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Abstract

There remain practical problems to predicting structures and properties of materials
from first principles, though the foundation, quantum mechanics, has been established
for many years. The goals of this research are to develop methods and tools that are
accurate and practical, and apply them to important problems. Two aspects of the
methodology are focused.

1. The development of accurate force fields based on ab initio quantum mechanical
calculations on prototype systems. Procedures were developed on polyvinyl chloride
(PVC) and successfully applied on other types of polymers. They are very important
to studying of amorphous polymers materials, for which current methods have not
been useful in predicting important properties (e.g. moduli and glass temperature).

2. The development of Massive Parallel Simulation (MPSim) Software. MP-
Sim is suitable for large systems (millions of atoms). It has the ability of including
environmental variables (temperature, pressure, tension, and shear) and extracting
physical properties (moduli and glass temperatures). The theories and algorithms
implemented are summarized in the Appendix.

These methods and tools are applied to the accurate simulation of structures and
properties of amorphous polymer materials and nano-materials.

Molecular dynamics (MD) simulation on polyethylene (chapter 6) was used to
develop a general strategy for predicting glass transition temperatures which is ex-
pected to be very important in polymer industry. In chapter 7, these strategies were
successfully applied to three important fluoro polymers.

Single-walled carbon nanotubes (SWNT), recently discovered but not very well
characterized, is an interesting new class of materials. Using an accurate force field,
structures and mechanical properties of these systems are studied. Chapter 2 shows

that the dominating factor for deciding stable structures and mechanical properties



vi
is the tube size, not chirality. The behavior of (10, 10) nano-tube under bending
are studied (chapter 3) based on energy of hypothetical toroids with different radii.
Yielding curvature of 1/R, (R, = 183.3 (A)) where elastic bending becomes plastic
response is found. In chapter 4, closest packing of K5Cgy with the distribution of K
atoms along tube surface similar to the stacking of stage one K;Cg is established as

the optimum structure of K-doped SWNT crystal.
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Chapter 1 Introduction

1.1 Molecular Simulations

The use of atomistic simulation to study structure, energy, physical and chemical
properties of molecules provides a straightforward, reliable, and accessible avenue
for many investigators in materials sciences, biotechnology, chemical technology and
nanotechnology.

To provide the most rigorous and reliable predictions on new materials requires
first principle quantum mechanics, the solution of Schriodinger equation, to obtain
electronic wavefunctions. However the practical time and length scales for first-
principle theory may be magnitudes too long for systems of many atoms. By av-
eraging over the electron wave functions to obtain discrete charges, van der Waals
parameters, spring constants, and etc., quantum mechanics can be approximated with
molecular mechanics and molecular dynamics where coupled Newtonian equations are
solved to predict the motions of systems 100 times larger and for periods 1000 times
longer.

Using classical force field methods, I studied two kinds of systems, single walled
carbon nano tubes (SWNT), and the amorphous polymer materials. For SWNT, I
calculated the energetics, structures and mechanical properties of pure SWNT and
K-doped SWNT crystal (bundle). For amorphous polymer materials simulation, I
developed accurate atomistic force fields (for chloro polymers) based on quantum
calculations that are required for accurate modeling of these polymer systems. Based
on polyethylene, I also explored molecular dynamics procedures for predicting glass
transition temperatures of amorphous polymers. By applying these procedures to
fluoro polymers, we are able to correlate the experimental glass temperatures to our

calculated results. All of the above systems have large amount of atoms, which cannot
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be handled by current available software packages, need a new software package that
can handle large atomic systems. Based on the initial version of Massive Parallel
Simulation Program (MPSim), which was originally developed by K.T. Lim to handle
huge atomic systems, I implemented many features that are needed for the simulations

of nanotubes and amorphous systems.

1.2 Simulation of Single-Walled Carbon Nano Tubes.

As a class of quasi-one-dimensional system, single-walled carbon nanotubes, discov-
ered by Iijima' and Bethune?, have versatile properties, electro-magnetically and
mechanically. Each single-walled nanotube could be regarded as a rolled graphite
sheet in the cylindrical form. Generally, single-walled tubes can be characterized by
two integers (n, m). Starting from a graphite sheet with the primitive lattice vectors
a b making an angle of 60°, the (n, m) tube is a cylinder with the axis running
perpendicular to nd+ ml_;, so that atoms separated by na+ mb are wrapped onto each

other.

1.2.1 Mechanical Properties of Pristine SWNTs

In Chapter 2, we present a detailed study of the energetics, structures, and mechan-
ical properties of single-walled carbon nano tubes with different radius and different
chirality: (armchair (n, n), chiral (2n, n), and zigzag (n, 0)). We used an accurate
quantum mechanically derived force field to represent the interactions between the
carbon atoms.? These interaction potentials were used earlier in studying structure,
mechanical and vibrational properties of graphite, various fullerenes and intercalated
compounds of fullerenes* and nano tubes.® In our studies, we employed classical
molecular dynamics and molecular mechanics methods as implemented in MPSim (a
massively parallel program for materials simulations) program.® For all three forms,
we found three regions associated with two transition radii (R; and Ry). For tubes

with circular radius smaller than R, only the circular form existed. The collapsed
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initial structure recovered to the circular form during structural optimization. For
tubes with circular radius between R; and R, there are two stable structures with
the circular structure more stable. For tubes with circular radius larger than Rj,
collapsed form becomes energetically favored while the circular form becomes meta-
stable. Based on our study, we concluded that the mechanical stability of isolated
SWNT is dominated by its size (radius of circular form), not by its chirality (which

is a dominant factor for band structures).

1.2.2 Carbon Toroids, New Form of Carbon Molecule?

Experiments done by Dai” and Wang?® illustrated the potential use of carbon nano
tube as scanning microscopic probe and other high yield materials. Motivated by
these exciting developments in finding new forms of carbon materials and studies of
their properties, we designed the new hypothetical carbon molecules, single walled
carbon nano toroids. Carbon toroids system is an ideal model to study the behavior of
single walled nanotubes under bending. We can accurately correlate the behavior of
the tubes to its uniform curvature. In a futuristic point of view, pure or doped (inside
the tube by other elements) forms of carbon toroids could be synthesized and find
its use as components of electro-magnetic devices or micro machines. For example,
as nano conducting rings. In our study, we investigated the energetics and structures
of (10, 10, n) toroids and found three transition radii that defines regions of different
physical behavior. Bending curvature of 1/R, (R, = 183.3 (A)) is the yielding point,
where elastic response becomes plastic, while curvature of 1/R, (R, = 38.9 (A)) cor-

responds to the breaking point, beyond this curvature, the tube breaks.

1.2.3 K-Doped Single-Walled Carbon Nano Tube Crystals

Perfectly packed nanotube bundles have superb mechanical properties, such as high-
tensile and chemical stability. Recent work done by Thess? and Lee!® on doped single-

walled carbon nanotube further gives hope for developing structures useful for new
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generations of nanoscale devices. In Chapter 4, we studied the K-doped single-walled
carbon nanotube crystals. In our study, we explored various ways of putting K atoms
into (10, 10) SWNT bundles and calculated their relative energy cost. Based on these
calculation, we found the optimal stoichiometry of K doped (10, 10) SWNT crystals
for doping between tubes (exo), doping inside tubes (endo) and doping both inside
and within tubes (exo and endo). By looking at the best packing of exo doping, we

found excellent correlation with stage one K intercalated graphite compound K;Cs.

1.3 Simulations of Amorphous Polymers

Amorphous polymers are widely used in industry. By varying the structural unit of a
polymer, or even by blending different polymers, a wide range of physical properties,
including temperature stability, mechanical property, optical property and processi-
bility can be obtained!'. In order to create a polymer material with a set of desired
properties, physics underlying the material behavior at the atomic level must be un-
derstood. We started with accurate force field development from ab initio calculation.
Based on molecular dynamics simulations of Polyethelene, we established a strategy
for predicting glass transition temperatures of amorphous polymers. This strategy is

successfully applied to three important fluoro polymers.

1.3.1 Force Field Development

Currently, for polymer systems, direct ab initio calculations are not practical. Even
with today’s fast development in both hardware and software technology, this situa-
tion will not change in the near future. Thus calculations with classical force fields,
parameterized based on either experimental results or ab initio calculations on smaller
model systems, are the method of choice.

The distribution of backbone conformations and the rates of conformational tran-
sitions have a strong effect on the properties of amorphous polymer materials, such as

moduli, glass temperature, dielectric constant, and diffusivity of small molecules. It
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is critical that the FF leads to the correct relative energies of the minima, e.g., trans
versus gauche, and of the barrier heights between them. Thus torsional FF param-
eters are particularly important for describing amorphous polymers. In many cases,
the existence of the molecule in other local minima can be detected, but energies for
these states cannot be reliably obtained from experiments. In addition, the barriers
between the local minima can also not be obtained reliably from the experimental
data alone. To circumvent this problem, we used ab initio calculations to provide the
torsional potential energy surface. With the 6-31G** basis set, the torsional potentials
calculated from HF wave functions are adequate. The HF calculations lead to a total
torsional potential function E#¥(¢). The classical force fields are fitted to reproduce
these energy surfaces.

Chlorinated polyvinyl chloride has become an important specialty polymer due
to its relatively low cost; high glass transition temperature; high heat distortion
temperature; outstanding mechanical, dielectric, and flame and smoke properties;
chemical inertness; and low sensitivity to hydrocarbon costs. In Chapter 5, based on
accurate quantum mechanical calculations, we developed an accurate force field for
Chloro polymers that accurately describes the adiabatic backbone rotational energy

surface.

1.3.2 Glass Transition of Amorphous Vinyl Polymers

For amorphous polymers, the transition from liquid-like to glass-like behavior is called
the glass transition. Although various macroscopic properties around and below the
glass transition temperature have been extensively investigated experimentally, the
phenomena of glass transition and relaxation are not yet fully understood from molec-

12-19

ular point of view. In chapter 6, I revisited various existing theories on glass

transition and developed a strategy for predicting glass transition temperature of
amorphous polymer. The strategy is established through the analysis of trajectories
of molecular dynamics simulations that are based on an accurate all atom force field.

Polymer materials containing fluorine atoms have unique properties. Compared
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to the corresponding hydro-carbon analogues, they have:

e Very low surface tension and friction coefficient,

e High chemical stability to strongly acidic or basic environments,
e High thermal stability,

e Piezo- and pyro-electric properties (e.g., PVDF),

e Low refractive index.

It is important to combine, or enhance, these basic characteristics of fluoropolymers in
order to develop new materials. Thus, an atomistic understanding of the mechanism
and origin of these properties is essential. Fluoro polymers are very useful for many

applications,®® with

Poly(tetrafluoroethylene) (PTFE) : — (CF, — CF3), — (1.1)

Poly(vinylidenefluoride) (PVDF) : — (CF, — CHa), — (1.2)

Ethylene — tetrafluoroethylene (ETFE) : — (CF, — CFy — CHy — CHs), — (1.3)

serving as typical and important fluoro polymers. These three fluoro polymers pro-
vide fundamental structures that might be combined to design and develop novel
fluoro polymers. Though often more complicated in practice, we consider here simple
models with no branches, with all head-to-tail sequences (PVDF'), and with perfectly
alternating copolymer structures (ETFE).

Using a systematic annealing methodology for molecular dynamics simulations,
which was explored in simulation of Polyethylene (Chapter 6), we obtain well defined
glass transitions that correlate well with experimental values. In these simulation,

instead of using explicit atomic force field, we used united atom force field (UAFF)
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that allows more rapid calculations. The success of UAFF, suggests further the
energetics of main chain dominates physical properties of amorphous vinyl polymer

materials.

1.4 Development of Massive Parallel Simulation
Program (MPSim)

It is now routine to carry out molecular dynamics (MD) simulations of systems
(molecules, polymers, liquids, biopolymers and inorganic materials) containing thou-
sands of atoms using commercially available software such as CERIUS?, POLYGRAF,
Discover, and AMBER. However, many important problems require explicit treat-
ment of 10,000 to 10 million atoms (per simulation cell) with accurate treatment of
long-range interactions. Examples include studies of amorphous polymers, nanoscale
materials, Starburst dendrimers, and assembly/disassembly of viruses.

The Massively Parallel Simulation program (MPsim) is a general molecular me-
chanics and molecular dynamics package designed to handle molecular systems con-
taining large number of atoms by taking advantage of parallel computer architectures.

It has the following features:

1. Tt uses the most popular force fields: DREIDING?!, Universal (UFF)?2, AMBER?,
and CHARMM?, It can also handle all of the special force field (FF) terms
allowed by commercial software such as POLYGRAF and CERIUS? plus other

terms that have been published for specialized FFs%.

2. Long range interactions are accurately and efficiently calculated using spline
cutoffs?®, Ewald summation®”, cell multipoles (CMM)?® and the reduced cell

multipole (RCMM) method?®.

3. It contains a full complement of minimization techniques: steepest descent?®

and conjugate gradient methods®' for both fixed cell and variable cell cases.



7.

8

8

It allows full flexibility in using modern dynamics methods, including Nosé-

Hoover canonical®? and Parrinello-Rahman Gibbs dynamics®3.

. It allows mixed mode simulations: molecular mechanics and molecular dynamics

for rigid body molecules, fixed atoms, and flexible molecules. The rigid body

simulation is implemented by using a quaternion representation3?.

It includes the Newton-Euler Inverse Mass Operator (NEIMO) method*® to

reduce the degree of freedoms for chain molecules.
It implements dynamic load balancing for parallel architectures®.

It has a full set of analysis tools.

The MPsim program, originally developed by K.T. Lim?, is based on the Cell

Multipoles Method for non bond interactions. Many new features were added to the

original version, among them,

e more force field types support, including AMBER nonbond interactions, 3-body

DREIDING type hydrogen bond interactions,

Ewald summation that is accurate and efficient for systems of medium size, with

hundreds, and maybe thousands of atoms,
stress calculation for systems with periodic boundary conditions,

constant volume structural optimization and constant pressure optimization
for periodic systems implementing either steepest descent method or conjugate

gradient method,

constant stress constant temperature (Gibbs) dynamics.

In the Appendix, I outline the physics implemented in MPSim, including energy

and force expressions, the non-bond summation methods (Spline, Ewald, CMM), and

the integration algorithms (dynamics and structural minimizations). Appendix A
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and Appendix B detail the energy expressions, forces, stresses and second deriva-
tives for valence and non-bond interactions. Appendix C is a detailed derivation
of CMM methods, Appendix D is the derivation of Ewald summation, where I also
outline the theory and algorithm for Particle-Mesh Ewald (PEM) theory3® that can
be implemented in the future. Appendix E details the theories and algorithms of
steepest descent and conjugate gradient methods for structural optimization. In Ap-
pendix F, theories of NVE, NVT, NPT and rigid molecule dynamics are explained
with corresponding Newtonian equations. The algorithms implemented in MPSim

are explained, supplemented with flow-charts.
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Chapter 2 Simulation of Single Walled
Carbon Nano Tubes (SWNT)

2.1 Introduction

Carbon nanotubes were discovered in 1991 by Iijima of NEC Corporation.! Since
then, efforts in synthesis, characterization, and theoretical investigation have grown
exponentially. This is mostly due to their perceived novel mechanical and electronic
properties and their tremendous potential for future technological applications. In
1993, the simplest kind of carbon nanotubes, single-walled carbon nanotubes were
discovered independently by lijima’s group? and an IBM team headed by Bethune.3
These SWNTs can be regarded as rolled-up graphite sheets in the cylindrical form.
Some specific defect-free forms of SWNTs showed remarkable mechanical properties
and metalic behavior.* These materials present tremendous potential as components
for use in nano electronic and nano-mechanical applications, or as structural elements
in various devices.

Thess and co-workers* later produced crystalline “ropes” of metallic carbon nan-
otubes with 100 to 500 SWNTs bundled into a two-dimensional triangular lattice.
These tightly bundled linear “ropes” are expected to have remarkable mechanical
properties, as well as superior electronic and magnetic properties. Various levels of
studies were performed on the properties of SWNTs, including use of classical molec-
ular mechanics, molecular dynamcis, and tight binding level quantum mechanical

methods.5~12

In this chapter, we present a detailed study of the energetics, structures, and

!Based on “Energetics, structure, mechanical and vibrational properties of single-walled carbon
nano tubes (SWNT),” G. Gao, T. Cagin, and W.A.., Goddard III, presented on Fifth Foresight

Conference on Molecular Nanotechnology
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mechanical properties of single-walled carbon nano tubes with different radius and
chirality (armchair (n, n), chiral (2n, n), and zigzag (n, 0)). We used an accurate force
field, derived through quantum calculation, to represent the interactions between the
carbon atoms.!® These interaction potentials were used earlier in studying structure,
mechanical and vibrational properties of graphite, various fullerenes and intercated
compounds of fullerenes,'* and nano tubes.!® In our studies, we employed classical
molecular dynamics and molecular mechanics methods as implemented in MPSim (a
massively parallel program for materials simulations) program.'® Molecular dynamics
runs are made to anneal the structures, whereas molecular mechanics, energy and/or
enthalpy minimization, are applied at the end of annealing cycle to obtain the fi-
nal optimized structures. Using the analytical second derivatives of the potential
energy, we also calculated the vibrational modes and frequencies of three kinds of
nanotube bundles, (10, 10) armchair, (17, 0) zig-zag and (12, 6) chiral. These tubes

have comparable cross section diameters, and are among the easiest to make.

2.2 Energetics and the Stability of Circular versus

Collapsed Tubes

In order to assess the mechanical stability of various SWNTs, we created three chiral
forms ((n, n) armchair, (n, 0) zigzag, and (2n, n) chiral) with various diameters. For
each form, we studied two sets of initial structures, perfect circular cross section and
elongated or collapsed cross section. For the collapsed structures, the opposit walls
in the middle section are within van der Waals attraction distance and the shape
of the two ends is close to circular with diameter of D ~ 10.7 (A) (Fig. 2.2). To
mimic long isolated nanotube, we imposed periodic boundary condition in c-direction
(tube axis). To eliminate inter tube interactions, we set the cell parameters ¢ and
b as 50 times of the circular tube diameter. Energy and structural optimizition

were carried out using MPSim. Figure 2.1 is the strain energy per carbon atom
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Figure 2.1: Energy per carbon atom (relative to graphite) of stable structures for (n,
n), (n, 0), and (2n, n) SWNTs; R is the radius of its circular structure.

versus radius of its circular form. We put the two sets (collapsed versus circular)
with three chiral forms (armchair (n, n), chiral (2n, n), and zigzag (n, 0)) on the
same plot. For all three forms, there are three regions associated with two transition
radii (R; and Ry). For tubes with circular radius smaller than R;, only the circular
form is existed, the collapsed initial structure recovered to the circular form during
structural optimization. For tubes with circular radius between R; and Ry, there are
two stable structures with the circular structure more stable. For tubes with circular
radius larger than R, collapsed form becomes energetically favored while the circular

form becomes meta-stable. The structures and radii of the first transition are:

e (n, n) armchair, R; is between 10.77 (A) of (16, 16) and 11.44 (A) of (17, 17).
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Figure 2.2: Starting structures for circular and collapsed tubes

e (2n, n) chiral, R, is between 10.28 A) of (20, 10) and 11.31 (A) of (22, 11).
e (n, 0) zigzag, Ry is between 10.49 (A) of (27, 0) and 10.88 (A) of (28, 0).

The structures and the radii of the second transition are:
e (n, n) armchair, R, is between 29.62 (&) of (45, 45) and 30.30 (A) of (46, 46).
e (2n, n) chiral, R, is between 29.82 (A) of (58, 29)) and 30.85 (A) of (60, 30).
e (n, 0) zigzag, Ry is between 29.93 (A) of (77, 0) and 30.32 (&) of (78, 0).

Looking at the collapsed structures of various radii along tube axis, we found that
they all have two circular (or elliptical) ends of diameter D ~ 10.5 (A) and flat middle
section. The inter wall distances in the flat region are close to 3.4 (A), which is the
inter layer distance of adjacent graphite sheets. The ends sections are highly strained
compared to the circular form, thus cost energy. In addition to zero strain energy, the
flat region is further stablized by inter layer van der Waals attractions. The relative
strength of these two opposite forces dictates the two structural transformations.
Shown in Fig. 2.3 are optimized structures of armchair (n, n) tubes with collapsed

initial structure. The zigzag (n, 0) and chiral (2n, n) tubes are the same.
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Figure 2.3: Cross section of optimum tube structures (started from collapsed form)

Based on the optimized structures and their energies of the circular form, we can
model the basic energetics by approximating the tube as a membrane with a curvature
of 1/R and bending modulus!” of k. Assuming a as the thickness of tube wall, the
elastic energy stored in a slab of width L is given by mxLa?/(12R). The per atom

energy can be written as

mrLa?
¢= TorN P

(2.1)

where N is the number of carbon atoms per slab and E, is energy per carbon atom
for tubes with R ~ oo, i.e., flat sheets. Considering p as the number of carbon atoms
per unit area of tube wall, we have

a’? 1

Eo = ke — + Fu 2.2
c KJ24PRZ+ (22)

Setting a as the spacing between two graphite sheets, 3.335 (A), R, = 1.410 (A) as the
C-C bond distance, we obtained k() = 963.44 (GPa), k(o) = 911.64 (GPa), and
K(2nny = 935.48 (GPa). These results are plotted against the theoretical estimates in
Fig. 2.4.
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Per Atom Energy versus Tube Size
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Figure 2.4: Energy per atom versus square of tube curvature

The bending modulus of sheets with different chirality suggest that the transition
radius depends on the chirality, with (2n, n) transition radius larger than that of
(n, 0) zigzag, but smaller than that of (n, n) armchair. That is what we expected,
because the higher the bending modulus, the higher the strain energy. The (n, n)
armchair has higher binding energy than that of (2n, n), while the (n, 0) zigzag has
lower binding energy than that of (2n, n). However, by examining the collapsed
structures closely, we also found different inter layer stacking in the collapsed region.
Figure 2.5 is the side views of the two attracting layers for three cases. The inter-layer
stacking patterns are different due to different chirality. The inter-layer distances are

also differ slightly, with dimn = 3.38 (A), dionm = 3.39 (A), and d(n) = 3.41 (A).
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Energetically, inter-layer attraction of armchair is the best with per atom energy of
E = 0.7336 (kcal/mol), and stacking of the opposite walls is almost identical to the
graphite stacking. The inter-layer attraction in the zigzag form is the worst with
per atom energy, E = 0.7439 (kcal/mol), since the carbon atoms on different layers
are lined up on top of each other. The attraction energy per atom for the collapsed
(2n, n) chiral nanotube is between the two. Overall, the two factors (bending modulus
and van der Waals attraction) cancels out for different chirality, so that in terms of
transition radius and the cross-over radius, the size of the circular tube (radius) is

the dominant factor in deciding the stable forms.

2.3 Structure and Mechanical Properties of Packed

SWNT Crystals

Among various conformations, the (10, 10) SWNT is the easiest to make. We studied
the mechanical properties of its bulk phase (tube bundles). We also calculated the
bulk properties of (17, 0) zigzag and (12, 6) chiral tubes, with cross section radii close
to that of (10, 10) tube. Molecular dynamics and molecular mechanics studies led to a
triangular packing as the most stable structure for all three forms. The triangular lat-
tice parameter for armchair (10, 10) is a = 16.78 (A) with density of p = 1.33 (g/cc).
For the zigzag (17, 0), they are a = 16.52 (A) and p = 1.34 (g/cc). For the chiral
form (12, 6), they are a = 15.62 (A) and p = 1.40 (g/cc). More importantly, we de-
termined the Young’s modulus along the tube axis for triangular-packed SWNT's
using the second derivatives of the potential energy. They are Y = 640.30 (GPa),
Y = 648.43 (GPa), and Y = 673.49 (GPa), respectively. Normalized to carbon sheet,

these values are within a few percent of the graphite bulk value.
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2.4 Vibrational Modes and Frequencies of SWNT's

We calculated the vibrational modes and frequencies of (10, 10) tube crystals. Due
to their comparable tube radius with respect to (10, 10) tube, zigzag (17, 0) and
chiral (12, 6) tube crystals are also studied. These results can be used to differentiate
chiral tubes with comparable diameters. In Table 2.1, B denotes breathing mode as
displayed in Fig. 2.6b, S stands for shearing mode as in Fig. 2.6c, and C stands for
cyclopes as in Fig. 2.6d. The uniform compression mode is also shown in Fig. 2.6a
and occurs at 186 cm™! for (10, 10), which is exactly the same as the experimental
frequency'®. We tabulated the uniform compression mode and highest graphite in-

plane mode in Table 2.2.

2.5 Conclusion

We presented a detailed study of structure, energetics and mechanical properties of
SWNTs of varying size and chirality. The determined structure and lattice parameters
for closed packed (10, 10) like nanotubes are in close agreement with observations. We
also determined all vibrational modes and frequencies of bulk and isolated nanotubes

using a highly accurate classical force field.
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(a) Uniform Compre/s,sion“/ (b) L=3 Breathing Mgde"

(¢) (4)

Figure 2.6: Selected vibrational modes
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Table 2.1: Vibrational Modes of (10, 10), (12, 6), and (17, 0)

L [ Buoio)y Saoio) Caogo) | Bazs) Saze) Caze | Bure  Sare  Carg
1 111 242 122 265 113 247
112 244 122 265 113 247
2 53 223 381 59 243 412 54 227 386
53 223 381 59 243 412 54 227 386
3 49 333 524 57 364 566 50 341 530
5% 333 530 63 364 571 57 342 535
4 127 442 671 137 483 720 128 456 675
127 442 671 137 483 720 129 456 676
5] 147 549 805 168 600 850 149 570 806
147 549 805 168 600 850 150 570 806
6 201 652 924 229 713 976 203 683 921
226 652 925 249 713 977 227 683 921
7 262 750 299 819 1072 267 794 1017
272 750 299 819 1072 267 794 1017
8 328 838 360 912 1136 327 901 1091
330 838 360 912 1136 328 901 1091
9 375 909 396 379 1002 1140
381 909 400 385 1002 1140

10 402 939 394 434

e Frequency in CM~1.
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Table 2.2: Compressing Mode and the Highest Mode

(7,7 (8,8 (9,9) (12,6) (17,0) (10, 10) (11, 11) (12, 12)
Uniform Comp. 261 231 207 202 188 186 168 152
Highest Mode 1583 1584 1584 1585 1586 1584 1584 1584

e Frequency in CM™1.

Table 2.3: Energy of Collapsed and Circular (n, n) Tubes (relative to graphite)

(Il, Il) AtOl’l’lS R (A) Ecircular Ecollapsed (Il, n) AtOIl’lS R (A) Ecircular Ecollapsed

10 40 6.73  2.5418 50 200 33.66  1.3793 1.3251
11 44 741  2.3366 60 240 40.39  1.3641 1.2353
12 48 8.08  2.1790 70 280 47.13  1.3550 1.1715
13 92 8.75  2.0556 80 320 53.86 1.3490 1.1232
14 o6 943 1.9571 90 360 60.59  1.3450 1.0858
15 60 10.10 1.8773 100 400 67.32  1.3420 1.0559
16 64 10.77  1.8117 110 440 74.05  1.3399 1.0313
17 68 1144 1.7572 2.4340 120 480 80.79  1.3383 1.0109
18 72 1212 1.7115 2.3293 130 520 87.52  1.3372 0.9939
19 76 1279  1.6726 2.2369 140 560 94.25 1.3361 0.9791
20 80 13.46 1.6394 2.1553 130 600 100.98 1.3354 0.9659
30 120 20.20  1.4678 1.6847 160 640 107.72  1.3348 0.9552
40 160 26.93 1.4074 1.4600 170 680 114.45 1.3341 0.9452
41 164 27.60 1.4036 1.4435 180 720 121.18  1.3337 0.9362
42 168 28.28  1.4002 1.4278 190 760 127.91  1.3332 0.9284
43 172 2895  1.3969 1.4128 200 800 134.65 1.3326 0.9211
44 176 29.62  1.3939 1.3987 210 840 141.38 1.3324 0.9146
45 180 30.30  1.3910 1.3849 220 830 148.11  1.3321 0.9088
46 184 30.97 1.3884 1.3720 230 920 154.84 1.3318 0.9035
47 188 31.64 1.3859 1.3594 240 960 161.57 1.3318 0.8984
48 192 3231 1.3836 1.3476 250 1000 168.31  1.3317 0.8943
49 196 3299 1.3814 1.3361 oo oo oo 1.3050 0.7336

e Energy in kcal/mol.
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Table 2.4: Energy (kcal/mol) of Collapsed and Circular (n, 0) Tubes

(Il, 0) Atoms R (A) Ecircular Ecollapsed (Il, 0) Atoms R (A) Ecircular Ecollapsed
10 40 3.89  4.7507 77 308 29.93 1.3926 1.3968
20 80 707 2.2446 78 312 30.32  1.3910 1.3898
21 84 8.16 2.1614 79 316 30.71  1.3894 1.3816
22 88 8.55  2.0890 80 320 31.09 1.3879 1.3743
23 92 8.94  2.0235 90 360 34.98  1.3757 1.3098
24 96 9.33  1.9697 100 400 38.87  1.3669 1.2586
25 100 9.72 19203 110 440 42.76  1.3604 1.2163
26 104 10.11 1.8763 120 480 46.64  1.3555 1.1818
27 108 10.49 1.8371 130 520 50.53  1.3516 1.1517
28 112 10.88  1.8019 2.5316 140 560 54.42  1.3486 1.1262
29 116 11.27  1.7702 2.4623 150 600 5830 1.3461 1.1042
30 120 11.66  1.7416 2.3980 160 640 62.19 1.3441 1.0850
40 160 15.55  1.5623 1.9563 170 680 66.08  1.3424 1.0683
o0 200 19.43 1.4788 1.7217 180 720 69.96  1.3410 1.0532
60 240 2332 14333 1.5672 190 760 73.85 1.3398 1.0392
70 280 27.21  1.4058 1.4567 200 800 77.74  1.3388 1.0270
71 284 27.60  1.4037 1.4476 210 840 81.62  1.3380 1.0160
72 288 27.99  1.4016 1.4384 220 880 85.51 1.3372 1.0062
73 292 28.37  1.3997 1.4298 230 920 89.40 1.3366 0.9971
74 206 28.76  1.3978 1.4213 240 960 93.28 1.3360 0.9884
75 300 29.15 1.3960 1.4129 250 1000 97.17  1.3355 0.9808
76 304 29.54 1.3942 1.4047 oo o0 oo  1.3050 0.7439

Table 2.5: Energy (kcal/mol) of Collapsed and Circular (2n, n) Tubes

(211, Il) AtOI’IlS R (A) Ecircular Ecollapsed (211’ Il) AtOIIlS R (A) Ecircular Ecollapsed
3 140 5.14  3.3639 25 700 25.71  1.4149 1.4938
10 280 10.28  1.8579 26 728 26.74  1.4085 1.4664
11 308 11.31  1.7672 2.4559 27 756 2777 1.4028 1.4415
12 336 12.34 1.6979 2.2969 28 784 2879  1.3976 1.4182
13 364 13.37 1.6438 2.1660 29 812 29.82 1.3930 1.3961
14 392 1440 1.6008 2.0572 30 840 30.85  1.3888 1.3757
15 420 1543  1.5660 1.9660 35 980 35.99 1.3731 1.2917
20 560 20.57  1.4629 1.6690
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Chapter 3 Energetics and Structures of
Single-Walled Carbon Nano Toroids

3.1 Introduction

Carbon has diverse forms of structure,! =2 both in nature and by lab synthesize. Three
dimensional diamond and two dimensional graphite sheet are the two well-known
forms. In the past decade, the discoveries of zero dimensional bucky balls®*~" and one
dimensional bucky tubes®~ have generated great interests among researchers. Studies
of the structures and properties of low-dimensional carbon molecules, theorectical'®~1?
and experimental,'*~'® showed tremendous potential use of nano scale carbon mate-
rial as components of electro-magnetic devices, or high yielding materials. Among
them, experiments done by Dai'® and Wang?° illustrated the potential use of carbon
nano tube as scanning microscopic probe. Motivated by these exciting development
in finding new forms of carbon materials and studies of their properties, we designed
a hypothetical carbon molecules, single walled carbon nano toroids. Carbon toroids
system is an ideal model for studying the behavior of single walled nano tubes un-
der bending. We can accurately correlate the behavior of the tubes to its uniform
curvature. In a futuristic point of view, pure, or doped (inside the tube by other ele-
ments) forms of carbon toroids could be synthesized and find its use as components
of electro-magnetic devices or micro machines, e.g., as nano conducting rings.

The carbon toroid can be chracterized by three integers (n, m, 1), where (n, m)
defines the single-walled nano tube that is used to construct the toroid, while [ is

the number of the smallest repeating units along tube axis. We investigated the

2Based on “Energetics and structures of single-walled carbon nano toroids,” G. Gao, T. Cagin,
and W.A. Goddard III, to be published.



28
mechanical property of carbon toroids to investigate the bending of (10, 10) single-

walled carbon nano tube.

3.2 Optimum Structures of Toroids

{(10,10,200) 4,000 Carbon Atoms
R= 38.87 (a)

(10,10,2000) 40,000 Carbon Atoms
R = 388.7 (&)

Figure 3.1: Starting structure of two toroid with different radius, the smallest stable
toroid and the largest toroid used in our calculation.

We generated toroids with radius from 19.43 (A) that is (10, 10, 100) with 2,000
atoms, to 388.69 (A), (10, 10, 2000) with 40,000 atoms. Based on the molecular
simulation forece field? (MSFF), their structures are optimized by using molecular
mechanics and molecular dynamics. Developed for graphite and fullerenes, MSFF
was proved to be very accurate in calculating vibration frequencies and predicting
experimental structures. The parameters are listed in Table 3.1. Figure 3.1 shows
the initial structures of two toroids, R = 38.87 (A) of (10, 10, 200), and R = 388.7 (A)
of (10, 10, 2000).

Toroids with small radius are highly strained. To stablize the structure, harmonic

bond interactions are used at the early stage of the minimization. The more accurate
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Table 3.1: Force Field Parameters for Carbon Nano Tube

van der Waals® R, D, Bond? Te k, Evond
C 3.8050  0.06920 Cc-C 1.4114 720.000 133.0000
Anglec 96 k‘g k‘ng k,-2g krlrz
C-C-C 120.000 196.130 -72.410 -72.410 68.000
Torsion? Vo Vi Vs,

C-C-C-C 10.6400 0.0000 -10.6400

® Eygw = Dy(p™'2 — 2p7%) where p = R/R,.
® E = D.(x — 1)? with y = e~ 7(B-E),
E(6,R* RC) = LC(cosf — cosf,)? + D(R* — R*)(cosf — cosb,) + E(RC —

-2
RS )(cos 0 —cos 8,) + F (R4 — RA)(RC — RS), kg, k.9, and ki, are force constants

with respect to 6.

O

4 E(¢) = Vo + Vicos(¢) + Vi cos(26).

Morse potential that allows bond breaking are used at the latter stage of minimization.
By doing so, we can avoid the bias built in when the starting structure was created.
This is important for tracking down the transition radius that separates stable toroids
(though highly strained) from the unstable toroids (under Morse bond interaction,
the structure flies apart). Figure 3.2 is the strain energy per atom (relative to infinite
long straight (10, 10) tube) versus 1/R2. For toroids with different radius, different
final structures resulted. In the plot, we can identify three transition radii, associated
with four structural regions.

For toroids with radii larger than R, = 183.3 (A) (corresponds to (10, 10, 943)
toroid with 18,860 atoms), after molecular dynamics simulation and energy mini-
mization, smooth toriod is the only stable structure. This corresponds to the elastic
bending of isolated (10, 10) tub.

For toroids with radii smaller than R, = 183.3 (A) and larger than 109.6 (A)
((10, 10, 564) with 11280 atoms), the optimum structures obtained through mini-

mization are smooth toroids without buckles. However, after 20 pico seconds of
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Strain energy per atom versus 1/R°
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Figure 3.2: Strain energy per atom versus curvature

molecular dynamics equilibration at 300 (K), numerous small dents appeared along
the inner wall. Take a snapshot of dynamics trajectory as the starting point of struc-
tural minimization, we found an interesting phenomena. During the minimization,
small dents diffused along the inner tube and nucleated into larger dents when they
meet. This nucleation of deformations continues, until the optimum structure re-
sulted. The optimum structures usually have a number of buckles almost uniformly
spaced along the tube.

Figure 3.3 are the snapshots at the late stage of minimization for (10, 10, 564)
(toroid with radius of 109.6 (A) and 11280 atoms). Looking at the lower left quater
of each ring, we can clearly identify the diffusion of small dents. These small dents
eventually moved toward the larger dent as the minimization progresses, and com-

bined with the large dent. The snapshots are numbered according to the minimization
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sequence. Snapshot with smaller numbering represents structure at earlier stage of
minimization. Comparing to the smooth toroids, these structures have lower strain
energy per atom. This is due to the stretching of the outer surface and compression
of the inner surface. Knee like buckle relaxes compression over large region at the
expense of increased local strain.

Figure 3.4 gives a close look at a buckle, which is cut out from a optimized toroid
with one buckle. At the center of the buckle, tube wall collapsed completely. The
closest distance between atoms in opposite tube walls is 3.3 (A), comparable to the
distance between adjacent layers of graphite. A short distance away from the collapsed
point, the tube stays almost circular. Rooms created for the inner wall at the buckles

relax the stretch and compression along the rest of the toroid.

Figure 3.3: Snapshots of structural minimization; numbered according to the mini-
mization stages to illustrate nucleation of small buckles into large buckle



Figure 3.4: Close look at a kink

There is a strong correlation between the number of buckles and the curvature of
the toroids. The higher the strain (curvature) is, the more buckles appeared in the
final structure of minimization. However, for each toroid within this region, there
are many stable final structures with different number of buckles, each resulted from
different starting sructure. This suggests that there exist many meta stable structures
for toroids in this region. The fact that the curves towards small radius in Fig. 3.2
are not smooth suggests that we are not connecting the points with optimum number
of buckles. Generally, if we increase the radius (thus reduce strain) we get structures
with smaller number of buckles and when we approach the smooth region, we should
get only structures with single buckle.

