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νϊΐGreat Jupiter, ominous hydrogen lord,no casual sun-nearing bodies have missed him,his ponderous presence cannot be ignored,the “man-about-town” of the whole solar system.When comets, in pilgrimage, close on our star, he cruelly and coldly determines their fates, he hurls them hopelessly, helplessly far, but keeps, close by, four lovely mates.Among these four favorites (all of them know), bright Io is the liveliest,the “life of the party”, she’s stealing the show — if she were to vanish, she sure would be missed!A lovely girl in graceful dance,she waxes eloquent to see —to Jupiter, with great romance,we hear her singing, “13 D!”She shakes her head as if to fight,but knows that she is firmly caught —he spins her ’round, he holds her tight,it makes her nervous, flushed and hot.Europa, petite and elegant,spins farther off, plays hard to get,she causes Io to resenther apparent calmness, lack of sweat.She plays it cool, as if to say,“Later on I may join in ...I may decide I want to play ...especially if my crust is thin.”Europa inquired of Jupiter,“Might there be room for another guest?This poor girl is lonely, just look ’it her — we’re always lining up abreast.”Jupiter answered with great show of sport,“Come dance with us, don’t be so shy! at ten-to-the-ten years, life is too short, we must all dance before we die.”But Ganymede’s a quiet one,she bears the scars of reckless youth — she’s sowed her oats, she’s had her fun — she’s wiser than her years, forsooth.



viiiShe wasn’t sure she’d take the chance,but after many million years,she joined at last the resonance,the music of the spheres.Yet dances she a quiet way —no slowly drifting polar caps,no brilliant plumes of sulfur spray,conjunction clings to neither apse.Callisto is a placid hulk,with pimpled, sad, complacent facelike wholesale ice, once bought in bulk — then left, forgotten, beached in space.And has she no chance to join in the fun?Is there reason for anger? Cause to feel slighted? she may be the saddest sphere under the sun, and the reason is simple: she wasn’t invited!She’s looking peaked, feeling sick,it seems that she could use a rest,her wits are slow, her crust is thick —her eyeball sports a palimpsest.we’ve all had bags under our eyes,but never of such tremendous size!we’ll leave her be — we’ll let her sleep — at 120 K, she’ll keep!
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Thesis AbstractTwo examples of planetary bodies that may have coupled thermal and dynamical evolutions are investigated. The work is presented in three individual papers. The first example is that of a tidally heated satellite in an orbital resonance, for which the tidal dissipation rate is a strongly increasing function of the internal temperature. For such a satellite, a feedback mechanism exists between the orbital and thermal energies, which may lead to periodic variations in tidal heating within the satellite and its orbital eccentricity. A simple model of this mechanism is presented in the first paper and is applied specifically to Io.The second example is that of an ice shell on Europa, which is decoupled from the silicate core by a layer of liquid water. In the second paper, the spatially varying thickness that such a shell would have in thermal equilibrium with tidal dissipation within it, surface solar insolation and heat flow from the core is calculated for reasonable rheological laws for ice. The contribution of these variations in ice thickness to Europa’s inertia tensor is estimated, and the implications for nonsyn- chronous rotation of Europa are discussed. In the third paper, a detailed dynamical model is developed, which demonstrates that such a shell may exhibit large-scale polar wander as it approaches thermal equilibrium, because of the destabilizing effect of the variations in ice thickness on the inertia tensor of the shell.The abstracts of the three papers are reproduced below.

Episodic Volcanism of Tidally Heated Satellites with Application to IoA simple model of the coupled thermal and orbital evolution of a tidally heated satellite in an orbital resonance is presented and applied specifically to Io.



 X 

The model quantitatively demonstrates how a feedback mechanism between the orbital and thermal energy of such a satellite can lead to periodic variations in surface heatflow and orbital eccentricity. The convective heatflow and (k∣Q) of the satellite are parameterized as local power laws of the temperature, where Q is the quality factor and k is the second-degree tidal potential Love number. The time evolution of the model is determined by two nonlinear equations: an equation governing the orbital eccentricity, and a simple heat-balance equation determining the temperature. A linear stability analysis reveals that the time-independent solution is unstable if n > m+p, where n and m are the exponents in the power laws for (k∕Q) and convective heatflow, respectively, and p is the ratio of the convective cooling time scale to the time scale for equilibration of the eccentricity. Numerical integration of the nonlinear equations reveals behavior in qualitative agreement with this relation. Laboratory data on near-solidus peridotites suggest 20 < n < 30, and parameterized convection schemes suggest m ~ 10. Since p is of order unity, it follows that tidally heated satellites are probably in the unstable regime if they are operating near the solidus. It is thus probable that Io has no thermal steady state. The model is made more realistic by (l) arresting the reduction of {k∣Q) at low temperature, and (2) arresting the growth of temperature at the mantle solidus and allowing volcanism to remove the excess heat. When the second modification is included, the unstable regime becomes periodic. In addition, a global k substantially larger than the elastic value is possible for a mostly solid Io because the body may begin to behave viscously when the tidal period is longer than, or comparable to, the Maxwell time. This requires a solid-state viscosity of ≤ 4 x 1015 Pas, which may be achievable with a small amount of partial melt. The model can easily be adjusted to pass through Io’s current observed heatflow (1-2 W m-2) and eccentricity (~ 0.004)



xi
for reasonable choices of parameters (Q∕k)m∙ln ~ 100, (<5∕fc)1∏ax ~ few × 103, solidus viscosity ~ 1015-1017 Pas, and Qj within the required dynamical bounds. The periods of high heatflow and acceptable eccentricity typically have duration of ~ 20-20 myr, separated in time by ~ 80-100 myr. Spatial heterogeneities in Io’s thermal structure are likely to make the behavior more complicated. The model predicts that Io’s mean motion may be currently increasing, a possibility suggested by recent estimates of h∙ι from eclipse data. Since Europa’s eccentricity mimics that of Io, the model also implies that the tidal stresses in Europa’s ice shell may have recently been large enough to produce the observed fracturing. The episodic heating mechanism may be responsible for the resurfacing of Enceladus < 10° years ago.

Thermal State of an Ice Shell on Europa 

We consider a model of Europa consisting of an ice shell that is decoupledfrom a silicate core by a layer of liquid water. The thickness of the shell is calculated as a function of colatitude and longitude, assuming that a state of conductive equilibrium exists with the incident annual average solar insolation, tidal dissipation within the shell, and heat flow from the core. Ice thickness profiles are calculated for each of two plausible rheological behaviors for ice: the Maxwell rheology and the generalized flow law rheology. In both cases the strong temperature-dependence of the dissipation rate is explicitly included as well as the temperature-dependence of the thermal conductivity of ice. Because of the strong temperature dependence of the dissipation rate, nearly all of the tidal dissipation is concentrated in the lowermost few kilometers of the shell. Even though the effective Q of the greater part of the shell is 3> 100 in our models, average shell thicknesses do not exceed 25 km. Thus, if the total thickness of II2O which mantles Europa is 25 km, none



xii 
of the models admit the possibility of a completely frozen H2O layer. The total dissipation rates in our models are comparable to those of a constant Q model with 
Q ~ 10. The thickness profiles are relatively insensitive to heat flow from the core. The second degree spherical harmonic components of the ice thickness are given and the resulting contributions to the quantities j3 71 and - — of Europa areD _  Aestimated. Although the contribution to 73 71 is perhaps larger than the permanent value needed to prevent nonsynchronous rotation, its dependence on the shell’s orientation relative to synchroneity suggests that very slow nonsynchronous rotation will persist, with reorientation of the shell relative to the satellite-planet direction occurring on a timescale > the thermal diffusion timescale for the shell (~ 107 yr). The existence of a significant “fossil” bulge on the shell due to long-term elastic behavior of its outer, coldest regions would eliminate nonsynchronous rota- tion. Since the contribution to (j3 o ) of the thickness variations in most of our models is > 0, Europa may experience polar wander as thermal equilibrium is approached, if the above is the most important permanent contribution to ∙The magnitudes of the principal moment differences are insensitive to the details of the parameterization of the tidal dissipation.

Polar Wander of a Synchronously Rotating 

Satellite with Application to EuropaAn ice shell on Europa that is decoupled from the silicate core by a layer of liquid water has a thermal-equilibrium thickness profile that varies with position over its surface, because of spatial variations in the surface temperature and tidal dissipation within the ice (see previous paper). The second spherical harmonic degree components of these thickness variations and of any fossil rotational and tidal bulges present on the shell contribute to the inertia tensor of the body. The problem



 xiii
is that of a planetary elastic lithosphere that is topographically loaded from below. Following the development of Willemann and Turcotte (1981) we develop equations describing the variations in the inertia tensor of a body, which are caused by the addition of second harmonic degree topography to the base of the crust. Applied to the case of an ice shell on Europa, it is found for many choices of parameters that a state of thermal equilibrium for the shell will involve an orientation of Europa’s principal axes of inertia (when the hydrostatic bulges are relaxed), which is unusual for a synchronously rotating satellite. Specifically, the intermediate and maximum principal moments are reversed. To reach the preferred orientation for synchronous satellites, a thermal equilibrium ice shell must execute a net reorientation of ninety degrees about the satellite-planet direction. We present a simple model of a rigid, synchronously rotating satellite in a circular orbit for which the difference between the intermediate and maximum principal moments is linear in time, passing through zero when t = 0. The model demonstrates that the expected reorientation is indeed dynamically favored.We then consider a more realistic model, including the effects of various torques which act to couple the motions of the core, shell, and liquid water layer, as well as the effect of viscous dissipation which arises in the shell due to the predicted polar wander. It is found that the Poincaré torque, gravitational coupling, and the torque due to viscous shear in the liquid water layer are unable to induce significant motion of the core during polar wander of the shell. However, the Poincaré torque exerted on the liquid water layer by the shell is believed to cause the liquid water layer to reorient in coincidence with the shell. The model suggests that viscous friction in the shell eliminates the possibility that polar wander will occur unless preexisting fractures (e.g., due to tidal stresses (Crawford and Stevenson, 1988) )



xiv
extend from the surface to a depth where the ice behaves viscously on the polar wander time scale. If the temperature T∕ at the base of the fractured region is as high as ~ 140-145 K, the model indicates that polar wander occurs on a time scale of 10c-105 y (shorter as T∕ increases) after the sign of the difference between the maximum and intermediate principal moments reverses. In the absence of dissipation, polar wander would occur in ~ few × 103 y. Polar wander must occur on a time scale significantly shorter than ~ 107 y, or the thickness profile of the ice will be in continuous equilibrium with its thermal environment regardless of its orientation, and the mechanism driving the polar wander will be virtually eliminated. It is likely that events of large scale polar wander occur episodically, separated in time by periods on the order of the time scale for thermal diffusion through the shell (~ 107 y), although a state of slow, continuous drifting of the pole is also possible. The time scale of viscous flow of topography at the base of the ice is also near 107 y. If dissipation in the shell due to polar wander is a few orders of magnitude smaller than our simple model suggests, polar wander as described here is a much more effective means for fracturing the ice than is tidal flexing, and it may contribute to producing the observed global fracture systems in Europa’s ice.
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Episodic Volcanism of Tidally Heated 

Satellites with Application to Io



Paper I 2 Episodic Volcanism
ICARUS 66, 341-358 (1986)

Episodic Volcanism of Tidally Heated Satellites 
with Application to lo1G. W. OJAKANGAS and D. J. STEVENSON

Division of Geological and Planetary Sciences, California Institute of Technology, 
Pasadena, California 91125Received June 17, 1985; revised February 7, 1986

A simple model of the coupled thermal and orbital evolution of a tidally heated satellite in an orbital resonance is presented and applied specifically to Io. The model quantitatively demonstrates how a feedback mechanism between the orbital and thermal energy of such a satellite can lead to periodic variations in surface heatflow and orbital eccentricity. The convective heatflow and 
(kJQ) of the satellite are parameterized as local power laws of the temperature, where Q is the quality factor and k is the second-degree tidal potential Love number. The time evolution of the model is determined by two nonlinear equations: an equation governing the orbital eccentricity, and a simple heat-balance equation determining the temperature. A linear stability analysis reveals that the time-independent solution is unstable if n > m + p, where n and m are the exponents in the power laws for (JdQ) and convective heatflow, respectively, and p is the ratio of the convective cooling time scale to the time scale for equilibration of the eccentricity. Numerical integration of the nonlinear equations reveals behavior in qualitative agreement with this relation. Laboratory data on near-solidus peridotites suggest 20 ≤ n ≤ 30 and parameterized convection schemes suggest m ~ 10. Since p is of order unity, it follows that tidally heated satellites are probably in the unstable regime if they are operating near the solidus. It is thus probable that Io has no thermal steady state. The model is made more realistic by (1) arresting the reduction of (kJQ) at low temperature, and (2) arresting the growth of temperature at the mantle solidus and allowing volcanism to remove the excess heat. When the second modification is included, the unstable regime becomes periodic. In addition, a global k substantially larger than the elastic value is possible for a mostly solid Io because the body may begin to behave viscously when the tidal period is longer than or comparable to the Maxwell time. This requires a solid-state viscosity of ≤4 × IO15 Pa sec, which may be achievable with a small amount of partial melt. The model can easily be adjusted to pass through lo’s current observed heatflow (1-2 W m !) and eccentricity (~0.004) for reasonable choices of parameters (β∕k)m⅛ ~ 100, (Q∣k)naκ ~ few × 10·’, solidus viscosity ~IO,5-IO'7 Pa sec, and 
Qj within the required dynamical bounds. The periods of high heatflow and acceptable eccentricity typically have durations of ~2O-3O myr, separated in time by ~80-I00 myr. Spatial heterogeneities in lo’s thermal structure are likely to make the behavior more complicated. The model predicts that lo’s mean motion may be currently increasing, a possibility suggested by recent estimates of ril from eclipse data. Since Europa's eccentricity mimics that of Io, the model also implies that the tidal stresses in Europa’s ice shell may have recently been large enough to produce the observed fracturing. The episodic heating mechanism may be responsible for the resurfacing of Enceladus < 10’ years ago. © 1986 Academic Press. Inc.

1. INTRODUCTIONPeale and Cassen (1978) derived analytical expressions for tidal heat production as a function of position in incompressible bodies of uniform and nonuniform rigidities. Peale et al. (1979) applied the same, Contribution Number 4212 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, Calif. 91125.

modeling to Io and successfully predicted that tidal heating should be of great importance in that object’s history because of its substantial forced orbital eccentricity and large tides. Although modifications have been suggested (cf. Schubert et al., 1981), their model has become the basis for subsequent work toward understanding lo’s thermal history.The phenomenal production of heat341 0019-1035/86 $3.00 
Copyright © 1986 by Academic Press, Inc. 

AU rights of reproduction in any form reserved.
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342 OJAKANGAS AND STEVENSONwithin lo is intimately coupled to. and maintained by. a commensurability in the orbits of lo, Europa, and Ganymede known as the Laplace resonance, which holds the mean motions of the three satellites near the ratio of 4:2: 1 (cf. Greenberg, 1982).The Laplace resonance and Io's dissipation are mutually maintained by a combination of three effects:(1) The tidal bulge raised by lo on Jupiter leads the planet-satellite line by a slight angle (~l∕βj, where Qi is Jupiter's quality factor) due to dissipation within the planet. This causes a net torque on lo which pumps energy and angular momentum into its orbit, propels it outward from Jupiter, and reduces its mean motion, n∣.(2) The near equality of nf and 2π2 causes the conjunctions of Io with Europa (and similarly with Europa and Ganymede) to occur repeatedly near the same points in their orbits causing their mutual gravitational impulses at conjunction to add constructively. This maintains eccentricity in their orbits, which would otherwise tend toward circularity (because of tidal dissipation discussed below). The nearer each adjacent pair of satellites is to a 2/1 ratio of mean motions, the larger the forced eccentricities become, e.g., for Io,
ΛT>α∣Cj∣∏ι ,14

e, = —Ώ-------ΛijV,,
v,∣ = nl — 2∕j2 + ώ|5where M-,-∙h~ a, <υls. and C∣ are considered to be constants, e∣ is Io’s forced eccentricity, and π∣ and n2 are lo’s and Europa’s mean motions, respectively (Greenberg, 1982). (All parameters are defined in the appendix.)(3) These maintained eccentricities cause the tidal stresses within each satellite to vary periodically, as the magnitude of the tidal bulge varies with the distance to Jupiter and the sub-Jupiter point on each (synchronously rotating) satellite Iibrates over its surface. The anelastic response to these

time-varying stresses causes tidal dissipation within each satellite at a rate21 GM}R]n, (kie↑∖
(Peale et al., 1982), where (2)

(3)
(4)and the subscript refers to the ∕th satellite (cf. Greenberg, 1982). This dissipation occurs instantaneously at constant orbital angular momentum and in the absence of other effects causes ni to increase and e, to decrease (Kaula, 1964). The balance between the above effects for Io is described by (e.g., Eq. (54), Greenberg. 1982)i-∣, = -0.32 c,n,(l - 13D,ei). (5)v∣∣ can be related to e∣ through differentiation of Eq. (1), yieldingΓ0.32Λ∕jc∣l ,e' = ⅛d (6)

This equation is valid as long as v∣ι « v∏. Note from equation (6) that Io's forced eccentricity is in a stable equilibrium when its square is 1∕13D∣.Estimates of the heatflow from Io’s surface from Voyager data and Earth-based IR measurements of its brightness temperature give surface-averaged values on the order of 1 to 2 W m^2 (Matson et al., 1980; Sinton, 1981; Pearl and Sinton, 1982), and although revised estimates are slightly downward revisions, they are still ~1 W m-2 and possibly greater (Johnson et al., 1984). Moreover, lo’s measured IR brightness is almost entirely dominated by radiation from anomalously hot regions of its surface (hot spots) even though the background conductive heatflow. amounting to only a few degrees of elevation of surface temper
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EPISODIC TIDAL HEATING OF IOature, probably transports a comparable amount of heat to Io’s surface. The true surface heatflow could exceed 2 W m 2. If Io is in thermal equilibrium so that the observed heatflow is equal to the instantaneous rate of tidal dissipation, it follows from Eq. (2) that for heatflows between 1 and 2 W m^2, (ki∕Qt) lies between —0.007 and ~0.014. If Io is treated as an elastic body with a rigidity similar to the outer layers of the Earth’s Moon {μ ~ 6.5 × 10lθ Pa), the second-degree potential Love number, 
k, for Io is ~0.027, implying that Q∣ ~ 1, which is below the generally accepted range for Q in solid silicate bodies by about two orders of magnitude (Knopoff, 1964; Pollack, 1977; Mavko, 1980). Peale et αl. (1982) were marginally able to explain a thermal equilibrium {ki!Qi) of ~0.01 (heatflow = 1.6 W m^2) by invoking a model of Io’s interior involving a thin solid outer shell decoupled from a solid interior by a liquid or partially molten zone. The shell is capable of much greater distortion under the tidal potential than a completely solid body, allowing dissipation in the thin shell to be greater than the total dissipation in a completely solid body of equal outer radius by a factor of ~10. A shell as thin as their model requires (—40 km) is probably unable to support the observed mountainous topography on Io (O’Reilly and Davies, 1981). A rigidity contrast between the shell and the low rigidity layer of a factor of ≥100 is needed in order to decouple the shell from the solid interior. Although a contrast as large as this is possible, the analogous ratio for the Earth’s crust versus asthenosphere is only —1.1 (Schubert et 
al., 1981). Furthermore, the observed highly localized surface heatflow (Johnson 
et al., 1984) implies efficient transport and convergence of heat from large dissipating volumes. Dissipation confined to a shell leads to rather uniform conductive transport to the surface, and hence is difficult to reconcile with localization of heat output.Ross and Schubert (1985) find Io’s observed heatflow consistent with viscous

343dissipation in a largely molten interior (crystals in magma) which is forced to circulate by the thin, rigid, flexing shell of the Peale et al. model. Their model is also capable of producing more than the observed heatflow. However, it is not clear whether the satellite could reach such a high-temperature state as their model requires, since a large degree of melting is implied, and melt migration can be a very rapid and efficient transporter of heat once low degrees of partial melt are reached (Turcotte, 1982; McKenzie, 1984; Scott and Stevenson, 1985).Although dissipation localized in a thin, rigid shell or in a largely fluid interior are conceivable, they are perhaps not needed to explain the observed heatflow. In nearsolidus silicate rocks, Q minimizes at —Ι- ΙΟ (Murase and McBirney, 1973; Sacks and Murase, 1983). The assumption that a substantial fraction of Io’s volume is near solidus is supported by the observed extensive volcanism. With an elastic value of k for Io of —0.027, k!Q can probably be as large as —0.01 without an enhanced response due to a molten layer. If μ is as small as 2 × 1010 Pa (a value appropriate to the deep lunar interior), the elastic k = 0.088 for Io and kJ 
Q is proportionately larger.If Io behaves as a Maxwell viscoelastic body, the dissipation rate can be substantially larger than the elastic value, if the body is tidally forced at a frequency that is less than or comparable to the reciprocal of its Maxwell time,J_ = μ
tm η(η = dynamic viscosity, μ = rigidity).The Maxwell time is the characteristic time scale that separates predominantly creep response from predominantly elastic response in the stress-strain behavior of viscoelastic bodies (cf. Eirich, 1956). For a simple Maxwell body, the equivalent of k/Q is the imaginary part of the complex Love number:
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344 OJAKANGAS AND STEVENSON

lm(Z,) = 1.5 μ⅛j⅞
1 ÷ ω⅛(I + μ)2 (7)19μ

μ ~ 2pgR' ω = forcing frequency(cf. Lambeck and Nakiboglu, 1983). Using the values of p, g. and R for Io and μ = 6.5 X 10lt, Pa, Eq. (7) gives lm(A) ~ 0.01 for ω ~ 2.5∕tm. This corresponds to a viscosity η ~ 4 × 10l5 Pa sec for ω ~ 4 × 10^5 sec^l, the frequency of Io’s orbit. The actual range of viscosity in solid silicate rocks at high temperatures is currently uncertain. Typical Earth-mantle rheological laws suggest solidus viscosities of ≥10,7 Pa sec (Turcotte and Schubert, 1982), because of the presence of a low melting point component (basalt). It is possible, however, that Io has differentiated and melting in the mantle may not be achieved until a higher temperature corresponding to a viscosity ~10l5 Pa sec. Partial melting can reduce the viscosity still further, perhaps by a large factor (Shaw, 1969), although more recent experiments suggest less dramatic effects (Cooper and Kohlstedt, 1984). Thus dissipation rates in a mostly solid lo may be enhanced further.Equation (7) does not include the effects of spherical geometry and is thus an additional source of uncertainty of (k∕Q), The application to Io of a complete viscoelastic model, including spherical geometry, would be useful.In the model proposed in this paper, the dissipation rate given by Eq. (2) will be used, and it will be assumed that (k!Q) can be as large as —0.01 in a mostly solid Io.If the Laplace resonance is in a steady state and the orbital eccentricities of Io, Europa, and Ganymede are not changing, the dissipation rate in Io is a direct measure of Jupiter’s anelasticity. This can be verified by substitution of the equilibrium value 1/V 13D∣ of e, from Eq.(6) into Eq. (2) for Io’s tidal dissipation. The dissipation in equilibrium is seen to be
El)equil ->∏

7 GMjM,
39 a, Cl (8)

which is « l∕βj, and independent of the dissipative properties of Io. Heat flows of 1 to 2 W m^2 imply 2 × 104 ≤ Q) ≤ 4 × 104 (for 
k1 = 0.5). Q1 values less than ~2.5 × I04 require a tidal torque from Jupiter which, acting over the age of the Solar System, would have propelled the satellites farther out from the planet than their current positions. Alternatively stated, Q1 < 2.5 × 104 implies such rapid orbital evolution that, integrating backward in time. Io would have been at the surface of Jupiter less than 4.6 × I09 years ago (Schubert et al.. 1986; for earlier work see Yoder and Peale, 1981; Goldreich and Soter. 1966).Although current observational estimates of Io’s heatflow are not inconsistent with these dynamical bounds, a simple steady- state scenario cannot be inferred with confidence for the following reasons:(1) The total heatflow cannot be measured in the IR and may well exceed 2 W m-2. In fact, in the models proposed here, conductive flux usually exceeds volcanic flux.(2) Reasonable estimates of Qj from theoretical mechanisms give Qj ≥ 105. If this range reflects reality, Io’s current heatflow must be in excess of its time-averaged value.(3) The dissipation rate in solid bodies is a very strong temperature-dependent quantity. As will be explained later, the result may be that Io does not possess a thermal steady state.Greenberg (1982) has suggested that the three resonating satellites may have formed deeper in the Laplace resonance, and that we are observing the system as it decays through the present state toward lower eccentricities and heatflows. Thus, the equilibrium heatflow from lo would be lower than the current value, allowing a larger Qi. However, in addition to debate concerning the stability of the Laplace resonance for large eccentricities (greater than ~3× the current value), Yoder and Peale (1981) argue that whether or not the resonance is primordial, relaxation from deeper resonance still implies that the current configu-
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EPISODIC TIDAL HEATING OF IOration is near equilibrium. Thus the upper limit on Qs cannot be relaxed.Another possibility is that Qj was larger in the past and has decreased relatively recently toward the value indicated by the steady-state assumption. The only suggested mechanisms capable of producing Qj as small as steady state requires (≤4 × 104), imply large variations in this parameter through geologic time (Stevenson, 1983). If βj was indeed higher in the past, the Laplace resonance could be geologically recent as well, as Yoder (1979) has suggested.A third plausible solution to the problem involves the possibility of instabilities or periodic variations in lo’s heatflow and orbital eccentricity over geologic time. The existence of feedback mechanisms potentially capable of producing cyclic behavior in the coupled thermal and orbital evolution of the satellites in the Laplace resonance has already been suggested (cf. Greenberg, 1982). The possibility that Io has no thermal steady state was demonstrated in Schubert 
et αl. (1981). This paper describes an attempt to model such behavior quantitatively, and to explore its consequences for 
Qj, and the thermal and orbital history of Io.In Section 2, we describe qualitatively the mechanism which can cause instabilities in the heat production and eccentricity of Io, and how it arises from an inverse temperature dependence of the quantity (βι∕⅛ι). We present a simple heat-balance equation for lo’s internal temperature with Eq. (6) for the eccentricity evolution. (Qlk) and the convective heat loss for Io are parameterized as local power laws of the temperature, and experimental as well as theoretical motivation for this approach is given. The resulting two coupled nonlinear equations in temperature and eccentricity are then nondimensionalized in terms of convenient units. In Section 3, the equations are linearized about their steady state, and a stability analysis is performed. It is found that instability is inevitable for a strong enough inverse temperature dependence of (β∣∕k∣), and that Io is in the unsta-

345ble regime for choices of parameters consistent with theory and experiment. In Section 4, the model is modified to allow for (1) efficient removal of heat by volcanism once the solidus temperature is reached, and (2) more realistic behavior of (β∕⅛) at temperatures well below the solidus. Some examples of numerically integrated solutions of the model for various parameter choices are given. It is found that the model can easily be adjusted to reproduce lo’s current orbital eccentricity and heatflow for reasonable choices of parameters. Finally, in Section 5, we discuss the consequences of the model for the history of the Laplace resonance and lo’s heatflow through geologic time, as well as implications for the acceleration of n1 and tidal stresses on Europa. The disadvantages and limitations of the analysis are also discussed.
2. THE MECHANISM, EQUATIONS, AND NONDIMENSIONALIZATIONConsider a satellite in which (Qlk) has a very strong inverse dependence on temperature. We start with a cold satellite (the internal temperature is well below the solidus) and an eccentricity which is less than the equilibrium value, l∕Vl3P∣, which is relatively large because l∕Vl3P∣ α (β∣∕⅛ι)ιz2 [see Eq. (4)]. Tidal dissipation increases as 

e1l(Qlk) [Eq. (2)], and it may exceed the rate of heat loss, causing the internal temperature of Io to grow. Thus heat loss from the surface increases, and the satellite may become volcanically active. However, the increased temperature causes (Qlk) to decrease, and so also the equilibrium value of the eccentricity, 1/Vl3£>i· If it decreases fast enough, l∕Vl3D∣ falls below e, so that the eccentricity and tidal dissipation begin to decrease. When tidal dissipation becomes less than the rate of heat loss, the satellite cools off and returns to the cold, low-eccentricity state. The process can then repeat itself. This process is shown schematically in Fig. 1.In order to support the above mechanism quantitatively, we will consider the evolu-
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Fig. 1. Schematic diagram of the mechanism which can cause episodic tidal heating.

tion of Eq. (6), coupled with the following equation for the thermal state:
,yz, dT _ 21 GMjR5n, (k{T)e2∖ 
MCp dt 2 a6 V Q(T) ∕

(net healing rate) (tidal heat production)
-λ r τr ιιnπR pCpK d [p(7-)ÆRaJ 

(convective heat loss)

