond augle in Hy0Q
is essentially the same as (but slightly lurger than)
the ¢ nonbond-bond anzle in OH. Thus an ¢ nonbond-
ing orbital in O stays at nearly the same angle from
the bonding orbital in OH upon the approach of the
second H, forming an H.0O bond and an ¢ bond-bond
angle of 107.1°. The remaining two ¢ nonbonding
orbitals in OH move about 0.3° farther apart to
112.0° forming the two ¢ nonbonding orbitals in H.O
each having 74.2 p character. These ¢ nonbonding
orbitals {sce Figs. 4 and 11), which help determine the
a bond-bond 2 I“rle in H.0) have higher amplitude near
the oxygen than LhC 2 nonhonding orbitils in Gt or the
sp* hybrid in O. However, the b nonbonding orbitals in
ILO (see Figs. 4 and 12) have lower amplitude near
the oxyvgen than the b nonbonding orbita

From fig.

itals in O or the
sp hybrids in Q. The two nonbonding & orbitals in OH
which were in the same plane with the Londing or]“t

1
new move closer Lunthcz' and into a plane perpendiculor
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VAVEFUNOCTIONS

FOR H.0, OH, AND O

. ()l bital eriergies an f{ propertics of HoO.s0b

Experimental

—e{lua) 20. 69980 20.553%5 20.5594 20. 55805 20. 3034
--ellais) 20.32129
—e(2a; ) 1.5782 i 1.34601 1.3613 1.35224 1.3392
—ef 20! 1.3 1
—e{1im4) 4. 0.89%03 0.71326 0.7165 0.71897 0.7283
—e{1h ) 0. 704 0. 80124
—¢(3a14) U. 77487 0.77162 0.37732 0.5668 G.53222 0.593)
—e{3a: ) 0. 61803 0. 60008 0.533£0.011¢
—e{1by.0) G. 70928 0.71760 0. 30266 0. 3063 0. 30085 0.5211
—el1hys) 0.51758 0.31614 0. 463:£0. 004
T 76.10192 76.12038 76.03101 76.00938 73.0602143
{(Z1/ry 37.707%0 37. 64824 37.83124 37.84784
@ 0.87044 1.0331 0. 89092 1.0838 0.785 0. 8606 0.728
O (Cm)* 1.83246 1.82715 1. 84785 1.8302 1. 8&: 1.962:41
0O,, (cm.) — 1. 78054 —1.6904t — 1.7966¢ — 15007 - 1,801 —1.92400 see
0.; (c.m.) —0. 04592 —0. 13074 —0.03121 —0.1225 —0.0865 -0.03751
L. (0) -0, 12039 -0, 24850 —0. 11683 —0.2479 —0.010 —0.070247 0.0
£z (H) 0. 01872 0.10770 0.03892 0. 1000 0.0 0.001630 0.6
Ji. (D) 0.02931 0.01340 0.02150 0.0366 —0.002 —0.003488 0.0
qvw (H) 0. 29367 0.31333 0.29073 0.3114 0.204 0310483 0.2660:+0. 0005b
Yo (H) 0.22630 0.24742 0. 22457 0. 2467 0.225 0. 241500 0.202640. 0602
gss (H) —0. 51997 —G. 36057 (. 31531 —0.53581 —0.319 —0.551994 —0.468640.0002h
¢ ). 18472 2511227 . 380607 2.71667° 0.97° 0.95° —1.26667° %
Guw VO 1.95042 1. 94069 2.0517 1.852 1.834736 1.734:0.01¢
gep {0} L — 1. 6825 - 1 OUO35 —1.8084 --1.679 — 1. 650384 —1.51340. 005"
Gz A0 - 0. 23500 (1.2 =0, 21104 —0. 2432 - 0. 173 —0. 154372 —0.220.025
Glr—0) 294,908 295,10 205.3051 299,497 aee s
dir—11) ¢oa0012 0. . 0. 4+147 0.392 s
(e 5.576169 30743 3,755 3.7384 3,795 3,744 RAVEST
{1/ig)e 23.4435¢ 23.4 23. 44309 23.4426 23.445 23.38 ven
(%) . ook 7.23003 7. 718337 7.2515
O Ve ® S5.54414 3. 2,510+ 5.4016 e
(2 dom.® 6. 44835 6. G.41768 6.5128 e .- ‘o
O e S 19.22272 19. 19,1103 19.2359 19.181 16.51 ‘ 18.24:1.17
f Taken from w~avefunctions IV of Ref. 30 and S. Aungz, Ph.D. thess,

s and properties are in atorsie
{ons for the operators for the
7. We dennte 2

2 All eneryic

b The expre
founsd in Ref. 27
L =dipole moment, € =¢
ponents of electric Sebd at AL 7 (A) =¢
tensor at nucieus A, 8 —A) =de
potential at A, T =total kineoc epn
energy, and {1}

¢ Onn the ¢

ar.

