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Chapter 2

Homoclinic Points and the
Horseshoe Map - A Reprise

As mentioned in the introduction, a central contribution of this thesis is the identifica-

tion and visualization of homoclinic tangles and horseshoes in turbulent geophysical

flows. This chapter provides an overview of the theoretical development of homoclinic

and horseshoe dynamics. To this end, this chapter will not provide new results, but

will rather furnish the mathematical setting and context for results that follow in

later chapters.

Beyond simply providing background information, a review of this mathematical

foundation will aid in identifying and appreciating the structures that will be sub-

sequently demonstrated for turbulent flows in the ocean and atmosphere. Emphasis

will be placed on the contributions of Poincaré and Smale; although, as will be seen,

there are many participants, each of whose contributions are interwoven to produce a

delightful panorama of mathematics. The narrative of the mathematical results will

be historical in nature – the historical development of the ideas is too rich a story not

to tell, and the appreciation of which heightens understanding of the main results.

A further reason for providing this introductory survey of homoclinic and horse-

shoe dynamics is to ensure that this thesis is self-contained and accessible to a broad

audience of oceanographers and atmospheric scientists. For more mathematical de-

tails, the reader is directed to the texts of [Guckenheimer 1983] and [Wiggins 2003].

An excellent mathematical overview is provided in the survey of [Holmes 1990], and
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the discussion here follows a similar progression of ideas. A detailed mathematical

account from a historical perspective is provided by [Barrow-Green 1996] (also see

the less technical account of [Szpiro 2007]). Of course, greatest appreciation for the

beauty of these ideas is best obtained by studying the primary texts of [Poincaré 1899]

and [Smale 1967].

This chapter will also help to provide definitions and notation that will be used

uniformly throughout the thesis.

2.1 Poincaré and homoclinic points

The mathematical contribution of Poincaré that will concern us most in the present

treatise is the discovery of homoclinic points and asymptotic solutions – a theory he

developed during his study of the restricted three-body problem. Poincaré used a

geometric and qualitative approach. In the introduction to his original memoir, he

instructs his readers that [Barrow-Green 1996]:

These theorems have been given in a geometric form which has to my eyes the advantage

of making clearer the origin of my ideas ...

Poincaré’s approach signaled the birth of geometric mechanics, and his initial expo-

sition would be extended by the topological approach to dynamics of Birkhoff and

Smale.

First we demonstrate the method Poincaré used to reduce a two-degree of freedom

Hamiltonian system to a time-dependent Hamiltonian system with a single degree of

freedom. The procedure uses two main ingredients: (1) the Hamiltonian integral,

and (2) the replacement of time by a time-like coordinate. The particulars of the

restricted three-body problem addressed by Poincaré are not essential to our purpose,

and consequently we shall omit details and consider a general Hamiltonian system

(see [Szebehely 1967] for a detailed treatment of the restricted three-body problem).
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Consider the time-independent Hamiltonian of a system with two degrees of free-

dom:

H(q1, q2, p1, p2) . (2.1)

Hamilton’s equations of motion are

q̇1 =
∂H

∂p1

ṗ1 = −∂H
∂q2

(2.2)

q̇2 =
∂H

∂p2

ṗ2 = −∂H
∂q2

. (2.3)

The derivative of the Hamiltonian with respect to time is:

dH

dt
=
∂H

∂q1
q̇1 +

∂H

∂q2
q̇2 +

∂H

∂p1

ṗ1 +
∂H

∂p2

ṗ2 = 0 , (2.4)

so that we may immediately conclude that the Hamiltonian is constant:

H(q1, q2, p1, p2) = h = constant . (2.5)

The availability of this integral relationship implies that we can solve for one of the

coordinates as a function of the remaining three coordinates and the constant h. That

is,

p1 = p1(q1, q2, p2;h) . (2.6)

Our next step is to replace time by another of the coordinates, q1. In this way, the

coordinate q1 becomes an independent time-like variable. In doing so, we lose the

true time parameterization of the trajectories and retain only the geometry of the

solution – the time parameterization can always be reconstructed after solving the

reduced system.
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Using the identities:

q̇2 =
dq2
dq1

q̇1 , q̇2 =
∂H

∂p2

, and q̇1 =
∂H

∂p1

, (2.7)

we can write

dq2
dq1

=

∂H
∂p2
∂H
∂p1

, (2.8)

so that time has been eliminated in favor of the new independent variable q1.

