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Abstract

Recent advances in observational cosmology have culminated in the establishment

of the cosmological standard model. In spite of this remarkable achievement, the

underlying physics remains unknown.

In this thesis we propose models whose predictions can be compared with obser-

vations, and can thereby help us discover this as-yet unknown physics of the Uni-

verse. We examine (i) the consequences that a preferred direction during the infla-

tionary era would have on the Cosmic Microwave Background (CMB) anisotropies,

(ii) the effect of asymmetric beams in the Wilkinson Microwave Anisotropy Probe

(WMAP), (iii) astrophysical consequences of a dark photon that couples only to dark

matter, and (iv) explore a mechanism for producing density perturbations during

the period of reheating.
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Chapter 1

Introduction

We live in exciting times for the study of our Universe. Measurements of the Cosmic

Microwave Background radiation (CMB) [1], in combination with other important

astrophysical observations such as galaxy surveys [2] and the study of Type Ia su-

pernovae [3], have opened an era of precision cosmology. These advances in observa-

tional cosmology have led to the establishment of the cosmological standard model

[4]. We have compelling evidence about the energy budget of the Universe. On the

other hand, we only understand 5% of it! This 5% is composed of matter explained

by the standard model of particle physics. The rest is known as the dark sector; 25%

consists of dark matter and the remaining 70% is made of dark energy–a negative

pressure component responsible for the current acceleration of the Universe.

Of particular relevance has been the measurements of the CMB. The CMB gives

us information from the snapshot of the Universe’s history when it was cool enough

for atoms to form and for photons to decouple and propagate freely. Observations

of the CMB have allowed us to measure a uniform temperature of the background

radiation to one part in 10−5. These tiny perturbations are the seeds which grow

with the help of gravity to form the galactic structures that we observe today.

The detection and analysis of these fluctuations have been fundamental not only
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in understanding the epoch of recombination, but also in establishing the standard

cosmological model.

The leading contender to explain the almost-uniform-temperature of the CMB,

as well as to provide a mechanism for the generation of the small inhomogeneities,

is inflation [5, 6]. The epoch of inflation is characterized by accelerated expansion

of the Universe. As a consequence of this, vacuum fluctuations in a light scalar field

are pushed outside the Hubble radius. These fluctuations re-enter the Hubble radius

at a later time and imprint an approximately scale-invariant spectrum of classical

density perturbations [7].

In spite of the remarkable advances in the understanding of the Cosmos, many

questions remain unanswered. For example, what is the nature of dark energy;

what is dark matter made of; what is the theory behind inflation and the density

perturbations? The underlying physics of the standard cosmological model is still

unknown.

Of the many unanswered questions about the physics of the Universe, in this

thesis we examine (i) the consequences that a preferred direction during the infla-

tionary era would have on the CMB anisotropies, (ii) the effect of asymmetric beams

in the Wilkinson Microwave Anisotropy Probe (WMAP), (iii) astrophysical conse-

quences of a dark photon that couples only to the dark matter and, (iv) explore a

mechanism for producing density perturbations during the period of reheating.
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1.1 Imprints of a Primordial Preferred Direction on the

Microwave Background

In science it is essential to question the untested assumptions. If density pertur-

bations do arise from inflation, they provide a window to very high energies. An

upper limit on the energy scale of inflation (E ∼ V 1/4) can be found by noting that

it is typically related to the amplitude of scalar perturbations, ∆2
R, and the reduced

Planck mass via E < (∆2
R)1/4MP . As we observe ∆2

R = (2.445 ± 0.096) × 10−9 at

k = 0.002 Mpc−1 [1], it is plausible that inflation occurs only a few orders of mag-

nitude below the Planck scale. At those energies we don’t have many experimental

constraints and it is reasonable to keep an open mind about the physics in play

during inflation.

In chapter 2 we study the effects that a preferred direction during the infla-

tionary era would have on the CMB anisotropies. If such breaking of rotational

invariance had occurred, then the primordial power spectrum of the density pertur-

bations would not only depend on the wavelength of the perturbations, but also on

the angle between a given wave-vector and the preferred direction. For the case of a

small breaking of rotational invariance, we find the general form of the power spec-

trum and compute explicit expressions for the amplitudes of the spherical-harmonic

coefficients. We suggest that it is reasonable to expect that the imprints on the

primordial power spectrum of a preferred spatial direction are approximately scale

invariant.
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1.2 Preliminary Investigation on the Effect of Asym-

metric Beams in the Wilkinson Microwave Anisotropy

Probe Experiment

An experiment observes the CMB by scanning the sky with an instrumental beam

of finite resolution. This operation effectively corresponds to averaging over beam-

sized angular scales, and is expressed either in pixel space by a convolution of the

beam with the underlying sky, or in harmonic space by a multiplication of the two

corresponding sets of harmonic expansion coefficients. For simplicity, the harmonic

space expansion of the beam is typically expressed in terms of Legendre coefficients

of an (azimuthally symmetric) effective beam response. This function is often called

“the beam transfer function”.

Understanding the effects of the detector and scanning strategy are important

to make cosmological inferences from the CMB power spectrum. Chapter 3 has two

parts. First, we produce by direct simulation CMB sky maps that take into account

the effects of the WMAP beams being asymmetric as well as the WMAP scanning

strategy. Second, we estimate the effective beam transfer function for each of the

WMAP detectors.

1.3 Dark Matter and Dark Radiation

Overwhelming evidence points to the existence of dark matter, and a promising

candidate for dark matter is a WIMP: a stable, neutral particle with weak-scale

couplings and mass. Particles of this type arise in models that aim to solve the

hierarchy problem, i.e. supersymmetry [12] and theories of extra dimensions [13].
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The weak-scale cross-section of such WIMPs provides a natural way to obtain the

measured relic abundance of dark matter, but it is important to remember that we

still do not know what the dark matter is.

In chapter 4 we explore the astrophysical consequences of an unbroken U(1) force

that couples only to the dark matter. An interesting aspect of this model is that

interactions between dark particles exist, even though the halo is overall neutral.

Current observations suggest that the dark matter is effectively collisionless, which

constrains the parameters of the model. For TeV-scale dark matter, this implies that

the dark fine-structure constant must be less than or equal to 10−3. A consequence of

this constraint is that one cannot build a dark matter model with a hidden unbroken

U(1) in which this interaction alone is responsible for the observed dark matter relic

abundance. One could introduce other interactions in addition to the dark U(1)

gauge group that would increase the annihilation cross-section and, in that way,

obtain the correct freeze-out density. We investigate the possibility of coupling the

dark matter to the usual weak-interactions, as well as charging it under an unbroken

U(1). Near the upper limit of the galactic dynamics bound important effects on

galactic structure might occur. It has been suggested that alterations to the dark

halo shapes, which our model would have, may actually lead to better agreement

with observations [14]. On the other hand, we also point out that there are plasma

instabilities that may play an important role in the assembly of galactic halos and

may further constrain this model.
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1.4 Light Scalars and the Generation of Density Per-

turbations During Preheating or Inflaton Decay

After inflation, a period of reheating is necessary to set up the hot big bang evo-

lution. This reheating process can occur through inflaton decay and also through

coherent oscillations of the inflaton field that increases the energy density in the

decay products exponentially.

In chapter 5 we explore the scenario where the particles produced during reheat-

ing interact with scalars that were light during inflation. The fluctuations acquired

by the light fields during inflation modify the time it takes for reheating to be

completed. As the energy density in matter redshifts slower than the energy den-

sity in radiation, regions of the Universe where reheating takes longer to complete

stay matter-dominated longer and will be denser. We find that significant den-

sity perturbations can be generated during reheating and, furthermore, that these

perturbations can be highly non-Gaussian.

The work presented in chapter 2 was completed in collaboration with Sean M.

Carroll and Mark B. Wise and has been published as [8]. Chapter 3 is the result

of a collaboration with Ingunn Kathrine Wehus, H. K. Eriksen, and Nicolaas E.

Groeneboom and has been submitted for publication in The Astrophysical Journal.

The discussion presented in chapter 4 is the result of work done in conjunction with

Matthew R. Buckley, Sean M. Carroll, and Marc Kamionkowski and has appeared in

[9]. Chapter 5 was previously published as [10] and was coauthored with Christian

W. Bauer, Michael L. Graesser, and Mark B. Wise.
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Chapter 2

Imprints of a Primordial
Preferred Direction on the
Microwave Background

2.1 Introduction

Inflationary cosmology, originally proposed as a solution to the horizon, flatness,

and monopole problems [5, 6], provides a very successful mechanism for generating

primordial density perturbations. During inflation, quantum vacuum fluctuations

in a light scalar field are redshifted far outside the Hubble radius, imprinting an

approximately scale-invariant spectrum of classical density perturbations [7, 15].

Models that realize this scenario have been widely discussed [16, 17, 18]. The

resulting perturbations give rise to galaxy formation and temperature anisotropies

in the cosmic microwave background, in excellent agreement with observation [19,

20, 21, 22, 23, 24, 25, 26, 27, 28].

If density perturbations do arise from inflation, they provide a unique window

on physics at otherwise inaccessible energy scales. In a typical inflationary model

(although certainly not in all of them), the energy scale E = V 1/4 is related to the

amplitude of density fluctuations δ and the reduced Planck mass MP via E ∼
√
δMP.
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Since we observe δ ∼ 10−5, it is very plausible that inflation occurs near the scale

of grand unification, and not too far from scales where quantum gravity is relevant.

Since direct experimental probes provide very few constraints on physics at such

energies, it makes sense to be open-minded about what might happen during the

inflationary era.

In this paper we ask what happens when a cherished property of low-energy

physics – rotational invariance – is violated during inflation. Rotational invariance is

of course a subset of Lorentz invariance, and theoretical models of Lorentz violation

in the current universe (and experimental constraints thereon) have been extensively

studied in recent years [29, 30, 31, 32, 33]. Here we are specifically concerned with

the possibility that rotational invariance may have been broken during inflation by

an effect that has subsequently disappeared, and study the effects of such breaking

on CMB anisotropies. It is possible that such an effect has already been detected,

in the form of the “Axis of Evil,” an apparent alignment of the CMB multipoles

on very large scales [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,

49, 50, 51, 52, 53, 54]. Although its statistical significance is hard to quantify, a

variety of models have been put forward to explain this phenomenon [55, 56, 57, 58,

59, 60, 61, 62, 63, 64]. Our aim is not to construct a model contrived to explain

the currently observed large-scale anomalies, but rather to make robust predictions

for the observable consequences of a preferred direction during inflation, allowing

observations to put constraints on its magnitude.

The power spectrum P (k) for the primordial density perturbations δ(k) is defined

by

〈δ(k)δ∗(q)〉 = P (k)δ3(k− q). (2.1)
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The Dirac delta function in Eq. (2.1) implies that modes with different wavenumbers

are uncoupled, and is a consequence of translational invariance during the inflation-

ary era. On the other hand, the fact that the power spectrum P (k) only depends

on the magnitude of the vector k is a consequence of rotational invariance. Suppose

that during the inflationary era rotational invariance is broken by the presence of

a small vector that points in the direction of a unit vector n. Assuming a par-

ity k → −k symmetry, the leading effect of the violation of rotational invariance

changes the most general form of the power spectrum from P (k) to P ′(k), where

P ′(k) = P (k)
(

1 + g(k)(k̂ · n)2
)
. (2.2)

Here k̂ is the unit vector along the direction of k and we are neglecting higher powers

of k̂ · n since they will be suppressed by more powers of the magnitude of the small

vector that breaks rotational invariance. (Effects of a timelike vector on inflationary

perturbations have also been studied [65].)

