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Abstract

In the first part of this thesis, we exploit wireless broadcast across different layers

in wireless networks. The wireless channel is distinguished by its broadcast nature.

Wireless broadcast provides a fertile ground to improve the efficiency of existing

wireless networks and design new ones.

Specifically, we first consider relaying strategies for memoryless two-way relay

channels at the physical layer. We generalize networking layer network coding op-

erating on a finite field to physical layer network coding, which is a mapping from

the relay’s received signal to its transmitted signal. We analyze the symbol-error

performance of several relay strategies, and optimize the relay function via functional

analysis. Our results indicate that the interference caused by wireless broadcast can

be exploited to improve the spectrum efficiency.

We then develop a cross-layer framework with wireless broadcast, which integrates

rate control, network coding and scheduling in transport, network and link layers.

Under the primary interference model, we show that the link scheduling problem is

the maximum weighted hypergraph matching problem, which is NP-complete. We

propose several distributed approximation algorithms and bound their worst case

performance.

Next, we describe a new class of medium access control (MAC) protocol, which

uses successive interference cancelation to resolve packet collision due to wireless

broadcast. Each user is allowed to transmit at different data rates chosen randomly

from an appropriately determined set of rates. We characterize the throughput of the

proposed protocol compared to that with a centralized controller. A game-theoretic

framework along with the dynamic algorithms is proposed to achieve the desired
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throughput optimal equilibrium, which provides a valuable perspective to understand

existing MAC protocols and a general framework to design new ones to improve the

system performance.

In the second part of this thesis, we consider the problem of secure transmission

in the presence of a wiretapper. Due to wireless broadcast, wireless signals are partic-

ularly easy to jam and intercept. We derive the secrecy capacity region for the case

when the location of the wiretapped links is known and propose several achievable

strategies for the case when such information is unknown. We give an example to

show that the secrecy capacities of the two cases are generally unequal and show that

in both cases computing the secrecy capacity is NP-complete.
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Chapter 1

Introduction

The explosive growth in wireless networks over the last few years resembles the rapid

growth of the Internet within the last decade. Wireless networks have impacted

the way we live and do business, and the world has become increasingly mobile.

Wireless networks have continued to develop, and their uses have grown significantly

in military communication, commercial communication, and emergency services. For

example, cell phones and wireless Personal Digital Assistants (PDAs) have become

so commonplace in our lives that it is easy to forget that several years ago, they were

a rarity.

The wireless era started on 13 May 1897 when Marchese Guglielmo Marconi sent

the first ever wireless communication over open sea. In 1948, Claude Elwood Shan-

non published the landmark paper “A Mathematical Theory of Communication” and

founded information theory. Since then, many researchers have tried to find practical

error correcting codes to achieve Shannon’s channel capacity. In 1993, the discovery of

Turbo codes showed that Shannon’s limit can be approached [8]. In parallel, commer-

cial communication systems have evolved from the first generation using frequency

division multiple access (FDMA) to the fourth generation using multiple-input and

multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM)

with turbo codes [1], which can almost achieve the physical layer limit predicted by

Shannon. Because the point-to-point channel is well studied at the physical layer,

existing wireless network designs are built on the point-to-point abstraction. Routing

and rate control protocols for wired networks are applied on this abstraction directly.
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Wireless network design based on this abstraction, we argue, is not going to meet the

increasing demand for wireless multimedia services and high-speed Internet access.

Significantly new designs are hence necessary to efficiently utilize wireless resources,

to support new applications and to meet current and future demands on wireless

networks.

This thesis examines new techniques for exploiting wireless broadcast to improve

the throughput and efficiency of wireless networks and using network coding to enable

secure communications. Network coding as well as optimization theory and game

theory frameworks are used to develop highly efficient and secure means of wireless

transport.

1.1 Wireless Broadcast: Double-Edged Sword

Like all networks, wireless networks transmit data over a network medium. The

medium is a form of electromagnetic radiation. The wireless channel is distinguished

by its broadcast nature. When omnidirectional antennas are used, every transmission

by a node can be received by all nodes that lie within its communication range. The

broadcast feature of wireless networks makes their design and control very challenging

and imposes strong constraints on the system designer.

Wireless broadcast may lead to interference, which is different from transmission

in wired networks, where different nodes’ data transmissions do not interference with

each other. For example, when two senders transmit simultaneously to a common

receiver, the packets collide. Traditional wireless networks have been designed to

prevent senders from interfering. Different strategies have been proposed for this

purpose. Reservation based schemes such as time division multiple access (TDMA)

and frequency division multiple access reserve the medium to a specific node. Ran-

dom access methods, such as carrier sense multiple access with collision avoidance

(CSMA/CA) protocol [2, 49], require each node wishing to transmit to first listen to

the channel for a predetermined amount of time so as to check for any activity on the

channel. If the channel is sensed to be “idle” then the node is permitted to transmit.
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B

C
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0.2

0.5

0.9

Figure 1.1: An example of wireless broadcast.

If the channel is sensed to be “busy”, the node has to defer its transmission. But this

mechanism may incur the hidden terminal problem [9] when two senders that cannot

sense each other transmit simultaneously to a common receiver.

Wireless broadcast, on the other hand, can also be exploited to increase through-

put and improve reliability of wireless networks. At the physical layer, packet collision

results in the sum of the two colliding signals. With advanced information theory and

signal processing techniques such as successive interference cancelation [22] and net-

work coding [7], the collided signals can be recovered. But simultaneous signal trans-

missions increase the spectrum efficiency. Wireless broadcast can also be beneficial

at higher layers. For example, in Fig. 1.1, the source sends a packet. Its neighbors A,

B, and C can receive the packet with the probability labeled beside each node. The

random variables describing these events are independent. We can see that the prob-

ability that none of the neighbors receives the packet is only 0.1×0.5×0.8 = 0.04. If

all the neighbors have a route to the destination, all of them can be possible next hops

for the packet. Protocols exploiting such diversity can improve the reliability of wire-

less networks. Improved reliability also implies a reduced number of transmissions
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and hence power saving.

1.2 Network Coding: A New Communication

Paradigm

Network coding is an important technique to exploit wireless broadcast and achieve

secure communications. In today’s packet networks, each node’s functions are limited

to the forwarding or replication of received packets. Network coding generalizes net-

work operation beyond traditional routing. Each network node is allowed to perform

arbitrary operations on signals from different incoming links. It has been shown that

the ability of the network to transfer information can be significantly improved [7] by

using network coding. The first example showing the usefulness of network coding

was given in [7], which is replicated in Figure 1.2. This example shows that cod-

ing within the network may be necessary in order to achieve the maximum possible

multicast transmission rate.

Since the introduction of network coding in [7], network coding has attracted

significant interest from various research communities. A large body of research has

focused on the multicast network coding problem where a source needs to deliver the

same packets to a set of receivers. It was shown in [7] that the capacity of the network

is equal to the size of the minimum cut that separates the source and any terminal.

In a subsequent work, Li et al. [54] proved that linear network codes are sufficient

to achieve the capacity of the network. An algebraic framework for linear network

codes on directed graphs was developed by Koetter and Médard [50]. This framework

was used by Ho et al. [39,40] to construct random distributed network coding, which

achieves the network capacity with probability exponentially approaching 1 with the

code length. Jaggi et al. [45] proposed a polynomial-time algorithm for systematically

finding feasible network codes. All these papers treat wired networks.

For wireless networks with coding done only across packets within the same session

(intrasession network coding), the rate stability region for a wireless network with and
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1 2

3

4

t1 t2

b1

b1 b2

b2b1+b2

b1+b2 b1+b2

s

b1 b2

Figure 1.2: An example of a wired network requiring coding to achieve multicast
capacity. The network consists of directed unit capacity links, and a source node
s multicasting the same information to two receivers t1 and t2. b1 and b2 are two
symbols to be multicast chosen from a finite field of size greater than 2. The presence
of the bottleneck link from 3 to 4 necessitates coding on that link in order to achieve
the multicast rate 2.

without correlated sources is characterized in [42]. The rate control problem is studied

in [18]. Opportunistic XOR coding, which allows coding between packets across

different sessions (intersession network coding), is proposed in [48]. Constructive

XOR coding across pairs of unicasts is considered in [77] using a linear optimization

approach. Dynamic backpressure is applied in [26,41]. A typical example to highlight

the utility of network coding in wireless networks is given in Fig. 1.3, where node 1

and node 2 want to send a packet to each other with the help of relay node 3. There

does not exist a direct link between node 1 and node 2. By using network coding

at the networking layer, the relay node broadcasts the XOR of the packets received

from two terminals, which reduces the number of transmissions.
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1 23

b1 b2

b1 b2

Figure 1.3: An example of a wireless network using coding to improve spectrum
efficiency. Node 1 and node 2 want to send a packet to each other with the help of
relay node 3. There does not exist a direct link between node 1 and node 2. Without
network coding, four transmissions are required, while only three transmissions are
needed when the relay node broadcasts the XOR of the packets received from two
terminals.

1.3 Outline and Contributions

Each of the problems studied in this thesis demonstrates an aspect of coding benefit

in a network scenario of practical relevance. We show that wireless broadcast opens

up powerful new ways to consider and approach a number of theoretical and practical

wireless networking issues. The outline and contributions are as follows.

In Chapter 2, we consider using network coding at the physical layer to improve

spectrum efficiency. We propose relaying strategies for uncoded two-way relay chan-

nels motivated by the example in Fig. 1.3, where two terminals transmit simultane-

ously to each other with the help of a relay. Different from Fig. 1.3 where network

coding is applied at the networking layer assuming an error free packet is supplied

by the physical layer, we consider general mappings from the relay’s received signal

to its transmitted signal at the physical layer. For binary antipodal signaling, a class

of so called absolute (abs)-based schemes is proposed in which the processing at the

relay is solely based on the absolute value of the received signal. We analyze and opti-

mize the symbol-error performance of existing and new abs-based and non-abs-based

strategies, including abs-based and non-abs-based versions of amplify and forward

(AF), detect and forward (DF), and estimate and forward (EF). Additionally, we

optimize the relay function via functional analysis such that the average probabil-

ity of error is minimized in high signal-to-noise ratio (SNR) regime. The optimized
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function behaves like abs-AF at low SNR and like abs-DF at high SNR, respectively;

EF behaves similarly to the optimized function over the whole SNR range. We find

the conditions under which each class of strategies is preferred. All these results are

also generalized to higher order constellations, where finding the relay mapping is

converted to a graph coloring problem.

In Chapter 3, we consider cross-layer optimization in wireless networks with wire-

less broadcast, focusing on the problem of distributed scheduling of broadcast links.

The goal is to integrate various protocol layers into a unified framework to take ad-

vantage of wireless broadcast. This framework integrates rate control, network coding

and scheduling at the transport, network and link layers. The link scheduling prob-

lem, however, requires a centralized controller. Under the primary interference model,

the link scheduling problem is equivalent to a maximum weighted hypergraph match-

ing problem that is NP-complete. To solve the scheduling problem distributedly,

locally greedy and randomized approximation algorithms are proposed and shown

to have bounded worst-case performance. With random network coding, we obtain

a fully distributed cross-layer design. Numerical results show promising throughput

gain using the proposed algorithms, and surprisingly, in some cases even with less

complexity than cross-layer design without the broadcast advantage.

In Chapter 4, we develop a new class of medium access control (MAC) protocol,

which allows each user to transmit at different data rates chosen randomly from an

appropriately determined set of rates. Different from traditional protocols which use

a collision model and consider packet collision due to wireless broadcast as harmful,

multiple packets can be received simultaneously in the proposed method by using

successive interference cancelation. In slotted Aloha type Gaussian networks, we

show that the achievable total throughput of the proposed protocol is at least a con-

stant fraction of the centralized multiple access channel sum rate when the number

of transmission rates at each node is equal to the number of users in the network. We

also study the case when only a limited number of transmission rates is available at

each node. To achieve the desired throughput-optimal equilibrium, a game-theoretic

framework is proposed. We study the design of random access games, characterize
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their equilibria, study their dynamics, and propose distributed algorithms to achieve

the equilibria. This provides a valuable perspective to understand existing MAC

protocols and a general framework to design new ones to improve the system perfor-

mance. Extension to rate splitting is also discussed. Simulation results show that the

proposed protocol can achieve a significant throughput gain over conventional Aloha.

In a single cell WLAN, the proposed protocol not only achieves a higher throughput

but also provides a better short term fairness.

In Chapter 5, we consider the problem of secure transmission in the presence of a

wiretapper. Secure multicast network coding over erasure networks with unequal link

capacities is studied in the presence of a wiretapper that can wiretap any subset of k

links. Existing results show that for the case of equal (unit) link capacities, the secrecy

capacity is the same whether or not the location of the wiretapped links is known, and

can be achieved by injecting k random keys at the source which are decoded at the

sink along with the message. In contrast, we show that for unequal link capacities, the

secrecy capacity is not the same in general when the location of the wiretapped links

is known as when it is unknown. We give achievable strategies where random keys

are canceled at intermediate non-sink nodes, or injected at intermediate non-source

nodes. Furthermore, we show that computing the secrecy rate is NP-complete both

when the location of the wiretapped links is known and when it is unknown.

We conclude the thesis in Chapter 6 with a discussion of the preceding results and

some directions for further work.
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Chapter 2

Memoryless Relay Strategies for
Two-Way Relay Channels

In this chapter, we consider network coding design at the physical layer for two-way

relay channels. Several relaying strategies are proposed and optimized to improve

spectrum efficiency.

2.1 Introduction

Two-way communication is a common scenario where two parties simultaneously

transmit information to each other. The two-way channel was first considered by

Shannon [72], who derived inner and outer bounds on the capacity region. Recently,

the two-way relay channel (TWRC) has drawn renewed interest from both academic

and industrial communities [24, 37, 52, 65, 67, 68, 83] due to its potential application

to cellular networks and peer-to-peer networks. AF and DF protocols for one-way

relay channels are extended to the half-duplex Gaussian TWRC in [68] and the gen-

eral full-duplex discrete TWRC in [67]. In [37], network coding is used to increase

the sum-rate of two users. With linear network coding, each node in a network is

allowed to perform algebraic operations on received packets instead of only forward-

ing or replicating received packets. Most of these works [37, 67, 68] focus on capacity

bounds for strategies similar to those for one-way relay channels [51]. Furthermore,

physical layer network coding (PNC) is considered in [83] for two-way AWGN relay

channels. Also, two partial detect and forward (PDF) schemes are proposed in [24]
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for distributed space time coding to achieve diversity in two-way relay fading chan-

nels with multiple relays. A variety of works [24, 83] propose new relaying strategies

without addressing their optimality.

In this chapter, we consider an uncoded scenario with memoryless relays which is

beneficial in those situations when the relay is under a strict complexity or latency

constraint. The former case applies, for example, if the relay is part of a sensor

network with battery powered nodes, where the complexity for relaying the partner

nodes’ data must be kept small. Also, minimizing the end-to-end delay in networked

communication is important in real-time applications with feedback, where typically

a bidirectional unicast session is established.

In the following work, we analyze and optimize the symbol error probability at

each receiver without considering the effect of any end-to-end channel coding that

may be applied. We first derive the symbol error probabilities for existing amplify

and forward (AF) and detect and forward (DF) schemes for TWRCs using binary

antipodal signaling. Noting the performance limitations of these existing schemes, we

develop a number of new schemes. We classify both existing and new schemes into two

categories: absolute (abs)-based schemes, where the relay transmits an instantaneous

function of the absolute value of the received signal, and non-abs-based schemes where

the sign of the received signal is preserved by the instantaneous relay function. The

advantage of abs-based schemes is that for binary antipodal signaling at the terminals

the relay performs a constellation compression such that the transmitted signal from

the relay is again an antipodal signal with only two constellation points. In fact, the

abs-based scheme bears resemblance to network coding where the relay performs an

XOR on the decoded data from the terminals [48]. However, in an abs-based scheme

the relay receives the real-valued sum of the data from the two terminals plus noise

on the physical layer, whereas in network coding the addition is performed over a

finite field on the network layer. In contrast to abs-based schemes, in the case of

binary antipodal signaling non-abs-based schemes require the relay to transmit four

constellation points, which may lead to a larger transmit power and higher decoding

complexity. However, as we will see, the relative performance of abs- and non-abs-
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based schemes depends on the characteristics of the channels between terminals and

relay.

Specifically, the abs-based schemes include an abs-based AF (AAF) scheme, an

abs-based DF (ADF) scheme and a novel estimate and forward (EF) strategy by

extending the EF scheme in [33] for the one-way relay channel to TWRCs, all of

which can substantially outperform existing schemes. Besides characterizing the per-

formance of different schemes, we also optimize the relay strategy within the class of

abs-based strategies via functional analysis, where the solution minimizes the average

probability of error at the terminals1 over all possible relay functions at high SNR,

and generally outperforms all other strategies we consider. This approach can be

seen as a generalization of the result from [4] for the one-way case. The optimized

relay function is shown to be a Lambert W function parameterized on the noise power

and the transmission energy. Interestingly, the optimized function looks like the AAF

scheme at low SNR and like the ADF scheme at high SNR. The EF strategy leads to a

relay function which is similar in shape to the optimized function in all SNRs. We also

prove that DF performs better than ADF if the two-way channel is very asymmetric

or the relay has greater power than the two terminals, while ADF performs better

than DF in more symmetrical channels or when the relay has roughly the same power

as the terminals. These results will also be generalized to higher order constellations

at the terminals such as quadrature amplitude modulation (QAM).

Notation: In the following, pX(x) denotes the probability density function (pdf)

of a random variable X, and G(x, σ2) , 1√
2πσ2

exp
(

− x2

2σ2

)

denotes the pdf of a normal

random variable X with mean 0 and variance σ2. Q(·) represents the Q-function.

2.2 System Model

The system model is illustrated in Fig. 2.1, where the Xi are the transmitted symbols

from some given constellation at terminal i, i = 1, 2, Yi are the received symbols at the

1An alternative objective would be to minimize the maximum of the two terminals’ error proba-
bilities, which gives the same result in high SNR, but is in general more complicated to work with
mathematically.
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Y2 = h2 YR + Z2

Terminal 2

Terminal 2

RelayTerminal 1

RelayTerminal 1
X1

YR = f(h1 X1 + h2 X2 + N)

X2

Y1 = h1 YR + Z1

Figure 2.1: Two-way relay channel.

terminals, and YR is the transmitted symbol at the relay. Communication takes place

in two phases. In the multiple-access (MAC) phase, both terminals simultaneously

send a block of data symbols to the relay, which generates YR = f(h1 X1 +h2 X2 +N)

with the relay function f(·). Here, h1 and h2 represent deterministic attenuation fac-

tors for the terminal-to-relay and relay-to-terminal channels, which could for example

represent a single realization of a fading process. Throughout this chapter, we assume

that h1 ≥ h2 ≥ 0 without loss of generality. The quantity N represents the additive

white Gaussian noise (AWGN) at the relay with mean zero and variance σ2
r . In the

broadcast phase, the relay transmits YR to both terminals 1 and 2. Let Zi be the

AWGN at terminal i with mean zero and variance σ2
si
. The discrete-time model for

the TWRC can therefore be written as

Yi = hi f(h1 X1 + h2 X2 + N) + Zi, i = 1, 2. (2.1)

For the sake of brevity, we also define the received signal at the relay as U = h1 X1 +

h2 X2 + N . Since each terminal knows what it has sent to the relay in the MAC

phase, it can recover the information from the other terminal based on the received

Yi and its own a priori knowledge of Xi. In addition, we impose an average power

constraint on Xi: E{|Xi|2} ≤ Ps, i = 1, 2, as well as on the output of the relay:

E{|f(h1X1 + h2X2 + N)|2} ≤ Pr.

We assume for notational simplicity that the noise variance at the two terminals is

the same, i.e., σ2
s1

= σ2
s2

= σ2
s ; extensions to the more general case are straightforward.
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Also, it is assumed that the terminals and the relay know h1 and h2, which may be

obtained by using channel estimation at the relay or the feedback channel from the

two terminals, see e.g., [23]. Further, we assume that the two terminals are perfectly

synchronized and compensate for channel phase prior to transmission. Under these

assumptions, the channel coefficients h1 and h2 are used as real-valued attenuation

factors. Alternatively, the synchronization approach from [47] could be applied at the

terminals; In this approach, pilot symbols are used to estimate the phase differences

between the two terminal signals in the signal received from the relay.

We focus on symbol error probability as a performance metric: each terminal is

assumed to perform a hypothesis test to decide which symbol was transmitted by

the other terminal; we do not consider the effect of any end-to-end channel coding

that may be applied. Note that (2.1) applies to both a half duplex system with two

time slots, where the transmission from one terminal to the other takes place in a

multiple-access and a broadcast time slot, or a full duplex system.

2.3 Relay Strategies for the BPSK Case

We begin by considering BPSK; an extension to higher order constellations is given

in Section 2.5. Each terminal transmits Xi = ±√Ps. We consider two classes of

relay strategies: absolute value strategies, where the relay transmits a non-decreasing

function of |U |, and non-absolute value strategies, where the relay transmits an odd

non-decreasing function of U .

We first show that the error probability is minimized if the terminals employ

threshold detection as follows.

• For non-abs-based strategies: If xi =
√

Ps has been sent in the MAC phase

then terminal i decodes to
√

Ps if yi ≥ vi and −√Ps otherwise, where vi is its

detection threshold and yi is the value of its received symbol Yi. Likewise, if

xi = −√Ps has been sent, then terminal i decodes to
√

Ps if yi ≥ −vi and on

−√Ps otherwise.
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• For abs-based strategies: each terminal decodes to either (X1 =
√

Ps, X2 =
√

Ps) if Xi =
√

Ps or (X1 = −√Ps, X2 = −√Ps) if Xi = −√Ps, if Yi >

vi. Otherwise, if the received signal is smaller than the threshold vi receiver i

decodes to (X1 =
√

Ps, X2 = −√Ps) or (X1 = −√Ps, X2 =
√

Ps), depending

on the value of Xi.

Theorem 2.1 When each terminal transmits
√

Ps and −√Ps with equal probability,

for any given non-abs-based relay function f(U) or abs-based relay function f(|U |)
where f is a non-decreasing function of U or |U |, respectively, threshold detection at

the terminals minimizes the probability of error.

The proof is given in the Appendix in Section 2.9.

2.3.1 Non-Abs-Based Strategies

The average probability of error at terminal 1 is

P (1)
e =

1

4

(

Pr(y1 < v1|x1 = x2 =
√

Pr) + Pr(y1 > v1|x1 =
√

Pr, x2 = −
√

Pr)

+ Pr(y1 < −v1|x1 = −
√

Pr, x2 =
√

Pr) + Pr(y1 > −v1|x1 = x2 = −
√

Pr)

)

=
1

2
+

1

2

∫ +∞

−∞

(

G
(

u− (h1 + h2)
√

Ps, σ
2
r

)

− G
(

u− (h1 − h2)
√

Ps, σ
2
r

))

×
[∫ v1

−∞
G
(
y − h1f(u), σ2

s

)
dy

]

du.

(2.2)

By symmetry, the average probability of error at terminal 2 is given by interchanging

subscripts 1 and 2.

2.3.1.1 Amplify-and-Forward

We analyze the performance of amplify and forward [68], where a linear function

f(·) is used. To satisfy the average power constraint at the relay, f(·) is equal to

f(u) =
√

Pr

(h2
1+h2

2)Ps+σ2
r
u. The resulting output at terminal i is

Yi = hi

√

Pr

(h2
1 + h2

2)Ps + σ2
r

(X1 + X2) +

(

hi

√

Pr

(h2
1 + h2

2)Ps + σ2
r

N + Zi

)

, i = 1, 2. (2.3)
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Therefore, when x1 and x2 are transmitted, the conditional pdf of the output Yi is

pYi|X1,X2
(yi|x1, x2) = G

(

yi − hi

√

Pr

(h2
1 + h2

2)Ps + σ2
r

(x1 + x2),
h2

i Prσ
2
r

(h2
1 + h2

2)Ps + σ2
r

+ σ2
s

)

,

(2.4)

where G(x, σ2) is defined at the end of Section 2.1. Given xi, we observe from (2.4)

that terminal i’s decoding threshold is vi = hi

√
Pr

(h2
1+h2

2)Ps+σ2
r
xi. Therefore, the average

probability of error at terminal i, i = 1, 2 is

P (i)
e = Q

(√

h2
i PrPs

h2
i Prσ2

r + (h2
1 + h2

2)Psσ2
s + σ2

rσ
2
s

)

. (2.5)

2.3.1.2 Detect-and-Forward

In DF the relay performs hard decisions and maps each decision region to a fixed

value that it transmits, i.e.,

f(u) =







a, if u ≥ w,

b, if w > u ≥ 0,

−f(−u), otherwise,

(2.6)

The error probability at the terminals is optimized over the relay threshold w, relay

transmit values a and b, and the terminal detection thresholds v1 and v2, subject to

the average power constraint at the relay. Substituting (2.6) into (2.2), the average

probability of error at terminal 1 can be written as

P (1)
e =

1

2
+

1

2

∫ w

0
A(u)du

[∫ v1

−∞
G
(
y − h1b, σ

2
s

)
dy

]

︸ ︷︷ ︸

C(v1,b)

+
1

2

∫ +∞

w
A(u)du

[∫ v1

−∞
G
(
y − h1a, σ2

s

)
dy

]

︸ ︷︷ ︸

D(v1,a)

+
1

2

∫ w

0
B(u)du

[∫ v1

−∞
G
(
y + h1b, σ

2
s

)
dy

]

︸ ︷︷ ︸

E(v1,b)

+
1

2

∫ +∞

w
B(u)du

[∫ v1

−∞
G
(
y + h1a, σ2

s

)
dy

]

︸ ︷︷ ︸

F (v1,a)

.

(2.7)

where
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A(u) ,G
(

u− (h1+h2)
√

Ps, σ
2
r

)

− G
(

u− (h1−h2)
√

Ps, σ
2
r

)

,

B(u) ,G
(

u + (h1+h2)
√

Ps, σ
2
r

)

− G
(

u + (h1−h2)
√

Ps, σ
2
r

)

.
(2.8)

Taking the partial derivative of P
(1)
e + P

(2)
e with respect to w and setting this to

zero, we obtain

∂(P
(1)
e + P

(2)
e )

∂w
= A(w) (C(v1, b)−D(v1, a)) + B(w) (E(v1, b)− F (v1, a)) +

∂P
(2)
e

∂w
= 0.

(2.9)

As the optimal solution of w in (2.9) depends on a, b, v1, v2 in a complicated way, it is

hard to solve (2.9) directly. One way to approximate the optimal solution is to use an

iterative method. At the beginning of the k-th iteration, assuming that w(k) is given

(w(0) = h1

√
Ps), we can optimize a(k), b(k), v

(k)
1 , v

(k)
2 as follows. When w(k), a(k), b(k) are

given, v
(k)
1 , v

(k)
2 can be written as a function of a(k), b(k) by minimizing the average error

probability. Finally, we perform a two dimensional search over a(k), b(k). Then, w(k+1)

can be obtained from (2.9) by using a(k), b(k), v
(k)
1 , v

(k)
2 . The process repeats until

convergence or the maximum number of iterations is achieved. In our experiments,

fewer than five iterations were required before convergence. Even though this process

does not guarantee convergence to the global minimum, it seems to work well in our

experiments.

Alternatively, at high SNR, when w = h1

√
P s, we have A(w) = 0 and the other

Q function and Gaussian terms in (2.9) tend to 0. A suboptimal solution to (2.9)

can be approximated with this w. By substituting w = h1

√
Ps into (2.7), taking the

partial derivative of (2.7) with respect to v1, and setting the resulting equation to

zero we obtain the thresholds

v1 =
h1(a + b)

2
, v2 =

h2(a− b)

2
. (2.10)

We can then derive the optimal a and b subject to the power constraint at the relay

by substituting (2.10) into (2.7). From the resulting expression, by discarding small
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terms at high SNR, we can then show that P
(1)
e + P

(2)
e can be approximated2 as

P (1)
e +P (2)

e ≈ Q

(
h1(a− b)

2σs

)

+Q

(
h2(a + b)

2σs

)

+Q

(
h2

√
Ps

σr

)(

1 +
1

2
Q

(
h2(3b− a)

2σs

))

.

(2.11)

To find the optimal a, b, we need to minimize (2.11) subject to a2+b2 = 2Pr. Whether

the first two terms or the third term dominates depends on the relative values of

Pr, Ps, σr, σs, h1 and h2. If we optimize the first two terms of (2.11), we find that

b

a
=

h1 − h2

h1 + h2
, a2 + b2 = 2Pr. (2.12)

Substituting (2.12) back into (2.11), we obtain

P (1)
e +P (2)

e ≈ 2Q

(√

Pr

h2
1 + h2

2

h1h2

σs

)

+Q

(
h2

√
Ps

σr

)(

1 +
1

2
Q

(√

Pr

h2
1 + h2

2

h2(h1 − 2h2)

σs

))

.

(2.13)

Note that (2.12) agrees with the straightforward DF, where the relay first finds a point

from the set {−h1 − h2,−h1 + h2, h1 − h2, h1 + h2} with the minimum Euclidean dis-

tance from the received signal and then transmits a scaled version of this point.

If we optimize the third term of (2.11), we find that

a =

√

9Pr

5
, b =

√

Pr

5
. (2.14)

Substituting (2.14) back into (2.11), we obtain

P (1)
e + P (2)

e ≈ Q

(√

Pr

5

h1

σs

)

+ Q

(√

4Pr

5

h2

σs

)

+
5

4
Q

(
h2

√
Ps

σr

)

. (2.15)

Note that (2.14) corresponds to the uniform constellation where the distances between

any two adjacent constellation points are identical. Comparing (2.13) with (2.15), we

find that when
√

5Psσ2
s

Prσ2
r

< h1

h2
< 2 we should choose (2.14), which means that the first

two terms in (2.11) dominate; otherwise, (2.12) is preferred which means the third

term in (2.11) dominates.

2Actually max(P 1
e , P 2

e ) dominates, which means that at high SNR optimizing P
(1)
e + P

(2)
e yields

the same function as optimizing max(P 1
e , P 2

e ).
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When h1 = h2, (2.12) leads to

a =
√

2Pr, b = 0, (2.16)

where the relay decodes only three points as h1 − h2 = 0.

Numerical simulations in Section 2.7 reveal that when h1/h2 is close to one, (2.16)

performs better than both (2.12) and (2.14) where a performance close to the optimal

solution is obtained. As h1/h2 increases, (2.12) and (2.14) outperform (2.16) at high

SNR. But (2.16) still performs better than (2.12) and (2.14) at low SNR, where re-

moving a constellation point results in power savings and performance improvements.

2.3.1.3 Estimate-and-Forward

In this strategy the relay transmits a scaled version of the MMSE estimate of h1X1 +

h2X2 given its observation u, i.e., we consider a function

g(u) = E{h1x1 + h2x2|u}

=
sinh

(
(h1+h2)

√
Psu

σ2
r

)

e
− (h1+h2)2Ps

2σ2
r (h1 + h2) + sinh

(
(h1−h2)

√
Psu

σ2
r

)

e
− (h1−h2)2Ps

2σ2
r (h1 − h2)

cosh
(

(h1+h2)
√

Psu
σ2

r

)

e
− (h1+h2)2Ps

2σ2
r + cosh

(
(h1−h2)

√
Psu

σ2
r

)

e
− (h1−h2)2Ps

2σ2
r

√

Ps

(2.17)

and set the relay function f(u) to be a scaled version of g(u) to satisfy the power

constraint. We find that g(u) in (2.17) is close to the straightforward DF (2.12) at

high SNR.
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2.3.1.4 Optimized Relay Function

The optimal relay function minimizes the sum of average probabilities of both termi-

nals subject to the average power constraint, i.e.,

G(f) = P (1)
e + P (2)

e

=1 +
1

2

∫ +∞

−∞

(

G
(

u− (h1 + h2)
√

Ps, σ
2
r

)

− G
(

u− (h1 − h2)
√

Ps, σ
2
r

))

×
[∫ v1

−∞
G
(
y − h1f(u), σ2

s

)
dy

]

du

+
1

2

∫ +∞

−∞

(

G
(

u− (h2 + h1)
√

Ps, σ
2
r

)

− G
(

u− (h2 − h1)
√

Ps, σ
2
r

))

×
[∫ v2

−∞
G
(
y − h2f(u), σ2

s

)
dy

]

du.

(2.18)

The optimal relay function is the solution of the following problem.

min
f,v1,v2

G(f)

subject to

∫ +∞

0

G
(

u− (h1 + h2)
√

Ps, σ
2
r

)

f 2(u)du

+

∫ +∞

0

G
(

u− (h1 − h2)
√

Ps, σ
2
r

)

f 2(u)du

+

∫ +∞

0

G
(

u + (h1 + h2)
√

Ps, σ
2
r

)

f 2(u)du

+

∫ +∞

0

G
(

u + (h1 − h2)
√

Ps, σ
2
r

)

f 2(u)du = 2Pr.

