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Thesis Abstract

This thesis develops a rational foundation for the application of long-range
forces to atomistic simulations. This area has lagged behind the other components
of simulations because of two factors. First, the nonbond forces are difficult to
probe experimentally. There are only a few materials for which properties clearly
and directly correlate with van der Waals forces (such as molecular crystals) and
then some of these cases are not relevant to common modeling applications (e.g. the
hydrogen van der Waals forces in Hy(,4;) are different from those in hydrocarbons).
Second, more than for valence force field terms, van der Waals forces are difficult to
determine by calculation. The forces are weak and require a large number of basis
functions per atom to treat properly.

This thesis contains a method which has optimized a level of ab initio calcu-
lation on small clusters in order to extract a van der Waals potential. The size of
the calculation is controlled by carefully optimizing the basis set. Moreover, unlike
for previous calculations of this sort, it was recognized that the repulsive and at-
tractive potentials (the monotonic potentials) which constitute the van der Waals
potential can be calculated optimally with different basis sets, further alc,cél»e'rat}in‘g(
the calculation for a given level of accuracy. Also the use of diffuse basis seiéé off
of the atom centers is used here to make the basis sets more efficient. The method
has been optimized for the case of nitrogen because it is both a closed shell case
and relatively common in simulations. What results is a computational method
which produces pair potentials for use in force field simulations. This is called the
combination of monotonic poténtials (COMP) method.

Subsequently, potentials have been calculated for the atoms H, He, C, N,
O, ‘F, Ne, Si, P, S, Cl, and Ar. In order to test the accuracy, the potentials are
applied to test cases of molecular crystals and compared to other commonly used
potentials. Important issues that are addressed are standard combination rules and
the accuracy of using isotropic pair potentials. COMP potentials give a measure of

accuracy of van der Waals potentials for any atom. This research has also yielded an
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accurate functional form, a variant of the Morse potential, which has not been used
in simulations but provides very accurate fits to the ab initio data. The relationships
between different functional forms are analyzed so that the designer of force fields
can make a judicious choice of both ab initio calculations to determine potentials

and the appropriate functions with which to fit them.
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Chapter I. Introduction

This study concerns the determination of accurate intermolecular potentials
from @b initio methods for application to atomistic simulations. Of the potentials
needed for force field simulations the intermolecular van der Waals forces are of-
ten the most difficult to determine. There have been two approaches, empirical
and computational. Empirical potentials are usually accurate since they are fit to
material properties, but lack versatility and have not been determined for many
atoms. The lack of versatility stems from the fact that the optimization is done to
fit the properties of a material or class of materials while what is usually desired is
a potential for an atom which may be present in other materials with a different
hybridization or van der Waals contact geometry. In short, the dependence of em-
pirical potentials on the materials chosen, or those available, for the fit limits their
breadth of applicability. This is often not a severe problem, for empirical potentials
have been incorporated into the DREIDING! force field with good results. The
other problem with empirical potentials is that they can not be determined many '
direct manner for some atoms such as Si, S, P, and metals. The problem' i.s;.t}__la,t'
there are not enough molecular crystals with these elements for which fits can be
performed. So, ab initio methods are ideal for the problem. If a calculation can
be devised to yield van der Waals energy it may be applicable to a variety of the

elements including those overlooked by empirical fits.

The ab initio approach here looks at small (primarily tetraatomic) clusters
and computes the energy at several geometries. If this is done so that the only
difference between the geometries is the van der Waals energy it is possible to
extract a potential. Issues from deciding on a methodology to interpreting the
results for some elements are studied here. First, in order to develop an ab initio
method reference is made to the accurate van der Waals potentials which have been
determined for noble gas dimers. These methods cannot be simply copied to other,

non-noble, elements for the methods used become far too expensive. The studies



I-2

serve as a guide, however, to what levels of accuracy can be achieved with ab initio
calculations. The method is optimized for a particular case, nitrogen, by computing
van der Waals energies for a variety of basis sets at the self—conéistent field (SCF) and
second-order Moller-Plosset perturbation (MP2) level. Second, with the optimized
method available, potentials are calculated for atoms in the first and second row of
the periodic table. The potentials are tested for accuracy by comparing to empirical
potentials from past studies and by applying the potentials to force field simulations
on a few test cases.

Third, the potentials are further analyzed with fits of functional forms. It is
observed that some potential parameters can be fit to atomic properties such as the
ionization potential (IP). Also the standard combination rules, arithmetic rules
which are used to generate heterogeneous pair potentials from homogeneous cases,
are shown to be accurate. Combination rules are a substantial aid to molecular
modeling because the number of heterogeneous cases is, in general, proportional to
the square of the number of homogeneous cases for a given set of elements. So, the™
task of determining and storing potentials is greatly reduced if combinationjlfr‘iﬂes,)‘.f."
are used. : _ 'l

The accuracy of physical interpretation of the potentials computed here;ariseé
from the basic physical understanding of van der Waals forces which comes from
quantum mechanics. Within the van der Waals potential it is illuminating to un-
derstand that there are two forces, one repulsive and one attractive, which have
a different origin and topological character. From gas imperfections and the en-
ergetics of crystals the simplest features of interatomic forces could be construed.
First, it was clear that there is an inner wall which keeps atoms at a minimum dis-
tance and gives materials resistance to compression even when there are no bonds
throughout the material (as with molecular crystals). The hardness of the inner wall
can be seen in phenomena ranging from molecular beam scattering to the van der
Waals Gas Law excluded volume constant. Molecular attraction can also be seen

in more subtle properties such as the cohesion of molecular crystals. Nevertheless,
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while such observations as gas imperfections hint at molecular forces, it is difficult
to determine a potential energy surface from such studies. At the present time,
there are extremely sensitive infrared and microwave techniques which can probe
the energy of van der Waals clusters directly.?~* Early in the century, however, the
precise nature and form of the van der Waals potential could only be described by
wave mechanics. Accordingly, physical intuition about van der Waals forces comes
from quantum mechanics.

The repulsive force arises from the Pauli exclusion principle which limits
the number of electrons in an orbital. Basically, as nonbonded atoms approach
their electron clouds must avoid overlapping by remaining orthogonal at the ex-
pense of increasing the curvature of the wavefunction and hence its energy.® This
increase in energy or repulsive force can be approximated by the overlap of the
nonorthogonalized orbitals from the interacting atoms and is, hence, exponential
with separation. More precisely if two atoms cannot form a chemical bond as they
are already bonded to other atoms within a molecule, possibly the same molecule,.
then they have a nonbond interaction. That they cannot bond means the _;a_j;or'iés
cannot form one or more new orbitals between them which have singlet pai’réd e'lg-;'e;;
trons and a strong (over 10 kcal/mol) energy stabilization. Instead, the éloser-'fhesé
atoms are to each other, the more overlap their valence orbitals have, but by the
Pauli exclusion principle this overlap must be removed in a wavefunction solution.
So a self-consistent solution of the Schrédinger equation which includes the Pauli
exclusion principle, the Hartree-Fock (HF) equations, orthogonalizes the valence or-
bitals so that their overlap disappears. The result is that‘the energy of the valence
orbitals on both atoms is elevated giving the repulsive pair potential.

In general an analytic calculation of the repulsive potential for a pair of atoms
yields the product of an exponential times a scaled polynomial the order of which
depends on the quantum states of the atoms.® The most prominent feature about
this potential is that it is steep. Scattering experiments can use as a first approxi-

mation a hard sphere potential (Appendix A) which has an infinitely steep repulsive
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function. It is this repulsive function which maintains the compressional rigidity of
many materials such as molecular crystals and macromolecular complexes.

The attractive force is more difficult to describe theorétically and somewhat
less important in models of materials. While the Pauli exclusion principle gives a
direct understanding of the repulsive potential, the attractive potential was first
described properly by London” who used virtual excitations to explain attraction
based on instantaneous multipole interactions. Historically this was the essential
step to a complete understanding, for all earlier theories did not give attractive
forces between two neutral and nonpolar species. Only pure electrostatic forces and
the induced dipole effect had been understood. The London theory dictates that
all atoms, even noble gases (which have no multipole moments), have an attractive
interaction with all other atoms. A more complete description of the dispersion
force was offered by Slater and Kirkwood® who developed a precise notation for
the London potential and higher order terms which arise from the virtual state
formalism. Not only was this force inore difficult to describe than the repulsive
force, it has always been more difficult to calculate numerically. -

The attractive force influences properties of materials such as tjh’é l'att_ice"
spacing, cohesive energy, and compressibility of molecular crystals. Fﬁrtherni&e;
it plays a crucial role in the ordering of macromolecular systems with a lot of low
energy conformational barriers. Proteins are an excellent example. The primary
structure is determined simply by chemical bonds. It is weak attractive forces,
however, which shape the secondary and especially the tertiary structures. Also in
processes such as polymerization and diffusion Iong-rangé attraction is a deciding
factor in the time evolution of simulations. As current day simulations are now
able to model these large systems the subtle effects of attractive potentials may be
crucial.

The past twenty years have seen great progress in the simulation of materials
and large molecules with atomistic, force field, simulations. Force field potentials

are designed with the use of both empirical and ab initio data. Refinement of force
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field potentials has come through fitting the potentials to experimental properties
using nonlinear fitting techniques.®~13 The most difficult part in these optimizations
to determine accurately is the nonbonded potentials which inélude electrostatic and
van der Waals potentials. The free parameter in the electrostatic part is the atomic
charge. In the present thesis the concern is solely the van der Waals part. It

14-15 an1d @b initio calculations

is difficult to estimate these parameters empirically
are difficult because these are weak interactions which depend on correlation effects.

This study introduces an approach for an ab initio calculation which yields
van der Waals potentials. In Chapter II the optimization process produces a basis
set and level of calculation to yield accurate pairwise atomic potentials. A further
strength of this approach is that it is applicable to any atom in the periodic table.
It can be extended to provide potentials for all atoms from H to Lw. Chapter III
applies it to a group of ten atoms and analyzes trends over the elements. Hydrogen
is treated with special care as the ab initio approach is especially challenging to

apply to it. Finally, Chapter IV summarizes the findings and discusses how this

work and further efforts of this type will impact force field simulations.
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Chapter II. The Development of the Method

I1.1. Summary

A method has been developed to calculate accurate van der Waals potential
energy surfaces from small quantum mechanical calculations. The ab initio poten-
tial function developed here is the combination of monotonic potentials (COMP)
approach. This approach computes separately the repulsive and attractive poten-
tials for a pair of atoms or a cluster. Then the repulsive, or Pauli, potential is
added to the attractive, or correlation, potential to yield the total COMP poten-
tial. While this is automatically what happens in a standard correlation interaction
(CI) or Moller-Plesset (MP) perturbation calculation what is different here is that
the two monotonic potentials are computed separately with different basis sets and
to different levels of wavefunction. This allows the accﬁracy to be optimized for each
monotonic potential. Consequently, the COMP approach yields more accuracy per
basis function (and, hence, per unit of computational cost) than standard correlated
calculations. This is important because these calculations with an accurate'_l_evfé_l“
of electron correlation built in are expensive for heavy atoms. These calc'liléiﬁo_ns_';
were done on clusters of two diatoms with Doy symmetry. This symmefry gi\?éé a
potential for the cluster which yields a pairwise potential for the atoms without as-
suming any functional form. Within the cluster there is only one unique nonbonded
distance.

The optimal calculation calculates the repulsive curve at the HF level with a
triple-zeta basis set plus double polarization (TZDP) whiéh consists of (4s3p2d1f)
functions. This is also denoted as DZDP¥ because the valence functions are derived
from a double zeta (DZ) containing a (3s2p) set plus additional s and p functions
which are scaled from it as opposed to the standard triple zeta (TZ) basis set
with 5s3p functions which are optimized all together. Basis sets are derived from
the correlation consistent basis sets of Dunning! except for special cases of added

functions. The interaction energy is calculated at different geometries to a particular
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Table I1.1. N-N Pair Interaction Energy (kcal/mol) in the COMP Model

R(~A) E'rep Eatt ECOMP

2.722 2.429 -1.147 1.283
2.963 1.067 -0.699 0.368
3.205 0.459 -0.431 0.028
3.448 0.194 -0.269 -0.074
3.570 0.126 -0.213 -0.088
3.692 0.081 -0.170 -0.089

3.814 0.052 -0.136 -0.084
3.937 0.034 -0.110 -0.076
4.135 0.017 -0.078 -0.061
4.457 0.006 -0.047 -0.041
4.979 0.001 -0.022 -0.021

symmetry of the cluster.

Energies for a range of geometries define the van der Waals poteﬁtial.v The
repulsive and attractive potentials (kcal/mol) are shown separately in the data,
Table IL.1, because they are both fit well by simple functions. R is the distance
between nitrogen atoms (in A). Because of the symmetry of the cluster, there is a
single R value for each configuration. The repulsive energy is plotted in Figure II.1

with its best functional fit, an exponential function. The function is
Ae CR (I1.1)

with A = 39,649 and C = 3.5466. The attractive monotonic potential, in this case
MP2 correlation energy, is plotted in Figure IL1.2. It is also fit by an exponential
with B = 25.125 and D = 1.720. All of the calculated energy points, upon which
these exponential fits are based, are listed in Table II.1.
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The COMP potential, Figure I1.3, is given by the sum of the monotonic
functions. It can be fit by several potential energy functions (see Appendix A for

a discussion of details). First is the commonly used Lennard-Jones 12-6 function

(LJ) y ]
%)+ (3

The fit is improved by the more flexible exponential-6 (E6) function

s (- () (5] s

The fit is improved with other functional forms based on the Morse potential

E(R) = D. (I1.2)

E(R) = De{ecl(l—R/Ra _ 26%42(1—3/&)}, (I1.4)

which has a much different shape to the right of R.. One more improvement on the
Morse potential which gives an even better fit is the generalization to different (’s for
the repulsive and attractive terms. This is the exponential-exponential (abbreviated

exp-exp or EXEX) function

1 .
B(R) = Do+ {42641(1—1%/&) _ CleCz(l—R/Re)}' (I15)

All of these fits model well the COMP potential as shown in Figure B.2. The exp-
exp provides the possibility of combining separately the attractive and repulsive
potentials to give heterogeneous pair potentials (i.e. potentials between two differ-
ent atoms, also known as off-diagonal). Moreover, while the Morse function has the
restriction that & = (3/({2 = 2, this can have any value with the exp-exp function
which allows separate adjustment of the curvatures of the regions to the left and
to the right of R.. Of the four functions above, the best fit is obtained with the
exp-exp. The fitted parameters for each potential function with (N2)s plus the rms
error of the fits are in Table I1.2. The R, values in the table and following tables are

given in units of A and the D, are in kcal/mol unless otherwise specified. Also scale
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parameters such as ¢ and ¢ are unitless. A complete explanation of the meaning of
these parameters and the details about the functions above is given in Appendix A.

It is clear from the rms error that the Morse and eﬁcp—exp fits are better
quality than the LJ curve and even E6. This can be seen more clearly from Figure
I1.4 which plots the COMP data along with the potential curves with the fitted
parameters. It can be seen that those functions with an R~° term are unable to fit
both the inner wall and attractive tail simultaneously. The Morse curve possesses
the same shape as the data. Moreover, the exp-exp curve is versatile enough to

have a nearly exact fit.

Table I1.2. Potential Function Parameters Fit to the COMP Potential

Potential R.(A) D, (kcal/mol) ¢ ¢ RMS (x10%)
LJ 12-6 3.6409 0.0859 10.579
Exp-6 3.6329 0.0886 14.7497 .. 3.907
Morse 3.6561 0.0896 12.3808 o 3.074

Exp-Exp 3.6456 0.0891 12.389 2.640 0.543
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I1.2. Optimization of the Calculational Method

Levels of accuracy were balanced against computational expense to design a
viable method for doing the cluster calculations to extract the van der Waals po-
tentials. The calculation is refined by optimizing both the basis set and calculation
level for accuracy of the interaction energy of a model cluster. The calculation was
optimized specifically for the Dy, cluster of nitrogen, (Ng)o. To achieve the highest
accuracy with a small, double-zeta (DZ) or triple-zeta (TZ), basis set, some adjust-
ments were made to the normal way in which van der Waals cluster calculations are
done.

First, the repulsive and attractive energies were computed with two separate
basis sets and levels of calculation, optimizing the efficiency of each calculation.
Optimizing the repulsive calculation separately allows this potential to be computed
without diffuse functions which actually compromise the accuracy of the basis set
superposition (BSS) energy correction at long ranges (for R > Re,). Furthermore,
the repulsive calculation benefits from the use of extra valence s and p functions
which make it an effective TZ basis set. Second, the attractive potentials__.lwelr.e,
improved by using diffuse functions in places where there are no atoms, ﬁ_h’e‘» dliffuse"
function approach of Tao and coworkers.2e—¢ |

This is a more efficient use of diffuse functions than the standard placement
of an identical set on each atom. Since they need to be between pairs of atoms
the functions are actually wasted to some extent when placed on all atoms, for
each atom in the cluster has nonbonded atoms only on one side. Hence, more than
a hemisphere is wasted as it is directed away from the other molecule. Tao and

coworkers studied clusters of the type
X —A,, (I1.6)

where the X is a halogen atom and A is a monovalent atom such as H. The goal
was to develop a more accurate method for calculating molecular dissociation ener-

gies. Tao and coworkers have found that the positioning of diffuse functions at the
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geometric midpoint of the line segment connecting atom X with the bond midpoint
of A, is essential for an accurate calculation. The extra diffuse functions improve
the accuracy of the cluster interaction energy and the multlipole moments of the
constituent molecules. The dissociation energies of diatomic molecules with bond
functions are calculated to be 98-99% of the experimental D, while without bond
functions only 90% is recovered. Furthermore, the dipole moment of the three polar

diatomics Tao studied are improved significantly by bond functions (Table II.3).

Table I1.3. Dipole Moments (DA) of Diatoms With and Without Midpoint

Functions (From Tao and Coworkers2®)

Molecule Without With Expt.

HF 1.8499 1.7964 1.8030
HCl 1.2028 1.1148 1.1132

The total (COMP) potential then is constructed by combining a repulsive
potential and a correlation potential computed with two different basis sets. ThlS
method is excellent for the analysis of the potentials because not only does it pro}du’bél
an accurate van der Waals curve, but also produces optimized monotonic potentials.
The latter are important to gain insight into patterns across elements within a row or
column of the periodic table. Furthermore, it is helpful to have rules for combining
two potentials to determine a potential for the heterogeneous pair. Such rules are
called combination rules and it is usually assumed that the potential parameters for
the new pair will be some sort of average of the parameters for the homogeneous
potentials. For instance given LJ parameters R.X and D.* for an atom X and the

same for an atom Y, the heterogeneous pair XY would have parameters

{De = VD x De (I1.7)

RX=Y = J(R¥ + RY)"
Combination rules are tested in this study because the heterogeneous potential can

be calculated directly by the COMP method. Several cases are shown below. The
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combination rule in Equation I1.7 is not perfect but adequate for simulations. Even
more accuracy can be had by using the COMP potential. In fact, just one point of
the heterogeneous potential can be used to scale the combinétion rule potential to
yield exceptional accuracy. This works best if the repulsive and attractive potentials
are combined separately.

A high level of calculation has been used, for small systems such as Hes or
Ne, , up to, for instance, MP4 or CI up to quadruples (QCI), and using a triple or
quadruple-zeta (QZ) basis set. Klopper and Noga? have calculated the He; potential
with an (11s8p6d5f4g) basis set at the CISD and higher level. Their binding energy
at equilibrium is converged well. With a smaller basis set, (11s8p6d5g), the energy
is 2.5% larger. With the larger (11s8p6d5g4f3h) basis set they found the energy
to differ by less than 0.01 K. The size of these three basis sets (Vpasis) is 100, 136,
and 169 basis functions per atom. Another entry in the annals of accurate noble
gas dimer calculations is an Arp calculation by Woon* which computes the cluster
wavefunction at the MP4 level. The basis set is extensive, QZ and quintuple zeta
(5Z), giving an equilibrium binding energy of 0.45mh compared to an experim_,e:nt-é,_lt
number of 0.42mh. Furthermore, Woon extrapolated a sequence of eneljgiévéAWi_i_:h
different basis sets (DZ, TZ, QZ, and 5Z) to obtain an estimated binding ener'g”j} of
0.45mh. Also the extrapolated potential makes only a 0.5% error in the equilibrium
distance, 7.10ag, while the QZ and 5Z potentials are off by 2% and 1%. What is
important for the design of the current calculational methods is that for noble gas
systems, the accurate calculations commonly use QZ or higher basis sets in MP4
wavefunctions. | v

This level is, in fact, too slow to be practical for a series of calculations in
systems with four or more atoms. There have been calculational studies on lone
diatomics which yield van der Waals potentials,® but they are difficult to apply
consistently to a varied set of atoms because these calculations rely on choosing
a repulsive diatomic state that is representative of the van der Waals interaction.

Potentials from clusters of diatomics or polyatomics are easier to interpret because
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while the ground state of a diatom does not have van der Waals interactions, the
ground state of the cluster does.

The drawbacks to the cluster approach are that there are in general several
pairwise interactions within the cluster and it may be poorly defined how to extract
a single pair potential and that these larger clusters are, of course, computationally
more costly than single diatoms. The first problem is addressed by designing clusters
of two diatoms with D,y symmetry which have only one interatomic distance for
van der Waals interactions. There are four such atom pairs with this distance, so
the energy of the cluster need only be divided by 4 to yield a potential for the atom
pair without assuming a functional form for the potential. For off-diagonal clusters,
such as Ny — Fs, the symmetry is Cp, which again has only one unique van der
Waals distance.

The second problem, computational expense, is the main issue here. The
basis set optimization and the additional refinements above provide an approach
with reasonable speed which can be applied to any atom in the periodic table.
For noble gases accurate calculations with QZ and higher basis sets are traqu;ab'l_e
because diatomic systems have only van der Waals interactions and provi'dé 'ally,_of |
the relevant information directly. For non-noble elements at least fourA atoms are
required. This equates to a great increase in computational cost, for the speed of
a calculation scales nonlinearly with the number of basis functions included. The

speed of an MP2 calculation scales as N2:5. . So, to go from a two atom system

basis
to a four atom system (assuming the same basis set is used in each calculation
with the same number of functions per atom) means an increase of 45 times the
computational time. The scaling is worse for higher levels of perturbation or CI
calculation.

To study the van der Waals interaction some level of correlated wavefunction
must be used. A Hartree-Fock (HF) calculation yields a purely repulsive potential

for all the van der Waals clusters studied. Because of size consistency, MP per-

turbation calculations are a convenient way to determine higher-order properties.
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The levels MP2, MP3, and MP4 have been used in studies of noble gas clusters.
It is found that for He; , MP2 gives 80% of the equilibrium binding energy. MP3
provides 10% and the triple excitations in MP4 give 5%. Thé components of MP4
are less than 1%.

The compromise of accuracy against computational resources that works for
noble gas dimers must be retrenched for the sake of more general calculations. It
must be said, however, that while the calculation must be reduced the accuracy of
these calculations is not necessarily less than for noble gases. As will be illustrated
below, the error in the calculated potential is at an acceptable level. This indicates
that perhaps the error associated with a particular approach (i.e. a particular choice
of basis and wavefunction level) gives an error that is more a constant associated
with that approach than a portion of the interaction energy. For instance in the case
of the HeNe potential above, the calculation by Tau®* gave an interaction energy
of 30.26 ph, off by about 35 puh from the exact number. The interaction energy in
nitrogen is in excess of 500 uh so that such an error would be less detrimental to
accuracy.

The computation time required for the (N2)2 potentials is measured per
single poiﬁt calculation (an entire potential has between 9 and 14 poinfs). (NQ)Q;
timing is typical of the first row cases and is used for example. A single MP2 point
requires 32 to 54 cpu minutes on the HP workstations® (depending on the geometry
as shorter R clusters take longer). Second, there are basis set superposition points
which take equally long. Finally there are the HF/ DZDP'*’L‘points, both normal and
BSS calculations, which provide the repulsive energy. These take between 14 and
42 minutes. A representative time is that for the point at the equilibrium geometry,
40 minutes for MP2/DZDPDZ and 20 for HF /DZDP*. This gives a total of 120
minutes per point. From this it is safe to conclude that MP4 calculations are out of
the question. The correlation part of the calculation takes 67% of the CPU time, or
80 minutes per point here. If this were done at the MP4 level a factor of about eight

times more CPU time, making 640 minutes, would be required for the correlation
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calculation. So, while a COMP point with MP2 requires 120 CPU minutes, using
MP4 it requires 680 minutes.