(9)
(see the Appendix for symbol definitions. All satellite parameters from here on refer to Io unless otherwise indicated, so we have dropped the subscripts.)Equation (9) is a simple parameterization of the heat balance of a convecting satellite, where the adiabatic interior is approximated as isothermal at temperature T, and tidal dissipation in the (completely solid) body is occurring at the rate given by Peale 
et al. (1982). our Eq. (2). Although the heating rate is a function of position in the satellite, we assume that convection keeps the interior well mixed, so that the body can be characterized by a single temperature. Adiabatic temperature profiles in small convecting planets are nearly isothermal (Schubert et al., 1979). The second term on the r.h.s. of (9) represents heat loss from the satellite due to Rayleigh-Benard convection (Schubert et al., 1979), where we

have for simplicity assumed T — ΔT, the temperature drop driving the convection. This parameterization is highly idealized; an accurate parametrization of convection is not important in the context of the model. The convective heat loss in a more complete model would “turn off” more rapidly at low temperatures. Note also that Q. k, and V are written as functions of temperature.Dissipative mechanisms are typically activated processes with relaxation times (τ) obeying the relation τ <× exp(E∕RT), where 
E is an activation energy. R is the gas constant, and T is the absolute temperature. Typical activation energies for dissipative mechanisms in rocks are on the order of few ×105 J mole^l (Turcotte and Schubert, 1982; Anderson, 1967). Since Q for a given mechanism is a function of ωτ, where ω is the forcing frequency. Q should be a very strong function of temperature.Laboratory data indicate that Q in nearsolidus silicates is indeed a very strong function of temperature. Figure 2 shows a semi-log plot of Q versus temperature data for near-solidus peridotites in the frequency range of ~100 kHz (taken from Sacks and Murase, 1983). The superimposed dashed lines show the relations d In Qld In T ≈ -30 and d In Qld In T ≈ —20. Of course, it is not correct to assume that this Q is applicable to tiιe tidal problem because the frequency is very different. However, the probable existence of the same or a similar attenuation mechanism at tidal frequencies,

Fig. 2. Q vs temperature for peridotite near the solidus (Sacks and Murase, 1983).
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EPISODIC TIDAL HEATING OF IO 347the activated nature of dissipative mechanisms, and the known weak frequency dependence of Q lead us to expect that the tidal Q is also very temperature sensitive near the solidus.Additional support for a strong inverse dependence of Q on temperature comes from the fact that for a Maxwell body, Im(⅛) [see Eq. (7)] has the form
Im(⅛) « (ωτw)-, = —(10) ωpv(l )when wtm 1∕(1 + ∕Σ) ~ 0.02.Typical rheological laws for the viscosity of steady-state creep in silicates give -20 > 

d In vid In T > -30 (cf. Murase and McBir- ney, 1973; Turcotte and Schubert, 1982). It has already been argued that Io may be tid- ally forced at a period close to its Maxwell time. We assume that viscoelastic friction, where the relevant viscosity is that of steady-state creep, is the dominant source of dissipation in a near-solidus Io.We have chosen to parameterize the strong inverse temperature dependence of 
(Q/k) near the solidus by a local power law:

j(T) = CqT" (11)

and similarly, for the kinematic viscosity, 
v(T) = C„T-L (12)

ep deN _ Γ0.32Λ∕jcleo^[ 2 τ,h dtti ~ L Λi2α∣C,∣ J
iι - K⅛⅛)(⅝) M n4 <i4>We define To and e0 as the values of T and 

e in the steady-state solution to (13) and (14). By setting the r.h.s. of (13) and (14) to zero when Tn = <?N = 1, we find

∖M1CqRs1 
e° L UMjR5

GMRR}rp 
Cpα6 

! cpRac 
∖gατ∕C2(⅛)]"

),„] l∕σt (15)(16)where m ≡ (L + 4)∕3 represents the strength of the temperature dependence of the convective heat loss.We further define the convective cooling time scale τ⅛ as the heat content of the satellite at T = To divided by the rate of convective heat loss at that temperature, i.e.,T(h = Λ∕∣CpTo4"β⅛W G(⅛i)",
_ R ∕CyRacy 3 ∖g<XγK2} Tl0~m, (17)and we identify the leading coefficient on the r.h.s. of (14) as (e0∕2τe), where τe is the characteristic time scale for equilibration of the eccentricity near equilibrium. Thus,Using (11) and (12), (9) can be written

4(W)(⅛π4]
Tth L ×O7Γ∕ ∖ pCp<γCq f J1∙^ - [s ,'τ⅛-) n-*"¼*- (∣3)
where Tn ≡ T∕T0, tN ≡ t∕τih, eN ≡ c∕e0, and To, e0, τ,h are, respectively, the characteristic temperature, eccentricity, and convective cooling time scale for the system. Equation (6) can be treated similarly using (4), (11), and the above nondimensional parameters, yielding

for e - e0 <⅞ e0
and = Af2α∣C∣∣ τ' 2Afj(O.32)cleo∙ (18)Inserting (15)—(18) into (13) and (14), we finally obtain

= ΓJ⅛2n - TS (19)
= (I) ⅛ [1 - Tπnc2n] (20)
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TABLE IBehavior of the Solutions to Equations (21) and (22)_i_ θβhovκx

where p ≡ τth∕τc, the ratio of the two time scales. In the following sections, we will use (19) and (20) to explore the coupled thermal and orbital evolution of our model as it applies to lo.
3. A LINEAR STABILITY ANALYSISThe solutions of the coupled Eqs. (19) and (20) completely describe the thermal and orbital history of the model lo. Unfortunately, their nonlinearity renders analytical solutions impossible. We can. however, determine their stability by considering the behavior of small oscillations about the steady state eN = Γn - 1. Let

Tn = 1 + ετeia' 
eN = 1 + εeeiω'

(21)
where ετ and εc can be complex valued and ∣ετ∣, ∣εd <⅛ 1. To first order in ετ and εe, (19) and (20) becomeiωετ = (n — m)ετ + 2εc

P . (22)tωεe = — 2 (nετ + 2εc).
When Eqs. (22) are combined, eliminating ετ and εc, the quadratic

ω2 - - ωδ = 0 (23)

1
— = (m + p - n)ω0 = pm

is obtained. The nondimensional ωi represents a characteristic frequency of oscillation of T and e, which in dimensional units is
ω° ■ m -I— = ∖,-----sec '. (24)
Tth Λb~eThus, the time scale for small oscillations goes as the geometric mean of τ,h and τc∙ The solution of (23) is

ω = H— ± V4ω2 - I∕τ2J. (25) 
x- *-T* JInserting expression (25) for ω back into Eqs. (21), we find the behaviors shown in Table I.Stability of the linearized solutions depends on the sign of lzτ*. If n > m + p, the solution diverges; and if n < m + p, the solution is stable. This behavior is intuitively reasonable: If the convective heat loss is a stronger function of temperature than the tidal heat production, then the satellite is able to relieve itself of the increased heat production at increased temperatures, thus avoiding a “thermal runaway.” The presence of p in l∕τ* can be interpreted as a stabilizing “thermal inertia”; it represents the fact that it is harder to produce a thermal runaway in a body that takes a longer time to heat.The sign of the quantity 4ωδ - l∕τ^ determines whether the system oscillates during the growth or decay dictated by l∕τ*. The boundary 4ωj⅛ - l∕τ^* = 0 is the conic section

m^ + n^ + p^ — Imp — 2mn — 2np = 0(26)which is a cone in (m.n,p) space whose axis is the line m = n = p. The time scale ratio p is a weak function of m and n in the region of our interest, and is generally of order unity. Both τ,h and τc ~ 107 years. Figure 3
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Fig. 3. τ,h and τe from Eqs. (17) and (18). τ⅛ depends only on the convective parameterization and is independent of n. The behavior of τc, a function of both m and n, is depicted by level curves for different values of n. ptm = 10,≈ m2 sec ', (ζ)∕⅛)m,n = 100, Ql = IO5.
shows τ⅛ and τc for a wide range of m and n.Figure 4 shows schematically the behavior of the linearized solutions in the (m,ri) plane, for p = 1. The shaded region represents 20 < —d In vid In T = L < 30 (which is roughly equivalent to 8 < m < 12), and 20 < [-d ln(Q∕k)]∕d In T = n < 30. This is the region that we expect applies to Io from the experimental and theoretical grounds discussed in Section 2. It is well within the unstable regime. In reality, of course, temperatures and eccentricities cannot diverge. In the next section, we present numerical integrations of modified versions of Eqs. (19) and (20), which prevent divergence of the temperature and eccentricity and make our model more plausible on theoretical grounds.4. FINITE AMPLITUDE MODELSWe have performed extensive numerical integrations of Eqs. (19) and (20), and we have found good qualitative agreement between their solutions and the predictions of the linearized analysis given in Section 3. However, the diverging growth of the unstable solutions is clearly unrealistic. The

strong increase of k/Q with temperature cannot persist for temperature well in excess of the solidus. Motivated by the expectation that melt migration is very rapid, we propose that when the satellite’s internal temperature reaches the solidus, its growth is arrested by the efficient removal of heat by volcanism. We have consequently altered our algorithm for the integration of (19) and (20) so that when T = Tm, where Tm is the solidus temperature, dTIdt = 0, and the heatflow at the surface (convective plus volcanic heat loss) is equal to the tidal heat production from Eq. (2), i.e., we insert a volcanic heat loss term equal to the difference between tidal heating and convective loss on the r.h.s. of Eq. (9). This is, of course, at best an approximation to Io’s behavior; i.e., at best, dTIdt ≈ 0 once the solidus is reached. This modification is equivalent to asserting that the magma is buoyant, so that essentially all of the melt that is produced is able to reach the surface and the satellite never becomes appreciably molten. The rate-limiting step is probably melt- percolation but this can be rapid (few cm/ year) even at low degrees of partial melting (Turcotte, 1982; McKenzie, 1984; Scott and Stevenson, 1985). When this mechanism is incorporated into the model, the unstable regime (l∕τ+ < 0) becomes periodic. Note that the behavior of (Q∣k) given by Eq. (11)
n

Q- ∕ '' L
«λ z - r
Q Vz ''' ,-----------------1---------- -------- .m

0 io 20 30
Convection Temperature DependenceFig. 4. Behavior of the linearized solutions to Eqs. (19) and (20) in the (m,n) plane.
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Fig. 5. Qlk ≈= f(T) for models I—III.
could not persist at temperatures well above the solidus because dissipation in a purely viscous medium (μ. = 0) is proportional to the viscosity and thus decreases with temperature.A modification in the functional form of 
(Qlk) is necessary in order to bring the model into closer accord with theory and experiment. Although (Qlk) is a strong function of temperature near the solidus, it must saturate well below the solidus at a finite and nearly constant value, since k must approach the elastic value of ~0.027, and Q must approach the accepted low- temperature, high-frequency range of a few × 102 (see the Introduction for references). We have chosen the functional form
fm = ≤ m = [(∣)," + a (T)†' ,27)
where (Qlk)0 is the low-temperature value, and
allows a variable minimum value (0∕⅛)∏,in of 
(Qlk), which we assume to occur at the solidus temperature, 7m. The “solidus temper

ature" of our model can be slightly above the true solidus, i.e., perhaps a few percent partial melt. Figure 5 shows f(T) for some of the specific models presented below. Although this functional form is a gross simplification of the experimental behavior, it exhibits the proper behavior at low- and high temperatures.With the revised form for (Qlk) given by Eq. (27), Eqs. (19) and (20) become

Equations (15) and (17) for 70 and τ,h are unchanged, but Eq. (16) becomes
and Eq. (18) for τe remains the same but e0 now is given by (31). Figure 6 shows the new τth and re for the range of m and n of interest.Extensive testing of our model indicates that its solutions are independent of the initial values of T and e. In Fig. 7, the results of a typical unstable case for two choices of

Fig. 6. τltl and τe for the modified model with ptm = 10'2 m2 sec-', <Q∕⅛ = nr, {ζ)∕k)nm = 100, Q, = 10'.
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Fig. 7. Generic unstable case (m,n} = (10,15) for two different combinations of initial temperature and eccentricity. The solutions are identical after decay of transients. Symbols are discussed in text.
initial conditions are shown. After the decay of transients, their behaviors are identical. Figure 8 shows the stable case (m,n) = (10,11). More than 50 numerical integrations were performed representing numerous choices of the relevant parameters in the model. All unstable cases have posttransient behavior similar to the model in Fig. 7; e.g., the eccentricity maxima and minima always occur (respectively) before the maxima and minima in heatflow; initial peaks in heatflow are always sharp. These are, in fact, essential features of the episodic heating mechanism (see the Discus-

351sion). Finally, Figs. 9a, 10a, and 11a demonstrate three examples in which reasonable choices of parameters relevant to Io produce curves which pass roughly through Io’s current state of e ~ 0.004 and heatflow ~1.0-2.0 W m 2. The models predict that Io is volcanically active for periods of ~ 10-30 myr, separated by quiescent periods of ~60 to 200 myr. The values of all parameters used are listed in the appendix. For all three cases, Qj ∙s ≥105, above the limit from theoretical and orbital evolution considerations.5. DISCUSSIONConsider the model shown in Fig. 7 as an example of the cycle shown in Fig. 1. At point (a) the convective heat loss is greater than E and the satellite is cooling off. The eccentricity is increasing toward the equilibrium value, which is also increasing because of the decreasing temperature [see Eq. (4)]. Ê is increasing as e1l{Qlk) [Eq. (2)], and becomes greater than the convective heat loss at point {b) causing the temperature to increase and Qlk to decrease. This causes the equilibrium eccentricity to decrease, and at point (c) it falls below the eccentricity. A thermal runaway is in progress and energy is drawn out of the orbit, decreasing the eccentricity. The satellite reaches the solidus at point (√) and remains at that temperature while volcanism and convection remove heat at a total rate equal to E. E drops below the convective heat loss (due to decreasing eccentricity) at point (∕^), and the temperature again begins to decrease. The resulting Qlk again causes the equilibrium eccentricity to increase, surpassing the eccentricity at point {g). When interpreting the plots, bear in mind that the heatflow mimics the internal temperature of the satellite, except between points (d) and (∕) where the temperature is constant and the heatflow equals E.Note the discontinuity in slope at point (∕). Inflections such as these are present on the decreasing sides of all of the heatflow plots presented. They occur at the points
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Fig. 8. Generic stable case (m.n) = (10.11).

ods of high heatflow. e0 is in the required range for a wide region of the parameter space spanned by the above values of (Q, 
k),,. (Q∕k)mn. Qj. and ptm. with 8 ≤ m ≤ 12 and 20 ≤ zi ≤ 30. Figures 9a, 10a. and 11a show three examples.Nevertheless there are combinations that do not produce adequate models. For iλγm ≤ 10n m2 sec 1 and/or Qj ≥ 10h the characteristic temperature Tn becomes low enough that the temperature dependence of Q/k at Γo is too weak to allow unstable solutions in trie desired range of m and n. For ptm ≥ 10'4 m2 sec~' the characteristic eccentricity, e0,where the temperature begins to drop below the solidus. The value of heatflow at which this occurs is the convective loss throughout the period when T = Tm. and the volcanic component is simply the excess above this level during that period.The values chosen for most of the parameters employed in the model are listed in the appendix. A range of values for (Q∕k)0. 

(Q∣k)mm, Qj, and the kinematic viscosity at the solidus, i∕tm, were considered since these parameters are more poorly constrained. Values of (Qlk)(i ~ few × 102∕0.027 and {Q∕k)m,n ~ (1-10)∕0.027 were chosen, with various values of Qj ≥ 105, consistent with known theoretical mechanisms as well as orbital evolution constraints. The solidus kinematic viscosity, ptm (i∙e., the kinematic viscosity at a few percent partial melt), was assumed to lie in the range 10ll-10'4 m2 sec~l. These values are the best estimates given earlier in this paper.The model can easily be adjusted to pass through the current orbital and thermal state of Io (heatflow ~l-2 W m^2 and e ~ 0.004) for parameter values in the above range. The value of ((2∕A)m,∏ is chosen that produces the required heatflow at the solidus when e ~ 0.004, using Eq. (2). During the periods of high heatflow the eccentricity typically drops from ~l.le0 to ~0.6eo. By choosing a range for e,0 [Eq. (31)] such that (0.6-l.l)e0 ~ 0.004, the model will pass through the required state during the peri

Fig. 9. Model I: (m,π) = (10.20), (ρ∕λ)0 = 100/0.027. = 3/0.027. Ql = IO5. ptm = ∙0,' sec^'. The model passes through lo’s current state at the point shown. The value of π1 is also shown, in units of c∣π∣ = 2.55 × IO^- sec^-. Horizontal dashed lines show bounds on πl from eclipse data (Goldstein, 19751. Very recent observational estimates are considerably larger(see text).
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Fig. 10. Model II: (m,n) = (12,25), (β∕λ)<, = 200/ 0.027, (ft‰, = 3/0.027, Q, = 105, ptm = 5 × 10'2 m2 sec^l. Io’s current state is shown, n∣ is also shown as in Fig. 9. ctni = 2.55 × I022 sec^2.
is too small to allow the model to pass through e ~ 0.004 during the periods of high heatflow, unless Qj ≥ 106. The reason is that higher viscosities require a higher characteristic temperature, To, in order to relieve by convection the heat supplied by Jupiter (unless that supply is simultaneously reduced by increasing Qs), and the resulting lower (Q∕k)(T0) requires a lower e0 in steady state. For ptm ~ 10n m2 sec“1, e0 is too large for m ≤ 9 and/or λz ä 27.The model is most easily adjusted to pass through the current state during roughly the part of the cycle between the points marked (J) and (A) in Fig. 7, when the heatflow is decreasing and the eccentricity is either de-

353creasing or is just beyond its minimum, since this region allows the largest acceptable range of e0. Models I and II are two such examples (see Figs. 9a and 10a). The parameters chosen are given in the captions. Note that Q} = 105 in both cases. Periods of high heatflow (≥1 W m“2) for models I and II have durations of ~20 myr separated by quiescent periods of —80 myr, and —35 myr, separated by —95 myr, respectively. Decreasing Qi allows more energy into the system, increasing the periods of high heatflow. If the value of <2j used in model II is reduced from 105 to 8 × 104 (still within the dynamical bounds), the periods of high heatflow increase from —27 to

Fig. IE Model III: (m,n) = (12,20), (Q∕k)0 = 1∞∕ 0.027, (β∕‰∏ = 3/0.027, ft = 2 × 105, ptm = 10'5 m2 sec^l. Io’s current state is shown. «, is also shown. c1nl = 1.275 × IO^22 sec’2.



15354—38% of the totai cycle. Increasing Q∣ to 10λ is undesireable because it similarly reduces the high heatflow periods to ≤ 10% of the total cycle. Model III (Fig. Ila) is an example which passes through the current state near its peak heatflow. Q1 = 2 × 105. In this case the heatflow is ≥1 W m 2 for periods of —30 myr separated by colder periods of —200 myr duration.Typically, e ≈ e0 when the heatflow is near its peak in the models. Hence, the magnitude of the peak heatflow can be crudely estimated by inserting e = e<, and 
(Q!k} = (()lk}mm into Eq. (2) for £. This yields a peak of — Q.7(Q∕k)T(,}∕(Q∕kYΓm) W m^^. The peak eccentricity is limited by the equilibrium value, l∕Vl3∕)∣ when Q/k = 
(Q∕k)o [see Eq. (4)]. Note that the eccentricity for all models shown never exceeds the limit for stability of the resonance given by Yoder and Peale (Yoder and Peale, 1981).An interesting prediction of the model is that Io’s mean motion, ni. may currently be increasing rather than decreasing, as is usually assumed. Although tιt must be on the average decreasing at the rate π∣ = -0.23c∙ln∣ (Yoder and Peale, 1981), Yoder’s equation (65) implies that if Io’s eccentricity exceeds —1.36 times the equilibrium value, πl increases. For our purposes this equation can be written

hl = -0.87c,π,(I - 9.56Ω,cτ). (32)The evolution of hi from Eq. (32) is shown for models I—III in Figs. 9b, 10b, and lib. The horizontal dashed lines show previous upper and lower bounds on n∣ from estimates based on —300 years of eclipse timings (Goldstein, 1975). Very recent reanalysis of the data (Goldstein and Jacobs, 1985) favors a large positive value for h, of — 7 × 10^~ sec^2. For model I, h↑ is within Goldstein's (1975) bounds when the system passes through Io’s current state. Model II exceeds the upper bound by a small amount during the relevant period, and model III exceeds the upper bound by a wide margin. Although models I—III predict a currently positive value for h↑ (—few × 10 2' to

OJAKANGAS AND STEVENSON—few × 10^22 sec 2). negative values are not disallowed. Note that the peak values of ht for all three models are comparable to or greater than the large recent estimate (—7 × 10 22 sec“2) given by Goldstein and Jacobs. Cases could easily be found which pass through lo s current eccentricity and measured heatflow while ∕ι∣ is as large as (or larger than) this most recent value, although such large values could admittedly only persist for a small fraction of the total period. Refined analysis of eclipse data may test our model.The model of the coupled orbital and thermal evolution of lo presented in this paper is successful in that it allows orbital eccentricities of —0.004 and heatflows of 1-2 W m^2 for part of the time, consistent with current observations. Although the details of the model are speculative, the essential elements that lead to episodic heatflow are well founded (most importantly, a strong inverse temperature dependence of the dissipation). The fact that models containing these characteristics can be easily chosen to pass through the current thermal and orbital state of Io for a range of acceptable parameter values is strong support for the plausibility of episodic heating of the satellite.Nevertheless, the model has disadvantages. It requires that Io is currently in a state that only persists for 10 to 30% of the time. It also assumes homogeneity of the interior, while in fact large heterogeneities are probable, not only radially (dissipation may occur predominantly in an astheno- spheric layer), but laterally as well. Nevertheless, the thermal runaway mechanism described in our model can operate equally well over a limited lateral length scale. If a local thermal instability is initiated within a single “convection cell,” the likely result would be local volcanism since convection drives vertical heat transport more effectively than horizontal heat transport. If only part of the satellite participates in the heating the effective Love number, k, is less liable to significantly exceed the elastic
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EPISODIC TIDAL HEATING OF 10 355value due to the rigidity of the cold regions acting as a rigid “frame.” The possible presence of a number of distinct coupled regions capable of local thermal runaways would certainly result in a more complicated evolution for Io.Although the tidal Q of Io is expected to be a strong inverse function of temperature from both theory and experiment, existing viscoelastic theory is largely phenomenological (detailed microscopic descriptions do not yet exist), and data for Q at tidal frequencies is lacking.Another consequence of the episodic model is that Europa’s tidal stresses would have been greater in the past, since the cyclical tidal stress varies as the eccentricity, and the eccentricity of Europa (and Ganymede) mimics variations in Io’s eccentricity (Yoder and Peale, 1981). Current cyclical tidal stresses on Europa are <10 bar. The tensile strength of ice is ~ 10-20 bar somewhat below its melting point. The consequences of the episodic model for Europa’s history deserve study.Tidal heating is probably also responsible for the resurfacing of Saturn’s moon Enceladus ~108 to 109 years ago (Smith et αl., 1982), because Enceladus is in a 2: 1 orbital resonance with Dione, similar to the 2:1 resonance of Io with Europa. However, Squyres et al. (1983) estimate that tidal heating must exceed ~2.5 × 10l° W to initiate melting, and that the current heating rate probably cannot exceed —6 × 107 W. If the satellite has a substantial NH3-H2O component, the tidal heating required to initiate melting is a few times smaller than the Squyres estimate (Stevenson, 1982). Yoder (1981) has suggested that the tidal

heating of Enceladus may be episodic due to the inverse dependence of Q on tidal stress, and that dissipation rates large enough to cause melting are possible if energy is built up in Enceladus’ orbit over —108 years and then deposited due to a reduction in Q during periods of ≤106-years duration. The model presented in this paper can produce a similar phenomenon due to the temperature dependence of Q. Assuming that a heating rate of ~101° W is required to initiate a thermal runaway, the required eccentricity is —few × 0.01 and can be attained every ~I08 years if β(low 
T) > few × 102, β(Γm) ~ 1-10, and 0saω∏ι — few × 104. A longer eccentricity-building time and higher low-temperature Q are required if βsatum is larger. The recent resurfacing of the satellite can be explained since all that is required is that a “spike” in heatflow has occurred at some time <109 years ago. However, Enceladus is probably the source of the material in Saturn’s E ring, which must be resupplied on a time scale of 102 to 104 years (Cheng et al., 1982). It should be emphasized that although the episodic model can produce high heatflows for limited periods of time, the average dissipation rate is unchanged; the energy available from the orbital evolution of Enceladus must be supplied in “bursts” amounting to ≤1% of the total time. The recent replenishment of material in the E ring, probably by volcanic activity (Herkenhoff and Stevenson, 1984, and in preparation) argues for large lateral heterogeneities of tidal heating, but a quantitative demonstration of the sufficiency of tidal heating is lacking.
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UpdateSince the publication of the preceding paper, additional relevant work has been published. New estimations of IR heatflux from Io are again near 2 Wm~2 (McEwen et al., 1985). Greenberg et al. (1986) demonstrated that the large positive value of riι derived by Goldstein and Jacobs (1985, 1986) was consistent with the IR heat flux in the absence of any significant torque from the tidal bulge raised on Jupiter by Io (i.e., -q- ≈ 0), thus lending support to his suggestion (Greenberg, 1982) that the satellites may be evolving outward from a state of primordial deep resonance. In addition support of this conjecture, he also demonstrated that the resonance is, in fact, stable at values of i/n much smaller than Yoder and Peale had claimed (Yoder and Peale, 1981), but that the stable states involve equilibrium values of φ different from 180° (Greenberg, 1987a).However, Greenberg subsequently showed that Goldstein and Jacobs’ estimate of ni was flawed due to their use of an incorrect radius for Jupiter, aliasing, and clock-correction problems (Greenberg, 1987b). A more reliable estimate of rιi was made by Lieske (1987) using apparently more complete and accurate methods of data reduction, as well as a considerably larger data set. He found ⅛ = (-7.4 ±8.7) × 10“12 yr“1 (or rιi = (-9.6 ±11.1) × 10“24 s“1). As Greenberg (1987b) demonstrates, this value, although negative, is an order of magnitude too small to give consistency with Yoder’s (1981) equilibrium hypothesis (z>ι1 = 0). Using the measured IR flux to estimate the parameter P1 together with the above estimate of riι, gives z>u >0, which suggests that the system is currently evolving out of resonance (toward smaller eccentricities). For Q τ = 105, our model gives z>xι ≈ 2.4 × 10“23 s-1, for example. Thus it would appear that the system iscurrently dominated by dissipation in Io rather than by dissipation in Jupiter.
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However, Lieske has also derived z>u directly, using his measurements of 

both fιi and n2 (¾^ < 0.5 × 10~11 yr-1 or z>li < 6 x 10-24 s~2). Greenberg (1987b) suggests that this inconsistency would be rectified if Io has been very near equilibrium (ι>u ≈ 0) during the past ~ 3Q0 years (the time span over which the eclipse data were taken) but that Io’s thermal activity has increased by an order of magnitude within the last few decades, perhaps due to a temporary storage and release of pent-up heat.These new results are easily accommodated by the episodic heating model for Io that is present here. Inspection of Figures 9a, 10a, and 11a reveal that the time rate of change of rιi is typically very large (and negative) in the region of the curves marked “current state.” Slight adjustments of model parameters would therefore undoubtedly produce cases which approximately pass through Io’s current heatflow and orbital eccentricity at a time when ιii is equal to Lieske’s calculated value.



Paper I 22 Episodic Volcanism

Additional ReferencesGoldstein, S.J. and Jacobs, K.C. (1986). The contraction of Io’s orbit. Astron. J. 92, 199-202.
Greenberg, R. (1987a). Galilean satellites: Evolutionary paths in deep resonance. 

Icarus 70, 334-347.
Greenberg, R. (1987b). Time-varying orbits and tidal heating of the Galilean satellites. Paper presented at the International Workshop on Time-Variable Phe

nomena in the Jovian Systems, at Flagstaff, Arizona.
Greenberg, R., Goldstein, S.J., and Jacobs, K.C. (1986). Orbital acceleration and the energy budget in the Galilean satellite system. Nature 323, 789-791.
Lieske, J.H. (1987). Galilean satellite evolution: Observational evidence for secular changes in mean motions. Astron. Astrophys. 176, 146-158.
McEwen, A.S., Matson, D.L., Johnson, T.V., and Soderblom, L.A. (1985). Volcanic hot spots on Io: Correlation with low-albedo calderas. J. Geophys. Res. 90,12345-12379.



23

PAPER II

Thermal State of an Ice Shell on Europa



Paper Π 24 Thermal State of an Ice Shell

Thermal State of an Ice Shell on Europa

Gregory W. Ojakangas and David J. Stevenson
Division of Geological and Planetary Sciences California Institute of Technology Pasadena, California 91125

Submitted to: Icarus May, 1988

Contribution number 4519 from the Division of Geological and Planetary Sciences California Institute of Technology, Pasadena, California 91125.