(2.19)

To solve the functional optimization problem (2.19), we first fix v1 and v2 and

derive the relay function as a function of v1 and v2 via the Lagrange dual. Then the

relay function is substituted into the objective function and the resulting equation is

minimized over v1 and v2 by performing a line search around v1 and v2 in the optimal

DF strategy. Since we do not have a convex optimization problem, the obtained

solution may be a local optimum. The closed-form solution of (2.19) is hard to

obtain. Nevertheless, we plot the optimized non-abs-based relay function at different

SNRs and with different h1 and h2 in Fig. 2.2.
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2.3.2 Abs-Based Strategies

In this subsection, we consider abs-based strategies, where in particular, we will

provide detailed derivations for the special case h1 = h2 = 1. The derivations for the

general case h1 > h2 are analogous and will only be briefly discussed due to space

limitations. As a starting point for the following discussions, we note that generally

for abs-based schemes the average error probability at each terminal i can be written

as

Pe =
1

2
Pr(y > vi|x1 6= x2) +

1

2
Pr(y < vi|x1 = x2). (2.20)

For h1 = h2, we have v1 = v2 = v.

2.3.2.1 Abs-Based Amplify-and-Forward (AAF)

In this scheme, the relay first takes the absolute value of the received signal and then

subtracts a positive constant C from the resulting signal, i.e.,

f(u) = β (|u| − C) , (2.21)

where β is a coefficient to maintain the average power constraint at the relay. From

(2.20), the average error probability at terminal 1 for h1 = h2 = 1 can be written as

Pe =
1

2

(

1 +

∫ +∞

0

(

G
(

u− 2
√

Ps, σ
2
r

)

+ G
(

u + 2
√

Ps, σ
2
r

)

− 2G
(
u, σ2

r

))

×
[∫ v

−∞
G
(
y − β (u− C) , σ2

s

)
dy

]

du

)

.

(2.22)

The optimal solution is given by minimizing (2.22) with respect to both v and C,

which is done numerically since an analytical solution is hard to obtain. The optimal

solution depends on the SNR values, but we have observed experimentally that the

optimal threshold is very close to zero. So, a simple solution, in particular if the SNR

is not accurately known, is to set v = 0 and C = h1

√
Ps or C = h1

√
Ps + σr/

√
2.

2.3.2.2 Abs-Based Detect-and-Forward (ADF)

In ADF, the relay performs hard decisions, based on the absolute value of the received

signal, to decide whether 2
√

Ps, 0, or −2
√

Ps is received. The relay does not actually
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detect x1 and x2, but only the mixture h1x1 + h2x2. To satisfy the relay’s average

power constraint,
√

Pr and −√Pr are transmitted, i.e.,

f(u) =







√
Pr, if |u| ≥ w,

−√Pr, otherwise,
(2.23)

where w is a threshold which will be determined below. Note that a related detect-

and-forward scheme for the TWRC is already proposed in [83] as physical layer net-

work coding. In the following, we extend this work by providing a detailed analysis

of the end-to-end error probability.

For the case h1 = h2 = 1 the average error probability at each terminal (2.20) can

be written as

Pe =
1

2
+

1

2

∫ w

0

(

G
(

u− 2
√

Ps, σ
2
r

)

+ G
(

u + 2
√

Ps, σ
2
r

)

− 2G
(
u, σ2

r

))

du

×
∫ v

−∞

(

G
(

y +
√

Pr, σ
2
s

)

− G
(

y −
√

Pr, σ
2
s

))

dy.

(2.24)

Eq. (2.24) has the nice property that the optimization with respect to w and v is

separated. By minimizing (2.24) over w and v we find that the optimal value of w is

w =
√

Ps

(

1 +
σ2

r

2Ps
log
(

1 +
√

1− e−4Ps/σ2
r

))

, (2.25)

and the optimal value of v is v = 0, which gives

Pe =
1

2
+

1

2

(

Q

(
2
√

Ps − w

σr

)

+ 2Q

(
w

σr

)

−Q

(
2
√

Ps + w

σr

)

− 1

)(

1− 2Q

(√
Pr

σs

))

.

(2.26)

When σ2
r → 0 the optimal w converges to

√
Ps. Note that due to the separation of

w and v in (2.24), the optimal w also minimizes the error probability of detection at

the relay. When h1 > h2, we obtain w=h1

√
Ps at high SNR.
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2.3.2.3 Abs-Based Estimate-and-Forward (AEF)

In this strategy the relay transmits its minimum mean squared error (MMSE) estimate

of |h1x1+h2x2|. We first address the case h1 = h2 = 1 and derive the MMSE estimator

g(u) = E
{
|x1 + x2|

∣
∣u
}

=
2
√

Ps cosh
(

2
√

Psu
σ2

r

)

e2Ps/σ2
r + cosh

(
2
√

Psu
σ2

r

) . (2.27)

The relay function f(u) is then a scaled version of g(u)− C, i.e.,

f(u) =







β (g(u)− C) , if u ≥ 0,

f(−u), otherwise,
(2.28)

where C is a constant as in AAF and β ≥ 0 is a scaling factor to satisfy the average

power constraint E{f 2(u)} = Pr. Optimization of the terminal decoding thresholds

is similar to that for AAF. Analogous to the above derivation, for h1 > h2 we obtain

g(u) as

g(u) =
|h1 + h2|

√
Pse

− (h1+h2)2Ps

2σ2
r cosh

(
(h1+h2)

√
Psu

σ2
r

)

e
− (h1+h2)2Ps

2σ2
r cosh

(
(h1+h2)

√
Psu

σ2
r

)

+ e
− (h1−h2)2Ps

2σ2
r cosh

(
(h1−h2)

√
Psu

σ2
r

)

+
|h1 − h2|

√
Pse

− (h1−h2)2Ps

2σ2
r cosh

(
(h1−h2)

√
Psu

σ2
r

)

e
− (h1+h2)2Ps

2σ2
r cosh

(
(h1+h2)

√
Psu

σ2
r

)

+ e
− (h1−h2)2Ps

2σ2
r cosh

(
(h1−h2)

√
Psu

σ2
r

)
.

(2.29)

2.3.2.4 Optimized Relay Strategy

In this section, we optimize the average probability of error over even functions f(·)
at the relay. Our approach generalizes the result from [4] for the one-way case. For
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h1 = h2 the average probability of error can be obtained from (2.20) as

Pe(f) =
1

2
+

1

2

∫ +∞

0

(

G
(

u + 2
√

Ps, σ
2
r

)

+ G
(

u− 2
√

Ps, σ
2
r

)

− 2G
(
u, σ2

r

))

︸ ︷︷ ︸

,B(u)

×
[∫ v

−∞
G
(
y − f(u), σ2

s

)
dy

]

︸ ︷︷ ︸

,A(f)

du,
(2.30)

which holds since B(u) is an even function in u. Let

D(u) , G
(

u + 2
√

Ps, σ
2
r

)

+ G
(

u− 2
√

Ps, σ
2
r

)

+ 2G
(
u, σ2

r

)
. (2.31)

Our optimization problem is

min
f,v

H(f) =

∫ +∞

0

B(u)A(f)du subject to
1

2

∫ +∞

0

D(u)f 2(u)du ≤ Pr, (2.32)

which can be solved by considering the Lagrangian

φ(λ, f) = H(f) +
λ

2

(∫ +∞

0

D(u)f 2(u)du− 2Pr

)

, (2.33)

where λ ≥ 0 is the Lagrange multiplier of the average power constraint. Differentiat-

ing φ(λ, f) with respect to f(u) for each u and setting the result to zero, we obtain

after rearranging
G (f(u)− v, σ2

s)

f(u)
= λ

D(u)

B(u)
. (2.34)

Since λ > 0, D(u) > 0, and if |u| ≥ w we have B(u) ≥ 0 (and B(u) < 0 otherwise),

we obtain 





f(u) ≥ 0, if |u| ≥ w,

f(u) < 0, otherwise,
(2.35)

where w is the relay hard decision threshold defined in (2.25).
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Lemma 2.2 For f(u) satisfying







f(u) ≥ v, if |u| ≥ w,

f(u) < v, otherwise,
(2.36)

Pe(f) in (2.30) is a strictly convex function in f (when considering functions that

differ on a set of non-zero measure).

Proof. Let f and g be two functions satisfying (2.36), and let λ ∈ [0, 1] and γ = 1−λ.

Clearly, λf + γg also satisfies (2.36). Then,

∂2A(f)

∂f 2
=

1

2σ2
s

(f(u)− v)G
(
v − f(u), σ2

s

)
, (2.37)

is nonnegative if f(u) ≥ v and negative otherwise. Since B(u)∂2A(f)
∂f2 is nonnegative

for |u| ≥ w and positive otherwise, we have

Pe(λf + γg) =
1

2
+

1

2

∫ +∞

0
B(u)A(λf + γg)du ≤ λPe(f) + γPe(g).

If v = 0, then (2.34) can be further simplified to be

e
−
(

f(u)/
√

2σ2
s

)2

f(u)/
√

2σ2
s

= λ2
√

πσ2
s

cosh
(

2
√

Psu
σ2

r

)

+ e2Ps/σ2
r

cosh
(

2
√

Psu
σ2

r

)

− e2Ps/σ2
r

, (2.38)

which can be solved to obtain the following expression for f(u):

f(u) =







√
√
√
√
√σ2

sW



 1
2πλ2σ4

s




cosh

(

2
√

Psu

σ2
r

)

−e2Ps/σ2
r

cosh

(

2
√

Psu

σ2
r

)

+e2Ps/σ2
r





2

, if u ≥ w,

−

√
√
√
√
√σ2

sW



 1
2πλ2σ4

s




cosh

(

2
√

Psu

σ2
r

)

−e2Ps/σ2
r

cosh

(

2
√

Psu

σ2
r

)

+e2Ps/σ2
r





2

, if w > u ≥ 0,

f(−u), if u < 0.

(2.39)



25

Here, W (·) denotes the Lambert W function, defined by W (x)eW (x) = x, and λ is

such that the power constraint is satisfied with equality.

Note that f(u) in (2.39) is derived from the Lagrange dual without any assump-

tion on the convexity of the problem, which may not be a true optimal solution.

However, (2.39) indeed satisfies (2.35), which means that it is optimal within the

class of functions satisfying (2.35). By Lemma 2.2 and the convexity of f 2(u) in f(u),

the set of functions satisfying (2.35) and the power constraint of (2.32) is a convex

function set. The optimization under the constraint (2.35) is thus convex, and there

is no duality gap. Therefore, (2.39) is the optimal solution when v = 0, which can be

achieved in the high SNR regime as shown below.

At high SNR, since

lim
σ2

r→0

G
(
u + 2

√
Ps, σ

2
r

)
+ G

(
u− 2

√
Ps, σ

2
r

)
− 2G

(
u, σ2

r

)

G
(
u + 2

√
Ps, σ2

r

)
+ G

(
u− 2

√
Ps, σ2

r

)
+ 2G (u, σ2

r )
=







1, if |u| ≥ w,

−1, if |u| < w,
(2.40)

from (2.34) we obtain

f(u) =







C1, if |u| ≥ w,

−C2, if |u| < w,
(2.41)

where C1, C2 > 0 are constants. Substituting (2.41) back into (2.34), we find that

G
(
C1 − v, σ2

s

)

C1
= λ =

G
(
C2 + v, σ2

s

)

C2
, (2.42)

which gives

v =
log C1 − log C2

C1 + C2
σ2

s +
C1 − C2

2
−−−→
σ2

s→0

C1 − C2

2
. (2.43)

Substituting (2.43) into (2.42), we obtain C1 = C2 = C, which corresponds to ADF.

Hence, λ can be approximated as

λ =
G
(
C, σ2

s

)

C
. (2.44)

Substituting (2.41)-(2.44) into (2.33) and using (2.26), the dual problem then becomes

min
C,v

Q

(
C

σs

)

+
G
(
C, σ2

s

)

C

(
C2 − Pr

)
. (2.45)
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Note that at high SNR Q
(

C
σs

)

can be approximated as σs√
2πC

e
− C2

2σ2
s , which decreases

faster than G (C, σ2
s) = 1√

2πσs
e
− C2

2σ2
s . Therefore, the minimum of (2.45) is attained at

v = 0, C1 = C2 = C =
√

Pr when σ2
s → 0 and σ2

r → 0. By substituting v = 0

and C1 = C2 = C =
√

Pr into (2.41) and (2.44), we obtain f ∗ and λ∗, which gives

minf φ(λ∗, f) = G(f ∗) at high SNR. Therefore, there is no duality gap at high SNR

and the optimal solution converges to (2.41), which is equivalent to the ADF strategy.

In general, the optimal v varies with SNR.

For the case h1 > h2, minimizing the sum of error probabilities of both terminals

can be approximated by minimizing the error probability of terminal 2 at high SNR,

which gives

f(u) =






√
√
√
√
√
√
√

σ2
sW







1
2πλ2h2

1σ4
s






e
− (h1+h2)2Ps

2σ2
r cosh

(

(h1+h2)
√

Psu

σ2
r

)

−e
− (h1−h2)2Ps

2σ2
r cosh

(

(h1−h2)
√

Psu

σ2
r

)

e
− (h1+h2)2Ps

2σ2
r cosh

(

(h1+h2)
√

Psu

σ2
r

)

+e
− (h1−h2)2Ps

2σ2
r cosh

(

(h1−h2)
√

Psu

σ2
r

)






2






,

if u ≥ w,

−

√
√
√
√
√
√
√

σ2
sW







1
2πλ2h2

1σ4
s






e
− (h1+h2)2Ps

2σ2
r cosh

(

(h1+h2)
√

Psu

σ2
r

)

−e
− (h1−h2)2Ps

2σ2
r cosh

(

(h1−h2)
√

Psu

σ2
r

)

e
− (h1+h2)2Ps

2σ2
r cosh

(

(h1+h2)
√

Psu

σ2
r

)

+e
− (h1−h2)2Ps

2σ2
r cosh

(

(h1−h2)
√

Psu

σ2
r

)






2






,

if w > u ≥ 0,

f(−u),

if u < 0.

(2.46)

Remarks:

• As seen above, f(u) in (2.39) is optimal when the two terminals’ detection

thresholds are set to zero. Our experiments show that this relay function out-

performs the other strategies in both high and low SNR regimes. One way to

optimize jointly over f(u) and v is to solve (2.34) for f(u), which depends on

both v and λ. For a given v, we can find λ by satisfying the average power con-
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straint. Finally, v can be found by substituting the resulting function into H(f)

and optimizing over v. The optimized function using this approach performs

better than (2.39) but is more difficult to implement.

• Above, we have derived the error probabilities for various strategies with fixed

h1 and h2. To obtain the performance in fading channels, we integrate the

obtained error probabilities over the joint pdf of h1 and h2. Except for the

optimized relay function for non-abs strategies, we give closed-form expression

for the other cases at least in high SNR.

2.4 Comparison Between Two Classes of Strate-

gies

The average error probability of non-abs DF can be approximated by applying Cher-

noff bound-type arguments to (2.13) and (2.15), which gives

P (1)
e + P (2)

e ≈







5
8
e
−h2

2Ps

2σ2
r , if 2 > h1

h2
>
√

5Psσ2
s

Prσ2
r
,

e
− h2

1h2
2Pr

2(h2
1
+h2

2
)σ2

s + 1
2
e
−h2

2Ps

2σ2
r , otherwise.

(2.47)

Likewise, we can approximate the average error probability of ADF for h1 > h2 by

using Chernoff bounds on (2.24) (and the corresponding expression for terminal 2)

according to

P (1)
e + P (2)

e ≈ 1

2

(

e
−h2

1Pr

2σ2
s + e

−h2
2Pr

2σ2
s

)

+ e
−h2

2Ps

2σ2
r . (2.48)

In the following, we consider several cases at high SNR. Let SNRr ∼ Ps

σ2
r

and

SNRs ∼ Pr

σ2
s
.

• If SNRs < SNRr, (2.48) is dominated by 1
2
e
−h2

2Pr

2σ2
s , while (2.47) is dominated by

e
− h2

1h2
2Pr

2(h2
1+h2

2)σ2
r . Therefore, the average error probability for ADF is at most 1/2 of

the one for DF.

• If SNRs > SNRr and 1+
h2
2

h2
1

> Prσ2
r

Psσ2
s

and h1 > 2h2, (2.48) is dominated by e
−h2

2Ps

2σ2
r ,
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and (2.47) is dominated by 1
2
e
−h2

2Ps

2σ2
r . In this case, the average error probability

for DF is 1/2 of the one for ADF.

• If SNRs > SNRr and 1 +
h2
2

h2
1

< Prσ2
r

Psσ2
s

and h1

h2
<
√

5Psσ2
s

Prσ2
r

, (2.48) is dominated by

e
−h2

2Ps

2σ2
r , and (2.47) by 3

4
e
−h2

2Ps

2σ2
r . Hence, the average error probability for DF is

3/4 of the one for ADF.

• If SNRs > SNRr and 1 +
h2
2

h2
1

< Prσ2
r

Psσ2
s

and 2 > h1

h2
>
√

5Psσ2
s

Prσ2
r
, (2.48) is dominated

by e
−h2

2Ps

2σ2
r , and (2.47) is dominated by 5

8
e
−h2

2Ps

2σ2
r . This leads to an average error

probability for DF which is 5/8 of the one for ADF.

These results suggest that when the channel is very asymmetric or the relay has

greater power than the terminals we should use DF. When the relay has almost

the same power as the terminals, we prefer ADF where the power savings by using

the abs-based operation has a big impact on the overall performance. From Section

2.3.1.2, we know that if h1/h2 is close to one, DF with (2.16) performs better than

DF with (2.12) or (2.14). Therefore, when the channel is symmetric and the relay

has greater power than the terminals we should use DF with (2.16).

2.5 Higher Order Constellations

In industry standards such as the IEEE 802.11 series, usually higher order QAM

constellations are employed to achieve high spectral efficiency. In the following, we

assume h1 = h2 = 1 for simplicity. A good mapping function h(u) at the relay should

have the property that each terminal can detect the other terminal’s signal without

loss in the noise free case. We therefore require that

h(u1 + u2) 6= h(u′
1 + u2), ∀u1 6= u′

1

and h(u1 + u2) 6= h(u1 + u′
2), ∀u2 6= u′

2, ui, u
′
i ∈ Q,

(2.49)

i = 1, 2, where Q is the constellation set used by the two terminals. The classification

of BPSK strategies into absolute and non-absolute value strategies can be general-
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ized to a classification based on underlying relay mappings h(u) satisfying the above

condition. We represent condition (2.49) as an undirected graph G, where each node

corresponds to a different value of u1 + u2 and there is an edge between the node

corresponding to u1 + u2 and the node corresponding to u′
1 + u2, u′

1 6= u1. Given this

graph, a relay function h(u) satisfies condition (2.49) if and only if it corresponds to

a vertex coloring of G such that no two adjacent nodes have the same color. To find

the optimal relay function, we need to consider all possible colorings of graph G. For

each coloring, the strategies discussed for BPSK in Section 2.3.1 and Section 2.3.2.4

can be generalized using the underlying mapping h(u) as described below. The one

achieving the minimum error rate is optimal. The minimum possible constellation

size of the relay function is equal to the chromatic number of G.
Another way of finding a feasible relay mapping h(u) is, as above, to consider

the sum u1 + u2 = ci, i = 1, . . . , 2|V| − 1, for all u1, u2 ∈ V, where V denotes the

constellation set at the two terminals3. The quantity ci takes elements from the set

W, where |W| = 2|V|−1. The underlying (noise free) relay mapping h(u) which maps

the set W to a set V ′ of size M ≥ |V| containing the constellation set to be received

at the terminals, can now be found for every i by assigning the k = (i mod M)-th

element of V ′ to the values ci. In principle, the M elements can be picked from V ′ in

arbitrary order.

Note that rectangular QAM constellations can be easily transmitted as two PAM

signals on quadrature carriers. In the following, we only consider PAM constellations,

and we take 4-PAM as an example. The approach can be generalized to higher PAM

constellations. For simplicity, we assume that the signal transmitted by the terminals

is chosen from the constellation set V = {−3,−1, 1, 3}. In the absence of noise, the

received signal at the relay is from the set W = {−6,−4,−2, 0, 2, 4, 6}. We first

consider the class of mapping functions that mapW to V ′ = V. For example, we can

choose

3For the sake of simplicity we assume that the two terminals employ the same constellation set.



30HHHHHHHHHX1

X2
-3 -1 +1 +3

-3 +1 -3 -1 +3

-1 +3 +1 -3 -1

+1 -1 +3 +1 -3

+3 -3 -1 +3 +1

(2.50)

or HHHHHHHHHX1

X2
-3 -1 +1 +3

+3 +3 -3 -1 +1

-1 +1 +3 -3 -1

+1 -1 +1 +3 -3

+3 -3 -1 +1 +3

(2.51)

It is easy to verify that both (2.50) and (2.51) satisfy the condition in (2.49). Note

that (2.51) is the physical network coding operation given in [83] using DF.

AAF can be readily generalized by setting the relay function to be a piecewise

linear function based on h(u) such as

f(u) =







β(u + 3), if u < −3,

β(u + 5), if − 2 > u ≥ −3,

β(1− u), if 1 > u ≥ −2,

β(−1− u), if 2 > u ≥ 1,

β(u− 5), if 5 > u ≥ 2,

β(u− 3), if u ≥ 5,

(2.52)

where β is a coefficient to maintain the average power constraint at the relay. The

detection at each terminal is similar to the traditional 4-PAM demodulation by com-

paring with some thresholds. ADF can be adapted similarly. The relay defines hard

decision regions for u, and sends a scaled/shifted version of h(u). At high SNR, the

ADF relay function based on (2.50) can be obtained as
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f(u) =







−3β, if u < −5,

−β, if − 3 > u ≥ −5,

3β, if − 1 > u ≥ −3,

β, if 1 > u ≥ −1,

−3β, if 3 > u ≥ 1,

−β, if 5 > u ≥ 3,

3β, if u ≥ 5.

(2.53)

For EF, we first consider the function g(u) such that

g(u) = arg min
g′(u)

E
{

|h(x1 + x2)− g′(u)|2
∣
∣
∣ u
}

. (2.54)

f(u) is then a scaled version of g(u), i.e., f(u) = β g(u), where β ≥ 0 is a scalar

to satisfy the average power constraint. At the two terminals, there also exists an

optimal decision threshold v. We can optimize v using the same approach as in AAF

or just choose the conventional 4-PAM detection threshold. In all strategies, we can

also apply a maximum likelihood detector at each terminal, giving

x̂2 = arg min
x̃2∈Q

|y1 − f (x1 + x̃2)|2 . (2.55)

The relay mapping function can also perform a redundant mapping such that

W = {−6,−4,−2, 0, 2, 4, 6} is mapped to a set V ′ with 5, 6, or 7 elements. For

example, when V ′ = {−4,−2, 0, 2, 4}, we can choose h(u) asHHHHHHHHHX1

X2
-3 -1 +1 +3

-3 +2 +4 -2 -4

-1 0 +2 +4 -2

+1 -2 0 +2 +4

+3 -4 -2 0 +2

(2.56)
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or, when V ′ = {−5,−3,−1, 1, 3, 5}, we can choose h(u) asHHHHHHHHHX1

X2
-3 -1 +1 +3

-3 +1 +3 +5 -5

-1 -1 +1 +3 +5

+1 -3 -1 +1 +3

+3 -5 -3 -1 +1

(2.57)

When V ′ = W, we can simply choose h(u) = u. It is easy to verify that (2.56) and

(2.57) satisfy the condition in (2.49).

2.6 Peak Power Constraint

We have considered an average power constraint at the relay. A peak power constraint

at the relay is also common in practice. With a peak power constraint, the signal

transmitted by the relay cannot exceed a threshold P̆r. We limit our discussion to

BPSK in the following. The case with higher order constellations can be obtained

similarly.

We first consider the optimal abs relay function under a peak power constraint.

By following the argument in Section 2.3.2.4, we can obtain the optimization problem

to find the optimal relay function as

min
f,v

G(f) =

∫ +∞

0

(

G
(

u− (h1 + h2)
√

Ps, σ
2
r

)

+ G
(

u + (h1 + h2)
√

Ps, σ
2
r

)

−G
(

u− (h1 − h2)
√

Ps, σ
2
r

)

− G
(

u + (h1 − h2)
√

Ps, σ
2
r

))

×
[∫ v

−∞
G
(
y − h1f(u), σ2

s

)
dy

]

du,

subject to f2(u) ≤ P̆r.

(2.58)

Let B(u) = G
(
u− (h1 + h2)

√
Ps, σ

2
r

)
+G

(
u + (h1 + h2)

√
Ps, σ

2
r

)
−G

(
u− (h1 − h2)

√
Ps, σ

2
r

)
−

G
(
u + (h1 − h2)

√
Ps, σ

2
r

)
and w be its root in [0, +∞). It is clear that B(u) > 0 when
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u > w and B(u) < 0 when u < w. Therefore, to minimize G(f), we should choose

f(u) =







√

P̆r, if u ≥ w,

−
√

P̆r, if w > u ≥ 0,

f(−u), if u < 0.

(2.59)

Taking the partial derivative of G(f) with respect to v, we obtain

∂G(f)

∂v
=

∫ +∞

0

B(u)G
(
v − f(u), σ2

s

)
dydu, (2.60)

which is equal to zero if v = 0.

For the non-abs strategy, the sum of average error probabilities at both terminals

is

P (1)
e + P (2)

e

=1 +
1

2

∫ +∞

−∞

(

G
(

u− (h1 + h2)
√

Ps, σ
2
r

)

− G
(

u− (h1 − h2)
√

Ps, σ
2
r

))

×
[∫ v1

−∞
G
(
y − h1f(u), σ2

s

)
dy

]

du

+
1

2

∫ +∞

−∞

(

G
(

u− (h2 + h1)
√

Ps, σ
2
r

)

− G
(

u− (h2 − h1)
√

Ps, σ
2
r

))

×
[∫ v2

−∞
G
(
y − h2f(u), σ2

s

)
dy

]

du,

(2.61)

subject to f 2(u) ≤ P̆r. As the constraint on f(u) is imposed on each u, minimizing

(2.61) is equivalent to

min
f(u)

G
(

u− (h1 + h2)
√

Ps, σ
2
r

)[∫ v1

−∞
G
(
y − h1f(u), σ2

s

)
dy +

∫ v2

−∞
G
(
y − h2f(u), σ2

s

)
dy

]

− G
(

u− (h1 − h2)
√

Ps, σ
2
r

) [∫ v1

−∞
G
(
y − h1f(u), σ2

s

)
dy +

∫ v2

−∞
G
(
y + h2f(u), σ2

s

)
dy

]

− G
(

u + (h1 − h2)
√

Ps, σ
2
r

) [∫ v1

−∞
G
(
y + h1f(u), σ2

s

)
dy +

∫ v2

−∞
G
(
y − h2f(u), σ2

s

)
dy

]

+ G
(

u + (h1 + h2)
√

Ps, σ
2
r

) [∫ v1

−∞
G
(
y + h1f(u), σ2

s

)
dy +

∫ v2

−∞
G
(
y + h2f(u), σ2

s

)
dy

]

,

subject to f2(u) ≤ P̆r.

(2.62)
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It is complicated to solve (2.62) exactly. We consider a high SNR approximate solution

instead. When u > h1

√
Ps, the objective function in (2.62) is dominated by the first

term. Therefore, we should choose f(u) =
√

P̆r if u > h1

√
Ps. When 0 ≤ u < h1

√
Ps,

the objective function in (2.62) is dominated by the second term. Minimizing the

second term we obtain

f(u) =
v1 − v2

h1 + h2
. (2.63)

In high SNR, the sum of average probabilities of both terminals (2.61) is dominated

by

Q

(

h1

√

P̆r − v1

σs

)

+ Q

(

h2

√

P̆r − v2

σs

)

+ 2Q

(
h2v1 + h1v2

(h1 + h2)σs

)

+ F (Ps, σr), (2.64)

where F (Ps, σr) is only a function of Ps and σr. Minimizing (2.64) over v1 and v2, we

obtain

v1 =
h2

1

h1 + h2

√

P̆r, v2 =
h2

2

h1 + h2

√

P̆r. (2.65)

Therefore, the optimal non-abs relay function is

f(u) =







√

P̆r, if u ≥ h1

√
Ps,

h1−h2

h1+h2

√

P̆r, if h1

√
Ps > u ≥ 0,

−f(−u), if u < 0.

(2.66)

Remarks:

• In [83], the peak power constraint is implicitly assumed. They do not show the

optimality of their relay function. We find that under a peak power constraint,

the ADF strategy is the optimal abs strategy, while the optimal non-abs strategy

is similar to the DF strategy (2.12) except for the power constraint.

• As with the average power constraint, the non-abs optimal relay may perform

better or worse than the abs optimal relay depending on the ratio P̆r/Ps and

the ratio h1/h2. The discussion is similar to that in Section 2.4. We do not

repeat it here.
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Figure 2.2: The optimized non-abs-based relay function at different SNRs and with
different values of h1 and h2.

2.7 Simulation Results

In this section, we compare the performance of different strategies with σ2
r = σ2

s and

Pr = Ps = 1 in all cases.

Fig. 2.2 shows the optimized non-abs-based relay function for different SNRs and

different values of h1 and h2. The relay operation behaves like the AF strategy at low

SNR and like the DF strategy (2.12) at high SNR. Different abs-based relay functions

f(u) are compared in Fig. 2.3, where for AAF we choose C =
√

Ps + σr/
√

2. Unlike

ADF with a hard limiter, the optimized relay adapts its transmit power according

to the signal strength it receives; This is the benefit of the average power constraint.

From Fig. 2.3, we can also see that when the SNR is small, the optimized relay

function gives a “V”-shaped behavior similar to that of the AAF strategy. As the

SNR increases, the behavior of the optimized relay function is more similar to the

one for the ADF strategy. This suggests that ADF performs well at high SNR while

AAF is effective at low SNR. Interestingly, the relay function of EF has almost the

same shape as the optimized relay function at all SNRs.

Fig. 2.4 compares the bit error rate (BER) performance of different abs-based and

non-abs-based strategies for BPSK when h1 = 1 and h2 = 0.8. We observe that the
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Figure 2.3: Comparison of function f(u) in different abs-based schemes with σ2
r = σ2

s ,
h1 = h2 = 1 and Pr = Ps = 1.

optimized non-abs-based (abs-based) relay performs like the AF (AAF) strategy at

low SNR and like the DF (ADF) strategy at high SNR. Also, EF performs close to

the optimized strategy for all SNR values. It can also be seen that in this scenario

non-abs-based strategies perform better than abs-based strategies at low SNR and

worse than abs-based strategies at high SNR. The reason for this is that non-abs-

based strategies do not exploit the a priori information about the signal available at

each terminal providing; This a priori information produces extra redundancy, which

is useful particularly at low SNR. A similar behavior is observed in Fig. 2.5, where

the case h1 = 1 and h2 = 0.5 is considered. Compared to the results for h1 = 1

and h2 = 0.8 in Fig. 2.4 the threshold SNR below which non-abs-based strategies

perform better than abs-based strategies is increased. Thus, non-abs-based strategies

are beneficial for asymmetric channels.

In Fig. 2.6 we compare the BER for the AF, AAF, and ADF strategies on the two-

way relay channel in the high SNR regime, where we assume that σ2
r = σ2

s , h1 = h2

and Pr = Ps = 1. For the AAF strategy we set C = 1. Also, we do not include the
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Figure 2.4: Performance comparison between different abs-based and non-abs-based
strategies when h1 = 1 and h2 = 0.8, Pr = Ps = 1. The subfigure shows the crossover
between the abs-based and non-abs-based strategies.
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Figure 2.5: Performance comparison between different abs-based and non-abs-based
strategies when h1 = 1 and h2 = 0.5, Pr = Ps = 1. The subfigure shows the crossover
between the abs-based and non-abs-based strategies.

optimized relay and EF strategies as their performances are very close to ADF at

high SNR. We observe from Fig. 2.6 that AAF has a 2 dB gain over AF at a BER of

10−8. Finally, we can see from Fig. 2.6 that ADF performs best, where a 2.7 dB gain

over AAF at a BER of 10−8 can be observed.

In Fig. 2.7 the average error probability of ADF and DF is compared for three

different cases. The plotted results agree with our analysis in Section 2.4. Fig. 2.8

compares the behavior of f(u) for AAF, ADF, and EF strategies for σ2
r = σ2

s , where

both terminals use 4-PAM, i.e., M = |V ′| = 4, 5, 6, 7, and the SNR is chosen to be

5/σ2
r . The behavior of the relay function in Fig. 2.8 resembles the one in Fig. 2.3 for

different strategies. In particular, EF and AAF perform similarly when the SNR is

low. As the SNR increases, the EF relay function gives performance resemblig the

behavior of the ADF relay function.

In Fig. 2.9 the symbol error rate (SER) of different relay functions using ADF

and AAF is compared, where the same parameters as in Fig. 2.8 are used. The
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40

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

u

f(
u)

EF SNR=5 dB 

EF SNR=15 dB 

AAF

ADF

Figure 2.8: Comparison of relay functions for AAF, ADF, and EF with σ2
r = σ2

s where
both terminals use 4-PAM.

