I. SYNTHESIS AND TESTING OF A SUPPORTED SHILOV OXIDATION CATALYST

&

II. INFLUENCE OF STRUCTURAL FEATURES ON ZEOLITE CHARACTERIZATION BY CONSTRAINT INDEX TESTING

Thesis by

John Reeves Carpenter III

In Partial Fulfillment of the Requirements for the

degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2010

(Defended May 28, 2009)

© 2010

John Reeves Carpenter, III

All Rights Reserved

ACKNOWLEDGEMENTS

Behind any achievement is a group of people whose contributions either directly or indirectly provide the support necessary to reach the goal. This work is no different. I am indebted to many people for helping me along my path of learning and discovery. I will attempt to acknowledge many of those people here but am sure to miss some for which I apologize but assure your interactions were appreciated.

First I would like to thank Dr. Mark Davis for the opportunity to be a member of his research group. He has provided support and guidance that has allowed me not only to advance my knowledge scientifically and perform research but also learn on a more general level how to better attack problems and manage work processes. In his lab I have had the opportunity to mature and grow as a research engineer. Watching the various work in the lab has been exciting and I will continue to look back to see what the future holds for this lab. I also would like to thank the other members of my thesis committee: Dr. Jay Labinger, Professor Richard Flagan, and Dr. Stacey Zones. Their time, advice, and support have been invaluable to me as I have worked to complete my thesis.

Part one of this thesis received financial support from BP through the Methane Conversion Cooperative. The MC² program provided a unique opportunity to experience a larger effort to research between multiple academic institutions and industry. It was a program with a diverse set of views on the issues around methane activation and a interesting set of ideas. Dr. Labinger, Dr. John Bercaw, and Dr. Tom Baker from the program provided helpful guidance and suggestions to this work.

Part two of the thesis was financially supported by the Chevron Energy Technology Company with collaboration with Dr. Zones. I would like to express my gratitude to Dr. Zones for the multitude of assistances he provided, from access to his resources to valuable insight into the issues surrounding zeolite structure and activity to his wonderful patience. Besides finical support and Dr. Zones several other members of the Cheveron Energy Technology Company were helpful in this endeavor. Dr. Shelia Yeh provided her expertise on the XPS analysis of samples and Dr. C.Y. Chen provided use of his equipment and time on the adsorption measurements. Also I thank the other colleagues of Dr. Zones—though I can not name them all—for their assistance in the procurement of several zeolite samples and facilitation of this collaboration.

During my time as a member of the Davis lab, many good people have come and gone from the family. Each has played a role in my life for which I thank them. Dr. Andrea Wight, Dr. Jonathan Galownia, and Dr. Victor Diakov were senior members when I arrived and helped my transition into the group. Heather Hunt has been a constant office mate who has shared in the attempts to maintain sanity. Dr. Yuriy Roman Leshkov, a recent addition to the lab, has proved to be a wonderful assest sharing ideas as our projects have taken similar tracks. Raymond Archer deserves lots of gratitude. He joined the lab at the same time as I and has been a solid person to lean on for technical advice, as a sounding board, or even ranting. He has done all of this with great openness and expected little back. I can continue naming all of the people but then this would never end. So to everyone in the Davis lab past and present thank you.

Finally I must thank my family without whose support this would not have been possible. I know the long distance from my parents, siblings, and extended family has been tough on them as it has been on myself, but they have remained supportive throughout, recognizing the opportunity presented to me. Also my wife Catherine: she is my constant support providing a listening ear when needed, providing encouragement when things were not going well, providing a distraction away from work when fun was required, and tolerating my moments of stressed craziness. I only hope I can return the support.

To everyone I offer my sincere gratitude and best wishes for success.

ABSTRACT

This thesis is composed of two separate projects invoking the use of heterogeneous catalyst. However that is the point where they diverge. Part One details work on the development of a heterogeneous system for the direct oxidation of alkanes. Part Two explores the use of competitive catalytic cracking of 3-methylpentane and n-hexane as a tool for the characterization of zeolites.