Towards the end of the inflationary era, the physical wavelengths that corre-

spond to scales of astrophysical interest are large compared with the inverse Hubble

constant during inflation or any of the dimensionful particle-physics quantities that

might be relevant during inflation. The same naturalness arguments that lead to

the scale-invariant Harrison-Zeldovich spectrum (i.e., primordial P (k) ∝ 1/k3) im-

ply that g(k) in Eq. (2.2) should be independent of k. Assuming that g(k) is a

k-independent constant g∗ over the scales of astrophysical interest, we arrive at

P ′(k) = P (k)
(

1 + g∗(k̂ · n)2
)
. (2.3)
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This is the form of the primordial power spectrum that takes into account the

leading effects of the violation of rotational invariance by a small vector in the

inflationary era that points in the direction n. In the next section we discuss the

implications of the power spectrum in Eqs. (2.2) and (2.3) for the anisotropy of the

microwave background radiation. The breaking of rotational invariance gives rise to

correlations between multipole moments that would normally vanish and also alters

the predictions for the usual multipole moment correlations. In section three we

discuss a simple model that realizes the form of the primordial power spectrum in

Eq. (2.3). Concluding remarks are given in section four.

2.2 Microwave Background

We are interested in a quantitative understanding of how the substitution, P (k)→

P ′(k), changes the prediction for the microwave background anisotropy ∆T/T . The

multipole moments are defined by

alm =
∫

dΩe(Y m
l (e))∗

∆T
T

(e). (2.4)

The anisotropy of the microwave background temperature T along the direction of

the unit vector e is related to the primordial fluctuations by

∆T
T

(e) =
∫

dk
∑
l

(
2l + 1

4π

)
(−i)lPl(k̂ · e)δ(k)Θl(k), (2.5)

where Pl is the Legendre polynomial of order l and Θl(k) is a function of the mag-

nitude of the wave-vector k that includes, for example, the effects of the transfer
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function. It can only depend on the magnitude of the wave-vector since the dynamics

after the inflationary era is assumed to be rotationally invariant.

We would like to compute the expectation values 〈alma∗l′m′〉 to first order in

the small quantity g(k) that characterizes the primordial violation of rotational

invariance. We write

〈alma∗l′m′〉 = 〈alma∗l′m′〉0 + ∆(lm; l′m′), (2.6)

where the subscript 0 denotes the usual rotationally invariant piece,

〈alma∗l′m′〉0 = δll′δmm′

∫ ∞
0

dkk2P (k)Θl(k)2. (2.7)

It is useful to introduce the “spherical” components of the unit vector n that defines

the preferred direction for rotational non-invariance,

n+ = −
(
nx − iny√

2

)
, n− =

(
nx + iny√

2

)
, n0 = nz. (2.8)

In terms of these components, the unit norm condition becomes n2
0 − 2n+n− = 1.

Note that we do not assume that the preferred direction n coincides with the ẑ

axis of the coordinate system used to parameterize the microwave sky (i.e., that

n+ = n− = 0). Expressions analogous to ours have been derived by Gümrükçüoğlu

et al. [64] under the assumption that these two directions are coincident; see also

[49].
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Using the identity

Pl(k̂ · e) =
4π

2l + 1

l∑
m=−l

Y m
l (e)(Y m

l (k̂))∗, (2.9)

it is straightforward to express the sought-after perturbation as

∆(lm; l′m′) = (−i)l−l′ξlm;l′m′

∫ ∞
0

dkk2P (k)g(k)Θl(k)Θl′(k), (2.10)

where 1

ξlm;l′m′ =
4π
3

∫
dΩk(Y m

l (k̂))∗Y m′
l′ (k̂) (2.11)

×
(
n+Y

1
1 (k̂) + n−Y

−1
1 (k̂) + n0Y

0
1 (k̂)

)2
.

The integral in (2.10) encodes information about the power spectrum and the trans-

fer function, as well as the scale-dependence of the preferred-direction effect, while

the constants ξlm;l′m′ are purely geometric. The integration over solid angles is

straightforward to perform. It is convenient to decompose the ξlm;l′m′ into coeffi-

cients of the quadratic quantities ninj , via

ξlm;l′m′ = n2
+ξ

++
lm;l′m′ + n2

−ξ
−−
lm;l′m′ + 2n+n−ξ

+−
lm;l′m′ (2.12)

+2n+n0ξ
+0
lm;l′m′ + 2n−n0ξ

−0
lm;l′m′ + n2

0ξ
00
lm;l′m′ .

These coefficients are then given by the following expressions:
1We use the Condon-Shortley phase convention for the spherical harmonics. See [66]
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ξ−−lm;l′m′ = −δm′,m+2

[
δl′,l

√
(l2 − (m+ 1)2)(l +m+ 2)(l −m)

(2l + 3)(2l − 1)

−1
2
δl′,l+2

√
(l +m+ 1)(l +m+ 2)(l +m+ 3)(l +m+ 4)

(2l + 1)(2l + 3)2(2l + 5)

−1
2
δl′,l−2

√
(l −m)(l −m− 1)(l −m− 2)(l −m− 3)

(2l + 1)(2l − 1)2(2l − 3)

]
,

ξ++
lm;l′m′ = ξ−−l′m′;lm,

ξ+−
lm;l′m′ =

1
2
δm′,m

[
−2 δl′,l

(−1 + l + l2 +m2)
(2l − 1)(2l + 3)

+ δl′,l+2

√
((l + 1)2 −m2)((l + 2)2 −m2)

(2l + 1)(2l + 3)2(2l + 5)

+ δl′,l−2

√
(l2 −m2)((l − 1)2 −m2)
(2l − 3)(2l − 1)2(2l + 1)

]
,

ξ−0
lm;l′m′ = − 1√

2
δm′,m+1

[
δl′,l

(2m+ 1)
√

(l +m+ 1)(l −m)
(2l − 1)(2l + 3)

+ δl′,l+2

√
((l + 1)2 −m2)(l +m+ 2)(l +m+ 3)

(2l + 1)(2l + 3)2(2l + 5)

− δl′,l−2

√
(l2 −m2)(l −m− 1)(l −m− 2)

(2l − 3)(2l − 1)2(2l + 1)

]
,

ξ+0
lm;l′m′ = −ξ−0

l′m′;lm,

ξ00
lm;l′m′ = δm,m′

[
δl,l′

(2l2 + 2l − 2m2 − 1)
(2l − 1)(2l + 3)

+ δl′,l+2

√
((l + 1)2 −m2)((l + 2)2 −m2)

(2l + 1)(2l + 3)2(2l + 5)

+δl′,l−2

√
(l2 −m2)((l − 1)2 −m2)
(2l − 3)(2l − 1)2(2l + 1))

]
. (2.13)

The formulas (2.12, 2.13) are explicit expressions for the geometrical part of the

perturbation (2.10). As we mentioned in the introduction, it is natural to imagine

that the violation of rotational invariance is approximately scale invariant, which

implies that it is a good approximation to set g(k) = g∗, a constant. If we define
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polar coordinates θ∗, φ∗ for the preferred direction,

nx = sinθ∗cosφ∗ , ny = sinθ∗sinφ∗ , nz = cosθ∗ , (2.14)

these expressions can be compared directly with observations to constrain the three

parameters (g∗, θ∗, φ∗).

When g(k) = g∗, a simplification occurs for l = l′ and m = m′, as the dependence

on the power spectrum for the terms that violate rotational invariance ∆(lm; lm)

is the same as the rotationally-invariant part 〈alma∗lm〉0. We can then find a simple

expression for their ratio,

∆(lm; lm)
〈alma∗lm〉0

=
g∗
2

[
sin2θ∗ + (2.15)

(3cos2θ∗ − 1)
(

2l2 + 2l − 2m2 − 1
(2l − 1)(2l + 3)

)]
.

For large multipoles, l � 1, and for the magnitude of m of the order of l, this

expression simplifies to

∆(lm; lm)
〈alma∗lm〉0

=
g∗
4

[
1 + cos2θ∗ − (3cos2θ∗ − 1)

m2

l2

]
. (2.16)

2.3 Inflation Model with a Preferred Direction

It is interesting to see how the rotationally non-invariant power spectrum in Eq. (2.3)

can arise in an explicit model of anisotropic inflation. We will assume that, during

most of the inflationary era, rotational invariance is broken by a spacelike four-vector
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uµ with invariant length

gµνu
µuν = m2. (2.17)

We will consider the effect of the energy-momentum tensor associated with this

vector on the expansion of the universe during inflation, ignoring direct couplings of

uµ to other fields. Gravitational effects of dynamical Lorentz-violating vector fields

have been considered previously in the literature [68, 69, 70, 71, 72, 73].

We assume that the four-vector uµ is non-zero only during the time interval

0 < t < t∗, where t∗ is the end of inflation, so that the dynamics is rotationally

invariant during reheating and thereafter. During the time interval 0 < t < t∗, the

dynamics of interest is governed by the action

S =
∫

d4x
√
−g
(

1
16πG

R− ρΛ + Lu + Lχ
)
, (2.18)

where

Lχ = −1
2
gµν∂µχ∂νχ (2.19)

and

Lu = −β1∇µuσ∇µuσ − β2(∇µuµ)2 (2.20)

−β3∇µuσ∇σuµ + λ(uµuµ −m2) .

Here λ is a Lagrange multiplier that enforces the constraint (2.17). Quantum

fluctuations in the massless scalar field χ are assumed to dominate the density per-

turbations via the DGZK mechanism [67]. In that case we need simply calculate the

fluctuations in χ, without worrying about the behavior of the inflationary potential.
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We approximate the inflaton energy density as a constant, modeling the effects

of the inflaton field by a vacuum energy ρΛ in Eq. (2.18). The inflationary spacetime

is taken of the form

ds2 = −dt2 + a(t)2dx2
⊥ + b(t)2dz2 (2.21)

since we have chosen the four-vector to be aligned along the z-axis direction,

u0 = 0 , ux = 0 , uy = 0 , uz =
m

b(t)
. (2.22)

The energy-momentum tensor for uµ derived from (2.20) is [71]

T (u)
µν = 2β1(∇µuρ∇νuρ −∇ρuµ∇ρuν)

−2[∇ρ(u(µJ
ρ
ν)) +∇ρ(uρJ(µν))−∇ρ(u(µJν)

ρ)]

+2m−2uσ∇ρJρσuµuν + gµνLu, (2.23)

where Jµσ is the current tensor,

Jµσ = −β1∇µuσ − β2 δ
µ
σ ∇ρuρ − β3∇σuµ.

Given Eqs. (2.22) and (2.23), the nonvanishing components of the stress tensor
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are

T
(u)
00 = β1m

2

(
ḃ

b

)2

T (u)
xx = Tyy = β1m

2a2

(
ḃ

b

)2

T (u)
zz = β1m

2

(
ḃ2 − 2b̈b− 4

ȧḃb

a

)
. (2.24)

Note that the components of the energy momentum tensor in our chosen background

are independent of β2 and β3.

Solving Einstein’s equation during the time interval 0 < t < t∗, with initial

conditions a(0) = 1 and b(0) = 1, gives

a(t) = eHat, b(t) = eHbt, (2.25)

where

Ha =
ȧ

a
= Hb(1 + 16πGβ1m

2),

Hb =
ḃ

b
=

√
8πGρΛ

(1 + 8πGβ1m2)(3 + 32πGβ1m2)
. (2.26)

According to the cosmic no-hair theorem, initially expanding homogeneous cos-

mological models in the presence of a positive cosmological constant will rapidly

approach a de Sitter solution, if the other matter fields obey the dominant and

strong energy conditions [74]. Our specific model violates these conditions. Nev-

ertheless, for β3 = −β1 and β2 = 0 the kinetic term for fluctuations about our

background has the form of a field strength tensor squared and so is ghost free. We
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therefore expect the configuration to be stable with respect to small fluctuations.

It will turn out to be convenient to refer to a fictitious isotropic metric,

ds̄2 = −dt2 + ā(t)2[dx2 + dy2 + dz2], (2.27)

in which the scale factor expands exponentially

ā(t) = eH̄t (2.28)

with an “average” Hubble parameter,

H̄ =
1
3

(2Ha +Hb). (2.29)

Deviations from isotropy can be parameterized by

εH =
2
3

(
Hb −Ha

H̄

)
, (2.30)

where the 2/3 will become useful later. We work in the limit N∗|εH | << 1, where

N∗ = H̄t∗ is the number of e-foldings during the time when the four-vector uµ is non-

zero. This assures that the violation of rotational invariance due to the anisotropic

expansion is always a small perturbation.

