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Abstract

In the last six years, we have witnessed an explosion of interest in the coding theory
community, in iterative decoding and graphical models, due primarily to the invention
of turbo codes. While the structural properties of turbo codes and low density parity
check codes have now been put on a firm theoretical footing, what is still lacking is a
satisfactory theoretical explanation as to why iterative decoding algorithms perform
as well as they do. In this thesis we make a first step by discussing the behavior
of various iterative decoders for the graphs of tail-biting codes and cycle codes. By
increasing our understanding of the behavior of the iterative min-sum (MSA) and
sum-product (SPA) algorithms on graphs with cycles, we can design codes which
achieve better performance.

Much of this thesis is devoted to the analysis of the performance of the MSA and
SPA on the graphs for tail-biting codes and cycle codes. We give sufficient conditions
for the MSA to converge to the maximum likelihood codeword after a finite number
of iterations. We also use the familiar union bound argument to characterize the
performance of the MSA after many iterations. For a cycle code, we show that the
performance of the MSA decoder is asymptotically as good as maximum likelihood.

For tail-biting codes this will depend on our choice of trellis.
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Chapter 1

Introduction

In the last six years, we have witnessed an explosion of interest in the coding theory
community, in iterative decoding and graphical models. The spark was ignited, in
1993, when Berrou, Glavieux, and Thitimajshima [1] introduced to the world turbo
codes, whose performance approached Shannon’s theoretical limit. Since then there
has also been a renewed interest in Gallager’s low density parity check codes [2] and
a number of other parallel and serial concatenated coding schemes [3, 4].

While the structural properties of turbo codes [5, 6, 7, 8, 9] and low density
parity check codes [10, 11, 12] have now been put on a firm theoretical footing, what
is still lacking is a satisfactory theoretical explanation as to why iterative decoding
algorithms perform as well as they do. In this thesis we make a first step by discussing
the behavior of various iterative decoders for the graphs of tail-biting codes and cycle
codes. This work is intended as a sequel to the thesis of Wiberg [13] in which he

presents a general framework for iterative decoding on graphs.

1.1 Graphical Models and Codes

There are many ways to represent a given code with a graph. For any such repre-
sentation, we will consider the class of iterative decoding algorithms that compute
an internal state at a vertex, which is based on the local information at that vertex
and any information received from adjacent vertices in the graph. The decoder’s per-
formance and complexity will depend both on the graph and the decoding algorithm
we choose. Ideally we would like to be able to select a graph for the code on which
an efficient decoding algorithm can achieve optimal decoding performance. However,

for all known codes, algorithms based on these graphs quickly become intractable,
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as the code approaches the Shannon limit. Thus, if we want to achieve really good
performance, we are forced to choose a graph on which we cannot perform optimal
decoding, but for which the subsequent increase in strength of the code is greater
than the loss we sustain due to sub—optimal decoding. This is the case for both turbo
codes and low density parity check codes.

Much of the research for improving the performance of turbo codes has focussed
on designing better interleavers [3, 5], or better component codes [4, 9], to increase the
strength of the code. On the other hand, low density parity check codes are already
known to be good codes [10], so there the search is to find representations on which
the iterative decoder works well [11, 12, 14, 15]. If we can better understand what
causes the iterative decoder to make sub-optimal decisions, then we will be able to
design codes which are both good codes and have graphical representations for which

the iterative decoder works well.

1.2 Thesis Outline

In Chapter 2, we will present the two graphical models, namely junction graphs
[16, 17] and Tanner graphs [13, 18], that we will consider in this thesis. We also
present the iterative min-sum and sum-product algorithms for these models [13, 16].

In Chapters 3 and 4, we will analyze the performance of the iterative sum-product
and min-sum algorithms respectively, for a junction graph with a single cycle. This
work is directly relevant to the study of iterative decoding of tail-biting codes, since
their underlying graph has just one cycle. In the case of the iterative min-sum
algorithm, we will use a union bound argument to quantify the loss in performance
due to the sub-optimality of the decoder. Much of this work was presented earlier
in [19] and [20], for the iterative sum-product algorithm, and in [21] and [22], for
the iterative min-sum algorithm. In Chapter 5, we continue with our analysis of
iterative decoding of tail-biting codes, by counting the number of closed paths in a
tail-biting trellis, which never visit the same state twice. These paths, which we call

pseudo-codewords, are the cause of the degradation in both algorithms’ performance.
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In Chapter 6, we will analyze various decoding algorithms on the Tanner graph
for a cycle code. We will show that for the additive white Gaussian noise (AWGN)
channel, the iterative min-sum decoder performs asymptotically as well as an optimal
decoder in minimizing the word error rate. Part of this work was presented previously
in [23].

Finally, in Chapter 7, we present our conclusions and a simple experiment to gain
some insight into understanding the iterative decoding of low density parity check

codes and turbo codes.



Chapter 2
Graphical Models and Message Passing

A number of graphical models and message passing algorithms have been proposed
for use as decoders over the years. They have proven to be not only an efficient
means of decoding complex codes, but also a useful tool to describe classes of codes.
Gallager’s 1962 low density parity check (LDPC) codes [24, 2] were the first instance
of decoding using message passing on a graph. Since then Viterbi’s algorithm [25]
and the “forward-backward” algorithm [26] (also known as the Baum-Welch [27] and
BCJR [28] algorithms) have been applied to the trellis of a code to minimize word and
bit error probability respectively. More recently Tanner [18] generalized Gallager’s
work in proposing a method of constructing codes based on bipartite graphs.

Currently there is great interest in a variety of graphical models in the coding
community. These models include the Bayesian networks of Pearl [29, 30, 31], junction
graphs [16, 17], factor graphs [32] and Tanner graphs which have been modified by
Wiberg to include state nodes [13]. In this thesis we will make use of junction graphs
and Tanner graphs to analyze codes.

There is also an equally large variety of message passing algorithms that have been
used for decoding. Among these are Pearl’s “belief propagation algorithm” [31], the
Shafer-Shenoy probability propagation algorithm [33] and the generalized distributive
law (GDL) [16]. Many of these algorithms and graphical models are equivalent to one
another and the choice one makes seems to be more of a personal preference, rath
than a difference in the decoding performance of the algorithm, or the descriptive
power of the graphical model.

For instance, the sum-—product algorithm of Wiberg [13] is simply a generalization
of the BCJR algorithm [28], the turbo decoding algorithm [1] and the decoding algo-
rithm used by Gallager for low density parity check codes [2]. It will have identical
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behavior and performance on the Tanner—-Wiberg-Loeliger graph of a code, as the
belief propagation algorithm will have on the equivalent Bayesian network for that
code, assuming of course that the same message passing schedule is used for both.

A graphical model can represent, among other things, a global probability dis-
tribution as a factoring of local distributions by edge connections and vertices in a
graph. It is well known that message passing algorithms converge to the correct a pos-
teriori probability (APP) when this underlying graph is cycle free. When the graph
is multiply connected, message passing may not converge and if it does, the APP’s
are generally incorrect. However, when decoding, we are usually only concerned with
finding the maximum a posteriori (MAP) or maximum likelihood (ML) decision for
a codeword bit, so only the ordering of the APP values is important.

There is a large body of empirical evidence that suggests that message passing
has good performance in the presence of cycles [1, 5, 34, 10, 9]. In fact, recently,
Luby et al. [11] and Richardson and Urbanke [12] have extended Gallager’s work on
LDPC codes to show one can achieve an arbitrarily small error probability for a given
rate, even in the presence of cycles. Thus it is important to study the “approximate
correctness” of various message passing algorithms on graphs with cycles in order to
gain an understanding of why these algorithms perform so well.

In this thesis we will discuss the behavior of message passing algorithms on two
classes of codes, namely tail-biting codes, whose underlying graphs contain a single
cycle [35, 36], and cycle codes [37].

In Section 2.1, we will introduce the notation of Aji and McEliece to describe
a junction graph and give two examples of junction graphs for tail-biting codes. In
Section 2.2, we will introduce Tanner graphs and give an example of the Tanner graph
for a cycle code. We will also show how to construct a junction graph from the Tanner
graph for a code.

In Section 2.3, we will present a general class of message passing algorithms on a
junction graph called the generalized distributive law (GDL) [16]. In Section 2.4 we
will construct the computation tree for a given message passing schedule on a Tanner

graph [13]. Finally in Section 2.5, we will present some concluding remarks on the



various graphical models we have chosen.

2.1 Junction Graphs

In this section we introduce the notation of Aji and McEliece [16] to describe a
junction graph. We also present two examples of a junction graph for a tail-biting
code.

Let z;,...,z, be variables taking values from the finite sets, A;,..., A, respec-
tively. Let S = {i1,...,%.} be a subset of {1,...,n}, such that zg represents the
variable list {z;,,...,z; } and Ag represents the product A; x---x A; . The variable
list {x1,...,z,} will be denoted by x.

Now we define & = {S},...,Su} to be M subsets of {1,...,n}, which we shall
call local domains. For each local domain S; € S, we define a function called the local
kernel, o; : As, — R, where R is a commutative semiring with 2 binary operators “+”
and “7”, referred to as addition and multiplication. (See Appendix B for a complete
definition of a commutative semiring). The global kernel 3 is now defined as the

product of the local kernels,

B(xy,...,Tn) = Hai(xgi). (2.1)

Now, define a set of vertices V; = {v1,...,vn}, where each v; € V; corresponds
to a local domain, S; € S, for ¢ = 1,..., M. We can connect the vertices of V;
together to form a junction graph, G; = (Vy, E;), where E; = {e1,...,enx} is the
set of edges in the graph with |E;| = N. A junction graph, is any graph, such that
for any z; € x, the induced subgraph, formed by taking all vertices v; € V; where
z; € xg,, is connected. The junction graph for a given S is in general not unique. In
fact, it may not even exist. We refer the reader to Aji and McEliece [16] and Jensen
[17] for further details on how to determine the existence and construct the lowest
complexity, junction graph for a given set of local domains.

We define & = {Ey,...,Ex} to be N subsets of {1,...,n}, which we shall call
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edge domains. The edge domain E;, is determined by the edge e;, in the junction
graph fori =1,...,N. If e; = (vj,vg), then E; = (5; N Sk).
We would like to compute the marginalization of the global kernel over some
subset of the local domains in S. We shall define the S;-marginalization of 3, over

the local domain S; as

Bilzs) = Bx). (2.2)

We would also like to compute the marginalization of the global kernel over some
subset of the edge domains in £. We shall define the E,—marginalization of 3, over

the edge domain E; as

blor) = 3 AR (23)

We will also call the marginalizations 3;(zs,) or §;(xg,), the §; or 8; objective functions.

2.1.1 Junction graphs for tail-biting codes

Consider an (n, k,d) binary linear code with information vector u = (uy, u, ..., u)
encoded by a generator matrix G to form the codeword vector x = (z1,%2,...,Z5).
The codeword x is then transmitted across a discrete memoryless channel and received

as the vector y = (y1, 92, ..., Yn). We would like to minimize the bit error probability

at the receiver by finding the string of bits @ = (4, U, . . ., 4x) such that
1; = arg rnuaxp(ui)y), (2.4)
fori=1...k.
The “likelihood” of a particular codeword (z1, Za, ..., Z,) is
n
P, Yz, - s Ynl@r, T2, 7)) = [ [ p(yil2:) (2.5)

i=1

where p(y|x) are the transition probabilities of the channel. For each column of the

generator matrix we define a local domain with local kernel y;, for ¢ = 1...n. Here
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x; is a function of the codeword bit z; and the information bits that contain column

i in their span’. If column 1 is in the span of (uy, ..., u;), then x; will be the function

1 ifx; + g1U1 + 0 Gy = 0
0 if x; + g1,:U1 + - giil; = 1

where g;; is the ([, 7)-entry of the generator matrix.

Example 2.1.1 (Calderbank et al. [35]) Consider the (8,4,4) extended Hamming

code with generator matrix

1 2 3 4 5 6 7 8
1 11100 0 O
0O 0110110
G = (2.6)
0O 000 1 1 11
01 1 0 0 0 1 1

The spans of u;, uy, us and uy are [1,4], [3,7], [5,8] and [7, 3] respectively. We will
have a local domain for each information and codeword bit and one for each column

of the generator matrix.

1The span of a row of a generator matrix is defined as the interval [f,j'] which includes all
the non—zero components of that row. For a tail-biting code we may have j > j' since the index
arithmetic is modulo n. For more details on how to construct a tail-biting trellis from a generator
matrix, we refer the reader to Calderbank et al. [35].
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local domain local kernel

1 {ui} 1
4 {'LL4} 1
5 {z1} p(yilz1)
12 {zs} p(ys|zs)

13 {zy,ui,uq} x1 (21, ur, ug)

20 {ws,uz,ua}  xs(7s,us, us)
Here a local kernel of 1 implies that the local kernel is a constant for all possible

variable assignments in the local domain.

The global kernel is then

plyi, - yslz1,. .., z8) fuG ==z
/B(Ul,--.,U4,$1,...,fL’8) -
0 otherwise

and a possible junction graph for the tail-biting code is shown in Figure 2.1. Note
that the subgraph induced by each variable is connected.

It follows that the objective function for the local domain {u;} is

ﬁz‘(ai) = Z p(yb - '7?/81371; S ,xs),

XiU; =03

where the sum is over all codewords x, encoded by u; = a;. If we assume a uniform
distribution on the input bits, then 3; is the APP of the bit u; given the received

vector y.
The junction graph for a given generator matrix can have many single cycle rep-

resentations.

Example 2.1.2 (Calderbank et al. [35]) Consider the generator matrix in (2.6)

and define a local domain for the pairs of columns [1,2], [3,4],...,[7,8] as (z1, z2),
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Figure 2.1: The junction graph for the (8,4,4) tail-biting extended Hamming code.

(z3,24), ..., (x7,z8) respectively. The spans of uj, us, us and ug become [1,4], [3, 8],
[5,8] and [7, 4] respectively. We now have a local domain for each information bit and

pair of codeword bits, as well as one for each pair of columns of the generator matrix.

local domain local kernel
1 {Ul} 1
4 {U4} 1
5 {z1, 20} p(y1]z1)p(y2]T2)
8 {w7, z8} p(y7|z7)p(ys|zs)

9 {xzy,zo,ur,ua}  x1(21, T2, Ur, Ua)

12 {zg,uz,us}  xalxr, T8, U2, us, Us)

If columns 2i — 1 and 2i are in the span of (uy,...,u;), then the local kernel x;, is
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now defined to be the function

1 if z9;_1 + 91,2i—-1U1 + G5 2i—1Uj = 0
Xi(T2i-1, Toi, Us, - . ., Uj) = and Tg; + g1 2iu1 + -+ - gj2u; =0

0 otherwise

and the global kernel and objective functions remain the same. A possible junction

graph for this set of local domains is shown in Figure 2.2.

Figure 2.2: An alternative junction graph for the (8,4,4) tail-biting extended Hamming
code.

2.2 Tanner Graphs

A Tanner graph [13, 18], Gr = (Vr, Er), is a bipartite graph, consisting of a set of
codeword nodes, V. and check nodes V,, where Vp = V., UV, with V. NV, = 0 and
Ep C V., x V,. Define the cardinality of |V,| = m and |V;| = n. We will generally
label the codeword nodes v1, ..., v, and the check nodes cy, ..., ¢y, so the edges will

be of the form (v;, ¢;), for 7 € [n] and j € [m], where [n] denotes the set of integers

from 1,2,...,n.
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We will represent a codeword by a binary n—tuple whose ith component is 1 (or
0) depending on whether the vertex v; is assigned a 1 (or 0) in the Tanner graph. For
a binary linear code, each row of the parity check matrix H defines a parity check
that this binary n—tuple must satisfy in order to be a valid codeword. These checks
are called local constraints since each check only affects some subset of the codeword
nodes. The rows of H thus define a check structure for the code, and determine which
binary n—tuples are valid codewords.

Consider an (n, k,d) code with parity check matrix H. We can construct the
Tanner graph for the code by letting each row of H correspond to a check node in
V,, and letting each column correspond to a codeword node in V.. An edge occurs
between vertex v; € V, and vertex ¢; € Vj, if and only if the (4, j)-entry of H is a
one. If we assign a 0 or a 1 to each codeword node, then a valid codeword is one that
satisfies all of its local parity checks.

The more general case of arbitrary constraints for V;, is found in Wiberg’s thesis
[13, Chapter 2] and in Tanner [18]. There a check node may represent more than just
a simple linear equation and the set of check nodes V], defines an “equation system.”
However, for our purposes we consider the check nodes to be simply parity check
constraints for the code.

It is easy to construct a junction graph from a Tanner graph. First we define a
set of variables zi,...,x,, with variable x; corresponding to the codeword node v;,
for i € [n]. We then define local domains {z;}, for all i € [n] which are equivalent
to the codeword nodes in the Tanner graph. Next we define a local domain for each
check node where the set of variables in each local domain is the set of variables
corresponding to codeword nodes connected to that check node in the Tanner graph.
An edge occurs in the junction graph if there is an edge between the equivalent vertices
in the Tanner graph. The resulting junction graph is bipartite and isomorphic to the
original Tanner graph. The local kernels in the junction graph are determined by the

local cost functions [13] and the check structure of the Tanner graph.
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2.2.1 Tanner graphs for cycle codes

A (j,r) regular LDPC code has a parity check matrix for which there are j ones per
column and 7 ones per row. The corresponding Tanner graph will have codeword
nodes of degree j and check nodes of degree 7. For a cycle code, we have j = 2.
In this thesis, we will also consider irregular cycle codes, defined as LDPC codes for
which there is an arbitrary number of ones per row.

If the Tanner graph is connected, then an (n,k,d) cycle code has: n codeword
nodes; dimension k& = |V,| — [V,| + 1; and a minimum distance d, equal to the number

of codeword nodes in the shortest cycle in the graph [37].

Example 2.2.1 Consider the (5,3,2) cycle code with parity check matrix

Vi Uy Vs Vg Vs

H= ¢l 1 1 1 0 1] (2.7)

Note that the last row of the matrix is the modulo 2 sum of the first 2 rows and
so is redundant. The Tanner graph is shown in Figure 2.3. The codeword nodes V,
correspond to the codeword bits and are represented by the circles labelled vy, ..., vs.
The check nodes Vj,, correspond to the rows of the parity check matrix and are
represented by a black dot for each row of the matrix. The code has dimension

|V.| — |V,| + 1 = 3 and minimum distance d = 2.

Figure 2.3: The Tanner graph for a (5,3,2) cycle code.
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2.3 Message Passing on Junction Graphs

For any junction graph we can pass “messages” along an edge between adjacent
vertices. Consider two vertices v;,v; € Vy, such that (vi,vj) € E;. The “message”
passed from v; to v, is a table containing the values of a function p;; : As;ns; — B.
We define the state of the vertex v; to be a table containing the values of a function
o; : As, — R. Each table contains |Ag,| = |A;,| x - - - X |4;,| entries. Finally, we define
the state of the edge e; to be a table containing the values of a function p; : A, — R.

We will use the following rules to update y; ;, o; and p; from [16]:

/"Li,j(xSiﬂSj) =7 Z ai(xsi) H ,uk,i(xskﬂsi)’ (2'8)

TS;\S; Cirte) £ B
Ui(xsi) =7 Qi(‘rsz’) H Mk,i(fUSkﬂSi) <29)
(Uk,’l}i) EEJ
and
pi(TE;) =77 Pk,jtsk (2.10)

where e; = (v;,vx) and the v in each case is a normalization constant. When the
junction graph is a tree, message passing can be used to compute §; (or ;) at any
desired vertex (or edge) using the appropriate scheduling [16, 17, 33]. The objective
function G; (or ;) is the state of the vertex v; (or edge e;), after the message passing

terminates.

Figure 2.4: A junction tree with edges directed towards v,.
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Example 2.3.1 Consider the junction tree with 4 vertices and 4 random variables
shown in Figure 2.4. We would like to compute the objective function at v, (shown

in double lines),

Bi(x1) = Z a1 (Tg, T4)an(Te, T3)3(T1, T2) 4 (1) (2.11)

T2,T3,L4

We begin by directing each edge in the tree on its unique path towards vs. Mes-
sages are sent only in the direction of the edges. A vertex will only send a message to
an outgoing neighboring vertex, when for the first time it has received messages from
each of its incoming neighbors. With this scheduling, message passing begins at the
leaves and proceeds until we reach vy.

For example, v, and vy will initially send the messages

M1,3($2) = Z (831 ($2, 1’4)
T4

and N2,3($2) = Zaz($2,$3)
z3

respectively to v3. Once vz has received both messages, it will send the message

,u3,4(l‘1) = Z a3($1, 352)/11,3(552)M2,3($2)

z2

to vs. The objective function 34 is simply the state of v4 which is

04(371) = a4($1)N3,4($1)

= a4(x1)Zag(x1,xg)M1,3($2)M2,3($2)

z2

= a4(3:1)2a3(:c1,x2) <2a1($2,$4)> (Z a2($2,$3))

= ﬂ4($1)-
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If we define e; = (vs,v4), then the objective function 6, is simply

51(351) = M3,4(I1)Oé4(301)

= oy(z1).

