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Thesis Abstract

“Modeling and Visualizing Surfaces” denotes several developments aimed at increas-
ing our ability to model and understand molecular surfaces. The Generalized London
Potential is a new method of modeling potential energy surfaces of reactions. The
London Equation assumptions of zero overlap and no three-body interactions are
discarded and a more general potential is derived via valence bond theory and care-
ful substitution of two-body terms into three-body energy expressions. Three-body
corrections for dispersion energy are also introduced. Using the lowest order forms
of overlap and dispersion corrections, a much improved potential energy surface is
found for Hj. Input is limited to H, potentials and information only about the Hj
saddle point region, the latter determining the two or three parameters used. The
predicted surface is shown to be stable with respect to varied input. A straightfor-
ward method of extending the method to make use of additional input is discussed.
The method is applied to hydrogen abstraction from terminal carbons. The develop-
ment of a stable model of exchange reactions will greatly increase the complexity of
systems which can be studied with the increasingly accurate force fields of molecular
modeling techniques by providing the means of handling reactive dynamics at poly-
mer and crystalline surfaces. This introduces the second major theme of modeling
and visualizing molecular surfaces.

Common to most definitions of a molecule’s surface and, in fact, many calcula-
tions involving local spherical symmetry is the use of spherical meshes. A method
of systematically creating spherical meshes of various sizes is presented. Degrees

of freedom built into the mesh design can be optimized for a variety of problems.



vi
The meshes are used in calculating molecular surfaces and determining surface area.
They are separately optimized for the integration of spherical harmonics and pro;
vide lower error for integration of higher angular momentum functions than previous
quadratures. Finally, methods of visualizing molecular surfaces that allow real-time
manipulation of complex molecules and yield a better understanding of surface prop-

erties are presented.
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Chapter 1

A New Approach to Potential Energy Surfaces for Reactions

I. Introduction

The construction of potential energy surfaces (or force fields) for dynamics simu-
lations or molecular modeling is much more difficult when bonds must be allowed
to break and form than for situations involving nonreactive forces such as bending,
stretching, van der Waals, etc. In exchange reactions, bonds are concurrently bro-
ken and formed, making it kinetically feasible to break strong bonds. However, this
requires that the strongly attractive interaction between one bond pair must turn
into a repulsive interaction between them as one of them forms a bond with the
third body. Obviously, the sum of three bonding interactions resulting in a stable
triangular geometry is inadequate. This changing of sign of the forces between var-
ious pairs of reactants can only be modeled by careful consideration of the bonding
(attractive) and antibonding (repulsive) forces involved as moderated By the Pauli
Principle. The fact that the barrier to reaction is often far less (2 to 10%) of the
bond energy emphasizes the importance of the interplay of bonding and antibonding
during the reaction.

For exchange reactions current one- or few-parameter models are often based

on the Sato modification of the London-Eyring-Polanyi model [1] which dates to
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1955 and cannot be derived from any set of approximations involving valence bond
or other theory. When detailed information is available for a given potential energy
surface (such as accurate ab initio calculations over much of the surface), researchers
have resorted to many (20 or more) parameter fits in order to accurately reproduce
the features of the surface. Terms specific to various regions of the surface, e.g.,
linear-symmetric or bent geometries, are used to decouple the complex least-squares
fitting, but such terms often have little or no scientific motivation and must be
reconsidered whenever more accurate information becomes available. We seek a
middle ground involving a few parameters motivated by the physics of the reaction
for the majority of systems where detailed information is not available. Qur goal is
to be able to incorporate limited information (perhaps just an estimate of the saddle
point from experimental or ab initio data) into a physically motivated model of the
potential energy surface of exchange reactions.

One such reaction is the exchange of an atom between two molecules (or even
two sites on the same molecule). The energy barrier is generally far less than that
required to break the first bond. We first consider the construction of potential
energy surfaces for the transfer of an atom with a nearly complete valence shell from

one system to another, i.e., those of the type
A + XB— AX + B,

where X is either hydrogen or a halide and both A and B are atoms or molecules
one electron shy of a complete valence shell. Thus A and B could be hydrogen or a
halide themselves or a more complex unit such as a S¢ or C atom with three other

bonds. One example of the latter would be hydrogen abstraction on a silicon surface:
H + Hsz{» S H, + Si{),

where the silicon atom is on the surface of a crystal.
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In forming a model for the potential energy surface, it is best to start with
a simpler (model) system for which more data is available for comparison. For

example, the reactions

H+H2—)H2+H,
F + H—HF 4+ H

are well studied and suitable for this task. Hs, especially, has been the testing ground
for many ab initio and semi-empirical studies. Even so, recent measurements of both

integral [2] and differential [3] cross sections for
H + Hy(v=0,j=0,para) — H, (v'=1,5'=1,3) + H,

show a much greater energy dependence of the effects of Feshbach resonances than
do theoretical studies [4-6]. This has prompted additional study of the Hs potential
energy surface in higher energy regions (>20 kcal/mole), especially bent configura-
tions [7]. F'4 H; has been given much attention since about 1970 due to application
to chemical lasers. The amount known about this system rivals Hs, but the estimates
of the classical barrier height still vary from 0.86 to 1.18 kcal/mole (experimental)
[8] and 1.4 to 4.6 kcal/mole (theoretical) [9]. The validity of including Davidson
and correlation corrections and the importance of zero-point energy and tunneling
effects are still undecided. Thus even for the two most closely scrutinized exchange
reactions, there are still a few unknowns. Information on other exchange systems is
more limited, so a general model of potential energy surfaces should not require a
large amount of information.

For other hydrogen and halide exchange reactions, we can look for input from
several sources. Experimental reaction rates can yield estimates of the barrier height,
perhaps to 1 kcal/mole. Quantum chemistry calculations can be done at a few

points to gain additional energy and saddle point geometry information. The relative
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energies of the reactant and product channels and the AX, XB, and AB two-

body potentials are usually attainable. An ideal model for the potential energy
would require only the information listed in this paragraph yet correctly describe
the initial and final states and approximate the important features of the transition
state. This chapter seeks to answer the question: “How do we formulate a potential
energy surface using this information?” The next section looks at several historically
important models for exchange reactions, Section III derives the London Equation
from the new perspective of spin coupling, and the following sections correct the
London Equation to account for the approximations it makes and then apply the

new methods to several systems.

II. Important Models of Exchange Reactions

This section lists some of the important representations of the potential energy
of H; from a historical perspective. Our goal is not to review the modeling of
the Hs potential energy surface [10-12] but to understand the assumptions and
approximations underlying several of the techniques and thus their relation to the
current work.

By setting overlap and three-body terms to zero, the valence bond potential
energy surface for three atoms with only one valence s electron each is given by the

London Equation,

W=A+B+C— \/o?+82++*—af - By -, (1.1)

where A and « are functions of one interatomic distance, only, as B and 3, C and v
are functions of the other two interatomic distances. A, B, and C are the Coulombic
or classical terms, and «, 3, and v are the resonant or exchange terms of the three

pairs of atoms. The original derivation of the London Equation is based on solving
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the secular equation for this system [13-18]. While the London Equation is quite

useful by reducing the three-atom problem to the Coulombic and resonant terms of
two-atom systems, functions must be assigned to these terms before one can proceed.
Before overlap has been set to zero, Heitler and London [19] determined the

energy of H, to bel
_Axa
IEEED

(1.2)
With « negative for all but very short distances, the upper sign corresponds to a
bonding state and the lower sign to an antibonding state. Sugiura [20] was able to
obtain equations for these Coulomb and resonant terms for H, based on strict “1s”
orbitals. Thus he obtained potential energy curves for the singlet ground state and
the triplet excifed state. The Coulomb and resonant terms and the resulting binding
energy from Sugiura’s equations are shown in Figure 1.1. His equilibrium bond
distance is 1.51 bohr and bond energy is 74 kcal/mole compared to the known values
of 1.40 bohr and 109.5 kcal/mole (accounting for zero-point energy), respectively.
The results of this simple calculation actually can be improved by using an optimally
scaled “Is” orbital instead of that of a hydrogen atom. In Figure 1.2, we see that
the Coulomb energy is a small portion (10 to 15%) of the total binding energy for
distances above the H; bond distance. While the calculated energies of Sugiura for
H, are not accurate enough to estimate barrier energies for Hs, the fact that the H,
Coulomb energy is on the order of 0.12 times the binding energy is useful.

Eyring and Polanyi [21,22] created the original semi-empirical method by using
a Morse Potential [23] for the binding energy of H,. Initially, they assumed that

since the Coulomb portion of the binding energy is small compared to the resonant

portion, the Morse Potential can be used for a in a first approximation. By using

1We define S as the overlap of two orbitals instead of the overlap of two wavefunctions as done

in the early papers dealing with this subject.
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Figure 1.1. Sugiura’s Coulomb and Resonant Energies. The binding (S), Coulomb
(F), and resonant (f) energies of Sugiura are compared with the singlet energy as
currently known (SC). The Coulomb and resonant (exchange) energies reflect Sug-
iura’s functional form (and notation) of including the correction for overlap, i.e.,

F(r)= %.S—’f and f(r) = ngz‘, so that £* = F + f.



Figure 1.2. Coulomb to Binding Energy Ratio. Sugiura’s Coulomb energy F(r)
divided by his binding energy is plotted.
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the Coulomb potential of Sugiura for A, a potential energy surface can be plotted for
H3 using the London Equation. This leads to a barrier energy of about 20 kcal/molé
and, more importantly, a shallow (< 1.5 kcal/mole) well at the top of the reaction
path. Following up on an earlier suggestion [24] of his that the Coulomb energy be
taken as a fixed fraction (10%) of the binding energy of the Morse function, Eyring
[25] determined another potential energy surface that has a lower barrier energy
(13.0 kcal/mole) but a similar 1.6 kcal/mole well so that the minimum energy for a
linear symmetric geometry is 11.4 kcal/mole. This method of assuming a constant
Coulomb to bihding energy ratio is known as the LEP (London, Eyring, Polanyi)
method. The well is now known to be merely an artifact of the LEP method,
probably caused by the fast changing Coulomb/binding energy ratio near the saddle
point distance.

Sato [1] used estimates of both the ground state singlet and the lowest energy
triplet curvés to determine the Coulomb and resonant energies of H,. He used a
Morse Potential for the singlet, proposed an Antimorse Potential for the triplet, and
used a form of Equation (1.2) where the distance-dependent S? is replaced by an
adjustable constant k. He also added a multiplicative factor of ﬁ to the London
Equation. This last modification (even with variable overlap) should be treated as
merely a useful functional form since it cannot be obtained from any approximate
treatment of valence bond theory. Using constant overlap to scale both the H, and
H3 energies does reproduce the correct dissociation limit of one pair in a pure singlet
state as the third atom is removed. Weston implemented Sato’s method by adjusting
k to fit the experimental activation energy [26]. No well at the top of the reaction
path is found. This method of using an adjustable Sato parameter k is known as
the LEPS (LEP plus Sato) method.

Many applications of the LEP and LEPS methods exist (see those mentioned in
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References 10 and 12), but we note only one additional implementation of the London
Equation and its relatives. Cashion and Hershbach [27] started with the then best
available estimates of the actual singlet and triplet potential energy curves. Using
the Heitler-London energy of H, with overlap set to zero (E = A4a) and the original
London Equation, they obtained a potential energy surface for Hs with a barrier of
8.9 kcal/mole. This method with improved H, curves is discussed in Section IV.
The accurate configuration interaction (CI) calculations of Liu [28] on linear Hs
and Siegbahn and Liu [29] on bent H3 give us a set of points covering a large range of
geometries for comparison and well define the properties at the barrier to reaction.
The calculated saddle point energy was 9.80 kcal/mole with an estimate of 9.68
+ 0.12 kcal/mole adjusting for correlation error. Truhlar and Horowitz presented
an accurate fit to these calculations [30]. They start with the London Equation
using a singlét curve that is a spline fit to ab initio energies and a parameterized
“triplet” curve that is reduced from the actual triplet, especially at shorter R. The
four parameters of that curve are chosen to minimize the least squares deviation
of the linear symmetric points under the constraints of exact K, and R,,. One
five parameter term is added to fit the additional linear points in a least-squares
sense, and five bending terms comprising fourteen parameters are added for nonlinear
geometries. This fitted surface is called the LSTH (Liu, Siegbahn, Truhlar, Horowitz)
surface. While such a functional form is too complicated to be useful here, the LSTH
was considered for many years to be the most accurate representation of any reaction
surface and is quite useful (along with the CI points themselves) for comparison.
Liu published a revised saddle point energy [31] and (with Blomberg) additional
bent geometries of higher energy [32]. The calculated saddle point energy is 9.65
kcal/mole with an estimate of 9.59 + 0.06 kcal/mole. This agrees well with quantum

Monte Carlo calculations [33,34]. A. J. C. Varandas et al. [35] adjust the Liu et al.
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[28,29,32] points such that the barrier is 9.65 kcal/mole and present a new many-

parameter fit (called DMBE for double many-body expansion) that has a higher
root-mean-square error than LSTH, but may more accurately represent higher energy
regions. |

To summarize, the LSTH and DMBE surfaces are both accurate representations
of the Hj potential energy surface and differ by at most only a few tenths of a
kcal/mole for all but high energy regions. The error bounds on any other exchange
reaction potential surface will be greater than this difference. While the forms of
these equations are unique to Hs and such a large number of parameters cannot
be used for less accurately known surfaces, they provide a unique opportunity for
detailed comparison of experimental and theoretical dynamical measurements. The
arrival of accurate ab initio energies over a large range of configuration space sus-
pended the search for few-parameter fits (such as the LEPS surface) to the Hj
potential energy surface. We renew that search in the hope not of finding a more
accurate Hj surface but of finding a physically based model capable of handling

various exchange reactions.

ITI. Derivation of London Potential in Terms of
Spin Coupling

The original derivation of the London Equation [13-18] is based on solving the secular
equation for three atoms with one s electron each. We find it worthwhile to consider
two special cases explicitly and to derive the general potential by considering the
optimal spin coupling of these special cases. Before proceeding, the approximations
and assumptions of the London Equation are stated. First, it is assumed that a single

valence bond orbital on each hydrogen atom can represent the total wavefunction.
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Second, both orbital overlap and explicit three-body terms are neglected. Third, it

is assumed that the remaining energy terms can be replaced by their counterparts
in H;. We make use of the results of two appendices. Appendix A details the
derivation of energy expressions that are exact under the valence bond description,
i.e., no terms are set to zero; Appendix B gives approximate energy expressions
under several sets of assumptions where various terms are assumed to be zero. Each
set basically varies in its treatment of overlap (and quantities which exponentially
decay like overlap). The final set in which all overlap terms are set to zero is that
of the London Equation. The method of obtaining the usual London Potential from
the spin-coupling representation used here and the relation of the London Potential
and its spin coupling are also given in Appendix B.

The first limiting (special) case is that of a bonded pair with the third atom far
removed:

Pair 3

e N, )
Ha—'Hb

Pair 2 J Pair 1

H,

\ /

Since we know that the spins of H, and H, (pair 3) are singlet paired, we can assign

either up (@) or down () spin to H.. The appropriate spin function is thus
= —=(aB - Ba)a (1.3)
af — Ba)a. 1.3

Under the approximations of the London Potential, Equation (1.138) from Ap-

pendix B tells us that the energy is

Hu = E5 + (3E; + 3E5) + (3ET + 1E7). (1.4)
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Here, ET and E; are the triplet (antibonding) and singlet (bonding) energies, respec-
tively, of pair 2. A second limiting case is that of the transition state (B; = R, < Rs

for bent, R; = Ry = %33 for linear, where R; is the distance between pair 7):

H, H, H.

Since we know that the spins of atoms H, and H, are triplet paired, this state has

spin function

X2 = \/L(_j(aﬂa + faa — 2aaf). (1.5)

The energy expression per Equation (1.139) is
Ha = Ej + (AET + 2E5) + (LET + 2E?). (1.6)

In an equilateral triangle arrangement of the three atoms (R; = R, = R3), both of

these limits reduce to the same energy of
E = 2(ET + E?). (1.7)

For nonequivalent atoms, the more general condition for this reduction is that
%(EZT — E?) be the same for every pair. This degeneracy will be important later
in limiting the form of corrections to the London Equation. Note that the overlap
between the wavefunctions associated with these two spin functions is zero under
the approximations of the London Equation. Per Equation (1.140) the energy cross

term between these two states is
Hig = Y2(E] — E5 — ET + EY). (1.8)

Note that the overlap between the wavefunctions corresponding to these two spin
functions is zero under the London approximations. The general energy expression

is found by taking a normalized combination of these two spin functions. The energy
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corresponding to the general spin function
X = Xx18in %7-}—){2 cos %7 (1.9)
is
E; = sin? %77{11 + cos? %77'{22 + 2sin %7 cos %77‘(12
= (1 —cosy)H11 + 3(1 + cos y)Hs + sinyHj,. (1.10)

The London Equation as found using the secular equation is independent of the

spin coupling 7. To obtain it, E;, is minimized with respect to v yielding

Hiz _ @(Eﬁ - Ef)

= , 1.11
%(7‘(22 —Hn) (EE— %Ez’: - %E{) ( )

tan '7 =

where we have defined Ef = 1(ET — Ef) and E¢ = L(ET + E?). Note that these
definitions change when overlap is no longer neglected. Substituting this solution for
7 in Equation (1.10) (see Appendix B for details) and using the above expressions

for H;; gives us
Ep =E{' + E + E{ — (E?® + EZ* + E2* — EPEZ — EXEZ — EFED)2,  (1.12)

the standard form of the Londoﬁ Potential.

Previous manipulations of the London Equation (such as the LEPS potential)
start with the London Potential without reference to the mixing of the underlying
limiting states. It is our belief that information is lost in only using the standard form
of the London Equation (Equation (1.12) as derived per the secular equation) instead
of the spin-coupling form (Equation (1.10) as derived here, i.e., before substituting
for 7). ~ tells us the mixing of the states x; and x3, and thereby gains its name of
spin coupling. See Figure 1.5 in the next section for a plot of 4 for linear H; to see

how it uniformly changes along the reaction path. Table 1.6 in Appendix B further
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illustrates the usefulness of 4 as a reaction coordinate as it specifies pure singlet or

pure triplet pairing between a certain pair of atoms at each multiple of 3 over a 2T

range.
While the London Equation is developed above by concentrating on the coupling
limits of pair 3 (atoms a and b), it is worthwhile to consider further manipulation
of the London Equation (before the substitution for 4) in order to emphasize the
symmetry of the London Equation with respect to exchange of atoms. Begin by

rewriting Equation (1.10) after substituting for H;;:

Ep =1 (14 cosy)ET + (1 — cosy)ES
_1 V3 g T 1 —_ V3 s
+ (1 —3cosy+ Gsiny)Ey + (1 + ;cosy — LEsiny)E; (1.13)

+(1—3cosy— —‘?sinfy)Eir-f— (1+;cosy+ @Sin?’)Ef J-

Next note that

cos(y £ &) = —%cos'yqﬂ?sin'y. (1.14)

Thus if we define y3 = v, 7, = v — %", and v; = v + %", we can succinctly write

3
By =3 [fT(v)E] + £ () E7), (1.15)
by defining
I = 11+ cosy), (1.16)
P(r) = 31 —cosy). (1.17)

This symmetric form of the London Equation emphasizes the importance of the
change of singlet and triplet character of each pair of atoms as the spin cbupling v
varies over its domain of 27. One final version which emphasizes the distribution of

exchange energy among the pairs of atoms is

3

Ep = S[ES + cos 1 ). (1.13)

1=
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With the sum of the three cos+;’s being zero, this illustrates how the London Po-

tential is a distribution of bonding (cosy; < 0) and antibonding (cos+; > 0) among

the three pairs of atoms so that the net bonding is zero.