2 {10,62/4.‘;]1{‘ calrulation of Ref, 27,
shighily differenc from ours.

ents ot

e t A\]ﬂ
at nucleus A, {i/7rs ) =eie ronic
/rey ¥ = total electron repulsion

romic contributions are given hore,

- geometry usedd here was

to the plare of the bonding orbitals upon approach of
the second prowon, forming the two & nm’bmdilw
orbitals in H.O having a p character ob 68.77¢. The
b nonbonding orbiials are about 9° further apart hom
each other than the ¢ nonbonding vrbituls.

Since the & bondivg orbitals huve their highest
ampiitude near the H, one ?honld ;mt p’.ace too much
importance on the b bend-bond angles given in Ta bl d

o
8iv

V1I for .0 since thess vere measurcd at the O
But the angle is ind of the nmdmg of the b
On

which can he seen in Fiz. 13

bondiny orkital, e
and from the indicated

can see [rom Tigs. 10 and 13

it.~e of Technology, 1969,

¢l I and D. R. Lide, Jr., Rei. 31; 1 a.u. =2.3341339 D.

‘m guadrupole coupling constants reported in Ref. 33,
suadrupele moment of —0.025h (see Rei. 34) and a D
voat of 00027960 (wee Ref. 3€Y. @ is from Ref. 33.

California T
£, H. K
5 Cukuhmd f:

assuming an ¢

quadrupole m
i Qee Ref,
iD.E 1~PnLr‘*‘ T

4531 (1963).
kcom. denotes 1y

of H.0O &= the o
11y, C. Price o

AL Pochavw, and VW, H. Flygare, J. Cheni Phys. 43,

t ehiz quanticy was calenlated with the conter of mass

T. M. Sugden, Trans, Faraday Soc. 44, 108 (1948},

bond-hond ngles from Table VII that none of the
bonding orbiuds of H.O are symmetiic about an OH
axis. )

These resciis for H.O should be compared to those

Edmniston and Ruedenberg? whao obteired 89.8
for the bond: bond anzle, wnd 124° between nonbonding
orbitals from lOC’thU}“ o restricted HI wavefunction
: minirum basis set of Slater orbitals,
suggesied that the bonds in H () are p

o e

cenmposea of
It is ofter

Londs. Since such bonds should be at 90°, it 1s sug-
zexted® that repulsion between positive Ax.\‘drogcns
leas to the .otual bond angle of 104.5° Our caleula-
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Tasre VIIL. GI orbital energies and propertics of OIL2
[Wl /2] Urzymb [5321/27 Symd 2,27 Unsymit [—1:/ 27 Symb 1280 Experimental
—e(loe) 20.67152 20. 67036 20.67731 20, 67507 20. 618114
—~e{loy) 20.58738 20), 38350 20, 38832 20.58825
—e{204) 1. 49912 1.49914 1.51130 1.5100; 1.306844
—e(203) 1.21604 1.20963 1.21976 1.22003
—e(300) 0.73871 0.728G2 0. 74106 0.74324 0. 660414
—e(3as) 0.63072 0.€2820 0.61324 0.61301
—e{1s,.0) 0.613%0 0.80153 Q. 62694 0.80031 0.272154
—ellmee) 0.49493 0.48279 0.45349 08797 0.49:0
—e(2my.¢) 0.67143 0.80155 0. 66263 0. 80031 v, 572154
T 73.43989 75.43681 75.43063 75.45089
(Z1/ri;) 32.87772 32.¢68 32.84718 32. 84891
B 0.73684 0.7 0.83635 0. 83604 0.7003¢ 0. 6531
0, {c.m)e —1.34877 — 1.3 --1.28122 ~—1.20283
6,y (c.m.) 0.12366 0.13: 0.17479 0. 17730
0., (crs.) 1.22312 1.2 1. 16514 1,10333
E:{(0) —0. 10160 —0.1 —0.20117 —0.20113
E, () 0.05038 0.0 0.12189 0.12182
Gy (F1) 0. 19303 0.1 0.22384 0.22357
grz (FI) 0. 28003 0.2 0.30204 0.30321
g:. (H) —0.47310 -0.4 —0.32678 ~{. 52679
Guy {O) —2.11748 -~ 2.05698 —2.06161 —2.00%19
¢zz (O) 2.63851 2.56 2.70805 2.65473
g:: {O) —. 52054 —0.30 —~0. 64447 —0. 64655
3(r—0) 205.786 295.7» 295.893 2035.
§(r—H) 0.39323 0. 393 - ©.42569 C.
(1/r)e 530741 5.2 5.30282 3.3
{1/ro ) 22, 84517 22 53 22.85347 22.8435¢
(3 Yo b 4.92234 19 4.90128 4. 0083C
O jom b 3.02030 2,055 3.9214]
(e P 3.20775 5.21182 2.36633
(2 )em.? 12.06948 12.07639 12.13924

