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Chapter 1

Introduction

This thesis investigates flows defined by the system of ordinary differential equations,

ẋ(t) = f(x(t), t) . (1.1)

The flows to be studied arise in a wide array of applications. Of particular interest

in this work are geophysical fluid flows including global oceanic circulation, and the

intense atmospheric flows of hurricanes. We shall also study flow generated in the

phase space of a second order dynamical system, such as three bodies under mutual

gravitational attraction, or a chain of coupled oscillators.

The approach will be geometric and qualitative. We are not so concerned about

the motion or accurate description of an individual trajectory, as we are about un-

covering global structures that govern the motion of entire regions in the flow.

In satelite imagery of geophysical fluid flows, it is plain to see that, despite the

manifestly turbulent flow of the ocean and atmosphere, large-scale coherent structures

are present – the imagery of hurricanes in the Atlantic being a declarative case in

point. The visual evidence for coherent structures begs for a deeper understanding of

their dynamical properties. How should these coherent structures be described from

a dynamical systems perspective? Given that the imagery of intense cloud bands

indicates the presence of a hurricane, what are the corresponding structures in the

underlying velocity field that delineate the hurricane’s dynamical structure? Can we

uncover structures in the flow that define the mechanisms by which fluid is transported
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in and around the hurricane? For aperiodic flows, even the simplest of questions can

have ill-defined answers. For example, “How do we define the dynamically relevant

boundary of a hurricane?”.

These questions can be applied equally well to eddies in the global ocean. Im-

portant questions that are not yet well-understood by the oceanography community

include: “What process controls the rate of mixing at the ocean surface?”, and “Why

are eddies leaky?” Nascent Lagrangian analysis of ocean flows is starting to yield

answers; however, the studies most commonly involve direct visualization of tracer

trajectories. Nevertheless, the insight that Lagrangian descriptions provide is now

more widely recognized, and experiments are underway to directly observe Lagrangian

evolution of dye patches and regularly spaced grids of drifters in the ocean in order

to uncover the important dynamic transport structures.

Over the last several years, varied techniques have been developed within the

dynamical systems community to study coherent structures in aperiodic flows. The

underlying goal of these methods is to identify key structures within the flow that

govern transport and mixing. For the purposes of the present study, we will adopt

the FTLE-LCS method first proposed by [Haller 2000, Haller 2001], which uses Fi-

nite Time Liapunov Exponents (FTLE) to identify Lagrangian Coherent Structures

(LCS). A precise definition of the method and an initial discussion of the properties

of the LCS is provided by [Shadden 2005] and [Lekien 2007].

The underlying premise of the FTLE-LCS approach is that coherent structures in

a flow are best represented by visualizing the surfaces of greatest separation. Defined

in this way, the LCS act as barriers to transport, and parse the flow into regions with

different dynamical behavior and outcomes. Most important for our purposes, the

motion of the time-dependent LCS reveals the mechanisms that mediate transport

from one region of the flow to another. The method has several variants, including the

Finite Size Liapunov Exponent (FSLE) approach [Aurell 1997, d’Ovidio 2004], but

all are in the same spirit. A different method, that is not used in this thesis, is the

Distinguished Hyperbolic Trajectory approach, which identifies coherent structures as

the most hyperbolic trajectories emanating from “instantaneous stagnation points”
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[Ide 2002].

The utility of the FTLE-LCS method lies in the fact that it can be applied without

impediment to flows with arbitrary time-dependence. The flows in question may arise

from an analytical model, or a finite data set of discrete flow data originating from a

numerical simulation (a direct simulation of Navier-Stokes equation, for example), or

from observations of the flow (such as radar measurements of ocean surface currents)

that may be interpolated to determine the velocity field during the period of interest.

The number of applications to which the FTLE-LCS method is now being ap-

plied is steadily increasing. Recent studies include bio-mechanics [Shadden 2008,

Tanaka 2008], bio-locomotion[Shadden 2007, Peng 2009], laboratory flows, naval search

and rescue, and oil spill mitigation.

The overarching advantage of the FTLE-LCS method is that it systematically and

succinctly encodes Lagrangian data into a single visualization. Whereas human tem-

poral perception struggles with untangling chaotic trajectories in a turbulent flow,

the FTLE-LCS presents the same Lagrangian information in a single intuitive image.

Without access to the FTLE, researchers are often tempted to use the Eulerian ve-

locity field, or streamlines to determine coherent structures; however, this yields very

little insight into Lagrangian transport mechanisms, and can often lead to erroneous

conclusions about flow structure (the time-dependence plays havoc with Eulerian

conclusions!). Furthermore, an attempt to uncover Lagrangian information about

the flow by simply integrating particle trajectories at different locations and times

very quickly leads to “spaghetti” plots that are also not helpful. In contrast, the LCS

method provides a systematic and concise approach for analyzing aperiodic flows and

extracting the coherent structures that govern transport.

1.1 Main contributions of this thesis

This thesis continues the development of the FTLE-LCS method for studying aperi-

odic flows. In summary, the main contributions are as follows:

• The FTLE-LCS method is applied to several example flows yielding insight into
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the major structures that guide transport. The example flows include coastal

oceans, planetary atmospheres, laboratory flows, and the three-body problem.

(Chapter 3)

• The FTLE-LCS method is used to demonstrate that homoclinic tangles and

the attendant transport mechanism of ‘lobe dynamics’ are a dominant trans-

port structure in aperiodic geophysical flows – most notably in hurricanes, and

mesoscale ocean eddies. (Chapters 5, 6, and 7).