For more details on message passing in junction trees, as well as a proof that
the objective function at vertex v equals the state of v after message passing has
terminated, see Jensen [17] and Aji and McEliece [16].

For a junction graph that is not a tree, message passing cannot in general compute
the objective function when the above message and state computation rules are used,
regardless of the message passing schedule. The main focus of this thesis will be
the investigation of the relationship between the objective function and the vertex or
edge state when we perform message passing on a junction graph that contains one

or more cycles.

2.3.1 The iterative min—sum and sum—product algorithms

We will focus on two main classes of message passing algorithms, the iterative min—
sum and sum-product algorithms. For a junction graph, the class of algorithm is
determined by which semiring R, we choose to define our local kernels over.

The sum-product semiring has R = R2? and uses ordinary addition and mul-
tiplication as its binary operators. The min-sum semiring has B = R U co where
z 4+ y = min(z, y) with identity element oo, so z - 0o = 00, and the operator “” is
ordinary addition with identity 0 [16].

These algorithms will not actually make decisions on the received codeword, rather
they will be used to compute a set of states from which we can make a final decision.
The type of decision will depend on our choice of semiring. For instance on the
min-sum semiring, we can initialize the local kernels of the local domains for the
codeword bits z;, with the channel log-likelihoods p(y;|z;) for an AWGN channel,

or the Hamming distance for the BSC channel. For a cycle free graph the min-sum

algorithm then can be used to find the ML codeword. For a cycle free graph, the
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sum-—-product algorithm can compute the per symbol APP conditioned on the received

y, and thus find the MAP decision for each codeword bit.

2.4 Message Passing on Tanner Graphs and Com-
putation Trees

We will not redefine the iterative min-sum and sum—product algorithms in terms of
a Tanner graph, but refer the reader to Wiberg’s thesis [13, Chapter 3] for further
details. We will, instead, construct the junction graph from the Tanner graph and
use the message passing algorithms from the previous section to decode.

Our main concern is to analyze a message passing algorithm from the perspective
of a single codeword node v;, in the Tanner graph for a cycle code. In order to do
this we first have to define a message passing schedule.

Our message passing schedule proceeds as follows. Each codeword node v; is
initialized with the channel output y;, for ¢ € [n]. One iteration of message passing
consists of two steps. First, all the codeword nodes send messages out on all their
edges, to the parity check nodes. For example, in Figure 2.3, messages are passed
from all the top nodes vy,...,vs, to the bottom nodes ¢, ..., cs, along every edge.
In the second step, the check nodes send a message back to each of their codeword
nodes, which corresponds to messages being sent from the bottom nodes, to the top
nodes, in Figure 2.3.

For a fixed number of iterations, we can trace the computation path of the mes-
sages received at v; through the graph in a similar manner to Example 2.3.1. This
traceback will take the form of a tree which we will call the computation tree for
v;. The idea of unwrapping a graph with cycles into a tree was first introduced by
Gallager [2] and further developed in [13, 34, 38].

For instance, for the node v; in Figure 2.3, we get the computation tree shown in
Figure 2.5 after 2 iterations using the above message passing schedule. We will denote

the computation tree at the vertex v; € Vr for the [th iteration as T;(l) = (Vi, £y).
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Cy Co

C2 Co C3 C3 (5] C1

Figure 2.5: The computation tree for the (5,3,2) cycle code in Figure 2.3 after 2 iterations
of message passing.

We can see in Figure 2.5 that the nodes vy and vs each appear four times in
the computation tree. This means that the information from these nodes would be
counted four times if we were to make a decision for v, after 2 iterations.

If we assume that a graph has a very large girth d, then a node will not occur twice
in the tree for at least (d — 1)/2 iterations. Gallager [24] used this idea to show that
one can achieve an arbitrarily small decoding error probability with message passing
on a graph of infinite girth, for LDPC codes with a given channel. Luby et al. [11],
and Richardson and Urbanke [12], have further demonstrated that message passing
can still achieve arbitrarily small decoding error even in the presence of finite cycles,
i.e., repeated nodes in the computation tree, by invoking Azuma’s inequality [39].

We now restrict our attention to the iterative min-sum algorithm (MSA). We will
call a bit assignment to each codeword node in the computation tree, a configuration
of the computation tree. If the bit assignment satisfies every local parity check in the
tree, then we say it is a locally consistent configuration. If, for every codeword node
v € V., the corresponding set of codeword nodes in the computation tree, all have
the same bit assignment and the computation tree is also locally consistent, then we
say the bit assignment is a globally consistent configuration. Wiberg [13, Corollary

4.1] proved that the MSA finds the minimum weight locally consistent configuration
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for the computation tree at each iteration. If we assume that all zeros codeword is
transmitted, then the MSA decoder makes an error after [ iterations, if there is a
locally consistent configuration for the tree which has a one in the root node and a
lower weight than the all zeros configuration. Wiberg [13] called such a configuration
a deviation in the computation tree. In Chapter 6, we will quantify the effect of a

deviation to bound the performance of the MSA decoder for cycle codes.

2.5 The Choice of Graphical Model and Decoding
Algorithm

In this thesis we make use of a number of graphical models and iterative decoding
algorithms in order to try and gain a better understanding of the behavior of iterative
decoding algorithms on different types of graphs. For instance, for tail-biting codes
we consider the behavior of both the iterative min-sum and sum—product algorithms,
on a single cycle junction graph. We have done so, so that we can more easily observe
the similarities and differences of the two algorithms for the same model. However, we
also will look at the tail-biting trellis in the min—sum case to introduce the concept of
pseudo-codewords and bound the decoding performance. In the case of cycle codes,
we will consider several decoding algorithms, all on the Tanner graph for the code.
Of course, many of our results can, and have been, converted to an equivalent
result for other models. In each case we have tried to choose the model which leads

to the best understanding of the behavior of the iterative algorithm.
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Chapter 3
The Iterative Sum—Product Decoding of

Tail-Biting Codes

In this chapter we will discuss the behavior of the iterative sum-product algorithm
(SPA), on graphs with a single cycle. This work is directly relevant to the study of
iterative decoding of tail-biting codes, since their underlying graph has just one cycle
[35, 36]. In the sections that follow we will investigate the relationship between the
objective function 6;, and the edge state p;, when we perform message passing on a
junction graph that contains a single cycle.

In Section 3.1, we will present a message passing schedule for a junction graph with
a single cycle. In Section 3.2, we shall show that for strictly positive local kernels, the
iterations of the SPA will always converge to a fixed point (which was also observed
by Anderson and Hladik [40] and Weiss [38]). Moreover, the length of the cycle does
not play a role in this convergence. We will also show that message passing in a single
cycle junction graph can be viewed as a matrix operation.

In Section 3.3 we will compare the final state of an edge to the objective function
for that edge and in Section 3.4, we will present an intuitive explanation for the entries
of the matrix that we will associate with each edge. In Section 3.5, we shall generalize
a result of McEliece and Rodemich [41], by showing that the SPA always converges
to the correct MAP decision for a binary hidden variable. (This was also observed
independently by Weiss [38]). Finally, in Section 3.6, we present two experiments
and a theorem which illustrate the behavior of the SPA in the non-binary case. We
will show that when the hidden variables can assume 3 or more values, the SPA may

converge to an erroneous, i.e., non-MAP, decision, but this is apparently rare.
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3.1 Message Passing Schedule

Consider a junction graph G; = (Vj, E,), where each v; € V; has a local kernel
ai(zs,). Let G contain exactly one cycle which has length [. We relabel the vertices
in the cycle as V' = {vy,..., v}, where (v;,vi41) € Ej fori € [[—1] and (vi,v) € Ej.
We also relabel the rest of the vertices arbitrarily as {vj41,...,vp}. Define E' =
{ey,...,e;} where e; = (v, v;41) for i € [l — 1], and e; = (v1, ).

A possible scheduling for the message passing begins by directing each edge that
is not in the cycle, towards a vertex in the cycle. In the first stage, messages are sent
only along these edges. A vertex not on the cycle will send a message to a neighbor,
when, for the first time it has received messages from each of its other neighbors.
With this scheduling, message passing begins at the leaves and proceeds until each
vertex on the cycle has received messages from all of its neighbors not on the cycle.

Define S! = (S; N S;_1) U (S; N Siy1), for 4 € [l], i.e., all the variables in .5; that
are shared with another vertex on the cycle. For each v; € V', we define a new local

kernel oj(zg) as follows:

dzg) = Y ailzs) [ mwizsns) (3.1)

si\s] i) € B
Jj#i—1,i+1

where we definei—1=1[fori=1andi+1=1fori =1, so v;_; and v;;; are the
vertices adjacent to v; in the cycle.

We can now perform message passing on the new junction graph G' = (V', E')
where each v € V' has a new local kernel, oj(zg;). Note that G' consists of only a

single cycle.

Example 3.1.1 Consider the junction graph shown in Figure 3.1a where the vertices
on the cycle have already been relabeled. The first stage of message passing results in
(', shown in Figure 3.1b. The new junction graph is just a single cycle, with vertices,
vy, ve, and vz having new local kernels o}(zs), a5(zs,) and aj(zs;) respectively.

Note that this junction graph can also be drawn as a junction tree.
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v = {.’L‘l}

v = {wl}
V3 = {$1,$2} Vg = {$1,332}
v3 = {z1, T2} vo = {z1, 22}
Vg = {332,-704} Vs = {332}
(a) G_] = (VJ,EJ) (b) GI = (V’, E,)

Figure 3.1: (a) The original junction graph and (b) the junction graph after the first stage
of message passing has completed.

In the second stage of message passing, we send messages in parallel in both
directions from every vertex in G’. In the next section we will show that computing
the messages is equivalent to matrix multiplication and these messages will converge

for strictly positive local kernels.

3.2 Message Passing Convergence

In Figure 3.2, we have three vertices v;_1, v; and v,41 € V' on the single cycle
that remains after the first stage of message passing has completed. If we define a
lexicographic ordering of the alphabet sets A,, ..., A,, then we can write the message
tables f1;-1; and f;41 as vectors of length [Ag g and IAS;_QS;H] respectively, where
the vector elements conform to this ordering. We can also rewrite the local kernel,
oi(zs;), as an |A51/_05;+1 | |Ags:_ s | matrix ®;, where we label the columns as elements
of ASé_lﬂSQ and the rows as elements of AS;QS;,H in the same lexicographic ordering.
The entries of the matrix consist of the value of oj(zs;), when the row and column

labeling is a consistent assignment of values to the variable set zg;, and 0 otherwise.

We construct the matrix ®; for all v; € V.

Example 3.2.1 Consider the junction graph shown in Figure 3.1a. We define the
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Figure 3.2: The vertices v;_1, v; and v; 41 that form a part of the cycle vivy...v; in | %48

local kernels as

vi: I a1 (1) vo:  T1Ty | (X1, T2) vy T1Z2 | az(zy, x9)
0 i 00 3 00 :
1 3 01 % 01 3
10 I 10 :
11 I 11 !
vy ToTyq | 0y(To,T4) Us: T as(xs)
00 L 0 2
01 3 1 3
10 &
11 L

After the first stage of message passing we have the new set of local kernels for

Figure 3.1b,

TR 2 o (xq) vo:  T1To | (X1, T2) v3:  T1%9 | o421, 22)
0 i 00 3 00 2
1 : 01 Z 01 L
10 2 10 &
11 3 11 2

where the tables have been renormalized so the contents sum to 1. The matrices for
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each node are then

2 0
19
L0 2 90 2 1L 09 0
(I)IZ<4 \ )@2: 19 ) ’(1)3:(13 13 ) 2)
0 % 0 15 0 0 5
0o =

From the update rule in (2.8), if we send messages in a clockwise direction from

vertex v; to v; 1, we have

Pigrr = Di pi_1- (3.2)

If we send messages between these vertices in an anti—clockwise direction then, from
(2.8) we have
fiio =@ i1 (3.3)

Messages are simply multiplied by a matrix for each iteration of the SPA. The elements
of ®; are a function of the original local kernel, o;(zs,), and the incoming messages
received from the vertices adjacent to v; and outside the cycle. Therefore, the elements
of the matrix ®; can be set to any value from 0 to 1, depending on how we define the
local kernel and the incoming messages.

Now consider the messages passed in both directions along the edge (v;, viy1) € E'.
A message passed in one direction will propagate through the vertices in the cycle
due to the message passing schedule. Since the message is multiplied by a matrix at
each vertex on the cycle, we can rewrite the updated message p; ;. ;, in terms of the
old message as

Miir1 = M; priger, (3.4)

where M; = ®;--- ®,®;-- - &, is the ordered product of the matrices associated with

each vertex visited in the cycle. Similarly,

N;+1,i = MzT Mit1- (3.5)
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If M, is strictly positive, then by the Perron-Frobenius Theorem [42] there exists a
unique largest positive eigenvalue with a pair of corresponding positive left and right
eigenvectors called the principal eigenvectors of M;. The normalized p; ;41 and iy
will converge to the respective left and right principal eigenvectors of M;. Since the
largest eigenvalue of a strictly positive matrix is unique, the convergence to the same

fixed point is guaranteed for any non—zero choice of initial vectors, p;;+1 and ;i1 ;.

Example 3.2.2 Continuing with Example 3.2.1, the matrices for each edge are

o500
s 0 s 95 0 0 % 0
20 o 99 99 _ 20
M1:<0 9 7M2_ 0 0 2 2 7M3_ 0 9
20 11 11 20
0 0 & &

where the matrices have been normalized so the entries sum to 1.
If we compute the component—wise product of the left and right principal eigen-

vectors for each matrix, then the message passing will converge to the following final

states:
e1: I p1(z1) € Z1To | po(z1,T2) es: I p3(x1)
0 1 00 s 0 1
1
1 0 01 1 1 0
10 0
11 0

Note that the matrices M;, M, and M; are not strictly positive (since z; occurs in all
three local domains in the cycle), but in this case they all have a unique eigenvalue of
largest modulus with non—negative left and right principal eigenvectors. Since there

are zero entries, we now have to be careful on our choice of initial message vectors.

The matrix M; is a matrix product of [, possibly arbitrary, matrices. We can
therefore produce every matrix M; from a cycle of any length. Since the state of each
edge e; € E' is the product of the messages on that edge, the state of e; converges to

a fixed point determined by M;. Thus we can arrive at the same final state for any
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length cycle. So the performance of the SPA relative to a MAP decoder is independent
of the cycle length of the graph.

The SPA will converge for a single cycle junction graph when we use the message
passing schedule outlined in the previous section. It can also be shown that the SPA
will converge to the same fixed point for more general message passing schedules.
For example, a serial message passing schedule, which starts by sending out messages
from a single vertex and then sends a message to a neighboring vertex, each time
a message is received from the other neighbor, will also converge to the same fixed
point. The question remains as to what exactly it converges to.

In a junction tree the state of an edge is the objective function for that edge once
message passing has terminated. However, this is not true in general for a junction
graph with cycles. In the next section we will compare the SPA computed state of

an edge to the objective function for that edge.

3.3 The Objective Function vs the Final State of
an Edge

We would like to compute the objective function for some set of variables, zp, C x
found on the edge e;, of the cycle. The state of the edge e; is the product of the
messages on that edge. To see how the state computed at an edge compares to the

objective function for that edge, let us first look at the following example.

Example 3.3.1 Consider again the junction graph shown in Figure 3.1b. We would
like to compute the objective function 6;(xg,) for E; = {1}. We can either examine
the state of the edge (vi,vy), or the edge (vi,vs3). Consider the edge e; = (vi,v2).

When the message passing has converged

P1(331) = M2,1($1) M1,2(I1)

where p51 = 10 = [1,0]7 are the respective left and right eigenvectors of the matrix
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M, so p; = [1,0] is the component-wise product of these vectors.

The objective function ) (z;) is

br(zy) = > Blx1,z2)
— Zo/l(xl)a;(xl,:vg)ag(ﬂh,@),

T2

which in vector form is 6; = [%%, %]T. It is clear that in general the state is not equal

to the objective function, i.e., p; # 6;. If we look at the diagonal entries of M;, we

find that 6, = vydiag(M,), where 7 is a normalizing constant.

In general the final state of the vertex v; is the component-wise product of the left
and right eigenvectors associated with the largest eigenvalue of the matrix M;, which
has the values of the objective function for v; along its diagonal. Equivalently, we can
say that the message passing estimates the matrix M; by a matrix consisting of the
outer product of the left and right eigenvectors of its largest eigenvalue. We know
that the rank 1 estimate of M; that minimizes the mean square error is the matrix
consisting of the outer product of the left and right singular vectors associated with the
largest singular value of M; [43]. However, we are really only interested in minimizing
the mean square error on the diagonal of M;, in which case the singular value estimate
is not optimal in general. In the next section we will examine the matrix M; in detail

and present an intuitive explanation of the meaning of the off-diagonal elements.

3.4 Interpretation of the Elements of M,

Consider the junction graph shown in Figure 3.3a. We would like to compute the
objective function for the variable set zg, associated with the edge e;. The final
state of e; is simply the component—wise product of the left and right eigenvectors
associated with the largest eigenvalue of the matrix M;. If we split the edge e; into
two identical edges e, and ey, and break the cycle, we get the chain shown in Figure

3.3b. However, the vertices v, and vy, and the vertices v9, and v have a common
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variable set, so the resulting chain may not be a junction graph. In order to satisfy

the junction property we can rename the variables associated with vy, and vy, as

Ts, = {2},..., 24, } and xg, = {z},...,75 } respectively and relabel the variables
associated with the vertices v;,...,v;,2 < ¢ <[ accordingly.
vy
€ €1
U U2
1 €la €2 €3 € €1p
, w o&—o—o" e—eo e
| Vla V2a U3 Ui V1b U2b
Vs U3
€4 es
V4

(a) (b)

Figure 3.3: (a) The original junction graph with a single cycle and (b) the graph that
results when the vertex v; has been split to form a chain with an additional copy of the

edge e;.

If we pass messages serially from vy, to vy, then we can write uip 9 as
Hiv2e = M, Hia,2a- (3-6)

If the local kernels are probability matrices, then we can interpret M; as a probability
transition matrix in a Markov chain. However, since the choice of the original kernels
is arbitrary, M, is not necessarily a stochastic matrix and each row may sum to a
different value.

The (4, j)—entry of M, is proportional to the sum of the probabilities of all paths
through the chain, starting in state ¢ and ending in state j. If we assume that there
is a path from every starting state to every ending state, then the entries of M; are
strictly positive, so M; is irreducible and the Perron-Frobenius theorem applies.

The diagonal of the matrix contains the sum of the probabilities that a path starts

and ends in the same state. Initially we had the same variable set for e, and ey,
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so if we normalize M, (by dividing it by its trace in the case of probabilities), the
elements on the diagonal of the matrix are the values of the objective function 6,. The
off-diagonal elements of M; only have a meaning in the non-cyclic graph of Figure
3.3b as a variable in e; can only be assigned a single value at a time. The values of
the off-diagonal elements are determined by the structure of the local kernels at each
vertex on the cycle and can affect the performance of the SPA for that cycle.

Generally in coding we are not concerned with the actual values of the state
computed by the SPA, or even the values of the objective function. We are only
concerned with making a decision based on these values. So we only care that the
objective function and SPA state both result in the same decision. In the sections
that follow we will show that when |Ag,| = 2, so the hidden variable associated
with e; is binary valued, the SPA decision based on the final state is always a MAP
decision. However, for a hidden variable set which takes on three or more values, the
off-diagonal elements of M; tend to act like noise and can cause the SPA’s decision

to be different from the objective function’s MAP decision.

3.5 Binary Valued Hidden Variables

Let the edge e have |Ag| = 2, so e contains only a single binary valued variable in its
edge domain, say € x. The matrix M is defined as

myy Ma2

M = , (3.7)

o1 Mg
where M has been normalized such that m;; + mqs = 1. Since we have normalized
the trace of M to 1, the off-diagonal elements are no longer constrained to be less
than 1. Let mq; and mqys correspond to the values of the objective function computed

for #(z = 0) and 6(z = 1) respectively. The largest eigenvalue of M is

2
mi +m my; — M
)\:—11—2———22+\/<L2———2—2) + M1aMoy (3.8)
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and its right and left eigenvectors are

mio moy

and (3.9)
A—mq A—mn

respectively. Without loss of generality we assume mj; > magg, so we would decide
z = 0, if we were to make a MAP decision based on the objective function 6(z). For
the component—wise product of the two eigenvectors to make the same decision, we
must satisfy the inequality (A — mq;)? < myamy;, which is easily verified from (3.8).

Define

migMaoy

A
miaMmer + (A — myy)? (310)

A:mn—

to be the difference between the value computed by the objective function and the

SPA state for z = 0. We observe the following about A.

o A = 0 iff migme, = miimyg, i.e.,, M is singular. Thus M has rank 1 and is

equal to the outer product of the left and right eigenvectors associated with A.

e The difference is only dependent on the product of the off-diagonal elements

myq and me; and not on their individual values.

e We have
1
li A= —.
im 5

mi12ma1 —0Q

So when the off-diagonal elements are large with respect to the diagonal, the

decision of the SPA is less certain.

e We have
0 my < %
miama1—0 2 11 2
1 my > %

So when the off-diagonal elements are small with respect to the diagonal, the

SPA tends to make a “hard decision.”