25 Abstract

AbstractWe consider a model of Europa consisting of an ice shell that is decoupled from a silicate core by a layer of liquid water. The thickness of the shell is calculated as a function of colatitude and longitude, assuming that a state of conductive equilibrium exists with the incident annual average solar insolation, tidal dissipation within the shell, and heat flow from the core. Ice thickness profiles are calculated for each of two plausible rheological behaviors for ice: the Maxwell rheology and the generalized flow law rheology. In both cases the strong temperature-dependence of the dissipation rate is explicitly included as well as the temperature-dependence of the thermal conductivity of ice. Because of the strong temperature dependence of the dissipation rate, nearly all of the tidal dissipation is concentrated in the lowermost few kilometers of the shell. Even though the effective Q of the greater part of the shell is » 100 in our models, average shell thicknesses do not exceed 25 km. Thus, if the total thickness of ¾O which mantles Europa is > 25 km, none of the models admit the possibility of a completely frozen H2O layer. The total dissipation rates in our models are comparable to those of a constant Q model with 
Q ~ 10. The thickness profiles are relatively insensitive to heat flow from the core. The second degree spherical harmonic components of the ice thickness are given

D __ A Γ> _  Siand the resulting contributions to the quantities ^p zι and θf Europa areD _  Aestimated. Although the contribution to —g — is perhaps larger than the permanent value needed to prevent nonsynchronous rotation, its dependence on the shell’s orientation relative to synchroneity suggests that very slow nonsynchronous rotation will persist, with reorientation of the shell relative to the satellite-planet direction occurring on a timescale > the thermal diffusion timescale for the shell (~ 107 yr). The existence of a significant “fossil” bulge on the shell due to long-term
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elastic behavior of its outer, coldest regions would eliminate nonsynchronous rota- tion. Since the contribution to (jj c ) of the thickness variations in most of our models is > 0, Europa may experience polar wander as thermal equilibrium is approached, if the above is the most important permanent contribution to The magnitudes of the principal moment differences are insensitive to the details of the parameterization of the tidal dissipation.



Section 1 27 Introduction

1. IntroductionThe structure and composition of the outer regions of Europa’s interior have been the subject of considerable debate (cf. Cassen et al., 1982). Water ice is known from spectroscopic studies to be present on its surface (cf. Pilcher et al., 1972) , and the lack of substantial topographic relief or large impact craters supports the conjecture that the satellite is covered with a considerable mantle of water, concealing topography on the underlying silicates and capable of viscous relaxation on geologic timescales (Thomas and Schubert, 1987). Models of the formation of the Galilean satellites in orbit about a warm proto-Jupiter suggest that water should be increasingly abundant at increasing orbital radius (Consolmagno and Lewis, 1976), a prediction consistent with the observed densities of the satellites.Cassen et al. (1982) pointed out that if Europa were differentiated, its mean density (3.03 gem-3) is consistent with a rocky core of Io’s mean density (3.55 g cm-3) overlain by ~120 km of water. Conversely, Europa may have retained its water in hydrated silicates, and its water layer may be only a few km thick. However, the paucity of impact craters as well as the abundance of crack-like lineaments on Europa’s surface suggests that liquid water exists at depth, decoupling an outer shell of ice from the rocky core, allowing for much greater tidal response and stresses within the ice leading to fractures, and providing a source of liquid water to resurface the satellite.A generally accepted value for the quality factor Q of solids at low frequencies and well below the melting point is ~ 100 (cf. Smith and Born, 1976). Previous attempts to evaluate the thickness of an ice shell in thermal equilibrium with tidal dissipation within it and heat flow from the core, have assumed a constant dissipation rate (i.e., constant Q) throughout the shell (cf. Squyres et al., 1983; Cassen et
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al., 1982). Such models have predicted that a layer of liquid water would persist beneath the ice only if the effective Q of the ice is low (≤ 70) and a large tidal heat flow from the core is present, requiring a low quality factor for the core (Qcorc ≤ 25).The criterion for a stable liquid layer was shown to be even more stringent by Ross and Schubert (1987), who found that the cyclic tidal strains in the shell are about a factor of two smaller than was previously believed, because the selfpotential of the tidal bulge is dominated by low density ice, rather than rock as had been tacitly assumed. They found that a liquid layer is stable only when either or both Qcore and Qsι,en are less than ~ 30, even when they include an insulating regolith at the surface which enhances the near-surface temperature by 40 K.Although data at tidal frequencies are sparse, there is much evidence from both theory and experiment that dissipation rates in solids are very strongly temperature-dependent, increasing dramatically as the melting point is approached. 
Q for silicates near the melting point drops to < 10 (Murase and McBirney, 1973). Data for near-solidus peridotites at high frequencies (Sacks and Murase, 1983) give 20 < < 30 near the melting point (Ojakangas and Stevenson, 1986). Qin polycrystalline ice at high frequencies (~300-500 Hz) is a complicated function of temperature (cf. Hobbs, 1974) due to the importance of a number of relaxation mechanisms. However, the contribution of any relaxation mechanism to the dissipation rate peaks when the forcing frequency is near the reciprocal of the relaxation time for the mechanism. The relaxation mechanisms that operate at high frequencies have relaxation times of ~ 10-2 to 10-4 sec, far from the tidal frequency of ~ 105 sec. We can therefore expect them to be unimportant at the tidal frequency. The relevant relaxation time for a simple viscoelastic medium is the Maxwell time 7^M — ¾, where η is the dynamic viscosity and μ is the rigidity. Since μ for poly-
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crystalline ice is in the range of 1.1 × 109 -4 × 101° dynes cm-2 and η > 1014Poise near the melting point (cf. Hobbs, 1974), t^m is near the tidal forcing period (~ 3 days) for the ice near the base of the ice shell on Europa. It is therefore likely that at tidal frequencies the important relaxation mechanism that contributes to the effective Q is viscous creep. This differs from terrestrial planets where the tidal period is much less than the Maxwell time. As we shall see in Section 3, the dissipation rate (and hence the effective Q) in a Maxwell medium is very strongly dependent on temperature, because of the strong temperature-dependence of the viscosity η.Shear stresses in a decoupled shell on Europa due to tidal forcing are on the order of a few bars. This is in a range in which laboratory experimentation indicates that ice behaves according to a Glen flow law (see Section 4). As is shown in Section 4, the dissipation rate (and hence the effective value of -^) for such a medium is also a very strongly increasing function of temperature. The probable low value of Q near the melting point of ice was assumed to be insignificant by Ross and Schubert (1987) on the basis that only a small fraction of the shell is at such temperatures. However, as we shall show, the relative importance of local dissipation rates on ice thickness is not equal at all depths, but is strongly weighted toward the base of the ice, where dissipation is probably dramatically greater than the average. We demonstrate here that approximating Q by a constant leads to overestimates of equilibrium shell thickness.For shell thicknesses greater than 30 km, Squyres et al. (1983) contend that subsolidus convection will occur within the ice, and freezing of a liquid layer is inevitable. In the models presented here, nonuniform tidal heating with depth is explicitly included, and we find that average shell thicknesses of less than 30 km
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are readily achieved when plausible forms for the dependence of dissipation on temperature are assumed. We thus claim that an insulating regolith and a large core heat flow, though they may be present, are not required for stability of a water ocean and decoupled shell on Europa.In the following section, we develop a general equation for ice thickness as a function of surface temperature, local tidal strain rates, the variation of the dissipation rate with depth, and the temperature-dependence of the thermal conductivity of ice. Then in Sections 3 and 4 we calculate dissipation rates for two possible rheological laws for ice: that of a Maxwell body, and that of a medium which behaves according to a generalized Glen flow law. The resulting ice thickness profiles are given in each case. For ease of presentation, calculations of surface temperature and tidal strain rates in a thin shell overlying a hydrostatic ocean on a synchronously rotating satellite are confined to Appendices A and B, respectively.Finally, we discuss the importance of the derived thickness profiles in the question of the existence of a decoupled shell, as well as nonsynchronous rotation and polar wander of Europa.
2. Thickness of an Ice Shell in Conductive EquilibriumIn a shell with a thickness of 25 km on Europa, vertical temperature gradients are at least 102 times larger than horizontal temperature gradients. Horizontal transport of heat may therefore be neglected, and the equilibrium temperature profile is everywhere determined, to a good approximation, by the solution of the one-dimensional time-independent thermal diffusion equation:

(2.1)
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where z is depth below the surface, k is the thermal conductivity, and q is the volumetric dissipation rate?The equilibrium thickness of an ice shell overlying a liquid water ocean on Europa is obtained by solving (2.1) with the appropriate conditions. The boundary conditions are that the temperature at the surface, T(o), is equal to the local surface temperature Tβ as dictated by radiative equilibrium with the annual average solar insolation, the temperature at the base of the ice T(6), is fixed at the melting temperature of Ice I, T(b) — 273 K, and that the heat flux, H, flowing from the interior is related to the basal temperature gradient by
■ t2∙2>

The thermal conductivity of polycrystalline ice is well approximated by theform: *(Γ) = y + α„ (2.3)α∣ ~ 4.88 X 10’^ cm sα0 ~ 4.68 × 104-----∣rg, -cm K s(Hobbs, 1974), where T is the absolute temperature. At temperatures well below ~ 103 K, the constant ao may be neglected. Using this approximation, Equation (2.1) may be written τMτOz(τO = - ’ <2'4>
dz ∖dz J dy ∖dz ∕ alwhere

y = lnΓ
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Integrating Equation (2.4) once with respect toy from the surface where 
T = T, to the base of the ice, where T = Tm, the equationm2 ∕⅛-(⅛j (2,)∖^,z∕ τ=2Ts aι £ T ∖^z∕t~tm

T—Tqis obtained.In the following two sections, we will give reasonable parameterizations of 
q(T), which are consistent with theory and experiment. In all cases, q(T) is a very strongly increasing function of temperature. Note in Equation (2.4) that the magnitude of q(T) is proportional to the curvature of the profile y(2). In the limit where q{T} is a sufficiently strong function of temperature, it is evident that the curvature near the base of the ice is responsible for most of the temperature gradient throughout the ice, so that to a reasonable approximation,

Tm I'm[ <ι(τ) dτ , f g{τ) dτ 
J τ ~ J τ
τs 0and the gradient of y is nearly constant through the majority of the shell. Thus,⅜λ ≈ y(TM) - y(T,) = ln(ΓM∕3s) 

dzjz=a~ b bEquations (2.2), (2.5), (2.6), and (2.7) then give
b

(2∙7)
ln(TM/Ts)(⅜)∕ y(T)dT (£): 1/2 (2∙8)+

We shall use Equation (2.8) to estimate the thickness of an ice shell on Europa for various possible rheologies of ice.It is easy to see that for a given temperature difference between the surface and the base of the shell, its thickness depends on the distribution of the dissipation
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with depth. If the dissipation is homogeneously distributed, for example, the profile of lnΓ with depth is parabolic, reaching its maximum slope at the upper surface of the ice. If, by contrast, the same total dissipation is concentrated in a thin layer near the base of the shell, the same maximum slope is attained at the upper surface of the dissipative layer, and persists throughout the overlying ice. Thus the average slope is greater throughout the shell, and the required temperature difference across it is achieved with a smaller total thickness. This is analogous to the argument frequently made for a thicker lithosphere in continental regions than in oceanic regions on Earth, even for places where the surface heat flows are equal. The development leading to Equation (2.8) is exemplary of the case of heating from below rather than within because of the assumed temperature dependence of the dissipation.In order to evaluate shell thickness profiles using equation (2.8), it is necessary to know the surface temperature, Tf, the integral of the dissipation given by Equation (2.6), and the heat flowing from the core at each latitude and longitude. In Appendix A, functions giving approximate values for the average solar insolation and the resulting surface temperature as a function of colatitude on Europa are derived. In Appendix B, the cyclical tidal strains experienced by a thin incompressible elastic shell overlying a fluid synchronously rotating satellite in an elliptical orbit are derived, following the development of Peale and Cassen (1978). As is discussed in Appendix B, when the thickness of such a shell is small, the strains become independent of the rheology of the shell material, so that the strains derived for an elastic shell may be applied to an arbitrary rheology. (This is intuitively reasonable since a very thin shell must assume the hydrostatic figure of the underlying fluid planet.) We will apply the results of Appendix B in calculating the dissipation
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intégral, Equation (2.6), for both of the rheologies discussed below.The heat flux from the core may vary with latitude and longitude as well, thus affecting the thickness profile of the shell. However, the nature of such variations remains unsolved, and we will assume that any heat incident upon the shell from below is uniformly distributed. This problem is addressed further in the section labeled Discussion.

3. The Maxwell RheologyThe two simplest phenomenological models that attempt to describe the behavior of materials which possess the characteristics of both elastic and viscous media are the Kelvin-Voigt body and the Maxwell body (cf. Eirich, 1956). The Kelvin-Voigt and Maxwell bodies are visually represented by a spring and a dashpot arranged in parallel and in series, respectively. Of the two models, the Maxwell body more effectively reproduces the response of many real materials to imposed cyclic strains while the Kelvin-Voigt body usually does not. In particular, the Maxwell body behaves nearly elastically when it is forced on a time scale that is short compared to the Maxwell time (the strain is nearly in phase with the stress) while at long time scales it exhibits a creep-like, viscous response. Recent laboratory data and analyses of post glacial rebound data for the earth suggest that the effective viscosity for terrestrial crustal and mantle materials varies significantly with frequency (Sabadini et al., 1987). Consequently a more complex viscoelastic model, such the standard linear solid, is required to adequately describe the behavior of earth materials. However, corresponding data for ice are not available. In this section we calculate the dissipation integral, Equation (2.6), under the simplifying assumption that the ice shell of Europa behaves as a Maxwell medium. We then
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give examples of ice thickness profiles for the model.The constitutive relation for an incompressible Maxwell medium is
=------ 1------ , (3.l)

η μ(cf. Eirich, 1956) where μ, η, σij, and e^· are the rigidity and the viscosity of the medium, and the stress and strain rate tensors, respectively.It is easy to show, using Equation (3.1) that when the e^y are sinusoidal functions of time, the average volumetric dissipation rate for a Maxwell medium is
2 r9 — — ωτΜ

ω 1 + (w)2. (3∙2)
where ω is the frequency of the forcing and tm — is the Maxwell time. We may equate ω with Europa’s mean motion, n. The viscosity η of ice obeys an Arrhenius relation

ηo exp *∣⅛-ι (3.3)
where Tm is the melting temperature, i ≈ 24 and ηo ≈ 1014 Poise (cf. Turcotte and Schubert, 1982). For computational purposes, we use a local power law representation of Equation (3.3) for the viscosity η:η=η'' (⅛) -e. (3.4)

d In τ∕Equation (3.4) has the same value of the logarithmic derivative — —I-as Equation (3.3), near the melting point. Using Equations (3.4) and (3.2), the dissipation integral, Equation (2.6), may be solved exactly, giving
tm

I <l{T)γ = ⅞.(≠,λ) - tan“1 (∏tm)iii.ii (3∙5)
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where e2. is a function of φ and A, the colatitude and longitude of the shell (see Appendix B and Figure 1), and is the value of nτy1 at the base of the ice.The shell thickness obtained by insertion of the results of Equation (3.5) into Equation (2.8) is a reasonable estimate of the actual ice thickness as long as the peak tidal dissipation occurs at a location which is at most only a small fraction of the distance between the base of the ice and the surface. This is probably true because the tidal frequency n (n ~ 2 × 10-5s-1) is near τΛ- for the reasonable values of ηo > 1014 Poise and 1.1 × 109 dynes cm~2 < μ ≤ 4 × 101° dynes cm-2 (cf. Hobbs, 1974). In the specific cases presented here, we have chosen the nominal value of m^m = 1 at the base of the ice.Figures 2 and 3 show two thickness profiles that result from inserting Equation (3.5) into Equation (2.8) for the thickness of the ice, using values for the surface temperature and e2j∙ as derived in the Appendices. In both cases, values for μ and 
ι of 4 × 10l° dynes cm-2 and 24 have been used. In calculating the profile shown in Figure 2, the heat flow from the core was taken to be zero, while in the profile of Figure 3, a uniform heat flow from the core of ~ 10 ergs cm-2 sec-1 was used. 10 ergs cm-2 sec-1 is roughly the amount of tidal heat flux which would flow from the core if the Q of the core were ~ 25. As stated above, both figures represent cases where (nτΛ∕)1,1iu = 1. If (nτ⅛f)11,i11 differs from unity, the profile of Figure 2 (with zero heatflow from the core) is changed by a multiplicative factor of

~ (4 X 10lθ dynes cm~2) (2 ~ π tan
Thus, if the point where utm = 1 occurs above (but near) the base of the ice, the thicknesses in Figure 2 are overestimates, while if nrjv∕ does not reach a value as small as unity, the thicknesses are underestimates. Note that for (nrM )ιιιiι, = 1
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Figure 1. The quantity é?-, in units of ^(π7eCβ)2 ≈ 1.2 x 10 21 sec 2, as a function of Europa’s colatitude φ and longitude λ.
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Figure 2. Equilibrium ice thickness for Maxwell rheology with no heat flow from the core. Units are kilometers, φ is colatitude and λ is longitude.
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Figure 3. Equilibrium ice thickness for Maxwell rheology with heat flow from core of ~ 10 ergs cm-2 sec-1. Units are kilometers, φ is colatitude and λ is longitude.
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with μ = 4 × 1010 dynes cm'2 it is implied that ηo ≈ 2 × 1015 Poise. If ηo is actually ≈ 10i4 Poise, the maximum dissipation rate occurs above the base of the ice, and Figure 2 is an overestimate of shell thickness by a factor of ~ 1.4. If 
μ ~ 4 × 101° dynes cm-2, Figure 2 underestimates the ice thicknesses by a factor of > -√z2 only if ηo > 5 × 1015 Poise. If the heatflow from the core is nonzero, as in Figure 3, the multiplicative correction factor if (πtm )uιiu ≠ 1 is similar to that given above, but is slightly closer to unity.
4. The Generalized Flow Law RheologyLaboratory experimentation has shown that in the limit of pure creep andfor a range of stresses between ~ 0.5 and several bars, the strain rates et∙j∙ for ice are related to the stresses σij- by the relation (4.1)
where ∏q is a constant, A varies with temperature according to an Arrhenius relation

A = Ao exp -nj4 (4.2)?and σ^∙ are the elements of the stress tensor once the hydrostatic pressure is subtracted (i.e. σa are the stress deviator components) (cf. Paterson, 1981). Equation(4.1) is commonly referred to as Glen’s flow law.The constant uq has been found by different investigators to have values between 1.5 and 5.2 (Paterson, 1981). Above ~ —10° C the Arrhenius relation(4.2) is not strictly valid because several creep processes operate simultaneously, but Paterson (1981) suggests that it may still be used if an activation energy of ~ 139 kJ/mole is employed, which represents an average of the relevant activation energies and corresponds to a value for of ~- 61 in our notation.
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Nye (1957) proposed that Equation (4.1) may be generalized as the more tractable set of Equations el∙y = Aσ^c'~l σij , (4.3)where 1 ]i/2σe = 2σ*j'σij" (4'4)is called the effective shear stress. Using Equations (4.3) and (4.4) the volumetric dissipation rate can be shown to be
Ai∣na

1∙2 
—e-. 2 lj ng + 12n<; (4.5)

It may easily be shown that for an incompressible material the product σljιij is unaltered by replacing the σ^· by the elements of the full stress tensor. We approximate the function A, (Equation (4.2)), by a local power law of temperature:-(⅛) (4.6)
which has the same logarithmic derivative as Equation (4.2), near the meltingpoint. Using Equation (4.6) in Equation (4.5), the dissipation integral given by Equation (2.6) may be evaluated, giving

tm
Ι(fTv∖ ∕frΓ . . ∕ n.z-» ∖ 1 (4.7)q(T) dT

nçï τ1 .2 1 %nG
- er-nA

g — θij(,ij —

! l∕na ( λ 2 2 13Note that the expression (4.7) does not reduce to Equation (3.5) when n,; = 1 because this development does not include the effects of elasticity. The nonlinearity of the generalized equation which is equivalent to Equation (3.1) makes such a computation difficult. However, the nonlinear generalization of the Maxwell time is not very different than the tidal period, so this deficiency is usually minor in thisinstance.
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In Figures 4 and 5 thickness profiles are shown that were calculated using Equation (4.7) in Equation (2.8), for two choices of the parameters Af, and nG. In both cases, nA is taken to be 61 as discussed above. In Figure 4 the standard value of nG = 3 was used, with a corresponding value for Ao of 5.1 × 10~27 s~1 ( dynes cm-2)-3 taken from Table 3.2 of Paterson (1981). Figure 5 represents an extreme case where nG = 5.2 and Af, = 8.0 × 10-41 s^^1 (dynescm-2)-5·2.These values were taken from Table 3.1 of Paterson (1981). Because of the frac- - ra<7 + 1tional power involved in the factor [^∈T] ^nG 5 it has been averaged numerically over one orbital period at each latitude and longitude, using the expressions derived in Appendix B for the value of e2j at each time.
5. DiscussionVarious aspects of the thickness profiles given in this paper (Figures 2-5) are summarized in Table I. Profiles such as these have several implications for Europa’s thermal and dynamical histories.First, they indicate that the configuration consisting of an ice shell which is decoupled from a silicate core by a layer of liquid water is indeed a plausible one for Europa, if the total depth of the H2O mantle exceeds ~ 30 km. This is true in spite of the fact that in our models, the effective Q throughout most of the shell is very large. The effective Q for the Maxwell model, for example, may be written

1 +^Maxwell (5.1)
2(πtm)which, in the parameterization of Section (3) exceeds ~ 100 above the lowermost ~ 4 km of the shell (for both of the specific cases presented). It reaches a value of ~ 1011 at the surface, for a mean surface temperature of ~ 80 K. The expression
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Longitude λ

Figure 4. Equilibrium ice thickness for generalized flow law rheology, with n<; = 3 and Ao = 5.1 × 10^^27 s_1 ( dynes cm'2)'3. Heat flow from core = 0. Units are kilometers.
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Longitude X

Figure 5. Equilibrium ice thickness for generalized flow law rheology with n<; = 5.2 and A„ = 8.0 × 10~41 s~1 ( dynes cm-2)-52. Heat flow from core — 0. Units are kilometers.
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Table IProperties of ice thickness profiles given in Figures 1-4. Other relevant parameters are given in text.

Figure
Type of 

Rheology Parameters

Average Ice 
Thickness 

(km)
4Î22
(km)

⅛20 + 2<22 
(km)

2 Maxwell H<<,ιe = 0ergcm-2s^^1 23 6.6 -0.1

3 Maxwell H<or,. = 10ergcm^^2s^1 21 4.6 0.4

Generalized Hv<,re = 0ergcm~2s~1
4 flow n<; = 3 nyt — 61 25 4.4 1.1

law Ao = 5.1 X 10~27 s^^1 (dynescm-2)-3

Generalized ¾ore = 0ergcm-2s^^l
5 flow n,-; = 5.2 ∏a — 61 13 2.0 0.8

law √4o = 8.0 X 10~4ls^^1 (dynescm~2)-5 2

given by (5.1) has a minimum value of unity if nrM = 1 at the base of the ice, as we have assumed.The characteristic length scale over which the effective Maxwell Q grows by an order of magnitude is crudely — bo ln(10)^∣^Q ~ 2^i or ~ 2 km for bo ~ 20 km and ι = 24, where bo is the average shell thickness. The dissipation is therefore concentrated in the lowermost ~ 2^z of the shell’s thickness to within an order of magnitude. From this result, it follows that the total dissipation rate in the Maxwell
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model is roughly equivalent to that of a constant Q model in which Q ~ ~ 10.The total dissipation rate in the shell is therefore ~ 10 times larger than the nominal constant Q model with Q ~ 100 and bo ~ 20 km (cf. Cassen et al., 1982). The total tidal dissipation rate in the Maxwell model is roughly 2 × 10lδ ergs-1, implying an average tidal heat flux of ~ 7 erg cm-2 sec-1.As is evident from Table I, a uniformly distributed heat flux from the core of ~ 10 erg cm-2 sec-1 reduces the average shell thickness by only ~ 2 km. The insensitivity of the ice thickness to the heatflow from the core which is implied by this result is not surprising. Heat flowing into the ice shell from the ocean requires a nonzero temperature gradient at the core/ocean interface, and such a temperature gradient reduces the thickness of the region of the warmest, most dissipative ice. Thus, heatflow from the core reduces the total tidal dissipation in the ice, and the net affect on shell thickness is reduced. A tidal heat flux of 10 erg cm-2 sec-1 would flow from the core if it has a constant Q of ~ 25.Because of the nonlinear nature of the generalized flow law, there is no simple expression for the effective Q for that rheology. However, note that the temperature dependence of the dissipation rate for the generalized flow law, with nj⅛ = 61 and n<7 = 3, is similar to that of the Maxwell rheology because = ≈ 20 ≈ £for that case. As in the Maxwell rheology, the total dissipation rates for the generalized flow law cases given here are on the order of a few × 10lδ erg cm-2 sec-1.Note the large maxima in the thickness profiles in Figures 2 through 5, at 
φ = and λ = 0,7Γ (the sub- and anti-Jupiter points). These maxima are due to large minima in the average tidal strain rates at the same locations (Figure 1). Also note the presence of sharp maxima in the thickness profiles at the poles 
(φ — 0, π). These are caused by acute minima in the surface temperature at the
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poles as calculated from the expressions derived in Appendix A. The poles of Europa are particularly cold (~ 50 K) because of Europa’s small inclination (~ 1°) with respect to Jupiter’s equatorial plane, and Jupiter’s small obliquity (~ 3°). The maxima in the ice thickness very near the poles persist in spite of a strong maximum in the tidal dissipation at the same locations.The extrema in ice thickness discussed above may have important implications for Europa’s rotational history because of their contributions to the inertia tensor of the satellite. Only components of the ice thickness variations of the second spherical harmonic degree affect the inertia tensor. It can easily be shown that the addition of such a thickness component t2τn to a perfectly isostatically compensated shell will affect the inertia tensor by a characteristic amountΔ∕ ~ (prn - pc)-a4 f-) t2m , (5.2)
Pτn ∖ ® ∕where pc, pτn, a, and b are the density of the ice and the underlying liquid water, the radius of the body, and the thickness of the shell, respectively.Hence, the second degree components of the gravity field will be affected by a characteristic amount

C Δ/ P"> ~ Pc Pc (b∖ (
2,n I P Pm ∖a) ∖ α

where I is the characteristic magnitude of the moments of inertia of the body and 
p is its average density.The principal moments of inertia of a body are related to the C2,,1 by- 2C22) (5.4)

B≡Iyy = I' + Ma2 + 2C22)
A≡Ixx = I,+ Ma2

(5.5)
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C ≡/« = /'+Ma2 i-C20 (5.6)where 1' is the average moment of inertia and M is the mass of the body (cf. Lambeck, 1980). We shall take the coordinate system in which (5.4)-(5.6) are defined to be the usual principal axis coordinate system of a synchronously rotating satellite (i.e., A < B < C).Using (5.3) and (5.4)-(5.6) it may now be seen that the contributions of the
t2m to the quantities and go as

(5.7)
(5.8)Using b = 20 km and other appropriate parameter values, (5.7) and (5.8) may be written

