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Abstract 

This thesis consists of two projects related to the development of new routes to zeolite 

films.  In an effort to expand the known library of pure-silica zeolites accessible in planar 

conformation, Part I details the development of a new synthetic technique, the vapor 

phase transport of fluoride, to produce pure-silica zeolite films with the LTA, CHA, STT, 

ITW and –SVR topologies.  The films are characterized by X-ray diffraction, field 

emission scanning electron microscopy, X-ray energy dispersive analyses, and 

mechanical testing.  Such pure-silica zeolite films could be useful in a variety of 

applications, due to their porosity, crystallinity, and general stability.  For example, these 

materials could be employed as low dielectric constant materials, which are needed for 

microprocessors as the feature size is continually reduced.  Upon investigation of the 

aforementioned zeolite powders and films, we find that the materials with the LTA 

topology have the lowest dielectric constant of all the pure-silica zeolites.  Additionally, all 

the zeolites investigated, except STT, give k-values lower than predicted from their 

structures using the Bruggeman effective medium model, which has been commonly 

employed and found able to predict dielectric constants of amorphous silicas.   

 

The second part of this thesis presents the development of an alternative method to 

thermal combustion to remove organics from zeolite pores, which can degrade zeolite 

films, using a photolabile structure-directing agent that can be removed from the zeolite 

pore space using UV photolysis.  Here, the synthesis, photocleavage, and structure-

directing ability of two different photolabile molecules (8,8-dimethyl-2-(2-nitrophenyl)-

1,4-dioxa-8-azoniaspiro[4.5]decane hydroxide (P-SDA 1) and 1-(2-nitrobenzyl)-1H-
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imidazole (P-SDA 2)), are presented and discussed.  Cleavage of the photolytic P-SDA 

1 is demonstrated in a homogeneous solution, and intercalated into a dealuminated zeolite 

FAU.  The structure-directing ability of P-SDA 1 is evaluated via attempts to synthesize 

silicate and aluminosilicate zeolites, resulting in the formation of amorphous and layered 

materials.  The structure-directing ability of P-SDA 2 is evaluated via attempts to produce 

aluminophosphate zeolites, resulting in several unknown crystalline phases, in addition to 

dense and hydrated phases.  Lastly, complete photocleavage of P-SDA 2 within the 

crystalline, aluminophosphate materials is also demonstrated.   

 

 

 

 

 

 



 

 

ix
Table of Contents 
 
Acknowledgements………………………………………………………………………..iii 
Abstract…………………………………………………………………………………...vii 
Table of Contents………………………………………………………………………….ix 
List of Tables……………………………………………………………………………..xii 
List of Figures……………………………………………………………………………xiii 
 
Part 1: Development of Facile Route to Fluoride-Mediated, Pure-Silica Zeolite Thin  

Films……………………………………………………………………………….1 
 
Chapter 1: Introduction and Organization of Thesis Presentation…………………….2 

1.1  Introduction to Zeolites and Molecular Sieves.....................................................2 
1.2  Synthesis and Formation of Zeolites…………………………………………... 5 
1.3  Zeolite Applications…………………………………………………………...9 
1.4  Thesis Organization…………………………………………………………..10 
1.5  References……………………………………………………………………12 

 
Chapter 2: Introduction to Part I of Thesis 20 

2.1  Introduction .........................................................................................................20 
2.2  Zeolite Film and Membrane Synthetic Strategies..............................................23 

2.2.1  Support Choice and Modification .......................................................24 
2.2.2  Synthetic Strategies .............................................................................25 

2.2.2.1 Hydrothermal Techniques...........................................................26 
2.2.2.2  Non-hydrothermal Techniques ..................................................32 

2.2.3  Characterization Techniques ...............................................................34 
2.2.4  Defect Elimination...............................................................................35 

2.3  Development of New Synthetic Techniques......................................................36 
2.4  References ...........................................................................................................38 

 
Chapter 3: In Situ Crystallization of Fluoride-Mediated, Pure-Silica Zeolite Thin  