In order to track down the transition point, we created structures with different
number of buckles as starting point of minimization. The buckles are uniformly
distributed along the circumferences. To create a buckle, we added artificial harmonic

constraint on two atoms in the opposit wall of the tube to pull together the inner wall
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and the outer wall. After the structures are minimized to lower RMS force, where
the structures are stable under Morse bond interaction, we remove the constraints
and switch harmonic bond potential back to Morse potential to further optimize the
structures. We could just heat up the initial structures by using molecular dynamics
and then anneal them down to zero temperature. However, given the size of the
toroids in the transition region (> 10,000 atoms), the long time that takes to anneal
each structure, and the fact that there could be several stable structures associated
with different number of buckles, it is impractical to do so. Figure 3.5 shows the
transition region where smooth toroids and toroids with different number of buckles
co-exist. Points with same number of buckles are connected into lines. It clearly

shows the overlap and shifts of lines with different number of buckles.

Strain energy per atom versus 1/R’
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Figure 3.5: Strain energy per atom versus 1/R? at the transition region where smooth
toroids and toroids with different amount of buckles co-exist.
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Towards the transition point beyond which smooth toroids resulted, we are able
to create stable structures with four buckles, three buckles, two buckles and one
buckle. At region close to the transition radius R, only the one buckle toroids have
the smallest strain energy per atom. Figure 3.6 shows the buckled structures in this
region.

If we further increase the curvature (decrease radius), at Ry ~ 109.6 (A), (corre-
sponds to (10, 10, 564) toroid with 11,280 atoms), only toroids with various number
of buckles exist. At even higher curvature, the toroids are flatterned. In this region,
there are no smooth toroids, due to the high strain built in the compression of inner
wall and tension of the outer wall. Further decrease the radius down to the point of
Ry, = 38.9 (A) (corresponds to (10, 10, 200) toroid with 4,000 atoms), the structure
breaks and atoms fly apart in the course of minimization. Figure 3.7 shows toroids

with more than eight buckles to the smallest toroid that can stand the built in strain.

3.3 Discussion

Consider the (10, 10) tube as thin elastic rods, then the toroids are rings of thin rods.
Assuming « as the Young’s modulus of the (10, 10) tube, I the moment of inertia
about the axis parallel to tube cross section, the strain energy of the rings are given

by

1 1 1.,
— = = 1
E QHI/(R Ro)dl (3.1)
where
I, = /xQdf = —;—/TQdf = %(rfm - rfm) (3.2)

Taking ry,: = 16.70 (A), the inter-tube distance of (10, 10) SWNT crystals, r;, = 10.5
(A), which assumes 13.6 (A) as the radius of (10, 10) tube, we get Young’s modulus of

the 913 (GPa) for toroids of large radius, which compares to the experimental value
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of 1280 + 0.6 (GPa)? for multi-walled carbon nano tubes (MWNT).

3.4 Conclusion

We have investigated energetics and structures of (10, 10, n) toroids, three transition
radii are found that define the regions with different stable structures. Based on

classical elastic theory analysis, we calculated the modulus of different regions.
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Figure 3.6: Optimized carbon toroids with 1, 2, 3, and 4 buckles. The one buckle
toroid has 16,800 carbon atoms. Denoted as (10, 10, 840), the radius of its circular
form is 163.3 (A). The toroid with two buckles has 16,400 carbon atoms, (10, 10,
820), radius of its circular form is 159.4 (A). The toroid with three buckles has 18,000
atoms, (10, 10, 900), radius of its circular form is 174.9 (A). The toroid with four
buckles has 14400 atoms, (10, 10, 720), radius of its circular form is 139.9 (A).
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R=49.06A R=656.084

Figure 3.7: Collection of kinky toroids
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Chapter 4 Structures and Properties of
K-Doped Carbon SWNT

4.1 Introduction

The development of methods! to control the catalytic synthesis of SWNT (originally
synthesized by Bethune® and Tijima”) to form ordered ropes containing 100’s to 1000’s
of tubes gives hope for developing structures useful for new generations of nanoscale
devices. The recent report that these SWNT ropes can be doped to form metallic
conductors? gives further hope for interesting devices. Because many standard anal-
ysis techniques are difficult in the nanoscale region (10 to 100 nm), it is important
to have accurate computer simulations of the structures and properties that can be
correlated with observable signatures.

Lee? et al. recently showed that doping single-walled carbon nanotube (SWNT)
ropes with K, Rb, or Bry; leads to metallic conductivity. However, the structures
and properties of these doped systems have not been characterized. We used the-
ory (quantum mechanics (QM) and molecular dynamics (MD)) to predict structural
properties which may help motivate and interpret experiments on SWNT /K. Assum-
ing that the K cannot penetrate the tubes, we find the optimum stoichiometry to
be KCyg, leading to a triangular crystal with a tube-tube spacing of 17.72 (A), 6.1%
larger than for pristine SWNT crystals. We predict the optimum structure and the
associated X-ray powder diffraction pattern expected for K,Cgy from n = 0 to 10
(optimum is n = 5) for both triangular (closest packed) and square packing of the

tubes. The Young’s modulus per tube along the tube axis changes from 640 to 525

3Based on “Where the K are in Doped Single Walled”, G. Gao, T. Cagin, and W.A. Goddard
III, on press
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GPa for n = 0 to 5. We also calculated the optimum structure assuming that K can
penetrate inside the tubes (perhaps at defects or through open ends). This leads to
an optimum stoichiometry of K;Cyg (K&°KE"¥Cyy with 3 inside the tube). In order
to help experimentalists search for such possible interesting changes in structure, we
calculated the powder diffraction and fiber diffraction patterns for all n from 0 to 11

for all the cases.

4.2 Structures and Energies of K-Doped SWNT
Crystals

We used the force fields® developed for, and applied to, studying alkali doped fullerenes
which is shown to be very accurate. In the force field, full charge transfer is assumed
with each K donating one electron and the donated charges distributed uniformly
among C atoms. In addition, we used QM calculations to establish the energy of
nanotubes as a function of doping level. This is required to obtain absolute energies
for comparing the stability as a function of n. The molecular mechanics and MD
calculations exclude Coulomb and van der Waals interactions between atoms that
are bonded (1-2 interactions) or share a bonded atom (1-3 interactions). To estimate
the relative energy of the SWNT with different amounts of charge, we must include
the effect of shielded 1-2 and 1-3 interactions. To do this we considered the absolute
energy of C&; as a function of n from QM® and added to the standard MM or MD
energy a correction term of the form E = Ey + \Q + J@Q* A = 413.116 kJ/mol
and J = 4568.690 kJ/mol are adjusted such that the total energy differences for
g = 60Q match the QM. These constants, A and J, were then used for the SWNT/K
calculations to obtain absolute energies.

We considered both closed packing and square packing for exo cases. For the
closed packing, we started with the predicted minimized crystal structure for (10,10)

SWNT crystals (triangular with a = b = 16.70 (A), ¢ = 4.94 (A), v = 60°, tube-tube
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spacing of 16.70 (A)). For square packing, we also started with the predicted optimum
square packing structure with a = b = 16.70 (A), ¢ = 4.94 (A), v = 90°, tube-tube
spacing of 16.70 (A). We also considered doping inside tubes (exo) and doping both

inside tupes (endo) and doping between and inside tubes (exoendo).

4.2.1 Doping outside tubes

By comparing the van der Waals radius of K atom with the distance between adjacent
layers of (10,10) tube, we found ¢ = 4.94 (A) with 80 carbon atoms (two layer rings)
is a reasonable starting structure. Since we have 80 carbon atoms per unit cell,
we’ll denote the number of K atoms with respect to 80 carbon atoms, i.e., K,Csg,
with n = 1 to n = 10. For each n, after calculating various stable structures, the
most energetically favored structure (one tube per cell) was extended to allow more
independent tubes per cell (four tubes). We then carried out 20 ps of MD at 600K
to equilibrate the system and quenched the structures by minimizing the energy.!°
In these studies, we considered both triangular (closest packed tubes) and square
packing of the tubes.

Square packings are considered first. For n < 3, there is only one stable structure
shown in Fig. 4.1a through Fig. 4.1c. For n = 4 and n = 5, we have two stable
structures after initial minimization, shown in Fig. 4.2a, Fig. 4.2b and Fig. 4.3a,
Fig. 4.3b. For n = 6 and n = 7, we found three stable structures each, shown in
Fig. 4.4a, 4.4b, 4.4c and Fig. 4.5a, 4.5b, 4.5¢. For n = 8, 9 and 10, four stable
structures found shown in Fig. 4.6a, 4.6b, 4.6¢, 4.6d, Fig. 4.7a, 4.7b, 4.7c, 4.7d, and
Fig. 4.8a, 4.8b, 4.8c, 4.8d.

After quenching the quadrupled (extend the unit cell to 2 x 2 of the single tube
unit cell) structures, we found that n = 1 and n = 2 packing are transformed into
triangular packing (closest) and the rest stays more or less orthorhombic. Figure 4.9
is the projected final structures along c axis, and Fig. 4.10 is the calculated X-ray
powder patterns.

We went through the same procedure for triangular packing. Figure 4.11 is is
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the projected structure along ¢ axis for n = 1 to n = 10, while Fig. 4.12 shows the
predicted X-ray powder diffraction pattern.

The energetics of varius cases are shown in Fig. 4.13; here we see that the global
minimum is the triangular structure of K5Cgy =KCi6. For n < 2 the K intercalate
in hollows between three tubes, whereas for n > 3 the K intercalate between pairs of
tubes, just as in stage one K intercalated graphite (GIC). Indeed Fig. 4.14a and 4.14b
shows that for the optimum structure, K5sCgg = KCig, the K are packed in the same
(2 x 2) pattern observed for intercalated graphite, KCg®, as shown in Fig. 4.15. The
difference for KC;4 SWNT is that the K can only be on the outside of the tube (vide
infra), leading to half the amount of K. For n > 7 there are significant distortions of
the tube shells.

We have not yet examined the dynamics for K diffusing through the SWNT to
form the equilibrium structure. However, these results suggest a qualitative picture.
The K fit quite nicely into the three fold hollows of the triangular cell, requiring no
change in the tube packing up to K;Cgy = KCyg. Probably this diffusion is relatively
rapid. Adding further K to form triangular K3Cgg requires a 13% volume expansion
of the tubes, which could be a rather sluggish transformation. Since square K3Cgqg
and K4Cgy are nearly as stable as triangular, it may be that adding K to triangular
K5Cgp leads to a transformation into the square phases for n = 3,4. In any case, for
K5Cgo and beyond the triangular is strongly favored over square. Thus, we expect

only the expanded triangular structure in this region.

4.2.2 Doping inside and inside-and-outside the tubes

We assumed above that the K intercalate between tubes (exo K), but it is possible that
the tubes have defects or open ends that would allow K to penetrate the tubes. First
we calculated the case in which only endo K are allowed. This leads to energetics as
in Fig. 4.13 with an optimum packing of K§"¥Cg,. The structures are shown Fig. 4.16
and the powder diffraction patterns are shown in Fig. 4.17. Combining the best exo

packing (n = 5) with endo packing, we find an optimum structure of K£° K™% Cqgg
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= KCjp. The projected structures for combined cases are shown in Fig. 4.18 and the
powder patterns are in Fig. 4.19. The side and top view of K£*° Kg"d" Cgg = KCyp is
shown in Fig. 4.14c and 4.14d.

4.3 Mechanical Properties and Vibrational Frequen-
cies

The density and modulus along the tube axis are plotted in Fig. 4.20a as a function
of n (for the triangular case). Here we see a dramatic break at n = 2, corresponding
to the change in K intercalation. The Young’s modulus (Fig. 4.20b) is 18% smaller
for n > 3 than for n < 2. This is because of the change in area per tube. Normalizing
by the number of tubes leads to modulus of ~ 640 GPa, independent of n. Indeed
normalizing by per projected atom along the sheet leads to the same value (1090GPa)
as for graphite.

A valuable probe of the structure of nanotubes is the vibrational spectra. Indeed
the assignment of the tubes in these experimental studies as (10,10) armchair was

based on the observation that the strong Raman mode at 186 cm~! changes dramat-

1 in good agreement.

ically with diameter of the ring and is predicted at 186 cm™
Consequently, we calculated the vibrational modes of the K,,Cgo crystals for all n. In
Fig. 4.21a shows the highest frequency in-plane mode for various n, and Fig. 4.21b
shows the tube expansion mode (at 186 cm™! in the pristine SWNT crystal). We see
that the highest (in-sheet) vibration mode at 1583 cm™! (observed at 1593 cm™!,*
drops by 8 cm™! as n increases from 0 to 5. This calculated drop of 8 cm™! is consis-
tent with experiment® which observes dv = 29 cm™!. Simultaneously the intense ring
expansion Raman mode observed at 186 cm™! (calculated at 186 cm™') in pristine
SWNT increases to 203 cm™! for n=5. Experimentally® all modes in the low frequency

region disappear for SWNT/K. These intensity changes were explained in terms of a

resonance similar to that observed in KCg graphite. However, for SWNT/Br, shifts
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of 74 cm™! were observed. Overall we believe that these results are compatible with
the observations on SWNT /K. The predicted diffraction, vibration, and modulus

properties should be useful in characterizing these systems.

4.4 Conclusion

We used theory (quantum mechanics (QM) and molecular dynamics (MD)) pre-
dicted structural properties which may help motivate and interpret experiments on
SWNT/K. Assuming that the K cannot penetrate the tubes, we found the optimum
stoichiometry to be KCyg, leading to a triangular crystal with a tube-tube spacing of
17.72 (A), 6.1% larger than for pristine SWNT crystals. We predicted the optimum
structure and the associated powder diffraction X-ray pattern expected for K,Cgg
from n = 0 to 10 (optimum is n = 5) for both triangular (closest packed) and square
packing of the tubes. The Young’s modulus per tube along the tube axis changes
from 640 to 525 GPa for n = 0 to 5. We also calculated the optimum structure
assuming that K can penetrate inside the tubes (perhaps at defects or through open
ends). This leads to an optimum stoichiometry of K;Cyy (K&K Cgy with 3 within

the tube).
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4.6 Figures

E = 47.6808 keal/mol

(b) F = 135.8703 keal/mul (c)

Figure 4.1: Projections of n = 1, 2, and 3 exo cases
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(a) E = -13.3356 kcal/mol

(b) E = -§3.1019 keal/mol

Figure 4.2: Projections of n = 4 exo cases
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(b) E = -121.5347 kcal/mol

Figure 4.3: Projections of n = 5 exo cases



49

(a) E = -155.2704 kcal/mal

(b) E = -181.4438 keal/mol () F = —166.5697 Keal/mol

Figure 4.4: Projections of n = 6 exo cases
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(a) E = -225.5677 kcal/mol

(b) E = -262.6625 kcal/mol (¢)  E=-267.5824 keal/imol

Figure 4.5: Projections of n = 7 exo cases
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(a) Ll = -295.8311 kcal/mol (b)  E=-335.2342kcal/mol

(d) E = -336.5916 keal/mol

(c) E = ~340.7690 keal/mul

Figure 4.6: Projections of n = 8 exo cases
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(a) I = -377.5014 kealmol E = -412.7915 keal/mol

(c) E=-4139123kcal/mol (d) E = -415.4486 kcalmol

Figure 4.7: Projections of n = 8 exo cases
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G“‘“ 0000“ 0000 0000
E = -469.1135 kcal/mol F = -494.52985 kcal/mol

E = -500.8842 kcal/mol

(c) E = -498.7109 keal/mal (d)

Figure 4.8: Projections of n = 10 exo cases
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Figure 4.15: Crystal structure of stage one K intercolated GIC, K;Cg
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Figure 4.17: X-ray powder diffraction pattern for endo packings
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Figure 4.18: Projection of exo-endo packings
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Figure 4.19: X-ray powder diffraction pattern for exo-endo packings
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4.7 Tables

Table 4.1: Packing Energy (kcal/mol) of K-Doped SWNTs (exo)

N PR e TOtAL G guar  FFGGiar.  Totaligly
1 162.4980 74.1040
2 78.6840 -60.7180
3 43.8708 -109.1736 43.9565  -109.0897
4 -50.7456 -180.0640  -51.2244  -180.5451
3 -150.7528 -219.0146 -120.9504 -189.9083
6 -243.1653 -213.0619 -188.5727  -158.4770
7 -327.9841 -162.2804 -267.5486 -101.8393
8 -398.0421 -569.4983 -341.0815 -2.6208
9 -483.3195 65.1304 -450.9706 97.4543

10 -577.8007 217.6041 -500.5281  294.8269
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Table 4.2: Packing Energy of K-Doped SWNTs (exo and exo-endo)

N FFende  Togalende N FFende  Totalende

exod

1 175.0775  86.5928 6  -304.8248 -275.0900
2 1225152 -16.8919 7  -503.6017 -336.9451
3 785685 -73.3507 8  -682.0247 -343.0934
4  46.6587 -82.7348 9  -864.7328 -311.6268
5 36.9011 -31.5333 10 -1009.7575 -212.4807

6 35.1176  64.4412 11 -1150.5749 -67.7510




Table 4.3: Breathing Modes of exo K,,Cgg
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N L=2 L=3 L=4 L=5 L=6 L=7 L=8 L=9 L=10

0 526 487 1268 147.1 2014 2624 3283 375.2 401.9
53.5 54.7 127.0 147.1 2259 271.8 330.0 381.3

1 473 49.1 126.2 159.6 2019 266.4 329.2 376.1 402.1
47.5 703 1279 160.2 2244 269.8 329.4 381.9

2  46.2 495 110.0 169.6 203.5 269.8 331.3 3774 403.5
48.6 88.2 113.6 1704 226.2 273.0 332.7 383.2

3 49.7 43.6 112.0 196.5 205.7 269.1 328.7 375.8 403.4
50.8 63.1 121.2 200.8 2172 287.7 330.7 387.1

4 473 352 113.0 143.2 217.2 281.3 333.3 378.0 4054
04.6  46.0 117.8 156.3 251.1 293.5 3352 393.3

5 50.7 479 789 163.1 2159 286.3 3304 379.6 413.7
65.4 61.7 89.1 168.2 275.1 288.9 350.1 400.8

6 604 418 85.8 167.7 2249 305.7 353.5 394.8 418.0
64.2 615 90.9 179.0 300.5 357.0 397.8

7 631 444 86.0 140.8 237.2 2955 350.0 3973 4223
108.0 101.2 147.8 191.0 290.0 3044 363.3 411.1

8 622 43.0 349.9 408.5 423.0
64.7 45.8 369.5 415.7

9 633 393 941 136.2 273.1 3055 370.4 426.0 431.6
71.0 50.5 96.3 138.3 299.6 328.1 372.6  409.

10 61.5 47.0 139.1 266.5 350.0 386.4 427.1 451.8
65.8 114.7 142.7 394.7 439.4

e Frequency in CM™L,
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Table 4.4: Cyclop Modes of exo K,,Cgg

N L=1

L=2

L=3

L=4

L=5

L=6

0 242.2
243.8

1 244.2
245.3

2 246.7
248.0

3 248.4
257.6

4 258.5
265.6

o 2679
282.7

6 232.6
244.6

7 286.8
295.1

9 269.2
276.3

10 273.8
283.7

380.6
381.0

381.1
381.3

381.5
381.6

380.1
381.7

380.7
383.8

379.1
390.5

381.2
396.0

382.2
383.5

381.0
400.8

387.0
392.5

381.0
403.0

524.4
929.9

926.7
528.7

927.1
528.5

524.1
331.5

526.1
929.9

528.7
528.9

522.6
534.3

524.4
529.8

520.5
539.1

911.7
544.3

510.2
544.8

671.0
671.0

671.4
671.6

671.4
671.8

671.0
671.7

668.2
673.9

669.9
671.5

669.6
670.3

668.7
669.9

669.0
671.2

667.2
673.9

661.8
674.6

805.1
805.2

805.8
805.8

805.8
805.9

805.2
805.3

803.9
805.4

801.0
805.1

800.2
801.1

801.8
802.1

799.3
800.9

797.9
798.6

792.8
796.1

924.0
924.8

924.7
925.7

924.4
926.0

923.6
925.0

923.2
923.6

921.1
922.4

917.3
9174

916.8
922.6

915.1
915.6

911.4
912.7

906.7
909.4

1025.7
1027.2

1027.0
1027.8

1027.2
1027.7

1025.2
1027.4

1024.5
1025.7

1022.7
1023.1

1019.9
1021.6

1015.0
1020.2

1013.9
1015.7

1009.8
1012.3

1005.0
1007.0

e Frequency in CM~L.
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Table 4.5: Shearing Modes of exo K,,Cgg

N L=1 L=2 L=3

L=4

L=5

L=6

L=7

L=8

L=10

0 113.3 2229 333.2
112.0 2229 333.3

1 111.1 222.7 3329
112.0 2229 333.0

2 111.0 2225 333.0
112.3 223.1 333.0

3 112.2 223.0 332.7
112.8 223.1 333.7

4 113.1 223.2 3328
113.8 223.6 333.2

5 114.8 2239 333.1
115.0 224.0 333.1

6 1139 2228 3323
115.1 223.9 333.1

7 115.6 223.7 331.7
116.5 224.4 333.3

8 1158 2225 331.0
116.5 223.8 332.0

9 1126 2224 3311
114.3 222.8 331.5

10 111.0 221.6 328.7
116.8 222.6 329.9

442.1
442.1

441.8
441.9

441.8
442.0

441.4
441.5

441.2
442.4

443.2
443.6

440.7
442.5

441.4
442.5

432.4
434.8

431.7
435.9

433.3
434.8

548.7
548.8

348.2
548.4

548.2
548.4

547.9
548.1

547.7
948.3

347.0
549.2

947.2
547.8

947.2
548.6

545.9
348.2

247.5
047.7

047.7
548.5

651.8
651.7

651.4
651.4

651.4
651.4

650.7
651.3

650.9
651.1

650.8
651.3

649.6
651.4

650.2
652.9

644.4
644.8

647.7

749.5
749.6

749.2
749.2

749.1
749.2

748.6
748.8

748.4
748.8

748.3
748.6

747.6
748.0

746.5
748.3

746.1
746.7

744.9
746.0

743.1
744.8

838.3
838.3

837.9
838.0

837.9
838.0

837.4
837.6

837.2
837.5

837.1
837.2

836.3
836.7

835.8
836.3

834.4
835.6

833.2
834.1

832.4
832.9

908.5
908.6

908.5
908.5

908.4
908.5

908.2
908.3

908.0
908.2

907.8
908.1

907.3
907.4

906.7
907.4

906.1
906.7

905.3
906.1

903.9
904.7

938.5

938.5

938.6

938.4

938.5

937.8

937.9

e Frequency in CM™1.
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Table 4.6: Uniform Radial Compressing and Stretching Along Tube Axis

N Radial Compression Stretching Mode 1  Stretching Mode 2

0 185.7 1127.3 1127.3
1 188.2 1126.2 1126.3
2 192.7 1126.1 1126.3
3 184.6 1124.3 1124.5
4 194.0 1123.6 1124.0
3 202.5 1122.2 1123.5
6 210.6 1121.4 1122.0
7 220.8 1118.8 1119.7
8 233.2 1115.1 1116.1
9 236.2 1110.4 1113.5
10 248.8 1106.4

e Frequency in CM™1.



73

Chapter 5 Development of Adiabatic
Force Field for Polyvinyl Chloride (PVC)
and Chlorinated PVC (CPVCQ)

5.1 Introduction

Chlorinated polyvinyl chloride has become an important specialty polymer due to
its high glass transition temperature, high heat distortion temperature, outstanding
mechanical, dielectric, and flame and smoke properties, chemical inertness, and low
sensitivity to hydrocarbon costs. However, the mechanism through which the various
desired and undesired properties are resulted from is not fully understood. Hopefully,
simulation at the atomistic level could lead us to a better understanding of those
mechanisms. Currently, direct ab initio calculations for polymer systems are not
practical. Thus calculations with classical force fields, which are parameterized based
on either experimental results or ab initio calculations on smaller model systems,
are the method of choice. As a first step towards the understanding of CPVC, we
developed the adiabatic quantum force field that accurately described the rotational
energy surface of the polymer backbone chains.

For amorphous polymers, the distribution of backbone conformations and the
rates of conformational transitions have a strong effect on their properties, such as
moduli, glass temperature, dielectric constant, and diffusivity of small molecules. It
is critical that the FF leads to the correct relative energies of the minima, e.g., trans
versus gauche, and of the barrier heights between them. Thus torsional FF parameters
are particularly important for describing amorphous polymers. In many cases, the

existence of the molecule in other local minima can be detected, but energies for
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these states cannot be reliably obtained from experiments. In addition, the barriers
between the local minima can also not be obtained reliably from the experimental
data alone.

To circumvent these problems, we use ab initio calculations to provide the tor-
sional potential energy surface. With the 6-31G** basis set, the torsional potentials
calculated from Hartree-Fock (HF) wavefunctions are adequate. The HF calculations
lead to a total torsional potential function E#¥(¢). The classical force field can be

fitted to reproduce the quantum energy surface.
EfT(¢) ~ ETF(¢) (5.1)

In determining E¥F(¢), the usual and simplest approach would be to determine the
non-adiabatic surface by fixing all bonds and angles so that only the torsional angle
¢ changes. However, such rigid rotations about backbonds sometimes lead to unfa-
vorable contacts with very short distances between nonbonded atoms. The ab initio
wavefunction readjusts the molecular orbitals to minimize repulsion, but the func-
tional forms of nonbond interactions in force field representation may not accurately
describe the inner repulsive wall and often leads to much higher rotational barriers.
In order to accurately describe the rotational energy surface, we calculated adiabatic
rotational energy surface of molecules with five backbone carbons. These molecules
are used to mimick the corresponding polymer chains. The HF wavefunction was
calculated by fixing the dihedrals of interest (in increments of 30°) and optimizing
all other degrees of freedom. These calculations lead to the 2D energy surfaces. Tor-
sional parameters were fitted iteratively so that the force field adiabatic energy surface

matchs to ab initio adiabatic energy surface.
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5.2 The Molecular Simulation Force Field (MSFF)

The force field is taken to be of the form
Etotal = Eval + Enb- (52)

The valence part includes bond interactions, angle interactions, and torsion interac-

tions, as
Evat = Eyond + Eangle + Etorsion- (5.3)
The nonbond part has van der Waals interaction and Coulomb interaction.
Enp = Eygw + Eg (5.4)

The torsion terms involve sums of cosine torsional angles such as

Eto7‘si0n(¢) = 2 Ci cO8 m¢ (55)

The nonbond terms have the form of

I %4
Eqg=< (5.6)
for electrostatic, and
1 —12 —6
Eyaw = 3 ;De(,%’ —2p;;) (5.7)
i#j

for van der Waals, where p;; = R;;/R..
Chain conformation and inter-chain interactions are the dominating factors for
amorphous polymers. We’ll focus on accurate description of charges and torsional

potentials. The forms and parameters of Epong, Eangie, and E,q, are taken directly
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from DREIDING.
The charges and torsional parameters are based on ab initio calculations of clusters

with five-backbone carbon atoms.

5.2.1 Charges

In order to determine the proper charges, we did ab initio calculation for various

conformations of clusters with five-backbone carbon atoms:
H;C -CXY -CHH - CXY — CH;4 (5.8)

where X and Y are Cl or H, depending on the form of the actual chloro-polymers.
For PVC, X = Cl and Y = H, and for PVDC, X = Cl and Y = CI. Hartree-Fock
(HF) wavefunction with the 6-31G** basis set is used. We considered the following

three methods of assigning atomic charges in the chain molecules.

e Potential derived charge (PDQ). The charge density from the HF wave function
is used to calculate the potential energy over a numerical grid surrounding the
molecule and a set of point charges on the atoms is optimized to fit the potential.
We carried out these calculation with PSGVB using a grid of 1000 points outside
the van der Waals radii (taken as Rg = 1.949 (A), Ry = 1.597 (A), Re; = 1.958
(A), and Rp = 1.739 (A)).

e Mulliken charges (Mull). The molecular orbital (MO) coefficients are used to
estimate a set of atomic charges where overlap terms are assigned equally to

each of the two atoms.

e Charge Equilibration (QEq). The charges of molecules are predicted based on
electron affinity (EA) and ionization energy (IE).

Since the atomic charges vary with the change of molecular conformation, the best

description of Coulomb interactions in dynamics simulations should be such, that the
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atomic charges vary with conformation change. However, for amorphous polymer sim-
ulations, which require longer chains, assigning charges at every dynamics integration
is simply unrealistic. We have to find a way to best balance various conformations,
while compensating the errors made in charge assignment in the torsional force field.

We based the charges on PD(Q while considering symmetry property of the clusters.

5.2.2 Torsional Potential

We can write

EM (g1, ¢5) = BT (41, ¢2) + E< (61, 62) (5.9)

where (¢1, ¢2) are the two C—-C—C-C backbone torsion angles as in Fig (5.1). E* (¢1, ¢2)
is ab initio energy, E7/(¢,, ¢,) is force field energy, and E°"(¢,, ¢) is the correction
with which the old force field should be improved. Eff(¢,, ¢2) is calculated by mini-
mizing the structures while (¢y, ¢2) are constraint, so that the adiabatic 2D (¢1, ¢2)
rotational energy surface of optimized force field can match that of ab initio compu-
tation well.

In order to get accurate adiabatic potentials, we generated 12 x 12 2D energy sur-
faces through quantum computation, i.e., constraint the two torsional angles while
full Hartree-Fock optimizations were performed. We also used fully optimized struc-
tures of all the local minimums. The 2-D torsional potential surfaces were represented
by regular grids which are interpolated from the 12 x 12 points and all of the local
minimum points. The C,, in Eq. 5.5 are least-square-fitted to minimize E°" (¢, ¢2).

Many iterations are performed until the changes of C,, are insignificant.
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Mixed PVDC

Figure 5.1: Chlorinated clusters used in the calculations
5.3 Quantum Mechanical Adiabatic 2D Rotational
Energy Surface and Forece Field Parameters

For PVC, both syndiotactic and isotactic, we use CH3CHCICH,CHCICHj3 to rep-
resent longer chain polymer, as shown in Fig. 5.1a and Fig. 5.1b. For CPVC of
-(CCl,CH,CHCIC Hy)y-, we use CH3CClyCH,CHCICH3, as in Fig. 5.1¢c. For PVDC,
-(CCl5,C Hy)-, molecule of CH3CCl,CH,CCl,CHj is used as in Fig. 5.1d. Figure 5.2
shows the atomic charges assigned to these clusters.

Denote dihedral angle Cl-C_3x—C_3-C_3x as ¢. For C_3x, if ¢ > 0, we use atomic
type (label) C_3R, while if ¢ < 0, we use atomic type (label) C_3L. C_32 is used

for backbone carbon atoms bonded to two Cl atoms, and C_3 is used for backbone
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Mixed PVDC

Figure 5.2: Atomic charges of the chlorinated clusters

carbon atoms that are not bonded to any Cl atoms. By doing so, we can use iPVC
torsion parameters for C_3-C_3L-C_3-C_3L, or C_3—C_3R-C_3-C_3R, and sPVC tor-
sion parameters for C_.3-C_3R-C_3-C_3L. PVDC segments and mixed segments are
obvious. All other torsion parameters are default DREIDII parameters (Cy = 1.0000,
C3 = 1.0000, and the rest are Cp,, = 0). They are listed in Table 5.1. The optimized

torsion parameters are listed in Table 5.2.
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Table 5.1: DREIDING Parameters

LJ 12-6 van der Waals Simple Harmonic Bond
Atom Roa D()b Bond Kbondc Roa

H 3.1950 0.0152 C-C 699.5920 1.514

C 3.8983 0.0951 C-H 659.7507  1.111

Cl 3.9503 0.2833 C-Cl 5104743 1.801

Simple Harmonic Cosine Angle
Angle Kangled 008 Angle Kangled 90(’3
H-C-H 752779 109.4710 C-C-C 214.2065 109.4710
H-C-C 117.2321 109.4710 CI-C-C 197.7159 109.4710
H-C-Cl 99.2333 109.4710 CIl-C-Cl 191.9793 109.4710

@ A; % Keal/Mol; ¢ Kcal/Mol/A?; ¢ Kcal/Mol/Degree?, © degree.

Table 5.2: Optimized DREIDING Torsion Parameters for PVC

LLL-CCC-CCC-RRR v Uy U3 Uy Us Ug

Isotactic Polyvinyl Chloride (iPVC)
C.3-C.31-C3-C.31 -19.021 -8.5939 21.2379 19153 -1.3116  3.8905
Cl-C.31-C_3-C.31 -9.3167 -6.6164 -27.937 3.6748 -1.5746 -4.5182

Syndiotactic Polyvinyl Chloride (sPVC)
C3-C31-C3-C.31 -15.263 -7.8935 -0.8143 1.7958 -5.1511 -0.1850
Cl-C_31-C_3-C.31 -8.9259 -4.5495 -4.4370 5.0627 -5.2440 -1.1746

Polyvinylidene Chloride (PVDC)
C3-C_32-C.3-C.32 -166.83 -107.80 -34.733 20.7666  7.9938 -0.7472
Cl-C_32-C_3-C_32 -156.64 -112.12 6.8933 16.2328 19.6499 1.9258

PVC-PVDC
C3-C31-C_3-C.32 -19.193 -12.804 16.4478 -1.9437 -1.0113 -17.410
C_31-C3-C32-C.3 0.3342 -162.19 -5.0429 8.4211 25.9489 -9.0685
Cl-C_31-C_3-C_32 -8.0484 -9.8507 -26.899  1.1705 3.9923 19.0126
Cl-C32-C3-C.31 7.8963 -167.00 -7.6044 2.5645 37.3312 0.2991

e C_32 is C atom bonded to two Cl atoms, C_31 is C atom bonded to one Cl
atom, while C_3 is C atom without Cl atom bonded to. The unit is (kcal/mol).
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5.3.1 Isotactic Polyvinyl Chloride

Figure 5.3: 3D plot of the adiabatic 2D-rotation energy surface. The unit of the two
torsion angles is in 10°, while the unit of energy(z-axis) is in kcal/mol

Based on the reflection symmetry of the molecule, we can obtain the whole energy
surface by reflecting half of the ¢1—¢2 space, as shown in Fig. 5.3. The grid points are
generated at interval of 30°, total of 12 x 12 grid points. Considering the reflection
symmetry and rotational symmetry of two torsion angles, we have 76 independent
grid points. For each of the 76 points, as first step approximation, we optimize
the structure by using DREIDII force field with the two torsion angles fixed. This
gives us a better starting point for quantum optimization that is quite expensive

computationally. Then we perform quantum mechanical structural minimization,



20.6 10.2
CONTOUR FROM B 0DOBOE+@S TO 28.90%  CONTOUR INTERVAL OF  2.0008
X INTERVAL=  36.008 Y INTERVAL=  36.808

Figure 5.4: Quantum adiabatic 2D rotational surface for iPVC

keeping the two backbone torsions fixed. By plotting the whole energy surface, we
can extract 6 local minimum grid poins. Starting from those points, we optimized the
whole structures, including the backbone torsion angles. Quantum adiabatic energy
surface is interpolated based on 76 grid points and the 6 local minimum points. By
doing so, we can capture both the rotational barriers and minimum energies of local
minimums. Figure 5.3 is the 3D plot of the energy surface, while Fig. 5.4 is 2D
contour plot.

Based on the procedure outlined in Section 2, we calculated the torsional param-
eters. Figure 5.5 is the contour map of force field adiabatic 2D rotational energy

surface. They are in good agreement with the ab initio results. The torsion param-
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22.2 21.6 9.3 22.2

CONTOUR FROM ©.05000E+@0 TO  28.200 CONTOUR INTERVAL OF  2.0080
X INTERVAL=  36.800 Y INTERVALs  36.009

Figure 5.5: Force field adiabatic 2D rotational surface for iPVC

eters are in Table 5.2. The comparisons of quantum and force field energy at
each gird point are tabulated in Table 5.3, while comparison of local minimums are
in Table 5.4.