Thus for a binary valued hidden variable the SPA will always make the correct
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decision; however, the certainty of the decision is dependent on the product of the
off-diagonal elements. The state of the edge will only be the same as its objective

function when the matrix M is singular.

3.6 Non—Binary Valued Hidden Variables

For |Ag| > 2, it is much harder to characterize the performance of the SPA in terms of
the matrix M. In this section we will present the results of two experiments and one
theorem which highlight some of the characteristics of the SPA found for non-binary
valued random variables.

In our experiments the state and objective functions we deal with are always prob-
abilities so we refer to the values computed by the state function as SPA probabilities
and those computed from the objective function as optimal or exact probabilities. We
count an error when the decision based on the SPA probabilities differs from the

decision based on the exact probabilities.

3.6.1 Experiment 1

The first experiment demonstrates a simple junction graph for which the SPA es-
timates the values of the objective function very well and typically only makes an
incorrect decision when the decision based on the exact probabilities is a close call.

Consider the belief network and its junction graph after the first stage of message
passing, shown in Figures 3.4a and 3.4b respectively. The hidden variables z, y and z
are all ternary {0, 1,2} valued. The dependencies for the belief network are defined as
follows: z has a uniform prior; there is a symmetric channel with crossover probability
p between z and z; y is the mod 3 sum of x and z; and 2z, and y. are noisy versions
of z and y respectively, where the noise is Gaussian with mean 0 and variance 2.

If we fix the crossover probability, p = 0.25, and the variance of the noise, 0? = 0.2,
then we would like to compute the objective function for the hidden variable z for

a given observation of the variables z, and y.. Since x has a uniform prior, the

local kernel o (z) at vy is a constant so the final state o = p; = ps. In making a
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vy = {z}
z - y
. . vy = {z, 2z} vy = {z, 2}
Ze Ye
(a) Belief network (b) Junction graph

Figure 3.4: (a) A simple belief network consisting of 5 nodes and 1 loop and a correspond-
ing (b) junction graph shown after the first stage of message passing has completed.

decision using the SPA, we form the matrix M; at e; for a particular evidence set and
then find the component—wise product of the left and right eigenvectors of its largest
eigenvalue. The decision is then the value of z corresponding to the largest value in
the component—wise product. This is equivalent to performing the SPA algorithm on
the network for a large enough number of iterations for the decision to converge to
its final state.

Figure 3.5a shows the SPA’s decision regions for various observed values of z, and
ye. while Figure 3.5b shows the decision regions that are determined by computing
the objective function for z. Figure 3.5¢ shows the regions where the decisions made
by the SPA state function and the objective function differ. In this experiment the
SPA only makes an incorrect decision when the objective function decision is at, or
near, a decision region boundary, i.e., when the exact probabilities for 2 values of x
are near, so the objective function decision is a close call.

For any fixed p, we can calculate the probability P(E) of the SPA making an
incorrect decision, with respect to the objective function decision, by integrating the
joint distribution of z, and y, over the error region such as that in Figure 3.5c. The
results are shown for various p in Figure 3.5d.

Alternatively we can look at how well the SPA estimates the objective function
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0.025

0.005

(c) Error (d) P(E) vs p

Figure 3.5: The decision regions for the hidden variable z where p = 0.25 and 02 = 0.2
using (a) the SPA and (b) the exact probabilities from the objective function. The black,
grey and white regions correspond to deciding z = 0, 1 and 2 respectively. Plot (c) shows
the regions where the SPA and the objective function make different decisions and plot
(d) the P(E) vs channel crossover probability p.

computed for z. Figure 3.6 shows the SPA probability vs the optimal probability,
computed for x = 0, for 5000 trials. As we will see in the next experiment, on this

particular network the SPA estimates the objective function quite well.

3.6.2 Experiment 2

The second experiment demonstrates the effect the off-diagonal elements can have

on the convergence of the SPA to a correct decision.

Consider the following system. Define S to be the signal matriz consisting of a
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Figure 3.6: Plot of the state of z vs the objective function of = for z = 0 for 5000 trials
for the network in Figure 3.4.

non-negative diagonal matrix with trace equal to 1. Define NV to be the noise matriz
consisting of a non—negative matrix with zero on its diagonal and all the off-diagonal
elements less than 1. Let @ and b be real non—negative constants such that a+b=1

and define the matrix

M = aS +bN. (3.11)

Now let M be the matrix associated with edge e and hidden variable z for a junction
graph with a single cycle. We have already shown that we can create a junction graph
to produce such an M. Since the state of e is the product of its messages, the values
on the diagonal of M, or the signal matrix, are those calculated by the objective
function for that edge, and the off-diagonal, noise matrix, values are due to the cycle

in the junction graph. We can make the following observations about M.
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e We have
limM =S,

b—0

so when the off-diagonal elements are 0, the SPA will make a hard decision and

correctly decide on the largest element on the diagonal.

e We have
lim M = N,

a—0

so when the diagonal elements are 0, the SPA decision is based entirely on the
left and right eigenvectors associated with the largest eigenvalue of N. Thus the
SPA decision is independent of the actual objective function and can be correct

or incorrect depending on the nature of the noise.

e For intermediate values of a and b, the SPA may or may not make a correct
decision depending on the mean diagonal-off-diagonal ratio (DODR) of the
elements of M. Generally for a large DODR, the SPA makes a correct deci-
sion. The likelihood of a correct decision decreases with the DODR in a similar
manner to the way codes perform more poorly as the signal to noise ratio is

decreased.

Given the 3 x 3 matrices S and N, Figure 3.7a shows a plot of how the state
probabilities calculated by the SPA vary in the simplex mq; + may + ms3 = 1, as a is
varied from 1 to 0. In each case, the state probability estimate starts in the corner
corresponding to the largest element on the diagonal of S and moves towards the
estimate given by performing the SPA on just the noise matrix, N. The four 3 x 3
matrices were chosen so that the SPA acting on the noise matrix alone would result
in an incorrect decision. The “+” in the figure indicates the position of the diagonal
of S in the simplex for each M. We can see that for large enough b, or small enough
mean DODR, the SPA will make an incorrect decision.

It is possible for the noise matrix alone to result in the SPA making a correct
decision, but the matrix M makes an incorrect decision [44]. However, we have run

numerous experiments and found that this occurs extremely rarely.
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Figure 3.7: Plots of (a) how for a given S and N, the state probability vector varies as
a is varied from 1 to 0 and (b) the SPA probability vs the optimal probability, computed
for x = 0, for 5000 trials in which we have picked the off-diagonal elements uniformly
between 0 and 1.

The plot in Figure 3.7b shows the SPA probability vs the optimal probability,
computed for z = 0, for 5000 trials in which we have picked the off-diagonal elements
uniformly between 0 and 1. As we can see when the elements are chosen at random,
instead of based on an actual junction graph, as in Figure 3.6, the SPA does not
perform as well.

The plot in Figure 3.8 shows the probability of making a correct decision vs
the mean DODR for different distributions of the off-diagonal elements. We ran
experiments where we selected the off-diagonal elements as the absolute value of a
Gaussian random variable, as well as from an exponential and an uniform distribution,
and we had similar results in each case. Thus it seems that the mean DODR is more
important in determining the probability of a correct decision by the SPA than the
actual distribution of the off-diagonal elements. The same results occurred in our
experiments with 4 X 4 and 5 X 5 matrices.

To further confirm this we used the same distributions but fixed the mean DODR
by multiplying the matrix by a constant and we plotted the P(C) of the SPA vs

the variance of the off-diagonal elements for various mean DODR’s. The results are
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Figure 3.8: Plot of P(C) for the SPA vs the mean DODR for different distributions of the
off-diagonal elements for various distributions of the off-diagonal elements.

shown in Figures 3.9a~d and surprisingly the performance does not seem to depend

very much on the variance.

3.6.3 A Theorem

The theorem serves to illustrate the effect of a noise matrix where all the off-diagonal
elements are the same. In this case the noise matrix N can be written as N = J — 1,
where J is the all ones matrix and I is the identity matrix. We shall show that in this

case the SPA always converges to the correct decision regardless of the mean DODR.

Theorem 3.6.1 Consider the matrizc M from (3.11) for which N = J — 1. Let X
be the largest eigenvalue of M with associated eigenvector u = [uy,...,u,) > 0. If

myy > my, fori=2,...,n, then uy > u;, fori=2,...,n.

(The proof can be found in Appendix A.1.)
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Figure 3.9: Plot of the P(C) vs the variance of the off-diagonal elements where the mean

DODR is held constant.

Figure 3.10a shows a plot of how for a given S and N = J — I, the state probabili-

ties move in the simplex as a is varied from 1 to 0. In each case, the state probability

estimate, given by the SPA, starts in the corner corresponding to the largest element

on the diagonal of M and moves towards the center, since the principal eigenvector

of N is the all 1’s vector. The SPA never leaves the correct decision region regardless

of the value of a.
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0.2+ a=001

Figure 3.10: Plot of (a) how for a given S and N = J — I, the state probability vector
varies as a is varied from 0 to 1 and (b) the SPA probability vs the optimal probability m,
computed for for the matrix M in (3.12) for various values of a.

The plot in Figure 3.10b shows the SPA probability vs the optimal probability m,

computed for for the matrix
b
M=| b a(52) b (3.12)

for various values of a. As a goes from 1 to 0, the certainty in the decision decreases,

but the decision remains correct.

3.7 Conclusions

Message passing algorithms can be used to reduce the complexity of decoding tail-
biting codes. For a single cycle graph the message passing converges for strictly
positive local kernels and can be interpreted as a matrix multiplication at each vertex.
For binary hidden variables the SPA will always make a correct decision but the actual
probability can be anywhere on the correct side of 1/2. In the non-binary case, the

performance of message passing with respect to an optimal decoder is dependent on
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the off-diagonal elements of the matrix M. These off-diagonal elements are a function
of the structure of the code and the noise in the channel. The SPA should have very
good performance for a tail-biting code if we can design the code to minimize these

off-diagonal elements.
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Chapter 4
The Iterative Min—Sum Decoding of
Tail-Biting Codes

In this chapter we turn to the behavior of the iterative min-sum algorithm (MSA)
on graphs with a single cycle, the underlying graph for a tail-biting code. We will
first develop the equivalent set of results for the min—sum algorithm as we did for
the sum—product algorithm on a junction graph in Chapter 3. We will then turn our
attention to the conventional tail-biting trellis description of the code to provide a
deeper insight into the behavior of the MSA on single cycle graphs.

The MSA has been discussed in [36, 38, 40, 45]. Closely related results were
discovered independently by Wiberg in his thesis [13], Weiss [38] and Forney et al. in
[45].

The outline of the chapter is as follows. In Section 4.1, we discuss the behavior of
the MSA on a single cycle junction graph. Specifically, we show that message passing
on the junction graph is equivalent to a matrix multiplication, but that unlike the
SPA, the MSA may converge to a periodic solution. In Section 4.1.3 we show that
for binary hidden variables, the MSA will always make the correct decision, if it
converges.

In Section 4.2, we turn to the tail-biting trellis description of the code. Using
some basic concepts from graph theory, we prove a Perron-Frobenius theorem for the
min—sum semiring. We then review the state space approach to convolutional codes
in order to present some examples. We define a pseudo—codeword for a tail-biting
trellis and obtain an estimate of the MSA decoder’s performance using a union bound
argument. Finally we present two examples of the MSA on a tail-biting code. In

Section 4.3, we present our conclusions.
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4.1 The Iterative Min—Sum Algorithm on Single

Cycle Junction Graphs

Consider a junction graph that contains exactly one cycle. If we use the same message
passing schedule as in Section 3.1, we need only consider the graph G; = (V;, E;),
consisting of a single cycle of length [. Let V; = {v1,..., v} and E; = {e1,..., e},
where ¢; = (v;, v;41) for i € [ — 1] and e; = (v, v1). For each v; € V; we have a local
kernel o;(zs,).

From the update rule in (2.8), if we send a message in a clockwise direction from

vertex v; to v;4, along e;, we have
Hii+1 = Pi pri_1, (4.1)

where the matrix multiplication now occurs in the min-sum semiring. If we send

messages between these vertices in an anti-clockwise direction, then we have
piio1 = B piyr (4.2)

So, like the SPA, messages are multiplied by a matrix for each iteration of the MSA.
Since the message is multiplied by a matrix at each vertex on the cycle, we can rewrite

the updated message fi; ;. 1, in terms of the old message as
N;,H-l = M; pizy1; (4.3)

where M, = ®;---®®;---d;,, is the ordered product of the matrices associated

with each vertex visited in the cycle. Similarly,
M1 = M priga e (4.4)

In the sum-product semiring, if M; is strictly positive, then by the Perron-—

Frobenius theorem, the messages converge to a unique fixed point. We now present
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an equivalent result for the min-sum semiring.

4.1.1 Message passing convergence

For the sum—product semiring the Perron-Frobenius theorem states [42]:

Theorem 4.1.1 (The Perron—Frobenius theorem) Let M be an s x s irreducible and
non—negative matriz. Then M has a positive eigenvector x with corresponding eigen-
value A > 0. Moreover X\ is algebraically simple and all other eigenvalues p of M
have |pu| < A.
Furthermore, if M is primitive, then
BRE
fim 3] =P >
where P = xy” has rank 1 and x and y are the positive right and left eigenvectors of

A respectively.

For the min—sum semiring we have the following theorem

Theorem 4.1.2 Let M be the s X s irreducible matriz with entries from RU oco. Let
M have a “critical cycle” of degree | € [s]. Then M' has a unique eigenvalue A

Furthermore, if | = 1, then with min-sum arithmetic,

[%M} =P for n > ny,

where ng 1s a finite constant and P = xy’ is a rank 1 matriz with x and y, the unique

right and left eigenvectors of A respectively.

We will present a more general theorem and define a critical cycle in Section
4.2.2. We can see that unlike the SPA, the MSA may converge to a periodic solution.
However, as we shall see in Section 4.2.6, when it does converge, it makes a maximum

likelihood decision.



44

4.1.2 The objective function vs the final state of an edge

We would like to assign the set of values to the variables on the cycle such that the
a posteriori probability of the unobserved variables given the observed variables is
maximized. Since we are using the MSA, we will have negative log—likelihoods for
our local kernels [16, 38], so we would like to compute the lowest cost assignment for
the junction graph.

Consider some set of variables x5, C x found on the edge e; of the cycle. The
objective function for e; will be the lowest cost junction graph for each possible
assignment to the variables in zg,. The state of the edge e; is the sum of the messages
along the edge. If the iterates of the matrix M; converge to a rank 1 matrix, then
the final state is simply the component-wise sum of the left and right eigenvectors
associated with the unique eigenvalue of the matrix M.

Since the local kernels are log—likelihood matrices, we can interpret M, as an
adjacency matrix for a graph with a cost associated with each edge. The (j, k)—entry
of M; is proportional to the lowest cost path starting in state j and ending in state
k. If we assume that there is a path from every starting state to every ending state,
then the entries of M; are strictly positive, so M; is irreducible and the min-sum
Perron—Frobenius theorem applies. An ML decoder will compute min {[A;];;}, i.e.,
the lowest cost path that starts and ends in the same state, since that corresponds to
the most likely assignment for the junction graph.

In the next section we will show that when |Ag,| = 2, i.e., the hidden variable
associated with e; is binary valued, an MSA decision based on the final state is always
an ML decision. However, for a hidden variable set which takes on 3 or more values,

the MSA’s decision can be different from the objective function’s decision.
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4.1.3 Binary valued hidden variables

Let the edge e have |Ag| = 2, so e contains only a single binary valued variable in its
edge domain, say = € x. The matrix M is defined as
M= mi MMz , (4.5)
Ma1 Ma2
where M has been normalized such that min(myq, myg, ma1, Ma2) = 0. Let my; and
mao correspond to the values of the objective function computed for #(z = 0) and
0(z = 1) respectively. Without loss of generality we assume my; < maz, so we would
decide z = 0, if we were to make an ML decision based on the objective function
0(z).
Define
A = (Mg + ma1) — 2myy (4.6)

to be the difference between the sum of the off-diagonal elements and twice the

smallest diagonal element of M. We note the following about A.

e A is only dependent on the sum of the off-diagonal elements m,, and my; and

not on their individual values.

e For A > 0, the unique eigenvalue of M is
A= miy, (47)

and its right and left eigenvectors are

mn myy

and (4.8)

mMa1 mig

respectively. The component—wise sum of the two eigenvectors always makes

the correct decision.

e For A < 0, M? converges to a matrix of rank 2 where the eigenvectors have

7
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eigenvalue
A= Mo + Ma1, (49)
and
mig + Moy Myg + M1y n—2
M" = -+ 5 (m12 + mgl)J (410)
mi1 + Mo My + Moy
for n even and
m m —1
Mr= T 2 S gy + man) T (4.11)

2
Mo M1

for n odd, where J is the 2 x 2, all ones matrix.

Thus for a binary valued hidden variable the MSA will always make the correct
decision when it converges. When the sum of the off-diagonal elements is smaller
than twice the value of the smallest diagonal element, the MSA solution will oscillate
with period 2. Either solution will determine that both values of z are equally likely,

so the MSA provides no information.

4.2 The Iterative Min—Sum Algorithm on a Tail—
Biting Trellis

We now turn to a different graphical model to provide greater insight into the behavior
of the MSA on a graph for a tail-biting code. The model is the tail-biting trellis for
the code [35, 36].

We will proceed as follows. In Section 4.2.1 we will introduce the basic notation
and definitions of graph theory that we require. In Section 4.2.2 we prove a Perron—
Frobenius theorem for the min—sum semiring. In Section 4.2.3 we will introduce the
tail-biting trellis and in Section 4.2.4 the state-space approach to convolutional codes.

In Section 4.2.5 we present some examples of the Perron-Frobenius theorem for the
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min-sum semiring on a tail-biting trellis for a convolutional code. In Section 4.2.6 we
present a theorem showing the MSA converges to the dominant pseudo—codeword and
in Section 4.2.7 we use this theorem to estimate the decoding performance. Finally
in Section 4.2.8 we present two examples of the MSA decoder performance for a

tail-biting code.

4.2.1 Basic notation and definitions

In this section, we introduce the necessary algebraic and combinatorial tools required
to prove the Perron—Frobenius theorem for the min-sum semiring. We will make use
of the notation of Stanley [46, Section 4.7].

Let D = (V, E) be a finite directed graph or digraph, where V' is a set of vertices
and E is a set of edges, with E C V x V. Let |[V| =m and |E| =7. If e = (u,v),
then e is said to be a directed edge from u to v with initial verter u and final vertez
v, denoted u = init(e) and v = fin(e) respectively. Figure 4.1 shows a digraph with
vertex set V = {1,2,3,4} and edge set E = {(1,2), (2,3),(3,4), (4,1), (4,2),(3,2)}.

C——

Figure 4.1: A digraph.

A path of length n, from u to v in D is a sequence of edges eje; ... e, such that
u = init(e;), v = fin(e,) and fin(e;) = init(ej41) for 1 < 4 < n. A path from u
to v is called closed if v = v. A path from u to v is called simple if each vertex
on the path is distinct. A simple closed path is called a cycle. Figure 4.1 has a
cycle ((2,3),(3,4),(4,2)) of length 3. If D has no pair of edges, e and f € E such
that init(e) = init(f) and fin(e) = fin(f), then we can write a path of length n as a

sequence of n + 1 vertices without any ambiguity. The above cycle can be written as
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(2,3,4,2).

Now let w : E — R be a weight function on edge set E taking values in some
commutative semiring R. In this chapter, we only consider the min-sum and the
sum—product semirings. If P = ejes...e, is a path, then the weight of P is defined
as w(P) = wle)w(ey) - - -wle,). By convention, if e ¢ E, then w(e) = 0, where 0 is
the additive identity in R.

We can represent a digraph and its weight function in matrix form. Define the

incidence matriz A to be the square matrix with entries

where e are the edges with ¢ = init(e) and j = fin(e). If all the edges in D have

weight 1, then Figure 4.1 will have the incidence matrix

—_
[\™)
= o W

(4.12)

= o O O
e =
[ = e BTN

<o O

Similarly we can define

Aii(n) = w(P)
D

to be the sum of the weights over all paths P in D, of length n from vertex 7 to vertex
j. Note that A4;;(1) is simply the (¢, j)-entry of A. We now have the following simple

theorem.

Theorem 4.2.1 The (i, j)-entry of A™ is equal to A;;j(n). (By convention we define
A'=1.)

(The proof is given in Appendix A.2.1.)
If all the edges in D have weight 1, then in the sum—product semiring, the (7, j)-
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entry of A" is equal to the number of paths of length n between vertex 7 and vertex

j. For example, from Figure 4.1 and (4.12), we have

1 2 3 4
1{1 110

, 2|02 11

At = (4.13)
31 2 2 1
4\1 2 1 1

which shows, for example, that there are 2 paths from vertex 4 to vertex 2 of length 4,
namely (4,2,3,4,2) and (4,1,2,3,2). We can also see that there is no path of length
4 from vertex 1 to vertex 4.