We need to compute the correlation function 〈χ(x, t)χ(y, t)〉. Treating εH as a

small perturbation, we find that to first order in this quantity we obtain (i.e. ref.
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[75])

〈χ(x, t)χ(y, t)〉 ' 〈χI(x, t)χI(y, t)〉 (2.31)

+i
∫ t

0
dt′〈[HI(t′), χI(x, t)χI(y, t)]〉.

Here the interaction-picture Hamiltonian HI(t) is given by

HI(t) =
∫

d3x
1
2

[
(b(t)− ā(t))

(
dχI
dx⊥

)2

+
(
a(t)2

b(t)
− ā(t)

)(
dχI
dx3

)2
]
. (2.32)

The interaction-picture (i.e., free) field obeys the rotationally-invariant equation of

motion,

d2χI
dt2

+ 3H̄
dχI
dt
− 1
ā(t)2

d2χI
dx2

= 0. (2.33)

We can write the two-point correlation function (2.32) in terms of Fourier trans-

forms as

〈χ(x, t)χ(y, t)〉 =
∫

d3k

(2π)3
e−ik·(x−y) [P (k)

+ (k̂ · n)2∆P (k)
]
. (2.34)

Converting to the conformal time of the isotropic metric,

τ = − 1
H̄
e−H̄t, (2.35)
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and expanding in εH , we find that P (k) ' |χ(0)
k (τ)|2, and

∆P (k) ' 3ik2εH

∫ τ

−1/H̄
dτ ′
(
− 1
H̄τ ′

)2

(2.36)

×log(−H̄τ ′)
[
(χ(0)
k (τ ′)χ(0)

k (τ)∗)2 − (χ(0)
k (τ ′)∗χ(0)

k (τ))2
]
,

where

χ
(0)
k (τ) =

H̄√
2k
e−ikτ

[
τ − i

k

]
. (2.37)

We assume that the modes k of astrophysical interest have wavelengths much smaller

than the Hubble radius at the beginning of inflation, which in our normalization

implies k >> H̄. They cross the horizon around sixty e-foldings before the end of

inflation (which we take to occur at about t∗). Taking |kτ | << 1, we find that

∆P (k) ' 9
4
εH
H̄2

k3
log(k/H̄), (2.38)

where we have neglected contributions not enhanced by the large logarithm.

There is another way to derive Eq. (2.38). For modes with wavenumbers along

the ẑ direction or perpendicular to this direction, the Fourier transform of the two

point function 〈χ(x, t)χ(y, t)〉 can be found exactly without resorting to perturbation

theory. For example, modes χk with k = kẑ (wavevectors parallel to the preferred

direction) obey the differential equation

d2χk
dt2

+ 3H̄
dχk
dt

+
k2

b(t)2
χk = 0. (2.39)

The canonical commutation relations imply that χk satisfies the normalization con-
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dition, (
dχk(τ)

dτ

)
χk(τ)∗ −

(
dχk(τ)∗

dτ

)
χk(τ) = −i(H̄τ)2. (2.40)

We find that the properly normalized solution to Eq. (2.39) is

χk(τ) =
H̄
√
πτ3/2

2
√

1 + εH
H(2)
ν

(
(k/H̄)−εH (kτ)1+εH

1 + εH

)
, (2.41)

where H(2)
ν is a Hankel function, and

ν =
3

2 + 2εH
. (2.42)

The contribution to the Fourier transform of the two point χ correlation for a mode

along the ẑ direction is |χk(τ)|2. For small εH and |kτ | and large k/H̄, this becomes

|χk(τ)|2 ' H̄2

2k3

(
1 + 3εH log(k/H̄)

)
. (2.43)

Here we have neglected terms linear in εH that are not enhanced by the large

logarithm. Combining this result with a similar analysis for modes perpendicular

to the ẑ direction reproduces the result in Eq. (2.38).

Finally we note that the density perturbation power spectrum is defined by a

Fourier transform with respect to coordinates where physical laws have manifest

rotational invariance. However at time t = t∗, the coordinates in Eq. (2.21) do not

exhibit manifest rotational invariance due to the difference between a(t∗) and b(t∗).

Rescaling coordinates, z → z(ā(t∗)/b(t∗)) and x⊥ → x⊥(ā(t∗)/a(t∗)), we find that

the function g(k) characterizing the rotationally non-invariant part of the power
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spectrum for the primordial density perturbations is

g(k) =
9
2
εH(log(k/H̄)−N∗)

=
9
2
εH log(q(t∗)/H̄), (2.44)

where the term proportional to N∗ comes from the rescaling of coordinates and

q(t∗) = k/ā(t∗) is the physical wavelength of the mode of interest at the end of

inflation.

The logarithm in (2.44) is actually nearly constant over values of q(t∗) of as-

trophysical interest. The range of q(t∗) probed by CMB measurements is about a

factor of 103, so log(q(t∗)/H̄) changes by roughly 7. But the modes of cosmological

interest cross the deSitter horizon around 60 e-foldings before the end of inflation.

So | log(q(t∗)/H̄)| is approximately 60. Hence, in this model g(k) varies by about

10% over the range of modes of cosmological interest and our general expectation

that setting g(k) = g∗ is a reasonable approximation has been confirmed.

For simplicity in this analysis we neglected terms that directly couple uµ to

χ. For example, we could have added the term uµuν∂µχ∂νχ/M
2 to the Lagrange

density. It is easy to see that this gives an additional scale invariant contribution,

3m2/M2, to g(k).

2.4 Concluding Remarks

We have investigated the possibility that rotational invariance may have been ex-

plicitly broken during inflation by an effect that has disappeared in the later uni-

verse. The observed CMB temperature anisotropies provide a direct window onto
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the physics of the inflationary era, and therefore offer a unique opportunity for

constraining (and discovering) new phenomena at high scales. Our aim has been

to investigate the generic predictions we expect from the presence of a preferred

direction during inflation.

If rotational invariance is violated during inflation, it is natural for the effects

of such a violation to show up in a scale-invariant way, just as the amplitude of the

perturbations themselves are approximately scale-invariant. Under that assump-

tion, we derive a powerful set of predictions for the expectation values 〈alma∗l′m′〉

that depend on only three parameters: a single amplitude g∗, and a direction on the

sky defined by a unit vector n. Investigation of a simple model confirms the approx-

imate scale-independence of this effect. The resulting expressions (2.10,2.12,2.13)

can be directly compared with observations to probe the existence of small Lorentz-

violating effects in the very early Universe.
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Chapter 3

Preliminary Investigation on
the Effect of Asymmetric Beams
in the Wilkinson Microwave
Anisotropy Probe Experiment

3.1 Introduction

Without doubt, the angular CMB power spectrum is today our single most impor-

tant source of cosmological information. Perhaps the most striking demonstration

of this fact to date is the WMAP experiment, [77, 28, 86] which has allowed cos-

mologists to put unprecedented constraints on all main cosmological parameters, as

well as ruling out vast regions of the possible model spaces. Similarly, in only a

few years from now Planck will finally provide the definitive measurements of the

temperature power spectrum, as well as polarization spectra with unprecedented

accuracy. This will certainly lead to similar advances in our knowledge about the

history of our universe.

Each of these experiments observes the CMB field by scanning the sky with

an instrumental beam of finite resolution. This operation effectively corresponds to

averaging over beam-sized angular scales, and is expressed technically either in pixel
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space by a convolution of the beam with the underlying sky, or in harmonic space by

multiplication of the two corresponding sets of harmonic expansion coefficients. For

simplicity, the harmonic space expansion of the beam is typically expressed in terms

of Legendre coefficients of an (azimuthally symmetric) effective beam response. This

function is often called “the beam transfer function”, b`.

Before it is possible to make unbiased cosmological inferences based on the CMB

power spectrum, it is of critical importance to know the beam transfer function to

high precision, as an error in the beam function translates into a direct bias in

the estimated power spectrum. This in turn requires detailed knowledge about the

beam response function on the sky for each experiment. For a full description of the

WMAP beam estimation process and final model, see [92], [89], and [84].

The impact of asymmetric beams may also be important for applications other

than power spectrum estimation. One example of special interest to us is the assess-

ment of non-Gaussianity and violation of statistical isotropy. Specifically, [76] con-

sidered a model based on violation of rotational invariance in the early universe, and

derived explicit parametric expressions for the corresponding observational signa-

ture. Then, in a follow-up paper [82] analysed the 5-year WMAP data with respect

to this model and, most surprisingly, found a detection at the 3.8σ confidence level.

Given that this was a most unexpected result, several questions concerning system-

atic errors in the WMAP data were considered, in particular those due to residual

foregrounds, correlated noise and asymmetric beams. However, it was shown in the

same paper that neither foregrounds nor correlated noise were viable explanations,

while the question of asymmetric beams was left unanswered, due to a lack of proper

simulation machinery. This question provided our initial motivation for considering
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the problems studied in this chapter.

The starting point for tackling the asymmetric beam problem for WMAP is a

set of beam maps released by the WMAP team, two for each differencing assem-

bly (DA), denoted A and B, respectively. These maps were derived by observing

Jupiter for extended periods of time. Then, in order to derive the proper beam

transfer functions, the WMAP team adopted a computationally fast and convenient

approach: They first symmetrized the effective beam for each DA, collapsing the

information in the A and B sides into one common function, and then computed the

Legendre transform of the corresponding radial profile. However, for this to be an

accurate approximation, one must on the one hand assume that the beams on the

two sides are very similar, and on the other hand either assume that both beams

are intrinsically circularly symmetric, or that all pixels on the sky are observed from

all angles an equal number of times due to the scanning strategy. In reality none

of these conditions are met, and one may therefore ask whether there might be

any residual effect due to the combination of an asymmetric beam and anisotropic

scanning in the WMAP beam functions.

This problem was addressed analytically by [28], who derived an approximate

expression for the expected power spectrum bias due to asymmetric beams in the

WMAP data. Their conclusion was that such effects were .1% for the 3-year

WMAP data.

In this chapter, we revisit the question of asymmetric beams in WMAP with

two main goals. First, we seek to estimate the effective beam transfer functions for

each WMAP DA, taking into account the full details of the asymmetric beams and

specifics of the WMAP scanning strategy by direct simulation. This way, we check
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whether the analytic approximations presented by [28] are valid. Second, we want

to produce a set of high-fidelity simulated CMB sky maps, with beam properties as

close as possible to those observed by WMAP, that can later be used for general

studies of asymmetric beam effects in WMAP.

It was pointed by the referee of this work, that we didn’t take into account the

fact that the beam maps distributed by the WMAP collaboration are smoothed. As

a consequence of this, the method that we employ in this chapter is sound, but the

quoted numbers will be modified. We intent to take this effect into account in a

revised version of this work.

3.2 Pipeline overview

In this section we summarize the methods and algorithms used in this chapter. Note

that none of the individual steps described below are original to this chapter, and

only the main ideas will therefore be discussed in the following.

We begin by defining our notation. We will be estimating the product of the

WMAP beam transfer function, b`, and pixel window, p`, by direct simulation. This

product is denoted β` = b`p`. Given this function, the combined effect on a sky map,

T (n̂), of convolution by an instrumental beam and averaging over finite-sized pixels

may be approximated in harmonic space as

T (n̂) =
`max∑
`=0

∑̀
m=−`

β`a`mY`m(n̂), (3.1)

where Y`m(n̂) are the usual spherical harmonics.
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The angular power spectrum of T is given by

Ĉ` =
1

2`+ 1

∑̀
m=−`

β2
` |a`m|2, (3.2)

while the power spectrum of the true underlying CMB map, s(n̂), is

C` =
1

2`+ 1

∑̀
m=−`

|a`m|2. (3.3)

The effect of the beam convolution and pixel averaging on the power spectrum is

therefore simply given by a multiplication with β2
` .