0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

ADF, M=4, (50)
ADF, M=4, (51)
ADF, M=5
ADF, M=6
DF
AAF, M=4, (52)
AAF, M=5
AAF, M=6
AF

2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

Figure 2.9: SER comparison of ADF and AAF relay functions for 4-PAM with M =
|V ′| = 4, 5, 6, 7 and σ2

r = σ2
s . The subfigure shows the crossover between different

strategies.
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performance degrades as M increases. In Fig. 2.9, a comparison between the mappings

in (2.50) and (2.51) shows almost identical performance. There are two factors that

affect the performance of relay functions with different M . First, a small M indicates

a higher compression at the relay, which results in power savings. Second, when M is

small, a detection error at the relay may affect the overall performance. At high SNR,

it is clear that the power savings dominate the performance of ADF. At low SNR, we

find that the performance degrades as M decreases, which means that M = 7 achieves

the best performance. For example, at SNR= 0 dB, the SERs for M = 4, 5, 6, 7 are

0.6904, 0.6472, 0.6428, and 0.6146, respectively. This observation generalizes the one

for the BPSK case, where the reason for this behavior is again that the redundancy

in the constellation set increases for larger M .

2.8 Conclusion

We have analyzed and optimized relaying strategies for memoryless TWRCs. In

particular, we propose abs-based strategies where the relay processes the absolute

value of the received signal. These techniques generally outperform non-abs-based

strategies in the moderate to high SNR regime since they take into account the

side information available at the terminals; This allows for additional power savings.

Specifically, we have considered abs- and non-abs-based AF, DF and EF schemes,

and also the optimization of the nonlinear processing function at the relay. We

found that the non-abs-based DF performs better than the abs-based DF when the

two-way channel is very asymmetric or the relay has greater power than the two

terminals. ADF performs better than DF when the relay has roughly the same

power as the terminals. Although this work does not consider channel coding, the

obtained expressions for the error probability allow for a rough determination of the

required rate for an end-to-end channel code. Extensions of these results to higher

order constellations such as QAM and PAM have also been presented, where similar

observations can be made.
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2.9 Appendix

In this appendix, we prove Theorem 2.1. We first give the following lemma.

Lemma 2.3 Let Z be a normal random variable with mean 0, and let pU(µ), pV (µ)

denote two arbitrary probability density functions associated with the random variables

U and V that are independent of Z, respectively. If there exists a threshold t for

which pU(µ)−pV (µ) is nonnegative for µ ≥ t and negative otherwise, then there exits

a threshold t′ for which pU+Z(ν) − pV +Z(ν) is nonnegative for ν ≥ t′ and negative

otherwise.

Proof. Denote by σ2 the variance of Z. The result follows since

pU+Z(ν)− pV +Z(ν)

=

∫ ∞

−∞
pZ(ν − µ)pU (µ)dµ −

∫ ∞

−∞
pZ(ν − µ)pV (µ)dµ

=

∫ ∞

−∞

1

σ
√

2π
exp

{

−(ν − µ)2

2σ2

}

(pU (µ)− pV (µ)) dµ

=
1

σ
√

2π
exp

{

−ν2 − 2tν

2σ2

}(∫ t

−∞
exp

{
2ν(µ− t)− µ2

2σ2

}

(pU (µ)− pV (µ)) dµ

+

∫ ∞

t
exp

{
2ν(µ− t)− µ2

2σ2

}

(pU(µ)− pV (µ)) dµ

)

where 1
σ
√

2π
exp

{

−ν2−2tν
2σ2

}

> 0, and both integral terms are nondecreasing functions

of ν.

Proof of Theorem 2.1. For brevity let a , h1

√
Ps+h2

√
Ps and b , h1

√
Ps−h2

√
Ps.

Case 1: Non-abs strategies. When x1 =
√

Ps, terminal 1’s error-minimizing detec-

tion rule is to decide x2 =
√

Ps if pf(a+N)+Z1
(y1)−pf(b+N)+Z1

(y1) ≥ 0 and x2 = −√Ps

otherwise. Since f(U) is an increasing function of U , we can apply Lemma 2.3 with

U = f(a + N), V = f(b + N) and Z = Z1 to give the result.

Case 2: Abs strategies. When x1 =
√

Ps, terminal 1’s error-minimizing detection

rule is to decide x2 =
√

Ps if pf(|a+N |)+Z1
(y1) − pf(|b+N |)+Z1

(y1) ≥ 0 and x2 = −√Ps

otherwise. Note that

p|a+N |(µ)− p|b+N |(µ) = pa+N (µ) + pa+N (−µ)− pb+N (µ)− pb+N (−µ) = C(µ) (D(µ)− 1)
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where C(µ) = (exp{−(µ− b)2/2σ2}+ exp{−(−µ − b)2/2σ2}) /σ
√

2π > 0 and

D(µ) =
exp{−(µ− a)2/2σ2}+ exp{−(−µ− a)2/2σ2}
exp{−(µ− b)2/2σ2}+ exp{−(−µ− b)2/2σ2}

= exp

{−a2 + b2

2σ2

}
exp{µa/σ2}+ exp{−µa/σ2}
exp{µb/σ2}+ exp{−µb/σ2}

is an increasing function for µ ≥ 0. Thus, there exists a threshold t such that

p|a+N |(µ) − p|b+N |(µ) is nonnegative for µ ≥ t and negative otherwise. Since f(|U |)
is a non-decreasing function of |U |, we can apply Lemma 2.3 with U = f(|a + N |),
V = f(|b + N |) and Z = Z1 to give the result.

In both cases, by symmetry, threshold detection is also optimal when x1 = −√Ps.

The result for terminal 2 follows by symmetry. �
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Chapter 3

Distributed Scheduling in Wireless
Networks Exploiting Broadcast
and Network Coding

In this chapter, we consider cross-layer optimization in wireless networks with wire-

less broadcast, focusing on the problem of distributed scheduling of broadcast links.

The goal is to integrate various protocol layers into a unified framework to take the

advantage of wireless broadcast.

3.1 Introduction

Optimization-based cross-layer design for wireless networks has attracted much in-

terest recently, see, e.g., [19,21,55,63] and the references therein. Joint optimization

of multiple protocol layers can substantially increase the end-to-end throughput, or

reduce power consumption. Most existing works on cross-layer design do not incor-

porate the exploitation of the wireless broadcast advantage where transmissions from

an omnidirectional antenna can be received by any nodes that lie within its com-

munication range. This broadcast advantage can result in throughput improvement

and power saving especially with multicasting [78]. In this chapter we consider dis-

tributed algorithms for wireless link scheduling that take the broadcast advantage

into account. We apply this to a distributed joint optimization of multicast network

coding, rate control, and channel access.
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We model the wireless network as a directed hypergraph, with wireless broadcast

being abstracted as a hyperarc. Scheduling with the broadcast advantage is a hard

problem in general. It forms a component of the algorithm proposed in [42], where

it is assumed to be solved by a central controller. In this chapter we focus on a

simple, so-called primary interference model [35]. Under this interference model, any

valid link schedule corresponds to a hypergraph matching and the optimal schedule

corresponds to a maximum weighted hypergraph matching.

The maximum weighted hypergraph matching problem is, however, NP-complete

[56]. We thus propose two classes of distributed approximation algorithms to treat the

link scheduling problem under the primary interference model. The first algorithm is

the locally greedy algorithm, which chooses the locally heaviest hyperedge. We show

that this algorithm returns a hypergraph matching with weight at least a constant fac-

tor of the maximum weighted hypergraph matching, giving a stability region within

a constant factor of the region achievable with any hypergraph matching algorithm.

The second algorithm is a randomized algorithm, which always returns a maximal hy-

pergraph matching. This gives a stability region for single hop communication that is

at least 1/K of the region achievable with any hypergraph matching algorithm, where

K is the maximum number of nodes in any hyperedge. The randomized algorithm

can be readily turned into a constant-time algorithm.

We also provide a generalization of existing results in cross-layer optimization

for multicast network coding in wireless networks. Our cross-layer design uses the

framework of utility maximization, see, e.g., [21], which maximizes the aggregate user

utilities subject to flow conservation and scheduling constraints on the hypergraph.

We then apply duality theory to decompose the problem vertically into rate control,

network coding and session scheduling, and link scheduling subproblems, which inter-

act through dual variables. Based on this decomposition, a distributed subgradient

algorithm is proposed, whose session and link scheduling components are similar to

the back-pressure algorithm in [42], which does not incorporate rate control.

The rest of this chapter is organized as follows. In Section 3.2, we briefly review

some related work. Preliminaries are presented in Section 3.3. In Section 3.4, we
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present our cross-layer design algorithm. Link scheduling algorithms for the primary

interference model are given in Section 3.5. Simulation results are presented in Section

3.6. We conclude this chapter in Section 3.7.

3.2 Related Work

Extensive research has been devoted to the cross-layer design for wireless networks

but usually without considering network coding, see, e.g., [19,21,55,63]. Similar cross-

layer design algorithm is proposed in [17, 55, 63, 64], and in particular, the impact of

imperfect scheduling is also studied in [55]. In [64], the network capacity region is

characterized, and a joint routing and power allocation policy is proposed to stabilize

the system whenever the input rates are within this capacity region.

Network coding extends the functionality of network nodes from storing/forwarding

packets to performing algebraic operations on received data. Starting with the work

of [7], various potential benefits of network coding have been shown, including robust-

ness to link/node failures and packet losses [57]. It is especially preferred in wireless

networks, where the bandwidth is scarce. Distributed random linear coding schemes,

see, e.g., [40], have made practical implementation of network coding possible.

For optimization with network coding, Lun et. al. [58] propose a dual subgradient

method for the problem of minimum cost multicasting with network coding. For

rate control, the approach in [19] is extended to network coding in [18]. In [42], the

rate stability region for a wireless network with and without correlated sources is

characterized. In [70], medium access control and network coding is considered and

broadcast advantage is also exploited. A set of conflict-free transmission schedules is

predetermined, and the scheduling uses a suboptimal time division mechanism.

The primary interference model was introduced in [35]. In [74], randomized al-

gorithms are proposed, which achieve the capacity region with reduced complexity

by comparing a random matching with the current matching. In [61], a distributed

implementation of the algorithm in [74] is proposed. Scheduling algorithms based on

maximal matching are also considered in works such as [55]. These matching-based
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algorithms do not consider the broadcast advantage.

3.3 System Model

A wireless network is modeled as a directed hypergraph H = (N ,A), where N is the

set of nodes and A is the set of hyperarcs. A hyperarc is a pair (i, J), with i ∈ N
the start node and J ⊆ N the set of end nodes, representing a broadcast link from

node i to nodes in J . We assume that (i, J) is lossless, i.e., it does not experience

packet erasures. When |J | = 1 for all (i, J) ∈ A, the hypergraph reduces to the

conventional graph model. A setM of multicast sessions is transmitted through the

network. Each session m ∈ M is associated with a set Sm ⊂ N of sources and a set

Tm ⊂ N of sinks. In session m, each source s ∈ Sm multicasts xms bits per second to

all the sinks in Tm. By the flow conservation condition,
∑

{J |(i,J)∈A}

∑

j∈J

gmst
iJj −

∑

j∈N

∑

{i|(j,I)∈A, i∈I}
gmst
jIi = σms

i , ∀i ∈ N , s ∈ Sm, t ∈ Tm, m ∈M, (3.1)

where σms
i = xms if i = s, σms

i = −xms if i = t, σms
i = 0 otherwise, and gmst

iJj is the

information rate from source s to sink t in session m over (i, J) and is intended to

node j ∈ J .

Let S(τ) = {Si,j(τ)} denote the matrix process of channel states, where Si,j(τ)

represents the channel state from node i to node j at time τ . In every time slot, node

i determines transmission rates on each hyperarc (i, J) ∈ A by allocating a power

matrix P = {PiJ} subject to a total power constraint
∑

(i,J)∈A
PiJ ≤ P tot

i , ∀i ∈ N , (3.2)

where P tot
i is the maximal total power allowable at node i. Hyperarc rates are deter-

mined by a rate-power curve r(P , S) = {riJ(P , S)}, where riJ(P , S) determines the

rate at which packets, injected into hyperarc (i, J), are received by all the nodes in J .

By time-sharing, the capacity region is the convex hull Co(r(P, S)) of all achievable

rate vectors r(P , S).

We assume that network coding is done only across packets of the same multicast

session. With this setting, we define fm
iJ as the physical flow of session m on hyperarc
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Figure 3.1: Wireless butterfly network.

(i, J) as opposed to the virtual flow gmst
iJj in (3.1). By the flow sharing property of

network coding [7] and the rate constraint, we have the following two constraints

∑

s∈Sm

∑

j∈J

gmst
iJj ≤ fm

iJ , ∀(i, J) ∈ A, m ∈M, t ∈ Tm, (3.3)

∑

m∈M
fm

iJ ≤ riJ , ∀(i, J) ∈ A, (3.4)

where {riJ} ∈ Co(r(P, S)), with riJ the capacity of the hyperarc (i, J).

To illustrate this, consider the network in Figure 3.1. There is a single multicast

session m with two source nodes and two sink nodes. The hyperarc (s1, {r, t1}) carries

actual flow fm
s1{r,t1} and virtual flows gms1t1

s1{r,t1}t1 to sink t1, gms1t1
s1{r,t1}r to sink t1 via r, and

gms1t2
s1{r,t1}r to sink t2 via r. The flow sharing condition (3.3) for this hyperarc is

gms1t1
s1{r,t1}t1 + gms1t1

s1{r,t1}r ≤ fm
s1{r,t1}, gms1t2

s1{r,t1}r ≤ fm
s1{r,t1} (3.5)

3.4 Cross-Layer Design with Broadcast Advantage

and Network Coding

In this section, we derive a cross-layer design by using the utility maximization frame-

work. The resulting algorithm is an extension of [18,42]. Each source s of session m is

associated with a utility function Ums(x
ms), which is assumed to be strictly concave,
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non-decreasing and twice continuously differentiable. We formulate network resource

allocation as the following optimization problem

max
xms,gmst

iJj ,fm
iJ ,riJ ,PiJ

∑

m∈M,s∈Sm

Ums(x
ms)

s.t.
∑

{J |(i,J)∈A}

∑

j∈J

gmst
iJj −

∑

j∈N

∑

{i|(j,I)∈A, i∈I}
gmst
jIi = σms

i ,

∀i 6= t, s ∈ Sm, t ∈ Tm,m ∈M,
∑

s∈Sm, j∈J

gmst
iJj ≤ fm

iJ , ∀(i, J), t ∈ Tm,m ∈M,

∑

m∈M
fm

iJ ≤ riJ , ∀(i, J),

{riJ} ∈ Co(r(P , S)),
∑

{J |(i,J)∈A}
PiJ ≤ P tot

i , ∀i,

(3.6)

where the constraints come from equations (3.1)-(3.4). Here we do not include flow

conservation equations at destinations, which is automatically guaranteed by the flow

conservation at the source and intermediate nodes. Problem (3.6) is strictly convex

and has a unique solution with respect to source rates xms. By relaxing only the

first set of constraints, the partial dual function to (3.6) can be decomposed into the

following two subproblems

φ1(q) = max
xms

∑

m,s

Ums(x
ms)−

∑

m,s

(
∑

t

qmst
s

)

xms, (3.7)

φ2(q) = max
gmst

iJj ,fm
iJ ,riJ ,PiJ

∑

i,m,s,t

qmst
i




∑

{J |(i,J)∈A}

∑

j∈J

gmst
iJj −

∑

j∈N

∑

{i|(j,I)∈A, i∈I}
gmst
jIi



 ,

subject to
∑

s∈Sm, j∈J

gmst
iJj ≤ fm

iJ ,
∑

m∈M
fm

iJ ≤ riJ , {riJ} ∈ Co(r(P , S)),

∑

{J |(i,J)∈A}
PiJ ≤ P tot

i ,

(3.8)

where qmst
i is the Lagrange multiplier at node i for source s and sink t of session m

and will be interpreted as congestion price. The first subproblem is rate control. The

second is joint network coding and scheduling. Thus, by dual decomposition, the

flow optimization problem decomposes into separate “local” optimization problems

of transport, and network/link layers, respectively. The two subproblems interact
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through the dual variable q.

Rate Control: At time τ , given dual variable q(τ), each source adjusts its sending

rate according to the aggregate dual variable
∑

t q
mst
s that is generated locally at the

source

xms(τ + 1) = U ′−1
ms

(∑

t
qmst
s (τ)

)

. (3.9)

Session Scheduling and Network Coding: Note that (3.8) is equivalent to the

following problem

max
gmst

iJj ,fm
iJ ,riJ ,PiJ

∑

(i,J),m,t

∑

s,j∈J

gmst
iJj

(
qmst
i − qmst

j

)
,

subject to
∑

s, j∈J

gmst
iJj ≤ fm

iJ ,
∑

m∈M
fm

iJ ≤ riJ , {riJ} ∈ Co(r(P , S)),
∑

{J |(i,J)∈A}
PiJ ≤ P tot

i ,

= max
fm

iJ ,riJ ,PiJ

∑

(i,J),m

fm
iJ

∑

t

max
s,j∈J

[
qmst
i − qmst

j

]+
,

subject to
∑

m∈M
fm

iJ ≤ riJ , {riJ} ∈ Co(r(P , S)),
∑

{J |(i,J)∈A}
PiJ ≤ P tot

i ,

(3.10)

where [·]+ denotes the projection onto R
+. The last equality in (3.10) comes from the

fact that maxgmst
iJj

∑

s,j∈J gmst
iJj

(
qmst
i − qmst

j

)
, subject to

∑

s, j∈J gmst
iJj ≤ fm

iJ is a linear

program, so we can always choose an extreme point solution, i.e.,

gmst
iJj =







fm
iJ , if s = ŝmt, j = ĵmt, and qmst

i − qmst
j ≥ 0,

0, otherwise,
(3.11)

where {ŝmt, ĵmt} = arg maxs,j∈J

(
qmst
i − qmst

j

)
.

Let m̂iJ = arg max
m

∑

t

max
s,j∈J

[
qmst
i − qmst

j

]+
be the session with the maximum aggre-

gate differential link prices over hyperarc (i, J). For each hyperarc (i, J), a random

linear combination of packets from sources ŝm̂iJ t, ∀t ∈ Tm̂iJ
, in session m̂iJ is broad-

cast to all nodes in J at the rate of riJ , where the packets received by node jm̂iJ t are
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intended for sink t in session m̂iJ . This is equivalent to solving (3.8) by

gmst
iJj (q) =







riJ , if m = m̂iJ , s = ŝmt, j = ĵmt, and max
s,j∈J

[

qmst
i − qmst

j

]+
> 0,

0, otherwise.
(3.12)

Link Scheduling and Power Control: Define wiJ = max
m

∑

t

max
s,j∈J

[
qmst
i − qmst

j

]+
.

The joint link scheduling and power control problem becomes

max
r,P

∑

(i,J)∈A
wiJriJ, s.t. {riJ}∈Co(r(P , S)),

∑

{J |(i,J)∈A}
PiJ ≤P tot

i . (3.13)

The problem (3.13) is in general a difficult global optimization problem. In Section

3.5, we will discuss a special interference model such that (3.13) can be solved in a

distributed fashion in polynomial time.

Note that our scheduling problem (3.12)-(3.13) generalizes the back-pressure pol-

icy in [64, 75] by taking into account the differential backlog between node i and

all nodes j ∈ J instead of only a single node. Clearly, when J = {j}, our policy

reduces to those in [64, 75]. The scheduling problem (3.12)-(3.13) is similar to that

in [42], where the former is derived using the optimization framework while the latter

is obtained by good intuition.

Dual Variable Update: At time τ + 1, each node i updates its dual variable q

according to the subgradient algorithm

qmst
i (τ + 1) =






qmst
i (τ) + γτ

(

xms(τ)− ∑

{J |(i,J)∈A}

∑

j∈J
gmst
iJj (q(τ)) +

∑

j∈N

∑

{i|(j,I)∈A, i∈I}
gmst
jIi (q(τ))

)

,

if i = s,

qmst
i (τ) + γτ

(

∑

j∈N

∑

{i|(j,I)∈A, i∈I}
gmst
jIi (q(τ))− ∑

{J |(i,J)∈A}

∑

j∈J

gmst
iJj (q(τ))

)

,

otherwise,

(3.14)

where γτ is a positive stepsize. After node i updates qmst
i , it passes the value to all its

neighbors. Note that the algorithm (3.9)-(3.14) only requires nodes to communicate
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with neighbors.

Now, we discuss the convergence and optimality of this cross layer design. Let

the primal function (i.e., the total achieved network utility) be P (x) and let x∗ be an

optimal value. Let q∗ be a dual optimal solution. Define x̄(τ) := 1
τ

∑τ
k=1 x(k), the

average data rate up to time τ , and q̄(τ) := 1
τ

∑τ
k=1 q(k), the average dual variable

(congestion price) up to time τ . Let g(q) be a subgradient of dual function φ(q). By

using results on the convergence of the subgradient method, see, e.g., [17,63], we can

show the following result when the joint link scheduling and power control problem

(3.13) is solved exactly.

Theorem 3.1 If the norm of the subgradients is uniformly bounded, i.e., there exists

g such that ‖g(q)‖2 ≤ g for all q, and a constant stepsize γ is adopted in (3.14), then

the following inequalities hold

lim sup
τ→∞

φ(q̄(τ)) ≤ φ(q∗) +
γg

2

2
, (3.15)

lim inf
τ→∞

P (x̄(τ)) ≥ P (x∗)− γg
2

2
. (3.16)

Theorem 3.1 implies that the average source rate and congestion price approach

the corresponding optima when the stepsize γ is small enough. The proof is omitted

because it is similar to that in [17]. We may also establish the convergence of our

cross-layer design in a slightly different sense, by using the standard convergence

results for the subgradient method [73].

3.5 Link Scheduling

In this section, we study the joint link scheduling and power control problem (3.13)

for networks with primary interference. A system is stable if the queue lengths at

all nodes remain finite all the time. Note that the queue length at node i can be

written as qmst
i /γ for a constant stepsize γ [55]. A rate vector ~x = {xms} is feasible if

there exists a scheduling policy that stabilizes the system with ~x. We are interested

in those scheduling policies that can stabilize the system for any rate vector within
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ηΛ, where Λ denotes the network capacity region characterized by the constraints in

(3.6). η ∈ (0, 1] is a constant that characterizes the performance of the scheduling

policy. For example, in Theorem 3.8, which will be presented in Section 3.5.2, η =

max{ 1
K

, 1
κ
} for Algorithm 3.1 and Algorithm 3.2. By following the same argument

as in [55], we can show that the performance of the joint design with each of our

proposed scheduling algorithms is not worse than the design specified by the following

optimization problem

max
∑

m∈M,s∈Sm

Ums(x
ms), subject to ~x ∈ ηΛ, (3.17)

with appropriate η that is determined by the worst-case performance bound of the

corresponding scheduling algorithm.

3.5.1 Problem Formulation

The primary interference model [35] models a situation where each node is equipped

with a single transceiver and neighboring nodes can transmit simultaneously using

orthogonal CDMA or FDMA channels. Under this model, only those links that do not

share nodes can transmit at the same time. Without using the broadcast advantage,

any feasible schedule corresponds to a matching [75]. With the broadcast advantage,

any feasible schedule corresponds to a hypergraph matching of the hypergraph H,

and (3.13) reduces to the maximum weighted hypergraph matching1 problem.

Let Π denote the set of all hypergraph matchings of the hypergraph H. Assume

that if hyperarc (i, J) is active, it transmits at a given rate riJ(P tot
i , S). We can

represent a hypergraph matching π as an |A|-dimensional rate vector ξπ

ξπ
iJ =







riJ(P tot
i , S), if (i, J) ∈ π,

0, otherwise.
(3.18)

The achievable rate region Co(r(P, S)) is then written as

Co(r(P , S)) ,

{

r : r =
∑

π∈Π

απξπ, απ ≥ 0,
∑

π∈Π

απ = 1

}

. (3.19)

1A hypergraph matching is defined as a set of hyperarcs with no pair incident to the same node.



54

Note that Co(r(P , S)) is a polytope. So, we can always pick up an extreme point max-

imizer for the scheduling problem (3.13), which corresponds to a maximum weighted

hypergraph matching in H.

We first transform the directed hypergraph to an equivalent undirected hypergraph

H̃ = (V, Eh), where H and H̃ have the same node set. Note that hyperarcs (i, J) and

(j, I) mutually interfere and have the same interference/contention relations with

other hyperarcs if {i} ∪ J = {j} ∪ I. Define an undirected hyperedge e ⊆ V in

Eh, which corresponds to all hyperarcs (i, J) such that e = {i} ∪ J . The weight of

hyperedge e ∈ Eh is

w̃e = max
{(i,J)∈A, {i}∪J=e}

wiJriJ(P , S). (3.20)

The problem (3.13) is then equivalent to the maximum weighted hypergraph matching

(or maximum weighted set packing) problem on the weighted hypergraph H̃.

Unlike the maximum weighted matching problem on graphs which can be com-

puted in polynomial time, the maximum weighted hypergraph matching problem is

NP-complete [56]. Also, we would like distributed algorithms. Both factors suggest

that we should focus on approximation algorithms.

Let G = (V, E) be an undirected graph with the same node set as H. We assume

that there exists an edge between node i and node j if and only if min{SNRij , SNRji} ≥
λ, where λ is a predefined threshold. This means that if i can hear j, then j can hear

i. Let N(v) denote the neighbor node set of node v in G. We call G the connectivity

graph in the following.

3.5.2 Local Optimal Algorithms

A linear time approximation algorithm with bounded worst-case performance for

maximum weighted graph matching is proposed in [66], which adds a locally optimal

edge into the matching at each step. Motivated by [66], our algorithm adds a locally

heaviest hyperedge into the hypergraph matching at each step.

Definition 3.2 (locally heaviest hyperedge): A hyperedge e is a locally heaviest

hyperedge if its weight is at least as large as the weight of all adjacent hyperedges, i.e.,
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w̃e ≥ w̃f for all f ∈ Eh such that f ∩ e 6= ∅.

The distributed local optimal hypergraph matching algorithm (DLOHMA) is given

in Algorithm 3.1. In Algorithm 3.1, the set Γi keeps track of the set of neighbors of

node i that are still not matched, which is initialized to be all its neighbors in G. Node

i also maintains, for each neighbor j ∈ Γi, the set Γ
(i)
j which keeps track of the set

of unmatched neighbors of j, and knows the queue lengths of its two hop neighbors.

This allows node i to compute the weight w̃e of any edge e involving itself, as defined

in (3.20). The vector Ci counts the number of matching e∗i messages that have been

received, which is initialized to the null vector (line 3). Each node i broadcasts a

matching e∗i message, where e∗i = {i} ∪ J∗ is the maximum weight hyperedge in H̃
containing i (lines 5-8). If node i receives |J∗| matching e∗i messages, hyperedge e∗i is

added to the hypergraph matching as e∗i is a locally heaviest hyperedge. It broadcasts

a drop e∗i message to indicate that i is matched and unavailable, and at the same time

to tell all nodes in e∗i that they are matched (lines 26-28). If node i receives a drop e

message and node i is not in e, it first checks whether some nodes of e are in Γi. If so,

i is the direct neighbor of some nodes in e and i broadcasts the drop e message to let

i’s neighbors (two-hop neighbors of the nodes in e) know that all the nodes in e are

matched. If not, i does not need to forward the drop message. Node i then removes

the nodes in e from Γi and all Γ
(i)
j , j ∈ Γi. Furthermore, if some nodes in J∗ are in

e, the hyperedge e∗i is dropped. Node i then finds another candidate set J∗, and it

broadcasts a new matching e∗i message (lines 16-23). If i receives a drop e message

and node i is in e, i will broadcast a drop e message if it did not do so before, i.e., Γi

is nonempty (line 23).

Note that some nodes in the locally heaviest hyperedge may not be able to hear

each other. These nodes cannot receive |J∗| matching e messages and conclude that e

is the locally heaviest hyperedge. But at least one node can hear all the other nodes

in the hyperedge. This is the reason why we broadcast a drop e message in line 27.

In Algorithm 3.1, we assume that all hyperedges have different weights. If they do

not, we can always break ties by adding a small constant ǫe to we such that ǫe 6= ǫe′
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for all e 6= e′ in E . For example, we can change wiJ or riJ by a small constant. We

also assume that the cardinality of all hyperedges in Eh is bounded from above by a

constant K. Let κ = maxm∈M |Tm|+ 1.
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DLOHMA: (G)
for each node i ∈ V do1

Broadcast the set {SNRij|j ∈ N(i)} to all its neighbor nodes ;2

Set Ci = ∅, Γi = N(i), and Γ
(i)
j = N(j), ∀j ∈ N(i);3

end4

for each node i ∈ V do5

Find a node set J∗ by J∗ = {j∗} ∪ L∗ − i where j∗, L∗ are obtained via6

(j∗, L∗) = arg max
j∈Γi∪{i},

{

L|L⊆Γ
(i)
j , i∈L

}
wjLrjL(P , S), (3.21)

and wjL, rjL are defined in (3.13) ;
if J∗ 6= ∅ then Broadcast a matching e∗i = {i} ∪ J∗ message;7

end8

while ∃i, Γi 6= ∅ do9

if node i receives a message m which is has not received then10

switch m do11

case matching e12

Ci(e) = Ci(e) + 1;13

end14

case drop e15

if i /∈ e then16

if e ∩ Γi 6= ∅ then Broadcast a drop e message;17

Remove the nodes in e from Γi and all Γ
(i)
j , j ∈ Γi;18

if e ∩ J∗ 6= ∅ then19

Find a node set J∗ by (3.21);20

if J∗ 6= ∅ then Broadcast a matching e∗i = {i} ∪ J∗
21

message;
end22

else if Γi 6= ∅ then Broadcast a drop e message, and set Γi = ∅;23

end24

end25

if J∗ 6= ∅ and Ci(e
∗
i ) = |J∗| then26

Broadcast a drop e∗i message, and set Γi = ∅;27

end28

end29

end30

Algorithm 3.1: Distributed local optimal algorithm.

Proposition 3.3 The hyperedge e∗i in line 26 is a locally heaviest hyperedge.

Proof. From (3.21), w̃e ≥ w̃f for any f that contains i. If node i receives |J∗|
matching e messages, we can conclude that w̃e ≥ w̃f for any f that contains i.

Therefore, we have w̃e ≥ w̃f for any f such that f ∩ e 6= ∅, and e is a locally heaviest

hyperedge.
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Proposition 3.4 In Algorithm 3.1, each node i broadcasts at most
∑

j∈N(i) |N(j)|+
|N(i)| messages.

Proof. When the algorithm begins, node i first broadcasts a matching message

(line 7). After that it broadcasts a matching message only when it receives a drop

e message from one of its neighbors and it is not in e. It initiates a drop message

only when it gets matched. After that Γi = ∅ and no more messages will be sent.

It forwards a drop e message only when i /∈ e and e ∩ Γi 6= ∅. From Algorithm 3.1,

node i can receive at most N(i) drop messages initiated by its one-hop neighbors and
∑

j∈N(i)(|N(j)| − 1) drop messages initiated by its two-hop neighbors. Therefore, the

worst case is broadcasting
∑

j∈N(i) |N(j)| − 1 matching e messages and forwarding

|N(i)| drop e messages. This require broadcasting
∑

j∈N(i) |N(j)| + |N(i)| messages.

Unlike [66], where node i only sends a message to node j, we make use of the

broadcast property of wireless communication, which reduces the number of messages.

Theorem 3.5 The Algorithm 3.1 runs in O

(

K3|E|
min{κ,K}−1∑

k=1

(
K−1

k

)

)

time, and the

number of time-slots required to finish Algorithm 3.1 is O(|V|).

Proof. By Proposition 3.4, each node broadcasts at most
∑

j∈N(i) |N(j)| + |N(i)|
messages. Thus, there are at most

∑

i∈V
∑

j∈N(i) |N(j)|+ |N(i)| ≤ (2K +1)|E| broad-

casted messages. Each broadcasted message is received by at most K − 1 neighbor

nodes. Therefore, all the nodes receive at most (2K + 1)(K − 1)|E| messages. The

while loop of Algorithm 3.1 (lines 9-30) has at most (2K + 1)(K − 1)|E| iterations.

In each iteration, we need to perform (3.21) at most once. We can solve (3.21) by

performing the inner max first with fixed j and then the outer max by varying j. By

the definition of wiJ and assuming that riJ(P, S) in (3.13) is attained when i sends

common information to nodes in J , we can write the inner max of (3.21) as

max
{L|L⊆Γj , i∈L}

min
l∈L

rjl(P , S) ·
(
∑

t

max
s,l∈L

[
qmst
j − qmst

l

]+

)

, (3.22)

where rjl(P, S) is the point to point channel capacity of link (j, l). Clearly, given any

set L with |L| > κ− 1, we can always find a subset L′ of L such that the weight of L′



59

is at least that of L because
∑

t

max
s,l∈L

[
qmst
j − qmst

l

]+
in (3.22) contains at most κ − 1

summands, and

min
l∈L

rjl(P , S) ≤ min
l∈L′

rjl(P , S), ∀L′ ⊆ L. (3.23)

Therefore, we only need to consider those L with |L| ≤ κ − 1. The number of such

L’s is at most
min{κ,K}−1∑

k=1

(
K−1

k

)
. Also the number of j in Γi ∪ {i} is at most K. Thus,

the complexity2 of solving (3.21) is O

(

K
min{κ,K}−1∑

k=1

(
K−1

k

)

)

and the complexity of

Algorithm 3.1 is O

(

K3|E|
min{κ,K}−1∑

k=1

(
K−1

k

)

)

.

