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Abstract

This thesis is composed of two chapters. Chapter I is an investigation of
the spin wave spectrum of the two-dimensional spin-1/2 Heisenberg model and its
relevance to high-T. superconducting materials. Chapter II is a study on another in-
teresting family of superconductors, the alkali compounds of Buckyminsterfullerene
A;Cgo. The electron-phonon coupling constant of one member of these compounds,
K3Cego, has been calculated and discussed in the context of the phonon-mediated
superconducting mechanism.

Chapter 1 consists of two projects. The first project is an exact diagonaliza-
tion of a 4 x4 S = 1/2 Heisenberg model. Energy vs. momentum spectra is derived
and compared with the dynamic structure factors. The comparison shows that spin
wave or magnon of a certain momentum corresponds to the lowest spin triplet state
of that particular momentum. The second project, an extension of the first, is a
Projector Monte Carlo simulation of 2D S = 1/2 Heisenberg square lattices of size
4x4,6x6,8x8and 12 x 12. The lowest lying spin wave spectrum has been ob-
tained for each of the above lattices, and the extrapolation to the infinitely large 2D
square lattice has been derived. These results suggest that the exact spectrum for
the infinite lattice is that of linear magnon with an overall renormalization factor.
These results are also used to infer the value of the exchange energy from inelastic
neutron scattering experiments of a high-T. superconductor La;CuO,.

The first part of Chapter 2 is a MNDO study of the electronic structure of a
Cso molecule; this study excludes a proposed mechanism for the superconductivity

in A;Cego, namely, Stability of Molecular Singlets (“SMS”). Secondly, Chapter II
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describes an investigation of the electron-phonon interaction caused by the changes
of the electron-ion coulomb interactions, i.e., the static electron-phonon coupling.
An accurate formalism based on the force field and phonon spectrum available is es-
tablished to calculate the electron-phonon coupling matrix. This formalism includes
exactly the available information about the phonon eigenvectors and eigenenergies
and about the localized Wannier orbital for electrons in the conduction bands. The
major contributions to the static electron-phonon coupling is found from the low
frequency intermolecular phonon modes. Thirdly, a study on the electron-phonon
coupling caused by the responses of the local electronic states to the vibrations of
a Cgo molecule (i.e., dynamic electron-phonon coupling) is presented. The study
concludes that the dynamic coupling is strong enough to be relevant to the super-
conductivity in A,Cgo. Finally, various properties related to the superconducting
phase have been calculated, and are compared with the experimental results. On
the basis of all these, an experiment is proposed to confirm our findings, and to

determine the superconductivity mechanism in A,Cgo systems.
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Chapter 1.
The 2D Heisenberg Model and High-T. Superconductivity
Guanhua Chen and William A. Goddard III

Materials Simulation Center, Beckman Institute

California Institute of Technology, Pasadena, CA 91125



1.1 Model

Since the discovery of high T, superconductors!, many mechanisms?~7 have
been proposed to explain the superconductivity in these materials. All high T.
superconductors share the following structural and crystal-chemical properties®.
Superconductivity is associated with CuO; planes, which are separated from each
other by “charge reservoir” building blocks and cation blocks; the number of closely
spaced CuO; layers can vary from 1 to 4, and the “charge reservior” units involve,
e.g., Bi — O, Tl — O layers; in YBa;Cu3O7, the Cu — O chains act also as “charge
reserviors” while the apical oxygen atoms, connecting planes and chains, move in
response to the charge transfer between these two building blocks. @b initio calcu-
lations on Cu,Oy (x=2,3;y=10-12) by Guo, Langlois and Goddard ? indicate that
the high T. superconductors also have the following characteristics :
1) A network of Cul! (d°) sites with the singly occupied d orbital localized in
the plane of four short Cu — O bonds ( ~ 94).
2) The spins of adjacent d elecirons are coupled antiferromagnetically by su-
perexchange.
3) Oxidation of the system beyond Cul! leads not to Cu' as was suggested
earlier but rather to holes localized in the p orbitals of oxygen atoms®.
4) The magnetic coupling of the singly occupied oxygen orbitals with the adja-
cent copper d electrons is antiferromagnetic if the singly occupied orbital is
po, and ferromagnetic if the orbital is p=.

Given these results, we propose the following Hamiltonian?,

Heg = Haq + Hpq + Hp, (1)



where

Hy = — Z 2Ja4Sa4i - Sq;j (2)
<didj>

is the Hamiltonian for interaction of d electrons on adjacent Cull; Sy; is the spin
operator for a d electron on site di; and Jqq is the exchange energy (negative)

between adjacent copper d electrons.

Hyg = — Z 2JpaSpi - Sg; (3)
<pidj>

represents the interaction between oxygen p holes and adjacent copper d electrons.
Spi is the spin operator for a p electron on site pi, and Jpq4 is the exchange energy
between adjacent oxygen p and copper d electrons.

H, is the Hamiltonian for p holes on oxygens, which describes holes on oxygen

hopping to the adjacent oxygen site. In Ref. [2], we write it as the following,

H, = Z tpiaéjaa;aapjm (4)

<pipj>c

:ia and apj, are creation and annihilation operators for holes with spin o

where a
on oxygen site pi; tpispjor is the hopping matrix element between site pi with spin
o to the adjacent site pj. Here we omit spin exchanges between Cu d electrons and
O p holes as holes hop to the adjacent site through Cu. It is a good approximation
if holes are on oxygen pm orbitals. Lang, Ding and Goddard investigated the effects
of these spin exchange hoppings on superconductivity!®.

The above model is being supported by the results of many later experiments.

Photoemission experiments'!'}? show a sharp fermi edge that is clearly indicting the

fermi liquid or near fermi liquid characters of the system. Resonant photoemission
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experiments'! also reveal that the bands near and across the fermi edge are domi-
nated by oxygen p character. Furthermore, the Knight shifts!® of both Cu and O
in the planes are proportional to the static susceptibility x(w = 0,q = 0), strongly
supporting the notion that the spin density on the Cu — 3d and O — 2p state are
not only closely connected but are also part of the same single component system.
This indicates that the O hole has po character rather than pn. Neutron Scatter-
ing experiments!* performed on undoped La;CuQ4 measured correlation lengths,
which revealed that localized spins on Cu behave as the 2D Heisenberg model'*.
To understand the origin of superconductivity in these materials, one has to
understand the behavior of the undoped CuO; sheet, which is best described by
the 2D square S = 1/2 Heisenberg model. With this model we concentrate on the
excitation spectra and compare them with those of the spin wave theory. In Section
1.2, we present an exact diagonalization of 2D S = 1/2 Heisenberg Hamiltonian on
4 x 4 square lattice!®. In Section 1.3 we use the Projector Quantum Monte Carlo
method to study the lattices of the size 4 x 4 up to 12 x 12 817, In section 1.4 we

summarize the current status of research on experiments.



1.2

The Exact Excited States of Heisenberg Hamiltonian

on 4 x 4 Lattice
Guanhua Chen and William A. Goddard III

Materials Simulation Center, Beckman Institute

California Institute of Technology, Pasadena, CA 91125

Abstract

We solve the exact eigenstates for various excited states of 2-dimensional
spin-1/2 Heisenberg Hamiltonian on a 4 x 4 square lattice. Comparison with the
dynamical structure factor S(k,w) at T = 0 shows that the magnon state corre-

sponds to the lowest excited triplet state (S = 1) at each k.



1.2.1 Introduction

The interest in 2D spin-1/2 Heisenberg model has been growing because of its
possible role in the superconductivity of high-Tc materials!. Direct diagonalization
and Monte Carlo calculation have been done on lattices with various sizes'®~23, and
many spin wave theories have been proposed?*=28, In the meantime, the following
questions have not been fully addressed : 1) What does the energy vs. momentum
spectra look like ? 2) To what states does the spin wave or magnon correspond ?
and 3) Where is the spin wave located in the energy spectra ? Although for 1D
spin-1/2 Heisenberg model these issues have been solved??:3° (1D energy spectra
is a “belt” like spectra and spin wave locates at the bottom of the “belt”), for
the 2D Heisenberg model however, the same issues have been neglected, except for
some consensus that 2D and 1D behave much in the same fashion. Thus, it will be
interesting to explore these issues explicitly. By obtaining the energy spectra and

comparing them with the dynamical structure factor of the 4 x 4 square lattice,

the above questions can be answered.

1.2.2 Ezact Diagonalization:
The antiferromagnetic Heisenberg Hamiltonian is,
H= ) Js§; (5)
<ij>

For 4 x 4 spin system there are 2!® configurations. By making use of spin conser-
vation and translational invariance, we reduce the size of the Hamiltonian matrix.
For instance, the reduced Hamiltonian matrix is only 822 x 822 for a subspace with
a total spin z-component M, = 0 and momentum K = 0. Therefore, we may obtain

all eigenstates and their correspondent eigenenergies for 4 x 4 system.
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To obtain the reduced Hamiltonian matrix, we need to construct the states
with translational symmetry and constant total spin z-component. This can be
accomplished in two steps. (1) Pick a configuration ¢y with the desired total spin

z-component. (2) Apply the following translational operation on it :

U(k) = T(k) o,
= % Z exp(—ik - r) ¢y.’ (6)
r

where ¢y is a spin configuration, and ¢, is a configuration obtained after translating
$o by r in space; ¥(k) 1s a new state with constant M; and momentum k; and
T(k) is an operator which constructs a wavefunction of translational symmetry and

momentum k. Since the size of the reduced Hamiltonian matrix is only about 800

x 800, it can be solved exactly.
1.2.83 Dynamic Spin Structure Factor

The dynamic spin structure factor at zero temperature T = 0 is a probe
for energies of magnon states. Knowing the ground state wavefunction, it can be
obtained by a projective technique for the memory-function formalism?!:32:33,

Denote
A= Zeik'% sz (7)
j
Then the dynamic spin correlation function is%!
S(k,t) =< o |AT(t)A(0) 5o >, (8)
where |1y > is the ground state wavefunction and Af(t) = eHtAte~#t. Neutron

scattering experiment measures directly the Fourier transform of S(k,t), i.e. the

dynamic spin structure factor S(k,w), which is given by3!

S(k,w) =Y < %olAtjha >< %ulAlo > -6(w — (Ea — Eo)), 9)
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where the summation is taken over all the eigenstates |4, > of H with energy E,,

where E is the ground state energy.

To obtain the dynamic spin structure factor, define
Gs(E) =< ¢ |AYE — H) Al > . (10)

And S(k,w) is obtained as

S(k,w) = 7 ' ImG4(w +in + Eo). (11)

While G4(E) is written in the form of a continued fraction:

T
Gy(E) = —< Yol AR > (12)
E—-ap— —1F

b
E—&1———2—E_.“

where the coefficients a, and b, can be evaluated by a projective technique devel-
oped for the memory-function formalism3!:32:*3, The procedure is as follows3!: (1)

Define the state |[f; >= A4y >; (2) generate a set of orthogonal states with the

relation

|fn+1 >=H lfn > —a-nlfn > —bilfn—l > (13)

and

an =< f|H|f, > / < fulfa >, (14)

b, =< fn+1|fn+1 > / < fn'fn >,b0 = 0. (15)



1.2.4 Results
(1) Energy Spectra

Table 1.lists energy E, total spin S of the lowest energy state for each mo-

mentum k and excited energy AE.

k(3) () S EQ) AEQ)
0 0 0 —-11.2285
0 1 1 —8.7944 2.4341
0 2 1 —-8.5183 2.7102
1 1 1 —85183 2.7102
1 2 1 —8.8864 2.3421
2 2 1 -10.6499 0.5786

The ground state has momentum k = 0 and total spin S = 0 and the lowest

lying excited states have S = 1.

Fig (1) is the energy spectra with AE < 5.0J for total spin S = 0,1,2,3.
Notice that the spectra are “belt”-like, just as 1D Heisenberg spectra; below a
certain energy level, there are no available states for a particular momentum. We
also plot the linear spin wave data, which appear beneath the actual spectra. Dots
are results of calculations, and the line connects them. If we follow the lowest lying
crosses at each momentum, we notice that these crosses form a spectrum whose
shape resembles that of the linear spin wave theory. These crosses correspond to

the triplet states S = 1. All the above features are observed in the 1D case.
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Fig. (1), energy spectra of spin-1/2 Heisenberg antiferromagnet on

4x 4 square lattice
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In Fig. (2) we plot dynamic structure factors at various momenta. Energy
ranges from 0.0 to 5.0 J. Each curve in Fig. (2) corresponds to the dynamic structure
factor of a certain momentum and has two distinguished peaks. The intensity of
the first peak at lower energy is much larger than that of the second peak, which
is at higher energy. Comparing Fig. (1) and Fig. (2), we find that the first peak
in each curve of Fig. (2) corresponds exactly to the lowest energy state of the
particular momentum in Fig. (1). This fact at once proves that magnon or spin
wave correspond to the lowest lying spin triplets, Fig. (1). The smaller second
peak in each spectrum of dynamic structure factor corresponds also to another spin
triplet of the particular momentum. The magnitude of the second peak is so small

that it is not observed in neutron scattering experiments.
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Fig. (2a), the dynamic structure factor at k = (0,7/2); arrows correspond to

the energies of two spin triplet excited states.
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1.2.5 Discussion and Conclusion:

This is the first report of the full energy vs. momentum spectra for the 4 x
4 spin-1/2 Heisenberg model, using an exact diagonalization technique. The precise
fit between the energy spectra and the dynamical structure factor shows that the
magnon or spin wave corresponds to the lowest lying triplet states for each k. It is
observed that the spectra are “belt-like”, with magnons locating at the bottom of
the spectra, and the shape of spectrum calculated by the linear spin wave theory is
similar to that of the exact magnon of 4 x 4 lattice. These characters are observed

for 1D Heisenberg model®°. And for 1D Heisenberg model, the magnon spectrum3°®

of an infinite chain is

wg = %ﬂlsink\, (16)
while the linear spin wave theory gives
wp" = |sink|. (17)

The exact 1D magnon spectrum is equal to the value of the linear spin wave spec-
trum multiplied by an overall factor of /2. The results of our study on 4 x 4 lattice
suggest that for the 2D Heisenberg model of infinite square lattice, the magnon
spectrum may be obtained by scaling the wi¥ of the linear spin wave theory, just
as it was for the one-dimension case.

The 4 x 4 lattice is sufficiently large that the magnon properties inferred
from our study should be qualitatively correct. Therefore, the above conclusions
may also apply to the infinitely large lattice. It would, of course, be desirable to
extend the study to larger systems, because it will show how the size of the lattice

affects the results. The diagonalization method is not practical for 6 x 6 or larger
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systems because of the limitation of the current computers’ memory. Only Monte
Carlo calculation can be performed on the larger systems. We have finished some
Monte Carlo studies which indicate the above conclusions to be correct for the larger

lattices!®. The results will be presented in the next section.
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1.3

Elementary Excitation of the Two-Dimensional

Quantum Heisenberg Antiferromagnet

Guanhua Chen, Hong-Qiang Ding, and William A. Goddard III

Materials Simulation Center, Beckman Institute

California Institute of Technology, Pasadena, CA 91125

Abstract

The excitation spectrum of the antiferromagnetic spin-half Heisenberg
Hamiltonian H = 2JS; - SJ- on L x L lattices is evaluated by a Projector Quan-
tum Monte Carlo method. These results suggest that the exact spectrum for
the infinite lattice is wx =~ Z(L) wls(w, for all k, where w,s‘w = 4Jsm
with yx = (coskyx + cosky)/2 is from the linear spin wave theory. We find
Z(L) = Zg + B/L3, leading to Zg = 1.21 £ 0.03 for L = oco. Comparison with

experiments on La;CuQy4 is made.
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1.8.1 Introduction

Largely because of its relevance for high-T. superconductors!, the 2-
dimensional Heisenberg antiferromagnetic Hamiltonian

H=) 15-§,3>0 (18)
(i)

has been extensively studied recently'®>—27-3*, However, there remains considerable
uncertainty about the excitation spectrum for Hamiltonian (18).