If D now has incidence matrix

1{foo 0 oo o
2l 0 o 3 o

A= , (4.14)
3l o0 4 oo 2

4\ 1 2 oo o«

then in the min-sum semiring, the (7, j)-entry of A™ is equal to the lowest weight

path of length n between vertex ¢ and vertex j. For example,

1 2 3 4

1{6 7 10 o
2l 0o 6 8 12

At = (4.15)
310 11 6 9

4\ 6 7 10 6

so the least weight path from vertex 4 to vertex 2 of length 4, has weight 7 which
corresponds to the path (4,2,3,4,2).

We now present the Perron—Frobenius theorem for the min—sum semiring.
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4.2.2 The Perron—Frobenius theorem for the min—sum semir-
ing

Let D = (V,E) be a strongly connected digraph, i.e., for any two vertices u and
v € V, there is a path from u to v. Let w be the weight function for D and A be the
corresponding incidence matrix. Since D is strongly connected, A is an irreducible
matrix [47, Problem 31E].

Assume that among all cycles in D, there is a unique cycle with minimum average
edge weight A. We call this cycle the critical cycle in D. Let C be the set of vertices

in the critical cycle, with |C| = [. Note that since C C V, we have 1 <[ < m.

The Perron—Frobenius theorem for the min—sum semiring is now:

Theorem 4.2.2 For n sufficiently large, with min—sum arithmetic,
1 In
[—A} =P, (4.16)

where P is a fized matriz and \' is the unique eigenvalue of A'.
For the special case when the critical cycle is a self loop, P = xy? has rank 1,
with x = [21,...,Zm] andy = [y1, ..., Ym], the unique right and left eigenvectors of

A respectively.

(The proof is given in Appendix A.2.2.)

The entry z; € X corresponds to the least weight path in D from vertex ¢ to the
critical cycle, and y; € y corresponds to the least weight path in D from the critical
cycle to vertex j. Note that in the min-sum semiring, an eigenvalue, if it exists, is
unique.

We now give a brief introduction to tail-biting trellises and convolutional codes
in order to present some examples of the Perron—Frobenius theorem for the min—sum

semiring.
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4.2.3 Tail-biting trellises

In this section, we will introduce tail-biting trellises and convolutional codes. We
will use the notation of McEliece [48] to describe the basic structure of a trellis. For
further details we refer the reader to [35].

A tail-biting trellis T = (V, E) of length N is a finite digraph where V is parti-
tioned into NN classes Vg, Vi, ..., Vy_1. The edge set is the disjoint union of NV sets of
edges Fy, F,..., En_q1 where E; C V; x V4 for 0 <+ < N — 1. By convention we

will perform index arithmetic modulo N, for a tail-biting trellis.

()
®
O,

V; V;

<
=<
=7
<

Figure 4.2: A tail-biting trellis of length 3.

Figure 4.2 shows an example of a tail-biting trellis of length 3. Note that for
convenience we have repeated the vertices of Vj after V5 instead of showing the trellis

wrapping around on itself. The trellis has vertex sets
Vo = {aabvc}v Vi= {d,e,f}, Vo= {g,h}
and edge sets

Ey = {(a’d)a(a7e)a(baf)a(cae)}7
E, = {(d,h),(e,g),(e,h),(f,g)},
E, = {(ga a)a(.% b)a(ha a)a(ha C)}

Now let w : E — R once again be a weight function on edge set F taking values

in R. We can represent each edge set E;, for 0 < i < N — 1, by the matrix A;. Define
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the |V;| x |Vig1] incidence matrix A;, to be the matrix with entries

[Ailje =) w(e)

€

where e are the edges with init(e) = j € V; and fin(e) = k € V;4;. For example, the
tail-biting trellis in Figure 4.2, with all edge weights being 1, can be represented by

the matrices

d e f g h
a b ¢
afl 1 0 df0 1
g{1 1 0
As=510 0 1], Ai=¢e|1 1], A=
A\1 0 1
c\0 1 0 f\1 0

We call Ag, A1,..., Ay_1 the matriz representation of the tail-biting trellis. The
matriz product A = AgA;--- Ay_1 is defined, since the number of columns of A; is
equal to the number of rows of A;,; is equal to |V;q| for 0 <i< N — 1.

A path of length n, from u to v in T, is a sequence of edges ejes...e, such that
if e; € Ej, then ¢; € Ej4;; for 2 <1 < n. Of course we still must have u = init(e;),
v = fin(e,) and fin(e;) = init(e;11) for 1 < i < n.

Once again we will define A;;(n) to be the sum of the weights of all paths of length
n in T. If we restrict ¢ and j € Vp, then A;;(n) is only defined for n = [N, for some
[ € Z. By the same proof as Theorem 4.2.1, it can be shown that the (i, j)-entry of

Al is equal to A;;(IN). We summarize this as a corollary to Theorem 4.2.1.

Corollary 4.2.3 The (i, j)-entry of the matriz product A' = (AgA; ... Ay_1)" for
[1=0,1,2,... is equal to A;;(IN).

If all the weights on the edge set E are 1, then in the sum—product semiring A4;;(N)

represents the number of closed paths of length N, from vertex ¢ in the trellis. For
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example, for Figure 4.2,

a b c
af3 1 2
A=1pl1 1 0},
c\2 1 1

so there are 3 closed paths of length 3 from vertex a, namely (a,d, h,a), (a,e€,g,a)
and (a, e, h,a), while there is only 1 from vertices b or c.
We define the minimal state complezity of a trellis, denoted S5, to be

0<i<N-1

S0 Spin 1s the minimum cardinality of a class V; € V. The trellis in Figure 4.2 has
minimal state complexity, Sy = 2, since |Vi| = 2 and |V;| = |Va] = 3.

For a trellis, we define a cycle to be a closed path of length N and a pseudo-cycle
to be a simple closed path of length [N. We will call [ the degree of the pseudo-cycle.
Since we can visit each vertex only once in a pseudo—cycle, | < S,,;n. For fixed NV,
since Sy, is finite, the number of pseudo—cycles in the trellis is also finite.

We now introduce the tail-biting trellis for convolutional codes.

4.2.4 Convolutional codes

In this section we will briefly review the state—space approach to convolutional codes
in order to derive the finite state machine and the tail-biting trellis for the code.
An (n, k,m) convolutional encoder is a finite state machine with m memory el-
ements which determine a mapping between the k-dimensional input block and the
n-dimensional output block. We denote the input blocks ug, uy, .. ., the output blocks
Xg, X1, ... and the states sg,s1,.... The ith output block and ¢ + 1th state are linear

functions of the ¢th input block and state, which we can write as

Sit+1 = s; A+ wB (417)

x; = s;C+wD (4.18)
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(4.19)

where A, B, C and D are matrices with entries from GF(2). The initial state sq is

arbitrary.

Xi1
M
N
u; i1 Si0
M
N
X2

Figure 4.3: A rate 1/2, constraint length 2 convolutional encoder.

For example, the (2,1, 2) encoder shown in Figure 4.3 has input block u;, output
block x; = (z;1,%;2) and state s; = (s;9, ;1) at time index 7. The future output and

states can be determined from the matrices,

A—OO B=(1 0 c—ll D=(1 1
_<1 o)’ =(19), _<1 o)’ =,

For each convolutional encoder, we can construct a state diagram with 2™ vertices.
The state diagram is a weighted digraph where each vertex corresponds to a state
of the encoder and each edge corresponds to a transition from one state to another.
Figure 4.4a shows the state diagram for the (2,1, 2) convolutional encoder. We have
labelled the edges with the corresponding input/outputs for each transition.

If we define an ordered time axis, or index set I = {0,1,2,...}, then we can
construct a trellis for the convolutional encoder where we associate each vertex set
V;, with the set of possible states at time ¢ and each edge set E;, with the set of
possible transitions between time ¢ and ¢ + 1. The trellis is simply a time indexed
version of the state diagram.

Figure 4.4b shows a trellis section for the (2,1,2) convolutional encoder where



55}

Figure 4.4: The (a) state diagram and (b) trellis section for the convolutional encoder
with input and output weights on the edges.

once again we have labelled the edges with the corresponding input/outputs for each
transition. If we force the convolutional encoder to start in a certain state, or subset
of states, then some states will not occur for the first few time indices, so the trellis
will initially contain fewer states and edges. We will call a section of the trellis full,
if all 2™ states of the convolutional encoder occur in V; and V;;;. For example, if we
restrict the convolutional encoder to start in the all zeros state, then for an encoder
with memory m, the first full trellis section occurs at time index m.

We can construct a tail-biting trellis of length N for a convolutional code, by
“pasting together” N full sections of the trellis, defined over the index set I =
{0,1,... N — 1}, the vertex set Vj,V1,...,Vy_1 and edge set Ey, Eq,..., Ex_1. Since
every section of the tail-biting trellis will be the same, we say the trellis is time in-
variant. A 5-section tail-biting trellis for the encoder in Figure 4.3 is shown in Figure
4.5, where we have repeated the vertices of V; after V, instead of showing the trellis
wrapping around on itself.

Since the state diagram is a digraph, we can construct its incidence matrix A.

If each edge has weight 1, then the state diagram in Figure 4.4a will have incidence
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Figure 4.5: A 5-section tail-biting trellis for the encoder in Figure 4.3.

matrix
00 10 01 11
o0f 1 1 0 O
01 0 0 1 1
A= (4.20)
o1l 1 1 0 O
1t\o0 0 1 1

Note that the corresponding tail-biting trellis will have 4; = A, for 0 <7 < N — 1,
where A; is the incidence matrix of section 7 of the trellis.
If the weight function w is the Hamming weight of the output for each edge, then

the state diagram in Figure 4.4a will have incidence matrix

00 10 01 11

00f 0 2 o> ™=
10 0o x 1 1

A= , (4.21)
01f 2 0 oo ™

11\oc oo 1 1

where a Hamming weight of oo is assigned if no edge exists.

A convolutional code is defined as the set of all possible output sequences corre-
sponding to infinite paths in the trellis or state diagram, which start in the all zeros
state. A tail-biting code of dimension N is defined as the set of all possible output

sequences corresponding to cycles in the tail-biting trellis. We call the output se-
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quence associated with a cycle a codeword and the output sequence associated with

a pseudo-cycle a pseudo—codeword.

4.2.5 Examples of the Perron—Frobenius theorem

In this section we will present two examples of the Perron—Frobenius theorem for the
min—sum semiring on a tail-biting trellis for a convolutional code. The first example
will be of a matrix A™ that converges as n — oo to a matrix of rank 1. The second
example will be of a matrix A™ for which A has no eigenvalues and A?" converges as

n — oo to a matrix of rank 2.

Example 4.2.1 Consider the matrix product A = AgA;--- Ay_1 for a tail-biting
trellis of length N, where we define A;, for 0 < i < N — 1, to be the incidence
matrix of section 7 of the trellis. If the weight function w is the Hamming weight
of the output for each edge, then in the min—sum semiring, the matrix A represents
the lowest weight paths of length N in the trellis. For instance, for the 5-section

tail-biting trellis in Figure 4.5 with incidence matrix A in (4.21), we have

00 10 01 11
0f0 2 3 3
aopo O[3 3 3 3
01f 2 2 3 3
11\3 3 3 3

so the lowest non-zero weight codeword in the trellis is weight 3 and starts in the 10,
01 or 11 state.

For A = A" as N — oo, we have

A =AY = <0 2 3 3) for N > 9.

W N W O
[ T A
S ot Oy W
S ot Oy W
W NN W O
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So the encoder in Figure 4.3 will define a tail-biting trellis with a code of minimum
distance 5 for all N > 9, and every lowest weight codeword goes through the 00 state.
The critical cycle is a self loop of weight 0 at the 00 state.

Example 4.2.2 (Anderson and Hladik [40]) Let the weight function w now be
defined as the Hamming distance between the edge and the received sequence for that

edge. For the 5-section tail-biting trellis in Figure 4.5, consider the received sequence

00 10 10 00 00,

where the ith pair of outputs determines the adjacency matrix A;. For the matrix

product A, we have

00 10 01 11
0of2 3 2 2
013 2 3 3

A=
o1y r 2 3 3
11\3 2 3 3

Now consider A" as n — oo. We have

0111
1 2 2 2 3
A" = +n=J for n even, n > 4
0100 2
1 2 2 2
and
1 3 11
1 3 533 3
A" = - +n=J for n odd, n > 5.
20 -1 11 1 2
3 5 3 3

The two most likely codewords and the most likely pseudo-codeword associated with

the received sequence are
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1. the all-zero codeword 00 00 00 00 00

2. the nonzero codeword 01 10 10 01 00
3. the pseudo—codeword 00 11 10 00 10 00 10 11 00 00

Codewords 1 and 2 are Hamming distance 2 from the received sequence, while the
third pseudo—codeword has a Hamming distance of 3 over 2 cycles. Thus the critical
cycle is of degree 2 and A™ oscillates with period 2. A*" converges, with eigenvalue
3, although not to the outer product of two eigenvectors but to a matrix of rank 2. It
is easy to show that the matrix A has no eigenvectors or eigenvalues in the min-sum

semiring.

4.2.6 Tail-biting codes and pseudo—codewords

In this section we will prove that the iterative min—-sum decoder converges to the
pseudo—codeword with the minimum average weight per cycle, called the dominant
pseudo—codeword in [45]. Since the dominant pseudo-codeword is not necessarily a
codeword, the MSA may converge to a periodic solution.

Let y be the received noisy codeword. Assume the dominant pseudo-codeword is

unique. We now have the following theorem:

Theorem 4.2.4 After a finite number of iterations, the decoder locks on to the

pseudo-codeword nearest to'y.

(The proof follows almost directly from the min-sum Perron-Frobenius theorem and
is given in Appendix A.2.3.)

For an alternative proof using the computation trellis, see [13] or [38, 45]. Since
there are a finite number of pseudo—codewords for a given tail-biting trellis, we can
use Theorem 4.2.4 to estimate the decoding performance using the familiar union

bound argument.
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4.2.7 Estimating the error probability with the union bound

Let x° be the all zeros codeword. Let P be the finite set of pseudo-codewords for the

trellis, not including x°. If x € P is an [ segment pseudo—codeword, we write x as

Ti1 Ti12 0 Tin X
. 2
T2,1 T2.2 Lon X
X = = ,
l
Ty T2 ot Tip X

) )

where x* denotes the output vector associated with the ith segment of the pseudo—
codeword. Without loss of generality we assume the all zeros codeword was trans-
mitted and received as the noisy codeword y.

For a pseudo-codeword x € P, define ¢(x?) to be the weight of x*, for 7 € [[], and

c(x) =

o~ =

Z e(x?) (4.22)

to be the average weight of x. From Theorem 4.2.4, we know that a necessary
condition for a decoding error is for there to be a minimum average weight path
through the trellis, which is closer to y than x°, that is, a pseudo—codeword x € P,
such that c(x) < ¢(x?).

Define the error event

e ={c(x) <e(x)}

for every x € P, and the set of error events
E= e (4.23)

If we define PY54 to be the decoder word error probability, then by the standard

union bound, we have

PYS4 = Pr(£) < ) Pr(e;). (4.24)

x;€P
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For the special case of BPSK modulation on an AWGN channel, with signal-to—

noise ratio E,/Ny, we have

i=1

€= {%Z—logp(ylxi) < —logp(ylxo)}

for the pseudo—codeword = € P. Note that the weight associated with the ith segment
x! is the negative log-likelihood of the received vector given x'.

Let s* be the signal vector sent across the channel if we were to transmit segment
x*. For BPSK modulation, a 0 is mapped into —v/REj and a 1 is mapped into v/RE}
where R = k/n is the rate of the code. For the AWGN channel we have

i 1 1 i[2
i) = i ee { by - . (425)

SO

T
1 i 11 .
=37 (E 8 —SO> Y > 57 <§ s’ — ISOIQ>

Hence the probability of the error event € is

Pr(e)=Q ( 2N§22|:S:(; i0|:;))‘2> (4.26)

where Q(t) = 1/v27 [° e **/2dv. We can further simplify (4.26) by noting that
(s* —s°) = \/REy Y, zij. If we define ¢; to be the jth column sum, ¢; = 22:1 Tij,

for j € [n], then (4.26) becomes

Pr(e) = Q (VZRWE/N, ), (4.27)
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where we define W(x) to be the pseudo-weight of the psendo—codeword x,
W) = =27 (4.28)

In [13], Wiberg derives the same expression for the pseudo-weight of a pseudo-
codeword, except in the more general context of the computation tree. We shall use
this expression in Chapter 6 to determine the performance of the MSA for cycle codes.

Forney et al. [49] have also discovered the same expression independently.

Example 4.2.3 The 2-segment pseudo—codeword in Example 4.2.2 has

Ci C C3 C C5 Cg Cr Cg Cg Cip

0o 0 21 2 1 00 1 0

so that its pseudo-weight is 49/11. Note that a codeword will have a pseudo-weight

that is the same as its Hamming weight.

For the iterative min—sum decoding of a tail-biting code, we can apply the union

bound from (4.24) to get

PgSA < Z Q <\/2RW(X])E[,/NO> . (429)

x; €P
For an ML decoder for the tail-biting code, we can ignore all non—codeword pseudo-
codewords in computing the ML word error probability, PXL, so we have the ordinary

union bound determined by the code C,

P < 3 Q (\/ZRW(xj)Eb/NO> . (4.30)
%eC

If the minimum pseudo—weight of a pseudo—codeword in the trellis is greater than the
minimum distance of the code, then these two bounds are asymptotically equal.

In the next section we will give two examples, a code for which the minimum

pseudo-weight is greater than the minimum distance and one for which the minimum



63

pseudo—weight is less than the minimum distance.

4.2.8 The (2,1,2) convolutional code and the (24,12,8) Golay
code

In general it is not easy to compute the pseudo-weight enumerator for a tail-biting
trellis for a given code. In fact in Chapter 5 we can see it is not easy to even count

the number of pseudo-codewords of each degree except in special cases.

Example 4.2.4 Consider again the (2,1,2) encoder shown in Figure 4.3. We can
form a (2N, N) tail-biting code by pasting together N trellis sections from Figure
4.4b.

We ran the MSA decoder for 8 iterations around the trellis with no stopping rule
to check if we converged. Figure 4.6a shows the bit error rate (BER) of the MSA
on the AWGN for various N. The improvement in performance from N =5 to 8 to
16 is mainly due to the increase in the minimum distance of the code and not the
improved performance of the MSA. For N > 9, we showed in Example 4.2.1, that
the (2N, N) tail-biting code has a minimum distance of 5, so the performance of the
MSA decoder or the ML decoder is the same at high E,/N, for all N.

We have computed the pseudo—weight enumerator for N = 5 in Table 4.1. The
first column of the table is the degree [ of the pseudo-codeword, the second column
contains the pseudo—weight W and the third column, the number of pseudo—codeword
of weight W, P.W.E. We can see from the table that for N = 5 the minimum
weight for a codeword is 3, while the minimum pseudo—weight of a non-codeword
pseudo—codeword is 4.455. In Figure 4.6b, we have plotted the performance of the
MSA decoder and ML decoder for the (10,5) tail-biting code as well as the bit error
probability union bound with and without pseudo—codewords. Since the minimum
pseudo-weight is greater than the minimum distance of the code, the union bounds
are asymptotically the same and the performance of the MSA and ML decoders is
too.

The difference in performance between the MSA and ML decoders is in fact very
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1 W | PW.E. I W | PWE.
1. 0.000 1 3. 4.765 5
3.000 5 5.000 31
4.000 5 5.261 40
5.000 6 5.538 30
6.000 10 5.828 30
7.000 Y 6.125 20
2: 4.455 25 6.429 35
4.500 3 6.737 50
5.000 1 7.049 30
5.333 25 7.364 10
5.400 20 7.681 25
6.231 10 8.000 30
6.250 30 8.643 3
6.368 10 8.966 10
7.200 10 9.615 1
7.348 20 4: 5.444 55
8.048 d 6.231 80
8.167 3 7.118 70
8.333 ) 8.048 40
9.143 3 9.000 11

Table 4.1: The pseudo-weights for the (10,5,3) tail-biting code with m = 2.

small for this entire family of codes and is shown separately in Figure 4.6c. Here
we have counted an error when the MSA decoder makes a different decision to the
ML decoder, which we denote the MSA error rate (MSAER). Even though there is
not a visible difference in BER performance for N = 16 and 32, we can see that for
N = 32, the MSA performs much more like an ML decoder. Figure 4.6d shows a plot
of the MSAER for the (10,5) tail-biting code and the MSA union bound where we
now considered only non-codeword pseudo—codewords, i.e., P — C. We can see this

bound is not as tight as the union bound in (4.29).

We can show that any tail-biting code consisting of NV concatenated trellis sections
from Figure 4.4b will have a minimum pseudo-weight that is greater than or equal
to the minimum distance of the code. In order to do this, we need the following two

results, which are proved in Appendix A.2.4.
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Figure 4.6: Plots of the performance of the (2N, N) tail-biting code based on the convo-
lutional encoder in Figure 4.3 for various N, including the union bounds from (4.29) and
(4.30).

Lemma 4.2.5 The pseudo-weight on any pseudo—codeword of degree 2 is at least the

minimum distance of the code.

Lemma 4.2.6 Consider a time invariant trellis of length N. If there are o edges
of weight 0 in a section of the trellis, then for sufficiently large N, every pseudo—
codeword of degree | > « will have a pseudo—weight at least the minimum distance of

the code.