B 10-7 ∖1 kmy(⅛9 ~ 1°-7 (“) (5∙9)
A , - V lkm ‘ ■ <5∙lθ>

Actual values of Δ and Δ may be estimated by inserting valuesof i20 and t<22 fθr our models (see Table I) into the above two equations. The values of both Δ 6, an^ ( are mθstly due the variation of tidal dissipation with latitude and longitude rather than the variation of surface temperature over the shell. (The surface temperature variation contributes nothing to t22, and the fact that i20 is negative indicates that the maximum in tidal dissipation at high latitudes dominates over the minimum in surface temperature.)Because the tidal torque only goes to zero for a synchronously rotating satellite when the orbital eccentricity is zero (Goldreich, 1966), planetary satellites will
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in general rotate nonsynchronously unless they possess a small permanent com-
70 __ Λponent of ( ^o ■ ) which persists in a frame fixed in the body, regardless of its orientation. Greenberg and Weidenschilling (1984) have determined the magnitude of this permanent asymmetry which is required to induce synchronous rotation in several planetary satellites, for two models of tidal behavior: the MacDonald and Darwin tidal models. In the MacDonald model, the entire tidal bulge on the satellite is assumed to be offset by a constant angle ~ -q from the instantaneous direction toward the planet. In the Darwin model, each Fourier component of the tide-raising potential raises its own bulge on the satellite, with its own specific phase lag. For synchronous rotation, each of the lowest order time-dependent terms in the potential have the frequency of the mean motion. Using a Q of ~ 10 for the MacDonald tidal bulge and for each component of the Darwin tidal bulge in synchronous rotation, Greenberg and Weidenschilling find that the magnitude of the permanent component of that is needed in order for Europa to rotatesynchronously is ~ 10-7 if the tides obey the Darwin model and ~ 10-5 if they obey the MacDonald model.As is clear from Table I and Equation (5.9), the contribution of a thermal equilibrium ice shell to the value of for Europa is between 10-c and 10-7for each of the models presented in this paper. These values are larger than the permanent component of which is required to prevent nonsynchronousrotation of Europa if the Darwin tidal model applies to that body. Furthermore, if the ice shell and a portion of the liquid ocean behave as a single entity which can reorient independently of the silicate core, as is suggested in the accompanying paper (Ojakangas and Stevenson, 1988), we may take the value of C in ∆(i^ jι^) to be only due to the inertia of the shell and that portion of the ocean which reorients
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with it. Then the relevant C is smaller than that of the entire satellite by at least a factor of ~ 10 for an H2O mantle of ~ 100 km in thickness, and Δ ç is proportionately larger. It is then possible that Δ C *s as larSe as the permanent component of which is required to prevent nonsynchronousrotation if the MacDonald tidal model applies.However, the contribution to due to variations in shell thicknessgiven by Equation (5.7) is not truly permanent, but depends on the orientational history of the shell. This is because the tidal dissipation rate in the shell is a fixed function of latitude and longitude only in a coordinate system which is synchronously rotating, rather than one which is fixed in the body frame of the shell. As a relevant example, suppose that the ice shell were somehow “held” in synchronous rotation until it reached its equilibrium thickness at all geographic coordinates and was then “released,” i.e. allowed to rotate naturally. Then, if Δ ç as given by Equation (5.7) is large enough, the shell will reorient by an angle between zero and (with respect to the direction toward the planet) to an equilibrium state where the torque due to the gravitational influence of the planet acting on the asymmetry of the shell balances the tidal torque. In this orientation, however, the shell is no longer in thermal equilibrium with the tidal dissipation within it, and the shell thickness will begin to adjust toward its new equilibrium profile. As this occurs, both the magnitude and direction of the principal axes of the shell will evolve, the torques will no longer balance in that orientation, and the shell will begin to rotate nonsynchronously once again. Thus, even though a thermal equilibrium ice shell may possess a Δ which is larger than the critical permanent asymmetry needed to prevent nonsynchronous rotation, thermal equilibrium involving synchronous rotation seems impossible for Europa’s shell. Instead a state of dy-
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namic equilibrium involving slightly nonsynchronous rotation is probable. In such a state, the shell is continually striving to achieve thermal equilibrium, but is continuously drifting relative to the synchronously rotating frame. This drift can only occur on a time scale comparable to, or longer than, the time scale for thermal diffusion through the shell’s characteristic thickness. Thus for a shell thickness of ~ 20 km, a complete rotation relative to the satellite-planet direction must take place in ~ 107 years or more. However, it must be noted that if the shell were ever rotating with a much shorter period relative to synchroneity, it is unlikely that the state described above could ever be achieved. For example, if the shell at some time possessed no significant permanent component of , its preferred rotationperiod relative to synchroneity is ~ 10 years if the MacDonald model is correct (see Equation (1) of Greenberg and Weidenschilling (1984)). At such a rotation rate, the longitudinal variations in tidal dissipation within the shell average to zero (in the frame of the shell). Consequently no significant contribution to canevolve, and the ~ 10 year period of nonsynchronous rotation will persist. Thus, a state of very nearly synchronous rotation must have existed at some time in the past if the state described above, of nonsynchronous rotation on the thermal diffusion time scale, is currently occupied by Europa’s shell. This would be true if the Laplace resonance, and hence the forced eccentricity of Europa were not primordial (assuming free eccentricity is quickly damped). Then Europa’s shell would have formed in synchronous rotation. This would also be true if a significant portion of the outermost, coldest ice behaves as a continuous elastic shell on a time scale of > 107 years. Then a portion of its hydrostatic rotational and tidal bulges will persist in the frame of the shell upon reorientation. This “fossil” bulge, described in the following paper (Ojakangas and Stevenson, 1988), may itself be large enough
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B-C

to prevent nonsynchronous rotation.Another consequence of ice thickness variations on Europa’s rotational history is possible due to the fact that the preferred dynamic equilibrium for synchronously rotating satellites is one in which B < C (cf. Danby, 1962). Therefore, if Δ > 0 and it is the most important permanent component of the total, it is possible that an ice shell in thermal equilibrium is incompatiblewith a state of dynamic equilibrium for Europa: the implication is that Europa may exhibit polar wander as thermal equilibrium is approached. Δ Ä 's indeed greater than zero for three of the models presented here, as is evident from the tabulated values of (f20 + 2i22) in Table I. However, note that the validity of these values (and hence the possibility of polar wander) requires that Europa’s shell has never been rotating nonsynchronously on a time scale short compared to the thermal diffusion time (~ 107 y), for then the longitudinal thickness variations described by i22 would not exist (see previous paragraph). The question of polar wander of Europa’s shell is addressed in detail in the following paper (Ojakangas and Stevenson,1988).Because the ice possesses rigidity, the effect of the second degree ice thickness variations on the inertia tensor may be reduced due to elastic support of the topography at the base of the ice (see the following paper (Ojakangas and Stevenson, 1988)). However, for reasonable ice rigidities οΐ μ <, 4 × 10lθ dynes cm-2, it is shown in the following paper that the effect of elasticity on the contributions of i2∏ and i22 to the inertia tensor is unimportant in this problem.Despite the fact that an ice shell with horizontal thickness variations will be very nearly isostatically compensated, viscous flow of the topography will occur because of the horizontal pressure variations within the ice. This flow will act to
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eliminate the thickness variations described in this paper. However, it is shown in the following paper that such flow would require ~ 107 years to eliminate the topography in the absence of all other effects. Since the topography grows on a similar time scale (the diffusion time through the shell) the flow can reduce but not eliminate the topography calculated here.The question of the manner in which heat flowing from the silicate core of Europa is distributed with latitude and longitude at the lower surface of the ice is a difficult one which remains unanswered. Vertical heat transport below the level where T ~ 277 K is probably accomplished by a turbulent (mixing length theory) convection. This will eliminate any horizontal temperature gradients. Above the level where T ~ 277 K, upward transport of heat cannot occur by standard convection because the thermal expansivity of water is negative (warm parcels sink). We therefore expect conduction to operate, consequently requiring a much larger temperature gradient. In the case shown in Figure 3 we assumed that a heat flow from the core 10 erg cm-2 sec-1 was distributed uniformly with latitude and longitude. In the other cases given, the heat flow from the core was taken to be zero. The insensitivity of ice thickness to heatflow from the core described previously suggests that spatial variations in core heatflow need not eliminate the ice thickness components calculated in this paper. For example, if we assume that the core heatflow is channeled preferentially into the ice that protrudes deepest into the ocean, the ice thickness in those places will be reduced, but the topographic variations calculated in this paper will not be eliminated, even if the total heat produced in the core exceeds that in the shell.
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6. ConclusionsWe have calculated thermal equilibrium thicknesses of a thin decoupled ice shell on Europa for both the Maxwell rheology and the generalized flow law rheology, as functions of colatitude and longitude on the satellite. The models include explicitly the strong variation of the dissipation rate with temperature, as well as the temperature dependence of the thermal conductivity of ice.In both models most of the dissipation is concentrated in the lowermost few kilometers of the shell. The effective Q of the majority of the shell in our models is very large (» 100), yet the shell thickness is nowhere more than 30 km in each case presented. Thus, our models predict that a decoupled ice shell on Europa is stable as long as the total thickness of the ¾O mantle is > 30 km. The presence of an insulating regolith, though possible, is not needed to promote stability. A uniform core heatflow of 10 erg cm-2 sec-1, corresponding to the tidal dissipation rate with a constant Q for the core of ~ 25, causes a reduction in the average shell thickness of only ~ 2 km. Because of spatial variations in tidal dissipation within the ice and the annual average solar insolation incident upon it, the equilibrium ice thickness varies markedly with position over the shell. We have calculated the second spherical harmonic degree components of the ice thickness profiles presented here and have estimated their contributions to Europa’s principal moment differences. Even though these differences may be larger than the permanent values required to prohibit nonsynchronous rotation (as estimated by Greenberg and Weidenschilling (1984)), they are not able to prohibit nonsynchronous rotation because of their dependence on the orientation of the shell in a synchronously rotating frame. Instead, a state of continuous thermal disequilibrium and nonsynchronous rotation is probable, with a rotation period relative to synchroneity of > 107 years. Such
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a state will only be occupied if the shell rotated nearly synchronously at the time of its formation. If the shell rotated much more rapidly at any time, such rapid rotation would persist, and the thickness variations calculated in this paper would be nullified. Synchronous rotation may be ensured by the presence of a “fossil” bulge on the shell, due to elastic behavior of the near-surface, cold ice.Since the contribution of the ice thickness variations to the quantity B — C is typically greater than zero, a state of thermal equilibrium for Europa’s shell may correspond to a state of dynamic disequilibrium, if the above is the most important permanent component of the mass distribution. Thus, Europa’s shell may exhibit polar wander as thermal equilibrium is approached. This is analyzed in the following paper (Ojakangas and Stevenson, 1988).
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Appendix A: Surface Temperature of EuropaIn order to calculate the surface temperature as a function of colatitude φon Europa, we first calculate the average solar insolation as a function of φ. The problem is nontrivial because the body possesses a finite obliquity, i ≈ 3 degrees.We choose a Cartesian coordinate system in which a point on Europa’s surface has a unit direction vector
X = (sin<ji>cosni, sin<∕>sinnt, cos≠) , (A.1)

where n is Europa’s mean motion (equal to its rotational frequency). This is simply a non-rotating coordinate system whose z-axis is coincident with Europa’s axis of rotation.In this coordinate system, the unit vector directed toward the sun is
s = (costcosΩi, sinΩt, sinfcosΩi) , (A.2)

where Ω is the mean motion of Jupiter in its orbit about the sun. Europa’s equinoxes occur when Ωi = and Ωi = 0, π corresponds to its northern and southernsolstices, respectively.The quantity x ∙ s is the cosine of the solar zenith angle. Therefore, a point on the surface of Europa that is described by x will receive an incident solar flux Fof
F = nF® (τ ∙ ∙s) : x ∙ s > 0

F = 0 : x∙s<0 , (A.3)
where πF<s is the solar flux incident on a surface element whose normal vector is directed at the sun.
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From (A.1) and (A.2),
x ∙ s = sin φcosi cos Vit cos nt + sin φ sin ilt sin nt + sin i cos φ cos Ωf , (A.4)

which may be written
X ■ s ~ sin φ cos{nt — ωt) -f- i cos φ cos Ωt (A.5)

for t<Cl (which is well satisfied for Europa).We now examine the case where i < φ < ^ — i (i.e., the region equatorwardof the Arctic Circles). In this region, Equation (A.5) reveals that x ∙ s > 0 if
(ηί)ιιιίιι ≤ Tit ≤ (τi∙i)ιιιax ι (A.6)

where
— 7Γ(rct)uιiιι =---- fit — icot<∕>cosΩt2

7Γ(fti)ιu3x ~—l· Ωf ÷ tcot≠cosfli . (A.7)2The diurnally averaged solar insolation is obtained by the integral
(∏∙i)uιaκ

Fd = ^⅞ ∕ (* ■ d(nt} ’ (a∙8)

f H∙t)minwhere Equations (A.7) and (A.5) are inserted for (ni)1,,aχ , (ttt)min , ≈∙∙s. The resultof this integral is then averaged over one cycle of (Ωt) (i.e., one Jovian year) to givethe annual average solar insolation F a as a function of φ. The result is 2π
f^ = ^∣ f*<w ≈ + °(*2) ∙ (a∙q)0We now examine the case wdιere φ <C i (which will give the same result as for π — φ ≪ i). In this case, Equation (A.4) may be written

x ∙ s ~ φ cos(nt — Ωt) + i cos Ωf , (A.10)
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which is greater than zero for
(ili)ιnin ≤ Γ2t ≤ (Ωt)lnax , (A.11)

where
(fîi)niiu

— 7Γ 

~2~
Φ

------- 7 COS (nt — Tit)

(Ωi)1nax
7Γ φ
— ÷ — cos(nf — Tit) (A.12)I

for φ ∙C i.In this limit the average of (A.10) over the diurnal period is unimportant; the zenith angle of the sun near the poles varies approximately only yearly. The annual average solar insulation is given by
(i}^)ιnax

Fa - J (x-s)d(Tlt) , (A.13)
(Ωι)uιluwhere Equations (A.10) and (A.12) are inserted for (x ∙ s), (Tlt)ιnax , and (Tlt)u,∙lu ∙ The result is f'-, ~ ■o (τ) ∙ <a∙14>

In the models of ice thickness presented in this paper, we use
Fa M⅛) (.'2 + ⅜2)1∕2√2 π (A.15)

which has the correct form of the second-order term (→-) j and matches Equation (A.9) when φ = i.To calculate the mean surface temperature we equate the fraction of the annual insolation that is absorbed to the heat flux radiated to space:
(1 - A)Fa = σ, τs4 (A.16)
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where σ9 — 5.7 × 10-5 erg cm-2 see-1 K~^1 is the Stefan-Boltzmann constant, A is the albedo of the ice, and Tβ is the average surface temperature.Using Equations (A.9) and (A.15) with Equation (A.16), we calculate the surface temperature as
Tβ

Tβ =

''sin≠
,1-^ aWθ)

π

1 1/4
(i2+φ2)l'2 T 1/4

I < Φ < 7Γ — i

φ <

(A.17)

(A.18)σ, ’ ∙ √2 πIn the models in this paper we use A = 0.5. ττFs ~ 5 × 104 erg cm-2 sec-1 is the solar flux at Jupiter’s orbit. With these parameters, the surface temperature varies between ~ 110 K at the equator to ~ 52 K at the poles. The surface-averaged value is r∙'~t 100 κ.
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Appendix B: Tidal Strains in a Thin ShellPeale and Cassen (1978) derived analytical expressions for tidal strains as afunction of position in incompressible two-layer elastic bodies for which the rigidity in each layer is allowed to be different. Using their development we obtain the periodic tidal strains in a thin incompressible elastic shell that overlies a fluid (zero rigidity) synchronously rotating satellite in an elliptical orbit. These strains are applied in this paper to calculate the equilibrium thickness of an ice shell overlying a liquid water layer on Europa.The tidal strains are derived from the displacement vector ü, which satisfies the equilibrium equation μV2u = VP (B.l)and the incompressibility condition
V∙u = O (B.2)

P ≡ p — pU, where p is the density of the body (assumed homogeneous). U is the total disturbing potential including self-gravity of the deformation and p is the mean pressure due to the tidal distortion.Peale and Cassen write a particular solution to (B.l) and (B.2) for a two- layer body as
where

" = Σ R +.- r2VPi + B±rP± - V (φi + r ■ VΦi) , (B.3)
φi = φ+f> (i)2p2(∞ss) (B.4)φ- = φ- ( 0 P2(cosS) (B.5)
P+ = P+ (r)2p2(coss) (B.6)
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Α~ = 02

Β'

21μJ_2 μ

(Β.7)
(Β.8)
(Β.9)

(Β.10)
(Β.11)

Β+ = —

r∙ R → ~tThe angle S is defined by cos S ≡ where f and R are the position vectors(measured from the satellite’s center) of a point with the satellite and the center of the parent planet, respectively, a and μ are the radius of the satellite and the rigidity of whichever layer is being considered, respectively. P2(cθs -S') is the second (unnormalized) Legendre polynomial.The boundary conditions which the solution must satisfy are that the components of the stress tensor σi3∙ must satisfy
σi√ny — θ (b.12)

at the (deformed) surface of the satellite, where nj∙ are the components of the unit normal vector to the surface, and that both the stress and the displacement are continuous at the boundary that separates the two layers.When the above boundary conditions are applied, and the rigidity of the inner layer is allowed to go to zero, Peale and Cassen find that a system of five equations in the quantities Φj^, Φ~, P(†, P~ (for the outer layer), and ∆a'', the displacement at the surface, results (see Peale and Cassen, 1978, Equation (B.12)). When those equations are solved with the assumption that the ratio 8 of the thickness of the outer layer (the ice shell in our case) to the radius of the satellite is
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small, it is found thatφ" = - (π
φ- = (—λ) 

o ∖308∕

P+ :s)
PT =

40ÏÏ

1 + —(1 - 15√)624ÏÏ ∖ 37, , i(∣-≈,∙).24/1 5 .ÏÏ 5 + 2"

Mpa3
MaR3

Mpa5
M1,R3

Mpa3
M,R

Mpa3
M,R3

(B.13)
(B.14)
(B.15)
(B.16)where Mp and M9 are the masses of the satellite and the parent planet, respectively, and

μ, = — , (B.17)where μ, p, and g are the rigidity of the shell, the density, and the surface gravity of the satellite.
μ, for Europa’s shell is ~ 0.6 if the rigidity μ of the ice is ~ 4 × 10lθdynes cm-2 (a frequently quoted rigidity for ice). In the subsequent calculations,we will let δ → 0 in Equations (B.13)-(B.16) because it is clear from their formthat the errors in the displacement field that are incurred by doing so are of 0(0),which is ~ 0.01 for a shell thickness of 20 km.The function -τ⅛γP2(c0s S) may be expressed as a series expansion in Legen- 

κdre’s associated functions and trigonometric functions of the orbital elements of a satellite (cf. Kaula, 1964). Such an expansion is in general quite complicated, but for a synchronously rotating satellite with completely damped physical librations and zero inclination it reduces to
-R3P2(cos S) = 5^ ∕⅞2(c0s <∕) (3cosΛ∕cos2Λ + 4sinΛ∕sin 2<∕>]

3e ∖2^3 ) j^2° (cos cos3e (B.18)
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when terms of order e2 and higher are neglected. In Equation (B.18), e and M are the orbital eccentricity and the mean anomaly, respectively, and φ and λ are the colatitude and longitude of a point on the surface of the satellite, measured in the coordinate system where the axes of the minimum, intermediate, and maximum principal moments are directed along the x, y, and z axes, respectively.The expressions (B.13)-(B.16) and (B.18) may be inserted into Equations (B.4)-(B.7) for the quantities Φ+, Φ-, P+, and P~. The results may then be inserted with (B.8)-(B.ll) into Equation (B.3) to obtain the tidal displacement vector u as a function of <∕>, λ, and M. If t = 0 when M = 0 (i.e. at periapse) M is simply
M = nt (B.19)

The elements of the strain tensor ez∙y may be found from u, using their defining relations in spherical coordinates (cf. Sokolnikov, 1956, Equations 48.17).We write the results as follows:
∈rr = 9ι [sin2 φ f (Λϊ,λ) - 2∕½(cos φ) cos M] (B.20)

eΦΦ — 92 [2/(Λϊ,λ) cos 2φ + 6 cos 2φ cos M}+ <∕3 [sin2 φ f(M,∖) - 2P2(cos<∕>) cos Aï] (B.2l)
fAA = 92 [2(cos2 φ - 2)f(M,λ) + 6cos2 φcosM]

+ g3 [sin2 φf(M,λ) - 2P2(cosφ) cos Aï] (B.22)
∈ψλ = 92 cθs Φ [8 cos(2λ) sin ΛΪ — 6sin(2λ) cos ΛΪ] (B.23)

er≠ = erλ = 0 , (B.24)
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where <>i = - (S) <cjne>
92 = (s) ,c'κ'ft'l 

94 = - (⅛r) <c'λ'"0
∕(Λi,λ) = 3cos2λcosM ÷ 4sin2x∖sinM , (B.25)and

n2a3
Ί GM,

(B.26)
is the characteristic ratio of the magnitude of the rotational and tidal potentials to the magnitude of the potential due to self-gravity of the satellite. The factor 
Cr has been added in an ad hoc (though justifiable) manner to the expressions for the gi to account for the fact that in this development it has assumed that the density of the entire satellite is uniform. As mentioned in the Introduction, Ross and Schubert (1987) have found that the amplitude of the tidal distortion of an ice shell on Europa is actually smaller by a factor of ~ 2 than is predicted by Peale and Cassen ’s model, because the self potential of the tidal bulge is dominated by the density of water rather than by Europa’s average density. Thus, Cr ~ 0.5. It may be verified that ^rr 4" ^-φφ 4~ ^λλ θas is necessary for an incompressible body, eτφ and er∖ go to zero as 6 → 0.Note that the ei∙j∙ do not depend on the rigidity of the shell. This is tobe expected for δ ≪ 1, because a thin shell cannot affect the shape of the fluid hydrostatic surface on which it rests. Furthermore, because of the symmetry of the
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tidal bulge, it is clear that volume elements lying along the principal-moment axes of the shell cannot be displaced horizontally during tidal flexing. To lowest order, the tidal displacements must be representable as second degree spherical harmonics. These constraints are sufficient to infer that the strains given by Equations (B.19)- (B.23) will apply to a thin, continuous shell of ice on Europa regardless of its rheology.In the models of shell thickness presented in this paper, Equations (B.19)- (B.23) are used to obtain the quantity έ?·. Although the time-averaged quantity é?. (used in the Maxwell model, Section 3) is expressible analytically, its form is very cumbersome and we do not display it here. The quantity e?· as a function of latitude and longitude on Europa is shown in Figure 1.
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73 Abstract

AbstractAn ice shell on Europa that is decoupled from the silicate core by a layer of liquid water has a thermal-equilibrium thickness profile that varies with position over its surface, because of spatial variations in the surface temperature and tidal dissipation within the ice (see previous paper). The second spherical harmonic degree components of these thickness variations and of any fossil rotational and tidal bulges present on the shell contribute to the inertia tensor of the body. The problem is that of a planetary elastic lithosphere that is topographically loaded from below. Following the development of Willemann and Turcotte (1981) we develop equations describing the variations in the inertia tensor of a body, which are caused by the addition of second harmonic degree topography to the base of the crust. Applied to the case of an ice shell on Europa, it is found foτ many choices of parameters that a state of thermal equilibrium for the shell will involve an orientation of Europa’s principal axes of inertia (when the hydrostatic bulges are relaxed), which is unusual for a synchronously rotating satellite. Specifically, the intermediate and maximum principal moments are reversed. To reach the preferred orientation for synchronous satellites, a thermal equilibrium ice shell must execute a net reorientation of ninety degrees about the satellite-planet direction. We present a simple model of a rigid, synchronously rotating satellite in a circular orbit for which the difference between the intermediate and maximum principal moments is linear in time, passing through zero when t = 0. The model demonstrates that the expected reorientation is indeed dynamically favored.We then consider a more realistic model, including the effects of various torques which act to couple the motions of the core, shell, and liquid water layer, as well as the effect of viscous dissipation which arises in the shell due to the predicted
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polar wander. It is found that the Poincaré torque, gravitational coupling, and the torque due to viscous shear in the liquid water layer are unable to induce significant motion of the core during polar wander of the shell. However, the Poincaré torque exerted on the liquid water layer by the shell is believed to cause the liquid water layer to reorient in coincidence with the shell. The model suggests that viscous friction in the shell eliminates the possibility that polar wander will occur unless preexisting fractures (e.g., due to tidal stresses (Crawford and Stevenson, 1988)) extend from the surface to a depth where the ice behaves viscously on the polar wander time scale. If the temperature T∕ at the base of the fractured region is as high as ~ 140-145 K, the model indicates that polar wander occurs on a time scale of 106-105 y (shorter as Tf increases) after the sign of the difference between the maximum and intermediate principal moments reverses. In the absence of dissipation, polar wander would occur in ~ few × 103 y. Polar wander must occur on a time scale significantly shorter than ~ 107 y, or the thickness profile of the ice will be in continuous equilibrium with its thermal environment regardless of its orientation, and the mechanism driving the polar wander will be virtually eliminated. It is likely that events of large scale polar wander occur episodically, separated in time by periods on the order of the time scale for thermal diffusion through the shell (~ 107 y), although a state of slow, continuous drifting of the pole is also possible. The time scale of viscous flow of topography at the base of the ice is also near 107 y. If dissipation in the shell due to polar wander is a few orders of magnitude smaller than our simple model suggests, polar wander as described here is a much more effective means for fracturing the ice than is tidal flexing, and it may contribute to producing the observed global fracture systems in Europa’s ice.



Section 1 75 Review of Polar Wander

1. A Review of Polar WanderThe term “polar wander” refers to a secular motion of the surface of a planetary body with respect to its axis of rotation. True polar wander is to be distinguished from free precession and from the forced precession of a planet’s axis of rotation in space, due to torques exerted by the sun and other bodies on its rotational bulge. Both free precession and forced precession result in movements of the rotation axis with respect to the surface of the body, but these movements are very small and do not have secular components. All freely rotating bodies in which dissipation occurs will ultimately reside in the state of minimum total energy. Since the minimum energy for any freely rotating body involves rotation purely about the maximum principal axis of inertia, true polar wander of such a body must involve a change in the orientation of that axis with respect to the body. If the magnitude as well as the orientation of the maximum principal moment changes, polar wander must be accompanied by dissipation of energy.The idea that the rotation axis of the earth may have drifted by large amounts over its surface during geologic time has been in existence at least since the nineteenth century (cf. Darwin, 1877). Equally old is the realization that the earth’s rotational bulge inhibits polar wander to the extent that it remains rigid during the reorientation process. If the earth’s rotational bulge were perfectly rigid, large scale polar wander would require the emplacement, somewhere on or within the earth, of a mass comparable to that contained in the rotational bulge — a girdle of mass some twenty kilometers high encircling the entire earth, with large latitudinalextent.Darwin argued that that the earth’s rotational bulge was rigid, and therefore that substantial polar wander was implausible. Subsequently, it became widely



Paper III 76 Polar Wander of Europa

realized that the bulk of the interior of the earth could not possess substantial longterm strength because of the high degree of isostatic compensation of the earth’s topographic features, inferred from the small magnitude of gravity anomalies and the absence of correlation of gravity anomalies with topography.Although implicit in earlier work (cf. Milankovich, 1934), T. Gold clearly pointed out (Gold, 1955) that a truly fluid or “plastic” earth would reorient upon emplacement of an arbitrarily small disturbing mass, so that such a mass would be translated from its initial latitude to the equator. Goldreich and Toomre (1969) demonstrated that relatively slow motions of many small masses distributed over the surface or interior of such a fluid earth can cause relatively rapid motions of the principal axes with respect to the earth. In addition, they showed that the angle between the axis of the maximum principal moment and the angular momentum vector is preserved during such motions, when the motion of the axis of the maximum principal moment is slow compared to free precession. Recent work, based primarily on paleomagnetic data, indicates substantial amounts of polar wander of the earth have occurred on a geologic time scale (Gordon, 1987). While Gold was certainly correct in asserting that a fluid behavior for the bulk of the earth’s interior greatly increases the potentiality for polar wander, the work of Vening Meinesz (1947) had already shown that the presence of an elastic lithosphere on a fluid planet with a rotational bulge provides a substantial hindrance to polar wander, since energy of elastic strain must be stored in such a lithosphere during any reorientation. Munk and MacDonald (1960) presented a summary of the debate over the question of polar wander for the earth up until that time, as well as substantial additional work on the problem. They briefly considered the effects of an elastic lithosphere, which they parameterized as an equivalent surface tension. While such
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an approach is instructive, it does not quantitatively reproduce the effects of an elastic lithosphere on polar wander.It is now widely accepted that terrestrial planetary bodies have thin outer layers (or “lithospheres”), which behave elastically on geologic time scales, as well as interiors that behave fluidly on similar time scales. Two examples are the moon and Mars, both of which have large near-surface loads that have remained incompletely compensated over geologic time. In the case of the moon the load is associated with the mare or mascons, and in the case of Mars the best example is the Tharsis bulge. The incomplete compensation has been attributed to elastic support, implying the existence of an outer shell that behaves elastically on a geologic time scale (cf. Willemann and Turcotte, 1981).In the light of the plate tectonic revolution, it is clear that a continuous elastic lithosphere does not exist on the earth. However, a planetary model consisting of a thin, continuous elastic lithosphere overlying a fluid interior may well be the most reasonable and simple one with which to investigate the possibility of polar wander of many planetary bodies.Willemann (1984) derived quantitative results for the amount of polar wander that a freely rotating body of such a nature would experience after a disturbing mass of a given magnitude is emplaced at a given colatitude. In his model, the unstressed shape of the lithosphere is that of a hydrostatic fluid, i.e., the oblate ellipsoidal figure of a fluid in equilibrium with self-gravitational and rotational potentials. This is certainly appropriate if the planet cooled sufficiently for an outer layer to become elastic while it was rotating, or if all previous nonhydrostatic stresses had been effectively relieved by fractures that were subsequently annealed or cemented by intrusions. A small fraction of the original hydrostatic bulge remains fixed with
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respect to the planet’s surface as polar wander proceeds, while the greater portion responds in a fluid manner, remaining symmetric about the direction of the rotation vector. It is this (typically) small “fossil” rotational bulge, present because of the elastic nature of the lithosphere, which prohibits the disturbing mass from being translated all the way to the equator, as in Gold’s model. Willemann calculates the amount of reorientation by diagonalizing the inertia tensor of the sum of the fossil bulge and the disturbing mass. The effect of the emplaced disturbing mass on the inertia tensor is reduced by a factor (1 — Cw) (explained below), which takes into account the degree of isostatic compensation of a mass emplaced on an elastic lithosphere.
2. IntroductionThe purpose of this paper is several-fold. First, we wish to point out an effect on the inertia tensor of a planetary body which Willemann appropriately ignores in his work, but which can be very important in some polar wandering scenarios. We will then describe one such scenario: that of a planet with an elastic lithosphere which is topographically loaded from below. We will describe how this scenario applies to the question of polar wander of Europa, caused by spatial variations in the thickness of an ice shell overlying a liquid water ocean on that moon. The possibility of such polar wander of Europa will be examined in three steps: first we will demonstrate that the combined effects of spatial variations in the thickness of such an ice shell and the fossil bulge of the ice shell on Europa’s inertia tensor may result in an orientation of its principal moments which is unusual for a synchronously rotating satellite. Second, we will demonstrate that reorientation of such a body toward the usual orientation for synchronous satellites is favored from a dynamical
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perspective by developing and solving equations of motion for a simple body whose inertia tensor evolves in time in the manner described in the first step.Third, we will approach the problem more realistically by considering the dynamics of the three-component system on which this model of Europa depends: an ice shell and a silicate core, separated by a layer of liquid water. Various torques act to couple the motions of the core, the shell, and the liquid layer during polar wander of Europa. We present a model of polar wander of Europa’s shell, in which it is assumed to reorient independently of the core, impeded only by dissipation within the shell itself. The liquid water layer is assumed to reorient in coincidence with the ice shell so that the shell and the liquid behave as a single entity. Using the results of our model, we justify these assumptions a posteriori in Appendix A by arguing that none of the coupling torques are able to induce appreciable motion of the core during polar wander of the shell but that the Poincaré torque exerted on the liquid layer by the shell probably causes the liquid layer to reorient in coincidence with the shell. Finally, we discuss the implications of the modeling presented here to the problem of fracturing Europa’s ice.
3. The Iceberg EffectThe previously ignored effect alluded to above we will call simply the “iceberg effect”, as it is best exemplified by the illustration of an ocean that is covered with icebergs compared to the same ocean when the icebergs have all melted (cf. Munk and MacDonald, 1960, Section 5.9). The iceberg-laden ocean contributes more to the inertia tensor, because the ice is slightly farther from the axis of rotation, on average, than the water from which it formed.The manner in which the iceberg effect contributes to the problem of a
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topographic load emplaced on an elastic lithosphere can be demonstrated by the following extreme cases. In the following examples, the mass represented by the topography t may be thought of as having been removed from near the poles (where its absence does not affect the polar moment of inertia) and emplaced near the equator.When the rigidity of the lithosphere is very large (Figure 1), the load is rigidly supported without deflection of the lithosphere and the contribution of the emplaced mass to the polar moment of inertia of the planet is
Δ∕ rigid ~ R pct 

lith «.»sphere
(3.1)

where R is the radius of the top of the crust, pc is the density of the crust (assumed to be the same as the density of the disturbing mass), p,n is the density of the mantle, t is the total thickness of the emplaced mass, and bc is the thickness of the crust. It is assumed that t <C bc <C R, for simplicity. It is also assumed that the areal extent of the topographic load is ~ R2 (true for second degree loads).In the limit where the lithosphere possesses no rigidity, the situation is as depicted in Figure 2. Now the topography t is distributed above and below the crust according to the principle of isostacy, i.e. (see Figure 2), X∣u — ant^