Consequently, calculation of correlation energy is doné at the MP2 level in
the present study because of both the prohibitive cost and the diminishing returns
in accuracy at higher levels. The (N3)2 potential was then studied extensively to
choose optimal basis sets for the different parts of the COMP calculation. In all
cases, the use of basis sets beyond the standard DZ or TZ sets is critical because
the weak attractive energy in the van der Waals potential relies at large separations
on the overlap of the most diffuse functions. The attractive force can be described
accurately only with the use of diffuse functions because long-range attractive forces
arise from correlation between excited electronic states on each center. Proper de-
scription of both these excited states and of the correlation requires diffuse functions
to be added to the basis set. Furthermore, an excited state on one atom can interact
with the excited state on another atom to form an unoccupied antibonding orbital
and an occupied bonding orbital. For this to account for attractive forces there
must be overlap between the diffuse orbitals on each center. This poses an adch
tional challenge for the potential energy of interaction is calculated by p»erf'o'f‘mipg;
single energy calculations at some particular level of correlation over a range of ‘é.ep->
aration distances. In order to obtain accurate energies out to a maximum distance
Rz, the correlation calculation with diffuse functions must be accurate and there
must be sufficient orbital overlap at Ry.q... So, the larger R, is required to be,
the greater number of diffuse functions needed. _

A range of R must be chosen over which to compute the potential. With the
goal of doing atomistic simulations, the potential needs to be known for energies
and distances relevant to modeling. Information near R = R., for instance, is
more important than for very small R. This range (Rmin, Rmac) Deeds to define the
repulsive wall for R < R., describe the curvature at the well bottom, and define the
attractive tail for R > R.. Here we look at the repulsive wall up to E(Rmin) = +D.
in energy and the attractive tail to E(Rpq.) > —%De. For R < Rpmin, E(R) need
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not be quantitatively accurate because simulations rarely access those regions of
energy except for transients in relaxation or trajectories. The potential in this
region must, however, have the correct asymptotic limits below
{limR_+0+ E(R) =0
limp_o E(R)=0

This is important with modeling applications to be tolerant of initial guesses
which have high energy close contacts (for R < Rmin) by chance even when the
simulation is intended to be at a lower energy. It is desirable to avoid this either
through the choice of functional forms (Appendix A) or through simulation algo-
rithms which check for catastrophe regions, pair potential functions F(R) which fit
well the COMP data on (Rmin, Rmaez) but are not sufficiently repulsive at small
R where there is no data. The most infamous case is the E6 function which fits a
variety of both ab initio and experimental data but has the wrong limit at small R.
Similarly the limit that F(R) goes to 0 at long R is equally essential. While all of
the functional forms discussed in this study have the proper long R limit, one can
easily obtain a polynomial fit to the COMP data which diverges at long R. .

The customary placement of diffuse functions is on the atom cenfef. ' .In";
clusters where the goal is to determine intermolecular attractive forces,'this is not
the most efficient approach. The problem with atom centered diffuse functions
is that a large part of the function occupies space outside of the cluster whereas
the midpoint functions are contained entirely within the cluster. For example,
Tao and coworkers place diffuse functions at the geometric midpoint of noble gas
dimers. This greatly reduces the number of basis functions required for the task
compared with atom centered functions. At the MP4 level the attractive energy is
30.26 ph, 45% of the experimental value (66.47uh). The midpoint function used
the uncontracted basis functions {3s3p2d} (midpoint diffuse functions are denoted
by putting the basis functions in braces while standard nucleus centered diffuse
functions are shown in parentheses). The binding energy is 61.41 ph, over 90% of

the experimental value. A further bonus with midpoint functions is their positional



1I-12

independence. Tao has varied for several dimers the position of the functions along
the dimer axis. For heterogeneous dimers the geometric center or axis midpoint
does not give the strongest interaction. What’s more the enefgy is very stable with
respect to the position of the bond functions.

Table I1.4 shows the results of F. M. Tao varying the position of the bond
functions in a cluster of Ho and He. The energies are MP4 energies with a
(10s4p2d/6s4p2d) basis on the H and He atoms plus diffuse functions near the
center of the cluster with uncontracted {3s3p2d} functions. Two parameters spec-
ify the positioning of the bond functions, r¢ and 6g. A vector rg is defined from
the Hy, bond midpoint to the He atom. Its length is ¢ and its angle from the
H, axis is 8g. What can be learned from the table is that large displacements of
the bond functions from the geometric center of the cluster change the interaction
energy only little. For instance, altering r¢ from its midpoint value of 3.25A to
4.0A changes the interaction energy by only 0.19 calories for the linear case and by
0.12 calories for the t-shaped case. Hence bond functions are forgiving in cluster
calculations and can be placed at the geometric center of tetraatomic cluster,s‘_l_;ere; L

Tao also compared this basis set to other sets with functions on *qhé 'e'm‘tomsﬂ
including (6s2p), (6s4p), (6s4p2d), and (6s4p2d1f). The three diffuse fu'nction”éets |
including the one above were {3s3p}, {3s3p2d}, and {3s3p2dl1f}. Eleven of the
twelve possible combinations were tested. The largest case, with f functions on
both the atoms and midpoint set, was omitted. The results are in Table I1.5. First,
the largest effect in the table is that of having bond functions. For the two highest
quality atom-centered basis sets, the difference between:no diffuse functions and
the lowest level is over 10% in energy. Another important result is that having f
functions is unnecessary, for the difference between having them on the atom and
not is less that 1% . Similarly the difference between having the f function at the
midpoint and not is between 1% and 2%. So, this comparison justifies the use of
the 654p2d{3s3p2d} used for Table IL.4.

Tao finds with noble gas dimers, HeNe and HeAr, similar results for an
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optimal cluster basis set.2* With these clusters, a polarized basis set and midpoint
diffuse functions yield 92% -95% of the experimental binding energy. Two atom
centered basis sets, (552pld) and (5s4p2d), are used with a 3s3p2d diffuse midpoint
set as with Ho-He and give binding energies of 86.13 and 89.81 ph at the MP4 level.
This compares well with the experimental energy of 94.03 ph.

Table I1.4. Interaction Energy (cal/mol) of Hy — He for Different Bond
Function Positions (Adapted from Tao 2°)

Linear T-shaped

ra(A) AEHE  ApMP4 b AEHF AEMP4
3.25 25.51 29.61 0° 17.76 26.00
3.25 e . 10° 17.76 25.90
3.25 e e 20° 17.76 25.60
3.5 25.51 29.69 0° 17.76 26.06
4.0 25.50 29.80 0° 17.76 26.12
4.5 25.49 29.83 0° 17.76 26.10
5.0 25.49 29.74

No BFs 25.50 27.69 e 17.78 23.49

This versatility of the bond functions is especially encouraging for hetero-
geneous clusters. When the two diatoms in the cluster are different it is not clear
where to place bond functions, for the geometric center may not allow both diatomic
molecules to take advantage of the diffuse functions properly because of their differ-
ing sizes and orbitals. Tao’s test cases, however, suggest that this is not a problem.
Placing the functions at the geometric center as a rule will place them sufficiently
close to whatever would be the ideal location given that the large displacements
in Table I1.4 caused such small changes in energy. Tao and coworkers have named

these off-center diffuse functions midbond functions describing how they are placed
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Table II.5. Interaction Energy (uh) Difference of Hy-He Between Linear
and T-Shaped Geometries (Adapted from Ta0??)

Diffuse fn.s 6s2p 6sdp 6s4p2d 6s4p2dl1f

None 5.96 7.27 6.79 6.35
3p2s 575  5.99 5.78 5.78
3p2s2d 560  5.60 5.76 5.80
3p2s2d1f 559  5.58 5.83

at the approximate middle of some weak intermolecular van der Waals bond. Here

they are instead called midpoint functions to distinguish another way to place off-

center functions. Midbond functions, in the present study, are diffuse basis sets

placed at the middle of a covalent bond in the cluster. For example, in the (Na),

cluster, there is a single midpoint basis set at the geometric center of the tetraatomic

cluster. Using midbond functions, however, would give two diffuse function sets, .
one at the midpoint of each Ny molecule. |

For test cases, basis sets with functions on the atoms and no mid‘povi’nt fgnc4 ‘
tions were tried first. The basis sets are DZ or TZ. SZ is not accurate enougii for
interatomic forces. For reference, energies of single N, diatoms are listed in Table
I1.6 for comparison to cluster energies.

The first unknown is the optimal size of the basis set. A test of DZ and TZ
basis sets on nitrogen compares the binding energy and BSS correction on the cluster
of two dimers at equilibrium separation. There are three energy values given here
to describe basis set optimization. The first, E;, is the cluster energy or energy
of the cluster at any given geometry minus the energy of the free fragments, Eon.,

which are diatoms in this study.

E.st(R) = E2%I™(R) = 2E mon. (I1.8)

cluster

Associated with each basis and calculational type set is a BSS error. This
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Table I1.6. Ny Molecule Energy

Basis Energy A(mh) Basis set

DZ -109.10718417530 247.987 3s2p
DZSpP -109.25660324250 98.568 3s2pld
TZ -109.15514297577 200.028 583p
TZDP~ -109.32520076106 29.970 5s3p2d
TZDP -109.35517074457 0.000 5s3p2d1f

is the energy difference between the cluster with all electrons ‘versus the energy
with only one diatom present. The latter is a counterpoise (CP) correction energy,
Ecp(R). The energy is determined by calculating the cluster energy but with one of
the monomers replaced by ghost atoms which have only the basis functions present.

The nuclei and electrons are removed from the calculation. So, Epsg is defined as

EBSS(R) = 2ECP(R) —2FE on. (II9) -

A factor of two doubles the CP energy for the two monomers. For a hetefogex;eo’ué»
dimer, consisting of monomers F and G, there are two CP energies, ELo(R) and'
E&p(R). This energy indicates how complete the basis set is. The more complete
the basis set is, the more each monomer is stabilized by its own basis set and is
unaffected by the presence or absence of a basis set at another center. Here the DZ
and TZ basis sets all have a significant amount of Epsg because these basis sets
are incomplete. For a more powerful calculation, on the other hand, if the basis set
is complete, then Fpgs will be small because the wavefunction of each monomer is
described well by its own basis set.

Finally, the interaction energy of the cluster is defined as the cluster energy

corrected for the BSS energy

Eint(R) = Eclst(R) - EBSS(R)' (I‘[10>
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Within the cluster calculation the BSS interaction leads to stabilization that would
disappear with exact basis sets. Instead, Epsg is treated as an error. The correction
in Equation (II.10) subtracts the entirety of this energy froni the cluster energy in
an attempt to extrapolate to what a complete basis set, with no BSS energy, would
give. Boys and Bernardi’ have shown that CP corrections greatly improve the
accuracy of calculating interaction energies.

It is possible that this correction overcompensates. The ghost atoms in one
monomer in the BSS calculation cannot utilize their respective basis functions at
all, but in the cluster calculation the BSS stabilization is balanced between the two
monomers. So, it is likely that Eggs is, in fact, an overestimate of the true BSS
energy. Nevertheless, following the standard counterpoise correction method, Equa-
tion (I1.10) is used to generate interaction energies. Tao and Pan® have determined
for the Nes diatom that the BSS correction is accurate. They compared counter-
poise corrections over a range of calculations from MP2/DZSP to MP4/DZDP plus
extensive diffuse functions. Any overcompensation is unimportant compared to the
error made with the basis set on each monomer. B

Beyond this, the interaction energy can be improved two ways, by calCﬁIati_ng |
a higher level wavefunction like MP3 or MP4 or by using diffuse functions. Beééﬁse‘
MP4 calculations are so time consuming and require more complete basis sets to be
taken full advantage of the present study uses MP2 for correlation energies. Diffuse
functions are essential for accurate van der Waals interaction potentials as the Tao
and Pan study, among others, indicates. A diffuse d—fun_ction (with an exponent
of @ = 0.080) is included in some test cases. Table II.7 s.hows the results and the
number of basis functions in each case. These cases demonstrate the importance
of having a TZ basis set rather than DZ to reduce the BSS error. In addition,
polarization and diffuse functions are necessary for a converged interaction energy.
All together the best basis set, TZDP~d , has 116 functions for the cluster. This
basis set is considered the minimum adequate for accurate van der Waals potentials

in this study.
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Table I1.7. The (N32)s Cluster Energy

Basis Eost Epss  Eint  Neasis
DZSP 512 412 100 56
DZSP{d} 2,185 1,898 287 76
DZDP-{d} 2,283 1,884 399 96
TZSP 576 466 110 76
TZDP~ 586 315 271 88
TZSP{d} 939 688 251 96
TZDP-{d} 87 53 361 116

Subsequently, the d-function is optimized by varying the diffuse exponent
while keeping the tight exponent fixed. A further refinement in the diffuse functions
is to choose them to form with the polarization functions an even tempered set.
Cases in Table I1.8 have TZDP~ on the atoms and even tempered d-functions /W,itjh,
af/ad = ad/ag. Here, the diffuse d function goes with ag and the other two aﬁé’
polarization functions. It is beneficial to adjust the polarization functions for a»»g'iﬁ;en |
diffuse function. This is a considerable improvement over the TZDP~d case in Table
I1.7 where a=0.080, for all of the cases in Table I1.8 have a higher binding energy
than 361uh. Moreover the best two cases, af = 0.12 and 0.15, have a considerably
lower BSS correction than the other two caées, ag = 0.08 and 0.05. The optimal a
is 0.12. The choice is not critical, however, as a change of 25% in « to either 0.15
or 0.08 leads to a change in E;,; of 2.5% . So, while ag = 0.12 is used here as the
preferred exponent, the cluster interaction energy is very stable with respect to the
diffuse function exponent.

After the normal functions are examined, the next concern is diffuse func-
tions, and specifically midpoint diffuse basis sets. The first test of midpoint func-

tions was done with an additional diffuse s (0.067), a diffuse p (0.052), and a diffuse
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Table I1.8. Cluster Energy with Diffuse d-Functions

ay, aza a3) Eclst EBSS/Nh Eint/ﬂh

(of

(1.654, 0.500, 0.15) 834 436 398
(1.654, 0.469, 0.12) 867 464 403
(1.654, 0.364, 0.08) 964 570 394
(1.654, 0.280, 0.05) 940 548 392

d (0.038), Table I1.9. The use of two diffuse d-functions potentially augments the
interaction energy by about 10% with a large addition of computational time. The
addition of an f-function is also examined adding to the TZDP™ basis set a dif-
fuse d-function (optimal a = 0.12) and a diffuse f- function. Alternatively, the
f-function can be a polarization function rather than a diffuse function making the
basis set TZDP (instead of TZDP ™) with a diffuse d-function. The TZDP {d} basis
set is actually more complete than TZDP~{df} for it gives a much lower basis set
superposition energy having a full set of DP polarization functions. The chaﬁée m
Eint, however, favors TZDP~{df} by about 10% . Both of these are viéble ;'b'z'zjs‘is/

sets for accurate cluster interaction energies.

Table I1.9. Selection of the Midpoint Function Type

Basis Set E.s: Egss Eint'  Npgsis
TZDP_{d} 897 536 361 116
TZDP_{Qd} 920 506 414 136
TZDP—{Sp2d} 1,149 723 426 152
TZDP~ {df} 1,157 688 469 144

TZDP{d} 877 452 425 144
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Next, midpoint functions are optimized. A sequence of different basis func-
tions on the midbond position are examined to determine the optimal choice. The
first optimization of the bond functions uses the TZDP~ on the nitrogen atoms and
a single d-function for the bond function. This is a 101 basis function calculation
the results of which are in Table IL.10 for four different a3 values. It is deter-
mined that a = 0.19 is optimal. The use of s, p, and d functions together (with the
same exponent) in an {spd} midpoint set increases the binding energy considerably.

Furthermore, optimization of this exponent gives the same minimum (Table II.11).

Table I1.10. Optimization of the {d} Midpoint (Atoms have TZDP)

d-exponent Eint/uh

0.12 341.93168
0.17 352.63620
0.19 352.74500
0.24 347.58350

Table I1.11. Optimization of the {spd} Midpoint (Atoms have TZDP™)

« Eznt/,ufh

0.09 428.52668
0.19 526.49295
0.27 515.72946

A single diffuse function is just the beginning. Better results are obtained
with several functions. A pair of d-functions (0.3118, 0.1039), centered at 0.18, gives
an interaction energy of 369.8110 h. More substantial improvement in the interac-

tion energy comes from using several orbitals with different angular momentum. In
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Table I1.12 bond functions with the optimal exponent on s,p,d, and f functions are
added to the TZDP~ basis set which is on the atoms. This table demonstrates that
a single d-function is not an adequate midbond function. The use of s, p, and d
functions together improves the situation considerably. The best two levels, spd and
spdf, are far above the rest, but the use of the f-function gives diminishing returns
for the extra seven basis functions it relies upon. As a result, the spd midbond

function is the standard one in this study.

Table I1.12. Composition of the Midpoint Set (Atoms have TZDP ™)

Function Eint (ph) Npasis
{d} 352.74500 101
{sd} 445.24024 102
{pd} 409.90401 104
{spd} 500.34115 105
{spdf} 517.64755 112
{2S2p2d} 513.04335 114

{252p2df} 524.80365 121
{2s2p2d2f}  529.35811 128
{353p3d} 513.74184 123

Accuracy may be improved by using more than or;e independent exponent.
Table I1.12 compares SZ {spd}, DZ {2s2p2d}, and TZ {3s3p3d} sets. The midpoint
sets are all centered at o = 0.19. That is, for a single s function o = a.. For
2s, o = V3a. and af = a./V/3 and for 3s, af = 3a., af = a, and o = a./3.
First it is clear that all of these {nsnpnd} levels are converged to 25 ph or 5%.
Furthermore, the difference between {spd} and the best energy, for {2s2p2d2f}, is
‘only 3%. So, both {spd} and {2s2p2d} (which is in between the two) are viable
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basis sets for the interaction energy at this geometry. Because the difference in
energy between {2s2p2d1f} and {2s2p2d2f} is less than 1% it is also possible to
use up to d functions but not f. All together, the range of bénd functions in Table
I1.12 demonstrates that {spd} bond functions give viable cluster energies in either
a single, double, or triple-zeta implementation. Below it is demonstrated that the
{2s2p2d} or better level becomes necessary in order for the whole potentialxcurve
to be accurate with a single choice of exponents. Nevertheless, at a single point,
even {spd} is adequate.

Not only must diffuse functions be optimized, but the valence and polariza-
tion functions must be tested too. The next question is what atom-centered basis
set is needed on the atoms for accurate interaction energies using a {spd} or a
{2s2p2d} bond function. Table II.13 shows energies for three atom-centered basis
sets all used in combination with the {2s2p2d} midbond function. This shows that
the DZDP basis and the TZDP basis may be viable basis sets. The most economical
accurate basis set with midbond functions is DZDP plus {spd} or {2s2p2d}. With
the basis set optimized, the smallest viable basis set is DZSP on the atoms_’_p‘_lﬁé

{spd} at the midpoint for accurate energy at the midpoint.

Table I1.13. Comparison of Atom-Centered Basis Sets with {252p2d}> Mid-

bond Functions

Basis set Eint (/J:h) N basis

DZSP 482.73287 65
DZDP 526.49295 113
TZDP 515.35615 133

To decide between basis sets it is more thorough to examine a whole potential
over a range of R values than E;,; at a single point. Over the important range of
R, test potentials are computed with different basis sets to see at what level they

converge on an accurate potential. For this purpose the monotonic potentials are
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examined separately. The midpoint functions are optimized more carefully to give
adiffise — 0.2355 using a DZDPDZ basis.

A set of points near R, was chosen to define the numeﬁcal COMP potential.
Here again a balance is sought. On the one hand, enough points are needed to
capture the topological details of the curve. The calculated table of energies must
describe the second derivative in order to be useful for modeling and simulations.
On the other hand, each point contributes to the calculational cost of the potential
s0 a minimum number is desired. To use a small number of points most effectively
the spacing betWeen points is scaled. They are most dense near the minimum
where the curvature is the greatest and increasingly sparse away from the minimum
in both directions. Precisely the spacing is controlled by a power function spacing
rule. This method works best, of course, if the value of R, is known. In cases that
it is not, it is estimated using empirical potentials. Then, points are added in as
necessary after examining the first results.

The rule used for selecting points starts by choosing one point at R.. Then

points along the attractive tail are chosen at distances of

J
RS™ = Rypn + Z,y(ﬁl)d (II.11)

where d is some spacing such as 0.10 A and « is the golden ratio (the solution to
v(y—-1)=1=0, v =1.618---). Points along the inner repulsive wall are chosen
similarly with

g i1
R} = Roin — > 7 7 d (I1.12)

i=o
where /7 is used instead of v because of the steeper slope of the inner wall. The
parameter d is adjusted to provide a certain number of points in a given region.
Three points in the inner wall and three in the tail (plus the one at R.) are con-
sidered a minimum for a well defined numerical potential. Adding the point at the
minimum there are seven points. The parameter d is adjusted then so that the

attractive points reach an energy of -D., halfway in energy from the well bottom
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to the asymptotic limit. Also on the inner wall the three points should include two
attractive points plus a repulsive point, R3, with E(R;%) < +D.. Values of d
range from 0.10 A to 0.12 A. The number of points calculatéd was between 9 and
12 in this study. More than seven points were included in these calculations so that
regions more distant from R, could be examined. Seven points is considered to be
a minimum number of points for application of this method to other cases.

The potential energy in these final tests is refined by correcting for electro-
static interaction energy. The nonpolar diatoms used in the present study all have
nonzero quadrupole moments because of the electron density in the chemical bond.
Within the cluster the quadrupoles have a repulsive interaction which should be
removed from the van der Waals potential. This correction is done in the interest of
producing transferable potentials. That is, the electrostatic interaction within the
cluster used in the ab initio calculation is particular to that cluster. Electrostatics
in a simulation will be different in accordance with the chemical environment an
atom may have. The scheme of removing the electrostatic energy from the van der
Waals interaction yields a potential which can be assigned to atoms Wthh have ‘,
different charges from the diatom and the new charge will, along with the van der |
Waals potential, give the correct interaction potential.

The electrostatic potential, Eq(R), is computed by fitting point charges to
the ab initio quadrupole moment for each level of calculation. Point charges are |
placed at the nuclei and the bond midpoint giving charges of +¢, —2¢, +g which can
be adjusted to fit a quadrupole moment, ©. An electrostatic potential is then gen-
erated simply by, at each R of the calculation, computing tihe electrostatic energy of
the fitted charges at their respective positions in the cluster. The quadrupole mo-
ment comes from quantum mechanics and Table 11.14 lists the calculated quadrupole
moments for the diatoms studied in the present thesis. There are three calcu-
lational levels for which the moments are computed. The repulsive wavefunction
(HF /DZDP™) gives ©7¢P and the attractive wavefunction (MP2/DZDP) ©¢". Also

there is an HF calculation with the DZDP basis which gives @7F, Experimental
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values are listed with some diatoms for comparison. Then the potential is corrected

by the following equation
Eyaw(R) = Eint(R) — EQ(R). (11.13)

While Eq(R) is taken from the quadrupole interaction alone, the presence
of midpoint functions introduces the possibility of charge transfer. Fortunately, for
the facility of this method, the transfer is minimal. The largest charge transfer with
the MP2/DZDPDZ calculation is at equilibrium = 3.65A where ¢ = +0.01 on the
N atoms and —4q on the midpoint. At longer and shorter R values, ¢ is smaller. At
R=2609A,g=—0.0024and at R =4.389 4, ¢ =‘ 0.0077. It is understandable that
this charge transfer is largest where the diffuse set is optimized, for it depends on
orbital overlap between each monomer and the midpoint. This overlap is optimized
for R, in this procedure. All together, considering the small value of these charges,
Eo(R) is taken purely from the quadrupole moment. Combining Equation II.13
with the correction equation for electrostatic potential energy above gives '

Byaw (R) = E2™(R) — 2Epss(R) — Eo(R). | '<jz._1_4¢) |

cluster

This new potential, F,qw (R), is the final result of the ab initio calculation.