On the other hand, Algorithm 3.1 is a parallel algorithm. We assume that every

message broadcast takes one time-slot. It is easy to see that at least one locally

heaviest hyperedge always exists. Let t denote the time-slot that a locally heaviest

hyperedge e is found through line 26. Note that at least one node in a hyperedge can

hear all the other nodes. From this node, it takes at most one time-slot to let all the

nodes in e know that they are matched. It takes at most two time-slots to have this

drop e message propagate to all two-hop neighbors of the nodes in e. It takes one

time-slot for all one-hop and two-hop neighbors of nodes in e to send a new matching

message. Therefore, at the t + 4 time-slot, we can find the next locally heaviest

hyperedge. By removing the nodes in the locally heaviest hyperedge, the number of

nodes in H̃ is reduced at least by two. Therefore, by induction, the algorithm takes

at most O(|V|) time-steps.

If we do not consider the complexity of computing (3.21) as in [66], Algorithm

3.1 runs in linear time in the number of edges in the connectivity graph, i.e., |E| (not

|Eh|), which has the same complexity as the algorithms in [66] for finding a locally

heaviest matching. This is because we use the broadcast advantage of the wireless

communication.

Theorem 3.6 Algorithm 3.1 computes a hypergraph matching HMLO with at least

max{ 1
K

, 1
κ
} of the weight of a maximum weighted hypergraph matching HMMW.

2We can sort
[
qmst
j − qmst

l

]+
and rj,l beforehand so that computing max

l∈L

[
qmst
j − qmst

l

]+
and

min
l∈L

rj,l takes O(1) time.
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Proof. We show this by induction. Let HM i
LO be the hypergraph matching set after

the i-th hyperedge is added, and V i
LO be the set of matched vertices in HM i

LO. The

total weight of all the hyperedges in M is denoted as W (M). We need to show that

for all i, the following is true

W (HM i
LO) ≥ max

{
1

K
,
1

κ

}

W
(
{e|e ∈ HMMW, e ∩ V i

LO 6= ∅}
)
. (3.24)

Clearly, (3.24) is true for i = 0 as HM i
LO = ∅. We assume (3.24) is true for i = k− 1.

Let ek be the k-th hyperedge added into HMLO. By Proposition 3.3 and the definition

of locally heaviest hyperedge,

W (ek) ≥W (e), ∀e ∈ Eh, and e ∩ V k−1
LO = ∅. (3.25)

All the hyperedges adjacent to the nodes in V k−1
LO have been excluded according to

Algorithm 3.1. Therefore, we have

W (ek) ≥W (e), ∀e ∈ HMMW, e ∩ V k−1
LO = ∅, and e ∩ ek 6= ∅. (3.26)

Similar to the argument in Theorem 3.6, the size of ek is at most min{K, κ}. Thus,

ek intersects with at most min{K, κ} hyperedges in HMMW, which indicates

W (ek) ≥ max

{
1

K
,
1

κ

}

W
({

e|e ∈ HMMW, e ∩ V k−1
LO = ∅, and e ∩ ek 6= ∅

})

. (3.27)

Adding both sides of (3.27) and (3.25) with i = k − 1, we find (3.25) is still true for

i = k. Therefore, (3.25) is true for any i, and the theorem is proved.

In Algorithm 3.1, some matched nodes may not contribute much to a locally

heaviest hyperedge. When these nodes are matched in other hyperedges, they may

contribute more, which results in a hypergraph matching with higher weight. Instead

of choosing the hyperedge according to its weight, we use the average hyperedge

weight, i.e., w̄e = w̃e/|e|. We modify Algorithm 3.1 to Algorithm 3.2 by simply

replacing w̃e with w̄e. Both the complexity and the approximation ratio of Algorithm

2 are identical to those of Algorithm 3.1.

Theorem 3.7 Algorithm 3.2 computes a hypergraph matching HMLO2 with at least

max{ 1
K

, 1
κ
} of the weight of a maximum weighted hypergraph matching HMMW.

Proof. We show this by induction as Theorem 3.6. Let HM i
LO2 be the hypergraph

matching set after the i-th hyperedge is added, and V i
LO2 be the set of matched vertices
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in HM i
LO2. The total weight of all the hyperedges in M is denoted as W (M). We

need to show that for all i, the following is true

W (HM i
LO2) ≥ max

{
1

K
,
1

κ

}

W
(
{e|e ∈ HMMW, e ∩ V i

LO2 6= ∅}
)
. (3.28)

Clearly, (3.28) is true for i = 0 as HM i
LO2 = ∅. We assume (3.28) is true for i = k−1.

Let ek be the k-th hyperedge added into HMLO2. By Proposition 3.3 and the definition

of locally heaviest hyperedge, we have

w̄ek =
W (ek)

|ek| ≥
W (e)

|e| = w̄e, ∀e ∈ Eh, and e ∩ V k−1
LO2 = ∅. (3.29)

Therefore, we have

W (ek)

|ek| ≥
W (e)

|e| , ∀e ∈ HMMW, e ∩ V k−1
LO = ∅, and e ∩ ek 6= ∅. (3.30)

We then have

∑

{e∈HMMW, e∩V k−1
LO =∅, and e∩ek 6=∅}

W (e) =
∑

{e∈HMMW, e∩V k−1
LO =∅, and e∩ek 6=∅}

|e|W (e)

|e|

≤
∑

{e∈HMMW, e∩V k−1
LO =∅, and e∩ek 6=∅}

|e|W (ek)

|ek|

≤ min{K,κ}W (ek).

(3.31)

Thus, (3.31) gives

W (ek) ≥ max

{
1

K
,
1

κ

}

W
({

e|e ∈ HMMW, e ∩ V k−1
LO2 = ∅, and e ∩ ek 6= ∅

})

. (3.32)

Adding both sides of (3.32) and (3.28) with i = k − 1, we find (3.28) is still true for

i = k. Therefore, (3.28) is true for any i, and the theorem is proved.

Theorem 3.8 Both Algorithm 3.1 and Algorithm 3.2 stabilize the system for any

rate vector ~x such that ~x + ǫ ∈ max{ 1
K

, 1
κ
}Λ for an arbitrarily small ǫ ≻ 0.

Proof. We only show the stability of Algorithm 3.1. Algorithm 3.2 can be shown

similarly. Let ~x be any rate vector such that ~̌x + min{K, κ}ǫ ∈ Λ. Therefore, there

exist flow variables ǧmst
iJj , f̌m

iJ and rate variable ři,J such that the constraints in (3.6) are

all satisfied with xms = x̌ms + ǫ for an arbitrarily small ǫ ≻ 0. Let ~̃x = max{ 1
K

, 1
κ
}~̌x,

g̃mst
iJj = max{ 1

K
, 1

κ
}ǧmst

iJj , f̃m
iJ = max{ 1

K
, 1

κ
}f̌m

iJ and r̃i,J = max{ 1
K

, 1
κ
}ři,J . Let Qmst

i (τ)

be the amount of session m data queued at node i for source s and sink t at time
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τ , and µmst
iJj be the rate offered to sink t of session m from source s for destination j

over link (i, J). Define the Lyapunov function L(Q) =
∑

i,m,s,t (Q
mst
i )

2
. Suppose the

input rates are x̃ms. By following the same line of proof as in [39, 42], we obtain

E
{
L(Q(τ + T ))− L(Q(τ))|Q(τ)

}
≤ 2T 2B|N |−

2T
∑

i,m,s,t

Qmst
i (τ)



E







∑

{J |(i,J)∈A}

∑

j∈J

µmst
iJj −

∑

j∈N

∑

{i|(j,I)∈A, i∈I}
µmst

jIi

∣
∣
∣
∣
∣
∣

Q(τ)






− σ̃ms

i





(a)
=2T 2B|N | − 2T

∑

(i,J),m,t

∑

s,j∈J

E
{
µmst

iJj |Q(τ)
} (

Qmst
i −Qmst

j

)

+ 2T
∑

(i,J),m,t

∑

s,j∈J

g̃mst
iJj

(
Qmst

i −Qmst
j

)
− 2T

∑

m

|Sm|ǫ,

(3.33)

where B is a constant defined in [42]. Note that Qmst
i is a scaled version of qmst

i .

Thus, the second term in (a) is equivalent to the objective function in the session

scheduling problem (3.8). Let WMW and WLO be the values of the second term in (a)

with maximum weighted hypergraph matching and Algorithm 3.1, respectively. From

Theorem 3.6, we have WLO ≥ max{ 1
K

, 1
κ
}WMW . On the other hand, as maximum

weighted hypergraph matching solves (3.8) optimally, we have

WMW ≥
∑

(i,J),m,t

∑

s,j∈J

ǧmst
iJj

(
Qmst

i −Qmst
j

)
, (3.34)

where ǧmst
iJj is also a feasible solution to (3.8). Multiply both sides of (3.34) by

max{ 1
K

, 1
κ
}, we obtain

WLO ≥
∑

(i,J),m,t

∑

s,j∈J

g̃mst
iJj

(
Qmst

i −Qmst
j

)
. (3.35)

Applying the Lyapunov drift lemma of [64] shows that Algorithm 3.1 stabilizes

the system with rate vector ~̃x with ~̃x + ǫ ∈ max{ 1
K

, 1
κ
}Λ.

The complexity of algorithms 3.1 and 3.2 results in part from the need to propagate

te drop e message to all two-hop neighbors of the nodes in e. If we assume that any

node can receive the drop e message from its two-hop neighbors, the complexity in

Theorem 3.5 can be decreased by a factor of K.
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3.5.3 Randomized Algorithm

In this subsection, we consider randomized algorithms to find a maximal hypergraph

matching.

Definition 3.9 (maximal hypergraph matching): A hypergraph matching HM

is maximal if for each hyperedge e ∈ H̃, at least one of the following conditions is

satisfied:

• e ∩HM 6= ∅, i.e., e has non-empty intersection with at least one hyperedge in

HM .

• w̃e = 0, i.e., the number of packets waiting to be transmitted over the hyperedge

is zero.

A distributed randomized hypergraph matching algorithm (DRHMA) is given in

Algorithm 3.3. The input of Algorithm 3.3 is a graph G′, which is obtained after delet-

ing all the directed edges (i, j) with max
m,s,t

[
qmst
i − qmst

j

]+
= 0 from G. This guarantees

that all the hyperedges have positive weights. In Algorithm 3.3, the set Γi keeps track

of the set of neighbors of node i that are still not matched, which is initialized to be

all its neighbors in G (line 1). In each time slot, each unmatched node i attempts to

transmit with probability 1
|Γi| (line 5). This choice of probability value is similar to

that in [62] for the maximal independent sets problem. If i attempts to transmit, for

each neighbor j, it sends a matching request to j with probability 1/2 (line 6). If i

sends request to at least one neighbor, i.e., Si 6= ∅, it decides to transmit (line 9).

Ei denotes the hyperedge to be added into the matching initialized by i (line 10). If

node i does not transmit and it receives several matching requests from its neighbors,

it chooses one of them uniformly at random, say j, sets Γi = ∅ (i is matched), and

broadcasts an “i matched j” message (lines 13-18). Upon receiving an “i matched

j” message, node k checks whether k = j. If k = j, this indicates that i got the

matching request from k and it would like to join in the hyperedge initialized by k.

Thus, k sets Ek = Ek ∪ {i} (line 20). If k 6= j, this indicates that i got matched to

j and k should delete i from Γk (line 21). For each node i that decides to transmit,
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if finally Ei 6= ∅, Ei is added into the hypergraph matching, and we set Γi = ∅ (i is

matched). Algorithm 3.3 returns a maximal hypergraph matching.

DRHMA: (G′)
for each node i ∈ V do Set Γi = N(i);1

while ∃i, Γi 6= ∅ do2

for each node i ∈ V and Γi 6= ∅ do3

Let p be a random number generated according to the uniform4

distribution on [0, 1].
if p < 1

|Γi| then5

For each node j ∈ Γi, with probability 1
2 add j into set Si;6

end7

if Si 6= ∅ then8

Node i decides to transmit and it broadcasts matching messages to9

all nodes in Si;
Set Ei = ∅;10

end11

end12

for each node i ∈ V and node i does not transmit do13

if node i receives matching messages from several neighbors then14

Node i chooses one of them uniformly at random, say j, and sets15

Γi = ∅;
Node i broadcasts a i matched j message;16

end17

end18

while ∃k, k receives a i matched j message do19

if k = j then Ek = Ek ∪ {i};20

else Γk = Γk − {i};21

end22

for each node i ∈ V, and if i decides to transmit do23

if Ei 6= ∅ then Ei is added into the hypergraph matching, and set Γi = ∅;24

end25

end26

Algorithm 3.3: Distributed randomized hypergraph matching algorithm.

Theorem 3.10 The expected run time of Algorithm 3.3 is O (log |E|).

Proof. We first give some definitions. A node v ∈ V is bad if more than 2/3 of the

neighbors of v are of higher degree than v. A node is good if it is not bad. An edge

e ∈ E is bad if both of its endpoints are bad; otherwise the edge is good. To show

the expected running time of Algorithm 3.3, we need to show the expected number

executions of the while loop in Algorithm 3.3. Let Gi = (Vi, Ei) denote the graph
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after i executions of the while loop, where we only consider those nodes with Γv 6= ∅
in Vi.

Let v be a good node of degree d = |Γv| > 0 in Gi and the neighbors of v be

u1, . . . , ud. The vertex v has k ≥ ⌈1
3
d⌉ neighbors such that dj = |Γuj

| ≤ d, j = 1, . . . , k.

According to Algorithm 3.3, the probability that node uj sends a matching request to

v is 1/(2dj) ≥ 1/(2d). The probability that u1, . . . , uk do not broadcast a matching

message to v is
k∏

j=1

(

1− 1

2dj

)

≤
(

1− 1

2d

)d/3

< e−1/6. (3.36)

Therefore, the probability that v receives at least one matching message from its

neighbors is greater than 1 − e−1/6 > 0. Note that ignoring the matching messages

from the neighbors with degree greater than d only decreases this probability. Node v

responds to received matching messages only when it decides not to transmit, whose

probability is 1 − 1
d

+ 1
d

1
2d . It is not hard to show that 1 − 1

d
+ 1

d
1
2d is an increasing

function in d when d ≥ 1. Therefore, the probability that node v decides not to

transmit is at least 1
2
. Finally, node v is included in the hypergraph matching with

probability at least 1
2
(1 − e−1/6). The edges incident to v are either included in the

hypergraph matching or deleted from Ei. Note that every good edge is incident with

at least one good node. According to Lemma 12.6 in [62], at least half the edges

in Ei are good. Thus, the expected number of edges removed from Ei is at least

1
4
(1− e−1/6)|Ei| or

E(|Ei||Ei−1) ≤ |Ei−1|(1− α)⇒ E(|Ei|) ≤ |E|(1− α)i, (3.37)

where α = 1
4
(1 − e−1/6). Therefore, the expected number executions of the while

loop in Algorithm 3.3 is O (log |E|). Each while loop requires 2 time-slots and the

expected running time of Algorithm 3.3 is also O (log |E|).
Compared with Algorithm 3.1, Algorithm 3.3 not only reduces the time complexity

from O (|E|) to O (log |E|) but also does not need to compute the weight of each

hyperedge. Using a similar approach to that in [16], if we assume that in each session
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all sinks are only one hop away from the source, we can show the following theorem

on the performance of the randomized algorithm.

Theorem 3.11 If in each session all sinks are only one hop away from the source,

then Algorithm 3.3 stabilizes the system for any rate vector within 1
K

Λ.

Algorithm 3.3 can be readily turned into a constant-time algorithm by executing

the while loop in Algorithm 3.3 only M times. We call this algorithm Algorithm

3.4.

As maximal matching plays an important role in many scheduling algorithms,

see, e.g., [61, 74], we expect that Algorithm 3.3 can also serve as a basis for other

scheduling algorithms for our problem. Note that the approach in [61] cannot be

trivially adopted as the connected components in the union of the new hypergraph

matching and the old hypergraph matching may be very large. Also, the connected

components are not simply cycles or paths as in [61].

3.5.4 Hybrid Algorithm

Algorithms 3.1 and 3.2 perform well but with high complexity, while Algorithms 3.3

and 3.4 have low complexity but have a poor performance guarantee as they do not

take into account the weight of hyperedge. We next consider combining these two

types of algorithms to take advantage of the strengths of both.

In the hybrid algorithm, we first run Algorithm 3.1 for Tth time slots. To speed

up Algorithm 3.1, we execute the while loop of Algorithm 3.3 once at the end of Tth

time slots. We then continue running Algorithm 3.1. The process continues until

there does not exist a node i such that Γi 6= ∅. Clearly, if Tth = 0, the hybrid

algorithm reduces to Algorithm 3.3, while if Tth = ∞, the hybrid algorithm reduces

to Algorithm 3.1. Thus Tth is used to control the tradeoff between complexity and

performance. Similarly, Algorithm 3.2 can also be combined with Algorithm 3.3.

We call this algorithm Algorithm 3.5. In Algorithm 3.1, each node needs to wait

until all its neighbors are included in some local heaviest hyperarc or its neighbors

response to the matching request. By running Algorithm 3.3, each node can directly
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construct a hyperarc with its neighbors without waiting for its neighbors’ decisions on

the locally heaviest hyperarc. Thus, the hybrid algorithm can accelerate Algorithm

3.1. The running time of Algorithm 3.5 is between Algorithm 3.1 and Algorithm 3.3.

Algorithm 3.5 also returns a maximal hypergraph matching, and thus Theorem 3.11

still applies.

Alternatively, we can apply the algorithms in [66] to find a maximum weighted

matching first and then add the unmatched nodes into the hypergraph matching

randomly.

Remark: In the previous discussion of the scheduling algorithms, we do not

consider possible collision of coordinating/signalling messages in carrying out these

algorithms. This issue is particularly relevant when we come to the implementation

of the scheduling algorithm in real systems. We usually assume the existence of a

separate control channel to do message passing. Or we divide a time slot into control

mini-slots and data slot and message passing happens in control slots. There are

basically two ways to coordinate message passing and resolve collisions. The first one

is to have a “reservation” protocol to pre-specify who talks and in which order. The

more common strategy is to use a random access scheme such as Aloha to coordinate

message passing over the control channel or mini-slots.

3.6 Simulation Results

In this section, we provide numerical examples to complement the analysis in previous

sections. We assume that node i’s signal power is attenuated by a factor of ρ−2
i,j when

the signal is received by node j, where ρi,j is the Euclidean distance between i and j.

All nodes have unit signal power and identical noise power 0.02. We assume the use

of orthogonal spreading sequences and white Gaussian noise channels and compute

riJ using

riJ(P , S) = log

(

1 + min
j∈J

SNRi,j

)

, (3.38)
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where SNRi,j = P tot
i

|hi,j |2
σ2

j
is the effective SNR from node i to node j, σ2

j is additive

white Gaussian noise power at node j, and hi,j is the channel fading coefficient from

node i to node j. We have neglected the spreading factor in (3.38). Two nodes i and

j are considered to be connected if and only if the SNR is at least 1 over link (i, j)

(i.e., SNR threshold λ = 1) or the distance between i and j is less than 7.07 meters.

We choose log utility function log(x) for each source in all the experiments.

3.6.1 Wireless Butterfly Network

We first consider the wireless butterfly network in Fig. 3.1 with two sources s1, s2,

two sinks t1, t2, and one relay node r. Each source multicasts data to both sinks.

We thus only consider a single multicast session. We compare our cross-layer design

with different scheduling algorithms in Section 3.5 to hypergraph matching schedul-

ing without network coding, that in [18] with maximum weighted matching algorithm

in [30] and local greedy matching algorithm in [66]. As the network is small, we also

show the performance of our cross-layer design with maximum weighted hypergraph

matching by formulating the matching problem as an integer programming and solv-

ing it exactly.

Fig. 3.2 shows the evolution of source s1’s rate versus the number of iterations

with fixed stepsize γ = 0.01, where our cross-layer design with maximum weighted

hypergraph matching, Algorithm 3.1 and Algorithm 3.2, the algorithm without net-

work coding, the algorithm in [18] with maximum weighted graph matching and local

greedy matching are compared. We observe that the rates of all algorithms converge

to within a small neighborhood of the steady values after 500 steps as we have chosen

a constant stepsize. Fig. 3.3 shows the evolution of source s1’s rate versus the number

of iterations with fixed stepsize γ = 0.01, where our cross-layer design with maximum

weighted hypergraph matching, Algorithm 3.3, Algorithm 3.4, and Algorithm 3.5,

and the algorithm in [18] with maximum weighted graph matching are compared.

Compared with Fig. 3.2, the rates of Algorithm 3.3, Algorithm 3.4, and Algorithm

3.5 oscillate more severely as all the algorithms use randomized mechanism, which
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Figure 3.2: The evolution of source s1’s rate versus the number of iterations with
fixed stepsize γ = 0.01 for the network in Fig. 3.1, where our cross-layer design with
maximum weighted hypergraph matching, Algorithm 3.1 and Algorithm 3.2, and the
algorithm in [18] with maximum weighted graph matching and local greedy matching
are compared.

only guarantees the queue size at each node is finite all the time. We quantify the

performance of different algorithms in Table 3.6.1, where HMopt denotes the maxi-

mum weighted hypergraph matching, HMalgi denotes Algorithm 3.i in Section 3.5,

HMalg4,m denotes Algorithm 3.4 with m time-slots, HMalg5,t denotes Algorithm 3.5

with Tth = t, HMw/onc denotes the hypergraph matching algorithm without network

coding, Mopt denotes maximum weighted graph matching, and Mlgd denotes local

greedy graph matching. The first row shows the average rate by averaging the rate

of different algorithms in Figs. 3.2 and 3.3 from 700th step to 1000th step. Row two

shows rate gains of different algorithms over the maximum weighted graph matching.

We can see that our design with broadcast advantage and HMopt has about 17%

gain over that without using broadcast advantage. Even with Algorithm 3.1, about

13% gain can still be achieved. The loss by using Algorithm 3.3, the randomized

algorithm, is only 3.08% gain. A 11.81% gain can be realized by Algorithm 3.5. The
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Figure 3.3: The evolution of source s1’s rate versus the number of iterations with
fixed stepsize γ = 0.01 for the network in Fig. 3.1, where our cross-layer design
with maximum weighted hypergraph matching, Algorithm 3.3, Algorithm 3.4, and
Algorithm 3.5, and the algorithm in [18] with maximum weighted graph matching.

third row compares expected ratio between the weight of different algorithms and that

of HMopt. It can be seen that HMalg2 has a greater ratio than both Mopt and Mlgd

but they have the same throughput. This indicates that an algorithm that can return

a heavier weight does not necessary achieve a higher throughput. Without network

coding, the throughput gain over Mlgd is small, which is only 3.43%. Row four shows

the average number of required time-slots by different algorithms. Surprisingly, both

HMalg1 and HMalg2 require less time-slots than Mlgd does, but the former two have

higher rates than the latter. This is because the broadcast advantage is exploited

during scheduling, where one matching or drop message can reach several nodes.

Also note that each hyperedge contains several nodes, which means that nodes are

added faster into the hypergraph matching than graph matching. HMalg5,1 has a less

number of time-slots than Mlgd but with a rate gain.
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Table 3.1: Comparison of different algorithms in the wireless butterfly network
HMopt HMalg1 HMalg2 HMalg3 HMalg4,2 HMalg4,3 HMalg5,1 HMw/onc Mopt Mlgd

Average
rate (bits/s)

0.8831 0.8486 0.7972 0.7327 0.6411 0.7062 0.8453 0.7819 0.7594 0.7560

Rate gain
over Mlgd

0.1681 0.1225 0.0545 -0.0308 -0.1520 -0.0659 0.1181 0.0343 0.0045 0

Average
w/wHMopt

1 0.9409 0.8928 0.8765 0.8829 0.8690 0.9250 0.9056 0.8666 0.8578

Average
time-slots

- 4 3.9920 4.5500 3.3760 3.8532 5.0300 - - 5

3.6.2 Random Networks

We next show the results on random networks. We assume N nodes are randomly

and uniformly placed on a 20 meter by 20 meter square. Both source and sinks are

randomly chosen from the 10 nodes. We consider only a single multicast session with

one source and various number of sinks.

Tables 3.2-3.4 show the simulation results with 2, 4, and 6 sinks and N = 10

nodes in the network, and Table 3.5 shows the simulation results with 3 sinks and

N = 15 nodes in the network. 1000 feasible network realizations are generated. Since

the number of hyperedges becomes large as the size of network increases, it is hard to

find the maximum weighted hypergraph matching by solving the integer programming

directly. For comparison purposes, we take a suboptimal approach by computing the

linear programming relaxation of the integer program first. In the next phase, we only

consider the hyperedges with nonzero solution by the linear programming and solve

the integer program with only those hyperedges. This method is denoted as HMsub.

From the tables, we can see that even with this suboptimal solution we can achieve

a rate gain from 9.45% to 23.47%. Gain increases as the number of sinks increases.

The same observation holds for all the other algorithms. On average, Algorithm 3.1

performs better than Algorithm 3.2. Algorithm 3.5 performs close to Algorithm 3.1

but with reduced complexity. Algorithm 3.3 has the worst performance but with the

lowest complexity among all our proposed algorithms and a comparable throughput

as the matching solution. The average number of edges in the connectivity graph is

21.52. The number of time-slots required by Algorithms 3.1, 3.2 and 3.5 is on the

order of this number. The locally optimal matching algorithm performs close to the

optimal matching algorithm, and has a lower complexity than the proposed hyper-
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graph matching algorithms. However, hypergraph matching provides a throughput

gain that increases with the number of sinks. Our results suggest that it is more

advantageous to use hypergraph matching when the multicast group is large.

Table 3.2: Comparison of different algorithms in random networks with 10 nodes, 1
source and 2 sinks

HMsub HMalg1 HMalg2 HMalg3 HMalg5,1 Mopt Mlgd

Rate gain over Mlgd 9.45% 5.74% 4.32% -6.46% 5.44% 2.30% -
Average w/wHMsub

1 0.9749 0.9593 0.8584 0.9714 0.9623 0.9593
Average time-slots - 13.38 13.46 5.88 9.63 - 6.15

Table 3.3: Comparison of different algorithms in random networks with 10 nodes, 1
source and 4 sinks

HMsub HMalg1 HMalg2 HMalg3 HMalg5,1 Mopt Mlgd

Rate gain over Mlgd 15.13% 8.78% 4.99% -1.42% 8.23% 4.49% -
Average w/wHMsub

1 0.9737 0.9697 0.9310 0.9729 0.9707 0.9697
Average time-slots - 10.98 11.83 5.90 9.33 - 6.26

Table 3.4: Comparison of different algorithms in random networks with 10 nodes, 1
source and 6 sinks

HMsub HMalg1 HMalg2 HMalg3 HMalg5,1 Mopt Mlgd

Rate gain over Mlgd 23.47% 13.05% 5.50% 1.18% 12.15% 6.47% -
Average w/wHMsub

1 0.9787 0.9776 0.9459 0.9785 0.9760 0.9776
Average time-slots - 10.40 11.95 5.91 9.10 - 6.57

3.7 Conclusion

We have studied the cross-layer optimization for multicasting in wireless networks

with wireless broadcast advantage. By designing distributed approximation algo-

rithms for broadcast link scheduling, we gave fully distributed algorithms for joint

rate control, network coding and scheduling. Numerical results have shown promising

throughput gain by using the proposed algorithms, and surprisingly, in some cases

with even lower complexity than the cross-layer design without the broadcast advan-

tage. Our results suggest that broadcast link scheduling may be a promising avenue

of further research.
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Table 3.5: Comparison of different algorithms in random networks with 15 nodes, 1
source and 3 sinks

HMsub HMalg1 HMalg2 HMalg3 HMalg5,1 Mopt Mlgd

Rate gain over Mlgd 13.07% 7.79% 3.89% 1.39% 6.45% 4.73% -
Average w/wHMsub

1 0.9813 0.9809 0.9769 0.9544 0.9806 0.9689
Average time-slots - 15.75 15.41 6.99 11.73 - 7.32
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Chapter 4

Multiple Access Random Medium
Access Control

In this chapter, we develop a new class of random medium access control protocol,

which allows each user to transmit at multiple data rates. By using successive in-

terference cancellation, multiple packets can be received simultaneously. To achieve

the desired throughput optimal equilibrium in a distributed fashion, a game-theoretic

framework is proposed. We investigate the design of random access games, charac-

terize their equilibria, study their dynamics, and propose distributed algorithms to

achieve the equilibria.

4.1 Introduction

The medium access control (MAC) layer decides when competing nodes may access

the shared medium. Different from schedule-based medium access requiring a central

authority, multiple nodes share the medium by using random access in contention

based MAC. Most conventional random access protocols such as Aloha [6] and carrier

sense multiple access (CSMA) [49] assume simple collision models, where the channel

is noiseless, and reception failure is caused by collisions among users. Though the

analysis and protocol design are simple in the collision model, the maximum achiev-

able throughput of this model is limited. With more sophisticated physical layer

approaches, simultaneous reception of multiple packets is possible, for example, by

using code division multiple access (CDMA) and multiuser detection. In order to



75

represent such random access systems, a model for a channel with multipacket re-

ception capability (MPR) with its stability property has been developed in [31]. A

decentralized MAC protocol is proposed in [32]. In both works [31, 32], it is shown

that the achievable throughput by using MPR is higher than that by using Aloha.

In MPR, each node transmits only at a single rate. On the other hand, a multiple

access system with N users and one base station can be considered as a multiple access

channel (mac). In the Gaussian noise case, if each user transmits with power P and

the noise power at the base station is σ2, the maximum information theoretic sum

rate of all users is 1
2
log
(
1 + NP

σ2

)
, which can be achieved with multirate transmission

capability and successive interference cancelation (SIC) [22].

In this chapter, we develop a new class of MAC protocol by applying a SIC based

approach at the MAC layer. The MPR model in [31, 32] is generalized by allowing

each user to transmit at different data rates chosen randomly from an appropriately

determined set of rates. By using SIC, multiple packets can be received simultane-

ously.

In slotted Aloha type networks with Gaussian channels, we show that the achiev-

able sum rate of the new protocol using decentralized control is at least a constant frac-

tion of that achievable by using centralized control, i.e., C
2

log
(
1 + NP

σ2

)
, 0 < C < 1,

where C can be interpreted as the distributive loss due to contention and lack of

cooperation between users. This result suggests that the total throughput increases

with N as opposed to Aloha where the total throughput decreases with N .

The proposed protocol is also extended to CSMA. We consider a half duplex single

cell wireless LAN. By maximizing the achievable sum rate, we can obtain a desired

transmission probability for each data rate, which depends on the number of users in

the network.

In order to adaptively adjust the channel access probability as nodes join and

leave, we consider a general game-theoretic model, called random access game, whose

equilibrium is the desired throughput maximizing point. Dynamic algorithms such as

best response and gradient play are proposed to achieve the equilibrium distributively

without the knowledge of the number of nodes N . We show that under mild conditions
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Figure 4.1: An illustration example.

all algorithms converge to the unique equilibrium. We also establish the convergence

of gradient play under propagation delay and estimation error.

Finally, we consider extension of our multiple access scheme to rate splitting [69].

Rate splitting has been applied to Aloha in [14, 59]. We propose a new class of

rate splitting algorithm where each virtual user can transmit at multiple potential

transmission rates, which improves the achievable throughput.

Our simulation results support our analysis and show that the proposed proto-

col achieves a significant throughput gain over conventional Aloha. In a single cell

WLAN, the proposed protocol not only achieves a higher throughput over the stan-

dard IEEE 802.11 DCF but also provides a better short term fairness.

4.2 A Motivating Example

We first consider a simple example to motivate this new MAC model. There are

N = 2 users in the network, where user i’s transmitted signal is Xi, i = 1, 2. Both

users are saturated, i.e., they always have packets to send. The received signal at the

base station is

Y = X1 + X2 + W, (4.1)
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where the average power of Xi, i = 1, 2 is P and the additive white Gaussian noise

(AWGN) W is of zero mean and variance σ2. Let Si be the data sending rate of user

i. From [22], the capacity region of the multiple access channel (4.1) is

S1 <I(X1;Y |X2) =
1

2
log

(

1 +
P

σ2

)

,

S2 <I(X2;Y |X1) =
1

2
log

(

1 +
P

σ2

)

,

S1 + S2 <I(X1,X2;Y ) =
1

2
log

(

1 +
2P

σ2

)

,

(4.2)

where I(X; Y ) is the mutual information between random variables X and Y [22].

With a centralized controller, the maximum achievable sum rate is Rc = 1
2
log
(
1 + 2P

σ2

)
.

The corner point can be achieved by decoding user 2’s signal first, treating user 1’s

signal as noise. The base station can then subtract the decoded signal from Y and

decode user 1’s signal. This is called successive interference cancelation. Similarly,

corner point C can be achieved. The points on the line connecting B and C can be

achieved by time sharing between B and C or by using rate splitting [69].