X2 = t∙ The contribution of the topography to the inertia tensor is muchsmaller than in the case of rigid support, but it is nonzero. Adding the effects of the topography protruding above and below the surrounding crust,
A I zero

rigidity 
tIt;It «.»a phe<e

PcXlR4 - ΔpX2ti2(R-bc)2 ≈ Δp-R4t(^} . (3.2)
Pm ∖ H ∕The contribution of the topography t to the moment of inertia is smaller by a factor 2 in the case θf perfect isostatic compensation compared to the case ofrigid support.
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Figure 1. Loading of an elastic lithosphere from above by topography of thickness 
t, in the limit where the lithosphere possesses infinite rigidity.
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Figure 2. Response of a lithosphere to loading from either above or below, in the limit where the rigidity of the lithosphere goes to zero.
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Now consider the case where topography of density pe is added to the base of the crust rather than to the upper surface. Such a situation might occur upon emplacement of a deep-seated igneous intrusion or batholith. We will argue that this is the type of loading experienced by an ice shell overlying a water ocean on Europa, as the ice attempts to equilibrate to a changing thermal environment.Figure 3 depicts the case where the rigidity of the lithosphere is very large. The topography is rigidly confined below the crust and the contribution of the emplaced mass to the inertia goes as
Δ∕ - -ΔpfR2 (R - 6c)2 ≈ -R4∆pt (3∙3)

When the lithosphere has no rigidity, we again have the situation shown in Figure 2. To lowest order, the inertia contribution for the fluid case is smaller than for rigid support by a factor (p^s^) 2Two important differences are evident in the case of bottom loading versus top loading: Firstly, the contribution of the added topography to the inertia (for bottom loading) must change sign (becoming positive) as the rigidity of the lithosphere goes to zero. Secondly, the iceberg effect is larger in comparison to rigid support by a factor of in the case of bottom loading. We shall see that when the rigidity of the lithosphere is finite and of a reasonable magnitude, the iceberg effect may dominate in some real problems.
3.1 Development with Finite RigidityOnly the second degree spherical harmonic components of topography contribute to the inertia tensor. We now present the contribution of these components to the moment of inertia of a planet about the axis of the pole of the harmonics, when the rigidity of the lithosphere is finite and nonzero. We follow the development
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Figure 3. Loading of an elastic lithosphere from below by topography of thickness 
t, in the limit where the lithosphere possesses infinite rigidity.
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of Turcotte et al. (1981).
Loading from Above

Consider the usual case of loading from above. The effect on the external gravity field of a second harmonic degree mass distribution h2M of density pc at the surface of the planet, and another, w2m∙, °f density -(pm — pc) at the base of the crust is given by Jeffreys (1976), Equation 5.06.01:
-GM ∕a∖2 3A -

∖r ∕ 5 pa
U = h<2MPc - I 1----- - ) (Prn - Pc)™2M (3∙4)

where G, M, ~p, and a are the gravitational constant, the mass, the average density, and the average radius of the planetary body, respectively, and r is distance measured from the body’s center. All other constants are as defined previously.
h-2M represents the amount of topography remaining after the addition of a column of mass of height

⅛ = h2M + w2m (3.5)to the surface, and w2m represents the resulting displacement of the base of the crust. Turcotte et al. (1981) found that w2m is related to h2M by
(/bn Pc)^2M Pch"2MG (3∙6)

where
C Λ,ll-⅛

(3∙7)ro = 8 iI±E∣p-(T z ∕z
P = =— PS,α5 + y a P

1 +
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ι∕, μ, and d are the Poisson’s ratio, rigidity, and thickness of the lithosphere, respectively, and g is the planet’s surface gravity, ∆μ is the density difference that would support the load in the absence of elasticity. In the case of loading from above, it is simply ∆p = pm — pc. In obtaining the above expressions, only membrane stresses are assumed to be important; bending stresses have been ignored. Their effects are small compared to those of membrane stresses as long as <C1.From Equations (3.4)-(3.7), the C2m components of the gravity field due to the topography are seen to be
C-2m — Q2τ

(1-C) + 4^1C 
1÷tlc∆μ (3∙8)

where
Q2,,1 = (3.9)5pais a convenient measure of the magnitude of the topographic load.Equation (3.8) may be written more conveniently in Willemann’s notation(Willemann, 1984) as

C,,

(1 —Cw) + 4C,C*2m — Q2rl
bc ∆pI
a ρtrι

(3.10)
where 11 + (3.11)

Pm 1 _ 3 Pm 5 pThe C,2m may be related to the diagonal inertia tensor components about the polar axis of the harmonics by
IXX — I, ÷ Ma? (3.12)
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ly y — 1' + Ma2
c∙20 + 2C22 (3.13)

Izz = ΐ - Im<12Cm (3.14)
Ο(cf. Lambeck, 1980), where I, is the average moment of inertia.When the topography of interest is a localized disturbing mass as in Wille-mann’s development (e.g., a “mountain”), its effect on the gravity field is easiest to describe in the coordinate system where the mass is at the pole of the harmonics. Then the only nonzero second degree component is C20∙Equation (3.10) with m = 0 is identical to Equation (19) of Willemann (1984) except for the additional term due to the iceberg effect.

Loading from Below

Now we consider the case where the topography <2m is added to the base of the crust. The external gravity field due to this topography is, ∖ 4-GM ∕α∖2 3 5—-~>∙ 
r ∖rJ 5pa ι=l Pcw2M - I 1 (Prn Pc)h,2M (3.15)U

where h21u is ⅛e amount of topography remaining after equilibrium is reached, and 
w∙2m is the amount that the surface has risen in response to the load. Again, the total amount of topography added is t-2,rl = h2τ,,, ÷w2m,. The equation analogous to (3.6) in this case is

Pc^2trι — (.Pm, Pc) h∙2rαC ι (3.16)where C is given by (3.7).
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In this case, since the load is from below, the effective density that would “support” it. in the absence of elasticity is simply ∆p = pc, the density of the resulting topographic response, w∙2m, at the surface. Equations (3.5), (3.7), (3.15), and (3.16) now give
C,2m — Q^2ι

Pm Pc -(ι-g) + -t
1 {Pm — Pc)

b,. (3.17)
Cwhich may be written using Equation (3.11) as

Pm Pc —(1 — C,w) + 4— f 1 — iji'n -p^ Cw 
a ∖ ρ,n

(3.18)C∙2ni — Ç?2r
PcEquations (3.12), (3.13), and (3.14) may again be used to convert C*2,,l to contributions to the inertia tensor.Note that Equations (3.10) and (3.18) have the correct limits: When the rigidity of the lithosphere goes to zero, Cw → 1 and the iceberg effect (Equation (3.2)) is obtained in both cases (once Equations (3.12)-(3.14) are used to convert the C<2m fθ an effect on the inertia). Similarly, when the rigidity becomes infinite, 

Cw → 0 and the results given by Equations (3.1) and (3.4) for rigid support of loads are recovered. Also, when ρ,,l → pc there is no density contrast associated with the topography at the base of the crust, so that there is no load on the lithosphere for the case of loading from below, and consequently no effect on the inertia.
4. An Ice Shell on Europa: A Case of Loading from BelowThe following discussion requires that Europa possess a substantial mantle ofwater overlying its silicate interior, a significant portion of which is liquid at depth. A brief summary of the debate over whether such a configuration is likely for Europa is given in the paper “Thermal State of an Ice Shell on Europa” (hereafter referred
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to as “Paper 1” ). There we conclude that when the temperature-dependence of the tidal dissipation within the ice is considered, a liquid layer will probably persist if it ever existed at all. Detailed calculations of plausible thickness profiles of such a shell are also presented in Paper 1. We demonstrate in this section that the likely spatial variations in the thickness of the shell add a component to Europa’s inertia tensor that may lead to an orientation of the principal axes which is unusual for a synchronous satellite. Enroute to that conclusion, we show how topographic loading of an elastic lithosphere from below applies to the case of an ice shell on Europa, the importance of the iceberg effect in the problem, and the manner in which a fossil bulge on the shell also contributes to the inertia tensor. The question of whether the inertia variations described here lead to polar wander is treated in the following sections. In Paper 1 we show how variations in tidal dissipation and solar insolation over the shell cause it to vary in thickness with both latitude and longitude in its equilibrium state. For purposes of illustration, imagine that at some time an unstressed ice shell existed over a liquid water ocean on Europa, but that the thickness of the shell differed substantially from the equilibrium profile (we will argue later that this may be the situation after an episode of polar wander on Europa). The ice at the base of the shell would then begin to melt in some regions and grow thicker in others, approaching the equilibrium profile in the characteristic time required for heat to diffuse through the ice (≤ a few times 107 years for a shell of thickness 20 km). Thus, topography would be added to the base of the ice, and this is a case of topographic loading of a crust (in this case, the ice shell) from below. The importance of the iceberg effect in this problem can be appreciated by inserting the appropriate numbers into Equation (3.18), recalling that the first and
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second terms in that expression represent elastic support and the iceberg effect, respectively. One important difference between the problem at hand and more standard problems of topographic loading (such as the Tharsis bulge on Mars) is that in this case the crust is thicker than the lithosphere. The crust may be identified with the entire ice shell. We define the lithosphere as that region of the shell that behaves elastically on the time scale during which the crust is loaded. The Maxwell time tm, defined as
tm = ~ , (4.1)μwhere η is the dynamic viscosity and μ is the rigidity, is the characteristic time scale which separates elastic behavior from viscous behavior in materials possessing both elastic and viscous properties (cf. Eirich, 1956). Using a typical rheological law for the viscosity of ice, a rigidity of 4 × 1010 dynes cm-2, and temperature profiles typical of those given in Paper 1, the Maxwell time of the ice is longer than the diffusion time through the shell for typically the outer ten percent of shell. From Paper 1, the average thickness of an ice shell on Europa is typically about 20 km. Therefore, 20 km and 2 km are representative values for the shell thickness, bc, and the lithosphere thickness, d, respectively. When these values are inserted into Equation (3.18), with appropriate values for the density of water (p,n), the density of ice (pc), the surface gravity, average density, and average radius of Europa, and values for the Poisson’s ratio and rigidity of ice of 0.33 and 4 × 101° dynes cm-2, respectively, it is found that the term due to the iceberg effect is almost an order of magnitude larger than the term representing elastic support. Thus, the iceberg effect is more important than elastic support for an ice shell on Europa, and variations in ice thickness of the second spherical harmonic degree are accompanied by geoid anomalies of the same sign.
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It is convenient to describe the inertia tensor of Europa in the right-handed coordinate system, fixed in the body, which, before polar wander, has its origin at the Europa’s center, the X-axis directed toward Jupiter, and the Z-axis perpendicular to the orbit (i.e., along the usual rotation axis). Since the variations in ice thickness are due to tidal dissipation and solar insolation, both of which possess symmetry about all three coordinate planes in this coordinate system, the equilibrium thickness profile possesses these symmetries as well (see Paper 1). The second degree spherical harmonic components of the ice thickness profile contribute to the inertia tensor in the same manner as does a localized disturbing mass. However, because of the inherent triaxial symmetry, this contribution is equivalent to that of three pairs of disturbing masses, of the appropriate sizes, arranged initially at the poles, the sub- and anti-Jupiter points, and the apices of the satellite. Moreover, since Europa is a synchronously rotating body, its hydrostatic figure is distinctly triaxial, and therefore any fossil bulge on the lithosphere will be triaxial as well.Another important difference from the case of a disturbing mass such as the Tharsis bulge on Mars is that in the problem at hand, the symmetry requires that the principal axes of inertia do not move with respect to the body’s surface as a thermal equilibrium thickness profile is approached from, say, a state of constant ice thickness. Instability can occur only if the relative magnitudes of any pair of principal moments are reversed as equilibrium is approached. By contrast, Mars must have begun reorienting as soon as the growth of Tharsis was initiated, unless the infinitely improbable situation prevailed in which the bulge was grown exactly at the previous rotational pole.The usual state of dynamic equilibrium for any satellite (if it exists) is one in which the body is synchronously rotating, with the minimum, intermediate, and
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maximum moments of inertia aligned along the direction toward the parent planet, the tangent to the orbit, and the normal to the orbit, respectively (cf. Danby, 1962). Thus the orientation of Europa’s principal axes of inertia will be unusual (suggesting the possibility of polar wander) if Ixx > Izz, Ixx > Iyy, or Iyy > Izz, in the coordinate system described previously. In order to determine whether any of these possibilities are likely to come about on Europa as a result of thermal evolution, Equations (3.12)-(3.14) may be used to relate the three possible unstable states to the gravity field. We thus obtain:
1XX > ^ZZ ■ C20 ~^ 2C*22 > 0 (4.2)
Iχx > Iyy : —4C22 > 0 (4.3)

Iyy > Izz : C20 + 2C22 > 0 . (4.4)In the spirit of Willemann’s development (Willemann, 1984) C20 and C22 may each be considered to consist of a component due to the presence of the fossil bulge, and a component due to the second degree variations in ice thickness. In Paper 1, the second degree components of ice thickness are given for each of the profiles presented. These may be translated into second degree components of the gravitational field using Equation (3.18). In addition to the effects of ice thickness, a thin continuous elastic shell of ice will possess a fossil bulge that contributes to the inertia and must be included in any calculation of the body’s inertia tensor.It will be noted that the presence of a fossil bulge tends to stabilize the system, since it has the form of a hydrostatic bulge with proportionately attenuated semi-major axes. A (rigid) body with a figure that is hydrostatic under the tidal and rotational potentials of a synchronously rotating satellite is, of course, stable.By comparison with the semimajor axes of a fluid synchronously rotating moon of constant density as given by Jeffreys (1976) Equation (4.08.13), it is easily
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seen that the surface of a synchronous hydrostatic moon may be written
r = a [1 + e2θ5z2o(<∕,) ÷ f223⅛(<∕sλ)] , (4.5)

where -5,£20 = “Η" M 6⅛2 = 7 h^! (4.6)
4and Y∙2,ri are the unnormalized spherical harmonic functions 

y20 ≡ ∣ (3 cos2 φ - l)Y22 = 3 sin2 φ cos2λ . (4.7)
φ is colatitude measured from the rotational pole and λ is longitude measured from the subplanet point, h is the second degree Love number that relates the response of the surface to a second degree disturbing potential (cf. Munk and MacDonald, 1960). The fossil bulge is the bulge that would remain if rotational and tidal potentials were removed. The ratio of the vertical deflection of an elastic lithosphere under the load of a second degree potential to the vertical deflection of a fluid planet under the same load is Cw (Willemann and Turcotte, 1981), as given by Equation (3.11). Therefore, if the rotational and tidal potentials were removed, the surface deformation written as in Equation (4.5) would be described by_5

£20) f°3∙**ιι ~~ ∕ιy(l )
bulge 0£22) f∙>ββ∣ι = — ∕rγ(l — Cw) . (4∙8)
bulge 4The fossil bulge may be thought of as two topographic components, one at the surface and one at the base of the crust, both of which have magnitudes given
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by Equation (4.8), with densities pc and (pm — pc)∙, respectively. With this in mind, Equation (5.06.01) of Jeffreys (1976) may then be used to obtain the effect of the fossil bulge on the gravity field:
) [pm Pc) β⅛ro) f'∙"∣∣

a J bulge (4.9)To lowest order, the second degree gravity components are therefore:
GM ∕a∖2 3

5pa
Σrα= 1 aPcf2m) fr'ssil ÷ 

bulge

C½θ) f,>asll 
bulge

C22 ) foesll
bulge

2 Pm ∖ 
^∑~zr c20) f∙>ssi∣5 p bulgeJ Pm ^22) fossil 

bulge

4 ⅛1 (y ) (1 - c„)⅛'l^, (y) <1 - cy (4.10)

U =

Because of large maxima in the ice thickness profiles at the sub- and anti- Jupiter points (cf. Figure 2 of Paper 1), the I = 2, m = 2 component of the ice thickness is always a positive quantity in the models presented in Paper 1, while the I = 2, m — 0 component is always negative. Since harmonic components of ice thickness have corresponding components of gravity of the same sign, it is evident from Equations (4.2) and (4.3) that the situations where Ixx > Izz or Ixx > Iyy cannot occur as a result of variations in ice thickness, in the context of our models. However, for a wide range of reasonable parameters, we shall now see that Iyy is greater than Izz for thickness profiles representing thermal equilibrium.If the fossil bulge of the shell and the spatial variations in ice thickness are the only important rigid components of the inertia tensor, Equations (3.18) and (4.10) may be summed (to obtain the total C'2rn) and inserted into Equation (4.4), giving a criterion which the thickness variations f20 and t22 must satisfy so that 
I∙yy > Izz∙ (Î20 + 2i22) 

a
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X _1 + 1 ILL·! + Ul+1∕ 1 3 pm5 ^P

pgg
μ

(4-11)> 1
Recall that for this problem, ι∕ = 0.33 is the Poisson’s ratio of ice, pm = 1.0 g cm-3 is the density of water, and pv = 0.92 g cm-3 in the density of the ice. g, ^ρ, α, and ί are taken to be 131cmsec-2, 3.03gcm-3, 1.56 × 108 cm, and 5 × 10-4 for Europa, respectively. The Love number h for a homogeneous fluid body is ∣j (cf. Munk and MacDonald, 1960). However, Ross and Schubert (1987) have found that h is substantially smaller for an ice shell on Europa, since the self-potential of a second degree deformation at the surface of Europa is weighted strongly by the density of ice and water, which is much lower than the average density of the satellite. We use their value for h of 1.26.With these parameters, the inequality (4.11) may be written 

'4 × 101° dyne cm-2 ∖ (be.(⅛)<0,43, -1 + (0.75) > 1 (4.12)
μwhere the rigidity μ of the ice, the average shell thickness bc, and the lithosphere thickness d have been left as variables.It should be noted that if large scale reorientation of the ice shell occurs, large membrane streses will be imparted to the ice. Membrane stresses imparted to a continuous elastic shell as a result of a 90-degree reorientation are several times μq, which is about 20 bars for Europa if 4 × 101° dynes cm-2. Fracture of the ice (at least the ice near the surface) is very likely for stresses of this magnitude (cf. Crawford and Stevenson, 1988). It is important to note that since any fossil bulge is maintained by these stresses in the ice, the release of stress accompanying fracture would reduce or eliminate a fossil bulge and its contribution to the inertia tensor. If the ice is able to anneal or become effectively cemented by intruding warm ice upon fracturing, the system would effectively return to a state characterized by a
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continuous, unstressed lithosphere with a non-equilibrium thickness profile, after a period of polar wander and subsequent fracture. In this manner, any “memory” of previous episodes of polar wander may be lost.In Paper 1, several thermal models are presented for an ice shell on Europa, yielding theoretical estimates of f20 and i22∙ Their magnitudes vary with model parameters such as the temperature-dependence of the dissipation and thermal conductivity within the ice, the type of rheology assumed for the ice, and the amount of heat flowing from the core. For most of the models, t2o + 2i22 is a positive quantity with a magnitude of between 0.4 km and 1.2 km. Perhaps the most reasonable case considered in Paper 1 is that in which a generalized flow law, for which the strain rate is proportional to the third power of the stress, is assumed for the ice. The reader is referred to Paper 1 for details. For that model, t20 + 2i22 is roughly 1 km.Also from the thermal models of Paper 1, it is evident that the average shell thickness is roughly an order of magnitude larger than the average lithosphere thickness, which, as noted previously, is the region of the shell that behaves elastically on the time scale of the loading. Thus the ratio may be taken to be ~ 10,although it is possibly as small as ~ 4. Measurements of the rigidity μ of polycrystalline ice range from 1.1 × 109dynescm~2 to 4.1 × 10lθ dynescm~2 (Hobbs, 1974), although the most reliable estimates are closer to the upper limit.The values of i20+2i22 from Paper 1 should be taken only as crude estimates, as many assumptions are made (see Paper l) and there are uncertainties in many parameters. However, it is evident from the values discussed here that the inequality (4.12) is satisfied for a wide range of parameters. For example, if is ~ 10, μis ~ 4 × 101° dynes cm-2 and i20 ÷ 2t22 is ~ 1 km, it is satisfied by a factor of
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~ 1.6. (4.12) is more difficult to satisfy as decreases, and easier to satisfyas μ decreases. If (^∕) ~ 4 and μ ~ 4 × 101° dynes cm-2 (the most difficult case to satisfy), i20 ÷ 2i22 must be > 2.1 km for (4.12) to be satisfied, while if 
μ ~ 1.1 × 10θ dynes cm-2 and (∙^) ~ 10 (the easiest case), t20 + 2i22 need only be ~ 0.02 km.The fossil bulge may be effectively eliminated if (as will be discussed later) the outer region of the shell represented by d is continuously being fractured by the cyclic tidal stress so that it cannot anneal. If such were the case, Iyy > Dz if ⅛20 ÷ 2^22 > 0.We have yet to investigate what reorientation, if any, Europa would experience as a result of the inertia variations described in this section. An obvious question, to be discussed in the section Coupling and Damping, is whether the rocky core of Europa will reorient with the ice shell if polar wander takes place. If the core were constrained to reorient in coincidence with the shell, any fossil bulge existing on the core would contribute an additional stabilizing influence on the inertia tensor, reducing the probability that Iyy > Izz in thermal equilibrium. For example, with a core rigidity of 6.5 × 1011 dynes cm-2, a lithosphere on the corewill have to be less than ~ 200 m in thickness if i20 ÷ 2⅞2 for the shell is ~ 1 km, in order to have Iyy > Izz for the composite (core plus shell) system.The earth’s core is believed to move very nearly in coincidence with its mantle, during the precession of the equinoxes, because of the influence of a torque known as the Poincaré or inertial torque (Rochester, 1976). This torque arises because of the hydrodynamical pressure distribution at the core/mantle interface when the axis of figure of the core departs from its axis of rotation. Although such a torque is present in the problem of core/mantle coupling on Europa, it is shown
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in Appendix A that it is unable to induce coincident motion of the core and shell, as are torques due to frictional and gravitational coupling. However, we also argue in Appendix A that the Poincaré torque probably does induce coincident motion of the liquid water layer with the shell during polar wander of the shell.It will be argued that the ice shell (plus the liquid layer) of Europa may therefore reorient independently of the silicate core. In that case, the relevant inertia tensor is that of the ice shell plus the liquid layer, and a fossil bulge on the core does not contribute to the instability criterion.It is clear from the above discussion that for many possible models of Eu- ropa’s structure, the presence of thermal equilibrium ice thickness profiles may imply that Ivv is greater than Izz, in the relevant inertia tensor. Since this would be an unusual orientation for the principal axes of a synchronously rotating satellite, a state of thermal equilibrium for Europa may not represent a state of dynamic equilibrium. The implication is, therefore, that as thermal equilibrium is approached, Europa may become dynamically unstable and reorient to obtain the preferred state for synchronously rotating satellites. If Iyy becomes greater than Izz as suggested, the net reorientation required to do so would be accomplished most directly by a rotation of 90 degrees about the axis that passes through the sub- and antiJupiter points, so that polar ice is brought to the apices, and ice near the apices is brought to the poles.However, reorientation of Europa is not assured by merely showing that the moment about the tangent to the orbit exceeds the moment about the rotation axis in thermal equilibrium. It must be demonstrated that the expected polar wander is not dynamically inhibited. That is the purpose of the following section.
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5. Polar Wander of a Rigid Synchronously Rotating BodyWe now wish to investigate the dynamical evolution of a body that is initiallysynchronously rotating, whose inertia tensor evolves toward thermal equilibrium as we have proposed in the previous section. The simplest model with which to do so is that of a rigid body in a circular orbit, for which the difference between the intermediate and maximum moments is linear in time.Consider a body whose principal moments of inertia are
∕2 - Io (5.1)
∕3=∕o(l-e) ,

where t is time, τ and e are constants, and ~ > — ∈. Thus when -eτ < i < 0, /3 < 
Il < I2, but as t passes through zero, Ii becomes the maximum principal moment and ∕3 < I2 < Λ∙ The terms Io and Iae represent inertia components due to ice thickness variations and the fossil bulges, respectively. The axes associated with /1, ∕2, and I3 correspond to the axes fixed in the frame of the body, which are initially aligned along the tangent to the orbit, the rotation vector, and the direction to the planet, respectively. We denote these axes by xl, x2, and x3. We shall see that this unconventional choice of axes is convenient in the following development.It should be noted that it is actually physically impossible to change the magnitude of one principal moment without changing at least one of the other two. This is immediately evident from inspection of Equations (3.12)-(3.14). Thus, in general, both Io and e in Equations (5.1) must be functions of time. However, the important dynamics arises as a result of the change of sign of the principal moment difference Iι — I2, so that we may ignore the time-dependence of e and/or Ifl.
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In order to derive equations of motion for the body we must first link a coordinate system that is nonrotating in inertial space to the Xi coordinate system fixed in the body, through a series of rotations. Let the nonrotating coordinate system be defined as x'i, with the origin at the center of mass of the satellite and the x.'⅛'-axis directed along the normal to the orbit. The directions of the xi' and α⅛'-axes are arbitrary.Because the body is in a circular orbit, its rotation about its center of mass is independent of its position in the orbit. The constant radial acceleration of the x,i origin is balanced by the central force of the planet. We first rotate counterclockwise by an angle n(f — io) about the a⅛'-axis, to a coordinate system x,i, that is rotating with the mean motion n such that the xi', and x2" axes are directed opposite to the orbital velocity of the satellite and directly away from the parent planet, respectively (see Figure 4). We then perform the standard Euler angle rotations to arrive at the body coordinate system, x1∙.∙ a rotation by an angle <p about the 
X3r, axis, followed by a rotation by an angle θl about the τι'"-axis, followed by a rotation by an angle ψ about the a⅛w,-axis. These rotations are shown in Figure 5. Thus, a vector xt, in the x,i' coordinate system may be transformed to the Xi coordinate system by the matrix multiplication x — Axl', where

cos ψ sin≠ 0' 1 0 0 cos p sin p 0'
A ≡ — sin ≠ cos ψ 0 0 cosθ, sin0, — sin⅛9 cos p 00 0 1 0 — sin#' cos Θ' 0 0 1