The most common approximation to Hamiltonian (18) is the linear spin wave

theory3® (SW), which for one dimension leads to
we P = Jsin(ka)| (19)
and for two dimensions leads to
wpV = 4JS4/1 — 43 (20a)
where
7k = [cos(kxa) + cos(kya)] /2. (20b)

For the one-dimensional (1D) case the exact spectrum is solved by using the

Bethe ansatz,*? giving

where

70 =T _ 157,
E 5 3

Thus the spin wave theory leads to results low by 36%, but the shape of the spectrum
is exactly correct. Unfortunately for 2D and higher, there has been no general

solution of Hamiltonian (18).
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In this paper we calculate numerically the exact spectrum for 2D periodic

L x L lattices (L = 4, 6, 8, 12). Extrapolated to L = oo these results lead to
wy ~ ZpwiW = Ig [4;15 1- 7]2;] (22)

where Zg = 1.21 £ 0.03. Thus, for 2D the shape of the lowest excitation spectrum

is also the same as for the linear spin wave theory, but the renormalization factor

is 1.21 rather than 1.57.

1.3.2 Method

To calculate the eigenstates of Hamiltonian (18), we use the Projector Monte
Carlo (PMC)"3¢ method for finite L x L lattices and extrapolate to L = co. The
basic idea in PMC is to start with trial functions ¢, (not orthogonal to the ground
state) and to apply the projector exp(—7H) on ¢ for a sufficient time 7 such that the
wavefunction exp(—7H)¢ is a good approximation to the ground state wavefunction.

The ground state energy is then computed as

E(0) = (¥[He ™ [o)/($le™™|4), (23a)

and the excitation energy is computed as

($|R(—k)He " R(k)|¢)

* = G RCI)eTR()]4)

(23b)

where the R(k) operator projects out the states with definite momentum k from a
mixed wavefunction. Takahashi has used such a momentum operator in 1D.}” Here

we extend it to the 2D case:

R(k) = $(8% - S)e, (24)
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where gﬁ is the spin-1/2 operator at site r = (1«,1y), and the sum is over the L2

sites in the periodic lattice.

A. Phase Convention

The Hamiltonian (18) has non-negative off-diagonal matrix elements, making

PMC inapplicable. Thus, we make a unitary transformation??:17

U = exp(im Y _ §7), (25)

where the sum is over alternate sites. This flips the x,y components of spins on

alternative sites,

UHU™' =7 ) (-S7Sr — SYSy + S78%), (26)
<ij>
(i.e., the x,y terms change signs). Consequently, all off-diagonal elements become

non-positive and PMC is applicable. This does not change any observables, but the

momenta of wavefunctions are shifted by
UTyU~! = ™L*S-Ma) (27a)
UT,U™! = "L*S-M)T (27b)

where M, = ). 57 is a conserved quantity and S=1/2. Since L is even numbers in
our calculation and the lowest state is in M; = 0 subspace, there is no momentum
shift. In two dimensions, all L x L (L even) antiferromagnetic system have k =

(0,0) as the ground states.

B. Partitioning of the Hamiltonian

The trial wavefunction ¢ is the sum

C
) = Z Wm|m), (28)
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where the spin state |m) is a product of L? one-spin eigenstates of sf foran L x L
system and where C ~ 10° is the number of walkers which jump from one state to
another in the calculation. The total number of spin states for the L x L system

(with M, = 0) is the binomial coefficient

Cma.x = (—;—L2> = ;fe . (29)

(for L = 8 this is 2 x 10'®). Thus, C is much smaller than Cn.y. Applying the

projector, the ground state wavefunction is approximated by

e ™M >=> wu(r)m(r) > . (30)

As the computation evolves from 7, to 7,41, each walker m evolves from spins state
|m(7,)) to spin state |m(7y+1)), according to the propagator e A7H,
A problem here is that the 2L? terms in the Hamiltonian do not commute.

To simplify the calculations, we decompose H into four sub-Hamiltonians??
H=H; + H; + H3 + Hy, (31a)

where each H; has L?/2 terms that commute among themselves (see Fig.1):
Hy/J =818 +S12-So2+ -+, (31b)

Hy/J =831 -Ss1 +522-Saz +---. (31c)

Using (10), we can write e "47H a5

e—AT(H1+H2+H3+H4)
— e—54H1 e~52H28—54H18—54H3e—52H4e—54H3 (32)

. e—54H4e-52H3e—54H4e—64H2e—52H1 e—64H2 + O(AT)S,
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where 62 = A7/2, 64 = AT1/4. Because the L?/2 terms in each H; commute among
themselves, the propagator e %% factors into a product of L2/2 2-spin transfer ma-

trices, each of which can be further decomposed into a product of two matrices!”:38

<Siz,1'n S;,-rn le—ési.sj Isiz,‘rn_H sz,'rn+1> = Papdgs- (333,)

where ) pog = 1. The transition matrix p changes the 2-spin state from 8 to o
with probability pog. The diagonal matrix q contributes to the weight multiplica-

tively, .
1
12 3L

Wi(Tn+1) = H H a8 Wi('rn); (33b)

j=18=1

where j is over the 12 factors in Eq. (32).
B. Redistribution

One application of e ™2™ contributes 6L2 factors to each weight [cf.
Eq.(33b)]. Successive applications of e ="M thus leads to large increases in some
Wn, and large decreases in others, resulting in orders of magnitude differences in wy,
for different walkers. As a result, the wavefunction ¢, becomes quickly dominated
by a few walkers having very large weights, leading to an effective reduction of the
sampling space. To solve this problem we periodically redistribute the weights to ob-
tain a new set of C walkers equivalent to the existing set but with equal weight!7:37,
In this way, walkers with very small weights are eliminated and those with large

weights multiply in number. For the 8 x 8 lattice, we find it necessary to redistribute

about every two applications of e A7H,

C. Contraction

A second issue is the choice of the contraction function % in Eq. (23). One

6

common choice!® is setting 1 = ¢. However, we find that it is important to use the
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all states function

$len = Y |m). (34)

all states

The reason is that (m;|H|m;) is very sparse. Using ¥ = ¢ would lead to very few
nonzero off-diagonal contributions, resulting in large fluctuations in energies. The
all states function of Eq. (34) guarantees that each term of ¢ will makes nonzero off-
diagonal contributions. In addition, since ¥ has the same coefficient for all possible
states, we need not store 9, nor do we need to search 1 for the corresponding spin
state, once H|m) is generated.

Another significant advantage of the all states choice is that with 3 indepen-

dent of ¢, we can coherently add the contributions from independent runs

(V|1 + ¢2) B (¥|p1) + (¥|d2)

($[H|gs +¢2) _ ($|H|¢1) + (H|H|da) (35)

Typically, we do 500 such independent runs. Thus, from each run ¢; we need only
accumulate the two numbers (¢ |H|¢;) and (¥|¢;) from different runs until sufficient
accuracy is obtained. With the other choice of ¥ = ¢ the coherent average would
require evaluation of cross terms (@1 |H|p2), ($1|¢2); this would require storing 500
wavefunctions, each with 50,000 terms and would require evaluating 500002 matrix

elements.

D. Procedure

The calculation of Ey and E(k) is done simultaneously for all values of k.
We start with an initial function ¢ randomly chosen and propagate it accordiné
to Eq. (30,32,33) to approximate the ground state wavefunction ¢o. We allow
this relaxation of the initial ¢ for 100 time steps (7o = 100A7), during which the

redistribution is applied every 5 time steps (for 8 x 8 lattice).
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Next, we apply the following process of 77 + 75 steps many times until
convergence is reached. During the 7, process (& 50A7 steps), the function ¢,
i1s relaxed with a more frequent redistribution of every two steps. At the be-
ginning of the next 7 process (=~ 20AT steps), we compute the phase factors
R(k,m) = (m(v')|R(k)|m(7')). R(k,m) remains associated with the mth walker,
although the walker may well possibly walk into different spin states |m(7)). With
each set of the phase factors {R(k,m),m = 1,---,C} for a momentum k, the cor-

responding wavefunction is constructed as
$(k) = e ™R(k)[$) = ) W (7)R(k, m)|m(7)) (36)

and E(k) is evaluated every two steps (This is very similar to the forward-walking in
the Green Function Monte Carlo method®®). At the end of the 75-process, we take
the current wavefunction as the starting wavefunction of the next 7 + 73 process.
We found that 7, cannot be too large because ¢ is not the exact ground state
wavefunction at the beginning of the 7, process when R(k,m) is calculated. The 7
process separates the T process so that the consecutive measurements of Eq, E(k)
are less correlated.

We calculated the excited states for L = 4, 6, and 8, using C = 4000, 64000,
and 128000, respectively. In each case, the ¢ was chosen to have a total spin
projection component (M;) of zero. We found that A7 =0.1 leads to accurate
results (e.g., tests on L = 4 and 6 using A7 = 0.05 led to energies differing by
less than 0.5%). In all cases the coherent averages were carried out on the 7; + 7
process for 500 repetitions. As a test, we computed the spectrum on a 4 x 4 lattice
and compared with the exact results from direct diagonalization'® in Table 2. The

agreement is excellent.
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We found that the ground state energy converges quickly, leading to accurate
results up to L = 12. [This is a singlet spin state (S2¥ = 0) for the L? spin system.]
The excited states energies are much more difficult to calculate for large lattices,
and the excited state spectrum for L > 10 did not converge well. [In each case the
excited state is a triplet spin state, S2¥ = 2¥.] Probably the large configuration
space (~ 10%*2 for L = 12) requires a substantially larger number of walkers or a
larger number of runs in the coherent average. Another difficulty in obtaining the
spectrum wy = E(k) — Eg is the subtraction of two large numbers. Both E(k)
and E, are extensive quantities proportional to the area of the system L2, whereas
their difference remains a constant (very weakly dependent on the sizes). For an
8 x 8 lattice, By = —43.03 + 0.05J, while wy is about 1J. Consequently to obtain
an accuracy of a 5% error in wy requires an accuracy of 0.1% error in E(k) and
Eo. Considering the Monte Carlo nature of our method, this is a rather stringent

requirement. The coherent addition mentioned above is critical to obtain reasonably

accurate results.

The program was developed on a parallel supercomputer, the 64-node Cal-
tech/JPL MarkIllfp Hypercube.?® Each node contains a fixed number (C/64) of
spin states. Application of e=A™ is carried out locally on each node. However,
redistribution must be done globally because the weights on one processor will
influence the redistribution of walkers on other processors. We have devised an ef-
ficient algorithm for this redistribution, which for C = 64000 takes only 15% of the
total time. For C = 64000, the total time for one A7 step in the 64 node hypercube
is 4 sec. In comparison, the same code (written in “C”) running on a 1 processor

CRAY XMP (at JPL) is 20 sec. Thus, the hypercube is about 5 times faster.
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1.3.8 Results and Analysis
The calculated ground state energy density (energy per atom), E(0,L)/L?,
is shown in Fig. (3a) for L = 4 to 12. We find that E(0,L)/L? is very accurately
fitted by
E(0,L)/L? = e, + B/L?, (37a)

as indicated in Fig. (3a). This fit (B = —2.17+0.04 ) gives the ground state energy

per site of the infinite system,

eo = —0.668 + 0.0017, (37b)

in good agreement with other calculations. The Green Function MC results!?:2° are
eo = —0.6692(2), and the World-line MC results are e = —0.670(1)'8, —0.6661(2)??,
—0.6693(2)%3. (See Ref. [34] for a more complete review.)

The point ka = (7, ) is of special interest. This state is a spin triplet state,
whereas the ground state (0,0) is a spin singlet. In the spin wave theory the (m,7)
and (0,0) states are degenerate. Similarly in 1-D the state ka = =« is degenerate
with k = 0 for both the spin wave theory and the exact energy. However for finite

L, k = (7, n) has an energy higher than k = (0,0) by
A =E(m,7) —Eo > 0. (38)

This gap decreases with L, and we find that the gap goes to zero?%:2140 a5

A

where A = 9.26 (see Fig. (3b)). The triplet state (w,7) is difficult to calculate
directly in the M, = 0 subspace. we instead obtain E(r,7) as the lowest energy for

in the M, = 1 subspace.
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Our goal is to obtain an analytical expression of the spectrum for wy for
the infinite lattice. In principle, for each fixed (kg,k,) one could compute wy on
a series of lattices and then extrapolate to the infinite lattice. However, this is
difficult to implement because each L x L lattice leads to a different set of discrete
momenta (ky, ky) with few in common. Here, we use the alternative approach of
finding an analytical expression which fits the data for each finite lattice and then
extrapolating the fitting parameter to the infinite lattice.

As discussed in the introduction, for 1D the linear spin wave spectrum has the
same analytical form as the exact spectrum except for a scaling or renormalization
constant, ZED = 1.57. Motivated by this result, we factor the finite size dependence

for the 2D system into the form

wiP(L) = Z(L, k) [4JS\/1 -7+ A;‘:/L"} , (40a)

where Z(L,k) = 1 and Ay = 0 would lead to the wiW of Eq.(3a). Here the term
AZ/L* accounts for the finite size effects®® which break the symmetry of 1 — 72
between (0,0) and (w,7), and thus generates the gap. Ay changes smoothly with k,
and the exact form is not important as shown below. At k = (w,x), this form leads
to a gap for that scales as 1/L2. For all other momenta, except (0,0), of course, the
A2 /L* term is very small compared to 1—4 so that this correction can be neglected.
[Even in the most extreme case of k — 0, 1 — 7§ ~ (k% + k2)/2 = 22%(n2 + n2)/L2,
where ny,ny < L are integers. This is still much larger than AZ/L% ]

The above analysis also suggests that Z(L, k) has little dependence on k, 1.e.,
Z(L,k) ~ Z(L). Thus, we have

wiP ~ Z(L)4IS1/1 — 42 = Z(L)wy " P, (40b)
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Indeed, using the only parameter Z(L) for a given L x L lattice , one can fit the
obtained w(k) to Eq.(40) for all k. as shownin Fig. (4). Plotted in units of 4JSZ(L),
all data points on the three lattices (L = 4,6, 8) collapse into a single curve [except
at k = (7, 7) due to the gap term AZ/L*] giving clear evidence that the exact
spectrum has the same shape as the spin wave spectrum, m The fact that
one parameter Z(L) fits all data points on each lattice confirms the usefulness of
Eq. (40).

These data fits to theoretical form give Z(L) = 1.38,1.26 £ 0.01,1.22 &+ 0.02
for L = 4,6, 8 respectively. [For 4 x 4 we used the exact spectrum at (§,0) and
(w,0) in the fit.] To estimate the limit for L — oo, we fit Z(L) to L™ and find a

size dependence of Z(L) as
Ze(L) = 7z + B/L?, (41)

as shown in Fig. (3c); the result is Zg = 1.21 £ 0.03, and B = 11.1 + 0.8. [Here we
use Zg to distinguish from Z., the renormalization of the spin wave form at k — 0
limit.]

