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Chapter 3

FTLE, LCS, and Five Examples

Here we review the method of extracting Lagrangian Coherent Structures (LCS)

using the method of Finite Time Liapunov Exponents (FTLE). The method was first

developed by Haller [Haller 2000], and further references that provide more detail

include [Shadden 2005] and [Lekien 2007]. The underpinning premise in the FTLE

method is that coherent structures in a turbulent flow are best characterized and

identified by the surfaces of greatest separation. This Lagrangian approach, which

uses particle trajectories that necessarily encode the time-dependence in the velocity

field, is more effective in identifying persistent coherent structures than methods that

utilize only Eulerian criteria. The method has the advantages that it is directly

applicable to aperiodic flows, and to flows that are defined by discrete data sets over

a finite time interval.

After reviewing the basic definitions, we will briefly examine five examples that

illustrate various features of the method for a variety of flows.

3.1 FTLE and LCS

The discussion here will be with regard to two-dimensional flows in the plane, al-

though this can be generalized to flows in n-dimensions, and to flows on manifolds

[Lekien 2007]. We take the approach that the Eulerian velocity field describing the

flow is given at the outset, either as an explicit analytical model, or as the result

of integrating primitive equations for the flow (Navier-Stokes, for example), or from
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interpolations of direct observations and measurements of the flow. The flow may

correspond to an actual fluid flow, or the flow in the phase space of a dynamical

system.

Since the FTLE method is a Lagrangian approach, we will need to compute the

flow map that maps particles forward along their trajectories. Differentiation of the

flow map will provide a measure of separation under the action of the flow. Finally, we

define the LCS to be the surfaces in the flow on which separation is locally maximal.

Let the open set D ⊂ R2 be the domain of interest in the flow, and let v(x, t)

be a smooth time-dependent vector field on D that we refer to as the velocity field.

At each time t, the velocity field assigns to each point x ∈ D, a tangent vector from

TxD. A trajectory, q(t; x0, t0), is the unique curve in D parametrized by time that

passes through the initial condition x0 ∈ D at time t0, and whose tangent vectors

satisfy the vector field v:

dq(t; x0, t0)

dt
= v(q(t; x0, t0), t)

for all times t. In the applications, the trajectory is obtained by numerically integrat-

ing the velocity field, using a Runge-Kutta scheme, for example.

Let φt0+t
t0 : D → D be the flow map associated with the vector field, so that

φt0+t
t0 (x0) := q(t0 + t; x0, t0) .

For a smooth velocity field, φt0+t
t0 : D → D is a smooth map that depends on both

the time, t0, and the time of integration, t. Clearly, φt0t0 : D → D is the identity map

on D.

The flow map encodes the Lagrangian paths of particles, and provides access to

the amount of local stretching in the flow. To this end, we use the linearization of

the flow map,

x→ Dφt+Tt (x) , (3.1)
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represented by a 2× 2 matrix, to define the Cauchy-Green deformation tensor:

∆ :=
[
Dφt+Tt (x)

]′
Dφt+Tt (x) , (3.2)

where A′ indicates the transpose of the matrix A. The adorning symbols on ∆ have

been dropped to avoid notational clutter, but it is understood that ∆ assigns to

each point in the domain D a time-dependent 2 × 2 matrix. Furthermore, ∆ is

everywhere positive definite and hence has positive eigenvalues. The deformation

tensor contains information about the amount of (linearized) stretching in the flow.

If the largest eigenvalue of ∆ is greater than unity, then the eigenvector associated

with this eigenvalue provides the direction in which the largest separation will occur.

Thus, the eigenvalues of ∆ provide a measure of the rate of separation. Accordingly,

the Finite Time Liapunov Exponent, σT (x, t), is a time-dependent scalar field defined

using the maximum eigenvalue of ∆:

σT (x, t) :=
1

2|T |
lnλmax (∆) . (3.3)

When convenient, we sometimes drop the notation indicating the dependencies, and

write just σ. The FTLE defined in this way is a measure of the separation of trajec-

tories induced by the flow over the interval of time (t, t+T ) with values of the FTLE

greater than zero representing separation.