With points chosen to define the potential, van der Waals potentials are
computed with different midpoint basis sets. The repulsive curve is covered in
Tables B.1 to B.3. The first two sets of data, for DZSP and DZDP basis sets,
show that using bond functions is a problem since the ehérgy is attractive at long
range. The 4.979 A energy with both SZ and DZ functions is negative which is an
obvious error. This is due to the excessive BSS energy with diffuse functions and an
incomplete basis set. This problem is solved by going to TZ basis sets in Table B.3.
The highest level shown is TZDP*DZ which has 158 basis functions. Although this
basis set has bond functions, its energy is positive because of its more complete

basis set. TZDP*NZ (or simply TZDP¥) is slightly more repulsive and has far
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Table I1.14. Quadrupole Moments of Diatomic Molecules

Diatom Qrep QHF @cor Qezpt
H X X X X
Co +3.372 +3.298 +2.571

Ng -1.290 -1.314 -1.716 -1.52
04 +0.366 -0.370 -0.448 -0.59
Fo +0.734 +0.810 +1.020 +0.88
Sig +1.5312 +1.5312 +1.6385

P, +0.6735 +0.564 +0.1341

Sa +1.2988 +1.2922 +1.1703

Cly +2.1978 +2.2649 +2.2512

fewer basis functions, only 140. For repulsive potentials it is clear that midpoint

functions are unnecessary and, in fact, burden the calculation with respect to time.

For the sake of saving basis functions, a plain TZDP basis set was tried with
no bond functions (NZ). From the few points calculated it appears to coincide with
the positive potentials, TZDP¥, more than the ones that go negative, DZSP and
DZDP. Also TZDPNZ has only 124 basis functions, but because it is less complete
than the effective quadruple-zeta basis sets, the BSS error makes it noticeably more
attractive. Finally, an effective triple-zeta basis set, DZDP*NZ, is actually an
excellent approximation of the TZDP* potentials. Moreéver, this basis set is the
smallest of those in Table B.2, with only 120 basis functions (that means each
point is 2.3 times faster than for the 140 basis function TZDP™ basis set). The
DZDP potential is repulsive out to 5.0A and has an energy closer to TZDP* than
TZDP does. Hence, the repulsive potentials in the COMP method are HF /DZDP~

energies with no midpoint functions.

For the attractive potentials, in Tables B.4 through B.6, the importance



II-26

of diffuse functions is clear. Table B.4 shows large changes from DZSPNZ to
DZSP{SZ} or {DZ}. The attractive energy at R = 3.6924 is 698 uh for DZSPNZ
but rises to 1260 and 1283 uh for {spd} and {2s2p2d} midpoiﬁt functions. Similarly,
the attractive energy at that distance rises over 36% using the DZDP basis set, in
Table B.5, upon the addition of a {spd} midpoint function set. Even the DZDP*
basis set in Table B.6 has noticeably small energies when used without midpoint
functions compared to any of the potentials with midpoint functions. So, some
midpoint functions are essential for accuracy. The next question is what level is
necessary. Near equilibrium there is not much difference between the energies with
{spd} and {2s2p2d} midpoint functions. At shorter range, however, the difference
becomes apparent. At R = 2.722A, going from SZ to DZ midpoint functions in-
creases the attractive energy by 5.3% for DZSP and 4.1% for DZDP. A DZ midpoint
set is more suited to computing a potential curve because with two different diffuse
¢ values it can be more accurate at distances other than that at which the functions
are optimized.

The error when the attractive energy calculation is failing is that the engz;gies -
are too repulsive. If the diffuse functions are not optimized, the energy ten_d’sﬁtowarﬂd :
the attractive energy with no diffuse functions. Tables B.4 and B.5v show"v't'hat
the DZSPSZ and DZDPSZ potentials become more repulsive with respect to their
DZDP counterparts away from R., where the diffuse functions are optimized, than
at R.. With DZDP on the atoms, for instance, the DZDPSZ energy is 2.8% more
repulsive than DZDPDZ at R = 3.692A but at the endpoints of the data set,
R = 4.979A and R = 2.722A, the difference is 5.2% and 4.1% . So, DZ is a better
choice for potentials. The basis sets in Table B.5 have 104 functions for DZDPNZ
and 9 extra functions for each ¢ of midpoint functions giving 113 and 122 functions
for DZDPSZ and DZDPDZ.

The attractive energy was also computed with a quadruple-zeta basis set,
TZDP+DZ . This basis set gives 158 basis functions for the cluster. For the COMP

method this is just beyond what is desired and would be easily applicable to new
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cases. This is especially important because third and fourth row atoms will have
more basis functions. It is a good test case, however, because it is an accurate energy
which the DZSP and DZDP test cases approach. Of all the attractive test cases
listed, DZDPDZ is clearly the closest to TZDP+DZ. What’s more the increased
attractive energy at the endpoints that DZDPDZ has over DZDPSZ is an asset for
the latter basis set because it differs from the more complete TZDPTDZ set by
0.5% and 1.7% . So, with only 122 basis functions, DZDPDZ is the preferred basis
set for COMP potentials.

This method, calculating the repulsive potential with HF/DZDP™ and the
attractive with MP2/DZDPDZ, makes it possible to compute a potential curve in
1400 CPU minutes. There is additional time for the optimization of the midpoint
function which is equal to or less than the time to compute the potential. Never-
theless, to perform the same calculation at the MP4/QZTP level, as is done with
noble gas dimers, would take far longer. A QZTP basis set with diffuse functions
has at least 256 basis functions. Using midpoint diffuse functions reduces that to
238. Just that basis set size alone makes the MP2 calculation time go frg_m,-S(_)
minutes to 3,200 minutes. Beyond that, going fo MP4 will lengthen the caléﬁ'léti_on’
by about a factor of 10. Each energy point would take over 2 CPU days ét the MP2
level and over 3 CPU weeks at MP4. In comparison the speedup with the COMP
approach is extremely helpful.

The basis sets used in the COMP method are based on the correlation con-
sistent set of Dunning.! Within this, the DZDP part for the atoms is taken directly
from combining the valence part, DZ of the cc-pVDZ basis set and the polarization
part, DP of the cc-pVTZ basis set. Midpoint diffuse functions are optimized for
each individual cluster. Table I1.15 lists optimized exponents defining the diffuse
midpoint sets for atoms in the first two rows of the periodic table. The extra func-
tions for the DZDP™ repulsive potential basis set are extrapolated from the s and p
functions in the Dunning set. The o} and a;' values are determined by diminishing

the most diffuse o value by the ratio it has with the next most diffuse function. As
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Table I1.15. Optimized Midpoint Functions

Cluster a‘fif fuse agif fuse
(Haz)2 0.225 0.075
He,

(C2)2 0.147 0.049
(N2)2 0.408 0.136
(02)2 0.542 0.181
(Fo): 0277 0.0923
Neg 0.26 0.0779
(Sig)2 0.3464 0.1155
(P2)2 0.1386 0.4619
(S2)2 0.189 0.063
(Clp)s 0.2078 0.0693
Ary 0.3464 0.1155
C20, 0.225 0.075
N,F» 0.520 0.173

a result, the three most diffuse s and p functions in DZDP* are even tempered.

For comparison the polarization functions from the Dunning basis set are
listed in Table 1I.16. The midpoint functions have no’precise relation to the diffuse
functions in every case. For a few cases, though, C, N, O, S, P, and Ar, the midpoint
af/7*¢ is about 1 of the SP exponent, a5F. In other cases this relation is quite
different. So, the midpoint basis set must be optimized. It is worth noting that
this optimization need not be excessive. The dependence of binding energy on ‘ché
binding function is fairly weak. Tables I1.10 and II.11 show that small deviations
in affuse are tolerable.

A variation of the single midbond function adopted from Tao is instead a
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Table I1.16. Polarization Functions

Atom SP DP

H 0.727 1.407, 0.388, 1.057
He 1.275 3.044, 0.758, 1.965
C 0.550 1.097, 0.318, 0.761
N 0.817 1.654, 0.469, 1.093
O 1.185 2.314, 0.645, 1.428
F 1.640 3.107, 0.855, 1.917
Ne 2.544  4.014, 1.096, 2.544
Si 0.275 0.481, 0.159, 0.336
P 0.373 0.652, 0.216, 0.452
S 0.479  0.819, 0.269, 0.557
Cl 0.600 1.046, 0.344, 0.706
Ar 0.738 1.234, 0.410, 0.890

set of diffuse functions at the midbond of each diatom. This approach has the
advantage this it is more easily transferable to off-diagonal clusters which combine
two different diatoms. That is, whereas the normal midbond function must be
reoptimized for an off-diagonal cluster, the bond functions on each diatom may be
transferable to other clusters. Moreover, some clusters which will be important to
calculate may in general have less symmetry and more bonds than the Doy clusters
which are the focus of this study. Clusters such as benzene dimer have more bonds
than Ny — N and, moreover, there are other geometries of an As — A5 cluster which
do not make obvious the placement of the midbond function. The bond midpoint
diffuse function, however, is more easily transferable to these other environments.
Midbond functions (as opposed to midpoint) have been optimized for some systems

as well. Table II.17 shows the exponents for six cases. Only for fluorine did the
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Table 11.17. Optimized Midbond Functions

Pair Qitight Qdif fuse
Hy 0.225 0.075
Cs 0.147 0.049
Na 0.408 0.136
Oq 0.542 0.181
F, 0.240 0.080
Sig

So

Py

Clp 0.210 0.07

optimal function vary from the midpoint function established above.

Irrespective of whether midpoint or midbond functions are used, the COMP
method with diffuse functions placed off of the atom centers is an improvéfné‘nt _,in"_
calculational efficiency over standard calculations. The elements of the éalcul'ation'
which are essential are the BSS correction, diffuse functions of some sort, and a level
of correlation. An accurate van der Waals potential calculation must use at least
MP2 correlation energy, diffuse {2s2p2d} functions, and at least a DZDP set on
the atoms. The optimization above show that less will not suffice. A higher level,
such as MP4/QZTPTZ, would provide excellent accuracy and may avoid the need
for a separate repulsive calculation, but is not viable at the present time because
of the computational time it would require. Reductions in time are obtained by
nonstandard arrangements. The midpoint function helps considerably. Compared
to atom centered basis sets this amounts to reducing the basis set size to about half
and the accompanying speedup is over a factor of ten. While it may still be slow

for larger atoms this is a viable method for accurate pair potentials. The separate
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repulsive calculation allows the use of a lower level correlation basis set because the
repulsive energy requires a higher level than the MP2 wavefunction. This is good
because the repulsive HF calculation is very quick compared to MP2. The optimiza-

tion here leads to separate repulsive (HF /DZDP™) and attractive (MP2/DZDPDZ)

potentials.
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I1.3. Results and Tests.

This section illustrates the application of the COMP potential to model-
ing. There are two major issues. First, the assumption for ﬁfting the potentials in
Section II.1 to the ab initio data is that the interaction is pairwise and isotropic.
This is an approximation which ignores many body effects and anisotropy due to
orientation and angular dependence of the electron density on each atom. The
severity of this approximation can be judged by computing the actual ab initio
potential of other orientations of the (Ng)o dimer and comparing these potentials
to what would be predicted with the pairwise model. The comparison shows that
the COMP potential can be used and gives an idea of the accuracy of the pairwise
potential approximation. Moreover the angular dependence is analyzed in order to
propose what would be necessary in a more accurate model. Second, the potential
is used in modeling the nitogen crystal by analyzing the minimum structure. More-
over, other empirical potentials, which are fit to the properties of a wide range of
nitrogen containing systems, are compared with the COMP potential.

The most fundamental issue is the anisotropy of the potential. If this cﬁausé_s
inextricable inaccuracies then application to modeling is jeopardized. Pote'hti.al'_s_vof;
atoms in their ground state are, of course, exactly isotropic because fheir Wave-‘
functions are spherically symmetrical.® In molecules, however, the orbitals have a
directionality imposed by bonds and, less strongly, by the electrostatic field of other
atoms. The most important effect here is that the wavefunctions of valence orbitals
in molecules are much less symmetrical. The valence orb_itals in No, for instance,
and other diatomics have some cylindrical symmetry about the bond axis, but, in
general, have anisotropy with respect to angular displacements from the bond axis.
This is a substantial effect and can be seen in the anisotropy of the polarizability
of diatomic molecules.

Tables B.7, B.8 and B.9 show the COMP points for the three geometries.
First, the Doy geometry of the standard COMP potential in Section II.2 is included,
called the cross (CRS) potential. The second is the linear dimer with the two
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Table I1.18. Optimized Exp-Exp Parameters for (N2)2

Cluster R, D, ¢ ¢ RMS(x10%)
CRS 3.6464 0.0869 12.3269 2.5241 1.341
TEE 3.8602 0.0662 12.2520 2.6013 27.752
LIN 4.0041 0.04599  12.7953 3.0328 0.0601
CRS1 3.6464 0.0869 12.3269 2.5241 1.341
TEE1 3.7795 0.0903 12.0000 2.0012 1.4485
LIN1 3.85097  0.08626  12.3058 3.0331  0.0597

diatoms colinear (LIN). The third and last structure studied here is a t-shaped
cluster (TEE) with one diatom pointing toward the second. The first is colinear
with the center of the second while the second has its bond axis perpendicular to
the first. These three sample the extremes of orientation if it is figured that the
end-on (parallel) and side-on (perpendicular) van der Waals potentials differ.

The most straightforward manner in which to fit this data is toias’s‘ﬁme a
van der Waals pair potential is between each atom of the cluster. Thén the ﬁt is
done by fitting the sum of all four pair potentials in each geometry to the ab initio
potential. The exp-exp function was used here with the optimized parameters listed
in Table I1.18. This suggests that no single potential gives perfect energies for the
nitrogen atom. This may arise from fundamental shortcomings in the pair potential
approximation. Nevertheless, for the purpose of simulations the COMP potential
from the CRS geometry is adequate. van der Avoird and coworkers'®~1? have
performed MP2 calculations on (N3)s in different orientations and distances (139
geometries) to obtain a global potential for nitrogen. They found that the global
minimum to the anisotropic potential is the crossed orientation with a distance of
3.50 A and an equilibrium energy of 0.358 kcal /mol for the cluster (which is 0.0896

for a single N-N pair). Also nitrogen crystal has been modeled by van der Waals
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potentials with potentials similar to the CRS case in Table 1I1.18.

As an aside, the parameters in Table I1.18 demonstrate the robustness of
the off center diffuse function approach. The COMP potenﬁal from the midpoint
function calculation yields the nitrogen potential in Table II.2. The parameters
are nearly identical to Table I1.18. For a more detailed comparison, the data is
tabulated in Table B.11 for the midpoint calculation above and in Table B.7 for the
midbond calculation. These two can be regarded as interchangeable and one should
be chosen based on the geometry of the calculation and how the diffuse basis sets
can be used most efficiently.

A model that has been used to reproduce anisotropic potentials is the dumb-
bell model where repulsive centers are shifted slightly off of the atom centers. A
shift could conceivably be caused by the shape of the molecular orbitals which have
some order of cylindrical symmetry. D. E. Williams!? fit the dumbbell model to
the repulsive energy of (Hz)z clusters. Four orientations (linear, t-shaped, parallel,
and crossed) were fit with a simple exponential repulsion function with a variable
shift in the position of the repulsive centers along the bond axis. The result i.S_,thE"J"{'
the potential is fit by an optimal dumbbell shift of 0.07A inwards which places the
repulsive centers at a separation of 0.60A. |

In the present study, however, this approach does not solve the anisotropy
problem. Fits were done with the CRS potential in the LIN and TEE clusters. Like
with the dumbbell model of Williams, the position of the repulsive or attractive
center was variable along the bond axis. Then the displacement of the repulsive or
attractive center, AR, was optimized. This was done sebarately for the repulsive
and attractive energies. Optimized values of the shift are in Table I1.19. There it is
seen that this shift is not consistent. Unfortunately, it is not clear how to implement
this into molecular mechanics.

An alternative is to simplify the anisotropy. One way to do this is to for-
mulate a general angular dependence of the potential. First it may be supposed

that each atom has an equilibrium distance along the bond axis and a separate
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Table I11.19. Dumbbell Model Shifts for Nitrogen Clusters Using the CRS

Potential

Cluster ARTeP ARt
LIN 0.06 -0.04
TEE 0.02 0.00

one perpendicular to it. Then the r, = %Re of any pair potential (half distances
are used for the orientational treatment so that the orientation dependence of each

atom is separate) would be computed by interpolating between 71 and 7y
Te =r_|_+sz'n(9)(r” —7ry). (II.15)

Second, the LIN potential is refit with a single EXEX potential on the two nearest
atoms. This assumes that the other three pairs do not have van der Waals forces
because of the intervening electron clouds. The fit is shown as LIN1 (for one atom
pair) in Table II.18. This potential has a markedly different R, and D, than LIN

The equilibrium distances for equation (11.15) are given by halving ‘th'é" ap-

propriate R, values from Table II.18

= 1% %ﬁii) . (I1.16)
m = ghRe

This gives r; = 1.8232 A and T = 1.9255 A. No CRS1 fit is needed as all four pairs
in the CRS cluster can be counted as close contacts (anq perpendicular at that).
Finally, the RéTEE) value is determined by computing the r. values for the two atom
pairs, the two close contacts. For one dimer, the contact is nearly perpendicular
and both atoms have van der Waals interaction. For the other, the contact is nearly
parallel and only one atom has a contact. The angle of the contact, ¢, is taken from
the equilibrium structure with a value of 10° for the perpendicular monomer and
80° for the other one. # tends to limit values of 90° and 0° for large R. Then

equation (I1.15) gives 7. values of 1.924 and 1.841 for the two monomers. Adding
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them together

Re — rmon.#l —+ Tglon'#Q (IIl?)

€

gives R{TEE) = 3.765 which compares well with the value for TEE1L in Table I1.18.
The TEEL1 potential, like LIN1, was computed assuming that some pair interactions
are discounted. In this case, the TEE cluster is assumed to have van der Waals

contacts. This is the reduced orientationally averaged potential (ROAP) method.

It seems that no special treatment is needed for D, values because they vary
by less than 4% in the different orientations. The curvature of the TEE potential
would not be predicted exactly with a combination of CRS and LIN. The prediction
would be k = 75.8 while the value for £ = 12.00 in the table is 72.0. All together, the
ROAP result is encouraging. The implication for simulations is that a pair potential
with no dependence on bond directionality might be inaccurate. For every system
besides noble gases, the simulated atoms will have bonds. This effect is studied by
looking at the orientational dependence of the ab initio potential of the nitrogen
cluster. The three clusters examine the extreme orientations of the cluster,.‘_,Thé
LIN cluster has the lone pairs of the two nearest nitrogen atoms pointing tbwarvdv
each other while both the CRS and TEE clusters have lone pairs poihting a§vay
from each other in some way.

Figure I11.6 shows the predicted potential for the LIN cluster if just the stan-
dard COMP potential (CRS geometry) is used. The biggest difference is that the R,
and Rg values of the predicted potential are about O.QOA;OO small. Since the goal
of the COMP method is to develop potentials for simulations this can be regarded
as a limited success. The COMP potential here is already useful. Since the LIN
geometry is an extreme, errors made in simulations would be somewhat less than
0.20A in Ry. This error can only be corrected by adding orientational information
to simulations. On the other hand, the COMP potential is close to empirical po-
tentials. It is seen in simulations that the COMP potential is accurate. It may be

concluded that the discrepancy with the LIN geometry is not a severe problem.
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A test of the standard COMP potential is to do simulations using it. Nitrogen
crystal is a good case because its properties are well known. Nitrogen crystal has
a cubic a-phase minimum structure which is used to test fhe COMP potential.
Simulations are done with a rigid molecule and a (—g¢, +2¢, —¢) charge scheme on
the atoms to reproduce the experimental quadrupole moment,** ©=-1.40 DA. Even
for the COMP potential the experimental quadrupole moment is chosen because the
idea with electrostatic correction in Equation I1.14 is that whatever charge is in each
wavefunction is corrected for. Then the resulting potential can be applied to Ny

molecules here with their experimental charges.

Table I1.20. Properties of Nitrogen Crystal from Force Fields

Case a (A) Ucon (kcal/mol) B (GPa)
DREIDING 5.43 2.05 2.93
COMP 5.55 1.89 3.38
PQ 5.54 2.02

Expt. 5.644 1.808 3.29

Experimental properties!®'® are modeled!” well by the force field cases in
Table 11.20. The empirical potential of Williams ® uses an E6 potential with
parameters (3.6621, 0.0774, 13.843) and gives slightly poorer results than with
COMP /Morse. C. S. Murthy and coworkers!®!® also fit potentials to nitrogen
crystal. Their results are close to those of Williams who actually fit azohydrocar-
bons and not nitrogen crystal itself. The study of Murthy and coworkers developed
several potentials with different charge schemes. The potential that most closely
resembles the COMP potential is their point quadrupole potential (PQ) which uses
the experimental quadrupole moment (Table I1.14) plus a Lennard-Jones pair po-

tential. The potential parameters are (3.724, 0.0703). For comparison this gives a
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cohesive energy of UCIZS = 2.02 kcal/mol. This potential is close to the Williams
potential. With its larger R, value it may yield a more accurate unit cell geometry.

The 0K optimized value is aF'% = 5.54 A.

It is worth noting that all of these parameter sets err in the same direction.
While the optimized cells are close to experimental cells, the cell size is too small
and the cohesive energy is too large. The error in Ry made by the COMP potential
on the LIN cluster is just the same. In this case (Figure I1.6), Ry is about 4.5%
too small and D, is 10% too large with the predicted curve. If it was assumed
that the simulation results have this same sort of error then we would expect a =
5.405 A and U,y = 1.99 kcal/mol. The actual simulation results are all between
this extrapolated result and the experimental numbers. This suggests that the LIN
and CRS potentials are being averaged in nitrogen crystal and while the empirical
potentials are optimal for the pair potential approach, accuracy has room to be

improved using ab initio data.

Williams performed a series of fits to properties of azohydrocarbon crys,talé
to obtain a nitrogen van der Waals potential. He regards the nitrogen crystalv'Aéé a;i’
atypical case and the study focuses on properties of eight azohydrocarboh crystéls.;
The optimal E6 potential actually is close to the potentials used to fit nitrogen
crystal. The E6 parameters are (3.662, 0.0774, 13.843). This is in the range of
parameters used for molecular nitrogen crystal where R, ranges from 3.60 to 3.81 A
and D, from 0.059 to 0.087 kcal/mol. In tests with azohydrocarbons both COMP
and Williams potentials perform well. These are less sensitive tests, however, since

hydrogens dominate the nonbonded interactions as they have the closest contacts.

These tests on the crystals demonstrate the accuracy of the COMP approach.
From ab initio data a useful van der Waals potential is obtained for use in simula-
tions. What’s more, the Morse function is an adequate representation even though
the EXEX function has a considerably superior fit. This is fortunate for other

researchers because the Morse potential is commonly available in simulation pack-
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ages. The ROAP approach, introduced above, could be a boost to accuracy to the
next generation of simulation programs. The COMP method is also a means to
obtain a better understanding of orientational anisotropy aﬁd gives a measure of

the accuracy of the isotropic pair potentials developed in the present thesis.
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Figure Il.1 The repulsive potential of nitrogen (points) is fit by
an exponential function and a RYD2 function.
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Figure I1.2 The attractive potential of nitrogen (points) is fit by
an exponential function and a RYD2 function.
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Figure 11.3 Plot of ab initio nitrogen potential (circles) with a
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Rydberg function fit (line).
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Figure 11.4 The total COMP potential of nitrogen (points) is fit
by potential functions.
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Figure 11.5 The COMP potentials of nitrogen for three different
geometries.
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Figure 11.6 Transfer of the COMP CRS potential to the LIN
geometry. The solid line is the LIN potential calculated using
CRS parameters from Table Ii.18 and the dots are ab initio
data points for the LIN cluster.
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Chapter III. Applications and Force Field Devel-
opment.

II1.1. Introduction

Here the COMP method is applied to several atoms in the first and second
rows of the periodic table. Comparisons are made based on empirical potentials
(for the first row especially) and based on force field calculations of properties of
materials. The point of this chapter is that the COMP potential can be applied to a
variety of atoms and, in the cases where it is available, match empirical fits. Topo-
logical features of these potentials are examined. It is found that contrary to usual
force field design, the best functional fit to these ab initio results is an exponential-
exponential (EXEX) function. Ths EXEX function and the Morse function, a
special case, describe the COMP potentials better than the exponential-6 (E6) or
Lennard-Jones (LJ) which are usually used for this purpose.