Likewise,

dp2

dq1
= −

∂H
∂q2
∂H
∂p1

. (2.9)

When evaluating the partial derivatives of H in the right-hand sides of (2.8) and

(2.9), we use the expression for p1 in (2.6) to write the result entirely in terms of

the dependent variables q2 and p2, the independent variable q1, and the constant h.

Thus, the original Hamiltonian system has been reduced to

dq2
dq1

= f(q2, p2; q1;h) (2.10)

dp2

dq1
= g(q2, p2; q1;h) , (2.11)

a q1-dependent (think, “time”-dependent), single degree of freedom system. What is

more, the new system is in fact Hamiltonian, with the q1-dependent Hamiltonian,

H̄ := −p1(q2, p2; q1;h) . (2.12)

After solving this reduced Hamiltonian system, the full solution can be reproduced

by chasing back up through the definitions.

In the restricted three-body problem, Poincaré chose an appropriate change of

variables so that the q1 coordinate corresponded to an angle variable with period 2π.

Hence, the problem was reduced to a single degree of freedom Hamiltonian system
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(a) (b)

Figure 2.1: (a) The flow of the reduced Hamiltonian, H̄, induces a discrete map,
P : S → S, on the Poincaré section, S. (b) Intersections of the stable and unstable
manifolds of the fixed point p on the Poincaré section S.

with periodic forcing. Many of the examples that we shall encounter in later chapters

will be of this form.

The q1-dependence of the reduced Hamiltonian implies that when viewed in the

(q2, p2)-plane, trajectories may intersect, and consequently precludes a qualitative

geometric analysis. Poincaré’s insight was to reduce the system even further to remove

the intersections and provide a clearer picture.

In the three-dimensional (q2, p2; q1)-space, he introduced a two-dimensional cross-

sectional surface, S, (now called a Poincaré section) defined by the plane q1 = 0, such

that all trajectories pass transversally through the surface. The transverse intersection

of a trajectory with S defines a point s ∈ S. Since the system is periodic in q1, the

trajectory returns to the surface S at a point s′ after time 2π. In this way, a study

of the flow of the dynamical system under the reduced Hamiltonian H̄, reduces to a

study of a discrete Poincaré map, P : S → S, as illustrated in Figure 2.1(a).

Poincaré referred to the locations of forward iterations of the map as consequents,

and to the locations of iterations of the inverse map, P−1 : S → S, as antecedents.

If H̄ is smooth, then P will be an orientation-preserving map. Furthermore, since

the flow under H̄ is Hamiltonian and preserves volume, the map P will preserve area.
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A fixed point of the map P : S → S is a point p ∈ S such that P (p) = p. Clearly,

a fixed point on S corresponds to a periodic trajectory in (q2, p2; q1)-space. Just as

with fixed points in continuous dynamical systems, we can investigate the stability

of p under iterations of the map. To do so, we first compute the linearization of the

map P at p:

s→ DP (p) · s , (2.13)

where DP (p) is represented by a 2-by-2 matrix. Thus, the linearization is a linear

map from S to itself. If the two eigenvalues of DP (p), denoted λs and λu, are such

that |λs| < 1 < |λu|, then the fixed point is said to be hyperbolic. The eigenvectors

associated with the eigenvalues of the linearization of a hyperbolic fixed point define

linear subspaces, Es and Eu, that are invariant under the flow of the linearization

map, DP (p). The stable/unstable manifold theorem for maps states that for the

fully nonlinear map P : S → S, in a neighborhood of p, there exist local invariant

manifolds W s
loc and W u

loc that are tangent to the linear subspaces Es and Eu at p,

respectively; and are as smooth as the map P . Finally, iterating points on each of

these local manifolds reveals the global stable and unstable manifolds:

W s =
∞⋃
k=0

P−k(W s
loc(p)) and W u =

∞⋃
k=0

P k(W u
loc(p)) . (2.14)

Successive consequents of a point s on the stable manifold will asymptote to p along

W s, while successive antecedents of a point u on the unstable manifold will asymptote

to p along W u.

It should be made clear that these asymptotic manifolds, associated with the fixed

point p, cannot self-intersect since this would violate the smoothness condition of the

mapping P . Nevertheless, the two asymptotic manifolds may intersect each other.

In his memoir, Poincaré refers to these points of transverse intersection as doubly

asymptotic points, referring to the manner in which they asymptote to the same fixed

point in both forward and backward time. Later, in the third volume of Method

Nouvelles [Poincaré 1899], he referred to these points as homoclinic points, and also
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introduced the concept of heteroclinic points — points whose consequents asymptote

toward a fixed point p+, but whose antecedents asymptote toward a different fixed

point p−.

The remaining discussion in this chapter is essentially an attempt to mathemati-

cally describe the implications resulting from the fact that these asymptotic manifolds

intersect. A first consequence that is trivial to derive, yet has dizzying implications,

is the fact that a single intersection implies infinitely many intersections. Starting

with a homoclinic point s ∈ W s
⋂
W u, we realize that by definition, P (s) also lies on

both the stable and unstable manifolds. Repeated applications of the map reveal an

infinite number of intersections.

An important point is that since the map P is orientation preserving, the unstable

manifold will have to double-back and intersect at an intermediate point q, before

intersecting again at the point P (s) as shown in Figure 2.1(b). Geometrically, we

begin to envision the unstable manifold doubling back repeatedly across the stable

manifold as the points of intersection asymptote toward the periodic point. In a

similar way, when we consider antecedents, the stable manifold doubles back across

the unstable manifold as they asymptote toward the fixed point in backward time.

The intersections and doubling back of the manifolds define closed regions in the

section S, called lobes. As the iterated map takes successive consequents closer and

closer to the fixed point, the distance between intersections that define the base of

the lobe becomes arbitrarily small. Consideration of the fact that the map is area-

preserving implies that the lobe must become longer and longer after each iteration

while never intersecting neighboring lobes. Hence, the manifold that outlines the

lobes oscillates wildly as it doubles back and forth across the other manifold. Lobes

from each of the manifolds will inevitably intersect one another creating even more

homoclinic points yielding a complicated picture that is referred to today as a homo-

clinic tangle. It is noteworthy that the map need not be area-preserving in order for

the tangle to form – the linear rate of compression and expansion along the stable

and unstable linear subspaces associated with the hyperbolic fixed point are sufficient
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to produce the tangle.

In his memoir, Poincaré declined to draw the homoclinic tangle, but his oft-quoted

description of the situation is provided here [Poincaré 1899]:

If one seeks to visualize the pattern formed by these two curves and their infinite

number of intersections, each corresponding to a doubly symptotic solution, these

intersections form a kind of lattice-work, a weave, a chain-link network of infinitely

fine mesh; each of the two curves can never cross itself, but it must fold back on itself

in a very complicated way so as to recross all the chain-links an infinite number of

times.

One will be struck by the complexity of this figure, which I am not even attempting

to draw. Nothing can give us a better idea of the intricacy of the three-body problem,

and of all the problems of dynamics in general, when there is no uniform integral and

the Bohlin series1 diverge.