To give some further understanding of the 1/L3 extrapolation found in our
data fit, we examined E(k,L) within the framework of the Schwinger Boson Mean
Field Theory.?® This theory is an approach different from the spin wave theory, and
it gives improved results on a number of aspects, such as the correlation length,
uniform susceptibility etc. The theory leads to a spectrum very close to the spin

wave result: For a L x L square lattice, the spectrum is given by

wet = 2A(L)y/1 =73 (L)g, (42a)

where i is given in (20b). The A and 7 are determined by minimizing the free
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energy, leading to:
2 - 1
1= ; ﬁ'7kl2wk 1COth (5ﬁ(dk> y (42b)

subject to the condition
1 1 1
S ol th{ =
(D) Ek T7% 0 h (2,Bwk) , (42¢)

where 8 = . Clearly, A(L) is very similar to Z(L) in Eq. (40), and we are interested
in the size scaling of A(L). For this purpose, we solved Eq. (42) for L = 4 to 24 at
the T — 0 limit. [We used T = 0.02J and verified with T = 0.01J.] First, n(L) is
found to be very close to 1 (7 increases from 0.993 for L = 4 to 0.9999 for L = 16
and becomes indistinguishable from 1 for larger lattices). Second, the A(L) can be

well fitted by
A(L) = Ao + D/L3, (43)

as shown in Fig. (3d). We find A, =1.158 £+ 0.001 and D = 2.24 £ 0.01, in good

agreement with the original calculation?®. This is a theoretical justification to our

empirical scaling.

1.8.4 Discussion

At the long wavelength, limit k — 0, the spin wave spectrum is simplified to
wiW = V/8ISka, k? = k2 + k2. (44)

The linear coefficient, \/8JSa, is the usual spin velocity. The correction to this
linear coefficient, the spin velocity renormalization factor Z., has been calculated
by a number of authors?!:19:26-28  Qn the other hand, our results suggest an overall

renormalization, Zg, for all k. Thus, Zg = Z.. Oguchi?® obtained Z.= 1.16 using
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a 1/2S expansion of the higher order spin wave theory. Singh, et al.2® obtained
Z. =1.18 £0.02, by a series expansion around the Ising limit. The Green Function
MC simulation of Trevedi and Ceperly!® gave an estimate Z. = 1.14 + 0.05 from
a variational method. Gross et al.2' measured ground state energies of various
size square lattices by a Projector Monte Carlo technique and compared them with
those of spin wave theory, giving Z. ~ 1.18 + 0.10. Our result Zg = 1.21 £ 0.03 is
in reasonable agreement with these calculations.

The linear dispersion relation at small k has been observed in inelastic neu-
tron scattering experiments*'. For LayCuOy, the experiment gives a spin wave
velocity of hcy = 0.85 + 0.03 eVA. Using a lattice parameter of a = 3.80A (deter-
mined by X-ray diffraction*?) and an exchange coupling value of J = 1450 + 30K =
0.125 + 0.003 eV (obtained by fitting the Monte Carlo results?? to the observed
spin correlation length*?), our result Zg = 1.21 + 0.03 leads to hc, = 75v8ISa =
0.80 + 0.03¢VA, quite close to the experimental value. (Using Z. = 1.16 leads to
hcg = 0.77¢VA.) This indicates that the simple Heisenberg model well describes the
magetic interactions in La;CuQy.

In conclusion, our numerical calculation of the excitation spectrum and finite
size analysis suggests that the exact spectrum of the 2D Heisenberg Hamiltonian has
the same form as the linear spin wave theory, except for an overall renormalization
constant of Zg = 1.21 £0.03. This justifies the use of the spin wave spectrum for a
wide variety of calculations, including the Schwinger boson mean field theory and
the modified spin wave theory. Our numerical value on spin velocity agrees with

both the previous calculations and the neutron scattering experiment.
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Table 2. E(ky,k,)/J for all momentum on the 4 x 4 lattice. The exact results are from

Ref.4. The statistical uncertainties are indicated in parentheses.

ky, ky Exact PMC

0,0 —11.2285 ~11.228(11)
0,7 —8.7944 —8.749(12)
0, —8.5183 —8.510(20)
35 —8.5183 —8.506(17)
ST —8.8864 —8.909(17)
T, —10.6499 —10.63(4)
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Figure Captions

Fig.(3)

Fig.(4)

Size dependencies of various quantities: (a) the ground state energy (units
of J), the line is eg + B/L? fit; (b) the energy gap, w(w,7) = Erx — Eq, the
line is w(m,m) = A/L? (c) the spectrum renormalization factor Z(L) ; (d)
A(L) from SBMFT.

Comparison of results from PMC calculations for L x L lattices with L =
4,6,8 to the spin wave spectrum (see Eq.(18)). In each case, the results have
been scaled as w(k)/8JSZ(L), with Z(4) = 1.38, Z(6) = 1.26, Z(8) = 1.22,
which are obtained by fitting the spectrum in the branch k = (0,0) to k =
(0, 7). Except for the gap at k = (7, ), all other data points fall along the

curve, \/1 — 42,
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1.4 Review of some Microscopic Properties

Related to High-T. Superconductors

The investigation of high-T. superconductorsis at an interesting stage. Much
progress has been made in the field, mainly as a result of improved sample qual-
ity , and in particular, the availability of single crystals**. By now a reasonable
amount of agreed experimental data reveals a great deal of information and places
quite severe constraints on the character of the normal state and the mechanism of
superconductivity. Here we will review some experiments which are central to the
understanding of the superconducting mechanism of high-T. materials. Based on
those experiments we will try to establish some general microscopic pictures of the
normal and superconducting phases of these cuprate compounds.

1.4.1 Normal State

One major question in the field is: “Is the fermi liquid description valid for the
current carriers in high T. systems ?” Photoemission experiments on Bi2212!1:12,
YBayCu3O¢.0** and Ndy_xCeyO4_y *° clearly demonstrate the fermi edge in pho-
toelectron spectroscopy. Resonant photoemission experiments on Bi2212 !! and
Nd;_xCexO4—y 5 show that photoemission intensity, and hence the density of states
within 0.5ev fermi level exhibits a strong enhancement at the O 2s core threshold;
a much less enhancement is observed at the Cu 3p threshold, indicating that the
electronic states at the Fermi level have a dominant O 2p nature. Further Angle-
resolved photoemission is capable of mapping electronic spectra. Experiments on
Bi2212 2 and YBay;CusQOg ¢** have identified the fermi surfaces in the Brillouin
zone, which agree with local density calculations*®:*”. Electronic band structure has

been measured successfully along major symmetry lines on Bi; SrpCaCu;0s, and an
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effective mass of a factor ~ 2 has been obtained*®. On YBa,;Cu3O7, measured an-
gular correlation of annihilation radiation (ACAR) from positrons annihilating with
electrons*® obtains similar results.

The temperature dependence of nuclear spin relaxation rates for O and Y
in YBa;Cu307 follows a Korringa law*®:5° (K2T1T = const., K is the NMR shift,
T; is the relaxation time and T is the temperature), which is characteristic of a
fermi liquid. Further, the Knight shifts*®3° of both Cu and O in the planes are
proportional to the static susceptibility x(w = 0,q = 0), strongly supporting the
notion that the spins on the Cu — 3d and O — 2p state are closely connected and
are part of the same single component system, which indicates that O 2p has 2po
character.

Above observations are all consistent with a conventional fermi liquid picture.
However, angle-resolved photoemission study®*® of Bi;Sr;CaCu;Og reveals that the
photohole linewidth increases rapidly as the band moves below the fermilevel. They
are best fitted by a linear dependence on energy away from the fermi energy, showing
o |E — E¢|, instead of « |E — E¢|? as the conventional fermi liquid®!. Som people
attribute this behavior to the interaction between current carriers of the narrow
bands and spin fluactuations™”

To conclude, quasiparticles in these cuprate superconductors are fermion and
are of Cu 3d and O 2po hole character. They exhibit a combination of “ordinary”
behavior, such as a single-particle fermi surface and modest mass enhancement, and

the “unusual” behavior, for instance, linewidth broadening is linear in energy.

1.4.2 Magnetic Properties

The parent compounds of the cuprate superconductors are magnetic in-
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sulators. They are well described as spin-% square Heisenberg systems with a
strong antiferromagnetic coupling, given by exchange parameters J ranging from
~ 100 — 130meV?*3, A tiny interplanar coupling leads to 3D ordering at tempera-
tures Ty of order 100°K. Extensive neutron scattering'*:°2 and NMR33 experiments
as well as theoretical works!* have established this. A recent experiment conducted
by substituting additional layers between CuO, bilayers found that the 3D transi-

tion temperature is determined only by the characters of CuQO; planes®s.

Doping away from the parent compounds, i.e., adding holes to CuQj; sheets,
3D antiferromagnetic order begins to disappear. For simplicity, we concentrate on
single crystal YBayCu3Og4x °*. According to Ref. [54], (i) at x = 0, O on the
chain is missing, there are no extra holes on CuQ; sheets, and therefore an antifer-
romagnetic magnetic order exists at low temperatures; Cu on the chain is d1°, i.e.
Cu™. (ii) For 0 < x < 0.2, the AF ordering in YBa;Cu30g%¢*7 basically remains
the same®*. The low temperature ordered moment my = 0.64up and the ordering
temperature Ty = 415°K are unchanged. This indicates that as the oxygens dope
onto CuO chain charge transfers take place solely within the chain and Cu™ on the
chain becomes Cu?*. 3 Cu ZFNMR*® has confirmed this. (iii) For 0.20 < x < 0.40,

3¢, The decrease becomes abrupt beyond x = 0.35 and the

Tx and mg decrease
3D-AF order disappears around x. ~ 0.415%. This is because that around x ~ 0.20
holes begin to transfer from CuO chains to CuQ; sheets®®. These holes distort the
local magnetic moments and are localized. At low temperature the observed reen-
trant behavior is attributed to the localization of these holes. At high temperatures

the motion of quasi-particles (holes and polarons) induces additional spin fluctua-

tions, which reduce Tn®%. (iv) At x. = 0.41, holes’ activation energy vanishes, an
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insulating-metal transition occurs and the critical hole concentration is estimated®*
to be n! & 2%. (v) For x. > 0.41, the 3D-AF ordering disappears due to a sudden
transfer of a large amount of holes (10 — 15%) in CuO; planes, which leads to a
superconducting phase at low temperatures, . However, a dynamic AF correlation
length £/a ~ 2 has been observed for both x = 0.45 and x = 0.51. The correla-
tion length ¢ does not vary with temperature up to 250°K5%°® suggesting that the
copper spin dynamics is governed by the motion of the quasi-particles, therefore
the correlation length is related to the hole density, or the distances between holes.
Another important result concerning these systems is the observation of a gap in
spin spectrum for YBCO®®. The gap is present in the superconducting phase and
extends to the temperatures well above the transition temperature T.. The gap is
clearly seen S(Q,w) at Q = (%, %,q,)°®. This is consistent with earlier NMR®? re-
sults. The origin of such a gap is currentlly controversial. Some attributes it to the
pre-existence of superconducting pairs above the transitoin temperature T.*3. How-
ever a recent study of YBasCu3Og.x substituting 4% Cu with nonmagnetic Zn®°,
found that the temperature variations of the homogeneous susceptibility xs of the
CuO; planes, probed by the shift of the 82Y NMR line, are nearly unchanged with
respect to pure samples (x > 0.5), even though T. changes dramatically. This ob-
servation casts serious doubts about the proposition that these magnetic anomalies
are associated with the precursive superconducting pairing or with manifestations
54,50

of a superconducting gap In addition, a neutron scattering experiment on

La; 86510.14Cu04 reports that the structure factor S(Q,w) [Q = (m, (1 — §)«)] has

no gap in a wide range values of w'®.

NMR is capable of revealing many magnetic properties of the cuprate super-
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conductors. For instance, according to Ref. [13,61], NMR studies found that the
Knight shift K of the Cu, O in the plane and Y are all proportional to the macro-
scopic static susceptibility x(w = 0,q = 0) strongly supporting the notion that the
spin density on the Cu-3d and O-2p state is not only closely connected but also
part of the same single component system. Further, the fact that the linear slope of
the Knight shift K versus x(0,0) is independent of the hole concentration through
the metallic state, down to the metal-insulator transition region, demonstrates that
x(0)/x(Cu) (the Cu — O covalency) is nearly independent of oxygen content.
Another important result is the zero Knight shift!?® in the insulating state
of YBa;Cu3Os4«, x < 0.4, which seriously questions the possibility that spin and

charge degrees of freedom are independent in a resonating-valence-bond approach

(RVB).

1.4.3 2D Superconductivity

Conductivities parallel and perpendicular to CuQ, sheets oy and o} are
very different. The value of their ratio oy /o is compound specific and ranges from
> 30 in YBa;Cu3O7 to ~ 10° in the Bi-cuprate*3. This anisotropy is the result of
the layered nature of these compounds. A group®? inserted additional insulating
PrBa;CuO7_y layers between CuO, bilayers of YBCO. For 16 PrBCO layers or
more, the zero-resistance transition temperatures saturate at Ty ~ 19°K. This
shows the 2D nature of high-T. superconductivity.
1.4.4 Microscopic Parameters of The Superconducting Phase

The magnetic penetration length A and the coherent length ¢ are two impor-
tant parameters related to the superconducting phase. As expected from the layer

structure, they are anisotropic. The values of A and ¢ are well known by now for
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YBa;Cu3zO7 from a variety of measurements :*2
§ ~ 14+24,
€1 ~ 15~34,
A &~ 14004,
AL~ ~ T000A.

We notice that the correlation length £ and ¢ are short. As a consequence
of it, the number of superconducting pairs in a coherence volume is rather small,
which is expected to lead to large fluctuation effects. These fluctuations were indeed
observed in conductivity, susceptibility and specfic heat®3:43.

A gap in electron energy spectra is characteristic of superconductors. Know-
ing its magnitude and symmetry is essential to the understanding of supercon-
ducvity of a particular material. For high-T. superconductors, the magnitudes of
gap A have been studied with a variety of methods : tunneling spectroscopy, inelas-
tic light scattering, photoemission, and others. According to Ref. [43], tunneling
spectroscopy is the traditional technique for superconductors. However, high-T,
materials have very short coherence lengths and complicated surface chemistry, and
these require delicate experimental techniques. By now, a remarkable agreement
has appeared among many results®*: The ratio 2A/kT. for tunneling parallel to
the planes is approximately 5 ~ 6. Inelastic light scattering®® revealed changes of
phonon frequencies and damping below T.. Depending on phonon frequency with
respect to the gap, a small shift to lower or higher energy is found*?®. The ratio
2A/kT. has been determined®® to be ~ 5. Photoemission spectroscopy has the
energy and angle resolutions which are adequate to measure the superconducting

gap in high-T. cuprates*®~%5.:65 and 2A /kT. ~ 6 — 8 has been found consistently
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both in angle integrated and angle resolved spectroscopy’?®®. All of the above
experimental results establish that the 2A/kT. ratio extends from 5 — 8.

Another important issue is the symmetry of the superconducting gap. Vari-
ous experiments have been performed, and a consistent picture has emerged. Angle-
resolved photoemission can probe the gap in the Brillouin zone**%%:¢5.67. Experi-
ments on Bi2212%7 find no significant variation of the magnitude of gap around the
fermi surface, and that nodes do not exist around the fermi surface. The Knight
shift K measurements at Cu(1) and Cu(2) of YBa;Cu3gO+ reveal a precipitous drop
of xs just below T %8 which suggests strongly the singlet nature of electron pairs
and contradicts the pre-existence of pairing above the transition temperature T.%*.
Moreover, according to Ref. [68], the K doesn’t follow a Yosida function with a
weak-coupling A(T) , but is better described by a strong-coupling BCS s-wave be-
havior. The muon-Spin relaxation technique (4SR) is a widely used technique to
measure many properties of the superconducting phase. It is also used to reveal the
symmetry of the superconducting pair in high-T. superconductors®®. According to
Ref. [69], the relaxation rate o(T) fits to the functional forms given by the singlet
pairing and a minimal variation of ¢(T) in the low temperature region was found
in almost all the hole-doped HTC cuprates, indicating a finite energy gap with-
out nodes and singlet spin pairing in these systems. However, a Raman scattering
experiment on Bi2212 indicates that nodes exist around the fermi surface for the su-
perconducting phase™ All these experiments imply a spin singlet pairing, and more
experiments are needed to identify the spatial symmetry of the superconducting

pairs, s-wave or d-wave.