There are also intriguing trends in the data. The range parameters of the
monotonic potentials are found by curve fits. They correlate with atomic propegtiés;
namely the ionization potential (IP). So, the IP can be used both to und’érétapd
and to predict van der Waals parameters. Moreover, a model is proposed .for varying
the potential according to atomic charge in polarized systems. Since, for instance,
hydrogens in hydrocarbons are always slightly positive and oxygens are negative,
modifying the van der Waals potentials, which are based on neutral systems in the
quantum mechanical model, can improve accuracy. Also the data here give a sound
basis to standard combination rules. Some potentials were calculated for hetero-
geneous cases and compared to the prediction that would be made by standard
combination rules. What is found is that the combination rules work best when
applied to the monotonic potentials separately. The exponential curves combine in

the standard manner.
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111.2. Computational Details

The COMP method developed in Chapter I is applied directly to other atoms.
Changes were made in the basis sets to accommodate atomé from the second row
and hydrogen which use a different number of functions than the first row atoms.
For each case the diffuse midbond functions were optimized. The valence functions
come from Dunning! as before. Values for the optimized diffuse functions with the
midpoint method are in Table II.15 for all of the elements discussed in this chapter.
Also for hydrogen and the second row atoms, the valence and polarization functions
were different than for the first row calculations. For hydrogen, DZ means (5s/3s)
and DP means (2p1d). The midpoint function is {2s2p} rather than {2s2p2d} for
the heavy atoms and the midbond function is {2s2p} just like for the heavy atoms.
Also DZDPT for hydrogen adds an extra s function only. For the second row DZ
valence is (12s8p/4s3p) rather than (9s4p/3s2p) while the DP polarization set is
still (2d1f).

The computational cost for the second row is far worse than for the first row.
Hydrogen, however, is exceptionally cheap. Each point (including the correl@tidvn
and the repulsive energy calculations for both normal and BSS energies) At'a"kés 2,00 
seconds on the HP workstations.? Each point for (Cly)s , on the other hand, takes
660 minutes. Calculations on third row atoms and metals will probably be done
with effective core potentials in the future considering the large increase in cost
going from the first to the second row.

The electronic states of the diatoms®* were investigated in order to choose
the spin state of the calculation. The electronic state appropriate for Ny in (Ng)2
was the ground state 'Z7, which makes sense for any molecule with a closed shell
ground state. Among the diatoms studied here Hy, Ng, Fy, Py, and Cls have closed
shell ground states which are germane to van der Waals interactions in simulations.
Moreover, these are all in the 123‘ ground state. It is in general possible that
different electronic states for a single diatom are relevant to different situations in

simulations. For instance, a 2T state in carbon may be relevant to sp-hybridized



I11-3

systems while 'S may be more closely related to saturated systems. Electronic
states were chosen here to have the most relevance to a broad range of simulations.

For carbon the 3L state Co was chosen because it has a 7-electron system
and is relevant to graphite for which a lot of experimental data is known. This state
represents the orbitals in the Cy biradical resulting from homolytic cleavage of C-H
bonds in acetylene. An equilibrium bond distance of r = 1.23A was used. For
nitrogen the 123‘ state was used, being the ground state for No. This is, of course,
the appropriate state for modeling No(44,) and Ny diffusion, but for N in molecules,
however, the hybridization of nitrogen orbitals may be different than in No. Oxygen
does not have a closed-shell ground state. Nevertheless, the ground state, 32; is
used. This state is also the ground state of sulfur and is used here for S;. For

silicon, the open-shell ground state, 37, is used here. The repulsive potential is

g b
calculated for both the triplet and septet states of Siz for comparison. The states
used in the calculations here and their equilibrium bond lengths are listed in Table

IIL.1.

Table II1.1. Selected Electronic States of the Diatomics

Atom State lbond (A)

H, Xz 0.74152
Co ) Vs 1.23

Ng Xzt 1.0977
O, X357 1.2074
Fy XzF 1.4119
Siy X357 2.246

P, Xz} 1.8931
S X3%; 1.8892

Cly Xzt 1.897
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I11.3. Quantum Potentials: Main Group Elements
The repulsive and attractive potentials were fit to monotonic functions, the

first of which was the exponential

Ae~CE, (II1.1)

Exponential fit parameters illustrate trends in the topology of the potentials from
atom to atom which can be traced to atomic properties such as the /P which gives
the parameter C directly, atomic excitation energies to characterize the dispersion
interaction, and the electron affinity to characterize the variation of these parame-

ters with respect to atomic charge. Table II1.2 is a compilation of parameters.

Table II1.2. Exponential Fit Parameters for ab initio Potentials

Atom A o B D

H 2424.75 3.4012 9.3596 1.6944
C 5271.94 2.6173 144.93 1.5988
N 39,649.85 3.5466 158.90 1.7623
0]
F

36,139.71 3.7863 161.01 1.9653
70,771.01 4.3552 23.57 1.7036

Si 40,023.44 2.5609 172.39 1.2771
P -18,937.75 2.5418 327.65 1.3706
S 73,757.02 3.0451 353.64 1.5097
Cl 298,507.6 3.2250 294.18 . 1.5980
Ar 191,695.9 3.5941 270.46 1.6598
C-0O 17,440.86 3.2020 152.46 1.7710
N-F 66,931.51 4.0094 58.57 1.7338
P-Cl 57,862.48 2.9193 249.62 1.4801

The fits of monotonic potential data can be improved by using a Rydberg
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function

ERveers(R) = Az~E(> " p; R (I11.2)
i=0 .

to fit both the repulsive and attractive potentials. There is some curvature in the
logarithm of the monotonic energies which arises from the two origins. First, the
two curves are a culmination of interactions between molecular orbitals on each
monomer. The repulsive energy arises from the Pauli repulsion between sets of
orbitals on each monomer with a range of characteristic decays or ¢. So the repulsive
energy has a composite of range parameters within it. Second, the energy is actually
derived from the overlap which is itself, for atomic orbitals, a Rydberg function.
There are angular components for orbitals with [ # 0 from quantum mechanics, but
these are ignored in this simpler treatment as the current thesis tests the application
of isotropic pair potentials. The problem of curvature is even more pronounced with
the attractive potentials because they arise from interactions of the more diffuse
excited states. Hence, a smaller effective C or, equivalently ¢, means that R is
farther from the asymptotic region where the highest order polynomial term in _the i
overlap expression dominates. o

The Rydberg function of order two (RYD2)
ERYPY(R) = Ae™“R(1 + p1(R + p2R)) (II1.3)

is used to improve the fit of monotonic potentials. As is shown in Figures II.1 and
I1.2, the RYD2 fit improves the fit of the attractive potential, but not so much the
repulsive, which is fit well by the pure exponential function. Since this function is
difficult to use in simulations, however, and since the gain in accuracy over the pure
exponential is modest, the latter is preferred here.

Functional fits of the total COMP potentials are obtained for the common
potential functions LJ 12-6 and E6. The parameters and quality of the fit are
summarized in Tables III.3 through III.6. In addition, unconventional functional

forms are used in order to obtain a more accurate fit, the Morse and EXEX functions
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Table II1.3. LJ Parameters

Atom R. D. RMS (x108)
C 3.894  0.0981 1.470
N 3.641  0.0859 3.615
0 3.328  0.0964 2.091
F 3.443  0.0328 6.956
Si 4.768  0.2230 9.861
P 4196  0.4146 0.490
S 3.904  0.449 0.087
cl 3.767  0.328 1.284
C-0 3.710  0.0870 22.976
N-F 3.468  0.0659 2.076
P-Cl 4217  0.219 32.27

(Appendix A). Note how the error in the fit is improved at least threefoldlii{ each -
case from a Morse fit to a generalized Morse fit as was observed previously With'
nitrogen alone. |

The potential function parameters are given in the series of tables for the
four functional forms LJ, E6, Morse, and EXEX. Just as for nitrogen, the EXEX
function fits better than any of the other functional forms. As a rule, the more
parameters the better, for LJ 12-6 is the worst in all cases and the two three-
parameter potentials are in the middle for rms error of the best fit. These fits are

illustrated in the figures of Appendix B.
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Table I111.4. E6 Parameters

Atom R. D. ¢ RMS (x10)
C 3.919  0.0997  13.507 0.825
N 3.633  0.0886  14.750 1.444
0 3.296  0.1030  15.604 0.974
F 3.325  0.0489  17.786 3.897
Si 4736 0.2199  14.404 2.782
P 4.288 03933 11.877 0.019
S 3.908  0.456 14.192 0.020
cl 3.705  0.396 16.724 0.091
C-0 3.718  0.0873  13.827 0.270
N-F 3.437  0.0701  15.444 1.437
P-Cl 4.246 0.217 13.702 3.47

The most illuminating part of the parametric fits is the patterns between
elements and the universality of the topology of the binding curve. Figures inI.l’
and III.2 show the potential functions all together on the same scale for the first
and second row elements. There are, of course, marked differences between them
which are also apparent from a perusal of the parameters in Tables II1.3 through
IIL1.6. Figures II1.3 and III.4 show scaled curves all together and then it is apparent
that scaling out the values of R, and D, of each curve gives a universal curve with
R., D, = 1. This curve can be scaled back to a real curve then, given parameters
for a new atom pair. For these figures a third parameter, {, was scaled and set to
12 (see Appendix A).

Now a force field can be designed which uses the average of a set of scaled
curves as a numerical universal curve and refers to a table of parameters to generate

numerical potentials by rescaling the universal curve for a particular atom pair. The
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Table I11.5. Morse Parameters

Atom R, D, ¢ RMS (x10%)
C 3.994 0.0990 10.963 1.338
N 3.641 0.0896 12.381 1.227
O 3.328 0.1073 12.480 1.011
F 3.364 0.0483 13.535 0.630
Si 4.767 0.2230 12.243 0.698
P 4.308 0.3972  10.811 0.002
S 3.932 0.455 11.800 0.008
Cl 3.789 0.407 12.146 0.109
C-0 3.728 0.0898 12.272 0.495
N-F 3.468 0.0749 12.748 0.0835
P-Cl1  4.238 0.226 15.523 1.04

?arameters would be fit to data for atom pairs which are included in the initial dAata' ’
set. Then some rules can be used to generate parameters for unknowri pairs'.: To
illustrate the robustness of the EXEX fit, the parameters can be generated from
(A,C,B,D) values of Table II1.2 using Equation A.31. The resulting EXEX function
is compared to the direct fit in Table II1.6 in Figure IIL.5.

Béhm and Ahlrichs® (BA) calculated potentials for twelve atoms and ob-
served systematic dependence of fitted functional parameters on the IP. They
performed first-order SCF calculations to give repulsive potentials. This approach
orthogonalizes the density matrices of each monomer in the cluster calculation, a
way to treat BSS interactions. The potentials they calculated were done at four
or five points and over a range in energy from about 0.1 kcal/mol to 24 kcal/mol.
In keeping with the purpose of the present study they chose energies for chemical

interest, for simulations at temperatures below 1000K. The curves were all fit by a
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Table II1.6. Exp-Exp Parameters

Atom R. D, ¢ £ RMS (x10%)

C 3.942 0.0995 11.456 2.998 0.371
N 3.646 0.0891 12.389 2.640 0.212
) 3.314 0.105 12.645 1.947 0.354
F 3.372 0.0497 13.359 1.633 0.080
Si 4.772 0.2231 11.834 1.879 0.074
P 4.306 0.3969 10.812 2.078 0.009
S 3.922 0.456 11.939 2.527 0.001
Cl 3.742 0.404 12.758 2.931 0.009
C-0O 3.722 0.0880 12.046 2.742 0.118
N-F 3.467 0.0748 12.747 2.036 0.0783
P-CI 4.237 0.228 12.617 1.846 0.930

simple exponential curve, Equation III.1, with an error of 0.025 kcal/mol. Fitted
exponential parameters are listed in Table I11.7. |
Trends found in the first and second row cases studied here could be used
to generate parameters for new atom pairs since trends have been found based
on atomic properties. Fits of the exponential parameters, A, B, C,and D to some
function of IP have been know to give some correlation.
{ A(VIP) =bs+maVIP (II1.4)
C(VIP) = bc + mcVIP
This is especially so for the range parameters which corresponds with the size
of orbitals. The repulsive one, C, is proportional to vIP from elementary
considerations.® The fits are performed using two [P values, the atomic IP and
the valence averaged I[P (VAIP) from Rappé and Goddard.l® The VAIP (and the

same goes for VAEA) is designed to represent the effective IP of an atom in a
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Table II1.7. Exponential Fit Parameters (Adapted from BA®)

Atom A(kcal /mol) C(A)

H 1631.526 2.630883
C 31814.76 2.761293
N 44992.47 3.239463
0 61433.23 3.711964
F 82956.82 4.192024
P 107931.7 2.453222
S 90173.19 2.844453
Cl 121485.9 3.163863
Ar 206074.3 3.589114

molecule. Chemical bonds alter the valence orbital structure of some atoms and,
hence, the I P. For example, Be has an s? ground state. In some molecule like 'B;_eH‘g
the hybridization changes to give Be a state more like (sp)? which has a difféfeht Ip
than the free atom. One result, as in Table II1.9, is that the VAIP nunibers are a
monotonic function of atomic number even when I P is not. Since these clusters use
molecules rather than free atoms (except, of course, for the noble gases) the VAIP
should be tried. Linear correlation here can be used to extend the set of parameters
known for a given row.

Unfortunately, the fits are flawed for the second row. If the fit is done only
to P, S, and Cl as BA® have done then the fit yields a negative value for C of silicon.
To avoid this absurdity, silicon may be included in the fit set, but then the problem
is that both sets of I P values are monotonic in atomic number while the list of
C values including silicon is not. The fit is irredeemably poor. Furthermore, this
approach is limited because the fundamental energy expression which relates v/ TP

to the parameters are derived only for simple systems. The wavefunctions of the
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Table I11.8. Linear Fits of Parameters

Parameter b m Avg. Error
Alstrow 194,504 62.501 4589
Alstrow VA -194,504 61,930 6334
Clstrow -1.258 1.344 0.260
Clstrow VA -2.498 1.600 0.093
D?ndrow 0.3514 0.2738 0.0308
D2ndrow VA 0.3264 0.4297 0.0118

diatoms in the present thesis have more features than the systems in the textbook
problem. For instance, there is angular dependence of the wavefunction around the
bond axis and there are fluctuations in amplitude of different orbitals along the
bond axis. This complicates the simple v/TP analysis and the present calculations,
being more accurate than those of BA, demonstrate this intricacy.

A curious fact that is discovered with these fits is that while the range pa-
rameter, C, is difficult to fit for the second row, the attractive range, D is it well:
While the equivalent fit for the first row is poor, only the second row fit is listed in
Table I11.8.

When this fitting is successful, or in cases that calculation may augment
the /TP dependence, these relationships provide a way to account for the effect of
polarization on the van der Waals potential. It is known from calculations that the
changes in atomic charge change, in turn, the van der Waals radius of an atom. Hart
and Rappé” have observed with H-A molecules that when A is more electronegative
than H, the van der Waals radius of H is diminished. Accordingly, when A is
electropositive, such as an alkali metal, the radius of H is increased. This makes
sense in that the removed electron density in a partially positive H atom decreases

the amplitude and range of the valence wavefunction, making R. decrease.
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Table 111.9. IP and EA Values for Selected Atoms.

Atom IP (eV) VAIP EA(eV) VAEA
H 13.59844 13.59844 0.754 0.754
He 24.58741 24.58741

C 11.26030 8.298 1.2629 0.2797
N 14.53414 10.406 -0.07 1.0188
0 13.61806 12.778 1.4621 2.0593
F 17.42282 15.422 3.399 3.399
Si 8.15169 5.986 1.385 O..681
P 10.48669 7.655 0.7465 1.463
S 10.36001 9.453 2.077‘1 2.442
Cl 12.96764 11.413 3.617 3.617
Ar 15.75962 13.510

Roughly then the linear dependence of C on v IP gives a way to predict this
change. One can construct an effective P for a charged atom which is greater th’aﬁ_

the neutral atom IP (IP°) for +¢ and less than IP? for —q.
IP(q) =IP° + %(IP — EA)g (II1.5)

This linear equation gives an effective IP(¢) in terms of atomic properties, the IP
and the EA. The coefficient of charge in Equation III.5 is called the idempotential,
n = $(IP - EA). The potentiall can be modified by the charge by calculating C
for IP(q). It is convenient to relate potential parameters to an atomic property
such as IP about which much is known.8~10 This charge modified van der Waals
(CMVDW) approach can be imiplemented in simulations software in the future to
yield more realistic potentials.

Combination rules are an important aspect of the ab initio potentials. They

are frequently used in simulation because they allow the amount of stored param-
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eters to be conserved. That is, only homogeneous potentials need to be known
and heterogeneous potential parameters can be determined quickly by the likes of
Equation I1.7. Tables II1.3 through I1I1.6 give the functional ﬁfs to the heterogeneous
potentials calculated with the COMP method. With both the homogeneous and
heterogeneous COMP potentials available, the test is to apply combination rules to
a pair of homogeneous potentials and compare it to the heterogeneous case. It can
be seen from the parameter tables (Tables II1.3 through I11.6) that the parameters
do not combine very well. What does combine better are the monotonic potentials.
Actually they combine separately and the final curve can be assembled from the
combined potentials.

The first step is obtaining the mean exponential parameters with the follow-

ing combination rule

A= l(A + A2)
{0:3/011_02 2 (I11.6)

where A and C are the parameters for the combined monotonic potential. The same

treatment is applied to B and D.

Table II1.10. Combination of Exponential Fit Parameters

Atom A o B D

C-0 13,803.12 3.2108 152.76 1.7821
N-F 52,972.25 3.9509 52.26 1.7330
P-Cl 78,857,80 3.0725 290.44‘ 1.4668
(C-0) 17,462.18 3.2108 152.76 1.7821
(N-F) 55,460,64 3.9509 61.20 1.7330

(P-Cl) 110,608.32 3.0725 235.90 1.4668

What Table III.1 shows is that by combining the exponential parameters a

closer match is obtained between the mean values and the actual parameters from
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the ab initio potentials. What is also striking is that the match in exponential pref-
actors, especially the repulsive one, is rather poor while the match with exponential
range parameters is far better. Since there is really one pro.blem parameter, A, a
refinement of this monotonic combination rule (MCR) is to rescale A with a single
value from the calculated repulsive curve. The idea is that the calculation of the
combined energy at just one point is a small price to pay for accurate combined
potentials. If this is viable then it is still far better than explicitly calculating the
combined potential for every heterogeneous pair.

Here it seems that only the A parameter needs any special treatment. This
indicates that the only heterogeneous ab initio calculation that needs to be done
is a repulsive energy. This is encouraging because the primary expense of COMP
calculations is the correlation energy. The HF energy takes a small fraction of the
time (between about 10% and 30%). The scaling works in a straightforward way.
The scaling point Rscq; is chosen to be R, or the closest calculated point. A scaling

coefficient is developed from the repulsive energies
A= ErD-Ce;Y(Rscal)/Erep(Rscal)y (III7)

where the E potential is not an ab initio potential but, rather is computed using the
combined parameters above (Table I1.10). This factor is then applied to the E,,
potential. The fits give much more accuracy as the scaling brings the monotonic
potential much closer to the ab initio heterogeneous potential.

The second set of parameters in Table III.10 is scaled by A from Equation
I11.7. Figure II1.6 shows how this improves the fit significantly. This scaling can
be applied to the attractive potential as well as the repulsive (Figure II1.7). In the
case of C-O, B is left unscaled because the combination rule potential is already
very close to the ab initio potential (as would be seen by the one energy point
comparison), but it is scaled for the other two cases. The scaled A and B values
in Table II1.10 actually differ from the ab initio values in Table III.2 because the

scaling does not necessarily correct the prefactor entirely from the comparison of
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a single point. What happens is that because the range parameters differ, the
prefactor should not match exactly. Perhaps a refinement of this scaling would
use two points of the heterogeneous ab initio potential to correct both parameters
simultaneously. For now, however, this simple one point scaling works remarkably

well.

Table I11.11. Combination of Total Potentials.

Case R, D. ¢ §

CO 3.726013 0.092811 12.54803 1.80802
NF 3.47013 0.079677 12.93884 2.312555
PCl 4.255881 0.226158 12.51106 1.972366
CO 3.584948 0.113837 12.11037 1.796696
NF 3.492046 0.069082 12.92211 2.27991
PCl 3.950458 0.46215 11.86009 2.094759
CO 3.750569 0.084743 12.66986 1.796696
NF 3.483954 0.074643 12.89216 2.27991
PCl 4.29069 0.227893 12.88154 2.094759 -

The actual total potentials resulting from the combination are described by
the EXEX parameters in Table IIT.11. There are three sets of data within the
table. First, a recombination of monotonic parameters gives EXEX parameters
with the use of Equation A.31. These match well the parameters fit directly to
the COMP data in Table III.6. Second, data from given by Equation A.31 once
again but using monotonic parameters given by the straight combination rule in
Equation II1.6. These deviate from the desired numbers, especially in D.. Third,
the scaled monotonic parameters are used to produce EXEX parameters which give
an outstanding match to the direct fits (Figure III.8).

The results of this section are very pertinent to simulations and the choice
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of potential functions. The overall result is that the EXEX function is shown to be
the best for fitting the COMP potentials. This is tied to the basic monotonic, expo-
nential potentials, because the EXEX function, more than the others, is built from
two exponential functions. The exponential parameters are themselves correlated
to atomic properties. The monotonic potentials are also valuable for combination
rules because combining is more obvious with the monotonic curves. Moreover,

accurate combination rules are obtained if the scaling procedure is applied.
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I11.4. Quantum Potentials: Hydrogen

Hydrogen is treated differently from the other elements in this study. For one,
its calculation was set up differently than the others because it needs a different basis
set. More importantly, the van der Waals potential of hydrogen (and of helium)
is qualitatively different from those of heavy elements. The equilibrium binding
energy and long range dispersive tail are both exceptionally weak. Accordingly
atomic hydrogen has a low polarizability (Table II1.12). Because of these properties,
the regular COMP method has problems with hydrogen.

Table II1.12. Polarizabilities (A3) of Some Atoms and Diatoms'!

Atom aétom Qdiatom
H 0.666793 0.8023
He 0.2050

N 1.10 1.7403
O 0.802 1.5812
F 0.557 1.38
Ne 0.3956

Cl 2.18 4.61
Ar 1.6411

Br 3.05 7.02

COMP potentials for hydrogen were calculated in the usual manner using
HF/DZDP™ for E™*P(R) and MP2/DZDPDZ for E**(R). Table B.21 shows the
results over the relevant range of R. Functional fits yield parameters in Table
IT1.13 and are illustrated in Figure B.9. The equilibrium van der Waals distance
is around 3.64A. In contrast, both the empirical potential of Williams and the SA
potential from ab initio put R, near 3.2 A. For hydrogen more than for the heavy

elements there is a problem with the COMP approach. The hydrogen potential
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is a valid potential for the Doy geometry of the cluster, but this geometry and
the chemical environment of the H atoms within the cluster may not be relevant
to other systems. For example, hydrogen is charged in allvmolecules besides Ho.
Hart and Rappé have demonstrated” how this charge modifies the van der Waals
R, significantly. Attempts to overcome this problem with the standard COMP
approach are to modify the COMP potential according to the H charge and to

examine potentials for different orientations of the diatoms in the (Hs)s cluster.

Table III.13. Parameters of Potential Function Fits to the Hydrogen
COMP Potential

Potential R, D, ¢ ¢ RMS (x10%)
LJ 12-6 3.6294 0.00860 6.643
Exp-6 3.6305 0.00876 14.385 ... 3.282
Morse 3.6498 0.00893 13.306 ... 2.955
Exp-Exp 3.6407 0.00885 12.276 2.605 11 x 10~

Because orientational anisotropy might be crucial in modeling the hydrdgen
potential properly, more potentials were calculated just as for (N3)s in section II.3.
Three geometries of (Hg), were treated with the COMP method to give potentials
for different relative orientations of the bonds. Just as for nitrogen, in Section II.3,
the CRS, TEE, and LIN geometries are studied (Figure I11.9). The resulting po-
tentials (Table II1.14) are quite different. The CRS potential has a longer R, and a
smaller D, compared to the other two. It is likely that the TEE and LIN potentials
are more relevant for simulations given the orientation of C-H bonds in many mate-
rials. For instance, in polymers and macromolecules there is a backbone of carbon
with hydrogens pointing outward. This structure predisposes pairs of H atoms on
neighboring molecules to have their respective H-C bonds in a configuration more

resembling LIN or TEE than CRS (at least for close contacts such as the closest
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Table I11.14. EXEX Parameters for (Hy)s Clusters

Cluster R. D, ¢ | ¢

CRS 3.6407 0.00885 12.2761 2.6052
TEE 3.3869 0.01496 10.4586 2.7794
LIN 3.2942 0.01153 10.7902 2.3149
CRS1 3.6407 0.008850 12.27605 2.6052
TEE1 3.2765 0.02388 10.12076 2.7802
LIN1 3.0831 0.02780 10.10413 2.3150

H...H pairs).