Part One is about the development of a heterogeneous system for alkane oxidation. Three techniques for creating heterogeneous catalyst from homogeneous systems without adding anchoring ligands are investigated: supported molten salts, supported aqueous phases, and ion-exchanged zeolites. Each of these has been used to create Wacker oxidation catalysts, in literature and in this work, for comparison purposes. From the study of Wacker oxidation the ion-exchanged zeolites and supported aqueous phase catalyst were identified as potential methods for developing a Shilov oxidation catalyst. The supported molten salt was eliminated because of high levels of chlorinated products and low activity. Attempts were made with ion-exchanged zeolites to oxidize ethane to ethanol but no products were detected.

The supported aqueous phase system, however, provided more promising results. Initial work focused on oxidation of ethanesulfonate loaded onto the controlled pore glass support along with the catalyst. Similar turnovers were achieved on the supported aqueous system as had been seen in the homogeneous system. The reaction parameters of liquid loading, oxygen pressure, reactant concentration, copper(II) chloride concentration, and acid addition were investigated. While the supported aqueous system was successful in the

vi

oxidation of ethanesulfonate, attempts to perform ethane oxidation in a flow system were not. The loss of chloride ions from the system is believed to lead to the deactivation.

Part Two investigates anomalous Constraint Index results for small and medium pore zeolites containing cages that are relatively larger than the pore (i.e., cages similar in size to large pore zeolites). The Constraint Index test was developed as the competitive cracking of 3-methylpentane and n-hexane for the classification of structures as having small, medium, or large pores. Small pores are defined as 8-ring pores or smaller; medium pores are 10-ring pores; and large pores have 12-rings or larger. 10-ring structures like SSZ-25 and SSZ-35 that contain cages in the structure had Constraint Index results consistent with a large pore classification and 8-ring structures with cages like SSZ-23 and SSZ-28 have Constraint Index results consistent with medium pore zeolites.

Incomplete cages on the external surface have been shown to be active in other reactions. These hemi-cages may provide a nonselective active site that would result in lower Constraint Index results. This work looks at this possibility by comparing four zeolites, ZSM-5 and BEA* as normally behaving medium- and large-pore structures, and SSZ-35 and SSZ-25 as zeolites with structures containing 10-ring pores and cages. The surface is passivated by a dealumination treatment and tested by isopropanol dehydration. Then the Constraint Index test is performed and compared on calcined samples of both the parent and treated samples. No evidence of activity on the external surface having an influence on the Constraint Index test is observed. Several techniques are used to investigate accessibility are also looked at but only indirect hypotheses can be drawn. Finally it is reported that for structures with two or more distinct features, different fouling

rates in each feature may result in observable changes in the Constraint Index value over time on stream.

TABLE OF CONTENTS

Acknowledgementsiii
Abstractvi
Table of Contentsix
List of Figuresxi
List of Tablesxiv
Chapter 1: Preface 1
Part One: Synthesis and Testing of a Supported Shilov Catalyst
Chapter 2: Shilov Oxidation
2.1 Methane
2.2 Shilov Oxidation
2.3 Supported Catalysts
2.4 References
Chapter 3: Experimental Methods for Synthesis and Testing of
Supported Shilov Oxidation Catalyst
3.1 Supported Molten Salt Catalyst
3.2 Supported Aqueous Phase Catalyst
3.3 Ion-Exchanged Zeolites
3.4 Supported Catalyst Batch Reactions
3.5 Supported Catalyst Flow Reactions
3.6 References
2.0 1.010.010.000
Chapter 4: Supported Wacker Oxidation Catalyst
4.1 Supported Molten Salt Catalyst
4.2 Supported Aqueous Phase Catalyst
4.3 Ion-Exchanged Zeolites
4.4 References
Chapter 5: Supported Shilov Oxidation Catalyst
5.1 Ion-Exchanged Zeolites for Shilov Oxidation
5.2 Supported Aqueous Phase Catalyst for Shilov Oxidation
5.3 References
Chapter 6: Conclusions on Supported Shilov Oxidation Catalyst
61 61
Part Two: Influence of Structure Features on Zeolite Characterization
by Constraint Index Testing
by Constraint much resultg