Since ab initio constraint structure minimization are very expensive, most of re-
searchers calculate quantum energy based on generic force field generated grid points.
For 28 grid points(interval of 30°), we used DREIDII force field minimized the struc-
tures while keeping the two backbone torsion angles fixed. For each of those struc-
tures, we did one energy quantum calculation. Figure 5.6 is the 2D contour map
based on those grid points. The energies are tabulated in Table 5.5 By focusing on

the relative energy differences of local minimums and the energy barrieres between
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23.7 23,7 14.3 23.7

CONTOUR FROM  2.0080 T0 38.002 CONTOUR INTERVAL OF  2.8000
X INTERVAL= 36,000 Y INTERVALs 36,000

Figure 5.6: One energy quantum calculation of DREIDII adiabatic 2D rotational
grids for iPVC

those local minimums, we found the adiabatic quantum rotational energy surface is
quite different from the quantum one energy energy surface and the fitted force field
energy surface is a very good approximation of the quantum adiabatic energy sur-
face. In molecular dynamics simulations, by using these force fields, we can generate
ensembles with the right distribution of thermodynamic density of states and rates of
kinetic conformation. These are the general goals of molecular dynamics simulation

of amorphous polymer materials.
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Table 5.3: Adiabatic QM and FF Energy of iPVC(Kcal/Mol)

P, P, QM FF Error P, d, QM FF Error
30.0 0.0 15.8089 16.9259 -1.1170 120.0 180.0 9.1569  8.2367 0.9202
30.0 30.0 12.2587 10.8467 1.4120 120.0 -150.0 19.5968 19.8119 -0.2151
30.0 60.0 5.3535 4.3767 0.9768 120.0 -120.0 26.8733 27.0582 -0.1849
30.0 90.0 4.8567 3.9588 0.8979 150.0 0.0 154643 16.3578 -0.8935
30.0 120.0 6.6466 6.7368 -0.0902 150.0 30.0 10.2474 9.6961 0.5513
30.0 150.0 4.3697 4.2364 0.1333 150.0 60.0 2.9813 2.0368 0.9445
30.0 180.0 5.9952 6.9245 -0.9293 150.0 90.0 5.1055 4.7895 0.3160
30.0 -150.0 12.9656 15.2384 -2.2728 150.0 120.0 7.8812 8.0285 -0.1473
30.0 -120.0 16.3430 17.5058 -1.1628 150.0 150.0 7.3360 5.7343 1.6017
30.0 -90.0 11.7884 12.1166 -0.3282 150.0 180.0 12.1163 9.4241 2.6922
30.0 -60.0 10.2324 10.0156 0.2168 150.0 -150.0 20.3957 19.4888 0.9069
30.0 -30.0 13.8897 16.6105 -2.7208 -180.0 0.0 7.5741 6.6472 0.9269
60.0 0.0 11.7238 11.1711 0.5527 -180.0 30.0 2.8616 1.5604 1.3012
60.0 30.0 8.6727 7.1191 1.5536 180.0 60.0 -0.0022 -0.0358 0.0336
60.0 60.0 4.6264 3.3410 1.2854 -180.0 90.0 1.9730 1.6901 0.2829
60.0 90.0 3.5980 2.9226 0.6754 -180.0 120.0 4.5211 4.1976 0.3235
60.0 120.0 3.0753 2.5728 0.5025 180.0 150.0 5.5894 4.4283 1.1611
60.0 150.0 1.6799 1.2631 0.4168 -180.0 180.0 9.2475 8.2669 0.9806
60.0 180.0 3.5127 4.9334 -1.4207 -150.0 0.0 7.2965 6.5904 0.7061
60.0 -150.0 8.9573 9.6582 -0.7009 -150.0 30.0 5.1871 5.3257 -0.1386
60.0 -120.0 12.2733 11.3416 0.9317 -150.0 60.0 2.3515  3.2187 -0.8672
60.0 -90.0 12.4939 9.8360 2.6579 -150.0 90.0 3.3844 3.2679 0.1165
60.0 -60.0 10.8743 10.0077 0.8666 -150.0 120.0 6.2348 6.8345 -0.5997
90.0 0.0 15.8782 15.6215 0.2567 -150.0 150.0 5.7531 6.1719 -0.4188
90.0 30.0 14.4794 14.9324 -0.4530 -120.0 0.0 10.1112 9.3951 0.7161
90.0 60.0 9.7829 10.6419 -0.8590 -120.0 30.0 8.1835 7.2439 0.9396
90.0 90.0 5.8841 4.8120 1.0721 -120.0 60.0 4.3682 3.8054 0.5628
90.0 120.0 6.1094 6.8685 -0.7591 -120.0 90.0 5.9861 5.0890 0.8971
90.0 150.0 7.1577 6.5007 0.6570 -120.0 120.0 8.5262 8.6714 -0.1452
90.0 180.0 4.5196 5.7023 -1.1827 -90.0 0.0 8.4273 6.0696 2.3577
90.0 -150.0 10.3909 10.4891 -0.0982 -90.0 30.0 6.9850 5.2317 1.7533
90.0 -120.0 19.4740 18.8056 0.6684 -90.0 60.0 4.0977 3.2817 0.8160
90.0 -90.0 19.7082 19.1725 0.5357 -90.0 90.0 4.9734 4.2445 0.7289

120.0 0.0 20.6485 21.8841 -1.2356 -60.0 0.0 10.7522 9.3181 1.4341
120.0 30.0 17.5388 18.0534 -0.5146 -60.0 30.0 9.7813  9.9098 -0.1285
120.0 60.0 9.9411 10.1102 -0.1691 -60.0 60.0 6.3744 7.8857 -1.5113
120.0 90.0 7.2198 6.9026 0.3172 -30.0 0.0 17.0207 17.2469 -0.2262
120.0 120.0 10.1880 11.5163 -1.3283 -30.0 30.0 15.4823 17.1395 -1.6572
120.0 150.0 8.3365 9.0547 -0.7182 0.0 0.0 20.3605 22.4211 -2.0606
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Table 5.4: QM and FF Local Minimums of iPVC(Kcal/Mole)

d, ®, QM FF Error b, d, QM FF Error
449 73.7 3.1331 2.0201 1.1130 56.7 154.1 1.6149 1.3076 0.3073
52.8 -52.8 10.4863 10.8417 -0.3554 -179.5 60.8 0.0000 0.0000 0.0000

-155.9 156.7 5.4815 5.4049 0.0766 -79.2 79.5 4.3209 4.7272 -0.4063

Table 5.5: QM Energy of FF Grids for iPVC(Kcal/Mol)

3, 3, QM ®, o, QM
0.00  0.00 23.8185 120.00 60.00 12.7771
0.00 60.00 13.4073 120.00 120.00 14.0325
0.00 120.00 14.2352 120.00 180.00 11.6897
0.00 180.00 11.8722 120.00 240.00 28.1188
0.00 240.00 23.7898 180.00  0.00 11.8706
0.00 300.00 14.4002 180.00 60.00  3.2899
0.00 360.00 23.8185 180.00 120.00  7.5693
60.00  0.00 14.3980 180.00 180.00 11.8400
60.00 60.00 6.7944 240.00  0.00 14.2382
60.00 120.00 6.6391 240.00 60.00 7.1715
60.00 180.00 7.4092 240.00 120.00 11.8510
60.00 240.00 14.0671 300.00  0.00 13.4102
60.00 300.00 11.7026 300.00 60.00 8.6857
120.00  0.00 23.7916 360.00  0.00 23.8185
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5.3.2 Syndiotactic Polyvinyl Chloride

Figure 5.7: 3D plot of adiabatic 2D rotational surface for sPVC, z-axis is the energy
with unit kcal/mol. x-axis and y-axis correspond to the two backbone dihedral angles

with unit 10°

Similar to iPVC, there is also a reflection plane on the 2D rotational space for
sPVC. The reflection axis is perpendicular to that of iPVC. 76 grid points are required
for an angle increment of 30°. The 3D plot of quantum adiabatic rotational energy
surface is in Fig. 5.7, while the 2D contour map is in Fig. 5.8. Figure 5.9 is the 2D
contour map of adiabatic rotational energy surface, base on optimized force field. The
quantum and force field energies at the grid points are tabulated in Table 5.6, and
those of the six local minimums are in Table 5.7.  As a comparison, we calculated

the quantum one energy on force field generated grids. The 2D contour map is in
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Figure 5.8: Quantum adiabatic 2D rotational surface for sPVC

Fig. 5.10. The energies are tabulated in Table [5.8].
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Table 5.6: Adiabatic QM and FF Energy of sPVC(Kcal/Mol)

P, ®, QM FF Error b, d, QM FF Error
0.0 0.0 20.7512 22.2526 -1.5014 -120.0 90.0 8.7270 7.8848 0.8422
30.0 0.0 17.7018 17.9686 -0.2668 -120.0 120.0 11.7605 12.7938 -1.0333
30.0 30.0 14.5433 12.7143 1.8290 -120.0 150.0 9.9155 9.4261 0.4894
60.0 0.0 12.1369 11.0654 1.0715 -120.0 180.0 11.6682 9.5211 2.1471
60.0 30.0 7.8451 6.2442 1.6009 -120.0 -150.0 22.8654 21.9387 0.9267
60.0 60.0 3.0885 2.3345 0.7540 -120.0 -120.0 27.8581 27.7586 0.0995
90.0 0.0 10.5627 7.4305 3.1322 -90.0 0.0 16.0561 15.3750 0.6811
90.0 30.0 7.9213 5.8571 2.0642 -90.0 30.0 11.2363 11.2502 -0.0139
90.0 60.0 4.6914 4.1180 0.5734 -90.0 60.0 5.5801 5.9376 -0.3575
90.0 90.0 4.7283 3.2885 1.4398 -90.0 90.0 7.5104 7.1264 0.3840
120.0 0.0 12.5809 11.3823 1.1986 -90.0 120.0 9.6502 8.6833 0.9669
120.0 30.0 10.3198 9.5264 0.7934 -90.0 150.0 9.4032 6.9806 2.4226
120.0 60.0 6.0037 6.0117 -0.0080 -90.0 180.0 14.5115 11.9499 2.5616
120.0 90.0 6.3292 6.0386 0.2906 -90.0 -150.0 20.9291 19.4929 1.4362
120.0 120.0 8.5405 9.4207 -0.8802 -90.0 -120.0 19.2815 17.7766 1.5049
150.0 0.0 10.1142 8.2782 1.8360 -90.0 -90.0 12.2225 12.5022 -0.2797
150.0 30.0 8.0092 6.2557 1.7535 -60.0 0.0 11.4476 10.2491 1.1985
150.0 60.0 4.1812 3.7861 0.3951 -60.0 30.0 8.7952 9.0983 -0.3031
150.0 90.0 4.5879 4.3093 0.2786 -60.0 60.0 5.9185 7.2621 -1.3436
150.0 120.0 5.8998 6.2568 -0.3570 -60.0 90.0 5.1630 2.9834 2.1796
150.0 150.0 3.2461 3.1074 0.1387 -60.0 120.0 6.5757 3.9887 2.5870
180.0 0.0 10.4632 83690 2.0942 -60.0 150.0 7.6877 4.5708 3.1169
180.0 30.0 9.5698 8.8535 0.7163 -60.0 180.0 10.0187 5.9194 4.0993
180.0 60.0 6.1067 7.2761 -1.1694 -60.0 -150.0 12.4385 8.7992 3.6393
180.0 90.0 4.1773 4.2475 -0.0702 -60.0 -120.0 13.4105 12.6881 0.7224
180.0 120.0 3.5704 3.9085 -0.3381 -60.0 -90.0 11.0617 12.0989 -1.0372
180.0 150.0 1.6332 2.0600 -0.4268 -60.0 -60.0 7.3634 5.8632 1.5002
180.0 180.0 0.2216 0.3691 -0.1475 -30.0 0.0 15.7345 18.5026 -2.7681
-150.0 0.0 17.7869 18.0511 -0.2642 -30.0 30.0 14.2055 18.9437 -4.7382
-150.0 30.0 16.2873 17.9934 -1.7061 -30.0 60.0 9.3602 12.5579 -3.1977
-150.0 60.0 10.8166 12.3405 -1.5239 -30.0 90.0 7.5116 7.8856 -0.3740
-150.0 90.0 6.5821 5.6859 0.8962 -30.0 120.0 9.6724 10.5458 -0.8734
-150.0 120.0 7.2955 8.4953 -1.1998 -30.0 150.0 8.4496 8.8431 -0.3935
-150.0 150.0 5.7584 7.0988 -1.3404 -30.0 180.0 7.5589  6.5552 1.0037
-150.0 180.0 4.3716 3.7380 0.6336 -30.0 -150.0 12.9275 13.9545 -1.0270
-150.0 -150.0 11.6940 10.0056 1.6884 -30.0 -120.0 17.9070 21.5364 -3.6294
-120.0 0.0 21.8825 23.1340 -1.2515 -30.0 -90.0 14.0468 16.7854 -2.7386
-120.0 30.0 18.1823 18.8285 -0.6462 -30.0 -60.0 8.16568 8.9191 -0.7533
-120.0 60.0 10.3347 10.5278 -0.1931 -30.0 -30.0 11.4063 14.9270 -3.5207
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Figure 5.10: Quantum one energy calculation of DREIDII adiabatic 2D rotational
grids for sPVC

Table 5.7: Local Minimums for sPVC(Kcal/Mole)

b, b, QM FF  Error b, P, QM FF  Error
64.2 64.3 2.9916 2.3713 0.6203 160.7 79.1 3.7644 3.5273 0.2371
173.4 173.4 0.0000 0.0000 0.0000 -69.3 71.5 5.1593 5.0076 0.1517
-32.1 171.3 7.2982 6.1663 1.1319 -48.0 -48.0 6.4601 6.1377 0.3224
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Table 5.8: QM Energy of FF Grids for sPVC(Kcal/Mole)

3, 3, OM 3, 3, QM
360.00 360.00 24.4116 120.00 120.00 28.7529
360.00 300.00 15.2077 360.00 60.00 14.4116
300.00 300.00 5.0835 300.00 60.00 8.8213
360.00 240.00 15.6601 240.00 60.00  8.5839
300.00 240.00 8.0973 180.00 60.00 10.5997
940.00 240.00 11.5547 120.00 60.00 15.4012
360.00 180.00 13.0037 60.00 60.00 9.7703
300.00 180.00 87231 360.00  0.00 24.4132
940.00 180.00 6.5478 300.00  0.00 15.1999
180.00 180.00 3.1852 240.00  0.00 15.6611
360.00 120.00 25.0846 180.00  0.00 13.0042
300.00 120.00 12.3637 120.00  0.00 25.0842
240.00 120.00 15.1657 60.00  0.00 14.4159
180.00 120.00 14.1483  0.00  0.00 24.4116
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5.3.3 Polyvinylidene Chloride

Figure 5.11: 3D plot of adiabatic 2D rotational surface for PVDC (Angle in 10°)

Polyvinylidene Chloride has higher symmetry than that of iPVC and sPVC. For
interval of 30°, we used 50 grid points that covers one quater of the 2D space, plus
four local minimums. Figure 5.11 is the 3D plot of quantum adiabatic energy surface,
while the 2D contour map is in Fig. 5.12. The results from optimized force field are
plotted in Fig. 5.13. Comparison of energies at each point are tabulated in Table 5.9.

We also did quantum one energy calculation on grids generated based on DREIDII
force field. The 2D contour map of rotational energy surface is plotted in Fig. 5.14,

and tabulated in Table [5.10].
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Table 5.9: Adiabatic QM and FF Energy of PVDC (Kcal/Mole)

D, d, QM FF Error P, b, QM FF Error
0.0 0.0 16.9396 17.7674 -0.8278 90.0 -180.0 6.5771 6.6309 -0.0538
0.0 30.0 11.9382 11.3183 0.6199 120.0 -180.0 7.9857  7.2809 0.7048
30.0 30.0 7.0920 7.2073 -0.1153 150.0 180.0 7.4874 6.7613 0.7261
0.0 60.0 6.6058 7.0085 -0.4027 -180.0 -180.0 7.3741  7.4003 -0.0262
30.0 60.0 2.3499 1.0767 1.2732 0.0 -150.0 11.5447 11.9868 -0.4421
60.0 60.0 0.3630 1.6444 -1.2814 30.0 -150.0 9.4859 10.6921 -1.2062
0.0 90.0 11.1026 10.4971 0.6055 60.0 -150.0 5.5174 5.2661 0.2513
30.0 90.0 8.1697 8.6125 -0.4428 90.0 -150.0 6.3921 6.1841 0.2080
60.0 90.0 3.7732 4.7668 -0.9936 120.0 -150.0 14.5706 14.6971 -0.1265
90.0 90.0 4.0411 4.9931 -0.9520 150.0 -150.0 14.8181 15.6382 -0.8201
0.0 120.0 17.1286 17.6353 -0.5067 0.0 -120.0 17.1280 17.6352 -0.5072
30.0 120.0 12.4872 13.1084 -0.6212 30.0 -120.0 12.7333 12.7494 -0.0161
60.0 120.0 5.9531 5.6287 0.3244 60.0 -120.0 7.2256 5.9681 1.2575
90.0 120.0 11.2123 11.9355 -0.7232 90.0 -120.0 14.2035 14.5203 -0.3168
120.0 120.0 20.8974 21.5827 -0.6853 120.0 -120.0 22.4389 22.8679 -0.4290
0.0 150.0 11.5615 11.9933 -0.4318 0.0 -90.0 11.1122 10.4849 0.6273
30.0 150.0 5.9401 6.0794 -0.1393 30.0 -90.0 6.4651 6.7689 -0.3038
60.0 150.0 3.9551 3.2074 0.7477 60.0 -90.0 6.0472 4.9345 1.1127
90.0 150.0 12.3129 12.9045 -0.5916 90.0 -90.0 13.8084 12.7514 1.0570
120.0 150.0 15.8376 16.4206 -0.5830 0.0 -60.0 6.5967 7.0067 -0.4100
150.0 150.0 8.1747 6.7956 1.3791 30.0 -60.0 4.6666 3.4726 1.1940
0.0 -180.0 5.2519 6.1510 -0.8991 60.0 -60.0 4.3747 4.4720 -0.0973
30.0 180.0 3.0201 2.9148 0.1053 0.0 -30.0 11.9398 11.3198 0.6200
60.0 180.0 3.2468 4.2251 -0.9783 30.0 -30.0 9.7730 10.4496 -0.6766
Local Minimums

52.4 52.4  0.0000 0.0000 0.0000 426 167.2 1.8653 1.9294 -0.0641
180.0 179.9 7.3696 7.4012 -0.0316 56.7 -56.5  4.2612 4.3652 -0.1040
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Table 5.10: QM Energy of FF Grids for PVDC (Kcal/Mole)

3 9, oM @, &, QM
360.0 360.0 23.9285 180.0 270.0  9.6934
330.0 360.0 18.1459 180.0 240.0 11.0720
330.0 330.0 12.5615 180.0 210.0 10.1891
300.0 360.0 12.0579 180.0 180.0 9.3368
300.0 330.0 7.0202 150.0 360.0 16.8153
300.0 300.0 5.1921 150.0 330.0 14.7447
270.0 360.0 17.4350 150.0 300.0  9.6692
270.0 330.0 14.3536 150.0 270.0 10.2060
270.0 300.0 8.8495 150.0 240.0 19.7465
270.0 270.0 9.0098 150.0 210.0 18.5852
240.0 360.0 24.2266 120.0 360.0 24.2014
240.0 330.0 18.2055 120.0 330.0 19.2246
240.0 300.0 10.5900 120.0 300.0 12.0979
240.0 270.0 17.9293 120.0 270.0 19.1709
240.0 240.0 28.6327 120.0 240.0 28.5145
210.0 360.0 16.798 90.0 360.0 17.4333
210.0 330.0 10.0442 90.0 330.0 11.3092
210.0 300.0 8.1266 90.0 300.0 9.7406
210.0 270.0 17.5767 90.0 270.0 18.2809
210.0 240.0 19.2904 60.0 360.0 12.0661
210.0 210.0 10.5292 60.0 330.0 9.0761
180.0 360.0 9.6271 60.0 300.0 8.1909
180.0 330.0 6.9211 30.0 360.0 18.1512
180.0 300.0 6.7819 30.0 330.0 15.7161
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5.3.4 Mixture of Polyvinyl Chloride and Polyvinylidene Chlo-

ride

Figure 5.15: 3D plot of adiabatic 2D rotational surface for PVC-PVDC (Angle in
10°)

In the case of the mixture of Polyvinyl Chloride and Polyvinylidene Chloride,
there is no reflection symmetry. For an interval of 30°, 144 grid points plus 9 local
minimums are calculated. The 3D quantum adiabatic energy surface is plotted in
Fig. 5.15, while the 2D contour map plot is in Fig. 5.16. Figure 5.17 is the 2D
contour map based on optimized force field. The energies at grid points are tabulated
in Table 5.11 and Table 5.12. The 9 local minimums are tabulated in Table 5.14.

Figure 5.18 is the 2D contour map of quantum one energy calculations on DREI-
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Figure 5.16: Quantum adiabatic 2D rotational surface for PVC-PVDC

IDII force field generated grids. The energies are listed in Table 5.14.

5.4 Summary

The quality of force fields for amorphous polymers are mainly determined by two
factors; one is the relative energy difference between the local minimums of torsional
conformationsr, which dictates the equilibrium distributions of torsional states ther-
modynamically; the other factor is the energy barriers between various local optimum
conformations, which determines the rate of conformation transitions, i.e., the rigidity

of polymer chains. Compared to the usual one-energy quantum potential based on
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Figure 5.17: Force field adiabatic 2D rotational surface for PVC-PVDC

one torsion angle, adiabatic 2D quantum potential calculations are a big step forward,
the new approach included the correlation of adjacent torsion angles.

Adiabatic molecular simulation force field (MSFF) suitable for carrying out molec-
ular dynamics simulations of amorphous polymers (polyvinyl chloride, polyvinyli-
dene chloride) are developed. These force fields can be used in molecular dynamics
simulations to study physical properties of amorphous polymers such as glass transi-
tion temperature and diffusivity of gas molecules.

The force fields are based on adiabatic 2D (two adjacent backbone torsions) ro-
tational energy surfaces generated by using ab initio calculations. Clusters with five-

backbone carbon atoms are used to mimmick the polymer chains. These 2D grids
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Figure 5.18: Quantum one energy calculation of DREIDII adiabatic 2D rotational
grids for PVC-PVDC

are based on rotating two backbone torsions with incement of 30°. For each con-
formation (symmetry properties are being used to reduce the number of points), we
optimize the whole structure while the two backbone torsions are constrainted. These
grid points plus local minimum points (fully optimized) are used to generate the 2-D
adiabatic potential energy surfaces. Force fields are fitted so that the adiabatic force
field potential energy surfaces match to that of quantum adiabatic potential surface.
These force fields will be used in molecular dynamics simulations of glass transition

and gas diffusions.
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Table 5.11: Adiabatic QM and FF Energy of PVC-PVDC(I)(Kcal/Mol)

P, d, QM FF Error d, d, QM FF
0.0 0.0 19.9762 20.7012 -0.7250 0.0 90.0 13.8179 13.2234
30.0 0.0 15.0481 16.5916 -1.5435 30.0 90.0 11.3239 13.1494
60.0 0.0 10.5482 10.9257 -0.3775 60.0 90.0 7.9540 10.9207
90.0 0.0 14.8661 15.6856 -0.8195 90.0 90.0 8.7855 10.2082
120.0 0.0 20.3736 21.3788 -1.0052 120.0 90.0 15.8084 15.0014
150.0 0.0 15.6739 16.6426 -0.9687 150.0 90.0 17.7785 16.0937
-180.0 0.0 7.8042 8.0675 -0.2633 -180.0 90.0 11.5137 9.3888
-150.0 0.0 7.5416 7.2500 0.2916 -150.0 90.0 6.6511 5.0241
-120.0 0.0 10.3352 10.1168 0.2184 -120.0 90.0 7.3163 7.0918
-90.0 0.0 8.4622 6.5329 19293 -90.0 90.0 5.4951 6.2457
-60.0 0.0 10.6236 89141 1.7095 -60.0 90.0 3.5514 4.0861
-30.0 0.0 16.7263 16.9315 -0.2052 -30.0 90.0 9.2279 11.0936
0.0 30.0 14.7441 13.5445 1.1996 0.0 120.0 19.9609 19.7939
30.0 30.0 10.1531 10.2035 -0.0504 30.0 120.0 15.6855 17.5523
60.0 30.0 6.4123 6.7368 -0.3245 60.0 120.0 10.6193 11.7889
90.0 30.0 12.2198 13.2206 -1.0008 90.0 120.0 16.1165 15.8059
120.0 30.0 16.1147 17.2455 -1.1308 120.0 120.0 25.3444 23.2912
150.0 30.0 10.3590 9.7034 0.6556 150.0 120.0 20.9443 19.8328
-180.0 30.0 4.6262 3.5206 1.1056 -180.0 120.0 10.2243 9.1277
-150.0 30.0 5.7643 5.0507 0.7136 -150.0 120.0 8.6180 8.4162
-120.0 30.0 7.4031 6.8218 0.5813 -120.0 120.0 10.6005 11.6716
-90.0 30.0 5.5573 4.3182 1.2391 -90.0 120.0 7.4051 7.1531
-60.0 30.0 7.8903 7.5299 0.3604 -60.0 120.0 8.9009 7.5315
-30.0 30.0 13.2516 14.4476 -1.1960 -30.0 120.0 16.4946 16.1500
0.0 60.0 9.3778 10.6221 -1.2443 0.0 150.0 14.7990 14.7035
30.0 60.0 5.6312 6.8451 -1.2139 30.0 150.0 10.0124 10.7370
60.0 60.0 4.4995 5.8291 -1.3296 60.0 150.0 9.1348 6.6505
90.0 60.0 8.1241 10.9316 -2.8075 90.0 150.0 17.3892 16.4785
120.0 60.0 10.1993 11.4540 -1.2547 120.0 150.0 20.3033 20.6689
150.0 60.0 88769 7.8059 1.0710 150.0 150.0 11.7127 10.7140
-180.0 60.0 6.3909 5.2834 1.1075 180.0 150.0 5.5250 4.4776
-150.0 60.0 4.3370 1.7162 2.6208 -150.0 150.0 5.5422 6.5779
-120.0 60.0  3.5902 1.3247 2.2655 -120.0 150.0 5.8219 7.8685
-90.0 60.0 2.6454 1.9353 0.7101 -90.0 150.0 4.6442  4.1449
-60.0 60.0 3.8330 4.9469 -1.1139 -60.0 150.0 8.3645 8.4462
-30.0 60.0 6.8525 7.9980 -1.1455 -30.0 150.0 13.3523 14.8192

Error
0.5945
-1.8255
-2.9667
-1.4227
0.8070
1.6848
2.1249
1.6270
0.2245
-0.7506
-0.5347
-1.8657
0.1670
-1.8668
-1.1696
0.3106
2.0532
1.1115
1.0966
0.2018
-1.0711
0.2520
1.3694
0.3446
0.0955
-0.7246
2.4843
0.9107
-0.3656
0.9987
1.0474
-1.0357
-2.0466
0.4993
-0.0817
-1.4669
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Table 5.12: Adiabatic QM and FF Energy of PVC-PVDC(II)(Kcal/Mol)
d, P, QM FF Error P, d, QM FF Error
0.0 180.0 9.0038 9.3985 -0.3947 0.0 -90.0 15.3252 13.1480 2.1772
30.0 180.0 7.4941 7.8429 -0.3488  30.0 -90.0 10.7678 11.7926 -1.0248
60.0 180.0 8.5738 7.7518 0.8220  60.0 -90.0 10.9056 8.2794 2.6262
90.0 -180.0 11.9431 11.2798 0.6633  90.0 -90.0 17.9846 16.5977 1.3869
120.0 -180.0 12.4131 11.2679 1.1452 120.0 -90.0 17.5892 18.1186 -0.5294
150.0 180.0 10.7086 9.1172 1.5914 150.0 -90.0 8.3351 9.3409 -1.0058
-180.0 180.0 6.5415 6.3632 0.1783 180.0 -90.0 2.6204 5.7277 -3.1073
-150.0 -180.0 2.8567 1.7441 1.1126 -150.0 -90.0 3.2942 5.7955 -2.5013
-120.0 180.0 2.0276 1.7430 0.2846 -120.0 -90.0 4.8173 6.6368 -1.8195
-90.0 180.0 1.8371 2.2851 -0.4480 -90.0 -90.0 4.9843 4.4986 0.4857
-60.0 -180.0 2.8055 3.9525 -1.1470 -60.0 -90.0 9.2510 8.6804 0.5706
-30.0 -180.0 6.1274 7.0730 -0.9456 -30.0 -90.0 14.1032 13.4640 0.6392
0.0 -150.0 15.2027 15.1317 0.0710 0.0 -60.0 10.7323 11.2059 -0.4736
30.0 -150.0 13.6714 14.9507 -1.2793  30.0 -60.0 8.6991 8.7833 -0.0842
60.0 -150.0 10.6847 10.9255 -0.2408 60.0 -60.0 8.8575 8.2889 0.5686
90.0 -150.0 11.7029 10.6855 1.0174  90.0 -60.0 10.3158 10.2313 0.0845
120.0 -150.0 18.8750 17.4005 1.4745 120.0 -60.0 10.3322 10.3552 -0.0230
150.0 -150.0 18.3598 17.5461 0.8137 150.0 -60.0 7.3471 9.0164 -1.6693
-180.0 -150.0 9.7425 8.4954 1.2471 -180.0 -60.0 1.8799 4.7822 -2.9023
-150.0 -150.0 5.1060 4.8177 0.2883 -150.0 -60.0 0.0747 0.0218 0.0529
-120.0 -150.0 6.0248 7.7307 -1.7059 -120.0 -60.0 1.8095 0.9662 0.8433
-90.0 -150.0  3.9297 4.7020 -0.7723 -90.0 -60.0 2.7045 2.0198 0.6847
-60.0 -150.0 2.7288 2.1862 0.5426 -60.0 -60.0 3.7672 3.2004 0.5668
-30.0 -150.0 9.8623 10.5394 -0.6771 -30.0 -60.0 7.7909 6.9672 0.8237
0.0 -120.0 20.9759 19.8901 1.0858 0.0 -30.0 15.5042 13.9469 1.5573
30.0 -120.0 16.6697 16.3663 0.3034  30.0 -30.0 13.1547 14.5027 -1.3480
60.0 -120.0 12.2783 11.0088 1.2695 60.0 -30.0 8.8985 9.7063 -0.8078
90.0 -120.0 18.9684 18.3175 0.6509  90.0 -30.0 10.3416 10.8283 -0.4867
120.0 -120.0 25.9434 24.8339 1.1095 120.0 -30.0 15.7328 15.2951 0.4377
150.0 -120.0 18.1441 16.9945 1.1496 150.0 -30.0 12.6513 13.8533 -1.2020
-180.0 -120.0 7.5578  7.5011 0.0567 -180.0 -30.0 5.4405 6.5088 -1.0683
-150.0 -120.0 7.1104 8.5841 -1.4737 -150.0 -30.0 3.8506 3.8065 0.0441
-120.0 -120.0 9.3474 11.3717 -2.0243 -120.0 -30.0 6.4863 6.4622 0.0241
-90.0 -120.0 6.5526 6.6365 -0.0839 -90.0 -30.0 4.7655 3.5549 1.2106
-60.0 -120.0 9.6881 9.5182 0.1699 -60.0 -30.0 5.1556  3.2032 1.9524
-30.0 -120.0 17.7739 179179 -0.1440 -30.0 -30.0 12.1162 10.3788 1.7374
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Table 5.13: Local Minimums for PVC-PVDC(Kcal/Mole)

Structure d, d, QM FF Error
1 48.9 52.2 3.9428 3.9824 -0.0396
-171.7 372 4.2132 4.1230 0.0902
-72.8  69.3 2.8813 3.0163 -0.1350
38.3 168.0 6.6523 6.6592 -0.0069
-101.5 178.2 1.7873 1.6719 0.1154
-69.5 -165.9 1.4099 1.3183 0.0916
37.5 -71.1 8.0181 7.4327 0.5854
-155.2  -60.7 0.0000 0.0000 0.0000
-74.4  -484 25129 2.3245 0.1884

© 0 ~J O UL i W N

Table 5.14: QM Energy of FF Grids for PVC-PVDC(Kcal/Mole)

! @, QM ¢y @, QM
0.0 0.0 | 20.6882 || 180.0 0.0 | 7.8939
0.0] 60.0 | 87936 | 180.0 | 60.0 | 4.1968
0.0 | 120.0 | 21.0308 || 180.0 | 120.0 | 8.7877
0.0 | 180.0 | 7.2674 || 180.0 | 180.0 | 3.8761
0.0 | 240.0 | 21.6684 || 180.0 | 240.0 | 7.6463
0.0 | 300.0 | 9.9833 || 180.0 | 300.0 | 1.2937
60.0 0.0 | 10.1944 || 240.0 0.0 | 10.4056
60.0 | 60.0 | 3.6692 || 240.0 | 60.0 | 1.6462
60.0 | 120.0 | 9.7714 || 240.0 | 120.0 | 10.6799
60.0 | 180.0 | 5.8693 || 240.0 | 180.0 | 0.0000
60.0 | 240.0 | 11.2843 || 240.0 | 240.0 | 9.8981
60.0 | 300.0 | 6.7427 || 240.0 | 300.0 | 0.4488
120.0 0.0 | 20.6304 || 300.0 0.0 | 10.3548
120.0 | 60.0 | 9.0058 || 300.0 | 60.0 | 2.7670
120.0 | 120.0 | 25.0148 || 300.0 | 120.0 | 9.1315
120.0 | 180.0 | 9.0668 || 300.0 | 180.0 | 1.1101
120.0 | 240.0 | 25.0629 || 300.0 | 240.0 | 8.7192
120.0 | 300.0 | 8.8143 || 300.0 | 300.0 | 2.3128
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5.6 Appendix

Listed in the tables are the geometry of optimized local minimums for iPVC, sPVC,

PVDC, and PVC-PVDC.
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Table 5.15: Bonds and Angles of iPVC Local Optimums

Structure 1 2 3 4 5 6
Bond Distances (A)

C2—C.1 1.515  1.517 1.519 1.516  1.520 1.517
C2—Cz33 1.526  1.525 1.529 1.524 1.526 1.532
C3—-CA4 1.529 1.524 1.529 1.523 1.526  1.532
C4—C5 1.517  1.515 1.519 1.5617  1.520  1.517
C2—Cl.1 1.912 1.913 1.894 1.906 1.893 1.907
C4—Cl2 1.908 1.916 1.894 1.908 1.894 1.907
C2—H.1 1.075 1.075 1.077 1.074 1.077 1.078
C4—H2 1.076  1.076 1.007 1.076 1.077 1.078
C3—H3 1.085 1.085 1.091 1.082 1.082 1.079
C3—HA4 1.081 1.084 1.082 1.086 1.088 1.083
C.1—H5 1.081 1.080 1.081 1.080 1.080 1.080
C.1—H6 1.081 1.082 1.078 1.083 1.082 1.082
C1—HY7 1.082 1.085 1.085 1.084 1.085 1.082
C.5—H.S 1.081 1.079 1.078 1.082 1.082 1.082
CH5h—H9 1.085 1.084 1.085 1.085 1.085 1.082
C.5—H_10 1.080 1.081 1.081 1.080 1.080 1.080

Angles (degree)
C3—C2—C1 11705 113.28 118.79 115.75 112.66 117.38
C4—-C3—C2 11703 117.32 124.49 115.08 117.28 113.88
CH—C4—C3 116,51 117.87 11879 113.10 112.69 117.40
Cl.1—C2—H.1 101.59 102.56 100.99 102.53 102.73 102.05
Cl.1—C2—C_.1 107.52 107.24 108.16 107.91 107.26 106.71
Cl.1—C2—C3 106.01 109.62 112.01 106.39 111.37 106.65
Cl2—C4—H2 100.86 101.46 106.09 102.28 102.69 102.05
Cl2—C4—C3 111.33 108.22 112.01 109.43 111.35 106.63
Cl2—C4—C5 108.25 108.16 108.16 107.90 107.23 106.73
H4—C3—HJ3 106.72 106.58 106.10 107.18 106.57 107.10

Backbone Torsion Angles (degree)
C.1-C2-C3-C4 449 56.7 52.8 -179.5 -155.9 -79.2
C2-C3-C4-C5 737 154.1 -92.8 60.8 156.7  79.5

Minimium Energy (Kcal/Mol)
Energy 3.1331 1.6149 10.4863 0.0000 5.4815 4.3209

HF (6-31G**) ab initio PS-GVB Constraint Minimizations
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Table 5.16: Bonds and Angles of sSPVC Local Optimums

structure 1 2 3 4 ) 6
Bond Distances (A)

CcC2—-C.l1 1.517 1.515 1.516 1.516 1.520 1.516
C3—C2 1.528  1.527 1.519 1.527 1.522 1.526
C4—C3 1.528 1.527 1.519 1.531 1.530 1.526
C4—CLb 1.517 1.519 1.516 1.518 1.517 1.516
C2—Cl.1 1.901 1.912 1911 1.913 1.894 1.917
C4—Cl2 1.901 1.907 1.911 1.906 1.898 1.916
C2—H.1 1.0v6 1.077 1.075 1.074 1.076 1.076
C4—H2 1.076 1.077 1.075 1.077 1.076 1.076
C3—H.3 1.081 1.084 1.085 1.081 1.081 1.085
C3—HA4 1.081 1.082 1.085 1.086 1.089 1.085
C.1—HS5 1.080 1.081 1.080 1.080 1.080 1.081
C.1—H.=6 1.082 1.081 1.082 1.082 1.082 1.078
C_.1—H_7 1.085 1.081 1.085 1.082 1.085 1.083
C5—HS 1.085 1.085 1.085 1.085 1.086 1.083
C5—H9 1.082 1.082 1.082 1.078 1.080 1.078
C5—H_10 1.080 1.080 1.080 1.081 1.080 1.081

Angles (degree)
C.1—C2—C3 11554 117.24 113.55 117.57 112.27 118.73
C2—C3—C4 112,61 11534 116.08 118.25 119.25 121.73
C3—C4—C5 11554 112.82 113.55 118.71 116.52 118.72
Cl.1—C2—H_.1 102.02 101.86 102.46 102.28 102.55 100.37
Cl.l1—C2—C.1 107.85 107.37 107.88 106.92 107.60 108.41
Cl.1—C2—C.3 106.89 106.51 108.56 105.57 111.45 110.02
Cl2—C4—H2 102.02 102.34 102.46 101.51 100.83 100.39
Cl2—C4—C3 106.89 111.00 108.56 109.73 111.28 110.02
Cl2—C4—C5 107.85 107.04 107.88 108.30 108.51 108.42
H3—C3-—-H4 107.30 106.87 107.08 106.80 106.49 106.17

Backbone Torsion Angles (degree)
C1-C2-C3C4 642 160.7 1734 -69.3 -32.1  -48.0
C2-C3-C4-C5 643 79.1 173.4 71.5 171.3  -48.0

Minimium Energy (Kcal/Mol)