An accurate van der Waals approach might correct the problem by developing
a dependence on atomic charge. It is possible that the COMP potential for hydrogen
is inaccurate because it is for neutral H and H found in real molecules is charged
(usually positive). For instance, hydrogen atoms bound to carbon have a ,c_;h_ar"g_e '
of about +0.15.1%13 According to the CMVDW model above this charge éhqu}d
modify the van der Waals potential, in this case making R, diminish. Taking the
exponential fit of the repulsive Hey potential, the repulsive range parameter is fit
to vIP. The result is C = mvIP + b with m = 0.806783 and b = 0.426176.
For gy = +0.15, the IP(q) is increased from 13.598 to 15.525 eV and the range
parameter is increased, in turn, from 3.400 to 3.605. The final effect this has on
the potential is found using the EXEX parameter equations from section A.1. The
R, is reduced to near the DREIDING value. The final parameters with CMVDW
are (3.20, 0.0220, 11.17). For simplicity only the C parameter is charge modified
because it has the clearest dependence on v/ITP and has the most influence on the
equilibrium distance.

Hydrogen is an interesting case because there is exact data on its electronic

states. Kolos and Wolniewicz!* (KW) have calculated the energy and first derivative
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of Hy over a large range of distances for the ground state, X 12;, and the b state,
3%+, These potentials provide a basis for comparison with the COMP curve because
a van der Waals potential can be constructed from the KW data. Any pair of
hydrogen atoms which have nonbonded interactions will each be bonded to some
other atom (free atoms are ignored in the present study). Statistically the hydrogen
atoms will be coupled as either a singlet or a triplet. In fact, they will be a singlet
% of the time and triplet the other %. So, combining the exact potentials for the X

state, E°=9(R), and the b state, ES=1(R) in the proportions
E(R) = E(ES"O + 3E5=1) (I11.8)

makes a spin averaged (SA) van der Waals potential. The approximation is that
the KW data is for atoms bonded to each other while in reality the bonds are of a
different nature (most simulations will be done on systems other than Hs(z¢) and
they are oriented in any number of different ways. Most importantly, the valence
orbitals of hydrogen atoms will be shaped differently in materials than in the H
molecule. |

Be that as it may, this provides an excellent opportunity to test a molecular
potential against a van der Waals potential. The SA potential is fit by a Morse
potential to give parameters of (3.229,0.026,9.819). Williams, on the other hand,
has (3.195,0.0152,12.382) with an E6 function.!® Also Karasawa and Goddard have
fit an E6 hydrogen potential using the properties of polyethylene!® with the result
of (3.167,0.020,11.2). In comparison to the empirical potentials, the SA method is
possibly a viable technique.

Because tests with diatomic fluorine were both difficult and inaccurate at the
CASSCEF level, this approach is not pursued here, but suggested as an alternative to
COMP. It is possible that SA potentials will eventually be easier than calculations of
the COMP type because only two atoms are involved. It also makes sense that the
forces probed by an electronic structure calculation of a single diatom will reveal all

that is necessary to model the pair interaction in simulations. The effort of refining
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this approach is uninviting at the present time for two reasons. First, optimization
would require a higher level of wavefunction to obtain accurate energies in general.
Second, and more forbidding, is the choice of electronic states to study. Already
with fluorine there are several symmetries of triplet state which are relevant. Also
with heavy atoms there are more spin states to average than just the singlet and
triplet states of hydrogen. Furthermore, since many diatoms have open shell ground
states, the choice of wavefunctions to average over is somewhat arbitrary.

The superiority of the COMP approach is that the interaction energy of the
clusters is directly related to a van der Waals interaction. Also the refinement of
the SA approach necessary to obtain an accurate method are considerable. There
are also inherent limitations in the SA approach that are not present with COMP.
For instance, it is possible, and even assured in some cases, that the pair potentials
need to be modified by information about the orientation of bonds because van
der Waals interactions in materials are anisotropic. This cannot be done in any
straightforward manner with SA calculations. Second, there is less ambiguity in.
the choice of electronic states Wi‘ph COMP calculations because the molecules Wthh i
comprise the cluster are in their ground state (or a judiciously chosen ex_citéd state),
while with the SA calculations, it is not clear how to choose the states relevaht td.
simulations.

Force field tests!® with the COMP hydrogen potentials show that the stan-
dard potential, from the twist geometry, is not appropriate for hydrocarbons. With
R. ~ 3.90 A it gives the wrong structure for polyethylene crystal. The computed
density is too low. For comparison, the experimental structure of polyethylene
crystal'” has a Pnma cell with (a,b,¢) = (7.1946 A,2.5443 A,4.7989 A) and all
angles are 90°. Optimizing the structure with the COMP potential gives a unit
cell volume of 122.74 A% compared to 87.84 A3 for the observed structure. This
enlargement of the unit cell is almost evenly divided into a 14% stretch in ¢ and a
17% stretch in c¢. These are the two directions dominated by van der Waals forces

while b is the chain axis and is defined both by van der Waals forces and by the
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valence forces which define the hydrocarbon backbone. This cell parameter is too
large as well, by 4.7%. That error is also due to the fact that the valence force
field, DREIDING,!® has not been optimized for these van der.Waals potentials. As-
suming that optimization could be done, and the work of Karasawa and Goddard!?
demonstrates that this is a straightforward task, the b lattice parameter can always
be correct for the right valence potentials. Then the effective error made by the
COMP potentials is not 40% but rather 33%. Nevertheless, this van der Waals
potential for hydrogen is not optimal.

The orientation of the diatoms in the ab initio cluster actually changes the
potential quite a lot. EXEX functions are fit to the LIN and TEE structures in
Table III.14. Those are much closer to the Williams values in Table 111.14 and the
structure of polyethylene crystal is simulated more accurately by these than the
standard COMP potential. When optimized with molecular mechanics'” the LIN
potential gives polyethylene cell parameters of (7.377,2.552,4.935) and TEE gives
(8.141,2.669, 5.649). While the density is still too low, the forces are clearly more.
accurate if several orientations are used in the ab initio modeling instead of jusftbﬂ_e. :
Moreover, the default orientation in the present study is the worst one for hy'drogenf»_
Since hydrogen has a low atomic polarizability there is a large difference between
the polarizability parallel and perpendicular to the bond in H,. This difference
is also present when hydrogen bonds to heavy atoms. The result is that the van
der Waals attraction is stronger than ab initio calculations predict and equilibrium
distances are, hence, shorter. )

It is a snag in the ab initio methodology of the present thesis that hydrogen
is the most problematic case because it is, in simulations, the most prevalent. There
are few material simulations which do not have hydrogen atoms. More importantly,
molecules tend to have hydrogen atoms on the exterior so that contacts betweeh
molecules involve hydrogen disproportionately. These contacts, being the closest
atom pairs, dominate the intermolecular interactions in macromolecule and mate-

rial systems. Hence the hydrogen potential is the most important van der Waals
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potential in a molecular mechanics force field. For the future, in order to make
the ab initto COMP approach more useful as a tool in the design of force fields,
the hydrogen van der Waals potential should be improved. On the other hand, the
problem is manageable at the level of the present study because hydrogen is a spe-
cial case. If hydrogen must be treated ad hoc with a special potential, an empirical
potential, or a specially constructed ab initio potential such as the SA one above,
that is acceptable because the COMP potentials can still be used for the remaining
elements.

Another peculiarity of hydrogen which is very important for modeling is the
hydrogen bond. This also is neglected by the COMP calculations. The structure of
a hydrogen bond has hydrogen in a polar covalent bond, A-H, where A is nitrogen,
oxygen, or even fluorine. Then if the hydrogen is directed at a lone pair on another
‘atom from this same set a hydrogen bond can form. This involves a larger bond
energy than is typical for van der Waals interatomic attraction, =~ 1 kcal/mol, about
tenfold larger than van der Waals D, values. Also the distance of the hydrogen atom
to the acceptor is smaller than R.. Typical distances are approximately 2.6 to 30
A between the heavy atoms. The nonbonded distance from hydrogen to 'tAh.e l.o,n'é.
pair is about 1.5 to 2.0 A. |

Because van der Waals energies become repulsive at separations about 10 to
15 % less than R. (Cf. Appendix A) the usual potentials cannot model this at all.
The problem may be resolved by modifying the van der Waals potential for charge.
If the amount of charge transferrred in a hydrogen bond is taken into account it
may reduce R, sufficiently to allow the close approach observed in hydrogen bonded
structures. The hydrogen bond, however, is more problemafic to model than merely
tuning the potential to have the correct R. and D.. In weakly associated molecules
with hydrogen bonds, the hydrogen moves rapidly between the heavy atoms. Each
time it switches the identity of the atom to which it is bonded and the hydrogen bond
acceptor. On the one hand, since molecular modeling programs are not designed

to break bonds and change connectivity in simulations, the hydrogen bond is not
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easy to model. On the other hand, since this oscillation leaves the distance between
the heavy atoms unchanged it may be acceptable for structural analysis to model
hydrogen bonds while enforcing the approximation that thé chemical A-H bond
does not break.

Be that as it may, the facile treatment of hydrogen bonding is to declare,
as is usually done in physical chemistry, that it is in a category separate from
and somewhere in between chemical bonding and van der Waals bonding. That
is, the ab initio calculation of COMP van der Waals potentials must be narrow in
focus and relegate hydrogen bonding to another computational study. A potential
which actually fits polyethylene crystal better is CMVDW. Unfortunately, a fit of
parameters to v/IP is not as solid for H as for first or second row atoms because the
H row only has two elements. So, while an accurate fit is assured, its meaning for
Equation III.5 is open to question. The fit yields m¢=0.806783 and mc=0.426176
as above. Given the IP and FA of H and He from Tables I11.9 and II1.10, the I P
for hydrogen in a hydrocarbon is I P(+0.15)=15.5246 eV, elevated from the neutral
atom number of 13.598 eV. This, in turn, reduces the repulsive range paran}etéf
through Equation II1.5 and gives a Morse potential with parameters (3.20, 'AO..OZZO’,'/
11.17) which is excellent for polyethylene. |

The modeling of hydrogen is indeed the most difficult case in the present
thesis. Moreover, it is likely the most difficult case in the periodic table. For even
if the representation by a pair potential is improved, any errors are compounded
because hydrogen is so prevalent and influential in simulations. Just the fact alone
that most close contacts in molecules and materials involve hydrogens makes this
potential crucial. The status of this thesis is that a pair potential exists which will
give accurate modeling results. Unlike in Section III.3 where the COMP potential
directly provides the information, however, here several approaches are used to con-
verge on the solution. Because of the limitations of the SA approach the COMP
approach, perhaps with orientational sampling, is more promising to develop fur-

ther. For now the CMVDW potential is used for further test cases.
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I11.5. Modeling Test Cases

The potentials for carbon, nitrogen, oxygen, and fluorine were tested by
implementing them in molecular mechanics simulations of crystals. For comparison,
the parameters of the van der Waals energy in the DREIDING®® force field are
listed in Table III.15. Most of these are taken directly from the empirical fit work
of Williams and coworkers,'® but the atoms which have ¢ = 12.000 were determined
by the designers of the force field, Mayo et al. Comparing the DREIDING R, and
D, parameters from Table II1.15 with any of the parameters sets for COMP from
Tables II1.3 to III.6 shows similarities. The R, and D, values for C, N, O, and F
have the same ordinal relationship for the COMP potentials and DREIDING. The
zigzag trend of D, increasing from C to N and from O to F but decreasing from N
to O, is present in the COMP and DREIDING parameters.

Graphite is modeled well by the COMP carbon potential. The equilibrium
spacing from x-ray crystallography'® is reproduced to within 0.02A. The experi-
mental value of ¢ = 6.67 A is given upon minimization. The cohesive energy which ;
provides a test of the well depth of the COMP potential is not available from ;e‘xpelr} :
iments. Our potential yields 1.170 kcal/mol. Another property controllAed’ 'cAlyirectlyv_
by nonbond forces is the elastic constant Cs3 which is the compressibility along the
crystal axis direction. COMP gives 63.8 GPa.

The minimum energy phase of molecular oxygen and of molecular fluorine
both have similar structures. These are the a phases and consist of closest packed
layers of diatoms parallel to each other (in Fy(,y the molecules are tilted from the
plane by 18°). Then the planes are stacked so that the lone pairs of molecules point
toward each other.

While fluorine crystal is difficult to model with pair potentials, a more im-
portant test is fluorocarbons. Real simulations will be concerned with molecules
in which fluorine is bonded to something other than another fluorine and most
commonly bonded to carbon. Williams found his fluorine potential by fitting the

structures of a few aromatic and anti-aromatic fluorocarbon crystals. One is chosen
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Table 1I11.15. DREIDING Force Field van der Waals Parameters

Atom R, D, ¢

H 3.19500 0.01520 12.38200
B 4.02000 0.09500 14.23000
C 3.89830 0.09510 14.03400
N 3.66210 0.07740 13.84300
0 3.40460 0.09570 13.48300
F 3.47200 0.07250 14.44400
Al 4.39000 0.31000 12.00000
Si 4.27000 0.31000 12.00000
P 4.15000 .0.32000 12.00000
S 4.03000 0.34400 12.00000
Cl 3.95030 0.28330 13.86100

Table II1.16. Oxygen Potential Test With Og(xu)

Force field a(A) b(A) c(A) Iéj p(g/cm?)
DREIDING 5.724 3.282 5.094 135.03° 5.495
COMP 5.705 3.280 5.095 134.32° 5.448
COMP(ES6) 9.551 3.214 5.124 135.19° 5.769
Expt 5.403 3.429 5.086 132.53° 5.352

here as a test case, octafluorocyclooctatetraene, which has the benefit of having a
varied distribution of angles between bonds. The structure?® is monoclinic, P2;/c,
with cell parameters a = 9.96(1)A, b = 7.04(1)A, ¢ = 12.66(1)A, 8 = 111.6(1)°.

The comparison is done holding the molecule geometry rigid but letting the unit
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cell geometry vary. Also charges are assigned following the prescription of Karasawa,
and Goddard?! with a charge of -0.17 on the fluorine atoms and a balancing charge
of +0.17 on the carbons. The mechanics is done with a cutoff of 9A. The mini-
mized structure with the COMP force field using a Morse function was a = 9.944,
b= 7.084, ¢ = 12.65A, 3 = 111.8°. In contrast, with DREIDING, the result is
a = 9994, b= 7184, c = 12.714, 8 = 111.6°. In this case the accuracy of the
cutoff was tested by repeating one calculation with a cutoff of 15A. This increased
the length of calculational time by a factor of three, but did not change the result
much. The force changed from 13.9987 A-kcal/mol to 13.9982 and the rms cell
gradient changed from 2.8885 to 2.9187. Both force fields yield good results with
this structure. The result with COMP is excellent considering that DREIDING was
parameterized to fit cases including this one while COMP is purely ab initio.

Several established force fields have chosen van der Waals parameters for
some of the elements here. These are all based on empirical data. The AMBER
and CHARMM force fields were developed for the modeling of biological molecules -
such as proteins and DNA. As discussed by Rappé and coworkers??:23 the emp;haé_is :
of these force fields was on accurate valence parameters and van dervwaéls_ ,pa;,
rameters were determined using phenomenological approximation or extrapolétioxi
from known values. Among these three, listed in Table II1.17, Rappé shows that
DREIDING performs superiorly, thus demonstrating the importance of accurate
van der Waals potentials, perhaps over valence spring parameters. The COMP po-
tentials are quite applicable and useful to force field design. In keeping with the
goal of this study the calculation is straightforward with an acceptable computa-
tional cost. The accuracy is also more than acceptable considering this is basically
a judiciously designed MP2/TZ calculation.

So, the approach is versatile enough to be refined to higher accuracy by
directly increasing the wavefunction level and basis set completeness. Because of
fundamental accuracy problems such as anisotropy and charge dependence of the

van der Waals potential and even the accuracy of the pairwise treatment itself, the
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Parameters from Different Force Fields

Atom AMBER CHARMM DREIDING

H 3.08, 0.01 2.936, 0.0045 3.195, 0.0152
H-bond 2.00, 0.02 1.60, 0.0498 3.915, 0.0001
C 3.60, 0.06 3.60, 0.0903 3.8983, 0.0951
N 3.50, 0.16 3.50, 0.238 3.6621, 0.0774
O 3.20, 0.20 3.20, 0.1591 3.4046, 0.0957

higher accuracy COMP calculations are not very important at the present time.
For if the accuracy is reduced to, say, less than 0.1%, then with these other is-
sues unsolved there is an inherent inaccuracy which far exceeds the COMP energy

accuracy.
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Figure 1ll.1 A composite of C, N, O, and F potentials plotted
with the same distance and energy scale.
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Figure .2 A composite of Si, P, S, and CI potentials plotted
together with the same energy and distance scale.
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Figure 1.3 A composite of scaled potential energy points for
C. N, O, and F. The energy and distance are unitless and the
curvature is scaled to 72. The points are plotted against a
Morse function (line) for comparison.
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Figure lil.4 A composite of scaled potential energy points for
Si, P, S, and Cl. The energy and distance are unitless and the
curvature is scaled to 72. The points are plotted against a
Morse function (line) for comparison.
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Figure .5 The EXEX parameters from direct fits are show
with solid lines (data points indicated by markers). Also EXEX
curves generated from monotonic potential fits are shown for
comparison (dashed line).
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Figure I1.6 The combination of repulsive potentials is
examined. N and F potentials are shown in the same scale
along with the N-F data (points). Both the combination
(dashes) and the scaled combination (gray line) are included.
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Figure 1.7 The combination of attractive potentials is
examined. N and F potentials are shown in the same scale
along with the N-F data (points). Both the combination
(dashes) and the scaled combination (gray line) are insluded.
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Figure 111.8 The total potentials of N and F are plotted next to
the heterogeneous N-F potential. In addition the combination
rule potential is plotted (dashed line) and the scaled version

(gray line).
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Figure 1.9 Orientations of the hydrogen cluster are compared
to test the anisotropy of the van der Waals potential.
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Chapter IV. Conclusion and the Future of this
Approach.

The COMP method of computing van der Waals potentials establishes an
accurate and direct way to determine pair potentials for simulations. The strengths
of this method are that it has been optimized to be accurate with a small basis
set and it can be applied to any pair of atoms. The DREIDIN G? force field shows
that the fundamental design principle in constructing an accurate force field is that
high quality van der Waals potentials are essential.? Since there are inextricable
difficulties in obtaining adequate potentials for many atoms, ab initio potentials
promise to be very important in the development of the next generation of force
fields. Furthermore, this is the true challenge in developing newer and more accurate
force fields since valence terms, such as bond and angle spring constants, are more

directly obtainable.

The midbond and midpoint functions are a great asset to the calcﬁlation -
because they impart the necessary accuracy with an acceptable number of 'pas'ist o
functions. The midpoint function is the most efficient with only one diffuse flin.éti‘_o.n-'
basis set at the geometric center of the cluster. Midbond functions, on the b’ther" |
hand, placed at the bond midpoint of each bond, are important because they can
be used in all sorts of settings. While the midpoint functions cannot be generalized
in a transparent manner to arbitrary molecular clusters, midbond functions can be

applied clearly.

The COMP method is the first step in producing ab initio potentials for
simulations. The future will see two advancements over the present study. First, the
method will be applied either directly or at a lower level of accuracy to other atoms.
Yor larger atoms this may only be practical with the availability of ample computer
resources. The potentials of large atoms such as Br, Pb, and other third and
fourth row atoms is very costly with the current method. Effective core potential

calculations may be accurate enough to allow calculations on third-row atoms to be
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done as easily as the second-row calculations here.

Second, the COMP method may be reiterated on first and second row cases
with greater accuracy. This would also require increased computational power. The
use of MP4 level calculations with more complete basis sets, such as QZ, would give
more accurate potentials. Most importantly, the effective range of the calculation
could be extended to a larger R,,q;. That is, for DZSP basis sets, the calculation
is only accurate very close to the point where it is optimized, R, in this case. For
MP2/TZDP like was used here, the potential is accurate over a large enough range
to define a potential. For MP4/QZTP, the value of R.., may be twice as far from
R. as with MP2/TZDP. With a potential computed over such a large range of R it
may be easier to specify the lorng.range behavior of the potential. In Chapter III it
appears that the attractive tail has an exponential topology since it is fit well by a
Morse potential. This could be made more certain by extending the potential.

So, the approach is versatile enough to be refined to higher accuracy by
directly increasing the wavefunction level and basis set completeness. Because of
fundamental accuracy problems such as anisotropy and charge dependence ofthe
van der Waals potential and even the accuracy of the pairwise treatment itself, .t'he‘ :
higher accuracy COMP calculations are not very important at the present tiine.'
For if the accuracy is reduced to, say, less than 0.1% then with these other is-
sues unsolved there is an inherent inaccuracy which far exceeds the COMP energy
accuracy.

The method has also been shown to be versatile enough to produce poten-
tials for several orientations. This is made easier since the diffuse function sets
(either midpoint or midbond) are accurate for different geometries even if they are
optimized only in one single case. Here, the functions were optimized for the CRS
geometry and were adequate for the other geometries studied. These potentials
open the possibility to include orientation in simulations. The anisotropy of van
der Waals potentials is inherent in the nature of the electron density of the diatoms.

At some time, when simulation programs have more computational resources avail-
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able, orientational potentials will be implemented in generic force fields.

An issue with the implementation of COMP potentials in simulations is the
use of functional forms. The potentials can be implemented in a purely numerical
manner which assumes no functional form. Most simulation programs, however,
are more suited to potential functions. What’s more, these functions are ideal
for analyzing properties of van der Waals potentials by inspection. For instance,
a perusal of Table III.3 gives one an idea of trends from atom to atom and of
the topology of the potential of any single atom. For a while, at least, potential
forms will be prominent in the discussion of van der Waals potentials. The optimal
functional forms here are the exp-exp potential and Rydberg potential. These are a-
great departure from the usual-van der Waals functions in simulations which have
an R~® term in accordance with the London potential. The exp-exp potential,
however, is basically a short-range potential. So, as discussed in Appendix A, it
totally lacks the London potential, but describes the attractive emergy with an
exponential function only. This is indeed an advantage for simulations because the
exp-exp function has no long-range sum. For instance, in a lattice, the pr‘-’eﬁ{p
interaction can be ignored beyond the third shell. If this is accurate for materials;
the result would be faster simulations.

The COMP method lays the foundation for the next generation of generic
force fields which will rely on accurate van der Waals potentials. A few important
steps have been taken here. First, the technique for computing accurate potentials
has been optimized and tested on ten atoms. For these potentials the accuracy
of combination rules and isotropic pair potentials has been appraised. Second,
the relation of the van der Waals potential topology has been related to atomic
properties. Third, nonstandard functional forms are used to give the optimal fits of

the computed potentials.
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Appendix A. Potential Functions in Simulations.

A.1l. The Topology of van der Waals Functions.

This Appendix reviews the types of functional forms which are used to de-
scribe van der Waals interactions both in this study and elsewhere. There have
been a variety of such functions developed throughout the history of physical chem-
istry and most of them are still used currently in some particular setting. They all
develop parametrically an energy function of R, interatomic separation. The func-
tions studied here are isotropic pair potentials. There are, of course, anisotropic
interatomic potentials such as the Axilrod-Teller! three-body potential or spherical
harmonic approaches which build in angular structure of orbitals. Here we look only
at simple E, 4, (R) pair potentials which are the most widely used in simulations.