2 All encrgies and properiies are in atomic units,

b These include only the electric contribution.

€ e.m. denotes that this property was caleulaied with the center of mass
of O as crigin.

4 p. 1. Cade and W, M, Huo, Ref. 29,

¢ P, E. Cade and W. M, Hue, J. Chem. Phys. 45, 1063 (19G6).

£, G. Wiikinson, Astrophys, J. 138, 778 (1063},

€ 17, X, Powell and D. R. Lida, jr., Ref, 3z,

b Sy {muplies that equivaleuce restrictions were linposed on the gz and
7, orbitals and the 42% % and d.2 basis fuactions (sce See. IV). Unsym
implies that these symmetry rescrictions were rot imposad,

tions do not support either of thiese suggestions. We  of the molecule are then shared in such a way as to
saw that the ¢ bonding Olbludo have about 7560 »  compleie tetrahedral qd.ntu about each atom often

character and can reasonably be considered as £p7
orbitals. ‘Thus the assumption of # bonds is not just
In addition, we saw that the angle between the bonding
and nonbunding orhitzlls of OH did not chunge ap-
preciably when the H wus bonded to the nonbonding
orbital. If TT lcpu];lon‘ were impertant, we would have
expected this angle to increase. Although the GF
orbitals lead to a reasonable cxplanation of the bonding
in H.0, a significant test will be whether it also does s
for molccules such as H.S, where the bonding angle
is much different (92°),

In recent vears Linne{t™ has pmposed a novel model
of bonding in which the familiar Lewls octet is re-
placed by a double guartet, one quartet for each spin.
In Linnctt’s model a quartet of electrons of the same
spin should be at the vertices of a tetrahedron in order
to miniimize the electroa repulsion energy. The clectrons

leading to a4 Lewis cctet. Although this model is hased
on nenquoentitative semiclassical reasoning, it docs
-lend to compelling descriptions of some mo tecules,
cspecially nensinglet stutes such as O.. It Is interesting
to note here that for H-O and a number of oiher
svseenss which we have considered (e.g., CoHe, INH,
11F;, the LGT orbitals are distributed in space in a
vay qualitativ similar to Linnett’s quartets. Of
course the LGI orbitals are not centered on just one
atom and ths bonding orbitals are paired mth one
orbital more unear cue center than the other. Water is
not the bhest svstem for discussing this since there is
only ore octet {however note that for O, OH, and
1.Q the a quartet Is elways within 3% of tetrahedral);
C.H. and BYF are more appropriate and especially for
CoIl, the results are consistent with Linnett’s model.
This wili be discussed fu more detail in a future paper,
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SCF WAVEFUNCTICNS FOR 11,0, O, AND 0O 1813
F\n;} I N, GF orbital ener gic: and propertics of 0.2
(5217 Uasymb (4273 Symd (74 STO! Experimental

—e{ls) 20.73570 20.73653 20.73677 20.73879
—e(ls) 20, 62490 20. 623068 20. 62308 20.62831 ce
—e(2s,) 1.53072 1.529% 1.32933 1.335856 see