IV. London Potential and H;

While the H, calculations of Kolos and Wolniewicz [36] greatly improved the accu-
racy to which the ground singlet and first excited triplet potentials are known, the
current authors know of no reporting of their use in a strict London Potential. This
section investigates the accuracies and limitations of doing thus that. Spline fits to
their CI points are plotted in Figure 1.3. This gives us the best possible starting
point for our two-body potentials in order to evaluate our methods, but we cannot
expect to have starting potentials of this accuracy for other systems. While it is
necessary to use the actual singlet curve to ensure that the correct H + H, limit is
obtained, the triplet curve could be adjusted to fit certain features of the H surface.
We prefer to use the best available estimates for both the actual singlet and triplet
curves to avoid the extra parameters of a fitted triplet, since for systems other than
Hj we can more easily find two-body triplet curves than extra three-body data to
which to fit the triplet. Instead, we look for physically motivated methods to account
for the approximations of the London Equation in the next section. Figure 1.4 shows
a contour diagram of the London Potential using the spline fits to the H; CI points
of Kolos and Wolniewicz [36]. The variation of y over the same linear space is shown
in Figure 1.5. The facility of v as a reaction coordinate is seen in its smooth change
from —% to 7 along the reaction path. We use the fit of Truhlar and Horowitz [30]
to the H3 CI points of Liu et al. [28,29] (the LSTH surface) for comparison to the

London surface. The main reason for this is to retain the concurrent ability of direct
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Figure 1.3. H; Spline Fits to CI Points. T is spline of ET, the triplet; S is spline
of ES, the singlet. C for E¥ and X for E® are half of the sum and difference,
respectively, of the triplet and singlet splines. Energy is in kcal/mole, and distance
is in atomic units.
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comparison with the unadjusted Liu et al. points, and the at most few tenths of a
kcal/mole difference between the LSTH and DMBE surfaces is not significant for
our considerations. Contrast the LSTH contour plot of Figure 1.6 with the London
plot of Figure 1.4.

We now examine what the London Potential is able to do and what it cannot
do for H3. Most importantly, it provides the correct dissociation limits (Hy + H
and H + H + H) and has all of the correct features such as a barrier energy of the
correct order of magnitude and a minimum energy reaction path of a reasonable
shape. However, the barrier energy (Esp‘) is not to “chemical accuracy” and the
position of the saddle point (Rs,) is off by two percent. Two of the three curvatures
at the saddle point are reasonable, but the third is off by over a factor of two. The
curvatures, £, K5, and &,, are the second derivatives of the energy with respect to

the Variableéf

T, = (R“;BRZSP) (0, — 0), (1.19)
Ty = -\g—g(Rl Rlsp) (Rz—RZsp)]a (120)
ta = 3[Ry~ i) = (s = Ray)], (1.21)

where an sp subscript indicates the value at the saddle point and 6 is the angle
opposite pair 3. While the London Potential does a remarkable job for linear config-
urations given that it requires only H, curves for input, Figure 1.7 shows that there
are two major errors along the reaction path, the most important region to fit. One
is that the barrier is too high as seen near the origin; two is that the barrier is too
“thin” (k; is too negative) as seen for longer distances. To summarize, our task now
is to generalize the London Potential in such a manner as to require only one or two

parameters but to fulfill the following goals:

o To be extendible to other exchange reactions.
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Figure 1.7. Reaction Path Energy: London vs. LSTH. Energy in kcal/mole is given
along the reaction path with the saddle point as the distance origin. Distance (in
atomic units) is integrated along the minimum energy path.
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e To retain the correct dissociation limits of the London Potential.

o To correct for the barrier being too high (fit £, better).

To correct for the barrier being too thin (fit &, better).

o To require limited input, however be extendible as more input is available.

To do all of the above based on sound physical reasoning.

Such a method is proposed in the next section.

V. Generalized London Potential

The approximations used in deriving the London Equation include the neglect of
overlap, the neglect of terms involving all three atoms, and the use of H, values for
similar terms in the H3 energy expression. Ounly the last of these approximations
is not included in the valence bond formulation derived in Appendix A. Valence
bond methodology does not include dynamic electron correlation and charge trans-
fer. Thus the use of H, expressions in Hz implicitly assumes that the Hjz dispersion
energy is the pairwise sum of H; dispersion energies. In this section we look at
correcting these approximations by generalizing the form of the spin-coupled Lon-
don Equation. Since the corrections will always involve at least two pairs of atoms
and thus are always three-body in nature, the London Equation can be considered
exact through one pair interactions. We distinguish between corrections involving
two pairs and those involving three pairs in the belief that this is the proper hier-
archy of corrections. Note that Appendices A and B give new equations including
the corrections but not the form of the corrections themselves. To help to under-

stand the magnitude and nature of the required corrections, Figures 1.8 and 1.9
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plot the difference between the London and LSTH potentials for linear and bent

Hj;, respectively. The overestimate by the London Potential in the lower left of
each plot is due to the neglect of both overlap and three-body terms plus the lack of
correlation energy. This effect increases as # goes from 180 to 60 degrees as all three
bond lengths become shorter. The disagreement is further enhanced near equilateral
triangle geometries as three-body interactions increase. The underestimate by the
London Potential at longer distances is due to the use of H, terms which include a
greater amount of dispersion energy than possible for H;. When one pair of atoms is
primarily singlet coupled with the third atom somewhat removed, the full amount of
interaction of orbitals is expected for that pair. However, the interaction of this pair
of orbitals with each other reduces the amount with which they can interact with
the third atom. This section provides methods for correcting for the terms explicitly
dropped in the valence bond derivation of the London Potential and for accounting

for the interaction of pairwise dispersion energies.

V.A. Overlap Correction

Presumably the most important approximation in the derivation of the London
Potential is the neglect of overlap. The Heitler-London theory for H, (which evolved

into valence bond theory) traditionally gives the energies of the singlet and triplet

states as
cl T
ES = e —ab 1.22
cl z
gl = L2t (1.23)

1-52% 7
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Figure 1.8. Linear London Minus LSTH Contour Plot. Contours (in kcal/mole) are
zero and +2!, I = —1,0,1,2,.... Axes are distances in atomic units.
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120

Figure 1.9. Bent London Minus LSTH Contour Plot. Contours (in kcal/mole) are
zero and +2', [ = —1,0,1,2,.... Axes are distances in atomic units per lower left

plot. Angles are marked in degrees in upper right corner.
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where E¢ and —E?, replace the A and o of Equation (1.2). Note that we use the

expressions
Ez‘
E} = E&——%— 1.24
EL = E<+ Eay (1.25)
LR A

in order to make the substitution into the H3 equations easier, but this necessitates
only a slight change in definition of EY,. The advantage of these definitions is that
E¢ follows the nuclear repulsion i; instead of the Coulomb integral J,;. This
matters little for H; by itself but is important when substitution into Hj energy
expressions is made. Starting with the secular determinant, it is difficult to derive a
similar energy expression including overlap for Hj. Starting with the spin-coupling
formulation used here, we have done just that in the appendices. There we progress
with increasing orders of approximation leading up to the London Equation, but
here we reverse that order and start with the London Equation. We generically refer
to the methods discussed here as overlap correction of London (OCL) potentials
which form part of the Generalized London Potential (GLP) methodology.
The Hj potential corrected for overlap through second order (2-OCL) is given
by Equation (1.137) in Appendix B, which can be rewritten as
3
E =) [ffEl + fFE7 - (S + SONEf —EP)], i#j#k, (1.26)
i=1
by abbreviating fT = fT(v) and f° = f5(v;). This simplest first correction illus-
trates that (within this approximation) the overlap between one pair of atoms has
no effect on the potential due to that pair of atoms, i.e., a pair’s overlap only effects
the energy terms of other pairs. This results in the correct dissociation limits and
the overall good fit of the London Potential except in that region of configuration

space where all three atoms are nearby. Another important observation is that this
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correction does not involve spin coupling. Thus it can be considered as a correction

to the classical energy:

3

E=3[E!+ (57 - 152 — LSHE? + cos 1, E¥). (1.27)

i=1
Remember that when including S? terms in the Hj energy expression that the clas-
sical and exchange energies are given by Equations (1.97) and (1.98) leading to the
cancellation of the S?E¥ term with part of Ef'. Thus the London spin coupling has
not been changed by adding overlap through second order. At this point we require
an estimate of overlap. Inspecting the scaled “1s” H, integrals of Appendix A, one
finds that both SZ, and E¥, fall off at the same exponential rate. In fact, Figure 1.10
shows that one obtains a reasonable estimate of overlap from S% = §°E?, by taking
6° as an adjustable parameter. It is varied to adjust the saddle point energy, i.e.,
the barrier to reaction, to a known value. It is convenient to adjust §° to fit four

possible energy barriers:
9.59 kcal/mole The best known estimate [31].
9.65 kcal/mole The best calculated value [31].

9.80 kcal/mole The best calculated value for which a larger group of linear points

at the same level exist [28].

9.9 kcal/mole The best calculated value for which a larger group of bent points

at the same level exist [29].

The results are given in Table 1.1, showing that just this one parameter does a
remarkable job in bringing the London R,, and E;, close to their true values. «,
is also improved but remains too large in magnitude. Also important is slow and

smooth variation of the rest of the surface as §° changes to fit various barrier lengths.
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Figure 1.10. Estimate of Overlap for H,. 1S is the standard “1s” overlap, SO uses an
optimized (scaled) “1s” orbital, and XC uses S = §°(EZ; — E;) with 6° = 0.0025
in (kcal/mole)™L.
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Method 6° R, E, Kb Ks Kq
Reference [31] 1.759  9.65 .1092
Reference [28] 1.757  9.80 1067 -.058
Reference [29] 1.757  9.90 021

London 0 1.7922  12.375 .01991 .1054 -.1320
2-OCL 2.5686 -4 | 1.7638 9.590 .02027 .1101 -.1079
2-OCL 2.5148 -4 | 1.7644 9.650 .02026 .1100 -.1084
2-OCL 2.3801 -4 | 1.7659 9.800 .02025 .1098 -.1097
2-OCL 2.2900 -4 | 1.7669 9.900 .02024 .1096 -.1106
LEPS 1.7732  9.800 .02010 .1092 -.1064

Table 1.1. One Parameter 2-OCL Fit to E,,. 6° is in floating point in (kcal/mole)~1.
Rsp and &’s are in atomic units while E;, is in kcal/mole. LEPS surface with Sato
parameter of 0.02636 is also given.

To get a better idea of the correction involved over the entire surface, the difference of
the resulting energy and the London Equation is plotted in Figures 1.11 (linear) and
1.12 (bent). This negative correction most accurately represents linear geometries
and is less accurate for bent geometries where explicit three-body terms are more
important.

As mentioned above, the exchange energy (3(ET — E®)) and overlap squared
(52) are known to have the same exponential decay. However, inspection of the H?
integrals of Subsection A.II shows that each has a dependence on various powers of
R. The correspondence between the two might well include terms in 712-, R, R?, etc.
To give a simple example of the extendibility of the OCL part of the GLP, a fit of
the form:

S = (83 + 6SR)E® (1.28)

was made. This enables a simultaneous fit of E,, and R,,. Fixing E,, = 9.8
kcal/mole and R,, = 1.757a, yielded a surface similar to the above one-parameter

fits with &, = .02119, x5 = 0.1089, and k, = —0.1028. The optimal form of S?
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Figure 1.11. Linear 2-OCL Minus London Contour Plot.v 0° set so E, = 9.8
kcal/mole.
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Figure 1.12. Bent 2-OCL Minus London Contour Plot. 6° set so E,, = 9.8 kcal/mole.
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in terms of E” for the entire potential energy surface may well differ, however the
ability to do simple one-parameter fits if just an energy barrier is available and to
extend the form of even just this one part of the Generalized London Potential to
account for additional information is demonstrated.

In this section we have concentrated on the saddle point region since it is the most
studied part of any reaction and overlap is the dominant correction there. We must
also consider the consequences along the reaction path. Figure 1.13 shows that our
underestimate of the energy along the reaction path (too “thin” a barrier) has grown
worse by including an overlap correction. The LEPS surface suffers the same malady.
A minor part of the problem is that a correction second order in overlap (involving
pair-pair expressions) has been forced to account for all the approximations of the
.London Potential including corrections third and higher order in overlap (involving
3-pair expressions). This leads to an overcorrection along the reaction path. A major
part of the problem is the lack of any corfection for the errors of including all of the

dispersion energy of three H; pairs. This correction is shown to be also second order

in overlap and involves pair-pair terms in the next section.

V.B. Dispersion Correction

The remaining corrections derived in Appendices A and B are third order in overlap
and involve all three pairs. Not contained in that valence bond derivation, however,
is any treatment of dispersion energy. The dispersion energy is due primarily to
dynamic (as opposed to static) electron correlation and charge transfer. CI calcula-
tions on H, do include dispersion energy. Thus their use in Hj3 energy expressions
amounts to including some treatment of dispersion energy as necessary to achieve
the correct H, + H limits and implicitly assumes that the dispersion energy of Hs

is the pairwise sum of the dispersion energies of the three H, pairs. This assump-
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tion can be considered correct when considering one-pair energies only. Thus it
is logical to consider a second-order (pair-pair) dispersion correction similar to the
pair-pair overlap correction of the previous subsection. While it might seem a devi-
ation to consider dispersion now and leave the valence bond corrections, dispersion
is the second (and final) second-order correction and is thus properly treated next
in progressing through the hierarchy of approximations of the London Equation.

There are two equivalent methods of obtaining the dispersion correction, one con-
centrating on the interaction of exchange energies, the other concentrating on the in-
teraction of singlet and triplet character. The first starts with the Coulomb/exchange
version of the spin-coupled London Equation, (1.18). Consider the pairs ¢ and j and
their effect on each other. If their exchange corrections to the classical energy are
in the same direction (cos+y; and cosy; have the same sign), then the dispersion
of the two pairs interacts favorably and net dispersion is increased (energy is more
negative). If their exchange corrections are in opposite directions (cos+; and cos;
have oppositc signs), then the dispersion of the two pairs interacts disfavorably and
net dispersion is decreased (energy is less negative). Thus the pair ¢ and pair j
dispersion interaction should go as cos+; cos ;. An alternative derivation based on
singlet and triplet character similarly states that pair-pair dispersion due to triplet-
triplet or singlet-singlet combinations are reinforcing while that due to triplet-singlet
combinations is conflicting. Equation (1.15) then provides the form of the correction
as fiff+ foff — fiff — f; f}. However, since the London spin coupling is correct
through second order, this is easily reduced to cos+; cos ;.

This spin coupling analysis provides the nature of the correction but still not
the full functional form. Having already conjectured a pair-pair interaction, it is

appropriate to consider it an overlap squared correction and we use the form S?Ef
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by defining E}i as the dispersion energy of pair j. Thus the full correction is

E =Focp, +6d2cos7i cosij?E}i, (1.29)

i#]
where Eocr is either the London Potential or the Overlap Corrected London Poten-
tial described in the previous subsection. §¢ is an adjustable parameter to account
for the amount of dispersion energy that is actually lost or gained. This requires the
use of an explicit dispersion energy E¢. One operational definition is the difference
between the energies of the best CI calculation and the best Generalized Valence

Bond-Perfect Pairing (GVB-PP) [37] calculation, i.e.,
Ef = EPT _ EEVB, (1.30)

The CI energies are already needed as input, and the GVB calculations require less
effort and computer time so the increase of input is minimal. Since both singlet and
triplet character are included in each pair of atoms, the most logical definition of

the overall dispersion energy of pair 7 is
Ef = fTE" + [ B, (1.31)

where E%T is the difference of triplet CI and GVB energies, i.e., triplet dispersion, and
E“ is the difference of singlet CI and GVB energies, i.e., singlet dispersion. We make
use of the GVB and CI calculations of Musgrave et al. [38]. The difference between
the CI H; calculations of Kolos and Wolniewicz [36] and these GVB calculations
for Hj are plotted in Figure 1.14. EZ is larger in magnitude than E#T, most likely
due to the addition of charge transfer energy in addition to the dynamic correlation
energy present in both.

We are now ready to implement the entire second order Generalized London

Potential (2-GLP) including both pair-pair overlap and dispersion corrections. The
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Figure 1.14. Dispersion Energy for Singlet (dS) and Triplet (dT) H,. Energies are
in kcal/mole and distances are in atomic units.
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Method 6° 5 R, Ep Kb Ks Kq
Reference [31] 1.739  9.65 .1092
Reference [28] 1.757  9.80 1067 -.058
Reference [29] 1.757  9.90 .021

London 0 0 1.7922 12375 .01991 .1054 -.1320

2-GLP far 1.6603 -4 3.0828 -3 | 1.7734 9.800 .02153 .1102 -.0572
2-GLP half 1.5296 -4 3.6376 -3 | 1.7748 9.800 .02176 .1102 -.0479
2-GLP near 1.6716 -4 3.0347 -3 | 1.7733 9.800 .02151 .1102 -.0580
2-GLP near 1.8279 -4 2.9516 -3 | 1.7716 9.650 .02150 .1104 -.0580

Table 1.2. Two Parameter 2-GLP Fits. FE,, and one other point on the LSTH
reaction were matched. Again, E;, is in kcal/mole and other quantities are in atomic
units. Far used R; = 4.7804, R; = 1.402, and E = 0.1172; half used R; = 2.6810,
Ry =1.4382, and E = 4.791; near matched «,.

simplest form has one parameter for each correction, namely §° and é%. In order
to maintain better separability of the parameters, we can replace S? with Ef in
Equation (1.29) at this level. In order to demonstrate the stability of the model, the
two parameters are fitted to four separate sets of data. Three have the same barrier

height of 9.8 kcal/mole but otherwise energies in distinct regions of the reaction path

(of the LSTH surface):
e Far into the channel until the energy is only 0.12 kcal/mole.
o Halfway into the channel until the energy is 4.79 kcal/mole.
e Near the saddle point so that x, is matched.

An additional fit with E,, = 9.65 kcal/mole is given for the last case. The results are
given in Table 1.2. The stability of the surface as the parameters are changed and
the stability of the parameters as the input is changed demonstrates the usefulness
of the 2-GLP to be used with any available data in any form. See Figure 1.15 for a

comparison of the reaction paths and Figure 1.16 for a comparison of the energies
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along the reaction path. Part of the deviation of the near (k,) and far fits from the
LSTH path is again due to overlap being required to handle all three-body corrections
at the saddle point, and thus overcorrecting in the channel, and part due to the saddle
point distance being too large, and thus the distance traveled along the reaction path
is too short compared with the physical coordinates. Figure 1.15 shows that the
reaction path is always on the far side of the LSTH path and does not converge as
quickly to the LSTH path as does the London path. This is actually beneficial since
all distances are shortened when three-body effects are added. Another contribution
may come from an overestimate of the dispersion energy. The CI calculations on
H; and Hj use a much larger basis set than does the GVB calculation on H,, and a
GVB cdlculation using the same H2’ba,SiS set would decrease the dispersion energy,
possibly effecting the energy along tfle reaction path. Despite this small deviation
from the LSTH reaction path, the small deviation of the 2-GLP paths from each
other confirms the stability of the model.

In order to implement the dispersion correction, an estimate of the dispersion
energy required an addition of GVB H, energies in addition to the CI values. The
GVB calculations are simpler than the CI calculations so obtaining them is usually
not a problem. However, a very rough estimate of dispersion energy can be obtained
by scaling the exchange energy. Not distinguishing between singlet and triplet dis-
persion and fitting just E,, = 9.8 kcal/mole and &, = 0.058 gives the other saddle
point properties as Ry, = 1.7757, s = 0.02225, and «, = 0.1111. The energy along
the reaction path is of similar quality to the fit to E,, and &, above.

In summary, this subsection introduced the pair-pair dispersion correction which
is the second and final correction which involves pair-pair interactions and is second
order in overlap. Using just two parameters, the energy along the reaction path is

well represented. While an estimate of the energy barrier is the starting point for
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Figure 1.15. Reaction Paths for 2-GLP. L is for London, T is for LSTH, H is for
halfway (in energy), F is for far, and K is for , (near) fits.
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Figure 1.16. Reaction Path Energies for 2-GLP. L is for London, T is for LSTH, H
is for halfway (in energy), F is for far, and K is for &, (near) fits.
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all improvements to the London Potential, stability of the model with respect to
various other input has been demonstrated. Our method of starting with the actual
Cl singlet and triplet curves and correcting for overlap and dispersion with just one
parameter each provides a good fit over much of the linear Hj surface except when
all three atoms are close. This presents a strong alterative to using a parameterized
triplet which in itself requires four or more parameters and then requires additional
asymmetric terms to reasonably represent linear geometries. Using physically mo-
tivated and, in the case of overlap, rigorously derivable corrections to the London
Potential is shown to have very reasonable results for the amount of input given.
Additional parameters could be added in the overlap and dispersion corrections as
was done in the previous subsection for just overlap by considering expansions in
terms of pair distances. We instead briefly consider higher order corrections to aid
the fit of when all three atoms are near and three-body interactions are strongest

next.

