I. DEVELOPMENT OF FACILE ROUTE TO FLUORIDE-MEDIATED, PURE-SILICA ZEOLITE THIN FILMS

II. REMOVAL OF STRUCTURE-DIRECTING AGENTS FROM MOLECULAR SIEVES VIA THE USE OF PHOTOLABILE STRUCTURE-DIRECTING AGENTS

Thesis by

Heather K. Hunt

In Partial Fulfillment of the Requirements for the

Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2010

(Defended 28 September 2009)

© 2010

Heather K. Hunt

All Rights Reserved

Acknowledgments

The time I have spent at Caltech has been equally the most challenging and the happiest of all of my life, and I know that I will always remember Caltech and the wonderful people that I have met here with great affection. Over the last five years, I have been privileged to interact and work with truly inspiring and talented educators, researchers, mentors, authors, and administrators, and I am sincerely grateful to all of them for their guidance and support. This thesis is the culmination of several years of effort that would not have been possible without them.

First and foremost, I would like to thank my advisor, Professor Mark E. Davis, for all of his support, financial and otherwise, throughout my time here. I have been very fortunate to work in his lab, and this work would not have been possible without his efforts, suggestions, and patience when not everything worked perfectly the first time. (Or even the second or third time.) I will always be grateful to him for giving me this opportunity. I would also like to thank the members of my Candidacy and Thesis Committees, Professor Richard Flagan, Dr. Stacey Zones, Professor Yushan Yan, and Professor Julia Greer for their suggestions, support, and kindness. Professor Flagan has always been ready to discuss research problems and suggest solutions to them. Dr. Zones, at Chevron, has provided steady support and guidance, despite his busy schedule, and has led me to a deeper understanding of zeolite science. Professor Yan, at University of California, Riverside, has been like a secondary advisor to me, and has provided me with not only a group full of talented and helpful graduate students to collaborate with, but has also given me excellent suggestions on the direction of my zeolite films research and manuscript

preparation. Lastly, but certainly not least, Professor Greer has provided me with encouragement, support, and advice, in addition to access to her lab. To all of you, thank you.

In addition to my committee, I would also like to thank Dr. Allen Burton, at Chevron, for his help with modeling, zeolite identification, and synthetic suggestions. Many an unusual behavior or result would remain unexplained if not for him. I would also like to thank Dr. Sonjong Hwang, our resident solid-state NMR expert, for his help with the NMR equipment, and his advice on interpreting NMR spectra. Dr. Dongchan Jang in the Greer group was very helpful in his explanation of and instruction on the mechanical testing of the zeolite films I prepared. Additionally, in the Yan group, two students, Minwei Sun and Chris Lew, were extremely helpful in the synthesis and characterization of the zeolite films and powders we studied; Chris was especially dedicated, running capacitance measurements on sample after sample, and always sending me detailed and thoughtful explanations of the results. Lastly, I would like to thank all the members of the Davis group, past and present, who have made my time here at Caltech both educational and entertaining. Specifically, I would like to thank Dr. Eric Margelefsky for his help with organic synthesis, and for always listening when I needed someone to complain to or someone to give encouragement. His willingness especially to escape lab for ice cream was very helpful. I would also like to thank Dr. Ray Archer, for our discussions on zeolite science, and Dr. John Carpenter, my long-suffering office mate, who put up with five years of my incessant nattering about any subject under the sun without once asking me to get a

grip. These three have broadened my research horizons, helped me fix any number of equipment problems in the lab, and were always willing to help me open autoclaves.

I would also like to thank the administrators of the Women's Center, the Women Mentoring Women program, and the Caltech Animal Team, for their support. These include Dr. Felicia Hunt, Portia Harris, Dr. Candace Rypisi, Linda Taddeo, and Dr. Mike Hucka. Being involved in these organizations has allowed me to serve the Caltech community, to organize events from seminars to socials, to interact with a variety of people outside my division, and to form what I know will be lasting friendships with truly caring people. I have greatly enjoyed my time on the boards of these organizations, as well as my time in other student organizations, such as the Caltech Project for Effective Teaching, and the Caltech Dance Club.