1.4.5 Correlation between T. and ng
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As mentioned previously, uSR has been used widely to measure many prop-
erties of the superconducting phase, like the transition temperature T, the pene-
tration length A and the density of pairs ng®®. According to Ref. [69], in the vortex
state of type-II superconductors below T., the flux vortex lattice produces a local
field distribution having width AB, which causes the muon spin depolorization. The
relaxation rate o(T) oc AB x 1/A? « ng/m*®®. The muon-spin-relaxation rates o
have been measured in sixteen specimens of the cuprate superconductors (the 214,
123, 2212 and 2223 series), and a universal linear relation between T. and ¢ has
been observed®®. According to Ref. [69], the same linear relation has been observed
in organic superconductors. This linear relation can not be explained in the frame
work of 3D weak coupling BCS superconductivity®®. Authors of Ref. [69] attribute
the observation either to the large energy scale of the pair-mediating boson or to
the preformation of superconducting pairs. More work is needed to establish this

linear relationship between T. and n,, both experimentally and theoretically.

1.4.6 Estimations of Coupling Constant A

Below the transition temperature T., there is a clear gap building up.
Photoemission'?:8® Inelastic light scattering®®, tunneling spectroscopy®*, infrared
and Raman spectroscopy’® and other techniques’!"? have concluded that the gap
vs. T, ratio 2A/kT. ranges from 5 to 8, which is a signal of a very strong cou-
pling superconductivity. In addition, the specific heat anomaly at the transition
temperature T, (AC/vT.)™ and the precipitous drop below T, of the nuclear spin
relaxation rate®® are also reminiscent of the strong coupling effects. On the other
hand, from the measurements of the resistivity p(T), the linear coefficient of the

specific heat v and the normal state spin susceptibility xs, a rather weak coupling
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of the carriers to the unidentified excitaions*® is inferred.

Despite the difficulties caused by the lattice degrees of freedom which dom-
inate the total measured C(T), the linear coefficient 4 of the electronic specific
heat is believed to be within a reasonable band of uncertainty™. According to
Ref. [43], for the optimal compositions of Laz_xSryCuOy, the 7 is in the range of
5 — 6mJ/mol°K?; for YBa;Cu3O7, 7’s range from 14 — 25mJ/mol°K?. From the
values of v, one can deduce the the value of the density of states at the fermi surface
Nexp(0). According to Ref. [43], comparing that of the band structure calculation
Np(0), Nexp(0) = (1 4+ A)Np(0), one concludes that the coupling constant A is about
0.5.

The spin susceptibility x, provides another measurement of the density of
states N(0), from which one can infer the magnitude of the coupling constant A ac-
cording to Ref. [43]. For YBa;Cu3O¢, one obtains that A ~ 0.5; for Lag_,Sr,CuOy,
A~ 0.5—1.0%,

Another way of estimating the value of X is DC resistivity measurement.
DC resistivity measurements’™ on La; g255r0.175CuQO4 and YBa,CusOr reveal the
absence of resistivity saturation at very high temperatures and implies a weak cou-
pling between current carriers and the unspecific excitations. According to Ref. [75)
Resistivity verses temperature remains linear up to 1100 °K for LSCO and 600 °K
for YBCO, indicating at once that the mean free lengths 1 are much longer than
interatomic spacings a, at temperatures below 600 °K for LSCO and 1100 °K for
YBCO. According to Ref. [75], using a relationship between X and resistivity’®,
careful calculation indicates that A < 0.1 for LSCO and X < 0.3 for YBCO, respec-

tively.
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Data on the specific heat coefficient v, the normal state spin susceptibility
Xs and the resistivity p(T) all infer a weak coupling of current carriers to the un-
specified bosons. This seems in contradiction to experimentally measured values of
2A/KgT.. The apparent paradox can be conceivably attributed to the 2D nature

of the system or to some unrevealed pair-breaking mechanism??

1.4.7 a Emergying Microscopic Picture

From the above discussions and many other experiments, some consensus has
emerged with regard to some microscopic characters of high-T. materials. (i) An
undoped cuperate is an insulator or a semiconductor while CuQ; sheets can be de-
scribed by the 2D S = 1/2 Heisenberg antiferromagnet at high temperature and the
3D Néél state at low temperature. (ii) Doping introduces holes to the CuO; sheets.
Those holes exhibit Cu3dx?-y? —O2po characters with O2po dominating. When the
concentration is low, they are localized. The system remains 3D antiferromagnetic;
however, the 3D-AF order becomes weaker. (iii) When the concentration of holes
exceeds a critical value n? = 0.02, the holes become delocalized. An insulator-metal
transition has occurred and the system is now a metal. The 3D-AF order no longer
exists. Holes are fermions, move around in 2D dynamic antiferromagnetically corre-
lated medium and can be described as fermi liquid or near fermi liquid. Although it
is still controversial, many experiments indicate that at superconducting transition
temperature T, those holes form singlet Cooper pairs and the system converts to
a superconducting phase.

Although much progress in experiments has been made, some critical issues
remain in the need to be sorted out. For instance, although local density approxima-

tion has been extremely successful in predicting fermi surfaces, there is no consensus
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on whether high-T. materials can be described by conventional fermi liquids; Some
mechanisms®* advocate the pre-existence of superconducting pairs; one supporting
evidence is that neutron scattering experiments on YBCO reveal a gap in spin
spectrum®®:58 although the origin of the gap remains to be determined. It is also
known that 2A/KgT, is 5 — 8, much larger than that of BCS value , while many
experiments result in a small coupling constant A, etc. All these issues need to be

resolved before consensus on the superconducting mechanism can be reached.
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Chapter 2.
Electron-Phonon Interaction and Superconductivity in A,Cg,
Guanhué Chen and William A. Goddard III

Materials Simulation Center, Beckman Institute

California Institute of Technology, Pasadena, CA 91125

Abstract

The electron-phonon couplings are caused by both the changes of electron-
ion coulomb interactions while freezing electron orbitals, the static coupling, and the
adjustments of the electronic states to the lattice vibrations, the dynamic coupling.
We have investigated both static and dynamic coupling for alkali compounds of
Buckminsterfullerene A,Cgo, based on which we calculated many properties related
to the superconducting phase, such as the transition temperature T, the isotope
exponent a., and AT.|;gpa, etc. By comparing these calculated values with current
experimental data, we determined the relative contributions to the electron-electron
pairing from the static and dynamic coupling, and predicted that ay ~ 0.1 — 0.2 for

the potassium isotope effect.
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2.1 Introduction

Recent discovery! of superconducting potassium-doped icosahedral com-
pound K;Cgo stimulated much experimental and theoretical interests?~13. It has
been determined that the superconducting phase is K3Cgo and that the structure is
a face-centered cubic (f.c.c)®. Since then, many other superconducting alkali com-
pounds of Cgo have been synthesized; their transition temperatures T, range from
2.5°K to 33°K114~17 see Table 1. A natural question arises : Are these compounds

conventional phonon-mediated electron pairing superconductors ?

Table 1. The Transition temperatures T, of AxCegot?™ 1"

Composition T (°K)
RbCSz Cso 33

RbyCsCegq 31

Rb3Ceo 29
KRbyCeo 27
K2RbCeg 23

KaCso 19
Naz()ngo 12
Liz CSCGO 12

NangCeo 12
NagRszo 2.5
NazKCGO 25

Several mechanisms*~® have been proposed to explain the superconductiv-

ity in these materials. Among the proponents of phonon-mediated electron-pairing
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mechanisms, disagreements arise regarding which phonon modes are responsible for
the superconductivity. One group suggests that the hign frequency intramolecular
phonon modes of Cgg couple with conduction electrons to give superconductivity.
Another group argues that it is the coupling between the low frequency intermolec-
ular phonon modes of K3Cgo and the conduction electrons which lead to super-
conductivity. Varma et. al. * suggested that intramolecular vibrations strongly
scatter electrons near the fermi surface by dynamic Jahn-Teller effect. Using a
frozen-phonon technique, they calculated the Jahn-Teller coupling matrix and con-
cluded that A = 0.3 — 0.9. Based on these, they were able to show the linearity
of T, vs. N(0) and therefore possibly explain the linear dependence of T. and
the lattice constant A observed in experiment!?. In their calculation they used a
value of N(0) =~ 10 ~ 20 states/eV-spin-Cgq which is 5 ~ 10 times as high as that
of a photoemission experiment’, but is consistent with the critical field and nor-
mal state susceptibility measurements!8. If we use the photoemission experiment’s
value of N(0) =~ 2 states/eV-spin-Cgg, then A < 0.2, which is too weak to give rise

of superconductivity in these systems.

Zhang et. al%, on the other hand, have estimated various contributions to
the electron-electron interaction in K3Cgo, and showed that the KT optical-phonon
modes induce a strong attraction which should be the main source of superconduc-
tivity. They also studied the charge density wave in these systems and concluded

that because of the frustrations, the charge density wave phase is less stable than

the superconducting phase.

In addition to the phonon-mediated electron pairing mechanisms, some ex-

otic mechanisms® have also been proposed to explain the superconductivity of
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A Cgo. Chakravarty et. al. and Baskaran and Tosatti argue that two electrons
may pair by electron-electron exchange and correlation on a single Cgp molecule®.
Baskaran and Tosatti attribute it to the “stability of molecular singlet” (SMS).
However, Zhang et. al.® adopted the polyacetylene model of Su, Schrieffer and
Heeger!® to describe behavior of a single Cgg molecule. They found a difference in
length between long and short bonds in excellent agreement with experiment. Based
on this, they calculated the energy gain from “SMS”, which was found to be 1 ~
2 orders less than the energy gain resulting from the coupling between conducting
electrons and K* optical phonon modes. They concluded that “SMS” is too weak
to give arise of superconductivity in these systems.

We present here a thorough and quantitative study of A Cgao (A = alkali
element). In Sec. 2.2 we calculate the electronic structures of a Cgy and discuss
its ground states, excited states, and the corresponding energies of each state. It is
important to know the electronic structure of a single Cgo because the icosahedral
Ceo molecular orbitals maintain their identity in A,Cgo except for the crystal-
field effects. In Sec. 2.8 we calculate the static electron phonon coupling constant
(the static electron phonon coupling is defined as the coupling between electron
and phonon caused by the change of the electron-ion coulomb interactions.) and
its implications or connections to the superconductivity of A,Cgo. In Sec. 2.4
we discuss the Jahn-Teller effects and the dynamic coupling between the electrons
at LUMO and the intramolecular phonon modes (the dynamic coupling is caused
by the respondings of electron local orbitals to the phonon distortions). In Sec.
2.5 we calculate various properties related to the superconductivity and obtain a

comprehensive picture of the superconducting phase in these systems.
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2.2 Cgo Chemistry

A Cgp molecule has icosahedral symmetry I,. It looks like a soccer ball,
and has 12 pentagons and 20 hexagons, Fig. (1). Each carbon atom is adjacent to
three nearest C, and this makes 90 bonds. Of the 90 bonds, 30 are double bonds
and 60 are single bonds. Double bonds are shared by adjacent hexagons and single
bonds forms pentagons. It is interesting to know its geometry and its electronic
structures. Because of the relatively large size of a Cgg, it is very expensive to do ab
initio calculations. An alternative is MNDO?2°, which is a semi-empirical technique

and has been used successfully on a wide variety of carbon compounds. We present

here a MNDO?? study of one Cgq molecule.

Fig. (1), structure of a Cgo molecule
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9.9.1 Geometry of a Cso

13C NMR experiment?! data indicate the lengths of the single and double
bonds in Cgo are 1.45A and 1.40A, respectively. Theoretical calculations?? indicate
that the double bond length Rqp ~ 1.40A and the single bond length Ry, ~ 1.47A.
To obtain the optimal geometries of Cgo, Cz, and Cl;, we performed MNDO cal-
culations on five different pairs of double and single bond lengths (R; = 1.40A for
double bond and R, = 1.47Afor single bond). Those structures were obtained by a
minimization procedure using BIOGRAF?5. Since R; and R, are very close to the
optimal bond lengths Rgp and Rgyp, respectively, we can use the following harmonic

approximation to express the total energy :

E = E¢ + a1(R; — Rep)? + @2(Rz — Rap)? (1)

In Table 2, we list the results from five MNDO calculations, in which total charge
and total spin of Cgo, Cj, and C7 are (0,0), (—1,1/2) and (-3, 3/2), respectively.
Having five sets of known values of E; R; and Rj, we solved for the values of Ry,
Rap, a1, az and Eq. From the above procedure, we obtained the optimal geometries
for Cgo, Cqp and C3; . In Table 3, we list the optimal single and double bond lengths,
Reb and Rgp, and their corresponding ground state spins and energies. Our results
of the bond lengths 1.474A and 1.3994A of a neutral Cgq are close to the experimental

data?! and other theoretical results.
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Table 3. MNDO Energies (eV) for Five Different Sets of Geometriest

Rsb(A) Rav(4) Ec,, Eq- Ega;
1.470 1.400 —7636.93824 —7639.66408 —7636.08235

1.475 1.395 —7636.94118 —7639.58489 —7635.91726
1.475 1.400 —7636.95759 —7639.63115 —T7636.03848
1.475 1.405 —7636.93251 —7639.63643 —7636.10269
1.480 1.400 —-7636.89968 —7639.54108 —7635.90057

T we used the five sets of data E, Ry, and Rgp to obtain the optimal geometries of
Ceo, Cgp and Ciy .

Table 8. Parameters of Optimal MNDO Geometriest

Molecule Rep(A) Ran(A) S E(eV)
0

Ceo  1.47375 1.39948 —7636.95988
Ceo 147166 140314 1 -7639.63838
Csy ~ 1.47017 1.40813 £ -7636.20593

i the optimal geometries are obtained by the procedure described in the previous
paragraph.

Table 3 tells us that extra electrons on Cgo enlarge the double bond length
but decrease the single bond length. The difference between the double and single
bond lengths is now smaller. The extra electrons tend to make the distributions of
the bond lengths more uniform. The amount of increase in a double bond length is
much larger than the decrease in a single bond. The net result is a slight increase

of the bucky ball size, which is less than 0.1% for the linear dimension of the Cgg

molecule.
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2.9.2 Chemistry of a Ceo

Some groups'!:?? have studied molecular orbitals of a Cgo. Basic features are
that the highest occupied molecular orbitals (HOMO) have a five-fold degeneracy
with H, symmetry, and that the lowest unoccupied orbitals (LUMO) have a three-
fold degeneracy with T1, symmetry. These Hy and T;, are d and p-like orbitals,
respectively. In Fig. (2) we plot a LUMO resulting from our MNDO calculation,
showing a mix of py, py and p, like orbital. However, it clearly has the inversion-u

symmetry and is antibonding at the double-bonding sites, which is expected.

Fig. (2), a LUMO of a Cgo, which is a mix of py, py and p, like orbitals
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It is also interesting to know the electronic structures of various spin states.
Table 4a lists total energies of various states for three different geometries, Cgo, Cqy,
C2,, and a crystalline K3Cgq (the crystalline structure is optimized by BIOGRAF?25
(a sofeware developed by Molecular Simulations Inc., Sunnyvale, California) em-

ploying simply the force field of KC242%, which will be explained later).

Table 4a. Results of MNDO Calculationst. (energies are in units of eV)

Q S  Eq, Eq- Eo- Ex,Ceo

0 0 -—7636.95988 —7636.94917 —7636.90409 —7636.33305
~1 1 -7639.63838 —7639.66303 —7639.65868 —7639.22245
~2 0 -7639.13605 —7639.19692 —7639.23746 —7638.92265
—2 1 -7630.23343 -7639.20236 —7639.32713 —7639.00755
~-3 1 -7635.56883 —7635.66326 —7635.74277 —7635.52861
—3 3 _7635.72828 —7636.13119 —7636.20593 —7635.97065
—4 0 -7628.82836 -—7628.95721 —7629.07798 —7628.95095
—4 1 -7629.33372 -7629.47784 —7629.58190 —7629.31815
—4 2 -7629.52204 —7629.64761 —7629.76463 —7629.61665

T these MNDO calculations were performed without explicit C.I. options.