The overall approach for estimating β` used in this chapter may be summarized

by the following steps: First, we simulate time-ordered data (TOD) for each DA,

taking into account both the detailed beam maps of WMAP and the exact orienta-

tion of the spacecraft at each point in time. We then produce a sky map from this

TOD. Finally we compute the square root of the ratio between the output and the

input power spectra, which becomes our estimate of β`.

Note that in this chapter we are only concerned with the effect of asymmet-

ric beams, not other systematic effects such as instrumental noise. All following

discussions will therefore assume noiseless observations.

3.2.1 Simulation of time-ordered data

Our first step is to simulate a reference CMB sky realization, s, given an angular

temperature power spectrum, Ctheory
` . This can be achieved with a standard code

such as “anafast”, which is available in the HEALPix1 software package. Note
1http://healpix.jpl.nasa.gov



29

that this map should not be smoothed with either an instrumental beam or a pixel

window; adding these effects is the task of the following pipeline. Explicitly, the

input reference map should simply be pure spherical harmonic modes projected

onto a set of pixel centers.

Next, we need to be able to convolve this map with a given beam map at arbitrary

positions and orientations on the sphere. In this chapter we do this by brute-force

integration in pixel space. For an alternative fast Fourier space based approach to

the same problem, see [95].

We define p̂ to be a unit vector pointing towards the beam center, and specify its

position on the sphere using longitude and co-latitude (φ, θ). We further define ψ to

be the angle between some fixed reference direction in the beam map and the local

meridian. The value of the beam map at position n̂ = (φ′, θ′), which in principle

is non-zero over the full sky, is denoted b(φ′, θ′;φ, θ, ψ). With these definitions, the

desired convolution may be written as

T (φ, θ, ψ) =
∫

4π
s(φ′, θ′)b(φ′, θ′;φ, θ, ψ)dΩ′. (3.4)

Computationally speaking, we approximate this integral as a direct sum over

HEALPix pixels, which all have equal area, with the product s · b being evaluated

at HEALPix pixel centers. To make these calculations computationally feasible, we

assume that the beam is zero beyond some distance from the beam center (ranging

between 3.5 and 7◦ for the WMAP channels), and thus only include the main lobe

in the following analysis. While the WMAP beam maps are provided as pixelized

maps, we need to know the beam values at arbitrary positions (i.e., HEALPix pixel
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centers). We solve this by computing a 2D spline for each beam map, enabling us

to interpolate to arbitrary positions.

WMAP is a differential experiment, and measures at each point in time the

difference between the signals received by two different detectors, denoted A and B.

The full set of time-ordered WMAP data may therefore be written as

dx(i) = TA
x (i)− TB

x (i), (3.5)

where x = {K1, Ka1, Q1-2, V1-2, W1-4} is a DA label, and i is a time index, and

for each detector a short-hand for (φ, θ, ψ). This equation may be written in the

following matrix form,

dx = ATx, (3.6)

where we have introduced an Ntod ×Npix pointing matrix A. This matrix contains

two numbers per row; 1 in the column hit by the center of beam A at time i, and

-1 in the column hit by the center of beam B.

The remaining problem is to determine the position and orientation of each

detector at each time step. This information has been made publicly available by

the WMAP team on LAMBDA2, and consists of a large set of pointing files together

with useful IDL routines for extracting the desired information.

3.2.2 Map making with differential data

For the map making step we adopt the algorithm developed by Wright et al. [96],

which was used in the 1- and 3-year WMAP pipelines [85, 28]. Here we only sum-
2http://lambda.gsfc.nasa.gov
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marize the essential algebra, and outline the algorithm.

Our goal is to establish an unbiased and, preferably, optimal estimate of the

(smoothed) sky signal, T̂, given a set of differential TOD values, d. For noiseless

data, the maximum likelihood estimator is simply

T̂ = (AtA)−1Atd. (3.7)

For high-resolution sky maps, this equation involves an inverse of a large matrix

and cannot be solved explicitly. Instead, one often resorts to iterative methods such

as Conjugate Gradients, or, for differential data, the method developed by Wright

et al. [96].

We present the iterative differential map maker in a simple manner: Define

D to be the diagonal matrix that counts the number of hits Nobs(p) per pixel p

on the diagonal, and ai and bi to be the pixels hit by side A and side B at time

i, respectively. Suppose that we already have established some estimate for the

solution, T̂j . (Note that this can be zero.) Then the iterative scheme

T̂j+1 = T̂j + D−1At(d−AT̂j) (3.8)

will converge to the true solution: If T̂j = T, then d = AT̂j , and the second term on

the right hand side is zero. This algorithm is implemented by the following scheme:

T̂ j+1
p =

∑
i

(
δp,ai

[
T̂ jbi + di

]
+ δp,bi

[
T̂ jai − di

])
Nobs(p)

. (3.9)

This algorithm was originally presented by Wright et al. [96]. The only new
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DA FWHM Radius Nside `max `hybrid Nsamples σN

(arcmin) (degrees) (108) (µK)
K1 53 7.0 512 750 318 2.5 ...
Ka1 40 5.5 512 850 411 2.5 ...
Q1 31 5.0 512 1100 522 3.1 78.2
Q2 31 5.0 512 1100 515 3.1 74.2
V1 21 4.0 1024 1500 789 4.1 99.0
V2 21 4.0 1024 1500 779 4.1 88.2
W1 13 3.5 1024 1700 1164 6.2 143.8
W2 13 3.5 1024 1700 1148 6.2 159.7
W3 13 3.5 1024 1700 1162 6.2 168.5
W4 13 3.5 1024 1700 1169 6.2 164.4

Table 3.1: Summary of DA parameters. Note: FWHM is the effective symmetrized
beam size. The Radius is used for pixelized beam convolutions. See [84] for details.
Average full-sky RMS values evaluated at Nside = 512.

feature introduced here is the choice of starting point. In the original paper, Wright

et al. [96] initialized the iterations at the DMR dipole, since their test simulation

included a CMB dipole term. However, for a given scanning strategy, there will often

be some large-scale modes that are less well-sampled than others. For instance, for

the WMAP strategy ` = 5 is more problematic than other modes [85]. This leads

to slow convergence with the above scheme for this mode.

We therefore choose a different approach: Before solving for the high-resolution

map by iterations, we solve Equation 3.7 by brute-force at low resolution. For the

cases considered later in this chapter, we choose a HEALPix resolution of Nside =

16 for this purpose. With 3072 pixels, about 30 seconds are needed to solve this

system by singular value decomposition. (Note that the monopole is arbitrary for

differential measurements, and one must therefore use an eigenvalue decomposition

type algorithm to solve the system.) The improvement in convergence speed due to

this choice of initial guess is explicitly demonstrated in Appendix A.

Our convergence criterion is chosen such that the RMS difference between two
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consecutive iterations must be less than 0.05 µK. We have verified that this leads

to errors of less than 0.1 µK in the final solution, of which most is due to a residual

dipole. This is typically achieved with 30–50 iterations, although some converge

already after 20–30 iterations and a few after 70 or more iterations.

At first glance, the fact that the final residuals are as small as 0.1 µK for an

RMS stopping criterion as large as 0.05 µK may seem surprising. However, this

is explained by the fact that the iterative solution obtained by Equation 3.8 often

alternates between high and low values about the true answer. This suggests that

a further improvement to the algorithm may be possible: Faster convergence may

perhaps be obtained by computing the average of two consecutive iterations, T̂ =

(T̂j + T̂j+1)/2, as the map estimate for iteration j+ 2. However, the computational

resources spent during map making is by far sub-dominant compared to the TOD

simulation, and we have therefore not yet implemented this step in our codes.

3.2.3 Estimation of hybrid beam transfer functions

As described in the introduction to this section, we estimate the transfer function

by the square root of the ratio between the power spectra of the convolved map and

the input map,

β̂` =

√
Ĉ`
C`
. (3.10)

However, as noted above, this function describes both the effect from instrumental

beam smoothing and averaging over pixels. In the present chapter we are concerned

mostly with the former of these, which has a stronger impact on large to interme-

diate scales. This is because the beam component is largely independent of total

observation time, assuming at least one year of observations for WMAP, whereas the
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pixel averaging component depends strongly on total observation time, or the aver-

age number of samples per pixel. The latter, therefore, evolves much more strongly

with time than the former, as will be explicitly demonstrated later.

In order to provide transfer functions that are valid for long observation periods

(e.g., 5 or 7 years of WMAP observations), we choose to construct a hybrid transfer

function,

β̂` =


√

Ĉ`
C`

for ` ≤ `hybrid√
Ĉ`hybrid

C`hybrid

bWMAP
`

bWMAP
`hybrid

p`
p`hybrid

for ` > `hybrid

. (3.11)

Here bWMAP
` is the nominal symmetrized transfer function published by the WMAP

team, p` is the (uniformly averaged) HEALPix pixel window, and `hybrid is some

transition multipole. In other words, we adopt our own direct estimate of the

transfer function up to `hybrid, but the symmetrized, asymptotically uniform and

properly scaled WMAP transfer function at higher multipoles.

Note that this issue is of minor importance in terms of cosmological interpreta-

tion, i.e., angular power spectrum and cosmological parameters, because the tran-

sition typically takes place in the noise dominated high-` regime. The effect of the

anisotropic pixel window is, therefore, largely suppressed. In the present chapter,

we choose to focus on the beam dominated region, and leave a detailed study of

the pixel window to a future paper. See Section 3.4 for a detailed discussion of this

issue.

Finally, because we only generate a relatively small number of simulations in this

chapter, there is considerable Monte Carlo scatter in our estimated transfer func-

tions on an `-by-` basis. To reduce this Monte Carlo noise, we smooth all transfer

functions using the smooth spline formalism described by Green & Silverman [81]
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and others.

3.3 Data and simulations

All data products used in this study are provided by the WMAP team on LAMBDA

as part of their 5-year data release. However, the calculations performed here are

computationally extremely demanding, and we therefore include only roughly one

year’s worth of data in our calculations. To be precise, we include the period between

July 10th 2001 and August 2nd 2002, except for three days with missing data, for

a total of 383 days3.

We consider all 10 WMAP DAs in our calculations, which are denoted, in order

from low to high frequencies, K1 (23 GHz), Ka1 (33 GHz), Q1–2 (41 GHz), V1–2 (61

GHz) and W1–4 (94 GHz), respectively. Their resolutions range from 53’ FWHM

at K-band to 13’ FWHM at W-band. Because of this large range in resolution,

we specify the pixel resolution and harmonic space range for each case separately.

For instance, K-band is pixelized at Nside = 512, and includes multipoles up to

`max = 750 (the highest multipole present in the transfer function provided by

the WMAP team), while the W-band is pixelized at Nside = 1024, and includes

multipoles up to `max = 1700. A full summary of all relevant parameters for each

DA is given in Table 3.1.

Note that the listed noise RMS values are only used for estimating the power

spectrum weights in Section 3.6. For simplicity we have adopted the official RMS

values for the foreground-reduced 5-year WMAP maps here, but note that there is
3Our original intention was to include precisely one year of observations in our analysis, and

therefore we processed 365 WMAP pointing files. However, we noticed after the calculations were
completed that some of the pointing files contained slightly more than one day’s worth of data,
such that a total of 383 days was in fact included.
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a ∼ 1% bias in some of these values [83]. However, this has no significant impact

on the results presented in this chapter.

The beam maps for each DA are provided in the form of pixelized maps and

separately for side A and B. Each beam map contains non-zero values inside a

radius around the beam center which is specified for each DA. For instance, the K-

band radius is 7◦, and the W-band radius is 3.5◦. When evaluating the convolution

defined in Equation 3.4, we include all pixels inside this radius.

The pixel size of the beam maps is 2.4′, which over-samples even the W-band

beams. Based on these high-resolution maps, we precompute all coefficients of the

corresponding bi-cubic spline which allows us to very quickly interpolate at arbitrary

positions in the beam map with high accuracy.