V.C. Higher Order Corrections

Higher order corrections require additional information, but the goal of this research
is to use very limited input to our model. The third order overlap (3-pair) cor-
rections of Appendix Subsection B.I are mainly minor corrections and the gain in
accuracy in limited when weighed against the required additional input. However,
their appropriate form and their effect on the surface is discussed here in order to
gain better insight of the next order valence bond corrections. More important to
the saddle point region and to bent geometries is the effect of higher order disper-
sion. The fit of the London Potential is poorest when all three atoms are within a
radius of three to four bohr, primarily due to high electron interaction. A possible

method of correcting for this and its implementation using only one more piece of
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saddle point information is discussed.

Of the two third order corrections in Appendix Subsection B.I, the one defined
as A is the easier to handle. Like all previous corrections, it is independent of spin-
coupling which thus retains its London form. The first term of Equation (1.100) is
explicitly in terms of 55,55 times atomic energies. Each of the terms in parentheses
in the following terms is known to have the same exponential decay as overlap from

Appendix Subsection A.II. Thus, a first order approximation for A is
A = A0515253, (132)

where Ao is an adjustable constant. To gain insight on the effect of this term,
it is used alone to provide an energy barrier of E,, = 9.8 kcal/mole. Again, the
actual parameter is found after replacing S? by E? in order to maintain parameter
independence. Thus with Ay =7.705 -4 (kcal/mole)~! we obtain E,, = 9.8 kcal /mole,
R, = 1.7649, k, = 0.01860, x, = 0.1106, and k, = —0.1093. The effect of the
correction is shown by Figures 1.17 and 1.18.  Comparison to Figures 1.11 and
1.12 shows that the change from the London Potential is seen to be similar to that
of the second order overlap correction of Subsection V.A for linear geometries but
more highly concentrated in symmetric bent geometries. Thus the gains would be
modest in including this correction plus the overlap correction. However, it is an
additional extension that is part of the GLP methodology. Even this correction itself

is extendible, as Equation (1.100) suggests that a more general fit may be

A= ApS:5,5; + Z SiSjSkf(Rk), (1.33)

i<y
to account for the deviations of A, + Aup + By from Sy, even though both have
the same exponential decay.
The other third order term from valence bond theory, F,; is defined in Equa-

tion (1.99) and since it follows the exchange energy E,;, it is the first correction that
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Figure 1.17. Linear London with A, Minus London Contour Plot. Agsetso E;, = 9.8
kcal/mole.
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Figure 1.18. Bent London with Aq Minus London Contour Plot. Ay set so E,, = 9.8
kcal/mole.
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can effect the spin coupling. This also has a three-pair dependence, although it is
less obvious. Both the Cy and (ablcc) terms fall off exponentially with both R,,
and Ry.. Thus the simplest approximation for Fy, (in terms of pairs i, J,and k) is
535351. However, the H; exchange energy term of Equation (1.131) can be written

as

- ey (139

i<

Since EY = Ef + F; enters the Hj energy only as pairwise differences, such a simple
F; form would exactly cancel. Again, terms higher order in R; could be used to
provide flexibility of the Generalized London Potential.

The most difficult correction to make is for higher order dispersion. It is most
important for bent geometries, however it is also important in determining the po-
sition of the saddle point if not the energy’there. One rough estimate is §*EF EZE.
Combining this with the second order overlap and dispersion corrections allows all
three of the quantities E,,, £,, and R, to be fit. Note that this information is
attainable from only a handful of CI éalculations near the saddle point. Fitting
E,, = 9.800 kcal/mole, Ry, = 1.757, and &, = 0.0580, leads to x, = 0.0197 and
ks = 0.1065. The reaction path and energy along the reaction path are shown for
this fit in Figures 1.19 and 1.20. Thus with just three parameters based on infor-
mation only at the saddle point, we have described the Hj potential energy surface

to remarkable accuracy along the minimum energy reaction path and, in fact, at all

lower energy geometries.

VI. Application to Hydrocarbon Reactions

The Generalized London Potential has proven effective in modeling H, + H by

comparison to accurate ab initio calculations. For systems without as much available
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1.4 1.6 1.8 2.0 2.2 2.4

Figure 1.19. Reaction Paths for GLP with 3-Pair Dispersion. L is for London, T is
for LSTH, and 3 is for GLP with three-pair dispersion.
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Figure 1.20. Reaction Path Energies for GLP with 3-Pair Dispersion. L is for
London, T is for LSTH, and 3 is for GLP with three-pair dispersion.
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data, it is hoped that the GLP can predict the entire potential energy surface using

only two-body potentials plus a limited amount of three-body information. Actually,
the GLP may work best as a partner with ab initio calculations in reducing the

amount of work required to find the saddle point. An expected sequence would be:
e Calculation of two-body curves.
o Use of London Potential to predict saddle point.

o Use of GLP using parameters estimated from similar systems to improve esti-

mate of saddle point.
o Ab initio calculation of several energies near saddle point.

¢ Incorporation of new information into GLP to improve estimates of entire

potential energy surface and saddle point.
e Possible refinement of GLP parameters using a small number of additional ab
initio points.
o Use of GLP for simulations.
Our overall objective is the introduction of reactive dynamics into molecular
modeling. This is especially useful for polymer and crystalline systems, and impor-
tant carbon-based examples exist for both of these. Thus, our first application is

hydrogen exchange among hydrocarbons. We first consider the abstraction of one

hydrogen from methane by an atomic hydrogen:
CHy+ H —» CHs + H,.

Actually, this reaction as written is uphill in energy by several kcal/mole, however

this is not true for most hydrogen abstractions from hydrocarbons by a lone hydrogen
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atom. Thus, we write this equation in this direction, but it is more appropriate to
talk of it in the reverse direction for this system only. With the C Hy bond angles
fixed, this is a first approximation of hydrogen abstraction from a diamond surface
which can be improved upon by considering abstraction from isobutane or even larger
clusters. A variable C' H4 bond angle adds an extra degree of freedom to this system
not present in Hj. This is more appropriate for smaller systems and polymers. For
either case (fixed or variable angle), the two-body curves are required. We present

them next before their use in the GLP.

VI.A. H,; and CH, Potentials

When all of our information is based on ab initio calculations, it is best to use a
consistent level of calculation for all potential surfaces. The C'Hy+ H calculations of
Musgrave et al. on the saddle point of C Hy+ H [39] are not to high accuracy, however
a similar level calculation is feasible on larger systems. Calculations at a similar level
of accuracy were done for H; and C Hy [38] and are reported in Tables 1.3 and 1.4
for Hy and CH,, respectively. The tetrahedral geometries are included for the
fixed-angle, surface-like atom case. For a lone C' H,, the angle between the H whose
bond is being stretched and the other hydrogens relaxes during the course of the
reaction with H. For lone C H3, about 7 kcal/mole is required to go from planar to
tetrahedral. Calculations to find bond energies at various angles are possible which
can then be used to do the general relaxed angle case. To simplify matters here, we

report the energies at 104° which is about the optimized saddle point geometry [39].
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R ES ET
0.4 | -0.96387083

0.5 | -1.09183076 | -0.57411048
0.6 | -1.14695975 | -0.68374487
0.7 | -1.16604573 | -0.75632627
0.74 | -1.16781588

0.8 | -1.16641530 | -0.80860353
0.9 | -1.15698075 | -0.84849745
1.0 ] -1.14262579 | -0.87990173
1.2 | -1.10924298 | -0.92499045
1.4 | -1.07765713

1.5 | -1.06391438 | -0.96391211
1.6 | -1.05181371

1.8 | -1.03262628 | -0.98315379
2.0 | -1.01952662 | -0.99000541
2.5 | -1.00460386 | -0.99738858
3.0 | -1.00090262 | -0.99930581
9.0 | -0.99988367 | -0.99988112
90.0 | -0.99988096 | -0.99988096

Table 1.3. Two-Body Potentials for H,. Distances are in A (note that so far we

have dealt mainly in bohr), and energies are in hartrees.
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Tetrahedral 104°
R E® ET ES ET
0.80 | -40.25584723 | -39.87551304 | -40.25047509 | -39.86470574
0.90 | -40.32346617 | -39.94289320 | -40.31871254 | -39.92518046
1.00 | -40.35288348 | -39.95152791 | -40.34895780 | -39.96925500
1.05 | -40.35863390 | -39.96678868 | -40.35518093 | -39.98352944
1.09 | -40.36023885 | -39.97693589 | -40.35718587 | -39.99279529
1.15 | -40.35887945 | -39.99059157 | -40.35645516 | -40.00497786
1.20 | -40.35516185 | -40.00201942 | -40.35328124 | -40.01514904
1.25 | -40.34974849 | -40.01428129 | -40.34842353 | -40.02631230
1.30 |{-40.34311129 | -40.02727004 | -40.34234854 | -40.03843393
1.40 | -40.32756398 | -40.05334920 | -40.32792504 | -40.06325829
1.50 | -40.31062243 | -40.07708134 | -40.31207546 | -40.08607365
2.00 | -40.23606332 | -40.14743236 | -40.24161279 | -40.15436516
2.50 | -40.19695719 | -40.16986183 | -40.20385300 | -40.17646641
3.00 | -40.18315200 | -40.17612653 | -40.19006031 | -40.18274728
4.00 | -40.17853794 | -40.17815402 | -40.18525719 | -40.18483343
6.00 | -40.17824863 | -40.17824772 | -40.18493831 | -40.18493718
50.00 | -40.17824051 | -40.17824051 | -40.18493026 | -40.18493025

Table 1.4. Two-Body Potentials for C Hy. Distances are in A, and energies are in

hartrees.
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VI.B. Fixed Angle CH;+ H

As an example of the usefulness of the GLP for crystalline systems, we consider the
first approximation of using C' Hy with the bond angle fixed at tetrahedral and de-
scribe the resulting potential energy surface. Spline fits to the H; and C Hy energies
of the previous subsection are our starting point. The London Potential for this
system is shown in Figure 1.21. The zero of energy is taken as zero in the C H3 + H,
limit. While the C'H; and H; bond energies are only several kcal/mole apart, adding
the energy to bend C Hj to tetrahedral makes the energy difference in the channels
about 9 kcal/mole. As expected, the saddle point is closer to the higher energy H,
channel. The corresponding spin coupling is shown in Figure 1.22. This shows that
the “transition state” as defined by the spin coupling (y = 0) is even further into
the H; valley than the saddle point. The smooth variation of 4 along the reaction
path is again seen as for Hs in Figure 1.5.

A better approximation of the potential energy surface is obtained by assuming
that the parameters of the H3 GLP are about on the order of those for CH;y + H.
Given the similar bond energies, this should be a reasonable approximation. Using
the second order overlap and dispersion corrections, we obtain the new surface of
Figure 1.23. Thus, we have estimated the entire potential energy surface for CH,+ H
using only two-body curves and our knowledge of the London Equation error for Hs.
With more experience in the variation of the GLP parameters across various systems,
we can hopefully establish a methodology of creating such surfaces to a reasonable

accuracy with little more than two-body input.
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Figure 1.21. CH, + H London Potential Contour Plot. The contour values shown
are the powers of two times +3 kcal/mole and zero. Axes are distances in atomic
units. H, channel is to the upper left and C Hy channel is to the bottom right.
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Figure 1.22. Contour Plot of v for CHy + H. Contours are spaced every 10 degrees
with negative contours endashed.
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Figure 1.23. CHy+ H GLP Contour Plot. The contour values shown are the powers

of two times 3 kcal/mole and zero. Axes are distances in atomic units. H, channel
is to the upper left and C'H, channel is to the bottom right.
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VI.C. Relaxed Angle CH,+ H

In order to make a comparison with the C'Hy + H results of Reference [39], we need
to let the C'H, bond angle relax as the reaction proceeds. It is possible to calculate
the singlet and triplet energies at several angles for each C' Hs — H distance in order
to obtain the angular dependence. If the angle relaxed to its singlet minimum, it
would be planar at far distances, near tetrahedral at the bond distance, and slightly
beyond tetrahedral at shorter distances. At the saddle point distance of about 2.6
bohr, the energy of the singlet is lowest between 106 and 107°. This is in contrast
to the optimized angle of 103.8° of Reference [39]. The reason for the discrepancy is
that the energy minimum with respect to angle for the triplet is much nearer planar.
From the spin coupling ~v;, we know the mix of singlet and triplet character for a

given pair of atoms ¢:

E: = JTET + fOES. (1.35)

This is the function to be minimized with respect to bond angle at each geometric
configuration.

Even without knowledge of the C Hy triplet and singlet energies at various angles
and distances, we can still estimate the energy at the saddle point. Using the
104° energies of C Hy from Subsection VI.A, the saddle point for the relaxed angle
CH,; + H reaction can be found. This was done for the London Potential and the
GLP with second order corrections based on the Hs parameters. Table 1.5 shows
that predicted GLP energy is within 0.3 kcal/mole of the ab initio value. Separate
H; and C H, corrections would improve the saddle point position. The information
that went into this prediction includes only two-body H, and-C H4 potentials, an
estimate of two GLP parameters from Hj, and an estimate of the C' Hy bond angle

at the saddle point. This last piece of information is also derivable independently



Riy | Basp | Egp
London 2.6095 | 1.7435 | 14.9974
GLP 2.6448 | 1.6998 | 12.6379
Reference (39] | 2.63 1.74 12.91

Table 1.5. Saddle Points for CH, + H. Distances are in atomic units, and saddle
point energies are from H, channel in kcal/mole.

by knowing the angular dependence of the separate singlet and triplet curves at the
saddle point distance. In addition to this saddle point information, we now have an
estimate of the potential energy surface over the entire range of geometries. This

can be used to add reactive dynamics to molecular modeling simulations.

VII. Summary

The derivation of the Generalized London Potential is strongly dependent on the
spin-coupling formalism. The problem of extending the London Potential to allow
for overlap was solved by considering special cases of pure singlet or pure triplet pair-
ing, letting these states mix, correcting for overlap between these states, and care-
fully replacing the appropriate three-body terms with their corresponding two-body
terms. In addition, the spin coupling provides much insight into how an exchange re-
action proceeds. Parameterized in terms of v, spin coupling can be used as a reaction
coordinate to describe the transition amdng various electron pairings. Even without
further extension, the spin-coupling treatment of exchange reactions has provided
useful insight into the interplay of forces resulting from the Pauli Principle allowing
strong bonds to be broken and formed over an energy barrier an order of magnitude
smaller. As this is developed within the Heitler-London (valence-bond) formalism,
there is no accounting for dispersion energies. The introduction of dispersion terms

into the GLP allows for the high accuracy fit of the potential surface for Hs with
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very few parameters.

While the fitting of known surfaces with few parameters is demonstrated, we
hope that the GLP finds use in the many more exchange reactions for which little
information is known. For the case of CHy + H, we demonstrated the ability to
predict the barrier to reaction using mainly two-body input. We hope to be able
to build a database of two-body curves which can be used to model many exchange
reactions. With experience with the overlap and dispersion parameters, we may be
able to predict GLP potentials without any three-body information. When some
three-body information is available, the GLP has shown stability in incorporating
that information to improve the entire reaction surface. Letting GLP and quantum
chemistry work together may be the best way to systematically find accurate po-
tential energy surfaces. The GLP can be used to estimate saddle points where ab
initio calculations can be performed. Incorporating this new information into the
GLP should allow quick convergence on accurate potential energy surfaces. These
surfaces then allow exchange reactions to be introduced into molecular modeling
techniques, thereby expanding their usefulness in allowing reactive dynamics for

large systems such as polymers and crystals.
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A. “Exact” Valence Bond Descriptions

The appendix derives the energies of H, and Hj using the valence bond approach.

Here, “exact” means within the valence bond model, i.e., no terms are set to zero.

A.I. Notation

There are many individual terms that comprise the energy expressions derived below.
The notation is defined here. In general, the letters a, b, and ¢ denote nuclei and
also orbitals centered at that nuclei. ¢; is used to refer generically to one of these
orbitals. Electrons are specified either generically by 7 or by the number 1, 2, or 3.

Spin functions are denoted by « (up) and 3 (down). Other notation includes:

Dpgr = ($16)]|-1V 62(0)),

Ao = (#1(0)| -] i)
Baw = (6:(0)|-=| &),
~[6:),

C¢1¢2 = <¢1(Z) -
Ea = Aaa+Aaa,

(dalrte) = (Ai(1)8x(2)| | 1))
Jns = (riléady),
Koo = (hiéddash),
Sw = (a(2)|b(7)).

One must be careful to distinguish orbital overlap S,; from wavefunction overlap
S12, the latter being the overlap between ¥; and ¥,. Also, E, is not necessarily
the isolated atomic energy of atom a since the orbital a(z) changes if other atoms

are near. E? is used to represent the isolated atomic energy, which, of course, is -3
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hartrees for hydrogen.

Two minor distinctions are made between notation in the appendices and that

in the main sections. The first is the substitution of the numerical indices 1, 2,

and 3 for the atom pairs be, ac, and ab, respectively. Further, ES, ET, and E¥ are

defined in the appendices so as to include the atomic energies at dissociation, e.g.,

ES(Ry = 00) = E° 4 E?, while the zero of energy is often taken to be zero when

all atoms are dissociated in the main sections, e.g., E{(R;, = oo) = 0.

AIl. H,

The energies of the ground and first excited states of H, are listed here in terms of

the above notation. The wavefunction for the ground singlet state is:

s _ _(ab+ba) (oB = fa)
? \/2(1 +53) V2o

Using the H, Hamiltonian

we find that the singlet energy is:

1 Ey+ Baa+ By + A + Jas + Kap + 2505(Ags + Aas + Bap)

S-—_.__
Eab - Tab + 1+53b

The wavefunctions for the first excited triplet state are:

- aa
gt = %;_3) L(af + fa) .
T Yab ,Hﬂ

The related triplet energy is:

1 Eg+ Baa+ Ey + App + Jop — Kap — 25.(Aas + Aap + Bas)

El,=—
ab 'rab + 1 - SZb

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)
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It is useful to define the classical (Coulomb) and exchange terms as

E:é = Ea+Baa+Eb+Abb+Jab+}:—b’ (141)

- fb = ]{ab =+ 2Sab(Aab + Aab + Bab) - Szb(Ea + Baa + Eb + Abb + Jab)a (142)

where EY, is defined to be a positive quantity. This allows the singlet and triplet

energies to be written as:

ES — Ecl _ _ab .
ab ab 1 n Szb, (1 43)
ET _ Ecl E(fb
ab — ab + 1— S;;)b. (144)
The inverted equations are
Eg = 3l(1-8Z)EL + (1 + S%)ES), (1.45)
w = 3(1—SH)EL - E3). (1.46)

Note that these definitions of E and E® which include the effect of overlap are
distinct from those used in deriving the London Potential when 52 = 0.

The terms comprising the classical and exchange energies can be found analyti-

a(z) = \/ge'm“‘, (1.47)
\/&;Se'o”“. (1.48)

Here, o denotes a variational parameter. Of course, even with o optimized at each

cally for scaled “1s” orbitals:

o
~—~

o,
S

Il

nuclear distance 7,3, the polarization and dynamic dispersion energies are not in-
cluded in this simple valence bond model. Precisely that fact is useful, however,
since the difference between accurate CI calculations and this description yields an
estimate of the dispersion energy. The difference between CI and GVB-PP ener-

gies actually yields a better estimate of the dispersion energy since polarization is
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included in both. The required integrals in terms of w = aR,; are (40]:

N = 10, (1.49)
Aw = —a, (1.50)
S = e(1+w+ Lw?) (1.51)
Buw = a|-1+e2(141)], (1.52)
By = —ae (1 + w), (1.53)
Aw = 30’e™(1+w—tw?) = —aBy — }a’Sa, (1.54)
Jup = « [% — e (% +8 + 3w+ é—w2)] , (1.55)
Ky = :a {—e'zw(%f + 2w + 3w’ + 1w (1.56)

+ 2[SH(C + Inw) + S Ei(—4w) — 255 Ey(~2w)]},  (1.57)

where §" = *(1 —w + 3w?), C is Euler’s constant, and E; is the internal logarithm

or exponential integral:

Ei(~2) = —/x“’ eT—tdt. (1.58)

A.ITI. H;, Special Cases

Here we consider the energies of two special cases of the doublet ground state of
H;. The first has purely singlet pairing between atoms a and b and thus has one

wavefunction -

1
U, A[abcﬁ(aﬁa — faa)). (1.59)

The second has purely triplet pairing between atoms a and b and thus has one

wavefunction

Uy x A[abc%(aﬂa + ﬂaa — 2a03)]. (1.60)
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Each has a similar wavefunction with two 8’s and one a to complete the doublet.