In order to test the applicability of MNDO method on Cgg, we calculate
the first electron affinity, the ionization energy and the heat of formation for a
neutral Cgo with MNDO. If MNDO is indeed reliable, the calculated result‘s should
be comparable to that of experimentally determined values. From our MNDOQO
calculations the first electron affinity is 2.68eV while experimental measurements

of the quantity yield the value of 2.65 £ 0.05 eV?%. This gives us the confidence to
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our calculated results.

The LUMO of Cgo has Ty, of symmetry and the HOMO has H, symmetry.
The ground states are S = 0 for Cgo; S = 1/2 for Cgy; S =1 for Cgo_; S =3/2 for
C3; and S = 2 for C¢; . This is consistent with Hund’s rule. All these MNDO cal-
culations are performed without the C.I. (configuration interactions) option. Some
groups proposed a “Stable Molecular Singlet” (SMS) mechanism to explain the su-
perconductivities observed in A,Cgo. They suggested that the energy of the singlet

states C25 and Cso is lower than that of two C3. . From our MNDO calculations,

we found that for gas phase,

Egz-(0,-2) + Egs- (0, —4) = —15268.31544 eV

and

Ecg,; (g, —3) = —7636.20593 eV,

while for crystalline K3Cgg,

EK,060(0, —2) + Ex,c4, (0, —4) = —15267.87360 eV,

and

EKaceo(g, —3) = —7635.97065 e V.

For both gas phase and crystalline K3Cgo, the total ground state energy of two Cis
is less than that of the spin singlet states of C3; and Cj; by ~ 4eV. Furthermore,
we notice that the MNDO(no C.I.) ground state of C3, and Ci; are not spin

singlets but are high spin states, S = 1 for CZ; and S = 2 for C;. SMS seems to

be a remote possibility.
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In Table 4b we list results of the same MNDO calculations as those in Table
4b but with C.I. (Configuration Interaction). The basic conclusions are not altered
with C.I. option. The ground states are still those high spin states, except for the
case of Q = —4, where the ground state’s spin is S = 1 instead of S = 2. Even
when we take the ground state energies of C2; and Cf, instead of those of the
spin singlets, and include the electronic correlations, the total ground state energy
of C25 and Cj; is still about 3.1 eV higher than that of two C3: for both gas and
crystal phases. Energy gain from geometry relaxation or Jahn-Teller effect is less
than 0.1 eV and do not change the picture. Hence the possibility of SMS’s playing
a role in the superconductivity of alkali Buckminsterfullerene A,Csgg is effectively

eliminated.

Table 4b. Results of MNDO CI Calculations. (energies are in units of eV)

Q S cCrt Egs- EX,Coq
—2 0 (3,1) -—7639.25463 —7638.94085

~2 1 (3,0) —7639.32578 —7639.00760
-3 3 3 —7636.02060 —7635.79886
-4 0 3  —7629.68417 —7629.54935
-4 0 (6,2) -7629.68963 —7629.55765
—4 1 (6,1) —7629.97025 —7629.82965
-4 2 (6,0) —7629.93171 -7629.73355

1 the C.I. options used in the calculations.

Because of symmetry, the ground states of Cgo and Cgo_ are subject to first-

order Jahn-Teller effects, while those of Cgg and C3; are not. On the other hand,
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the energy gap A between the spin QUARTET and the spin DOUBLET of triply
charged Cgp is A = Ecg;(s = %,Q = -3) - Ecg;(s = %,Q = —3) = 046 eV
(without CI) and 0.19 eV ( with CI) for the gas phase; Ex,c.,(S = 3;Q = —3) —
Ek,ce(S = 3;Q = —3) = 0.44 eV (without CI) and 0.18 eV (with CI) for the
crystalline K3Cgo. From a LDA calcul=tion!! the dispersion of LUMO bands is
about ~ 0.5 ev. This means that the spin states of C3; in crystals is a mix of
S =1/2and S = 3/2. The S = 1/2 state of C}; is Jahn-Teller active in the first
order. This means that the electron at fermi surface is subject to Jahn-Teller effects
and it will be discussed later at length.

In conclusion, we obtained the optimal MNDO geometries for Cgg, Cgy, Cig,
which are important late to the study of Jahn-Teller effects; we also calculated the
electronic structures of a Cgo and effectively eliminated the “SMS” mechanism for

the superconductivities in A,Cgg.
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2.3 Static Electron-Phonon Couplings

2.3.1 Lattice Vibrations of AxCeo

The force field method parameterizes the microscopic interaction by chemi-
cal bond interactions, Lennard-Jones potentials, coulomb interactions and various
correlation interactions, etc. It is being widely used to simulate organic and other
systems. The force fields for graphite systems have been well established. Because
Ceo compounds have a close resemblance to the graphite systems in their structures,
we may use the force field?® of the intercalated graphite KCs4 to simulate vibrations
of Cgo and K3Cgp. In Table 5, we list the vibrational frequencies of a Cgo using the
graphite force field?®, and compare them to the experimental measurements. For
the majority of IR and Raman active modes, the differences between the calculated
and experimental frequencies are less than 6%, and in the worst case the differ-
ence is about 12%. The calculated values of low frequency modes are quite close
to those of the experimental measurements, and only three high frequency modes
Hg(6), T1a(4) and Ag(2), have deviations of more than 10%, which is reasonable.
On the basis of these results, we conclude that the graphite force field gives a good
description of Cgo vibration modes, and will use it in our study of A,Cgo. (Starting
from the graphite force field Guo and Goddard?” included more angle-angle and
angle-bond correlation terms, and obtain a quality force field for Cgo. The resulting

values of vibrational frequencies are listed in column 2 of Table 5.)
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Table 5. The vibrational frequencies of Cgg

mode GraFFi(cm™) CgoFF* (cm™) Exp. (cm™!) Active

Hg(1) 261 279 273 Raman
Hg(2) 435 430 434 Raman
Hy(3) 759 711 710 Raman
H,(4) 750 774 774 Raman
Hg(5) . 1080 1099 1100 Raman
Hy(6) 1104 1250 1250  Raman
Hg(7) 1321 1423 1426 Raman
Hg(8) 1517 1576 1576 Raman
Ag(1) 488 493 496 Raman
Ag(2) 1281 1462 1470 Raman
Tya(1) 556 528 527 IR

T1a(2) 574 581 577 IR

T1a(3) 1113 1183 1183 IR

T1u(4) 1276 1439 1428 IR

1 frequencies were obtained using the force field of KCj4; | frequencies were obtained

by Guo and Goddard?” using improved force field.
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We used the force field?® of the intercalated graphite KCa4 to optimize the fcc
crystal structure of K3Cgg. The resulting lattice constant a = 14.18 A while a X-ray
diffraction experiment® reveals a simple fcc structure with the lattice constant of
14.24 +£0.01 A. The force field was then used to calculate the full phonon spectrum

(189 modes for each k state of the Brillouin zone)®. Fig. (3) shows the density of

phonon states for K3Cgp.

Count
N
o
o
o

Ll

I T I 1 J
0 400 800 1200 1600

Frequency (cm’ 1)
Fig. (3), relative phonon density of states vs. frequency; the lowest two peaks
correspond to the intermolecular vibrations and other higher frequency peaks

correspond to Cgg intramolecular modes.
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The response of K3Cgp to the external pressure is studied. We optimize
the crystal structures of K3Cgo under the external pressures of 1, 3, 5, 8 and 10
GPa. And then we calculate their corresponding phonon frequencies at the I' point.
Results are plotted in Fig. (4). All the responses up to 10 GPa can be fitted to
polynomials of order two. [0V /0P]p—=¢ ~ —2.27 x 1073 /Kbar at P < 1Gpa. The
intermolecular modes respond much more strongly than those of intramolecular
modes. The frequencies of the intermolecule modes change ~ 10% in magnitude
per GPa when compared to those of the intramolecules’ 1% or less (for transverse

optical modes of octahedral K, the change is ~ 30% per GPa, Fig. (4b).

2
A= a0+a1P+a2P
g, = 14.16 A°

a1 = -0.108 AO/GPa
a, = 0.00445 A°/GPa2

A (A%
>

Fig. (4a), lattice constant A vs. pressure.
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Fig. (4b), frequency vs. pressure for the transverse modes of octahedral K
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Fig. (4c), frequency vs. pressure for the libration mode of Cgg
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In the following sections, first we develop a tight binding description of
the conducting electrons based on a recent local density approximation calcula-
tion (LDA)'®. Then we develop an accurate formalism to calculate the spectra
function a?(w)F(w), the electron-phonon coupling constants A and therefore the
transition temperature T.. This uses the exact phonon eigenvectors and eigenen-
ergies in combination with the localized Wannier orbital for describing electrons
in the conduction band. We conclude that the phonon-mediated electron pairing
may lead to superconducting phase of K3Cgp and that the main contribution to
the electron-phonon coupling comes from the interaction between the conducting
electrons and the low frequency intermolecular phonon modes of K3Cqg.

2.8.2 The Conduction Band

The electronic states of K3Cgg can be described in terms of Kt and Cgo‘
centers, with the conduction electrons on Cgq. LDA!! calculations showed that the
LUMO of Cgg is of Ty, symmetry (ie. px, Py, Ps). We established the hopping
matrix elements from one Cgg molecule to its the nearest and the next nearest
neighbor Cgo, and carried out tight binding calculations to obtain the conduction

bands. The Hamiltonian used for the electron hoppings is,

nn nnn
1 2
H. = Z ti(j )c;;icnj + Z ti )c;;kclk (2)
ij=1,3 k=1,3

where ti(jl) and tf‘z) are the nearest and the next-nearest neighbor hopping matrix
elements, respectively. In Fig. 5, we plot the various hopping channels between the
nearest and the next-nearest neighbors. For hoppings between the nearest neighbors
there are three channels with the hopping matrix elements t, t; and t3 respectively;

for hoppings between the next nearest neighbors we included only one channel with
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its matrix element t4 and ignored the rest of possible channels on the ground that
the rest would be much less significant.

In calculations we adjusted the values of t1,ts,ts and t4 to fit a recent local
density approximation calculation!® (LDA) on K3Cgo (the bandwidth E,, = 0.6 V).
the density of states at the fermi surface. The resulting electronic conduction bands
and E; of the tight binding scheme are in good agreement with those of LDA. We
found that t; = —0.0136eV, t; = —0.0068eV, t3 = 0.0306eV and t; = —0.0055¢V,
E; = 0.23eV, and N(0) = 11.5 state/eV —spin — Cgo while the LDA gave NLPA(0) =
13.2 states/eV-spin-Cgo'°. In Fig. (6a) we plot conduction bands along I' — X —
W — L - T — K; In Fig. (6b), we plot the density of states N(0) vs. energy and
both are in good fit to the LDA1C.

Having deterﬁined the fermi surface, we can calculate the average fermi
velocity v¢ which is 9.9 x 108 ¢cm sec™! as compared to v ~ 8 x 10° cm sec™!
resulting from an infrared reflectivity experiment?® which take 2A/KpT. ~ 5. A
LDA calculation!® reported that v = 1.8 x 107 cm sec™!.

We have good descriptions of both phonons and conducting electrons and
are ready to evaluate the static electron-phonon matrix. To do this, we need to

develop a formalism which incorporates the available information of phonons and

conducting electrons.
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Fig. (5)
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Fig. (6a), solid line is energy spectrum calculated from the tight binding scheme;
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Fig. (6b), density of states vs. energy; the arrow points to the fermi energy.
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2.3.8 Static Electron-Phonon Coupling

The total Hamiltonian is the following;:
H = He + Hee + th + Heph) (3)

where H, has been defined in Eq. (2), Hee is the screened electron-electron coulomb

repulsion,

Hpn = Z Qu; a:jakj (4)
k,j

is the phonon part of the Hamiltonian, and a.ii'j and ay; are creation and annihilation
operators of phonon of momentum k, frequency Q; and mode j, respectively.

Heph = Z Z ARna . Vnavei(rl - Rgoa)) (5)

1 no

is the electron-phonon interaction, V.; is the screened electron-ion coulomb interac-
tion, R is the equilibrium position of the ath ion in the nth unit cell, and AR,

is the displacement of the ion.

ARqa = ) | v/1/NMaQ(kj)e(a/ki)é(alkj)exp(ik - R(Y) (6)
kj

Q(k.]) = 20 (atkj + ak.i) (7)
Vi(r - R{Y)) = / d*q/(2r)° exp(iq - (r — R{Y)) Vei(q) (8)
Vei(r — R{)) = 4me?/(q* + %) (9)

where qsc = 1/Rqc and Ry is the screen length of coulomb interaction.
The electron-phonon interactions may further be expressed in a tight binding

picture as the following:

1
Heph = Vl—/; Z Mk’kjcii-r Ck(a‘tqj + aq.]) (10)
K'kj
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where,
Mg = —i Z(—h )!/2 eTiG R
&7 2pally; (1)
Va(a + G)e(alaj)é(ala)) - (4 + G)W(q + G; k', k)
3
W(a+G;k, k)= > AL(K')Au(K) Unan
m,n=1 , (]_1b)
Uma = 3 7% < g (Ry)|e9T 379, (0) >
where e~1¢ Ra e(a|qj)f(a|qj) is a phonon eigenvector of momentum q (q = k' — k+

is in the first Brillouin zone), G is a reciprocal lattice vector and A(k) is the electron
eigenvector of momentum k, R, is the equilibrium position of the ath atom in the

unit cell and Vei(q) = Y Vei(q) (N is the number of unit cells in the volume V).

Therefore,

Vg

a}()Fu(w) = s Z / d” Mg 6 — )

. _ 1 [d%k o d%k
a?(w)Fa(w) = = / Ry [

and the static coupling constant is,

A =2 / az(w)F(w)%i, (13)

where vy is the average fermi velocity, vg = 10e./08k |, where k; is the momentum
3 5 )

perpendicular to the fermi surface.
Two important average phonon frequencies w; 15 and /< w? > are defined,
2 [ dw
Ws log = eXp{S / :af(w)Fs(w)logw},
0

oo (14)
2 _ 2 2
<wg > = X/(; dwad(w)Fs(w)
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Their implications will be discussed in Sec. 2.5.
In our calculation one undetermined parameter is the screening length R,..

We use the Thomas-Fermi length Rtp to estimate Rec2®,

Rrr = qrF
2 6me2n, » (15)
qrr ~ Ef

where n. is the valence electron density and Es is the fermi energy. The calculated
value of Ryp is 0.63A. It is short due to the fact that there are three valence
electrons for each Cgo. However the Thomas-Fermi picture is for free elecrtons, it
may not be a good description for A;Cgo, in which conducting electrons mainly
reside on Cgo molecules.
2.58.4 Model

In our calculation, the conducting electrons are treated by the tight binding
scheme described in Sec. 2.2.4 with local orbitals of Ty, symmetry. Phonons are
simulated by a force field developed by Guo et al.® using BIOGRAF as mentioned in
Sec. 2.2.1. To calculate the static electron-phonon coupling constant Ag, the local
orbitals of T, symmetry are kept in their equalibrium positions and do not change
as the lattice vibrates. However, since the orbitals of the conducting electron do
change with the lattice vibrations, each C on a bucky ball Cg is seen to carry some
negative charge q. when we calculate the static electron-phonon coupling matrix

between the conducting electron and C60 molecules. The charge on each K is +e.
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2.8.5 Calculation Procedure

To calculate the electron-phonon matrix Mykj, we need the eigenvectors
and eigenvalues of phonons, the momenta and eigenvectors of electrons at the fermi
surface. For phonons, we calculated all 189 vibration states for a 6 x 6 x 6 mesh of
the momentum k for the Brillouin zone (Of these modes 174 correspond to intra-
atomic vibrational modes of the Cgo, while the other 15 correspond to (i) three
Ceo translation modes; (ii) three Cgo libration modes; (iii) three K,c; translational
modes and (iv) six Kie; translational modes). We recorded these eigenvectors and
eigenvalues with their corresponding momenta o for later use. The eigenvector and
eigenvalue of phonon with momentum q is approximated by those of lattice site

closest to q in the mesh.