Energy 2.9916 3.7644 0.0000 5.1593 7.2982 6.4601

HF (6-31G**) ab initio PS-GVB Constraint Minimizations
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Table 5.17: Bonds and Angles of PVDC Local Optimums

structure 1 2 3 4
Bond Distances (A)

C2—C.1 1.513 1.512 1.523 1.515
C3—C2 1.533 1.533 1.531 1.536
C4—C3 1.533 1.531 1.531 1.536
C4—Co5h 1.513 1.518 1.523 1.514
C2—Cl.1 1.880 1.887 1.860 1.888
C4—Cl2 1.880 1.879 1.860 1.856
C2—Cl3 1.873 1.865 1.860 1.856
C4—Cl4 1.873 1.857 1.860 1.888
C3—H3 1.080 1.081 1.084 1.079
C3—HA4 1.080 1.081 1.084 1.083
C.1—HL5 1.079 1.079 1.079 1.079
C.1—H.6 1.080 1.080 1.082 1.082
C.1—H7 1.079 1.079 1.082 1.078
CH5—HS8 1.079 1.082 1.082 1.082
C.5—H29 1.080 1.082 1.082 1.078
C_5—H_10 1.079 1.079 1.079 1.079

Angles (degree)
C.1—C2—C3 119.05 11885 109.30 118.52
C2—C3—C4 120.24 12223 127.97 12221
C3—C4—C5 119.05 110.61 109.30 118.54
Cl.Li—C2—Cl.3 105.47 105.19 107.55 105.81
Cl.1—C2—C.1 107.54 107.61 106.74 106.61
Cl.L1—C2—C.3 104.73 104.79 113.06 103.64
Cl2—C4—Cl4 10547 107.01 107.55 105.81
Cl2—C4-C3 104.72 110.02 113.06 112.57
Cl.2—C4—C5 107.54 106.97 106.74 108.63
Cl3—C2—C.1 108.62 109.05 106.75 108.63
Cl3—C2—C3 110.50 110.40 113.06 112.59
Cl4—C4—C3 11051 114.10 113.07 103.64
Cl4—C4—C5 108.62 107.83 106.75 106.62
H3—C3—H4 106.93 106.92 106.99 106.85
Backbone Torsion Angles (degree)
C.1-C2-C3-C4 524 42.6 180.0 56.7
C2-C3-C4-ChH 524 1672 1799  -56.5
Minimium Energy (Kcal/Mol)
Energy 0.0000 1.8653 7.3696 4.2612
HF (6-31G**) ab initio PS-GVB Constraint Minimizations
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Table 5.18: Bonds and Angles of PVC-PVDC Local Optimums

Property optl opt2 opt3 opt4 optd opt6 opt7 opt8 opt9
Bond Distances (A)
Co—CY 1.512  1.512 1.514 1517 1.515 1.516 1.516 1.511  1.513
Cy—Cj 1.520  1.530 1.531 1.527 1.525 1.527 1.530 1.524 1.530
C5—Cy 1,530 1.525 1.531 1.531 1.532 1.528 1.534 1.526 1.532
Cy—Cs 1.517 1.520 1.517 1.517 1.517 1.515 1.517 1.518 1.516
Co—Cly 1.875 1.859 1.871 1.857 1.872 1.872 1.888 1.875 1.876
Cy—Cly 1910 1891 1.906 1.904 1.907 1.910 1.898 1.908 1.906
Co—Cl;3 1.883 1887 1.87r 1.882 1870 1.871 186 1.877 1.871
Cy—H, 1.076  1.075 1.074 1.077 1.074 1.074 1.077 1.075 1.076
C3—H; 1.083 1.080 1.079 1.086 1.080 1.082 1.086 1.082 1.081
Cs—H, 1.081 1.084 1.083 1.082 1.084 1.083 1.079 1.082 1.080
C1—Hj5 1.079 1079 1.079 1.079 1.079 1.079 1.079 1.079 1.079
C,—Hg 1.080 1.083 1.082 1.082 1.082 1.081 1.078 1.080 1.081
C\—H; 1.079 1.081 1.078 1.082 1.082 1.082 1.082 1.081 1.083
Cs—Hjyg 1.079 1.082 1.082 1.0v8 1.082 1.081 1.080 1.082 1.081
Cs—Hy 1.080 1.080 1.080 1.081 1.080 1.080 1.080 1.080 1.081
Cs—Hy 1.083 1.085 1.082 1.083 1.082 1.081 1.085 1.085 1.081
Angles (degree)
C5-Cy-Cy;  118.26 116.44 118.31 111.51 112,75 112.12 117.11 117.83 116.21
Cy-C3-Cy  120.91 11838 117.26 123.12 116.91 118.80 121.81 116.59 116.21
Cs-Cy-Cs  119.74 111.44 117.81 119.46 115.18 117.93 119.69 112.55 117.66
Cl3-Cy-Cly  105.39 105.62 106.62 107.18 106.97 107.22 106.59 106.46 105.74
ClL-Cy-Cy;  108.78 108.96 108.57 107.88 107.93 107.25 106.26 108.19 107.93
Cl;-Co-C3  110.37 111.35 109.92 113.15 111.16 111.38 104.97 106.36 106.33
Cly-Cy-Hy  100.62 102,73 102.42 100.49 102.16 102.17 100.74 102.71 101.77
Cl,-Cy-Cs  110.25 112.39 105.10 110.11 107.82 104.80 110.78 109.96 105.38
Cly,-Cy-Cs  108.29 107.50 106.86 108.63 107.08 107.57 108.09 107.35 107.38
Cl3-Cy-Cy  107.73 107.64 106.96 106.84 108.20 107.95 108.81 108.59 108.64
Cl3-Cy-C3 10549 106.19 105.81 109.99 109.62 110.71 112.35 108.83 111.41
H,-Cs-H; 106.58 106.95 107. 106.53 107.18 107.19 106.44 106.97 107.12
Backbone Torsion Angles (degree)

CL1C5C5Cy 48.9  -171.7 -72.8 383 -101.5 -69.5 375 -155.2 -744
CsC3CChs 52.2 37.2 69.3 168.0 178.2 -1659 -71.1 -60.7 -48.4
Minimium Energy (Kcal/Mol)

Energy 3.9428 4.2132 2.8813 6.6523 1.7873 1.4099 8&.0181 0.0000 2.5129

HF (6-31G**) ab initio PS-GVB Constraint Minimizations
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Chapter 6 Simulations of Amorphous

Polyethylene Glass Transition

6.1 Introduction

Amorphous polymers are widely used in industry. By varying the structural unit
of a polymer or even by blending different polymers, a wide range of physical prop-
erties, including temperature stability, mechanical property, optical property and
processibility can be obtained.!=? In order to create a polymer material with a set
of desired properties, physics underlying the material behavior must be understood
and characterized. Although various macroscopic properties around and below the
glass transition temperature have been extensively investigated experimentally, the
phenomena of glass transition and relaxation in glasses are not yet fully understood

from molecular point of view.

6.2 Survey of Glass Transition Theory

In amorphous polymers, the transition from liquid-like to glass-like behavior is called
the glass transition. There are many theories including kinetical, phenomenological
and thermo-dynamical models.

In the kinetic regime,® the glass transition temperature T, is defined as the tem-
perature at which large-scale cooperative mobility of the polymer matrix occurs, or
alternatively, where the thermal expansion coefficient « changes from the rubbery
to the glassy state with its value being dependent on the rate at which data are

measured. The secondary or 3 transition, associated with limited molecular mobility

4Based on “Simulations of Amorphous Polyethylene Glass Transition,” G. Gao, Y. Tang, M.
Belmares, and W.A., Goddard III, to be published.
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below T, at a temperature Tg, is a broad relaxational process. This process is related
to side chain rotations (such as the wagging of the phenyl unit in polystyrene), the
motion of a small number of monomeric units in the main chain, and short chain
portions. The relaxations characterized by both T, and Tj represent a distribution
of relaxation times. Among various kinetic models, the free volume theory*=5 is the
most widely accepted one.

The free volume, V;, is defined as the unoccupied space in a sample, arising from
the inefficient packing of disordered chains in the amorphous regions of a polymer
sample. It is a measure of the space available for the polymer to undergo rotation
and translation. When the polymer is in the liquid or rubberlike state, the amount
of free volume will increase with temperature as the molecular motion increases. If
the temperature is decreased, this free volume will contract and eventually reach a
critical value where there is insufficient free space to allow large scale segmental motion
to take place. The temperature at that this critical volume is reached is the glass
transition temperature. Below T} the free volume will remain essentially constant as
the temperature decreases further, since the chains have now been immobilized and
frozen in position.

The glass transition can then be visualized as the onset of co-ordinated segmental
motion, made possible by an increase of the holes in the polymer matrix to a size
sufficient to allow this type of motion to occur.

Williams, Lendel and Ferry® found an empirical equation (WLF equation). They
claimed that the ratio ar of all mechanical and electrical relaxation times at temper-
ature T to their values at a reference temperature T can be expressed, after suitable
choice of T, by the equation logar=-8.86(T - T,)/(101.6 + T - T;) over a T range
of T,+50 (K). This applies to a wide variety of polymers, polymer solutions, organic
glass-forming liquids, and inorganic glasses. As chosen, T lies about 50 (K) above
the glass transition temperature T,. If, alternatively, the reference temperature is
chosen as Ty, then logar=-17.44(T - T,)/(51.6 + T - T).

In the thermodynamic regime, Gibbs and Dimarzio” proposed that the glass tran-
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sition is a second order phase transition (G-D theory). They consider the fundamental
transition to be a true equilibrium. Many experiments imply that the observed T,
would decrease further if a sufficiently long time for measurement was allowed. This
aspect is considered in the G-D theory by defining a new transition temperature 75 at
which the configurational entropy of the system is zero. This temperature can be con-
sidered in effect to be the limiting value T, would reach in a hypothetical experiment
taking an infinitely long time. The theoretical derivation is based on a lattice treat-
ment. The configurational entropy is found by calculating the number of ways that n,
linear chains each x segments long can be placed on a diamond lattice (coordination
number Z=4), with ny unoccupied holes. The restrictions imposed on the placing of
a chain on the lattice are embodied in the hindered rotation which is expressed as the
“flex energy” de, and €, that is the energy of formation of a hole. The flex energy is
the energy difference between the potential energy minimum of the located bond and
the potential minima of the remaining (z-2) possible orientations that can be used on
the lattice. The quantity ¢, is a measure of the cohesive energy. The configurational
entropy Scony. is derived from the partition function describing the location of holes
and polymer molecules. As the temperature drops to 15, the number of available con-
figuration states in the system decreases until the system possesses only one degree of
freedom. The temperature T3 is not of course an experimentally measurable quantity
but is calculated to lie approximately 50 (K) below the experimental T, and can be
related to T, on this basis.

An attempt to reunite both the kinetical and dynamical theory were made by
Adam and Gibbs® (who outlined the molecular kinetic theory). They relate the tem-
perature dependence of the relaxation process to the temperature dependence of the
size of a region, which is defined as a volume large enough to allow co-operative rear-
rangement to take place without affecting a neighbouring region. This “co-operatively
rearranging region” is large enough to allow a transition to a new configuration, hence
is determined by the chain configuration and by definition will equal the sample size

at T, where only one conformation is available to each molecule. The polymer sample
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is described as an ensemble of co-operative regions, or subsystems, each containing Z
monomeric segments. The transition probability of such a co-operative region is then

calculated as a function of its size, to be
W(T) = Aexp(—~ZAp/kT)

where Ap is the activation energy for a co-operative rearrangement per monomer
segment. This can be approximately expressed in the WLF form.

While these models did a fairly good job in terms of understanding the glass tran-
sition process, they are not capable of predicting the glass transition temperature
dependence of chain length, side chain, and polarizability, etc. Understanding these
dependence are very important in terms of design various exotic polymer materi-
als. In principal, detailed knowledge can be obtained by using numerical simulation

techniques.

6.3 Computer Simulations

There are mainly two categories in terms of computer simulation, the Monte Carlo
(MC) and molecular dynamics (MD). Of the two methods, MD potentially is the more
useful one since it can provide information on the time evolution of a system as well
as its time-averaged properties, thus allowing the study of many kinetic aspects of
the glassy state. Both MC and MD methods have been applied to the study of glass
formation of simple liquid systems. Although some question still remains as to the
validity of these studies, mainly because of the very short duration of simulation (10-
100 (ps)) in comparison to the laboratory experiments, they have nonetheless found
widespread use and provided many useful insights into the nature of the glassy state.
Rigby and Roe® did a series of molecular dynamics simulations for polymer liquid
and glass. Their force field parameters are chosen to mimic polyethylene. Behaviors

suggestive of liquid-to-glass transition were exhibited by (i) cessation of trans-gauche
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conformational transitions, (ii) changes in the temperature coefficients of the den-
sity and internal energy, and (iii) effective vanishing of the segmental self-diffusion
coefficient. The duration of these simulation is 100-120 (ps). Inspired by their en-
couraging work, we hope we can do a better job by using NPT Gibbs dynamics to

mimic experimental condition and by using carefully calibrated force field.

6.4 The Force Field

All calculations used the MSXX force field of polyethylene by Karasawa,'® but in-
cluding a full torsional potential (based on HF calculations for CyHy,). This force

field has the form
E=FEyu+ Evdw + EQ (1)

where

Eval = Ebond + Eangle + Etorsion + Ecross (2)
Here

e [, represents the Coulomb interaction energy (using a charge of +0.144e on

each H and balancing charges on each C).
e 4, uses an exponential-6 function for the nonbond interactions.
® Ejona is a harmonic function (same R, and kg as for the Morse potential).
® Lingie is a cosine harmonic function.
o Fivrsion describes the rotational barriers for all dihedrals IJKL.

® Fioss = Eppt + Epa1 + Eaa1 + Eags, where Egg; and Epa; describe bond-
bond and angle-bond cross terms for all bonds sharing a common vertex. E44;
describes one-center angle-angle cross terms, and E44o describes two-center

angle-angle cross terms.
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The functional forms and parameters of the force field are summarized in Ta-

ble [6.1].
Table 6.1: Force Field Parameters for Polyethylene
van der Waals® R, D, Bond Te k.
H 29276 0.03350 C-H 1.0758 729.593
C 3.8050 0.06921 C-C 1.4814 902.669
Angle 0. kg krio kry0 kyir
H-C-H 119.742 54.065 -22.790 -22.790 4.027
C-C-H 118.140 64.715 -36.302 -25.208 1.283
C-C-C 121.518 82.155 -53.249 -53.249 27.286
Torsion Vi Vs Vs Vi Vs Vi
H-C-C-H 2.313
C-C-C-H 1.611
C-C-C-C -4.505  -0.428 -2.845 0.456  -0.361 -1.260
2c-angang’ ko, 6,

HCC, CCH  -17.534
CCC, CCH  -17.996
CCC, CCC  -23.530
lc-angang® ko, 0,

HCC, CCH -5.354
HCH, CCH -5.785
HCC, CCC -8.470
HCC, CCH -5.934

® FEyaw = Dy(p™1? — 2p7%) where p = R/R,. The off-diagonal oarameters D, and
R, are obtained from geometric mean.

b Esaa = kgyo,(cos ) — cos 85)(cos O — cos 6S). This couples I-J-K and J-K-L in
the dihedral I-J-K-L.

¢ Eiaa = Eys4 = kg, 9,(cos by — cos 05)(cos 0y — cos 6%). This couples angles I-J-K
and I-J-L where J is bonded to atoms I, K and L.
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6.5 Dynamics

The properties of amorphous polyethylene were simulated using a single chain of

polyethylene with 70 monomer units (including a methyl group at each end) in a

triclinic periodic cell. (This leads to C7gH142 or 212 atoms per cell.) The initial struc-

ture of the amorphous system was built by using periodic boundary conditions (PBC)

and a random distribution of torsional angles consistent with Monte Carlo exclusions

(based on van der Waals radii scaled by 0.3). The final density is 0.85 (g/cc). The

starting structure was annealed using molecular dynamics (MD) at various temper-

atures. The MD simulations used the canonical Gibbs dynamics algorithms based

on the work by Nosé,!! Andersen,'? Rahman®® and Parrinello.'* The Hamiltonian of

Gibbs dynamics is
Hgibbs = Hpart + Hnose + Hstress

3N
1
Hpart = Z 2m~p? +V (Qh ooy q3N)

=1

describes the ordinary Hamiltonian for the IV particles,
L,
H,poo = @ps + (BN + 1)kTpasn, Ins

describes the temperature bath, and

6
1 . 1
Hstress = oW E th +p (Q - QO) + 5 E :Eﬁ’yHaﬂHa’Y
i=1

afy

with
Y =OHy (=S —p) Hy't

describes the stress bath. Here the Nosé mass is written as

Q = 3Nk'Tbath7'52

(3)
(4)
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where the Nosé relaxation time 75 is taken as 7, = 1 (ps).

The Anderson mass W is written as

N
W =We Yy _ M (8)

i=1
where M; is the mass of each particle in the unit cell and W,,; = 1 is used for
measurements while larger variables are used for the initial equilibration (vide infra).
The Coulomb and van der Waals’ interactions were calculated using the accuracy
bounded convergence acceleration (ABCA) methodology of Karasawa and Goddard.'3
The ABCA accuracies for both Coulomb and van der Waals calculations were set at

0.01 % 212 = 2.12 (kcal/mol).

6.6 The Annealing and Quenching Procedure

Critical to the prediction of temperature dependent properties, such as glass transition
temperatures, is obtaining equilibrated structures at each temperature. Thus we
must prevent the dynamics from trapping into local minima for lower temperature

simulations.
1. Generate an amorphous structure using a Monte Carlo growth procedure at

high temperature, Ty .

2. Anneal the initial structure by high temperature Gibbs dynamics for a time

Tgrow tO Obtain an equilibrated amorphous polymer.

3. Decrease the temperature by an amount AT and re-equilibrate using Gibbs
dynamics for a time 7.4, sufficient to re-equilibrate the structure to the new

temperature and to measure its properties.

4. Continue step 3 until a sufficiently low temperature T;nq is reached.

For polyethylene, we grow the amorphous at 450 (K). Set W, = 1000, equilibrate
100 (ps), then decrease Weey; to 100 for 20 (ps), to 10 for 20 (ps) and finally reduced
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to Weey = 1 for 20 (ps). The criterion here is that both atomic kinetic energy and cell
temperature do not drift with time. The large initial W, serves to restrict the cell
from expanding too fast due to bad configurations in the initial amorphous structure.
It is essential that the annealing AT not be so large as to trap the configuration in
metastable configurations. We considered various values for AT and 7q and found
that AT = 50 (K) with 7.4 = 100 (ps) is satisfactory. Figure 6.1 shows the unit

cell volume fluctuation during dynamics at various temperatures.

6.7 Results

6.7.1 The Glass Transition Temperature

For the AT = 50(K), Tequu = 100 (ps) runs, by using the equilibrated portion of
the dynamics at each temperature (usually the last 75 (ps)), we obtain the average
volume as a function of temperature V(T), as shown in Fig. 6.2. A clear kink in the

V(T) curve occurs at about 235 (K). The volume fluctuation is
(5V?) = (v* — 7?)
where
vV =(V). (9a)
The average volume fluctuation is related to compressibility 3(7") by

RTB(T) = <6“_;2> (9b)

Figure 6.3 shows a clear kink in the RT3(T)V curve at about 218 (K). Figure 3 shows
the average value, Rnq—cnd(T), as a function of temperature. There is a clear kink

at 225 (K), above which Reng—ena(T) increases rapidly with temperature and below
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which it changes slowly. Similarly the fluctuation in end-to-end distances.

5Rend—end = \/(Rgnd—end - Rgnd—end> (10)

shows a slowly increasing value for T < 200 (K) and a much larger increase above
T > 250 (K). Figure 6.4a shows the average end-end distance versus dynamics tem-

perature, while Fig. 6.4b is the standard deviation of end-end distance. Thus

a. above 225 (k) polyethylene is a viscous liquid with the conformational structure

adapting to the thermodynamics for each temperature.

b. below T, the conformational is frozen into a glass because the diffusional rates
of one polyethylene strand moving amongst the other polyethylene strands be-

comes too slow.

Based on the above results, we associate the kinks with the glass temperature of

PE, obtaining a theoretical value of
T;* = 225 +£ 10(K) (11)

Although the literature’®=' has conflicting experimental T}, values, the calculated
value correlates well with the most recent values of 235 to 240 (K) (determined by
calorimetry) and 222 to 240 (K) from fitting the WLF equation to values measured

for relaxation).

6.7.2 Conformational Transitions

In order to understand the atomistic origins for 7 gth, we examined the rate of confor-
mational transformations. Every 0.1 (ps) of dynamics the structure was saved in a
trajectory file which was then analyzed to obtain rates as follows. We classify each

C-C-C-C dihedral angle in terms of:
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i. stable conformations: T'(¢ = 180 £30°), G*(¢ = 60 £30°), G~ (¢ = 300+ 30°),

and

¢i. transitional conformations: GT*(120 £ 30°), GT~(240 % 30°), GTG~(0 + 30°).

[We do not consider rotations of the terminal CHs groups, thus there were 67
torsions in the analysis.] A transition is counted for each case where a dihedral changes
between two stable configurations, separated only by the corresponding transitional
conformation. These rates are plotted in Fig. 6.5. There are no transitions for 7 < 200
(K) and an increasing rate of GT transitions for T > 250 (K). They are also plotted

in an Arrhenius form in Fig. 6.6,

act
_ Z¢r

ker = Agrezp T

leading to
E& = 3.45 (kcal /mol)

Agr = 2.39 x 10" (sec™'din™")

There are 67 central dihedrals per polyethylene chain and one chain per unit cell.

Thus the frequency factor per dihedral is
Agr = 3.52 x 10® (sec™'dih™!)

For comparison, we carried out similar calculations for an isolated chain with 10

monomers. Here we also find an Arrhenius form, but with

E%t = 3.13 (kcal /mol)

chn

Aghn = 3.3 x 10M (sec—1)



123

The normalized frequency factor becomes
Aghn = 3.3 x 10" (sec—1dih—1)
The adiabatic rotational barrier about the central bond of hexane is
Achn = 3.0 (keal /mol)

The activation energy for GT transition in amorphous polyethylene is about 0.23
(kcal/mol) higher than that of single chain polyethylene. In the condensed phase
the effective barrier is increased because of the conformational constraints. These
conformational constants decreases the frequency factor by almost two magnitude
lower than single chain polyethylene.

The glass transition temperature can be understood as the temperature above
which conformational transitions are sufficient fast that the molecule attains confor-
mational equilibrium (a viscous liquid), but below which the inter-diffusion of poly-
mer chains is two slow for the system to equilibrate. The conformational relaxation
is directly related to the rate of dihedral angle transitions which in turn depends on
both the rotational energy barrier and on how closely the polymer chain is packed in

periodic cell.

6.8 Discussion

The simulations performed are quite restricted, the molecular weight is very small
and there is only one chain per unit cell. Nevertheless, we believe that the kinky-
ness observed represent a glass transition with the same atomistic origins as found
experimentally for amorphous PE.

Experimental measurements of T, often involve time scales of sec to msec where
the total time for our simulation is about 1 nano second. This raises the question

as to whether one should expect a nsec simulation to measure the same phenomena
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as observed in a 1 second experiment. We believe that it is plausible that they
correspond. The reason is that the use of PBC indicates an infinitely range correlation
in the motions. Thus moving an atom in the unit cell simultanously moves atoms
that are microns, indeed cm away. Experimentally, the heterogeneity of the system
requires time scales sufficiently slow that the entire sample is in thermal and stress

equilibrium. For a 1em sample this may require seconds.

6.9 Conclusion

Using a systematic methodology for molecular dynamics simulations, we obtain clear
cut glass transitions at temperature T, = 225 + 10 (K). This is close to the most
recent experiments which indicates T, ~ 235 (K). We also find that this glass tran-
sition correlates quite well with the calculated rates of gauche-trans conformational

transitions.
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6.11 Figures
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Figure 6.1: Unit Cell Volume Versus Dynamics Time
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Chapter 7 Molecular Dynamics
Simulations of Fluoro Polymers:
Prediction of Glass Transition
Temperatures Using United Atom Force

Fields

7.1 Abstract

We report a new United Atom Force Field (denoted MSUA) for molecular dynamics
simulation of the fluoro polymers: Poly(tetrafluoroethylene) (PTFE), Poly(vinylidene
fluoride) (PVDF), and Ethylene-tetrafluoroethylene (ETFE). The MSUA was ob-
tained from combining quantum chemistry and experimental results. Using the
MSUA and periodic boundary conditions, we carried out molecular dynamics simula-
tions using a Build-Anneal-Quench procedure. For PTFE, PVDF, and ETFE fluoro
polymers, these results predict transition temperatures (T,) in good agreement with

the experimental T,.

7.2 Introduction

Polymer materials containing fluorine atoms have unique properties.! Compared to

the corresponding hydrocarbon analogues, they have:

i. Very low surface tension and friction coefficient,

®Based on “Molecular Dynamics Simulations of Fluoro Polymers: Prediction of Glass Tempera-
tures Using United Atom Force Fields,” H. Murofushi, G. Gao, M.P. Belmares, and W.A.
Goddard III, submitted.
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ii. High chemical stability to strongly acidic or basic environments,
i11. High thermal stability,

iv. Piezo- and pyro-electric properties (e.g., PVDF),

v. Low refractive index.

It is important to combine or enhance these basic characteristics of fluoropolymers in
order to develop new materials. Thus, an atomistic understanding of the mechanism
and origin of these properties is essential.

Fluoro polymers are very useful for many applications,? with

Poly(tetrafluoroethylene)(PTFE) : — (CFy, — CFy),,- (7.1)

Poly(vinylidenefluoride)(PVDF) : — (CF, — CHy),- (7.2)

Ethylene — tetrafluoroethylene(ETFE) : — (CF, — CFy — CHy — CHs),- (7.3)

serving as typical and important fluoro polymers. PTFE (DuPont’s Teflon®) is a ho-
mopolymer of Tetrafluoroethylene (C'Fy, = C'F;), PVDF is a homopolymer of Vinyli-
dene fluoride (C'F, = CH,), and ETFE is a copolymer of Ethylene (CH, = CH,)
and Tetrafluoroethylene.

These three fluoro polymers provide fundamental structures that might be com-
bined to design and develop novel fluoro polymers. Though often more complicated
in practice, we consider here simple models with no branches, with all head-to-tail
sequences (PVDF), and with perfectly alternating copolymer structures (ETFE).

The glass transition temperature (T,) of a polymer is a most important property
because it determines the range of temperatures for processing and the range for

applications.> This temperature is the boundary between a low temperature stiff,
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glassy state and a high temperature rubbery state (due to the onset of long-range
coordinated motion).* The temperature dependence of many properties of amorphous
polymers (modulus, specific volume, enthalpy, entropy, specific heat, refractive index,
and dielectric constant) changes dramatically at T,.°

The changes in these properties at T, can be understood as follows.® Above T,
the polymer conformation is in equilibrium; thus the spatial size expands with tem-
perature. To change conformation, the polymer strands must interdiffuse in a matrix
of other polymers. Below T,, this diffusion is too slow, and the conformation does
not change. Thus we get a glass. The problem is that there is little understanding
of how T, depends on the atomistic nature of the polymer. Thus to design materials
with the proper properties requires numerous experiments, resulting in high cost, long
delays, and less optimal performance. In order to determine whether atomistic simu-
lations could provide useful information about the glass temperature, we carried out
systematic studies of temperature dependence for several properties of three fluoro

polymers, (1)-(3).

7.3 The United Atom Force Field

Normally all atoms are treated explicitly in molecular dynamics simulations. However,
for problems in which chain torsions and interchain contacts dominate, use of implicit
or United Atoms (UA) may be useful.’® The concept is that for a polymer such as
Fig. 7.1a, each —CF,— is replaced by a single atom C} and each —C Hy— is replaced
by a single atom C%, in such a way that the polymer properties are not changed. The

use of UA’s can greatly decrease the calculational time. Thus:
e the number of atoms needed in simulation is smaller by a factor of 3,
e the number of nonbond interactions per atom is also reduced by a factor of 3;

e the time steps can be decreased by a factor of 3 (3 fs for UA simulations com-

pared with 1 fs for all atom simulation).
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Figure 7.1: Concept of united atoms

This leads to a factor of 27 net savings.

7.3.1 Force Fields

The heart of atomistic simulations is the development of an accurate Force Field
(denoted FF) for use in molecular mechanics and molecular dynamics.

The energy expression
Etotal = Evalence + Enonbond (74)

includes valence (Eyqjence) terms involving covalent bonds and long-range noncovalent

interactions (E,onpona) interactions. Here we take the covalent terms
Evalence - Ebond + Eangle + Etorsion (75)

to include bond stretch (Ej.nq), angle bend (Egnge), and dihedral angle torsion
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(E'torsion), while the nonbond terms

Eronbond = Evaw + Ecouioms (7.6)

consist of van der Waals (E,qw ) and electrostatic (Ecouioms) terms. We excluded 1-2,

1-3, and 1-4 nonbond interactions.

Valence Interactions

The valence interactions (5) are described using the following expressions:

e Bond Stretch Terms (Harmonic)
1 2
Epona(R) = §KR(R - R,) (7.7)
where R is the bond length, R, is the equilibrium bond length, and Kp is the

force constant.

e Angle Bend Terms (Theta Harmonic)
1 2
Eangie(8) = §K9(0 —6,) (7.8)
where 6 is the angle between two bonds to a common atom, 8, is the equilibrium

length, and Kj is the force constant.

e Torsion Terms (Cosine Fourier Expansion)

For a sequence of three bonds 1J, JK, KL along the chain, we define ¢ as the
dihedral torsional angle (¢ = 0 corresponds to cis) and write the energy as a

Fourier expansion

12
Etorsion(d)) - Z Vn cos(nqS) (79)
n=0
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Nonbond Interactions
The nonbond interactions (6) are described by using the following expressions:

o Electrostatic Terms (Coulomb)

The electrostatic interactions between two atoms 7 and j is

ECoulomb(Rij) = CQ% (710)
€Ly

where @; is the charge on center i (electron units), e = 1, and the constant Cg

= 332.0637 gives energies in kcal/mol when R;; is the distance in angstrom.

e van der Waals Terms (Lennard-Jones 12-6)

The van der Waals interaction between atoms ¢ and j are written as

R 12 R 6
v _ 2 v
(Rij ) <Rz‘j )

where R;; is the distance between the atoms, R, is the equilibrium distance,

(7.11)

EvdW (sz) = Dv

and D, is the well depth. The geometric mean combination rules is used:

Rm'j = 4/ RviiRvjj (7.12)

Dvij =V Dviivaj (713)

The ABCA Ewald summation method” was used to sum the nonbond interactions.?

7.3.2 Force Field Parameters
Bond Stretch and Angle Bend Terms

For bond stretch and angle bend parameters, we use the DREIDING FF values.’ Thus
the C-C bond parameters are used for UA C*-C* bonds and C-C-C angle parameters
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are used for UA C*-C*-C* angle terms.

Torsional Potentials

The distribution of conformations in a polymer and the rates of conformational tran-
sitions have a strong effect on such properties as Ty, and hence it is critical that the
FF lead to the correct relative energies of the torsional minima (e.g. trans versus
gauche) and barrier heights between them. Thus the torsional FF parameters are
particularly important for descrbing amorphous polymers. Consequently, we used ab
inttio calculations on finite model molecules to provide the torsional potential energy

parameters for infinite polymer chain.

The Hartree-Fock (HF) calculations lead to a total torsional potential function
Err(¢) which we want to exactly fit the FF. We determine Exr(¢) by fixing ¢ and

optimizing all other degrees of freedom for each conformation. Thus we write

EHF(¢) = EFF(¢) = Ebond((b) + Eangle(¢) + Etorsion(¢) + Enonbond(¢) (714)

= no—torsion(¢) + Etorsion(¢) (715)

[for the Cy UA model used below, F,onpona(®) = 0 because 1-2, 1-3, and 1-4 nonbond

interactions are excluded]. We define the torsional potential as
Etorsion(¢) = EHF(¢) - Eno—torsion (975) (716)

where

Eno—torsion(¢) = Ebond((b) + Eangle(¢) (717)

Here, E,,—torsion = 0, because there is no strain in Cj systems composed of UA’s.
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Thus,

Etorsion(¢) = EHF(¢) (718)

Quantum mechanical calculations were at the HF level (using'® Gaussian 92 and
PS-GVB!). The D95* basis was used for PTFE model compounds and the 6-31G**
basis was used for PVDF and ETFE model compounds. The torsional potentials,
Fig. 7.2, are expected to be quite accurate. For PTFE we used CF3CFy — CF,CF3
as the model. For PVDF we used CF3CHy — CF,CH; as the model. For ETFE,
we need three kinds of torsional potential because ETFE has three different torsional
curves; (1) —CF,CFy,— CHy;CHy—, (2) —CH;CF, — CF,CHy—, and (3) —CF>,CH,-
CH;CF,—. Thus, we used three model compounds: (1) CF;CF, — CH,CHs, (2)
CH;3;CF, —CF,CHj3, and (3) CF3C HoC HoC F3, respectively, for these three torsions.

Details are as follows:
e PTFE

This was optimized at five dihedral angles; the global minimum (¢ = 165.6°),
the gauche minimum (¢ = 55.28°), the trans form (¢ = 180°), the eclipsed
form (¢ = 120°), and the cis form (¢ = 0°) which were rigidly rotated around
the central C-C bond (Table 1).25 These five points energies were interpolated
with cubic splines and the energy calculated at 10° increments (Fig. 7.2a). The
Fourier expansion of this torsional potential was used to determine the torsional

constants (Vg, Vi, ..., Vi) for POLYGRAF.®

e PVDF

This was optimized?® at seven points; 0°, 30°, 60°, 90°, 120°, 150° and 180° and
fitted the same as for PTFE (Fig. 7.2b).

o ETFE

a. CF3CF, — CH,CHj: This was optimized at four points; gauche (66.30°),
trans (180°), eclipse (120°), and cis (0°).
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b. CH3CF, — CF,CHs: This was optimized at four points; gauche (65.30°),
trans (180°), eclipse (120°), and cis (0°).

c. CF3CH,—CH,CF;: This was optimized at seven points; gauche (73.95°),
trans (180°), eclipse (120°), cis (0°), 60°, 100°, and 130°. This torsional
potential is strange compared with the other torsional curves. The gauche
form seems to be less stable because of repulsion between both terminal

CF; groups.

These results were fitted with the same procedure for PTFE (Fig. 7.2c, 7.2d, 7.2¢).

Charges

The charges for all-atom simulations were obtained (using PS-GVB!!) from accurate

HF calculations (6-31G** basis set) on

CF;—-CHy—CFy,— CHy— CF, — CH; (7.19)
for PVDF and on

CF;—CHy;—CHy—CFy,— CF, — CH;4 (7.20)

for ETFE. Using the electron density to calculate electrostatic potentials and fitting
to atomic charges leads to the result in Fig. 7.2. For all-atom polymer calculations
we used the atomic charges from the central —C' F,— and —C H,— groups in Fig. 7.3.

For PVDF and ETFE, we estimated the charge of each UA by summing the

charges of three atoms.

PVDF :QC’F* = 023, QCH* = -0.23 (721)
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Figure 7.2: Atomic charges obtained by fitting electrostatic potential from Hartree-
Fock Calculation

van der Waals Parameters

The vdW parameters for Cr* and Cy* were determined from fitting lattice parame-
ters, densities, and compressibilities of PTFE (phase I1),2° PVDF (a and 3 phases)?,
and ETFE crystal.?? The results are listed in Table 2. The accuracy in predicting the
cell parameters of PTFE, PVDF, and ETFE crystal forms suggest that these vdW
parameters are reasonably accurate. For terminal C'F3 and C' H3 groups in amorphous
polymers, we used the same vdW parameters as for CFy and C H,.

The Cy* parameters were applied to Polyethylene (PE) crystal,? leading to good
agreement with experimental (Table 2). Thus, these vdW parameters can be applied

to simulation of other hydrocarbon and fluorocarbon polymers.

7.3.3 Summary

The final parameters for the MSUA FF are listed in Table 3.
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7.4 Molecular Dynamics Simulations

7.4.1 Simulation Details

The following procedure (denoted as T,—BAQ) was used in these studies. It has
also been used for a number of other polymers (PE,*3, PS,!* PVC,!® CI-PVC'®) with

similar results.

Build an Amorphous Structure

We generated an amorphous structure with random torsions using the RIS Monte
Carlo algorithm of POLYGRAF (R.; = 0.3 * Rygw) with a temperature of Thyuiq
= 500 to 600 (K) (chosen well about T,) at the estimated experimental amorphous
density (pinitiar).- The polymer system consisted of a single chain of 200 UA units in

a periodic box.

Anneal the Structure at High Temperature

Gibbs dynamics (NTP)!? were run at the build temperature until the volume equili-
brated. The time step was 3 fs. The Rahman-Parrinello mass,'?® W = w % masscell
(where masscell is the total mass per unit cell), was adjusted as follows: a high value
(w = 9999) was used initially and was ramped down gradually to w = 0.1 as the

system equilibrated. This procedure generally required ~ 200 ps of dynamics.