The antisymmetry operator is given in terms of permutations of the electrons:

A= %[w (123) + (132)][e — (12)], (1.61)

with e the identity operator, (123)abc = cab, etc. Let N; and N, be normalization

constants. Expanding the wavefunctions, we get:

1
VP \/—1_271[6 + (123) + (132)][(abc + bac)(aBa — Baa)], (1.62)

1

¥, = Vx/ENl [(abc + bac — cab — cba)afa

+(bca + acb — abe — bac)Baa (1.63)

+(cab+ cba — bea — acb)aaf],

1
m—l{aﬂa[e +(12) — (123) — (13)]abe
+Baal(132) + (23) — e — (12)]abe (1.64)
+aaB[(123) + (13) — (132) — (23)]abe},

Uy = m[e +(123) + (132)][(abe — bac)(aBa + Baa — 2aaf)], (1.65)

T, = ———1—[(abc — bac + cab — cba — 2bca + 2ach)afa
6N,

+(bca — acb + abc — bac — 2cab + 2cha) faa (1.66)

+(cab — cba + bca — acb — 2abe + 2bac)aaf],
&{aﬁa[e — (12) + (123) — (13) — 2(132) + 2(23)]abe
+B0al(132) — (23) + e — (12) — 2(123) + 2(13)]abe (1.67)

+aaf](123) - (13) + (132) — (23) — 2e + 2(12)]abe}.
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For a spin-independent operator O symmetric with respect to all permutations with
Oi; = (V]0|¥;), (1.68)
we find

O = 1—2§—v15{<abc10|[e +(12) = (132) — (13)][e + (12) — (123) — (13)]abc)
+{abc|O|[(123) + (23) — e — (12)][(132) + (23) — e — (12)]abe) (1.69)

+(abelO[[(132) + (13) — (123) — (23)][(123) + (13) — (132) — (23)]abe)},

! (abe|O|[12¢ + 12(12) — 6(13) — 6(23) — 6(123) — 6(132)]abe), (1.70)

Ou = 12N?

Oy = (abc|Ofle — (12) + (132) — (13) — 2(123) + 2(23)] x

1
36M7 1
[e — (12) + (123) — (13) — 2(132) + 2(23)]abc)
+(abe|O|[(123) — (23) + e — (12) — 2(132) + 2(13)] x (1.71)
[(132) — (23) + e — (12) — 2(123) + 2(13)]abc)
+{abe|O|[(132) — (13) + (123) — (23) — 2¢ + 2(12)] x
[(123) — (13) + (132) — (23) — 2 + 2(12)]abe)},

O = ﬁ;(abcl(’)][%e—%(l?)-{-18(13)+ 18(23) — 18(123) — 18(132)]abe), (1.72)

V3 \
Oz = zoxi-{(abelOlle + (12) - (132) - (13)]

[e — (12) + (123) — (13) — 2(132) + 2(23)]abc)

+(abe|O|[(123) + (23) — e — (12)] x (1.73)
[(132) — (23) + e — (12) — 2(123) + 2(13)]abc)
+(abe|O|[(132) + (13) — (123) — (23)] x

[(123) — (13) + (132) — (23) — 2e + 2(12)]abe)},
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3
O = 36N, N,

(abc|O|[—18(13) + 18(23) + 18(123) — 18(132)]abc).

By setting O to the identity operator 7, we find

NP = 148715218

ac

- SabScham
N} = 1-84 4182 +152 — S.455.Sec,

Si2 = (Ui|¥s) = —V3(SL — SL)/(2Ni V).
Using the H3; Hamiltonian

1 1
__+_.,

The Tac

— iz _ 1 1 1 0 SE B S
H—Z( ZVZ Tai Thi Tci) +T12 +T23 +7"13 +7'a.b+

1=1

the energy (¥;|H|¥;) is found to be

Hiy = Eo+ Bao+ Ey + Ap + Jup + ;-
+ Ea+ Caa + B+ Ace + Joc + 7
+ By 4 Cuw + Ec + Bee + Joe + 72
-bE.—-E, - E,
+{ Kab+25.(Aas + Aas + Bap) — SE(Ea + Baa + Ey + Asy + Jap)

- %[I"ac + 2Sac(Aac + Aac + Oac) - Szc(Ea + C’a.a. + Ec + Acc + Jac)]
— 3[Kbe + 285c(Ape + Bye + Che) — SE(Ey + Cip + E. + Bee + Ji)]

— SabSacSee(—E: — Ey — E,)
— SpeSac(Aas + Aas + Bas)
— SabSpe(Dac + Aae + Cae)
— SapSac(Dse + Bie + Cie)
+ 250[Cap + (ablcc)] — Sae[Bac + (ac|bb)] — Sp[Ase + (bcjaa))
+ (355 + 355 s + (=S4 + 352 ) Jac + (=52 + 152) Jhe
~ S2(Caa + Cib) + 352 Baa + Beo) + 1S (A + Ace)
= SbeSacCab — SabSocBac — SabSacAbe
— Sap(caleb) — S,c(ba|be) — Spe(ablac)
+ 52880 Soe(Jab + Jac + Joe)
+ S2880cSbc(Caa + Chp + Baa + Bee + Awy + Ace)
{ 1484 — 382 — 1S — SupSheSac

(1.74)

(1.75)
(1.76)

(1.77)

(1.78)

}.

(1.79)
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The terms in H,; have been carefully arranged so that substitution for H, E° and E*

terms is obvious and so that the magnitude of the terms decrease in the order written.

The latter is done by grouping terms in the same order of e~ per the H, results of

the previous subsection. Thus, the five lines starting with —SabSacSec(—E.— Ey—E,)

are of order e~

3w i.e., overlap cubed, the next four lines go as overlap to the fourth

power, and the next two lines go as overlap to the fifth power. The energy (o H|T2)

is equivalently

Ha = Ea+Baa+Eb+Abb+Jab+t

+{

{

+ Eo+ Coa + Ec + Ace + Jue + 7=

+ £y + Cop + Ec + Bee + Joe + o

-E.~-E—-E,

~[Kab + 25a5(Dab + Aas + Bay) — S2(Ey + Buo + Ey + Aw + Ju3))]
+ 5[ Kac + 280c(Aac + Aue + Cac) = SE(Ea + Coa + E. + Ace + Jo2)]
+ [ Kye + 2S5c(Ase + Bse + Coe) — SE(Ey + Cho + Ex + Boo + Jie)]
— SabSacSse(—Ec — Ey — E,)

— SpeSac(Aab + Aab + Bas)

— Sa6S5e(Dac + Age + Cae)

— SabSac(Ase + Boe + Cie)

— 254[Cap + (ablec)] + Sac[Bac + (ac)bb)] + Spe[Ase + (bclaa)]

— (350 + 3820 Jab + (SZy — 3SE) Jac + (8% — 152) Ji.

+ 52(Caa + Chb) — 352(Baa + Bee) — 3S2(Ass + Acr)

— SbcSacCab — SabSbe Bac — SapSacAse

— Sap(calch) — S,c(balbe) — Syo(ablac)

+ SabSacSse(Jab + Jac + Jic)

+ S0552c58c(Caa + Chp + Baa + Bee + Aps + Ace) }

1- Szb + %Sfc + ‘;‘51,20 = SabSchac }
(1.80)
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The cross energy (¥, [H|¥;) is required for the general case in the next section and
is
Hiz = B{ ~[Kae + 250(Dac + Aue + Cae) = S2(By + Cog + Bo + A+ Joo)]
+ Koe + 25(Dse + Bic + Coc) — SL(Es + Cos + Ee + B + Jie)
— (2.~ SE)Es + Baa + Ey + Agy + Jop + =]
= (55 = SEEa + Caa + Be + Ao + Joc + 2]
— (82, = SL)Es+ Coo + Ec + Bop + Joe + rT]
— (5%~ SE)(—E. — By — E,)
— 25,16[BaC — (aclbb)] + 25, [Asc + (bclaa)]
+ (82, — S2)Jap — SEdue + 52 Je

+ Sfc(Baa + BCC) - Sbc(Abb + ACC) }/
{ [1 + Sgb - le2c - 152 - SabSchab]%
[1— 82, + 352 + §52 — SapSbeSas)? }
(1.81)

A.IV. H;, General Case

Before writing an energy expression for a general spin coupling, one must remember

that the wavefunctions ¥, and ¥, are not orthogonal. It is useful to define the

function:

O(Su) =2 (") o2 (1.82)
| Stz 14+4/1-853%

which goes to one as Sy, goes to zero and has the property
1418%3,0° =0. (1.83)
Symmetrically orthogonalizing ¥, and ¥,, we obtain

T, = N (¥ - 15,00,), (1.84)

TQ- = —]\7—1(1112—%512-0—\111), (185)

where

N’ =0(1 - 82). (1.86)
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Using an “overbar” to denote quantities related to these modified wavefunctions, we
have

Huy = N_2[H11 +(1- U)sz — 512—0_7'(12]

= N_2[H22 -+ H11 - O(H22 - 512H12)]7 (187)

Hyy = N_z[sz + (1 - O)Hyy — S120H15]

= ]_V__z['sz + Hit — O(H11 — S12H12)], (1.88)

Hiz = (1—5%) " [Hiz — 1Sia(Har + Haz)). (1.89)
Finally, the energy for a general spin coupling
X = X1 sin 37+ Xacos 1y (1.90)
is
E = sin® 1vH; + cos? 37Ha2 + 2sin v cos 1yH,
= %(1 —cosv)H_u-—i-%(l + cos ) Hag + sin YH;2, (1.91)

where, as with the case of H,, the individual atomic energies are subtracted so that
the zero of energy is three dissociated atoms.
For any functional form of the H;;’s, the optimal spin coupling is found by setting

the first derivative of Ey, with respect to 4 to zero. This yields

Use the relation cosy = +(1 + tan?4)~% and define

X = \/%(ng - H11)2 + H122 (193)

to yield
cosy = —3(Ha — Hi)/X, (1.94)
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where we have chosen the sign by noting that cosy = 1 when H;5 = 0 and H;; > Hoo.
This immediately leads to

siny = —Hy5/X. (1.95)

Substituting for v, we get the energy for the optimal spin coupling;:

E = i(Hxn +Hy) - X. (1.96)

B. “Approximate” Valence Bond Descriptions

There are three main sets of approximations which are made in transforming the
separate two-body and three-body equations of the previous appendix into useful
equations. Common to all is the substitution of the two-body expressions of Sub-
section A.Il into the H;; terms of Subsection A.III followed by the derivation of a
general energy expression per Subsection A.IV. The three sets of approximations

are:
Subsection B.I: Retain overlap terms through third order.
Subsection B.II: Retain overlap terms through second order.
Subsection B.III: Neglect all overlap terms.

The last approximation is that of the London Equation. The generally good fit of the
London Potential may lie in the fact that it encompasses a consistent approximation
scheme. All terms except the classical and exchange energies can be considered to
be a given order in overlap and thus set to zero under this approximation. We
must assign an “overlap order” to all other terms for the first two approximation
levels. This is done by the order of e~ per the one- and two-center integrals of

Subsection A.II and similarly for the three-center integrals of Subsection A.III. This
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ofder is listed for the various terms of H,; following its equation in Subsection A.IIL.
The approximation order must also be consistent with that used in finding the H,
classical and exchange energies from the singlet and triplet energies. Thus, these
definitions are different in the London case (§? = 0) than for the other two cases
(52 retained). A general energy expression (the Generalized London Equation) is

derived for each set of approximations.

B.I. Retain Overlap Through Third Order

First consider the H; classical and exchange energies. Retaining the S? terms in the

classical energy and neglecting the S* term in the exchange energy, we have

Ey = Y(1-SZL)EL +(1+S%)ES), (1.97)

Ey = %(EZ;_Efb) (1-98)

Next consider the H3 H,; energies of Subsection A.IIL. Of course the overlap squared
and cubed terms of the normalization constants are retained. The terms fourth and
fifth order in overlap such as SZJ,, and those that follow are set to zero. After
substituting for the H; classical and exchange energies in terms of their defining
integrals, we are left with just two types of third order terms. The first appears

wherever there is an exchange term and is defined as
F,, = —QSab[Cab + (ablcc)]. (1.99)

Since both of the terms in square brackets go as S,.S., this term overall contains
each of the three overlaps. The second appears in both Hy; and Ha, and is
A = - abSachc(_Ec - Eb - Ea)

- Schac(Aab + Aab + Ba.b) (1100)
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- abSbc(Aac + Aac + Cac)

- abSac(Abc + Bbc + C11>c)-

Each of these terms also goes as S,3.5,.5s.. Thus all “S3” terms involve one S from

each pair.

To facilitate the derivation of a general energy expression, we group terms using

the following definitions:

C
Eg

Y

S N »u N

EG+EL+EY ~E, — E— E,,

E% + Fo,

EY% - iEY - 1E},
2(EY, — EL),

Sy — 352 — 358,
— (82, — 52),

SabSachc-

This allows us to write the H;; and normalization terms as

Hu = C+[-Y - A]/NE,

Hay = C+[Y - A]/N,

Hiz = S12C + Z/N1N,,

Siz = T/NiNy,
N = 148-0,

N = 1-8-0,

(1.101)
(1.102)
(1.103)
(1.104)
(1.105)
(1.106)

(1.107)

(1.108)
(1.109)
(1.110)
(1.111)
(1.112)

(1.113)

by inspection of the equations in Subsection A.III. After correction for wavefunction

overlap per Subsection A.IV, we have

N'Hy = [2-0(1+4S%)C+{-Y[0~S2-0) - OO0

(1.114)
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- A[(2-0)-80-0(2-0)]-TZO}/N:NZ,  (1.115)

NHy; = 2-0(1+53)|C+{Y[0O+8(2-0)- 00 (1.116)
—Al2-0)+80-0(2-0)|-TZO}/NINZ,  (1.117)

Hiz = {Z/NiN; — S1o[SY — (1 — O)A]/NEN2} /(1 — S7%,).  (1.118)

Up to now we have made no approximations besides not including the fourth and

fifth order i‘ntegrals of the H;;. We now neglect terms fourth and higher order in

overlap by setting:

w =0, (1.119) -
0 = 1, (1.120)
N = 1, (1.121)
S3, = 0, (1.122)
MN, = 1-0, (1.123)
NiNZ = (1-0). (1.124)

Note that there will be some cancellation of 1 — O from both the numerator and
denominator so that it is best to approximate the exact N2N? = (1 — 0)? — §? as
above versus 1 —20. Thus, the energy terms corrected for wavefunction overlap and

including through third order in orbital overlap are

Hu = CH+[(-Y-A)Q-8-0)-TZ]/[1 -0, (1.125)

Hye = CH(Y-AQ+S-0)-TZ)/[1 -0, (1.126)

Hi, = Z/[1-0], (1.127)
Y Ha+Hy) = C+[SY-TZ—-(1-0)4)/[1 -0}, (1.128)
i(Fn ~Hu) = Y/[1-0] (1.129)

X' = [Y?+ZY/1 - O], (1.130)
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This leads to a general energy of

E = Eg+Ei+E,—-FE—-FE-E
+ [(Szb - %Szc - %szc)E;/b
+ (=350 + S2. — §SE)EL, (1.131)
+ (=385 = 355+ SLIEL/[L = SatSacSic]?
— A/[1 = Sa554c50c]

- [Egb2 + Egc2 + E;/c2 - Enggc - Echgc - Engch]%/[l - SabSU-CSbC]‘

B.II. Retain Overlap Through Second Order

We now consider also setting cubic terms in overlap to zero. The H, classical and
exchange energies are the same as in the previous subsection. Next consider the
H;; terms. Removing O, it being an 53 term, reduces 1(Hz, — H11) and X to their
London Equation forms. This leads to an important conclusion, that in this model,
the spin coupling is exactly the same as the London spin coupling. The difference
between the London and new 1(Hy; + Haz) value may be regarded as an overlap
correction to the classical energy. The general energy equation is easily obtained
from above by removing the S,,5,.5,. and A terms and replacing EY, with EZ,.

This yields

E = ES4+EY+E!—E.-FE,-E, (1.132)

+ (5% — 350 — 555 Edy (1.133)
+ (—%Sfb + Szc - %szc)Efc (1134)
+ (—%Sgb - %Stfc + Sgc)E:c (1135)

— |E%? + B2+ Eg? — E5E®, — EZEf — ESEZ]s. (1.136)
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It is straight forward to substitute for the actual singlet and triplet energies at this

point to obtain the energy expression in terms of the London Equation energy Ep:

E=FE— %(SZC + Sgc)(E(Z; - Efb) - i(‘szb + Sgc)(EZ; - Erfc) (1137)

= §(Say + Sa) (Bie — Ey).

Note that the lowest order overlap corrections are only on other pairs, e.g., there is
no S2, term multiplying £5°. The importance of correcting the H;; for wavefunction
overlap to obtain the H;; is illustrated by this not being true if one uses the H;;

directly in determining the general potential.

B.III. Neglect All Overlap and 3-Body Terms

The terms resulting from setting all overlap terms to zero are easily written down

based on the previous subsection. With wavefunction overlap now zero, i.e., Sy; = 0,

we have

Hu=Hn=E;,+3EL +1ES + 3EL + 1ES — E, — Ey— E,, (1.138)
Hu=Hn=E, +3EL+3E5 + 1EL + 3ES — E. — E, — E,, (1.139)

Hiz = Hiy = Y3(EL - ES — EL + ES). (1.140)

With the substitutions of pair 3 for ab, pair 2 for ac, and pair 1 for bc, we have
derived the equations for H;; used in deriving the London Potential.

Using the equations at the end of Appendix A, we find

tany = 222(53%2:?1;?, (1.141)
—(B5 — 3B5 — 3FY)
(B3 + B5* + Ef® ~ E{Ef — ESEf — EE)s
—V3(; 5§ ~ 357) (1.143)
(E$® + E5* + Ef* — E5Ef — ESEY — B{E7)s’

cosy = , (1.142)

siny =
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gl EpL+E. +E, + E,

0| EF +3ET + 3E7 + 3ET + 3EF

LBy + 3ET + LB+ 3E] + 3E5
2\ Ef + BT + 2E5 + BT + 2E5

v | ES +3ET + 1E5 + 3ET + 1E
~% | BT+ LB] + 365 + 3BT + 36%
—5 | By + QB 5BV + 35S + (B3

Table 1.6. Special Cases of Energy for Various 7’s.

where Ef = 1(ET — E7) is independent of overlap. All of the special cases of one
pair being purely singlet or triplet occur when v is a multiple of Z. These are shown
in Table 1.6. Thus, we can consider v as a reaction coordinate that would range

from —% to 0 to Z in the reaction
Ha. + Hc - Hb = Ha_Hc_—Hb = Ha, - -Hc + Hb-

Substituting the above equations for H;;, cos+, and sin~y in Equation (1.96) leads
to the London Equation per Equation (1.12). For calculation of the functions f7(y;)
and f5(7;) of Equation (1.15), it is prudent to find them without prejudice with
respect to a given pair using the equation:

—(BF — 3B — 350)

——— v (1.144)
(E5" + E5° + Ef* — ESEf — ESEf — ESEY)?

cosy; =

where 1, 7, and k are all distinct.

One final note on dissociation limits should be made. Remember that E, — E?
only as both atoms b and ¢ are far removed from atom a. If all three atoms dissociate,
the pairwise energies become sums of atomic energies, e.g., E:ﬁ,’s = E%+ E?, and all
atomic energies reach their isolated value, e.g., E, = E_. Thus the total energy is
just £ = E2+ EP + E2. As atom c, say, becomes separated from pair ab, the energy

of pair ac does not reach the isolated atom limit, but instead EL:5 = E, + E? where
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E, > E? (remember that both are negative quantities). Thus, the total energy

becomes:

E=E+(E.+E° + (E, + E))— (E°+ E, 4+ E,) = E3, (1.145)

the correct one pair limit.