Each beam is normalized by convolving a map constant equal to 1 at 1000

random positions and orientations, and demanding that the average of the resulting

1000 values equals unity. With the 2D spline interpolation scheme, the random

uncertainties on the normalization due to beam position and orientation are ∼

0.2%. For comparison, directly reading off pixel values from the beam maps without

interpolation lead to variations in the normalization at the ∼ 2% level.

For our base CMB reference sky set, we draw ten random Gaussian realizations

from the best-fit ΛCDM power spectrum derived from the 5-year WMAP data

alone [1]. These maps are generated at both Nside = 512 and Nside = 1024 using the

same seeds, and include neither an instrumental beam nor a pixel window; they are

simply spherical harmonic modes projected onto the HEALPix pixel centers. All

ten realizations are processed for all ten DAs, such that the resulting simulations

may be used for multifrequency analysis, if so desired.
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As noted above, the computational requirements for the analyses presented here

are demanding. The CPU time for processing a single W-band DA is ∼ 4000

hours, and the total disk usage for the entire project is ∼1TB. For comparison, the

corresponding map making step requires ∼ 60 CPU hours, and is thus completely

sub-dominant the TOD simulation.

3.4 Comparison with analytic case

In order to test our pipeline and understand its outputs, we start by considering a

perfect Gaussian beam. This case is treated in two different ways: First, we convolve

a CMB realization directly in harmonic space (as defined by Equation 3.1) with a

σfwhm = 20′ FWHM analytic Gaussian beam and the appropriate HEALPix pixel

window, p` for Nside = 1024. The combined transfer function for this case reads

βref
` = e−

1
2
`(`+1)σ2

p`, (3.12)

where σ = σfwhm/
√

8 ln 2, and σfwhm is expressed in radians.

Second, we map out a corresponding two-dimensional Gaussian in pixel space

over a grid of 2.4′ pixels, the same resolution as the WMAP beam maps. We then

input this into our simulation pipeline together with the same CMB realization used

for the analytic convolution, and with the V1 channel pointing sequence. From the

resulting brute-force convolved map, we then obtain the effective transfer function,

β`, as described in Section 3.2.3.

This function is plotted in the top panel of Figure 3.1, together with the product

of the analytic Gaussian beam and the HEALPix pixel window. The ratio of the
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two effective functions is shown in the lower panel.

From this figure it is clear that the agreement between the two approaches is

excellent up to ` ≈ 800. At higher `’s, however, the ratio increases rapidly, indicating

that the analytic approach smooths more than the brute-force approach. This is due

to the different definitions of the pixel windows in the two cases: In the HEALPix

case, the pixel window is defined as an effective average both over each pixel and

over the full sky. In other words, it assumes that all points have been observed an

equal (and infinite) number of times.

However, this is not the case for a real experiment which scans the sky for a

finite length of time. As a consequence, each pixel is observed only a relatively

small number of times, and this leads effectively to less smoothing. In the extreme

case of only one observation per pixel, there would be no pixel averaging at all.

Now, the average pixel window would formally equal unity. On the other hand, the

random realization-specific uncertainties would be very large, and the pixel window

as such would have zero predictive power.

In practice, one is well advised not to consider scales smaller than those that

are properly oversampled by the scanning strategy. In this chapter, we adopt the

analytic case considered in this section to guide us in determining which scale that

is. Explicitly, we conservatively demand that the effective beam transfer function

must be greater than 0.15 in order to consider it to be properly oversampled, and

therefore independent of scanning strategy. We adopt the corresponding multipole

moment to be `hybrid, as defined in Section 3.2.3. Thus, the symmetrized WMAP

beam and HEALPix pixel window are used at scales for which the beam amplitude

drops below 0.15.
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Note that if we included more years of WMAP scanning in our calculations,

we could increase `hybrid, since we would obtain more samples, and the WMAP

pointings do not perfectly coincide from year to year. This is computationally very

expensive, and we have therefore chosen to limit our analysis to the range described

here.

As a direct illustration of this effect, we present in Figure 3.2 the transfer function

ratios for the V1 WMAP DA with respect to the nominal WMAP transfer function,

computed for both six months of observations and a full year of observations. The

low and intermediate ` behaviour is the same for the two, but the pixel window

effect becomes important earlier for the six month case than for the full year case.

3.5 The effect of asymmetric beams in WMAP

We now present the main results obtained in this chapter, namely the effective beam

transfer functions for each WMAP DA, taking into account both the full asymmetric

beam patterns and scanning strategy. These are shown in Figure 3.3 (red lines),

and compared to the nominal WMAP transfer functions (dashed black lines). The

vertical dotted line indicates `hybrid for each case.

Clearly, the differences between the two sets of results are relatively small, as no

visual discrepancies are seen in this plot. However, in Figure 3.4 we plot the ratio

between our transfer functions and the WMAP transfer functions for ` ≤ `hybrid,

and here we do see small but significant differences between the two sets of results.

First, we see that the ratios are essentially unity on the largest scales (smallest

`’s), before they start diverging either towards high or low values at some charac-

teristic scale. There are two exceptions to this trend, namely W1 and W4, which
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start diverging essentially already at very low `’s.

Next, the transfer functions split into two main groups: our K1, Ka1 and Q1–

2 transfer functions are slightly higher than the corresponding WMAP functions,

while the V and W DAs are slightly lower.

Both of these general and qualitative remarks reflect the position of each DA

in the WMAP focal plane (see Figure 6 of Jarosik et al. 2007 for an excellent

visualization of the A side beams): K1, Ka1 and Q1–2 are positioned the furthest

away from the optical axis, while V1–2 and W1–4 are the closest. Similarly, W1 and

W4 are positioned lower in elevation, and generally have more sub-structure than

W2 and W3.

However, it should be emphasized that the overall differences are generally small,

typically less than 2% at ` ≤ `hybrid. Further, these differences are only significant

(again, with the exception of W1 and W4) in the intermediate- and high-` ranges.

To build up some intuitive understanding of the spatial variations caused by

the asymmetric WMAP beams, we show in Figure 3.5 the difference between the

fully asymmetrically convolved map and the corresponding map convolved with

the symmetrized transfer function directly in harmonic space for one of the V1

simulations. Thus, the two convolved maps have identical power spectra, but slightly

different phases. The top panel shows the full-sky difference map with a temperature

scale of ±5µK. The lower panels show two selected 15◦ × 15◦ regions centered on

the north ecliptic pole (NEP; top row) and the Galactic center (GC; bottom row),

respectively. The left column shows the actual temperature map convolved with

the asymmetric beam, and the right column shows the same differences as in the

full-sky plot.
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The first striking feature seen in this map is that the differences are clearly larger

in the ecliptic plane than around the ecliptic poles. This is due to the WMAP

scanning strategy, which leads to a larger number of observations per pixels around

the poles, and also with a greater range of beam orientations. Next, it is difficult

to spot any single unambiguous and well-defined correlation between the convolved

and the difference maps. Clearly, there are similar morphological structures in the

two, but the sign of the correlations appears to vary. Third, we see a clear tendency

of diagonal striping in the GC plot, which corresponds to correlations along ecliptic

meridians and lines of constant latitude. (Note that these plots are shown in Galactic

coordinates, while the WMAP scanning strategy is nearly azimuthally symmetric

in ecliptic coordinates.)

In the next section, we consider the impact of the asymmetric beams on cos-

mological parameters. However, before concluding this section we make a comment

concerning an outstanding issue regarding the 3-year WMAP power spectra first

noted by [79]. They pointed out the presence of a 3σ amplitude discrepancy between

the V- and W-band power spectra (Figure 5 of Eriksen et al., 2007). Specifically,

the V-band spectrum was biased low compared to the W-band spectrum between

` = 300 and 600 by ∼ 80µK2. [88] later showed that ∼ 30µK2 of this discrepancy

could be attributed to over-estimation of point source power in the 3-year WMAP

spectrum analysis, and this was subsequently confirmed and corrected by [28]. Still,

about 50µK2 of this difference remained, which was statistically significant at ∼ 2σ.

[79] proposed that this difference might be due to errors in the beam transfer

functions caused by asymmetric beams. Given the new results presented in this

chapter, we are now in a position to consider this issue more quantitatively. The
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relevant question is then whether the WMAP V-band transfer functions are sys-

tematically biased high compared to the W-band functions. At first glance, one

may get this impression from the plots shown in Figure 3.4: The V-band ratios

both drop noticeably from ` = 300 (decreasing nearly linearly from -0.2 to -0.7%),

whereas W2 and W3 are slightly high in the same range, at about +0.1 to +0.2%.

On the other hand, W1 and W4 are even lower than the V-band functions, at -0.4

to -0.6%. The net difference is therefore not more than a few tenths of a percent,

which corresponds to ∼ 10µK2 in the power spectrum. Thus, it is possible that this

effect may contribute somewhat to the power spectrum discrepancy between V- and

W-band, but it does not seem to fully explain the difference.

3.6 Impact on cosmological parameters

We now assess the impact of asymmetric beams in WMAP on cosmological param-

eters. We do this by modifying the co-added 5-year WMAP temperature power

spectrum [91] provided with the WMAP likelihood code [78, 1] according to the

transfer function ratios shown in Figure 3.4, and run CosmoMC [90] to estimate the

resulting parameters. Only a simple 6-parameter ΛCDM model is considered in this

chapter. For comparison, we also run the code with the nominal WMAP spectrum

as input, so that we can directly estimate the impact of asymmetric beams with

everything else held fixed.

Unfortunately, the individual cross-spectra for each pair of DAs have not yet

been published by the WMAP team, but only the total co-added spectrum. We

must, therefore, make a few approximations in order to apply the proper beam

corrections to the full spectrum. First, let σin denote the white noise level of DA
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i (see Table 3.1), βi` the transfer function estimate derived in this chapter, and let

βi,WMAP
` be the nominal WMAP transfer function. Finally, define

δi` =
βi`

βi,WMAP
`

− 1 (3.13)

to be the fractional difference between the two.

Next, the WMAP team uses the MASTER pseudo-spectrum algorithm [87] for

power spectrum estimation [85, 28, 91], which quickly produces good estimates at

high `’s. However, this method is not a maximum-likelihood estimator, and it does

not yield optimal error bars. To improve on this, the WMAP applies different pixel

weights in different multipole regions: At low `’s, where the sky maps are signal

dominated, they apply equal weights to all pixels, while at high `’s, where the

maps are noise dominated, they apply inverse noise variance pixels weights. These

weights are then taken into account when co-adding the cross-spectra obtained from

all possible DA pairs (but excluding auto-correlations). The transition is made at

` = 500.

Parameter Nominal WMAP Corrected beams Shift in σ

Ωbh
2 0.0228± 0.0006 0.0228± 0.0006 0.1

Ωcdmh
2 0.109± 0.0006 0.112± 0.006 0.4

log(1010As) 3.064± 0.042 3.079± 0.042 0.4
τ 0.089± 0.017 0.089± 0.017 0.00
h 0.722± 0.027 0.716± 0.026 −0.3
ns 0.965± 0.014 0.969± 0.014 0.3

Table 3.2: Comparison of cosmological parameters derived from the nominal WMAP
power spectrum (second column) and from the power spectrum corrected for asym-
metric beams (third column). The rightmost column shows the relative shift between
the two in units of σ.

The beam-convolved (but noiseless) power spectrum C̃ij` observed by a given DA

pair, i and j, may be written as C̃ij` = βi`β
j
`C`, where C` is the true power spectrum
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of our sky, and βi` is the true transfer function for DA i. The noise amplitude of the

same spectrum is proportional to σinσ
j
n/βi`β

j
` . The inverse noise variance weight of

this cross-spectrum is therefore approximately

wij =

βi`β
j
`

σinσ
j
n∑

i′<j′
βi
′
` β

j′
`

σi′n σ
j′
n

, (3.14)

where the sum runs over all N different pairs of cross-spectra. (Note that this is

only an approximation to the exact expression, because other effects also enter the

full calculations. One important example is the sky cut, which couples different `

modes, and is taken into account through a coupling matrix. Such effects are not

included in the analysis presented here.