— {25, 1.00142 1.06237 1.06239 1.06471 oo
—e{2ppc} 0.84521 U. 65335 0. SH36 0.66813 see
—€(2p: ) 0.49748 0.40743 0.49739 0.490695 0.30052e
—e{2p,.a) 0 84321 0.70397 0. 64456 0.71279 e
—e(2p,.0) 0.84321 0.70397 0.84136 0.71270

T . 74.80732 74.79819 74.79350 74.81776

(Z 1/7;) 78. 28,4509 28.43233 28.43242 28.42630
Ozz 0 5 —0.93257 —0.93019 ~0.92135 cee
Oy 0.47372 0.46628 0.46510 0.46578
(S 0.47372 0.46028 0.46510 0.46578 ees
gy (O) —1. 66604 —1.65357 —1,63846 —1,65530 —~1.71133 —-1.777
722(0) 3.33208 3.30713 3.31692 3.31101 3.42306 3,554
::(0) —1.6660% --1.65357 —1.65816 —1.65350 —1.71133 —~1.777
&(r—0) 296. 516 256. 530 296.519 296.518 311. 5249 ces
{i/r0) 22. 258828 22.25797 22.25710 22.25711 22.25762 see
(x3) 4.31752 4.30971 4. 30663 4.30751 e

() 3.37008 3.37714 3.37646 3.37596

%) 3.37008 3.37714 3.37616 3.37596

r*) 11.02768 11.06399 11.03957 11.03943 1.24470
2 All energ € Using Q= —6.0255 wnd ¢ =0.04442 from Ref. 34,
b gyia itﬂf'ht, hu Juive ’v'\m restrictions were innosed on the ¢ orbitals “ WAL Goddard JII, Rell 34,

IV Unsym imgidies &, B Moore, Natl, Bur. ¥td. Cire. 467, Vol. 1 {1049,

ot O and the J
that cuch rest

wers not i

foanls

iy provide
model and in
cription of

but we note bere that the LOT orbitals
the thegretical fourndation for Linnett’s
any case should lead to a quantitative des

bonding in terms of interpretable orbitals.

V1. DISCUSSION OF THE ENERGIES
AND FROPERTIES

The GF (ntﬂl energies for HD, OH, and O are given
d cempared with the "rIF results. We sce

in Table VI an

that the ['511/"! GF 1.0 energy 0019 hartree
0.5 ¢V, lower than that ﬂl)t“m dt \ nann and
Mozkowitz (hereafter NAM), ihe b st prumu»l\
repgrl”’ valie, Note that \\I used a larger uncon-
tracted {10, 62,42 busis. Compuring the GT and 11T
reullstor thel 32827 mmLU”ﬂ hases, we sce that the
GF energy is lower by ‘}(:b hartree in both cases,

(10, €274
— (3.10.. hartive.
tation encrgy ct H.O, D, (E--OH\ =5

2) basis the GF energy

indicating that fot
would be whout
The hond dizse

is calculated from 2 e [321,2] GI wavciunctions to
be 0.1632 a.u. or 81‘,73 of the evperimental wvalue

0.201 a.u®3 The [a J27 total binding energy of
H,O is cahulmed o be 0. 7675 au. which Is 7267 of
the expurin \a“u Poahue, 0371 aa

In Tables Vi \U., and ]“C we show the orbitad
energies and >ch,m propertie: for il0), OH, :m(‘. O,
respectively. We see that using Koo theorern,®

prrins’

the caleulated first lonization potential is too larg:
by about 129/ for MO, 105 for O, and 2% for O
(using the [321/2] hasis}.

Neumann and \Lm]\o witz” have already peinted out
the xmport;mcc of d basis functions on the O, aud p
basis functicns on the H, for describing the dipole
moment g. Comparing the HE results we see that the
inclusion of one set of O d functions accounts for about
6197, of the difference between the [42/27] and NM
H-;;O dipole moments. The GI dipole moment was
0.02 2. lower than the corlmponrlmg HF vulue for
both Gaussian scts and hence weuld probably be about
0.763 a.. for the {10, 6, 2,42) basis. This compares
iz of 0.728 aul’t The caleuinted
decreases signiicantly upon
13 siill farger than the

to an experimental va
01l dipole moment alse
adding  basis furctions but
c.\'pcn.n:,ntal value of 0.633 a.u® TFor both H.O wnd
CII the inclusion of d basis functions significantly
decrenses (2% )em..

Comparing the svimetry re
stricted GF c:dcul;atlons on OH, we see that the sym-
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