That’s all, folks.
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Chapter 2

Optimal Meshes for Molecular Properties and Visualization

I. Introduction

While the previous chapter developed a model for potential energy surfaces which
can be used to simulate reactions at polymer and crystalline surfaces, there are
other areas of modeling large systems which need imprdvement. In order to deter-
mine surface related phenomena such as solvation energy for polymers, one requires
the surface area. Current techniques are often computationally intensive and do
not aid in distinguishing between, say, hydrophobic and hydrophilic areas or in-
ternal and external surface areas. Even with high speed graphic workstations, the
generic rendering techniques used with moiecular displays are not fast enough fo;
“real-time” rotation of large molecules. Another seemingly unrelated field is the nu-
merical integration of functions on spherical surfaces. This is required in many fields
including chemistry. All of these applications share the need of distributing points
on a sphere. Often either this is done without much consideration or, especially for
the application of numerical integration, special grids of points are developed with
unique properties but which have little application elsewhere. Here we introduce
a general point mesh design which allows the generation of grids of unlimited size,

which is able to adapt to several important point symmetries, and which has built-in
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degrees of freedom which can be optimized for any of the above applications.

We make the distinction between a grid as merely a collection of points over the
surface or volume under consideration and a mesh which also includes the concept
of connectivity. A grid (with the possible addition of a point weighting system
which then will be called a quadrature scheme) is sufficient for numerical integration
while a mesh is necessary for rendering. The criteria for evaluation a grid or mesh
varies depending on the application. For the purpose of the graphical rendering of
a molecular display, the best mesh is the one that most quickly produces the best
looking image. For the purpose of function evaluation, e.g., finding the surface area
of a molecule, a grid with an even distribution of points over the surface is desirable.
For the purpose of numerical integration, the exact integration of some number of
basis functions may be desirable. In Section II we present a general mesh which is
adaptable to each of these requirements and discuss spatial criteria for the evaluation
of point distribution. In Section III we tune this mesh toward applications involving
spherical harmonics and consider the particular application of integration on the unit
sphere. We then discuss several applications involving molecular surfaces including

visualization, accessible surfaces, and surface area.

II. Spherical Meshes

When a spherical grid of points is desired, often a lattice of longitude and latitude
lines is implemented and no further thought is given to it. Actually, this turns out
to be a poor choice as far as both rendering efficiency and point distribution. Our
goal is to find a mesh of points for the unit sphere that is appropriate for all of
the applications outlined in Section I. Since our requirements vary according to

the application, we actually desire a set of meshes containing an orderly increase in
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the number of points, from which we can choose the desired size. We use the term
“sphere level” to distinguish among this set with a larger sphere level indicating a
larger number of points. Instead of having a fixed set of positions for each mesh level,
we desire a certain number of degrees of freedom so that the mesh can be fine tuned
according to the application. Generally, this needs to be done only once for each type
of application. We enforce two restrictions that guide our design of a mesh. First,
we require that the connectivity of the mesh be such that connecting neighbor points
leads to a triangular mesh. This leads to greater efliciency in computer algorithms
when hardware support of triangular meshes means fewer point transformations.
Second, we require that we can enforce a high degree of symmetry such as octahedral.
This reduces the number of degrees of freedom that need be optimized for a given
class of applications, allows us to adapt the mesh to a given set of basis functions that
conform to a particular symmetry, and enforces a certain degree of uniformity. More
general desirable properties include an even point distribution, an indexing system
easily implemented in rendering applications, and a small set of data required to
implement a given level of the mesh. The mesh we present is able to conform to all

of these requirements. The rest of this section considers:

Mesh Connectivity. How the number and labeling of points on a sphere are de-

termined and how they connect to form polygons.
Point Assignments. How coordinates are assigned to the points.

Point Distribution Criteria. How the uniformity of the distribution of a mesh

of points is evaluated.
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II.A. Mesh Connectivity

In distributing points on a sphere, it is convenient to use a three-tuple indexing
system that is related to the (z,y, z) axes of a coordinate system. The set of allowed
indices (1, J, k) and the set of allowed edges between two such values must be defined
in order to define a mesh. Since it is trivial to scale coordinates by a given radius,
we assume we are working on a unit sphere for the rest of this section. For a level L
sphere of the traditional longitude and latitude lines approach (denoted as method
LL form now on), first a preferred direction, 2, is chosen and the associated index
& is allowed to range from —L to L. For each value of k except +L, allowed 2
and j values are those that fulfill [¢| + [j| = L. This basically means that a circle
of 4L points is drawn for each non-polar k value. For the poles k¥ = £L, we let
¢ = j = 0. The edges representing longitude lines are formed by connecting all pairs
of legal points (¢,7,k) and (¢,7,k+ 1) for k= —L,...,L — 1; the edges representing
latitude lines are formed by connecting all pairs of points (41, 71,%) and (iq, 2, k)
such that |ty — 4] = 1l and |j; —jo| = 1 for & = —L 4+ 1,...,L — 1. Once the
points and edges have been defined, the polygons by default have been defined, and
in this case they consist of quadrilaterals between latitude lines k£ and k + 1 for
k=-L+1,...,L — 2 and triangles between latitude line £ = —L + 1 and south
pole £ = —L and latitude line ¥ = L — 1 and north pole ¥ = L. Method LL
thus has 8L? — 4L + 2 points, 16L? — 4L edges, and 8L? polygons of which 8L are
triangles and the rest are quadrilaterals. It has symmetry D4z, (actually, one could
construct LL method spheres with symmetry Dyy, using N points per latitude line
for any N > 1). This method has a higher density of points near the poles and
a lower density near the equator. There are various ways of improving the point

distribution of this method such as reducing the number of longitude lines used near
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(1,7,k) Range Point Label
i=0 j=0 k=-L]1
i>0 j>0 k<0 |242L—k—1)(L+k) +3
i>0 j<O0 k<O |242L—k—1)L+k) +(L+k) —;

( )
)

k

k
<0 <0 k<0 f242L—-k—-1)(L+k)+2(L+k)—3
1<0 720 k<0 |242(L-k—-1)(L+k)+3L+Ek)+]

i20 >0 k>0 |2+44L2—2L—k)(L—k+1)+3
i>0 j<O0 k>0 |244L2—2L—k)(L-k+1)+(L—-k)—j
(<0 j<0 k>0 |[244L2—2L—k)(L—k+1)+2(L—k) —i
i<0 j20 k>0 |244L2—2L—k)(L-k+1)+

(L—k)+
t=0 j=0 k=L |2+4+4L2 :

Table 2.1. Single Index Point Labels from (3, 7, k) Indices.

the poles of the sphere. Since a triangular mesh is preferable to a quadrilateral mesh
due to the triangle mesh support of some graphics hardware, we comment on only
one such method that uses latitude lines as the basis for a triangular grid. In fact
we consider only one additional mesh which is the basis for various methods of point
assignments, and we present that mesh next.

A level L sphere is defined as the collection of triangles made from nearest neigh-
bor points with indices (¢, 7, k) such that |i| + |j| + [k| = L. Edges are formed from
any pair of points such that the absolute value of one index is increased by one
and the absolute value of a second index is decreased by one, leaving the third in-
dex unchanged. There are 2 + 4L? points comprising 8L? triangles and 12L? edges.
Either Dyp or O symmetry is easily enforced by enforcing relations among points
with symmetric (7,7, k) indices. It is useful to reduce the three indices (3, 5, k) to a
single index labeling each point. A method for doing this is described in Table 2.1.
When the polygons are rendered in increasing point order using this method, they

are rendered from back to front (k = —L to L), as necessary for transparency.



86
II.B. Point Assignments

We now consider the task of giving actual coordinate positions to the points of the
meshes defined above. We almost had to go out of our way to describe the points
and connectivity of method LL without giving the coordinates since they are so

intertwined, but we present them now:

Of course other methods of assigning the z coordinate which increase the spacing
of latitude lines near the poles are possible, but we instead devote our time to
more promising methods. We consider three different spatial methods of assigning
coordinates to the triangular mesh described above. The first is the most closely
related to method LL in that a preferred direction, z, is chosen and & is used as the
basis of latitude lines between which triangles are drawn. This is denoted as method
LT from now on and has D, symmetry. The other two methods are formed under
the constraints of octahedral (O4) symmetry. This helps to ensure uniform point
concentration over the sphere and reduces the number of degrees of freedom that
need be defined or optimized. Method 1JK simply uses the (¢, 7, k) indices to define
the points while method ARC is based on equally spacing points on equidistant
arcs of the sphere. Point assignment methods optimized for a given application are
discussed in the section déaling with that application since the criteria for an ideal
grid varies according to the application.

Perhaps the easiest way to assign coordinates to these points is method LT. Here,

k is used to fix the z-coordinate (latitude) and 4(L — |k|) equally spaced points are



87

put on each latitude line. The points on a unit sphere are thus:

) = (i) ) -
= (o) ]

Compare the mesh of methods of LL and LT in Figure 2.1, columns (a) and (b),

[

respectively.

Perhaps the easiest way to assign points with O, symmetry is to let:

C (2,7, k)

The left-hand side of Equation (2.3) is a point index, and the right-hand side is a
3-tuple of coordinate values. The resulting mesh is shown in F igure 2.1, column (c).
While this method is simple in design and simple to implement, it leads to a higher
point concentration at the z,y, z-axes than at the centers of each octant. It is useful,
however, as an alternative to method ARC as a starting point for optimization of
our mesh for a particular purpose. Before presenting method ARC, we consider the
general features of our mesh with Oy symmetry enforced.

Since the indices (3, 7, k) must reflect octahedral symmetry, only the points with

0<i<j<kie,?

L L—i
i=0,1,2..,5, j=iitlit2,.., L k=L—i—j

2
need be defined. Thus the number of independent points is:
241\ (241
L L<L )+L+1(§+1)_§(§+1) L&+ (%r)(%r+4)

1+=4+2 (2 +1 - -
HERE A 2 2 2 2 2

?In this and other equations in this paper involving integer arithmetic only, truncation during

division is assumed. Thus certain formulas, e.g., the number of independent points, are not easily

reduced.



Figure 2.1. Mesh Types. One octant of meshes (a) LL, (b) LT, (c) IJK, and (d)
ARC are shown for levels 3 to 7.
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Indep.
Type (z,7,k) Values d, | (z,y,2) | Coord.
A (=0 J=0 6 | (0,0,z) 0
B |i=0 j=1,...,5t 24 | (0,y,2)
C |i=0 j=k=1% 12 | (0,2, 2) 0
D =1, ,% j=1 24 | (y,y,2) 1
E li=1,....50 j=i+1,..., L2511 48] (2,y,2) 2
F (=1, ,% j:k:%—i 24 | (z,2,2) 1
G |i=% j=k=1% 8 | (2,2,2) 0

Table 2.2. Point Types and Degeneracies d,, for General Q) Mesh.

These independent points can be broken down into seven different types which are
listed in Table 2.2, where d, is defined as the degeneracy of the point. The coordi-
nates of the base point in the next to last column of this table obey 0 < z < y <
z < 1. The specific allowed ranges for the independent coordinates for each point
type are given in Table 2.3. Relaxing the condition that z < y < z reduces the
distinct types by one since D and F become equivalent. The most general spherical
grid with Oy, symmetry is a combination of a certain number of each of these point
types with distinct assignments of the unspecified z,y, z values. What our method
yields is a logical progression of determining the types used for a given sphere level
that distributes them evenly and the implied restriction that the (x,y, z) coordinates
should be ordered as per their corresponding (3, j, k) values. For example, level 1
has only a type A point, level 2 has a type A point and a type C point, level 3 has
one point each of types A, B, and G, etc. Note that since the points must lie on
the unit sphere, there are 0, 1, or 2 independent coordinates per point depending
on its symmetry. The independent polygons are those in the all positive octant con-
taining any of the points with i < j < k. Those that point up, i.e., have only one

point with the larger of the two & values, have (7, j, k) indices at that upper point of
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Type Indices Point Range(s)

A [0=i=j<k=1L (0,0,1)

B |[0=i<j<k (0,v1 =22, 2) l<z<l

C |0=i<j=k (0,2, /1)

D |0<i=j<k (V31 =22),/21 —22),2) | L <z <1

E |0<i<j<k (VI— g2 =22y, z) 0<y<y}®
%<z<1

F |[0<i<jyj=k (m,z,z) §<z<\/g

G |0<i=j=k (V3,55

Table 2.3. Independent Coordinates.

1

“For optimization purposes, t = y(1 — 22)~2 with 0 < ¢ < 1 is used to ensure the point is on

the unit sphere.

1 =0,... ,L—;l, J=1,..., —L—'z’—"l Those that poinf down have indices at the lower
point of ¢ =0,..., %2, j=1,..., %% That means that there are
L-1\ (L-1
L-1 = |\=5+1
L[——————3 +1}—3[< 2 )(23 q

independent polygons in sphere level L. ‘See Table 2.4 for a complete list of the
features of each level up to twenty.
In method ARC, we let the points (0, j, L — 7) be evenly spaced on the great arc

segment (0,0,1) to (0,1,0), i.e.,

(0,5,L — ) = <O,sin (‘5‘) ,cos (%%))  j=0,1,2,....L. (2.4)

Similarly, let the points (¢,7,L —i—j), j=14,1+1,7+2,...,L — 24, be evenly
spaced on the fixed-x arc segment (a;,a;,b;) to (a;, b;,a;) for ¢ = 1,2,3,...,%. Of
course, the point (%,%,%), if it exists, must be (\/g, \/g, \/g) by symmetry. By
letting the centers of the arcs be equally spaced between the points (\/%', \/%—, \/—%-)

and (O,\/%_, \/%), the constants a; and b; and thus all the points are defined. The
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No. No. | Ind. | Ind. | Ind. Type of

Level | polys. | pnts. | polys. | pnts. | coord. Points
1 8 6 1 1 0 A
2 32 18 2 2 0 A+C
3 72 38 3 3 1 A+B+G
4 128 66 5 4 2 A+B+C+D
5 200 102 7 5 4 A+2B+D+F
6 288 146 9 7 5 A+2B+C+D+E+G
7 392 198 12 8 8 A+3B+2D+E+F
8 512 258 15 10 10 A+3B+C+2D+2E+F
9 648 326 18 12 13 A+4B+2D+3E+F+G
10 800 | 402 22 14 16 A+4B+C+3D+4E+F
11 968 | 486 26 16 20 A+5B+3D+5E+2F
12 1152 | 578 30 19 23 A+5B+C+3D+7E+F+G
13 1352 | 678 35 21 28 A+6B+4D+8E+2F
14 1568 | 786 40 24 32 A+6B+C+4D+10E+2F
15 1800 | 902 45 27 37 A+7B+4D+2E+12F+G
16 2048 | 1026 51 30 42 A+7B+C+5D+14E+2F
17 2312 | 1158 57 33 48 A+4+8B+5D+16E+3F
18 2592 | 1298 63 37 33 A+8B+C+5D+19E+2F+G
19 2888 | 1446 70 40 60 A+9B+6D+21E+3F
20 3200 | 1602 77 44 66 A+9B+C+6D+24E+3F

Table 2.4. Characteristics of Sphere Levels.
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angles between the arcs are:

3 2
B = %cos~l (\/;) , 1= 1,2,3,...,%. (2.5)

The coordinates of the points (7,7, L — 2i) = (a;, a;, b;) are then given by a; = sin ;
and b; = v/1 — 2a;%. Equally spacing the points (¢,j, L —i — j) on the arc segment

(ai,a;, b;) to (a;, b;,a;) with z fixed at a;, we find:
(2,7, L—1—3) = (a;,cos Bisinv; j,cos Bicosv; ), j=14,i+1,i+2,...,L—25 (2.6)
for: = 1,2,3,...,%, where

J— vis
i = =) |5 — 27 ii -
Tid (L—&) (2 7')+7' (2.7)

and sin+y;; = tanf;. The resulting mesh is shown in Figure 2.1, column (d). We

mentioned earlier that we desired a uniform distribution of points. Three spatial
attributes of a mesh that may help to define an even point distribution are its
variation in edge length, polygon area, and area nearest each point. In the next
subsection we illustrate methods of determining the standard deviation of these
features for grids already presented plus present the grids resulting from minimizing

the standard deviation of each mesh attribute.

II.C. Point Distribution Criteria

Applications such as numerical integration have very specific criteria for evaluating
a quadrature, but for many other applications the criteria are more vague or too
far removed from the grid use to allow grid optimization for the given problem. In
these cases, geometric considerations can be used to establish a grid with uniformly
distributed points which are more likely to produce desirable results with fewer

points.
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Before we can minimize the deviation in point distribution over the unit sphere or
use it to compare our methods, we must associate a value with it. We now consider
what we mean by an even point distribution. If we calculate a property at given
points on a sphere for use in interpolation across the entire sphere, the length of
a polygon edge indicates how far an interpolated point can be from a calculated
point. The size of a polygon can be used to judge how wide an area its vertices
must represent. For the purpose of weighting points for function evaluation, we
must consider the area associated with each point. In general we are interested in

‘the standard deviation of these properties:
o} = — du(a, —a5)?, (2.8)

where o is the standard deviation of a, in a level L sphere, Ny, is the number of
points, polygons, or edges on the sphere, n is summed over all independent (non-
equivalent with respect to symmetry) points, d,, is the degeneracy of point n, a,, is the
property concerned, and @r, is the average of a,, over the sphere. To aid comparison
among levels, the fractional standard deviation, o1 /az, is actually used in figures.
Using degeneracy instead of summing over all points is advantageous when ¢, is to
be minimized. We next show how to find oy, for the three properties edge length,
polygon area, and point area (or “nearest area,” i.e., the area nearest each point)
for method LL, method LT, and any method based on the above triangular mesh
under the confines of octahedral symmetry.

The length s of the polygon edge with vertices P and ]3] on the unit sphere is

found from the law of cosines:

— -

s$=2(1-P-P). (2.9)

It is thus one of the easiest polygon attributes to calculate and optimize. For each

level of the octahedral mesh defined above, the degrees of freedom were varied to
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minimize the standard deviation oy of the edge length. The fractional standard
deviations are shown in Figure 2.2 for various mesh schemes and for levels up to
twenty. Meshes optimized below for other geometric properties also are included
for comparison, and the oscillation of the point or nearest area method is discussed
when it is presented. Note the vast improvement of the other methods over LL,
and the near optimal performance of method ARC which was designed to be a good
starting point for various mesh optimizations.

The distribution of the areas of individual polygons is the next subject we ad-
dress. The area we use is that of the sphere segment corresponding to the polygon
instead of the polygon itself. This insures that the sum of the areas is 47 and that
@r = 4[Ny, i.e., the surface area of the sphere and does not vary. The calcula-
tion of the areas of spherical polygons is more complicated than the calculation of
polygon edgeé and as such is presented in Appendix A. Again, we were able to find
minimal standard deviations of polygon area for each mesh level from one to twenty
as shown in Figure 2.3. Again, the LL method is worst, and the ARC method is
next best to the optimized method. As the level increases, the greater number of
degrees of freedom does allow the optimized mesh to make significant gains over any
other method.

In many applications, values are associated with or calculated at each point on the
spherical grid. Thus, the idea of an even distribution of points themselves is perhaps
more important than even distributions of properties related to polygons or edges.
However, there is no property such as an edge length or polygon area associated
with points which is as obvious a choice for points. The range of influence of a point
is probably best defined by mapping a two-dimensional grid of Wigner-Seitz cells
onto the sphere’s surface. A Wigner-Seitz cell [1] is that volume or area which is

nearest a given point than any other and is alternatively known as Dirichlet regions
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Figure 2.2. Edge Length Fractional Standard Deviation. L is for method LL, T is for
method LT, I is for method IJK, A is for method ARC, S is optimized for minimal
edge length (side) deviation, P is optimized for minimal polygon area deviation, and
N is optimized for minimal point (a.k.a. nearest) area deviation.
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Figure 2.3. Polygon Area Fractional Standard Deviation. L is for method LL, T is
for method LT, I is for method IJK, A is for method ARC, S is optimized for minimal
edge length (side) deviation, P is optimized for minimal polygon area deviation, and
N is optimized for minimal point (a.k.a. nearest) area deviation.
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(2], Voronoi polyhedra [3], or domains [4]. In this application, we call this area either
the point area or the nearest area (to each point). Again, the actual area used is the
surface area of the sphere segment comprising the Wigner-Seitz cell instead of the
area of the polygons on the surface. Thus the sum of the areas is still 47. The use of
symmetry aids the computation of nearest areas, so two definitions are useful. F irst,
d,, is the degeneracy of a point on the sphere, i.e., the number of points with which
it is symmetrically equivalent. Second, w,,, is the weight of polygon m at point
n. There are often a number wp, of symmetrically equivalent polygons meeting at
a given point n. The area nearest point n can then be found by finding the area
is closest to n for only those polygons m which are nonequivalent and multiplying
that area by wp, before summing. In order to handle the problem of optimizing
deviation in point areas efficiently, it is best to make use of the features of the
individual meshes. Thus various mesh methods are discussed in order, making use
of the methods developed in Appendix A for finding the (Wigner-Seitz) area nearest
a given point, while the resulting area deviations are reported as a group.