Pulling all of this together, the appropriately co-added power spectrum provided

by WMAP should ideally read

Ĉ` =


1
N

∑
i<j

C̃ij`
βi`β

j
`

for ` ≤ 500∑
i<j wij

C̃ij`
βi`β

j
`

for ` > 500,
. (3.15)

However, the spectrum that in fact is provided by WMAP is Equation 3.15 evaluated

for β` = βWMAP
` , which, according to our calculations, is slightly biased. To obtain

the appropriate correction factor, α` = Ĉ`/Ĉ
WMAP
` , for each `, we therefore set

β` = βWMAP
` (1 + δ`) in Equation 3.15, and expand to first order in δ`. Doing this,

we find that

α` =


1− 1

N

∑
i<j(δ

i
` + δj` ) for ` ≤ 500

1−
∑

i<j w
WMAP
ij (δi` + δj` ) for ` > 500

(3.16)
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where wWMAP
ij is the expression given in Equation 3.14 evaluated with βWMAP

` .

This function is plotted in Figure 3.6. Note, however, that we have capped the

function by hand at ` = 750 to be conservative, considering that our V-band transfer

functions do not have support all the way to the maximum multipole used in the

WMAP likelihood code, `max = 1000.

The results from the corresponding CosmoMC analyses are tabulated in Table

3.2 in terms of marginal means and standard deviations, and plots of the marginal

distributions are shown in Figure 3.7. Here we see that there are small but notice-

able shift in several parameters. For example, there is a positive shift of 0.4σ in

the amplitude of scalar perturbations, As, and 0.3σ in the spectral index of scalar

perturbations. Although relatively modest, these shifts are certainly large enough

that they should be taken properly into account.

3.7 Conclusions

This chapter has two main goals. First, we wanted to generate a set of WMAP-

like simulations that fully take into account the asymmetric beams and anisotropic

scanning pattern of the WMAP satellite. Such simulations are extremely valuable for

understanding the impact of beam asymmetries on various statistical estimators and

models. One example of such, which indeed provided us with the initial motivation

for studying this issue, is the anisotropic universe model presented by [76], and

later considered in detail with respect to the WMAP data by [82]. The result

from that analysis was a tentative detection of violation of rotational invariance

in the early universe, or some other effect with similar observational signatures,

at the 3.8σ confidence level. It was shown that neither foregrounds nor correlated
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noise could have generated this signal, but the question of asymmetric beams was

left unanswered. This issue will now be revisited in an upcoming paper, using the

simulations generated here.

The second goal of the chapter was to assess the impact of beam asymmetries

on the WMAP power spectrum and cosmological parameters. We did this by com-

paring the power spectrum of the full beam convolved simulations with the power

spectrum of the input realizations, thereby providing a direct estimate the effective

beam transfer functions. Doing so, we found differences at the 1 − 2% level in all

differencing assemblies at intermediate and high `’s with respect to the nominal

WMAP transfer functions.

A similar analysis was performed for the 3-year WMAP data release by [28],

who approached the problem from an analytical point of view. However, at that

time only the A-side beams were available [84], and they therefore assumed identical

beams on both the A and B sides. With this data, they concluded that the impact

of beam asymmetries was . 1% everywhere below ` = 1000 for the V- and W-

band DAs. For comparison, we find that there is a ∼ 1% bias already at ` = 600

for the combined co-added temperature power spectrum, and increasing rapidly to

∼ 1.5% at ` = 750. It is not unlikely that this trend may continue further in `, but

to answer that question would require considerably more computational resources.

Nevertheless, the two analyses appear to be in reasonable agreement with each other,

especially considering the fact that we take into account the full beam maps of both

the A and B sides.

As far as cosmological parameters go, the impact of asymmetric beams appear to

be small but noticeable. Specifically, we find shifts of 0.4σ in the amplitude of scalar
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perturbations, As, and the physical density of cold dark matter, Ωcdmh
2, and 0.3σ

in the spectral index of scalar perturbations, ns. While these shifts are relatively

modest, they are of the same order of magnitude or larger than, say, marginalization

over the Sunyaev-Zeldovich effect [94] or unresolved point sources [91], which indeed

are taken into account.

One outstanding question that still remains is the impact of the anisotropic effec-

tive pixel window. As explicitly demonstrated in this chapter, the difference between

the isotropized HEALPix pixel window and the actual WMAP V1 scanning induced

pixel window becomes visible at ` ∼ 900 for one year of WMAP observations. Of

course, this is well within the noise-dominated regime for the WMAP data, and

unlikely to have any major impact on cosmological results, but we believe that a

proper understanding of this issue, both with respect to WMAP and Planck, is

warranted, and we intend to revisit this issue in a separate study.

The simulations described in this chapter may be downloaded from IKW’s home-

page4.

4http://www.fys.uio.no/∼ingunnkw/WMAP5 beams
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Figure 3.1: Top panel: Comparison between the transfer functions, β`, for a Gaus-
sian beam of 20′ FWHM. This was computed from a pixelized beam map and with
the WMAP V1 scanning strategy (red line), and alternatively, by using the well-
known analytic expression for the Legendre transform of a Gaussian beam (Equation
3.12) and isotropized HEALPix pixel window (black dashed line). The vertical dot-
ted line indicates the multipole moment, `hybrid, at which β` = 0.15. Bottom panel:
The ratio between the transfer functions in the top panel. Note the excellent agree-
ment up to ` ≈ 800, after which the differences in pixel window approximations
becomes visible.
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Figure 3.3: Comparison between transfer functions derived in this chapter (red
lines) to the nominal WMAP transfer functions (black dashed lines). The transition
multipole, `hybrid is marked by dotted vertical lines.
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Figure 3.4: The ratio between the transfer functions derived in this chapter and the
nominal WMAP transfer functions for all DAs. Note that the DAs split into two
main groups depending on focal plane position: The outer DAs, K1, Ka1 and Q1–2,
all rise with `, whereas the inner DAs, V1–2 and W1–4, decrease with `. Note also
the similarity between W1 and W4, between W2 and W3, and between V1 and V2.
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Figure 3.5: Top panel: Difference between a V1 simulation convolved with the
full asymmetric beam and the same realization convolved with the corresponding
symmetrized transfer function. The two maps have identical power spectrum but
different phases. Note that larger differences are observed along the ecliptic plane,
where the density of observations is lower than towards the ecliptic poles, and the
cross-linking is also weaker. Bottom panels: Zoom-in on two regions, the north
ecliptic pole (NEP; top row) and the Galactic center (GC; bottom row). Left column
shows the map convolved with an asymmetric beam, and right column shows the
same difference as in the top panel.
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Chapter 4

Dark Matter and Dark
Radiation

4.1 Introduction

A wide variety of cosmological observations seem to point to a two-component dark

sector, in which approximately 73% of the energy density of the universe is in dark

energy and 23% is in non-baryonic dark matter (DM). Ordinary matter constitutes

the remaining 4% [4, 12]. The physics of the dark matter sector is plausibly quite

minimal: an excellent fit to the data is obtained by assuming that dark matter is

a cold, collisionless relic, with only the relic abundance as a free parameter. The

well-known “WIMP miracle” [12, 97, 98] is the fact that a stable, neutral particle

with weak-scale mass and coupling naturally provides a reasonable energy density in

DM. Particles of this type arise in models of low-scale supersymmetry [12] or large

extra dimensions [13], and provide compelling DM candidates. In the contemporary

universe, they would be collisionless as far as any conceivable dynamical effects are

concerned.

Nevertheless, it is also possible to imagine a rich phenomenology within the

dark sector. The dark matter could be coupled to a relatively strong short-range
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force that could have interesting consequences for structure on small scales [14, 99].

Alternatively, DM could also be weakly coupled to long-range forces, which might

be related to dark energy [100]. One difficulty with the latter is that such forces

are typically mediated by scalar fields, and it is very hard to construct natural

models in which the scalar field remains massless (to provide a long-range force)

while interacting with the DM at an interesting strength.

In this paper, we explore the possibility of a long-range gauge force coupled to

DM, in the form of a new unbroken abelian field, dubbed the U(1)D “dark photon.”

We imagine that this new gauge boson γ̂ couples to a DM fermion χ, but not directly

to any Standard Model (SM) fields. Our model is effectively parameterized by only

two numbers: mχ, the mass of the DM, and α̂, the dark fine-structure constant.

If mχ is sufficiently large and α̂ is sufficiently small, annihilations of DM particles

through the new force freeze out in the early universe and are negligible today,

despite there being equal numbers of positively- and negatively-charged particles.

The dark matter in our model is therefore a plasma, which could conceivably lead

to interesting collective effects in the DM dynamics.

Remarkably, the allowed values of mχ and α̂ seem quite reasonable. We find

that the most relevant constraint comes from demanding that accumulated soft

scatterings do not appreciably perturb the motion of DM particles in a galaxy over

the lifetime of the universe, which can be satisfied by α̂ ∼ 10−3 and mχ ∼ TeV. For

values near these bounds, the alterations in DM halo shapes may in fact lead to closer

agreement with observation [14]. However, for such regions of parameter space, if

U(1)D were the only interaction felt by the χ particles, the resulting relic abundances

would be slightly too large, so we need to invoke an additional annihilation channel.
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We show that χ can in fact be a WIMP, possessing SU(2)L quantum numbers in

addition to U(1)D charge. Such a model provides the correct relic abundance, and is

consistent with particle-physics constraints so long as the mixing between ordinary

photons and dark photons is sufficiently small.

We consider a number of other possible observational limits on dark electromag-

netism, and show that they do not appreciably constrain the parameter space. Since

the DM halo is overall neutral under U(1)D, there is no net long-range force that

violates the equivalence principle. Although there are new light degrees of freedom,

their temperature is naturally lower than that of the SM plasma, thereby avoid-

ing constraints from Big-Bang Nucleosynthesis (BBN). Energy loss through dark

bremsstrahlung radiation is less important than the soft-scattering effects already

mentioned. The coupling of DM to the dark radiation background can, in principle,

suppress the growth of structure on small scales, but we show that the DM decouples

from the dark radiation at an extremely high redshift. On the other hand, we find

that there are plasma instabilities (e.g., the Weibel instability) that can potentially

play an important role in the assembly of galactic halos; however, a detailed analysis

of these effects is beyond the scope of this work.

The idea of an unbroken U(1) coupled to dark matter is not new.1 De Rujula et

al. [102] explored the possibility that dark matter was charged under conventional

electromagnetism (see also [105, 103, 104, 106]). Gubser and Peebles [107] considered

structure formation in the presence of both scalar and gauge long-range forces,

but concentrated on a region of parameter space in which the gauge fields were

subdominant. Refs. [108, 109] considered several models for a hidden dark sector,
1Broken U(1) forces have, of course, also been considered, see e.g. Ref. [101]
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including one manifestation in which the dark matter consists of heavy hidden-sector

staus interacting via a copy of electromagnetism. The effect of dimension-6 operators

containing a new U(1) gauge boson and SM fields was considered in Ref. [110], for

models where the only fields in a hidden sector are charged under the new force.

Additional models which contain unbroken abelian gauge groups may be found, for

example in Refs. [111, 112]. In this paper, we construct minimal models of dark

matter coupled to a new unbroken U(1)D, leaving the dark fine-structure constant

and dark-matter mass as free parameters, and explore what regions of parameter

space are consistent with astrophysical observations and what new phenomena might

arise via the long-range gauge interaction.

In Section 4.2, we introduce our notation for a minimal dark-matter sector in-

cluding a new abelian symmetry U(1)D. We then consider the bounds on the new

dark parameters from successful thermal production of sufficient quantities of dark

matter as well as requiring that BBN and cosmic microwave background (CMB) pre-

dictions remain unchanged. The restrictions of parameter space are closely related

to those resulting from standard short-range WIMP dark matter. In Section 4.3, we

consider the effect of long range interactions on DM particle interactions in the halos

of galaxies. By requiring that our model not deviate too greatly from the predictions

of collisionless DM, we find that the allowed regions of α̂/mχ parameter space from

Section 4.2 are essentially excluded. In order to evade these constraints, Section 4.4

describes an extended model, where the dark-matter candidate is charged under

both SU(2)L and the new U(1)D. Additional effects of dark radiation are presented

in Section 4.5, and we conclude in Section 4.6.