I would also like to thank my friends for their constant support, and their willingness to drop anything if I needed help. My classmates, Shelby Hutchens, Heather McCaig, Arwen Brown, and Lisa Hochrein, have all been the best friends, partners in crime, and ardent supporters that I could have asked for when I came to graduate school. They have listened in sympathy and in laughter, and have always had time for tea. From them, I have learned a great deal about other research fields, and have been allowed to use equipment I never would have touched otherwise. With them, I have experienced all the joys and anguish of life and research at Caltech. Finally, I thank my husband, Nick Thurwanger, and my parents, Richard and Jennifer Hunt. Without their encouragement, their support, their patience, and in Nick's case, willingness to move halfway across the country, I would not have made it to Caltech, let alone enjoyed my time here. To the three of you, I owe a debt of gratitude that I can only hope I can repay.

God bless all of you.

Abstract

This thesis consists of two projects related to the development of new routes to zeolite films. In an effort to expand the known library of pure-silica zeolites accessible in planar conformation, Part I details the development of a new synthetic technique, the vapor phase transport of fluoride, to produce pure-silica zeolite films with the LTA, CHA, STT, ITW and –SVR topologies. The films are characterized by X-ray diffraction, field emission scanning electron microscopy, X-ray energy dispersive analyses, and mechanical testing. Such pure-silica zeolite films could be useful in a variety of applications, due to their porosity, crystallinity, and general stability. For example, these materials could be employed as low dielectric constant materials, which are needed for microprocessors as the feature size is continually reduced. Upon investigation of the aforementioned zeolite powders and films, we find that the materials with the LTA topology have the lowest dielectric constant of all the pure-silica zeolites. Additionally, all the zeolites investigated, except STT, give k-values lower than predicted from their structures using the Bruggeman effective medium model, which has been commonly employed and found able to predict dielectric constants of amorphous silicas.

The second part of this thesis presents the development of an alternative method to thermal combustion to remove organics from zeolite pores, which can degrade zeolite films, using a photolabile structure-directing agent that can be removed from the zeolite pore space using UV photolysis. Here, the synthesis, photocleavage, and structure-directing ability of two different photolabile molecules (8,8-dimethyl-2-(2-nitrophenyl)-1,4-dioxa-8-azoniaspiro[4.5]decane hydroxide (P-SDA 1) and 1-(2-nitrobenzyl)-1H-

imidazole (P-SDA 2)), are presented and discussed. Cleavage of the photolytic P-SDA 1 is demonstrated in a homogeneous solution, and intercalated into a dealuminated zeolite FAU. The structure-directing ability of P-SDA 1 is evaluated via attempts to synthesize silicate and aluminosilicate zeolites, resulting in the formation of amorphous and layered materials. The structure-directing ability of P-SDA 2 is evaluated via attempts to produce aluminophosphate zeolites, resulting in several unknown crystalline phases, in addition to dense and hydrated phases. Lastly, complete photocleavage of P-SDA 2 within the crystalline, aluminophosphate materials is also demonstrated.

Table of Contents

Acknowledg	gements	iii
Abstract	~	.vii
Table of Co	ntents	ix
List of Table	es	.xii
List of Figur	res	xiii
_		
Part 1: Dev	elopment of Facile Route to Fluoride-Mediated, Pure-Silica Zeolite Thing	n
Film	1S	1
Chapter 1:	Introduction and Organization of Thesis Presentation	2
11	Introduction to Zeolites and Molecular Sieves	2
1.2	Synthesis and Formation of Zeolites	<u>-</u> 5
1.2	Zeolite Applications	9
1.9	Thesis Organization	10
1.5	References	.12
Chapter 2:	Introduction to Part I of Thesis	20
2.1	Introduction	20
2.2	Zeolite Film and Membrane Synthetic Strategies	23
	2.2.1 Support Choice and Modification	24
	2.2.2 Synthetic Strategies	25
	2.2.2.1 Hydrothermal Techniques	26
	2.2.2.2 Non-hydrothermal Techniques	32
	2.2.3 Characterization Techniques	34
	2.2.4 Defect Elimination	35
2.3	Development of New Synthetic Techniques	36
2.4	References	38
Chanter 3.	In Situ Crystallization of Fluoride Mediated Pure Silica Zeolite Thin	
Film	In Situ Crystallization of Fluoritic-Miculatcu, 1 urc-Sinca Zeonte Thin	44
Abst	tract	
3.1	Introduction	
3.2	Results and Discussion	
	3 2 2 Seeding and Diluting the Zeolite Precursor Gel	51
	3.2.3 Vapor Phase Transport of Fluoride	
33	Conclusions	67
3.4	Experimental	
5.1	3 4 1 Synthesis of Structure-Directing Agent (4-methyl-2 3 6 7-	
	tetrahydro-1H.5H-pyrido [3 2 1-ii] auinolinium hydroxide)	
	3.4.2 Synthesis of ITO-29 (LTA) Films and Powder Via Seeding /	
	Diluting	69
	3.4.3 Synthesis of ITO-29 (LTA) Films and Powder Via Vapor Phase	
	Transport of Fluoride.	70
	1	