Quench at Uniform Rate

The temperature was dropped by a fixed amount (AT = -50 (K)) and the dynamics
started with the structure and velocities from previous temperature. The structure
was re-equilibrated for 100 ps. This step was repeated until the final temperature is

well below T, (Tfina = 50 or 100 (K)).
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7.4.2 Results and Discussion

The conformation and properties from T,—BA() were saved every 0.1 ps (the trajec-

tory file) which was analyzed to obtain the various temperature dependences.
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PTFE

For PTFE we used Tyyuqg = 600 (K), pinitias = 2.0 (g/cc), AT = =50 (K), Tfina =
50 (K). The simulation results are summarized in Fig. 7.4. The experimental T, is

reported!® to be about 400 (K).

e Figure 7.4a shows the temperature dependence of the average volume, V(T). At
lower temperatures (50 to 300 (K)), V(T') changes linearly with a small slope,
while at higher temperatures (450 to 600 (K)), V(T') is linear with a much larger
slope. These two lines intersect, leading to a distinct kink at 396 (K).

e The compressibility, G, is extracted from the dynamics as
B=((V-V)")/ksTV
where ((V — V)?) is the average volume fluctuation. Figure 7.4b shows the

temperature dependence of 3(T") which also shows a distinct kink at 376 (K).

e Figure 7.4c shows the temperature dependence of the end-to-end distance

R2 (T) =< Rend—end(T)2 >

end—end

This is small and almost constant up to about 400 (K) and increases rapidly for
temperatures above 400 (K). Above 400 (K), R? , .., changes nonmonotoni-

cally. Thus R?,,_.,.(T) increases from 400 to 550 (K) and decreases above 550
(K).

e Figure 7.4d shows the temperature dependence of the average fluctuation in

end-to-end distance
SRznd—end(T) = <(Ran—end - Rznd——end)>

This is also small up to 400 (K) and increases quickly above 400 (K). Above
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450 (K), 6 R?

end—en

. . . . . _2
4 also decreases. This behavior is similar to R, ;_...(T).

These results (i) through (v) are all compatible with a glass temperature of T/* =
400 (K) which is close to the observed glass temperature of PTFE, T¢* = 400 (K).
Similar results have been obtained for all other systems examined using the T,— BAQ
procedure. The calculations for PVDF and ETFE are discussed below and those for
PE,"® PS,! PVC,'® and CI-PVC'® are discussed elsewhere. Thus we believe that the
essence of the glass temperature phenomena has been captured in these calculations.

This raises two questions:

e what is the atomistic origin of the glass transition temperature?

e why should atomistic simulations on the small molecular weight (10,000 dal-
tons), short time scale (2 (nsec)) used here be able to calculate a property such
as the glass temperature which experimentally seems to require much larger

time scales (1 (sec)) and molecular weight?

We shall discuss a here and defer b to the discussion.

To study the atomistic origin of T}, we examined the rate of gauche-trans trans-
formations (denoted as vgr) as a function of temperature. The results for PTFE
are shown in Fig. 7.4e. We see here a negligible rate for T < 300 (K) and a rapidly
increasing rate for T > 450 (K).

Figure 7.4f shows the Arrhenius plot vgr, where we see that it exhibits an acti-
vation energy of 3.1 (kcal/mol). This is somewhat larger than the backbone confor-
mational barrier, 2.4 (kcal/mol).

In Fig. 7.5 we show the results of similar simulations for an isolated chain of PTFE
(also Cag). Here we see a kink in R% , . ., at above 250 (K) (corresponding to the
coil to globular transition). The activation energy for vgr is 2.2 (kcal/mol).

These results lead to the following picture: The readjustment of the conformation
to remain in equilibrium as the temperature is changed requires gauche-trans transi-

tions. The rate of such transitions is dominated by the rotational barrier and drops
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rapidly with temperature. For an isolated polymer strand, there is little difficulty
and the end-to-end distance continues to decrease as the temperature decreases (see
Fig. 7.6a). However, in a condensed system the polymer strands must interdiffuse for
the conformation to change and the rate of this diffusion places a lower bound on the
effective rate of conformational changes. When the gauche-trans rate drops below
this value, the conformation is frozen, leading to a glass.

As mentioned above, these properties are all consistent with associating the kink
at about 400 (K) with the glass temperature, T* = 400 (K). Indeed for PTFE the
T;% = 400 (K). Thus above T} the conformation expands with temperature, but below
T, it is frozen into place. This leads to small changes in < V(T') > and §(T) below

T,, but large changes above Tj.

PVDF

For PVDF we used Tyyig = 500 (K), pinitia = 1.7 (g/cc), AT = —50 (K) Tinas = 50
(K). The results of the simulations are shown in Fig. 7.6. The experimental value of
T, is T = 233 (K).17

e Figure 7.6a shows the average volume. There is a distinct kink in V' (T') at about

258 (K).

e The temperature dependence of the compressibility, 5(7T'), is plotted in Fig. 7.6b
which shows a kink at 339 (K).

e Figure 7.6c shows the average square of the end-to-end distance, R? , _ ,, which

is almost constant up to about 250 (K). Dramatic changes occur above 250 (K).

e Figure 7.6d shows the average fluctuation 6R? , _ ., which is also constant up

to 250 (K) and increases quickly above 250 (K).

e The transition frequencies, vgr, of PVDF are shown in Fig. 7.6e. There is a
negligible rate for 7' < 200 (K) and a rapidly increasing rate for T > 300 (K)
with T, = 275 (K). Figure 7.6f shows the Arrhenius plot vgr. Here we see
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an activation energy (2.5 (kcal/mol)) similar to the backbone conformational

barrier, 2.8 (kcal/mol).
e Results for simulations on isolated chains are shown in Fig. 7.7.

Although less consistent than for PTFE, we take the theoretical value to be T;h =

250 (K) which is in rough agreement with experiment.

ETFE

For ETFE we used Tyyiiq = 600 (K), pinitia = 1.7 (g/cc), AT = —50 (K), and Tfina

= 50 (K). The simulation results are shown in Fig. 7.8.

e Figure. 7.8a shows that the average volume, V(T'), has a distinct kink at 376
(K).

e The compressibility, 5(7'), is plotted in Fig. 7.8b, which shows a kink at about

363K, similer to the average volume results.

e Figure 7.8c shows that R% , .., is constant up to 200 (K), changes a small
amount up to 400 (K), increases rapidly at 400 (K), and decreases rapidly for
temperatures above 450 (K). This behavior is similar to the results for PTFE

except that the tendency is a decrease with temperature (except 450 (K)).

e Figure 7.8d shows the average fluctuations 6?2, ., The change is also small
up to 400 (K) and increases quickly above 400 (K). This is similar to the re-
sults for PTFE and ETFE. The temperature dependence of the fluctuations is
different than R?, ., However, the temperature at which big changes occur

is the same.

e The transition frequencies, vgr, for ETFE are shown in Fig. 7.8e. We see
here a negligible rate for T <300 (K) and a rapidly increasing rate for T >
400 (K). From this, we predict T, = 393 (K) for ETFE. Figure 7.8f shows the

Arrhenius plot of this rate, where we see that it exhibits an activation energy
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(3.3 (kcal/mol)), somewhat larger than the backbone conformational barrier,

2.8 (kcal/mol) (the smallest barrier of the three kinds of torsion curves).

e Calculations on isolated chains are in Fig. 7.9.

An experimental T, for perfectly alternating copolymer ETFE does not exist because
of the difficulty of making the perfect alternate copolymer. Thus we estimated the
Ty = 420 (K) of amorphous ETFE, by extrapolation.’® The predicted value T2* =
385 (K) which is in rough agreement with the estimate (420 (K)) from experiment.

7.4.3 Discussion

The effective T, from various simulations are compared in Table 4. Here we see
that there is reasonable consistency between the theoretical numbers and reasonable
agreement with experiment. Thus we believe that the results discussed above indicate
that the calculation have captured the essence of what is experimentally characterized
as the T,.

As discussed above and shown in Table 4, we find an excellent correlation of T,
with the onset of gauche-trans transformation, vgy. Thus our atomistic interpretation
of the T, is that it is the temperature above which gauche-trans transformations can
compete with diffusion to change the conformation states. The Arrhenius parameters
are summarized in Table 5. Here we see that the observed E,. correlates reasonably
well with the rotation barriers of the isolated polymer chain and that all three cases
have similar pre-exponential factors, A.

We turn to the question as to why we were able to calculate T,. General experience
with measuring 7 is that the experiments must be on a fairly slow time scale, say
(msec) to (sec), whereas the time scale for our simulations is ~2 (nsec). General
experience is that a 2 (nsec) experiment would lead to a T, much too high. We believe
that the explanation of why the calculated T correlates well with experiment has to

do with the way the calculations are done. The calculations use periodic boundary
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conditions (PBC). Thus starting at a location (z,y,z = 0, 0, 0) the polymer is built

with no constraints except that:

e we simultaneously grow equivalent polymers starting at ma, nb, pc where m,

n, p are all possible integers,

o the lattice vectors a, b, ¢ are chosen so that the volume per chain leads to the

proper density, and
e cach polymer chain is in equilibrium with itself and all other polymer chains.

This means that locally the polymer has a random configuration but it also has
long-range order. That is, the same random configuration occurs in every region of
the infinite polymer. Thus although heterogeneous on the scale of the unit cell lengths
(say 30 (A)), the material is homogeneous over the scale of microns or meters. This
contrasts with the experimental materials which are heterogeneous over the entire
sample (say 3 (cm)); that is, the local conformation is different in every region of the
system. Thus to observe a phase transition for the experimental system, the time
scale must be slow enough that energy information can be transferred throughout
the material. For a 3 (cm) sample, a velocity of 100 (m/sec) would require 3 * 1074
(sec) for the energy information to propagate through the system. However, for the
simulated material the long-range homogeneity requires only 30 ps for the energy
information to be transferred throughout the 30 (A) of the unit cell. Thus because
of the long-range order, a 30 ps calculation using PBC is equivalent to a 0.3 (msec)
experiment on a 3 (cm) heterogeneous system.

A second difference between the simulations and experiment is that the simulated
polymer is monodisperse. That is, it has exactly the same MW throughout the whole
polymer. In contrast, the experimental polymer has a distribution of MW, causing
additional heterogeneities in the experimental system.

These results are most exciting. First, the T,—BAQ strategy for mimicking the

T, of such materials should be most valuable in predicting the 7, for new materials
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(of course we need to test this strategy for copolymers, blends, higher MV system,
etc.).

Second, the association of T, with conformational rates provides an atomistic
interpretation that should be valuable in developing new polymer materials with T,
moduli, and other properties adjusted to match specific requirements.

Third, the association of T, with conformation barrier suggests that we might be
able to correlate T, with other indicators of conformation barrier. This might allow
very fast calculations to predict the T, of new materials (involving ps of dynamics

rather than ns).

7.5 Conclusion

Using a systematic annealing methodology for molecular dynamics simulations, we
obtain well defined glass transitions that correlate well with the calculated rates of
gauche-trans conformational transitions above Tj,.

The use of united atom potentials allows more rapid calculation of these quanti-
tites. The good agreement between T, and Tgth with the use of MSUA suggests that
the main chain dominates the 7T, phenomenon.

We cannot assume yet that these same results will obtain for more realistic sim-
ulations on polymers involving say, a million atoms per cell. However, the good
correlation between the calculated T; and the experimental T, for similar calcula-
tions on several polymers encourages us to believe that the same trends will be found
for copolymers and blends. If so, the correlation of T, with atomistic quantities (e.g.,
internal conformation barrier, vide infra) could allow atomistic reasoning to be used
in the design of new polymers with modified T, and modulus. In addition, it could
allow much faster calculation of T,. Thus reliable rates for gauche-trans transitions
can be calculated with much less computational effort than the lengthy simulations

required to fully equilibrate and measure volume and compressibility.
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7.8 Tables

Table 7.1: Total energies for Hartree-Fock calculations. The total energy of the trans
form is in Hartree, the relative energy for each configuration is in (kcal/mol).

Torsion CF3CF2- CF3CH2— CF3CF2- CH3CF2- CF3CH2'
Angle -CFQCFg -CFQCH3 'CHQCH3 -CFQCHP, -CHQCF;J,
0°, cis 8.251 5.828 6.377 10.874 9.922
30° 3.061

60° 0.615

gauche® 1.081 1.078 2.905 2.537
90° 1.297

100° 2.653
120°, eclipsed 2.348 2.784 3.721 6.181 2.757
130° 2.490
150° 1.740

165.6° 0.000

180°, trans 0.137 0.000 0.000 0.000 0.000
Total

Energy, trans -1146.17855 -651.61444 -651.60683 -552.75101 -750.48619

e ¢ Dihedral torsional angles are 55.28° for CF;CF,CF,CF3, 66.30°
for CF30F20H20H3, 65.30° for CH30F20F20H3, and 73.95° for
CFE3CH,CH,CF;.
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7.2: Properties of polymer crystals using the MSUA. Experimental values (in

paranthesis) are at room temperature unless otherwise noted. In all polymers the ¢
axis corresponds to the chain direction.

PTFE® PVDF-I? PVDF-II¢ ETFE® PEe
A (A)  5.61(5.65) 8.37(8.58) 4.78(4.96)  9.98(9.60)  7.37(7.12)
B (A) 11.13(11.18) 4.88(4.91) 9.59(9.64)  9.02(9.25)  4.71(4.85)
C (A) 70.04(70.20)  2.56(2.56) 4.61(4.62) 5.13(5.00)  2.56(2.55)
pf 2.38(2.34) 2.04(1.97) 2.01(1.92)  1.84(1.90)  1.05(1.06)
B9 0.188(0.189) 0.104(0.110) 0.121(0.126) 0.157 0.099(0.095)
CED" 1.8 2.6 2.2 1.9 2.2

¢ PTFE phase II. This contains a left- and right-handed 54/25 helix pair in the
unit cell (at 275 (K)).

® PVDF form I (8 form) has a planar-zigzag conformation (all trans; TTTT),
with two chains in the unit cell. These chains are aligned in the direction parallel
to b axis, leading to a polar crystal.

¢ PVDF form II (o form) has the TGTTG~ conformation with two chains in
the unit cell. These chains are aligned antiparallel (nonpolar) in the a direction
perpendicular to the chains.

¢ ETFE crystal has the extended zigzag conformation with four chains in the
unit cell. Each chain monomer has four nearest neighbors with the C'H, groups
of one chain adjacent to the C'F» groups of the next.

¢ Polyethylene unit cell has a planar-zigzag type of conformation (all trans) with
two chains in the unit cell. The cell parameters were measured at 4 (K).

! Density in units of (g/cm)3.
9 Compressibility in units of (1/GPa). 2

" Cohesive energy density per one carbon atom in units of (kcal/mol).
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Table 7.3: Force field parameters for the MSUA (FF). Here Cr represents -C Fy- or
-C'F3, Cy represents -C Hy- or -C Hj

Bond CFCF CFCH CHCH

Kg* 700.0 700.0 700.0

R, (A) 1.590 1.520 1.520

Angle CFCFCF CFCHCF CFCFCH CHCFCH CFCHCH
Kb 100.0 100.0 100.0 100.0 100.0
0,(degrees) 110.0 114.5 114.5 114.5 112.0
Torsion® CFCFCFCF CFCHCFCH CFCFCHCH CHCFCFCH CFCHCHCF
Vo 2.3844 2.0685 2.7072 4.9025 3.5542
Vi 2.2043 0.9915 1.3039 2.5875 3.2813
Va 0.8916 0.7711 0.4978 0.4920 1.2005
Vs 1.7947 1.6703 1.8730 2.8102 1.5713
Vi 0.7312 0.0348 -0.0200 0.0462 0.2132
Vs 0.1592 0.1797 -0.0202 -0.0015 0.1200
Ve 0.1366 0.0354 -0.0009 -0.0100 -0.0234
V7 -0.0848 0.0473 0.0070 -0.0006 -0.0530
Vs -0.0073 0.0021 0.0062 0.0061 0.0148
Vo -0.0216 0.0214 0.0239 0.0393 0.0395
Vio 0.0336 0.0014 -0.0024 0.0013 0.0023
Vi1 0.0104 0.0005 -0.0019 -0.0019 0.0014
Via 0.0235 0.0001 0.0002 -0.0020 -0.0027
van der Waals Cr Cy

R,(A) 5.650 4.500

D, (kcal/mol) 0.080 0.120

Charge? Cr - Cg

PTFE 0 -

PVDF 0.23 -0.23

ETFE -0.06 0.06

e ¢ (kcal/mol) /A2
e ° (kcal/mol)/rad?.
e ¢ (kcal/mol).

e % Electron units.
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Table 7.4: Predicted glass temperatures (K) from molecular dynamics simulations of
fluoro polymers.

Polymer Experiment Theory
Selected \Y% 3 Rend—end  Vor
PTFE® 400 £ 10 400 396(360) 376(389) 400(400) 399
PVDF 233+ 10 260 258 339 250 275
ETFE 420 £ 20 390 376 363 400 393

¢ Values shown in parentheses are from the heating cycle rather than cooling.

Table 7.5: Arrhenius relation, vgr = Aexp(—E,q/RT) from the transition frequencies

Condensed System Isolated Chain Model System
Polymer E.. A E,. A Eyor
(kcal/mol)  (sec™!)  (kcal/mol)  (sec™?) (kcal /mol)
PTFE 3.05 3.25 x 101 2.15 3.11 x 10™ 2.4
PVDF 2.53 3.36 x 10 2.51 4.51 x 101 2.8

ETFE 3.25 3.57 x 10 2.92 4.10 x 10 2.8
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7.9 Figures
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Figure 7.3: Torsional potential curves of Cy compounds obtained for Hartree-
Fock calculations and from the force field (POLYGRAF). (a) CF;CF,C'F,CFy,
(b)CF3CHQCFQCH3, (C)CF30F20H20H3, (d)CH3CFQCFQCH3, and (e)
CF3;CH,CH,CFj3. The cisi conformation has ¢ = 0°.
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Figure 7.4: Molecular dynamics simulations on PTFE, using T, — BA(Q). The tem-
perature dependence of

a. the average volume, V(T),

b. compressibility, 5(T),

. -2
c. average square of end-to-end distance, R, ,4_.n4

. : =2
d. standard deviation of square of end-to-end distance, R, ; 1 end
e. transition frequency. vgr,

f. Arrhenuim plot of transition frequency.

The filled circles were used for linear fits while the open circles were excluded.
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a. the average volume, V (T,

b. compressibility, 3(T),
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f. Arrhenuim plot of transition frequency.

The filled circles were used for linear fits while the open circles were excluded.
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Figure 7.8: Molecular dynamics simulation on ETFE, using T, — BAQ. The temper-
ature dependence of

a. the average volume, V(T),

b. compressibility, 5(T),

2

c. average square of end-to-end distance, R, ;.4

d. standard deviation of square of end-to-end distance, Eﬁnd_to_end,

e. transition frequency. vgr,

f. Arrhenuim plot of transition frequency.

The filled circles were used for linear fits while the open circles were excluded.
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Appendix A Valence Force Fields

A.1 Introduction

Valence force fields are used to describe intra-molecular interactions in terms of
2-body, 3-body, and 4-body (and higher) interactions. We implemented many popu-

lar functional forms in our program.

A.2 Bond

Bond interactions are included for any two atoms which are “connected.” No special
sequence is assumed. Two types of bond parameters are currently implemented; they

are Harmonic (Type=1) and Morse (Type=2).

Ae R ~ B

Figure A.1: Bond interaction

A.2.1 Harmonic Bond

The simplest energy expression is the harmonic interaction
1 2
E = §K6(R - R.) (A.1)

where the equilibrium bond distance R, is in Angstroms (A) and the force constant

K, is in (kcal/mol) /A2,
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The a component of the force on atom B can be derived as:

OF
FB = _
@ OR,,
R
= K. (R-R)—= A2
(R- R (4.2
where we have used
OR o(R.,R,)
2 = 1" = 9R, A.3
RaRa OR, i (4.3)
The second derivative:
O’FE 0 R,
= K,—|(R— R,)—
OR,0Rg ORg [( ) R ]
R, R,
= K.[(1 = )00 + 75 Rl (A.4)

A.2.2 Morse Bond

The simplest energy expression capable of describing bond disruption is the Morse

interaction

with
x = e V(F-E) (A.6)

Here R, is the equilibrium bond distance (A), D, is the bond energy (kcal/mol), and
v is a parameter related to K, (the curvature or force constant at R.). The zero

energy is defined so that £ = 0 at R.. The parameter v is related to K, and D, as



168

in Equation A.7:

K
= ° A.
Y 2D, (A7)
The o component of the force on atom B:
oF
FP = -
“ OR,,
dx
= =2D.(x -1
(x-1) R,
R,
= 2vD.(x — 1)Xf (A.8)
Here we have used:
8X — -V(R“Re)Ra
oR, _ ° R
R
. _ylta A9
X g (A.9)
The second derivatives:
0’E 0 R,
= —29D,—— —1)~—
OR.0R; 78R, XOe= D7)
Rﬂ R, 5&/3 R, Rﬁ
= =29D.| —2x — Dyx—— —1)—= — —1)—=—
VD[ - (2x = Dxg 5 +xx— D5 —x(x — 1)z 7]
_ R,Rgs R, Rg dap
= 2yD[yx(2x - 1) 7 +x(x —1) 73 - x(x 1)-R—] (A.10)

A.3 Angle

Angle interactions are included for any two atoms that are bonded to a common atom.
Currently four types of angle functionals are implemented; they are Harmonic Cosine
(Type=1), Harmonic Cosine with Stretching (Type=11), Harmonic (Type=21), and
Harmonic with Stretching (Type=31). As in Fig. A.2, we have
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Figure A.2: Angle interaction

RA-RC

cosb = pape

(A.11)

Before we get into computation of forces and second derivatives, we’ll derive two

useful entities.

c A

8;;20 = R]j}l%c — cos 9(}1;—2“)2 (A.12)
and
9% cos & [ RS R4
wy%zzwﬂmm_m%mﬂ
Cpa ApA
= —% + 2 cos 0% - 0050(15%?)2
c A A

- [% — cos 9(}]:—‘5)2] (;;—:)2 (A.13)

A.3.1 Harmonic Cosine Angle
General Case

The cosine harmonic potential has the following form:

1
E = §C(C089 — cosf,)? (A.14)
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where 6, is the equilibrium angle and C is a parameter related to the force constant.

Differentiate Equation A.14 with respect to cos, and we obtain

OF
E' = = — cos b,
5eosd C(cos @ — cos b,)
0’FE
EII — R —
0? cos 0
Thus the 6 energy derivatives are
8E I .
7 —FE'sind
O’E ) . . 0cosf
20 = —E'cosf — E"sinf 50

= E"sin%0 — E' cosd

Then the force constant K, becomes

O*F

—_ — 12
——879—06-—051n98

K.

leading to

K.

sin?4,

C =

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

The zero of energy is defined so that E(6.) = 0, hence the barrier toward linearization

is

1
Ebarrz'er = E(]_SOO) = 50(1 -+ cos 0@)2

(A.21)

In general, the parameters in force field definition are in terms of 6, (degree) and K,

((kcal/mol) /rad?).
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The o component of the force on atom A is:

0F
F4 = ——
“ ORA
= —C(cosf — cos 06)%
RS Ry
= —C(cosf — cosb,) [R—AEE — cos 9(7{/—172— (A.22)
The second derivative on atom A is:
O°F %, dcos
= O 6 — )"
SRAORS CaRE}[(cos cos b,) R, ]
O cos  dcos b 92 cos f
= OWW + C(COS@ - COSOe)m
RS Ry 11_Bs Rj
= C[RARC COSG(RA) HRARC —cosG(RA)2]
RSRY Sap R}Rj
_ _ A (07 [87 _ 2 (87
C(cos b COSQ)[RC(R ay3 -i-cosﬁ((RA)2 (RA)4)]
R§ R; 1 R4
—C(cos§ — cosb,) {W — cosH(RA)Q} L (A.23)
Similarly, the force on atom C'
RA RE
c_ _ _ a_ a
F, = —C(cosf cosﬂe)[RARC cosH(RC)Q] (A.24)
and the second derivative on atom C
O°E RA RS RS
—————aRgRg = C[—RCRA —cos& ROY2 ] [RCRA cose—(Rc)Q}
RARC C pC
ap RCR
« ,H _ a”p
—C(cos @ — cosb,) [ ( TBE +cos9((RC) 2(RC)4)}
RC RS
—C(cos @ — cosb,) [RCRA co RC) ](RC)Q (A.25)
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The force on atom B

FB = _FA_FC (A.26)

[0 « 83

and the second derivative on atom B

O*E O*E O*FE

ORBORE ~  ORAR; ORSCRS

(A.27)

Linear Case

As 0 — m, sinf — 0, and C in Equation A.20 goes to infinity. Consequently, for the
linear geometry the Equation A.14 is replaced by

E =C(1+4cosb) (A.28)
For angles close to linear, 8§ ~ 7 — ¢,

1
cosf ~ —1+ 562 (A.29)

leading to
1
E= 506 (A.30)

Thus C is now the force constant of the linear molecule.

The o component of the force on atom A is:

oOF dcosf
A _ _9B _
Fo = —3ra= C%Ra
RY Ry
= C[RARC —cosH(RA)2 (A.31)
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The second derivative on atom A is:

O°F =C 0 [ Ry —cosH—Ré ]
BRQGR’; B aRg RARC (RA)?
RA C RC’ RA A
= —C’——l———ﬁi— [—ﬁ—cos9 s } Fo
(RA)2 RARC RARC (RA)2] (RA)2
RARS )
aths af
+20C089W - CCOSHW
RCYR4 + RARS RARY )
_ _ g lvg + g fig ally af
= C[ (RAPRC -i—3cos€(RA)4 cosQ(RA)z]
Similarly, the force on atom C is:
RA C
C _ a o
F, C[RCRA cosH(RC)Q}
The second derivative on atom C is:
aQ—E :C[_ RéRﬁC-f_Rgng +3cose_}_zjs_‘__R_g__cose_§g_ﬂ__]
8R36Rg (RC¢)3RA (RC)4 (RC)?

Again for atom B,

FB - _f4_FC,

and

O*F O*FE O’FE

ORBORE ~ ORAR; ORSRS

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

A.3.2 Harmonic Cosine Angle Coupled with Bond Stretch

General Case

For good description of vibrational frequencies, it is necessary to use an angle term

that depends on bond distance. The simplest such potential having the proper sym-
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metry, E(@ —7) = E(0 + ), is

E(8, RA, RC) = %C(COSQ — c0s0,)2 + D(R* — R%)(cos 6 — cos 6,)

+E(R® — RS)(cosf — cosb,) + F(R* — R*)(RC — RY) (A.37)
The a component of the force on atom A for this energy expression is:
OF
Fll=-
“ OR4
= — C(cosf — cos 96)80050
Ry
A
— D(R* ~ Rf)ag);e — D(cos 8 — cos 0,3)—%;‘—1
dcosf R4
- E C _ pC _F C _ pCyila
(RS — RE) 2350 — F(RE — BE) 38
- [C(cose — cosbe) + D(R* — RY) + E(RC - Rf)} a;:zo; 6
]
A A
— D(cosf — cos HG)% — F(RC - Rf)%
A A c c R$ o
=— [C’(COSH —cosb.)+D(R* - R))+ E(R” — R, )] (W - COSH(RA)Q)
RA c c RA
— D(cos 6 — cos He)R—j — F(R” — R, )R—j (A.38)
The second derivative at atom A:
O’E &% cos 0 A A P
SHIRT = ORI [C(cose — cos.) + D(R* — R%) + E(R® — RS )}
dcosb [ 0cos R} dcosf R4
B o 4 D(cosh —
R [C oR? +DRA]+ +D OR? RA+ (cos
0aB  pC _ pC RyRy o o
—= — - F - A.39

where 8% cos §/OR{ R} and 8 cos#/dR; have been derived in previous sections.
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Linear Case

For linear molecules (§ = 7) we use the following

E =(1+cos8)|C+ D(RA— R?) + E(RC ~ Rf)]

+ F(R* — R*)(R® — RY) (A.40)

The force on atom A is:

OE
A [
Fo = ORA
_ Ocost 4 4 c c
=~ 353 [C+D(R ~ R+ B(R ~Re)]
RA RA
+ (cos 0 + l)DR—Z + F(RC - RE)R—Z
C A
—_ [—a _ cos 9i] [C + D(RA — R + E(R® — RC)]
RARC (RA)? € €
RA
+ | D(cosd+1) + F(RC - RS)] = (A.41)
The second derivative on atom A:
O*E  0?cosb 4 A c e dcosf R4
SRIR] ~GRIR] [C+D(R* — BY) + E(R —R9)| +D T
5a/3 RéRé C C
[ﬁ -1 RA)SJ [D(coso +1) + F(RC — R )] (A.42)

The computations of forces and second derivatives on atom C' are similar to that of

atom A; forces and second derivatives on atom B follow that of previous sections.

A.3.3 Simple Harmonic Angle

General Case

B(6) = %K,,(e —9,)? (A.43)
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For the simple harmonic potential Equation A.43, 6, (degree) is the equilibrium angle

while Ky ((kcal/mol)/rad?) is the force constant. Since

1517} o0 Bcosﬁ_ 1 Jdcosé

ORA ~ Ocosf ORA ~  sinf ORA

The force on atom A is;

dcosf
A __ _ . —1
F=K(0—6.)sin""0 R
The second derivative on atom A
0*F ) . _1,0cosf
oRIOR; ~ " oR3 (08570 OR} ]
., 0%cosf
= — K(O — He)sm 10W

cosﬂ] 0cosf dcosl

+ K [sin"QH —(6-8.) TN

sin30
where we have used

8sin9_8sin9 o0 80059__(:089(‘3(:050
OR4 ~ 00 Ocos® ORA ~ sinf ORA

Linear Case

Assuming 8 = 7 — ¢, we have

Since

cos(m —4) = -1+ %62 + O(€%)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)
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the force on atom A to second-order is:

1. 962 Ocosh
FAo__K_—
* 2 Odcosf ORA
1__ 06% Ocosh
=~ M5 oRra
(5 ) e
Jdcosf
=— A.50
K IR (A.50)
The second derivative on atom A is:
O’E 0% cos
— =K — A5l
8RQ8R§‘ BR{Q&)R‘; (A-51)
A.3.4 Harmonic Angle Coupled with Bond Stretch
General Case
The general expression which couples a harmonic angle with bond stretch is:
E = %K(B —8.)*+ D(R* — RY(0 - 6,)
+ E(R® - R%)(6 - 6,) + F(R* — RY)(R® - R®) (A.52)

The force on atom A is:

oF
FA=—
“ OR4
06 Ocosb
=~ KO =0 5000 ORA
00 Ocosb A A ¢ pC
~ dcosh ORA [D(R RO)+ E(R” = R, )}

— [D(e —9,)+ F(R® - RS)J g—f
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=K(6 - Ge)sin_lﬁaaclgze
0 cosf
A _ A C _ C |
+ [D(R* - R2) + B(R® - RY)|sin~'9 o
C C RA
- [D(e —8,) + F(RC — RC )] = (A.53)

The second derivative at atom A is:

OF T
ORAOR; |

A A c C 82 cos f
— — —_— 1 _1 et
K(g 06) + D(R Re ) + E(R Re ):| sin” 0 Y ﬂ!

T B A ¢ _ poy]cost dcosf dcost
K(8-0)+ D(R* - R) + B(R Re)]smge TN

2)
dcosf R}

r dcosb
— | — Ksin™! P ginTlgl 2
- sin 98R£ —!—DRA]sm HaRé
+[D(6 - 6.) + F(R® - RC)]((S"—ﬂ - RéR?)
I ¢ ¢/I'\RA~ (RA)3
dcos ) RS
s —1 8
Linear Case
There is no definition for linear case.
A.4 Torsion
5 \
(%", i \a

Figure A.3: Torsion interaction

A torsion interaction is defined with respect to four atoms I, J, K, LL as in Fig. A.3.
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The bonds are I-J, J-K, and K-L. Define: Let’s define

F =R!'-R’
G =R’ - R¥
H =R' — RK,

and

A=FxG
B =H x G.

Then

B
B

|

cos ¢ =

(A.55)

(A.56)

(A.57)

The torsion energy is a function of either the dihedral angle ¢, or cos¢. For z =

I, J, K,or L, we’ll derive the entities used in computing of forces and second deriva-

tives.
dcosp 1 0 A B A 0 B
dR: _[aRg(A)] B A [aRg(B)]
_[LaA _ o4 A].E+é.[1<‘ﬂ3 _ 333]
“LAGR: O9RzA?2] B A LBOR: OR:B?
1 0A A A7 B A [l 6B 9B . B
=1 W w5 sor B R
1 A 9A A-B
=288 o) ~ A e wE
1 B 9A B-A
T a5M g B g oA (A.58)
and
0? cos ¢ 1 6A 0A A 1 0B 0B . B
== — (A - 2002 —(B- =
ORIOR: [AaRg (A aRg)A3] [B@R; ( 8Rf,)B3]
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[1 0A A 0A A]_[l 0B B BB)E]

Ao W R wl Bam B ar B
+a§zz[%%_( '2987%)%]%
e o a
“ 3 o o~ R B (159
Further expanding, we have:
2
a5 i) =~ (A ) o + Ao (400
2
62},(%;}2):_$< 'aaz?g)aaiféagg?}zg (A.61)
2
oz (4 a3 (o o) 7+ (A omom)
(&g lmam oEA )] 4o
2
oz | o ) = 57) 5 + (B ooy 7
(0 amplmom FC )] 4w
where we have used
o A om " 4o (389
o7 "5 o7 (469
Now let’s compute the individual terms
gﬁ;ﬁ Zagw (FxG)s = ag (€0 FuC)
—eﬂuvg]{;G + € ug—% (A.66)
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where ¢,3, is the Levi-Civita vector. Similarly

9B, oH oG,
R fﬁuva_RgGv + GﬁuuHu@

For z = I, which is atom I, we have

0A 0Ag

= A=~
ORL ~— "PORI

A

Similarly

OA
ORI
OB
ORI
OB
ORI

B-

A -

B.

For x = J, which is atom .J, we have

Aaa;% =(AxG)y— (FxA)
B-;% —(B x G), — (F x B)
A-SJ]%:—(HXA)Q
B-S}%:—(HXB)Q
For z = K, which is atom K, we have
A.;Z%:—(AXF)Q
B-ai%:—(BxF)a
A- oB =(AxG)o+(HxA),

ORE

(67

= Aﬂeﬁﬂyaa#GV = ~€aﬁVA5G,, = —(A X G)a

(A.67)

(A.68)

(A.69)
(A.70)

(A.71)

(A.72)
(A.73)
(A.74)

(A.75)

(A.76)
(A.77)

(A.78)
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And for x = L, which is atom L, we have

A

B

A

B-

Terms used in second derivatives

Similarly

A,
ORZOR;

0°A,
ORLOR],
0?A,

=(B x G), + (H x B),

0A
ORL 0
O0A
ORL 0
0B
AFL = —(AxG),
0B
82
oz v
_ ¢ I:aFu 8GV 8F/~L 8GI/
~ " |9RzAR% " OR%ORZ
= 0
= e,m,,(—6ﬂg(5ya—(5ua6uﬂ)

ORIOR]

024,
ORKORK
A,
ORLOR

0B,
ORZORY,

9B,
ORLOR],

9B,
ORIOR]

= Sy [

= 0

0H, 0G,

—€yga — €yap =0

0H, 0G,

ORz O3

OR% ORz

|

)

(A.79)

(A.80)
(A.81)
(A.82)

(A.83)

(A.84)

(A.85)

(A.86)
(A.87)

(A.88)

(A.89)
(A.90)

(A.91)



Forz =1

Forx=J

O0A

8RI

«

0A

ORI’

0B

ORJ

04
OR!

(o7

OA
ORI

OB
ORI

oA
OR]

B
ORI

0B

OR]
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0’B
W = evuV(‘Suﬁéua + padup )
= €0+ €yap =0
FB,  _
ORLORL
0A 0 0
. .a.R_é = Evﬂuﬁ(FuGu)evn)\a—‘Ré(FnG)\)
= e'yuue'ym\(suaénﬂGuG/\
= f'yauf'yﬂAGuG/\

= (5aﬁ511>\ - 5a)\5uﬂ)GuG)\
= 0,5(G - G) — GoGy

0B

. — fond 0
OR}
0B

. — fovueed O
OR}

= €y (—04aGy + 0vaF))epur(—0,3Gr + drgF)
= €ty GrGr — €yar€ygGLFy
—€yua€y VG + €ypa€ynp L Fy
= 003(G-G) — GoGp+005(F-F) — F Fp
+003(G - F) — GaF, + 003(F - G) — F3G,
= €yu(—0uGy + OuaF))eyrdngHy
= —€av€ywGrHe + €yua€yrpf i,
= —GgHy+ 00p(G-H) + 0a5(F - H) — FgH,
= €y, 0,06 Hi00

= (H-H)bas — HsH,

(A.92)
(A.93)

(A.94)
(A.95)

(A.96)

(A.97)

(A.98)

(A.99)
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Forz =K
JA OA
ﬂ : @E - efyuuFuauaf’ym\Fnéx\ﬁ
= EyuabynpFull
= (F-F)dos — FsF, (A.100)
JA 0B
RK ORE €y (—Fuua)€ymr(—0ksGr — Hilxg)
= €yuabyprFuGa + €ypaynpFuty
= F3Go—00p(F - G)+603(F-H) — H Fp (A.101)
0B 0B
ORK ’ W = ewu(_(suaGV - 5vaHu)67n>\(_5nﬂG/\ - 5>\ﬁHn)
= by GuGA + €ua€yp HuG) + €00 €ynpGuHi + €pa€ynpHy Hy
= 5a5(G . G) — GaGﬂ — (Sa,g(H . G) + GaHg
—(5a5(G . H) + HaGﬂ + (Saﬁ(H . H) + HaHg (A.102)
Forx =1L
OA OA
el A.103
RL OR; ~ (4-103)
JA 0B
= = A.104
oRE oRE ' (4104
0B 0B
8R£ : @ = e'mu(suaGuffym\énﬂG/\
= e'yauffyﬁ)\GuG/\
= 0u8(G - G) — G,Gp (A.105)

A.4.1 Pure Torsion

The general energy is defined by:

E(¢) = Z C; cos (i) (A.106)
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where ¢ is the angle between plane IJK and JKL. The sum can include up to n = 12.