Using Aloha, we assume that each user transmits at rate 1
2
log
(
1 + P

σ2

)
with prob-

ability p and remains idle with probability 1− p. The achievable sum rate of Aloha

is

RAloha(p) = p(1− p) log

(

1 +
P

σ2

)

, (4.3)

whose maximum is attained at p = 1
2
. The maximum achievable throughput is

R∗
Aloha =

1

4
log

(

1 +
P

σ2

)

. (4.4)

To achieve the maximum sum rate Rc without using rate splitting, the two users

should operate cooperatively at corner point B or C, i.e., one of the users should

transmit at rate R1 = 1
2
log
(
1 + P

σ2

)
and the other one at rate R2 = 1

2
log
(
1 + P

P+σ2

)
.

Without coordination, each user transmits at rate R1 with probability p and at

rate R2 with probability 1 − p. When both users transmit at rate R1, the rate pair

is outside the capacity region (4.2). Thus, the receiver cannot decode both packets.

In all other cases, by using SIC, both users’ packets can be decoded. The average
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achievable rate by using the decentralized mac is

Rd(p) = 2(R1 + R2)p(1− p) + 2R2(1− p)2. (4.5)

Rmac−SIC is maximized when p = R1−R2

2R1
and the maximum throughput is

R∗
d =

(R1 + R2)
2

2R1
>

1

2
(R1 + R2). (4.6)

We thus have

Rc > R∗
d >

1

2
Rc, R∗

d > R∗
Aloha. (4.7)

Therefore, the proposed new MAC protocol can achieve at least 50% of the throughput

using a centralized controller and its throughput is always greater than Aloha.

We next show that the proposed strategy is actually optimal over all possible

transmission strategies when rate splitting is not used and both users adopt the

same transmission strategy for fairness. The transmission strategy is defined by a

probability density function f(r) for a transmission rate r. Without rate splitting,

each user’s packet can always be decoded if its transmission rate is less than R2.

When it transmits at a rate above R2, its packet can be decoded if and only if the

other user’s packet can be decoded. The average throughput of user 1 is

R̄ =

∫ R2

0

r1f(r1)dr1 +

∫ R1

R2

r1f(r1)

(∫ R2

0

f(r2)dr2

)

dr1

=

∫ R2

0

rf(r)dr +

∫ R2

0

f(r)dr

∫ R1

R2

rf(r)dr.

(4.8)

When
∫ R2

0
f(r)dr is fixed to be 1 − p and

∫ R1

R2
f(r)dr = p, it is easy to see that

the maximum of
∫ R2

0
rf(r)dr is (1 − p)R2 and the maximum of

∫ R1

R2
rf(r)dr is pR1.

Therefore, the proposed strategy is optimal for the case of decentralized control and

without using rate splitting.

Note that using the MPR model both users randomly attempt to transmit at a

single fixed rate. When both users transmit at R1, the MPR model reduces to Aloha.

When the rate is R2, the two users can transmit simultaneously. However, the achiev-
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able throughput is less than Aloha when P ≫ σ2. Therefore, by enabling multirate

data transmission at each node and using SIC, the proposed protocol outperforms

both Aloha and MPR and has comparable performance with a centralized controller.

4.3 Multiple Access MAC in Aloha Type Networks

4.3.1 MAC on AWGN Multiple Access Channels

Let Xi be the transmitted signal by user i and Y be the signal received by the receiver.

We use the model

Y =

N∑

i=1

hiXi + W, (4.9)

where the power of user i is Pi and the AWGN W is of zero mean and variance σ2.

We first consider a homogenous system with Pi = P and hi = 1, ∀i ∈ {1, . . . , N}. Let

Si be the data rate of user i. From [22], the capacity region of mac with a centralized

controller is
∑

i∈U
Si ≤ I (X (U) ;Y |X (Uc)) , ∀U ⊆ {1, 2, . . . , N}, (4.10)

for some product distribution p1(x1)p2(x2) · · · pN(xN), where X (U) = {Xi : i ∈ U}
and U c denotes the complement of U in {1, 2, . . . , N}. The capacity region (4.10)

constitutes a polytope, which contains N ! corner points. Each corner point corre-

sponds to a permutation π of the N users. The receiver decodes using SIC. User π(i)

is decoded by treating users π(1), . . . , π(i − 1) as noise. After decoding, the contri-

bution of user π(i) in Y is removed. The process continues until user π(1)’s packet is

decoded. The maximum achievable sum rate with a central controller is

Rc(N) =
1

2
log

(

1 +
NP

σ2

)

. (4.11)

As in Section 4.2, users want to reach a corner point distributedly to attain the

maximum sum rate. In our multiple access MAC, we assume that each user is capable

of transmitting at one of N rates, where the k-th rate is

Rk =
1

2
log

(

1 +
P

(k − 1)P + σ2

)

, k = 1, . . . , N. (4.12)
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Note that
∑N

k=1 Rk = Rc(N). When each user chooses a different rate from {Rk : k =

1, . . . , N}, a corner point is attained. Let nk be the number of users that transmit at

rate Rk. Using SIC, the packets of rate Rk can be decoded if and only if the packets

of rate less than Rk are decoded correctly so that their contribution can be cancelled

from Y , and the number of users transmitting at rate greater than or equal to Rk is

at most k, i.e.,
∑j

l=1 nl ≤ j, j = k, . . . , N , because from (4.12) the user at Rk can

tolerate interference level (k − 1)P .

We can use pseudo random variables with random seeds to choose the transmission

rate at each node, so that with the random seed each receiver knows each user’s

transmission rate at each time slot and thus the order in which to decode the users. In

the absence of random seeds or other information on the transmitters’ sending rates,

the receiver can first attempt to decode the lowest rate packets for each source. After

cancelling the contribution of decoded signal from the received signal, the receiver

tries to decode the second lowest rate packets for each source. The process repeats

until the highest rate is reached. The decoding complexity in this case is N times

higher.

4.3.2 Achievable Results

In this subsection, we study the average achievable throughput of our model using

the set of transmission rates (4.12) and compare it with Rc(N) in (4.11). Let S−i =

(S1, . . . , Si−1, Si+1, . . . , SN) be the state of all the nodes other than node i, where Si

is the transmission rate of node i. The average throughput of the network attained

by the distributed strategy is

Rd(N) = E

{
N∑

i=1

biSi

}

(a)
= NE{biSi} = NES−i{E{biSi|S−i}}

=N

N∑

k=1

pkRk

∑

S−i

Pr (bi = 1|(Si = Rk,S−i)Pr(S−i)

=N
N∑

k=1

pkRk

∑

n′
1,...,n′

N

Pr

(
j
∑

l=1

n′
l ≤ j − 1, j = k, . . . ,N

)

︸ ︷︷ ︸

qk

,

(4.13)
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where (a) is due to symmetry, bi ∈ {0, 1} indicates whether user i’s packet is decoded

correctly at the receiver, and n′
k denotes the number of users transmitting at rate Rl

other than user i with n′
k = nk − 1 and n′

l = nl for l 6= k. Note that (4.13) only

requires that packets with rate less than Rk are decoded, where packets with rate

higher than Rk may be decoded incorrectly. Let mk =
∑k

l=1 n′
l. We can write qk as

qk =
∑

mk,n′
k+1

,...,n′
N

,

mk+
∑j

l=k+1
n′

l
≤j−1,

j=k,...,N

(
N − 1

mk, n
′
k+1, . . . , n

′
N

) N∏

l=k+1

p
n′

l
l

(
k∑

l=1

pl

)mk

.
(4.14)

Given pk, it is complex to compute qk through (4.14). To circumvent this problem,

we find a recursive relationship between qk and qk−1. Let Ak denote the event that

the rates of all users excluding user i are such that if i were to send at rate Rk, its

packets would be decoded correctly. Then let qk = Pr(Ak). By the total probability

theorem, we obtain

Pr(Ak) = Pr(Ak|Ak−1)Pr(Ak−1) +Pr(Ak|Ac
k−1)Pr(Ac

k−1). (4.15)

Given S−i, if Si = Rk−1 and user i’s packet can be decoded at the receiver, when Si =

Rk user i’s packet can still be decoded because Rk < Rk−1, which gives Pr(Ak|Ak−1) =

1. On the other hand, Ak ∩ Ac
k−1 means that if user i were to send at rate Rk its

packets would be decoded correctly but its packets cannot be decoded if it were to

send at rate Rk−1. This event occurs if and only if among the remaining N − 1 users,

k − 1 of them transmit at rates above Rk so that transmitting at Rk is admissible

but not at Rk−1, N − k of them transmit at rate below Rk, and the N − k users’

packets can be decoded correctly. Let ηj,k denote the probability that j given users

transmit at a rate less than or equal to Rk and their packets can be decoded correctly

at the receiver. From the definition of Rk in (4.12), if a user transmits at rate RN , the

receiver can decode its packet regardless of other users’ transmissions, which means

qN = 1. We can thus establish the recursive relation

qk−1 =qk −
(

N − 1

k − 1

)




k−1∑

j=1

pj





k−1

ηN−k,k+1, qN = 1. (4.16)
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To compute ηj,k, note that there are
(

j
l

)
ways to choose l users out of j users. Suppose

that these l users transmit at rate Rk and the remaining j − l users transmit at rates

less than Rk. Assuming that N − j other users transmit at rate greater than Rk, all

the j users’ packets can be decoded if and only if N − j + l ≤ k and the remaining

j − l users’ packets can be decoded. We thus have the recursive equation

ηj,k =

k−N+j
∑

l=0

(
j

l

)

pl
kηj−l,k+1, and ηj,N = pj

N . (4.17)

Given pk, by using these two recurrences (4.16) and (4.17), we can evaluate the

throughput efficiently by first creating a table for ηj,k using (4.17) and then using

(4.16) to compute qk, which enables fast computation of achievable rate.

To find the maximum achievable asymptotic rate of the proposed scheme, we

need to find the optimal pk by maximizing Rd(N) in (4.13) for each N , which is hard

to obtain in closed form. Instead, we find a lower bound on Rd(N) by choosing a

suboptimal pk based on the following result.

Theorem 4.1 The maximum achievable sum rate by using distributed mac and the

set of rates in (4.12) is Rd(N) = Θ
(
log
(
1 + NP

σ2

))
. Furthermore, there exists a

constant C > 0 such that Rd(N) ≥ CRc(N).

Proof. We consider pk = α
N−1

, k = 1, . . . , N − 1 and pN = 1− α, where 0 < α < 1 is

a constant to be determined later. Note that qN = 1 and

(
N − 1

k − 1

)




k−1∑

j=1

pj





k−1

ηN−k,k+1 ≤
(k − 1)k−1

(k − 1)!
αk−1. (4.18)

where we have used the fact that ηj,k ≤ 1 and (N−1)!
(N−k)!

< (N−1)k−1. Applying induction

on (4.16), we obtain

q1 ≥ 1−
N∑

k=2

(k − 1)k−1

(k − 1)!
αk−1 > 1−

+∞∑

k=1

kk

k!
αk. (4.19)
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To show the convergence of the series
∑+∞

k=1
kk

k!
αk, we use ratio test and compute

L = lim
k→∞

(k + 1)k+1

(k + 1)!
αk+1 k!

kk
α−k = αe. (4.20)

Therefore, if L < 1 or α < e−1,
∑+∞

k=1
kk

k!
αk converges to a number B(α). It is

easy to see that B(0) = 0 and B(α) is a continuous and increasing function in α.

Therefore, there exists a threshold γ such that B(α) < 1 when 0 < α < γ. Note that

q1 ≤ q2 ≤ · · · ≤ qN and pN > pk, k = 1, . . . , N − 1 when N is large. Thus, we have

Rd(N) =N

N∑

k=1

pkqkRk ≥ α(1−B(α))

N∑

k=1

Rk

=
α

2
(1−B(α)) log

(

1 +
NP

σ2

)

.

(4.21)

We can find the optimal α by maximizing α(1−B(α)), which is the solution of

+∞∑

k=1

kk

k!
(k + 1)αk = 1. (4.22)

By solving (4.22) numerically, we find that α = 0.2011 and

Rd(N) ≥ 0.13

2
log

(

1 +
NP

σ2

)

= 0.13Rc(N). (4.23)

On the other hand, Rd(N) is less than Rc(N), the achievable rate of a centralized

controller. Therefore, we show that Rd(N) = Θ
(
log
(
1 + NP

σ2

))
.

The constant C in Theorem 4.1 can be interpreted as the distributive loss due to

contention and lack of cooperation between users. By choosing p1 = 1
N

, p2 =, · · · , =
pN−1 = 0, and pN = N−1

N
, it is easy to see that the throughput of the proposed model

is greater than that of Aloha. We thus obtain the following corollary.

Corollary 4.2 Let RAloha(N) be the throughput of Aloha. We have Rd(N) > RAloha(N).

Theorem 4.1 suggests that the total throughput of the new MAC model increases

with increasing N as opposed to Aloha where the total throughput decreases in N .

Aloha can be considered to be a distributed implementation of TDMA while our

approach is a distributed implementation of mac.
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Figure 4.2: Rk versus k in a network with N = 30 users and P = 10, σ2 = 1.

4.3.3 Fixed Number of Transmission Rates

The N -rate model can achieve a fraction of the achievable rate by a centralized

controller. However, in practice, the MAC layer is built into firmware and the set of

rates cannot be altered as the number of users in the network varies. Furthermore,

the first few Rk’s in (4.12) are significantly larger than the other rates in practical

scenarios. This is illustrated in Fig. 4.2, which shows Rk in (4.12) versus k in a

network with N = 30 users and P = 10, σ2 = 1. Motivated by these two factors, we

thus generalize the N -rate model to the case with K rates, where K is a fixed number

that does not vary with N . Each node is capable of transmitting at one of K rates,

R1, . . . , RK and R1 > R2 > · · · > RK . Assuming that nk nodes transmit at rate Rk,

the packets of rate Rk can be decoded if and only if
∑j

l=1 nl ≤ ωj, j = k, . . . , K,

where ωk is the maximum number of users with transmission rates higher than Rk

such that users with transmission rate Rk can decode their packets. The decoding

complexity is proportional to NK.

In this subsection, we consider Rk = 1
2
log
(

1 + P
(k−1)P+σ2

)

, k = 1, . . . , K − 1 and
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RK = 1
2
log
(

1 + P
(N−1)P+σ2

)

for simplicity, which gives ωk = k, k = 1, . . . , K − 1

and ωK = N . Even though the optimal pk maximizing the average throughput may

depend on Rk and N in a complicated way which does not lead to simple practical

protocol design, the following theorem shows that the optimal pk has a simple form

asymptotically as N → +∞.

Theorem 4.3 When Rk = 1
2
log
(

1 + P
(k−1)P+σ2

)

, k = 1, . . . , K − 1 and RK =

1
2
log
(

1 + P
(N−1)P+σ2

)

, and ωk = k, k = 1, . . . , K − 1 and ωK = N , the optimal

pk maximizing the average throughput satisfies limN→+∞ Npk = ξk, k = 1, . . . , K − 1,

where ξk are constants depending only on R1, . . . , RK . In other words, pk = ξk

N
maxi-

mizes the average throughput asymptotically.

The proof of Theorem 4.3 can be found in the appendix. Theorem 4.3 removes

the dependence on N in optimizing pk, which facilities distributed dynamic algorithm

design, e.g., optimization on ξk is done only once and the resulting ξk can be applied

for any N . The game theoretic framework in Section 4.4 further removes the need to

know N .

When K is small, we can obtain ξk in closed form. We give an example in the

following.

Example 4.1 (K = 2): When K = 2, the average throughput is

NR1p(1− p)N−1 + NR2(1− p), (4.24)

where p is the probability of choosing R1 and ω1 = 1, ω2 = N . Maximizing (4.24),

we obtain the optimal p, whose closed form does not exist in general. When R2 = 0,

it reduces to Aloha, whose throughput is maximized when p = 1
N

in this case.

We could also choose R1 = 1
2
log
(

1 + P
(k−1)P+σ2

)

and ω1 = k, where k is an integer

in {1, . . . , N}. The average throughput is

NR1p

k−1∑

l=0

(
N − 1

l

)

pl(1− p)N−1−l + NR2(1− p), (4.25)

where p is the probability of choosing R1. When k ≪ N and N → +∞, (4.25) can
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Figure 4.3: Comparison of the total throughput versus P with different k in a network
with N = 50 users and σ2 = 1.

be approximated as

ξe−ξR1

k−1∑

l=0

1

l!
ξl + NR2, (4.26)

where ξ = Np.

Fig. 4.3 shows the total throughput with different k in a network with N = 50

users and σ2 = 1 as a function of P . We can see that the k achieving the highest

rate depends on P or SNR. When P > 4.37 dB or in high SNR, R1 with k = 1

achieves the highest throughput. When 4.37 dB> P > −3.4 dB, R1 with k = 10

achieves the highest throughput. When −3.4 dB> P > −10 dB, R1 with k = 15

achieves the highest throughput. Compared with conventional Aloha, which achieves

a throughput of only 0.0137 bits/s/Hz (not shown in Fig. 4.3), the proposed scheme

achieves a much higher throughput. In practice, R1 can be adapted according to SNR

to achieve the highest throughput.

Example 4.2 (K = 3): When K = 3, we have 3 rates: R1, R2, R3 with ω1 = 1,
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ω2 = 2, ω3 = N . The average throughput is

NR1p1

(
(1− p1 − p2)

N−1 + (N − 1)p2(1− p1 − p2)
N−2

)

+NR2p2

(
(N − 1)p1(1− p1 − p2)

N−2 + (N − 1)p2(1− p1 − p2)
N−2 + (1− p1 − p2)

N−1
)

+NR3(1− p1 − p2),

(4.27)

where p1 and p2 are the probabilities of choosing R1 and R2. Maximizing (4.27),

we obtain the optimal p1, p2. Consider the special case when R3 = 0. The optimal

solution when N → +∞ is

p1 =
(R1 −R2)

(

R1
2 + 4R1R2 +

√

4R1
3R2 + 10R1

2R2
2 + R1

4 + R2
4 + 4R1R2

3 + R2
2
)

2N (R1 + R2)
2 R1

(4.28)

and

p2 =
R2

2 −R1
2 + 2R1R2 +

√

4R1
3R2 + 10R1

2R2
2 + R1

4 + R2
4 + 4R1R2

3

2N (R1 + R2) R1
, (4.29)

where ξ1 and ξ2 can be easily recognized.

4.4 Multiple Access MAC in WLAN

In this section, we extend the multiple access MAC in Aloha type networks in Section

4.3 to WLAN using CSMA. There two main differences between the Aloha type

networks and WLAN. First, all the nodes transmit to a common receiver in Aloha

type networks, while each node can be transmitter or receiver in WLAN. Second,

different from Aloha where nodes cannot perform carrier sensing, in CSMA, nodes

listen before data transmission to reduce collision. We consider single-cell wireless

LANs, where every wireless node can hear every other node in the network. We

assume that each packet has the same length and each packet takes the same time to

transmit. Different data rate is reflected by the amount of data information contained

in each packet after removing redundant error protection bits.
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We consider half-duplex network where each node can only transmit or receive

at any given time slot. For centralized scheme, at any time slot, we divide N nodes

into two parts, each of which contains N/2 nodes (assuming N is even. If N is odd,

each part contains ⌊N/2⌋ nodes and one node is idle). Every node in the first part

transmits to a node in the second part. The network becomes a N/2 transmitter and

N/2 receiver interference channel. When a symmetric network is considered, from [15]

the capacity region of this interference channel is the same as that of an N/2 user

mac. By time sharing between all possible partitions, we obtain an achievable rate

region of the centralized scheme.

In decentralized scheme, we consider each node is able to transmit at one of K

rates. The first K−1 rates are the same as those in Section 4.3.3, while the K-th rate

should be zero because if each node always transmits it cannot receive information

due to half duplex constraint. Let Tt denote the average transmission duration, Tc be

the collision duration, and TSLOT denote the slot duration. The average throughput

of the network is

Rhd−mac(N) =
Nsd

PsTt + (1− Ps − pN
K)Tc + pN

KTSLOT

=
NR̄

Psη1 + (1− Ps − pN
K)η2 + pN

Kη3

,

(4.30)

where sd is the average number of data bits successfully transmitted in a time slot

by one node, Ps is probability of at least one node with successful transmission, and

R̄ is the average throughput of each node in a half-duplex slotted network, η1 = Tt

Td
,

η2 = Tc

Td
and η3 = TSLOT

Td
where sd = R̄Td and Td is the effective data transmission

time. As we use variable rate transmission, we assume that Td or Tt is the same

for all transmission rates. Due to half duplex constraint, when a node transmits, its

packet’s destination must be idle. The probability that the destination node is idle

is pK . Similar to (4.13), R̄ can be derived as

R̄ = pK

K−1∑

k=1

pkRk

∑

mk+
∑j

l=k+1
n′

l
≤j,

j=k,...,K−1

(
N − 2

mk, n
′
k+1, . . . , n

′
K

) K−1∏

j=k+1

p
n′

j

j



1−
K−1∑

j=1

pj





n′
K




k∑

j=1

pj





mk

,

(4.31)
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where n′
k = nk − 1, n′

K = nK − 1 and n′
l = nl for l 6= k, K as in (4.13) and mk =

∑k
j=1 n′

j . By following the proof of Theorem 4.3, we can also show that as N → +∞
pk = ξk

N
for k = 1, . . . , K−1 and pK = 1−∑K−1

k=1 pk maximize Rhd−mac asymptotically.

In the following, we give a simple example on optimizing pk.

Example 4.3 (K = 3): When K = 3, we have 2 nonzero rates R1, R2 with

ω1 = 1 and ω2 = 2. The average throughput is

1

η1Ps + η2(1− Ps − (1− p1 − p2)N ) + η3(1− p1 − p2)N

×
(

NR1p1

(
(1− p1 − p2)

N−1 + (N − 2)p2(1− p1 − p2)
N−2

)

+ NR2p2

(
(N − 2)p1(1− p1 − p2)

N−2 + (N − 2)p2(1− p1 − p2)
N−2 + (1− p1 − p2)

N−1
) )

,

(4.32)

where

Ps ≈Np1

(
(1− p1 − p2)

N−1 + (N − 2)p2(1− p1 − p2)
N−2

)

+ Np2

(
(N − 2)p1(1− p1 − p2)

N−2 + (N − 2)p2(1− p1 − p2)
N−2 + (1− p1 − p2)

N−1
)
.

(4.33)

When N → +∞, we can approximate (4.32) as

e−(ξ1+ξ2)

η1e−(ξ1+ξ2)(ξ1 + ξ2 + 2ξ1ξ2 + ξ2
2) + η2(1− e−(ξ1+ξ2)(1 + ξ1 + ξ2 + 2ξ1ξ2 + ξ2

2)) + η3e−(ξ1+ξ2)

×
(

R1ξ1 (1 + ξ2) + R2ξ2(1 + ξ1 + ξ2)
)

.

(4.34)

Given R1, R2 and η1, η2, η3, we could solve ξ1, ξ2 by maximizing (4.34).

Fig. 4.4 compares the optimal achievable rate by maximizing (4.32) for each N

with the achievable rate by choosing pk = ξk

N
, k = 1, 2, where ξk is obtained by

maximizing (4.34). In Fig. 4.4, we choose P = 1, σ2 = 1, η1 = η2 = 2 and η3 = 0.25.

In this case, we find that ξ1 = 0.3971 and ξ2 = 0.5165.
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4.5 Game-Theoretic Model of Contention Control

In Section 4.3 and Section 4.4, we consider the case where each node can transmit

at one of K rates. The optimal pk can be found by maximizing the throughput of

the network. In practice, nodes may join or leave a network. Each node should

therefore adjust its probability pk independently. In this section, we present a general

game-theoretic framework for designing contention based medium access control. The

framework extends the random access game model in [20]. In [20], this problem is

treated as a random access game with a given utility function. In contrast to [20],

we consider how to design utility functions to achieve the desired equilibrium and

to reverse engineer a given protocol. For example, we will give a utility function

with the throughput optimal channel access probability in Section 4.4 as the equi-

librium. We also propose several dynamic algorithms to achieve the equilibrium in

a distributed fashion and characterize their convergence under asychronousness and

estimation error.
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4.5.1 Random Access Game

Consider a set N of wireless nodes in a wireless LAN with contention-based medium

access. In this subsection, we mainly consider single-cell wireless LANs with a sin-

gle transmission rate at each node. We assume all nodes always have a frame to

transmit. The network is noise free and packet loss is only due to collision. We will

mainly present our theory and analysis in terms of “channel access probability.” If a

backoff mechanism is implemented, the channel access probability p is related to the

contention window W according to p = 2
W+1

, which is derived under the decoupling

approximation with constant contention windows, see, e.g., [11]. Contention control

is an iterative feedback system described mathematically as:

pi(t + 1) = Fi(pi(t),qi(t)), qi(t + 1) = Gi(p(t)), (4.35)

where pi(t) is the channel access probability of node i, p(t) = {pi(t)} is the corre-

sponding vector, and qi(t) is certain measure of contention observed by node i that

depends on the vector p(t).

In practice, it is hard for wireless nodes to learn the exact channel access proba-

bilities of others. Each node infers the contention of the wireless network through ob-

serving several contention measure signals qi(p), which are functions of other nodes’

channel access probabilities. We model the interaction among wireless nodes as a

non-cooperative game. Formally, we define a random access game [20] as follows.

Definition 4.4 A random access game G is defined as a triple G := {N , (Si)i∈N , (ui)i∈N},
where N is a set of players (wireless nodes), player i ∈ N strategy Si := {pi|pi ∈
[νi, ωi]} with 0 ≤ νi < ωi ≤ 1, and payoff function ui(p) = Ui(pi) − piCi(qi) with

utility function Ui(pi) and price function Ci(qi).

The payoff function can be interpreted as the net gain of utility from channel access

discounted by the contention “cost.” One property of this random access game is that

the computation of the payoff function does not require explicit exchange of channel

access probabilities between nodes. Thus, this game can be played and implemented
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distributedly. Random access game is a rather general model for contention control,

as the payoff function can be reverse-engineered from (4.35). The equilibrium point of

(4.35) defines an implicit relation between channel access probability pi and contention

measure qi. If this relation can be written as

Ci(qi) = Fi(pi), (4.36)

the utility function of each node i is defined as

Ui(pi) =

∫

Fi(pi)dpi. (4.37)

Therefore, we can reverse engineer medium access control protocols and study them in

game theoretic framework: medium access control can be interpreted as a distributed

strategy update algorithm to achieve the equilibrium of the random access game.

In random access game, one of the most important questions is whether a Nash

equilibrium exists or not. Denote the channel access probability for all nodes but i by

p−i := (p1, . . . , pi−1, pi+1, . . . , p|N |), and write (pi,p−i) := p. We have the following

definition of Nash equilibrium [29].

Definition 4.5 A channel access probability vector p∗ is said to be a Nash equi-

librium if no node can improve its payoff by unilaterally changing its probability of

transmission, i.e., ui(p
∗
i ,p

∗
−i) ≥ ui(pi,p

∗
−i), ∀pi ∈ Si. A Nash equilibrium p∗ is a

nontrivial equilibrium if p∗i satisfies

∂

∂pi
ui(p

∗
i ,p

∗
−i) = 0, ∀i ∈ N . (4.38)

To facilitate analysis in the following, we list the assumptions that will be used in

this section.

A1: The utility function Ui(·) is twice continuously differentiable, strictly concave, and

with finite curvatures that are bounded away from zero, i.e., there exist some

positive constants µ and χ such that 1/µ ≥ −1/U ′′
i (pi) ≥ 1/χ > 0.
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A2: The inverse function (U ′
i)

−1 (Ci (qi)) maps any qi into a point in Si for all i ∈ N .

A3: At a nontrivial Nash equilibrium p∗, there exists a function Φi(pi) for each node i

such that Φi(p
∗
i ) = Φj(p

∗
j), ∀i, j ∈ N and Φi(pi) is monotone in Si, ∀i ∈ N .

By [29, Theorem 1.2] and Brouwer’s fixed point theorem [12], the following two

theorems are immediate.

Theorem 4.6 Under assumption A1, there exists a Nash equilibrium for any random

access game G.

Theorem 4.7 Suppose A2 holds. Random access game G has a nontrivial Nash

equilibrium.

Since the equilibrium determines the operating point of medium access control,

it is desired to have a unique nontrivial Nash equilibrium. One way to show this is

to use Banach fixed point theorem [12] by showing that Gi(p) := (U ′
i)

−1 (Ci (qi(p)))

is a contraction mapping [5]. However, the conditions obtained using this approach

are sometimes restrictive. Another way to show uniqueness is to apply the following

theorem.

Theorem 4.8 Suppose that A1 and A3 hold and random access game G has a non-

trivial Nash equilibrium. If additionally for all i ∈ N , Φi(pi) is a strictly monotone

function in Si and Ci(qi(p)) is strictly increasing in p, then G has a unique nontrivial

Nash equilibrium.

Proof. Since Ui(pi) is a continuously differentiable concave function, U ′
i(pi) is a

continuous, decreasing function. Without loss of generality, we consider the case that

Φi(pi) is strictly increasing. Suppose that there are two nontrivial Nash equilibria p̄

and p̂. By A3, there exist γ1, γ2 > 0 such that, for all i, Φi(p̄i) = γ1, Φi(p̂i) = γ2.

Since Φi(pi) is strictly increasing, γ1 6= γ2. Without loss of generality, assume γ1 > γ2.

Thus, p̄i > p̂i for all i. By equation (4.38), U ′
i(p̄i) = Ci(qi(p̄)) > Ci(qi(p̂)) = U ′

i(p̂i),

which contradicts the fact that U ′
i(pi) is a decreasing function. Thus, if G has a

nontrivial Nash equilibrium, it is unique.
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4.5.2 Utility Function Design

In the following, we give several examples to show how to interpret existing medium

access algorithms within random access game framework and design utility functions

to achieve desired equilibrium properties. There are basically three ways to design

utility functions.

4.5.2.1 Reverse Engineering from Existing Protocols

Take 802.11 DCF as an example. Different from [53], which reverse engineer expo-

nential backoff type of protocols from the dynamic, we reverse engineer 802.11 DCF

from the equilibrium point. Let qi := 1−∏j∈N/{i}(1−pj) denote the conditional col-

lision probability of node i. It is well established that for a single-cell wireless LAN at

steady state, channel access probability pi relates to conditional collision probability

qi as follows [11]:

pi =
2(1− 2qi)

(1− 2qi)(a + 1) + qia(1− (2qi)m)
, (4.39)

where a = CWmin is the base contention window and m is the maximum backoff

stage. Note that (4.39) defined an implicit function qi = Ci(qi) = Fi(pi). Following

procedures (4.36)–(4.37), we can derive a utility function Ui(pi). When 0 ≤ qi ≤ 1,

m ≥ 1, and a ≥ 1, it can be verified that U ′′
i (pi) < 0. Also, it can be readily

checked that F−1
i (qi) maps any qi ∈ [0, 1] into a point pi ∈ [0, 1]. From Theorem 4.7,

the random access game G with the derived utility function has a nontrivial Nash

equilibrium. To show the uniqueness of equilibrium, we define Φi(pi) = (1− pi)(1−
U ′

i(pi)). At equilibrium p∗, we have Φi(p
∗
i ) = Πi∈N (1 − p∗i ) = Φj(p

∗
j), ∀i, j ∈ N . As

Fi(pi) is an implicit function, we define Φ̃i(qi) = (1− F−1
i (qi))(1− qi), where F−1

i (qi)

is given in (4.39). It is easy to show that Φ̃i(qi) is a strictly decreasing function in qi

and F−1
i (qi) is also a strictly decreasing function in qi. Therefore, Φi(pi) is a strictly

increasing function. Also, Ci(qi) = qi is strictly increasing. By Theorem 4.8, the

random access game G has a unique nontrivial Nash equilibrium.
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4.5.2.2 Reverse Engineering from Desired Operating Points

Single-Rate Protocol without SIC: In [38], a medium access control method is proposed

by using the mean number of idle slots between transmission attempts. Let Tc denote

the average collision duration and TSLOT denote the slot duration. It is derived in [38]

that when the number of users in the network |N | → ∞, the throughput-optimal

number of idle slots between two transmission attempts is

n̄opt
i∞ =

e−ξ

1− e−ξ
, (4.40)

where ξ is the solution to 1 − ξ = ηe−ξ and η = 1 − TSLOT/Tc. Note that n̄opt
i∞ is

completely determined by the protocol parameters but not by the number of nodes

in the network. Let qi := 1−∏j∈N/{i}(1− pj). The probability of an idle slot is

(1− pi)(1− qi) =
n̄opt

i∞
n̄opt

i∞ + 1
= e−ξ. (4.41)

Let n denote the number of consecutive idle slots between two transmissions. Since

n has the geometric distribution with parameter γ(p) =
∏

i∈N (1− pi), its mean n̄ is

given by n̄ = γ(p)
1−γ(p)

, which can be estimated by averaging over ntrans occurrences of

this event. At every step, n̄ is updated according to n̄← βn̄ + (1− β)isum/ntrans,

where isum is the total number of idle slots during ntrans occurrences. Thus, each

node can estimate its conditional collision probability according to

qi = 1− γ(p)

1− pi

=
1− (n̄ + 1)pi

(n̄ + 1)(1− pi)
. (4.42)

Applying (4.37) with Ci(qi) = qi, we obtain the utility function as

Ui(pi) = pi + e−ξ log(1− pi). (4.43)

Note that Ui(pi) does not satisfy A2 but it is clear that the random access game

with utility (4.43) has a nontrivial Nash equilibrium. This also shows the limitation

of Theorem 4.7. Utility (4.43) does not satisfy Theorem 4.8. In fact, there exist
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infinite number of equilibria in the game with (4.43). To design a game with unique

equilibrium, we note that when |N | is large the optimal attempt probability that

maximizes the throughput is very small as shown in [38]. We thus have

(1− pi)
α(1− qi) = (1− pi)

α−1e−ξ ≈ e−ξ, (4.44)

where α > 1 and the approximation holds when α is not very large. Applying (4.37),

we obtain the utility function as

Ui(pi) = pi +
e−ξ

1− α
(1− pi)

1−α. (4.45)

Note that (4.45) still does not satisfy A2 and we cannot use Theorem 4.7 and con-

traction mapping to show existence and uniqueness of nontrivial Nash equilibrium.