Following [Shadden 2005], we define the LCS to be locally maximizing surfaces, or

“ridges”, in the scalar field σT . In practice, the intuitive definition of “ridge” suffices

to identify the LCS; however, in order to provide a precise mathematical definition,

we must first introduce the notion of curvature of the surface σ, by defining the 2× 2

Hessian matrix Σ:

Σ := D2σT (x, t) . (3.4)

By equality of mixed partial derivatives, Σ is a real symmetric matrix, and con-

sequently has real eigenvalues and orthogonal eigenvectors. We label the smallest

eigenvalue of Σ, λn, and the associated eigenvector, n. Then, we define the LCS to
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be the set of all points in the domain for which the following two conditions hold:

C1. λn < 0 ,

C2. ∇σ · n = 0 .

Taken together, these conditions define a curve in D that moves in time. As we

shall see in the forthcoming examples, the LCS defined in this way for a wide range

of flows are remarkably sharp, indicating that separation is generally not a diffuse

property and is concentrated along LCS curves.

The definition of FTLE admits both positive and negative flow times T . For

positive values of T , the FTLE measures separation forward in time and yields LCS

that act as repelling surfaces; while for negative values of T , the FTLE measures

separation backward in time, and hence yields LCS that act as attracting surfaces in

forward time.

The LCS as defined above are co-dimension one surfaces of greatest separation.

From a broader perspective, it is understood that these LCS curves are then used to

identify the relevant coherent structures in a flow. For instance, the LCS may define

the boundaries of an ocean eddy, whereas from the user’s point of view, the eddy

itself is the coherent structure of interest.

From a practical standpoint, the FTLE is computed numerically by placing a

Cartesian grid of particles covering the flow region D. The flow map is then approx-

imated by integrating all the particle trajectories forward in time. Differentiation of

the flow map is performed via finite differencing to yield the FTLE at each point in

D. The procedure is then repeated at subsequent time intervals in order to discover

the time evolution of σ.

Increasing the integration time T tends to sharpen the ridges and extend their

length in space. Typically, choosing a value for T is motivated by the relevant time-

scales in the flow; T must be chosen long enough so that the important dynamics in

the flow have sufficient time to induce separation. Choosing a value of T too large

leads to too many LCS to be sensible. The choice of the integration time T is thus also

tied to the relevant length scales that are most active in the flow. In practice, if the
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given velocity field covers the temporal and spatial scales of interest, then choosing a

suitable value of T is seldom an issue.

To complete this overview of LCS, we now provide five examples of FTLE fields

and their corresponding LCS for a wide range of flow regimes.

3.2 The simple pendulum

To begin, we investigate the FTLE for the flow in the phase space of the simple

pendulum. This is an elementary example (the flow is not even time-dependent!),

but will be illustrative of the main features of LCS, and will also raise important

non-trivial issues that will be addressed in later chapters.

The state of the simple pendulum is described by the angle of the pendulum

with the vertical, θ, and its angular velocity, ω. The evolution of the flow through

(θ, ω)-phase space is given by:

θ̇(t) = ω(t)

˙ω(t) = − sin θ(t) ,

and the velocity field is shown in Figure 3.1(a).

The corresponding repelling FTLE field for an integration time of 11 time units

is shown in Figure 3.1(b). The LCS are easily discernible ridges in the FTLE, and

separate regions in which the pendulum motion is a back-and-forth oscillation, from

regions of running windmill behavior. Computing the FTLE for integration backward

in time yields the attracting FTLE field in Figure 3.1(c). Taken together, the repelling

LCS and the attracting LCS enclose the region of oscillating motion. Thus, the LCS

act as separatrices in that they separate regions of the flow with qualitatively different

behavior. Also, we observe that increasing the integration time “grows” the manifold,

since more trajectories that begin closer to the unstable vertical equilibrium point will

have the opportunity to separate.
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(a) Velocity field for the simple pendulum.

(b) Repelling FTLE for the simple pendulum
flow. The LCS are sharp ridges that separate
regions of oscillatory motion from regions of
“running” motion.

(c) When combined with the LCS in the at-
tracting FTLE field shown here, the LCS fully
enclose the region of oscillatory motion.

Figure 3.1: FTLE and LCS in the flow of the simple pendulum.
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3.3 Monterey Bay

In this example, we analyze the flow defined by output from a nested ocean model

for two-dimensional surface flow in a coastal region near Monterey Bay, California

provided by Chao (see [Li 2008] for details of the model). In the figures below, the

FTLE scalar fields in both forward and backward time directions have been computed,

and then plotted as an overlaid filled contour plot using windowing of the fields to

reveal only the regions of strongest repulsion and attraction. Colored drifters are also

placed in the flow to indicate their motion relative to LCS.