The homoclinic tangle is considered the trademark of chaos. Although the map is

both differentiable and deterministic, the effect of its repeated action is to tear apart

nearby trajectories in such a way that the trajectories can have arbitrarily different

outcomes and may have arbitrarily complicated behavior. For instance, Poincaré

showed in Method Nouvelle Volume I [Poincaré 1899] that given any particular solu-

tion, there exists a periodic solution of a sufficiently large period that is arbitrarily

close to the particular solution for an arbitrary long period of time. The full impli-

cations of the homoclinic point will be discussed later in the context of the Smale

horseshoe map which provides an elegant description of the chaotic dynamics near

the homoclinic point.

Amongst the mathematical community, homoclinic points were not thoroughly

investigated after Poincaré, and became largely forgotten. Smale described the situ-

ation in this way [Smale 1998]:

Unfortunately, the scientific community soon lost track of the important ideas sur-

rounding the homoclinic points of Poincaré. In the conferences in differential equations

and dynamics that I attended in the late 50’s, there was no awareness of this work.

Even Levinson never showed in his book, papers, or correspondence with me that he

1Bohlin had published a series method just before the submission of his memoir.



17

was aware of homoclinic points. It is astounding how important scientific ideas can get

lost, even when they are exposed by leading mathematicians of the preceeding decades.

This being said, there were several mathematicians who were influenced by Poincaré’s

work, and kept his ideas alive.

Soon after the death of Poincaré, Birkhoff, a young American mathematician,

proved Poincaré’s “Last Geometric Theorem,” and continued to develop the theory

of dynamics from this geometric perspective. Morse, a student of Birkhoff, developed

the theory of symbolic dynamics in which the motion of a trajectory is abstracted as

a sequence of labels, a key to the topological treatment of chaotic trajectories.

Hadamard, a French mathematician, greatly admired Poincaré’s work and studied

geodesics on curved surfaces using many of the tools Poincaré had developed. He

used Poincaré’s Recurrence Theorem and the Poincaré section to analyze geodesics.

He showed that in the neighborhood of every bounded geodesic, there were infinite

unbounded geodesics. Thus, small changes in the initial condition could lead to

geodesics of entirely different character. Hadamard observed this sensitivity to initial

conditions (a hallmark of chaos encoded in the homoclinic tangle), and realized that

it was nonsensical to discuss stability of the solar system, for example, since outcomes

were not continuous with respect to initial conditions [Barrow-Green 1996].

2.2 Smale and the horseshoe map

The work of Poincaré and Birkhoff continued with Smale who provided an elegant

topological description of the chaotic nature of the trajectories in the homoclinic tan-

gle. By abstracting the dynamics of the tangle as a differentiable map, he showed

conjugacy between the chaotic trajectories envisioned by Poincaré, and a shift auto-

morphism on a sequence of binary symbols. In essence, he showed that the trajectories

in a homoclinic tangle are as chaotic as a repeated coin flipping experiment.

At the time of his discovery of the horseshoe map and its relationship to homo-

clinic solutions, Smale was a postdoctoral scholar at IMPA in Brazil [Smale 1998]. In
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the IMPA library, he browzed the collected works of Birkhoff2 and started to work

in the area of topological dynamics. After publishing a paper in which he claimed

“chaos cannot exist”, he received a letter from Levinson that caused him to rethink

his conclusion. Levinson directed him to one of his papers that provided a counterex-

ample to Smale’s claims. Levinson’s paper [Levinson 1949] provided an analysis of a

simplified model for radar circuits that had been studied previously during the second

world war by Cartwright and Littlewood. Cartwright and Littlewood investigated the

anomalous behavior of radar circuits that had hampered military field operations. A

study of the solutions of the differential equations governing the circuitry revealed

“a rich variety of behaviour, some of it very bizarre” [Cartwright 1945]. Their anal-

ysis showed that the system possessed an infinite number of periodic motions of “a

great variety of structures.” They were in fact observing the complicated dynamics

associated with a homoclinic tangle. In his study, Levinson provided a similar result

although on a somewhat simpler system in an attempt to clarify their results.