For electronic states at the fermi surface, we store all the eigenstates and
momenta of about 300 points around the fermi surface. For local Wannier wave-
functions we use three p-like Gaussian functions to describe three T, orbitals at a
Ceo site. For instance, 9y xe~ox’ —B(y*+2%) (By choosing these particular forms,
all the integrals may be worked out analytically), where & = 1/2R2, 8 = 0.693/R2,
and 1« has its maximum value at (x,y,z) = (R, 0,0) and decays to the half of its
maximum value at (x,y,z) = (Ra,Rg,0) = (Ra,0,Rg). By adjusting the values of
R, and Rg, we may tune positions and shapes of the local Wannier wavefunctions.
In Fig. (7) we plot the values of a wavefunction 95 along the x-axis and y-axis
respectively, setting z = 0, Rq = 3.55 A and Rp = 3.55 A. We then orthogonalize
the three orbitals up to the next-nearest neighbor in order to use the normal second

quantization formalism.

After we have information of both phonon and electron at the fermi surface,
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we evaluated My for each pair of momenta k', k at the fermi surface for all
phonon modes (j = 1,189). To estimate the coupling between the conducting
electron and Cgo, we set the charge on a C to its average value —3/60 = —0.05,
which overestimates the charge each C carries (we will see later that this does not
alter the overall picture). Then we summed them over according to Eq. (7) to get
o?(w)F(w) and therefore A and T..

In our calculations, we use N(0) = 11.5 states/eV-spin-Cg for most cases to

estimate the static electron coupling constant As, except when we explicitly state

the value of N(0) to be otherwise.

w
w
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Fig. (7), solid line is for psix along x-axis (y=2=0);
dashed line is for for psiy along y-axis (x=3.55 A and z=0).
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2.5.6 Results and Discussion

In Fig. (8a), (8b), we plot a?(w)F(w) vs. w for t; = —0.0136eV, t; =
—0.0068eV, t3 = 0.0306eV, t4 = —0.0055¢V, Ro = Rg = 3.55 A and R, = 1A.
Two peaks appear at low frequencies and their positions correspond to w; =~ 20 —
40 cm ™!, which are the frequencies of the libration modes of K3Cgo and vibration
modes of octahedral site K, and w; = 130 — 150 cm™! which are the frequencies of
the vibration modes of tetrahedral K. In Fig. (8b), we plot o?(w)F(w) vs. w for w
up to 1600cm ™. At w > 200cm ™!, o?(w)F(w) is apparently negligibly small. This
result suggests that contributions to the static coupling constant come mainly from
the couplings between electrons and phonons at low frequencies. Those phonons are
the low frequency intermolecular vibrational modes rather than the high frequency

intramolecular vibrations.

To further identify the sources of contributions, we set the charge on C to zero
when we estimated a?(w)F,s(w), which neglect the interaction between conducting
electron and Cgo, and we plot the results in Fig. (8c). Again, peaks occur at low
frequencies similar to the previous case and the magnitudes of the first and second
group of peaks has no noticeable changes. These results indicate that the main
contributions to the static electron-phonon couplings and hence superconductivity,
come from the alkali atoms A. The low frequency vibrations of Cg¢ contribute less
significantly to the superconductivity of K3Cgo. This is due to the fact that the
mass of Cgo is much larger than that of A and the contributions from carbons at

different sites are mutually cancelled.
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To investigate the sensitivity of various parameters, we varied a, 8 and the
screen length Rs. with t; = —0.0136eV, t2 = —0.0068eV, t; = 0.0306eV and t4 =
—0.0055eV. Table 6 lists the values of As, ], ws10g, \/<—u_13—> , and the screening
length R, for K3Ceo. A; depends strongly on R, and increases monotonically with
Rec. When Ry = 2A, )\, = 5.46, corresponding to a very strong coupling; and at
Rec = 14, A, = 1.15, a modest pairing. In any case, As depends strongly on the
screen length Rsc. As also depends on the positions and shapes of local orbitals,
i.e., depends on the values of R, and Rg. This is because R, and Rg determine
the relative distances between the conducting electrons and ions. However, we do
not expect the value of A; to depend on R, and Rg as much as Re.. This is indeed

the case. Table 7 lists the A;’s dependence on a and §3.
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Table 6. Ry, Dependence of some Superconducting Propertiest

Rec(A) walog /< w?> lambda,

0.50 28.7 52.3 0.13
0.63 28.5 51.3 0.28
0.80 28.2 50.2 0.60
1.00 27.9 49.0 1.15
2.00 27.1 45.8 5.46
4.00 26.4 43.3 14.50

8.00 26.0 42.0 26.82

t wslog and /< w2 > are in units of cm™!; N(0) = 11.5 states/eV-Spin-Cao.
1108 8

Table 7. Dependence of some Superconducting Properties on local orbitalst

Ra(A) Rp(A) Rec(A) wiiog(em=1) A,

3.00 3.80 10.0 26.1 5.42
3.55 3.55 10.0 25.9 5.06
3.45 3.45 14.2 25.9 6.28
3.55 3.55 14.2 25.9 6.25
3.65 3.65 14.2 25.9 6.18

t N(0) takes the result of a photoemission experiment?, which is 1.9 states/eV-spin-

Cso.
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It is clear that the intermolecular modes contribute to the static electron-
phonon couplings far greater than the intramolecular modes. Hence the intermolec-
ular modes play a dominant role in the static electron-phonon coupling of alkali
Ceo compounds. Although peaks at ~ 20 — 40 cm™! are higher than those at
~ 130 — 150 cm ™ in Fig. (8), we should not conclude that most of the contribu-
tion to the electron-phonon coupling comes from phonons at ~ 30cm™! due to the
limitations of the current model. One such limitation is that we do not include A-s
orbitals in our tight-bind approximation. It changes the relative contributions to
the static coupling constant A; from both octahedral and tetrahedral alkali atoms.

The screen length Re. is a very important parameter and needs to be in-
vestigated. If N(0) ~ 10 — 20 states/eV-spin-Cgg, there is no question that the
coupling between the conducting electrons and the intermolecular phonon modes
plays a very important role in the superconductivity mechanism of these materials.
2.8.7 Conclusion

Our finding shows an important role that the alkali atoms play in the super-
conductivity of the alkali fullerence : 1) The contributions to the static electron-
phonon coupling come mostly from the low frequency intermolecular phonon modes;
2) The alkali atoms contribute more significantly to the static electron-electron pair-
ing than C atoms; 3) because of its magnitude, the static electron-phonon no doubt
plays an important role in the superconductivity of these systems. Any mechanism
explaining the superconductivity of MyCgo can not neglect the significant roles of

the alkali atoms and the low frequency phonon modes.
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2.4 Dynamic Electron-Phonon Couplings
2.4.1 Symmetry and Electron-Intramolecular Phonon Couplings

Local density approximation (LDA)!!, and MNDO calculations®® have re-
vealed that the lowest unoccupied molecular orbitals(LUMO) are of T;, symmetry,
1.e., p-like orbitals. These orbitals are subject to Jahn-Teller effects. Let us turn to
the character table, to find out to which phonon modes these orbitals couple.

The symmetry group of Cgp is the icosahedral group I. The corresponding

character table is the following®!:

Table 8. Character Table of the Icosahedral Group Iy

In E  12Cs 12CZ  20C; 15C,
A 1 1 1 1 1
T, 3 31+vB) f0-vB) o -1
T, 3 i(1-v5) i(1+vE) o0 ~1
G 4 -1 -1 1 0
H 5 0 0 -1 1
T1a@®Tw 9 3(B+V5) 1(8-v5) 0 1

The characters of Ty, @ T;, are obtained by the direct product of the original two
characters. Two ways to decompose T1, @ T1, are given below.

(i) By the theorem of orthonormality, Y, ;né-xﬂx;’ = §;,, where ng = 60, is the

order of the icosahedral group; n; is the number of elements in the class i;

p, v are labels for inequivalent, irreducible representations of In; x! is the

character of class i elements in the p-representation, we conclude that

TR T = Ay P Tie P He. (16)
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(1) Summing over the characters of A, T; and H, we get exactly the characters

of T1u @ T1u. And it is the only choice. Since u@ u = g, we again obtain
Eq. (16).

From the above discussion, we know that electrons in LUMO bands couple
to Ag, Tig and Hy phonon modes. Ay is the symmetric breathing mode, T is
a rotational mode, and Hg is a quadrupolar vibrational mode. A; modes change
the local energy level but do not lift the degeneracy. Tig is antisymmetric while
Hamiltonian H is real and the LUMO of symmetry T;, can be chosen to be real
functions. According to selection rules®?, electrons at LUMO can not couple to the
T,g intramolecular modes in the first order. Hy modes split the degeneracy of three
T;, orbitals. This is the so-called Jahn-Teller effect; electrons at LUMO couple with
these Hg modes in the first order. We will study the couplings between electrons at

LUMO of Ty, symmetry and two A; and eight H; modes in the following sections.

In the crystal, Cgo molecules are distorted. They no longer have I sym-
metry. However, the above conclusions remain valid. For the structure of a single
orientation of Cgo molecules, it results in a point-group symmetry of Ty, within a
FCC lattice?®. It is easy to show by symmetries that A and T symmetry of Iy
group remain the same in the T}, symmetry group while G splits to A@ T and
H—- E@T. Hence, in this case Ty, electronic orbitals couple with Ag, E, and Ty
phonon modes. Because the distortions of the Cgo molecules are very small, There
should be no noticeable quantitative difference between a Cgg molecule in gas and
one in crystal. It follows that studying the structure and behavior of the former will

help us elucidate those of the latter, which should be very similar if not the same.

Fig. (9) lists the vibrational modes of two Ag modes and eight Hg modes.
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These are obtained by BIOGRAF and are plotted at the initial time t = 0 with

SCALE = 20. Arrows stand for the displacements of carbon atoms.

Fig. (9ab), (a) Ag(1); (b) Ag(2).
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Fig. (9e), Hg(3)
Fig. (9f), Hg(4)
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Fig. (9g), Hg(5)

Fig. (9h), Hg(6)
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Fig. (9i), Hg(7)

Fig. (9j), Hg(8)
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2.4.2 Jahn-Teller Effects and Superconductivity

Several groups*33:** have proposed that the Jahn-Teller effects caused by
couplings between LUMO electrons and the intramolecular phonon modes are re-
sponsible for the superconductivity in these systems. According to Sec. 2.3.1, Only
Hg modes are relevant to superconductivity. There are eight Hy modes. So 40 out
of 174 intramolecular vibration modes of Cgg can split the three degenerate T,,
electronic states. The Hamiltonian for such processes is the following?:

H;j = E + Zh;j(m,p)Qm,,‘ + Hvib, (17)

m,u

where 1,j = 1,2, 3 are the index for the three degenerate T, electronic states, Qm,,
is the normal coordinate of the m-th H; mode with degeneracy x = 1...5, and Huip
is the Hamiltonian of the vibrations. E is the total energy of undistorted Cep; h;; is

the coefficient of the coupling matrix. For this particular case, the coupling matrix

js%:32,35

1 Qm,s - \/§Qm,4 _\/§Qm,l —\/§Qm,1
§gm “\/:;Qm,l Qm,S + \/ng,‘i —\/§Qm,3 . (18)
—V3Qm,2 —V3Qm,3 ~2Qm,5

where g is the rate of energy change with respect to displacement of the m-th
mode. Qm s is the d,-like mode while Qm u, 4 = 1...4 are dy2_y2, dyy, dy; and day
like modes. Eq. (18) tells us that the form of splitting depends on the character of

phonons. For g = 5, the splitting is the following*:

—_— or

R 1.0g
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While for 4 =1 — 4, the splitting has the following form,

0.866 ¢

0.866 ¢

Fig. (10b)

Therefore, Cg, and CZ; are the first order Jahn-Teller active. The situation
is a little more complicated for Ci;. The S = 3/2 state of C3; is not Jahn-Teller
active while the S = 1/2 state is. Just as is the static electron-phonon coupling,

the dynamic Jahn-Teller electron-phonon coupling constant Ay, according to Ref.

[4,34], is given by

5 N(0)
Ad,m - 6 wf‘;, gma (19)
A=) Mm

Varma, Zaanen and Raghavachari® have studied the Jahn-Teller effects of a Ceo
using MNDO technique. However, their MNDO phonon frequency does not fit those
of the experimental values well, and they didn’t study the electron couplings with
A; modes. Here we present a thorough study of the electron phonon couplings on

a Cgo. We use MNDO to calculate g,,. Two important average phonon frequencies

Wq,log and < w:‘; > are

wd,log = exp(

<wli> = —

|
°>_’ —
>
a
g
€
8
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2.4.8 Calculation Procedure

Let us concentrate on Cg,. To eliminate other contributions to energy
changes, we take the optimized MNDO structure of Cg, (which is obtained by the
technique described in Sec 2.2.1), use BIOGRAF calculate its vibrational modes,
and record its distorted structures with different vibrational amplitudes of eight Hg
and two Ag modes onto disk at the initial time t = 0. Then we read out these
data, transform them into the MNDO input files, and use MNDO to calculate the
energies of the optimal structure and various distorted structures with an extra

electron. Finally, we fit the energies to the following formula*:

E = —cgmQm +ka12'n/2 (21)

where k;, is the spring constant of mode m; for d;-like mode, ¢ = 1; while for other
modes, ¢ = 1/3/2 = 0.866. Since our vibration mode from BIOGRATF is a mix of
five, we take the average value of ¢ = 0.9.

As illustrated in Fig. (10), three degenerate single electronic energies at
LUMO split into either three different energies or one energy and two degenerate
ones. Because the splittings are proportional to g, we have another way of calcu-
lating gm. The total splitting is v/3gm in Fig (10a), and 1.5gy, in Fig. (10b). We
examined the energy splitting of LUMO for Cgq, from which we calculate g,,. In

the calculation we take the average values for the total splittings of mode m,

Am = 1.7gm. (22)

We will compare the values of g, by two methods.
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After we obtain gn, m = 1 — 8, we use Eq. (19) to calculate the dynamic

coupling constant Aq. In the present case,

Mw? = 4.452 x 107502 eV - A2, (23)
Aam = 1.8718 x 10*N(0) g2 /w?. (24)

2.4.4 Results
To illustrate the quality of our calculations, we calculate the frequencies of
the neutral Cgo as in Ref [4]. Results are listed in Table 9. Because the geometry of
our Cg is slightly different from that of Ref. [4], there are slight differences for some
of the modes. This demonstrates the consistency of both our and Ref. [4] MNDO
calculations. In fitting Eq. (21), we obtain the values of ky, for eight H; modes and

two Ag modes, from which we can calculate their corresponding frequencies By the

following formula:

Wy = kf/;— (25)
The results are also listed in Table 9. Compared with the frequencies of MNDO
calculations, deviations are less than 5% for a majority of the cases and 15% in the
worst case. The reasons are the following : 1) as described in 2.4.3 the vibration
distorted structures are obtained by the force field method; thus, the vibrational
modes of force field by BIOGRAF are not exactly the same as those of MNDO
calculations, and there are some mixings between different modes; 2) MNDO is
a generic code and therefore is difficult to control. In our calculation, the MNDO
program picks its own starting points in every case. There is always the danger that

it converges to the excited states. Because of the mixings and inherent features of

MNDO, we are not able to fit Eq. (21) to our satisfaction in some cases and we
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can not even fit the lowest two modes at all, Fig. (11). On the other hand, the
fitted frequencies of two Ag modes are remarkably close to the values of MNDO
in spite of the uncertainty of MNDO itself. It is because the freqencies of two Ag
modes are far apart such that the two modes have little mixing. In any case our
calculations should be accurate enough to reveal information about the dynamic

electron-phonon couplings.