For method LL there are L + 1 independent points with indices (0,L,k) for
k =0,..., L since each point with the same [k| is equivalent. They have degeneracy
dn = 8L except for k = 0 and k = L which have d, = 4L and d, = 2, respectively.
There are L independent polygons: the L — 1 quadrilaterals between k and k 4 1 for
k=0,...,L —2 and between ¢ = 0 and ¢ = 1, and the triangle (0,0, L) — (1, L —
1,1) - (0,L, L — 1). Each polygon includes two independent points with weights
Wmyn = 2 except for the points (0,0,L) and (0, L,0) which have w,,, = 4L and
Wmn = 4, respectively. See Figure 2.4 for the d, and w,,, for L = 4 for all mesh
methods.

For each quadrilateral between k and & + 1, name the vertices as P = (0,L,k),

P, = (0,L,k+1), P = (1L,L-1,k+1), and B, = (1,L — 1, k). Consider the area
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Figure 2.4. Degeneracies and Weights of Mesh Points. The d,, are on the left and
the wp, are on the right for methods LL (top), LT (middle), and IJK and ARC
(bottom). Independent polygons are drawn with solid lines.
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(2,7, k) Values d,
k=0 i=0 4
k=0 i=1,...,51 |8
k=0 i=j=15 4
k=1,...,L-1 i=0 8

k=1,...,L-1 i=1,..., =51 116
k=1,...,L-1 i=j=1¢

k=1L i=j=0

N oo

Table 2.5. Degeneracies d,, for Method LT.

@mn Which this quadrilateral contributes to point P;. It is the area bounded by a
quadrilateral with vertices P, lsﬁ, c , and ]3;1-, where C is equidistant from the four
original points and ]%, is the midpoint of the arc (B, — 13;), the area a,, for point
132 is bounded by ]32, l—’.ﬁ, é, and ﬁﬁ See Appendix A for the methods used to
determine & énd amn. The general case of finding that part of the area of a triangle
closest to one particular vertex is also given in Appendix A as is needed for the
independent triangle between k = I — 1 and k = L.

For method LT there are (L—‘?—'"z) (%) independent points with (¢, j, k) indices
k=0,....,.L, i=0,..., —L—;—k Their degeneracies are given in Table 2.5. There are
[L(L+1)]/2 independent polygons, the triangles in the all positive octant containing
any of the points with ¢ < j.

For any method based on our generic mesh with octahedral symmetry, the meth-
ods of finding nearest areas are equivalent. Point degeneracies and other features
are discussed in Subsections II.A and II.B where the method is defined. Appendix A
again provides the methods of actually finding the area. Thus, we have all the in-
formation required for finding standard deviations of point areas for methods IJK
and ARC.

An important distinction can be made for finding minimum standard deviations
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for nearest areas versus those for edge lengths and polygon areas. While the greater
number of independent edges or independent polygons is always greater than the
number of degrees of freedom in our octahedral mesh, Table 2.4 shows that the
number of independent coordinates equals and then exceeds the number of inde-
pendent points as the level L increases. Thus, there is the hope of finding meshes
with zero standard deviation of point area for L > 7. For L > 9, extra degrees of
freedom exist, thus the optimal mesh is not unique. This means that we may be
able to find meshes for which each point has the same nearest area for L > 7. A
plot of the fractional standard deviation of the area nearest to each point versus
level L is given in Figure 2.5. For level 8, no mesh with o5 = 0 was found as ten
equations (¢, — @z, = 0 for each independent point) in ten unknowns (the indepen-
dent coordinates of the mesh) is not guaranteed of having a solution. Also note that
as L increases, the point nearest the center cycles from a point type G to D to F
as defined in Table 2.3. This determines the amount of freedom near the center of
the octant and causes the oscillation of the variation of the other properties as seen
above.

This section considered various geometric methods of determining a uniform
point distribution and presented grids with the narrowest possible distribution of
each mesh property. The method ARC is seen to have small variation in all three of
the properties considered. A narrow distribution of Wigner-Seitz areas is perhaps
the most useful property, and for higher L grids with all equal nearest areas are
given. We consider the use of nearest areas for a weighting scheme of numerical

quadratures in the next section.
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Figure 2.5. Point Area Fractional Standard Deviation. L is for method LL, T is for
method LT, I is for method IJK, A is for method ARC, S is optimized for minimal
edge length (side) deviation, P is optimized for minimal polygon area deviation, and
N is optimized for minimal point (a.k.a. nearest) area deviation.
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III. Function Evaluation on a Spherical Surface

The numerical evaluation of functions on the surface of a sphere arises in many fields.
A set of points with associated weights are required. Often the points and/or weights
are chosen to handle the numerical evaluation exactly for a small set of problems.
By far the most important example is numerical integration. Here, the quadratures,
i.e., points plus weights, are chosen to exactly integrate a given set of functions which
usually are part of a basis set. The hope is that when the functions to be integrated
are expanded in terms of the basis set that higher order terms are increasingly small.
However, a second major concern is to use the fewest number of points to promote
computation speed. Thus, the number of basis functions which can be exactly
integrated must be limited. Often quadratures are thus developed in which both
the points and weights are allowed to vary, thus integrating the greatest number
of points with the fewest points. These are generally called Gauss quadratures. A
second common method is to weight all points equally in the hope that this produces
greater accuracy for the part of a function which cannot be represented by the basis
set. These are called Chebyshev quadratures. It is our belief that neither of these
methods are optimal. Fixing the weights to be proportional to the area nearest
each point as defined in the previous section leads to a new quadrature scheme. It
makes use of variation of the point positions in order to exactly integrate a given
set of functions and thus requires the same number of .points as the Chebyshev
method. However, by assigning thé point weight logically, i.e., by the area which the
point represents, integration of functions not in the basis set is expected to be much
improved. Spherical harmonics are the most likely choice of a basis for spherical
integration grids. The real spherical harmonics are presented and briefly discussed in

the first subsection. They are displayed using polar plots in yet another application
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of spherical grids. Their relation with octahedral symmetry is then discussed to
set up the following treatment of spherical quadratures using grids with octahedral

symmetry.

III.A. Real Spherical Harmonics

The classical (real) spherical harmonics are given by [5]:

Yo(6,6) = 12 4“ Pi(cos 8),

vMe,¢) = 212—:_1 \E +m§ P (cos 8) cos m¢, (2.10)
- 20+1 (l m)!
=g — m
Y;m ( ’¢) o' \(Z+ )‘ ‘Pl (COS@)SIqu&,
where in this case, m = 0,1,...,l. To simplify our tables, we instead use the
notation:
v, m>0
Zim=9q Y, m=0, (2.11)
Y0, m<o
where now m = —[, —l+1,...,l. These satisfy the normalization condition:
[ Zim Zomid = 8106, (2.12)

where d? = sinfdfd¢. The quantum mechanical (complex) spherical harmonics

(using the Condon-Shortley phase convention) are [5, 6]:

oyl (AN (DN g g
Yin(6,6) = (~1)"™% ( + ) ((l +|m|>!) PPl(cos)e™.  (2.13)

These two sets of functions are related by:
(=1)™/t (Zim +iZi ), m >0
Yim = Zim, m =0 (2.14)
V2 (Zim —iZim),  m<O
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and

%[(—1)’”Y,m +Y.n], m>0

Zim = Yim, m=20 . (2.15)
iH(=1)™Y o+ Vi), m <0

The Z;,;,’s up through ! = 4 are given in Table 2.6, which is an extension of Table

1.2 of Reference [6].

The real spherical harmonics are best plotted as polar plots where
r=|Zim(8, 9)|. | (2.16)
The points P on this surface are thus
P = |Z},|(sin 6 cos ¢, sin §sin ¢, cos 8) = | Zi|(2, y, 2), (2.17)

where, in this paragraph, we assume (z,y,2) is a point on the unit sphere, i.e.,

@? + y? + 22 = 1. The unnormalized normals N to this surface are given by

. 9P
( ) % ( ) (2.18)
with

.aa_‘;) = élml agém (sin 6 cos @, sin @ sin @, cos §) (2.19)

Im

+|Zim|(cos 8 cos ¢, cos 0 sin ¢, —sin §),

-Z—Z = é’“—-lg%’i(sin 0 cos ¢, sin fsin ¢, cos §) (2.20)

Im

+|Zim|(— sin @ sin @, sin § cos ¢, 0).

In terms of the Cartesian coordinates z, y, and z, these are

0P Zim 0Zim
0 " 7w 00 2 (2,,2) + |Ziml (2= ’Z,, =p), (2.21)

oP Zim, 021,
5;5 = I—ZTm—I a¢ (x,y,z)-l—lsz](——y,a:,O), (222)
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[ m l+1 Zim j/21+1 ' Zim

0] O 1 1

1y 0 cos§ z

11 1 sin 0 cos ¢ z

11-1 sin @sin ¢ Y

21 0 7(3cos?8 — 1) (322 —r?)

21 1 V'3 cos @ sin d cos ¢ V3 zz

21 -1 /3 cos @sinfsin ¢ V3 zy

21 2 %\/?: sin? §(cos? ¢ — sin® ) -%\/g (22 — y?)

2] -2 V'3 sin? 0 cos ¢sin ¢ V3 xy

31 0 - 3(5cos?8 — 3)cos b 2(522 — 3r?)z

31 1 %\/’%-(5cosza9—l)sinﬂcos¢ 1/ (522~ )z

3| -1 %\/§(5cos20—1)sin93in¢ Ve (522 —rt)y

3| 2 %\/1_ 5 cosfsin? §(cos? ¢ — sin? @) V15 z(2? — y?)

3| -2 -;—\/ﬁ cos @ sin? @ cos ¢sin ¢ V15 zzy

3] 3 %\/g sin® § cos @(cos? ¢ — 3sin? @) 3/2 z(2? - 3y?)
3|-3 %\/g sin® @ sin ¢(3 cos? ¢ — sin® @) 1\/_ y(32? — y?)

41 0 £(35cos* @ — 30 cos® 0 + 3) (352 — 302%r2 + 3r*)
41 1 %\/g (7 cos? 6 — 3) cos fsin § cos ¢ l\/—5-(72 —3r?)zz
41 -1 %\/—5’- (7cos?6 — 3) cos §sin O sin ¢ \/_(72 — 3r?)zy

4| 2| 1V5(7cos?6—1)sin®f(cos’ ¢ —sin® @) | 1v5 (722 —r?)(a? — y?)
4| -2 1V/5 (Tcos? 6 — 1) sin® 0 cos ¢sin ¢ 1V (722 —r¥)zy

41 3 %\/% 0s 8§ sin® d cos ¢(cos? ¢ — 3sin® @) %\/-323 zz(z? - 3y?)
4)-3 _;_\/'e.; cos 0 sin® 0 sin ¢(3 cos® ¢ — sin? ¢) %\/—5523 zy(3z% — y?)

41 41 1/35 sin* (cos* ¢ — 6 cos® ¢sin? ¢ + sin’ ¢) 1V35 (2t — 622y + y*)
4| -4 1/35 sin* 6 cos ¢ sin ¢(cos? ¢ — sin® §) 35 zy(z? — y?)

Table 2.6. Real Spherical Harmonics.
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0] 0 0 0

1{ O —sinf —p

1l 1 cos 6 cos ¢ zz/p

1]-1 cos @ sin ¢ zy/p

21 0 —3cosfsind —3zp

2 V3 (2cos? 6 — 1) cos ¢ V3 (222 —r¥)z/p

21 -1 V3 (2cos? 0 — 1) sin ¢ V3 (222 =¥y /p

21 2 V/3 cos fsin f(cos? ¢ — sin? ¢) V3 z(z2 — y?)/p

2| -2 2v/3 cos 8 sin @ cos ¢ sin ¢ 2V3 zzy/p

3] 0 1(3—15cos? ) sin 3(3r? — 152%)p

3 %\/g (5cos?0 — 10sin® @ — 1) cos f cos ¢ %\/g (522 — 10p% —r?)zz/p
31-1 %\/%— (5cos?8 — 10sin® 6 — 1) cos fsin ¢ %\/g (522 — 10p? — r¥)zy/p
3| 2]|31v15 (2cos?6 —sin®0)sin(cos? ¢ — sin ¢) | /15 (222 — p?)(2? — y%)/p
3| -2 V/15 (2 cos? 6 — sin® §) sin @ sin ¢ cos ¢ V15 (22% — pPzy/p

3| 3 —g—\/g cos 0 sin? 6(cos? ¢ — 3sin® @) cos ¢ g\/g z(z® = 3yHz/p
313 %\/% cos fsin’ (3 cos? ¢ — sin’ @) sin ¢ %\/g 2(3z% —yHy/p

Table 2.7. Derivatives of Real Spherical Harmonics w.r.t. 4.

where p =22+ y2. fp=0(z =0, y =0, z = £1), we set £ = cos ¢ to z and

% = sin ¢ to 0. We may also plot r = Z2, as a polar plot with:

ﬁ:ZIZm(x,y,z), (223)
aﬁ _ 8Z1m 2 € Yy
A ] (2.24)
9P 8Zim .

5 = 2Zim 5 (z,y,2)+ Zi,(—y,z,0), (2.25)

See Tables 2.7 and 2.8 for the partial derivatives of the Z,’s with respect to 8
and ¢, respectively, up through [ = 3. The polar plots are easily made using a

spherical mesh such as ARC by scaling the unit sphere points by Z;, or Z2 and
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o m Vit i s TR

0] O 0 0

11 0 0

1] 1 —sinfsing -y

1]-1 sin 6 cos ¢ x

2 0 0

2 —1/3 cosfsinfsin ¢ —V3 2y

2] —1 V3 cos @sin 0 cos ¢ V3 2z

20 2 —24/3 sin? @ cos $sin ¢ —-2V3 zy

2| -2 V'3 sin? §(cos? ¢ — sin® ¢) V3 (2% ~ y?)

3] O 0 0

3] 1 —%\/g(ScosW— 1) sin #sin ¢ —%\/§(522—r2)y
3| -1 %\/§(5c0520—-1)sinﬂcos¢ %\/g- (522 — )z
3| 2 —2v/15 cos 0sin? 6 cos ¢ sin ¢ —2v/15 zzy

3| —2! V15 cos@sin? f(cos? ¢ — sin? @) V15 z(z? — y?)
3] 312,/2 sin®Osing(sin® ¢ —3cos? @) | 2,/2 y(y? - 32?)
3|3 :—;\/g sin® 0 cos ¢(cos? ¢ — 3sin? @) | 2,/2 z(a? — 3y?)

Table 2.8. Derivatives of Real Spherical Harmonics w.r.t. ¢.
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finding the associated unit normals for use in Gouraud shading. Using the same
mesh connectivity as for the sphere, the plots in Figures 2.6 and 2.7 were made for
Zim and ZE,, respectively. In the first figure, the positive lobes are colored green
while the negative lobes are colored red. The relation of the real spherical harmonics

with octahedral symmetry is considered next.

III.B. Z;,’s and Octahedral Symmetry

Since we enforce octahedral with inversion (O) symmetry on the spherical mesh
presented in Section II, it is worth considering the sets of Z,,’s that form bases for
the representations of O,. We derive them next for the pure rotation group O since
extension to Oy, is trivial given that Oy is the direct product group O x C;, where
C; is the inversion groﬁp [7].

We first need to find the (reducible for [ > 1) representation of O for which the
set of (20 + 1) Z;,,’s of same [ form a basis. A rotation of angle a about the z-axis

(C?) has the following effect:

Zimcosma + Zj _,sinma, m >0
CiZim = Zim, m=90 . (2.26)

Zim cosma — Zy _m sinma, m <0
We use the convention of rotating the function instead of the coordinate system.

The character of C? is thus

Z cosma = sin(l+ 2)a‘ (2.27)

i sin 2o

Actually, this is the character of a rotation about any axis since a new set of (2/+4 1)
functions orientated about the new axis instead of the z-axis is an orthonormal
transform of the original set. This enables us to derive the representations given in

Table 2.9.
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0,0 1,0 1,1 1,1

Figure 2.6. Polar Plots of Z;,,’s. Numbers below each figure are [, m.
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3,2

2,1 9.1 2,2

0,0 1,0 1,1 1,1

Figure 2.7. Polar Plots of Z? ’s. Numbers below each figure are [, m.



8C5 3C; 6C% 6C4| Representation
1 1 1 1| A
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-1 1 1 -1|E+4+T2
-1 =1 =11 A+T1+T,
0 1 1 1WA+ E+T+ T,

= W N~ O e
© 1 ot w o~ |

o

|

—

|
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—

Table 2.9. Irreducible Representations of O of (2] + 1) Z;,,’s with Same [.

In order to find the particular combinations of Z;,’s that form a basis for the
irreducible representations of Table 2.9, we consider the effects on the Z;,,’s by C7
(a rotation of 7 counterclockwise about the z axis) and ot (a rotation of 2F
about the axis from the origin through the point (1,1,1)) which are generators of the
group O. We first must define the standard bases for the irreducible representations
of O. We denote the basis for the totally symmetric representation A; as |Aja;).
Due to the isomorphism of O with S4, the symmetric permutation group on four
symbols, the character of A, is 1 for a rotation in O of even parity and —1 for a
rotation of odd parity with respect to interchange of the vertices of an octahedron.
We denote the basis of A, as [Aza,), noting that Cfa; = —ay and Célu)ag = aj,.
For the basis of T1, we use |T1z) « z, |T1y) « y, and |Tyz) « z. The effect of
our generators on this basis is C{(z,y,2) = (y,—x,2) and Célu)(a:,y,z) = (y, z, ).
Using the fact that T, = Ay x T} and denoting its basis as |T3€), |T2n), and |T%(),
we have C3(€,7,() = (—n,€,—¢) and C§"™V(€,,0) = (1,(,€). Note that (£,7,¢)
transforms as (yz,z,zy). Lastly, let the basis for E be |Ef) x 222 — 2% — y? and
|Ee) o v/3(z® — y?). Making use of the effect of our group generators on (z,9,2),
we determine CZ(6,¢) = (6, —¢) and C{"™V(8,¢) = (—30+ ?e, —%—30 — 2¢). These

results are tabulated in Table 2.10. Once deriving the effects of C§ and i on the
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I, &) —n U)
n| ¢ ¢
¢ | ¢ 3

Table 2.10. Standard Bases for O and Effect of Group Generators.

Zim’s (see Table 2.11), comparing with the effects on our standard basis functions
leads us to the desired bases.

By comparing Tables 2.10 and 2.11 or looking at the functions themselves, the
bases for [ = 0,1,2 are easily found. For [ = 3, noting that Z; _; transforms as
ap tells us that it is the basis for A,. Noting that CiZ30 = Zag, it must be |T}z)
since z is the only function of either T} or T} to transform into itself under C;. It
immediately follows that:

Tiz) = C§"|Thz) = —1\/3Zn +1\/5 2,

) = CiTie) = -1/32:.,-1/3% .
Similarly noting that C?Z3;, = —Z3,, we have |T5¢) = Z33 and thus:

T6) = G = —4\/32u - 132,

Tan) = CilT¢) = —%\/E_Za -1+ %\/ng -3.
The representation of | = 4 is A; + E + T} + T,. Of the standard basis functions
of these, only |Ee) and |T3() transform under C? to minus themselves. This is true

for Zy; and Z4 _;. To distinguish between them, we use the fact that C’élu)]Ee) has
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L m| C:Z, ciM"z,,

0| 0| Zy Zoo

1) 1] Zyp Zn

S ) /R Zy -1

1| -1 —Zn Z1o

2 Z —3720 + %\/5222

2 Zy 4 : Zy -2

21 -1| ~Zy Zxn

20 2| —Zy —3V3Zy0 — 1 Zay
2|-2|-2_, Z

3] 0] Zzp —%\/%—231 + %\/§Z33

3 31 —37Z3 1 +ﬁ\/ﬁZ3—3
3|-1) =23 —%\/ngo + %\/5232

3| 2| —Zs —%\@Zgl - %\/%—Zss
3|1-2| 23, Z3 -3

3| 3|~Zss| —31V18Z5_,—1Z;
31-3| Zw | —1\3Zw-1\/37

4 0 Zso §Z40 — i\/gZzzz + %\/3_5Z44
4 2y -1

41-1| —Z4y

4| 2| —Zyp | 3VB6Zy - 3242 — V124
41 -2 ~Z4_, —%\/§Z4 -1 -I-%\/-%_Zex -3
41 3| —-Z4_;

4| -3| Zg

4| 4| Zuy %\/%Zm + iﬁzu + §Z44
41 -4 | Zs_4 —%\/324 -1 %\/%Zz -3

Table 2.11. Effects of Group Generators on Z,,’s. For | = 4, only the results needed
to determine the bases are listed.