Typically, all of the C; are zero, except Cy and C3;. Knowing cos ¢, cos(ng) can be

computed by the recursive formula
cos(ng) = cos[(n — 1)¢] cos ¢ — cos[(n — 2)4]

In order to compute the forces and second derivatives, we need

dcos(ng)  Ocos(ng) 0¢

dcos¢p O0¢p  Ocos¢
_ nsin(mb)
N sin ¢
and
d*cos(ng) O rsin(ng)] 0¢
2cosp n%[ sin ¢ } dcos ¢
_sin(ng¢) cos ¢ —ncos(ng)sin ¢
- sin® ¢

where the sines can be computed from the cosines. When ¢ — 0,

dcos(ng) . ng 9
Beose o0 &

and
0% cos(ng) i né(l — 3¢%) —n(l — 3n?¢?)¢
02cos¢p " ¢£EJ° @3
= %n2(n2 - 1)

(A.107)

(A.108)

(A.109)

(A.110)

(A.111)

Having the above entities and formulas in the previous section, we can compute the

force of atom x, with x = I, J, K, or L as:

FT — _Bcos(n¢) . _8COS(n¢) dcos ¢
« ORz  Qcos¢ ORZ

(A.112)
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and the second derivative as

0% cos(ng) _ dcos(ng) 8?cosd 82 cos(ng) dcos ¢ O cos ¢ (A.113)
ORZOR; ~ Ocos¢ ORLORG  0O%cos¢ ORE ORS '

A.4.2 Cross Coupling

For chain molecules, an accurate description of their rotational vibration frequencies
often requires the introduction of cross coupling terms. Three types of cross couplings
are implemented, bond cross coupling, cosine angle cross couping, and angle cross

coupling.

Bond Cross Coupling

In addition to the pure torsion terms, the coupling energy of the two outer bonds (IJ and KL)

is introduced as
E = Ky(R" — RI)(RM — RLK) (A.114)

with additional forces on the four atoms as

FI' = —Ky(R" — RLK)RU (A.115)
a = bb RIJ :
RIY
F! = Kbb(RLK—RfK)RU (A.116)
FX = —Ku(RY - R”)RLK (A.117)
a = bb RLK '
RLK
Fy = Kn(RY - R)2ix (A.118)
and additional second derivatives as
’E LK LK ( DaB RrIIJRéJ
srram — Ku(R - R (57 - B (A.119)
0’E LK LKy [ 9ap RcIIJRlIiJ
= Ky(RY — R! )(RU— T (A.120)

ORIOR]
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0*E bas  RIFRE"

SRETHE Ky(RY — RéJ)(RLK - R (A.121)
O*E bog  REFREY

W Kbb(RIJ — RéJ)(RLK — (RLK)3 ) (A122)

Cosine Angle Cross Coupling

Similar to bond cross coupling, this is also an additional term. The energy which

couples cosines of the two angles (8775 or #75L) with the torsion angle ¢ is given as
E = K, (cos "5 — cos 017K (cos 8/ KL — cos 07%L) cos ¢ (A.123)

Forz =1, J, K, and L, the additional force is given by:

OF
F? = —
“ ORZ
0 cos 9'7% JKL JKL 1JK 17k 0 cos 7KL
= —Kaacosqﬁ[W(COSG —cos @, ") + (cos 8/ —cosf,77) 3% }
— Koo (cos 8775 — cos 0775) (cos 075L — cos GeJKL)% (A.124)
and the additional terms in the second derivative are:
OPE i 6‘cos¢[6cos0”K( QJKL_COSGJKL)+(COS'9[JK_COSQUK)acOSHJKL
ORzOR; ~ " OR: | oRz e e oRz
O cos 01K §cos 7KL Jcos 17K §cos /KL
+ K, cOs qﬁ[ + ]
ORZ ORj OR} ORZ
9% cos 917K
+ K gq €08 @——————(cos g7/ KL — cos §7KL)
ORZORY
0? cos G7 KL
JK _ LK
+ Ky cos ¢p(cos 0 cos 6.7 %) SRR,
dcos ¢ [0 cos f1K JKL JKL TIK 175+ O cos 7KL
+Ky, ARz [ OTE, (cos 077" — cos ;%) + (cos 0"/ — cos 0,7 ") oTE, ]
2
+K oo (cos 77K — cos 877K (cos §7KF — cos 875 F) 0" cos ¢ (A.125)

ORZOR?,
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Angle Cross Coupling

Similar to cosine angle cross coupling, here the two angles (/7% and 67K%) are cou-

pled with the torsion angle ¢ to give an energy:
E = K, (075 — 6175 (97KL — 97EL) cos ¢ (A.126)

The additional forces are given by

B OF
ORZ
HJKL _ GJKL 9 cos QIJK
sin Q1K ORE
pIIK _ gIIK § oo 97 KL
sin /KL ORZ

(63

_Kaa(QIJK . agJK)(eJKL _ eeJKL)

F? =

= K, cos ¢

+K,, cos ¢

dcos ¢
e — A.127

Rz ( )
and addtional terms for second derivatives are given by

&°E
ORZ0R;

_ {GJKL—B‘!KLacos@”K HIJK-HgJKaCOSHJKL]aCOS¢
B “l sinfl/K ORZ sin /KL ORZ OR§

0JKL _ eélKL 82 91JK HIJK _ ngK 82 cos 9JKL

cos
_Kaa R .
s ORZOR; | sn6/KL  ORIORY Jooss
VK, cos 6 1 1 [8cos9”K80089JKL+8cost9”K8cosﬁ"KL}
0K sing7KL |~ 9Rz  ORg OR;  ORZ

(7KL — 9JKL) cos 97K 9 cos 017K § cos 1K

+ Ko cO8 @ ERCYTNT Rz OR;
VK., cosgb(eUK - H%JK) cos 875L § cos 7KL § cos /KL
SingIRE OR:  OR;
02 cos ¢

+ Ko (075 — 6175) (675 — 97K ") (A.128)

ORzR:

where z can be I, J, K, or L and similar derivation of dcos ¢/0RZ, dcos 07X /ORZ,
dcos 'K JORE, 9% cos 077K JORZORE, 92 cos /KL JOREORE, and 0% cos ¢/ORZORE

can be found in previous sections.
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A.5 Inversion

Consider a case in which three (and only three) atoms, J, K, and L are bonded to a
central atom /. The umbrella motion in which the angle ¢ of IL with respect to the
plane I JK changes from plus to minus sometimes requires a special interaction term;
this is the inversion term. Two types of inversion terms are implemented. They are

Amber improper torsion and spectroscopic inversion.

A.5.1 Amber Improper Torsion

3
\ L \

) %

5 ’
Q’ ) i ’,‘

]

{gk}iég} 1 o 3

5
5 0
5

};‘ . )}e‘/

£

/ v /

Figure A.4: Amber improper torsion

For atom J, K, and L bonded to atom I, we have three dihedral angles. The energy is
the average of the three “torsion terms.” For angle ¢y, defined as the angle between

the LIJ and KIJ planes, the energy is taken as
FLIJ-KLJ %Ccos(Nqﬁkjil) (A.129)
So
E;,, = éC cos(N@jra) + cos(Ndwju) + cos(Ngbklij)] (A.130)

where N = 2 for planar and N = 3 for tetrahedral. With N = 2, the potential has
a minimum for planar (¢, = 180°) and the maxima at ¢ = 90,270°. There is also a

minimum at ¢ = 0°. With N = 3, the potential has a maximum at 180° and minimua
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at 120° and 240°, followed by maxima at 60° and 300°. Energy, forces and second

derivatives can be calculated as torsion interaction.

A.5.2 Spectroscopic Inversion

Figure A.5: Spectroscopic inversion

The spectroscopic inversion energy is defined by
1
Einw = EC [(cos ¢; — o8 ¢e)? + (cos ¢y, — cos ¢e)? + (cos ¢¢) — cos qﬁe)Q} (A.131)

with angle ¢; as the angle between line /L and plane IJK, ¢, as the angle between
line /K and plane IJL, and ¢; as the angle between line /K and plane ITK L. We'll
only consider term cos ¢;; the other two terms can be calculated accordingly. Defining

A =RY x R'¥ we have:

) RIL A
Sin qﬁl = W (A132)
cos¢; = 1/1—sin?¢,. (A.133)

Let:

E; = %C(cos B¢ — oS B )? (A.134)
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Forx =1, J, K, or L, we have

OFE;
*  QRe

0 cos ¢; Osin ¢

= %C(cos &1 — COS @)

Jsing; ORZ
_ 1 B sin ¢; 0'sin ¢,
= C(cos¢l COS @) —— cosy OF: (A.135)
and
O0*E, 1 _, sing; ,0sing; dsing, 1 sin ¢ 0% sin ¢y
JRoR; ~ 3" \cosg) Rz ORE 300N TS0 SR o
1 _3, Osin¢; Osin ¢,
3C(cos¢5l COS ¢ )cOs "¢y oz OFs (A.136)
Further
Osing, 1 (ORIL.é _(mIE. ORI~ RIE A
ORz RIL ORZ A> ( 8Rg)((R1L)3 A)
R* 0A 1 R A 0A
TR oma ™ oRr) (A.137)
and
02 sin ¢, _[ 1 8R’L_( 8RIL) RIL ] [l 0A (A aA)ﬁ]
ORZORY ~ LRIL 9Re ORZ " (RIL)31 LAORG ORE" A3
ESCL R DL U B O D
RIL OR ORZ ~(R™)3] LAORE ORz’ A3
IL L IL
+ 0 [ 1 R _(RIL.(?R )R ]é
OR% LR'L OR: ORz " (R3] A
RZ 9 11 6A 0A A
. — — (A =—)= Al
"RIL 3R [AaRg ( aRg)m] (A.138)
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Further expand this to give:

d , 1 OR" 1 . ORILN ORIE 1 O*RIE
= T TpIin ‘ A,
535(3” oR; (RTL)3 (R RS ) 9R: ' RILORz0R; (A.139)
J ,1 0A 1 OA\ OA 1 0O°A
ors AoRz) = -5 (a aRg>aRg T AoRz0R: (4.140)
o L 8RIL RIL _
@[(R " OR: )(RIL):%] B
(aRIL . aRIL) RIL N (RIL ' aZRIL > RIL
OR} ORZ / (RIL)3 ORzOR%/ (RIL)
aRIL 1 8RIL RIL 8RIL
. ~ o A.141
+(R 3Rﬁ )[(RIL)3 0R§ 3(RIL)5 (R 3R§ )} ( )
0 OA A 0A O0A\ A PA A
oF: (A aRg)ﬁ] = (333‘5@)%+ (A'W)E
0A .11 0A A 0A
‘+‘( ¢ aRg)[Eﬁg—_gﬁ(A a—R—g)] (A142)

Replace the individual terms in the above equations by the following for atom I:

8R1L

ST = o (A.143)
0A

8R;y = —€m R - €7uﬂR£J (A.144)
2A

ORI
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and for atom J:

ORI
ORI
A,
R

924,
ORIOR]

and for atom K:

ORI
ORK
DA,
ORK
P2A,
OREORE

Finally, for atom L

ORIL
ORL
32 RI L
Y

ORLORE

A,
ORL

93

— IK
= Cav Ru

— 1J
- 6’70"/ Ru

(A.146)
(A.147)

(A.148)

(A.149)
(A.150)

(A.151)

(A.152)
(A.153)

(A.154)

Using these, we can complete the terms of forces and second derivatives originated

from E;. Terms of E; and Ej can be computed accordingly.

A.6 Stress Contributions

Since the valence force fields only depend on atomic positions, energy conservation

applies. Thus if € is the unit cell volume and Il,s the stress, we can write the valence
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stress contribution as
]VY . .
Qll.s = > FiR} (A.155)
i=1

where N is the number of atoms in the unit cell, F is the force of atom i, while R?

is the coordinates of atom 7.
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Appendix B Non-bonded Force Fields

B.1 Introduction

Non-bond force fields are used to describe two-body (electrostatic and van der Waals)
and three-body (DREIDING hydrogen-bond) interactions. Usually non-bond inter-
actions are excluded for 1-2 (two atoms bonded) and 1-3 (two atoms are bonded to
a common atom) because these pairs are modeled by bond and angle terms. Some-
times the 1-4 (two atoms at the ends of a torsion configuration) interactions are also
excluded, or scaled by 0.5 (AMBER). We implemented most of the generally used

functional forms in our program.

B.2 Electrostatic

0 e e {)
Q R 2,

Figure B.1: Electrostatic interaction

Electrostatic interactions play a critical role in determining the structure and packing
of molecules, both organic and inorganic. The Coulombic energy can be written as
Q:iQ;
E=Cy=2 B.1
O ¢R (B.1)
where @; and Q; are the atomic charges in electron units (¢ = +1 for a proton), R is
the distance in A, ¢ is the dielectric constant, and the conversion factor Cy = 332.0637

takes care of the units transformation, so that E is given in kcal/mol. In vancuum, €

equals 1. For biological systems in which solvent molecules are not included explicitly
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in the simulation, it is common to use ¢ = R. A shielded Coulomb interaction

implicitly includes the solvent electric effect. The energy takes the form of

L ®2

Assume E = CyQ;Q;/RP with p = 1 for regular Coulomb while p = 2 for shielded

Coulomb. For atom j, a component of force is given by

Fo{:_aRé - 0pRP+2 (B3)
and the second derivative is given by
82E 6aﬂ RaRﬂ
oRioR] 5~ 0+ )5 (B-4)
B.3 Van der Waals Interaction
1 e ]

|
Figure B.2: Van der Waals interaction

All atoms exhibit a long range attraction which is proportional to R7%. This is
generally referred to as van der Waals (vdW) attraction since the van der Waals
equation of state postulated such a universal attraction. At sufficiently short dis-
tances the interactions of all atoms are repulsive. We implemented three types; they
are Lennard-Jones 12-6, Exponential-6, and Morse. In each case the interaction is
specified with up to three parameters, Ry (equilibrium distance), Dy (equilibrium
energy, or well-depth), and + (scale parameter). These nonbonded interactions are of

two-body type requiring N(N +1)/2 sets of parameters for a system with N different



197

atoms. However, the following combination rules,

1
Ry §(R0,ii + Ry j5) (B.5)
Doi; = /DoiiDo;; (B.6)
1
Yii = 5(%@%’;’) (8-7)

are often adequate for relating the parameters of different atoms (i with j) to the cor-
responding homo nuclear parameters (i-i and j—j). Sometimes for LJ 12-6 potentials,

the arithmetic average is replaced by the geometric mean.

Roij = +/RouRoj; (B.8)
Doi; = /DoiDojj (B.9)

B.3.1 Lennard-Jones 12-6

For Lennard-Jones 12-6, the energy is given by

B = o= Dy[(Boye - (Foy] (8.10)

where Dy is the equilibrium energy in kcal/mol and Ry is the equilibrium distance in

A. The o component of force on atom J is given by

OF R R
J (24 (87
F = —5p7 = 2AgRf — 0B (B.11)

and its second derivative is:

0°E Sus R. Ry Oup RoRs
W = —1214@ + 168A R16 - 6AE'8‘ + 483 R10

(B.12)
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B.3.2 Exponential-6

For Exponential-6, the energy is given by

exp (0(1 - 7)) - Z—E—G(%)ﬁ] (B.13)

6
(-6
where again Dy is the equilibrium energy in kcal/mol and Ry is the equilibrium

distance in A;  is the scaling factor. The default value for ¢ is 12, which approximates

the Lennard-Jones 12-6 potential at long distances.

The o component of force on atom J is given by

OF R R
J —_ CR-"o _a .
F, = w@Rj ACe i 6BR8 (B.14)
The second derivative is given by
O?E et 6B ,eCF eCR B
W = (AC? + ﬁ)(saﬂ + (AC F —_ AC——R—?" — 48@)RQR[; (B15)
B.3.3 Morse Potential
The Morse potential is given by:
E = Do[x*—2x] (B.16)
where
y = e~ B-Ro) — gxp (- Z(E - 1)) (B.17)
2 Ry

where again Dy is the equilibrium energy in kcal/mol and Ry is the equilibrium

distance in A, and ~ is the scaling factor. The force and second derivative of atom J
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are given by

oF dx

8Ré :2D0(X—1)5R—i, (B].S)
and
0*FE dx Ox 9%x
——— = 2Dy =2+ 2D —1)—— B.19
orior] ~ “Doariar] TP Variary (B.19)
where
ox R,
6—Rg = —OZX—E (B20)
82)( 2 RaRg 6a,3 RaRg
W = « X—*Ri— it ax—R— -+ ax R3 . (B21)

B.4 Hydrogen Bonding

In molecules having hydrogen atoms bonded to very electronegative (donor) atoms
(F,0,CI,N,S), the electrostatic interactions between this H and a neighboring elec-
tronegative (acceptor) atom may not be well described just with standard atom-
centered charges. Thus a special type of non bonded interaction is allowed to ac-
count for such terms. We implemented two strategies, as used in the AMBER and

CHARMM force fields.

B.4.1 AMBER

In AMBER, the charges assigned to the H (Hydrogen) and A (Acceptor) are used to
account for the bulk of the attractive interactions. This is supplemented by a weak
12-10 potential designed to help adjust the resulting H-A distance. The normal 12-6

interaction between H and A is ignored. The energy takes the form of

A B Ro. 1o 6
E:ﬁ—ﬁ:mwﬁ—ﬂﬂ] (B.22)



200

and the a component of force on atom J is

OFE R, Ra
aRi = —].QA—PL‘TZ + 10Bﬁ (B23)

while the second derivative is

82E 8us RoRs Bog RoRy

(B.24)

B.4.2 CHARMM

The normal van der Waals and electrostatic interactions of the H with all other atoms
is ignored and replaced with a special H-Bond potential involving the D-A distance

and the D-H-A angle. Let R4p be the radial distance between the donor (D) and

A

Figure B.3: Hydrogen bond interaction

acceptor (A) atoms and € be the bond angle between the acceptor (A), the hydrogen
(H), and the donor (D) atoms as in the Fig. B.3. The potential has the general form

E = E"™(Rup) S(R4p, B2, szf) S (08?8, cos?0,p, cos*,5 ) cos*d (B.25)

where S is the cubic spline switching function which smoothly cuts off the interaction,

1 ifz < x,p

(ops =0 Bos 20 =300) 4p o0 g < Toff (B.26)

(za_ff_zon)3

0 if z ZZL’Off

S(Q?, Ton, xoff) -
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with R,, = 4.0A, R,s; = 4.5, 6, = 65°, f,;; = 75°, and E™ is the Morse potential.

E" = Dy(x* - 2x) (B.27)
with
y = e @) — e—%(%—l) (B.28)
Let
E, = E™(Rap) S(R%p, R2,, R2;f) (B.29)
and
Ey = S(cos®8, cos*0,p, coszﬁoff) cos*f (B.30)

The o component of force on atom z, with x = H, A, and D, is given by

oF OFE, ORap OFE, Ocost
“~ "9RZ  ORap ORZ ' ""9cosl ORZ (B:31)
and the second derivative given by
OPE  OE, 0E [8RAD Ocosf OR4p Ocos 0]
ORZORS ~ ORapOcosfl ORZ OR§ OR; OR:
. 0*E, z ORAp ORAp 0?’Ey OcosfOcosb
ORap '’ OR: OR; ' '92cosf OR: OR}
OF, 0°Rup 0E, 0?cosf
B.32
ORup 0Fz0R: " T V506 0REORS (B.32)

where, for the distance related terms, we have

OF, OEhb \ - N o
a}214D - aRAD S(RAD7R0n’ROff)+E S(RADaRon’Roff)2RAD (B33)
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O%E, O?Ehb 2 p2 p2 Wb’ 2 2 12 \
82RAD = aQRAD S(RAD’RonyRoff) + EYS (RAD’Ron7Roff)4RAD
aEhb

ORp

and, for the angle related terms, we have

3?5: 9 4c0s%0 5(c0s%8, c05*0p, 08%0,57) + 2c05°0 S’ (c0s%8, c05*0,p, cos*O4BB5)
’E
% 12c0s°05(cos?8, cos*on, cosgt?off) + 18c0s*0.5" (cos?8, c0s* Oy, cosQHOff)

+4c0s%0S" (c0s®8, cos*Oon, cOs* b f ) (B.36)

The cubic spline functions S are defined as

6(1;0 —:l,‘)(l'on‘m)) if :L'on < xT < xoff

Sl(l'y Lon, :Eoff) = (@of=2on)® (B37)

0 else

For distance cutoff, z = R?, z,, = R}, and z,5; = R2;;. While for angle cutoff,

T = 0820, Toy, = €08 Oy, and zops = cos®b,5p. Using the following entities

ox
= — — B.38
8R.n 2aDo(x — 1)x ( )
0%y
— 2 =2a%’Dy(2x -1 B.39
82RAD o 0( X )X ( )
ORAp Rap
—— @ B.40
ORA Rip ( )
8COS€ N RDHa _ eRAHa (B 41)

ORE ~ RpnRam ' Rip
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(‘38};{;; _ JZZDDa (B.43)
e
a@;;;;@g _ RDHaRAgngR;fIHﬂRAHQ — cosb []g%ﬁH + 3RDI;%)}ZDHB] (B.45)

we can calculate the forces and second derivatives at atom A, D, and H.

B.5 Convergence of Non-bond Summations

For isolated systems with million atoms, or systems with periodic boundary con-
ditions, the computation of non-bond energy becomes impossible, with the simple
pair-wise summation. For such systems, three methods are implemented to reduce
the inhabitive computing cost with certain accuracy. They are Cubic-Spline cutoff,
cell multipole method (CMM), and Ewald summation. We’ll discuss the CMM and

Ewald methods in future chapters.

B.5.1 Spline Cutoff

For each pair of nonbond interaction (Coulomb and van der Waals), the energy is

multiplied by switching function S(R?, R2,, R>;;), giving the energy as

Espline - an(R2; Rgn, Rgff) (B46)



204
Where R is the distance between two atoms, typically we have R,, = 8.0A and
R,;; =8.5A. The cutoff function is defined as Eq. (B.37). The computation of

forces and second derivatives are similar to that of the distance related energy term

in DREIDII Hydrogen-Bond interaction.
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Appendix C Cell Multipole Method

C.1 Introduction

P P P P
pe | pre | pree | poe [ poee | pree
{J
pue| N | N | N |pne|pne
pue| NO| O] N |pne|poe
P 2
puc| N | N | N |phe|poc
Pl | phic | phe | prase | proe | poe
?.&
iR | b | peted | e | e | prted

Figure C.1: Cell hierarchy

In the molecular dynamics of a system of IV particles for which there is no finite range
cut-off, direct evaluation of the forces takes a computation time per time step which
grows as N2, For biological systems and amorphous polymer systems, hundreds of
thousands of atoms are needed to approximate those systems. Obviously direct evalu-
ation method cannot handle such systems, even with today’s fast computers. Besides
optimized Ewald method (which scales as N2), cell multipole method (CMM)'~? is
developed to handle such systems. CMM is fast; it scales linearly with N (the CMM
setup scales as NV log N) and requires modest memory.

CMM method is a typical divide and conquer algorithm. The simulation cell is

recursively sub-divided into octants. At the finest level (leaf level), the influence of
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the particles within a cell onto sufficiently separated cells is subsumed into a multi-
pole series expansion. These multipole expansions are combined in the upper levels,
until the root (simulation cell) of the oct-tree contains a multipole expansion. For
atoms within the 27 nearest neighbor leaf cells, direct pair-wise summation is used
to compute the energy, stress, and forces. Contribution from atoms outside the 27
nearest neighbor leaf cells are calculated through field expansion, i.e., through the
Taylor expansion of the far field with respect to the center of leaf cells, which is the
contribution from the far cells.

Figure C.1 shows the first three levels of division. We’ll look at the force and
energy of atoms in cell C, the level-3 cell. We start with cell C’s parent cell (cp).
Taylor expansion coeffiecients with respect to the center of cell cp are calculated
by summing up the contribution from cp’s next nearest neighbor cells, the P cells.
Taylor expansion coefficients with respect to the center of cell C have two terms. One
is the contribution from C’s next nearest neighbor cells, the pnc cells, while the rest is
from the P cells, which are computed through translating cp cell’s Taylor expansion
coeflicients from center of cp cell to the center of C cell. This process continues to

the lowest level, leaf cells.

C.2 Multipole Representation of Field

Figure C.2: Multipole representation

As in Fig. C.2, C is the cell within which there are many point “charges.” We'll
compute the field at A due to “charges” in cell C. We assume |R| > |r| applies for
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all of the “charges” within cell C.
First, let’s look at the potential at R due to point “charge” ¢*

qz'

(R-R—2R-r+r-r)p/? (C1)

VI(R) =

For p = 1 is the Coulomb interaction, p = 2 is the shielded Coulomb interaction,
while p = 6 is the van der Waals attraction, or London dispersion. In the rest of
derivation, we’ll use Einstein convention, where double appearance of a subscribe
means summation over that index.

Since r/R < 1, we can expand the formula at r =0

8‘/1 _ _qu ——2R76a7 + 27”7(5&7
72
Orq 2" (Ry\R, — 2R, + 1,1
) R,—r
= pq = 2 (C.2)
(RyRy = 2Ry + 1y7) B3
A i —5,15 p+ 2 i —Q(Ra — Ta)(Rg — 7‘5)
= pPq p42 —-bp q ptt
Or,0rs (RyRy — 2Ryry + 1ryry ) 2= 2 " (R,R,—2R,ry+ 1,72
. Ra —Ta R —-T i 60{
— pp+2)g ( ) (Rg ﬁ)m_pq 8 -
(RyRy —2R,ry +1,7,) 2 (RyR, — 2Ryry + TATy) 2
(C.3)
PVi (Ra —1a)(Rg — 1) (Ry — 19)
————— = p(p+2)(p+4)¢ =D
dR,0R;0R, (RaRx = 2Rars + ) 5
Oag(Ry — 1) + 0 (Ro — 7o) + 0ya(Rg — 1
o+ 2)g s(By = 7y) +0gy( ) ;ﬂ( 8= p) (C.4)

(R,\R)\ — ZR)\T)\ + 7‘,\7”)\) 2
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Thus
g:: = R}:i2 (C.5)
r=0
;zg;ﬂ _ = plp+2)q ];ff - pg' ];5252 (C.6)
% _ = plp+2)(p+ 4)qi%
—p(p +2)¢' Sapfty + ‘fo + Oyally 1)

The potential at point R due to “charges” within the cell is

V(R) = Y VU(R)

Ra Zz pqira RaRﬁ Zl %ql [p(p + 2)7'a7”5 — p7“2(5a5]

_ Zz ¢ i
B RP RZH-? Rp+4
RoRsRy ~pPp+2)(p+4) ;
Rpr Z 6 qTaTply

R o FRs Ry pr+2)

Rpt6 5 “r?s apTy + 7 5577'a +7%8 vaTg) + ... (C.8)

where we have used

R25aﬂrarﬁ = R27’2

Rangéaﬂ’rQ = R27~2 (Cg)
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if we define
zZ =>4 (C.10)
fo = ipq% (C.11)
Qas = Z%qi[P(PJr?)TaT'ﬁ—PTQ(Saﬂ (C.12)

i

1 .
Oagy = D gbp+2)¢ [(p+ 4)rarsry — (BapTy + 0pyTa + 61ar5)r%] (C.13)

i
we have

A uaRa RaRﬂQag Oag,YRaRﬁR7 4

V(R) = Re ' Rpt2 Rp+d Rpt6 (C.14)
Alternatively, we can also define

zZ =>4¢q (C.15)
F, = Zqira (C.16)
Sasg = Y _q'TaTp (C.17)
Topy = Zqirargm (C.18)

(F,S,T) can be transformed into (i, @, O) by using the following equations.
poa = play (Clg)

1

Qas = —p[(p +2)Sas — Tmce(S)éag] (C.20)

2

1
Oapy = gP(P +2)[(p+ 4 Tapy — (0asTrry + 957 Dara + 61aTons)]  (C-21)
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C.3 Upward Pass

Given the multipole moments of level [ cells, the multipole moments of level [ — 1

cells are calculated as the following

Zl—l

-1
af

= > =Y ¢ _Zzl (C.22)

1€C_y I 1eCy

= > pgry 1*221%11 (R, + L)

1€Ci_1 I 1eCy

= ZR pY d+> .Y parh

1€C) I e

YR Y (C23)
{ l

1 i — — _
= > 5 [plo+ 2 = p(r ) )
1€Cj_y

1,
= 3 ¢ [plp+ 2 (RL+ 1) (Rl +15) — p(R + 1) (B, + 7))
1€CI—1

Z -;—qi[p(p+2)RlRﬂ pR.R.4, ]

1€Ci_q

+ Z —q [ (p+ 2)rhrh — lvrlvdaﬁ]
i€CI_1

- > —q[ (0 +2)(Rar; +TLR2)—2PR3T§]
1€Ci_q

Z lzl[ p(p+2)RL RS — pRL R b

+ZZ [ (p+2)rlirh — fyrfyéag]

l ’LEC]

=35 [+ DR S pairh + By S parh) — 2R, Y pa'r!)das]
{ 1€Cy 1€Cy 1€C)

0> 20+ DRLEL — BP5] + 32 L
l {

3 3 [0+ 2Ry + Wb RL) = 207 B3] (C24)
l
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_ 1 ; 11 _ _ _ -
Os = > 6p(p +2)q [(p + )i = (Bapri T+ Gyt + Gyar ) (! 1)2]
1 .
= D zp(p+2)(p+ 4" (Rg + o) (R + 1) (R, + 1)

1 . i ~12
-2 5P +2)¢' [W(Rl7 +7L) + 05y (Rl +78) + 60a(RL + rfx)} ‘Rl + r“

= > ép(p +2)(p+4)g'Ai- ) ép(p +2)¢'B,; (C.25)

1

where we write

A, = (RL+ ré)(Rf; + rlﬂ)(Rﬂ/ + T,ly)
= RLR4R. + RLRyr! + Riri R, + T, RLR,

+Ri¥7“lﬁ1"l7 + rﬁ,RérﬁY + rﬁjfjl%l7 + rérf,rfy (C.26)

= -2
B, = {6,}[3(1%’7 +78) 4+ 6py (Rl +14) + 0y (RE + r,g>] ‘Rl + rl‘
= (SapRl + 0y BL + 6,0 RE)RL RL + (8apr, + 0py7h, + 1arh) R Ry
+(5aﬁR£y + 5ﬁ7Rg + 57aRlﬁ)2R£nrin + (‘5aﬁ7"£y + 6ﬂvré + 570T2)2R£nrﬁn

+(5ang1 + (5g7fo + &YaRlﬁ)rinrfn + ((5a5rfy + 5577'5} + 57arg)rﬁnrfn (C.27)
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sum over contributions at level-l cells, we have following entities.

52500+ 200 (7 97l = Goarh o+ 8o+ 6ur0F] =30, (€29
S g0+ 20 [0+ DELRSR, — (GusRl + by Rl + 8,0 RY) (R ]
=% ép(p +2)2"|(p+ QR RSR, — (bag R, + 3, Bl + 5,aRY) ()| (C.29)
{
5 5plo-+ 200+ 00 CLR B+ Rl = 37 50+ Qo + @l + Qo)

1
+ Z 6p(p + 4)(8ag R + 85y R, + 6,0 RL) (r1)? (C.30)

1
> 5P+ 2)(p+ g (RLRGr, + Ry Ry + 15 R RY)

i

1
=D _ (P +2)(p+ OB Rapy + RopigR + paRoRy) (C.31)
1 i l ! Ly ply2
ng(p + 2)(] (5aﬁrv + 5577"a + 67arﬁ)(R )
1
= Z ’6'p(p + 2)(8aptty + Opyhta + 5%‘“5)(}21)2 (C.32)
!
1
> 520 +2)g “(0ag Rl + 8 R, + 6,0 RL)2R! - 1
1
= Z gp(p + 2) (5aﬂR£y + 6ﬂ7R£x + 5'yaR,l3)2Rl -t (C.33)
!

1 .
Zép(p +2)¢"(Bapy + 0y7e + 83075) 2Ry

2

= Z aﬂme m T+ 65’)’QamR£n + 670QlﬂmR£n)
l

1 .
+ Z gpqz((saﬂRiy + 5ﬁ7Rla + 57aRlﬁ)(Tl)2 (C.34)
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Collecting the above equations together, we have

- 1
O = 3 gplo+2)2'[(p+ ORLEGR, — (5B, + 65, Rl + 8,0 F5) (R

— 6

1
+2 s+ 20+ ) uaRE R, + R Ry + Re Ripr)
l
1 S S
=D 5P+ 2) (i - B)(Gas R, + 85y Ry, + 0,0 Ff)
l
1 1\2 ! ! !
- Z g(p + 2) (R ) (5aﬁ,u'y + 5ﬂ7ua + 6’7&“[3)
l
2
- Z 5(5aﬂQlw\RlA + 567QLARIA + 5anlﬁ>\RlA)

!
+Y O, (C.35)
l

If we use (F, S, T), instead of (u, Q, O), we have

Zl—l
F!
Sflgl

Tl—l

aBy

= > 7 (C.36)
l

= Y Fi+> 7', (C.37)
l l

= > S+ > (FLRL+ FjRL) + > Z'RLR} (C.38)
l [/

l
- l l l l ) l l
= > Tis, + > (SLgR + Sh R + S RE)
! l

+ (FLRGR. + FyRLR. + FLRLRL) + Y  Z'RLRLR.,  (C.39)
l l

First Eq. (C.15-C.21) are used to compute multipoles of the leaf cells. Then

Eq. (C.22-C.24, C.35) are used to combine multipoles of leaf level cells into multipoles

of next level cells. This process continues recursively to the root cell.



214
C.4 Downward Pass

C.4.1 Contribution from Parent’s Neighbor’s Children
In CMM, all far field terms are approximated by Taylor series expansions around the

central position of the cell containing r as the following

Vie) =VO v, 4 Va(?rarg + VOEE)AYTQTN“Ay +... (C.40)

where
1%
un _ 9v
Ve o (C.41)
r=0
(2) 1.8
Ve V| (C.42)
@ _ 1 o’V C.43
Va,@'y - 6 Ora0rgor, 3 ( )
e R+r .
AR ' I‘f
Qi (}* R
Cell i Cell

Figure C.3: Multipole field expansion

Assuming R is the vector between center of two cells, we'll calculate Taylor ex-
pansion coefficients of the field at the center of cell j due to multipole moments of cell

i. Coefficients V@, V() and V® are obtained by summing expansion coefficients of

charge, dipole, and quadrupole terms as

vO = v+ v 4y 4y (C.44)

v = v v 4y 4 vl (C.45)

o



215

2 2
v = v+ v+ v + v, (C.46)
(3)  _ (3) 7(3)
Vass = Viasy + Viahy + Vooss T+ Voasy (C.47)
The “charge” terms VZ(i) are obtained by the expansion
Z (0)
'RTI'IP V' + VZ To + Vzaﬁ'f'a'f'ﬂ + VZaMrargrv +... (C.48)
where
Z
v = Z (C.49)
pZR,
Vid = ~Tors (C.50)
Z
Vil = oors|(p+2)RaBs = 6asR? (©51)
p(p+2)Z
R [(p + )RRy R, — ($asR, + 85 Ro + &,aRﬂ)R?] (C.52)
The dipole terms Vﬂ(i) are obtained by the expansion
(R+
TR(—i- rlp:2) VN(O) + V( Ur, + V(a)ﬁrarﬂ + V! aﬂrarﬂn, +. (C.53)
where
0 LR
A e (C.54)
1) = Ha (p-R)Ra
Vi = T2 (p+2) Tt (C.55)
p+2 p+4
V& = 2o [(aBs + usRa) + (1 R) (s — T RaRs)| - (0.56)
V(3) _ b +2 Ma(sﬁ'y + ﬂﬂdva + ,u'yéaﬁ
pafy T 6 Rpt+4
T (p+2)(p+4) paRgRy + pgRyRa + 1y Ra Ll
6 Rp+6
i (p+2)(p+4) (p-R)(GapRy + 5y Ra + 6yaRp)
6 Rp+6
2 : (o
_(p+ )(p+4)(p+6) (b R)R.RsR, (C.57)

6 Rp+8
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The quadrupole terms Véi) are obtained by the expansion

Quv(Ry +1u)(Ry + 1))
[R + r’p+4

VCE,O) + Véix)ra + chi)ﬂrarg + VQ(‘Z)Mrargm +...

(C.58)

where

v = Sulully (C.59)

Rp+4
. QauRu + QuaRu Q;u/Rp.Ru
Rp+6

(1)
VQC’ - Rp+4

p+4
v, = - [QWRNRy&aﬁ + (QuaRuRs + QuvR Ry + QusRuRa + Qg,,R,,Ra)]

Qo |, (p+4)(p+6)QuR.R,
Rp+4 5 I—LRP_:’B ROLRB (061)

v® _ _P+4Qaply + s+ Qrallp
Qafy — 3 Rp+6
P+ 4 QaaRidpy + QaaRrdya + QyaRadag
3 Rp+6
i (p + 4) (p -+ 6) Qa,\R)\RﬁR—Y + Qﬂ)\R)\RvRa + Q,YAR)\RQR[;
3 Rp+8
L P+ D@ +6) QuRuRy(asRy + 85y Ra + 8,0 Fp)
3 Rp+8
_(p+4)(p+6)(p+38) QuR,R R RsR, (C.62)

Rp+10

Rq (C.60)

—(p+4)

+

The octopole terms Vo(i) are obtained by the expansion

Oapy(Ra +71a)(Rg + 1) (Ry + Tv) 3)

[R " r|p+6 = V(SO) + Végra + V(gi)ﬂrarﬁ + Véamrargm + ...
(C.63)
where, by considering the symmetry property of O,sy
Ou R, R, R
e (C.64)
a _ 30w.R.R, O R, R,R\R,,
VOa - W - (p + 6) Rp+8 (C'65)
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OuaﬂRu _p +6 3(0,“,&R#R,,Rg + Oﬂ,,,gRuRyRa)
Rp+6 5 Rp+8
p+ 6 0O ,,,\R R,,R,\
o i ((p + 8)RaRs — bas R (C.66)
Oag R(OagR + O, g, Ro + O aR)
Vo(?;)ﬁw - Rp+g — (p+6) " szg e
_p+6 RuRy(Opwadsy + Oupdya + Opvybas)
2 Rp+8
N (p+6)(p+8) RyR,(OuaRsRy + OupR Ry + Oy R Rg)
9 Rp+10
(p+6)(p+8) R,R,R\O,ux(dapRy + 05 Ra + 04aRp)
6 Rp+10
(p+6)(p+8)(p+10) R R, R\OaRaRsR,

- . o (C.67)

V(Si)ﬁ = 3

+

When we store (F,S,T) instead of (4, Q,0O), then we can convert (F,S,T) into
(1, Q, O) by using Eq. (C.19-C.21), then use the above same equations to compute

Taylor expansion coefficients.