Table 9. Comparison of the Vibrational Frequencies (cm™!)

mode Fitting Eq. (21) Ours MNDO' Ref. [4]

Hg(1) x 263 263
He(2) « 447 447
He(3) 814 706 711
Hg(4) 1000 924 924
He(5) 1354 1260 1260
Hy(6) 1460 1407 1406
Hy(7) 1557 1597 1596
Hy(8) 1674 1722 1721
Ag(1) 617 610 -

Ag(2) 1679 1668 -

* unable to fit; — data was not given;f calculation was performed on the optimal

Ceo, Table 3.
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In Fig. (11a), (11b), (11c), (11d), (11e), (11f) and (11g), we plot the energy
changes vs. the amplitudes of two A; modes and eight H; modes. In these figures
the zero point of energy is normalized to —7639.000eV. Results of Ag(1) and Ag(2)
are plotted in Fig. (11b) and Fig. (11c), respectively. From Fig. (9a) and (9b),
we know that Ag modes change only the single and double bond lengths Rs, and
Rgb. The harmonic fittings verify the validity of Eq. (1). The small linear terms
indicate that the undistorted structure we use is very close to its optimal geometry.
Results of Hg(1) and Hg(2) are plotted in Fig. (11d). Because of the mixing of the
two modes, we are not able to fit them to Eq. (21). Results of Hg(3) and Hg(4)
are in Fig. (1le), and the fittings are reasonably good. Fig. (11f) and Fig. (11g)
plot the data of Hy(5), Hg(6) and Hg(7), Hg(8), respectively. The fittings are also
pretty good. The resﬁlting vibrational frequencies and linear coupling terms g, are
listed in Table 9 and Table 10, respectively. Fig. (11a) pulls all data together, from

which we can compare their relative magnitudes.

-0.63
] Hg (1) —-~=-—- Ag (2
1— —Ag--~- Hg )
{--«--Hg (6) ----s--- Hg (3) .
-0.64': o - Hg (8) e m- Hg (4) ‘ /_/
{— = —Hg () e Hg (2) LT
E -0.65 L
- T _ - - ——',‘
> ] - e L
Boose| oo
- LS s o Pk SR AR
] [PV L TTe——
'0.67" \‘\:"-o ....... 0-- - ]
i -
] T e —
-O|68 1 T 1 1 T 1 1T 1 —l_]' T 17 1 T 1 T 1 71 T TI T 1 T T 1 T 1 1
0 15

5 . 10
Q(x 1039

Fig. (11a), energy vs. phonon distortions.



Energy (eV)

99

Ag(1) Mode
9= 0.00 eV/A°®
=617 cm

-0-6635 L T 1 T rTIT]TI T 1 T 1T 1 71T 7T l T T T T T 71 T T T

0 5Q(X1O-3Ao) 10 15
Fig. (11b), energy vs. phonon distortion.
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Fig. (11c), energy vs. phonon distortion.
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Fig. (11le), energy vs. phonon distortion.
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Fig. (11g), energy vs. phonon distortion.
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In Table 10, we list also the result of Ref. [4], compared with which our
results are fairly consistent. We can estimate g, by looking at LUMO energy
levels’ splittings. In order to eliminate the contributions from phonons, we study
the energy splittings of the optimized MNDO structure Cgo and its corresponding
vibrationally distorted structures with charge =0, S = 0 and Qn = 5.77 x 10~2A.
The results are listed in Table 11 with their corresponding g, in Table 10, and
are consistent with the results of fitting Eq. (21). The fact that two methods (
fitting Eq. (21) and fitting Eg. (22) ) give analogous values of gn, implies that our
calculation is reliable. The difference between our results and those of Ref. [4] is

caused by different eigenvectors of vibrations.

Table 10. Values of g, in Eq. (18)

mode Fitting Eq. (21) Fitting Eq. (22) Ref. [4]
Hg(1) " 0.19 0.1
Hg(2) * 0.16 0.1
He(3) 0.27 0.26 0.2
Hg(4) 0.43 0.38 0.0
Hg(5) 0.25 0.26 0.6
Hg(6) 0.06 0.12 0.2
Hg(7) 1.79 1.77 1.8
Hg(8) 1.51 1.49 1.2
Ag(1) 0.00 0.00 -
Ag(2) 0.00 0.00 -

* not able to obtain; — data were not given.
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Table 11. The Splittings of LUMO?

mode  e;(eV) e2(eV) e3(eV)
Hg(1l) -—2.56129 —2.56037 —2.55943

Hg(2) —2.56085 —2.55995 —2.55928
Hg(3) —2.56112 —2.55992 —2.55855
Hg(4) —2.56207 —2.55891 —2.55836
Hg(5) —2.56106 —2.55865 —2.55845
Hg(6) —2.56034 —2.55985 —2.55917
Hg(7) —2.56962 —2.55733 —2.55224
Hg(8) -—2.56622 —2.56123 —2.55160

Ag(1) —2.55903 —2.55903 —2.55903
Ag(2) —2.54611 —2.54611 —2.54611

t the amplitudes of all phonon modes were taken as Qn = 5.77 x 10734A.

Clearly, A; modes do not lift the degeneracies of three T1, LUMO, because
they do not break I; symmetry, and therefore there are no energy gains and no

first-order electron-phonon couplings.

We calculate the following electron phonon coupling constant Ay, by fitting
both Eq. (21) and Eq. (22) as described in Sec. 2.4.9, and then compare them
with those of Ref. [4] in Table 12. In doing so, the density of states at the fermi

surface is chosen the same as in Sec. 2.8, which is

N(0) = 11.5 states/eV — spin — Cago.
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2.5 Superconductivity in A, Cg

2.5.1 Calculations of T. and other Properties
1. the Transition Temperature

McMillan’s formula for estimating T. is the following3®

©p
Te = Tgg%0l-

1.04 % (1 + A) |
A —p*(140.62))"

(26)

where Op is the Debye frequency.

Allen and Dynes®’ examined some very strong coupling cases (A = 0.3 ~ 10)
and found that McMillan’s formula was not accurate in the very strong coupling
region and that it was valid only for A < 1.5. They proposed a formula of T, which

covers both weak (A ~ 0.2) and very strong coupling (A > 10) regions.

(0] 1. 04(1 + )
Te = 735°%(~3 0.62,\,,4*) (27)
where
0= f1f2wlog

ur = N(O)vc/ [1 + N(0)V- log(Ew /wip)]
h=[1+(1 )3/21”3

(v < w? >[wieg — 1)A?
A2 + A2
A; = 2.46(1 + 3.84%)

f2 =

(28)
Ay = 1.82(1 + 6.3p*)(V< w? >/wiog)

Wiog = exp(’\ / ——a2 (w)F(w)logw)

2 _ 2 2
<w >—~—A—/0 dwao?(w)F(w)

Vo d2k"
(27)3 J hvp’

N(0) =
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Table 12. The Electron Phonon Coupling Constants Ap!

mode Fitting Eq. (21) Fitting Eq. (22) Ref. [4]

H (1) * 0.100 0.03
H,(2) % 0.030 0.01
H,(3) 0.031 0.029 0.01
Hg(4) 0.067 0.052 .00
Hg(5) 0.011 0.011 0.07
H,(6) 0.000 0.002 .00
H(7) 0.340 0.333 0.39
H,(8) 0.197 0.192 0.13
A (1) 0.000 0.000 -
Ag(2) 0.000 0.000 —
Ad 0.776% 0.749 0.64

T N(0) = 11.5 states/eV — spin — Cgo and the values of frequencies wy, are those
obtained by CgoFF, see Table 5; * unable to obtain; — data were not given; { data

of the third column are used for Hg(1) and Hg(2);
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where N(0) is the so-called density of state at the fermi surface (kj is the momentum
paralell to the fermi surface, vy is the volume of a unit cell), © is defined as the
characteristic phonon freqeuncy, E,, is the width of conduction bands and V. =<
4me? /(k? + q2,) >, the average around the fermi surface. In our case,

A= AS+Ad)

As1 s,log T Agl o
wiog = xp( OgWs log ; glogwq 1 ), (29)

1
< w2 > = 'X(Aswz,log + Ad‘"‘)t?l,log);

and we choose wiog as wph.

In Table 13, we list various parameters related to the superconductivity of
K3Cgo vs. the values of Rsc. As usual, N(0) = 11.5 states/eV-spin-Cgo, Rq =
Rg = 3.55 A and lattice parameter A = 14.2 A. The dynamic coupling constant
Mg = 0.776 is fixed. As R,. varies from 0.5 A to 8.0 A, As/Aq increases from 0.2
to 35, and T, changes from ~ 10°K to more than 100°K, which covers the values
of the transition temperatures of most A,Cgo. The quantity A;/Aq is an important

parameter. The values of Ry, vs. the values of A;/Aq are plotted in Fig. (12).
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Table 13. Transition Temperature for K3Cegof

Ree(A) wig V<w?Z> p* A/A A T(K)
0.50 627.3 1183 029 0.17 090 9.7

0.63 399.6 1094 029 036 1.06 11.6
0.80 2149 958.1 027 0.77 138 16.2
1.00 119.9 810.8 025 148 193 17.7
2.00 42.7 452.2 021 704 6.23 200
4.00 31.8 290.6 0.20 187 153 454
6.00 29.7 242.0 020 276 222 772
8.00 28.8 217.9 0.19 346 276 102.8

t data were obtained by strictly following Eq. (27-29) and taking N(0) = 11.5
states /eV-spin-Cego; wiog and V< w? > are in units of cm™!.
2. T, vs. Pressure

The characteristic phonon frequency © and the coupliﬁg constant A deter-
mine the transition temperature T.. When the external pressure increases, the
following changes take place : 1) an increase in pressure P raises the intermolecular-
phonon frequencies which is linearly proportional to the pressure P when P is small;
2) Ag decreases because of the increases of the intermolecular phonon frequencies
(A o 1/w?), and consequently the total coupling constant A decreases; 3) the
lattice spacing shrinks and this in turn increases the hopping matrix between the
adjacent sites and the valence bandwidth, and as a result, N(0) decreases; 4) the
increases in the intermolecular phonon frequencies in turn increase the characteris-
tic phonon frequency, and in addition the decrease of A; decreases the contributions

of the intermolecular phonon to the characteristic frequency ©, and both factors
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make © become larger. 5) the increases of © and the decrease of A are competing,

and the change of T, depends on the result of the competition.

In Sec. 2.3.1 we study the lattice responses to the external pressure in terms
of changes of the lattice spacing and various phonon frequencies. We found that
the calculated results are in good agreement with the experimental rgsults“. We
study here the shifts of transition temperatures T. under the external pressure of 1
GPa. To do this, we apply 1 GPa hydrostatic pressure onto the crystal K3Cgo and
optimize its structure. Then we calculate its phonon eigenvectors and eigenvalues,
and take these data to calculate the electron-phonon coupling matrix. To calculte
A, we need to how the density of states N(0) at the fermi surface change under the
pressure. We use the result of a LDA calculation?®, which reports that the change
of N(0) 1s 20%. Table 14 lists the shifts of transition temperatures AT, at different
values of R,..

Table 14. T vs. Pressure (N(0) = 11.5 states/eV-spin-Cgo )

R.c(A) 0.50 0.63 0.80 1.00 2.00
As/Ad 0.17 0.36 0.77 1.48 7.04

T.ligpa(°K) 9.7 116 162 17.7 20.0
AT|igpa(°K) —-64 —-87 -99 -58 —0.

3. Isotope Effects

Another important issue is the isotope effect, T. x M™% for carbon atoms.
That o = 0.3740.05 for Rb3Cgo3%°, and 0.30 4 0.06 for K3Cgo*? have been reported.
If we neglect the changes of f; and f; with respect to the isotope substitution,

120 13 C, which is very small in many cases. According to Eq. (27,28) and
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Wq log X Mg? (Mg is the mass of a carbon atom), we have that

a. = —0 logT./0 logM¢

A g L0414 A)(1 +0.620 )

(30)
b)) (A — p*(1 +0.62))]2 b

If the static coupling dominates, i.e., A;/Aq < 1., i.e. the static coupling limit,
ac ~ 0, and then it contradicts the experimental observations3®*?; If, however,
Ads ~ Ad and p* € 1, a. ~ 0.25; if Ay > A, i.e. the dynamic coupling limit, then
a. < 0.5, and both cases are consistent with the experiments3®:4,

We present below a numerical study of C isotope effects. We assume that for
all eight H; modes, their frequencies w o M(—,% upon isotope substituting and A\g x
1/Mcw? keep the same value. Since the libration modes at ~ 33cm™! contribute
little to Ay, we neglect the changes of their frequencies upon substituting *2C with
13C. Therefore, we calculated T, and «a for the various values of Rs., and results are
listed in Table 15 (N(0) = 11.5states/eV-spin-Cgg). For As/Aq = 0.17, ac = —0.1 <
0. This negative isotope effect is caused by the relatively large value of u*, which
is 0.29, Table 15. When p* is large enough, the second term in the parenthesis of
Eq. (30) is larger than 1, and therefore a. < 0.
Table 15. Isotope Ezponents a. (N(0) = 11.5 states/eV-spin-Cgo)

Rec(A)  X/Xa CT.(°K) “CT(°K) @

0.50 0.17 9.72 9.80 —0.10
0.63 0.36 11.62 11.60 0.02
0.80 0.77 16.17 15.30 0.15
1.00 1.48 17.69 17.47 0.16

2.00 704 20.03 20.04  —0.01
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Clearly, either the dynamic coupling limit or the static coupling limit has
difficulty explaining the observed C isotope effects. While A;/Aq = 0.7 — 1.5, the
calculated values of the exponent a. are consistent with the experimental data39:40,
given the complexities of A,Cgp.

It is also interesting to study the isotope effects of the alkali elements in
A,Cgo. We have investigated the K isotope effects by substituting 3°K with *!K.

As Eq. (30), the exponent ay of K isotope effects is given,

Qg = —3 loch/a logMK

1.04(1 + A){(1 + 0.62X)u*?

(31)
A= p*(1 + 0.620)]2 -

As

If the static coupling dominates, i.e. A;/Ag > 1., and p* < 1 o ~ 0.5. If
As ~ Aq and p* € 1, ax ~ 0.25; if As <€ Aq, ac # 0. In Sec. 2.3, we find that
w x MI;% for the low frequency (20 — 150 cm ') intermolecular vibrational modes.
Using analogous procedures we used for a., we calculated the isotope exponents
ax. Results are listed in Table 16. ax = 0.54 > 0.5 of A\;/Aq = 18.7 is caused by
the change of f; and f; of Eq. (28), which is neglected in Eq. (30,31).