We note that our model does not address the hierarchy problem, nor provide a
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high-energy completion to the SM. However, new gauge groups and hidden sectors

may be generic results of many such high-energy theories (e.g., string and grand

unified theories), and a WIMP coupled to an unbroken U(1) is certainly a plausible

low-energy manifestation of such theories. The most important lesson of our model

is that interesting physics might be lurking in the dark sector, and it is worthwhile to

consider a variety of possible models and explore their consequences for astrophysics

and particle physics.

4.2 Dark Radiation and the Early Universe

We postulate a new “dark” abelian gauge group U(1)D with gauge coupling constant

ĝ and dark fine-structure constant α̂ ≡ ĝ2/4π. In the simplest case, the dark matter

sector consists of a single particle χ with U(1)D charge of +1 and mass mχ along

with its antiparticle χ̄. For definiteness, we take χ to be a fermion, though our results

are applicable to scalars as well. As the limits on new long range forces on SM fields

are very stringent, we assume that all the SM fields are neutral under U(1)D. For

the moment we take the χ field to be a singlet under SU(3)C × SU(2)L × U(1)Y ,

a restriction that will be relaxed in Section 4.4. As a result, this extension of

the SM is anomaly free. In this Section, we will derive constraints on the mass

mχ and coupling α̂ from the evolution of dark matter in the early universe. Two

considerations drive these constraints: the dark matter must provide the right relic

abundance at thermal freeze-out, and the dark radiation from the U(1)D cannot

contribute too greatly to relativistic degrees of freedom at BBN (a similar bound

coming from the CMB also applies but is weaker).

The degrees of freedom in the dark sector are thus the heavy DM fermions χ
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and massless dark photons γ̂. The Lagrangian for the dark sector is

L = χ̄(i /D +mχ)χ− 1
4
F̂µνF̂

µν . (4.1)

Here Dµ = ∂µ− iĝÂµ and F̂µν is the field-strength tensor for the dark photons. We

assume that the mixing term cF̂µνF
µν is set to zero at some high scale (say the GUT

scale). This is a self-consistent choice, since if there is no mixing between the dark

and visible sectors, c = 0 is preserved by the renormalization group evolution. (In

Section 4.4 we argue that mixing is not generated by radiative corrections even when

χ carries SU(2)L quantum numbers.) This choice allows us to bypass constraints

on a new U(1) coming from mixing between the photon and dark photon, that is,

‘paraphotons’ [114, 103]. We have no a priori assumptions on the parameters mχ

and α̂, though as we shall see, it suffices to think of the former as O(100−1000 GeV)

and the latter . O(10−2).

We now follow the thermal history of the dark sector. Our analysis follows

that of Ref. [109]; we rehearse it in a slightly simpler context here to illustrate

how the results depend on our various assumptions. If the visible sector and the

dark sector are decoupled from each other, they may have different temperatures,

T and T̂ , respectively; rapid interactions between them would equilibrate these

two values. After inflation, the two sectors could conceivably reheat to different

temperatures, depending on the coupling of the inflaton to the various fields. Even

if the temperatures are initially equal, once the two sectors decouple as the universe

expands and cools, entropy deposited from frozen-out degrees of freedom in one

sector will generally prevent the dark temperature T̂ from tracking the visible sector
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temperature T . The ratio

ξ = T̂ /T (4.2)

will depend on the spectrum of both sectors, and is itself a function of T .

As the temperature drops below a particle’s mass, the associated degrees of

freedom freeze out and dump entropy into their respective sectors (dark or visible).

This causes the temperature of that sector to decline more slowly than 1/a, where a

is the scale factor of the universe. As the entropy density s of the visible sector and

ŝ of the dark sector are individually conserved after decoupling, we must separately

count the degrees of freedom in these two sectors. There are two definitions of

degrees of freedom of interest to us: g∗ and g∗S. The former is defined as

g∗ =
∑

i=bosons

gi

(
Ti
T

)4

+
7
8

∑
i=fermions

gi

(
Ti
T

)4

, (4.3)

and is used in calculation of the total relativistic energy density, ρR ∝ g∗T
4. Here

gi is the number of degree of freedom for particle species i, Ti is the temperature of

the thermal bath of species i, and T is the temperature of the photon bath. The

sums run over all active degrees of freedom at temperature T . Separating out the

visible fields, g∗ can be written as

g∗ = g∗vis +
∑

i=bosons

giξ(T )4 +
7
8

∑
i=fermions

giξ(T )4, (4.4)

where the sums now run over the dark particles. If we restrict the visible sector to

the SM, then the term g∗vis is 106.75 above the top mass, dropping gradually to

∼ 60 at T = ΛQCD. Between 100 MeV & T & 1 MeV, g∗vis = 10.75, and drops
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again to 3.36 in the present day. (See, e.g., Ref. [113] for more detail.)

Similarly, the total entropy density stot (a conserved quantity) at a photon tem-

perature T is proportional to g∗ST 3, where

g∗S =
∑

i=bosons

gi

(
Ti
T

)3

+
7
8

∑
i=fermions

gi

(
Ti
T

)3

(4.5)

= g∗S,vis +
∑

i=bosons

giξ(T )3 +
7
8

∑
i=fermions

giξ(T )3 . (4.6)

Prior to neutrino decoupling, all the relativistic standard model degrees of freedom

are in thermal equilibrium at a common temperature. Thus, before T ∼ 1 MeV

when neutrinos decouple, we have g∗vis = g∗S,vis. Furthermore, we may split the

dark g∗S into heavy and light degrees of freedom: gheavy and glight, where the heavy

degrees of freedom are non-relativistic at BBN. We are interested in the number of

degrees of freedom at BBN (T ∼ 1 MeV) because formation of the experimentally

observed ratios of nuclei are very sensitive to the expansion of the universe at that

time, which is related to the energy density of radiation through the Friedmann

equation. From this, a bound on the number of relativistic degrees of freedom can

be derived [109].

Using the separate conservation of the visible and dark sector entropy and the

previous definitions, we see that at BBN

glightξ(TBBN)3

(gheavy + glight)ξ(TRH)3
=
g∗vis(TBBN)
g∗vis(TRH)

(4.7)

here we have set g∗S,vis = g∗vis (recall that g∗vis(TBBN) = 10.75). The BBN bound on

relativistic degrees of freedom is usually stated in terms of number of light neutrino



62

species in thermal equilibrium at the time: Nν = 3.24 ± 1.2 [115]. Here the error

bars correspond to 2σ (95% confidence). Therefore, assuming three light neutrino

species in the visible sector, if the dark sector is not to violate this bound, we must

require

glightξ(TBBN)4 =
7
8
× 2× (Nν − 3) ≤ 2.52 (95% confidence). (4.8)

Combining Eqs. (4.7) and (4.8), we find that

glight

[
gheavy + glight

glight

10.75
g∗vis(TRH)

]4/3

ξ(TRH)4 ≤ 2.52 (95% confidence). (4.9)

Since the high energy completion of the visible sector must at minimum include the

SM fields, g∗vis(TRH) ≥ 106.75; a bound on the dark sector glight and gheavy can be

derived for a fixed value of ξ(TRH) (see Fig. 4.1). Increasing the number of visible

sector degrees of freedom at high temperatures (i.e., to that of the MSSM) relaxes

this bound.
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Figure 4.1: The allowed values of dark glight (those degrees of freedom relativistic
at TBBN ) and gheavy (the remaining dark degrees of freedom) arising from BBN
constraints Eqs. (4.8) and (4.9). The allowed regions correspond to 95% confidence
levels for ξ(TRH) = 1 and a visible sector g∗vis = 106.75 (red), ξ(TRH) = 1 and
g∗vis = 228.75 (corresponding to MSSM particle content, in blue), and ξ(TRH) =
1.4(1.7) and g∗vis = 106.75(228.75) (in yellow). The minimal dark sector model of
this paper is noted by a black star at glight = 2 and gheavy = 3.5.
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Figure 4.2: Pair annihilation/creation of dark matter χ into dark photons γ̂ via t
and u-channel exchange diagrams. These processes keep the dark sector in thermal
equilibrium until the χ particles become non-relativistic.

In the case of ξ(TRH) = 1, we see that the minimal model of the dark sector (only

heavy χ/χ̄ and light γ̂) is safely included. Due to the fourth power of ξ entering into

Eq. (4.9), if the minimal dark sector is not to be ruled out, we find ξ(TRH) ≤ 1.4(1.7)

for the SM(MSSM) particle content. A similar bound on relativistic degrees of

freedom can be derived from the CMB, but provides a weaker 2σ exclusion limit

[116, 109].

We now turn to bounds on the coupling α̂ and dark matter mass mχ coming from

the dark matter abundance. At temperatures T̂ much above mχ, the χ particles are

kept in thermal equilibrium with the dark photons γ̂ (and possibly other particles

in the dark sector) via pair annihilation/creation as in the Feynman diagrams of

Fig. 4.2. Since the annihilation can proceed via s-wave processes, the thermally

averaged cross-section 〈σv〉 is, to leading order, independent of v:2

〈σv〉 ≈ σ0 =
πα̂2

2m2
χ

+O(v2). (4.10)

Using this, the relic density of the χ particles may be easily calculated (see, for

example Ref. [113]).
2Strictly speaking, there will be a Sommerfeld enhancement in this cross-section in the limit

v → 0 [117]. This will slightly change the relic abundance [118], but we leave the detailed analysis
for future work.
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As a rule of thumb, the dark matter drops out of thermal equilibrium when

the rate Γ of annihilation χχ̄ → γ̂γ̂ (and the reverse process) is outpaced by the

expansion of the universe H. Using the Boltzmann equation, the contribution of χ

to the energy density of the universe can be more precisely calculated as

ΩDMh
2 = 1.07× 109

(n+ 1)xn+1
f GeV−1

(g∗S/
√
g∗)mPlσ0

. (4.11)

Here xf is the ratio mχ/T̂f where T̂f is the dark temperature at time of freeze-out

and n = 0 for s-wave processes. The quantity xf is given by

xf = ln
[
0.038(n+ 1)

(
g
√
g∗

)
mPlmχσ0

]
−
(
n+

1
2

)
ln ln

[
0.038(n+ 1)

(
g
√
g∗

)
mPlmχσ0

]
,

(4.12)

where g is the number of degrees of freedom in the χ system (namely 4).

As g∗ enters into the formula for xf only logarithmically, we may make the

approximation that g∗S ≈ 100 if χ freezes out while T is above ΛQCD. We make the

additional assumptions that the only degrees of freedom in addition to the SM are

the γ̂ and χ in the dark sector and that ξ(TRH) = 1. We shall consider how these

assumptions may be relaxed later.

Under these assumptions, the contribution of the dark sector to g∗ and g∗S is

2 + (7/8) × 4 = 11/2. As no dark degrees of freedom have frozen out yet, ξ(Tf ) =(
g∗vis(Tf )
g∗vis(TRH)

)1/3
ξ(TRH) ≈ 1. With the measured value ΩDMh

2 = 0.106 ± 0.08 [4],

we may solve for the allowed values of α̂ as a function of mχ in Eq. (4.11). The

resulting band is shown in Fig. 4.3.