	х
3.4.4 Characterization	72
3.5 References	73
Charter 4. Investigation of Dislectuic Dyanautics of Elyapide Medicted Dyan	111.00
Zaolita Thin Films	5111Ca 77
Abstract	/ / 77
4.1 Introduction	77
4.1 Results and Discussion	90
4.2 Conclusions	104
4.5 Conclusions	105
4.4 1 Synthesis of Structure-Directing Agent A (1.2.3-	105
trimethylimidazolium hydroxide)	105
4 4 2 Synthesis of Structure-Directing Agent B (N N N-trimethyl-1-	100
adamantylammonium hydroxide)	105
4 4 3 Synthesis of Structure-Directing Agent C (Hexamethylene-1 6	-his-
(N-methyl-N-pyrrolidinium) hydroxide)	106
4 4 4 Surface Modification of the Substrates	107
4.4.5 Synthesis of Fluoride-Mediated Pure-Silica Zeolite Films and	107
Powder	107
4 4 6 Characterization	109
4.5 References	10)
Photolabile Structure-Directing Agents.	115
Chapter 5: Introduction to Part II of Thesis	116
5.1 Introduction	116
5.2 Photolabile Structure-Directing Agents	124
5.3 Photochemical Protecting Groups in Organic Synthesis	126
5.3.1 2-Nitrobenzyl Family.	127
5.3.2 Benzyloxycarbonyl Family	130
5.3.3 3-Nitrophenyl Family	131
5.3.4 Phenacyl Family	132
5.4 Photofunctional Zeolites	133
5.5 Development of a Photolabile Structure-Directing Agent	135
5.6 References	
Chanton 6. Dhotolohilo Structure Directing Agents for Zeolite Synthesis	142
Chapter 6: Photolabile Structure-Directing Agents for Zeolite Synthesis	142
Chapter 6: Photolabile Structure-Directing Agents for Zeolite Synthesis Abstract	142 142
Chapter 6: Photolabile Structure-Directing Agents for Zeolite Synthesis Abstract 6.1 Introduction 6.2 Results and Discussion	142 142 142 145
Chapter 6: Photolabile Structure-Directing Agents for Zeolite Synthesis Abstract	142 142 142 145 145
Chapter 6: Photolabile Structure-Directing Agents for Zeolite Synthesis Abstract	142 142 142 145 145 145
Chapter 6: Photolabile Structure-Directing Agents for Zeolite Synthesis. Abstract	142 142 142 145 145 150 155