Within the framework of the above transformations, purely synchronous rotation, with the principal axes oriented in the usual sense for synchronous satellites is the state where θ' = ∙^, and p = ψ ~ θ, = ψ = p = 0, when t < 0. When t > 0, the
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Figure 4. Rotation from the nonrotating x'i coordinate system to the x" coordinate system that rotates synchronously with the mean motion, n, about the x^-axis. The x'f and x'f axes are directed opposite to the orbital velocity and directly away from the planet, respectively.
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Figure 5. The Euler angle rotations that relate the x" coordinate system to the xl∙ coordinate system, fixed in the body.
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usual state is the same as above, but with ≠ = Now it is evident why our choice of body axes (see Equations (5.1) ) is convenient: the most direct path toward the usual orientation for a synchronous satellite as t passes through t = 0 is simply a 90-degree rotation in the coordinate ≠.The direction cosines of the body axes aq, x⅛, and x3, with respect to the direction toward the planet, are defined as λ1, λ2, and λ3, respectively. They are
λι

= A
^ 0 ' -1 _ — cos ≠ sin φ — sin θ cos <p sin ≠ sin ,φ sin φ — sin θ cos φ cos ≠. ^3 . 0 COS θ COS (f>where

θ ≡ ~ - θ' ∙ (5∙4)The total angular velocity, written in the zt∙ coordinate system is easily found
to be

'ωi ' (ra -(- ≠>) sin ∙φ cos θ — θ cos ≠t√2 = (n + <p) cos ≠ cos θ + θ sin ≠ω3 (n + φ)sinθ + ψEuler’s equations of motion for a body in a circular orbit subjected to thetidal torque are (cf. Danby, 1962)
— (∕ι<uι) = (/2 “ ∕3)ω2w3 — 3n2(i2 - ⅞)λ2λ3 (5.6)
at37(⅞ω2) — (⅛ - Λ)ωq<√3 - 3n2(∕3 — ∕1)λ1λ3 (5∙7)
at37(∕3ω3) = (∕1 — ∕2)ω1ω2 — 3n2(∕ι — ∕2)λ1λ2 , (5.8)

atwhere
2 GMp 

n ~ ~R^~is the mean motion, Mp is the mass of the parent planet, G is the gravitational constant, and R is the semimajor axis of the orbit.
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Multiplying Equation (5.6) by sin≠ and Equation (5.7) by cos≠ and adding the results, the equation
p cos θ = - ω2 sin p cos p cos θ+0 [2(n + p) sin θ — α] 4— cos ≠ ∣ θ cos ≠ — (n + p) sin ∙φ cos θ a

3n2 cos p cos θ [cos ψ sin p + sin θ cos p sin ψ (5.10)
is obtained, where

a = hω37Γ (1 — e) ^(n + <£>) sin θ + ≠ (5.11)
(5∙12)ωfj = √3n2e ,

and terms involving products and squares of and ∈ have been neglected. Similarly, multiplying Equation (5.6) by -cos≠ and Equation (5.7) by sin≠ and adding, the equation
θ = na cos θ -[n2 + ω2 cos2 ⅛p]- sin 20 - p cos 0 [(2n + p} sin 0 - α]2+ - sin ≠ X I 0 cos ≠ - (n + p} sin ≠ cos 0 a - 3n2 cos 0 cos p [cos ≠ sin p + sin 0 cos p sin ≠] ∣ (5.13)

is obtained.Equation (5.8) may now be re-written
a2 -sin2≠ — 0(n + ≠) cos2≠ f + 3n 2ά=(I) {(n+^,)2-^

× [cost/) sin p + sin 0 cosy? sin ≠] [sin ≠ sin p — sin 0 cos p cos ≠[ . (5.14)
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If it is further assumed that θ ≪ 1 and φ ≪ 1 (to be verified later), Equations (5.10), (5.13), and (5.14) become
<p = -ω2φ + θ[2nθ - α] + cos≠ [-nαsin ≠ - 3n2(^cos≠ + 0sin≠)] (5.15)

θ = na - (n2 +w2) θ-<p(2nθ-a) + sin≠ [-nasin≠ - 3n2(y>cos≠ + 0sin≠)] (5.16)
a (n2 + 2n⅛i>) sin 2ψ — nθ cos 2ψ (5∙17)when terms of higher order than squares and products of e, y, θ, φ, and the derivatives of θ, φ, and ψ are ignored.A solution to Equations (5.15)-(5.17) is easily affected in the limit where (y) is very small (the meaning of “very small” will soon become evident). Clearly if (y) is small enough (see Equation (5.17)), a may be treated as a constant in Equations (5.15) and (5.16).To first order, Equation (5.16) then gives

nan2 +u⅛ w0 = √n2 + w2
and Equation (5.15) gives ¥> = ⅛ e,"", ,

(5.18)

(5.19)where e# and are arbitrary constants of integration representing oscillations about the mean state. When θ = 0, Equation (5.19) describes the well known phenomenon of physical libration (cf. Danby, 1962). Averaging Equations (5.18) and (5.19) over short period oscillations and combining with equation (5.11), it is easily seen that
φ

θ
na

4en n2 + w; (5.20)
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Ignoring <p, θ, and ≠ relative to n, and ignoring e relative to unity, the time derivative of Equation (5.20) may be inserted into equation (5.17) to give
≠ ~ 2e ( - ) n2 sin2≠ (5.21)

Equation (5.21) is the crucial Equation describing polar wander as the inertia tensor evolves. It is the equation of a pendulum under the influence of a time variable gravitational acceleration where 2≠ corresponds to the angle between the arm of the pendulum and the direction of gravity. As t passes through zero, the direction of gravity reverses, and 2≠ passes from a state of stability about 2≠ = 0 to a state of stability about 2≠ = ±π.When sin2≠ is small, an approximate solution of Equation (5.21) may be found by the WKB approach as long ειs ji∣ is not too small (cf. Mathews and Walker, 1970). As in the standard WKB solution, the amplitude of oscillations in ≠ increases as t → 0, while the frequency decreases. A sketch of a solution to equation (5.21) is shown in Figure 6.An idea of the form of the solution to the equations may be obtained by setting equal to some effective constant value, > when i > 0. This is a sensible approximation to examine since the mechanisms which cause the inertia tensor to evolve are altered once reorientation begins (see Section 6.2). Then Equation (5.21) may be solved exactly.If ≠ ~ 0 when ≠ — θ, Equation (5.21) may be integrated once to obtain
t, 

e— 
τ

ηi∕2 sin ≠≠ ≈ 2n (5.22)
Then Equation (5.20) gives io∕rλ1/2 ∙ ∕—— ∖ sin φ (5.23)
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Figure 6. The form of the solution to Equation (5.21) with no damping. ≠ maY oscillate about ±∙^ when time t > 0, depending on the values of ψ and t∕> at t = 0. Circulation of ψ is also possible, but is unlikely for any real body because of the presence of damping.
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Iteration of Equation (5.15) reveals that φ has a second order component that varies with ψ as well:
φ~-2 sin ψ cos ≠ (5.24)

Note that φ is smaller than θ by <,√!Equations (5.23) and (5.24) reveal that the approximation assumed earlier of θ, <p <C 1 is valid as long as
(5.25)

An obvious criterion for the validity of Equation (5.18) is that θ and φ do not change by a substantial fraction during one oscillation period of their oscillating components. With Equations (5.18) through (5.24), it can be seen that this∕ ≠ ∖ 1∕2requirement implies only that 1 y ) <C 1. Thus, Equation (5.25) is a more stringent requirement than the criterion for a ≈ constant in Equations (5.15) and (5.16), and it is sufficient for the validity of the approximations made thus far. Note that because of the requirement given by Equation (5.25), Equation (5.21) does not imply that ≠ = 0 if e = 0; the equation is not valid in that limit.When <p and θ are small, they may be visualized as a pair of Cartesian coordinates defining the orientation of the x⅛ axis with respect to the direction to the planet as shown in Figure 7. The plane of the (⅝9,0) coordinate system is oriented perpendicular to the line passing through the centers of the parent planet and the satellite, with its origin at the point on the surface of the satellite that intersects the line. The <p and θ axes are directed opposite to the orbital velocity, and along the orbit normal, respectively. The ordered pair (<p,θ) then describes the positions of the intersection of the x3-axis with this plane, in units of the satellite’s radius, while the value of ≠ describes rotation of the satellite around the τ3-axis.
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Figure 7. Visualization of the ordered pair (<p,θ) as Cartesian coordinates describing the orientation of the ι3 body axis. See text for description.
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The solutions (5.22) through (5.24) can be visualized clearly with the above visual aid. When t becomes positive, the quantity 2≠ “falls” from zero toward ±π, just as a pendulum for which the direction of gravity has reversed. As ≠ accelerates, the x3-axis tips out of the plane of the orbit in accordance with the evolution of θ as given by Equation (5.23), reaching a maximum absolute value as ≠ passes through the new potential minimum of the pendulum at ≠ = ±-^. At the same time the a⅛-axis lags behind the subplanet point by an amount given by φ, Equation (5.24).These dynamics are intuitively understandable. As i becomes positive, the maximum principal moment of inertia, about which the body is rotating, becomes the intermediate moment. A freely rotating body will not rotate in a stable manner about the axis of its intermediate moment of inertia, but rather if the rotation vector is initially coincident with that axis, it will make large excursions from it on the time scale of free precession (cf. Goldstein, 1970). However, in this problem the tidal torque inhibits the growth of the angle between the a⅛-axis and the satellite-planet direction so that excursions from the intermediate axis must tend toward the axis of the maximum moment. At constant angular momentum, a body must reduce its spin-rate as it approaches a state of rotation about the axis of the maximum principal moment. Such a reduction in spin implies the growth of a negative value of φ. A negative <p is predicted from the equations (Equation (5.24)), but the tidal torque “spins-up” the body very effectively so that φ remains very small. An important difference between this problem and the problem of polar wander of a freely rotating body is that in this case the total kinetic energy of the body as well as its angular momentum are actually greater after polar wander than before, because of the ability of the tidal torque to “spin-up” the satellite.Without dissipation, large oscillations in ≠ about ≠ = will continue
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indefinitely. The time required for ≠ to evolve from a value near zero to a value near depends on the initial values of ≠ and ψ. A rough estimate of the time scale, T, may be obtained from Equation (5.21) by identifying the coefficient of sin2≠ withthe square of a characteristic angular velocity of ≠∙, and assuming t ~ T∙.1∕3&T (5.26)
The time scale given by (5.26) may be recognized as the geometric mean of the free precession time scale for a symmetric top whose principal moments of inertia differ by a fraction e and the same time scale for a symmetric top whose moments differ by a fraction ~ y.Since no motion will occur at all if ≠ = ≠ = 0 when t > 0 (i.e. if the pendulum is precisely balanced at the top of its support), it is useful to estimate the dependence of the polar wander time scale on the value of ≠ when t passes through
t = 0. If we approximate Equation (5.21) and its solution by ψ ∖1∕2 n2e.(I)] ≠ and, respectively (assuming that ~ ι∕> ~ 0 when t = 0), the characteristic time for ≠ f° grow to ~ unity is seen to be I1/3
≠ ~ ≠o cosh

n2∈i, (-ln⅛)ιz3 , (5.27)
n ) t

where ψf, is the value of ≠ when t = 0. The dependence of T on ≠o is clearly extremely weak. For example, the time scale given by (5.27) is longer than that given by (5.26) by more than an order of magnitude only if ψo < exp[-103] radians.The model presented here does not explicitly include dissipation and as such cannot be expected to simulate reality. Its purpose is to demonstrate that large scale reorientation can be expected to occur for a synchronous satellite if the axis of the intermediate moment becomes the axis of the maximum moment. The motion is not dynamically inhibited.
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In the following sections, the mechanism of polar wander described here will be made more realistic by addressing the question of the degree of coupling of the motions of the core and the shell, and anelastic damping of the motions.
6. A More Realistic Model for EuropaA comprehensive investigation of polar wander of Europa must address and quantify two classes of physical phenomena that are crucial to an understanding of the extent and form of the polar wander: mechanisms of coupling between the core, the shell, and the layer of liquid water (or “ocean”), as well as mechanisms of damping of angular motion. Several torques exist that act to couple the motions of the core, shell, and liquid layer. We will consider the inertial or Poincaré torque, gravitational coupling, and coupling due to viscous or turbulent shear within the liquid layer. Coupling and damping of the motions of the core and shell are not entirely separate issues. While the Poincaré and gravitational coupling torques are conservative in nature, the viscous and turbulent coupling are dissipative and therefore contribute to damping of motion. Also, any polar wander experienced by a nonrigid body will invoke time-dependent strains, and hence dissipation within it. An effective torque results which will tend to damp its angular motion. Such damping must be included in calculations of reorientation of Europa’s core and shell. We will begin by assuming that the shell is able to reorient independently of the core, impeded only by anelastic friction within the shell itself. The layer of liquid water is assumed to reorient in coincidence with the shell, so that the ice and liquid water may be treated as a single entity. Given the motion of the shell (plus liquid) which results from this assumption, we show in Appendix A that
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the coupling torques mentioned above are incapable of inducing significant angular reorientations of the core during polar wander of the shell, but that the Poincaré torque exerted on the liquid layer by the ice shell probably does cause the liquid to reorient in coincidence with the shell. The above assumptions are thus verified a posteriori.In Section 6.1 we estimate the damping torque which results from dissipation occurring in the shell during polar wander. In Section 6.2 we incorporate this torque into the equations of motion of the shell and describe the solution. In Section 6.3 we discuss the implications of the results of Section 6.2 on the history and surface morphology of Europa.
6.1 Dissipation in the Shell during Polar WanderBecause a thin ice shell must conform very nearly to the hydrostatic surface of the underlying ocean throughout any reorientation event, strains are necessarily imparted to the shell during polar wander. Work must be expended on the shell in order to impose these strains. This required work in turn implies the existence of effective torques which impede polar wander of the shell and which must be included in the equations of motion.If the ice shell behaves as a viscoelastic medium, the large variation in temperature through the shell will induce a spectrum of viscoelastic behavior within it during polar wander — the cold, near-surface ice, where the Maxwell time tm is longer than the time scale τpw over which polar wander takes place, will respond elastically to imposed strains, while warmer ice near the shell-ocean interface (where 
τpw 3> tm) behaves viscously. However, even if the ice behaves as a simple Maxwell medium, the equations describing the stresses and strain rates within it during polar wander are very difficult to solve. We therefore have chosen to approximate
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the shell by an outer layer which responds elastically throughout any reorientation event, underlain by a layer which responds viscously on the same time scale. We define the boundary between the two layers as the surface within the shell where 
τ^M — rpw.The work necessary to impart the required strains to the outer, elastic layer of the shell is simply energy of elastic strain. It can be shown that this elastic strain energy is implicitly accounted for by including (as we have) the kinetic energy of the fossil bulge on the shell in the equations of motion (see Section 4). We may therefore direct our attention solely to the work required to produce the strains associated with polar wander in the viscous layer of the shell. This work is simply viscous dissipation.It is useful to visualize polar wander of the shell in the x,i, coordinate system, defined in Section 5, which is rotating with the mean motion, n. In this coordinate system, the shell is motionless if it is synchronously rotating, and any motion may be equated with polar wander. The coordinate axes of the x" coordinate system coincide with the semimajor axes of a synchronously rotating fluid.As mentioned above, a thin shell must conform very nearly to the hydrostatic surface of the underlying ocean throughout any reorientation event. By visualizing a reorientation of the shell by an angle of 90 degrees about one of the x" coordinate axes, it is therefore clear that during such a reorientation, a characteristic chord within the shell experiences a net strain of the order -γ, since meridional and equatorial great circles on the surface of a synchronously rotating fluid differ in length by fractions of this order (see Equations (4.5) and (4.6)). The characteristic volumetric strain e caused by an arbitrary rotation f about one of the x" axes is therefore of order e ~ qf, and the characteristic viscous stress caused by this strain
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is σ ~ ηe ~ r∣Ιζ where η is the viscosity of a volume element in the viscous layer. Since the dissipation rate per unit volume in a viscous medium is qOijiij where 
Oij and èij are the elements of the stress and strain rate tensors, respectively,

q ~ rn2f2 . (6.1)
We take the viscosity, η, in (6.1) to be the steady state creep viscosity for polycrystalline ice, which obeys an Arrhenius relationship:

η = ηoexp (6.2)
where Tm, ηo, and £ are the melting point temperature, the viscosity at the melting point, and a constant £ ≈ 24, respectively (cf. Hobbs, 1974).Because the viscosity given by Equation (6.2) is a very strongly increasing function of temperature, the total dissipation rate W in the viscous layer is dominated by the dissipation in the shallowest, most viscous region of the layer. Because (by definition) rM = μ ~ τpw at the depth, the viscosity there is

,7lllιlX ~ Prpw (6.3)
ζThe thickness Δ6 of the region of the shell in which the viscosity is within an order of magnitude of i71r1ax is roughly

Δ6 -dlogι077
dT

dz
dT

(6.4)
where and are evaluated at the depth where η = ηnιax ■ We approxi-mate the temperature gradient crudely by6,dz

dT T -Tj∙ τrt -l «
(6.6)
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where Tτn and Tβ are the melting point temperature of ice and a characteristic temperature at the surface of the shell, respectively. Using Equation (6.2) for the viscosity, —^dΙ'1° ma^ evaluated at the temperature where η = z∕u,ax , giving
-dlog1077

dT T,rι In 10 1-U„£ V μ
(6.6)

1 2

We will ignore the factor . since jt has a value of ~ unityfor typical values of ι ≈ 24, ηo ~ 1014 Poise, 10° dynes cm-2 ≤ μ ≤ 4 × 101° dynes cm-2, and for a very broad range of ζ. For example, the factor varies between ~ 1.2 and ~ 2.1 as ⅛ varies between ~ 103 y and ~ 107 y, for μ ~ 4 × 10lθ dynes cm-2.The total viscous dissipation in the shell may now be estimated by multiplying the volume of the layer in which η ~ i7llιax by the volumetric dissipation rate 9 ~ 77max72f2 within that layer, i.e.
W ~ (4πa2Ab) ‰ax√f2 (6.7)

where a is the radius of the shell. Using Equations (6.1) and (6.3)-(6.6), Equation (6.7) may be written
Cv

4πa2bc
Ï (6.8)

The general reorientation rate of the shell in the x" coordinate system is simply (ω — n) where ω and n are the components of the total angular velocity of the shell and of the x" coordinate system itself, written in the x,i' coordinate system. The components of (ω — n) along each of the x" axes contribute to the total dissipation rate. The general formula for the dissipation is complicated but a
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reasonable approximation is[C,ι(ωι — ni)2 + C2(c√2 — rc∙2)2 + C3(w3 — n3)2]1Λ∕ — -Ξ----------------------------------------------------------------- i.∣ω — n∣ (6.9)

where tv; and nt∙ are the components of ω and n along each of the x" axes, and the 
Ci are each of order Cυ as given by Equation (6.8).None of the Ct∙ are equal, because the semimajor axis differences of a synchronously rotating fluid are unequal. The dissipation W implies the existence of damping terms in the equations of motion for the shell. These may be found bynoting that FT is a Rayleigh dissipation function (Goldstein, 1970). The dissipative—≠torque Γ,, on the shell thus has components

∂W■- . √*w>
∂ωi

2Ci(ωi - ni) - lT⅜V-¾) ιv t l, ∣w - n∣∣u7 — n∣ (6.10)
along the x,it coordinate axes. For computational simplicity, we shall assume that C,l = C∙2 = Ci3 = Cυ in the equations of motion of the shell (Section 6.2). Then Equation (6.10) becomes fv = I ~Cv j<√ - nj ≠ n , (6.11)I 0 ω — ni.e., the torque due to viscous dissipation during polar wander is assumed to be of constant magnitude, directed opposite to the vector (ω — n) as long as (ω — n) φ 0. If ω — n = 0 there is no polar wander and clearly no torque due to viscous friction in the ice. Equation (6.11) has an unusual form for a torque arising from dissipation since it is not proportional to an angular velocity. The reason is as follows: as described above, most of the dissipation occurs in the most viscous ice, near the upper boundary of the viscous layer, where the characteristic time scale of the strain is equal to the Maxwell time. If the value of ξ is reduced, the upper boundary of the
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viscous layer moves closer to the outer surface of the shell, where the local viscosity and the Maxwell time of the ice are proportionately longer (note from Equation(6.3) that i71,,ax oc l∕<f). Because of this effect, the total dissipation rate in the ice depends effectively on only one factor of ζ, and the resulting torque is independent of ζ. This approximation is not strictly correct if ζ is not roughly constant, but we employ it for simplicity.In the following section we will demonstrate that the torque given by Equation (6.8) is so large that it virtually eliminates the possibility of polar wander of a continuous ice shell (due to the mechanism described in this paper).However, if fractures or zones of weakness exist in the ice which extend to a depth exceeding that where the Maxwell time of the ice is comparable to the polar wander time scale, the form of the damping torque may be significantly altered and its magnitude greatly reduced, because the strain in the ice above that level may be largely accommodated by the fractures themselves rather than by net extension of continuous volume elements. Thus the upper boundary of the layer in which viscous dissipation occurs will be limited by the base of the fractured region, and the maximum viscosity in the layer (and hence the total amount of viscous dissipation) will be limited by the viscosity at that depth. As will be discussed in the following section, polar wander must take place on a time scale significantly shorter than the time scale for thermal diffusion through the ice shell (~ 107 y) or the mechanism which drives the polar wander will be effectively eliminated. In the following section we conservatively adopt a few × 10c y as the approximate maximum time scale on which polar wander can occur. In order that the damping torque is reduced as described above, we therefore require that zones of weakness or fractures in the ice extend to a depth where t^m ≤ few × 10g y. If ηo ~ 1014
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Poise, and μ ~ 4 × 101° dynes cm-2, the Arrhenius relation (6.2) and Equation(4.1) indicate that the temperature at which tm ~ 2 × 106 y is about 135 K. Crawford and Stevenson (1988) predict that current tidal flexing of a decoupled ice shell on Europa may create fractures extending downward from the surface of the ice to a depth of ~ 1 kilometer. Using a typical temperature gradient of ~ 10 K kπΓ1 and a surface temperature of ~ 100 K (see Paper 1) a temperature of 135 K is reached at a depth of ~ 3.5 km, significantly deeper than the ~ 1 km fractures predicted by Crawford and Stevenson. However, zones of weakness due to previous tidal fractures may extend to much greater depths if Europa’s orbital eccentricity was several times larger in the recent past as suggested by Ojakangas and Stevenson (1986). Also, the presence of a low conductivity regolith on Europa’s surface may increase the temperature at the base of the fractured region by several tens of degrees, allowing it to considerably exceed 135 K. If the temperature at the base of the fractures or zones of weakness is ~ 145 K, the Maxwell time is only ~ 105 y.To estimate the total viscous dissipation rate, W∕, if t^m at the base of the fractured region is less than the polar wander time scale, we follow a development identical to that which led to Equation (6.8). In this case,
Hy ~ (4πα2∆5y) η∕l'2ζ2 , (6.12)

where τ∕y is the viscosity of the ice at the base of the fractured region, and ∆f>y is the thickness of the region of the ice in which the viscosity is within an order of magnitude of η∕. The magnitude of η∕ is found by evaluating η(T∕) using Equation(6.2) , where T∕ is the temperature at the base of the fractured region, which we
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approximate as
Tf^Tβ + (T,n-T9)(j^ , (6.13)

where z∣ is the depth of the base of the fractured region, ∆fec is found from Equation(6.4), where is evaluated at T = T/:rflogwr∕ t(Tm∕Ttf
~Sr~ = - ΓmlnlO ■ <614>Using Equations (6.2), (6.4), (6.5), and (6.14), equation (6.12) may now be written

tyz ~ cyf 
C∕ ~ 4πa2bc

In 10
Tm - T,

ÎL
Tm

ηo exp
Tf

q2 . (6.15)
As described in the development which led to Equation (6.9), the general reorientation rate of the shell in the x'i' coordinate system is (ω — n), and the components of (ω — n) along each of the x” axes contribute to the total dissipation rate. Thus the generalization of Equation (6.15) to the case of arbitrary (ω — n) is 

Wj — C∕i(u>l — ∏ι)2 + C∕2(w2 — ^2)2 + C∕s(ω3 — rc∙s)2 , (6.16)
where the Cfi are each of the order of Cf as given by Equation (6.15) but none of them are equal, and the (w; — ∏i) are the components of (ω — n) along the x" axes.The dissipative torque due to Wj has components 

-∂Wt
γA = -^1- = - ni) (6.17)

along the x" axes. For simplicity we will assume C/ι = Cf<2 = Cy3 = C∫ in the equations of motion of the shell, so that (6.17) becomes simplyf∕ =-2Cz(ω-n) . (6.18)
We believe that this assumption does not significantly change the solution of the equations of motion described in the following section.



Section 6.2 121 Polar Wander of the Shell

6.2 Polar Wander of the ShellWe now derive equations of motion for the shell of Europa assuming that the only important torque (other than the tidal torque) affecting its motion is that due to viscous dissipation within the shell itself, as derived in section (6.1). As mentioned previously, we justify this assumption a posteriori in Appendix A using the solution of the equations derived here. There we argue that the Poincaré torque (among others) is unable to induce significant polar wander of the silicate core during reorientation of the shell. This is a significant result because the Poincaré torque is thought to be responsible for the nearly coincident motion of the Earth’s core and mantle during the precession of the equinoxes. However, we also argue in Appendix A that it is likely that the Poincaré torque does cause the liquid water layer to reorient in coincidence with the ice shell. Therefore we shall refer hereafter to the sum of the ice shell and the liquid water layer collectively as “the shell” for simplicity.The largest principal moment differences in the inertia tensor of the shell are due to the hydrostatic response of its surface to the tidal and rotational potentials. However, as long as any motion of the shell with respect to the xti, coordinate system (i.e. polar wander) occurs on a time scale which is long compared to the rotation period and the characteristic relaxation time of the hydrostatic bulge, that bulge will remain fixed in the ^''-coordinate system and will not contribute to the dynamics of the system. The time scale for relaxation of the hydrostatic bulge on the shell is essentially the gravity wave travel time in the ocean (a few hours), since the ocean is effectively inviscid and the overlying thin shell is almost elastic on this time scale and cannot significantly affect the shape of its surface.A bulge which is stationary in the x'i' coordinate system during reorientation
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of the shell will propagate in a coordinate system which is fixed with respect to it. The propagation of such a bulge implies that a nonzero angular momentum will exist with respect to the frame of the shell during its motion. In problems concerning the dynamics of non-rigid bodies, this momentum is known as relative angular momentum, and must in general be included in the equations of motion (Munk and MacDonald, 1960). However, the ratio of the rate of change of the relative angular momentum to the term in the equations of motion which drives polar wander (which is a measure of its importance in the equations of motion) is

where τrot and τpm are the rotation period and the time scale on which the polar wander occurs, respectively. Even if rpw is as small as ~ 103 years, and y ~ 10~c (which we shall argue is ~ the upper limit of its possible values), this ratio is ~ 10“8. The relative angular momentum is therefore utterly negligible. We conclude from the above discussion that if any large-scale polar wander experienced by the shell occurs on a time scale which is long compared to the rotation period, the components of the inertia tensor due to the hydrostatic tidal and rotational bulges as well as the relative angular momentum due to the motion of those bulges over the shell may be ignored in the equations of motion.We first investigate the likelihood of polar wander if the shell is not pervasively fractured to a significant depth (see previous section). The equations of motion for the shell are obtained directly from the Euler Equations (5.6)-(5.8) of section 5. Since the Euler equations describe the components of the total rate of change of angular momentum directed along each of the principal axes of the shell, we simply add to each of them the appropriate component of the torque given by
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Equation (6.11), projected along the appropriate principal axes of the shell. The equations of motion are thus
d C= (⅞ — ∕3)^2W3 — 3rc2(∕2 — Z3)λ2λ3 — — n1) (6.19)
d C

-r(I2ω2} — (Λ — A)ω1W3 — 3n2(∕3 — I1)λ1λ3 — — rη-(ω2 — n2) (6.20)
at ∣ω — n∖

d C^77(-f3ω3) = (Λ - f2)ω1ω2 - 3n2(∕1 — J2)λ1λ2 — -p τr(ω3 ~ n3) , (6.21)
at ∣u> — n∣where (ω^ — n√) are the components of (ω — n) directed along the axes of the body coordinate system Xi as defined in Section 5:

(uq — n∙ι) = φ sin ψ cos θ — θ cos ≠ (6.22)
(ω2 — n2) = φ cos ≠ cos θ + θ sin ≠ (6.23)