Pair potentials all share a few characteristics fundamental to the van der
Waals potential. First, there is a steep inner wall representative of Pauli repulsion.
Second, there is an equilibrium distance R. at which the energy is a minimum,. -
E(R.) = —D.. Finally there is an attractive tail on the segment (R, oc) where t‘he .
energy is nonpositive. Beyond that, some combination of exponential funct'ibns an‘ci
rational functions is composed into a potential function. The potentials are ‘v'jcheri
differentiated by topological characteristics such as the curvature near equilibrium.
Also, as a rule of thumb, the topological character of a potential function near
equilibrium is far more important than away from equilibrium. At chemical energies,
T ~ 1000K, it is only important that the inner wall be repulsive. The precise energy
above 1000K is not important, it is only important for simulations that the potential
is repulsive at small R. At long R it is less important to precisely specify or fit the
potential function. This is somewhat a matter of practicality as there is no data
which specifically determines, either from theory or from experiment, an interatomic
potential at long range, such as 30 A, for anything but a pair of atoms in a vacuum
treated by quantum mechanics. That is, besides the London dispersion potential of

two atoms there is no guide as to the interatomic potential energy of a pair of atoms
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in a molecule or in a crystal. At long R the asymptotic limit of the potential has
an unknown importance. It is often assumed that a van der Waals potential should
give the London dispersion interaction as its limit. This is not definitely known and
without direct experimental evidence to substantiate the assumption it is possible
that the induced multipole forces which form the basis for dispersion are somehow
either diminished or unimportant in molecules and materials due to screening by
other atoms.

Be that as it may, what is important in examining potential functions is the
character near R.. A simple way to characterize a potential is with three quantities,
R., D., and the curvature at R.. For comparison a unitless scaled curvature is
calculated —

K= (Rg/De) E”(Re)' (A1)

For van der Waals potentials k & 72. What may be more illuminating than the
curvature at the minimum is the relative position of two characteristic points, the
‘zero (Ro ) and the inflection point (R;), with respect to the minimum (R.). These "
points are defined in the usual way |
E(Rg) =0, the zero point
F'(R.) =0, the minimum (A.2)
E"(R;) =0, the inflection point
Stipulating, of course, that E”(R.) > 0 for potentials with more than one critical
point. The scaled versions of these points, pg = Ro/R. and p; = R;/R., have values
near 0.90 and 1.10. Small changes in these values along with changes in x represent
the fundamental differences between potential functions. These values describe the
function over the relevant range of R.
Two more characteristics of each curve which should be quantified are the
asymptotic behavior at short and long range. Here we define A and B to achieve
this

{A= limR_,o E(R) (43)

B = (spinr ) limpc RE(R) "
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The quantity A has only limited values it can assume. The limit is either finite,
infinite, or pathological (i.e. negative). The quantity B, on the other hand, is
more valuable. It defines the long range behavior of the potential function which is
related to the dispersion potential. The limit is scaled by R® because the London
dispersion potential and the attractive terms of several potentials are BR~%. This
B is of limited value for potentials which lack such a term. The comparison is useful,
however, because in the application of potentials to lattice sums in simulations, a
dispersion term can be important. A lattice sum of an infinite BR™6 attraction
gives a simulation which is sensitive to the value of B. Hence, B is useful to
compare potentials which are being fit at the same time to pair potential data and
to simulated crystal properties—-

There are some very simple potentials which lack the basic features listed
above. These potentials are both mathematically pathological and unsuited for
accurate simulations due to their simplistic construction, but are mentioned be-
cause of their widespread usage in physical chemistry. Furthermore, it is a striking
demonstration as to the minimal nature of characteristics which define interat;ohﬁc_
potentials in many situations that these potentials are useful for the maﬁy sim_u’-"
lations they have been applied to. The hard sphere potential and the square”'w.ell'
potential are used as crude approximations in scattering problems. The hard sphere,

the simpler of these two, is

Ehard—sphere<R) — {OO, for R < RO (A4)

0, fOI‘RZRo.

This two-valued potential has no equilibrium distance and curvature properties.

The square well potential adds to the hard-sphere an attractive region

0o, for R < Rg
Esquare—well(R) — { —¢, for R Z Rin . (A5)
0, for R > Rout

There is still no way to define R., Rg , and R;. Both of these pathological potentials

have the advantage of simplifying integrals in scattering calculations to constant
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values, and they have the correct limits as R — 0 and R — oco. Another pathological

potential of this type is the Sutherland potential

R < Ry

o0,
E(R) = {_ o Rm R R (A.6)

All of the following potentials, on the other hand, are not only well defined on
(0, 00) but are also C*. Among potentials which are C*(0, c0), most are C*°(0, c0)
the only exceptions being potentials which are piecewise constructions yielding a
C™ potential such as the Smith-Thakkar potential. This function interpolates be-
tween a Morse function and a CsR~% + CgR~8 term at long range with a Hermite
polynomial in between. Also the Aziz helium potential® consists of a spline interpo-
lation between a l\@rse and an R~ term. This Morse-spline-van der Waals (MSV)
and such potentials will not be examined here since the focus is rather to apply
simple functions, which are not piecewise constructed, to simulations relying on
a minimum number of parameters. Moreover the application of simple functional
forms constrains the topological character. Specifically, with a single function, the
topology of one region of the curve is inextricably linked with that of other regivo'n's“_._
In the case that this leads to inaccuracies, piecewise constructions are able to 'dodge '
the problem easily. Since such functions are both more difficult to implement in
simulations and more complicated to interpret, the simple functions are still very
useful. In this Appendix, the focus is on the simple functions. |

There are several well behaved potential functions which are used commonly
both to fit calculated potentials and empirical properties of materials.®~3 Consid-
ering their usefulness in modeling, simulations, and simply comparing potentials of
different systems it is important to explore the topological properties and versatility
of these functions. Three, the ones implemented in the POLYGRAF® program, are
included here. These are the Lennard-Jones (LJ) 12-6 potential, the exponential-6
(E6), and the Morse function. Two others are also included for a balanced survey,
the generalized Lennard-Jones (GLJ) function, which is a generalization of several

LJ type functions used in force fields, and the exponential-exponential (EXEX)
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function which is introduced in the present thesis. All but the GLJ function are

listed in Section II.1.
The simplest continuous potential function is the Lennard-Jones 12-6 func-

tion which has two free parameters
EY(R;A,B)= AR™? - BR™S. (A7)
It can also be written in terms if its characteristic distances.
_@9 —12 B _}E -6 (is)
R R ’

which is a very symmetrical expression in terms of the scaled distance (—g). It is

EY(R; Ry, D.) = D,

also often scaled WRC instead, giving the canonical form

3"

The parameters for these functions are written in n-tuples. In standard form this is

EY(R;R.,D.) = D, (A.9)

(A, B) and in canonical form (R, D.). Canonical form may be assumed in the__pex’t;‘
For functions below with more parameters these would be triples or qu'ad'rl.lples;.."
Also the units are assumed to be A for distance and kcal/mol for enérgy uniess'
otherwise specified.

The two forms of the LJ potential, Equations A.8 and A.9, are both used.
The only difference between them is a factor of two in the attractive term arising
from the fact that R, = 2§ R or po = 2-%. Also, p; = (—1-75)% This equates to a

nearly even spacing of Ry, R., and R;, for

O

13
pop (1 4> 0.988 (A.10)

For the LJ potential, A = co and B = 1. So, at short range the potential
has the correct behavior as the energy increases without limit. This is ideal for
molecular simulations so that atoms far within R. of each other always have a

strongly repulsive interaction. At long range there is only one value of B available
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which means that once R. and D, are specified, the dispersion potential is also
specified with this potential.
There is one simple generalization of the Lennard-Jones function which is
| occasionally used, the LJ n — m function, or the » — u function where u and v are
real. This yields, of course, the properties of the LJ 12-6 function for the case that

1 =12 and v = 6. It can be written in standard form as
ECLJ(R;A,B)= AR™V — BR™* (A.11)
where v > u. In canonical form it is

)G e

This is a more versatile function with v and p free to vary. Special cases are seen in

EGLJ(RS Ee/yDe) = De

the literature. Usually these use integral values, n and m. For example the 9-6, 9-3,
10-6, 12-10, and the n-6 (for n > 12) potentials have been built into force fields.” The .
main flaw these have in the present study is that they fit the COMP data poorly;.‘-Asv
is shown in Chapter II the COMP data has a definite Morse character 'an'd' poW‘er",
functions have the wrong topology for the attractive tail. Furthermore the GLJ
function is fundamentally incorrect in the repulsive region since the Pauli repulsive
force is exponential in nature and no power function can match an exponential
completely. |

On the practical side, however, LJ and GLJ functions are quite useful for
simulations. They are quick to compute (power functions being faster than expo-
nentials) and the asymptotic limits are correct. There is no catastrophe region or
critical point which is a maximum as long as v > p. A final bonus with the LJ 12-6
function is that it has only two parameters. The more versatile functions below
have three or four. The LJ 12-6 function is easier to fit to data because of fewer
parameters and because its two free parameters, R, and D,., are the easiest van der

Waals parameters to determine experimentally.
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To complete the discussion of the GLJ potential, the characteristic points
of the GLJ are determined. They are variable, depending on p and v. Just as
for the LJ 12-6 function, they are asymmetrically disposed around p. = 1, for
p§L7 = (u/v)™ and

1
v41\vE

As for the LJ 12-6 function, A = co. B has three possible values depending on the
value of p.
_ oo, forpu < 6
B GLJ = {1, fory =6 . (A.14)
0, forpy>6
This is not too informative except to say that the potential violates the London

dispersion relation/except when p = 6. For brevity, this three valued B is referred
to simply as B“YJ. The remaining characteristic quantity, &, is informative for the

GLJ function,
kG = pp. (A.15)

So, the parameters p and v directly control the curvature at the minimum along "
with the characteristic points pg and p; above. .
The exponential-6 (E6) function is the next most used for simulat"ions‘a,ftevr
the LJ 12-6 function. It is more accurate than LJ because it has another free
parameter which can adjust the curvature independent of R. and D.. The E6

function is, in standard form,
EFS(R;A,B,C) = Ae~“% — BR™S. (A.16)
In canonical form a third parameter ¢ is introduced which controls the curvature

ES6 _ 6 ca-2) _ (¢ &)6
E*°(R, Re, De, () = D. {<4_6)e © (C-—G) <R

Indeed, the curvature at the minimum is controlled directly by the scaling parameter

¢, for

(A.17)

xE6 = 6¢ [g—:—g} : (A.18)
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The value of « is equal to 72 for the LJ 12-6 function, but equals that value only
for the case of { = 13.772 with the E6 function. Furthermore, B is also controlled

directly by ¢

BES = XCCT@ (A.19)

The condition of BEY = BF®, however, is only met when ¢ = 12. This shows one
fundamental difference between the two functions.
The characteristic points, pg and p;, are given by transcendental equations

because of the additive combination of an exponential term with a power term

eC(1=po) — (%) o5
eg(l"Pz’) = <%) p:s ’

—
Values of pg and p; are shown in Table A.1 for selected values of ¢.

(A.20)

Table A.1. Characteristic Points of the Exponentia;l-G Function for Several

¢ Values

¢ po pi B

11 0.867139 1.129930 1.100
11.5 0.871917 1.125274 1.045
12 0.876101 1.121157 1.000
12.5 0.879829 1.117466 0.962
13 0.883198 1.114120 0.929
13.5 0.886273 | 1.111058 0.900
13.772 0.887841 1.109495 10.886
14 0.889104 1.108236 0.875
14.5 0.891727 1.105620 0.853
15 0.894170 1.103182 0.833

The E6 function has a repulsive term which is based on exponential Pauli

repulsion. The exponential nature can be deduced from the quantum mechanics
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of diatoms.b® The analytical expression is modified in most cases by a polynomial
arising from the n > 2 atomic orbitals and the overlap, S, itself.®2 A Rydberg
function can fit, in general, an overlap expression, but for the ab initio data above
the simple exponential seems to suffice. Also it has the London dispersion force,

R—8 for the attractive term.

While this function is chosen for physical reasons it has a pathology for small
R. Because of this the E6 function has a critical point, R, which is a maximum,
and its limit at small R is —co. This means that A¥® = —co. This also means
that that even if a pair of atoms in a simulation were at a separation of R < R,
then there would be a very strong attractive force between them which will defi-
nitely disrupt the-simulation. Since EFS(R,) has a very large value, dynamics at
temperatures below 1000K will not bring atoms within R.. Even at normal temper-
atures, however, there could be a problem with initial structures or péthologically
constrained structures. For example, if dynamics is begun with a structure contain-
ing a very close contact, R < R, then a problem arises. In this event, dynan{ic_sv
will bring the two atoms to R = 0 because of the sfrong attractive force frqﬁirfhej,
—BR~% potential at short range. A simple ploy to circumvent this problem 1sto
have a switching algorithm which replaces the E6 function with a repulsive funétion
for R < R.. A convenient function to switch with is the —EF®(R), making R.
no longer a maximum of the switched function (this is done in the POLYGRAF
program®). Nevertheless, it is important to beware of such pathologies anywhere in

force field potentials.

Finally there is the Morse function which was developed as a simple model for
the quantum mechanics of diatomic molecules.? !0 It is rarely used for van der Waals
interactions, in fact, because although it has the correct asymptotic limit of 0 at long
R, it lacks an R~° term for London dispersion. Despite this it has a superior fit to
the COMP potentials and can be very useful for simulations. Moreover, since it lacks

a power function such as B¢, the Morse function is a short-range potential. So, it
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does not give infinite sums in lattice simulations, but can be truncated accurately.

In standard form it is written
EMorse(R:i A B,C) = Ae~CR — B¢~ 2CR (A.21)
or in terms of a scaled exponential
EMorse(R) = x2 — x, where x = AeSU—F/Ee), (A.22)
In canonical form { appears as a curvature scaling parameter
EMorse(R. R, D.,¢) = De {e<<1—R/R=) - 2e%<<1-R/R=>} . (A.23)

The Morse function has & which is controlled by its scale parameter, Kk = %C 2,
B, on the other hand, is independent of any parameters as the limit is always 0. So,
x and B alone show definite differences between the LJ, E6, and Morse potentials.
The A parameter for Morse is unremarkable, being a large finite number, 4 = A.
Finally the characteristic points are unlike those of the LJ and E6 functions in that

they are precisely evenly spaced around R..

{pé\/lorsezl__gl_gz

pzMorse =14+ 2_%_12 . (A'24)

A generalization of the Morse potential is to let the two exponential terms,
the repulsive and the attractive, vary independently. This adds a fourth parameter
so that the exponential range parameters are not constrqined to be related by a
factor of two. This generalized Morse curve is called an exponential-exponential or
exp-exp. The exp-exp (EXEX) function adds a fourth parameter which does two

things. First in the standard representation
EEXEX(R. A B,C,D) = Ae~CF — Be~DE, (A.25)

It is a composite of two exponentials. This is appropriate for representing the

COMP potentials which are seen, in Chapter I, to be composed of an attractive
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and a repulsive curve, both of which are fit well by a single exponential function.
So, the exp-exp makes sense considering how the two monotonic curves may vary
independently between cases. Second, in canonical form there are two scaling pa-

rameters, (3 and (s.

1
G1—Co

- For both Morse and exp-exp, the spacing of pg, 1, and p; is even. That is, the

EEXEX(R, Re, De, 419 C2) = De {CQeCI(l—R/RC) - C1€<2(1—R/RE)} (AQG)

scaling parameters cannot change the identity
1
slpo+pi) = 1. ‘ (A.27)

What is important-with the general Morse is that py and p; are independent of &
(see Table A.2). Notice that for {3 = -;-gl, when the exp-exp function becomes a
Morse, its values in Table A.2 become identical to those for Morse. So, the curvature
at the potential minimum and the characteristic points along the inner wall and the
tail can be adjusted independently for exp-exp. This is a very versatile funct‘ion'
which, just like Morse, is short-range. B

There is another form which shows better the commonality beﬁveen the
Morse function and the exp-exp, where the scaling parameters are transformed into

¢ and £ where
¢ =0
{f =G/¢ (4.28)

These appear symmetrically in the canonical form Whi(:l; shows how the EXEX
potential is a generalized Morse function.
EEXEX(R; Re,De,(,€) = D, {66\/;(1—}2/12:) _ é-ec\/ Elf(l—R/Re)} ; 1 . (A.29)
—1
Just like for the Morse potential, the curvature is related to ¢ by x = 1(2.
The topological features of all four potentials are summarized in Table A.2

and since the exp-6 functions does not have a closed form for the points pg and

p; values are given specifically for { = 13.772. For convenience the characteristic
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Table A.2. Topological Measurements of the Main Potential Functions

Function K 20 p;
LJ 12-6 72 0.890899 1.108686
Exp-6 6¢ (g-:—g) 0.887841 1.109495
Morse 3¢ 1 - 2n2/¢ 1+ 2In2/¢
Exp-Exp (12 1- Bl g plale)
Exp-Exp (—géi_l—)ﬁ 1- 14 2@

points of the EXEX function are given in terms of the spread, s, between the two

¢ values

$=( — (2 '
{ E= /G (4.30)

The parameters ¢ and s could, in fact, be used as parameters in place of ¢ and &
or (; and (. Anyhow, it is clear that the characteristic points are even distrib.}lt‘eti.
about the minimum, p = 1, for both the Morse curve and the EXEX c‘ur'{/'e. So,”
the fourth parameter, in fact, does not give EXEX more control over these poi.ﬁts. |
What is different is that x can change for given characteristic points with EXEX but

not with Morse. From the fits in section II1.4 this seems to be crucial for accurately

modeling the ab initio potentials.

The canonical parameters (R., D, (,£) show by inspection the basic topol-
ogy of the potential. The standard parameters (A, B, C, D) on the other hand are
useful for comparison to the monotonic potentials. For unlike with the other func-
tional forms, since EXEX has four parameters one may see the the dependence of
the canonical parameters on the standard parameter values. This can illustrate the
influence of changes in monotonic parameters on the characteristic points of the
EXEX function. A system of equations defines the transformation from standard

to canonical parameters. The reverse transformation may be done by inspection,
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comparing Equations A.25 with either A.26 or A.29.
R. =In(AC/BD)/(C — D)

D, = A(E-1)e=VE = B1- e VE

3
( = R.(2CD)/?
§=C/D

(A.31)

It can be shown using Equations A.31 that the repulsive and attractive range pa-
rameters have two different degrees of influence over the canonical parameters. The
focus is on the position of the well bottom (R, D). This is useful to know for
two reasons. First it is important to know how an error in a standard parameter
causes errors in the canonical parameters. Second, when modifying parameters in
correction schemes such as CMVDW (section III.4), it is important to know how
much effect a parameter has on properties. For example, an EXEX function with
canonical parameters (3,5,0.1,12,2) is taken. Then the standard parameters are
varied independently. Then the modified standard parameter sets are transformed
back into canonical parameters and compared with the reference set.

Table A.3 gives six cases of this variation and transformation. The varia-
tions in the standard parameters are done independently so in each case ~'o’1'11y“ _oné' :
parameter is varied from its original value. The quadruple represents the factbi* by l
which each parameter is multiplied. Of course, only a single value in the quadruple
is different from one in each case. The canonical parameters are simply listed in
the usual way to be compared with the reference line. Some basic facts about the
EXEX function are illustrated. First, it is shown that changes in A and B are
the simplest. They alter the well depth the most and the proportional change in
D, is twice as large for the change in B than for the same proportional change
in A. Second, the attractive parameters (B, D) are less important for the equilib-
rium distance than the repulsive parameters (A4, C). The first four cases show that
changes in C alter R, by twice as much as the equivalent proportional change in D.
Third, changes in the scaling parameters are directly proportional to changes made

in range parameters (C, D) and insensitive to changes in the prefactors (4, B).
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Finally, values of the zero point, Rg, can be determined from Table A.3. This
is important for simulations of structures because this value defines the hard wall of
a van der Waals potential and can indicate the size or packing of molecular crystals.
The scaled version, pg, is insensitive to changes in all six cases. The original case
has pp = 0.0884475 and the six cases here vary between 0.883 and 0.886. These
variations are insignificant compared to the variation in R., especially in the first
four range parameter cases. The conclusion is then that the zero of the potential is
controlled just the same as the minimum, mostly by the range parameters C and

D. Furthermore, the influence of C is over double that of D.

Table A.3. Relationship Between EXEX Standard and Canonical Param-

eters

Standard Canonical

(1,1,1,1) (3.500, 0.100000, 12.000, 2.00)
(1,1.02,1,1)  (3.376, 0.075873, 12.194, 2.04)
(1,1,1,1.02)  (3.560, 0.121539, 11.882, 1.96)
(1,0981,1)  (3.634, 0.122088, 11.879, 1.96)
(1,1,1,0.98)  (3.443, 0.081460, 12.122, 2.04)
(1.02,1,1,1)  (3.512, 0.0080, 12.041, 2.00)
(1,1,1.02,1)  (3.488, 0.1041, 11.959, 2.00)

Of the functions examined above, the Morse and the EXEX functions are
suitable for use as van der Waals potential functions in simulations. They combine
the desired mathematical properties with the best fits to the COMP data. Both
the Morse and EXEX functions have no pathologies. They are C*°(0,00). Also
they have the correct asymptotic limits, for A = A and B = 0. What’s more, the
limit in B goes to zero very rapidly since both functions are based on exponentials

and contain no power functions. This makes lattice sums facile. In fact, a Morse
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van der Waals function is almost like having a small van der Waals cutoff. Only
the nearest neighbors and perhaps the second and third neighbors (depending on
the level of precision) count in the energy expression for an extended system. This
means that both of these functions are faster than either LJ 12-6 or E6. The only
possible drawback is that an R~° term is often called for in the van der Waals
function to match London theory. In the second part of this Appendix, section A.2,
the implications of this on lattice simulations is examined.

In closing the present section mention should be made of some other valu-
able potential functions. Because of the appeal of functions which have London
dispersion as long R, piecewise constructions have been made using accurate fits
and short R plus dispersion at long R. What these functions all have in common
is they have a few different functional forms and cutoff points, {Rf*!};=1,2, .. n-1
for n functions, at which the functions are pieced together. This is a constructed

potential function (COPF)

E(R) = fi(R), forR € (0, R;)

E(R) = f(R), for & (s, o) (4

E(R) = fu(R), forR € (Rn_1,00)
Proper constructions are at least C1(0, 0o) so that all matching conditions at cutoff
points are C* or higher. These functions, as they are applied to simulations, can be
treated by summarizing the basic types. Usually only n < 3 is needed. That gives
a function to fit near the well bottom such as a Morse potential and f, is some
sort of dispersion function. This dispersion function can be any sort of multipole

interaction term N
E%?(R) = B,R**™" (A.33)

n=0

where N ranges from 0 to 2. These two functions are then splined together in the
middle with a cubic polynomial, f, to impose C! matching conditions at the cutoff
points. The function in the binding region can be a Morse function, to give an MSV

function or anything else with a repulsive wall and some attractive region.
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A simpler alternative is that the Morse and van der Waals functions can form
a COPF with no intervening polynomial. So, f; is a Morse function and f; is a van
der Waals function. The first application of this function was by Konowalow and
Zakheim.!! Their study used what they called a Morse-6 function which here is the
COPF just described with only the R~® term present in the f; dispersion function.
The necessity of using a COPF is illustrated by this case. While f; may totally
disappear at long R, f2 is unbound for R — 0 and the construction circumvents
the imbalance. This sort of potential is, however, quite limited. For if the purpose
is to include London dispersion, then the parameter in fo(R; By) is determined by
polarizability. In order for matching criteria, two parameters of fi(R; Re, De;()
must be fixed. This compromises accuracy and even if the matching criterion is
reduced to C%(R;), for then still one parameter of f; is fixed. Nevertheless, this
Morse-6 functions is being used currently in the design of a new force field.?

In this discussion the COPF is treated as ancillary because if the properties

of two or more functions work well, each in different regions (R;, R;+1), then they

can be used in a COPF for a more accurate potential. What is more impor_t;anﬁt_>
here is rather to understand the properties of simple functions. COPF is imp’éftgnt- :
to the designer of a force field if there is no other way to obtain accurate ﬁotentiéls. '
Either way, a systematic understanding of simple functions is precursory to the
enlightened design of a COPF. A final type which is commonly used, but is quite
different from the MSV and the like, is simply a spline fit to accurate data. This
would be a COPF with a large N to fit data such as scattering or van der Waals
cluster spectroscopic data. In order to have the correct limits, especially for force
field simulations, it may be important to impose limit functions. For instance f;
could be an exponential repulsion function and fy a dispersion function, Equation
(A.32).