Xi
6.4 Experimental
6.4.1 Synthesis of P-SDA 1
6.4.1.1 Ketalization Reaction 161
6 4 1 2 Amine Quaternization Reaction 162
6.4.2. Photocleavage of P-SDA 1
6.4.2.1 Homogeneous Cleavage of P-SDA 1 163
6.4.2.2 Photocleavage of P-SDA 1 Intercalated within Tosoh 390-
HUA a Dealuminated Zeolite X (Structure Code FAU) 163
6.4.3 Zeolite Synthesis with P-SDA 1
6.4.4 Characterization 166
6.5 References 167
Chanter 7 · An Imidazole-Based Photolabile Structure-Directing Agent for the
Synthesis of Aluminonhosphate Zeolites
Abstract 170
7.1 Introduction 171
7.2 Results and Discussion 175
7.2 Results and Discussion 175 7.2 I P_SDA 2 Synthesis 175
7.2.1 1-5DA 2 Synthesis
7.2.2 Aluminophosphate Zeolite Synthesis Using DDA 2
7.2.5 Aluminophosphate Zeonte Synthesis Using F-SDA 2
7.2.4 Thotocleavage of T-SDA 2 within Arthmophosphate Material 190
7.5 Conclusions
7.4 Experimental 7.4 Experimental 7.4 Experimental 7.4 1 Symthesis of D SDA 2 107
7.4.1 Synthesis of Aluminanhagehota Zaalitag with SDA 2 and D SDA 2
7.4.2 Synthesis of Aluminophosphate Zeontes with SDA 2 and P-SDA 2
7.4.2 Symthesis of Motel Substituted Aluminenheamhete Zeelites with
7.4.5 Synthesis of Metal-Substituted Aluminophosphate Zeontes with
5DA 2 ally F-5DA 2
7.4.4 Photocleavage of P-SDA 2 in As-Made Aluminophosphate and Motal Substituted Aluminophosphate Materials
7.4.5. Characterization
7.5. Defenses
7.3 Kelefences
Charter & Summary and Canalusians
Chapter 6: Summary and Conclusions 203 1 Summary and Conclusions
1. Summary and Conclusions
2. Future Directions

List of Tables

Chapter 3

Chapter 4

Table 4.1 Dielectric constant (k) of various pure-silica zeolite pow	ders measured
at 2 GHz	
Table 4.2 Synthesis conditions for zeolite films and powders	

Chapter 6

Table	6.1	Synthesis	conditions	for	zeolite	synthesis	using	P-SDA	1	as	the
	struc	ture-directi	ng agent								158

Table 7.1 Results of AlPO ₄ syntheses attempted with SDA 2 ($A =$ amorphous, DP
= dense phase, $\#1 = ATS / unknown phase, \#2 = AFI / tridymite)$
Table 7.2 Results of magnesium-substituted aluminophosphate runs using SDA 2
at 150, 175, and 200 °C (A = Amorphous)
Table 7.3 Results of attempted aluminophosphate zeolite syntheses with P-SDA 2
as the structure-directing agent $(3 = \text{unknown hydrated phase}, 4 = \text{unknown}$
phase, $5 =$ unknown phase, $6 =$ ATS / unknown phase, $7 =$ ATV / dense
phase, DP = dense phase)
Table 7.4 Results of attempted metal-substituted, aluminophosphate zeolite
syntheses with P-SDA 2 as the structure-directing agent

List of Figures

Chapter 2

Figure 2.1 Schematic representation of the three categories of nanostructured,	,
planar zeolite and zeolite-based configurations	22
Figure 2.2 Synthetic strategies for the formation of zeolite and zeolite-based	
films and membranes	26
Figure 2.3 Models of zeolite and zeolite-based film formation for in situ synth	netic
techniques	28
Figure 2.4 Silicalite (MFI) polycrystalline film grown via in situ techniques	
showing a loose layer of MFI crystals on the surface	29
Figure 2.5 Schematic of the vapor phase transport method for film formation.	31

Figure 3.1 Schematic of the synthesis process of fluoride-mediated zeolite films by
the seeding / diluting modification to in situ crystallization
Figure 3.2 Schematic of the synthesis process of fluoride-mediated, pure-silica
zeolite LTA films by the vapor phase transport of fluoride
Figure 3.3 PSZ ITO-29 (LTA) film synthesis attempts using various substrates
seed amounts and dilutions
Figure 3.4 Al-free ITO-29 (LTA) film synthesis attempts using various substrates
seed amounts and dilutions 54
Figure 3.5 (a) Substrate submerged in ITO-29 precursor gel of appropriate molar
composition (i) Stir to hydrolize the TEOS: (b) Substrate subjected to din-
(i) Din cost substrates 5x in the hydrolyzed get to create
amorphous precursor film: (a) Costed substrate and bulk precursor gel
nlocad inside vacuum designator (iii) Evaporate athanol produced during
budrolusis and avassa $H(0; (d))$ Amorphous productor film and solid (dry)
invalorysis and excess Π_2O_1 (d) Antorphous precursor min and solid (dry)
sel, (e) introduce dry ger into Tenon®-inted Part Autociave alter addition
of HF (aq) to dry get, introduce coaled substrate (no HF present in
amorphous min) into autociave on elevated renon® plation, and
Crystallize via VPTWI
Figure 3.6 X-ray diffraction patterns of as-made, calcined and polished PSZ LTA
film samples on OH-(100) Si demonstrates phase crystallization of the
precursor film using the VP1M of fluoride
Figure 3.7 FE SEM micrographs of (a) surface of calcined PSZ LTA film; (b) a
thin section of calcined PSZ LTA film showing $\sim 115 \ \mu m$ thick film; (c)
surface of calcined PSZ LTA film after mechanical polishing; (d) a thin
section of calcined PSZ LTA film after polishing showing $\sim 1.7 \ \mu m$ thick
film
Figure 3.8 Load / displacement curves for the PSZ ITQ-29 films on (100) Si wafers
indicate that different elastic moduli are obtained at different indentation sites