Films……………………………………………………………………………... 44 
Abstract ......................................................................................................................44 
3.1  Introduction .........................................................................................................45 
3.2  Results and Discussion.......................................................................................51 

3.2.2 Seeding and Diluting the Zeolite Precursor Gel ................................51 
3.2.3  Vapor Phase Transport of Fluoride.....................................................56 

3.3  Conclusions.........................................................................................................67 
3.4  Experimental.......................................................................................................68 

3.4.1  Synthesis of Structure-Directing Agent (4-methyl-2,3,6,7- 
tetrahydro-1H,5H-pyrido [3.2.1-ij] quinolinium hydroxide).........68 

3.4.2  Synthesis of ITQ-29 (LTA) Films and Powder Via Seeding /  
Diluting..............................................................................................69 

3.4.3  Synthesis of ITQ-29 (LTA) Films and Powder Via Vapor Phase  
Transport of Fluoride........................................................................70 



 

 

x
3.4.4  Characterization ..................................................................................72 

3.5  References...........................................................................................................73 
 
Chapter 4: Investigation of Dielectric Properties of Fluoride-Mediated, Pure-Silica  

Zeolite Thin Films ............................................................................................... 77 
Abstract ................................................................................................................. 77 
4.1  Introduction.................................................................................................... 78 
4.2  Results and Discussion .................................................................................. 90 
4.3  Conclusions.................................................................................................. 104 
4.4  Experimental ................................................................................................ 105 

4.4.1 Synthesis of Structure-Directing Agent A (1,2,3- 
trimethylimidazolium hydroxide) ............................................... 105 

4.4.2 Synthesis of Structure-Directing Agent B (N,N,N-trimethyl-1- 
adamantylammonium hydroxide) ............................................... 105 

4.4.3 Synthesis of Structure-Directing Agent C (Hexamethylene-1,6-bis- 
(N-methyl-N-pyrrolidinium) hydroxide) .................................... 106 

4.4.4 Surface Modification of the Substrates.......................................... 107 
4.4.5 Synthesis of Fluoride-Mediated, Pure-Silica Zeolite Films and  

Powder ........................................................................................ 107 
4.4.6 Characterization ............................................................................. 109 

4.5  References.................................................................................................... 111 
 
Part II: Removal of Structure-Directing Agents from Molecular Sieves Via the Use of 
Photolabile Structure-Directing Agents……………………………………………….115 
 
Chapter 5: Introduction to Part II of Thesis .............................................................. 116 

5.1  Introduction.................................................................................................. 116 
5.2  Photolabile Structure-Directing Agents....................................................... 124 
5.3  Photochemical Protecting Groups in Organic Synthesis ............................. 126 

5.3.1  2-Nitrobenzyl Family.................................................................... 127 
5.3.2  Benzyloxycarbonyl Family........................................................... 130 
5.3.3  3-Nitrophenyl Family.................................................................... 131 
5.3.4  Phenacyl Family............................................................................ 132 

5.4  Photofunctional Zeolites .............................................................................. 133 
5.5  Development of a Photolabile Structure-Directing Agent........................... 135 
5.6  References..........................................................................................................  

 
Chapter 6: Photolabile Structure-Directing Agents for Zeolite Synthesis………...142 

Abstract ............................................................................................................... 142 
6.1  Introduction.................................................................................................. 142 
6.2  Results and Discussion ................................................................................ 145 

6.2.1  P-SDA 1 Synthesis........................................................................ 145 
6.2.2  Photolysis of P-SDA 1 .................................................................. 150 
6.2.3  Zeolite Synthesis Using P-SDA 1................................................. 155 

6.3  Conclusions.................................................................................................. 160 



 

 

xi
6.4  Experimental ................................................................................................ 161 

6.4.1  Synthesis of P-SDA 1 ................................................................... 161 
6.4.1.1  Ketalization Reaction..................................................... 161 
6.4.1.2  Amine Quaternization Reaction..................................... 162 

6.4.2  Photocleavage of P-SDA 1 ........................................................... 163 
6.4.2.1  Homogeneous Cleavage of P-SDA 1............................. 163 
6.4.2.2  Photocleavage of P-SDA 1 Intercalated within Tosoh 390- 