The sequence of images reveals properties of the LCS that recur for a wide-range

of flows. These are:

• The LCS delineate regions that have different dynamical fates – brown drifters

re-circulate near the coast, while green drifters are flushed out to sea.

• Intersections of the attracting and repelling LCS define strongly hyperbolic

points in the flow.

• The LCS are almost inariant, in that very little fluid crosses the LCS.

• The LCS act as barriers to transport, and reveal pathways by which transport

occurs.

The LCS computed for coastal regions can be used to guide the placement of

drifters for measuring ocean data so that the drifters recirculate within the region of

interest and achieve better coverage. An experiment to implement this approach is

being conducted in July and August, 2009, in Prince William Sound, Alaska, where

the modeling of the transport of oil spills due to ocean currents in the sound is

of particular interest. The LCS can also be used to recognize persistent structures

in coastal waters such as eddies separating off coastal protrusions. In a separate

study, [Lekien 2005] has investigated the use of LCS to mitigate the effect of pollution

discharges by ensuring that effluent is released at times when there are no transport

barriers to prevent pollutants from being quickly flushed out to sea.
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Figure 3.2: LCS near Monterey Bay are depicted here at 48 hour intervals. The
attracting LCS (blue curves) and the repelling LCS (red curves) define the boundaries
of vortices as well as lobes colored green and brown. Since no fluid crosses the LCS,
transport and mixing occurs via the motion of the lobes. The green lobes are flushed
out to sea while the brown lobes recirculate near the coast.

3.4 The atmosphere of Titan

Images recently returned from the Cassini and Huygens missions to Saturn’s moon,

Titan, have spurred great interest in further exploring the meteorology of Titan’s

dense atmosphere, hydrological cycle, and hydrocarbon lakes. Designs for Mont-

golfiere balloons are currently under consideration as the observing platform of choice

for exploring the Titan environment. With limited onboard propulsion, the venturing

capabilities of a balloon will depend largely on the transport structures present in the

Titan atmosphere. Consequently, design engineers will need to consider whether, for

example, there are barriers to transport into and out of the polar regions, or if there

are regions of potential entrapment, or if wind reversals as a function of altitude will

allow for navigation with the aid of a small amount of vertical control authority.

We have computed three-dimensional LCS using the velocity fields in a Titan wind

model provided by the authors of [Richardson 2007]. Figure 3.3(a) shows a sample

constant-height section through the FTLE field. We observe turbulent structures in

the mixing region between the retrograde equatorial flow, and the zonal flow in the

upper latitudes. Furthermore, a strong repelling LCS encircles the northern polar

region, indicating that travel to the pole during this time period will be impossible
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using ambient winds alone. Blue and red drifters placed on either side of this sepa-

ratrix enter different dynamical regimes: the blue drifters continue to rapidly circle

the pole, while the red drifters enter a quiescent pocket closer to the equator. In a

similar manner to the pendulum example, the LCS delineates a separation between

regions with different dynamical outcomes.

3.5 Overflows in the North Atlantic

The thermohaline circulation is oceanic flow driven by buoyancy effects due to dif-

ferences in temperature and salinity, and leads to global circulation of the oceans.

The circulation transports and distributes large amounts of energy, and hence has

paramount influence on the global climate. Indeed, conjectures have been made that

global warming could cause the thermohaline circulation to cease, drastically affect-

ing global climates - most especially the climate of Northern Europe [Vellinga 2002].

Thus, accurate global climate forecasting requires a through understanding of the

transport mechanisms at play in the thermohaline circulation.

An important element of thermohaline transport is mixing that occurs in oceanic

overflows, a process in which cold dense saline water descends below warmer less dense

fresh water causing instability and mixing at the interface. Current global climate

models have grid scales too large to resolve these mixing processes, and must resort

to a parametrized model to capture their effects.

Odier has conducted laboratory experiments described in [Odier 2007] to replicate

oceanic overflows and characterize the resulting turbulent mixing processes so that

these effects may be included in global models. (For practical purposes, the experi-

mental setup actually investigates the ascension of less dense fluid against an inclined

plate, rather than the sinking of a cold dense fluid.) The fluid is initially passed over

a propeller to induce turbulent flow and the flow field is imaged using particle image

velocimetry.