For the tail-biting code consisting of N concatenated trellis sections from Figure

4.4b, we have o = 2. By Lemma 4.2.6, for N > 15 and N > 10, there are no pseudo—
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codewords of degree 3 and 4 respectively, with pseudo-weight less than 5. By brute
force enumeration we have found that for smaller N, there are no low weight pseudo-
codewords of degree 3 or 4 either. Since Sy, = 4, by Lemma 4.2.5, the minimum
pseudo—weight for a tail-biting code, based on the (2,1,2) convolutional code in Figure
4.3, is then at least the minimum distance of the code. Thus for this family of codes
the MSA and ML decoders will have the same asymptotic performance.

There are many tail-biting codes for which the minimum weight pseudo—codeword
is at least the minimum distance of the code, for example the tail-biting trellis for
the (8,4,4) Hamming code in [21, 22]. However, Ko6tter and Vardy have constructed
a class of tail-biting trellises whose minimum pseudo-weight is strictly less than the
minimum distance of the code for a pseudo—codeword of degree 3 or more [50]. In the
next example we present a tail-biting trellis representation, for the (24,12,8) extended
Golay code, for which there is a pseudo-codeword of degree 4, whose pseudo-weight
is less than 8. The poor performance of the MSA decoder for this tail-biting code
was first noticed by Anderson and Tepe [51].

Example 4.2.5 Consider the time invariant tail-biting trellis of the (24,12,8) ex-
tended Golay code with generators (414,730)!. There is a pseudo-codeword of
degree 4 whose pseudo—weight of 7.36. We can write the pseudo-codeword as the

input sequence
000000000001

1010101111160
110011010101
011111100000,

where if we write the input as a sequence ug, u1, . . . 47, then the state of the encoder

at time 7 is the input string w; 1, u; s, ..., u;—¢ (where we perform index arithmetic

IThe encoder is defined by two sets of shift register taps which we express as left—justified octals.
The tap set will be of length m + 1 for a memory m encoder. For further details we refer the reader
to [52].
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modulo 48). The input sequence results in the corresponding output sequence

10 00 00 00 00 00 00 00 00 00 00 11
10 00 10 00 00 00 01 01 00 00 00 10
10 10 00 00 00 00 01 00 00 00 00 01
10 01 01 00 00 00 01 00 01 00 00 01

which has pseudo—weight, 324/44.

fr e MSA = Overall
......................... MSAER
O © Mo - Undetected Errors | 1

Eb/No (dB)

Figure 4.7: The performance of the MSA decoder for the (24,12,8) tail-biting extended
Golay code on an AWGN channel with a maximum of 30 iterations.

We ran the MSA decoder for up to 30 iterations around the trellis where we
stopped after 3 or more iterations if we decided on the same state twice in a row. In
Figure 4.7, the top curve shows the performance of the MSA decoder. The middle
two curves show the undetected error rate for the MSA, i.e., when the MSA converges

to the incorrect codeword, and the error rate with respect to an ML decoder, i.e.,
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when the MSA makes a non-maximum likelihood decision. The bottom curve shows
the performance of an ML decoder. The difference between the performance of the
MSA and ML decoders is about 0.5 dB. We can see that unlike in Example 4.2.4, the
MSA decoder makes a significant number of non-ML decisions. This is due to the
existence of low weight pseudo-codewords. The optimal, time varying 16-state trellis
for the extended Golay code described in [35] has MSA decoder performance that is

almost as good as maximum likelihood, as shown in [21].

4.3 Conclusions

The iterative min—-sum algorithm either converges to the maximum likelihood decision
or to a periodic solution on the single cycle graph. Like the iterative sum-product
algorithm, the MSA will always make an ML decision for binary valued hidden vari-
ables and may make an incorrect decision in the non-binary case. We can gain a much
better understanding of the behavior of the MSA on a single cycle graph if we look
at a tail biting trellis. We used the trellis to develop a union bound argument for the
decoding performance of the MSA so we can determine when an MSA decoder will
perform asymptotically as well as an ML decoder. We can also select the appropriate
tail-biting trellis representation of the code to improve the performance of the MSA

decoder.
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Chapter 5
Counting Pseudo—Codewords for

Tail-Biting Convolutional Codes

In this chapter, the problem we would like to solve is to count the number of pseudo-
codewords of degree [ that can be found in a tail-biting trellis for a convolutional
code.

In Section 5.1, we introduce the transfer matrix method, which we will use to
count pseudo—codewords. In Section 5.2, we introduce the class of convolutional
codes for which we will count the number of pseudo—codewords. In Section 5.3, we
will construct the pseudo—codeword state diagram for the trellis and present two
techniques to reduce its complexity. In Section 5.4, we will present some examples of
how we count the number of pseudo—codewords in the trellis for some tractable cases
and in Section 5.5 we present our conclusions. In this chapter all multiplication and

addition is performed in the sum-product semiring.

5.1 The Transfer Matrix Method

In this section, we continue with the definitions and notation of Section 4.2.1 and
introduce the rest of the necessary algebraic and combinatorial tools required to
count pseudo—codewords. Much of this material is taken directly from Stanley [46,
Section 4.7] and McEliece [48].

Let D be a weighted digraph with incidence matrix A, and let A;;(n) denote the

sum of all paths of length n in the trellis from vertex ¢ to vertex j. We define the
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generating function F;; to be

Fiy(z) =) Ay(n)z"

n>0
and we have the following result from Stanley [46, Theorem 4.7.2].

Theorem 5.1.1 The generating function F; ;(z) is given by
Fij(z) = [(I = zA4) ']y (5.1)

(The proof is given in Appendix A.3.1.)

Now define the generating function

Wi(z) = anz”, (5.2)

n>1
where w,, is the sum of the weights of all closed walks of length n in D. For example,
w; = tr(A), where tr denotes the trace function. We conclude this section with one

final result from Stanley [46, Corollary 4.7.3] and an example.

Theorem 5.1.2 (The transfer-function theorem) The generating function W (z) is

given by ”
W(z) =— 20 (5.3)

where Q(z) = det(I — zA).

(The proof is given in Appendix A.3.2.)

For example, for Figure 4.1, with incidence matrix A in (4.12), we have
Q) =1-2> -2 -2

and

2 42
W(z):Z (24 3z +42°)

1— 22 — 23 — 24
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We can also write W (z) as the series,
W(z) = 22° + 32° 4+ 62" + 52° + 112° 4 higher order terms.
Note that the number of closed paths wy satisfies the recursion
WN = WN—2 +WN_3 + WN_4,
with initial conditions
w; =0, wy =2, wz =3, wy = 4.
According to W (z) there are 6 closed paths of length 4 in Figure 4.1 which agrees

with tr(A4%) in (4.13).

5.2 Convolutional Codes, Tail-biting Trellises and
Pseudo—Cycles

Since we are only interested in counting the number of pseudo-codewords in the tail-
biting trellis, and not interested in computing the actual pseudo—weights, we will
ignore the output matrices C and D in (4.18) for a moment and restrict ourselves to
convolutional encoders of the form shown in Figure 5.1. The encoder will now have

matrices A and B of the form

where I,y is the m — 1 x m — 1 identity matrix and ¢; is 0 (or 1) depending on
whether the feedback switch for s, ; is open (or closed) for 0 < j < m — 1.

For a convolutional encoder of this form, if we write the state at time 7 as the
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) D )
L/ j/ \L/
. N (
Ui Sim-1 Si1 Si0

Figure 5.1: A constraint length m convolutional encoder with feedback (shown without
any output taps).

vector

Si = (86,0, 8i,15 - - - » Si;m—1)5 (5.4)

then the state at time 7 + 1 will be

Sit1 = (5i+1,075i~|—171a---;3i+1,m—275i+1,m~1)

= (Si,l, 54,25+« -3 Si,;m~1, Sz‘+1,m—1)-
Thus if the initial state is written as
S0 = (S—m, S—mt1s - S—1), (5.5)
we can represent the sequence of states for /V time steps as a string of length N + m,
S = S_m...5_15081...8N_1, (5.6)
where the state at time ¢ is
Si = (Sicmy Sicmtls -« Sic1), (5.7)

for0<i< N -—1.
If the sequence is a cycle on the tail-biting trellis of length N, then the initial
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state sg must be

So = (SN—m; ey SN—I) (58)

and we can represent the sequence of states, simply as the string
8= 5081...5N-1- (5.9)

The state of the encoder at time index ¢ will be the same as in (5.7) where we take
indices modulo N.

We will consider two sequences s; and sy of length [N to be the same pseudo—
codeword, if 51; = 53,455 for 0 < i <IN — 1 and some j € Z, since it is the
same sequence shifted in time by a multiple of N. A pseudo—codeword will thus be
independent of shifts of multiples of N in the time axis.

Let wy,; denote the number of pseudo—codewords of degree [ on a tail-biting trellis

of length N. We would like to find a closed form expression for the generating function

Wi(z) = Z wN,lzN.
N>1
We will do this using the transfer-function theorem from Section 5.1 and the pseudo—
codeword state diagrams which we will develop in the next section.
For I = 1, we can also find the weight enumerator for the code. Since the weight
is a meaningless metric for pseudo—codewords of degree greater than 1, we refer the

reader to [48] for further details.

5.3 Pseudo-Codeword State Diagrams

Consider an (n, k,m) convolutional code with a tail-biting trellis of length N and a
pseudo—codeword of degree [. We can represent the pseudo-codeword as a sequence

of [N states sg,...,SiN_1. If we partition the states into N sets

So = (S0,SN,---,S1-1)N)
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S1 = (S1,SN+41,--- ,S(1—1)N+1)

Sno1 = (SN—1>32N~17~->SIN—1)7

then the [ states in S;, for 0 < ¢ < N, must be different for the sequence to be a
pseudo—codeword. We call the set S; the pseudo-codeword state at time 3.

We can construct a pseudo-codeword state diagram consisting of (2™)!/(2™ — [)!
states, corresponding to all the possible pseudo-codeword states. There is an edge
from pseado—codeword state S; to pseudo—codeword state S;, if for each state in S;j,
there is a transition in the state diagram for the encoder to the corresponding state
in S;. A pseudo—codeword of length /N can now be written as a path Sy, ..., Sn,
where

Sn = (SN, - - -, Sa-1)N; So),

, 1.e., SN is left cyclic shift of Sgp.

If we construct an incidence matrix for the pseudo—codeword state diagram, then
we can use Theorem 5.1.1, to count the number of pseudo—codewords of length N for
each possible initial state Sg. The sum divided by ! (since shifts of N are the same
pseudo—codeword) will then be the generating function W;(z). Unfortunately, this
method is impractical except when [ and m are very small. In the following sections
we present two techniques to reduce the complexity of the pseudo—codeword state

diagram.

5.3.1 Pseudo—codewords where the first N bits are zero

If we restrict ourselves to the convolutional encoders of the form in Figure 5.1, then
we can write the pseudo—codeword as a string of [N bits s = sgs; ... s;v_1 where the
string of m bits s,_, ... s;-1 is the state of the memory at time index i. By convention
we will always take the indices modulo IN for a pseudo—codeword of degree [.

We can write the bits of s in a ring. If we take [ windows of width m and place

them on the ring, at intervals N bits apart, then the [ windows should each contain
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a different sequence of length m for every position of the windows on the ring. In
fact, we only need to rotate the windows along any N bit interval to ensure that s is

a pseudo—codeword.

0 $,8, Sn Sna

1 SN Snat SunS v
——

2 Son S e S3n S vt

3 Sin S aner S¢8,

(a) (b)

Figure 5.2: (a) The pseudo-codeword s with [ = 4 and m = 2 written in a ring. (b) The
initial contents of the 4 windows and the contents after the windows have been rotated
clockwise by N bits.

For example, Figure 5.2a shows a pseudo—codeword of degree 4, written on a ring
for a convolutional code with memory m = 2. Since m = 2, the encoder only has
four states, namely {00,01, 10,11}, so each state must appear in one of the windows
at each shift, for s to be a pseudo—-codeword.

If we label the windows 0 to [—1, then after shifting /V bits in a clockwise direction,
the bit string in window ¢ will be the initial contents of window ¢ + 1. For example,
Figure 5.2b shows the contents of the windows from Figure 5.2a before and after a
clockwise rotation of N bits. If we let the contents of the [ windows represent the state
of the pseudo—codeword, then we can construct a pseudo—codeword state diagram in
the same manner described above.

A pseudo—codeword is represented by a path of length IV in this state diagram.
Since the contents of window 7 will be the previous contents of window ¢ + 1 after

N shifts and the windows are of size m, the last m transitions in the path will be
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predetermined by the starting state of the pseudo—codeword.

Define the sequence y with elements, ¥; = Simogn for 0 < ¢ <IN —1,s0y is [
copies of the first N bits of s pasted together. Now define the sequence t = s @ y,
where @ is addition modulo 2. Clearly t is also a pseudo—codeword, where the first
N bits are now equal to zero.

Let S be the set of pseudo—codewords and T be the set of pseudo—codewords

whose first N bits are zero, so T C S. From the previous section we defined wy

as the number of sequences that are pseudo-codewords, i.e., wy,; = |S|. Now we let
vy, = |T| and define the generating function
Vl(z) = Z ’UN,ZZ
N>1

We then have the following theorem.

Theorem 5.3.1 We have
1
Wi(z) = TVZ(%)'

(The proof is given in Appendix A.3.3.)

We can construct the pseudo—codeword state diagram for pseudo-codewords that
start with /V zeros in much the same way as we do for ordinary pseudo-codewords
except we now only have (2™ —1)!/(2™ —[)! states. Thus we have reduced the number
of states by a factor of 2™.

However, we have to be careful when counting the number of paths of length N.
If we start each path at sp,, (so that we are guaranteed all zeros in the 0 window),
then the last N — m steps in the pseudo-codeword path may not be represented by
states in the reduced pseudo-codeword state diagram. This is because we now can
have nonzero entries in the 0 window. But the last N —m steps in a pseudo-codeword
path are predetermined for a given initial state, so we only need to count the paths of
length N —m, that will lead to a state from which the final m fixed steps are possible.
We can do this for each starting state using Theorem 5.1.1 and sum the results to get

Vi(z)/2".
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The complexity of the pseudo-codeword state diagram is still quite prohibitive
so we will introduce one more technique to reduce the number of states and edges

further before we present some examples.

5.3.2 Reducing the size of the windows to m — 1

Given a convolutional encoder of the form in Figure 5.1, the set of transitions between
state s; and s;1; is the same for s, = 0, or 1. Therefore, two pseudo—codeword states
S; and S;, which share the same last m — 1 bits in every window will have the same

set of transitions to the next state, i.e.,
{fin(e) : e € E,init(e) = S;} = {fin(e) : e € E, init(e) = S;},

where E is the set of edges in the state diagram.

Therefore, we can construct a new pseudo—codeword state diagram from the initial
pseudo—codeword state diagram by combining all states which share the same last
m —1 bits in every window and combining all multiple edges between two states. The
new pseudo—codeword state diagram will thus have 2' fewer states and edges than
the original.

Let un, to be the number of paths of length N in the new pseudo—codeword state

diagram and define the generating function

UZ(Z) = Z UN’ZZN.

N>1

We then have the following theorem.

Theorem 5.3.2 We have
Wi(z) = U(z).

(The proof is given in Appendix A.3.4.)
We can combine the technique of this section with the technique of Section 5.3.1

to produce a pseudo—codeword state diagram of even lower complexity. We call this
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pseudo-codeword state diagram the reduced pseudo-codeword state diagram. The

reduced pseudo—codeword state diagram will contain

_ -1 —
(2m—1)l~1 . <l 1) 2m 1 (l 1) 2m—l)l—1—z’
2 =3

(2™ — 1)!

states and

edges.

Note that the number of states is not (2™ — 1)!/(2™ — [)!{(2"=1) since there are
not necessarily 2!~! states which share the same last m — 1 bits in every window in
the pseudo—codeword state diagram for pseudo—codewords where the first NV bits are
zero. The number of states is therefore the number of sets of [ — 1 windows of size
m — 1, in which no two windows contain the all-zeros state and no three or more
windows contain the same state.

In the next section we will present some examples of counting pseudo-codewords

for various m and [.

5.4 Examples of Counting Pseudo—Codewords for
Small m and [

In this section, we will use the techniques of Section 5.3 to count pseudo—codewords.
In Section 5.4.1, we will set the first N bits of the pseudo-codeword to zero, as
in Section 5.3.1, in order to count the number of codewords and degree 2 pseudo-—
codewords. In Section 5.4.2, we will use the reduced pseudo-codeword state diagram
of Section 5.3.2, to count the number of pseudo—codewords of degree 3, for m = 2

and 3, and the number of pseudo—codewords of degree 4, for m = 2.
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5.4.1 Codewords and pseudo—codewords of degree 2

We will first demonstrate how to count the number of codewords and pseudo—codewords
with zero for the first V bits.

We start by counting the number of codewords in a tail-biting trellis. Since a
codeword is NV bits, the only sequence in T is the all zeros sequence. Therefore,
vy, = 1 and is independent of the memory m of the convolutional encoder, or the

length of the trellis N. By Theorem 5.3.1 we have

Wi(z) = ZQNZN
N>1
2z

1-22

so there are 2"V possible codewords for a tail-biting trellis of length N.

A more interesting example is counting the pseudo—codewords of degree 2. If we
write a string of length 2N on a ring, then we need 2 windows to check if it is a
pseudo—codeword. If the first window is positioned somewhere over the first N bits,
then the second window can contain any string except a string of m zeros. We can
simply delete the first NV bits from the string and only consider strings of N bits on
a ring, which don’t contain a substring of m or more zeros. For m = 2 we will show
that the number of such strings satisfies the same recursion as that of the Fibonacci

numbers, although will different initial conditions.

R

Figure 5.3: The state diagram for a device which generates any string that contains no
substring of m or more zeros.

Figure 5.3 shows the state diagram for a finite state machine that can generate

any string that contains no substring of m or more zeros. State i indicates that the



80
last 7 bits that have occurred in the sequence are 0. Thus a 1 causes the machine to
return to state 0 and a 0 causes the machine to go from state 7 to state 7 + 1. If the
machine is in state m — 1, then the next bit must be a 1 so the machine can only go
to state 0. The number of strings of length N, which wrap around and have no string
of m consecutive zeros, is then the number of closed paths of length IV in the state
diagram.

The incidence matrix A, for the state diagram, will be

0 1 2 m—1
0 1 10 0 \
1 1 01 0
A=
m—-21 0 0 --- 1
m—1\1 0 0 - 0 |
So by Theorem 5.1.2, we have
—2Q (2
W) = g0
oz 42224+ me™
l—z—22.c—m

For m = 2, we have

UN,2 = UN-1,2 T Un_22,

which is the Fibonacci recursion.

By Theorem 5.3.1, we have

12242022 + - +m(22)™
2122 (22)2 — - — (22)™

Wa(z) (5.10)

So the number of pseudo—codewords of degree 2, wy » satisfies the recursion

WNg = 2w+ F 2T WN 2. (5.11)
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m\N|1 2 3 4 5 6 7 8 9
2 |1 6 16 56 176 576 1856 6016 19456
3 |1 6 28 88 336 1248 4544 16768 61696
4 |1 6 28 120 416 1632 6336 24448 93952
5 (1 6 28 120 496 1824 7232 28544 112384
6 |1 6 28 120 496 2016 7680 30592 121600

Table 5.1: The number of pseudo—codewords wy 5 for various m.

For example, for the (2,1, 2) convolutional encoder in Figure 4.3, we have

Wy = 2wn_12 +4wn_22,

with initial conditions

Wy2 = 1, Wo 2 = 6.

It is interesting to note that for a convolutional encoder with memory m, the
number of pseudo—codewords of degree 2 can be expressed by a recursion of order m.
Table 5.1 shows the number of pseudo-codewords of degree 2, for m = 2,3,...,6 for

various N.

5.4.2 Pseudo—codewords of degree 3 or more

We use the reduced pseudo-codeword state diagram to count the number of pseudo—
codewords of degree 3 or more. We will start with the simplest case, namely [ = 3
and m = 2.

The pseudo-codeword state diagram for pseudo—codewords of degree 3 and a
convolutional encoder of memory 2 will have 24 states. If we only count pseudo—
codewords with the first IV bits zero, then we reduce the number of states and edges
to 6 and 12 respectively, as shown in Figure 5.4a. By convention we label each state
with the contents of windows 1 thru { — 1 since the 0 window always contains the
all-zeros string. Note that for the states a and b, the last m — 1 bits in windows 2

and 3 are the same. This is also true for states ¢ and d and states e and f.
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(b)

Figure 5.4: (a) The pseudo—codeword state diagram for pseudo—codewords with the first
N bits zero and (b) the reduced pseudo—-codeword state diagram, for m = 2 and [ = 3.