HUA, a Dealuminated Zeolite X (Structure Code FAU) 163 
6.4.3  Zeolite Synthesis with P-SDA 1 ................................................... 164 
6.4.4  Characterization ............................................................................ 166 

6.5  References.................................................................................................... 167 
 
Chapter 7 :  An Imidazole-Based, Photolabile Structure-Directing Agent for the  

Synthesis of Aluminophosphate Zeolites ........................................................ 170 
Abstract ............................................................................................................... 170 
7.1  Introduction.................................................................................................. 171 
7.2  Results and Discussion ................................................................................ 175 

7.2.1  P-SDA 2 Synthesis........................................................................ 175 
7.2.2  Aluminophosphate Zeolite Synthesis Using SDA 2..................... 179 
7.2.3  Aluminophosphate Zeolite Synthesis Using P-SDA 2 ................. 184 
7.2.4  Photocleavage of P-SDA 2 within Aluminophosphate Material .. 190 

7.3  Conclusions.................................................................................................. 196 
7.4  Experimental ................................................................................................ 197 

7.4.1  Synthesis of P-SDA 2 ................................................................... 197 
7.4.2  Synthesis of Aluminophosphate Zeolites with SDA 2 and P-SDA 2 

..................................................................................................... 198 
7.4.3  Synthesis of Metal-Substituted Aluminophosphate Zeolites with  

SDA 2 and P-SDA 2 ................................................................... 198 
7.4.4  Photocleavage of P-SDA 2 in As-Made Aluminophosphate and  

Metal-Substituted Aluminophosphate Materials......................... 199 
7.4.5  Characterization ............................................................................ 200 

7.5  References.................................................................................................... 200 
 
Chapter 8:  Summary and Conclusions ...................................................................... 203 

1.  Summary and Conclusions ............................................................................ 203 
2.  Future Directions ........................................................................................... 211 

 

 

 
 
 



 

 

xii
List of Tables 
 
Chapter 3 

Table 3.1  Energy dispersive spectrometry (EDS) data of the amorphous precursor  
film supported on OH-(100) Si demonstrates that the film is pure-silica, 
with the carbon content appearing due to the TMAOH and SDA in the 
precursor gel.  EDS data for the calcined sample indicates that the carbon 
content has been completely removed. .................................................................65 

 
Chapter 4 

Table 4.1  Dielectric constant (k) of various pure-silica zeolite powders measured  
at 2 GHz .................................................................................................... 98 

Table 4.2  Synthesis conditions for zeolite films and powders........................... 109 
 
Chapter 6 

Table 6.1  Synthesis conditions for zeolite synthesis using P-SDA 1 as the 
structure-directing agent ..............................................................................158 

 
Chapter 7 

Table 7.1  Results of AlPO4 syntheses attempted with SDA 2 (A = amorphous, DP 
= dense phase, #1 = ATS / unknown phase, #2 = AFI / tridymite)............180 

Table 7.2  Results of magnesium-substituted aluminophosphate runs using SDA 2 
at 150, 175, and 200 °C (A = Amorphous).................................................182 

Table 7.3  Results of attempted aluminophosphate zeolite syntheses with P-SDA 2 
as the structure-directing agent (3 = unknown hydrated phase, 4 = unknown 
phase, 5 = unknown phase, 6 = ATS / unknown phase, 7 = ATV / dense 
phase, DP = dense phase) ............................................................................185 

Table 7.4  Results of attempted metal-substituted, aluminophosphate zeolite 
syntheses with P-SDA 2 as the structure-directing agent...........................190 

 

 

 

 

 

 

 

 

 

 



 

 

xiii
List of Figures 
 
Chapter 2 

Figure 2.1  Schematic representation of the three categories of nanostructured,  
planar zeolite and zeolite-based configurations........................................ 22 

Figure 2.2  Synthetic strategies for the formation of zeolite and zeolite-based  
films and membranes ................................................................................ 26 