But at least one nontrivial Nash equilibrium exists, i.e., p∗i = 1−e−ξ/(α+|N |−1). Define

Φi(pi) = (1−pi)(1−U ′
i(pi)) = e−ξ

(1−pi)α−1 , which is strictly increasing in pi when α > 1.

Also qi(p) is strictly increasing in p. By Theorem 4.8, the random access game G
has a unique nontrivial Nash equilibrium. Note that due to the approximation in

(4.44) the equilibrium point obtained by (4.45) may not achieve the optimal number

of idle slots n̄opt
i∞ . We will discuss in Section 4.6.4 how to design equilibrium selection

algorithm such that the equilibrium point by using (4.45) can actually hit n̄opt
i∞ .

Multiple-Rate Protocol with SIC: From Theorem 4.3, we know that pk = ξk

N
, k =

1, . . . , K − 1 is asymptotically optimal when N is large for the multiple-rate protocol

with SIC in Section 4.3 and Section 4.4. We thus define ξ =
∑K−1

k=1 ξk and p̃ =
∑K−1

k=1 pk = ξ
N

. We only need to determine p̃ because we can find pk = ξk

ξ
p̃. The

probability that all the nodes transmit at rate RK in a given time slot is (1 − p̃)N ,

which converges to e−ξ as N → +∞. For example, in half-duplex WLAN, this

probability corresponds to the probability of an idle time slot. Let p̃i be node i’s local

estimate of p̃, which is the probability that at least one other user transmits at a rate

higher than RK . Each node could infer the contention of the network through the

contention measure signal q̃i = 1−∏j 6=i(1− p̃j). Note that the number of consecutive
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time slots where all nodes transmit at rate RK , mK , follows a geometric distribution

with parameter
∏

i(1− p̃i). The expected value of mK is thus m̄K =
∏

i(1−p̃i)

1−∏i(1−p̃i)
, which

can be estimated at each node. q̃i can then be estimated as 1−(m̄K+1)p̃i

(m̄K+1)(1−p̃i)
.

To design a random access game with Ui(p̃i) such that its Nash equilibrium max-

imizes the total throughput, we use the similar approach as in (4.45). When N is

large, we obtain the utility function as

Ui(p̃i) = p̃i +
e−ξ

1− α
(1− p̃i)

1−α. (4.46)

Similarly, when α > 1 the random access game with utility function (4.46) has a

unique nontrivial Nash equilibrium.

4.5.2.3 Forward Engineering by Heuristics

Consider random access game with the following payoff function

ui(p) := Ui(pi)− pi

∏

j 6=i

(1− pj) = Ui(pi)− piqi, (4.47)

where qi = Ci(qi) =
∏

j 6=i(1− pj) is the contention measurement signal representing

the probability that all nodes except node i do not transmit. This payoff function is

motivated by the heuristic that each wireless node should be “charged” according to

the throughput it achieves.

It turns out that the random access game with payoff (4.47) is a supermodular

game. Supermodularity was introduced into the game theory by Topkis [76]. Su-

permodular games are of particular interest since they have many nice properties

such as the existence of Nash equilibria and the convergence of the equilibria un-

der different dynamics. The simplicity of supermodular games makes concavity and

differentiability assumptions as presumed in Theorems 4.6 and 4.7 unnecessary. For

one dimensional user strategy spaces as in random access game, the definition of

supermodular game simplifies to the following.

Definition 4.9 ui(pi,p−i) has nondecreasing differences in (pi,p−i) if for all p−i ≥
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p′
−i the quantity ui(pi,p−i) − ui(pi,p

′
−i) is nondecreasing in pi. For continuous and

twice differentiable payoffs, ui(pi,p−i) has nondecreasing differences is equivalent to

∂2ui(p)
∂pi∂pj

≥ 0, for all j 6= i.

Definition 4.10 A random access game G is supermodular if, for each node i ∈ N ,

ui(pi,p−i) has nondecreasing differences in (pi,p−i).

It is easy to check that ∂2ui(p)/∂pi∂pj =
∏

j′ 6=i,j′ 6=j(1− pj′) ≥ 0. From Definition

4.10, we have the following theorem.

Theorem 4.11 A random access game G with payoff function (4.47) is a supermod-

ular game and the set of Nash equilibria for G is nonempty.

As indicated by Theorem 4.11, no concavity assumption on utility function is

required to guarantee the existence of Nash equilibria as in non-supermodular games.

By following the same proof as Theorem 4.8, we have the following corollary on the

uniqueness of equilibrium for supermodular games.

Corollary 4.12 Suppose that supermodular game G has a nontrivial Nash equilib-

rium and the utility function Ui(·) is twice continuously differentiable, strictly convex.

If Φi(pi) = (1 − pi)U
′
i(pi) is a strictly decreasing function in Si, G has a unique

nontrivial Nash equilibrium.

As an example, we consider the following utility function given in [20]

Ui(pi) :=
1

ai

(
(ai − 1)bi

ai
ln (aipi − bi)− pi

)

, (4.48)

where 0 < bi < 1, ai < 1, and pi ∈
(

bi/ai,
bi+
√

b2i +ai(aibi−b2i−bi)

ai

)

. It is easy to check

that Ui(pi) is strictly convex and Φ′
i(pi) < 0 when pi <

bi+
√

b2i +ai(aibi−b2i−bi)

ai
. From

Corollary 4.12, the supermodular game with utility function (4.48) has a unique

nontrivial Nash equilibrium.

There are many ways to design utility functions and random access games. We

only show a few specific examples in this section. The key point of this section is that
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the random access game model is general enough to include, if not all, most of existing

medium access control algorithms. Most of algorithms can be reverse engineered to

be a random access game with specific utility function.

4.6 Dynamics of Random Access Game

The dynamic of game studies how players could converge to a Nash equilibrium. It is

a difficult problem in general. In distributed random access games, wireless nodes can

observe the outcome (in terms of some contention measure) of the actions of others,

but do not have direct knowledge of other nodes’ actions and payoffs. We consider

repeated play of random access game, and look for strategy update mechanism in

which nodes repeatedly adjust channel access probabilities in response to observations

of other players’ actions so as to achieve the Nash equilibrium.

4.6.1 Basic Dynamic Algorithms

4.6.1.1 Best Response

The simplest update mechanism is the best response strategy: at each stage, every

node chooses the best response to the actions of all the other nodes in the previous

stage. Let p(0) be the largest vector in the strategy space (Si)i∈N . At stage t + 1,

node i ∈ N chooses a channel access probability

pi(t + 1) = Bi(p(t)) := max

{

arg max
p∈Si

ui (p,p−i(t))

}

. (4.49)

At each stage, more than one probability may be a best response to a given p−i(t). In

this case, (4.49) always chooses the largest probability. Clearly, if the above dynamics

reaches a steady state, this state is a Nash equilibrium. We restrict our discussion on

supermodular games. The significance of supermodularity is the fact that the best

response strategy converges to a Nash equilibrium. We have the following theorem.
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Theorem 4.13 The best response strategy converges to a Nash equilibrium of random

access game G. Furthermore, it is the largest equilibrium in the set of Nash equilibria.

The proof follows [76, Lemma 4.1]. If we always choose the smallest probability in

(4.49) and p(0) is the smallest vector in the strategy space, the best response strategy

will converge to the smallest equilibrium. When there exist multiple equilibria, the

following theorem indicates that the equilibrium attained by (4.49) yields the highest

aggregate payoff.

Theorem 4.14 The best response strategy converges to a Pareto dominant equilib-

rium, i.e., ui(p) ≥ ui(p) for all p in the strategy space.

Denote the mapping B̃i(p(t)) := arg maxp ui (p,p−i(t)). The following theorem

guarantees that (4.49) converges to a nontrivial equilibrium.

Theorem 4.15 If B̃i(p(0)) belongs to the strategy space and B̃i(p(0)) ≤ pi(0), ∀i ∈
N , the best response strategy converges to the largest nontrivial Nash equilibrium.

Similar theorem can also be obtained if p(0) is the smallest vector in the strat-

egy space. By using Theorem 4.15, it is easy to obtain conditions on ai and bi in

(4.48) such that the best response strategy converges to a nontrivial equilibrium of

the corresponding game. Without using Corollary 4.12, the uniqueness of nontrivial

equilibrium can also be obtained by showing that Bi(p(t)) in (4.49) is a contraction

mapping. Note that a condition for convergence of best response strategy is given

in [20], which is strict and hard to verify. Supermodularity greatly simplifies the

conditions for the convergence of best response strategy.

4.6.1.2 Gradient Play

An alternative update mechanism is gradient play [28]. Compared to “best response”

strategy, gradient play can be viewed as a “better response”. In gradient play, every

node adjusts its channel access probability gradually in a gradient direction suggested
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by contention measurements. Mathematically, each node i ∈ N updates its strategy

according to

pi(t + 1) = [pi(t) + ǫi(t)(U
′
i(pi(t))− Ci(qi(p(t))))]Si, (4.50)

where the stepsize ǫi(·) > 0 is a function in time, [·]Si denotes the projection onto node

i’s strategy space. From (4.50), if the marginal utility U ′
i(pi(t)) is greater than the

contention price Ci(qi(p(t))), we increase the access probability, and if the marginal

utility is less than the contention price, we decrease the access probability. In the

following, we assume that all nodes have the same stepsize ǫi(t) = ǫ(t), ∀i ∈ N .

Theorem 4.16 Let C(p) = (Ci(qi(p))) be a mapping and JC = (JC
ij ) be the Jacobian

of C(p). Suppose that the smallest eigenvalue of JC, λmin(J
C), satisfies µ+λmin(J

C) >

0, maxj

∣
∣JC

ij

∣
∣
2 ≤M , and the strategy space (Si)i∈N contains a unique nontrivial Nash

equilibrium p∗, the gradient play (4.50) converges geometrically to p∗ if the stepsize

ǫ(t) < µ+λmin(JC)
χ2+|N |M .

The proof of Theorem 4.16 is given in the appendix. Theorem 4.16 also shows the

convergence rate of gradient play. As an example of using Theorem 4.16, we consider

the utility function defined in (4.45). By assuming that all nodes’ strategy spaces are

identical, i.e., S = [ν, ω]. In this case, we have

µ =
αe−ξ

(1− ν)α+1
, χ =

αe−ξ

(1− ω)α+1
. (4.51)

To find λmin(J
C), we note that

JC(p) = −
(
∏

i

(1− pi)

)

(
diag(x)2 − xxT

)
, (4.52)

where x =
[

1
1−p1

, . . . , 1
1−p|N|

]T

. Note that each entry of x is less than 1
1−ω

. By

using Rayleigh quotient [43], it is easy to show that the maximum eigenvalue of
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diag(x)2 − xxT is less than 1
(1−ω)2

. Thus, Theorem 4.16 requires that

λmin(J
C) + µ ≥ −(1− υ)|N |

(1− ω)2
+

αe−ξ

(1− ν)α+1
> 0. (4.53)

Condition (4.53) is mild. For example, if we take ω = 2/33 and α = 2, all ν ∈ [0, 1]

satisfy (4.53). We see that a larger α indicates a larger µ, which means a greater

convergence rate by (4.84).

Note that ‖p(t+1)−p∗‖22 can be considered as a universal Lyapunov function for

all random access games. Theorem 4.16 also implies that if multiple equilibria exist,

gradient play converges to one equilibrium but we do not know which one.

4.6.2 Asynchronous Dynamic Algorithms

Due to propagation delay and that all the nodes may not enter the network at the

same time, nodes may not update their channel access probability at the same time.

In this subsection, we discuss asynchronous counterparts of the algorithms in Section

4.6.1. We assume that the contention measurement signals that node i uses to update

its channel access probability result from the vector

p(τ i(t)) =
(
p1(τ

i
1(t)), p2(τ

i
2(t)), . . . , p|N |(τ

i
|N |(t))

)
, (4.54)

where 0 ≤ τ i
j (t) ≤ t denotes the most recent time that node j’s action affects node

i’s observation, and τ i
i (t) = t.

4.6.2.1 Best Response

The best response strategy (4.49) is modified to

pi(t + 1) = Bi(p(τ i(t))) := max

{

arg max
p∈Si

ui

(
p,p−i(τ

i(t))
)
}

. (4.55)

Parallel to Theorem 4.13, we have the following theorem on the convergence of asyn-

chronous best response for supermodular games.
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Theorem 4.17 The asynchronous best response strategy (4.55) converges to a Nash

equilibrium of the random access game G. Furthermore, it is the largest equilibrium

in the set of Nash equilibria.

Proof. We show this by induction. Suppose that p(τ + 1) ≤ p(τ), ∀τ ∈ {0, . . . , t−
1}. It is true when t = 0 as p(0) is the largest vector in the strategy space. As

τ i
j (t + 1) ≥ τ i

j (t), we have pj(τ
i
j(t + 1)) ≤ pj(τ

i
j (t)). By induction hypothesis, we

get p−i(τ
i
j (t + 1)) ≤ p−i(τ

i
j (t)). By supermodularity and [76, Lemma 4.1], we can

show that pi(t + 1) ≤ pi(t). Therefore, the hypothesis is also true when τ = t. By

induction, we have

p(0) ≥ p(1) ≥ · · · ≥ p(t) ≥ · · · , (4.56)

or {p(t)} is a nonincreasing sequence. The remainder of proof follows that of Theorem

4.13.

All other results in Section 4.6.1 for best response also hold in the asynchronous

case.

4.6.2.2 Gradient Play

The gradient play (4.50) is modified to

pi(t + 1) =
[
pi(t) + ǫi(t)

(
U ′

i(pi(t))− Ci(qi(p(τ i(t))))
)]Si . (4.57)

Since at each step, nodes update channel access probabilities by a small amount,

gradient play is expected to converge if τ i
j (t) is not far away from t, ∀j ∈ N . The

following result verifies this intuition.

Theorem 4.18 Let C(p) = (Ci(qi(p))) be a mapping and JC = (JC
ij ) be the Jacobian

of C(p). Assume a constant stepsize ǫi(t) = ǫ in (4.57). Suppose that ‖JC‖1 ≤ M1,

maxj

∣
∣JC

ij

∣
∣2 ≤ M2, and the strategy space (Si)i∈N contains a unique nontrivial Nash

equilibrium p∗, and t − τ i
j (t) ≤ B, where B ≥ 0 is a constant, the asynchronous

gradient play (4.57) geometrically converges to p∗ if there exists ǫ > 0 and 0 < γ < 1
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such that

γ = 1− 2ǫ

(

µ−M1

√

|N |
γB

+ ǫ

(

χ2 +
M2|N |2

γB

))

. (4.58)

The proof is given in the appendix.

4.6.3 Dynamic Algorithms under Estimation Uncertainties

In this subsection, we consider dynamic algorithms under estimation uncertainties.

The dynamic algorithms require the knowledge of contention measure signals. In

practice, contention measure signals can be estimated via the observation of the wire-

less medium over several time slots as in Section 4.5.2.2. Due to the use of estimated

contention measure signals, the algorithms in Section 4.6.1 are in fact stochastic al-

gorithms. In the following, we consider gradient play. We assume that Ci(qi(p(t)))

is replaced by Ĉi(qi(p(t))) = Ci(qi(p(t))) + wi(t) in (4.50), where wi(t) is the error.

Let Ft be an increasing sequence of σ-fields. Without loss generality, we write wi(t)

as wi(t) = w̄i(t) + w̃i(t), where w̄i(t) = E{wi(t)|Ft} can be considered as the deter-

ministic error and w̃i(t) = wi(t) − w̄i(t) is the stochastic error with zero mean. We

further assume that limt→∞ w̄i(t) = w̄i. The deterministic error may be caused by the

bias of signal estimation and carrier sense error due to fading and background noise.

For ease of understanding, in the following, we discuss deterministic and stochastic

errors separately. The proof of the following theorems can be found in the appendix.

Theorem 4.19 Let λmin(J
C) denote the smallest eigenvalue of JC and maxj

∣
∣JC

ij

∣
∣2 ≤

M . Let p∗ denote the equilibrium defined by

U ′
i(p

∗
i ) = Ci(qi(p

∗)) + w̄i. (4.59)

If p∗ is within the strategy space and it is the unique equilibrium defined by (4.59),

the gradient play converges to p∗ provided µ + λmin(J
C) > 0 and ǫ(t) < µ+λmin(JC)

χ2+4|N |M .

The uniqueness of p∗ can be obtained by using Theorem 4.8. Note that under

certain conditions, by implicit function theorem [5], (4.59) defines an implicit function
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p∗(w̄) at the neighborhood of w̄ = 0. Therefore, for any ǫ > 0, there exists a δ > 0

such that if ‖w̄‖2 < δ, ‖p∗(w̄) − p∗(0)‖2 < ǫ. So the gradient play converges to a

neighborhood of the equilibrium point without errors.

For the stochastic error, we consider gradient play with variable stepsize and

constant stepsize, respectively.

Theorem 4.20 Let λmin(J
C) denote the smallest eigenvalue of JC. Suppose that

E{wi(t)|Ft} = 0, E{w2
i (t)|Ft} ≤ B, and

∞∑

t=0

ǫ(t) =∞,
∞∑

t=0

ǫ2(t) <∞, e.g., ǫ(t) = 1/t. (4.60)

If p∗ is the unique nontrivial Nash equilibrium, the gradient play converges to p∗ with

probability 1 provided µ + λmin(J
C) > 0.

Theorem 4.21 Let λmin(J
C) denote the smallest eigenvalue of JC and maxj

∣
∣JC

ij

∣
∣2 ≤

M . Suppose that E{wi(t)|Ft} = 0, E{w2
i (t)|Ft} ≤ B, and ǫ(t) = ǫ, ∀t. If p∗ is the

unique nontrivial Nash equilibrium, there exists a constant D(B, ǫ) > 0 such that

lim sup
t→∞

‖p(t)− p∗‖2 ≤ D(B, ǫ) (4.61)

provided µ + λmin(J
C) > 0 and ǫ < µ+λmin(JC)

χ2+4|N |M .

By combining Theorems 4.19 and 4.21, we can conclude that with constant step-

size, the stochastic gradient play converges to a neighborhood of the equilibrium

point.

4.6.4 Equilibrium Selection

The equilibrium attained by using the dynamic algorithms in Section 4.6.1 does

not necessarily converge to the desired operating point when the utility functions

in Section 4.5.2.2 are considered. This is because the approximation used in (4.44).

One approach of equilibrium selection is to estimate the number of users via N̂ =



106

log(1 − qi)/ log(1 − pi) + 1 at equilibrium and to set the channel access probability

to be the optimal value computed by using N̂ . However, as commented in [44], this

approach may not converge due to open loop control. The other approach is to use

an outer loop iteration and treat the algorithms in Section 4.6.1 as the inner loop

iteration. Take utility function (4.45) for example. Let τ denote the counter of outer

loop iteration and define the utility function at the τ -th outer iteration as

Ui(pi) = pi +
η(τ)

1− α
(1− pi)

1−α, (4.62)

where η(0) = e−ξ and the equilibrium point of this utility function as pi(τ). To cancel

the effect of neglecting (1− pi)
α−1 in (4.44), we do the outer iteration

η(τ + 1) = (1− pi(τ))α−1e−ξ. (4.63)

At equilibrium, all nodes have the same access probability, denoted as p(τ). By (4.63),

we obtain

p(τ + 1) = 1− |N|+α−1
√

(1− p(τ))α−1e−ξ. (4.64)

Let M(p) be the mapping defined by (4.64). By mean value theorem, it is easy to

see

|M(p1)−M(p2)| ≤
e
− ξ

|N|+α−1 (α− 1)(1− ω)
α−1

|N|+α−1
−1

|N |+ α− 1
|p1 − p2| (4.65)

Thus, if e
− ξ

|N|+α−1 (α−1)(1−ω)
α−1

|N|+α−1
−1

|N |+α−1
< 1,M(p) is a contraction mapping [5] and (4.64)

converges to the unique fixed point of M(p), which is the desired operating point.

Note that in Section 4.6.1-Section 4.6.3, we have established the convergence of inner

loop under different conditions. Therefore, the whole algorithm converges to the

desired operating point.

From (4.65), we can see that a larger α indicates a smaller outer loop convergence

rate, while a larger α results a greater inner loop convergence rate as suggested

in Theorem 4.16. Therefore, there exists an optimal α to achieve the least overall
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convergence rate. In practice, when exact p(τ) is not available, we can use the average

probability over a long duration. Also, outer loop iteration can be executed without

waiting for the convergence of the inner loop iteration.

4.7 Rate Splitting

Rate splitting has been applied to interference channels in [36] and multiple access

channel in [34,69]. In mac, it is shown in [34,69] that rate splitting provides another

way to achieve arbitrary point within the capacity region of mac defined in (4.10)

besides time sharing. Rate splitting has been applied to Aloha in [14, 59]. By using

rate splitting, each user is split into several virtual users sharing the total power of the

actual user. The same successive interference cancellation method is used to decode

each virtual user’s packets. It is shown in [14] that as the number of virtual users at

each node goes to infinity, the achievable sum rate of the distributed rate splitting

converges to the maximum possible sum rate of the mac. The algorithm in [14]

requires perfect knowledge of the number of users in the network and each user needs

to change its virtual users’ transmission rates whenever the total number of users in

the network changes. In this section, we propose an alternative rate splitting scheme

with a finite number of virtual users, each with multiple possible transmission rates,

by extending our multiple access MAC scheme from Section 4.3. The rate splitting

scheme improves throughput at the expense of additional complexity.

We begin by considering the two user network as in Section 4.2. Two virtual users,

denoted as U ′
i and U ′′

i are created at node i, i = 1, 2, with power αP and (1− α)P ,

respectively, where α is a parameter to be optimized. We take a suboptimal layering

approach as in [14], where U ′′
i ’s packet is always decoded before U ′

i ’s packet. Thus,

each virtual user as in Section 4.2 only needs to consider two rates, i.e., U ′
i takes

R′
k(α) =

1

2
log

(

1 +
αP

(k − 1)αP + σ2

)

, k = 1, 2, (4.66)
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with probability p′k and U ′′
i takes

R′′
k(α) =

1

2
log

(

1 +
(1− α)P

(k − 1)(1 − α)P + 2αP + σ2

)

, k = 1, 2, (4.67)

with probability p′′k. We choose p′1 = p′, p′2 = 1− p′, and p′′1 = p′′, p′′2 = 1− p′′. Note

that our strategy is different from [14] where U ′
i only transmits at rate R′

2(α) and U ′′
i

only transmits at rate R′′
2(α). The approach in [14] can be considered as a special

case of our strategy by choosing p′ = p′′ = 0.

As in Section 4.2, the average throughput of multiple access MAC with rate split-

ting can be obtained as

Rdrs−mac(p
′, p′′, α) =2

((

1− p′′2
) ((

R′
1(α) + R′

2(α)
)
p′(1− p′) + R′

2(α)(1 − p′)2
)

+
(
R′′

1(α) + R′′
2(α)

)
p′′(1− p′′) + R′′

2(α)(1 − p′′)2
)

.
(4.68)

Given α and p′′, we first maximize (4.68) over p′ and obtain

R∗
drs−mac(p

′′, α) = 2
((

1− p′′2
) (R′

1(α) + R′
2(α))2

4R′
1(α)

+
(
R′′

1(α) + R′′
2(α)

)
p′′(1− p′′) + R′′

2(α)(1 − p′′)2
)

.

(4.69)

Let A =
(R′

1(α)+R′
2(α))

2

4R′
1(α)

. Maximizing (4.69) over p′′ we obtain

R∗
drs−mac(α) =

(R′′
1(α) + R′′

2(α) + 2A)2

2(R′′
1(α) + A)

. (4.70)

By performing a linear search over α, we obtain the maximum total throughput

R∗
drs−mac.

Fig. 4.5 compares the throughput of the proposed algorithm with that in [14]

and Aloha with σ2 = 1 and different P for two virtual users. We can see that the

proposed schemes perform better than both Aloha and the one in [14]. The achievable

rate of [14] is saturated when P is large due to the lack of contention resolution

mechanism. By using rate splitting, an additional performance gain is attained by

using the proposed protocol compared with that without using rate splitting.
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Figure 4.5: Comparison of different schemes with σ2 = 1 and different P in a network
with 2 users.

The proposed approach can be readily generalized to the case of choosing M

virtual users at each node. We still assume a layered decoding approach at the

receiver, where the packets from virtual users at layer m are decoded before the

packets from virtual users at layer m−1. The users at layer m are assigned power P̃m

such that
∑M

m=1 P̃m = P . Let φm be the probability that all layer m users’ packets are

decoded correctly conditioned on all the packets at layers less than m being decoded

successfully, which can be computed by a similar approach as in Section 4.3. Let Rm

be the total throughput of users at layer m given all lower layers’ packets are decoded

correctly. The total throughput of all virtual users can be written as

Rdrs−mac =

M∑

m=1

RmΠm−1
l=1 φl. (4.71)

The optimization of P̃m and the rate selection probabilities at each layer are coupled

and are complicated to optimize. We thus take a suboptimal approach by decoupling
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the two optimizations. We first optimize over P̃m by ignoring each layer’s impact on

upper layers or assuming φm = 1, m = 1, . . . , M . Note that the decoding process at

each layer is similar to that in Section 4.3. According to Theorem 4.1, the achievable

throughput of the users at layer m can be approximated as

Rm =
C

2
log

(

1 +
NP̃m

N
∑M

l=m+1 P̃l + σ2

)

. (4.72)

By following the approach in [14], we can show that P̃m = σ2

N

(
1 + NP

σ2

)M−m
M

((
1 + NP

σ2

) 1
M − 1

)

,

m = 1, . . . , M , maximizes
∑M

m=1 Rm. After obtaining P̃m, we optimize the rate as-

signment probability of layer m backward from m = M to m = 1. When it comes

to layer m, we need to maximize
∑M

i=m RiΠ
i−1
l=mφl, which can be solved similarly as in

Section 4.3.

4.8 Simulation Results

In this section, we present simulation results on the proposed multiple access MAC

protocol in both Aloha type networks and WLAN. We will discuss the benefits of the

proposed protocol over existing protocols.

4.8.1 Aloha Type Networks

We first study the achievable throughput of the proposed protocol with SIC in Aloha

type networks. We only consider the maximum achievable throughput without proto-

col overhead. The performance of the dynamic algorithms to achieve such throughput

will be presented in the next subsection.

Fig. 4.6 compares the achievable throughput of different strategies as a function

of N when P = 10 and σ2 = 1 (SNR=10 dB). We compare the proposed protocol

with centralized scheme and conventional Aloha. In our proposed protocol, we set the

number of transmission rates at each user to be N . We also include the lower bound

(4.23) in Theorem 4.1. The “Equal Probability” throughput is obtained by pk = α
N−1

,
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Figure 4.6: Achievable throughput comparison of different strategies as a function of
N when P = 10 and σ2 = 1 (SNR=10 dB).
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Figure 4.7: Achievable throughput comparison of different strategies as a function of
P in a network with N = 30 users and σ2 = 1.
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k = 1, . . . , N − 1 and pN = 1− α, where α = 0.2011 as in the proof of Theorem 4.1.

The optimized throughput of the proposed strategy is obtained by maximizing (4.13)

via a local search around the “Equal Probability”, which does not necessarily achieve

the maximum throughput. The throughput of Aloha decreases as N increases while

that of the proposed protocol increases as N increases. When N = 50, the proposed

protocol with local search achieves a 3.1951 times throughput over Aloha. Even with

equal probability, the proposed protocol has a 2.2064 times throughput over Aloha at

N = 50. We also find that the lower bound (4.23) in Theorem 4.1 is very loose. The

ratio between the centralized scheme and the proposed strategy with local search

decreases as N increases. When N = 50, the proposed strategy with local search

attains 0.4580 throughput of the centralized scheme.

Fig. 4.7 compares the achievable throughput of different protocols as a function

of P or SNR in a network with N = 30 users and σ2 = 1. Let the slope of each curve

be denoted as ρ. The throughput of each protocol can be written as B(N) + ρ log P
σ2

in high SNR, where B(N) is a function of N . From Fig. 4.7, we find that slope ρ of

the proposed protocol with local search is the same as that of Aloha, which is 1
e
. It

seems that the throughput difference between the proposed protocol and Aloha lies

in that B(N) = 0 in Aloha while B(N) is an increasing function in N in the proposed

protocol.

Fig. 4.8 compares the achievable throughput of the proposed protocol with a finite

number K transmission rates as in Section 4.3.3. The proposed protocol with local

search with N transmission rates is also compared. The other settings are similar to

those in Fig. 4.6. The throughput of the proposed protocol increases by increasing

K. Even with K = 2, the proposed protocol achieves a 3.4167 times throughput

gain over Aloha at N = 50. However, unlike that using N transmission rates whose

throughput strictly increases as N increases, the throughput by using a finite number

of transmission rates converges to a value as N → +∞ like Aloha.

Fig. 4.9 compares the achievable throughput of the proposed protocol with only

K transmission rates as a function of P or SNR in a network with N = 30 users

and σ2 = 1. The proposed protocol with local search with N transmission rates is
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Figure 4.8: Achievable throughput comparison of different strategies as a function of
N when P = 10 and σ2 = 1 (SNR=10 dB). A finite number K of transmission rates
is chosen in the proposed scheme.
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Figure 4.9: Achievable throughput comparison of different strategies as a function of
P in a network with N = 30 users and σ2 = 1. A finite number K of transmission
rates is chosen in the proposed scheme.
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also compared. As Fig. 4.7, the throughput of the proposed protocol increases as

K increases. But different K’s have the same slope ρ as Aloha and that with N

transmission rates. Their difference lies only in B(N).

4.8.2 Half Duplex WLAN

In this section, we compare the performance of different medium access protocols using

a packet-level simulator. The system parameters are those specified in the 802.11a

standard with DSSS PHY layer [2], where the values of parameters are summarized

in Table 4.1.

Table 4.1: Parameters in Half Duplex WLAN Simulations

Slot Time (TSLOT) 9 µs
SIFS 16 µs
DIFS 34 µs

Propagation Delay 1 µs
Header 20 µs
ACK 4 µs

4.8.2.1 Throughput Comparison with Capacity Formula

We first consider the information theoretic result using capacity formula (4.12), which

assumes ideal error correcting codes. The system is allocated 20 MHz bandwidth. The

effective data transmission time Td is 37.9259 µs, which corresponds to transmitting

256 bytes data using 54 Mbps in 802.11a.

Fig. 4.10 compares the achievable throughput of the proposed MAC protocol with-

out SIC using the utility function (4.45), the one with SIC using the utility function

(4.46) and IEEE 802.11 DCF when P = 1 and σ2 = 1 (SNR=0 dB). Similar phe-

nomena as in Fig. 4.1 are observed. The throughput of the protocol with SIC is

optimized via a local search around the “Equal Probability”. The throughput of the

protocol without SIC decreases as N increases while that of the protocol with SIC

increases as N increases. When N = 50, the protocol with SIC achieves a 1.8912
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Figure 4.10: Achievable throughput comparison of different strategies as a function
of N in WLAN when P = 10 and σ2 = 1 (SNR=10 dB).

times throughput over the protocol without SIC and a 2.3615 throughput gain over

IEEE 802.11 DCF.

Fig. 4.11 compares the achievable throughput of different protocols as a function

of P or SNR in a network with N = 30 nodes and σ2 = 1. We can see that the

protocol with SIC performs better than that without SIC when SNR< 2.5 or in low

SNR, while the latter performs almost the same as the former in high SNR. This

phenomenon can be understood from (4.34), where it is easy to check that when

η2/η1 = TSLOT

Tt
is small and R1 ≫ R2 we have ξ2 = 0. In WLAN, TSLOT

Tt
is usually very

small due to carrier sensing. In high SNR, the protocol without SIC using existing

802.11 parameters has a close to optimum performance without using multirate and

rate splitting. On the other hand, in slotted Aloha networks, η = 1 and the protocol

with SIC performs better than conventional Aloha. From Fig. 4.10 and Fig. 4.11, we

find that the protocol with SIC outperforms existing protocols in a network with a

large number of users or when SNR is low.
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Figure 4.11: Achievable throughput comparison of different strategies as a function
of P in a WLAN with N = 30 users and σ2 = 1.

4.8.2.2 Throughput Comparison with Convolutional Codes

Next, we consider a more practical scenario, where 1/2 rate convolutional code with

BPSK modulation in IEEE 802.11a is assumed. We choose R1 = R2 = 6 Mb/s and

ω1 = 1, ω2 = 2 as in Example 4.3. We assume that the SNR is 10 dB. When only one

node transmits at R1, the packet delivery probability can be approximated as λ1 = 1,

while when two nodes transmits at rate R2 the packet delivery probability can be

approximated to be λ2 = 0.8738 at signal to interference plus noise ratio (SINR)

P
P+σ2 . We compare the protocol with SIC with that without SIC and IEEE 802.11

DCF.