Smale assimilated these results from Birkhoff, Levinson, Littlewood, and Cartwright,

and developed the Smale horseshoe map to provide a complete description of these

chaotic trajectories.

The horseshoe map is an abstraction of the flow near a homoclinic tangle. First,

consider what happens to a rectangular patch on the surface of section S in the

vicinity of a hyperbolic fixed point under the iterated application of the map. In

Figure 2.2, a rectangular patch, consisting of three strips colored red, blue, and green,

is mapped forward around the tangle. (Figure 2.2(a) contains three iterates of the

map, after which, Figure 2.2(b) illustrates an additional three iterates of the map.)

In the immediate vicinity of the fixed point, the linearized flow dominates, and we

see that the patch is squeezed in one direction and lengthened in the other. Under

repeated action of the map, the patch is eventually brought again into the region near

the fixed point. Thus for some positive integer m, the map Q := Pm is a map from

the patch into itself. A single iteration of the map, Q, yields an interesting outcome.

2Smale’s PhD advisor was Bott, a student of Duffin, in turn a student of Bourgin, who was a
student of Birkhoff.
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(a) (b) (c)

Figure 2.2: The action of the homoclinic tangle on a rectangular patch is illustrated
here. The patch consists of three stripes colored red, blue, and green. Figure (a)
shows the first three iterates of the map, and Figure (b) shows the last three. The
red and green strips are returned to the patch, while the blue strip is removed. The
initial and final orientation of the red and green strips is shown in (c), where A′ is
the consequent of A. Both strips return with a vertical orientation, and the red strip
is turned upside down.

First we notice that the middle blue “third” of the patch has been removed entirely,

while the red and green “thirds” are reorientated. The portion of the patch that

remains inside the tangle will be mapped again under the action of the dynamics.

The crux of this exercise is to carefully observe which points remain inside the tangle.

Carefully keeping track of the red and green strips during the mapping around

the tangle, allows us to determine their orientation once they return to the patch.

Figure 2.2(c) shows the initial horizontal orientation of the strips, overlaid with the

final vertical orientation of the strips. Not only have the strips been squeezed and

stretched – the red strip has been turned upside down!

The action of the homoclinic tangle just described is abstracted as the horseshoe

map Q : S → R2 acting on the square [0, 1]× [0, 1] ⊂ R2 and is shown graphically in

Figure 2.3. Again, we consider three horizontal strips of the square: the first labelled

A, the third C, while the middle strip B does not return to the square under the

action of the map.
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Figure 2.3: (a) Forward iteration of the Smale horseshoe map. (b) The set that
remains in the square after two iterations of the forward map is colored blue.

A B C A B C
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(a)

(b)

Figure 2.4: (a) Backward iteration of the Smale Horseshoe map. (b) The set that
remains in the square after two iterations of the backward map is colored blue.
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(a) The set that remains in-
variant under one iteration of
both forward and backward
maps.

(b) The invariant set after two
iterations of both the forward
and backward maps.

Figure 2.5: In the limit as the number of iterations of both the forward and backward
maps approaches infinity, the invariant set approaches the Cantor set.

We may also consider the backward iteration of the map (Figure 2.4). In this

case, a vertical “third” of the patch is removed upon each iteration. In the limit as

the number of iterations both forward and backward becomes infinite (Figure 2.5),

the invariant set of points that remain, denoted Λ :=
⋂∞
k=−∞Q

k(S), is a Cantor set.

The set Λ contains uncountably infinite points, but has measure zero.