Table 16. Isotope Ezponents ou (N(0) = 11.5 states/eV-spin-Cgo )

Rec(A)  A/Aa “ET(°K) "KT(°K) o

0.50 0.17 9.73 9.73 —0.02
0.63 0.36 11.62 11.61 0.02
0.80 0.77 16.17 16.08 0.12
1.00 1.48 17.69 17.48 0.23
2.00 7.04 20.03 19.59 0.44

4.00 18.7 45.42 44.21 0.54
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959 Oomparison with Ezperiments

1. a Brief Review of Experiments

Many experimental measurements of properties related to superconductiv-
ities in A;Cgo have been performed. Among them are the measurements of
isotope effects, T. vs. the external pressures, photoemissions, NMR, infrared-
reflectivity, susceptibility and critical fields, tunnelings, etc. The properties which
these experiments measured are essential to the understanding of superconductiv-
ity in AxCgo. The susceptibility and critical fields measurements'® estimated that
N(0) ~ 10 — 15 states/eV-spin-Cgo and a NMR measurement*? gives an estimate
of N(0) ~ 20 states/eV-spin-Cgo(a LDA! calculation obtains that N(0) = 13.2
states/eV-spin-Cgo); while an early photoemission? experiment reports that the
density of states at the fermi surface N(0) ~ 1.9 states/eV-spin-Cgg, which may be
caused by the complications at the surface of the sample. A related parameter is
the width of the valence band. A photoemission’ experiment found that the band-
width is more than 1eV; the NMR*? inferred that the bandwidth is about 0.2eV
(the LDA® gives a bandwidth of 0.6 eV).

The gap-T. ratio 2A/KgT. is another important parameter about which
there is no consensus. Tunneling experiments*® obtain that 2A/KgT. ~ 5 for both
K3Cso and Rb3Cs, which indicates a strong coupling (LDA calculation!? estimates
that 2A/KgT. ~ 17); on the other hand, a far-infrared reflectivity experiment?®
concludes that 2A /KgT. ~ 3 — 5, which is consistent with both weak and strong
coupling pictures. To determine the mechanism of the superconductivity in these

systems, it is crucial to know the values of N(0) and 2A/KgT. and others.

T. have large negative shifts under pressures in these alkali fullerenes, i.e.,
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oT. / 8P < 0. Experiments found that the value of 9T, /OP ranges from —0.63
to —0.78 °K kbar~! 1238 and under the external pressure of 1 GPa,the shift of
the transition temperature T. is about —7°K!2. Isotope effects (Te x M™%) are
intimately related to the phonon-mediated pairing mechanism and is an important
signature in determining the mechanism of any superconducting materials. Several
results have been reported. An early report*! put the exponent a. to be 1.4 £ 0.5.
And later experiments find that a. = 0.37 + 0.05 for Rb3Cgo?, and 0.30 & 0.06
for K3Cgo*®. Existence of relatively large isotope effects 3°%° favors strongly the
phonon-mediated pairing mechanisms.

Other important quantities are the coherent length &g, the penetration depth
AL and critical fields H.; and Hcp. Ref. [43] reported that Hc;(0) =~ 130G and
H2(0) ~ 50T as thé temperature goes to zero. From the value of H,, the coher-
ent length & = 26A for K3Cso has been obtained because Hc2(0) = hc/2ef2)*.
The muon spin relaxation technique (uSR) has been widely applied to study the
penetration depth Ay, in many type-II superconductors**, including high-T. super-
conductors. In transverse-field uSR experiments, an external field Hexy (Hey <
Hext < H.p) is applied, and in the superconducting phase Heyt forms a lattice of
flux vortices, resulting in a local magnetic field having a distribution of a width AB
x Ap 2, Therefore, the muon spin relaxation rate** ¢ oc AB o< A{ 2. For K3Ceo,
Ref. [44] obtained A, ~ 4,800A. A point to be noticed is that the short coherent

length ¢ and high critical field H; resemble those of high-T. superconductors4.
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2. Comparisons of theory and experiments

Table 17a Superconducting properties at different values of Rg.

Roc(A)

N(0)t

T (°K)*

prt

A

©

<

As/Ad al  AT.|iepa(°K)° ay
0.50 21.3 18.7 017 046 1.67 -047 -85 (—9.4) -0.08
0.63 15.6 19.0 0.36 0.35 1.43 0.0056 -—11.9 (-8.8) ~ 0
0.80 12.9 19.0 077 0.29 155 016 -10.3 (-5.3) 0.12
1.00 12.4 19.0 1.48 0.25 2.08 0.15 —-5.4 (+0.1) 0.24
2.00 10.7 19.0 7.04 020 5.80 0.002 0.1 (+3.2) 0.44
4.00 5.20 19.0 18.7 0.17 6.92 —-0.07 -3.2 (-0.3) 0.52
6.00 3.59 19.0 276 016 6.95 -0.08 0.54
8.00 2.87 19.0 346 0.15 6.89 —-0.08 0.54
exp. 10-20 ~ 19 - - - ~ 0.3 ~ =T -

t the values of N(0) were tuned to yield the experimental value of T. (19 °K) while

N(0)Ey is kept constant, and N{0) is in units of states/eV-spin-Cqo; I the values

of u* were calculated according to Eq. (28); x the fitted values of T, resulted by

tuning N(0). ¢ §T(**C) ~ —0.5 °K; §T.(**K) ~ —0.1 and —0.2 °K for ax = 0.1

and 0.2, respectively; < the data are calculated with N(0) = 0.8 x 11.5 states/eV-

spin-Cgo for P = 1GPa according to a LDA calculation*” while those in parenthes

are calculated without modifying the value of N(0) (N(0) = 11.5 states/eV-spin-

Ceo); — not available.
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In Sec. 2.5.1 N(0) = 11.5 states/eV-spin-Cg is used, and in many cases
the values of T, are not consistent with the experimental result T, = 19 °K for
K3Cgo!. However, in order to compare with experiments, we need to fit T, to the
experiment value 19 °K. Since there is no consensus on the exact value of N(0)
which ranges from ~ 2 °K to ~ 20 °K, we take it as a tuning parameter to fit T,
to 19 °K, and at the same time we keep the value of N(0)E fixed. Using the same
procedures as in Sec. 2.5.1, we calculated AT.|igpa, ac and ax. Results are listed
in Table 17a. For the case of A;/Aq = 0.17, because the value of y* is quite large
and changes with N(0), we had difficulty in fitting it exactly to 19 °K; instead, we
tuned T. to 18.7 °K, which is close enough to 19 °K to give a reliable comparison

to experiments.

Isotope shifts are useful in determining the mechanism of superconductivity.
For As/Aq = 0.17, ac = —0.47 (a large negative isotope shift), is caused by a large
value of u*, and this is explained in the previous section. When A;/A\q =~ 0.4, a. =~ 0;
this is again caused by the relatively large value of u*, which is about 0.35. Should
p* < 1, a. for both of the above two cases should be close to 0.5; when Ag/A\g ~
0.77 — 1.5, ac &~ 0.15; considering the complexities of the problem, it is conceivable
that this may explain the experimental observation*® a. = 0.30 + 0.06. When
As/Aa = T or more, a. is very small or slightly negative, which is caused by small
changes of f; and f; in Eq. (27,28) and which is the result of the different responses
of wyeg and V< w? > to the isotope substitution (*?C —1!3 C). By comparing the

above observations to the experiments3?*®, we conclude that \;/); should be ~ 1.

AxCeo has a large negative 9T./0P. This is caused by changes of both N(0)

and phonon frequencies. The effect that is due to changes of frequence has two
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sides or facets : The increase of < w > increases the characteristic frequency ©
but decreases A, because A x 1/w?. When A/Xgq ~ 0.2 — 1.5, AT.|1gps = =5 ~
—12 °K consistent with the experiments!?:38,

Other parameters to be noticed are N(0), A and p*. N(0) decreases as A;/)q
increases; when A;/A¢ < 1, N(0) has to be ~ 20 states/eV-spin-Cgo to give rise
to T. ~ 19 °K; this is because Aq is small. At A;/A\g > 1 XA =~ 6 — 7, and this
corresponds to a extremely strong coupling superconductivity; while at As/Aq < 1,
A ~ 1.5, which is a modest strong coupling superconductor. The values of u* are
quite interesting, decreasing from 0.46 at A;/A\q = 0.17 to 0.15 at As/Aq = 34.6. The
relatively large value of u* at A;/Aq < 1 is caused by a small ratio of E/ < w >,
and requires a modest coupling strength to give rise to T, = 19 °K. In their
proposal, Varma et al.* used p* =~ 0.1 — 0.2 to obtain the appropriate value of T,
and they argued that since the actual electronic structure of AyCgo consists of a
ladder of many bands of width ~ 1 eV spreading out ~ 20 eV, the value of u*
should be close to those of conventional superconductors, which range from ~ 0.1
to ~ 0.2 3¢, This needs further investigation.

Actually, there are no good estimates of u*, except that the values of u*
increase as bandwidth E shrinks and as phonon frequencies increase. As Varma
et al.* pointed out, the value of u* could be close to those of conventional super-
conductors, which are ~ 0.1 to ~ 0.2. We took p* = 0.2 and tuned N(0) to fit the
transition temperature to its experimental value T, = 19 °K; then we recalculated

everything in Table 17a except AT |;gpa. Results are listed in Table 17b.
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Table 17b. Superconducting properties at different values of Ree (p* = 0.2)f

Rec(A) N(0)} T.(°K) A/Aa A al of

c

0.50 10.2 19.0 0.17 081 043 0.04

0.63 10.1 19.0 036 093 037 0.13
0.80 10.1 19.0 0.77 121 0.44 0.22
1.00 10.6 19.0 148 178 0.20 0.30
2.00 10.6 19.0 7.04 5.7 0.01 0.49
4.00 5.75 19.0 187 7.65 -0.07 0.56
6.00 4.15 19.1 276 8.04 -0.08 0.59
8.00 3.38 19.0 346 813 -0.08 0.59

t the value of u* is kept to 0.2; | the values of N(0) were tuned to yield the
experimental value of T. and N(0) is in units of states/eV-spin-Cgo; < values were
calculated by the procedures described in Sec. 2.5.1.

In Table 18, we summarize the various cases. We list the values of A, T,
and the experimental result that can be explained and that can not be explained
under the different situations. Table 18 is constructed according to Table 17a. In
doing so, we consider the deviations between the calculated and the experimental
data within 30% consistent, except for isotope exponents a., we consider a. ~ 0.15
consistent with the experimental result*® 0.30 + 0.06. We also need to estimate the
values of 2A/KgT. in order to compare with the results of infrared -reflectivity?®
and tunneling!® experimental results. To do this, we took the result of Ref. [45] to
estimate the value of 2A/KgT..
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Table 18. Comparison to Ezperiments*

As/Ad Rsc(A)

A

*

7

consistent

inconsistent

0.17

0.36

0.77

1.48

7.04

0.50

0.63

0.80

1.00

2.00

1.67

1.43

1.55

2.08

5.80

0.46

0.35

0.29

0.25

0.20

pressure, , NMR
infrared, tunneling?
suscep.&crit.field, T,

pressure, NMR
infrared, tunneling?
suscep.&crit.field, T.

infrared, tunneling
pressure, isotope
NMR, T.
suscep.&crit.field

infrared, tunneling

isotope?, pressure
NMR, T,

suscep.&crit.field

infrared

tunneling

isotopel

isotope!

isotope, NMR
pressure, T.(Rbs_xCs,Cago)
suscep.&crit.field

*x NMR and suscep. & crit. fiald measure the values of N(0) and E; “pressure ef-

fects” experiments measure the value of 8T./0P; tunneling and infrared-reflectivity

measure the ratio of 2A /KpT.; isotope experiments measure the value of the expo-

nent a.; photoemission experiment is not included in the comparison because it is

in serious disagreement with LDA calculations and other experiments; t if we take

p* <1, we expect a large positive value of a. for for A;/)s < 0.4 according to Eq.

(30), which is consistent with the experiments*?, for instance, a. = 0.37if p* = 0.2,
Table 17b; however, A will decrease so that the calculated 2A/KgT. will not be

consistent with the tunneling experiment!3.
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We summarize various cases into three catalogues : the static coupling limit,
As/Ad > 1; the intermediate region, A;/Aq ~ 1; and the dynamic coupling limit,

As/Aq <€ 1. In Table 19 we summarize the three cases.

Table 19. Summary*

As/Ad A consistent inconsistent
>1 ~6 infrared isotope
tunneling pressure
suscep.&crit.field NMR

Tc(Rb3_xCSx Cso)

<1l ~1 pressure, NMR isotope!
infrared, tunneling’

suscep.&crit.field, T,

~1 ~2 1sotope, pressure
infrared, NMR
tunneling, T

suscep.&crit.field

x for the descriptions of experiments, see the captions of Table 18 and Sec. 2.5.2
(1); photoemission experiment is not included in the comparison because it is in
serious disagreement with LDA calculations and other experiments; | if we take
p* <€ 1, we expect a large positive value of a. for for A\;/A; < 0.4 according to Eq.
(30), which is consistent with the experiments*’, and then, however the calculated

ratio of 2A/KgT. will be too small to fit that of the experiment!3.
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Taking the results of far-infrared relectivity experiment?®, i.e., 2A/KpT. ~

3—5, & = hve/mA =~ 25—40 A for K3Ceo, and the experimental result*3 §o ~ 26 A.

The static coupling limit, A;/Aq > 1, has serious problems. Because the
characteristic phonon frequency is small, being 20 ~ 30cm™!, it requires an ex-
tremely large value of A (more than 10) to explain the observed value of the transi-
tion temperature T, ~ 30 °K for Rby_,Cs,Cgo *%18, In addition, it is difficult
to explain a large negative value of 9T./6P*?8 and it can not explain the !3C
isotope shift of T.*%*%. Therefore, the static coupling limit is safely ruled out.

The dynamic coupling limit, A;/Aq > 1, is consistent with many exper-
imental observations!/12:1415,38=40 eycept for those of the tunneling!® and the
photoemission” experiments. If we take smaller value of u* as suggested by Varma
et al.*, we will have values of a. consistent with experiments®®°. As pointed out
before, results of the tunneling'® and the photoemission” experiments are contradic-
tory to other experiments!® 2842, From experimentalists’ point of view, the dynamic

coupling limit is still a possibility. However, the dynamic coupling limit corresponds

to cases Rgc < 0.5 A, which is too small and unlikely.

Properties of the intermediate region, A;/Ag ~ 1, is consistent with most of
the experimental observations except for one photoemission experimental report’
whose results are in dispute’®*2. We conclude that most likely A;/Xq ~ 0.8—1.5. An
experiment on K isotope effects , replacing *°K by 'K, may help us verify the above
conclusion. Again, depending on the values of u*, the values of isotope exponent
oy vary. Using our values of u*, we predict that ayx ~ 0.1 — 0.2; assuming that
p* < 1, we have ax = 0.2 — 0.2 according to Eq. (31). Therefore, an observation

of a positive K isotope shift oy = 0.1 — 0.3 will confirm our above conclusion.
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The correlation length & is very short. This is because the fermi velocity
v¢ is small and the gap A is relatively large. Taking the results of far-infrared
relectivity experiment?®, i.e., 2A/KgT. =~ 3 — 5, § = hvy/mA ~ 25 — 40 A for
K3Cso, and the experimental result*® & ~ 26 A.

One more thing is to be noted : If we take N(0) ~ 2 states/eV-spin-Cgg, as
a photoemission measurement’ reported, only the static coupling limit As/Ag > 1
or Rgc > 1 gives rise to the observed T. = 19 °K for K3Cgo!. Since the static
coupling limit can not explain many established experiments, as described earlier,
we conclude that N(0) = 10 — 20 states/eV-spin-Cgq, as suggested by many other
experiments®*2 and LDA calculations®®.

The main conclusions of our studies :

1) The “SMS” mechanism as suggested by some groups® is unlikely;

2) N(0) ~ 10—20 states/eV-spin-Cgg as reported by critical field & normal state
susceptibility’® and NMR*? measurements, unless the superconductivity in
A;Cgo are caused by some exotic mechanisms;

3) Rec = 0.8-1.0 A or As/Ad ~ 0.8 — 1.5 is most likely;

4) ax ~ 0.1 —0.2 is predicted and an experiment on K isotope effects is encour-
aged.

To summarize, we have calculated the electron-phonon coupling constant:
both static and dynamic (Jahn-Teller) coupling constants, and have identified a
plausible mechanism of superconductivity in AxCgo. To confirm our findings, a K

isotope effect experiment is suggested .
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