• A study of global conformation change in a system of coupled oscillators provides

a method for model reduction so that the statistics of the full system with many

degrees of freedom are adequately described by a reduced system with one and

a half degrees of freedom. (Chapter 8).

• The structures that govern transport from one conformation to another in the

previously mentioned coupled oscillator model are visualized using surfaces of

greatest separation (a slight modification of the FTLE-LCS method) and pro-

vides the appropriate reduced coordinates in which to reveal the presence of

lobe dynamics and a homoclinic tangle in the high-dimensional flow. (Chapter

8).

• A study is made of the relationship between FTLE-LCS and stable/unstable

manifolds of classical dynamical systems theory. A criterion is proposed for de-

termining when FTLE-LCS and stable/unstable manifolds coincide. (Chapter

9).

• An algorithm is provided for determining evolution equations for the LCS. In

light of this result, the motion of the LCS can be thought of as ‘deterministic’

(the result of an underlying evolution equation written in terms of the given

velocity field), rather than ‘emergent’ (the result of extracting the LCS motion

from multiple visualization frames in time). (Chapter 9).

• Software has been developed for large-scale computations of FTLE in flows
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of any dimension on parallel processors at unprecedented resolution. The soft-

ware provides many features especially designed for analyzing geophysical flows.

(Chapter 10).

1.2 Research topics not covered in this thesis

The central penetrating theme of this thesis is the discovery of transport mechanisms,

and in particular the homoclinic tangle, in aperiodic flows. The author’s research

interests, however, are not as narrowly defined, and during my graduate research, I

have pursued several unrelated research areas. A brief summary of this research that

is not included in the body of the thesis is presented here.

1.2.1 Fast parallelized particle methods for PDEs

A particle method is developed for obtaining numerical solutions of the EPDiff-

equation – the Euler-Poincaré equation associated with the diffeomorphism group

[Chertock 2009]. For vectors in Rn, the EPDiff-equation is

∂m

∂t
+ u · ∇m +∇uT ·m + m(div u) = 0. (1.2)

Here the momentum m and velocity u are vector functions of space and time, and

are related by the second-order Helmholtz operator,

m = u− α2∆u, (1.3)

where α is a constant parameter. As shown in [Holm 2005], the particle approach

reduces the partial differential equation to a finite-dimensional Hamiltonian system

that can be implemented with geometry-preserving integrators that respect the sym-

metries of the particle system. The particle method is efficiently implemented on

a parallel computing cluster using a spatial decomposition method that scales lin-

early with the number of particles. As depicted in Figure 1.1(a), the extremely low
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(a) Nonlinear interactions between
peakons in the EPDiff-equation are
simulated using an efficient particle
method.

(b) An interaction potential is
designed so that a honeycomb
lattice forms via self-assembly
as the system of particles is
cooled.

(c) The use of anisotropic po-
tentials allows for the formation
of the kagome lattice.

(d) Underactuated vehicles with un-
certain sensors perform a coordi-
nated search over complex terrain.

Figure 1.1: Some of the applications addressed in my current research.
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numerical diffusion of the particle method allows for sharp reproduction of peakon

solutions, as well as interesting nonlinear peakon-peakon interactions. Peakons are

solitary traveling wave solutions that are distinguished from soliton solutions by a

discontinuity in their derivative that leads to a sharp peak at the crest of the wave.

1.2.2 Self-Assembly by design

Self-Assembly is the process by which constituents organize themselves into a glob-

ally ordered configuration without the influence of external factors [Whitesides 2002].

Order in the global superstructure is predicated on the local interactions between the

individual constituents. Studies of self-assembly have typically examined the types of

ordered superstructures that arise from a given fixed interaction potential; however,

recent interest in fabrication of nanomaterials and photonic crystals with desired ma-

terial properties motivates the inverse problem: design the short-range interaction in

order to induce self-assembly of the components into a target lattice structure. We

consider the specific problem of designing short-range pairwise interaction potentials

between particles on a planar surface so that the particles self-assemble into a desired

lattice.

New methods (a fast geometric method as well as a robust trend optimization

method based on the rigorous Surrogate Management Framework [Booker 1999]) have

been developed for the design of isotropic interaction potentials that lead to the

formation of high quality honeycomb lattices as the system of particles is cooled (as

shown in Figure 1.1(b)) [Du Toit 2009b]. The geometric method is also extended to

the case of anisotropic potentials which allow for the formation of the more exotic

kagome lattice (Figure 1.1(c)).

1.2.3 Coordinated Search with under-actuated vehicles

Motivated by recent advancements in unmanned aerial vehicles, we have considered

the problem of using multiple vehicles equipped with sensors to find a target in a large

complex terrain. An important feature of the problem description is that the vehicles
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are modeled as rigid bodies with under-actuated helicopter dynamics and limited

control authority, and that the sensors are uncertain with probabilities for both missed

detection and false alarm (Figure 1.1(d)). Hence, there is strong coupling between

the vehicle dynamics and the design of the search strategy to be employed. We have

developed a framework for vehicle control that uses motion primitives to dynamically

generate trajectories that are consistent with the under-actuated dynamics of the

search vehicle. The vehicle trajectories are updated dynamically as the sensors receive

measurements using a Bayesian scheme to locally maximize the likelihood of target

detection [Du Toit 2009c]. The algorithm is robust to changes in the terrain, limited

communication range, and vehicle failure.