(ω3 - n3) = ≠>sin0 + ≠ , (6.24)
and the other parameters are as defined in Sections 5 and 6.1.Now several operations are performed to cast Equations (6.19)-(6.2l) in amore useful form: The moments of inertia ∕l∙ are replaced by the expressions of Equation (5.1), and the λi, ωi, and (w; — nJ are replaced by Equations (5.3),(5.5), and (6.22)-(6.24), respectively. The product of sin≠ with Equation (6.19) is added to the product of cos≠ with Equation (6.20) to obtain Equation (6.25), and the product of — cos≠ with Equation (6.19) is added to the product of sin≠ with Equation (6.20) to obtain Equation (6.26). Equation (6.27) is obtained directly from equation (6.21). The resulting equations are divided by ∕o. Finally, it is assumed that ≪ e, tp <C θ <C 1, θ <C n, φ <C n, <pθ <C ψ <C nθ so that when such terms appear together, the smaller is neglected. These assumptions may be verified a posteriori.
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The resulting equations of motion may be written as follows:
-l<P

t∖ 1C
φ — -3n∕se<p + nθθ — 2nzθ ( - I sin2≠ —— - v

τ ∕ L, u> - n
θ = nψ — 4n2eθ

C,,

Io ω — n ;θ

nθ = (~∖ n2 sin 20 ——∖ ∕ lo
1 c,,ιω — n r≠

(6.25)
(6.26)
(6.27)Because ∣c√-n∣ ≈ 0 in the solution to the (undamped) equations of motion of Section 5, we expect that if polar wander occurs at all, 0 will be the dominant component of p — n∣ in the solution of Equations (6.25)-(6.27), which include the damping torque described in Section 6.1. Also from the development of Section 5, we may identify the right-hand side of Equation (6.27) as the important quantity driving polar wander. If the right-hand side of Equation (6.27) is a positive quantity, the shell will experience polar wander. This criterion may now be written2C,,sin 20 ≥∙ (I)"2 (6.28)

Io is taken to be the moment of inertia of a thin spherical shell,
T 8π A 4 Io =≤ ~pboa (6.29)

where p, bo, and a are the density, average thickness, and radius of the shell, respectively. Using Equations (6.8) and (6.29), the criterion (6.28) may be written 10"5sin 20 > μ (6.30)4 × 10lθ dynes cm 2 J [(i∕r) when values of bo and p are taken to be ~ 100 km and ~ 1 g cm“3, respectively, and other parameter values are as stated previously.The quantity (y) for a shell which is not coupled to the core of Europa is essentially
t _ (Iyy ~ ^∙g) (6.31)
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where Iyy and Izz are as defined by Equations (3.13) and (3.14), and the C,2m are those portions of the total C2m which are due to ice thickness variations and the fossil bulge on the shell. Using Equations (3.9), (3.18), and (4.10), the equilibrium value of ( y ) may thus be written
i) .,=(10"5) 

∕ equιl

⅛" 1 2⅛∖ _ o.6 1 km ∕ 2 km (6.32)4 × 10lθ dynes cm 2for a shell (ice plus ocean) of ~ 100 km thickness, bc ~ 20 km, and other parameters as discussed in Section 4.Similarly, the quantity e is essentially(Zsz Λrx)
To (6.33)

where Ixx and Izz are as defined by Equations (3.12) and (3.14), and the C2,n are those portions due to a fossil bulge on the shell (see equation (4.10)) and ice thickness variations. Using Equations (3.9), (3.12), (3.14), and (4.10), (6.33) may be written
e ~ 2 × 10~5 d2 km _____________M____________4 X 101° dynes cm-2 + (0.5) —£20 + 2i22 1 km (6.34)for a shell with a thickness of ~ 100 km, and other parameters as discussed in section 4.At this point it is necessary to discuss in some detail the value which is likely to attain.Since (i2o ÷ 2i22) may become as large as ~ 1 km if the ice thickness approaches its thermal equilibrium profile (see section 4 and Paper 1), Equation (6.32) appears to indicate that y may approach values on the order of ~ 10-5. However, a thermal equilibrium ice thickness profile can only be achieved on a time scale which

μ
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approaches the time required for an element of heat to diffuse through the entire ice shell. As the following discussion indicates, polar wander must occur on a time scale significantly shorter than this diffusion time, or the mechanism driving the polar wander is effectively eliminated.The evolution of the thickness profile of the ice shell is driven by spatial variations in the distribution of tidal heating within the ice and the temperature at the surface of the ice (see Paper 1), both of which are functions of latitude and longitude measured in a coordinate system which is synchronously rotating (e.g., the 
xri' coordinate system described in Section 5 or the X,Y,Z coordinate system in which the gravitational harmonics are computed (Section 4)). Since y represents a fraction of the inertia tensor measured in the frame of the shell, it is clear that its growth will be affected by reorientation of the shell with respect to a synchronously rotating coordinate system. In the extreme case where reorientation occurs on a time scale longer than the thermal diffusion time for the entire thickness of the ice shell (~ 107 years), the inertia tensor of the shell would become effectively fixed in the synchronously rotating coordinate system, regardless of the motion of the shell. Furthermore, the form of such an inertia tensor would correspond to a pendulum which is continually balanced directly above its support so that the driving mechanism for the polar wander would be effectively eliminated. If reorientation occurs on a shorter time scale, however, the evolution of the thickness profile will remain effectively unaltered by polar wander of the shell for the period of time which is required for the effects of an altered surface temperature and local tidal dissipation rate to diffuse toward the base of the ice (where increments to the ice thickness are accrued). The effects of a changing surface temperature cannot reach the base of the ice until the thermal diffusion time for the shell’s entire thickness
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has elapsed. However, the effect of the spatial distribution of tidal dissipation on ice thickness is in general more important in determining the value of t^o ÷ 2f22 than the effect of variations of surface temperature (see Paper 1).Since most of the tidal dissipation is probably concentrated in the lowermost ~ 1 km or so of the ice, the base of the ice will begin to respond to its changing thermal environment within about 105 years (the diffusion time through ~ 1 km of ice) after substantial polar wander begins. However, large-scale changes in the amount of heat flowing upward from the base of the ice (and hence the rate at which (y) grows), cannot occur without alteration of the temperature gradient of a substantial portion of the ice above the level where the dissipation is concentrated. Therefore, we conclude that (y) will continue to grow throughout the period during which the polar wander occurs, if the time scale of the polar wander is significantly smaller than 107 y.The equilibrium value of (y) given by Equation (6.32) indicates that the principal moments of the shell may change by a fraction ~ 10~5 in ~ 107 years (the thermal diffusion time through a 20 km-thick ice shell) if the thermal-equilibrium value of i2o ÷ 2i22 is ~ 1 km. Therefore, the parameter τ ~ 1012 years.The actual response of the time evolution of the thickness profile to reorientation is clearly complicated. We (somewhat arbitrarily) assume that (y) will cease to grow when t ≥ 2 × 106 years, if substantial reorientation has occurred by that time. Thus if τ ~ 1012 years, y cannot exceed a value of ~ few × 10-g.From the above discussion it is evident that f2o + 2i22 cannot attain its thermal equilibrium value if polar wander is to occur. Polar wander must occur on a time scale less than the diffusion time through the ice.Therefore it is inappropriate to insert values of y larger than ~ few × 10-c
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in Equation (6.30). Note also from Equations (6.32) and (6.34) that for values of y < 10-g, the requirement that y ≪ ∈ is satisfied for μ ~ 4 × 10lθ dynes cm-2 and d ~ 2 km.Now it is clear from the criterion (6.30) that ≠ must have an initial value of > 10 degrees in order for polar wander of the shell to be initiated, even if μ is as small as the lower limit given by Hobbs (1974) of ~ 109 dynes cm-2 and (∙θ is as large as ~ 10~6. The authors know of no reasonable mechanism capable of inducing such large initial values of ψ. For illustration, to produce an off-diagonal element of the inertia tensor of the shell of a magnitude corresponding to a value of ≠ of ~ 10° by an impacting body, one would require an impact in mid-latitudes of a 3 g cm-3 object ~ 300 km in radius.We therefore claim that it is virtually impossible for polar wander of the shell to be initiated if the shell is not pervasively fractured to a significant depth. Using the analogy (described in Section 5) of the angle 2≠ to a pendulum, it is as though the pendulum, which becomes balanced at the top of its support as 
t becomes positive, is immersed in a substance which produces a large, constant frictional force opposing its motion whenever ≠ ≠ 0. The pendulum is thus “stuck” at the top of its support, where the effect of gravity on its motion is very small.We now examine the case (see Section 6.1) where the ice shell is pervasively fractured due to tidal stresses, to a depth where the local Maxwell time is less than ~ few × 106 y, the maximum time scale on which polar wander can occur. In this case, as described in Section 6.1, the torque to viscous dissipation in the shell during polar wander has a significantly smaller magnitude, and a form which we approximate by Equation (6.18). The development of the equations of motion is identical to that which led to Equations (6.25)-(6.27), when the torque given by
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Equation (6.11) is replaced by Equation (6.18). We write the resulting equations as follows:
-3n2e<p + nθθ — 2n2θ sin2≠ — P

Θ = nψ — 4n2eθ — ( -j- ) θ

nθ - sin 2≠ cl
Io

(6.35)
(6.36)
(6.37)

P

n ≠ ,where C∣ is given by Equation (6.15). The solution of Equations (6.35)-(6.37) is found as follows: we first assume that the terms Θ and & in Equation (6.36)are insignificant compared to the others (verifiable a posteriori). Thus Equation (6.36) gives
θ

4ne
(6.38)

(as was also found in the dissipationless case described in Section 5). Differentiating Equation (6.38) with respect to time and inserting the result for θ on the left-hand side of Equation (6.37), the following decoupled equation describing the evolution of ψ is found:
en2 sin2≠ — 4e

Cf I (6.39)
Equation (6.39) is the equation of a simple damped pendulum, for which the direction of gravity reverses as (jf'j passes through zero. By analogy to the equation of the damped simple harmonic oscillator, it is easy to show that the solution to Equation (6.39) is overdamped if the square of the coefficient multiplying ≠ is much greater than the coefficient multiplying sin2≠. Using Equations (6.15) and (6.29), this criterion may be written

(10"e) ≪ 1 (6.40)
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(?) n2lo 
Cf

≠ = ⅛

C√rn2∕o

for T∕ ~ 145 K for Ts ~ 100 K, ηo ~ 10i4 Poise, and other parameter values as given previously. Thus the system is clearly in the overdamped regime for reasonable choices of parameters. The inertial term ≠ may therefore be ignored in Equation (6.39), so that sin2≠ , (6.41)
which may be integrated, yielding

∕ t Vtan ≠ = (tan ≠o) exp I — ) (6.42)∖τI∕1 2 ?where ψo is the value of ≠ when t passes through zero, and τj∙ is the characteristic time scale of the polar wander. Figure 8 shows ψ(t) as given by Equation (6.42). The time required for large scale polar wander to occur is very weakly dependent on ≠o, as may be seen by solving equation (6.42) for the value of t when ≠ reaches 45°: 1i(≠ = 45°) = [- ln(tan≠o)]2 τ∕ . (6.43)For example, Equation (6.43) indicates that the time scale for large scale polar wander is more than an order of magnitude larger than τ∕ only if ψo < 10~11 radians. Small effective values of ψo are inevitable due to irregularities in ice albedo (leading to irregularities in ice thickness), small impacting bodies, etc. Thus if polar wander is favored, it is very easily initiated and occurs on a time scale comparable to τy, virtually regardless of the value of ψo.However, as discussed earlier, τy must be significantly shorter than the time scale for diffusion of heat through the shell (~ 107 y). Tj depends on the temperature, T∕, at the base of the fractured region. In Figure 9, τy is plotted as a function
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Figure 8. The polar wander tip-angle ≠ as a function of time as given by Equation (6.42). Curves are labeled by ≠o, the initial value of ψ. Time is in units of τj-. Note the weak dependence of the time required for polar wander on ≠,,.
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of T/, using Equations (6.15), (6.29), and (6.42). The Maxwell time at the base of the fractured region is also plotted as a function of T∕ in Figure 9, using equation (6.2) in the definition of the Maxwell time, rM ≡ In order for the dissipative torque to be roughly described by Equation (6.18) it is necessary for the Maxwell time at the base of the fractured region to be significantly smaller than τj (see section 6.1). Figure 9 demonstrates that this requirement is satisfied for our choices of parameters, at all values of T∕. Note that if Tf < 140 K, τ∕ exceeds ~ few × 106 y and polar wander probably does not occur, for the reasons discussed in section 6.1.It is instructive to compare Tf to the time scale for undamped polar wander given by Equation (5.26). If e ~ 10~5 (see Equation (6.34)) and r ~ 1012 y (see above) Equation (5.26) gives T ~ 5 x 103 years. Thus if polar wander were uninhibited by dissipation within the shell, it would occur in only ~ 5 × 103 years. This is therefore a lower limit to the actual polar wander time scale.The evolution of θ during polar wander is found immediately from equations (6.38) and (6.41): "iiKir)(⅛)sin2''' ’ <β∙∙,4>
where the time behavior of ≠ is given by Equation (6.42).Inserting Equation (6.44) into Equation (6.35), it may now be seen that the first and third terms dominate on the right-hand side of (6.35), so thatφ - (τ^) 0sin2≠ ~ ^^⅛ (τ^) (⅛~) isin2≠ι2 ∙ (6∙45)
Equations (6.42), (6.44), and (6.45) completely describe the solution to lowest order of the equations of motion (6.35)-(6.37).Using Tf ~ 145 K, and other parameter values as stated previously, Equa-
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Figure 9. The time scale τj and the Maxwell time tm at the base of the fractured region, plotted as functions of Tj. im must be less than τ∕, and τj must be less than ~ 2 X 10° years or the mechanism driving polar wander is eliminated by thermal diffusion (see text).
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tions (6.44) and (6.45) may be written

θ ~ 1.2 × 10'4 sin2≠ (6.46)
y>~-8 ×10"5^ [sin2≠]2 . (6.47)

Thus θ and <p remain very small while ≠ evolves from ~ zero to It may now be readily verified that <p <C θ ≪ 1., θ C n, ιp ∙C re., and φθ <C ≠ << nθ (as 
was assumed when simplifying the equations of motion to obtain Equations (6.35)- (6.37)), as long as (y) C e. Because the ice is assumed, in this development to be pervasively fractured to a depth where the Maxwell time is less than τy, any fossil bulge on the shell due to elastic behavior of the outer regions of the ice must be set to zero, because strains in the elastic portion of the shell are accommodated by the fractures (see Section 6.1). Thus, when evaluating ~ and ∈ using Equations (6.32) and (6.34), only the terms which are proportional to the ice thickness components, 
l>2mι should be retained. The criterion γ <C e may then be writtenÎ20 ÷ 2Î22tJ∑

e
≪ 1 (6.48)z —Î20 ÷ 2Î22.In Table I of Paper 1, values of the quantities 4Î22 and £20 + 2^22 are tabulated for four examples of plausible thermal equilibrium thickness profiles for a decoupled ice shell. Three of the examples have £20 ÷ 2⅛2 > θ, so that polar wander is possible. In the first such example the ice is assumed to behave as a Maxwell medium and a uniform heatflow of 10 erg cm-2 s~1 is assumed to flow into the ice from the core. In the second example the ice is assumed to behave according to the generalized Glen’s flow law with a flow law exponent of re<√ = 3, and in the third example a generalized flow law is also assumed, with, a more extreme value of 

n<3 = 5 (see Paper 1 for other details). For these three examples the values which
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e J would have in thermal equilibrium may be derived from Table I of Paper 1, giving ~ 0.05, ~ 0.2, and ~ 0.3, respectively. Thus, if thermal equilibrium were reached, the criterion (6.48) would be only marginally satisfied. However, we have argued that polar wander can only occur if y remains substantially smaller than its thermal equilibrium value throughout the period during which polar wander takes place. While ⅛ must evolve from negative to positive values as the thickness profile approaches thermal equilibrium, it may be easily shown that the thermal equilibrium value of the principal moment difference represented by e when ≠ = 0 (before polar wander) is not markedly different from the thermal-equilibrium value of e when ∙ψ = (after polar wander). Using Equations (3.9), (3.12)-(3.14), and (3.18), the former and latter may be seen to be proportional to the thermal equilibrium values of —i20 + 2t22 and 4Î22, respectively. These quantities are of the same sign. The average difference between them, derived from Table I of Paper 1, is only ~ 30%, and is as small as ~ 9% for the case of the Maxwell rheology (with the nonzero core heatflow). For the Maxwell model of Table I with zero core heatflow, it is only ~ 2% (although polar wander is not likely for that model). Because the thermal equilibrium value of e does not depend strongly on the orientation of the shell, it is therefore likely that e may remain close to that value throughout the history of the shell. Since must be significantly smaller than its thermal equilibrium value during polar wander, the criterion given by (6.48) may therefore be well satisfied. In any case, we expect that the solution for the shell’s motion given by (6.42), (6.44), and (6.45) will be roughly correct even if the inequality (6.48) is not strong.
6.3 DiscussionSeveral additional points bear mentioning:
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As indicated in Figure 9, polar wander of a shell which is pervasively fractured (from the surface downward) may occur on a time scale Tf ~ 105-106 y if the temperature at the base of the fractured region, Tf, exceeds 140 K. Shorter time scales are possible if Tf is higher still. However, as discussed in Section 6.2, typical temperature gradients make shorter time scales unlikely. Thus the lower limit to 
Tf is somewhat uncertain, although for very large values of Tf it must be limited by the time scale for undamped polar wander of ~ few × 103 y given by Equation (5.26). An upper limit is given by the fact that polar wander must occur on a time scale significantly shorter than the time required for diffusion of heat through the ice, ~ 107 y (see Section 6.2).Another important time scale which polar wander must not approach is the time scale on which topography at the base of the shell will exhibit viscous flow. Viscous flow will occur because of the horizontal pressure variation within the ice, despite the presence of isostacy. Such flow will, of course, tend to eliminate the 
t2,n and hence the mechanism which drives the polar wander. The time scale for viscous flow is found in Appendix B to be on the order of 106-107 years. Since this is similar to the thermal diffusion time for the shell, it therefore imposes no significant additional constraint on the range of time scales on which polar wandermay occur.It is likely that large scale polar wander of the shell occurs episodically: a state of thermal equilibrium for the shell is approached on a time scale of ~ 107 years (the thermal diffusion time scale). At some point during this approach to thermal equilibrium (when the orientations of the maximum and intermediate principal axes interchange), the shell becomes dynamically unstable and reorients toward the preferred orientation for synchronous satellites on the time scale Tf. The shell then
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begins to approach the thermal-equilibrium thickness profile as determined by its new orientation, and the process repeats itself. However, it is possible that the shell actually exhibits a continuous drifting motion on the thermal diffusion time scale of ~ 107 y, always remaining in a condition of slight thermal and orientational disequilibrium. Such a state probably can only occur if the time scale τj- is comparable to the thermal diffusion time.In Section (6.2) it is argued that polar wander cannot occur unless the strain imposed during reorientation is accommodated by fractures which extend from the surface to a depth such that they penetrate the layer which responds viscously on the polar wander time scale. The results of Crawford and Stevenson (1988) are called upon as support for the conjecture that such fractures may exist due to the influence of the eccentricity tide. However, the results of Crawford and Stevenson also suggest that the eccentricity tide may induce fractures extending upward from the base of the shell, as far as ~ 92% of the shell’s thickness (if volatiles exist in solution within the liquid water layer, the fractures may even reach the surface). If pervasive fractures extend both downward from the surface and upward from the base of the shell, it is possible that viscous deformation during polar wander may be largely eliminated by motion along fractures. It is then possible that the polar wander proceeds relatively unhindered by viscous dissipation. Perhaps only a much smaller “effective” viscosity of the fractured ice contributes to the damping process. The polar wander time scale may then approach the time scale for undamped polar wander (Equation (5.26)) of ~ 103 y. However, if the viscosity and rigidity at the base of the shell have reasonable values of ~ 1014 Poise and 4 × 10lθ dynes cm-2, respectively, the Maxwell time at the base of the ice is ~ 40 minutes, ~ 100 times shorter than the frequency of the tidal forcing (~ 3.5 days). Therefore, the ice at
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the base of the shell may behave viscously on the tidal time scale and fractures extending upward from the base of the shell may not be produced.As discussed in section (6.2), the simple model presented in this paper seems to indicate that polar wander of Europa’s ice shell (by the mechanism described in this paper) is an unlikely cause of the extensive fractures of the satellite’s surface which were observed in the Voyager images: unless extensive surface fractures exist as a result of another mechanism (e.g., the eccentricity tide) the polar wander process is so severely limited by viscous friction that it cannot occur. However, it is possible that the simple rheology employed in our calculations does not realistically describe the behavior of Europa’s ice. If the actual dissipation within the ice resulting from polar wander is significantly smaller than our calculations suggest, large scale polar wander may occur without substantial preexisting fractures. If this is the case, polar wander would provide a very effective mechanism for fracturing the shell, as the stresses imparted to the elastic lithosphere during polar wander are ~ ∙∣ ~ 100 times larger than the stresses imposed by the eccentricity tide (e is Europa’s orbital eccentricity).As discussed in Appendix A, a rotating fluid confined within an ellipsoidal cavity will have a torque known as the Poincaré torque exerted upon it by the cavity whenever the axis of symmetry of the cavity departs from the axis of rotation of the fluid. In Appendix A it is argued that the Poincare torque exerted on the layer of liquid water by the ice shell probably causes the liquid to reorient in coincidence with the ice during polar wander, but that the Poincaré torque exerted on the silicate core by the overlying liquid is unable to induce significant motion of the core during polar wander. This result is noteworthy because the Poincaré torque is believed to be responsible for the very nearly coincident motion exhibited by the earth’s
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fluid core and its mantle during the precession of the equinoxes (cf. Rochester, 1976). The important distinctions between these very different problems may be described as follows: The Poincaré torque is large only if the axis of symmetry of the cavity departs from the rotation axis of the fluid contained within it by a large angle. In the case of the liquid layer and the ice shell on Europa, the axis of rotation of the fluid and the shell (as well as the core) always have very nearly the same direction in inertial space, but the lower surface of the shell (the “containing cavity” ) has a large nonspherical permanent component to its surface due to the ice thickness variations, which departs from the rotation axis by a large angle (≈ ≠) as polar wander proceeds. Therefore the liquid layer is strongly coupled to the shell during polar wander. The Poincare torque cannot be minimized by alignment of the rotation axis of the liquid with the symmetry axis of the cavity because angular momentum must be conserved. In the case of coupling between the core and the overlying liquid, the “cavity” (the surface of the core) is surrounded by the liquid. Since the rotation axis of the liquid (in coincidence with the ice) departs from its initial direction by an angle of only ~ during polar wander (~ 10-7 to 10-δ radians for rf,w ~ -⅜- ~ 105 y to 10e y) the angle between the rotation axis and the symmetry axis of the core is always very small, so that the Poincaré torque is ineffective and the core cannot participate in the polar wander. In the case of the forced precession of the earth, the axis of figure of the containing cavity (the mantle) is essentially the mantle’s rotation axis, which exhibits large motions in inertial space on the precession time scale. In that case, the Poincaré torque is large unless the rotation axis of the fluid core closely follows that of the mantle. Since the torques due to the sun and the moon acting on the rotational bulges of the core and mantle are present in that case, the Poincaré torque can be minimized
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by alignment of the rotation vectors.The difference in the effectiveness of the Poincaré torque in core-mantle coupling on the earth and core-ocean coupling on Europa may be stated as follows: The characteristic rate of change of the angular momentum of the shell of Europa during polar wander is ~ Ion2 while the magnitude of the Poincaré torqueacting on the core is ~ pwater°5n2'7X> where χ is the angle between the angular velocity vectors of the core and the overlying liquid. Comparing the above quantities, it is seen that the Poincaré torque is unable to couple the motion of the core to that of the overlying liquid if
κr3 105 years

Tpw

κr6
~~Γ~ (A.6)≪ ι

where τpw is the time scale on which the polar wander occurs, and X ~ ~ 7ti2l,where rrθt ~ is the rotation period (see Appendix A). Except for a short period near t = 0, this inequality is well satisfied throughout the period during which the polar wander occurs. By contrast, the criterion that must be satisfied if the Poincaré torque is to be unimportant for the case of forced precession is
^rrot∕rι,w^ ι , (θ 49)

where rprec is the time scale of forced precession (cf. Lamb, 1932). For the forced precession of the earth, the left hand side of (6.49) is ~ 105 times smaller than unity. The Poincaré torque is thus very important in that problem.Another question to be addressed is whether the topography at the base of the ice shell which drives the polar wander may melt as a result of friction with the underlying water during the polar wander process. The result depends on whether the kinetic energy (measured with respect to the core) acquired by a parcel of ice



Section 6.3 141 Discussion

during polar wander exceeds the latent heat of melting for the parcel. Since the kinetic energy per gram is ~ (τy‰-) and the latent heat is ~ 109 erg∕g, the kinetic energy may be seen to be smaller than the latent heat by ~ 1013 even if τpw is as short as ~ 103 years. Furthermore, the relative motion in our model is confined to a boundary layer at the core-ocean interface, and we expect relative motion at the base of the ice to be slight. The topography clearly cannot melt as a result of relative motion at the ice-ocean interface.The total energy dissipated in the ice shell due to polar wander may be seen by integration of equation (6.15) to be on the order ofτ∕ 1
Cfψ2 dt ~ ~~ ~ n . (6.50)oUsing Equations (6.15), (6.29), and (6.42), equation (6.50) gives a total energy of ~ 102s ergs for T∕ ~ 145 K and other parameter values as quoted in Section 6.1. This amounts to an average heatflow of ~ 10~5 erg cm-2 sec-1 if the polar wander occurs in ~ 105 years. Since typical heatflows due to tidal dissipation in the ice are ~ 10 erg cm-2 sec-1 (see Paper l), the heatflow caused by polar wander is negligible by comparison.It should be noted that all of the dissipation which occurs throughout the time evolution of the ice thickness profile is not explicitly included in the damping mechanisms described in this paper. A significant dissipation is implied by the fact that the inertia tensor in our model is assumed to evolve in time in a manner which is independent of the orientation of the shell with respect to the rotational and tidal potential fields. In general, an arbitrary quasistatic redistribution of elements of mass within a spatially varying potential field will involve dissipation of energy. The magnitude of this energy in the problem described in this paper is < ( y ) Ifjn2,
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which is ~ 1024 erg if (y J remains <, 10 g. This energy has been ignored in this development by ignoring terms of the form pωi in the Euler equations of motion.
7. ConclusionsIf Europa’s structure consists of an elastic ice shell separated from a silicate core by a layer of liquid water, the variations in surface temperature over the shell, and tidal dissipation within it, will cause its thickness to vary with latitude and longitude in its thermal equilibrium state (Paper 1). The second degree components of these thickness variations contribute to the satellite’s inertia tensor, as does the presence of a fossil rotational and tidal bulge. Since the thickness variations are accrued at the base of the ice shell, the problem is one where an elastic lithosphere is loaded from below. Following the approach used by Willemann and Turcotte (1981), we have developed equations that describe the effect on a body’s inertia tensor of second-harmonic-degree topography that is added to the base of an elastic lithosphere on a planetary body. Analysis of the inertia tensor which Europa would have if its shell were in thermal equilibrium indicates that for many choices of parameters, such a state would involve an orientation of Europa’s principal axes which is unusual for synchronously rotating satellites. Specifically, the axes of the intermediate and maximum principal moments are interchanged. To reach the preferred orientation, a thermal-equilibrium ice shell must execute a net reorientation of ninety degrees about the satellite-planet direction.We have presented a simple model of a rigid, synchronously rotating satellite in a circular orbit for which the difference between the intermediate and maximum moments is linear in time, passing through zero when t = 0. The simple model indicates that the expected reorientation is indeed dynamically favored, accompanied
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by a small transient tilt of the x3 body axis (which normally is coincident with the satellite-planet direction) out of the plane of the orbit, and a small transient lag of the same axis behind the satellite-planet direction.In order to determine more realistically the form which polar wander of an ice shell would take, we have considered a more realistic model which includes the effects of various torques which act to couple the motions of the core, shell, and liquid water layer, and the effect of viscous dissipation occurring in the shell as a result of polar wander. The coupling torques considered include the Poincaré torque, gravitational coupling, and the torque due to viscous or turbulent shear in the liquid water layer. None of these torques are found to be capable of inducing significant motion of the silicate core during polar wander of the shell. However, the Poincaré torque acting across the shell-ocean boundary may be shown to have precisely the magnitude and direction which is necessary to induce coincident motion of the liquid water layer and the shell (see Appendix A). We therefore assume that the liquid water layer and the ice shell move as a single, rigid entity. Such “rigid body” behavior of a liquid confined within an ellipsoidal cavity has been shown by Lamb (1932) to be a valid solution of the fluid dynamical equations of motion for a similar system. Relative motion between the silicate core and the overlying water is assumed to be confined to a boundary layer at the base of the ocean. It is found that viscous dissipation arising in the shell as a result of reorientation virtually eliminates the possibility that polar wander may occur, unless fractures (e.g., due to tidal stresses) extend from the surface of the shell to a depth where the ice behaves viscously on the polar wander time scale (i.e. a few kilometers or alternatively ~ 1 km if an insulating regolith exists which elevates the near-surface temperature by a few tens of Kelvins). Fractures extending to ~ 1 km depth due to
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tidal stresses are predicted by Crawford and Stevenson (1988). If the temperature 
Tf at the base of the fractured region is between 140-145 K, polar wander occurs on a time scale of 10e-105 years (decreasing as Tf increases) after the sign of the difference between the intermediate and maximum principal moments reverses. In the absence of dissipation within the ice, polar wander would occur on a time scale of ~ few × 103 years. The friction which results in the liquid layer between the shell and the core due to polar wander of the shell, is turbulent unless the length scale of turbulence is < 1 km. Polar wander must occur in a time that is significantly less than the thermal diffusion time for the shell, ~ 107 y, or the thickness profile of the shell will respond to its new thermal environment, and the mechanism driving the polar wander will be virtually eliminated. Viscous flow of the topography at the base of the ice will also occur on a time scale near 107 y. Since the tidal dissipation is probably concentrated in the lower few km of the ice, the time evolution of the thickness profile will actually begin to be affected by its new orientation in the diffusion time for the lower few km of the ice, ~ 105 y, although substantial changes in the evolution of (∣Q cannot occur until a significantly longer time has elapsed. We adopt 2 × 106 years as a conservative upper limit to the polar wander time scale. The simple model presented here suggests that large scale polar wander cannot occur unless extensive surface fractures already exist. However, if the dissipation in an unfractured shell arising from polar wander is in reality a few orders of magnitude smaller than our simple model suggests, polar wander would be a very effective mechanism for fracturing the shell, since stresses imparted during polar wander are ~ ∙∣ ~ 100 times larger than those due to the eccentricity tide. Polar wander may play a role in the production of the extensive crack-like lineaments on Europa’s surface.
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Appendix A: The Coupling TorquesThe purpose of this appendix is to describe the various torques which act to couple the motions of the silicate core, the liquid water layer, and the shell, during polar wander of the shell, and to estimate their effectiveness in doing so. We will discuss the well known Poincaré torque, gravitational coupling torques, and the torque due to viscous or turbulent friction within the liquid water layer. Although we will argue that none of these torques are capable of inducing appreciable motion of the silicate core during reorientation of the shell, we shall see that the Poincaré torque is unique in that it may cause the liquid water layer to reorient in coincidence with the shell. We will begin in section A.l by arguing that the ocean reorients in coincidence with the shell during polar wander. Then in section A.2 we will discuss the extent to which the various torques are able to couple the motion of the core with that of the composite shell-ocean entity.
A.l Shell-Ocean CouplingA uniformly rotating fluid, confined within an ellipsoidal cavity will have a net torque exerted upon it, by the wall of the cavity, whenever the axis of rotation of the fluid departs from the axis of figure of the cavity. This torque is known as the Poincaré or inertial torque, and its value may be found by integrating over the surface of the contained fluid:
where n is the outward-directed unit normal vector of the surface, P is the pressure in the fluid at the surface, dS is an element of the surface area, and r is the radius vector of the surface element from the center of the body (cf. Rochester, 1976).
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For fluids with nonzero viscosity, Equation (A.l) is valid as long as the difference between the equatorial and polar radii of the cavity’s surface significantly exceeds the thickness of the viscous or turbulent boundary layer which separates the interior from the cavity’s surface. This criterion will be discussed later in this section. We wish to consider the Poincaré torque which is exerted on the liquid water layer by the ice shell during polar wander of the shell. However, as we will soon discuss, that problem is complicated by nonrigid behavior of the shell, effects due to self gravity, and the presence of the silicate core.Therefore it is instructive to first discuss the simpler problem of a non-self- gravitating satellite consisting of a fluid confined within a rotating rigid elliptical cavity of characteristic ellipticity e. We let the cavity rotate uniformly about an axis which departs from its minimum semimajor axis (i.e. its axis of maximum principal moment of inertia) by a large angle, and we wish to estimate the magnitude of the Poincaré torque exerted by the cavity on the fluid it contains. The cavity and the fluid are assumed to be in very nearly synchronous rotation, orbiting a parent planet under the influence of the tidal potential of the planet.To evaluate Equation (A.1) it is necessary to know the pressure field within the fluid as well as the shape of the cavity. Only nonspherically symmetric components of the pressure field in the fluid can exert a net torque on the interface between the fluid and the cavity. The largest departures of the pressure field in the fluid from spherical symmetry are due to the tidal and rotational potentials. The sum of these potentials within the fluid may be written
U =-^ω2r2sin2 ≠ - T,2(c0s S,) , (A.2)