Figure 2.3  Models of zeolite and zeolite-based film formation for in situ synthetic  
techniques ................................................................................................. 28 

Figure 2.4 Silicalite (MFI) polycrystalline film grown via in situ techniques  
showing a loose layer of MFI crystals on the surface............................... 29 

Figure 2.5  Schematic of the vapor phase transport method for film formation... 31 
 

Chapter 3 
Figure 3.1 Schematic of the synthesis process of fluoride-mediated zeolite films by  

the seeding / diluting modification to in situ crystallization ............................ 49 
Figure 3.2  Schematic of the synthesis process of fluoride-mediated, pure-silica  

zeolite LTA films by the vapor phase transport of fluoride............................. 50 
Figure 3.3  PSZ ITQ-29 (LTA) film synthesis attempts using various substrates,  

seed amounts, and dilutions ..................................................................................... 53 
Figure 3.4  Al-free ITQ-29 (LTA) film synthesis attempts using various substrates,  

seed amounts, and dilutions ..................................................................................... 54 
Figure 3.5  (a) Substrate submerged in ITQ-29 precursor gel of appropriate molar  

composition, (i) Stir to hydrolize the TEOS; (b) Substrate subjected to dip-
coating, (ii) Dip-coat substrates, 5x, in the hydrolyzed gel to create 
amorphous precursor film; (c) Coated substrate and bulk precursor gel 
placed inside vacuum desiccator, (iii) Evaporate ethanol produced during 
hydrolysis and excess H2O; (d) Amorphous precursor film and solid (dry) 
gel; (e) Introduce dry gel into Teflon®-lined Parr Autoclave after addition 
of HF (aq) to dry gel, introduce coated substrate (no HF present in 
amorphous film) into autoclave on elevated Teflon® platform, and 
crystallize via VPTM ................................................................................................. 57 

Figure 3.6  X-ray diffraction patterns of as-made, calcined and polished PSZ LTA  
film samples on OH-(100) Si demonstrates phase crystallization of the 
precursor film using the VPTM of fluoride............................................................ 62 

Figure 3.7  FE SEM micrographs of (a) surface of calcined PSZ LTA film; (b) a  
thin section of calcined PSZ LTA film showing ~ 115 µm thick film; (c) 
surface of calcined PSZ LTA film after mechanical polishing; (d) a thin 
section of calcined PSZ LTA film after polishing showing ~ 1.7 µm thick 
film.................................................................................................................................... 64 

Figure 3.8  Load / displacement curves for the PSZ ITQ-29 films on (100) Si wafers  
indicate that different elastic moduli are obtained at different indentation sites
........................................................................................................................................... 66 

 



 

 

xiv
Chapter 4 

Figure 4.1  Cartoon of a parallel-plate capacitor with a dielectric medium  
polarized by an electric field, E ................................................................ 80 

Figure 4.2  (a) Metal-insulator-metal structures used for parallel-plate capacitance  
measurements; (b) Schematic of a time-domain reflectometer (TDR) 
coupled with transmission line for dielectric measurements of powder 
samples (used with permission)7............................................................... 81 

Figure 4.3  (a) LTA framework, viewed along the [001] axis; (b) CHA  
framework, viewed normal to the [001] axis; (c) STT framework, viewed 
normal to the [100] axis; (d) ITW framework, viewed along the [100] 
axis;37 (e) -SVR framework, viewed along the [001] axis (courtesy of A. 
Burton, Chevron) ...................................................................................... 89 

Figure 4.4  X-ray diffraction patterns of calcined and polished (a) PSZ CHA  
films on (100) Si; (b) PSZ STT films on (100) Si; (c) PSZ ITW films on 
(100) Si; (d) PSZ -SVR films on (100) Si................................................. 91 

Figure 4.5  FE SEM micrographs of (a) surface of calcined PSZ CHA film; (b)  
surface of calcined PSZ STT film; (c) surface of PSZ CHA / STT 
intergrowth; (d) calcined, polished PSZ STT film; (e) surface of calcined 
PSZ ITW film; (f) surface of calcined PSZ -SVR film; (g) surface of 
calcined, polished PSZ -SVR film; (h) thin section of a typical PSZ STT 
film after mechanical polishing, showing ~ 1.7 μm thick film with variable 
height......................................................................................................... 94 

