
Appendix B

Tensor Representation of Crystals

B.1 Tensor Notation

Many of the physical properties that we study in nature are oftentimes reduced to simple, linear

relationships. For example, the conductivity within a material is usually written as:

j = σE (B.1)

where “j” is the current density, σ is the conductivity, and “E” is the electric field. However, for

a complete analysis of real materials in three-dimensions, these simple, one-dimensional represen-

tations are inadequate. Many of the properties in nature (the electro-optic effect, piezoelectricity,

ferroelectricity, index of refraction, conductivity, etc.) require a full, three-dimensional representa-

tion of the response of materials to external forces and fields. The requires a tensorial representation

of the physical properties of crystals [79]. Going back to the case of conductivity, an accurate rep-

resentation of this property is given by:
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 (B.2)

where σab ≡ conductivity in the “a” direction of a material from a field in the “b” direction. Further,

the matricies can be represented by:

ji =
3∑

h=1

σihEh → ji = σihEh (B.3)

This is the Einstein Summation Notation for a second-rank tensor and will be used throughout
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the rest of this thesis. Taking this one step further, representing piezoelectricity in a crystal requires

a third-rank tensor. As was mentioned in Section 2.2.2, the direct piezoelectric effect occurs when a

stress is applied to the crystal and an electric field results. The converse piezoelectric effect occurs

when an electric field is applied to the crystal and a strain results. This effect is represented by:

Pi = dijkσjk (B.4)

where P is the polarization of the crystal, d is the piezoelectric coefficient of the crystal, and σ is

the stress applied to the crystal. The polarization of the crystal is given by P1, P2, and P3 in the

x-, y-, and z-directions respectively, and there is a corresponding 3x3 σ-tensor associated with each

polarization. As a result, this gives the third-rank tensor:

P1 =


d111σ11 d112σ12 d113σ13

d121σ21 d122σ22 d123σ23

d131σ31 d132σ32 d133σ33

 (B.5)

P2 =


d211σ11 d212σ12 d213σ13

d221σ21 d222σ22 d223σ23

d231σ31 d232σ32 d233σ33

 (B.6)

P3 =


d311σ11 d312σ12 d313σ13

d321σ21 d322σ22 d323σ23

d331σ31 d332σ32 d333σ33

 (B.7)

which are the 1st, 2nd, and 3rd layers of the tensor.

This approach utilizes the full tensorial representation of crystal properties; however, in many

cases, there are a significant number of these elements that are either equivalent or are zero. To

that end, we can reduce the number of elements in the previous matricies as follows. Because of

the fact that, for a given polarization these tensors are symmetric, we can reduce the number of

elements in each layer of the tensor by half. For each layer of the previous tensor we have:
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 (B.8)
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and using this conversion from tensor notation to matrix notation, we can also reduce the stress

matrix: 
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

→

σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3


(B.9)

At this point, we can represent the polarization of the crystal in the x-direction as: P1 =

d11σ1 + d12σ2 + d13σ3 + d14σ4 + d15σ5 + d16σ6. Using this notation and putting each layer of the

tensor in a row, we can more concisely write the equations for the direct (B.10) and converse (B.11)

piezoelectric effects as:

σ1 σ2 σ3 σ4 σ5 σ6

P1 d11 d12 d13 d14 d15 d16

P2 d21 d22 d23 d24 d25 d26

P3 d31 d32 d33 d34 d35 d36

(B.10)

ε1 ε2 ε3 ε4 ε5 ε6

E1 d11 d12 d13 d14 d15 d16

E2 d21 d22 d23 d24 d25 d26

E3 d31 d32 d33 d34 d35 d36

(B.11)

This is the traditional way that these tensors are represented. At this point, we can take

advantage of Newmann’s Principle which states that:

“The symmetry elements of any physical property of a crystal must include the

symmetry elements of the crystal.”

Using this fact we can reduce the number of non-zero elements in the matrix. As an example,

we take the case of the ABO3 perovskites discussed in Section 2.2.2. For clarity, we will temporarily

revert back to the expanded tensor form to illustrate the process.
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 (B.12)
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In the tetragonal 4mm symmetry group, we have: 4 mirror planes and a 4-fold rotation axis.

For the x mirror plane:

1→ 1, 2→ −2, 3→ 3

which means that any element with an odd number of “2’s” will not be invariant under the trans-

formation. Therefore, these elements are necessarily zero. Similarly, for the y mirror plane:

1→ −1, 2→ 2, 3→ 3

which means that any element with an odd number of “1’s” will not be invariant under the trans-

formation. For the xy mirror plane

1→ 2, 2→ 1, 3→ 3

which means d311 = d322 and d113 = d223. The resulting tensor has the form:


0 0 d113

0 0 0

0 0 0




0 0 0

0 0 d223

0 0 0



d311 0 0

0 d322 0

0 0 d333

 (B.13)

which when returned to the reduced form gives:


0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0

 (B.14)

B.2 Orientation Effects of Crystal Properties

The reduced form of a crystal’s tensor gives the materials direct and shear components of a response

to an applied stimulus. The process can be taken one step further. By choosing a reference

orientation (here we will pick the ẑ or d33 direction), the response of a crystal can be calculated

and mapped out for every possible orientation of applied stimulus. To map out the piezoresponse of

a 4mm crystal, the angles between each of the non-zero piezoresponse coefficients and the applied

electric field can be calculated in polar coordinates [103]. By summing these five terms together
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we obtain the equation:

d∗33 = (d31 + d15)cosθsin2θ + d33cos
3θ (B.15)

This is plotted for barium titanate in Figure B.1.

Figure B.1. Three-dimensional piezoresponse plot for barium titanate. The different orientations

are labeled on their respective axes, and intensity of piezoresponse is represented as distance from

the origin. The scale on the axes is pm/V.
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