Fig. 4.12 shows the protocol without SIC and the proposed protocol in a network

with 30 nodes, where both protocols use gradient play and the stepsize is chosen

to be ǫi(t) = 0.02 in (4.50). By maximizing (4.34), we find that ξ1 = 0.0722 and

ξ2 = 0.7574. We choose ξ = 0.8296 and α = 2 in (4.46). The dynamic with perfect

contention measurement signal is denoted as “Perfect” while that with estimated
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(a) Protocol without SIC
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Figure 4.12: Dynamics of the protocol without SIC and the proposed protocol in
a network with N = 30 nodes. We choose ξ1 = 0.0722 and ξ2 = 0.7574 in (4.34),
ξ = 0.8296 and α = 2 in (4.46), and the stepsize ǫi(t) = 0.05 in (4.50).

contention measurement signal is denoted as “Estimated”. With perfect signal, both

protocols converges to the equilibrium only after 5 iterations. Even with estimated

signal, we can see that both protocols oscillate around the equilibrium after less than

10 iterations, which agrees with Theorem 4.19 that with estimated signal the protocol

converges to within a small neighborhood of the desired equilibrium. In Fig. 4.12, we

also show the optimal channel access probability to achieve the maximum throughput.

The equilibrium of game model is close to the optimal value but not equal due to

unknown number of users and the approximation in (4.44). The equilibrium selection

algorithm in Section 4.6.4 can be used to achieve the desired equilibrium exactly.

Fig. 4.13 compares the achievable throughput of different protocols as a function

of N . In both the protocol with SIC and the one without SIC, we include both the

maximum achievable throughput by maximizing the throughput expression directly

(denoted as “Perfect”) and the achievable throughput using the game model in Section

4.5 (denoted as “Estimated”). We can see that the throughput of both the protocol

without SIC and IEEE 802.11 DCF decreases as N increases while that of the protocol

with SIC increases as N increases. The throughput of both the protocol without SIC

and the protocol with SIC converges to a constant value, while the throughput of
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Figure 4.13: Throughput comparison of different protocols as a function of N when
P = 10 and σ2 = 1 (SNR=10 dB). 1/2 rate convolutional code with BPSK is assumed.

IEEE 802.11 DCF strictly decreases in N . The protocol with SIC has a 17.60%

throughput gain over that without SIC at N = 50, while the gain is 81.31% over

IEEE 802.11 DCF. In both the protocol with SIC and the one without SIC, the

throughput loss due to use of the game model in Section 4.5 is negligible when N is

large.

Fig. 4.14 compares short-term fairness of different protocols using Jain fairness

index [46] in a network with N = 30 nodes for normalized window sizes that are

multiples of the number of wireless nodes. All other parameters are the same as in

Fig. 4.13. We can see that both the protocol without SIC and the protocol with

SIC provide better short-term fairness than IEEE 802.11 DCF as in both protocols

wireless nodes have roughly the same contention window size. Interestingly, besides

achieving a higher throughput, the protocol with SIC provides even a better short-

term fairness than the protocol without SIC because the protocol with SIC allows

multiple nodes transmit simultaneously.
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Figure 4.14: Fairness comparison of different protocols in a network with N = 30
nodes, P = 10 and σ2 = 1 (SNR=10 dB). 1/2 rate convolutional code with BPSK is
assumed.

4.9 Conclusion

In this chapter, we have developed a new class of random access protocols. These

protocols allow each user to transmit at multiple potential data rates. By using

successive interference cancellation, multiple packets can be received simultaneously.

In slotted Aloha type networks with Gaussian channels, we showed that the achiev-

able sum rate of the new protocol is at least a constant fraction of the information

theoretic limit. The proposed protocol was also extended to wireless LAN with half

duplex nodes. To achieve the desired throughput optimal equilibrium in a distributed

fashion without the knowledge of N , we have designed a random access game and

provided dynamic algorithms, whose convergence to the equilibrium is established.

Generalization to rate splitting was discussed in the end.
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4.10 Appendix

4.10.1 Proof of Theorem 4.3

Proof. As in (4.13), the total throughput of all the users where each user can transmit

at one of K rates, Rd,K(N), can be derived as

Rd,K(N)

=N

K−1∑

k=1

pkRk

∑

mk+
∑j

l=k+1
n′

l
≤j,

j=k,...,K−1

(
N − 1

mk, n
′
k+1, . . . , n

′
K

) K−1∏

j=k+1

p
n′

j

j



1−
K−1∑

j=1

pj





n′
K




k∑

j=1

pj





mk

+ NpKRK ,

(4.73)

where n′
k denotes the number of users transmitting at rate Rl other than user i with

n′
l = nl − 1 if l = k and n′

l = nl if l 6= k, and mk =
∑k

j=1 n′
j . We next show that

by choosing pk = ξk

N
, k = 1, · · · , K − 1, the asymptotic optimal rate can be achieved.

We can write (4.73) as

Rd,K(N)

=N

K−1∑

k=1

pkRk

∑

mk+
∑j

l=k+1
n′

l
≤j,

j=k,...,K−1

(N − 1)(N − 2) · · · n′
K

mk!n
′
k+1! · · · n′

K−1!

K−1∏

j=k+1

p
n′

j

j



1−
K−1∑

j=1

pj





n′
K




k∑

j=1

pj





mk

+ NpKRK .

(4.74)
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Note that N −K + 1 ≤ n′
K ≤ N . Define

R̂d,K(N)

=

K−1∑

k=1

NpkRk

∑

mk+
∑j

l=k+1
n′

l
≤j,

j=k,...,K−1

Nmk+
∑K−1

l=k+1 n′
l

mk!n
′
k+1! · · · n′

K−1!

K−1∏

j=k+1

p
n′

j

j



1−
K−1∑

j=1

pj





N−K 



k∑

j=1

pj





mk

+ NpKRK

=
K−1∑

k=1

ξkRk

∑

mk+
∑j

l=k+1
n′

l
≤j,

j=k,...,K−1

1

mk!n
′
k+1! · · · n′

K−1!

K−1∏

j=k+1

ξ
n′

j

j



1− 1

N

K−1∑

j=1

ξj





N−K 



k∑

j=1

ξj





mk

+

(

N −
K∑

k=1

ξk

)

RK ,

(4.75)

and

Řd,K(N)

=

K−1∑

k=1

(N −K)pkRk

∑

mk+
∑j

l=k+1
n′

l
≤j,
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(N −K)mk+
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l=k+1 n′
l
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j

j
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j=1

pj





N 
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j=1

pj
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mk

+ (N −K)pKRK
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1
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j
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ξ̌j


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j=1

ξ̃j


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mk

+

(

N −K −
K∑

k=1

ξ̃k

)

RK ,

(4.76)

where Npk = ξk and (N −K)pk = ξ̃k. We thus have

max
ξ̃k

Řd,K(N) ≤ max
pk

Rd,K(N) ≤ max
ξk

R̂d,K(N). (4.77)
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Since K is a finite number, we obtain

lim
N→+∞

Řd,K(N) = lim
N→+∞

R̂d,K(N)

=

K−1∑

k=1

ξkRk

∑

mk+
∑j

l=k+1
n′

l
≤j,

j=k,...,K−1

1

mk!n
′
k+1! · · · n′

K−1!

K−1∏

j=k+1

ξ
n′

j

j e−
∑K−1

j=1 ξj





k∑

j=1

ξj





mk

+ log e−
K∑

k=1

ξkRK

(4.78)

by setting ξk = ξ̃k. By using the squeeze rule in calculus, we obtain

lim
N→+∞

max
pk

Rd,K(N) = lim
N→+∞

max
ξk

R̂d,K(N). (4.79)

From (4.79), we can see that pk = ξk

N
achieves the optimal throughput asymptotically.

Furthermore, we can deduce from (4.78) that the optimal ξk maximizing (4.78) only

depends on R1, . . . , RK .

4.10.2 Proof of Theorem 4.16

Proof. By equation (4.50), we have

‖p(t + 1)− p∗‖22 =
∑

i∈N

∣
∣
∣

[
pi(t) + ǫ(t)

(
U ′

i(pi(t))− Ci(qi(p(t)))
)]Si − p∗i

∣
∣
∣

2

≤
∑

i∈N

∣
∣pi(t) + ǫ(t)

(
U ′

i(pi(t))− Ci(p(t))
)
− p∗i

∣
∣2

≤‖p(t) − p∗‖22 + 2ǫ(t)
∑

i

(pi(t)− p∗i )
(
U ′

i(pi(t))− Ci(p(t))
)

+ ǫ2(t)
∑

i

(
U ′

i(pi(t))− Ci(p(t))
)2

(a)

≤‖p(t) − p∗‖22 + 2ǫ(t)
∑

i

(pi(t)− p∗i )
(
U ′

i(pi(t))− U ′
i(p

∗
i )
)

− 2ǫ(t)
∑

i

(pi(t)− p∗i ) (Ci(p(t))− Ci(p
∗)) + ǫ2(t)

∑

i

(
U ′

i(pi(t))− Ci(p(t))
)2

,

(4.80)
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where we have used Ci(p(t)) to denote Ci(qi(p(t))). In (a), we use the fact that

U ′
i(p

∗
i ) = Ci(p

∗) at the nontrivial Nash equilibrium. By mean value theorem, we find

∑

i

(pi(t)− p∗i )
(
U ′

i(pi(t))− U ′
i(p

∗
i )
)

=
∑

i

U ′
i(p̃i)(pi(t)− p∗i )

2 ≤ −µ‖p(t)− p∗‖22, (4.81)

where p̃i = γpi(t) + (1 − γ)p∗i , 0 ≤ γ ≤ 1. Define a scalar function f(p) = (p(t) −
p∗)T C(p). By mean value theorem, we have

f(p(t))− f(p∗) = (p(t)− p∗)TJC(p̃)(p(t)− p∗) ≥ λmin(J
C)‖p(t)− p∗‖22. (4.82)

We also have

∑

i

(
U ′

i(pi(t))− Ci(p(t))
)2

=
∑

i

(
U ′

i(pi(t))− U ′
i(p

∗
i ) + Ci(p

∗)− Ci(p(t))
)2

≤2
∑

i

(
U ′

i(pi(t)) − U ′
i(p

∗
i )
)2

+ 2
∑

i

(Ci(p(t)) − Ci(p
∗))2

(a)

≤2χ2‖p(t)− p∗‖22 + 2
∑

i

(JC
i (p̃i)(p(t)− p∗))2

≤2χ2‖p(t)− p∗‖22 + 2

(
∑

i

max
j

∣
∣JC

ij (p̃i)
∣
∣
2

)

‖p(t) − p∗‖22

≤2(χ2 + |N |M)‖p(t) − p∗‖22,

(4.83)

where (a) comes from mean value theorem. Substituting (4.81)-(4.83) into (4.80), we

obtain

‖p(t + 1)− p∗‖22 ≤
(
1− 2ǫ(t)

(
µ + λmin(J

C)− ǫ(t)(χ2 + |N |M)
))
‖p(t) − p∗‖22. (4.84)

Therefore, if µ + λmin(J
C) > 0 and ǫ(t) < µ+λmin(JC)

χ2+|N |M , p(t) converges to p∗ geometri-

cally.
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4.10.3 Proof of Theorem 4.18

Proof. We show this by induction. The proof basically follows that of Theorem 4.16.

For brevity, we omit several immediate steps. Suppose that

‖p(τ + 1)− p∗‖22 ≤ γ‖p(τ)− p∗‖22, ∀τ ∈ {0, . . . , t− 1}, (4.85)

where 0 < γ < 1 is a constant. When τ = t, by equation (4.57), we have

‖p(t + 1)− p∗‖22≤
∑

i∈N

∣
∣pi(t) + ǫ

(
U ′

i(pi(t))− Ci(p(τ i(t)))
)
− p∗i

∣
∣
2

≤‖p(t)− p∗‖22 + 2ǫ
∑

i

(pi(t)− p∗i ) (U ′
i(pi(t))− U ′

i(p
∗
i ))

− 2ǫ
∑

i

(pi(t)− p∗i )
(
Ci(p(τ i(t)))− Ci(p

∗)
)

+ ǫ2
∑

i

(
U ′

i(pi(t))− Ci(p(τ i(t)))
)2

.

(4.86)

By mean value theorem, we have

f(p(τ i(t)))− f(p∗) = (p(t)− p∗)TJC(p̃)(p(τ i(t))− p∗)

≥− ‖JC(p̃)‖1‖p(t)− p∗‖2‖p(τ i(t))− p∗‖2 ≥ −M1‖p(t)− p∗‖2‖p(τ i(t))− p∗‖2.
(4.87)

Note that

‖p(τ i(t))− p∗‖22 =
∑

j∈N
|pj(τ

i
j (t))− p∗j |2 ≤

∑

j∈N
‖p(τ i

j(t))− p∗‖2

≤
∑

j∈N
γτ i

j (t)−t‖p(t)− p∗‖2 ≤ |N |
γB
‖p(t)− p∗‖2.

(4.88)

Similar to (4.84), we obtain

‖p(t + 1)− p∗‖22 ≤
(

1− 2ǫ

(

µ−M1

√

|N |
γB

+ ǫ

(

χ2 +
M2|N |2

γB

)))

‖p(t)− p∗‖22. (4.89)
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Therefore, if there exists ǫ > 0 and 0 < γ < 1 such that (4.58) holds, the induction

hypothesis is true for τ = t.

4.10.4 Proof of Theorem 4.19

Proof. By following (4.80), we obtain

‖p(t + 1)− p∗‖22 ≤‖p(t)− p∗‖22 + ǫ2(t)
∑

i

(U ′
i(pi(t))− Ci(p(t))− w̄i(t))

2

+ 2ǫ(t)
∑

i

(pi(t)− p∗i ) (U ′
i(pi(t))− Ci(p(t)− w̄i(t)))

≤γ‖p(t)− p∗‖22 + 4ǫω
∑

i

|w̄i(t)− w̄i|+ 2ǫ2
∑

i

(w̄i(t)− w̄i)
2,

(4.90)

where

γ = 1− 2ǫ
(
µ + λmin(J

C)− ǫ(χ2 + 4M)
)
, (4.91)

and

ǫ <
µ + λmin(J

C)

χ2 + 4|N |M . (4.92)

By assumption limt→∞ w̄i(t) = w̄i, for any δ > 0, there exists a t0 such that if t ≥ t0

|w̄i(t)− w̄i| < δ, ∀i. Applying (4.90) recursively, we obtain

‖p(t + 1)− p∗‖22 ≤γt−t0‖p(t0)− p∗‖22 + 4ǫω|N |δ
t−t0∑

τ=0

γτ + 2ǫ|N |δ2
t−t0∑

τ=0

γ2τ

≤γt−t0‖p(t0)− p∗‖22 +
4ǫω|N |δ
1− γ

+
2ǫ|N |δ2

1− γ2
.

(4.93)

By taking δ → 0 and t→∞, we obtain

lim sup
t→∞

‖p(t)− p∗‖22 = 0. (4.94)

Therefore, p(t) converges to p∗.
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4.10.5 Proof of Theorem 4.20

Proof. By following (4.80), we obtain

E
{
‖p(t + 1)− p∗‖22|Ft

}

≤‖p(t)− p∗‖22 + ǫ2(t)
∑

i

(
U ′

i(pi(t))− Ci(p(t)) − w̃i(t)
)2

+ 2ǫ(t)
∑

i

(pi(t)− p∗i )
(
U ′

i(pi(t))− Ci(p(t)− w̃i(t))
)

≤‖p(t)− p∗‖22 − ǫ(t)κ‖p(t) − p∗‖22 + 2ǫ2(t)E

{
∑

i

w̃2
i (t)|Ft

}

− 2ǫ(t)E

{
∑

i

(pi(t)− p∗i )w̃i(t)|Ft

}

≤‖p(t)− p∗‖22 − ǫ(t)κ‖p(t) − p∗‖22 + 2ǫ2(t)|N |B,

(4.95)

where

2
(
µ + λmin(J

C)− ǫ(t)(χ2 + 4|N |M)
)

> κ > 0. (4.96)

From (4.60), ∃t0, κ such that for all t ≥ t0, (4.96) holds. Taking expectation both

sides of (4.95) over Ft and applying the resulting equation recursively,

E
{
‖p(t + 1)− p∗‖22

}
≤E

{
‖p(t0)− p∗‖22

}
− κ

t∑

t=t0

ǫ(t)E
{
‖p(t)− p∗‖22

}

+ 2|N |B
t∑

t=t0

ǫ2(t),

(4.97)

from which we get
∞∑

t=t0

ǫ(t)E
{
‖p(t)− p∗‖22

}
<∞. (4.98)

Since
∑∞

t=0 ǫ(t) =∞ and E {‖p(t)− p∗‖22} ≥ 0, p(t) converges to p∗ with probability

1.
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4.10.6 Proof of Theorem 4.21

Proof. By following (4.90), we obtain

‖p(t + 1)− p∗‖22
≤‖p(t)− p∗‖22 + ǫ2(t)

∑

i

(U ′
i(pi(t))− Ci(p(t))− w̃i(t))

2

+ 2ǫ(t)
∑

i

(pi(t)− p∗i ) (U ′
i(pi(t))− Ci(p(t)− w̃i(t)))

≤γ‖p(t)− p∗‖22 − 2ǫ
∑

i

(pi(t)− p∗i )w̃i(t) + 2ǫ2
∑

i

w̃2
i (t),

(4.99)

where γ is defined in (4.91). Applying (4.99) recursively, we obtain

‖p(t + 1)− p∗‖22 ≤γt‖p(0)− p∗‖22 + 2ǫ2
t∑

τ=0

γt−τ
∑

i

w̃2
i (τ)

− 2ǫ

t∑

τ=0

γt−τ
∑

i

(pi(τ)− p∗i )w̃i(τ).

(4.100)

As E{wi(t)|Ft} = 0 and E {∑i w̃
2
i (τ)|Ft} ≤ B, by using [10, Lemma 2], there exists

a constant D(B, ǫ) > 0 such that

lim inf
t→∞

2ǫ2
t∑

τ=0

γt−τ
∑

i

w̃2
i (τ)− 2ǫ

t∑

τ=0

γt−τ
∑

i

(pi(τ)− p∗i )w̃i(τ) ≤ D(B, ǫ). (4.101)

Therefore, we get (4.61).
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Chapter 5

Secure Network Communications

In this chapter, we consider secure communications over networks with erasures and

networks with unequal link capacities in the presence of a wiretapper that can wiretap

any subset of k links.

5.1 Introduction

Information-theoretic security is a principle that can strengthen the security of wire-

less networks at the physical layer by using coding to guarantee that the messages

sent cannot be decoded by a malicious eavesdropper. The theoretical basis for this

information-theoretic approach was first studied in the seminal paper by Wyner [80]

using Shannon’s notion of perfect secrecy [71], where a coset coding scheme based on

a linear maximum distance separable code is proposed to provide security for a wire-

tap channel. Recently, information-theoretic security is studied in more complicated

networks, see e.g., [13, 27, 60]. The secure network coding problem was introduced

in [13] for the case of multicast in wireline networks where each link has equal ca-

pacity. In the presence of a wiretapper that can look at most k links in the network,

constructions of information-theoretically secure linear network codes are proposed

in e.g. [13, 27]. For this network model, trade-offs between security, code alphabet

size, and multicast rate of secure linear network codes are considered in [27]. In [60],

secure communication is considered for wireless erasure networks. The given results

extend the capacity result of wireless erasure networks in [25], where an outer bound
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on the secrecy unicast rate is derived when the wiretapper can wiretap at most k

links.

In this chapter, we consider secure communication over more general classes of

wireline networks: networks with unequal link capacities and networks with erasures.

The former generalizes the equal link capacity secure network coding problem formu-

lation of [13], while the latter generalizes the wiretap channel problem formulation

of [80] from a single channel to a network of erasure links.

In the case of throughput optimization without security requirements, the assump-

tion that all links have unit capacity is made without loss of generality, since links of

larger capacity can be modeled as multiple unit capacity links in parallel. However, in

the secure communication problem, such an assumption cannot be made without loss

of generality. Indeed, we show that there are significant differences between the equal

capacity and unequal capacity cases. For the case of equal (unit) link capacities, the

secrecy capacity is given by the cut set bound, whether or not the location of the

wiretapped links is known. This capacity can be achieved by injecting k random keys

at the source which are decoded at the sink along with the message [13]. We refer to

this approach as the global key strategy. In contrast, we show that for unequal link

capacities, the secrecy capacity is not the same in general when the location of the

wiretapped links is known or unknown. We give new achievable strategies that can

outperform the global key strategy. In these new strategies, random keys are can-

celed at intermediate non-sink nodes, or injected at intermediate non-source nodes.

Finally, we show that determining the secrecy capacity is an NP-complete problem.

5.2 Network Model and Problem Formulation

In this chapter we focus on acyclic graphs for simplicity; we expect that our results

can be generalized to cyclic networks using the approach in [40, 50] of working over

fields of rational functions in an indeterminate delay variable. We model a wireline

network by a directed acyclic graph G = (V, E), where V is the vertex set and E is

the directed edge set.
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For each node i ∈ V, NO(i) and NI(i) denote the set of in-neighbors and out-

neighbors of i, i.e.,

NI(i) = {j|(j, i) ∈ E} , NO(i) = {j|(i, j) ∈ E} . (5.1)

A cut for x, y ∈ V is a partition of V into two sets Vx and Vy = Vc
x such that x ∈ Vx

and y ∈ Vy. For the x − y cut given by Vx, the cut-set [Vx,Vy] is the set of edges

going from Vx to Vy, i.e.,

[Vx,Vy] = {(u, v)|(u, v) ∈ E , u ∈ Vx, v ∈ Vy} . (5.2)

In the most general network model that we consider, each edge (i, j) ∈ E represents

a memoryless erasure channel from node i to node j with erasure probability pi,j. As

in [13], there is an eavesdropper, who can wiretap any k edges of this network. For

any wiretapped edge (i, j) ∈ E , the wiretapper can receive the symbols sent by node i

to node j via another memoryless erasure channel with erasure probability qi,j. Note

that our model includes those in [13, 60] as special cases. When pi,j = qi,j = 0 for all

links (i, j), our model reduces to that in [13]. When pi,j = qi,j takes different values for

different links (i, j), with appropriate capacity scaling, the network is equivalent to an

network with unequal capacity links where the wiretapper fully observes transmissions

on the links it wiretaps.

We consider multicast problems, where a set of sinks D = {d1, . . . , d|D|} ⊂ V
demands all of the information from a source s ∈ V. This includes the unicast

problem with a single sink d as a special case.

The secrecy requirement is that the message communicated from the source to

the sinks must have zero mutual information with the wiretapper’s observations. The

secrecy capacity is the highest possible communication rate such that the wiretapper

gets no information about the message being multicast.

In the following, we consider four related scenarios.

1. First, we consider a wireline erasure network with pi,j 6= qi,j in general and the
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location of the wiretapped links is known. We treat this as an optimization

problem from the point of view of the wiretapper, who chooses which links to

wiretap so as to minimize the achievable secrecy rate of the source.

2. The network interdiction problem [79] is to minimize the maximum flow of the

network when k links are removed from the entire network. This is equivalent

to the first scenario when pi,j = qi,j.

3. Our third scenario is a wireline network with equal link capacities, where the

wiretapper can wiretap an unknown subset of k links from a known collection of

vulnerable network links. We consider an optimization problem from the point

of view of the communicating users who seek to maximize their communication

rates subject to the requirement that the message is secret regardless of the

choice of wiretapped links.

4. Our final scenario is a wireline network with unequal link capacities, where the

wiretapper can wiretap an unknown subset of k links from the entire network.

Scenario 3 can be considered as a bridge for studying scenario 4. In the following,

scenario 3 is usually discussed first. We then convert a network considered in

scenario 3 to a corresponding network for scenario 4 such that the same result

holds.

5.3 Secrecy Capacity Region When the Location

of the Wiretapped Links is Known

We first consider scenario 1, where the location of the wiretapped links is known. The

wiretapper chooses the set of wiretapped links such that the resulting secrecy capacity

is minimized. Our main result of this section is the following cut-set expression of

the secrecy capacity region in Theorem 5.1.

Before stating the theorem, we briefly review the results in [80], where a wiretap

channel with one source, one sink and one wiretapper is considered. Let X be the
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secret message sent by the source, and let Y and Z be the received signal at the

sink and wiretapper, respectively. By using a coset coding scheme based on a linear

maximum distance separable code, Wyner showed that the secrecy capacity of the

wiretap channel is

Cs = max
pX(x)

I(Y ; X)− I(Z; X), (5.3)

with H(X|Z) = H(X), where pX(x) is the pdf of X.

Theorem 5.1 Consider a single source and single sink wireline erasure network in

which a secret message M is delivered from source s to destination d. There exists

a wiretapper in the network that can wiretap at most k links and the wiretapped

messages are denoted as Z. Assuming that the destination has complete knowledge of

the erasure locations on each link of the network and the locations of the wiretapped

links, the secrecy capacity is given by

Cs = min
{Vs:Vs is an s−d cut}

min
{A|A⊆[Vs,Vc

s ], |A|≤k}

∑

(i,j)∈[Vs,Vc
s ]−A

(1−pi,j)+
∑

(i,j)∈A
max (qi,j − pi,j, 0) ,

(5.4)

where

H(M |Z) = H(M). (5.5)

Proof. Achievability: We show the achievability of (5.4) by applying the coding

scheme of [80] on each link individually. Let Xi,j, Yi,j and Zi,j be the local message,

channel output, and wiretapper’s output on link (i, j) ∈ A. From (5.3), we know that

as long as the rate of Xi,j is less than

max
Pi,j(xi,j)

I(Xi,j; Yi,j)− I(Xi,j; Zi,j) = max
π

(qi,j − pi,j)H(π) = max (qi,j − pi,j, 0) , (5.6)

node j can receive Xi,j securely, i.e., I(Xi,j; Zi,j) = 0. As M → X → Z forms a

Markov chain, we have

I(M ;Z) ≤I(X;Z) = H(Z)−H(Z|X)

≤
∑

(i,j)∈A
H(Zi,j)−

∑

(i,j)∈A
H(Zi,j|Xi,j) =

∑

(i,j)∈A
I(Xi,j; Zi,j) = 0,

(5.7)



133

where the second inequality follows since conditioning reduces entropy [22] and that

Zi,j is conditionally independent of the local messages and wiretapped observations at

other nodes given Xi,j. As mutual information is nonnegative, we have I(M ;Z) = 0

and perfect secrecy is achieved. Therefore, given the wiretapping set A, we can decou-

ple the secrecy coding from the routing or network coding, i.e., routing or network

coding is oblivious to the secrecy coding. We simply replace the capacity of each

link with the secrecy capacity of each link. Therefore, the following cut-set bound is

achievable

min
{Vs:Vs is an s−d cut}

∑

(i,j)∈[Vs,Vc
s ]−A

(1− pi,j) +
∑

(i,j)∈A
max (qi,j − pi,j, 0) . (5.8)

The wiretapper chooses the set A to minimize the secrecy rate in (5.8), which gives

(5.4). This concludes the achievability part.

Converse: Let Vs be a cut of the network and A ⊆ [Vs,Vc
s ], |A| ≤ k be the set of

wiretapping edges. Denote by X the transmitted signals from nodes in Vs over links

in [Vs,Vc
s ] and denote by Z and Y the observed signals from links in A and in [Vs,Vc

s ],

respectively. Let Ah be the set of links (i, j) such that pi,j ≥ qi,j, and let Yh and Yd

contain the observations from links in Ah and [Vs,Vc
s ]−Ah, respectively. Zh and Zd

are defined similarly, where Zd is a degraded version of Yd while Yh is a degraded

version of Zh. We consider block coding with block length n. We have
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nRs ≤H(M |Zn)

(a)

≤H(M |Zn)−H(M |Yn) + nǫn

(b)
=H(M |Zn

d ,Zn
h)−H(M |Yn

d ,Yn
h) + nǫn

(c)

≤H(M |Zn
d ,Yn

h)−H(M |Yn
d ,Yn

h) + nǫn

(d)

≤H(M |Zn
d ,Yn

h)−H(M |Zn
d ,Yn

d ,Yn
h) + nǫn

=I(M ;Yn
d |Zn

d ,Yn
h) + nǫn

(e)

≤I(Xn;Yn
d |Zn

d ,Yn
h) + nǫn,

=

n∑

i=1

H(Yd,i|Zn
d ,Yn

h)−
n∑

i=1

H(Yd,i|Xn,Zn
d ,Yn

h) + nǫn,

(f)

≤
n∑

i=1

H(Yd,i|Zd,i,Yh,i)−
n∑

i=1

H(Yd,i|Xi,Zd,i,Yh,i) + nǫn,

=nI(X;Yd|Zd,Yh) + nǫn,

=n (I(X;Yd,Yh)− I(X;Zd,Yh)) + nǫn,

≤n max
p(X)

(I(X;Yd,Yh)− I(X;Zd,Yh)) + nǫn,

(g)
=n




∑

(i,j)∈[Vs,Vc
s ]

(1− pi,j)−
∑

(i,j)∈Ad

(1− qi,j)−
∑

(i,j)∈Ah

(1− pi,j)



+ nǫn,

=n




∑

(i,j)∈[Vs,Vc
s ]−A

(1− pi,j) +
∑

(i,j)∈A
max(qi,j − pi,j, 0)



 + nǫn,

(5.9)

where ǫn → 0 as n→ +∞ and

(a) comes from Fano’s inequality.

(b) follows from the definition of Yd,Yh,Zd,Zh.

(c) comes from the fact that M → Xn → (Zn
d ,Zn

h) → (Zn
d ,Yn

h) forms a

Markov chain.

(d) follows from conditioning reduces entropy.

(e) comes from the fact that M → Xn → (Yn
d ,Yn

h) → (Zn
d ,Yn

h) forms a

Markov chain and A → B → C → D ⇒ I(A; C|D) ≤ I(B; C|D). To
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show this inequality, we have

I(A; C|D)− I(B; C|D) =I(A; C, D)− I(A; D)− I(B; C, D) + I(B; D)

=I(B; D|A)− I(B; C|A) = −I(B; C|A, D) ≤ 0.

(f) follows from the fact that conditioning reduces entropy and that Yd,i is

independent of other variables given Xi,Zd,i,Yh,i.

(g) is because both I(X;Yd,Yh) and I(X;Zd,Yh) are maximized when the

entries of X are i.i.d. Bernoulli(1/2).

By decoupling the secrecy coding from the routing or network coding as in the

achievability proof of Theorem 5.1, Theorem 5.1 can be readily extended to the multi-

cast case. The proof is similar to the unicast case. We thus give the following theorem

without proof.

Theorem 5.2 Consider a multicast problem in a wireline erasure network G = (V, E)
with a single source s ∈ V and a set of destinations D ⊆ V. A secret message M is

multicast from s to all nodes in D. There exists a wiretapper in the network that can

wiretap at most k links, and the wiretapped messages are denoted as Z. Assuming

that the destination has complete knowledge of the erasure locations on each link of

the network and the locations of the wiretapped links, the secrecy multicast capacity

of the network is given by

Cs = min
d∈D

min
{Vs:Vs is an s−d cut}

min
{A|A⊆[Vs,Vc

s ], |A|≤k}

∑

(i,j)∈[Vs,Vc
s ]−A

(1−pi,j)+
∑

(i,j)∈A
max (qi,j − pi,j, 0) ,

(5.10)

where

H(M |Z) = H(M). (5.11)
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5.4 Achievable Strategies when the Location of the

Wiretapped Links is Unknown

Next, we consider scenarios 3 and 4, where the source does not know the location

of the wiretapped links. In the case of unit link capacities, the secrecy capacity can

be achieved using global keys generated at the source and decoded at the sink [13].

The source transmits r secret information symbols and k random key symbols, where

r+k is equal to the min-cut of the network. This scheme does not achieve capacity in

general erasure networks when link capacities are unequal. Intuitively, this is because

the total rate of random keys is limited by the min cut from the source to the sink,

and cannot fully utilize capacity on large capacity cuts with large links.

Capacity can be improved by using a combination of local and global random keys.

A local key is injected at a non-source node and/or canceled at a non-sink node.