The incidence matrix A for Figure 5.4a is

a b ¢ d e f

af0 0100 1)

blo o100 1
4ot o001 (5.12)

dl1 000 1 0

eld0 1 01 0 0

f\010100)

and

Q(z) =1—322 - 22°. (5.13)

Since the transitions from state a are the same as those from state b, the first and
second rows of A are the same. If we want to count the number of pseudo—codewords
using (5.12), then for each state we must find the set of states from which the final

state can be reached in m steps. For example, state a has final state

01
10
00

which can be reached in 2 steps only from states a, b, ¢ and d. This is because, if we
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were in states e or f, the determined transitions force windows 2 and 3 to have the
same contents after 1 step and we no longer have a pseudo—codeword.
We define R to be the matrix where the (z,j)-entry is a 1 if the final state of a
pseudo-codeword with initial state i can be reached from state j in m steps without
violating the property that no two windows can contain the same sequence of m bits.

Otherwise the (i, j)-entry is a 0. For Figure 5.4a, we have

a b ¢ d e f
af1 1110 0
b0 0 1 1 1 1
c{1 1 0 0 1 1

R= (5.14)

dfo 01 1 1 1
ell 1 1 1 0 0
f\1 100 11

From Theorem 5.1.1, we can sum over all the entries of [I — zA]™! for which the

corresponding entry of R is a 1. The result is

322 + 62°
Va(z) = T yey (5.15)

where we have multiplied V3(z) by 2? since a path of length N — 2 in the pseudo—
codeword state diagram, corresponds to pseudo—codeword of length N. From Theo-

rem 5.3.1 we have

42% +1623

We now demonstrate the same result using the reduced pseudo-codeword state
diagram for [ = 3 and m = 2 shown in Figure 5.4b. As we can see states a and b, ¢
and d, and e and f have been combined into states 0, 1 and 2 respectively. So the

state diagram now has 3 states and 6 edges. The incidence matrix A for Figure 5.4b



is now
0 1 2
0/0 1 1
A= 111 0 1 (5.17)
2\1 1 0
and
Q(2) =1— 322 — 223, (5.18)
which is the same as in (5.13) and
0 1 2
0f1 0 1
R= 1111 0]. (5.19)
2\0 1 1
From Theorem 5.1.1, we have
3z
Vi = 9.20
3(2) 1—2—222 (5:20)
and
2z
= 21
Wa(2) 1—2z— 822’ (5-21)

where we have multiplied V3(z) by z since a path of length N — 1 in the pseudo-
codeword state diagram, now corresponds to a pseudo-codeword of length N. The
coefficients of the power series defined by W3(z) are the same for (5.16) and (5.21),
except that (5.16) does not include the coefficient of z. This is because the pseudo—
codeword state diagram for pseudo-codewords that start with N zeros, can only count
the number of pseudo—codewords for N > m whereas the reduced pseudo—codeword
state diagram counts the number of pseudo—codewords for N > m — 1. It is simple
enough to compute the number of pseudo—codewords for N < m using brute force
enumeration.

It follows from (5.16) and (5.21) that the number of pseudo-codewords of degree



Figure 5.5: The reduced pseudo—codeword state diagram for m = 2 and [ = 4.

3, wy 3, satisfies the recursion
WN3 = 2wn-13 + 8wn_23, (5.22)

with initial conditions

’wl,g = 2, Wo 3 = 4,

For m = 2 and [ = 4, we have the reduced pseudo—codeword state diagram shown
in Figure 5.5. The regular pseudo—codeword state diagram contains 24 states whereas

Figure 5.5 contains only 3 states and 6 edges.

The reduced pseudo—codeword state diagram has incidence matrix,

0 1 2
0f0 1 1
A= 111 0 1 (5.23)
2\1 1 0
and
0 1 2
0f1 1 0
R=1]1 0 1 (5.24)

W]
o
=
-
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So we have

Vi(z) = (5.25)

and

Wa(z) = (5.26)

where once again we have multiplied Vy(z) by z. It follows from (5.26) that the

number of pseudo-codewords of degree 4, wy 4 satisfies the recursion

Wya = 4wy_14, (5.27)

with initial condition

W14 = 1.

Table 5.2 shows the number of pseudo-codewords of degree 1, 2, 3 and 4 for m = 2.

ANN[1 2 3 4 5 6 7 8 9
1 |2 4 8 16 32 64 128 256 512
2 |1 6 16 56 176 576 1856 6016 19456
3 |2 4 24 80 352 1344 5504 21760 87552
4 |1 4 16 64 256 1024 4096 16384 65536

Table 5.2: The number of pseudo—codewords wy; for m = 2.

Note that for m = 2, wy,; always satisfies a recursion of order m or less. Therefore,
even though we have a large number of states in the reduced pseudo-codeword state
diagram, we had hoped that we could always find a simple recursion of size at most
m to count the number of pseudo—codewords of degree [ > 2. In our final example
we show that unfortunately this is not always the case.

For [ = 3 and m = 3 the pseudo—codeword state diagram will contain 336 states
while the reduced pseudo—codeword state diagram shown in Figure 5.6 has 15 states

and 42 edges. The incidence matrix A, for the reduced pseudo—codeword state dia-
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gram, will be

a b cde f g h it 7 kK I mn o
a {01 10000O0O0O0O0O0O0 00
b{0 00111 10000O0O0 O0O0
c{f000O0O0ODOOTI1IT1110 0 00
df10000O0O0O0O0OO0O0OT1O0 00
e{0 11000 0000O0O0T1 10
floooo101000000 00
g0 00O0O0DOOO11 1100 00

A= h{1 0 0 00 00 O0O0O0O0OO0OO0O 01 (5.28)
i{0 1 1000000O0O0O0 1 1 0
7100011 1100000 TO0O0O0
k{0 OOODOUOOOTI1T1O0UO0 0 00
/10 000O0O0OOOTI1T1O0O0TU0 00
m|{0O 00 O0O0O0O0O0O0O0O01 0 01
n{f0 1 1 00000O0O0O0O0O0 00
0\000010100000000)
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and
a b cde f g h i j kIl mn o
af00010101010000 0 0)
b1 110101111111 10
cl1 110101111111 10
dl1 100110011000 11
el1 111111011001 11
fFl1 100110011000 11
gl1 111111011001 11
R=pl01 10011001110 01 (5.29)
ilo1 11111111110 01
jlo1 11111111110 01
klo1 10011001110 01
1101 10001001000 00
m[1 0101010107110 10
n|1 010101010110 10
o\0 100100011000 00)
So we have , s e s
Valz) = (?)]:zigzi(jzi t 22§(1+—6;z t 222 : i;)) (5-30)
and
42%(3 + 122 + 5222 + 4823 + 322* — 1282°)
S sy o 82%)(1 — 4z — 822 — 3223) (5:31)

where once again we have multiplied V3(z) by 22

It follows from (5.31) that the number of pseudo—codewords of degree 3, wy 3

satisfies the recursion

wN3 = 2'LUN_1,3 + 12’LUN_2’3 + 72’LUN_3,3 +

6421)]\7_4,3 + 6411)]\]_5,3 - 256’LUN_673, (532)



Figure 5.6: The reduced pseudo—codeword state diagram for m = 3 and [ = 3.

for m = 3 with initial conditions
Wy,3 = 2, Wo,3 = 12, W33 = 72, Wy,3 = 496, Ws,3 = 2912, We,3 = 17856.

Thus the recursion is of order 6, while the memory of the code is only 3.

5.5 Conclusions

In this chapter we introduced some techniques to count the number of pseudo—
codewords in the trellis of a convolutional code with memory m. We showed that

for m = 2, there is a simple recursion of order at most m, to count the number of
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pseudo-codewords of each degree. We also found that for [ = 2, there is a simple
recursion of order m that counts the pseudo—codewords. In each case we had a simple
expression even though we started with a large matrix, which could have resulted in
a recursion of much higher degree. Unfortunately, for general [ and m there does
not seem to be a recursion of order m that counts the pseudo—codewords. However,
the order of the recursion seems to be much less than the number of states in the
pseudo—codeword state diagram.

For large | and m the techniques introduced in this chapter become intractable
very quickly. It appears that the problem of counting pseudo—codewords for general

[ and m may be hard.
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Chapter 6
The Iterative Decoding of Cycle Codes

Cycle codes were first introduced by Gallager [24] as a special case of LDPC codes,
in which each codeword bit is checked by exactly two parity checks. However, not
much attention was paid to them as they had poor distance properties. They were
first studied as graph theoretic codes by Hakimi and Bredeson [53]. While there has
been some interest in developing bounded distance decoders for these codes [53, 54],
not much attention has been paid to their iterative decoding performance.

In this chapter we will study the behavior of iterative decoding on the Tanner
graphs for cycle codes. In Gallager’s original analysis of regular LDPC codes, he
demonstrated that one can achieve an arbitrarily small error probability for a rate
1/2, (3,6) regular LDPC code, on a BSC with crossover probability 0.04 using his
decoding algorithm A’. In this chapter we will show that for cycle codes, algorithm
A produces a decoded bit error rate of 1/2. We will also present two other message
passing algorithms for the BSC which have better performance. The first is the
algorithm in example 6 of Richardson and Urbanke [12]. While this algorithm’s
performance is better than that of algorithm A, it still cannot achieve an arbitrarily
small error probability for any p > 0. On the other hand, we will demonstrate
experimentally that one can achieve quite good performance for the BSC using the
iterative sum-product algorithm to decode.

For an AWGN channel we will extend Wiberg’s analysis [13, 34] of the iterative
min-sum algorithm for cycle codes, to classify the different behaviors of the iterative
min-sum decoder and demonstrate that it performs asymptoticly as well as an ML

decoder.

1Gallager’s original analysis applied to the family of LDPC codes whose graphs have infinite
girth. Recently Luby et al. [11] and Richardson and Urbanke [12] both extended Gallager’s work to
include LDPC codes whose underlying graphs have some short cycles.
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Here is an outline of the chapter. In Section 6.1, we will introduce cycle codes as
graph theoretic codes and describe their connection to the Tanner graph presented
in Section 2.2.1. In Section 6.2 we will present three examples of message passing
algorithms for the BSC and analyze their behavior. In Section 6.3 we will show that
the min-sum algorithm performs asymptotically as well as an ML decoder for cycle
codes and introduce the notion of good and bad pseudo—cycles in determining the

algorithm’s performance. Finally, in Section 6.4, we present some conclusions.

6.1 Basic Notation and Definitions

In this section we shall introduce a graph theoretical framework to describe cycle
codes. We shall also present a class of message passing algorithms, that will be used
to perform iterative decoding on these graphs. Unlike in previous chapters, we will

consider message passing algorithms other than the MSA and SPA.

6.1.1 Graph theoretic codes and Tanner graphs

Let G = (V, E) be a finite undirected graph, where V is the set of vertices and E is
the set of edges. Let |V| = m and |E| = n. If T is a spanning tree of G, then every
edge in G — T will form a unique cycle when it is added to 7' [55]. We call these
cycles the fundamental cycles of G. Since there are n edges in G and m — 1 edges in
T, the number of such cycles is k =n —m + 1.

If we label the edges of G, {1,...,n}, then we can represent every fundamental
cycle by a binary n-tuple whose ith component is 1 (or 0) depending on whether the
ith edge is (or is not) a part of the cycle. Any cycle or disjoint union of cycles in G
can then be expressed as the mod 2 sum of fundamental cycles. The k£ x n matrix ®,
whose rows consist of the fundamental cycle vectors, forms a basis for a linear vector
space in G. If the edges not in 7" are labelled {1,...,k}, then the matrix will be of

the form
® = [I|®5] (6.1)
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and is called the fundamental cycle matriz of G [55]. The minimum weight of a vector

in the span of @ is simply the cardinality of the shortest cycle in G, i.e., the girth, d
of G.

C1

c2 6
c3 s
C4
(a)

(b)
Figure 6.1: (a) The graph G and (b) the Tanner graph Gr, for a (9,4,3) cycle code.

Consider the graph G shown in Figure 6.1a. A possible spanning tree 7', of G
is shown in bold. For this tree we can label the edges as in Figure 6.1b, to get a

fundamental cycle matrix

(6.2)

o O o =
o O = O
ou B = R
= o o O
o o o =
S D = e
o = o= O
_ = O O
- o O O

as a generator matrix for the code. The code has dimension £ = 4, and minimum
distance d = 3.

Note that a different choice of spanning tree results in a different set of funda-
mental cycles and thus a different ®. However, the number of fundamental cycles, &,

and the girth d of G, remain the same for every choice of T'.
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We can represent the cut—set for each vertex by a binary n-tuple whose ith com-
ponent is 1 (or 0) depending on whether the ith edge is (or is not) connected to that
vertex. The m x n matrix H, whose rows consist of the m cut-set vectors, forms a
basis for the null space of ®. Note that for each connected component of G, we have
a redundant cut-set vector in H, so if G is connected, then H will have rank m — 1.
Since every edge is incident on exactly two vertices, every column of H contains two
1’s.

The fundamental cycle matrix of G, thus generates an (n, k,d) cycle code C [53,
54], with H as its parity check matrix. If the graph G is r-regular, then every row of
H will have r 1’s and C will be a (2, r)-regular LDPC code.

We would like to represent the code C, not by the graph G, but by its Tanner
graph G'r as we defined in Section 2.2. We can construct the Tanner graph from H
by the method described in Section 2.2, or we can simply set the nodes of G to be the
check nodes V}, and place a codeword node V. on each edge in E. Figure 6.1 shows (a)

the graph and (b) the Tanner graph for a (9,4,3) cycle code with parity check matrix

Vi VU2 VU3 U4 Vs Vs Uy Ug Vg

af1 0 0 0 1 0 0 0 0)
cc{ 0O 1 0 0 1 1 0 0 0
c3| 0O 1 0 1 0 0 1 1 O
H= " (6.3)
el O 0 0 1 0 0 0 0 1
cs| 0 0 1 0 0 0 0 1 1
s\1 0 1 0 0 1 1 0 0)
6.1.2 Message passing algorithms
Let x = (z1,...,2,) be a binary vector with z;, corresponding to codeword node v;,

in the Tanner graph, for i € [n]. The vector x is a codeword, if and only if Hx = 0,
where H is the parity check matrix for the graph. Equivalently, we can say that x is
a codeword if and only if the set of codeword nodes attached to each check node has

even parity.
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The codeword x is transmitted across the channel and received as a noisy vector

Y = (¥1,...,yn) at the receiver. In this chapter we will consider 2 channel models:
1. The Binary Symmetric Channel (BSC) with crossover probability p.

2. The Additive White Gaussian Noise Channel (AWGN) with signal-to-noise
ratio (SNR) E,/N,.

Note that both of these channels are memoryless.

There are a number of decoding algorithms for cycle codes based on techniques
from combinatorial optimization. In [53], Hakimi and Bredeson propose a decoding
algorithm based on majority logic. Jungnickel and Vanstone present a more efficient
algorithm in [54], based on the Chinese postman problem [55]. However, both of
these algorithms are bounded distance decoding algorithms and can only correct up
to t errors where d > 2t + 1.

In this chapter we will analyze decoding algorithms that use message passing on
the Tanner graph for a cycle code. The message passing schedule we will use is
described in Section 2.4, while the computation of the messages is more general than
for the iterative min-sum or sum-product algorithms. A message from codeword node
v; to check node c¢;, along edge (v;, ¢;) is based on the received y; and the incoming
message from the other edge connected to v;. The message from a check node Cjs
to codeword node v;, is based on all the incoming messages to the check node Cjs
except for the message from the edge (v;,¢;). The message sent out from a node on
an edge is therefore not a function of the message coming into that node from that
edge. The reason for this is to avoid the “double counting” of information on an edge
29, 30, 32]. Note that the messages in the MSA and the SPA are computed this way.

It is also possible to let the messages depend on the current iteration number,
but we will not consider algorithms of this type here but refer the reader to [12] for
further details. In the next section we will extend Gallager’s, and Richardson and

Urbanke’s analysis to message passing algorithms for cycle codes on a BSC.
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6.2 Iterative Decoding on the BSC

In this section we will analyze the behavior of three different message passing al-
gorithms for a BSC, with crossover probability p. The algorithms we will consider

are
e Gallager’s decoding algorithm A [24],
e Richardson and Urbanke’s example 6 [12] and
e the iterative sum-product algorithm.

In each case we will assume that the all 0’s codeword is transmitted across the channel.

In the first two examples, the decoder sends messages over a finite alphabet A,
while for the SPA, the message alphabet is the [0, 1] interval. Let pgl) be the probability
that a codeword node sends out message i € A, at the [th iteration. We will extend
the work of Gallager, and Richardson and Urbanke, to find a recursion for pgl) for

cycle codes.

6.2.1 Gallager’s decoding algorithm A

Consider the codeword node v;, connected to check nodes ¢; and ¢; by the edges
(vi, ¢j) and (v;, ) respectively. The node v; sends its received value y; to both check
nodes in the first iteration. From the second iteration on, v; will send the message
it receives on edge (v;,c;) to ¢, and vice-versa. The check node ¢;, sends v; the
exclusive-or of all its received messages, except for the one received from the (v;, ¢;)
edge.

In Gallager’s decoding algorithm B, the codeword node v; will send its received
value y; along edge (v;, ¢;), after the first iteration, unless a sufficient number of the
messages it receives from its other edges are not y;. Since every codeword node has
degree 2, Gallager’s decoding algorithms A and B are the same for cycle codes.

Since the algorithm only passes binary valued messages, we only need consider

the values of pél) and pgl). We would like to find the probability that the node v,
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sends out the incorrect message, pgl), at the [th iteration along the edge (v;, c). This
is equivalent to finding the probability that the message received on edge (vi, ¢j) is
incorrect.
We assume the all zeros codeword is transmitted, so we have p((,o) =1—-pand
p§°> = p. We would like to find the probability that we send the incorrect message,
pgl), at the [th iteration. Gallager [24, p. 48] showed that for an (r + 1)-regular cycle

code, pgl) obeys the recursion

This simplifies to

0 1 -y
1 1
= —— (1-2p) .
- 5(1-2) (65)
1
= 5 as [l — o0 (6.6)

for 0 < p < 1/2. Thus we see that the probability of sending out an incorrect message
approaches 1/2 if we use Gallager’s decoding algorithm A, regardless of the channel
crossover probability. This makes intuitive sense if we look at what is happening at
an edge connected to the root of the computation tree. The message passed to the
root on that edge, consists of the parity of all the leaves on the edge’s side of the tree.
As the tree grows to infinity, the probability of the leaves having even or odd parity
is the same as the probability of an infinite Bernoulli(p) sequence having an even or
odd number of ones, which is 1/2.

Thus Gallager’s decoding algorithm A is a bad idea for decoding cycle codes on a

BSC in fact, it is worse than having no decoding at all.
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6.2.2 Richardson and Urbanke’s example 6

Richardson and Urbanke [12, Ex. 6] add a third possible message to the decoder to
see the effect on its performance. Thus, instead of using a binary message passing
alphabet, 4 = {0,1}, as in Gallager’s decoding algorithm A or B, they use the
ternary alphabet A’ = {—1,0,1}, where a 0 in A is mapped to a 1 in A, and a 1 in
A is mapped to a -1 in A’. The received codeword y is thus mapped to the vector
vt = (Yt1y- -, Yrn) Where yg =1 — 2y.

Consider the codeword node v;, connected to check nodes c; and ¢; by the edges
(vi, ¢;) and (v;, ¢g) respectively. The node v;, sends its received value y;; to both check
nodes in the first iteration. From the second iteration on, v; sends the sign of the
weighted sum of y;; and the message it receives on edge (v;, ¢;) to ¢x and vice-versa.
So if m;; is the message v; receives on edge (v;,c;), then the message sent to ¢ is
equal to sgn(wyy; + m;;), where w; is a weight that depends on the iteration number
[. For cycle codes, one can see that if w; > 1, we always pass, y;; and if w; < 1, we
have Gallager’s decoding algorithm A again, so we will assume w; = 1 for all [. The
check node c;, sends v;, the product of all its received messages, except for the one
received from the (v;, ¢;) edge.

If we define qz-(l) to be the fraction of messages 4, sent out from the check nodes in

round [, then Richardson and Urbanke [12, Ex. 6] showed that for an (r +1)-regular

cycle code
! 1 ! ) \r ! Drr
¥ = S0+ + 6 - ply] (6.7)
I 1 I Dy ! Dar
@ = 500 +50) - 64 -] (6.8)
{ r
¢ = 1-(1-p) (6.9)
and so we have
P = gl +a ) (6.10)
Y = Y+ (6.11)
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py = P+ O, (6.12)

If we want to achieve an arbitrarily small decoding error probability, then we must
find a p(_o% such that p(_l)1 + p(()l) — 0 as [ = oo. Unfortunately, this is not possible,
since (6.11) + (6.12) < p(_oi = p. In fact, if we look at the algorithm carefully we see
that if two variable nodes with a common check node are in error, then the algorithm
will always fail to correct them.

Richardson and Urbanke’s decoding algorithm in example 6 improves on the per-
formance of Gallager’s decoding algorithm A for j > 3, but it is still a bad idea for

decoding cycle codes on a BSC.