Another accurate function is the Rydberg function, Equation (III.2), which
can have the correct limit values for a potential function. It can also be very accu-

rate. As demonstrated in Section III1.3, the RYD2 function fits well the monotonic
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potential data from ab initio. An excellent fit to the whole curve is obtained from
a Rydberg function with powers from -2 to 2. While these functions can be very
accurate, given their versatility, they are not considered ideal for the present thesis.
One reason is that A is a finite number which may be small or even negative. This
may be accommodated in the same way that AF® is. More importantly, however,
the values of the coefficients in the polynomial term are unstable to changes in the
data. While the quality of the fit does not waiver, small changes in characteristic
points lead to changes in coefficients. For instance, a 1% change in either R, or D,
can lead to a change of over an order of magnitude or sign in a coefficient. Although
this is not necessarily detrimental to simulations, it makes interpretation and find-
ing patterns between elements very unclear. The values of parameters in Tables
II1.3 through II1.6 directly give properties of the potentials. Rydberg parameters,
on the other hand, are less useful. A

All together the COPF approach is an aside and the main analysis here shows
how a critical specification of potential function properties aids in the differentiation
between the different functional forms. The analysis using characteristic poinfs, '
and asymptotic limits clearly characterizes the functions. Furthermore this'éelcti'on"v
provides insight into the interpretation of functional fits to van der Waals potenfials “
such as those in Tables II1.3 through II1.6. There are issues beyond the topological
features which arise in simulations. Sums of potentials in extended systems further
contrast the potentials with and without the long range London term. The next

section applies the topological characterization above to extended systems.



A-18

A.2. Comparison of Functions in Simulations.

A further important issue with these potential functions besides topology is
differences in their lattice sums. For simplicity lattice sums on an closest packed
or face centered cubic (FCC) lattice are examined here but the trends seen with
the long-range and the short-range potentials are representative of the lattice sums
in materials. There is an interesting discrepancy in the fit of an E6 function to
a Morse in two different ways. First, if the Morse potential over a certain range
similar to those ovef which COMP potentials were determined is treated as data
and the E6 is fitted to that the E6 function resembles the Morse near R.. At long
range, however, the E6 behaves as BR™% whereas the Morse vanishes. Second, if
cfystal properties of an FCC noble gas lattice are computed with a Morse potential
and then the properties are fitted with an E6 a different E6 function results. This
is because the long-range behavior of the E6 function is being averaged over the
lattice in the energy expression which determines the crystal properties.

If a Morse potential is chosen with R, = 3.5A4, D. = 0.100kcal/mol, arid_ .
¢ = 12 then the best fit E6 on the range (3.0A,5.0A) has parameters (R,, D, g;)‘:"f :
(3.470,0.099, 14.231) with an rms deviation of 0.003 kcal/mol between the 'c'iul‘v'es.*f)
Here the E6 function is very similar to the Morse, differering significantly only in the
curvature. If, however, the E6 is fit to the properties given by the Morse function on
an FCC lattice, then it has the parameters (3.500, 0.0845,14.295). The result is that
the D, value is reduced. That is because while the Morse potential is significant for
its nearest neighbors, 12 in an FCC lattice, the E6 attractive tail must be summed
over the entire lattice. For the R~% function, this lattice sum gives an attractive
energy of effectively 14.45 nearest neighbors.? The quotient 12/14.45 happens to be
very close to the factor by which D, is reduced from the Morse parameter set to
the latter E6 set.

The E6 fit to a Morse function over the range (34, 54) is actually nonlinear
in ¢. The fitted parameters depend on the particular Morse ¢ chosen. Values for

R. and D, are merely representative. They can be scaled out to unitless values of
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1 or scaled to other values. The value of { is the most important as it controls the
relation between the fit E6 parameters and the Morse parameters. Table A.4 shows
fitted E6 parameters for Morse x values ranging from 58 to 84. The value of ¢ES
cannot be determined simply by matching the k value it gives to the x from the
Morse ¢. For instance, with Morse ¢ = 12 above, the Morse curve has k = 72 but
the fitted E6 curve has k = 75.014. Furthermore, the best fit of an E6 curve to a
Morse is actually for a ¢ value which is never found in a COMP potential. |

Table A.4 shows the optimal case with xM°"*¢ = 35.481 which minimizes
the rms error with ¢ treated as a free parameter. Real potentials, however, have
¢ values near 72. This mismatch may be a basic weakness of the E6 function for
accurate van der Waals energies in small systems where the long range behavior
of the E6 function can be ignored (or in any system where long range interaction
is negligible). If most potentials are like the COMP potentials from about 34 to
5A, then the E6 function will always fit more poorly than Morse or EXEX. For
simulations, though, it does not need to be ruled out, for the rms error in these fits .
and, hence, the suggested inaccuracy is rather small. Comparing Tables III.4;;ari’d‘, :
I11.6 it is seen that the best fits have a lower error than E6 fits by a fact_o,r"olf th_lr_ee"_
or greater. The absolute rms error with E6, however, is small. It is 1% of D; for
every potential except for fluorine for which it is 8%. The superiority of the EXEX
function is of interest to the designers of force fields. For extended systems it is
especially important to evaluate the ramifications of including the R~% attractive
term. R

The fit of an E6 function to the crystal properties of the constructed FCC
lattice is even more nonlinear in ¢ than the simpler fit above. Table A.5 shows the
fitted parameters. The two tables together can be used to convert potential func-
tions. For instance, when E6 functions are fitted to crystal properties as Williams!?
has done, then from that a Morse pair function can be determined using Table A.5.
If this is regarded as the best approximation of the COMP potential, Table A.4

can be used to find the equivalent short range E6 function. The Morse potential
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Table A.4. E6 Parameters from Fits to the Morse Potential

gMorse R. D, ¢ES I'ms error
35.48052 3.500604 0.10023 9.032252 0.067308
58 3.483963 0.099310 11.85337 0.753330
62 3.482686 0.099012 12.41642 0.890329
66 3.481666 0.098670 12.98374 1.032120
68 3.481245 0.098483 13.26778 1.104751
70 3.480879 0.098286 13.55151 1.178468
72 3.480567 0.098078 13.83458 1.253200
74 3.480306 0.097861 14.11666 1.328869
76 3.480096 0.097634 14.39747 1.405392
80 3.479820 0.097155 14.95428 1.560649
84 3.479726 0.096643 15.50333 1.7]_.8263
88 3.479803 0.096102 16.04333 1.877549
92 3.480039 0.095536 16.573305 . 2.037870

is essential for this kind of analysis to go between a long-range potential and its
short-range equivalent, because it has no long range interaction. What is found is
that short range potentials have larger D. values while R, is changed by a very
small amount.

Another problem with using pair potentials is that in materials there are,
unavoidably, many body interactions and screening over long distances. It will
be difficult for ab initio methods to get a handle on this because any studies will
require calculations on systems considerably larger than the four atom clusters in the
present study. Nevertheless, some insight can be gained by examining the properties
of a noble gas crystal such as argon and its corresponding pair potential about which

much is known. The idea is that there is a pair potential which is accurate for a real
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Table A.5. E6 Parameters Fit to FCC Lattice Properties With a Morse

Potential

K CMorse R, D. ¢

58 10.77033 3.574252 0.082649 11.04212
62 11.13553 3.049434 0.083824 11.95026
66 11.48913 3.530262 0.084676 12.95736
68 11.6619 3.522314 0.084995 13.49442
70 11.83216 3.515282 0.085275 14.04894
72 12.0000 3.509014 0.085497 14.62337
74 12.16553 3.503411 0.085669 15.21683
76 12.32883 3.498391 0.085805 15.82753
&0 12.64911 - 3.489843 0.086027 17.08976°
84 12.96148 3.482847 0.086137 18.41736

pair of argon atoms as would be found from an ab initio calculation on Ar; or from-
scattering experiments. This potential then would predict certain propex;ties ir'i" an
atomistic simulation of the extended crystal of FCC argon. Conversely there is a
potential which fits the properties of the crystal and it may differ from the real pair
potential. Hence, a noble gas crystal can shed light on the fundamental rectitude
of the pair potential approach.

A high level, MP4/QZ, calculation by Baker'* gives a pair potential which
can be fit by a Morse function with the parameters (R, D., ¢) = (3.8440, 0.2450,
12.2739). The properties of solid argon?®16 are, at 0K, the nearest neighbor distance
a = 3.756 A, the cohesive energy U.,» = 1.846 kcal/mol, and the bulk modulus
B = 2.86 GPa. These properties are fit with an E6 function with parameters
(3.83,0.227,15.07). To compare with the pair potential the same properties of the
crystal are fitted with a Morse potential giving (3.820,0.266,12.221). Between the
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crystal and the pair Morse potentials the R, and ¢ values match well. The major
discrepancy is with the potential well depth. The crystal fit value is 9% larger than
the pair potential value.

This extra binding energy in the crystal represents some combination of three
body interactions and long range dispersion over the lattice. Precisely, though, the
long range dispersion given by a London potential does not match the van der Waals
energy here. Using the polarizability (Table I11.12) and the ionization potential
(Table II1.9) of argon in the London equation gives BLondon = 737.8A%kcal/mol
while the parameters of the E6 function fit to the crystalline properties gives B¢ =
1190.49 in the same units. Clearly the interpretation of the attractive term in the
E6 function as representing London dispersion is not accurate. Indeed it cannot be
expected to be accurate because of the interdependencies of the E6 parameters. As
is detailed in section A.1, the attractive tail is parameterized by a quantity, B, which
is one-to-one with the parameter {. The parameter B comprises dependencies on R,
and D, besides on B. In a comparison of a lattice potential to a pair potential, as
above, however, the latter two cannot deviate much from the pair potential vah;esl‘
The only parametric control which exists over B is by (. The conflict is th_at‘AC:'aIAs_,_o-_
is adjusted to fit the short range part of the potential. The question is Where 't'he
balance is struck.

Curiously in the case of argon, there is no reasonable value of ¢ which can
give

BE6 — BLondon‘ - (A34;)

That is because 2RSD, = 1,433. So, in order for equation A.34 to be satisfied,
B must be 0.514 which is not listed in Table A.1. In fact, this corresponds to a
¢ = 215.7 which is outrageous for a van der Waals potential. This suggests that the
parameters of the E6 function may represent short range energetics more than long
range. Moreover it appears that there is some extent of long range interaction in

the crystal potential. It can be fit by Morse parameters with a slightly larger well
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depth than the pair potential.

The main point is that the energetics of materials and extended systems may
be modeled more accurately if the van der Waals pair potential binding energy is
increased by some small factor between 1 and 1.08. While a simple consideration of
R~% sums in a lattice suggests a factor of 1.22, the smaller factor determined from
the properties of Ar(y implies that there is screening reducing the effective range
of dispersion interactions.

Alternatively, in order to understand empirical van der Waals parameters
from fits to properties of materials it may be useful to use the same factor to reduce
the well depth and estimate a pair potential. That is, since empirical potentials are
fit to materials, it is reasonable to conclude that pair potentials can be extrapolated
using the FCC lattice comparisons. The DREIDING van der Waals parameters
serve as an example. They are the result of fits using the E6 function and properties
of crystalline solids.

If such severe screening is assumed then any parameters fit to crystal proper- |
ties would be in error if they are fit using a lattice sum for all pair interactions. _:E}h'e
biggest and most obvious error is underestimating D.. The lattice sum v,oVer'est_‘i;,f
mates the number of pair interactions so that to fit the crystal properties‘ corre(':»t'ly, :
the optimized value of D, must be artificially reduced. With perfect screening,
however, the D, of a potential fit to the lattice should be equal to an experimental
pair potential.

This screening hypothesis can be tested with ab initio potentials and specifi-
cally with the COMP method. The level of calculation developed in Chapter IT does
not give the required accuracy. A test was done on linear Arsz. Here the potential is
defined by ab initio data from about 3 to 4 A. The triatom had both near neighbor
distances at 3.91 A. The question is how the triatom energy compares to the sum
of two E(3.91 A) energies. It is expected that the triatom energy is in between that
sum and that sum plus E(7.82 A). If it is the former value then the potential is

screened and if the latter value then the screening hypothesis is mostly invalidated.
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Any intermediate value may define or allow one to define a screening coefficient by
which next neighbor potentials are reduced.

The result with the COMP method instead demonstrates the limit of accu-
racy. One fact is that there is no data at the long distance, the ab initio data ends
at much shorter R. So, a comparison was made to the energy at 7.82 A based on the
functional fit. The repulsive energy was compared first because the functional fit of
the ab initio data, and, hence, the extrapolation is the most accurate. The trimer
repulsive energy exceeds the two pair prediction by 0.67% . This repulsive energy of
- the two pairs is actually 0.260 kcal/mol. A problem is clear since the extrapolated
repulsive energy of a pair at 7.82 A is less than 10~7 kcal/mol. Moreover, any
three body effect is suggested only for correlation energies and not for the repulsive
energy at all. This elevation of the repulsive energy is purely an artifact of extend-
ing the COMP calculation to a trimeric cluster. This comparison of the repulsive
energy actually precludes the need to compare total or attractive energy since this
discrepancy is purely a result of the incompleteness of the COMP calculation.

Specifically, the trimer has two midpoint functions. For the outer pair, which
is effectively being compared to the pair energy extrapolation, there are t_Wd ihid¢
point functions and another atom (which can double as a midpoint set for stabi-
lization purposes). With the presence of a BSS correction, the importance of this
problem in designing the calculation is difficult to ascertain. What is clear is that
for discriminating energies at the sub 1% level and at long R the capability of the
current COMP approach is inadequate. Extension to this level of accuracy should
be obtained with a more complete calculation such as an MP4/QZTP level. What
is most important beyond that is diffuse functions. The actual effect that is in
question is in the correlation energy and for a triatomic cluster investigation such
as this to be illuminating some requirements must be satisfied. First, the COMP
correlation energy must be meaningful at 2R for some value of R for comparison to
the triatom. This necessitates using larger diffuse functions to increase the value of

Rz as discussed in Section II.2. Second, the actual calculation must be correct
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to this level of accuracy which means addressing the 0.67% problem which appears
here. It must further be accurate enough to calculate the small correlation energy
at 2R. This extension of the COMP method to this level and the further basis
optimization involved will become realistic with increased computational resources.
This comparison will be a direct way to ascertain screening and is a valuable goal for
the designer of a force field since, as shown above, screening is critical for modeling
the energy and forces in a lattice.

Despite not having a clear criterion for screening and the value of using the
London dispersion term in force fields, the above discussion provides some guidelines
for applying van der Waals potential functions to materials. First, the accuracy
of an E6 function is actually variable. It depends on characteristic points of the
potential. For COMP data in particular the accuracy suggested by Table A.4 varies
by over a factor of two depending on the curvature of the potential. Second, there
are well defined ways to transform between the E6 and Morse potentials based on
the lattice sum. The most important rule is that the well depth must be reduced in
the E6 compared to the Morse because of the presence of R™8 energies in the‘,smr'i_,
Third, there are some materials for which optimal potentials may be comp'éréd to’
pair potentials giving a clue to the forces really present in extended systemsv.‘ It
seems that the London dispersion, while theoretically appropriate for some isolated
systems, is either inappropriate or unnecessary in simulations of systems both small

and large.
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Appendix B. Data Tables for COMP Potentials.

The tables in this Appendix contain data from single point calculations using
the COMP method described in the text. The left-hand column in each table is a
separation of some sort. R, is the distance between centers of the diatoms in the
cluster. Some tables also list the separation between atom centers, R. Because of
symmetry most of the clusters have only a single interatomic distance. Some special
configurations were done on Ny and H for which there are two or three interatomic
distances in each cluster. For these, R is not listed. Columns to the right list the
energy calculated at each distance. Ege, and E44 are monotonic (repulsive and
attractive) energies and Ecoamp is the total potential, the sum of the two monotonic
energies. Unless otherwise specified all distances are in Angstroms. Energies are in
ph/mol for the nitrogen basis set optimization data, Tables B.1 through B.6. In all
following tables, for COMP data, the energy is in kcal/mol.

In all figures included at the end of this Appendix the legend is uniform
unless otherwise specified in the table legend. There are four functions plotted:.
EXEX (gray line), Morse (gray dashed line), E6 (dashed line), and LJ (solid hne)
Data points are plotted as hollow dots.
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Table B.1. Nitrogen Repulsive Potential Tests I: DZSP Basis Set

Rem DZSPSZ DZSPDZ DZSPNZ

2.484 33900.3 33891.8 34933
2.722 14925.8 14935.5 15500
2.963 6402.01 6422.28 6675.1
3.205 2677.04 2683.98 2792.7
3.448 1084.33 - 1076.35 1134.6
3.570 678.145 666.734 715.06
3.692 416.923 404.866 447.09
3.814 250.317 239.505 277.22
3.937 145.248 136.52 170.28
4.135 53.176 47.659 75.558
4.457 1.02111 -1.9069 18.102

4.979 -8.7747 -10.936 0.3553
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Table B.2. Nitrogen Repulsive Potential Tests II: DZDP Basis Set

Rem DZDPSZ DZDPDZ DZDPNZ

2.484 34933 34048.2
2.722 15097.1 15154.2
2.963 6532.86 6549.13
3.205 2758.52 2765.1 2762.8
3.448 1132.06 1135.6 1122.2
3.570 715.561 716.69 705.76
3.692 447.069 445.93 439.97
3.814 275.184 272.59 271.85
3.937 166.046 162.85 166.42
4.135 68.774 65.665
4.457 10.1324 7.6074

4.979 -6.0392 -7.8152
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Table B.3. Nitrogen Repulsive Potential Tests III: TZDP Basis Set

Rem DZDP*NZ TZDPNZ TZDP*+DZ TZDP+NZ

2.484 34620.8 34711.5
2.722 15525.8 15511 15534.8

2.963 6825.71 6821.1 6881.4
3.205 2944.43 2942.4 2944.43 2983.2
3.448 1249.86 | 1252.91 1276
3.570 811.197 806.18 813.85 831.35
3.692 526.125 518.86 527.598 540.84
3.814 341.576 332.41 341.623 351.7
3.937 222.39 211.98 921.171

4.135 112.381 101.5 109.912 115.32
4.457 39.0834 36.3984 39.869

4.979 9.34758 7.80251 9.8165
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Table B.4. Nitrogen Attractive Potential Tests I: DZSP Basis Set

Rem DZSPSZ DZSPDZ DZSPNZ

2.484 -10545 -11329 -7611
92722 -6573.4 -6922.8 -4426
2.963  -4078.5 -4233.7 -2572.2
3.205 -2537 -2605.4 -1508
3.448  -1588.3 -1619.5 -898.1
3570 -1260.2 -1283.3 -698.22
3.602 -1002 -1021 -545.9
3.814  -798.72 -815.88 -429.49
3.937  -638.68 -655 -340.25
4.135 -448.58 -463.9 -237.35
4457  -258.98 -271.95 -138.61

4.979 -113.5 -122.39 -65.421
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Table B.5. Nitrogen Attractive Potential Tests II: DZDP Basis Set

Rem DZDPSZ DZDPDZ DZDPNZ

2.484 -11536

2.722 -7105.3 -7395.5

2.963 -4366.9 -4509.7

3.205 -2690.6 -2782.7 -2123
3.448 -1681.6 -1737.7 -1279
3.570 -1338.5 -1380.6 -1000
3.692 -1069.9 -1101.8 -786.6
3.814 -858.75 -883.68 -622.4
3.937 -692.12 -712.43 -495.9
4.135 - -493.15 -508.79

4.457 -292.63 -303.75

4.979 -135.45 -142.85
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Table B.6. Nitrogen Attractive Potential Tests I11: TZDP Basis Set

Rer DZDP*NZ TZDP+DZ

2.484 -10297 -12129
2.722 -6084.6 -7356.7
2.963 -3597.6 -4476.9
3.205 -2147.7 -2752
3.448 -1305.9 -1716.7
3.570 -1027.9 -1364.8
3.692 -815.01 -1090.3
3.814 -651.25 -875.35
3.937 -524.58 -706.44
4.135 -376.03 -505.2
4.457 -227.88 -301.74
4.979 -110.49 -140.92

5.975 -40.585
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Table B.7. Nitrogen Cluster Potential in the Crossed Geometry

Rcm R Erep Eatt ECOMP

2.359 2.483925

2.609 2.722477 9.614243 -4.42622227 5.14993
2.859 2.962918 4.178358 -2.70313775 1.46551
3.009 3.107906 2.502166 -2.02264805 0.48230
3.109 3.204822 1.767839 -1.67179984 0.10414

3.359 3.447881 0.742387 -1.03300931 -0.2933
3.484 3.569770 0.464104 -0.83127414 -0.3583
3.700 3.780873 0.209255 -0.56351292 -0.3490
3.734 3.814152 0.184574 -0.53573388 -0.3564
3.859 3.936608 0.116325 -0.42506433 -0.3074
4.061 4.134818 0.056378 -0.29885120 -0.2457
4.389 4.457389 0.017996 -0.17413956 -0.1617

4.918 4.979129  0.004319 -0.07848304 -0.0802
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Table B.8. Nitrogen Cluster Potential in the T-shaped Geometry
Rem Rin Rout Erep Eat Ecomp
3.30 2.804461 3.889087 4.456224 -1.862588 2.59364
3.50 3.000833 4.087175 2.197402 -1.27776 0.91964
3.75 3.246922 4.335032 0.884571 -0.796066 0.0885
4.00 3.493566 4.583121 0.340071 -0.516102 -0.1760
4.12 3.612118 4.702276 0.209801 -0.422817 -0.2130
4.25 3.740655 4.831408 0.121021 -0.342806 -0.2218
4.37 3.859391 4.950646 0.069336 -0.284058 -0.2147
4.50 3.988107 5.079862 0.046970 -0.233126 -0.1862
5.00 4.483860 5.577186 -0.004639 -0.115094 -0.1197
5.50 4.980462 6.074949 -0.007443




Table B.9. Nitrogen Cluster Potential in the Linear Geometry
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Rem Erep Ea Ecomp
400  2.060554  -0.778600  1.28195
425  0.866865  -0.521656  0.34521
438 0539414  -0.428287  0.13113
450 0377987  -0.358498  0.01949
475 0176264  -0.249909  -0.0736
490 0116610  -0.202431  -0.0858
500  0.090455  -0.176329  -0.0859
510  0.071439  -0.153899  -0.0825
525  0.051871  -0.125987  -0.0741
550  0.033150  -0.091234  -0.0581
575  0.023186  -0.066952  -0.0438
6.00  0.017295  -0.040803  -0.0325
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Table B.10. Carbon Potential
Rem R Erep Eatt Ecomp
2.609 2.750151 3.943418 -2.16569 1.777727
2.976 3.100488 1.592777 -1.09425 0.498525
3.264 3.377891 0.749769 -0.67132 0.07845
3.49 3.596742 0.410144 -0.46305 -0.0529
3.668 3.769705 0.255348 -0.34741 -0.09206
3.808 3.906061 0.176759 -0.27797 -0.10121
3.918 4.013374 0.133012 -0.23375 -0.10074
4.028 4.120829 0.100601 -0.19694 -0.09634
4.206 4.294984 0.06482 -0.14993 -0.08511
4.494 4.577389 0.03301 -0.09779 -0.06478
4.96 5.035678 0.01233 -0.05111 -0.03878
5.714 5.779814 0.003377 -0.02022 -0.01685
10 10.03775 0 -0.00061  -0.00061
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Table B.11. Nitrogen Potential