Chapter 4

Figure 4.1 Cartoon of a parallel-plate capacitor with a dielectric medium	
polarized by an electric field, E	80
Figure 4.2 (a) Metal-insulator-metal structures used for parallel-plate capacitance	ce
measurements; (b) Schematic of a time-domain reflectometer (TDR)	
coupled with transmission line for dielectric measurements of powder	
samples (used with permission) ⁷	81
Figure 4.3 (a) LTA framework, viewed along the [001] axis; (b) CHA	
framework, viewed normal to the [001] axis; (c) STT framework, viewed	1
normal to the [100] axis; (d) ITW framework, viewed along the [100]	
$axis;^{37}$ (e) -SVR framework, viewed along the [001] axis (courtesy of A.	
Burton, Chevron)	89
Figure 4.4 X-ray diffraction patterns of calcined and polished (a) PSZ CHA	
films on (100) Si; (b) PSZ STT films on (100) Si; (c) PSZ ITW films on	
(100) Si; (d) PSZ -SVR films on (100) Si	91
Figure 4.5 FE SEM micrographs of (a) surface of calcined PSZ CHA film; (b)	
surface of calcined PSZ STT film; (c) surface of PSZ CHA / STT	
intergrowth; (d) calcined, polished PSZ STT film; (e) surface of calcined	L
PSZ ITW film; (f) surface of calcined PSZ -SVR film; (g) surface of	
calcined, polished PSZ -SVR film; (h) thin section of a typical PSZ STT	
film after mechanical polishing, showing ~ 1.7 μ m thick film with variab	ele
height.	94
Figure 4.6 k-values obtained for PSZ thin film of *MRE, MFI, BEA*, and LTA	
topologies made by <i>in situ</i> (MFI and BEA*) and vapor phase transport	~ ~
methods (*MRE and LTA)	96
Figure 4./ Effective dielectric constant of pure-silica CHA measured over a	00
Figure 4.9. Effective distances	98
Figure 4.8 Effective dielectric constant of pure-silica STT measured over a rang	;e
01 Inequencies	99 72
of frequencies	30 00
Figure 4.10. Effective diplostric constant of nurs silies. SVP massured over a	7 7
range of frequencies	በበ
Figure 4.11 k-values obtained for fluoride-mediated PS7 nowders of MELITW	50 7
FFR -SVR STT CHA and LTA topologies via TDR	, 03
	55

Figure	5.1	Schematic representation of the results of thermal	stresses on zeolite
	film	ns during calcination: (a) cracking at film / substrate	interface if film is
	not	well-adhered to substrate, (b) cracking within film	n if film is well-
	adhe	ered to substrate	
Figure	5.2	Schematic of zeolite film patterning using	UV / ozonolysis
	phot	tochemical "calcination" treatment to remove occlude	d organics120
Figure	5.3	Cleavage reaction of ketal-containing structure-di	recting agent into
	sma	Iller fragments ²¹	