114

a component of —%|Fe) while Célll)lT2C> has no component of |72¢). Thus we can

assign |Fe) = Zyp and |15() = Z4 _5. This also leads to:

B) = —2\/5[Ci"VEe) + 1[Ee)] = ~1/2Z4 + /12,
T.8) = C{IT) = 11z + 317,
T = —CilT¢) - _%\/%_241—% 1 Z43.

We now note that |Aja;), |T1z), and |E6) transform under C? into themselves.
Z4o, Zss, and Z4 _4 have this property. Since Cgul)Z‘; -4 contains terms not in the
transforms of the other two, |Aja;) = aZy + bZ44. Since the Z,; term must cancel,
we have —2v/5a + 1/7b = 0. Using a®+ % = 1 and the fact that a must be positive
(since Zyo term of Célu)Zw is positive), we get |Aja;) = —;-\/%—Zw + %\/%ZM- This

leaves |T12) = Z4 _4, and we find:

|Thz) = C:glll),TIZ> = —%\/3Z4—1—%\/%Z4_3,
lle) - C:!Tl'ﬂ - %\/2241—%\/%-243.

The basis functions are tabulated in Table 2.12 after extension to Oj.

We now consider the use of these basis functions to gain insight on the or-
thonormalization of the Z,’s. Let |IT;3;) be the j** function of the basis for [}
using Zi,’s of total angular momentum I, and let I(IT;3;|I'TyB3;:) be our numer-
ical approximation to (II';3;|I'T;8;). Basis functions with distinct symmetry are
automatically orthogonal on our O, grid as are any two functions of the same sym-
metry but with distinct coordinates of that symmetry. Thus, the orthogonality of
I(IT;B;|I'T#Byr) is ensured for ¢ # ¢ and/or j # j'. Further, the orthogonality
of one particular I(IT';3;|I'T;3;) ensures the orthogonality of all of them, e.g., set-
ting I(1T1,2|3T1,2) = 0 in turn sets [(174,z|3T1,2) = 0 and I(1T1,y|3T1.y) = 0.
Requiring the normality of one function of a basis set is sufficient to gain the nor-
mality of all functions in that basis. Thus, setting 1(171,2|1T1,2) = 1 in turn sets

I(1Ty,2z[1Ty,x) = 1 and I(1Ty1,y|1T1.y) = 1. Thus, the conditions for exactly in-
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Basis
|A1ga1> Zoo
]me) Zyy
lTluy> = Zy
leZ) = Zo
,E90> Z20
|Eg€) = Z2
T2e€) = Z3 1
T2gm) = Zn
T2¢) = Z2 -2
|A2u02> = Z3

-2
[Tyz) = —%\/gZ:n + %\/%Z:aa
,Tluy> = —%\/ng -1 %\@Zs -3
) = Z30
o) = 132~ 1\/32
) = —%\/-ngs -1 +%\/§Z3 -3
)

ZS?

|Aga:) = %\/5240 + ‘;'\/-2_244
B8) = -3/3Zuw+1\/iz
= Zsg '
’Tlgl') = —%\/gZ4 -1 = %\/%Z4 -3
Tey) = %\/;24 1 %\/%-243
) = Zy 4
|T2p¢) = —%\/—%724 -1+ %\/§Z4 -3
) = =3iZa-1\/1Zs
) Zs

-2

‘Qtlj
)
kS
n

Table 2.12. Z;,, Bases for Oy,.
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[ Normality Orthogonality
0| 1(0A1,a1041,a;) = 1
1| I(1T1,2|1T1,2) =1
21 I(2E e)2E4e) =1
I(2T5,¢12T5,¢) = 1
3| I(3A34a2|3Az,a2) =1
I[(3T1,2|3T1.2) = 1 I(1T1,2|3T1,2) =0
I(3T2uC|3T2uC) =1
4| I{4A1401|4A150:) = 1 I(0A14a1]4A14a1) =0
[(4E el4F.e) =1 I(2E4€|4E.e) =0
I(4Ty,z|4T142) = 1
1(4T54(}4T2¢) = 1 1(2T,(|4T2,() = 0

~ Table 2.13. Conditions for Exact Numerical Orthonormality of Z;,,’s.

tegrating the orthonormality of the spherical harmonics through a given [ are only

those listed in Table 2.13.

III.C. U; Integration

We now combine the results of the previous subsection with the general mesh pre-
sented in Section II to create new quadrature schemes. We then compare the new
Gaussian and “nearest area” quadratures with some commonly used quadratures.
We consider numerical integration over Us, the surface of the unit sphere in 3-D
Euclidean space, but the resulting spherical grids can be combined with a radial

grid for application to volumes. In general, we consider the approximation [8]:

N
10 = [[ 1,9, ~ > wif (i ). (2.28)

We limit ourselves to the use of positive weights w; and to sample points (i, i, z:)

which lie on the unit sphere, i.e., 22 +y? + 22 = 1.
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It seems desirable to have a quadrature scheme which exactly integrates

Limiim: = // ZLim Ly dQ = by (2.29)

forall [ = 0,...,n and m = —[,...,[ for some degree n. For the moment, let
us consider an integration scheme based on only one of the independent points
listed in Table 2.2. The number of points of this scheme is d;, the degeneracy of
the point, and the weights w; for these points must all be equal. For a type E base
point with coordinates (e, b, c), the integration points are (+a, +b, +c), (£a, %, £b),
(£b, £a, £c), (£b, £¢, ta), (xc, ta,+b), and (+c, +b, +a). The orthonormality con-

straints I(IT';3;{'T;8;) are conveniently listed in terms of:

o = ]., (230)
oy = a?b® + b + a’cl, (2.31)
o3 = a’b’ct. (2.32)

Applying the bases of Table 2.12 and some algebra, the values of the conditions
of Table 2.13 are listed in Table 2.14. Thus, both of the normality conditions
I{0A14a1|0415a:) = 1 and I(1T1,2|1T142) = 1 have reduced to just Z;l‘:l wi(4) =1
or simply w; = ‘;—:’. Thus, any combination of the points in Table 2.2 will integrate
the orthonormality conditions of the Z;,’s through [ = 1 if 3, w; = 4x. For a
given independent point (a;, b;, ¢;), we define I,(I['B|I'TB) to be the right hand side
of Table 2.14 with a = a;, b =b;, and ¢ = ¢;.

We now return to our general integration scheme of a combination of various
point types. Letting |/II'3); be |IT'3) evaluated at point j and the sum over j be over

all points in our grid, we can now reduce the expression

I(TBIITA) = ¥ w,((I0];)(ITH),) (2.33)
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) Normality Orthogonality
0 I{0Ay4a1]0A15a1) = 1

1 I(1T1,z|1T1,2) = 1

2 1(2E4€|2E€) = £(1 — 303)

I(2T54(|2T54() = 50

3 I(3A3,a2|3A2.a2) = 10503

I(3T1u2|3T1uz) = 5(4 — 1505 + 7503) I(1T142|3T1u2) = 1/2(1 — 503)
1(3T3,(|3T%.() = 2(02 — 903)

41 I(4Ar04Argar) = 2(1 - 1003 +250%) | I(0A1ga1[4A1,01) = Y2 (1 — 5,)

I(4E,e|l4Eq e) = 22(1 — 1003 — 8403 + 4902) | [(2E,€|4E ) =

=

[(4T1,2[4T142) = %(0y 4 305 — 402) 15¥8(_2 1 130, — 6303)
[(4T5,([4T3e¢) = B(o2 +T03) | I(2T3,(4Toy¢) = 23(2105 — 02)

Table 2.14. Values of Orthonormality Conditions for a Point (a, b, ).

to
diw;
47

I(IPB|ITA) = 3 = LT BIITA), (234)

where the sum over ¢ is just over the independent points (a;, b;,c;). The condition
for orthonormalization of s and p functions then becomes ¥, d;w; = 4, i.e., the
exact integration of ¢;. Including d functions also requires exact integration of o5, '
including f functions also requires o3, including g functions also requires o2, etc.
This somewhat surprising result is based on one fact and one lemma. Since the
product of two spherical harmonics with /; and /; can be expanded in terms of a
sum of spherical harmonics up to [; + /5, the orthonormality conditions through / are
fulfilled if the quadrature exactly integrates the spherical harmonics, i.e., [f Z;,,dQ
is exact, through order 2/. The lemma given by Lebedev [9] is that any polynomial
invariant under octahedral symmetry can be expressed on the unit sphere in terms
of a polynomial in o; and o3. Although as a lemma this is not proven, we have

shown support for this in the above derivations. Thus, we now consider the exact
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integration of the spherical harmonics themselves through a given order < n to be
the basis of a quadrature of degree n. Existing quadratures fulfilling this description
include those of Lebedev [9-11] and Glatzmaier [12]. The Glatzmaier scheme has
({+1)? point grids based on latitude lines and uses the weights to solve the quadrature
conditions and thus consists of Gauss quadratures. Lebedev presents both Gauss
(unequal weights) and Chebyshev (equal weights) quadratures which have octahedral
symmetry.

It is our working hypothesis that by using nearest point weights we can obtain
quadratures which are more accurate than existing ones for spherical harmonics of
higher degree than that of the quadrature. The number of conditions which must be
satisfied for a degree n quadrature determines the number of independent coordinates
and thus the mesh level we must use. For a degree n quadrature integrating all
spherical harmonics with [ < n, we have n/2 conditions (not including that the
weights w; sum to 47) based on the above lemma and our supporting derivations.
For Chebyshev or nearest-area quadratures this tells us the number of required
independent coordinates, while for Gauss quadratures one plus this (so that the
w; sum to 47) should be the number of independent points plus the number of
independent coordinates. Table 2.4 gives the number of independent coordinates
for various levels of our general octahedral mesh. A level 1 spherical mesh can
integrate the spherical harmonics themselves through { = 3, i.e., f functions, and
the orthonormality conditions (ONC) through [ =1, i.e, p functions. A level 2 mesh
still has no independent coordinates, so we can do no better with a Chebyshev or
nearest-area quadrature. A level 3 mesh has one independent coordinate so we can
integrate the Z,’s through [ = 5 and the ONC’s through [ = 2. A level 4 mesh
has two independent coordinates and can integrate Z,,’s through [ = 7 and ONC’s

through [ = 3. A level 5 mesh adds two independent coordinates for a total of four
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and can thus integrate Zj,’s through [ = 11 and the ONC’s through [ = 5. We were
able to obtain both Chebyshev and nearest-area quadratures for each of these levels.
They are best presented in terms of integrating higher order spherical harmonics for
which we next present a numerical measure.

Since exact integration of the spherical harmonics only depends on exact inte-

gration of polynomials in ¢, and o3, we can limit our concern to the integrals

S = / / Do d. (2.35)

Our numerical approximation to these based on independent points : with weights
w; and degeneracies d; is

]nm = Zwidi[dgdgn]li. (236)

A measure of the deviation s from exact integration of the spherical harmonics

through [,ax is given by

, 1 Lim \?
> (1—5 ) (2.37)

P 4n4+6m<lmax

Figure 2.8 compares our degree 7 (level 4) Chebyshev and nearest a,rera, quadratures
with the degree 9 Gauss quadratures of Lebedev, while Figure 2.9 compares various
degree 11 quadratures. These plots demonstrate the stability vof using nearest area
quadratures versus Chebyshev or Gauss quadratures. The degree 7 quadrature shows
at least a twofold improvement in accuracy for [ = 11, and stable calculation within
an error of six percent for large /. Since we weight the integration of polynomials in
o2 and o3 equally while orthonormalization produces more lower order polynomials
(see Table 2.14), the accuracy of integrating the orthonormality conditions is actually
greater. The accuracy is even higher when one considers all of the orthogonality
conditions which are exactly zero by reasons of symmetry.

Numerical quadratures find application in almost all scientific fields, and quadra-

tures involving spherical surfaces are prevalent in meteorology and chemistry among
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Figure 2.8. New Degree 7 Quadratures. N is a new degree 7 nearest area quadrature,
C is a new degree 7 Chebyshev quadrature, and G1, G2, G3, and G4 are four degree
9 quadratures of Lebedev [9].
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Figure 2.9. New Degree 11 Quadratures. N is a new degree 11 nearest area quadra-
ture, C is a degree 11 Chebyshev quadrature, and G1, G2, and G3 are three degree
11 quadratures with all but the first from Lebedev [9].
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other fields. Quadratures generally fall into one of two categories: Chebyshev with
equally weighted points and Gauss with unequally weighted points. In construct-
ing quadratures that exactly integrate a given number of polynomials, the weights
are often used as independent variables to produce degree n quadratures using the
fewest number of points. However, this is shown above to mean that higher degree
polynomials are less accurately integrated than Chebyshev quadratures. We have in-
troduced a new general quadrature scheme of basing the weights on the Wigner-Seitz
or Voronoi volumes (areas in two dimensions). Basing a point’s weight on the vol-
ume it represents results in greater accuracy for higher order polynomials. We have
applied these ideas to spherical surfaces based on the grids presented in Section II.
If it is definitely known that the expansion of the integrand in terms of spherical
harmonics rapidly declines with larger [, then the Lebedev Gauss quadratures are
probably the most efficient. However, if the expansion includes an unknown amount

of higher [ terms as is often the case, our nearest area quadratures are more efficient.

IV. Interactive Atomic Displays

Graphics workstations have allowed physical scientists to use computer graphics as
a research tool instead of just a method of displaying their results. This is the
fundamental basis of scientific visualization, a buzzword encompassing a large sét of
techniques that increase scientific understanding through graphical displays. Many
techniques useful to the chemist are in use or under development, but it is the
display of large molecules that is his foremost tool. To be useful as a research tool,
molecular displays have to be efficient enough so that a molecule can be viewed
from various angles and perspectives. Graphics hardware has advanced to the point

where up to a million or so polygons can be rendered per second. However, reliance
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on the graphics hardware to do all of the work greatly reduces efficiency and thus
productivity. Also, more modest hardware is often the only available hardware,
and then it becomes essential to have efficient molecular displays. Using a good
understanding of computer graphics, it is possible to increase rendering performance
as high as tenfold by not relying on the graphics hardware. Software coordinate
transformations and software clipping can greatly decrease the amount of work done
in the graphics pipeline. Because most molecular displays are based on spheres
or sphere segments, the use of light models to precalculate colors removes lighting
calculations from the graphics hardware and reduces them to a table lookup. The
first two subsections present the methods and resulting savings of implementing
these techniques in software. The use of color can aid our understanding of atomic
interactions, but our software must be flexible enough to adapt to the needs of various
molecular systems. The third subsection looks at how the complex reconstuction
of semiconductor surfaces can be understood through the appropriate molecular

display.

IV.A. Matrix Transformations and Clipping

“Real time” is an often used yet often vague buzzword concerning computing. For
the purposes of this section, we define it as being about to see a new perspective
of a molecule with at most a very short delay after entering some command (such
as turning a dial or moving a mouse) to instigate it. Fést hardware frame buffers
have taken much of the work of polygon rendering and hidden surface removal away
from the programmer [13]. A significant amount of the work done in the graphics
pipeline is the matrix transformation of vectors to allow for various orientations of
the display. For atoms, however, the spherical mesh comprising the atomic sphere

is a constant which is merely translated and scaled to account for the atom position
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and size, respectively. While software running on the main processor is not nearly .
as fast as specialized graphics hardware for doing matrix transformations, there are
great savings in doing the atomic transformation once instead of for each point in
an atomic mesh. Once this is done, an additional savings is realized in that gross
(atomic-level) clipping can be done in software saving the amount of fine (polygon-
level) clipping required of the graphics hardware. The implementation of these
techniques and the resulting savings are presented in this subsection.

A software implementation of matrix transformations requires a solid under-
standing of the order of transformations. As orthogonal projections are well suited
for molecules and the most efficient in that surface normals need not be rescaled, we
limit our discussion to orthogonal or nonperspective transformations. A separation
is usually made between the viewing transformations related to viewport and eye
positions and modeling transformations related to the rendered object itself. The
least work is required of the renderer if it does only the orthogonal viewport transfor-
mation. Zooms and viewport translations are easily included in this. We place the
burden of all sphere translations and scalings on the software. This is rather easy to
implement. Further, we require that the software handle all rotations input by the
user by the use of dials, mouse, or menus. As this requires various polling of devices
and/or menu setup, it is more difficult. Our scheme polls the appropriate devices
and calls low level graphics routines for rotation as would normally be done. How-
ever, before redrawing the screen, the modeling transformation matrix (MTM) is
retrieved into software and then set to unity. Then by allowing the MTM to operate
on atomic positions in softwar.e, the graphics hardware must only perform the view-
ing transformations and not the modeling transformations on all of the mesh points.
To test these savings, a generation 7 (-alanine starburst dendrimer [14] containing

3814 atoms is rotated using several transformation schemes. Timings were done on
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4D/380VGX | 4D/25TG
Hardware rotations and color 0.9062 7.6646
Software rotations and hardware color 0.4746 4.0960
Software rotations and color 0.4257 3.2499

Table 2.15. Rendering Times. Elapsed times per screen update in seconds are
given for 3814 atoms using a level 3 mesh for two Silicon Graphics workstations.
Hardware Gouraud shading is used for all. The first two lines include hardware
lighting calculations, while the last uses precalculated software lighting calculations
as discussed in Subsection IV.B.

two Silicon Graphics computers: a high end graphics workstation, the 4D/380VGX
rated at one million unlit, unshaded, meshed triangles per second and 180 thousand
unlit, Gouraud shaded, polygons per second and a low to mid range workstation,
the 4D/25TG rated at 57 thousand triangles and 26 thousand polygons of the same
type. The results are given in Table 2.15. For both machines, using hardware ro-
tations is about 1.9 times slower than software rotations. The major part of these
savings comes from not being required to render both halves of the sphere in the
former instance. This gives evidence that the drawing speed is primarily rendering
bound as should be the case for efficient displays.

Including transformations in software also allows other speed gains and the imple-
mentation of several new features. The additional speed gains are obtained mainly
from clipping. Just as transforming atomic coordinates instead of mesh coordinates
saves time, clipping entire atoms instead of the individual triangles in the mesh can
be a great gain. The latter is seen only when a portion of the atoms fall beyond
the six clipping planes of the viewport, but it is often the case that one wishes to
study a smaller segment of a large molecule. A variety of software clipping has been
implemented in our software. This includes no software clipping which lets the hard-
ware renderer do the work, software clipping of atoms totally outside of the viewport

which reduces the amount sent to the hardware renderer, and software clipping of
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Hardware Software 4D/380VGX | 4D/25TG
MT?®, clipping, lighting 169.97 972.00
clipping, lighting MT 90.32 511.57
lighting MT, clipping 43.36 192.77
MT, clipping, lighting 39.49 148.12
near clipping® 28.40° 124.08
near and far clipping? 24.57 96.56

Table 2.16. Pan Times. Elapsed times for 140 0.5A steps through a 3814 atom
molecule using a 204 slab.

2MT stands for modeling transformations.
SMT, clipping, and lighting in software plus the clipping of atoms only partially within the near

clipping plane.
“The last two 4D/380VGX times were done while the machine had a heavier load than above

so times may be higher in comparison.
4MT, clipping, and lighting in software plus the clipping of atoms only partially within both

near and far clipping planes.

atoms partially outside of the viewport (or specified clipping planes) which can make
the view more understandable. A test case is given by panning from front to back
on the above starburst dendrimer. This enables the channels or open spaces within
the dendrimer to be better understood. The timing results are given in Table 2.16.
This shows that doing hardware clipping is a factor of 2.1 and 2.7 times slower than
software clipping for this test. Further gains are made by removing partial atoms
from the picture which can actually clarify the picture. In all, up to a tenfold gain
is possible by switching as much as possible into software, mainly by treating the
atom as a unit instead of each polygon as a unit.