Rem R Erep Eatt Ecomp
2.359 2.483925 5.420714

2.609 2.722477 2.429156 -1.1466 1.282553
2.859 2.962918 1.066616 -0.69873 0.36789
3.109 3.204822 0.459125 -0.43071 0.028411
3.359 3.447881 0.19416 -0.2686 -0.07444
3.484 3.56977 0.125656 -0.21324 -0.08758
3.609 3.691867 0.081188 -0.17003 -0.08884
3.734 3.814152 0.052444 -0.13624 -0.0838
3.859 3.936608 0.033916 -0.10973 -0.07582
4.061 4.134818 0.016873 -0.07823 -0.06136
4.389 4.457389 0.005615 -0.04657 -0.04096
4.918 4.979129 0.001172 -0.02179 -0.02062
5.775 5.827146 0.000268
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Table B.12. Oxygen Potential
Rem R E ep Eaut Ecomp
2045 2216771  8.020864  -2.13271  5.897155
2412 2559257  2.236027  -1.10186  1.134162
2.7  2.832322 0797384  -0.63515  0.162231
2.926  3.048528  0.350766  -0.4067  -0.05593
3104 3219762  0.183318  -0.2851  -0.10178
3.244  3.354935  0.110085  -0.21567  -0.10558
3.354  3.461411  0.073729  -0.17347  -0.09974
3.464  3.568101  0.049316  -0.13986  -0.09054
3.642  3.741151  0.025559  -0.09939  -0.07383
3.93 4.022058  0.008569  -0.05856  -0.04999
4396  4.478489  0.001303  -0.02572  -0.02442
5.15 5220589  0.000152  -0.0089  -0.00875
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Table B.13. Fluorine Potential
Rem R Erep Eqtt Ecomp
2.287 2.495444 1.294007 -0.23551 1.058500
2.575 2.761792 0.408743 -0.18806 0.220688
2.801 2.97363 0.167668 -0.14556 0.022111
2.979 3.141865 0.082084 -0.11462 -0.03254
3.119 3.27491 0.045983 -0.0932 -0.04722
3.229 3.379839 0.02874 -0.0784 -0.04966
3.339 3.485081 0.017693 -0.06543 -0.04773
3.517 3.655976 0.007784 -0.04811 -0.04033
3.805 3.933815 0.001866 -0.02844 -0.02658
4.271 4.38615 0.00018 -0.01166 -0.01148
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Table B.14. Silicon Potential

Rem R Erep Eatt Ecomp
3.50 3.843 2.167 -1.288 0.879
3.77 4.091 1.137 -0.933 0.204
3.98 4.285 0.670 -0.724 -0.054
4.14 4.434 0.438 -0.595 -0.157
4.27 4.556 0.307 -0.507 -0.200
4.40 4.678 0.212 -0.433 -0.221
4.60 4.866 0.117 -0.339 -0.222
4.94 5.189 0.041 -0.225 -0.185
5.48 5.705 0.008 -0.120 -0.112
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Table B.15. Phosphorous Potential

Rem R Erep Eatt Ecomp
2.669 2986  -5.303  10.955 5.652
3.084  3.362  -3.247 5.611 2.364
3.409  3.663  -2.165 2.386 0.220
3.666  3.903  -1.357 1.336 -0.221
3.867  4.092  -1.198 0.837 -0.361
4.026  4.243  -0.972 0.575 -0.398
4150 4361  -0.826 0.428 -0.398
4275 4480  -0.701 0.317 -0.384
4476 4672 -0.539 0.196 -0.343
4802  4.985  -0.355 0.090 -0.265

5.329 5.495 -0.185 0.025 -0.160
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Table B.16. Sulfur Potential

Rem R Erep Eate Ecomp
3.286 3.547 1.502 -1.678 -0.176
3.544 3.787 0.724 -1.155 -0.431
3.746 3.977 0.407 -0.861 -0.454
3.905 4.127 0.259 -0.684 -0.425
4.03 4.246 0.182 -0.571 -0.388
4.155 4.364 0.129 -0.477 -0.348
4.357 4.557 0.074 -0.359 -0.284
4.685 4.872 0.031 -0.228 -0.197
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Table B.17. Chlorine Potential

Rem R Erep Eatt Ecomp
2.935 3254  -1.629 1.977 0.348
3.245 3.536  -1.025 0.696 -0.329
3.489 3.762  -0.710 0.302 -0.408
3.681 3.940  -0.532 0.159 -0.374
3.832 4.082 -0.425 0.096 -0.329
3.95 4193  -0.357 0.065 -0.292
4.069 4305  -0.300 0.044 -0.255
4.26 4.486  -0.227 0.024 -0.203
4.57 4.781 -0.147 0.009 -0.138
5.072 5.263 -0.075 0.002 -0.073
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Table B.18. Carbon-Oxygen Heterogeneous Pair Potential
Rem R Erep Eat Ecomp
3 3.121578 0.795775 -0.62136 0.174416
3.12 3.338394 0.396822 -0.41543 -0.0186
3.225 | 3.510649 0.228702 -0.30221 -0.07351
3.403 3.645547 0.148881 -0.23592 -0.08704
3.542 3.750567 0.106715  -0.19488 -0.08816
3.65 3.858675 0.075781 -0.16042 -0.08464
3.761 4.031389 0.043797 -0.11828 -0.07448
3.938 4.312178 0.017679 -0.07344 -0.05576
4.225 4.767701 0.0036 -0.03575 -0.03215
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Table B.19. Nitrogen-Fluorine Heterogeneous Potential Data

Rem R Erep Eart Ecomp
2.106 2.288268 6.311824 -1.55327 4.758551
2.473 2.629955 1.678642 -0.7168 0.961846
2.761 2.902423 0.579936 -0.40436 0.175578
2.987 3.118189 0.248547 -0.26297 -0.01442
3.165 3.289097 0.126437 -0.18956 -0.06312
3.305 3.424027 0.073899 -0.14751 -0.07361
3.415 3.53032 0.048267 -0.12159 -0.07332
3.525 3.636834 0.031251 -0.10054 -0.06929
3.703 3.809612 0.015363 -0.07437 -0.059

3.991 4.090112 0.004358 -0.04644 -0.04208
4.457 4.545964 -4.3E-05 -0.02292 -0.02296
5.211 5.287292 -0.00045 -0.00865 -0.0091
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Table B.20. Phosphorous-Chlorine Heterogeneous Potential Data

Rem R Erep Eqst Ecomp
2.4 2.764931 16.47068 -4.46147 12.0092
2.8 3.118468 6.272185 -2.59741 3.67478
3.08 3.372128 3.058813 -1.76293 1.295885
3.3 3.574192 1.703277 —1;29529 0.407989
3.5 3.759634 0.987997 -0.9767 0.011293
3.64 3.890301 0.672111 -0.80091 -0.1288

3.75 3.993413 0.496247 -0.68506 -0.18881
3.86 4.096882 0.366605 -0.58587 -0.21926
4.04 4.266901 0.224132 -0.45101 -0.22688
4.34 v4.551972 0.100155 -0.2934 -0.19325
4.82 5.011711 0.028681 -0.14994 -0.12126
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Table B.21. Hydrogen Potential

| Rem R Erep Eatt Ecomp
2.373 2.430006 0.604532 -0.18651 0.418023
2.624 2.675664 0.268419 -0.1163 0.15212
2.822 2.870102 0.139719 -0.08013 0.059591
2.977 3.022636 0.083496 -0.05995 0.02355
3.099 3.142865 0.054921 -0.04744 0.007482
3.195 3.237565 0.039616 -0.03966 -4.4E-05
3.291 3.332339 0.028523 -0.03311 -0.00459
3.446 3.485501 0.016794 -0.02482 -0.00803
3.520 3.55868 0.013013 -0.02167 -0.00866
3.600 3.637829 0.009879 -0.01875 -0.00887
3.698 3.734837 0.007058 -0.01574 -0.00868
3.800 3.835857 0.004989 -0.01317 -0.00818
3.900 3.934946 0.003567 -0.01109 -0.00752
4.000 4.03408 0.002568 -0.00938 -0.00681 . -
4.104 4.137223 0.001842 -0.00791 -0.00607
4.250 4.282091 0.001179 -0.00627 -0.00509
4.500 4.53032 0.00059 -6.00428 -0.00369
4.760 4.788674 0.000322 -0.00294 -0.00262
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Table B.22. Hydrogen Cluster I. CRS

Rcm R Erep Eote ECOMP

2.624 2.675664 1.047157 -0.37897 0.668184
2.822 2.870102 0.54324 -0.25365 0.289594
2.977 3.022636 0.323097 -0.18731 0.13579
3.195 3.237565 0.154607 -0.12411 0.030501
3.291 3.332339 0.111636 -0.10408 0.007555
3.500 3.538898 0.055082 -0.07177 -0.01669
3.600 3.637829 0.039428 -0.06042 -0.02099
3.700 3.736817 0.028345 -0.05106 -0.02271
3.850 3.885396 0.017484 -0.03994 -0.02246
4.000 4.034080 0.011001 -0.03151  -0.02051
4.400 4.431004 0.003699 -0.01743 -0.01373
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Table B.23. Hydrogen Cluster II. TEE

Rem Erep Egt Ecomp
2.624 1.203285 -0.49650 0.706787
2.822 0.607494 -0.33124 0.276250
2977 0.349378 -0.24249 0.106884
3.195 0.154660 -0.15840 -0.00374
3.291 0.106091 -0.13209 -0.02600
3.446 0.055860 -0.09936 -0.04350
3.698 0.016845 -0.06400 -0.04715 A
4.104 -0.00113 -0.03357 -0.03470
4.500 -0.00345 -0.01936 -0.02282
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Table B.24. Hydrogen Cluster III. LIN

Rem Erep Eoy Ecomp
3.250 0.305638

3.416 0.159126 -0.16122 -0.0021
3.610 0.091213 -0.11414 -0.62293
3.698 0.071637 -0.09806 -0.02642
3.763 0.060240 -0.08781 -0.02757
3.978 0.035213 -0.06166 -0.02644
4.300 0.017772 -0.03746 -0.01969
4.475 0.013049 -0.02900 -0.01596
4.877 0.007374 -0.01673 -0.00935
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Figures
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Figure B.1 Carbon COMP potential and functional fits.
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Figure B.2 Nitrogen COMP with functional fits.
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Figure B.3 Oxygen COMP potential plus functional fits.
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Figure B.4 Fluorine COMP potential with functional fits.
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Figure B.5 Silicon COMP potential and functional fits.
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Phosphorous Potential Energy (kcal/mol)

Figure B.6 Phosphorous COMP potential and functional fits.
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Figure B.7 The sulfur COMP potential and functional fits.
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Chlorine Potential Energy (kcal/mol)

Figure B.8 Chlorine COMP potential and functional fits.
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Figure B.9 Hydrogen COMP potential with functional fits.
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Figure B.10 C-O heterogeneous COMP potential and fits.
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Figure B.11 N-F heterogeneous COMP potential with fits.
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Figure B.12 P-C| heterogeneous COMP potential and fits.
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Appendix C. Femtochemistry.

The included material below consists of two papers in the effort of the Ze-
wail group to study the dynamics of the chemical bond through femtosecond spec-
troscopy, femtochemistry. These two papers deal with the principal issues of the
femtochemistry of both bound and unbound states. The first paper, Femtosecond
Selective Control of Waue Packet Population, explains the beats or resonance patter
in the probe intensity as a function of time. This work followed about a year of
study of the iodine system experimentally and at the time the beats were part of
the intriguing results which also led to the ability to invert a femtochemistry result
into frequency space to obtain a potential energy surface of the excited state.

The second paper, Femtosecond Real-Time Probing of Reactions 6. A Joint
Ezxperimental and Theoretical Study of Biy Dissociation, is part of Professor Zewail’s
effort on diatoms. Biz is amenable to femtochemistry because of the large nuclear
mass and, hence, the rather slow dissociation speed. The femtosecond spectroscopy

in this case elucidated the topology of dissociative states.
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Appendix D. Atomistic Simulations on 2-D Hy-
drocarbon Systems.

One example of the effect of van der Waals forces on molecular ordering is
the self-assembled monolayer (SAM) class of materials. These materials consist of
alkyl chains which organize into a two-dimensional crystalline lattice while affixed
to a metal surface (usually gold) by an o-thiol functional group. The following
paper studies the nature of the bonding between the sulfur atoms in response to
a previous x-ray structure paper. What is also examined here is the energetics of
different packing symmetries. The packing of straight chain alkanes is understood
in terms of crystalline polyethylene which has an optimal structure and a set of
stable structures of different symmetry.

Besides addressing an important issue in SAM science, this paper has aided
a wider effort in the Goddard group to characterize alkyl tail packing in monolayers
of more general types. Specifically the scheme of considering a monolayer to be,
in an abstract sense, a slab sectioned from crystalline polyethylene gives a clear
way to study the energetics. Because the energetics of polyethylene crystal can be"_,‘ ‘
investigated further for new symmetries, a method of extrapolating to a monolayer
of tails can help find stable structures. The basic problem is that the nearest'
neighbor spacing of a monolayer is constrained by the surface binding sites and is
usually some distance away from the ideal spacing in the crystal. The compromise,
which often involves some sort of leaning or canting, comes out of the work below.

Included below is a preprint of the paper prepared this year by W. A. God-
dard IIT and the author.
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3/23/95

. The Journal of the American Chemical Society

The Atomistic Structure for Self-Assembled Monolayers of
Alkane Thiols on Au (111) Surfaces

James J. Gerdy and William A. Goddard IIT*

Materials and Process Simulation Center, Beckman Institute (139-74)
Division of Chemistry and Chemical Engineering (CN 9070)
California Institute of Technology, Pasadena, California 91125

Abstract

Using force fields based on quantum mechanics we calculate the stable crys-
tal structure for decanethiol dimers on Au (111). We find that the optimum struc-
ture leads to an X-ray diffraction pattern identical with that recently determined
by Eisenberger and coworkers. This confirms the ¢(4 x 2) cell determined by_‘He.
and X-ray diffraction, providing the first atomistic structural description_ 6f a self-
assembled monolayer (SAM). The excellent agreement between theory and exi>er~‘
iment suggests that theory could be used to predict structures for new SAM’s,

allowing the design to be carried out in advance of experiment.

*To whom correspondence should be addressed.
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The Atomistic Structure for Self-Assembled Monolayers of
Alkane Thiols on Au (111) Surfaces

James J. Gerdy and William A. Goddard III

Materials and Process Simulation Center, Beckman Institute (139-74)
Division of Chemistry and Chemical Engineering (CN 9070)
California Institute of Technology, Pasadena, California 91125

Self-assembly of molecules provides one of the most promising approaches to
synthesizing nanoscale devices (spatial sizes of 10 nm or below).} Of particular in-
terest are the self-assembled monolayer (SAM) two-dimensional nanostructures.?~7
Starting with early work involving alkanethiols on Au (111),8-1° simple straight-
forward methods have been developed for preparing well ordered monolayers and
multilayers. There remain, however, a number of uncertainties about the structural
characteristics of these films. Indeed, for the original alkanethiols, the chemical
character of the sulfur atom at the gold surface was not established. The sta;ti_n’g‘
material is an alkanethiol (1a). It was widely thought that the thiols deprdtéﬁaté_i

at the surface, leading to thiolates (1b),}%8 but there was little direct evidence for.

this view.
RSH (1a)
RS~ (18)
RSSR (1e)
where
= — (CHa),_, (CH;) (1d)

Some vibrational evidence indicated that the thiols might form disulfides (1c) at the
surface (using EELS, Nuzzo, and coworkers® observed S — S stretch and C — S — S

bend vibrations); however, the results were not consistent over samples.
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A breakthrough concerning the structure of these systems was reported re-
cently (December 1994) in Science by Eisenberger and coworkers.'* Using grazing-
angle X-ray diffraction of well annealed overlayers of decanethiols on Au [111],
they were able to establish that these thiols form dimers, (1c), packed into a two-
dimensional crystal structure commensurate with the Au [111] substrate. This leads
to a ¢(2 x 4) unit cell with the alkane tails canted by § = 37° + 2° from the sur-
face normal. Although the data does not determine the atomic details, it does
establish that the all-trans alkane tails form a pseudo closest packed array with a
structure different than the normal orthorhombic polyethylene crystal (confirming
earlier work by Scoles and coworkers*®).

These experiments stimulated us to examine the detailed atomic arrange-
ments using molecular dynamics and molecular mechanics simulations. For these
studies we started with the DREIDING?® force field (FF) but modified the $ — S
dihedral potential to match the rotational barrier calculated from quantum chem-
istry (QC) studies® of diethyldisulfide (this is denoted D/S). Second, we modified
the alkane part of this force field to match one developed!” for polyethylene Crys- ‘
tal. This is denoted as D/S,PE. We expect S to prefer binding to three-fold,hé'ﬁéw_:
sites on the surface. This was incorporated into the force field by usin'g a bo'n-d'
interaction from each sulfur atom to a gold atom one layer down from the surface.

First, we examined the isolated alkanethiol dimer (1c). We found the parallel
structure in Figure 1 where the top view shows that the two alkane tails are parallel
and in contact while the bottom view (looking along the direction of the alkyl tail)
shows that the two parallel all-trans chains have perpendicﬁlar CC planes. The two
chains have average C — C contacts of 4.4A (the contact distances between interior
hydrogens is about 2.94). Forcing the C — C planes to be parallel and minimizing
the structure leads to an energy 3.0 kcal/mol higher than Figure 1, and we did not
consider this further.

The second important structure for (1c) has the all-trans chains splayed away

from each other. The van der Waals contacts favor the parallel structure (Figure
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1), stabilizing it by 0.67 kcal/mol for each carbon added to both chains. On the
other hand, the splayed structure minimizes strain in the C—S5—S5—C turn while the
parallel structure has 3.0 kcal/mol of strain energy in the turﬁ. For chain lengths
longer than 13, the parallel structure is favored. For the chain length of 10 used
here and in the X-ray study,’* the splayed structure is favored by 1.85 kcal/mol.
However, the parallel structure should lead to much greater bond energy to the
Au surface, stabilizing it over the splayed structure (which is also disfavored by
the small saturation coverage). In additioﬁ, the packing energy of the monolayer
stabilizes the parallel dimer by an additional 18 kcal/mol per dimer.

In order to understand how these disulfide units pack to form a dense mono-
layer, we first examined the structures and energetics for various packings of infinite
all-trans alkyl chains to form polyethylene crystals. As indicated in Figure 2, there
are two simple classes:

1. L with all CC planes parallel, and

2. T with half the CC planes perpendicular to the other half.
Each arrow in Figure 2 represents the orientation of the alkyl tail. The CC plgné
lies in the plane indicated by the arrow and the arrowhead shows the pvha,séy'df a
C Hs in this plane. These calculations indicate a number of L and T type‘s-trucvtﬁr.es,
with comparable energies (see Table 1). T is the observed structure of PE. Includiilg
zero point energy the experimental cohesive energy at 0K for PE is 2.02 kcal/mol,}”
in good agreement with these calculations (2.07 kcal/mol).

The restriction that pairs of adjacent chains have perpendicular CC planes
(in order to attach to the S — S linkage) restricts SAM considerations to the T
and T* structures. The energies of the optimized structures for various packings
of thiol dimers on Au (111) are given in Table 2. T* is lowest and the optimum
T™* structure is shown in Figure 3. The alkane tails leads to a c(4 x 2) pattern
with pseudo close packing. This compares well with the X-ray diffraction’* and
He diffraction!® studies which determined that a monolayer of alkanethiol on Au

(111) has the c(4 x 2) packing corresponding to our T* structure. The theory finds
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the alkane thiols to be canted at an angle to the surface normal of § = 28.3 = 1.5°
(the canting is parallel to the a axis). Reference 14 reports 6 = 37 £ 2° with a
setting angle ¢ = 21°; however, details of how this is obtained from the data are
not provided.

We show in Figure 4a the X-ray diffraction intensities predicted from the
T* structure (this pattern is for an out-of-the-plane momentum of @, = 0.1/A in
order to compare directly with experiment). The experimental diffraction pattern
is shown in Figure 4c where we see an excellent fit with the predictions for T*. In
particular, both theory and experiment find systematic extinctions for (1,0), (0,1),
and (1,2). Due to the canting of the alkyl tails (and the nonzero Q;), the theory
gives slightly different intensities in the four quadrants of Q, Q. Averaging over
these four quadrants leads to Figure 4b which has intensities in excellent agreement
with experiment (Figure 4c). The slight differences might be because the theory is
for T = 0K while the experiment is for 7' = 300K.

Thus we conclude that the lowest energy T structure predicted from the
theory is identical to the fully annealed structure observed by experiment. This is
very encouraging because it indicates that theory might be used to predict the most
stable structures in advance of experiment. This would be essential for designing
new nanostructures where one might choose support, structure of the overlayer, and
additives to optimize the properties.

The procedure for predicting the structure for a new SAM can be illustrated
for the case considered herein. In the T structure, each alkane take has six neighbors
(pseudo close packing) with four at 4.35A and two at 4.81A. In T* there are four
neighbors at 4.38A and two at 4.87A. For Au (111) the nearest neighbor spacing is
2.87A, too small for the alkane thiols. The smallest spacing of Au (111) compatible
with the alkane spacing is 4.97A. Thus we would expect the dimer to orient so that
the two neighbors preferring 4.814 or 4.87A increase this spacing slightly to attain
4.97A. This might require less strain for 7*, perhaps explaining its preference over

T. With some spacings increased from 4.87 to 4.97 the others should decrease from
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4.38 to 4.35A (assuming constant area per alkane). In order to match the spacings
of Au (111), this requires canting of the alkane thiols. The amount of canting can be
predicted by assuming the spacing of 4.35A. This leads to a projected spacing of 3.77
= 4.35 x1/3/2 (where the geometric factor corrects for the distance perpendicular
to the canting plane). The spacing of Au atoms is 4.97 ><\/§/2 = 4.30. Thus the
canting angle is cos @ = 3.77/4.30 or 8 = 28.7°. The optimum angle calculated from
the simulations is § = 28.3°, in excellent agreement. Starting with this packing we
would carry out molecular dynamics studies to obtain the optimum structure and
properties. To consider a different alkane thiol, say polypropylene (PP), polyvinyl
chloride (PVC), polytetrafluoroethylene (PTFE), or nylon, we would first consider
the packing of the isolated chains (from theory or experiment). Using these spac-
ings we would consider the minimum spacing for attachment to the support. Based
on this we would terminate the alkyl chain with a suitable group for self-assembled
attachment to the support. The modification of tail spacings to fit the actual' spac-
ing of the support can then be predicted along with the canting angle. With these

starting structures we would carry out molecular mechanics and molecular dynamics |
calculations to obtain more accurate predictions of structure and properties (cohe—
sive energy, vibrational frequencies, entropy, specific heat). This would be follovs}édvv

by experiments focusing on the best cases.
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Table 1. Cohesive energy (kcal/mol per CH>) of polyethylene crystals.

Cohesive Energy Structure

Lattice D/s¢ D/S,PE¢ a b ~ é°
A A deg deg

L1l 2.14 2.08 4.27 4.74 120 35.9°

L12 1.99 2.02 4.96 8.06 120 10.9°

L22 2.03 2.06 8.03 10.28 120 6.2°

T° 2.09 2.07° 7.19 4.81 90 42.0°

T~ 1.98 2.00 7.29 9.73 90 43.3°

@This corresponds to the observed orthohombic structures of PE.

® The experimental value 2.02 kcal/mol (see reference 17).

¢Setting angle.

4The force field, see text.
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Table 2. Cohesive energy and structure of alkylsulfide dimer monolayers.

Structure Cohesive® Unit Cell Canting®
Energy (degree)
L12 17.16 (1x2) 26.2° £1.2°
L22 15.43 (2 % 2) 26.5° & 2.2°
T 1842 (1x2)  26.7°+0.5°
T 18.64 c(2 x 4) 28.3 £ 1.5

%kcal/mol per dimer.

bCalculated by using the last four carbons of each chain.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

The optimum parallel structure of decane sulfide dimer. Here the
two alkyl tails are parallel but the CC planes of these tails orient
perpendicularly with an average spearation of 4.4A. The bottom view

is rotated from the upper view by 90° about the horizontal axis.

Stable packings of infinite alkyl chains. The arrows represent the CC
planes of the alkyl tails and the direction of the arrow is the phase of
the tail. The structures in (a) have all planes parallel and are labeled
L. The structures in (b) have half the CC planes perpendicular to
the other half and are denoted as T. In these structures the setting
angle (¢) of one CC plane is taken in the a direction. This setting
angle (see Table 2) is optimized in each case to obtain the optimum
structure. The structure 7" in (b) corresponds to the observed ortho-
hombic structure of PE (observed ¢ = 41° for T' = 300K, calculated
¢ = 42° at 0K).

The optimum structure of the T* SAM. (b) shows the side view orif.
ented to show the two dimers per unit cell with their CC pl-anes_, p’e;r-“,
allel or perpendicular to the view. (a) is a top view but oriented alobng
the alkyl chains (at a canting of 28.3° from the normal) to compare

with the idealized structures in Figure 2.

The X-ray diffraction patterns. (a) shows the predicted diffraction
pattern?® for the optimized monolayer with the 7 structure, (b) av-
erages the predicted pattern over the four quadrants of (a). (c) is the

experimental pattern adapted from reference 14.