However, it is complicated to optimize over all possible combinations of nodes at

which keys are injected and canceled. Thus, we propose the following more tractable

family of constructions. In this section, we focus on the case of a single source and

a single sink, and we assume that qi,j = pi,j in this section. Let zi,j be the actual

flow on link (i, j). Let W be the set of all possible maximal subsets of links that the

wiretapper may access simultaneously. For scenario 4, W = {A|A ⊆ E , |A| = k}.
Strategy 1: Random Keys Injected by Source and Possibly Canceled at Intermediate

Nodes

Connect each subset of links A ∈ W in the network G to a virtual node tA, and

connect both tA and the actual sink to a virtual sink dA. Let Rs→A be the total flow

between s and tA. The virtual link between tA and dA has capacity Rs→A, and the

virtual link between the actual sink and dA has capacity Rs. This is illustrated in

Fig. 5.1. The source multicasts a secret message v = [v1, . . . , vRs ]
T with Rs symbols

plus Rw random key symbols w = [w1, . . . , wRw ]. We want to choose the secrecy

rate Rs and the random key rate Rw such that the virtual receiver dA can decode

Rs + Rs→A message and key symbols from the source, and the original receiver can

decode the Rs message symbols.
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If the rate Rs + Rs→A satisfies the min-cut between the source and the virtual

receiver dA and Rs→A ≤ Rw, by using [82, Corollary 19.21], there exists a network

code such that dA receives Rs + Rs→A linearly independent combinations of v and w

when the finite field size is sufficiently large. Let the signals received at a particular

virtual sink dB be denoted as MB[vT ,wT ]T , where MB is an Rs + Rs→A by Rs + Rw

received coding matrix with full row rank1. We can add Rw − Rs→B rows to MB to

get a full rank (Rs +Rw)× (Rs +Rw) square matrix M̃B. We thus precode the secret

message and keys using M̃−1
B , i.e., the source transmits M̃−1

B [vT ,wT ]T . This results

in the actual sink receiving the message v, which is transmitted to each virtual sink

by the corresponding virtual link.

For any virtual sink dA, the received coding matrix after precoding is MAM̃−1
B ,

which is a full row rank matrix. As MAM̃−1
B is a full row rank matrix, the coding

vectors of received signals from the set A of wiretapping links span a rank Rs→A

subspace that is linearly independent of the coding vectors of message v which is

received from the actual sink d. Therefore, perfect secrecy rate Rs can be achieved

provided that the finite field size q >
(|E|

k

)
. Note that by applying M̃−1

B , the random

keys injected by the source are either implicitly canceled at intermediate nodes or

decoded by the sink.

Since computing Rs→A involves a linear optimization in zi,j, to simplify the com-

putation, we replace Rs→A with an upper bound
∑

(i,j)∈A zi,j, which gives a lower

bound on the achievable rate using Strategy 1. We can write an LP for this key

cancelation strategy as follows:

max Rs

subject to
∑

(i,j)∈E
fA

i,j −
∑

(i,j)∈E
fA

j,i =







Rs +
∑

(i,j)∈A zi,j , if i = s,

−Rs −
∑

(i,j)∈A zi,j, if i = dA,

0, otherwise,

∀A ∈ W,

fA
i,j ≤ zi,j ≤ 1− pi,j, ∀(i, j) ∈ E ,

(5.12)

1We assume that Rs and Rs→B are integers, which can be approximated arbitrarily closely by
scaling the capacity of all links by the same factor.
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Figure 5.1: Illustration of strategy 1, an achievable construction where random keys
are injected by the source and possibly canceled at intermediate nodes. In this figure,
k = 2 and only the 5 links in the first layer can be wiretapped.

where fA
i,j is the virtual flow on link (i, j) for the virtual sink corresponding to wire-

tapping set A and zi,j is the actual flow on link (i, j). Note that when all links can

be wiretapped the number of variables in (5.12) is exponential in k. The optimal

value of (5.12) gives an achievable rate for scenarios 3 and 4 where the source does

not know the location of the wiretapped links.

An illustration of the strategy 1 construction is given in Fig. 5.1 where the number

of wiretapped links is k = 2, and only the first layer of the three layer network is

allowed to be wiretapped. Each link in the network has unit capacity. Let c denote

the minimum cut after deleting any k links in the first layer of the graph. As the

wiretapped links are connected to the source directly, the min-cut between each virtual

sink and the source is at least c+k. Since c is the cut-set upper bound on the secrecy

rate, by using the key cancelation scheme the secrecy rate c is achievable, which is

equal to the secrecy rate when the location of wiretap links is known. For the example

in Fig. 5.1, the secrecy rate c = 3 is achievable. When key cancelation is not applied,

let r and w be the secrecy rate and the random key rate at the source, respectively.
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Let x be the total actual flow on the first layer. To achieve secrecy, we must have

w ≥ 2
5
x, where the min-cut condition on the first layer requires r + w ≤ x. Since

the sink needs to decode both message and random key symbols from the source, the

min-cut condition on the last layer requires r + w ≤ 4. Combining these we obtain

r ≤ 12
5
, which is strictly less than 3.

Strategy 2: Random Keys Injected by Source and/or Intermediate Nodes and De-

coded at Sink

Connect each subset of links A ∈ W in the network G to a virtual receiver dA.

If the number of linearly independent keys received at dA is greater than or equal to

the total amount of data received through the corresponding wiretap links, perfect

secrecy can be achieved. Let Rw,v be the secret key injection rate at node v and Rs

be the secrecy rate at the source. We want to maximize Rs subject to the condition

that the sink can decode the random keys injected at all nodes plus the message, and

each wiretap set gets total key rate greater than or equal to its received flow. We

then have a linear program:

max Rs

subject to
∑

j

fA
i,j −

∑

j

fA
j,i =







−∑v∈V κA
v , if i = dA,

κA
i , otherwise,

∀A ∈ W,

∑

j

gi,j −
∑

j

gj,i =







Rs + Rw,s, if i = s,

−
(

Rs +
∑

v∈V ,v 6=d Rw,v

)

, if i = d,

Rw,i, otherwise,
∑

v∈V
κA

v ≥
∑

(i,j)∈A
gi,j, ∀A ∈ W,

κA
i ≤ Rw,i, fA

i,j ≤ gi,j, gi,j ≤ 1− pi,j, ∀(i, j) ∈ E ,

(5.13)

where the first equality is the flow conservation for the random keys intended to the

virtual sink dA, κA
v is the random key injection rate at node v intended to dA and fA

i,j

is the random key flow on link (i, j) for dA; the second equality is the flow conservation

for the secret data and random keys and gi,j is the actual flow on link (i, j); the third
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Figure 5.2: Example of usefulness of strategy 2.

inequality requires that the total amount of keys for wiretapping set A is greater than

or equal to the total amount of data that the wiretapper receives on A; the fourth

set of inequalities requires that the amount of keys injected at each node intended to

the wiretapping set A is less than or equal to the total amount of keys injected at

that node, and the key flow on each link is less than or equal to the actual flow. The

actual flow on each link is constrained by the capacity of each link. The number of

wiretapping subsets A is exponential in k, but it is not so bad if the number of links

that can be wiretapped is small. Note that under the assumption that different nodes

do not have common randomness we cannot apply the key cancelation and precoding

idea in Strategy 1, as after applying the precoding matrix each node may potentially

be required to transmit a mixture of all the random keys in the network. If different

nodes can share random keys, this is equivalent to having a virtual key source in the

network and the precoding idea can be applied.

An example where this strategy is useful is given in Fig. 5.2, which is obtained

by interchanging the source and the sink as well as reversing all the links in Fig. 5.1.

At most three links in the last layer can be wiretapped. By injecting one local key

at node j2 and two global keys at the source, strategy 2 can achieve secrecy rate 2.
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On the other hand, if random keys are only injected at the source, the secrecy rate is

at most 8
5
. Let r and w be the secrecy rate and the random key rate at the source,

respectively. Let x be the total actual flow on the last layer. To achieve secrecy, we

must have w ≥ 3
5
x, where the min-cut condition on the last layer requires r + w ≤ x.

Since the source injects all the random keys, the min-cut condition on the first layer

requires r + w ≤ 4. Combining these we obtain r ≤ 8
5
, which is strictly less than 2.

From the proposed two strategies, we can see that strategy 1 seems to be useful

if the wiretapped links are upstream of the min-cut while strategy 2 is useful if the

wiretapped links are downstream of the min-cut. In general, these two strategies can

be combined to obtain a higher secrecy rate.

5.5 Unachievability of Cut Set Bound

From Theorem 5.1, when the location of the wiretap links is known, the secrecy

capacity is equal to the erasure capacity where the wiretap links are erased, which

is given by the cut set bound. As the case when the location of the wiretap links is

unknown is more restricted than that when the location is known, the cut set bound

is also an outer bound for the former case. In the case of unrestricted wiretapping

sets and unit link capacities, the secrecy capacity is the same whether or not the

locations of the wiretap links are known, i.e. the cut set bound [13]. In the following

we will show that the cut set bound does not hold in general for the case when the

locations of the wiretap links are unknown, by considering the example in Fig. 5.3,

where the set of wiretappable links is restricted (scenario 3). We give an explicit

proof that the cut set bound is not achievable. We also use the program Information

Theoretic Inequalities Prover (Xitip) [3] to show that the secrecy capacity is bounded

away from the cut set bound. We then convert the example into one with unequal

link capacities (scenario 4), and show the unachievability of the cut set bound for this

case also.
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Figure 5.3: An example to show that the secrecy rate without knowledge of wiretap-
ping set is smaller than that with such knowledge. The wiretapper can wiretap any
three of the five links in the middle layer.

5.5.1 Restricted Wiretap Set (Scenario 3)

Let the middle layer links be 1-5 (from top to bottom) and the last layer links be 6-8

(from top to bottom). All links have unit capacity. Let the signal carried by link i

be called signal i, or Si. Let the source information be denoted X. For this example,

the secrecy rate is two if any three of the five links in the middle layer are deleted,

i.e., the number of wiretapped links is three.

The constraints required are that the source information is a function of the signals

on the sink’s incoming links, and that there is zero mutual information between the

source information and the signals on the links in each adversarial subset.

In this example, the cut set bound is 2. To provide intuition, we first show that

secrecy rate 2 cannot be achieved by using linear coding. Then, the argument is

converted to an information theoretic proof that secrecy rate 2 cannot be achieved

using any coding schemes.

Suppose secrecy rate 2 is achievable with a linear network code. First note that

the source cannot inject more than unit amount of random key, otherwise the first
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layer cannot carry two units of source data. Let the random key injected by the

source be denoted K. For the case when the source injects a unit amount of secret

key, we first have the following observations. Signal 6 must be a function of signal 1,

otherwise if the adversary sees the signals 2-4 then he knows signals 6-7. Also, signal

8 must be a function of signal 5, otherwise if the adversary sees signals 1, 2 and 4,

then he knows signals 7-8. Similarly we can show that signal 8 must be a function of

signal 1, and signal 7 must be a function of signal 2. We consider the following two

cases.

Case 1: signal 5 is a linear combination of signals present at the source node. To

achieve the full key rank condition on links 1, 2 and 5, the top second layer node

must put independent local keys k1 and k2 on links 1 and 2 respectively. Link 7,

whose other input is independent of k2, is then a function of k2. Similarly, Link 8 is

a function of k1. This means that the last layer has two independent local keys on it.

Case 2: signal 5 is a linear combination of signals present at the source node as

well as a local key k injected by the bottom second layer node.

Case 2a: k is also present in signal 1. Then k is present in signal 6, and is

independent of the key present in signal 7.

Case 2b: k is not present in signal 1. Then k is present in signal 8, and is

independent of the key present in signal 7.

From Cases 1, 2a, and 2b, we conclude that the secrecy rate without knowledge

of the wiretapping set by using only linear network coding is less than two.

Next, we convert this argument into an information theoretic proof that secrecy

rate 2 is not achievable with any coding scheme. Suppose rate 2 is achievable. Then

each triple of links in the middle layer has zero mutual information with the source

data, and each pair of links in the middle layer has joint conditional entropy 2 given

the other three links.

Since the last layer has to carry two units of source data, there is at most 1 unit

of random key on the last layer. Since I(S1, S2, S3; X) = 0, by the data processing

inequality I(S6; X) = 0. Similarly, I(S7; X) = I(S8; X) = 0. Therefore the last

layer links must have joint entropy 3, and no additional random keys can be injected
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after the middle layer. Then the adversary can know the signal on any one of the

links in the last layer, so there must be one unit of random key on the last layer.

Therefore, the coding scheme must ensure that the mutual information between the

adversary’s observations and the information on the last layer is 1. Then, the mutual

information between signal 6 and signals 2-3 is 0, otherwise if the adversary sees

signals 2-4 his mutual information with signals 6-7 is greater than 1. The mutual

information between signal 8 and signals 1, 4 is 0, otherwise if the adversary sees

signals 1, 2, 4 his mutual information with signals 7-8 is greater than 1. The mutual

information between signal 8 and signals 4-5 must be 0, otherwise if the adversary sees

signals 2, 4, 5 his mutual information with signals 7-8 is greater than 1. The mutual

information between signal 7 and signals 4-5 must be 0, otherwise if the adversary

sees signals 1, 4, 5, his mutual information with signals 7-8 is greater than 1.

Case 1: signal 5 is a function of only signals present at the source node, i.e.,

H(S5|X, K) = 0. By the zero mutual information condition for links 1, 2 and 5,

H(S1, S2, S5|X)=3, so H(S1, S2, S5|X, K) = H(S1, S2|X, K, S5) = 2. Since S4 is

conditionally independent of S1, S2 given X and K, we have H(S1, S2|X, K, S4, S5) =

2, I(S1, S2; X, K, S4, S5) = 0 and I(S1, S2; X, K|S4, S5) = 0. Now

I(S1, S2, S7, S8; X, K|S4, S5) =I(S7, S8; X, K|S4, S5) + I(S1, S2; X, K|S7, S8, S4, S5)

=I(S1, S2; X, K|S4, S5) + I(S7, S8; X, K|S1, S2, S4, S5).

Since S7, S8 is conditionally independent of X, K given S1, S2, S4, S5, we have

I(S7, S8; X, K|S1, S2, S4, S5) = 0.

Then by the non-negativity of conditional mutual information, I(S7, S8; X, K|S4, S5)

≤ I(S1, S2; X, K|S4, S5) = 0. Next, note that S1 and S2 are conditionally indepen-

dent given S4 and S5, since H(S1|S4, S5) = H(S2|S1, S4, S5) = 1. Therefore S7 and

S8 are conditionally independent given S4 and S5, i.e. I(S7; S8|S4, S5) = 0. Since

H(S7|S4, S5) = H(S7)− I(S7; S4, S5) = 1, it follows that H(S7|S8, S4, S5) = 1. Then
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we have

I(S7, S8; S4, S5) =I(S8; S4, S5) + I(S7; S4, S5|S8)

=I(S8; S4, S5) + H(S7|S8)−H(S7|S4, S5, S8) = 0 + 1− 1 = 0.

So, I(S7, S8; X, K, S4, S5) = I(S7, S8; X, K|S4, S5) + I(S7, S8; S4, S5) = 0, and there-

fore H(S7, S8|X) ≥ H(S7, S8|X, K, S4, S5) = 2, which contradicts the requirement

that there is at most 1 unit of secret key on the last layer.

Case 2: signal 5 is not a function only of signals present at the source

Case 2a: signal 1 has nonzero mutual information with some secret key in-

jected at node c. Then H(S1|X, K, S2, S3, S4) > 0. For brevity, let A = (S2, S3)

and Y = (X, K, S4). Since I(S6; A) = 0 and H(S6|S1, A) = 0, we have H(A) +

H(S6) = H(A, S6) ≤ H(A, S1) = H(S1) + H(A|S1). Since H(S6) = H(S1), we have

H(A) = H(A|S1) and so H(S1|A) = H(S1). Then from H(S1, S6|A) = H(S1|A, S6)+

H(S6|A) = H(S6|A, S1)+H(S1|A), we have H(S1|A, S6) = 0. Since H(S1|A, Y, S6) ≤
H(S1|A, S6) = 0 and H(S6|A, Y, S1) ≤ H(S6|A, S1) = 0, from I(S1; S6|Y, A) =

H(S1|A, Y ) − H(S1|A, Y, S6) = H(S6|A, Y ) − H(S6|A, Y, S1) we have H(S6|A, Y ) =

H(S1|A, Y ) > 0. Then since H(S7|S2, S4) = 0, we have H(S6|S7, X) > 0. Also, since

H(S7|X) = 1, we have H(S6, S7|X) > 1.

Case 2b: signal 1 has zero mutual information with any random key injected at

node c. Then H(S5|X, K, S1, S2, S4) > 0. Similar reasoning as for case 2a applies

with A = (S1, S4), Y = (X, K, S2), S5 in place of S1, and S8 in place of S6.

From Cases 1, 2a, and 2b, we conclude that the secrecy rate without knowledge of

the wiretapping set by using any nonlinear or linear coding strategy is smaller than

two obtained for the case where such knowledge is present at the source.

We can also show that the secrecy rate is bounded away from 2 by using the

framework for linear information inequalities [81]. Let X be the message sent from

the source and Zi, i = 1, . . . , 3 be the signals on the links adjacent to the source. We
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want to check whether H(X) ≤ ω is implied by

(1) H(Zi) ≤ 1, H(Sj) ≤ 1, i = 1, . . . , 3, j = 1, . . . , 8,

(2) H(X|S6, S7, S8) = 0,

(3) I(X, Z1, Z2, Z3, S4, S5, S7, S8; S6|S1, S2, S3) = 0,

(4) I(X, Z1, Z2, Z3, S1, S3, S5, S6, S8; S7|S2, S4) = 0,

(5) I(X, Z1, Z2, Z3, S2, S3, S6, S7; S8|S1, S4, S5) = 0,

(6) I(X; S1, S2, S3) = 0, I(X; S1, S2, S4) = 0,

(7) I(X; S1, S2, S5) = 0, I(X; S1, S3, S4) = 0,

(8) I(X; S1, S3, S5) = 0, I(X; S1, S4, S5) = 0,

(9) I(X; S2, S3, S4) = 0, I(X; S2, S3, S5) = 0,

(10) I(X; S2, S4, S5) = 0, I(X; S3, S4, S5) = 0,

(11) I(S1; Z2|Z1, Z3) = 0, I(S2; Z2, Z3|Z1) = 0,

(12) I(S3; Z3|Z1, Z2) = 0, I(S4; Z1, Z3|Z2) = 0,

(13) I(S5; Z1, Z2|Z3) = 0, I(S1; S4|Z1, Z2, Z3) = 0,

(14) I(S2; S4, S5|Z1, Z2, Z3) = 0, I(S3; S5|Z1, Z2, Z3) = 0,

(15) I(S4; S1, S2, S5|Z1, Z2, Z3) = 0, I(S5; S2, S3, S4|Z1, Z2, Z3) = 0,

(16) I(S1, S2, S3, S4, S5; X|Z1, Z2, Z3) = 0,

(5.14)

where the first inequality is the capacity constraint, the second constraint shows

that the sink can decode X, constraints 3 to 5 mean that the signals in the last

layer are independent of other signals given the incoming signals from the middle

layer, constraints 6 to 10 represent that the secrecy constraints when any 3 links in

the middle layer are wiretapped, and constraints 11 to 16 represent the conditional

independence between the signals in the first layer and those in the middle layer.

Note that constraints 3 to 5 and 11 to 16 implicitly allow some randomness to be

injected at the corresponding nodes. We use the Xitip program [3], which relies on

the framework in [81], to show that H(X) ≤ 5/3 is implied by the set of equalities
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(5.14). Therefore, 5/3 is an upper bound on the secrecy rate when the location of

wiretapper is unknown, which is less than the secrecy rate 2 achievable when such

information is known. Therefore, there is a strict gap between the secrecy capacity

and the cut set bound.

5.5.2 Unequal Link Capacities (Scenario 4)

We have restricted the wiretapped links to be in the middle layer in Fig. 5.3. We next

show that the unachievability of the cut-set bound also holds for the secure network

coding problem with unequal link capacities (scenario 4). We convert the example of

Fig. 5.3 by partitioning each non-middle layer link into 1
ǫ

parallel small links each of

which has capacity ǫ. Any three links can be wiretapped in the transformed graph.

For the case where the location of the wiretap links is known, if ǫ < 1
3
, deleting

any k′ (k′ ≤ 3) non-middle layer links reduces the max flow by at most k′
3
≤ 1. When

k′ ≥ 1 or at most 2 middle layer links are wiretapped, the min-cut between the source

and the sink is at least 3 after deleting these wiretapped links. Therefore, the min-cut

is at least 3 − k′
3
≥ 2 when k′ ≥ 1. Thus, the wiretapper does not have incentive to

wiretap the non-middle layer links in the transformed graph. This shows the secrecy

rate in the original graph is the same as that in the transformed graph when the

location of the wiretap links is known.

For the case where the location of the wiretap links is unknown, we prove the

unachievability of the cut-set bound in the transformed network. First, consider the

transformed network with the restriction that the wiretapper can only wiretap any 3

links in the middle layer. The optimal solution is exactly the same as for the original

network of the previous subsection, and achieves secrecy rate at most 5/3. Now,

consider the transformed network without the restriction on wiretapping set, i.e., the

wiretapper can wiretap any 3 links in the entire network. As wiretapping only the

middle layer links is a subset of all possible strategies that the wiretapper can have,

the secrecy rate in the transformed network is less than or equal to that in the former

case, which is strictly smaller than the cut-set bound 2. Therefore, the cut-set bound
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is still unachievable when the wiretap links are unrestricted in the transformed graph.

5.6 NP-Completeness

We show in the following that determining the secrecy capacity is NP-complete when

the location of the wiretap links is known or unknown by reduction from the clique

problem, which determines whether a graph contains a clique2 of at least a given size

r.

The case when the location of the wiretap links is known by the source and the

wiretapper can choose the wiretapping set to minimize the secrecy rate is closely

related to the network interdiction problem [79]. The network interdiction problem is

to minimize the maximum flow of the network when a certain number of links in the

network is removed, which is a special case of the secrecy communication problem

when the location of the wiretap links is known and qi,j = pi,j, ∀(i, j) ∈ E . It is

shown in [79] that the network interdiction problem is NP-complete. Therefore, the

case where the location of the wiretap links is known is also NP-complete. To show

that the case where the location of the wiretap links is unknown is NP-complete, we

use the construction in [79] showing that for any clique problem on a given graph H,

there exists a corresponding network GH whose secrecy capacity is r when the location

of the wiretap links is known if and only if H contains a clique of size r. We then

show that for all such networks the secrecy rate for the case when the location of the

wiretap links is unknown is equal to that for the case when such information is known,

which shows that there is a one-to-one correspondence between clique problem and

the secrecy capacity problem.

We briefly describe the approach in [79] in the following. Given an undirected

graph H = (Vh, Eh), we will define a capacitated directed network ĜH such that there

exists a set of links Â′ in ĜH containing less than or equal to |Eh| −
(

r
2

)
links such

that ĜH − Â′ has a maximum flow of r if and only if H contains a clique of size r.

2A clique in a graph is a set of pairwise adjacent vertices, or in other words, an induced subgraph
which is a complete graph.
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Figure 5.4: Example of NP-completeness proof for the case with knowledge of wire-
tapping set

For a given undirected graph H = (Vh, Eh) without parallel edges and self loops, we

create a capacitated, directed graph GH = (N ,A) as follows: For each edge e ∈ Eh

create a node ie in a node set N1 and for each vertex v ∈ Vh create a node jv in

a node set N2. In addition, create source node s and destination node d. For each

edge e ∈ Eh, direct an arc in GH from s to ie with capacity 2 and call this set of arcs

A1. For each edge e = (u, v) ∈ Eh, direct two arcs in GH from ie to jv and ju with

capacity 1, respectively and call this set of arcs A2. For each vertex v ∈ Vh, direct an

arc with capacity 1 from jv to d. Let this be the set of arcs A3. This completes the

construction of GH = (N ,A) = ({s} ∪ {d} ∪ N1 ∪N2,A1 ∪A2 ∪A3). In Fig. 5.4, we

give an example of the graph transformation, where H = ({1, 2, 3, 4}, {a, b, c, x, y}).
We replicate [79, Lemma 2] as follows.

Lemma 5.3 Let GH be constructed from H as above. Then, there exists a set of arcs

A′
1 ⊆ A1 with |A′

1| = |Eh| −
(

r
2

)
such that the maximum flow from s to d in GH −A′

1

is r if and only if H contains a clique of size r.

After obtaining GH, we generate ĜH by replacing each arc (ie, jv) with |Eh| parallel

arcs each with capacity 1/|Eh| and call this arc set Â2. We carry out the same

procedure for arcs (jv, dl) and call this arc set Â3. Then ĜH = (N ,A) = ({s}∪{d}∪
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N1 ∪N2,A1 ∪ Â2 ∪ Â3). For the case when the location of wiretap links is known, it

is shown in [79] that the worst case wiretapping set Â′ must be a subset of A1. By

using Lemma 5.3, this case is NP-complete.

Now, we consider the case where the wiretapping set is unknown, and show that

the secrecy capacity of ĜH when the wiretapper accesses any unknown subset of

k = |Eh| −
(

r
2

)
links is r if and only if H contains a clique of size r. From Lemma 5.3,

the condition that H contains a clique of size r is equivalent to the condition that the

max-flow to the sink in GH after removing any k links from A1 is r. We now show

that the latter condition is equivalent to the condition that the secrecy capacity of

GH when the wiretapper accesses any unknown subset of k links from A1 is r. We

create a virtual sink connecting each subset of k links from A1 and the actual sink.

As the wiretapped links are connected to the source directly, the min-cut between

each virtual sink and the source is at least 2k + r. Since r is the cut-set upper bound

on the secrecy rate, by using the key cancelation scheme (Strategy 1) in Section 5.4

with 2k global keys the secrecy rate r is achievable, which is equal to the secrecy rate

when the location of wiretap links is known.

Finally, we show that the secrecy capacity of GH when any k links of A1 are

wiretapped is equal to the secrecy capacity of ĜH when any k links are wiretapped.

Since each second layer link has a single first layer link as its only input, wiretapping

a second layer link yields no more information to the wiretapper than wiretapping a

first layer link. When some links in the third layer are wiretapped, let the wiretapping

set be Â′ = Â′
1 ∪ Â′

3 where Â′
3 6= ∅ or |Â′

3| ≥ 1 and |Â′
1| ≤ k − 1. Thus A1 − Â′

1

contains at least
(

r
2

)
+1 arcs. As in Section 5.4, we create a node tÂ

′
by connecting all

wiretapping links in Â′ and a virtual sink dÂ′
. Connect the actual sink to dÂ′

with a

link of capacity r and connect tÂ
′
to dÂ′

with a link of capacity Rs→Â′ , where Rs→Â′

is the min-cut between the source and tÂ
′
. As removing links in A1 is equivalent to

removing links in H, after removing links in H corresponding to Â′
1, H contains a

subgraph H1 containing
(

r
2

)
edges plus at least an edge e = (u, v). We consider two

cases.

Case 1: H1 is a clique of size r. In this case, the number of vertices with degree
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greater than 0 in H1 ∪ e is r + 2.

Case 2: H1 is not a clique. H1 contains at least r + 1 vertices with degree greater

than 0.

According to [79, Lemma 1], the max-flow in GH is equal to the number of vertices

in H with degree greater than 0. In both cases, the max-flow of GH after removing

links in Â′
1 is at least r + 1. Let Rs→Â′

3
be the max-flow capacity from the source to

Â′
3 in GH − Â′

1 and D a corresponding max-flow subgraph. After removing D from

GH − Â′
1, the min-cut between the source and the actual sink is at least r + 1 −

|Â′
3|/|Eh| > r + 1 − (|Eh| − 1)/|Eh| > r. Therefore, the min-cut between the source

and dÂ′
in GH − Â′

1 − D is r, and the min-cut between the source and dÂ′
in GH

is r + Rs→Â′. On the other hand, the total amount of wiretapped data is at most

2|Â′
1|+ |Â′

3|/|Eh| ≤ 2|Â′
1|+(|Eh|−1)/|Eh| ≤ 2k−2+(|Eh|−1)/|Eh| < 2k. By using the

precoding scheme in Strategy 1 in Section 5.4, if the source sends r message symbols

and 2k random keys, perfect secrecy is achieved when Â′ is wiretapped and the size

of finite field is large enough. Thus, the secrecy rate for the case when the location

of the wiretap links is unknown is equal to that for the case when such information

is known with unrestricted wiretapping set. We have the following theorem.

Theorem 5.4 Computing the secrecy capacity no matter whether the location of the

wiretap links is known is NP-complete.

5.7 Conclusion

In this chapter, we have considered secrecy capacity of wireline erasure networks

where different links have different capacities. We have shown that the secrecy ca-

pacity is not the same in general when the location of the wiretapped links is known

or unknown. We gave achievable strategies where random keys are canceled at in-

termediate non-sink nodes, or injected at intermediate non-source nodes. We showed

that determining the secrecy capacity is a NP-complete problem no matter whether

the location of the wiretapped links is known or unknown.
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Chapter 6

Conclusions and Future Research

In this thesis, we have considered wireless broadcast at different layers of wireless

networks and studied network coding for secure communications. Our results have

demonstrated the usefulness of wireless broadcast and network coding for network

design. At the physical layer, we have studied physical layer network coding in two-

way relay channels, where network coding is considered to be a mapping from the

relay’s received signal to its transmitted signal. We analyzed the symbol-error per-

formance of several relay strategies such as amplify and forward, detect and forward,

and estimate and forward. Furthermore, the relay function was also optimized via

functional analysis such that the average probability of error is minimized. The opti-

mized function was shown to behave like AF at low SNR and like DF at high SNR,

respectively. These results suggest that the interference caused by wireless broadcast

can be exploited to improve the spectrum efficiency.

We have also integrated wireless broadcast into cross-layer optimization and de-

signed cross-layer protocols using dual decomposition. Under the primary interference

model, the link scheduling problem was shown to be the maximum weighted hyper-

graph matching problem that is NP-complete. Several distributed approximation

algorithms were proposed, whose worst case performance was also bounded. With

random network coding, we obtained a fully distributed cross-layer design. Our re-

sults show that wireless broadcast is potentially useful in multicast scenarios.

We have further developed a new class of random medium access control protocol

by allowing each user to transmit at different data rates chosen randomly from an
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appropriately determined set of rates, which uses successive interference cancelation

to resolve packet collision due to wireless broadcast. When the number of transmission

rates at each node is equal to the number of users, the achievable total throughput was

shown to be at least a constant fraction of the centralized multiple access channel sum

rate in slotted Aloha type networks. To facilitate practical protocol design, we also

studied the case when only a limited number of transmission rates is available at each

node. A game-theoretic framework was proposed to achieve the desired throughput

optimal equilibrium in the absence of centralized knowledge of the total number of

users. We studied the design of random access games, characterized their equilibria,

studied their dynamics, and proposed distributed algorithms to achieve the equilibria.

Lastly, we considered secure communications in networks with erasure and unequal

link capacities in the presence of a wiretapper. For the case when the location of the

wiretapped links is known, we have derived the secrecy capacity region. For the

case when the location of the wiretapped links is unknown, we proposed several

achievable strategies. We showed that unlike the case of equal link capacities, the

secrecy capacity when the location of wiretapped links is known and unknown are

generally unequal. We also showed that computing the secrecy capacity for both

cases are NP-complete.

With the increasing demand for wireless multimedia services and high-speed In-

ternet access, we expect to see increasing interest in exploiting wireless broadcast and

network coding in network design, which offers both theoretical and practical benefits.

The study in this thesis only scratches the tip of the iceberg and many important

problems remain to be answered.

In chapter 2, we have considered memoryless operations in two-way relay chan-

nels. When the relay has a large memory, more complicated signal processing can

be performed at the relay. One open problem is determining the capacity region of

Gaussian two-way relay channel. We hope that the relay strategies in chapter 2 can

motivate capacity achieving schemes. For applications such as wireless teleconferenc-

ing, the N -way relay network is a more general wireless network architecture than

the two-way relay channel, where there are N source terminals in the network and
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each source terminal needs to exchange information between all other terminals with

the help of a relay node. It is interesting to extend the approaches in chapter 2 to the

N -way relay network. The relaying strategies in chapter 2 assume perfect knowledge

of channel state information at all the nodes. Such information is hard to obtain

especially in TWRC where two channel coefficients are required to be estimated each

way. In this case, non-coherent schemes, which do not rely on instant channel state

information, become a preferred choice.

As to the cross-layer optimization with wireless broadcast in chapter 3, it is inter-

esting to investigate the achievable rate ratio between multicasting with and without

wireless broadcast or with and without network coding. From our experimental re-

sults, it seems that this ratio depends on the size of multicast group. Although we

only proposed distributed scheduling algorithms for primary interference model, it is

of interest to extend the proposed scheduling policy and approximation algorithms

to other interference models such as two-hop interference model. In the proposed

algorithms, we have assumed a control channel to facilitate hypergraph matching. A

possible future work is to eliminate the use of control channel. Finally, it would be

interesting to develop practical protocols based on the proposed algorithms.

Regarding the multiple access MAC in chapter 4, other advanced signal process-

ing and information theory techniques besides successive interference cancelation can

also be used to design new protocols. An important question is whether there exists

a simple strategy that can achieve the capacity of centralized multiple access channel

distributedly. We have been focusing on laying out a theoretical framework. In paral-

lel, much work remains to take it from a promising design framework to a full-fledged

medium access control protocol. It is also interesting to investigate the coexistence

of new protocols and 802.11 DCF that use different contention signals: how the re-

source is allocated to and shared among wireless nodes using different medium access

methods. This issue is important for the deployment of the new protocols.

In chapter 5, we have only given several achievable strategies when the location of

the wiretapped links is unknown. The secrecy capacity region in this scenario in both

wired and wireless networks are unknown. Combinations of the proposed strategies
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or new strategies are needed. We have not bounded the secrecy capacity gap between

the case when the location of the wiretapped links is known and the case when such

information is unknown. Finally, it is interesting to derive distributed and polynomial

time algorithms to achieve the secrecy capacity in practice.
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