XV

Figure 6.1 (a) Acid-cleavable structure-directing agent 8,8-dimethyl-2-phenyl-1,4-
dioxa-8-azoniaspiro[4,5]decane hydroxide; (b) potential photolabile
structure-directing agent, 8,8-dimethyl-2-(2-nitrophenyl)-1,4-dioxa-8-
azoniaspiro[4.5]decane hydroxide
Figure 6.2 Proposed synthetic route for the preparation of P-SDA 1: (i) ketalization
reaction; (ii) guaternization of the secondary amine; (iii) ion exchange of the
guaternary amine counter-ion
Figure 6.3 ¹ H NMR spectrum of P-SDA 1 in its iodide salt form
Figure 6.4 TGA data of P-SDA 1 prior to conversion of guaternary ammonium
iodide salt form to quaternary ammonium hydroxide material
Figure 6.5 Photolysis mechanism of P-SDA 1, generating 2-hydroxy-1-(2-
nitrosophenyl)ethanone and 1,1-dimethyl-4-oxopiperidinium
Figure 6.6 13 C CPMAS NMR spectra of: (a) P-SDA 1 in the iodide salt form; (b)
P-SDA 1 intercalated into the pure-silica zeolite with the FAU structure; (c)
results of initial attempts to photocleave P-SDA 1 intercalated into the pure-
silica FAU material demonstrate that cleavage did not occur, as the NMR
data did not change
Figure 6.7 TGA data of P-SDA 1 intercalated in pure-silica zeolite FAU154
Figure 6.8 IR spectra of (a) P-SDA 1; (b) P-SDA 1 subjected to photolysis while
intercalated in pure-silica zeolite FAU
Figure 6.9 Schematic representation of P-SDA 1 in zeolite BEA* (docking
calculations performed by A. Burton at Chevron)

Chapter 7

Figure 7.1 (a) 1-(2-nitrobenzyl)-1H-imidazole (P-SDA 2) ; (b) 1-benzyl-1H- imidazole (SDA 2)
Figure 7.2 Photolysis of P-SDA 2 proceeds via an intramolecular hydrogen
abstraction from the earbon hydrogen band or the to the nitre group to viold
abstraction from the carbon-hydrogen bond of the to the fitted group to yield
Eisure 7.2 ID abaarbaraa graaterin of D SDA 2
Figure 7.5 IR absorbance spectrum of P-SDA 2
Figure 7.4 CCP MAS NMR spectrum of P-SDA 2 at a spin rate of 6,0001//
Figure 7.5 TOA data for P-SDA 2
Figure 7.6 XRD patterns of aluminophosphate zeolites made with SDA 2: (bottom)
A I S / unknown phase; (top) AF1 / tridymite dense phase
Figure 7.7 Framework schematic of the aluminophosphate zeolites phases: (a)
ATS, viewed along the $[001]$ axis; (b) AFI, viewed along the $[001]$ axis
with projection down the [001] axis on the upper right ¹⁰ 181
Figure 7.8 XRD pattern of the ATS phase from the compositions in Table 7.2183
Figure 7.9 XRD patterns of as-made aluminophosphate materials produced using
P-SDA 2 as the structure-directing agent: (a) phase 3; (b) phase 4; (c) phase
5; (d) phase 6; and calcined phase 5: (e) ATV / dense phase
Figure 7.10 ¹³ C CPMAS NMR spectrum of the as-made, crystalline,
aluminophosphate phase 5 produced using P-SDA 2 as the structure-
directing agent187
Figure 7.11 TGA data of the as-made, aluminophosphate phase 5, produced using
P-SDA 2 as the structure-directing agent
Figure 7.12 ¹³ C CPMAS NMR spectrum of as-made, aluminophosphate material
produced using P-SDA 2 as the structure-directing agent, after UV
irradiation
Figure 7.13 TGA data of the cleaved and extracted aluminophosphate material .192
Figure 7.14 XRD patterns of: (bottom) the as-made phase 5 sample: (top) the
nhotocleaved phase 5 sample 193
Figure 7.15 IR spectra of photocleaved and extracted phase 5 sample 193
Figure 7.16 SEM micrographs of (a) photocleaved phase 5 crystals and
aggregates: (b) calcined ATV / dense phase material crystals and aggregates
aggregates, (b) calended MTV / dense phase material erystals and aggregates
Figure 7.17 Synthesis of P-SDA 2 via photochemical protection of the amino
functionality of the imidazole
functionanty of the initiazore

xvi