Figure 4.6  k-values obtained for PSZ thin film of *MRE, MFI, BEA*, and LTA  
topologies made by in situ (MFI and BEA*) and vapor phase transport 
methods (*MRE and LTA) ....................................................................... 96 

Figure 4.7  Effective dielectric constant of pure-silica CHA measured over a  
range of frequencies.................................................................................. 98 

Figure 4.8  Effective dielectric constant of pure-silica STT measured over a range  
of frequencies............................................................................................ 99 

Figure 4.9  Effective dielectric constant of pure-silica ITW measured over a range  
of frequencies............................................................................................ 99 

Figure 4.10  Effective dielectric constant of pure-silica -SVR measured over a  
range of frequencies................................................................................ 100 

Figure 4.11  k-values obtained for fluoride-mediated, PSZ powders of MFI, ITW,  
FER, -SVR, STT, CHA, and LTA topologies via TDR ......................... 103 

 
Chapter 5 

Figure 5.1  Schematic representation of the results of thermal stresses on zeolite 
films during calcination: (a) cracking at film / substrate interface if film is 
not well-adhered to substrate, (b) cracking within film if film is well-
adhered to substrate .....................................................................................118 

Figure 5.2  Schematic of zeolite film patterning using UV / ozonolysis 
photochemical “calcination” treatment to remove occluded organics.......120 

Figure 5.3  Cleavage reaction of ketal-containing structure-directing agent into 
smaller fragments21 ......................................................................................122 



 

 

xv
Figure 5.4  Recyclable structure-directing agent route – (1) zeolite synthesis; (2) 

cleavage of the organic molecules inside the zeolite pores; (3) removal of 
the cleaved fragments; (4) recombination of the fragments into the original 
SDA molecule2 ............................................................................................122 

Figure 5.5  Various acid-cleavable ketal structure-directing agents 21 ...................123 
Figure 5.6  Examples of the 2-nitrobenzyl family of photochemical protecting 

groups: (a) 2-nitrobenzyl group, (b) 2-nitrobenzyloxycarbonyl, and (c) 2-
nitrophenylethyleneglycol ...........................................................................128 

Figure 5.7  Schematic of the 2-nitrobenzyl group cleavage mechanism via hydrogen 
abstraction ....................................................................................................130 

Figure 5.8  Examples of the benzyloxycarbonyl family of photochemical protecting 
group: (a) benzyloxycarbonyl group, and (b) 3,5-
dimethoxybenzyloxycarbonyl .....................................................................131 

Figure 5.9  Examples of the 3-nitrophenyl photochemical protecting group: (a) 3-
nitrophenylhydroxide, and (b) 3-nitrophenyloxycarbonyl .........................132 

Figure 5.10  The phenacyl photochemical protecting group family.......................132 
Figure 5.11  P-SDA 1, 8,8-dimethyl-2-(2-nitrophenyl)-1,4-dioxa-8-azoniaspiro[4.5] 

decane …………………………………………………………………...136 
Figure 5.12  P-SDA 2, 1-(2-nitrobenzyl)-1H-imidazole.........................................137 
 

Chapter 6 
Figure 6.1  (a) Acid-cleavable structure-directing agent 8,8-dimethyl-2-phenyl-1,4-

dioxa-8-azoniaspiro[4,5]decane hydroxide; (b) potential photolabile 
structure-directing agent, 8,8-dimethyl-2-(2-nitrophenyl)-1,4-dioxa-8-
azoniaspiro[4.5]decane hydroxide ..............................................................145 

Figure 6.2  Proposed synthetic route for the preparation of P-SDA 1: (i) ketalization 
reaction; (ii) quaternization of the secondary amine; (iii) ion exchange of the 
quaternary amine counter-ion......................................................................146 