6.2.3 The iterative sum—product algorithm

Finally we present some experimental results of the SPA on the BSC to show that we
can achieve low bit error rates using message passing to decode cycle codes. Figure 6.2
shows the relative performance of Gallager’s algorithm A, Richardson and Urbanke’s
example 6 and the SPA. We randomly generated graphs with 10000 codeword nodes
and 5000 check nodes, resulting in codes of rate approximately 1/2. For Gallager’s de-
coding algorithm A and Richardson and Urbanke’s example 6, we performed message
passing on both completely random and 4-regular cycle code graphs, while for the
SPA we only used 4-regular cycle code graphs. In each case we assumed the all zeros
codeword was transmitted and we randomly flipped 10000p bits to simulate a chan-
nel crossover probability p. For Gallager’s decoding algorithm A and Richardson and
Urbanke’s example 6, our decision for each codeword node was based on the sum of
the incoming messages and the received bit, while for the SPA our bit decisions were
based on the final state of each node. For each point on the top 4 curves and bottom
2 curves we performed message passing on 1000 and 10000 graphs respectively.

In Figure 6.2, from top to bottom we have the following performance curves. The
top two curves, which are indistinguishable, are the performance of Gallager’s de-
coding algorithm A for both random and 4-regular graphs. The probability of error
is 1/4 regardless of the channel crossover probability as predicted by equation (6.6),
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Figure 6.2: The performance of the 3 message passing algorithms on both regular and
random graphs for a code rate of 1/2 and a maximum of 150 iterations.

since each codeword node has degree 2. The next two curves show the performance of
Richardson and Urbanke’s example 6 for random graphs and 4-regular graphs respec-
tively. Message passing performs slightly better on the 4-regular graphs, but still not
very well. Finally the bottom 2 curves show the performance of the SPA on 4-regular
graphs. The lower, dashed line shows the detected bit error rate while the upper
curve is the overall bit error rate. The SPA makes more undetected than detected
errors for cycle codes, unlike other LDPC codes [11, 10]. A partial explanation is
presented in the next section for the AWGN channel.

We also performed some experiments to see how often the SPA converges to a
valid codeword and how many iterations are required. Figure 6.3a shows the median
number of iterations before the SPA successfully converges to a codeword. The bars
show the 25th and 75th percentiles. Figure 6.3b shows the probability of convergence
to a valid codeword. For a crossover probability of 0.045, the SPA finds a codeword
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Figure 6.3: Plot (a) shows the median number of iterations for the SPA to successfully
converge to a codeword. The bars show the 25th and 75th percentiles. Plot (b) shows
the probability of convergence to a valid codeword. Plots (c) and (d) show an empir-
ical distribution of the number of iterations before convergence for a channel crossover
probability of 0.01 and 0.045 respectively.

only about 9.8% of the time yet the error probability is 0.00355. Thus only a small
fraction of the graph has not converged correctly. Figures 6.3¢c and 6.3d show an
empirical distribution of the number of iterations before convergence for a channel

crossover probability of 0.01 and 0.045 respectively.
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6.3 Min—Sum Decoding over an AWGN Channel

In this section we will consider cycle codes being used with BPSK modulation on an
AWGN channel. In Section 6.3.1, we will define a pseudo-cycle. In Section 6.3.2,
we present Algorithm 1 which computes the minimum weight computation tree for
which all the parity checks are satisfied, the same minimum weight tree that we get
when we trace back the computation of the messages for the MSA. In Section 6.3.3,
we use Algorithm 1 to derive sufficient conditions for the MSA to converge to the
maximum likelihood codeword and present examples of good and bad pseudo—cycles.
In Section 6.3.4, we use linear programming to classify a pseudo—cycle as good or
bad. In Section 6.3.5, we define the pseudo-weight of a pseudo-cycle and show that
the minimum pseudo-weight of a bad pseudo-cycle is greater than 2d, i.e., twice the
minimum distance of the code. Finally in Section 6.3.6, we present a union bound
argument that shows that the iterative min-sum algorithm has the same asymptotic

performance as an ML decoder.

6.3.1 Non—cycle irreducible closed walks

In this section we will we will use the definitions and notation from Wiberg [13] to
define a non-cycle irreducible closed walk, or pseudo-cycle in the computation tree
of the MSA decoder for the Tanner graph.

If we assume that the all zeros codeword is transmitted, then we defined a devia-
tion in Section 2.4, as a locally consistent configuration of the codeword nodes in the
computation tree, for which there is a one in the root node. Wiberg [13] showed that
such a deviation must have a path between 2 leaves that contains the root node, and
for which every codeword node on the path has a bit assignment of one.

We shall call a path, between any two nodes in the computation tree, a walk in
the underlying Tanner graph, which we write as an alternating sequence of codeword
and check nodes v;,, ¢;,, v;, ... such that the same edge is never used twice in a row.
Any path in the computation tree corresponds to some walk in the Tanner graph for

the code. When the graph has girth 3, there is at most one check node connecting
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any two codeword nodes, so we can write the walk as a sequence of only codeword

nodes v;,, v;,, Vi, - . ., without any ambiguity.
We now have a few more definitions. A closed walk, v;,,. .., v;, 1s a walk such
that v, vg,, ..., i, V4,0, 1s also a walk. An irreducible walk is one that cannot

be written as the concatenation of a closed walk and another walk. A cycle is an
irreducible closed walk in which every codeword node is distinct and a pseudo—cycle
is any closed walk that is not a cycle.

We are now ready to examine the MSA in more detail for cycle codes.

6.3.2 Algorithm 1 and the min—sum algorithm

Consider a cycle code with Tanner graph G = (Vr, Er) and computation tree T}(I) =
(Vi, Ey) after [ iterations. (Note that the size of the computation tree is a function of
the number of iterations /, as well as the message passing schedule.) Let s denote the
number of codeword nodes in T;([).

If we label the codeword nodes in the computation tree, vy, ..., v, then for any
locally consistent configuration, we define the binary s—tuple D¢, whose ith compo-
nent denotes the bit assignment to the node v; in the computation tree, for i € [s].
Define w(D¢) to be the weight of the computation tree given Dc.

Now define

Doyt = arg minw(Dg),
D¢

where we only consider locally consistent configurations for Do. We now have the

following algorithm and theorem:
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Algorithm 1:
D¢ ={0,...,0}
do

initWeight = w(D()
finWeight = initWeight
for (each pair of leaf nodes in T')
Diemp = De w/ all the bits on the path
between the 2 leaves inverted
tempWeight = w(D;epmp)
if (tempWeight < finWeight)

D¢ = Diernp
finWeight = tempWeight
end if
end for

while (initWeight > finWeight)

Theorem 6.3.1 When Algorithm 1 terminates, D¢ contains the minimum weight

locally consistent configuration for the computation tree, i.e., Do = Dgp;.

(The proof can be found in Appendix A.4.1.)

If we form the computation tree for the MSA on the graph G, we will compute
the same minimum weight, locally consistent configuration for the computation tree
at each iteration [13, 34]. So given a computation tree for [ iterations of message
passing, the MSA and Algorithm 1 both compute the same set of bit assignments,

D,pi. In the next section we will use this result to derive a set of sufficient conditions

for the MSA to converge to an ML decision.

6.3.3 Convergence of the min—sum algorithm

In this section we will present sufficient conditions for the MSA to converge to an ML

decision. We shall say that the MSA has converged after [ iterations, if for all I’ > I,
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the decision for the MSA based on the state at every codeword node v € V., does
not change. Thus the MSA has converged if the minimum weight locally consistent
configuration has the same bit assignment at the root node of the computation tree,
for every codeword node v € V,, for all I’ > [.

Without loss of generality, let us assume that the all zeros codeword is the ML
codeword. Let the weight of the all zeros path along every cycle be zero. Since the
all zeros codeword is the ML codeword, the weight of the all ones path on any cycle
must then be strictly positive.

We shall say a pseudo-cycle is bad, if there exists a set of weights assigned to
each codeword node in G, such that the weight of the all ones path on any cycle is
strictly positive, while the weight of the pseudo-cycle is negative. Otherwise we shall
say that the pseudo—cycle is good.

We now have the following theorem.

Theorem 6.3.2 A sufficient condition for the iterative min—sum algorithm to con-
verge to the all zeros mazimum likelihood codeword after sufficiently many iterations,

is that the weight of the all ones path on any pseudo-cycle in G is positive.

(The proof can be found in Appendix A.4.2.) Wiberg [13, Theorem 6.1] presented
sufficient conditions for the MSA decoder to converge to the transmitted codeword.
In the above theorem we consider the relative performance of the MSA decoder and
an ML decoder. We are not concerned with whether or not the MSA decoder finds
the transmitted bit, as that is more a function of the strength of the code. Here, we
are more concerned with determining how well the MSA works relative to an optimal
decoder. We now present some examples of good and bad pseudo—cycles.

Given an (n, k, d) cycle code with fundamental cycle matrix ®, define the 25 —1xn
codeword matrix C to be the matrix whose rows consist of all the non-zero codewords

in the cycle code.

Example 6.3.1 Consider the Tanner graph for the (5,3,2) parity check code in Figure
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6.4, with
Uy Uy Uz Ug Us
1 0 0 1 1
= (0 1 0 1 1] (6.13)
0 0 1 1 1
We have
V4 Vg Uz Vg Us
1 0 0 1 1
0 1 0 1 1
1 1 0 0 0
C=10 0 1 1 1 (6.14)
1 0 1 0 0
0O 1 1 0 O
111 1 1)

Now let w; be the cost of assigning a 1 to codeword node v;, for each v; € V..
Thus in order for the all zeros codeword to be the ML decision we must choose a set

of weights, w = [wy, ws, ..., w,]", that satisfies
Cw > 0, (6.15)

since each row of C' corresponds to cycle, or a disjoint union of cycles in Gp.
In order for a pseudo-cycle to be bad, we must be able to pick a set of weights w

that satisfy (6.15) but which favor the all ones assignment for the pseudo-cycle.

Example 6.3.1 (continued) Consider the pseudo-cycle v,vsv4v2v304vU5v5, shown in
Figure 6.4 by the dashed line. We can represent the pseudo-cycle with a cycle vector
b = [b1, by, ...,b,]", where b;’s value is the number of time the node v; appears in the

pseudo—cycle. For the pseudo—cycle above we have

b=[121 22]T. (6.16)



Figure 6.4: The graph of a (5,3,2) cycle code with a good pseudo-cycle illustrated by the
dashed line.

For the pseudo—cycle to be bad, we must be able to choose a w that satisfies the

following set of inequalities,

Cw > 0 (6.17)

and b'w < 0. (6.18)

It is easy to see that no such w exists for this pseudo-cycle, since the sum of the third

and sixth row of C' is b. Since no solution w exists, the pseudo-cycle must be good.

In fact for the (5,3,2) parity check code in Figure 6.4, every pseudo-cycle can
be shown to be good. This is because every pseudo-cycle in the graph produces a
cycle vector b, that can be written as a linear combination of the rows in C with
all coefficients positive. In the next section we shall show that this is a necessary
and sufficient condition for a pseudo-cycle to be good. But before that we present an

example of a bad pseudo-cycle.

Example 6.3.2 (Wiberg [13, Section 6.1]) Consider the (8,3,3) cycle code shown in
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Figure 6.5: The Tanner graph for an (8,3,3) cycle code with a bad pseudo—cycle illustrated
by the dashed line.

Figure 6.5, with

Uy V2 Vs Y4 Us Vs Ur Ug

(1 1 1 0 0 0 0 0
00 0 1 1 1 0 0
0o 0 1 0 0 1 1 1
C=11 1 1 1 1 1 0 0| (6.19)
1 1.0 0 0 1 1 1
o0 1 1 1 0 1 1
\1 1 0 1 1 0 1 1)

The pseudo-—cycle, v1v9v7U5v406U7V3, is shown with a dashed line. The corresponding

cycle vector is

b ::[ 11111120 }T. (6.20)

Let w=[1,1,1,1,1,1, -4, 3]7, so we have

Cw = [3316223]

and b’w = -2.
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Thus the pseudo-cycle is bad.

In the next section we use linear programming to devise a simple procedure for de-

termining whether or not a given pseudo—cycle is good or bad.

6.3.4 Classifying pseudo-cycles using linear programming

In this section we shall formulate the pseudo-cycle problem as a linear program and
classify all pseudo-cycles using the Farkas alternative.

For a given codeword matrix C' and pseudo-cycle b, we would like to solve the

dual linear problem [56]:

Cw

Y

0 (6.21)

b’w = minimum. (6.22)

A vector w that satisfies (6.21) is called a feasible solution. If it satisfies both (6.21)
and (6.22), then it is called an optimal solution.
From linear programming we know that the optimal solution w has b”w = 0 if

and only if the primal problem

C™x = b (6.23)
x >0 (6.24)

has a feasible solution x, i.e., b can be written as the weighted sum of the cycles in
G with all coefficients positive. If bIw = 0, we have a good pseudo-cycle, otherwise
we can select vectors w to drive the solution b?w to —oco and we have a bad pseudo—
cycle. In order to examine the possible solutions to the linear program, we first need

the following two lemmas.

Lemma 6.3.3 Wiberg [13, Lemma 6.1] No codeword node occurs more than twice in

a pseudo—cycle.

(The proof can be found in Appendix A.4.3.)
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The elements of b are therefore ternary valued {0, 1,2} and we have:

Lemma 6.3.4 Let S = v;,,v;,,...,v;, be a pseudo-cycle of length L in Gp with
cycle vector b = [by, by, ..., b,]T. If the rows of the codeword matriz C are labelled

¢t 2.2 then we can say the following about b;, for i € [n]:
1. If b; =1, then there is a ¢ such that b — ¢ > 0.
2. If b, = 2, then either

i there is no ¢/ such thatb — ¢/ > 0,
ii there is a ¢ such that b —2¢7 > 0, or

iii there is a ¢/ and ¢!, | # j such thatb — ¢/ > 0 and b — ¢ > 0.

(The proof can be found in Appendix A.4.4.) The second lemma states that if we
consider the subgraph G’, induced by the nodes in S, if a codeword node occurs only
once in S, then it is contained in a cycle in G'. If a codeword node occurs twice in
S, then it can either be in no cycles in G’, in two distinct cycles, or a single cycle in
which each codeword node appears twice in S.

We now present the main result of this section.

Theorem 6.3.5 A pseudo-cycle S is bad if and only if the subgraph G' induced by

the nodes in S contains a node that is not in any cycle.

(The proof can be found in Appendix A.4.5.)

The theorem implies that any bad pseudo-cycle consists of two or more disjoint
closed walks joined by a path. These disjoint closed walks may be pseudo—cycles
themselves or they could just be cycles as in the pseudo-cycle in Figure 6.5. For
the (5,3,2) cycle code in Figure 6.4, every pseudo—cycle induces a subgraph for which
every node is contained in a cycle. Thus there are no bad pseudo—cycles for the (5,3,2)
cycle code. In the next section we will calculate the minimum pseudo-weight of bad

pseudo-cycles and use this to bound the performance of the MSA decoder.
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6.3.5 The minimum pseudo-weight of bad pseudo—cycles

If S =w;,..., vy, is a pseudo—cycle of length L with cycle vector b = [b1,b2,...,0,]7,
then for an AWGN channel with BPSK modulation, Wiberg [13] defined the pseudo—
weight of the pseudo—cycle to be

W(S) = %%2)— (6.25)

Note that the pseudo-weight of an ordinary cycle, or a disjoint union of cycles, is the
same as the Hamming weight of the corresponding codeword.
We would like to compute a lower bound on the minimum pseudo-weight of a bad

pseudo—cycle. In order to do this we first need the following two lemmas.

Lemma 6.3.6 Any pseudo—cycle contains at least two cycles which may be partially

overlapping, or disjoint.

(The proof can be found in Appendix A.4.6.)

Lemma 6.3.7 If G' = (V', E') is the subgraph induced by the pseudo-cycle S in
Gr, and |V'| is the number of codeword nodes in G', then |V'| > 3d, where d is the

manimum distance of the code.

(The proof can be found in Appendix A.4.7.)
From Lemma 6.3.6 and Lemma 6.3.7, we can derive a lower bound on the minimum

pseudo-weight of a good or bad pseudo—cycle.

Lemma 6.3.8 Consider an (n,k,d) cycle code with Tanner graph Gr = (Vp, Er).
Every pseudo—cycle S, in G has W(S) > 3d.

(The proof can be found in Appendix A.4.8.)
Since a bad pseudo-cycle consists of two disjoint pseudo-cycles or cycles, joined
by a path, we can use Theorem 6.3.5 and Lemma 6.3.8 to establish an even stronger

lower bound on the pseudo-weight of bad pseudo-cycles.
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Theorem 6.3.9 Consider an (n,k,d) cycle code with Tanner graph G = (Vpr, Er).
FEvery bad pseudo-cycle S, in Gy has W(S) > 2d.

(The proof can be found in Appendix A.4.9.)
Since there are a finite number of bad pseudo-cycles, we can use Theorem 6.3.2
and Theorem 6.3.5 to estimate the decoding performance of the MSA decoder using

the same union bound argument we used for tail-biting codes in Section 4.2.7.

6.3.6 Estimating the error probability with the union bound

Assume the all zeros codeword is transmitted across an AWGN channel with BPSK
modulation and received as the vector y. From Theorem 6.3.2, we know that the
MSA decoder will converge to the ML codeword for y, if the weight assignment to
the codeword nodes in G* corresponding to y does not result in any bad pseudo-
cycles in GT. Wiberg [13, Theorem 6.1] has shown that a necessary condition for the
MSA decoder to make an error is for there to be a bad pseudo—cycle or cycle due to
y.

Let P denote the finite set of bad pseudo—cycles in G and C the set of cycles and

disjoint union of cycles. Define the error event
e = {§ is a bad pseudo—cycle or cycle}

for every S € PUC. We have

Pr(e) = Q (\/QRW(S)Eb/NO) , (6.26)

where Q(t) = (1/v2m) [ e=*"/%ds and R is the rate of the code.
If we define PM54 to be the decoder word error probability, then by the standard

union bound, we have

PYsA < 37 Q(\/2RW(S)Eb/NO). (6.27)

SePuc
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For an ML decoder, we can ignore all bad pseudo-cycles in computing the ML word

error probability PM?, so we have the standard union bound

PME<3"Q <\/2RW(S)Eb/NO) . (6.28)

Sec
Since the minimum pseudo-weight of a pseudo-cycle is greater than the minimum
distance of the code, these two union bounds are asymptotically equal. For instance
in Wiberg [13, Fig. 6.4], the (15,6,5) cycle code for the Peterson graph has almost
identical block error rate performance for a MSA decoder as for an ML decoder for

all Eb/No.

6.4 Conclusions

In this chapter, we have shown that message passing algorithms can approach the
performance of an ML decoder in the case of an AWGN channel for a cycle code. We
have also shown that message passing algorithms, which can achieve an arbitrarily
small error probability above a certain threshold for LDPC codes with j > 2, can
also have terrible performance on a BSC for a cycle code.

For the iterative min-sum decoder on the AWGN channel we have classified the
pseudo-cycles in the Tanner graph of the code and shown that the minimum weight
of a bad pseudo—cycle is greater than twice the minimum distance of the code. Thus
cycle codes are the first class of codes for which iterative decoding can be shown to
be asymptotically equivalent to ML decoding. For tail-biting codes we have already
shown in Section 4.2.8 that a pseudo—codeword can have a pseudo-weight that is less
than the minimum distance of the code.

The Tanner graph for a turbo code also has all codeword nodes and state nodes
of degree 2. However, pseudo—cycles no longer govern the behavior of the iterative
min-sum algorithm. The existence and pseudo-weight of a structure equivalent to
pseudo—cycles, for turbo codes or for the general class of LDPC codes is a subject of

future research.



114

Chapter 7

Conclusions

[terative decoding of codes defined on graphs with cycles, appears to be an efficient
means of achieving the performance Shannon predicted possible, some fifty years ago.
By increasing our understanding of the behavior of the min-sum and sum—product
algorithms on graphs with cycles, we can design our codes to perform better under
iterative decoding and we can choose graphs which minimize the presence of low-
weight pseudo—codewords.

Much of this thesis has been devoted to the analysis of the performance of the MSA
and SPA on the graphs for tail-biting codes and cycle codes. We have given sufficient
conditions for the MSA to converge to the maximum likelihood codeword after a
finite number of iterations. We have also used the familiar union bound argument to
characterize the performance of the MSA after many iterations. For a cycle code, we
have shown that the performance of the MSA decoder is asymptotically as good as
maximum likelihood. For tail-biting codes this depends on the trellis representation
we choose. For instance, a tail-biting trellis with a minimal state complexity of two,
can never have a pseudo—codeword whose pseudo-weight is less than the minimum
distance of the code. For the (2,1,2) convolutional code with generators (7,5), there
are also no pseudo-codewords with weight less than the minimum distance. However,
this is not the case in general and specifically for the time invariant trellis with
generators (414, 730), for the extended Golay code.

We would of course like to extend our analysis to the behavior of the MSA and
SPA to the graphs for turbo codes and LDPC codes. For a generic turbo code with
two component codes, all the information nodes and state nodes in the Tanner graph
have degree 2 and all the check nodes have degree 3. Thus, the graph has a structure

similar to a cycle code, except that some nodes are non-binary. Similarly, a LDPC
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code is also similar to the graph for a cycle code, except the codeword nodes have a
higher degree. Unfortunately, unlike cycle codes or tail-biting codes, Wiberg [13] has
shown that the pseudo—codewords for these codes, form a subtree in the computation
tree, so a significant portion of the pseudo-weight will lie in the leaves. Thus, we can
no longer ignore the boundary conditions when analyzing the pseudo—codewords. This
does not imply that the pseudo—codewords do not have a simple repetitive structure,
equivalent to a pseudo-cycle, in the underlying Tanner graph, but we have not found
one yet, if it exists.