In order to characterize mixing, the interface between the two fluids must first

be determined, and then the amount of flux across this boundary must be measured.
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(a) The FTLE for the atmosphere of Ti-
tan. A repelling LCS acts as a barrier to
transport to the North Pole.

(b) Four particles are placed on either
side of the repelling LCS.

(c) The blue and red drifters separate.
The blue drifters continue to circle the
pole, while the red drifters enter a differ-
ent flow regime closer to the equator.

Figure 3.3: LCS in the atmosphere of Titan.
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(a) Repelling FTLE. The LCS indicates
the interface between the layers. Further-
more, the LCS indicates the lobe that
will be detrained from the overflow above
to the quiescent flow beneath.

(b) Attracting FTLE. The LCS indicates
a lobe that will be entrained into the
overflow above.

Figure 3.4: LCS in experimental realizations of ocean overflows.

Not surprisingly, the identification of this boundary for the turbulent flow is not easily

performed by viewing plots of traditional Eulerian fields. Velocity and vorticity plots

are unhelpful and misleading.

We have computed LCS for flow data obtained during the overflow experiment

with promising results. The repelling LCS shown in Figure 3.4(a) captures the tur-

bulent mixing layer and shows the boundary between the less dense overflow moving

to the right above the quiescent more dense fluid below. In Figure 3.4(a), we see that

the LCS reveals not only the interface, but also the mechanisms by which mixing

occurs: the LCS outlines a narrow tendril-shaped lobe that will be detrained into

the quiescent flow beneath, while fluid exterior to the lobe will exit the flow at top

right. Similarly, the attracting LCS plotted in Figure 3.4(b) demarcates a lobe in the

quiescent flow that will be entrained into the overflow above. In this way, LCS can

be used to quantify detrainment and entrainment. In fact, to the extent that the flow

is planar, the areas of the lobes correlate with the amount of mixing occuring across

the interface.
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3.6 The elliptic three-body problem

Koon has shown that careful consideration and utilization of invariant manifolds

in the circular restricted three-body problem can reveal energy efficient pathways

for transport in the solar system [Koon 2000]. Specifically, the stable and unstable

manifolds of the periodic orbits, associated with Lagrange points in the restricted

three-body problem, form tubes through which trajectories traveling from one region

of phase space to another must pass. Desired itineraries are obtained by finding

intersections between tubes traveling to and from the relevant regions.

Computing these invariant manifolds typically requires intensive computation of

high order normal forms (above 20th order for example), inserting initial conditions

infinitesimally displaced in the stable and unstable directions, and then integrating

forward and backward in time in accordance with the classical dynamical systems

definition of stable and unstable manifolds. Adopting a different approach, we utilize

the property that the invariant manifolds are also separatrices in the flow. Hence, we

can compute the LCS to directly discover the tubes through which trajectories must

pass. The versatility of the LCS method allows for computations of these manifolds

even in the case of the elliptic restricted three-body problem in which the eccentric-

ity of the primary orbits yields non-autonomous equations of motion [Gawlik 2009].

Moreover, the LCS method allows for the computation of these manifolds for the solar

system using the aperiodic flow induced by the entire ephemeris.

Since the Jacobi integral is absent in the elliptic problem, we cannot project onto

an energy surface and must integrate trajectories in the full four-dimensional phase

space. To compute the LCS, we initialize trajectories on a three-dimensional Poincaré

section (y = 0), integrate them forward in the four-dimensional space, and compute

the FTLE. Figure 3.5(a) shows a still image of the time-dependent FTLE on this

three-dimensional section, while Figure 3.5(b) is yet another section through this

three-dimensional space onto the (x, ẋ)-plane. The resulting LCS demarcate pockets

of initial conditions that undergo different dynamical behavior – for instance, those

outside the pocket remain in an orbit interior to Jupiter, while those inside the pocket
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(a) A 3D section of the 4D FTLE for the
elliptic three-body problem.

(b) A 2D section of the 4D FTLE for the
elliptic three-body problem. Notice that
the LCS cut out regions, or “tubes,” in
phase space.

Figure 3.5: LCS for the elliptic three-body problem.

escape Jupiter’s orbit to an exterior orbit.