C.4.2 Contribution from Parent Cell

Contribution outside parent cell’s 27 nearest neigbor cells is represented by parent
cell’s Taylor expansion coefficients. We have to translate those coefficients with re-

spect to center of parent cell to the center of that cell. The field at r

r
. L Lpe
RF chdlsd

parent cell
Figure C.4: Combine Taylor coefficients of parent cell with that of its child cell

Vi = Vlg()) + Vlgg (Tpea +Ta) + Vlgx)ﬁ (Tpea +7a)(Tpes + 73)

+V1g?2/37(rpca + 1) (Tpes + 78) (Tpey + 7o)
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0 1 2 1 2 2 :
V( Db Vlga) Tpea + V}ga)ﬂTpcancﬁ + Vlga)ra + Vlga)ﬂrpcarﬁ + Vlga)ﬁrl’cﬁr" + VF(’ a)ﬁrar'g
3
+vPaﬂ‘/TPCaTPCﬂTPC’Y + Vlgogﬁv(rpcarpcﬂrv + TpepTperTa + TpeyaTpeal s)

3)
V}(’aﬁ'y(rpcarﬂr’Y + TpepTyTa + TpeyaTaTs) + VPaB'yTarﬂr’Y (C.68)

By using the symmetry properties of VPQB and Vpam we have

Vc(‘O) = VISO) + V}()L) Tpea + Vzgi)ﬁrpcarmﬂ + Vlg?ﬁyrpcancﬁrpcv (C.69)
Vc(la) = Vlgla) + QV;i)ﬂTpcﬂ + 3V1g3¢;)ﬂ77”p0ﬂrpcv (C.70)
Ve, = VR 4+ 3V 1 (C.71)
Ve, = V& (C.72)

C.5 Energy and Force Evaluation

In addition to explicit interactions with atoms in the nearest neighbor cells, the

contribution from far cells are

E( ) = Lfc(e(g + V(ell% oTa + Vell a,@’rl T,zﬁ + ‘/cell ,aBy a’rﬂlr (073)
SE(r)
Ori = ‘/;(ell o + 2Vell aﬂrﬂ + 3V(elz aﬂ'yrﬂr (074)

C.6 Stress Calculation

For periodic systems we need to calculate the stress, Il,3 with a8 = zz, yy, 2z, yz, 2z, Ty.
At the leaf cell level, the stress components I1,4 from the nearest neighbor contribu-
tions are calculated as

p ¢'q o e
Mlag = —5 _'—_"zri-ﬁ(ri*rj)a(ri_rj)ﬂ (C.75)

2~
Ly Ty — Ty
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where (2 is the volume of the unit cell and the sum is over atoms in the 27 nearest
neighbor leaf cells.

The long range components of the stress are calculated during downward pass as
contributions from interactions of the multipole moments between the cells. Since
it’s a periodic system, we start from level-1. While we compute Taylor expansion
coefficients of one level-1 cell by combining the contribution from its pnc’s, we also
add the stress contributions from the pnc cells, which is the stress of interacting
multipoles between the level-1 cell being considered and that of its pnc cells. This
process continues down to the leaf-level, then we have the total stress contribution
from interacting far cells.

C.6.1 Interactions Between (Z°, F}, S.4,T.5,) and (Z7, F}, Siﬂ, Tim)

«

o
- j R do P e * '
ZF e
5T R
Ol Cell |

Figure C.5: Alternative multipole moments interaction

Figure C.5 shows interactions between “charges” of cell 7 and the multipoles in
cell 7. We’ll examine the monopole, dipole, quadrupole, and octopole separately.
Considering R < r, we can again expand the potential around r = 0, and approximate
the contribution from all of the “charges” in cell j by multipoles of cell j. By doing
S0, we can approximate the interactions between atoms in two far cells as interaction

between their multipoles.
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Energy of Z' with Cell j

The energy between Z* and ¢/

Zig
Eyij = s C.76
7 [R—i—r‘p ( )

OE zig Z'¢'(Ry + 74)
R S N S .7 C.77

ora R4 (10
62E2iqj Ziqj(Ra + Ta)(Rg + ’I‘g) Ziqjéaﬁ
— =p(p+2 —-p (C.78)
Oradrg ( ) ‘R—{—rlp+4 IR-i-r[p+2

P Egziy —pp12) Z'q [(Ra 4 1a)0sy + (Rg + 78)0ya + (Ry + 74)03,]
Iradrgdr, T IR+ "™
'3 (R, + 7o) (Rg +18) (R, + 7
|R+ r’

Sum over ¢, we have the energy between Z* and cell j as

ZiZi  ZIFiR, p(p+2) Z'S’sRaRs  p ZiTrace(S7)
RP p Rp+2 9 Rp+4 D) Rr+2
p(p+2)(p+4) Z'T)5,RaRsR, N p(p+2) Z°T,, R,
Rp+6 2 Rp+4é

Ezi;=

(C.80)

Energy of F* with Cell j
The energy between F? and ¢/

¢F (R, +1,)
[R—i—rlm2
aEFiqj F;QJ
) =p
Ta |R+I"

(C.81)

¢F(Ry+1,)(Ra +7a)
[R+r’p+4
¢ [Fi(Rs +75) + Fi(Ra +7a)]
‘R+r|p+4
@ F(Ry+7,)(Ro +70)(Rg +15)
}R+r’p+6

(C.82)

p+2 —p(p—i_ 2)

= —p(p+2)

+p(p+2)(p+4)

qu;i(Ru + 7)00p
[R—i— r’p+4

- plp+2) (C.83)
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3 E iy I(Fibg, + Fidyq + Fidy
0°Epig :—p(p+2)Q( By ﬂ”;+4 ~0ap)
Orq0rgor,, [R + r‘
qui(Ru +7y) [(Ra +Ta)0sy + (Rg +75)0ya + (Ry + Tv)‘saﬂ]
+p(p+2)(p+4 £
(+2)(p+4)] R
N @ [Fi(Rg+13)(Ry +1y) + Fi(Ry +1,)(Ra + 7a) + Fi(Ra + 74)(Rg + 75)] }
|R -+ r'p+6
@PF (R, +71,)(Re+7a)(Rg +15)(Ry + 1)
—p(p+2)(p+4)(p +6) ———* — (C84)
IR +r|
Sum over ¢/, we have the energy between F* and cell j as
ZiFiR,  FiFj FiR,F}Rg
Erj = P—prm TP ppre ~ PP+ 2) —Fpi—
FiS' R 9 4) FIR,S? ;R,R
oOaplls | p(p+2)(p+4) Iy S,slalls
_p(p + 2) Rp+4 + 2 Rp+6
p(p+2) FiRTrace(S?)
9 Rp+4
pp+2) Filogs  plp+2)(p+4) FaRaTjy R,
2 Rp+4 92 Rp+6
L2+ (p+4) FaTos RsRy
92 Rp+6
p(p+2)(p+4)(p +6) FARTo,, RalisR,
_ (C.85)
6 Rp+8
Energy of S* with Cell j
The energy between S* and ¢’
IS (R R, Y 7 i
oy = p(p+2) ¢S, (R + 7‘;11)(+4 +tn) pg Tmceii) (C.86)
2 IR+ 1| 2 R+r|
O0FEsii  plp+2) 2¢7Se (B + 1) _plp+2)(p+4) ¢S, (Ry + 1) (Ry +1,)(Ra +74a)
Ora 2 [R+r‘p+4 2 ‘R+r{p+6
pp+2) ¢?Trace(S)(Re + 7a) (C.87)

2 R+
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aQES'iqj q]S(Zlﬁ
Z Y ) P
Ora0rg plp+2) ‘R+r’p+4
@ (Ry+71,)[SLa(Rs+75) + Sig(Ra +7a)]
—-p(p+2)(p+4 £ =
b+ 2)(p+4) R
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_pp+2)(p+4) ¢S (Ru+ )Ry +10)das
2 R+ r\“s
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2 IR+ r|pJr6
7 %
+p(p +2) g Tfrace(Slfaﬁ (C.88)
2 lR—}- r|p
O*Egip o Sig(Ry+7) 4+ Sk (Ra +7a) + Si, (R +75)
et Ngld — =2 it e
aTaaTﬁar7 p(p+ 2)(p+ )q { IR—*—I‘F)—I—G
_ (R +7)(Sho0py + Szﬁdw + wadaﬂ)
}R%— r’p%
R, +r1, Siu [5aﬂ(R7 +7) + 0py(Ra + Ta) + 0ya(Rs + Tﬂ)]
+(p+6)(R,+7 £
(0 +6)(Fy+ ) [~ R
N [Sia(Rg +15) (Ry + 1) + Sig(Ry + 79) (Ra + 7o) + 5L (Ra + 7a) (Rg +75)] }
‘R—!— r|erS
(p+6)(p+8) Sw(But1u)(Ry + 1) (Ra + 1) (Rg +75) (Ry +77) }
2 [R—f— r’pHO
_plp+2)(p+4) ¢’ Trace(S*) [6as(Ry +1y) + 87 (Ra + Ta) + 610 (Rg + 75)]
2 ‘R—i— r[p%
p(p+2)(p+4)(p+6) ¢Trace(S*)(Ra + 1o)(Rg +15)(Ry +14)
N e (C.89)
2 ‘R—i— r‘

Sum over ¢/, we have the energy between S¢ and cell j as

p(p+2) SigRaRsZ"  p Trace(S)Z RoSi,F)
2 Rp+4 92 Rp+2 Rp+4
p(p+2)(p+4) SisRalsFIR,  p(p+2) Trace(S")FiR,
B 2 Rp+6 + 9 Rp+4

ESi,j = +p(p+ 2)
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R,S: 35} R,

p(p +2) SisSis
—pe+2)(p+4) ——F 0

2 Rp+4

sRaRgTrace(S7)

+119(117 +2)(p+4)
4

St R.R3S) R,R St
afttatlgoy, Lip ity o
(p+6) Rp+8 - Rp+6

(p + 2)(p + 4) Trace(5%)S];R.Rs N p(p + 2) Trace(S")Trace(S7?)

D
4 Rp+6 4 Rp+4
_pp+2)(p+4) | SagTap By | RaSegTh,
2 RIH'G R}H—G
P+ 2)p+4)(p+6) SisRaRsTh, Ry  R,S.. Tl RsR,
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_plp+2(p+4)(p+6)(p+8) SRR T}s RaRsR,
12 Rp+10
plp+2)(p + 1) Trace(S)Tho, s
o 4 Rp+6
p(p+2)(p+4)(p+6) TTGCG(Si)TimRaRﬂRv
+ T T + (C.90)
Energy of T¢ with Cell j
The energy between T and ¢’
+2(p+4 + 2
By = p(p t2)(17 ) Brpegs - p(p2 ) Eyrio (C.91)
where
IT: (R, +71,) (R, +7,)(By+71
El,Tiqj — q HV/\( (2 TH)( o )( A /\) (092)
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aEl,Tiqj qu;iua (R/i + T,U) (RV + TV)
2T _ g =
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—(p+6)q uuA( ) ( r )S_BA ) Ta) (C.93)
IR + r’p
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8ra87“g ,R + I'lp+6
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(Ry+71u)(Ry+1,) (R +72)(Ra +7a)(Rg +75)

quiV)\
+(p+6)(p+38 a
) \R%—r|zhLlO
quiu/\(Rﬂ + Tu)(Ru =+ T,,)(R,\ -+ T)\)5a5
—(p+6) —* C.94
‘R+r|p+8 ( )
33E1,Tiqj _6 qu(iH'y
Ora0rgdr. R+ r|p+6
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’R—f—r‘pﬂo
(Bx + 72 ) T\ (R +10)(Rg + 1) (By + 1)
~(p+8)(p+10 £ C.95)
(p+8)( ) e (
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qu/{,\ (Ry+r1y)
Esriyi = £ C.96
2,Tq |R+r‘p+4 ( )
Pary a1 bl r“,),is re) (C.97)
Ora lR—i—r[ |R+r’
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Oradrs IR+ R+
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+(p+4)(p+6)q [ A ( 8 5)( gl w) A,\ﬂ( 7y 71&8 ) )\)\'y( )( 8 6)}
[R—i—rl
‘Ti (Ry +1u) [(Ra +7a)03y + (Rg + 75)0va + (By +7,)04
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qiTjAu(R# +7u)(Ra + 7o) (R +15) (Ry +7y) C.99
’R + r’pﬂo (C.99)

—(p+4)(p+6)(p+38)

Sum over ¢’, we have the energy between T and cell j as

p(p+2)(p+4) {TWR SR Tip ReFoF) o T ReFialt AR,

ETi’j = 6 Rp+6 Rp+6 Rp+8
o BaTapy S 3(p+ 6) 2 vTiwaftsSas (0 +6)(p+8) TinRul RrSysRalts
Rp+8 p Rp+8 2 Rp+10
p+2 T} \R,R,R\Trace(S’)
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Tis, T2 RT.sR T, 3(p+6) RaRsTis T’
By~ afy uof p altBLagy Ly
T TR 3(p+6) Rp+8 T Rp+8
4+ 3(p+ 6) (p + 8) [RaRﬁTaﬂ’YR TiAuRﬂ + RaRﬂ aﬂfyT"/;wR R :|
2 Rp+10 Rp+10
_(p+6)(p+8)(p+10) Tag, RaBsR, T\ Ry Ry R
6 Rp+12
p(p+2) [TousRsZ’  TiapF3 ToasRsFI R,
) Rp+a Rptd (p+4) W

SMR _p+4T, eagRaTrace(S?) . (p+4)(p+6) TiasRsSi,RuR,

aaﬂ
—(p+4) Rp+6 9 Rp+6 9 Rp+8
_p +4 T, aﬂTﬂ’W (p + 4) (p + 6) ,:TuﬂaTonﬁ’yRﬁR’Y + Tu,uuR TaaﬂRﬂ]
2 Rp+6 2 Rp+8 Rp+8
(p+4)(p+6)(p+8) TMWR Taﬁ Ro.RsR,
- 5 Tor T (C.100)

C.6.2 Approximations at Different Level

We consider three levels of approximation. They are the first (F'), second (S) and
third (7). Before we compute stress, let’s first look at the quantities upon which the

derivatives with respect to strain tensor €,3 have to be calculated.
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Derivatives with Respect to Strain Tensor

The strain tensor is defined by

Okp

€l — 2(H G HOV)\ ) (ClOl)

where H = [a, b, c], and a, b, c are the unit cell vectors, and G, = H,, H,,

Guu :2f{0/m€ﬁ)\H0)\u + ‘FIO[L"/HO’)’V (C102)

8Guu —9 FIO;m gﬁm

:I:]Oun(dna(s)\ﬂ + 61'6,35)\0)H0/\V

H 0Av

aeaﬂ

=HopaHopy + HoupHoow (C.103)

Following are the terms used in stress calculation

J(R-R) _3(p.Goup,)

86aﬂ - 860‘[3
:pu(goﬂaHOﬁy + -E[O,uﬂHOOéV)pV
. (C.104)
oF -R) =RoFs + RgF, (€-105)
O€ap
e - C.106
e F.F}+ FiF} ( )
af
OF -S"-R) . ' :
T Oey [ Safls + SieRa) + (F Sy + FpSi) Ry (C108)
@Sl,,slu ?
0“6&5“ - (Savs']yﬁ‘*"sﬂvsj ) (C~109)
O(R,Si Si R : )59 (S '
( T ) (RuS} + RaSin) IR, + BySiy(SiuRy + 51, Ra)
af

R.(S.,S5, + S%4SL,)R, (C.110)
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OTrace(S) 0 iy O y ;
afaﬁ - aeaﬁ (;q r ) - afaﬂ (El::q puGﬂVpu)

= Z qipf;(ﬁO;LaHOﬂu =+ ]j[O;tﬂHOau)pf/
i

= 28, (C.111)

Similarly we have the following for 7T related terms

a(Tll'l/KajjﬂRyRH) :3(RaTﬂuu + RﬂTauu)RpRy (0112)
af
% :2Taﬂ7R'y + T/\AaRﬂ + T)\)\ﬁRa (0113)
afj
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———66;77 =2Topy By + Do + TiasFa (C.114)
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(C.115)
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(C.116)
8(TiV)\TjI/)\) i ; . .
ey =0 TewTis + ThuTiva) (C.117)
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+ R.T:nTis, Ry + R T 50 Ti Ry (C.118)
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+ RyR(T.,oThs + ThsThe) (C.119)
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Up to F' and FY

Collecting the energy terms up to F* and FY, we have

VAVA ZYFJ-R)— Z/(F"-R) F'. FJ (F'-R)(F7 - R)
mr P Rp+2 TP Rp+2 (p+2) Rp+4

Epi’pj =
(C.121)

Stress contribution
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Up to S and 57
In addition to terms in Ep: g;, we have
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Stress contribution
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(C.125)

The stress contribution from the above terms can be derived accordingly.

C.6.3 Stress Calculation Based on (u, @, 0)

Multipole Moments Interactions(up to dipole)

B R oy
bl tr x
A .
H . ’
Q' R

Figure C.6: Multipole moments interaction

We know the field at r and the energy of a point charge ¢’ at r; we’ll approximate
the total energy between point charges within cell j in field of multipole moments of
cell j by interaction of multipole moments of the two cells. We’ll examine Z¢, u* and

Q¢ in turn.
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Interaction between Q° and cell j

Egiy = z¢ (C.126)
#¢ " (R R, +2R G '
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Interaction between @Q° and cell j
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bt (C.145)

+ (p + 4) (p + 6)~—R;-%—RQRB

then
QiR Rag 2Q% Req’ QLR R
=2 e L T T L 9T R
J J
aﬁq Q\sRr\R, p+4 QL R\Rebop
- Z RevE T8 T Z(p+ D=pre Rp+6 =g'rars = Z Rp+6 S ¢rary
¥)
4)(p + 6) R\R, -
4 Z (p+ p+ QA}l%p—|:\8 “RoRsq’rars (C.146)
since
Zq rars = aﬂZq r (C.147)
p(p+ 2) p+ 2
we have

QZARRR)\Zj + 2QiaRn/'La _ D + 4 Qi)\RnR/\ﬂ'aRa

Rp+4 pRp+4 P Rp+6

2 QQls 2p+4) QisRrRaQly
plp+2) RFY  p(p+2) Rp+6
(p+4)(p+6) Qs FrRR.R3Q%;

(p +2) hpé

p+4 )(p+6) Q. RyR,
p+2 Rp+4z ] 2 _|_2 )‘Rp.:\ﬁ Z ]7" (0148)

EQz] —
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Forp #1,

qur2 = p(pQ_ l)Tr[Qj] (C.149)

For p = 1, which is Coulomb interaction, by using @3, we lost the information of

3. ¢'r?, thus the Z, F, S, and T scheme would be a better choice.

Stress Contribution from Monopoles and Dipoles

Up to dipole moments, the total energy between (Z¢, ) and (Z7, /)

2 ZiRa | ZphRa 0+ DulRotisRa — posth
27 Z'WR poRe (P4 2)pg RopigRe — pigps (C.150)

E Ry Rp+2 Rpt2 D Rp+4

By using

) - Ropg + Rppiq (C.151)

M_ i,J i (C.152)

we have

oF
86a5
_ ZiZjRaRg +2) Ziu,ij»yRaRg B iuéng + ,U%Ra
T TP e (p Rpr+4 Rp+2
Zut Ry Ry Ry 1t Rg + M%Ra
~(p+2) va+4 + 2 Rp+2
L 20+ 4) pResRaRaLy
P Rp+6
. MWRs+wRe p+2 . piRg+ pyR,
[T Rp+4 - D NARAW‘—

~QM,s =

_p+2
p

(C.153)
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Appendix D Ewald Summation

D.1 Introduction

From macromolecular structure, to aqueous biological systems, accurate computation
of electrostatic and van der Waals interactions is the most difficult task in computer
modeling. Simulations of peptides and membranes as well as of ions in aqueous
solutions have provided clear-cut evidence of artifactual behavior due to the use of
cutoffs. Works done by Yor! have showed using current force field without truncation
of Coulombic interactions do not exhibit similar artifactual behavior. The general

approach to this problem is the Ewald method.

D.2 Lattice Sums For Inverse Power Of Distance

Consider crystal lattice pairwise sums of the type

1 ik
Ep=3Cn ;%’; (D.1)
where n = 1 for Coulomb interaction and n = 2 for shielded Coulomb interaction,
while n = 6 is the London dispersion term, or the van der Waals attraction sum.
We'll derive the lattice summation formulas used in our program for the case of
dispersion interactions as well as for Coulombic interactions. These lattice sums do
not in general converge absolutely, so we need to specify the asymptotic order of
summation, corresponding to the asymptotic shape of the finite crystal made up of
the union of lattice translations of unit cell U.
Let A denote the set of all lattice vectors n = nja; + noas + nzaz. In order to

describe the order of summation in R®, we introduce a closed, bounded region P,
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centered on the origin, and for positive integers K let Pk (A) denote the set of lattice
vectors n such that n/K € P. Given N points r, ...,y in the unit cell U, and real

constants Cj;, we consider

1 ’ Cij
.« o = i - T T . D.2
B S Sl 0y
nEPk(A) ,J

where the prime denotes that terms with ¢ = 7 and n = 0 are omitted.
Let’s start with some identities for the inverse powers 1/|r[P, p > 0, where r is

any nonzero vector in R3. The following two formulas are used

['(z) = / t*leTtdt = N / 7 leMdt (D.3)
0 0
and

e—a2w2 \/_/ e —2—6 27rzwudu (D4)

where I'(x) is the Euler gamma function.
Given a 3-dimension vector r, substitute A = |r|> = r? and z = p/2. For arbitrary
positive number 3, we then have

(2 52 oo
(3) =/ t‘g"le"’"ztdt—k/ t5le gt (D.5)
0 2

rP

In the second term, if we substitute ¢ by s, with 72t = s2, we have

& 2 2 1 e 2
/ t3le "t = - sP7le™5ds (D.6)
52 T Br

For the first term, we write r? = z? + 3* + 22 and apply Equation (D.4) in all three

dimension; and we have

132
/ tile=tdgt = 1
0

8w

ﬁ?

B.5 % oriur 3

t272 et e du dt (D.7)
0 R3
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Integrate over t first and substituting ¢ with s, where 72u? = ts?, we have

g2 2242 S
F%/ tg—%e_Tdt:QW%ﬁp_e‘(?TBu)p 3/ s2 e~ ds (D.8)
0 mu

B

Consider the reciprocal unit cell U* made up of the points u in R® such that —3 < a;-u < 3
and the fact that R* can be decomposed as the union of the points sets U* + m, over

all reciprocal vectors m, we have

i —_ W%/BP—C" ; /U* fp(ﬂ'|’U ; ’ITL’ )e—2ﬂi(v+m)~rd3,u + gpgf’r) (D9)

rp

where we have defined

f(z) = 22 / SRR (D.10)
g r'#) Ja '
and
gp(z) = 2 /oos”_le_s2ds (D.11)
g L'(%) /s
also noted
lim(L — %80y _ 1 /ﬂztg‘ldt: 267 (D.12)
T O P |

For v € U* we write v = wya] + weaj + wzaj where wy = v-ax, k=1, 2, 3. For
r € U and any lattice vector n = nya; + noas + nzas, such that r +n # 0, we extend

Equation (D.9); changing variables in the integral over U*, we have

3 ap_
1 _ 7T2ﬁp —2mmr/ / ) —2miw- ndS gp( ]T+n’)
|7+ nlp %4 S N pmn( |r +nlp

(D.13)




240

where

7|lv + m|

ﬂ )e—Qm‘vr (D.14)

hp,m,n(w) = fp(

withv =w-a"
Applying the above formula to Equation (D.2), and using the fact that the sum
of the Fourier coefficients of the smooth, bounded function Ay, ,, m # 0 converges

t0 hpmr(0) = fp(”'Tm[), we can write

ri—Ti+n 7r2 p—3 wlm _ _
i) = 335 AR I S R T gy

ﬂ:ﬂ
o) > Ca (D.15)

i

where the last term is the correction term (self-energy) for r = 0.

D.3 Coulomb Sums

D.3.1 Energy, Force, Stress

When p = 1 which is Coulomb interaction, we have

2

K@) == (o) = erfelo) (D-16)
Then we can write
22
qigerfe(B|r; — r; +nl) 1 e A7
E e = = S(m)S(—
1(7"1, ,TN) ZZ [rz—r]—i—n[ Qﬂ_VmZ#O m2 (m) ( m)
ﬂ qzq] S —2miv-(r;—71;5) ,~2mivn g3
—ﬁzqwg[{lg{l,o EZ(A Z ¢ e
g Pg

(D.17)
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where
= Z qie_Qﬂim'Ti (D.18)

is the Coulomb structure factor. The last term diverges, but when we apply a second-

order Taylor series expansion to the function e 72 e~2"(ri-75) expanding about
v = 0. The zeroth and first-order terms, which account for the singularity in the
integral, are cancelled by the double summation over ¢ and j for neutral unit cell.

The remainder term, which is of order three, can be written as

J(D) = 2r lim Z / A2 D e=2mivn gl (D.19)

where D = ). g;r; is the unit cell dipole moment.
Following the above argument, if we neglect the unit cell dipole moment contri-
bution (which depends on the surface boundary of the bulk material) and replace g3

by n =1/, we have
erfc(a) 2w 2,8 _
ECoulomb Z Qz] O Z h Z Qu D 20)
L N a Q h 77\/_

where the prime indicates that the term at the origin is excluded,
=Rl o
a= w, h=2rm=2rH ' 7 (D.21)

with matrix H contains the real space unit cell vectors in Cartesian coordinates, and

hn

b= Q=detH (D.22)
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S(h) is the structure factor

1

S(h)=CgY gje ™ (D.23)
It was proved that

S(h)S(=h) = 01{ (> ascos(i- ] + [ asin(h )] 2} (D.24)

Since
2 2
01 (r) |1 [®et 1 e 9 r? 2e” 77 1,
_ A —_—— (V= — (D.25
Ora Org | /T =2 i3 at VT . Bra(n2) Van T ( )
and
0

{S(—h)S(h)] = QClqp{ —sin(h - 7p) Zqi cos(h - ;) + cos(h - 1) Zqi sin(h - ri)}ha

= 2Ch, Z @pg;sinfh - (r; — 1p)] (D.26)

The force on each atom p

O0E;

a'rp,al;aha

Ch erfe(a,) 2e %
= q (]i(”' a " Tia — RL,a)[ + }
n’ ; pRAE * al VTa?

Fpo =

4rCy .
+ gl;ha[;qpqism [h-(rp—ri)]]eh—z (D.27)
where

q, = L2 i L (D.28)



243
The internal stress can be calculated as

0B
6€ag

1 | erfe(a) 2¢7 | Ba
N QUZQ”{ a? + 7a | O€qp

Ly.j

O, =

d e 9 1. 10nr 8 e
=27 35S0 [ 50—(5) ~ G5 1 )

a3 +ﬁGQ](Ti_Tj_RL)a(Ti_Tj_RL),B

1+ b2
+=>0 S(h)S(=h)— {561[, —~ Q—Fhahg} (D.29)
where

hory=2nH InoH,psip = 2mn - s; (D.30)

is independent of H matrix, or ¢, and

da i da?
aeaﬁ 2a aea,@
— 1 a [(S’L - 8] - SL)MG/LV(Si it 8_] - SL)V:|
,'72
1
= g7~ Bu)a(ri =75 = Ra)g (D.31)

% afaﬁ

Oh? 9
O€qp O€ap

- —Qthﬁ (D32)
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where
0A,) 0A
e iy by D.
aBaﬂ Le 8Baﬁ A)\V ( 33)
was used.
0 l . _i o2 0G,,
Oeas 0 Q2 0G ,, Oeng
S e
N 20 # 8€aﬂ
1
= _—Q' af (D34)

D.3.2 Accuracy Specified Cutoffs

With 7 specified there is still an infinite number of terms in the sums over the real
space and reciprocal space lattices, and an accuracy criteria is used to specify limits
on these sums. This is achieved by specifying a tolerance ¢ and carrying out the sums
until the neglected terms have a total contribution smaller than §. For structure
optimization, the energy based cutoffs is desired, while for dynamics simulation, the

force based cutoffs is more appropriate. We’ll look at the two cases separately.

Energy Based Cutoffs

Using a cutoff distance R, introduces an error in the total energy for the real space

sum of

1 erfe(“k)

Ereal = 5 Z Ql]“—é———e(Rz]L - Rcut) (D35)
Ly ik

where §(R;;r — Rcu) is the step function.

To estimate this error, we replace the discrete sum by a continous integral. Defin-
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ing the average interaction as<¢*>= ), ¢ 2/N, we have

N2<g?> (> erfe(E)
Ereal =~ T /Rcut 4TR TdR (D36)

By using the inequality

R 1 o 1 o _R?
erfe(—) = —1/ tmretdt < — T etat = ? e T (D.37)
n T2 %; 2 %‘“} R TR
we obtain
N2<@g?> [ _&? N2<g?®> R,
Erea < —q/ 47r%ne %dR = n? q erfe(— t) (D.38)
2Q2 Reut Q n

Using a cutoff H,,; in the reciprocal space sum introduces an error in the total energy

for the reciprocal space sum of

2 e"b2
reczp = ﬁ Z H(h cht) (D39)
h

Replacing the sum by an intergral and replacing S(h)S(—h) by N2 <¢?>, we obtain

o Q [ e~ ()’ NZ<g?> H,,
Emi,,_ﬁN2< = 4 h? 5—dh = o erfe(n t) (D.40)

Force Based Cutofls

For the real space sum, the error introduced in force of atom p by R, can be written
as

2

erfc(ay) N 2e”%

6 iL — Llcy D.41
ag \/7_Ta% (RPL R t) ( )

1
le,reall =3 Z lQpilRpiL
n Ly
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by using average interaction and replacing the sum with integral, we obtain

2

erfc(a)  2e™@
= +ﬁa2}dR (D.42)

N<g?> [
|Freall =~ 3q / 47FR2R
77 Q Rcut

further using Equation (D.37),

4rmN <g*> [ 2
|Freat] =~ ——lg—qﬂ [erfc(a)+—ae‘“2]da

47r77N<q2>/°° [ 1 e_az +iae_“2]da
cut i

2\/— rfe( wt) —Ri%‘l] (D.43)

For reciprocal space sum, the error introduced in force of atom p by R, is

Py recip] = = 5 Zh[ZQmsm h- r,,l] - 0(h Hew) (D.44)

Replacing the sum by integral and replacing >, Qpisin (h-7py) by N2 < ¢* >, we

obtain

oo

4m Q
Freeip| =~ _N2 — L) p—
| Frecip| a v <a >87r3 o t%h he 2 dh

= —N2 <¢" >/ e~V dh?
271- cht

2 _ 2
_ 2N ST 2 (D.45)

™
For a given 7, by using Equation (D.43) and Equation (D.45) we can evaluate
the cutoff distances R.,; and H., to obtain a given accuracy dgp. Because of the
neutrality of the cell under which Ewald calculation is carried out, there will be a

great deal of cancellation when we use the average interaction < ¢ >. Consequently,

Equation (D.43) and Equation (D.45) overestimate the errors.
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D.4 Dispersion Sums

D.4.1 Energy, Force, Stress

For p = 6, which is the London dispersion interaction, noted

folz) = % (1 - 229 + 20\ /Ferfe()] (D.46)
and
2 1 4\ ~z?
gs(z) = (1+2°+ 3% Je (D.47)
we can write energy sum as
1 — - - -a
ELondon e Zcij(a S +a™+12a7%e
Li,j
1 1 1 32
249 ZZ Cij coslh - (ri — r;)]A* [“”fe(b) + (éﬁ - 5)6 ’
3
w2
— i D.48
69773 Z 12776 ; ¢ ( )
where a, b, and h are defined in the previous section. If we assume
(D.49)

~Cij =/ CiiCyj

we have

ZCijcos[h- ri —1j)] [Z\/IC’Tcosh rlr—{z\/@sin(h-ri)r

(D.50)
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The force on atom p is

aE‘London
Fo. =
P OTp.a
1 . . D
—c Z ZCpi(Tp — i — Ry )a(6a;® + 6a,° + 3a,* + a,?)e ™%
L i
+—71%— i h (ZC sinfh - (r, — T-)])h3 [\/7_rerfc(b) b = Dyt
1292 - @ - pr 4 ¢ 2% b
(D.51)
The stress
1
Mg = 55 Cl6a," +6a,° + 30"+ a;%)e™ (1 = ri = Ri)alry =i = i)y
Lyi,j
TS S Cycosfh (rs - B | wberfe(®) + (5 — D [
240} iy K ¢ J 23 b afB
W% : 1 6_b2 7r%
Fi o 2 Cacesh (= lok [rherset) = ot + o 3 Cues
(D.52)

D.4.2 Accuracy Specified Cutoffs

Following section of Coulomb interaction, we’ll discuss the energy based accuracy and

force based accuracy for London dispersion interaction.

Energy Based Cutoffs

Using a cutoff distance R,,; introduces an error in the total energy for the real space
sum of
Ereu = = 3 Byj(a™® + 0~ + 2a2)e*0(Ryiy — Reus) (D.53)
real — 2776 i\ a 201 € Lij cut .

Lyj
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By using average interaction strength < B;; > and replacing the sum with integral, we

obtain
N2<By;> [ o 4 1 5 _p 2
Ereal W M(CL +a "+ 'Q‘CL )6 2nR°dR

7TN2<Bij> 7’]4 772 1 b —a?

7739 (chlut Rgut * —) /E—C—!-t- ¢ da
7
3
’/T5N2<Bij> 17 772 1 R
= + + —)erfc D.54

21m3Q (Rzlut Rgut ) 4y ( Ui ) ( )

Using a cutoff distance H,,; introduces an error in the total energy for the reciprocal

space sum of

ZBl] cos (h - Tw)hs l:\/_eTfC( )+ <% B %) _b2} 0(h — Hewt)

(D.55)

Erecip 24_Q

Replacing the sum with integral, and replacing >, Bj; cos (h - r4;) with N 2 < B;; >,

we obtain

3

7T5N2<Bij> 0 o0 2.3 1 1 _p2
recip Y ——————= — — = dh
Breci 240 8n% [y, e ﬁerfc(b”(w b)e

IN?<By> [* . 1, :
A 52— 5*)e ¥ | db D.56
e / - {\/%b erfe(v) + (5° — b*)e (D.56)

By using /merfc(b) < e~ /b, we have

ey = 2N2<Bia‘>/°° Lpe2ap
recip — 3\/’7?,76 277ch¢

N?< B, H,, 1
1<2776J >[77 ﬂ-t ——’H cht + e/rfc( anut)jI (D57)
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Force Based Cutoffs

Using a cutoff distance R.,; introduces an error in the force on atom p for the real

space sum of
1
| Fy peat] = ﬁ > ) Byirpin(6a,® + 60, + 3a,* + a;2)e”%9(rpip — Reut) (D.58)
L )

Replacing the sum with integral and using the average interaction < B;; >, we have

N<B;;> [
|Freat] ~ ——=1— / 2R (60 + 607 + 34" + a™2)e " dR
T]SQ Rcut
o 27TN< BZ] > o -6 —4 -2 _a2
775—9 ﬁcut (6(1 +6a"" +3a"" + 1)6 da
n
2rN<B;; >, 1’ nt n* /°° 2
< 17 (6 6 3 1 “d
- 7759 ( Rgut * Rgut * Rgut * ) Rj]”t ¢ ¢
W%N < B'j > 776 774 772 Rew
= 26 +6 +3 + 1)erfc D.59
Fa e, TORn, Tig, TV, (DY)

Using a cutoff distance H,,; introduces an error in the force on atom p for the recip-

rocal space sum of

3 !
| Fp recip| 17;—9 Z h [ Z Byisin (h - rpz-)] h3 [ﬁerfc(b) + (21? - %)e‘w} O(h — Hoyt)
h ;

(D.60)

Replacing the sum with integral and using ), By, sin (h - ;) ~ N < B;; >, we obtain

3
TN <B;;> * 1 1 2
Freci -t & 2p3 b — — )e™® dh
| Frcs| el /H 4?3 [Vrerfe(b) + (55 = 7)™
N<B;> [ B _p
< =¥z —e Ydh
YN T
_ 4N<_BZJ>/OO b2e= db
3ﬁn6 %T]cht
N<Bij> _lp2pp02 1
= 3—\/7?—776— [anute 1 Heu + \/E@TfC(ianut):l (D61)
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D.5 Particle-Mesh Ewald Sum

Since ngy; = H heut, the cost for reciprocal sum is proportional to =& 4” n3 N ~ QN ~ N?
for convention computation, where %’rn:” . is the volume in h space, while N is the
cost of structure factor computation.