We conclude with a simple experiment, which shows how the performance of the
SPA can vary, for differing choices of graph. Consider the (15,5,6) code with parity

check matrix

1 000110O0O0O0O0O0O0OTO0OO
1100001 O0O0O0O0OTO0OO0OTO0ODO
0601 1000O01O0O0O0O0O0O0O0
001 10O0O0O01O0O0O0O0O00O0
0 00110O0O0O01O0O0O0O00O0
06 00001 O0O0OO0ODO0OT1O0T1TO0O0
0 0000O0O1O0O0O0O0OT1>O0T1T0Q0
H={10 000 0O0O010UO0O0O0OT1TUO01 (7.1)
060 00000O0O0CT1O01O00O010
0 6000O0O0O0OO0OT1O0T1OD0O0T1
01000O0O0O0OO0OT1TT1TUO0TUO0TO00O0
0 01 0010O0OO0O0CO0OT1IO0TO00O0
0 001 001O0O0O0O0O0OT1TQO0°0O0
06 0o001O0O01O0O0O0OCO0OTO0OT1O®O0
1 0000O0OO0OO0OT11TO0OTO0OO0OO0OTQO0O1

The matrix H defines a (3,3) LDPC code. The first 5 or middle 5 rows of H are
redundant and can be removed without changing the rank of H. If we remove the

last 5 rows, we get a parity check matrix for the (15,6,5) Peterson graph [37], which
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is a cycle code that contains the (15,5,6) code as a sub-code.

10 T B L R Triiiiok I R R R S B

P e Peterson ]

B Full redundancy | -

6——©  Noredundancy | ]
AP

Eb/No (dB)

Figure 7.1: The performance of the SPA decoder for the (15,5,6) code on an AWGN
channel with a maximum of 25 iterations.

Figure 7.1 shows the performance of the SPA decoder for the (15,5,6) code on
an AWGN channel with a maximum of 25 iterations. After 5 or more iterations, we
halted if the decision for each node resulted in a codeword. The top curve shows
the performance of the SPA decoder on the Peterson graph. The second curve shows
the performance for the full matrix H, while the third curve is the performance with
the middle 5 rows of H removed. The bottom curve is the performance of the MAP
decoder. From Chapter 6, we know that for the Peterson graph, the bad pseudo-cycles
will either be of weight 5, or 10 or more, due to the additional codewords allowed in
the graph and the bad pseudo—cycles respectively. The minimum pseudo-weight for
the full matrix appears to be between 5 and 6.

For sufficiently large LDPC codes, the decoding errors, found to date, are always

due to low weight pseudo—codewords, since the SPA decoder has never been observed
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to converge to an incorrect codeword [10, 11]. This leads us to conjecture that for the
general class of LDPC codes, the pseudo—weight is less than the minimum distance.
The actual structure and pseudo-weight of these pseudo—codewords are subjects for

future research.
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Appendix A

Proofs and Derivations

A.1 Proof of Theorem 3.6.1

Consider the matrix M with my; > my;, for i = 2,...,n. We can write Mu = \u as
( amyuy + bus + - - - + bu, (ul
buy + amogug + - - - + buy, ) U
buy + bug + ... + ampyuy, Up,
Thus
amyy +bug 4+ -+ bu, = Ay (A.1)
and amju; +buy + ...+ bu, —bu; = Au,, (A.2)
fort=2,...,n.

Subtracting (A.2) from (A.1) we get

(w1 — u;), (A.3)

fori=2,...,n.
Define d = % Since M is Hermitian and X is its largest eigenvalue, A > am;

and so d > my; + g Thus from (A.3) uy >u; fori =2,...,n. o
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A.2 Proofs for Section 4.2

A.2.1 Proof of Theorem 4.2.1

(We reproduce the proof of Stanley [46, Theorem 4.7.1] for completeness.)

The result is immediate by definition of matrix multiplication, i.e.,

where the sum is over all sequences i1%y...49,_1 € m™'. If iiyis. .. in-1] 1S a path,
then its weight is equal to the product of the weights on the edges. Otherwise its

weight is zero and the proof follows. ¢

A.2.2 Proof of Theorem 4.2.2

Consider the matrix A* = A!. By Theorem 4.2.1, [ of the entries on the diagonal of
A* will be equal to A}, corresponding to the { vertices in C'. The rest of the entries on
the diagonal will be greater than A since A is by assumption, the minimum average
edge weight for a cycle in D.

Let D* be the digraph associated with the matrix A*. We begin by subtracting
A from the weight function for each edge in D*, i.e., subtracting A' from each entry
of A*. We now have M = 0. By assumption D* has no negative weight cycles.

Define p;; be the minimum weight path from vertex i to vertex j in D*, and let
P} ;1 be its length. Now by Theorem 4.2.1, the weight of the path pi,;, of length n in
D~ is the (i, j)-entry of [A*]".

There are two possibilities for p; ;:

Case i The path contains some vertex ¢ € C:
We have

w(pij) > w(p,) +w(p;,). (A.4)

The lower bound is achievable for n > [p; .|+ [p} ;|, since w(p} ) = 0. It is finite

since D is strongly connected.
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Case ii The path does not contain a vertex in C-

We can factor the path into a collection of cycles, P, ... P, and a simple path

Py. We have
wpiy) = w(Po)+ > w(P) (A.5)
k=1
> w(Py) +s-w(Pps), (A.6)

where P, is the lowest weight simple path in D* and Pg is the second lowest

weight cycle in D*, so w(Ps) > 0.

For large enough s, we have

w(Pa) + 5 - w(Pg) > w(p,) +w(p},). (A7)

Thus for sufficiently large n, we are guaranteed a minimum of s cycles in the path,
SO p;; must contain a vertex in C.

The matrix P will have entries
[Plij = w(pi,) +w(p};) (A.8)

for i, j € [m], where

¢ = arg lgél({}(w(l):u) +w(py;))-

For I =1, we have A* = A, so the critical cycle is a self loop at vertex ¢. With

min—sum arithmetic
P =xy’, (A.9)

where

is the right eigenvector of A and

y = [w(®},) wp)y) - w(p,)]"
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is the left eigenvector of A.

We complete the proof by showing that the eigenvalue of A* is unique. Let v be

a right eigenvector of A* with eigenvalue u, so

A*v = .

Assume p > A. We have shown above that

1 n
—A*| =P
) e
so for sufficiently large n, we have
_ ("
Puv = (/\) v. (A.10)
Since all the entries in P are finite and 4 > A, by (A.10), v = [co --- oo]” since the

right hand side of (A.10) is increasing in n. Thus any non-trivial eigenvector of A*

must have an eigenvalue equal to A. ¢

A.2.3 Proof of Theorem 4.2.4

We associate an incidence matrix A;, with section ¢ of the trellis, for 0 < i < N — 1.
The entries of A; are the negative log-likelihoods of the ith section of y, given the
output associated with each edge in the ith section of the trellis.

Now consider the matrix product A = (A4pA; ... Ay_1) for the trellis. Since we are
in the min-sum semiring, the (i, j)—entry of A is given by the minimum weight path
of length N, from state i to state j in the trellis. By the min-sum Perron—Frobenius
theorem, the MSA decoder converges, after a finite number of iterations, to the path

of minimum average weight in the trellis, i.e., the dominant pseudo-codeword. o
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A.2.4 Proof of Lemmas 4.2.5 and 4.2.6

We first prove Lemma 4.2.5. Consider a pseudo-codeword x = [x'x%...x!]7, of
degree 1. The mod 2 sum x! + x? + -+ + x! defines a codeword, since the trellis is
linear. For [ = 2, this implies that x! # x?, as otherwise we would have a non-zero
state sequence producing the all-zero codeword.

Define d to be |{¢; : ¢; = 1,5 € [n]}], so for I = 2, d is at least the minimum
distance of the code. Let m = |{¢; : ¢; = 2,5 € [n]}| count the remaining non—zero
columns of x. The pseudo—weight is then

(Zj c;)?
A

i €

(d + 2m)?
d + 4m
> d. o

In order to prove Lemma 4.2.6, we first need to show that the average weight of

a pseudo—codeword is less than its pseudo-weight. Define the average weight of a

pseudo—codeword to be

W =

o~ =

Now

v
=

since ¢; < I, for [ € [N].
By definition a pseudo-codeword can only visit a state or an edge once in the
trellis. For an N-section trellis, if | = a4 4, then the average weight of the pseudo-

codeword must be at least Ni/[. Since the minimum distance for the code is constant,
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for large enough NV the average weight will be greater than the minimum distance. o

A.3 Proofs for Chapter 5

A.3.1 Proof of Theorem 5.1.1

(We reproduce the proof of McEliece [48, Theorem 1.2] for completeness.)
By Theorem 4.2.1, we have A, ;(n) = [A"];; so we get

Fig(z) = Y Ay(n)z"

n>0

= ) [A";2"
n>0

= [(I-24)",

as this is the sum of a geometric series for matrices. ©

A.3.2 Proof of Theorem 5.1.2

(We reproduce the proof of Stanley [46, Corollary 4.7.3] for completeness.)
Let A1,..., Am be the eigenvalues of A. By Theorem 4.2.1, we have w, = tr(A")

so we get

Wi(z) = Ztr(A")z"

n>1

- X3

n>1 =1

- Z 1— /\Z'Z

since [T, (1 — Aiz) = Q(z) and tr(A™) = AP +--- 4+ A2 o
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A.3.3 Proof of Theorem 5.3.1

We can take an arbitrary bit string of length N and append it to itself [ — 1 times to
form a sequence of length [N, denoted y’. There are 2V such strings possible. For
each t and y’, the string t © y' is unique.

For a given t, we can define the strings yy,...,y]_; as follows

(yg)j - tj mod N +iN

forj=0,...,IN~1andi=0,...,1 —1. The set of strings t ® yg,...,t @ yj_,; all
form pseudo-codewords in T which are shifted by some multiple of N bits from each
other. By definition these are all the same pseudo-codeword. Similarly every s € S
will occur I times if we add all 2V strings y’ to every t € T. Thus wy,; = o2V /1

and the proof follows. ¢

A.3.4 Proof of Theorem 5.3.2

A pseudo-codeword s corresponds to a unique path in the original pseudo-codeword
state diagram. The last m transitions in the path are determined by the initial state
of s and vice-versa. The path maps onto a unique path in the new pseudo-codeword
state diagram. If we reverse the mapping, then the last m transitions will determine
which of the 2! initial states we start from in the original pseudo-codeword state
diagram and the transitions are uniquely defined afterwards. Therefore the mapping
between pseudo-codeword paths in the original pseudo-codeword state diagram and

the new pseudo-codeword state diagram is one-to-one. ¢

A.4 Proofs for Section 6.3

A.4.1 Proof of Theorem 6.3.1

Our proof consists of two parts. First we will show that D¢ is always a locally

consistent configuration for the computation tree. We then show that the algorithm
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halts with Do = D,p,.

Consider a set of binary variables that satisfy a parity check. If we invert an even
number of those variables, then the parity check will still be satisfied. Now, given
a locally consistent configuration D¢ and a pair of leaves in V}, since T;(1) is a tree,
the path between any pair of leaves is unique. If we invert all the bits in D¢ for the
codeword nodes on the path between the 2 leaves, then we are inverting a pair of bits
for each check node on the path. The check nodes not on the path are unaffected.
Since we start with a globally consistent tree with Do = {0,...,0}, and we invert all
the variables on the path between 2 leaves each time we change D, we will have a
locally consistent configuration for each iteration of the algorithm.

Now it is clear that a minimum weight computation tree must exist. Given s
codeword nodes in T;(l), there are at most 2° possible ways to assign a value to
all of them. Of course only a fraction of these will result in a locally consistent
configurations. The configuration D, that minimizes the weight of the computation
tree while satisfying all the parity checks will be among these. Let us further assume
that Doy is unique, i.e., if Do # Dy, and D¢ corresponds to a locally consistent
configuration, then w(D¢) > w(Dgp).

For each iteration of the do loop, w(D¢) decreases, thus Algorithm 1 must even-
tually halt. Suppose the algorithm halts with Do # D,,. Then in order for both
D¢ and D,y to be locally consistent, there must be a path between 2 leaves of T (1)
for which all the variables in Dy are the inverse of those in D, By inverting those
bits for D¢c, we can obtain a lower cost tree since D, is the configuration for the
minimum weight tree. Algorithm 1 would not halted if such a path exists, therefore

when the algorithm halts Dy = Doy ©

A.4.2 Proof of Theorem 6.3.2

We initialize D = {0,...,0} and run Algorithm 1 to find the minimum weight,
locally consistent, computation tree. The bit assignment to the root node can change

from 0 to 1, only if there is a path, including the root node, between two leaves in
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the computation tree for which the all ones bit assignment has lower weight than the
all zeros assignment.
Let C be the set of irreducible walks and let P be the set of pseudo-cycles and
cycles in Gr. Now let w(S) to be the weight of S € CUP with the all ones assignment
and define

d= rsnelgw(S),
and
Pl lS)

By assumption we have § > 0.

Every path between 2 leaves in the computation tree will consist of a series of
closed walks and an irreducible walk. We label the walks So, S1,...,5; where Sy is an
irreducible walk and all the other walks Si,.. ., S, are either pseudo—cycles or cycles.
For sufficiently many iterations, every path between two leaves, that includes the root

node, must include at least ! closed walks. The cost of the path is

!

W= w(50)+zw(5i)

> p+1d

> 0

for sufficiently large /. Thus for sufficiently many iterations, the value of the root
node in the computation tree after Algorithm 1 terminates is the same as the ML

value for all v € V. Therefore, the MSA converges to the ML decision. ¢

A.4.3 Proof of Lemma 6.3.3

Since the degree of every codeword node is 2, any walk with the same node appearing

more than twice must be reducible.c



127
A.4.4 Proof of Lemma 6.3.4

If b; = 1, the codeword node only occurs once in S so it must be in a cycle in G' since
S is a closed walk. Thus we only need to consider the case when b; = 2.

Figure 6.5 shows an example of a pseudo-cycle where b; = 2 and there is no cycle
in G, that contains v;. There is also no row ¢/ in the codeword matrix C in (6.19),
such that b — ¢ > 0. All that we need to now show, is that if a codeword node
appears twice in a pseudo-cycle, then G’ cannot contain only one cycle with that
node, unless every codeword node in that cycle appears twice in S.

Relabel the nodes in S, v, v,,...,v,. Now consider a codeword node v; = v; for
© < j, that appears twice in S. If node v; is in a cycle in G’, then there must exist a
node v, such that i < p < j and v, = v, for ¢ < i or ¢ > j. Let p > i be the smallest
p for which this is true. WLOG assume ¢ < i. Thus the graph induced by the closed
walk vgi1,..., v, ..., v has a cycle containing v;, since v; appears only once in the
walk. Similarly, if we take the smallest r, such that Uptr F Vg—r, the graph induced
by the closed walk vy r,...,vp,v1,..., Ug—r contains v; only once and thus also has a
cycle containing v;. If these two cycles are distinct, then there are a ¢! and a ¢/, jF#l
such that b—c¢! > 0and b—¢/ > 0. If they are the same, then there is an ¢ such
that b —2¢ > 0. ¢

A.4.5 Proof of Theorem 6.3.5

We shall prove the theorem by making use of the Farkas Alternative which states:

FEither

1. CTx = b has a solution x > 0

or (exclusive)
2. Cw >0, bTw < 0 has a solution w.

Assume there is a codeword node v; € S that is not contained in any cycle in G'.

By Lemma 6.3.4, b; = 2, so there is no ¢! € C such that b — ¢! > 0. Thus for every
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row ¢! € C for which c; =1, thereis an ¢ ; = 1, j # ¢, where b; = 0. Let

0 otherwise.

The vector w is a solution to the second Farkas alternative. Thus there is no solution
to the primal problem CTx = b, x > 0 and the pseudo-cycle is bad.

Now assume every node v; € S is in at least one cycle in G'. By Lemma, 6.3.4,
if b; = 2, there are either two rows ¢/, ¢/ € C, such that b—¢' > 0and b — ¢/ > 0
or there is a ¢/ € C such that b — 2¢! > 0. Because of this, if we start with the
vector w = [0,...,0], there is no way to find a solution w that satisfies C'w >0
and b”w < 0 by increasing or decreasing the coordinates of w. Since the solution
space of Cw > 0 is closed, this means there is no solution w for the second Farkas
alternative. Therefore, there is a solution to the primal problem CTx = b, x > 0.

The same is true if b; = 1, so the pseudo—cycle is good. ©

A.4.6 Proof of Lemma 6.3.6

This lemma essentially appears in Wiberg [13, Lemma 6.2], except here we show that
the pseudo-cycle must contain two distinct cycles.

Let S be a pseudo-cycle in G7. Relabel the nodes in S, vy, vs, ..., v,. Now con-
sider a node v; = v; for ¢ < j, that appears twice in S. The closed walk Vigls -5 Ujt,
must contain a cycle since we must visit the check node connecting v; and v;; twice.
Similarly the closed walk v;;1,...,vp,v1,..., v;—1, must also contain a cycle since we
visit the check node connecting v;_; and v; twice. Now if the node v; is not contained
in a cycle, then the two closed walks must contain disjoint cycles. If the node v; 18
contained in a cycle, then we have a second partially overlapping cycle in the graph

that contains the node v;. ¢
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A.4.7 Proof of Lemma 6.3.7

Since d is the minimum distance of the code, it is also the girth of Gr. By Lemma
6.3.6, the subgraph G’ induced by S contains at least 2 cycles of minimum length
d which may be partially overlapping or disjoint. If the cycles are disjoint, then
[V'| > 2d and the lemma is true, so we need only consider the case in which the
cycles are partially overlapping.

Suppose the 2 cycles share > % vertices. We can then construct a cycle, using the
unshared vertices, which has length < d. Since this is impossible, the cycles can only

share < ¢ vertices and thus |[V'| > 2d. o

A.4.8 Proof of Lemma 6.3.8

Let [ be the number of codeword nodes that appear twice in the pseudo—cycle. If
G' = (V',E') is the subgraph induced by the pseudo-cycle S in G, then |V'| — |

codeword nodes will appear only once. The pseudo-weight,

(V=0 +21)

W) = S " (A.12)
> SV (A.13)
> gd, (A.14)

where (A.13) follows from the inequality (a + 26)?/(a + 4b) > 8(a+b) and (A.14)

follows from Lemma 6.3.7. ¢

A.4.9 Proof of Theorem 6.3.9

From Theorem 6.3.5, we know that a pseudo-cycle S is bad iff it contains two disjoint
closed walks connected by a path on which each node is visited twice. To prove
the theorem we will first show that the shorter the connecting path, the lower the
pseudo-weight of the pseudo-cycle. We will then consider the pseudo-weights for the

different possible types of pseudo-cycles.
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Suppose the pseudo-weight of S is W(S) = a?/a,. If a codeword node is added
to the path connecting the two closed walks, then the new pseudo-cycle S" will have

pseudo-weight W(S’) where

((ig;)) _ ((212124) +% (A.15)

> 1

s

(A.16)

3

since by definition of the pseudo-weight as > a;. So in order to minimize the pseudo-
weight of S, we will assume the path connecting the two disjoint closed walks is of
length 1.

The closed walks joined by the path can themselves be pseudo-cycles or just cycles.
Let’s first consider the case when both closed walks are cycles of length d; and ds

respectively. We have

(d1 + dy + 2)2

W) = S raaa (A.17)
2
_ (di+dy)* +4(di +dp) +4 (A18)
d1 + dg +4
> di +dy > 2d. (A.19)

When at least one of the closed walks is a pseudo-cycle, we can use the same argument

as in Lemma 6.3.8 to show that

W(s) > g;v'[ (A.20)
> %d, (A.21)

since |V'| > d + 3/2d. Thus the minimum pseudo-weight of a bad pseudo-cycle is

greater than twice the minimum distance distance of the code. ©
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Appendix B

Definition of a Commutative Semi-ring

The local kernels in a junction graph and the weights assigned to the edges of a
directed graph both take values in a commutative semi-ring R. Here we present the
definition of a semi-ring from Aji and McEliece [16].

Definition: A commutative semi-ring is a set R, with two binary operations

denoted “+” and “”, which satisfy the following three axioms:

A1 The operator “+” is associative and commutative with an identity element “0”.

Thus (R, +) is a commutative monoid.

A2 The operator “” is also associative and commutative with an identity element

“17. Thus (R, -) is also a commutative monoid.

A3 The distributive law
(z+y) z2=x-2+y- 2

holds for all triples (z,y, 2z) € R.

The difference between a ring and a semi-ring is that the addition operator in a semi—
ring does not require an inverse, i.e., (R, +) must be a commutative monoid and not
necessarily a group.

Two examples of semi-rings are the sum-product semi-ring where R = R with
ordinary addition and multiplication, and the min—sum semi-ring where R = R U oo
where 2 + y = min(z, y) with identity element oo and - oo = oo and the operator -

is ordinary addition with identity 0.
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