The best demonstration of the usefulness of panning through a molecule is to
do so in real time or in a video. Figure 2.10 at least gives insight into the sterics
of the center of a f-alanine starburst dendrimer by showing a slab of 20A near the

center. The various areas of congestion and of open volumes are easily seen. The
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Figure 2.10. Starburst Dendrimer Slab. A 20A slice of a generation 7, §-alanine
starburst dendrimer is shown. Polymer units are colored from red to magenta as
one progresses from the core through the higher generations.
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use of color to distinguish the polymer units is an additional feature of our software
which promotes understanding of the connectivity and changes in steric effects as
the generation increases. Further use of color particular to a given application is
discussed in Subsection IV.C after a discussion of using a software light model to

precalculate colors in the next section.

IV.B. Light Models

Computer graphics models of light have grown increasingly complex. In ray-traced
images, the color at a given point depends upon surface properties at that point and
on other points which effect how much light falls on the first point. With such models,
effects such as reflection, translucence, and shadows are obtainable. However, ray
tracing is computationally intensive since many rays must be “traced” from their
source through many reflections and transmissions. For the purpose of molecular
displays, a much simpler model is possible. The use of polygon rendering techniques
yield visual information about an object’s color, shininess, texture, and shape while

reducing color dependence to the given point only. A general such lighting model is
I=AD+Y L{(N-L)D + (R- L;)® 8]/, (2.38)

where I is the color intensity at the vertex of the polygon, A is the ambient light
intensity, D is the diffuse color of the vertex, I; is the intensity of light source 7, S
is the specular color at the vextex, F is the specular exponent of the material, and
r; is the distance from the vertex to light source 7. Actually, there are three such
equations, one each for red, green, and blue, with each of the color intensities having
separate red, green, and blue components. The vector N is the surface normal at
the vertex, L_; is the normalized direction from the vextex to light source 7, and Ris

the normalized reflection through the normal of the eye vector which runs from the
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vextex to the viewer. This model gives quite realistic “plastic” surfaces.

Two further approximations are useful in reducing the time of the lighting cal-
culation. The first is the “sunlight” approximation which lets the dimensions of the
object be small with respect to the distance from the object to the light source. This
allows us to replace I;/r? with the constant I; in the above equation by consider-
ing light to fall with equal intensity on all surfaces. The second is the “telescope”
approximation. This allows the eye vector to be considered a constant. Combined,
these equations reduce the lighting calculation considerably.

So far, only standard graphics techniques have been discussed. If the modeling
transformations are done in software as given in the previous subsection, the normals
of a sphere’s surface do not change with respect to the eye vector. Thus for a
given color sphere of any size, the lighting calculation needs be done only once. In
precomputing colors in such a manner, an additional 10% to 20% in elapsed time
is saved as seen by comparing the last two lines of Table 2.15. At this point, the
calculation is limited primarily by the polygon scan-line conversion which is the best
we can expect to obtain.

With well under a second required to update a screen, we may consider the
viewing of 4000 atoms to be marginally in “real time” on a high-end graphics work-
station. This was only obtained by good understanding of graphics techniques and
lighting models instead of relying on the graphics hardware, as fast as it is, to do all
of the work. For low to mid range workstations, a thousand or less atoms now can
be rotated in real time. This work is meant to give the chemist a better tool with
which to work, and next we C(;nsider how to use such a tool with an effective use of

color to better understand semiconductor surfaces.
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IV.C. Reconstructed Silicon Surfaces

One field in which geometric considerations are important but difficult to understand
is the reconstruction of semiconductor surfaces. Since Schlier and Farnsworth [15]
first observed the 7x7 reconstruction of Si(111) in a LEED experiment, a large num-
ber of models were proposed and debated until a stacking fault model first developed
by McRae [16] and then extended by others [17] came into general acceptance. The
visualization of these models was often limited to circle drawings with larger circles
extending farther from the page. The nature of the three-dimensional interactions
were difficult to perceive. The use of color to distinguish atomic layers is most useful
in this case. Instead of requiring the specification of separate atom types for each
atomic layer, a more useful and general approach is to select color based on a coordi-
nate perpendicular to the surface. In instituting such a method in our visualization
software, we have additionally allowed certain atom types to retain a distinct color.
Two pictures of this surface are presented. Figure 2.11 shows the entire surface at
an angle. The stacking fault is easily seen as the channels of green crossing the
surface. The lower layer atom with a dangling bond is just visible in the center and
more easily seen along the front edge. Figure 2.12 shows a second view which makes
use of entire atom clipping in software in order to better visualize the dimer-based
stacking fault.

This section has addressed several issues of note in visualizing chemical systems.
The overall theme is that it is best to make molecular display software a partner to
the graphics hardware instead of relying on the latter. Much faster displays result
~ from working with the atom as a unit as far as transformations and clii)ping. This
also increases user control to allow specialized clipping and color schemes. We have

implemented several color options which were applied to polymers and surfaces but
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Figure 2.11. Si(111) 7x7 Surface. Green layer contains the dimer-based stacking
fault. Red silicon atoms have dangling bonds represented by small, transparent
orange spheres.
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Figure 2.12. Si(111) 7x7 Stacking Fault. Dimers causing the incomplete upper layers
are seen radiating from the center.
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are flexible enough to handle many specialized needs. Overall, this work should
reduce the time and effort required of the chemist to investigate physical properties

of large molecules and crystals.

V. Molecular Surfaces

Various definitions of molecular surfaces have application in finding various physical
and chemical properties of molecules. Examples of applications include analyzing
the topology of large polymers [14], calculating electrostatic potentials [18], sur-
face curvatures [19], or atomic overlaps [20] for analyzing possible protein-protein or
protein-ligand interactions, calculating the solvation energies of proteins [21], and
determining the pore structure of zeolite catalysts [22]. Examples of surface defini-
tions (all broadly classed as molecular surfaces) include the van der Waals surface,
the solvent-accessible surface of Lee and Richards [23], and the molecular surface
of Richards [24]. Algorithmic implementation of the van der Waals and solvent-
accessible surfaces are equivalent and two implementations are a longitude-lattidude
based method [25] and one based on the pentakisdodecahedron [26]. Various rep-
resentations of the Richards’ molecular surface include grid [27], dot [28,29], cube
[30,31], and analytical [32] methods.

While Section IV made use of atomic information to speed displaying molecules,
here we make use of graphical clipping algorithms to speed calculating surface area
and related properties. We deal principally with the accessible surface definition as
it is the most adaptable to efficient calculation. Any analytical calculation which in-
volves finding the intersections of all atoms is computationally too expensive. Meth-
ods based on polygons are also more complex than need be as the decision to keep

a polygon involves looking at each of its vertices. We start with our general mesh of



135

Section II with the nearest (point) area weighting scheme of Subsection II.C. The
basic problem is then to remove all of those points which fall within other atomic
spheres. The surface area is then the sum of the nearest areas of the remaining
points. We look at an efficient method of implementing this method in terms of

clipping and apply methods of grouping surface areas in this section.

V.A. Clipping-Based Surface Area Calculation

We already discussed in the introduction that we believe that a point-based method
involving the nearest Wigner-Seitz area of each point is likely to be the most efficient.
There are still other decisions in designing an algorithm. The standard method of
removing those mesh points of atom A which fall within atom B is to find the
distance between each point of atom A and the center of atom B and compare this
to the atom B’s radius. Actually, comparing distances squared is, of course, more
efficient. An alternative is to find the plane which defines the intersection of the two
spheres. Then the points falling on the far side of the plane are clipped, i.e., removed
from the active point list. This method is easily extended to find the contact part
of the molecular surface of Richards. The details of the method are presented first,
followed by comparison with a standard program for finding surface areas.

Finding the plane of intersection of two spheres is illustrated in Figure 2.13. The
cut of atom ¢ removed from overlap with atom j is thus defined by r.,; and a normal

vector from r; to r; with
2 2 2
Ti + rij — T4

L (2.39)

T =
cut 27’z’j
A complete description of the van der Waal’s or accessible surface is given by a list

of each atom’s position and radius plus the removed cuts in terms of the cut radius

and normal. Both positive and negative r.,; values are possible with less than half
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Figure 2.13. Intersection of Two Spheres.

of the sphere removed for roy, > 0, exactly half for r.y; = 0, and more than half for
reae < 0. It is possible to use this information to find the surface area analytically,
however this would not be efficient due to the complexity of possible intersections
and the floating point operations involved. Our grid algorithm is presented next.
For each atom, we must check against all other atoms to see if they overlap. It is
important to first check whether atoms overlap at all before seeing if the points on
one atom fall within another. This reduces the order of the problem from N?M to N?
for N atoms and M mesh points. The most computationally intensive work is then
determining whether atoms overlap. A cube method where atoms are bucket sorted
in three-dimensions can reduce the number of atom-atom checking but increases
storage and programming, may or may not increase performance given the required
sorting and looping, and will vary in performance with the characteristics of the
system. However, there is another method suggested by clipping algorithms which
can aid immensely. Before a distance calculation is made between a pair of atoms,

it is possible to trivially reject many pairs by comparing distances in one dimension
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Machine GEPOL | Low Memory | High Memory
SGI 4D/380 87.8 10.9/14.1 7.6/11.2
FPS 522 178.8 30.6/37.7 18.8/25.9
Alliant FX/80-8 |  222.7 54.8/65.5 31.3/42.1

Table 2.17. Time to Find van der Waals Surface Area. Times are in seconds. GEPOL
is Reference [33], and low and high memory are our programs. When two times are
given, the first does not include setup which is done only once if surface area is
repeatedly calculated during a simulation while second is the total time. GEPOL
run had NDIV=2 for 96 points while our runs had L = 5 for 102 points.

only. For each of z, y, and z, the difference in one coordinate value is compared
against the sum of the two atomic radii. Introducing this method adds virtually no
program or storage overhead, and the program execution is cut by more than half
for large systems.

We implemented two versions of this algorithm. One uses little more memory
than that required for the atoms and one set of mesh points. The second can
theorectically cut execution time by a factor of two but requires storing a set of
logical variables the size of the mesh for each atom. The inner loop of the latter
method loops over only those atoms not yet encountered in the outer loop and clips
the points of both atoms of any pairs as they are found. The timing results of these
two methods are compared with the GEPOL87 program of Pascual-Ahuir and E.
Silla [33] in Table 2.17. It is seen that the speed increase of our method is almost
an order of magnitude.

The accuracy of both of these calculations is better than +0.1%. Higher accuracy
comes at the expense of many more points which is quite costly. The number of
points for the GEPOL method as given in Reference [26] is 32, 96, 336, 1296, and
5136 for NDIV=1 to 5. Our mesh builds more gradually with 4L% + 2 points for

a given level L. However, more accurate calculations may be best obtained by

extending the clipping analogy instead of adding more points. Since our method
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already finds the appropriate clipping planes, it would be possible to clip the actual

triangles which form the spherical mesh. This method of obtaining accurate surface
areas may be implemented with a rather course mesh, however it may be necessary
to base it on the low memory implementation to avoid difficulties in storing many
clipped triangles.

Up to now it has been very costly to try to find surface areas at every time
step of a simulation in order to add, for example, solvation energies. Our clipping
based algorithm has demonstrated a remarkable improvement over certain current
techniques. Since memory is often limited, one version finds all pairs with a given
atom at one time, finds the clipping planes, removes (or clips) the appropriate points,
and stores the remaining area of that atom. A second version finds each atom pair
only once, thus saving time, but requires about eight megabytes of storage for a
L =5 (102 point), 4000 atom problem using LOGICAL*2 variables. As all areas are
associated with an atom, it is trivial to collect areas separated by various atom types.
To be most useful to the greatest range of problems, a variable method of assigning
types must be implemented. Our software can group surface areas by atom type,
polymer chain, coordinate value, or any other assignments available in an input file.

An example of the usefulness of this grouping is given next.

V.B. Effective Grouping of Surface Areas

The subdivision of surface areas can give us much more insight into a system than
a single total surface area. Various assignments are possible with that of atom type
perhaps being the most useful. This can aid in finding the distinct solvation energies
of hydrophobic and hydrophilic regions, for example. The usefulness of alternative
schemes is best shown by example. We return to the 3-alanine starburst dendrimers

of Reference [14]. These polymers start from a center nitrogen and systematically
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Displacement from Core
Generation 1 2 3 4 5 6 7
1 117.6
2 96.3 | 119.3
3 99.8 | 102.9 | 121.0
4 99.5{ 98.8 | 99.2|121.7
5 100.8 | 97.2 | 92.2103.3 | 120.0
6 104.6 | 102.0 { 101.7 | 101.0 | 100.7 | 123.3
7 104.2 | 101.9 | 101.6 | 101.4 { 101.5 | 101.8 | 123.5

Table 2.18. van der Waals Surface Area per Monomer Unit. For each generation
of B-alanine starburst dendrimers, the surface area is collected by the separation in
monomers from the core. Areas are in AZ2.

replace external hydrogens with additional polymer units to build star-like radiat-
ing structures. It is desirable to assess the changes in the characteristics of these
structures as the generation (the number of times the external hydrogens have been
replaced) increases. In Reference [34], Naylor presents the change in surface area per
added monomer unit as the generation is increased. Using standard input files, we
are able to obtain a more direct measure by calculating the surface area per monomer
unit for each level of added monomer units for every generation. The results for the
van der Waals surface and for the solvent-accessible surface with a probe radius of
1.4A (suitable for water) are given in Tables 2.18 and 2.19. Obviously, the most
external monomer units have the greatest surface area per unit. The van der Waals
surface area of the external units remain rather constant as the generation increases.
The solvent-accessible surface area of the external units show a decrease beginning
with generation four. This demonstrates that at van der Waals distances there is
freedom of movement among the terminal monomers but that congestion begins to
limit the ability to solvate the terminal units at generation four and above. The

decrease in accessible area for the next-to-terminal monomers already begins at gen-
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Displacement from Core
Generation 1 2 3 4 5 6 7
1 217.4
2 132.6 | 219.8
3 133.7 | 142.1 | 221.0
4 133.9 | 127.0 | 125.7 | 210.0
5 136.1 | 126.0 | 116.9 | 119.8 | 192.6
6 137.8 | 119.3 | 117.8 | 104.0 | 107.5 | 185.6
7 136.8 | 109.6 | 120.2 | 105.1 | 108.2 { 102.6 | 178.1

Table 2.19. Accessible Surface Area per Monomer Unit. For each generation of
B-alanine starburst dendrimers, the surface area is collected by the separation in
monomers from the core. Areas are in A2

eration three as they must contend with interactions both on the core and surface
sides of the dendrimer. Note that the accessible area of monomer units nearest the
core remain rather stable as the core nitrogen restricts the degrees of freedom of

these three units.

VI. Summary

This chapter has pursued the use of spherical meshes in several areas of research. A
general mesh scheme was presented from which one can choose the required number
of points, polygons, or degrees of freedom. The meshes were analyzed and optimized
with regard to several important geometric quantities for efficient use in a large va-
riety of problems. In particular the nearest area grid method was presented and
applied to spherical harmoniq displays, numerical integration, visualization of large
molecules and crystals, and the calculation of molecular properties. This new grid
methodology associates an area (or weight) with each point. The area is that which

is closest to that point than any other. Where appropriate, intermediate applied
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mathematical applications were explored which have use beyond the field of chem-
istry. The chemical applications are mainly oriented around chemical visualization
and molecular surface properties, two important fields where both algorithmic and
conceptual advances have been made. A good example of each is the better un-
derstanding of the reconstruction of semiconductor surfaces and the investigation
of the topologies of starburst dendrimers. These techniques involving the surface
properties of large systems are complementary to the modeling of reactive dynamics
of the first chapter which can combine to create the more accurate simulation of

large systems with much decreased effort.

A. Finding Areas on a Sphere

The methods of this appendix are used to find the surface area closer to one point
than any other in a spherical mesh. Specifically, we derive equations to find that
part of the area within a polygon that is closest to one particular vertex for two
cases: first, a quadrilateral composed of segments of latitude and longitude lines
and second, a general triangle on a sphere. In both cases we actually require the
area of the sphere segment defined by the vertices of the polygon instead of the flat

polygon itself. The area of a polygon of k sides on a unit sphere is [35]:

A=Y i (k—2)m, | (2.40)

i=1

where o; is the angle between two of the arcs of the polygon. Since we usually will
be starting from the point coordinates instead of the angles, we show how to derive
the angles from the coordinates next.

Consider three points, ﬁl, ﬁz, and 133, on a unit sphere. We wish to know the
angle o between the two arcs (132 - ﬁl) and (132 - 163) Note that this is not the

angle (1_51 — 132 - 133) which is not tangent to the spheres surface. First we must find
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Figure 2.14. Quadrilateral on Sphere with “Center” and Arc Midpoints.

the normalized directions §21 and §23 which are tangent to the sphere’s surface and
point in the directions of the arcs (132 - ﬁl) and (}32 - .:53), respectively, at P;. Since

§21 is perpendicular to both 132 and }32 X 131, we have

§21 = (2 >-f Pl)f P (2.41)
,Pz X P1| )

and a similar expression for §23. The angle between the arcs is now found by
=~ = P-B—(B.B)P P
COSQZSn'SQg: . 3 (_,2 _.1)( 3 3).
|P2 X P1||P2 X Pgl

(2.42)

Now consider the case of a latitude-longitude quadrilateral. Let it have vertices
Py through Py, and let 1% be the center of the arc (P, — ]3]) (see Figure 2.14 for a
diagram). The point positions are given by:
B = (0,p1,2),
B = (0,ps,2), (2.43)
P; = (pysiné, pycosé, z,),
Py = (p1siné, picosé,z),

where z; and 2, are the z-coordinates of the latitude lines, pP+zi=1fori=1,2,

and ¢ = 37 is the angle between two longitude lines. The arc midpoints are given

2L
by: .
p=bth (2.44)
_|_ .

g~
5>
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Let the point C be equidistant from all four of the original vertices. The area within
the polygon closest to either Py or P, is the area contained by the quadrilateral
(P, — ﬁﬁ ~-C - ﬁﬁ); the area closest to P, or Py is contained by the quadrilateral
(P, — ﬁﬁ -C - ﬁﬁ) All that remains to do then is to find the point ¢. We start
with

6

- F)
C = (pc sin 3 Pe oS 3 zc) , (2.45)

where p? + 22 = 1. Since 131 x C = ]32 X C_", we can find the ratio of p. to z. by the

equation:

cos (g) (p1 = p2)pe = (22 — 21)z, (2.46)

and then solve for them by normalizing. Now we have all the information required
to find the a,,,’s for the quadrilaterals of method LL.

We now desire to find the area within a triangle with vertices 131, P;, and ]33
which is closest to each vertex. Again let ]3;—]- be the midpoint of arc (P, — B;) and
C be the point equidistant from 131, 132, and 153. Also let 131-]- = 13] - 13Z We know
that C is perpendicular to ﬁlg and 1323, thus:
1312 x P, 23

C—;:—:'—_.—'.
|P12><P23|

(2.47)

There are two main cases to consider: one that C falls within the triangle and two -
that C falls outside the triangle. See Figure 2.15 for a diagram of each case. € will

be within the triangle if all of the following apply:

P12'P23

Vv

0,

P23'P31

Y

0, (2.48)

1331'1312 > 0.

In that case the area within the triangle closest to point C is the area of quadrilateral

(131 ~ 135 -C - P%T) and similarly for the other points. Since at most one of the
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3 1 C
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B 53 E
23 12 2T
c ; 31 |
Cb\“l/co
C
3 = |

Figure 2.15. Triangle on Sphere with C Inside (left) and Outside (right) of Triangle.
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relations in Equations (2.48) is false, we will only consider the case Py - 1523 <
0 which is shown in Figure 2.15. Here the area of the triangle closest to P, is
bounded by the triangle (131 - ﬁﬁ — C_"a), the area closest to 133 is bounded by the
triangle (153 -G, - ]3%), and the area closest to P, is bounded by the pentagon
(132 — ]3-23 ~Cy—C, — _‘T) (in practice, subtracting the area of the first two areas
from the area of triangle ([31 - 13; — 133) is easier). Thus, once we solve for C_"a and
éb, we can find the appropriate areas. Since these points lie on the arc (131 — ]_53),

we can write
C—; _ aPl + (]. — a)Pg
¢ |aP1+(l—a)P3]’

(2.49)

and

G, - BPt (=P
18P + (1 - B)P,|’

where o and 3 are constants to be determined. Since C-"a . 1612 =0 and C-"b . ﬁgg =0,

(2.50)

we can determine that
P, P
o= s> 22 (2.51)
P Py —-P - Py

and
Py - Py

= . (2.52)
Py-Py— P Py

ﬂ:
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