Figure 6.3  1H NMR spectrum of P-SDA 1 in its iodide salt form.........................148 
Figure 6.4  TGA data of P-SDA 1 prior to conversion of quaternary ammonium 

iodide salt form to quaternary ammonium hydroxide material..................149 
Figure 6.5  Photolysis mechanism of P-SDA 1, generating 2-hydroxy-1-(2- 

nitrosophenyl)ethanone and 1,1-dimethyl-4-oxopiperidinium...................151 
Figure 6.6  13C CPMAS NMR spectra of: (a) P-SDA 1 in the iodide salt form; (b) 

P-SDA 1 intercalated into the pure-silica zeolite with the FAU structure; (c) 
results of initial attempts to photocleave P-SDA 1 intercalated into the pure-
silica FAU material demonstrate that cleavage did not occur, as the NMR 
data did not change ......................................................................................153 

Figure 6.7  TGA data of P-SDA 1 intercalated in pure-silica zeolite FAU............154 
Figure 6.8  IR spectra of (a) P-SDA 1; (b) P-SDA 1 subjected to photolysis while 

intercalated in pure-silica zeolite FAU .......................................................155 
Figure 6.9  Schematic representation of P-SDA 1 in zeolite BEA* (docking  

calculations performed by A. Burton at Chevron)......................................156 



 

 

xvi
Figure 6.10  13C CPMAS NMR spectrum of P-SDA 1 in materials containing 

MFI crystals shows the molecule is still intact ...........................................159 
 

 
Chapter 7 

Figure 7.1  (a) 1-(2-nitrobenzyl)-1H-imidazole (P-SDA 2) ; (b) 1-benzyl-1H-
imidazole (SDA 2).......................................................................................173 

Figure 7.2  Photolysis of P-SDA 2 proceeds via an intramolecular hydrogen 
abstraction from the carbon-hydrogen bond ortho to the nitro group to yield 
carbonyl and nitroso groups in the ortho position ......................................173 

Figure 7.3  IR absorbance spectrum of P-SDA 2....................................................176 
Figure 7.4  13C CP MAS NMR spectrum of P-SDA 2 at a spin rate of 6,000 .......177 
Figure 7.5  TGA data for P-SDA 2..........................................................................178 
Figure 7.6  XRD patterns of aluminophosphate zeolites made with SDA 2: (bottom) 

ATS / unknown phase; (top) AFI / tridymite dense phase .........................180 
Figure 7.7  Framework schematic of the aluminophosphate zeolites phases: (a) 

ATS, viewed along the [001] axis; (b) AFI, viewed along the [001] axis 
with projection down the [001] axis on the upper right18...........................181 

Figure 7.8  XRD pattern of the ATS phase from the compositions in Table 7.2...183 
Figure 7.9  XRD patterns of as-made aluminophosphate materials produced using 

P-SDA 2 as the structure-directing agent: (a) phase 3; (b) phase 4; (c) phase 
5; (d) phase 6; and calcined phase 5: (e) ATV / dense phase.....................186 

Figure 7.10  13C CPMAS NMR spectrum of the as-made, crystalline, 
aluminophosphate phase 5 produced using P-SDA 2 as the structure-
directing agent..............................................................................................187 

Figure 7.11  TGA data of the as-made, aluminophosphate phase 5, produced using 
P-SDA 2 as the structure-directing agent....................................................188 

Figure 7.12  13C CPMAS NMR spectrum of as-made, aluminophosphate material 
produced using P-SDA 2 as the structure-directing agent, after UV 
irradiation .....................................................................................................191 

Figure 7.13  TGA data of the cleaved and extracted aluminophosphate material .192 
Figure 7.14  XRD patterns of: (bottom) the as-made phase 5 sample; (top) the 

photocleaved phase 5 sample ......................................................................193 
Figure 7.15 IR spectra of photocleaved and extracted phase 5 sample..................193  
Figure 7.16  SEM micrographs of: (a) photocleaved phase 5 crystals and 

aggregates; (b) calcined ATV / dense phase material crystals and aggregates
......................................................................................................................195 

Figure 7.17  Synthesis of P-SDA 2 via photochemical protection of the amino 
functionality of the imidazole......................................................................197 

 