where M, ω, R, r, ≠, and S are the mass of the parent planet, the spin rate of the fluid, the body’s orbital radius, the magnitude of the radius vector r directed
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from the center of the body to a point within the fluid, colatitude measured from the rotation pole of the fluid, and the angle between the vector joining the centers of the satellite and the parent planet and the vector fζ respectively. Because the fluid is in nearly synchronous rotation, both the tidal and rotational potentials are of order ~ n2a2, where n and a are the mean motion and the average radius of the cavity. The portion ΔP of the pressure field within a uniformly rotating liquid layer of constant density p due to a potential U isΔF = pU (A.3)(cf. Jeffreys, 1976), aside from possibly an additive constant.Because of the symmetry of the pressure field induced by the potential (A.2),the Poincaré torque vanishes only when the maximum semimajor axis (minimum axis of inertia) of the cavity is coincident with the axis separating the centers of the satellite and the planet, and the axes of rotation of the fluid and the cavity both coincide with the normal to the orbital plane. When the angles between any of the above pair or trio of axes are large, the order of magnitude of the Poincaré torque (A.1) acting on the fluid (with density ρ) may be estimated as follows: The characteristic magnitudes of the quantities (r × n) and ΔP are ∣r* × n∣ ~ ae and ΔP ~ pn2a2. Since the area of the surface of the cavity is ≈ 4πa2, the integral (A.1) has a characteristic magnitude ∣Γf,∣ ~ pα5ω2e. We wish to demonstrate that the Poincaré torque is of the correct order of magnitude which is required to force the fluid, assuming it rotates as a rigid entity, to rotate with the same rotation vector as the cavity, even if the cavity is not rotating about one of its semimajor axes, and its maximum semimajor axis is not coincident with the satellite-planet direction.It has been shown by Lamb (1932) that a rotating fluid confined within a
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rigid ellipsoidal cavity may rotate effectively as a rigid entity in coincidence with the cavity in response to imposed motions (e.g., precession) of the cavity. We make no attempt to solve the fluid dynamical equations of motion for the system described here. We will simply assume that if the fluid reorients, it will do so effectively as a coherent, rigid entity.With this in mind, assume that the cavity is rotating about an axis which is not a semimajor axis of its ellipsoidal figure, and also assume that the fluid shares the same rotation vector, ω, as the cavity. Since the shape of the fluid is dictated by that of the cavity, it is thus rotating about a nonprincipal axis of inertia, and its angular momentum must possess a component perpendicular to ω of magnitude 
~ Iceω, which precesses about ω at an angular rate ~ ω (cf. Goldstein, 1970). 
Ic ~ pa5 is the characteristic moment of inertia of the fluid. Thus the angular momentum of the fluid is changing at a rate ~ pα5eω2, which can only be true if a torque of the same magnitude is exerted on the fluid. Note that this magnitude is the same as that of the Poincaré torque.In addition, a net torque due to the tidal potential is exerted on the nonspher- ical portion of the fluid whenever its orientation, as dictated by the orientation of the cavity, is such that none of its semimajor axes are coincident with the satellite- planet direction. The magnitude of this torque is of the order of the product of the nonspherical portion of the mass (~ pa3e) multiplied by the magnitude of the tidal potential a2 ~ n2α2^ , or ~ pa3n2e. Note that this torque is also ofthe same magnitude as the Poincaré torque.It is now evident that the Poincaré torque due to the tidal and rotational potentials is of the same order of magnitude as the torque which would be required to induce the fluid (if it behaves as a rigid body) to share the same rotation vector
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and orientation as that of the cavity.If the Poincaré torque is calculated precisely using Equations (A.2) and (A.3) in Equation (A.l), it can be shown, in fact, that it is of exactly the correct magnitude and direction which is required to induce coincident motion of the fluid and the cavity. We feel, however, that such a demonstration is inappropriately complicated to reproduce here.We now wish to consider the coupling of the ice shell on Europa with anunderlying layer of liquid water during polar wander of the shell. In the followingdiscussion we will ignore the silicate core and assume that liquid water extendsto Europa’s center. The interface between the ice shell and the liquid water layermay be approximated by a spherical surface of radius ~ a ≈ 1550 km to which isadded three relatively small second harmonic degree bulges: a “fossil” bulge (seeSection 4) of characteristic height ~ 7α(l — Cw) ~ 5 m (for an unfractured shellwith μ ~ 4 × 101° dynes cm-2 and d ~ 2 km), a “bulge” due to nonuniform icethickness of order ~ n^icg∙- t2m ~ 1 km, and a hydrostatic bulge of characteristic 
A,waterheight ~ zγα ~ 1 km. The hydrostatic bulge also has a small diurnal periodic component, which we will ignore, of order ~ zγαe ~ 10 m, where e is Europa’s orbital eccentricity. The hydrostatic bulge represents the response of the ice shell to the tidal and rotational potentials and therefore possesses their symmetry. That bulge therefore remains very nearly fixed in the x" coordinate system during polar wander as long as n > τ~^, while both the fossil bulge and the bulge due to ice thickness variations remain fixed in the frame of shell as polar wander takes place. However, the fossil bulge is ~ 102 times smaller than that due to the ice thickness variations and in any case must be eliminated by pervasive fracturing if polar wander of the shell is to occur at all (see Section 6.2). We therefore approximate the shell-
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ocean, interface as a sum of the hydrostatic bulge and the bulge due to ice thickness variations. We define the characteristic ellipticities of these deformations as e∣l and e,, respectively.Because the bulge eil remains fixed in the body from the shell, it is analogous to the ellipticity of the cavity in the non-self-gravitating system discussed above. The pressure induced by the tidal and rotational potentials exerts a torque on this bulge which is of exactly the correct magnitude and direction to allow the fluid to move in coincidence with the shell during polar wander. However, with the addition of self gravity and the nonrigid component e⅛ to the shape of the shell-ocean interface, two additional effects arise: the mass contained in the hydrostatic bulge produces an additional potential due to self-gravity which increases the potential given by (A.2) by a factor (l + A⅛) where ∕⅛ is the second degree potential Love number (cf. Munk and MacDonald, 1960). This causes an additional component of the Poincaré torque of magnitude ∕⅛Γf>∙ Also, the second harmonic degree components of the mass contained in the ice shell produce a pressure component in the ocean which exerts a net torque across the surface component ∈⅛. However, these two additional torques may be shown to be of exactly equal magnitude and opposite direction, so that the problem reduces to that of the simple nongravitating, rigid system discussed above.It is now clear that the Poincaré torque acting across the nonspherical component of the shell-ocean interface represented by ej, is of the correct magnitude which is required to induce coincident motion of the ocean and the shell during polar wander. However, as mentioned earlier, this torque is only effective if the thickness Δ of the boundary layer between the ice and the liquid is significantly smaller than the difference between the equatorial and polar radii of the cavity,
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aes ~ 1 km. If the relative motion across the boundary layer is laminar in nature and a geostrophic balance exists within it,Λ≈□iz2 , ,A.4,
where ι∕ ~ 10-2 cm2 s^1 is the kinematic viscosity of water and n ≈ 2 × 10~5 s_1 is the rotation frequency (cf. Greenspan, 1968). Then Δ ~ 10 cm and the criterion Δ ≪ α∈., for validity of the Poincaré torque is well satisfied. However, if the Reynolds number Re = — » 300 (A.5)

y(Jeffreys, 1976) motion within the boundary layer will be turbulent and Δ will notbe given by Equation (A.4). u is the characteristic velocity difference between theice and the liquid just below the boundary layer, and £ is the characteristic lengthscale of the turbulence. The magnitude of the Reynolds number is difficult toestimate because the correct values of u and £ are uncertain. Although we expectthe Poincaré torque to induce coincident motion of the fluid and the ice, somerelative motion, however slight, must occur between them. If £ is comparable to theradius of the satellite, α, the Reynolds number criterion implies that motion willbe turbulent if u 3> 10-4 I —------ l∙ Because we expect polar wander to occur∖ 105 years∕on a time scale of 105-10c y and we expect nearly coincident motion of the liquid and the shell, it thus seems plausible that the boundary layer is laminar in nature. If the boundary layer is turbulent, its thickness may be estimated by replacing the kinematic viscosity by the eddy viscosity, Pcjjy, in Equation (A.4). ¼-.hiy is roughly given by the product of the characteristic velocity of the turbulent eddies, ttc,uy, and the length scale £ of the turbulence. The correct value of z∕cddy is uncertain. However, if the turbulence is caused by shear induced by the polar wander, pcddy
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is certainly no larger than the product of the maximum values of ucj,jy and I, i∙e∙, ^d,ιy)llιax ≤ (⅛y) « ~ 8 x 103 ^1° 7∕ears) cm2∕sec. Therefore, ∆llιax <∕ jy ∖ ∖1 eJtZ/max.. j ~ 104 cm. Thus, even if the flow in the boundary layer between the ice and the liquid is turbulent, Δ may still be considerably less than α∈.,, in which case the Poincaré torque is probably effective in causing the liquid layer to follow the motion of the ice. Alternatively, it is possible that the boundary layer is turbulent because of convection in the liquid layer. In that case, the boundary layer thickness is independent of the details of polar wander and may be larger than the above limit, perhaps exceeding aes. If Δ > αei so that the liquid layer is essentially uncoupled to the ice, polar wander of the shell will occur on a shorter time scale than we estimate in this paper, because the characteristic inertia of the shell, ∕o, will be smaller (see Section 6). However, because the total mass of ice plus liquid water is at most ~ 5 times larger than the mass of ice alone, our results would not be greatly changed if Δ > αci.In light of the results discussed above, we believe that a liquid water layer beneath the ice shell on Europa may reorient in coincidence with the shell during polar wander of the shell, and we therefore refer to the composite shell-ocean entity as “the shell” in the text of this paper. We do not believe that the presence of the silicate core will affect this qualitative result.
A.2 Core—Shell CouplingWe now wish to discuss the various torques which act to couple the motions of the core and the shell during polar wander of the shell, and their effectiveness in doing so.We have argued in Section A.l that in a reorientation of the ice shell as
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described in Section 6.2, the liquid layer will reorient in coincidence with the shell so that the shell and the liquid layer may be treated as a single entity. The shear due to any relative motion between the core and this ocean-shell entity will then be effectively confined to a boundary layer at the base of the ocean. We are therefore concerned here with torques exerted between the core and the shell-ocean entity. We will consider the Poincare torque, gravitational coupling and the torque due to viscous or turbulent shear in the boundary layer between the base of the ocean and the core.We shall argue that none of these torques are capable of inducing significant polar wander of the core by estimating the ratio of their magnitudes to the characteristic rate of change of the angular momentum of the shell during polar wander. If these ratios are small compared to unity (as we shall see is true), the shell is able to reorient independently of the core.We begin by discussing the Poincaré torque acting on the surface of the core. Equation (A.1) may be used to estimate the magnitude of this torque, even though the ellipsoidal cavity is in this case surrounded by the fluid.We assume that any reorientation of the silicate core of Europa will occur on a time scale which is long compared to the Maxwell time of the bulk of its interior, and the Rayleigh-Taylor time scale τ∏τ ~ (cf. Turcotte and Schubert, 1982), where v and g are the kinematic viscosity of the core and its surface gravity, and λ is a lengthscale which in this case is comparable to the radius of the satellite 
~ a. Then the shape of the core will remain very nearly the hydrostatic shape of a fluid under the tidal and rotational potentials. If the viscosity of the bulk of the core is < 1021 Poise, a value characteristic of the earth’s mantle (Garland, 1979), and the rigidity of the core is ≈ 6 × 1011 dynes cm-2, the above assumption



Paper III 154 Polar Wander of Europa

is valid if the motion of the core occurs on a time scale significantly longer than ~ 104 years. The surface of the core will in fact depart from the fluid shape due to fossil rotational and tidal bulges which will exist if a continuous elastic lithosphere is present on the core. Though fossil bulges will be much smaller than the fluid bulges, nonzero components of the torque given by Equation (A.1) will arise due to their presence. These components may be treated separately and will be considered shortly. We now estimate the portion of the inertial torque which exists in the absence of nonfluid behavior of the core.With this in mind, we now consider both the silicate core and the overlying water layer to be fluids. The two fluids are prohibited from mixing by their enormous viscosity contrast (> 23 orders of magnitude) as well as their substantial contrast in density. The portion of the pressure field in the ocean due to the tidal potential, and the response of the surface of the core to the tidal potential possess the same symmetry. Therefore, there can be no net torque between the ocean and the core due to the tidal potential. We may therefore ignore the presence of the tidal potential in estimating this portion of the inertial torque, and treat the surface of the core and the pressure field in the ocean as though their only departures from spherical symmetry are in response to their rotational potentials.The Poincaré torque exists because of the variation over the surface of the core of the rotationally-induced pressure exerted by the overlying water. We will ignore the deflection of the surface of the core due to this imposed pressure. Any errors incurred by doing so will not effect the qualitative results of this analysis. Such a deflection can only reduce the calculated torque. We will see that even with this overestimate, the Poincaré torque is unimportant in this problem.The shell and core must remain in very nearly synchronous rotation through-
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out any reorientation event, so that the angle between their rotation vectors χ must remain very small. By evaluating the Poincaré torque (A.1) at the core-ocean interface due to the rotational potential in the ocean assuming the core and shell are in nearly synchronous rotation, it can easily be seen that its magnitude is Γp ~ PwΛtnτacn2ehXι where e⅛ ~ ,γ is the ellipticity of the hydrostatic bulge on the core, and ac is the mean radius of the core, ac ~ a. The largest departure of the shell’s rotation vector from the mean motion is ~ ≠, so that χ ~ Given the motion of the shell described in Section 6.2, the characteristic magnitude of the rate of change of the angular momentum of the shell (in inertial space) may be calculated to be Lβ ~ Ion2 fy)∙ The Poincare torque is unimportant if <C 1, which may now be written
10~3 105 years7f>W (A.6)

using a total thickness of ice and ocean of ~ 100 km, ψ ~ ∙j4- where τpw is the polar wander time scale, and other parameters appropriate to Europa. Since typically 
τpw ~ 105-106 years (if polar wander occurs at all) and ≤ 10-c during polar wander (see Section 6.2), this torque is clearly unimportant throughout at least most of the period during which polar wander takes place.In the above development it is implicitly assumed that the pressure field is hydrostatic, with the entire core undergoing the same “rigid body” (i.e. constant vorticity) motion. If the spin vectors of the core and shell differ substantially in direction and magnitude, this will not be true, and the criterion (A.6) is incorrect. However, because the rotation rates of the core and shell are very nearly equal, and 
χ is very small (true because τpw » l∕n), hydrostatic equilibrium is very nearly maintained and the criterion (A.6) is meaningful.
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An additional component of the Poincare torque exists if a “fossil” rotational and/or tidal bulge is present on the silicate core. The ellipticity of this bulge is of magnitude e∕ ~ (1 — Cw)7 where Cw may be found by inserting parameters relevant to the silicate core into Equation (3.11). (1 — Cw) has a valueof ~ 0.05 1 ------ —rrΛe---------- sö ) (tγtω- I fθr the core, where u,, and dr are the∖6 × 10“ dynes cm 2 J ∖2km∕ ’rigidity of the core and the thickness of its lithosphere, respectively. The magnitudeof the Poincaré torque Γ/ due to the pressure induced by the tidal and rotationalpotentials acting on the fossil bulge is Γy ~ (1 — Cw)pa^n2θf, where θj is theangle between the rotation axis of the ocean and the minimum semimajor axis ofthe fossil bulge. This torque is unimportant if -≠ ≪ 1, which may be written 
L,

102 6 × 1011 dynes cm-2 2 km 10^g . z,
τ~ I «1 (A.7)

It is thus clear that for reasonable values of μc and dc the torque is only unimportantif 0f ≪ 10’ lh10’ -g∙ 1. However, the torque Γ/ acts in a manner so as to maintainalignment between the rotation axis of the ocean and the minimum semimajor axis of the fossil bulge. Since the latter axis will be aligned with the normal to the orbit (because that is its minimum energy state) before an episode of polar wander occurs, and because the rotation vector of the ocean departs from this axis by an angle of only ~ ~ 10~8 there exists no mechanism of inducing a valueof θ∕ larger than ~ 10-8. Therefore this torque is also unimportant in coupling the motions of the core and the shell.The gravitational potential field in the ocean also has second degree components of the order ~ n ^ue sum ^*c^ness variationsof the nearly isostatically compensated ice shell and the underlying liquid water which conforms to the shell. These components of gravity produce pressure varia-



157 Core-Shell Coupling

tions which exert a torque on the core when integrated over the surface of the core’s fossil bulge. This torque has a magnitude Γ<j where Γg ~ Itln2 (∣ ) (1 - Cw) ,1, t∖ * ∕ ' ' silicateC'*vewhen the x3 body axis of the shell departs from the minimum semimajor axis of the fossil bulge on the core by a large angle. This torque is thus unimportant if Me ∖ I d,⅛ ~ (1 - c.)l
silicate 

c o ι e
0.05 2 km ≪ 1 (A.8)ι6 × 1011 dynes cm 2 which is clearly true for reasonable choices of μc and dc.In a manner analogous to the problem of shell-ocean coupling, two additional torques act on the core which exactly cancel one another: A pressure component present in the ocean due to the gravitational potential of its the fossil bulge exerts a torque on the core when integrated over the surface of its hydrostatic bulge, and a pressure component due to the gravitational potential of the hydrostatic bulge in the fluid (present because its shape must conform to that of the hydrostatic bulge on the core) exerts a net torque on the core when integrated over its fossil bulge. Both of these torques are of magnitude ~ Γy.We now consider one additional torque which acts to couple the motions of the core and the shell during polar wander: If relative motion occurs between the core and the shell, a torque due to viscous or turbulent friction will exist between them, directed along the difference of their angular velocities. If the friction is of a laminar and viscous nature, the torque acting on the shell may be written

^viscous C∕∙f (¾orf k',slιell) > (A.9)
where

Cκ ~ pι∕ ) α (A.10)and
-n∕ (A.11)
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is the thickness of the Ekman boundary layer where the shear due to the relative motion is concentrated (just as in the case of shell-ocean coupling). Equation (A.9) is valid if a geostrophic balance exists within the boundary layer (cf. Greenspan, 1968). z∕, p, a, and n are the kinematic viscosity and density of water, the radius of Europa and the mean motion, respectively. A torque equal and opposite to (A.9) is exerted on the core.If the flow in the ocean due to the relative motion between the core and the shell is turbulent, Equation (A.9) no longer applies. The condition for turbulence is that the Reynolds number u£ .Re = — » 300 , (A. 12)
where u is the characteristic relative velocity between the core and the shell (i.e. 
u ~ α∣ωc-ωj,∣), and £ is the characteristic lengthscale of the turbulence (cf. Jeffreys, 1970). If the motion is turbulent, the coupling torque is

Γtuι∙b - C,τ∣wc - ωβ∣ (ωc - ωβ) , (A.13)
where

Cγ ~ a pa5 (A.14)

and a ~ 0.002 is the coefficient of skin friction (Jeffreys, 1970).Taking the ratio of (A.13) to (A.9), it is seen that the turbulent coupling torque is generally much smaller than the viscous torque. For example, even if ∣ωc — ω,, I is as large as ~ 10-2 yr~1, (A.13) is smaller than (A.9) by more thana factor of 20. However, we shall see that even the viscous torque is of negligible importance in coupling the motions of the core and the shell.
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Because the largest component of ∣ωcore — ωsι,cιι∣ is ~ ≠ ~ , the magnitude of the coupling torque due to viscous shear is Γγv⅛cqus is of order ~------ C>
Ls

k 7-rτ- which may be written√i)
Cl
, pw

, and the ratio

Ls
10’ 10 -6 '1O5 y' (A.15)

, pw

^∣)W I<

t
τfor reasonable values of ι∕ ~ 0.01 Poise, a thickness of shell plus ocean of bo ~ 100 km, and the known value of n ~ 2 × 10-g s~1 for Europa. The viscous and turbulent coupling torques are clearly utterly negligible.If polar wander of the shell occurs on a time scale of 105-10g years, the Reynolds number in the boundary layer in the ocean between the core and the shell (Equation (A.12)) is “£ -1O=_1OC (A.16)Re = — ~

y yif the length scale of the turbulence, £, is equated with the radius of Europa. Since the critical Reynolds number is ~ 300, the frictional coupling torque acting between the core and the shell is turbulent in nature, and is even less effective at coupling the motions of the core and shell than viscous coupling. However, if the length scale of the turbulence is caused by irregularities on the core ≤ 1-10 km in length, the Reynolds number could be less than critical and the coupling would be laminar. In neither case is the frictional coupling important.One more point must be mentioned here: Although we have found no torques capable of inducing significant reorientation of the core during polar wander of the shell, a potential inconsistency exists between our results and those of Lamb (1932). Lamb found that the fluid throughout the interior of a rigid ellipsoidal cavity may reorient as a rigid coherent body in response to imposed motions of the cavity. In the limit where the values of the viscosity and density of the silicate core are the
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same as those of the liquid layer, no distinction exists between the core and the ocean, and Lamb’s result would indicate that the entire fluid, including the core, would follow the motion of the shell. However, if the viscosity of the core is similar to that of the earth’s mantle (i≥ 102i Poise), a viscosity contrast of ≥ 1023 orders of magnitude exists between the core and the liquid water layer, since liquid water has a viscosity of ~ 10^^2 Poise (cf. Turcotte and Schubert, 1982). We believe that this enormous viscosity contrast, as well as a density contrast of a factor of > 3 serves to create the critical distinction between our results and those of Lamb.
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Appendix B: Viscous Relaxation at the Ice-Ocean InterfaceUndulations at the ice-ocean interface are subject to viscous relaxation,despite the isostatic conditions. This problem is very analogous to the classic Rayleigh-Taylor instability (e.g., Chandrasekhar, 1961) except that we must allow for the temperature dependence of the viscosity of ice. Although we are concerned with very long wavelength undulations, an adequate approximation can be obtained from analysis of a Cartesian geometry in which z = 0 is the undeformed water-ice interface, and horizontal variations and motions are confined to the x direction. (This can be done without loss of generality because of the linearity of the equations and resulting superposability of solutions.) Let u,w be the horizontal and vertical components of flow, respectively. In the high viscosity limit, the corresponding components of the Navier-Stokes equation are
0 dp v2 , dη idu , dw+ « + g-z ∙ (5J + τi
0 =

(B.l)
dp 2 ∂η ~ + ∏V2ισ + — 
az az

∂w (B∙2)where p is the nonhydrostatic pressure and η ≡ η(z) is the viscosity. We also have the continuity condition for incompressible flow 
∂u ∂w (B.3)∂x "*~ ∂zIf we assume p, w, ~ cos kx and u ~ sin kx then these three equations can be combined by eliminating u, p:

d4ω 2 dη d3ω ∕ 1 d2η 2∖ d2ω
dz4i ^*^ η dz dz3 + ∖∏ dz2 J dz2

2k2 dη dw l 2 ( 1 d2η 
η dz dz

(B.4)
(B.5)+ k ^ηdz^ + k )W = Q
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For simplicity, we approximate η = 770exp^∣θ, to represent approximately the rapid increase in viscosity as one goes upwards into the ice. It is also appropriate to assume that the interesting wavelengths of ice undulations are much larger than 
δ (i.e. kδ <≤C l). Accordingly, the solutions to the above equation that decay as00 are:

w oc e z∕δ ze — z ∕δ (B.6)For the assumption of zero shear = at z = 0, appropriate because of the low viscosity of the adjoining water, the solutions of interest are
u = + e s'z'5sinkx

w = kδ (2 ÷ -) e~z∣6 cos kx (B.7)
η,jcos kx 

kδ2except for an arbitrary multiplicative function of time. We determine, the time- dependence by use of the normal stress boundary condition:∂w∖
-p+2η-⅛) -3=0

∆,pgh (B.8)where h is the magnitude of the topography and ∆p is the density difference between
c∖ 1water and ice. Taking one time derivative and identifying w(z = 0) =

= ∆pgw , (B.9)∂ f ∂w
∂i∖p + 2rΙ⅛ z—0from which it follows that

1 ∂h 
h ∂t

1 ∂w 
w ∂t

2g∆pk2δ3 (B.10)3=o η,1The reciprocal of this is a characteristic time scale τr for the relaxation of topography. Scaling to numbers appropriate to Europa,3≈ (l × lO’yr) ∙ (i£?) ∙ (10⅛sc)
(BU)
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for horizontal wavelengths comparable to the equator-to-pole distance. (In fact, the numerical constant becomes 2.5 × 107 years, if w oc P2(cos0), θ = colatitude.) The appropriate choice of δ can be estimated from
δ ≡

din 77 ∕dlnT∖ ∕dlnzλ
dlnz∕ ∖dln77∕ ∖dlnT∕

(B.12)
where T is the temperature and d is the ice crust thickness. Accordingly, ό ~ 0.04d .~ 1 km. The appropriate choice of ηo may be as low as 1014 Poise (the commonly quoted value of terrestrial temperate glacier ice) but could be ~ 1015 Poise because of the very low stresses associated with this flow.We conclude that τr ~ 107 years for Europa. Thus, there is no strong inequality between this process and the estimated time scales of thermal diffusion or putative polar wander. Nevertheless, the time scale is not significantly shorter than other time scales of interest. Accordingly, the assumed variations in ice thickness used in the Europa models may not be in error by a large factor. More importantly, the qualitative behavior of ice thickness variation is correct.
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