We assign to each point in Λ, a symbolic representation of its entire bi-infinite

trajectory. We begin with the map ϕ : Λ → {0, 1} that assigns to a point, q ∈ Λ, a

symbol, either 0 or 1, according to the rule:

ϕ(q) = 0 if q ∈ A , and ϕ(q) = 1 if q ∈ C . (2.15)

Next, using this symbol assignment map ϕ, we define the map φ : Λ→ Σ that maps

a point q ∈ Λ to the space of all possible bi-infinite sequences of the symbols 0 and 1

according to:

φ(q) =
[
ϕ(P k(q))

]∞
k=−∞ . (2.16)

By this construction, we now have a representation for every trajectory under P as

a bi-infinite ordered sequence of symbols that describes precisely how the trajectory
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Λ
P−−−→ Λyφ yφ

Σ
σ−−−→ Σ

(2.18)

Figure 2.6: The dynamics of P on the invariant set Λ is conjugate to a shift map on
the space of bi-infinite sequences, Σ.

meanders back and forth between A and C. The action of the map results in a simple

shift on the sequence of symbols. That is,

φ(P (q)) = σ(φ(q)) , (2.17)

where σ : Σ→ Σ simply shifts the list of symbols one space to the left. Furthermore,

the fact that both the images and pre-images of A lie in both A and C (and vice versa),

implies that to every bi-infinite sequence of symbols, we may assign a trajectory in

Λ. Thus, φ : Λ → Σ is a homeomorphism (continuous, invertible mapping) between

the set of trajectories in Λ, and the set of bi-infinite sequences, Σ. By providing this

construction, Smale showed that the two sets, Λ and Σ, are topologically conjugate.

The commutation diagram that illustrates the conjugacy between the map P : Λ→ Λ

and σ : Σ→ Σ through φ : Λ→ Σ is shown in Figure 2.6.

The upshot of this construction is that the morass of complicated trajectories in

the homoclinic tangle envisioned by Poincaré is completely and elegantly described by

a consideration of the shift map on the space of bi-infinite sequences of two symbols.

Specifically, Smale was then able to use this conjugacy to describe the possible orbits

in Λ, and by considering all possible sequences of symbols, conclude that Λ has

1. a countable infinity of periodic orbits with arbitrarily high period,

2. an uncountable infinity of periodic orbits, and

3. a dense orbit.

The dense orbit is obtained by considering the concatenation of all possible finite
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sequences. Moreover, given any finite trajectory, it is easy to see how repeating the

sequence produces a periodic orbit that is arbitrarily close.

The (Poincaré)-Smale-Birkhoff Homoclinic Theorem is stated precisely as follows:

Theorem: (Smale-Birkhoff Homoclinic Theorem)

Suppose q is a transversal homoclinic point of P ∈ Diff(S). Then there is a Cantor set

Λ ∈ S, and N ∈ Z+ such that PN(Λ) = Λ, and PN(·) restricted to Λ is topologically

a shift automorphism.

The value of N is chosen large enough, precisely to ensure that the square patch

in S is returned by the map P to S after its journey around the homoclinic tangle.

In sum, the conjugacy of the horseshoe map with a shift automorphism provides

a succint framework in which to understand homoclinic dynamics. For instance, we

see the existence of sensitivity to initial conditions: there exist two sequences with

identical histories, but with very different futures.

The lobes defined by the intersections of the stable and unstable manifolds, and

their evolution under the action of the Poincaré map, reveal the transport mecha-

nism of lobe dynamics, that is responsible for entraining and detraining lobes both

into and out of the homoclinic tangle, as illustrated in Figure 2.7. This transport

mechanism will feature prominently in the time-dependent flows we shall consider in

later chapters.

Finally, in terms of our present study it is important to note that the framework

provided here by Poincaré and Smale is for a system that exhibits time periodic

forcing. In fact, it is precisely this fact that allows for abstraction of the dynamics

as the repeated application of a differentiable map. Some work has been done for

analogs of this theory in quasi-periodic flows [Beigie 1991]; however, no concrete

theory is currently available for aperiodic turbulent flows.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 2.7: Transport via lobe dynamics in a homoclinic tangle. Under the action
of the Poincaré map, the blue lobe is entrained into the vortex, while the red lobe is
detrained.