Chapter 7: Constraint Index Testing of Zeolites
7.1 Constraint Index Test
7.2 Structures Containing Internal Cages
7.3 Zeolite Catalyzed Hydrocarbon Cracking
7.4 References
Chapter 8: Experimental Methods for Investigation of Constraint Index
Testing79
8.1 Zeolite Synthesis
8.2 External Surface Modification
8.3 Reactivity Tests
8.4 Zeolite Characterization
8.5 n-Hexane and 3-Methylpentane Adsorption85
8.6 References
Chapter 9: Effect of External Surface Activity on Constraint Index Testing . 88
9.1 Characterization
9.2 Isopropanol Dehydration
9.3 Constraint Index Testing
9.4 References
Chapter 10: Evidence of Increased Accessibility in the Interior of
Structures with Large Cages
10.1 Adsorption of n-Hexane and 3-Methylpentane
10.2 Deactivation Characteristics of Caged Structures
10.3 Hydrocarbon Cracking on Caged Structures
10.4 References
Chapter 11: Evidence of Multiple Structure Features in Constraint
Index Testing
11.1 References
Chapter 12: Conclusions on Structure Effects in Constraint Index Testing
for Zeolite Characterization

LIST OF FIGURES

Figure	Page
Figure 2.1.	Simplified Process Diagram of Methanex's Process for
	the Production of Methanol from Methane via Synthesis
	Gas15
Figure 2.2.	Schematic of the mechanism of modified Shilov oxidation16
Figure 2.3.	Depiction of a supported catalyst solution 17
Figure 4.1.	Reaction scheme for the Wacker oxidation of olefins
Figure 4.2	TGA/DSC analysis of the molten salt Wacker catalyst
Figure 4.3	Comparison of Acetaldehyde Production on SAP catalyst
	at varying reaction temperatures and water flow rates
Figure 5.1	Oxidation of ethanesulfonate over various levels of liquid
	loading on the catalyst50
Figure 5.2	Profile of reaction species on a per mol Pt basis over time for
	varying Cu/Pt ratios
Figure 7.1	Examples of two structures whose CI values fall outside
	expected ranges for their pore size
Figure 7.2	Examples of structures with pores opening into larger cages76
Figure 7.3	Structure Directing Agents used to make the 4 structures
	with cages in figure 7.277
Figure 8.1	Flow diagram of BTRS Jr. reactor system for ispropanol
	dehydration and hydrocarbon cracking

LIST OF FIGURES (CONTINUED)

Figure

Figure 9.1	Ammonium hexafluorosilicate dealumination scheme
Figure 9.2	Aldol XRD patterns of ZSM-5, BEA*, SSZ-35 and SSZ-25
	before and after dealumination treatment97
Figure 9.3	SEM images of ZSM-5, BEA*, SSZ-35, and SSZ-25 before
	and after dealumination procedure
Figure 9.4	TGA/DSC of ZSM-5, BEA*, and SSZ-35 demonstrating
	SDA degradation above 350°C 100
Figure 9.5	TGA/DSC of SSZ-25 demonstrating SDA degradation
	below 350°C
Figure 9.6	Isopropanol dehydration activity on the external surface of
	ZSM-5, BEA*, and SSZ-35102
Figure 9.7	Aldol Constraint Index testing on zeolites before and after
	dealumination treatment
Figure 10.1	Adsorption of n-hexane and 3-methylpentane on 10-ring
	pore structures 115
Figure 10.2	Adsorption of n-hexane and 3-methylpentane on small pore
	structures
Figure 10.3	Constraint Index and Conversion of Individual Pure
	Reactants over Time on Stream for the small pore structures117
Figure 10.4	Comparison of mass accumulation on structures with the
	amount of C ₆ cracked on those structures during Constraint
	Index testing 119

LIST OF FIGURES (CONTINUED)

Figure

Page

Figure 11.1	Constraint Index test over time on stream for various zeolite	
	structures	127
Figure 11.2	Fraction of n-hexane and 3-methylpentane remaining during	
	the Constraint Index test on MOR, FER, and SSZ-25	128
Figure 11.3	Constraint Index testing on partial Na-exchanged MOR and	
	FER	129
Figure 11.4	Constraint Index test on at 425 °C and 375 °C on ferrierite	130

LIST OF TABLES

Table	Page
Table 4.1.	Review of Wacker catalyst 40
Table 5.1.	Comparison of supported aqueous phase Shilov catalyst with
	the homogenous system
Table 5.2.	Variation in oxygen pressure in the oxidation of ethanesulfonate . 54
Table 5.3.	Conversion of chlorinated products to desired products
Table 7.1	Examples Constraint Index Values
Table 9.1	Characterization data of zeolite samples before and after
	dealumination treatment
Table 10.1	Characterization of mass deposition from samples at the 1h and 6h time point in the Constraint Index test