For given accuracy, optimize eta parameter so that the computation cost mini-
mized, we can get a scaling of N 3 = V/NN? where the N and N? is the cost in real
space sum and reciprocal space sum. It’s not practical to perform simulation with
N ~ 1000, 000. To improve speed, Lee Pedersen et al. proposed the so-called particle-
mesh Ewald (PME) method?~* which is an N -log N method for the reciprocal space

sSuIn.

D.5.1 Theory

The particle-mesh Ewald method involves choosing 7 sufficiently large that atom pairs
for which r;; exceeds a specified cutoff are negligible in the direct space sum which
reduces the real space sum to order N. The reciprocal space sum is then approximated
by multidimensional piecewise-interpolation. The approximate reciprocal energy and
forces are expressed as convolutions and thus can be evaluated quickly using 3D fast
fourier transforms (FFTs). The resulting algorithm is of order Nln N. Let’s look at

the second term in Equation (D.15)
S 7r m o —
Erecz'p 6 Z fp I | ZCZJ 2mim-(ri—r;) (D62)

Define the reciprocal lattice vector m by m = mga; + mya, + m,a; with mg,my,m;,

integers not all zero, and the structure factor S(m) by

N
S(m) — que%rim-ri
Jj=1

N
= Z g;exp [QWi(szzj + My Sy; + mzsz]-)] (D.63)
=1
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where soj, a = z, y, z are the fractional coordinates of atom j. In order to ap-
proximate the above defined structure factor (Coulomb, or London), we’ll interpolate
the complex exponentials appearing in the above equation. Given positive integers
K., Ky, K, and a point 7 in the unit cell, denote its fractional coordinates by
Uz, Uy, Ug, 1€, uq = Kyal, -7, for o = 2, y, 2. Due to periodic boundary conditions,

we may assume that 0 < u, < K. Then

exp(2mim - 1) = exp(2m'm;:2) : exp(zmmKL:‘y) : exp(?ﬂim;(?z) (D.64)

There are several ways of interpolating the above exponential. Lagrangian interpo-
lation and Cardinal B-splines are the two which get the most attention. Lagrangian
weight functions are continuous and therefore give rise to approximate unit cell en-
ergies which are continuous as functions of particle positions. But they are only
piecewise differentiable, so the approximate reciprocal energy cannot be differenti-
ated to arrive at forces. The forces and stresses have to be interpolated as well.
While by using the Euler exponential spline which interpolate exponentials with the
Cardinal B-splines, we can differentiate the energy to get forces and stresses, due to
several nice properties of the Cardinal B-splines.
For any real number u, let Ms(u) denote the linear hat function given by
l—ju—1] 0<u<2

My (u) = (D.65)
0 otherwise

For n greater than 2, define M,(u) by the recursion

My (1) = —== My (u) + = M-y (u = 1) (D.66)

It can be proven that

_Mn(u) = Mn—l(u) - Mn—l(u - 1) (D67)
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Clearly, for n > 2, M, (u) is n — 2 times continously differentiable. It’s also proved

when n is even we can write

.My
exp(?mFua) ~ b(my) Z M, ( k)ezp(QmK—al-c) (D.68)

k=—o0
where again a = z, y, z, and

ezp[2mi(n — 1) ’I’}—Z]

b(ma) = == — (D.69)
k=0 Mn(k + 1)ezp(2mi=k)
Proceeding as above, we can then approximate the structure factor by
S(m) = N M ™y ms
S(m) = b(m_»,,-)b(my)b(wl?zl)c kZ:C;)O(okw, ky, k. )exp(2mi K kz)exp(2mi K, ky)exp(2mi K. k)
(D.70)
where
Q ks, ky, k) Z Z g M, nsz)Mn(u{/ — ky — n, K,) M, (v — k, — n,K.)
7=1 ng,ny,n.
(D.71)
Define
B(mg, my, ms) = [b(mg)[? - [b(my)|* - [b(m.)|* (D.72)
and

Ny m,
F(Q)(mw,my,mzk kzk:? kg, ky, k., )exp(?mK ks )exp(?mFyky)e:cp@m—E;kz)

(D.73)
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The approximate reciprocal energy is now given by

Erecip = 7r25p pr Tr[m| (mza my, mz)F(Q)(mza my, mz)F(Q)(_mz> —My, _mz)

mz MMy Mz
Kz—l Ky-1K.-1

= = Z Z Z Q k k' k rec*Q)(k:r,ky,kZ) (D74')
]Cz—O ky=0 k.=0

where 8., * () is the convolution of 6,.. and (), and

73 g3
7

mlmi

B

Broe = F[ £ )B(mx,my,mz)] (D.75)

We have used the following properties of discrete fourier transform

AxB= F[F-l(A % B)] - F{F-l(A)F—l(B)] (D.76)
F71(A)(my, my, m,) = F(A)(—myg, —my,, —m,) (D.77)

S F(A)(m) B(m) = 3 A(m) F(B)(m) (D.78)

Since 6,.. does not depend on particle positions, we get
K,-1Ky-1K,-1
Tec Z Z Z a kz’ k?/’ kZ)(erec * Q) (k:ln ky, kz) (D?g)
az

Br
o kz=0 ky=0 k.=0

Also, since m - r; does not depend on the unit cell parameters, we can compute

reciprocal contribution of stress as the following two terms:

QHl,aﬁ = Erecipfsaﬁ (DSO)
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on
Fenp

which originate from and

K.,-1Ky-1K,—1

1
Ay = 5 SN Qha by ke) (Cag * Q) (Kay by, k) (D.81)
kx=0 ky=0 k,=0

with

regrs 92 m|m)|

V amaamﬂf”( g

Cap = F[ )B(mg, my, mz)] (D.82)

For the Coulomb case, which is p = 1, we have

[16_77_

6% =F

rec

7V m?

B(mg, my, mz)} (D.83)

For van der Waals attraction, or London dispersion interaction, we have p = 6, which
gives us

oL = F

rec

(D.84)

3 5
w233 7232 _xim? Trm?
128 2 5

s 12 e T T

erfc(%)] B(mg, my, m;)
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Appendix E Structural Optimization

Structural optimization is a necessary tool to get the lowest energy configuration
which corresponds to zero temperature in experiments. It’s an essential starting
point for vibration frequency calculation. We implemented two kinds of optimizers.
Before we can proceed with the structural minimization which is multi-dimensional,
we have to look at minimization of function with one degree of freedom. These are

based on the well-known “Numerical Recipes in C.”!

E.1 Minimization in One Dimension

Both methods (steepest descent and conjugate gradient) require finding the minimum

along a certain direction, thus minimization in one dimension.

E.1.1 Golden Section Search

Given three points, a, b, andc which bracket a minimum, so that for a < b < ¢ (or
a>b>c), f(b) is less than both f(a) and f(c). The problem can be phrased as find
a point z, either between a and b, or between b and c. Let’s assume we pick the latter
choice. Then we evaluate f(z). If f(b) < f(z), then the new bracketing triplet of
points is (a, b, ), otherwise (b, z,c). In all cases the middle point of the new triplet

is the abscissa whose ordinate is the best minimum achieved so far. Suppose b is a

a b X

Figure E.1: Golden search
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fraction w of the way between a and ¢, i.e.,

b-—-a
= u
c—a
c—>b
T, = l-u (E.1)

Suppose next trial point x is between b and ¢, such that

z=b_, (E.2)

c—a

then the next bracketing triplet would be either (a,b,z), or (b,z,c) with length of
(u+v)(c — a), or (1 —u)(c— a) respectively. If we want to minimize the worst case

possibility, then we will choose v such that
(u+v)(c—a)=(1—-u)(c—a) (E.3)
or
v=1-2u (E.4)

If the point z is chosen as optimal, so was the point before it. This scale similarity

suggests

=u (E.5)

Finally, by solving the above two equations, we have

35
— 2f ~ 0.38197 (E.6)

U

Given a bracketing triplet of points, the next point to be tried is that which is a
fraction 0.38197 into the larger of the two intervals (measuring from the central point

of the triplet).
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E.1.2 Parabolic Interpolation and Secant Interpolation of First
Derivative

The golden section search is designed to handle, in effect, the worst possible case of
function minimization. For function which is nicely parabolic near to the minimum,
we can find the minimum in one step by parabola fitting. Assume the bracketing

triplet (a, b, ¢) satisfy the parabolic function
flz)=Az*+Bz+C (E.7)
which has its minimum at
B
- _ = E.8
T= -5 (E.8)
By solving the linear equations

a*A+aB+C = f(a)
V¥A+bB+C = f(b)
c?A+cB+C = f(c) (E.9)

we have the minimum at

(b—a)2[f(8) — ()] — (b— ¢)*[f(b) — f(a)] (E.10)

x:b~1 (
2 (b=a)[f(b) = f(e)] = (0= A)f(b) — f(a)]

Another approach is use the first derivatives, which is readily available in the en-
ergy force calculation, to extrapolate to zero first derivative. The sign of the derivative
at the central point of the bracketing triplet (a,b,¢) indicates uniquely whether the
next test point should be taken in the interval (a, ) or in the interval (b,c). We can
use the secant method to extrapolate the derivatives of the best point and the second

best point. Assume d, is the derivative of point a, and dj is the derivative of point b,
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then the extrapolated point z is

_bd, —ady

E.11
4 (E.11)

E.1.3 Brent’s Method

The golden section search is reliable, but it’s slow to converge. The parabolic interpo-
lation and secant extrapolation of first derivative are faster, but not reliable. Brent’s
method takes the best of the golden section search and the parabolic interpolation
(or extrapolation of first derivative), it relies on a sure-but-slow technique when the
function is not cooperative, and switches to a faster method when the function allows.

At any particular stage, it is keeping track of six function points (not necessarily
all distinct). (a,b) bracket the minimum, u is the most recent evaluated point, x is
the best point, w is the second best point, while v is the previous stage’s w.

Figure E.2 is the flow chart. The scheme to detect a cooperative versus noncoop-
erative function has to be robust, the attention must be paid to the convergence test.
The bookkeeping is to update the six point at next stage, so that it conforms to the
definitions of the six points.

For parabolic interpolation method, the point must fall within the bounding in-
terval (a,b) and imply a movement from the best current value z that is less than
half the movement of the step before last.

For secant first derivative extrapolation method, the movement must be consistent

with the sign of first derivative at point z and lies within the bracketing interval (a, b).
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Given Minimum Bracketing Triplet

Initialization

No
@W

Yes

Parabolic Interpolation or Derivative Extrapolation

A

No
oint ACW
Yes

Golden Section Search

Function Evaluation

Bookkeeping

No

Converged?

Yes

End

Figure E.2: Brent’s flowchart
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E.2 Multi-dimensional Minimization

There are many ways of multi-dimension minimization, which include direction set
methods; simulated annealing, etc. We implemented two direction set methods, they
are steepest descent and conjugate gradient. All direction set methods consist of two
tasks, updating the set of directions as the method proceeds, attempting to come up
with a set of minimization directions. It is very important for the set of directions
to include some very good directions that will take us far along narrow valleys, or
minimization along one direction is not spoiled by minimization along other directions
within the set. Since the first derivatives are calculated along with energy evaluation

in our program, we’ll use gradient information.

E.2.1 Steepest Descent Method

The algorithm of steepest descent is the following:

Assurme P oas Initial Coordinates

D= -vf(F)

Minimize f(P + ADYW.R.T. A

P=F+ N D
J

Cotverpged?

e
I

EFIRN

No

Figure E.3: Steepest descent flowchart
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Figure E.4: Steepest descent method in long narrow valley

E.2.2 Conjugate Gradient Method

The problem with steepest descent method is in a long, narrow “valley.” It takes

many steps to reach the valley as shown in the following figure. We really want

to construct the new direction somehow to be conjugate to the old gradient, and,

insofar as possible, to all previous directions traversed. Methods that accomplish this

construction are called conjugate gradient methods.

Definition of Conjugate

We can Taylor expand function f(7) around point P as

f(A)=c—b -7+

N | —

where

F=P+2 c=f(P), b=-Vf()|_p, A=

Then

Vf=A-7—-0

Z-A-T+...

(E.12)

0% f
Or;Or; l7=F (E.13)
(E.14)
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the change of Vf when we move along some direction
§(Vf)=A-(6T) (E.15)

Suppose that we have moved along some direction % to a minimum and now propose
to move along some new direction ¢. The condition that motion along ¥ not spoil our
minimization along @ is just that the gradient stay perpendicular to %, i.e., that the

change in the gradient be perpendicular to 4. That’s
i-0(Vf)=u-A- =0 (E.16)
When the above equation holds for two vectors 4 and ¥/, they are said to be conjugate.

Construct a Set of Conjugate Directions

Starting with an arbitrary initial vector gy and letting ho = Jo, construct two se-

quences of vectors from the recurrence

N o= Jg G hi_‘ (E.17)

Git1i = G—NA-N (E.18)
Git1 * Git1

GG E.19

Vi 77 (E.19)

hivi = G +7vihi (E.20)

The vectors satisfy the orthogonality and conjugacy conditions

Gi-G=0, hi-A-hj=0, Gi-hj=0 for i#j (E.21)
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WEe’ll prove it by induction as follows. First let’s look at case 7 =1

Gi-Go = Go-Go— hodo-A-ho

= Go-Go—Aoho-A-hg=0 (E.22)
since ﬁo = gp and Ay = ﬁ%
ﬁl‘ﬁo = (50—/\014‘50)‘50
= Eo'}_l'o-‘)\ol_{o'A'Flozo (E23)
hi-A-hy = (§1+’Yoflo) (Go — 1)/ Mo
= (VG Go—Gr-G1)/ A =0 (E.24)
since
Yo = ‘(il ' “(.],1 (E.25)
go* 9o
Then assume the claim holds for i < n —1; let’s look at i = n
gn—i—l ']_im = (jn "/\nAﬁn) ]_im
= gnﬁm_/\nﬁnAEm (E.26)
Obviously for m=0,1,2, ... ,n—1,  Gpy1- R = 0 holds. For m = n, we have
Gost  n =Gn P — Anbin- A by =0 (E.27)
since
Ay = Inh (E.28)
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Gt Gn = (Ga=InA-Fo) - Gin
= gngm_AnEnAgm (E29)
Obviously for m =0,1,2, ... ,n—1,  Guy1 - §m = 0 holds. For m = n, we have
§n+1 Gn = gngn_)\ngnAﬁn
= Gn-Gn— /\nﬁn A Hn + )\n’)/n—-lﬁn—l -A- ﬁn

= 0 (E.30)
En—I—l : gm = ﬁn—}-l : gm + ’Ynﬁn : gm (E31)
Obviously for m =0,1,2, ... ,n—1, l_i,H_l - g§m = 0 holds. For m = n, we have

-

ﬁn-}-l ' gn = §n+1 : gn + ’Ynhn : gn
= ’Yni_in : (gn—l - )\n—l A Hn—l)
=0 (E.32)

— -

A1 A b = (Gas1 + Yahn) (Gn = Grnte1)/Am

= -
-

— Gnt1* Gm — Yahn * Gme1 + Ynhn - Gm — Gn+1 Gm+1 (E 33)
Am '

-

Obviously for m=0,1,2, ... ,n—1, hy1-A- ﬁm = 0 holds. For m = n, we have

— — -

hn+1 Sz hn = (§n+1 + 7nhn)(§n - §n+1)/)\n

’Vn}_in : gn - §n+l ' §n+1
An
=0 (E.34)
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since
= 9n+£ : gr:+1 (E.35)

This concludes the induction. The above construction of directions requires computa-
tion of the second derivatives. In some cases, the second derivatives are not available,
even if they can be calculated, the computation is expansive. We implemented the

method without using the second derivatives.

Conjugate gradient without matrix A

o o

o= —VERYL =i

r
Brent’s minimization of B, + Ay}
P = Fi+ A by

r}:“ = “’”?E‘;pﬁ“}

P — "fi»i ”33«-»{

TR

s sy

For = Gyt + 0

Converged?

No

[ Vi
Pli’l!!i
Figure E.5: Conjugate gradient minimization

Figure E.5 shows the flow chart of our structure minimization. Suppose at step

—

i, we have §; = —VE(F;), where point P, is the minimum of f along k;_;. Find
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minimum point 13”1 along Bi, so that

Py =P+ Ak (E.36)
Since
VE(B) = A-P—-§ (E.37)
VE(I3,-+1) = A _;+1 -
= A-B—b+NA-R
— aanAR (E.38)
we have
Gis1 = —VE(Py1) (E.39)

which is the force at 15;+1.

E.3 References:

1. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical
Recipes in C, 1992, Cambridge University Press.
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Appendix F Molecular Dynamics

F.1 Introduction

In this chapter, we deal with the theories and techniques used in molecular dynamics
simulation. The fundamental dynamics equations of any system is the Lagrangian

equation of motion

d 0L, oL

(=) === F.1
dt(aqk 8qk ( )

where the Lagrangian function L(q,q) is defined in terms of kinetic and potential

energies

F.2 NVE Dynamics

For an isolated system, we have Lagrangian as
1
L:;Emi’/:ﬁ—‘/(Tl,Tg,...,’f'i,...) (F3)

and dynamics equations
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To solve numerically the equation of motion, we use the velocity Verlet or leap frog

algorithm.
Vi=_2 F.5
= (F.5)
For time step §, we approximate
S AT A
Vi 2 2 (F.6)
4]
leading to
i B
and

Xop1 =Xy + 6V (F.8)

n+%

The problem with these two equations is that the velocities and coordinates are not
from the same time step. Thus the KE and PE are available only for different time
steps. To obtain equations involving V,, and X,, at the same time step, we start with

Eq. (F.7) and estimate V, by

i 1 % 7
Vi=g(Vo+ Vo) (F.9)

_1
2
Then we have

(F.10)
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and
Vi=Vi,+isin (F.11)
) 2 m;

F.3 NVT Dynamics

F.3.1 Theory

There are many ways of doing molecular dynamics simulations under constant tem-
perature. Among them, the extended system method originally formulated by Nosé!
and Hoover? is most important. An additional degree of freedom corresponding to
a heat bath is introduced. The total energy of the physical system is allowed to
fluctuate by a thermal contact with a heat bath. In Nosé’s original formulation, two
frames of variables, real variables corresponding to realistic motion of particles and
virtual variables, are introduced. The relations between these two kinds of variables
are derived from an assumption of time scaling dt’ = dt/s, t' is a real time, ¢ is a
virtual time, and the scaling factor s corresponds to a heat bath variable. The canon-
ical distribution is realized in a physical system if we choose the Lagrangian as the

fOllOVVing
- : : _m.SZ 2 — (7' r T ) Q 5.2 — gk 1 Bl (F 12)
- 2 1 75 [ 1972y 00 9 lgye.s 2 s B ns .

Equation for particles

d
—(m; 87) = 2my s 57 + my T (F.13)

dt

Convert the equation to real time by

._1%

= F.14
4 s dt ( )
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ds drt 1 d%*% 1 dsdrt -

2mi— —— S =% — = ——)=F" .

miga TG e m ) = (F.15)
Define

1 ds
= F.1
¢ s dt (F.16)

we have

= —CS¥ (F.17)

Equation for s

d

) . 1
%(Qs §) =Y misii— gksTs (F.18)

Convert to real time we have

1 dce ,2 1
EQSE:SZ: m;rT; —ngTB—S- (Flg)

Since
> mis’i? =2KE = fkgT (F.20)

where f is the degree of freedom. If we choose g as degree of freedom also, we have

d¢®  gkgTp, T
ko) (7= (F.21)
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F.3.2 Numerical Integration

Let’s consider a general form of dynamics equation with velocity dependent forces, or

friction forces

8y F
==V (F.22)

where f indicates a frictional term. The numerical equation thus becomes

F,
Vn+%:Vn—§+6M_6an;l (F.23)
approximate V,, by
2V =Vo1 + Vo (F.24)
Then we have
1—L6f 0 F
Vo,i=—=2"" — " F.25
T T3 L6f, "t 1 10f M (F.25)
It is often convenient to break the leap frog algorithm into two half steps
Vn_% — Vi
which is
1 1 _F,
Vn+% =(1- §5fn)vn + §5M (F.26)
and

Vo _>Vn+—§-
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which is
% L v o+ L (F.27)
n= 17 Vn-t vt T 17 s .
1+36fn "2 1+16f M
Replacing f by (°, we have
i Lo\ 1oFy
Vn+% =(1- §6§n)Vn + §6E (F.28)
.V 0 (F.29)
14 18¢, M 1+ g, my '
and
ngTB Tn—%
n=Cpoy + ——(—2 — 1 F.30
o= G+ S5 1) (F.30)

F.4 NPT(Gibbs) Dynamics Formulation

F.4.1 Constant Temperature and Constant Stress Ensemble

Constant temperature and constant stress ensemble is one of the most important
ensemble being studied, because most of the experiments are done under such con-
dition. Results from molecular dynamics simulation of constant temperature and
constant constant stress ensemble can be directly related to experimental results.
Andersen® has shown how MD calculations can be modified to study systems under
constant pressure by introducing the volume of the system as an additional variable.
Later on, Parrinello and Rahman* extended the variable to simulation cell param-
eters which results the constant stress ensemble. By combining the Hamiltonian of
Nosé-Hoover formulation and that of Parrinello-Rahman, we get a constant temper-
ature and constant stress ensemble. Parrinello-Rahman’s original formulation used

cell transformation matrix H = (a,b,c) which is not invariant under rotation. This



275
may introduce artificial effects into the dynamics systems, lead to instable systems.
In our implementation, we take the metric tensor G = HTH as our variable, which

may gave us better stability.

F.4.2 Coordinates Transformation

Let e;, ey, e, = {eq} be aset of orthogonal unit vectors and write the primitive vectors

for the unit cell as a,b,¢ = H. Then we can write the coordinates of particle i as
fo = Haﬂpz (F31)

where R’ is the o coordinate of particle i, pfé is the scaled a coordinate of particle 1.

From equation (F.31), we have

Ri, = Hog/ (F.32)
The inner product becomes
(R'- RY) = R\R) = Hyo 0,0y = Gapalh (F.33)
where the metric tensor
Gaop = HyoHyp = HgvHvﬂ = (HTH)aﬂ (F-34)

or

H121 +H221 +H§1 Hy Hoo + Hy1Hys Hiz Hss
G = | HyHy+ H3 Hj HZ, + H, HsyHss (F.35)
Hj3 Hjs H3oHss HZ,
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while

v G — H2 — HZ, 0

H= (G21 - H31H32)/H22 AV Gap — ng

G31/H33 G32/H33

The H matrix is calculated in the order of

Hs3 — Hsy — H3y — Hyy — Hyy — Hyg

F.4.3 Strain Tensor

Consider a homogeneous distortion

HO—)H

(F.36)

(F.37)

in which the unit cell change size but the scaled particle coordinates remain fixed.

The new particle coordinates are given by

R, = HaﬁHO—,évRé,v
Thus the displacement of each particle is given by

@=R—Ry=(HH;' - 1R,

Using the Landau-Lifschitz definition of finite strain

_ l(aua N Oug  Ouy Ous
Caf = 5 Ozg 0z 0x4 Oxg

leads then to

1 -
€ = E(H(;IGH()_l — 1)

(F.38)

(F.39)

(F.40)

(F.41)
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where the tilde indicates transpose of a matrix and Hj refers to the reference state of

the cell in terms of which the external stress is defined.

F.4.4 Lagrangian for Particles and Cell
Kinetic Energy

For particle kinetic energy, we have
1 5 pi _ L i i
KEparticle = 532 Z MiR7R7 = 582 Z MiPaGaﬁpg (F.42)

For nosé parameter s

KEnosé - %Qsz (F43)
For cell kinetic energy, we have
1o os
KEce” = §WS GaﬂGaﬂ (F44)

Potential Energy

Particles potential energy PFEp, . includes all valence and nonbond interactions.

while the nosé potential energy is defined as
PFE, ¢ = gkgTglogs (F.45)
The total potential energy for the stresses system is
PEcen = p(§2 = Qo) + Q0o(—=S + p)astas (F.46)

where € is the unit cell volume, p = 3Trace(S) is the pressure and S is the external

stress tensor.
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Defining the transformed stress tensor as

o =QHy (=S +p)H; ! (F.47)
we have
PEcey = p(2 — Q) + %UaﬂGaﬂ (F.48)
Lagrangian

The above results leads to a Lagrangian
1 2 i . - = -
L = 5 ZmipaGagpﬂ — V(f1,Tayeoe yTiyent)
i

+1Q52 — gkgTglogs

2
1. . . 1
+*2‘WGagGaﬂ82 - p(Q - Qo) - §O'aﬁGaﬂ (F49)
F.4.5 Dynamics Equations
Internal Coordinates
Since
0L ORj AL .
— = — ~ = H.3F} F.50
Opi,  Opy OR; TP (750
0  OL 0

%(api )= a—t(miSQGaﬂpZ) = 2m,~s§Gagp'f3 + miSQGagﬁ% + miSQGalg,{')% (F.51)
S « L]

By using

0 ,0L oL

() = — F.52
8ts(8/')z) Op4 (F-52)




279

we have

mis°GapPly = HagFl— 2miséGagply — mis*Gagp (F.53)
m;s 2G Gagﬁf, = G;alH 5Fﬂ —2mzssG Gaﬂp'fé —mz-SQG;;Gaﬂp% (F.54)
po= #Hw Fj— 2ng — GoaGapfly (F.55)
where we have used
GraGag = 6y (F.56)
GaHos = Hy (F.57)

Convert nosé time to real time

=~ =22 F.58
4 ot, s Ot ( )
then
19,100, 1, 139s0p
- —(= == " - = — F.59
th(s 8t) s2 0%t s3 0t Ot ( )
Define
1 0s
f= - F.60
¢ ey (F.60)
0G4
= G 5 (F.61)
Finally we have
2 0 i 8 3
ap’Y__ —lF _Csap’y p 9Ps (F62)

8 at
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Nosé Parameter

oL : ; 1 Y

E = ZmiSPzaGaﬁp,l@ - gk)BTB‘; + WSGaﬁGaﬂ (F63)
oL _ oF (F.64)
05

10 18t 18C

§ = (2 ZXYy==Z F.65
s S 8t(s at) s Ot ( )
Put them together, and we have
o _ 20 Gagpls — gkpTs + W s GosG
Qat = Zmis PaGapps — 9kBTB + W s° GopGap
= 2(I(E’particles + KEcell) - ngTB
= gkg(T' — Tp) (F.66)

where we have used K Epq sicies + K Eceny = gkpT with T as the system temperature.
Defining

Q = gkpTpr? (F.67)

we have

(=— —1) (F.68)
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Metric G,p

Since
1%
- = QP¥
aen)\ KA
OV i OV 66n)\
0Gos  Oter 0Gag
Oe A 1 1 oG -
K — __H /U/H 1
0G s 9~ Okp 0Gap 0vA
1. ..1 -
= §H0n1u[§(6l—ta61’ﬂ + 5uﬂ‘sva)]H0u1A
1 -~ . =1
= Z(Hofelanlx + HOnlﬂHOal/\)
So
oV 1

G, = 1 Hue o + HolpHo ) P

1 _ ~
= _5 QO HOalch/fiHO)\lﬁ

where we have used the symmetry property of P’y. Similarly

OKE particle

1 _ o Fre
8Gaﬁ = 5 QO HOaln‘P:)\HO/\%

Since

det H = eqpy€ijpHinHjgHp,y

Odet H
OH;

= €aprCijiHjpHry

_ Odet H
A BHZ

€apyEijkHixHjgHpy = 0ro det H

(F.69)

(F.70)

(F.71)

(F.72)

(F.73)

(F.74)

(F.75)

(F.76)
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Odet H .
——— = Hj;detH F.77
3Hag af e ( )
Q = @ (5 X 5) = €iiji1Hj2Hk3 =detH (F78)
det G = det Hdet H = (det H)? = Q2 (F.79)

00 1 o~ 1 .
aGaﬂ - -2—9 Gaﬁ - 59 Gaﬁ (F80)
By using the above equations, we have
oL 1 e kex £ 1 4 1
0Ga5 = 5 o HOcm(Pn)\ + Pn)\)HO)\ﬁ - §Pezt Q Gaﬂ - Eaaﬂ

1 1
— 5 QO H()_an (Pmternal Sewternal)HéAﬁ _ "Q‘Pezt 0 G;/% (F81)

oL =W 5% Gop (F.82)
8Gag
Gasg = 2;‘/ [QO Hgl (Pinternal _ gesternaly fja. o — PmQG;ﬁl] — 255G ,4F.83)

In Hoover formulation (real time)

82Gag _ _{
0%t 2W

QO H- (Pmternal Sexternal)Hé)‘ﬂ Pext 9 G;ﬁl] _ Cs Gaﬂ (F84)

Oak
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F.4.6 About Cell Mass

From the above derivation, WG? has unit of WT§ while the kinetic energy usually

M L2
f T

has unit of “5~. We propose

W= f McellQ—% (F85)
with f a scale factor and

Meey = Z m; (F.86)

F.4.7 Numeric Integration

Two Step Leap-frog for TPN

Following are the equations used in our integration
Ppt | F! o,

82‘
Hva__cs P pﬁ

02t m; ot Cs ot (F.87)

82 Ga interna external\ 17— _ s/
02t B _ 2W [QO HOcm(P ¢ l SK)\t l)HO)\lﬁ — Pezt 0 Gaé] _ C Gaﬁ (F88)
and
oce 1. T
=Sl -1 F.8
Bt 3%@ ) (F.89)

Then—-1 — n— % equation for internal velocites of particles

Fatm

=[1- (CP+C)]n1+5"

» (F.90)

Vi



284

Then—-1 — n— % equation for velocity of metric parameters

: 1, 1 _Feelt
Gn_% =(1- 5(5( VGno1 + 5(5 W (F.91)
Nosé parameter
TR IR Vi Y (F.92)
n — Sn-—1 7_32 TB .
Internal coordinates of particles
Metric parameters
The n — %— — n equation for internal velocity of particles
1 18 Fatm
Vo = Vo1 + - > (F.95)
Tl g0+ T 1+ 58(CE+G) M
The n — % — n equation for velocity of metric parameters
. 1 . lé Fcell
G, 2 L (F.96)

= G . +—2
1+ 36¢3 "‘5+1+%6§,§ w

since (¥ and Fe depends on Vj, and G,, we have to solve these two equations

self-consistently. Following is the flowchart of an integration circle.
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Figure F.1: NPT dynamics flowchart
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F.5 Rigid Dynamics

In general, atomistic molecular dynamics of various ensemble can handle most of the
molecular systems; however treating some of the molecules as rigid can decrease the
degree of freedoms and increase dynamics time-step, and thus, can simulate larger

systems longer.

F.5.1 Partition of dynamics equations

Consider the motions of a rigid molecule M interacting with other atoms or molecules.
For a nonlinear molecule there are 6 degrees of freedom (3 translation, 3 rotation).
The forces on the atoms of M are calculated and combined to obtain the net forces

and torques on the body

v
M — -
FM = Z o (F.97)
ieM
7 cm 8V
TM = =" €apy(rh — RF") o (F.98)
€M Y

These calculations are carried out in normal space-fixed coordinates. We introduce
a coordinate system attached to the center of mass with the same orientation as the

space-fixed system at the initial time. The particle position
re(t) = Ra"(8) + Aap(t) [r5(0) — R5™(0)] (F.99)
where A,4(t) is the rotation matrix. The particle velocities are then given by
Ve (t) = Vi (1) + €apy wp()[r, () — BT (2)] (F.100)

where w is the angular velocity
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Define
ri (t) = ri(t) — R°™(t) (F.101)

om

Using equation (F.100) in KFE, we have

KFE = % Z m;vie’

iEM
2
- Mvcmvcm+ Zm[ ) % ri (t)]
zEM
= KB+ KE, o (F.102)

So we can partition equation of motion into center of mass translation and rotation

with respect to center of mass coordinates. It’s the angular motion which needs

further study.

F.5.2 Dynamics Equation for Angular Motion

We can write the rotational kinetic energy as

1 . _
KE,,; = 5 Z Mi€aByEap BT om A WuTom v (F.103)
ieM
By using
€afy€apy = 0pudy — 00y (F.104)
we have
1 . . . .
KETOt = 5 Z m; [wﬂwﬂ(sﬁﬂrzm,'yTZm;y - wﬂwﬂrzm,ﬁTZm,p]
iEM
= _Zmzwﬂ ‘5ﬁu7" cm,ﬂ cm,u)w/‘
i€EM
1
= —Igwpw, (F.105)

2
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where

Z m; 6ﬂﬂr cm cmﬁ cm,u)

1EM

is defined as the moment of inertia tensor.

The angular momentum

We can rewrite K FE,,; as

1
KE,,; = 5I;lJng

Then for micro-canonical ensemble
L=Lyvg+ %ZM VEVE 4= ZI LMoY
and for canonical ensemble we have Lagrangian as
L=Lyvr+ % > Mems*Vi, Vi, + 5 Z s I Wl
M
and for Gibbs ensemble we have Lagrangian as

1 2 {2 2
L:LNPT‘I'E%:MCWLS VEVE + 2 Zslﬁw wg!

(F.106)

(F.107)

(F.108)

(F.109)

(F.110)

(F.111)

noted, there are no coupling between cell deformation and rotation of rigid molecules.

For rotational degree of freedom, the dynamics equation takes the form of

ja:Ta_fJa

where T, = f = (¢ for canonical and Gibbs ensembles, f =

86’

(F.112)

0 for micro-
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canonical ensemble.

The two-step numerical integration equations are:

1 1
Jn—% = (1 - 5 5fn——1)=]n—1 + ‘2‘Tn—1 (F113)
and
1 X
In + L (F.114)

- o +—22 7
14306 fas "3 1+16f ™"

The above equation is in space-fixed coordinates. In order to solve for the new angular

coordinates, we must transform from space-fixed (J) to body-fixed (J?) coordinates

by applying

JB = Ap(t)J; (F.115)

where A,5(t) takes the current space-fixed coordinates transform back to the body-

fixed coordinates at £ = 0. Since
Jag = Iaﬂwg (F.116)
where I,z is evaluated in the original body-fixed coordinate system at ¢ = 0. Thus

WB(t) =I7VJB() = T A(t)J (F.117)

F.5.3 Solving the Equation Using Quaternions

Since the potential energy and forces (thus torques) are evaluated in space-fixed
coordinate systems, while the moment of internia is most easily expressed in a body-
fixed coordinate system, we have to relating the coordinates of a moving-body to
a space fixed coordinate system. The most common approach is in terms of Euler

angles:0, ¢, 1, where 6 and ¢ give the orientation of a body axis relative to the space-
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g

Figure F.2: The rotations defining the Euler angles

fixed frame and 1 is the rotation of the body about this axis. The transformation

tensor is

cosp cos¢ —cosf sing sinyy  cost sing + cosf cosP siny  siny sinf

A= —siny cos¢ —cos# sing cosyy —sine) sin ¢ + cosf cos ¢ cosyp cos sinf
sin @ sin ¢ —sin @ cos ¢ cosf
(F.118)

However, Euler angles lead to singularities whenever the equation of motion takes ¢
too close to 0° or 180°. The using of four variable quaternions rather than the three

variable Euler angles can by-pass the singularity problems.
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The quaternions are defined in terms of Euler angles as

@ = sin 2 cos ———

2
Qyzsingsin¢;¢
Qz:cosi sin¢_’2_w
Q4:cos—gcos¢;¢

where the normalization condition is
4
> Q=1
a=1
The relation between A and ¢ is

Aii:QZ+Q?_ZQ§

J#i

Aij =2QiQ; + €xQuQr i1 F# 7
where ¢ = 1,2, 3. In matrix form

Q- Q- Qi +Q7 2Q:Qy +2QuQ:
A = QQzQy - 2Q4Qz —Qi + QZ - Qz + Qi

QQsz - 2Q4Qy
2QyQ: + 2Q4Qs

(F.119)

(F.120)

(F.121)

(F.122)

(F.123)

(F.124)

(F.125)

QQzQz + 2Q4Qy 2Qsz - 2Q4Qx “‘Qi - Qg + Qg + Qi

(F.126)
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the quaternions change smoothly in time with no singualr points

tween () and w is

Q; = —(Q4wi + eiijjwk) ,1=1,2,3
2

: 1

Qs = _§ini
If we define wy = 0, in matrix form
Qa = DapWp
we have
Q4 _Qz Qy Qx
S — Qz Q4 _Qx Qy
-Qy @ Q4 Q.
_Qm —Qy _Qz Q4

Note that S8 =1

Let’s partition the equation
Qn = Qn—l + 6Qn_%

into

1 .
= Qn—l + _5Qn—%

2
1 .
5 6@7}.—%

N|—

Qn - Qn-—%'f'

Then following is the flowchart of one dynamics step

. The relation be-
(F.127)

(F.128)

(F.129)

(F.130)

(F.131)

(F.132)

(F.133)
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Figure F.3: Rigid dynamics flowchart
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F.5.4 Linear Molecule

Figure F.4: Orientation of linear molecule

Let’s assume the bond axis of a linear molecule as 7 as in the above figure; we

can diagnolize the inertia tensor by transformation coordinate system (z,y,z) into

(.’E,, yl, ZI)

I'=ATAT = a (F.134)

Since the inverse is singular, we have to pay special attention to linear molecule. We
require angular momentum J be orthogonal to the bond axis. Denoting the unit

vector along the molecule as e,, we must have

Je,=0 (F.135)
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Then rewrite I as proportional to the unit matrix

I= a =ql (F.136)

The kinetic energy becomes

J-J

KE = - = (F.137)

(NN

To ensure angular momentum J be orthogonal to linear molecule bond axis, we Schmit

orthogonalize each iteration by applying
Jmew = Jold _ (e, - JOe, (F.138)

The inverse of inertia tensor I~! can be calculated as

Tracel

I''=A 2 A (F.139)

where transformation matrix A can be calculated with Euler angle (¢,0,¢) as

9 = arccos >
-
Ty
= T — arccos ———e——
¢ NG rg
¢ =20 (F.140)

The quantities specified are defined in Fig. F'.4
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