In this discussion we have assumed that the process which sets the relic abun-
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Figure 4.3: The allowed regions of α̂ vs. mχ parameter space. The relic abundance
allowed region applies to models in which U(1)D is the only force coupled to the
dark matter; in models where the DM is also weakly interacting, this provides
only an upper limit on α̂. The thin yellow line is the allowed region from correct
relic abundance assuming ΩDMh

2 = 0.106 ± 0.08, ξ(TRH) = 1, g∗vis ≈ 100, and
gheavy+glight = 5.5 while the surrounding blue region is g∗vis = 228.75(60), ξ(TRH) =
1(0.1), and gheavy + glight = 100(5.5) at the lower(upper) edge. The diagonal green
line is the upper limit on α̂ from effects of hard scattering on galactic dynamics;
in the red region, even soft scatterings do not appreciably affect the DM dynamics.
We consider this to be the allowed region of parameter space.
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dance of χ is annihilation into γ̂s, as shown in Figure 4.2. As we will argue in the

next section (and as is already shown in Figure 4.3), the values we obtain for α̂

from this calculation are incompatible with bounds from galactic dynamics unless

mχ > 105 GeV (at which point α̂ is non-perturbative). However, we can get the

correct relic abundance even with much lower values of α̂ by adding other annihi-

lation channels, such as the weak interactions, as explored in Section 4.4. In that

case, the “relic abundance allowed region” discussed here really becomes an upper

limit; if the dark fine-structure constant is larger than that value, annihilations are

too efficient, and the correct abundance cannot be obtained.

We now consider how changing our assumptions on g∗ and ξ can change our

conclusions on the allowed parameter space. The parameter ξ(Tf ) does not enter

explicitly into the calculation for ΩDMh
2, however it does affect the number of active

degrees of freedom at freeze-out directly, through Eqs. (4.4) and (4.6), and indirectly

by allowing the temperature T to differ from T̂ . If ξ < 1, T̂ < T and there could be

many more heavy visible degrees of freedom still active when χ freezes out. ξ > 1

would reduce the visible degrees of freedom. However, as we have seen in Eq. (4.9),

it is difficult to construct a scenario with large ξ, short of a massive increase in g∗vis

and small values of g∗heavy + g∗light. We include in Fig. 4.3 the bounds from both

a large and small value of g∗. The large limit is g∗vis(Tf ) = 228.75, (i.e. equivalent

to the MSSM degrees of freedom), ξ(TRH) = 1, and gheavy + glight = 100, while the

small value is given by g∗vis(Tf ) = 60, (i.e. equivalent to the SM degrees of freedom

at ΛQCD), ξ(TRH) = 0.1, and gheavy + glight = 5.5.
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4.3 Galactic Dynamics

Although freezeout in our scenario is similar to that in the standard WIMP scenario,

the long-range DM-DM interactions implied by the unbroken U(1)D may lead to

considerably different DM phenomenology in the current Universe, and in particular

in galactic halos. In this scenario, dark-matter halos are composed of an equal

mixture of χ and χ̄. The overall halo will be U(1)D neutral, eliminating long-range

forces that are incompatible with experiment.

However, nearest-neighbor interactions between χ particles remain, and these

interactions can be constrained by observations that suggest that dark matter is

effectively collisionless. Constraints to dark-matter self-interactions arise from ev-

idence for nonspherical cores for some dark-matter halos (collisions tend to make

the cores of halos round) [119] and from evidence for dark-matter halos with large

phase-space densities (collisions would reduce phase-space densities) [99, 120, 121].

Roughly speaking, a bound to DM-DM interactions can be derived by demanding

that scattering induces no more than a small fractional change in the energy of a

typical DM particle in a galactic halo during the history of the Universe [14]. This

translates to an upper bound of ∼ 0.1 cm2/g on the more familiar quantity σ/mχ.3

A separate bound of σ/mχ < 1.25 can be derived from the Bullet Cluster [122, 123],

but as this is less restrictive we ignore it here.

To illustrate, we first consider hard scattering of a χ off another χ or χ̄, where

energy on the order of mχv
2/2 is exchanged. The mean free time τ for a χ to

3This can be seen from Eq. (4.13), using the age of the universe for τ , and Galactic parameters
ρ = nmχ = 0.3 GeV/cm3, v/c = 10−3.
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undergo a hard scattering with another χ(χ̄) is given by

τ =
1

〈nσv〉
, (4.13)

where n is the number density of dark matter, σ is the hard-scattering cross-section,

and v is the velocity of the dark-matter particles. The number N of dark-matter

particles in the Galaxy is

N =
MGal

mχ
≈ 1064

( mχ

TeV

)−1
, (4.14)

and n ≈ 3N/4πR3, where R is the radius of the Galaxy. The velocity v is

v '
√
GMGal

R
'
√
GNmχ

R
. (4.15)

The dynamical time τdyn in the Galaxy is

τdyn = 2πR/v. (4.16)

Taking τdyn ≈ 2× 108 years for the Milky Way, the average time for a hard scatter

for a dark-matter particle is greater than the age of the universe if

τ

τdyn
=

2R2

3Nσ
& 50. (4.17)

A hard scatter occurs when two particles pass close enough so that their kinetic

energy is comparable to their potential energy. The impact parameter that defines
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a hard scatter is thus

bhard =
2α̂
v2mχ

. (4.18)

Taking the cross-section for hard scatters to be σhard ≈ b2hard, and using Eq. (4.15)

for v, we find

τhard

τdyn
=
G2m4

χN

6α̂2
& 50. (4.19)

Using G = m−2
Pl ≈ 10−32 TeV−2 we find the hard scattering limit on the U(1)D

coupling constant to be

α̂ .

√
1

300

( mχ

TeV

)3/2
= 0.06

( mχ

TeV

)3/2
. (4.20)

The allowed region arising from this bound is shown in Fig. 4.3.

We now turn to the effect of soft-scattering on the allowed values of α̂ and

mχ. Here we consider the approach of one χ particle towards another χ(χ̄) at

impact parameter b. By definition, for soft-scattering b > bhard. The velocity change

induced by the encounter is

δv = ± 2α̂
mχbv

. (4.21)

As one dark-matter particle orbits the Galaxy, it sees a surface density N/πR2 of

dark matter. The number of interactions that occur between an impact parameter

b and db is δn = (N/πR2)2πbdb. While the change in δv over these interactions

should average to zero, this is not true for δv2:

δv2 = (δv)2δn =
8α̂2N

m2
χv

2R2
b−1db. (4.22)
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Integrating δv2 from bhard to the maximum possible impact parameter in the Galaxy,

R, gives the total change in v2 as the particle orbits once through the halo:

∆v2 =
8α̂2N

m2
χv

2R2
ln(R/bhard) =

8α̂2N

m2
χv

2R2
ln

(
GNm2

χ

2α̂

)
. (4.23)

The number τ/τdyn of orbits it will take for the dark-matter particle to have ∆v2/v2 ∼

O(1) is

τsoft

τdyn
=
G2m4

χN

8α̂2
ln−1

(
GNm2

χ

2α̂

)
& 50. (4.24)

The logarithmic suppression in Eq. (4.24) relative to Eq. (4.19) is due to the long-

range Coulomb force generated by the U(1)D. As can be seen in Fig. 4.3, the allowed

region from these considerations of Galactic dynamics completely exclude the α̂/mχ

band that gives the correct relic abundance up to mχ ∼ 30 TeV. For mχ ∼ 1 TeV

a dark matter candidate which freezes out due to U(1)D interactions is ruled out

from such considerations. In particular, models such as that in Ref. [109] with

mχ ∼ mW and a hidden copy of electromagnetism (i.e. α̂ = 1/137) are ruled out,

even though the freeze-out proceeds through hidden-sector weak interactions rather

than a U(1)D. Interestingly, α̂ = α is allowed for mχ & 2 TeV.

Before considering whether such a model may be valid if our assumptions are

loosened, we should ask why Galactic dynamics do not similarly exclude WIMP

dark matter. After all, both models have similar cross sections for annihilations in

the early universe (Eq. (4.10)) as is required for the correct relic density. Though

the soft-scattering limit clearly will not apply due to the short range nature of the

broken SU(2)L, naively it would seem that the hard scattering limit Eq. (4.19)

should apply to WIMPs equally well. However, notice that the threshold for hard
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scattering with a U(1)D is dependent on energy. As the temperature drops, the

cross-section rises, as the χ particles no longer have to approach as close in order

for to potential energy V (r) to be of the order of the kinetic energy. Contrast

this to hard scattering from WIMPs, where the cross-section is always proportional

to α2/m2
DM, regardless of the velocity. Entering this cross-section into Eq. (4.17),

results in the uninteresting bound that mDM . 1013 TeV for WIMP dark matter

from Galactic dynamics constraints.

It is difficult to see any way of avoiding the bounds from Galactic dynamics,

so we look to loosen the limits derived in Section 4.2. Clearly if the interaction

responsible for freezing out the relic density is not the U(1)D constrained by soft-

scattering, then α̂ . 10−3 is not ruled out. We consider such examples in the next

Section. However, we first consider the possibility that our assumptions in deriving

the relic density are too conservative.

From Eq. (4.11), if we reduce α̂ (and therefore σ0) in order to satisfy the scat-

tering bounds, we must either decrease xf or increase g∗S/
√
g∗. In lowering α̂ by

a minimum of two orders of magnitude, xf/(g∗S/
√
g∗) must likewise increase. As

xf depends only logarithmically on α̂ and the number of degrees of freedom, so it

is hard to see how it it could be increased sufficiently to counterbalance α̂ of order

10−3 (rather than α̂ ∼ 10−2). We conclude that the number of effective degrees of

freedom must be increased. From Eqs. (4.4) and (4.6), we see that if ξ = 1, then at

freeze-out we must have

g∗S√
g∗

=

√ ∑
i=bosons

gi +
7
8

∑
i=fermions

gi ∼ 102. (4.25)
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From Eq. (4.9), these ∼ 104 degrees of freedom must exist in the visible sector at

Tf , rather than the dark sector.

Alternatively, we could imagine that there are no (or few) new particles beyond

the minimum χ and γ̂ at freeze-out, but instead ξ � 1. In this limit

g∗S√
g∗
≈ ξ ∼ 102. (4.26)

This limit is more troublesome; from Eq. (4.9) we saw that large values of ξ at the

reheating scale (and subsequently Tf ) very quickly violate the bounds on relativistic

degrees of freedom at BBN. Clearly, by increasing the number of degrees of freedom

in the visible sector, this bound could be avoided as well. However, we are left with

the conclusion that either ξ(Tf ) ∼ 102 or there exist ∼ 104 new particles at a few

hundred GeV to a TeV. We leave it to the reader to decide how palatable these

alternatives are.

A separate, but conceptually similar, bound on scattering can be placed by con-

sidering the interaction of galactic dark matter with the hotter DM of the surround-

ing cluster. Scattering will cause heating in galactic DM, and eventually evaporate

the halo. From Ref. [124] the characteristic time for this evaporation is given by

tevap. = 3.5× 109 years
(
σ/mχ

cm2/g

)−1( vcluster

103km/s

)−1( ρcluster

1.3× 10−3M�pc−3

)−1

.

(4.27)

We may estimate the cross-section for soft-scattering by calling the path length λ

over which a single particle looses of order its initial kinetic energy (∆v2/v2)−1R,

where R is the radius of the galaxy, and ∆v2/v2 from Eq. (4.23) is the fractional
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energy loss as the particle travels once through the halo. This can be expressed as

an effective scattering cross-section by setting λ = (nσ)−1, where n = N/R3 is the

number density of DM in the halo, we find

σ

mχ
≈ 8α̂2

m3
χv

4
ln

(
GNm2

χ

2α̂

)
. (4.28)

Letting the cluster velocity and density take on the canonical values (vcluster =

103km/s and ρcluster = 1.3×10−3M�pc−3, where M� is the solar mass), we can place

limits on α̂ and mχ by requiring that tevap. is longer than the age of the universe.

Numerically, we find this bound less stringent than that from soft-scattering of

particles within the Galactic halo, Eq. 4.24.

It is interesting to note that, aside from logarithmic enhancements, the bound

placed on α̂ vs. mχ parameter space from soft-scattering is essentially a line of

constant σ/mχ (that is, they are, up to log corrections, lines of slope 2/3 on the

log-log plot). As mentioned, limiting DM to one hard scattering in the lifetime

of the universe is equivalent to bounding σ/mχ in the Galaxy to be . 0.1 cm2/g.

It has been suggested in the literature that values of σ/mχ in the range 0.01 −

5 cm2/g [119, 99, 120, 121] may provide better agreement between simulation and

observation. Therefore, our limit from soft-scattering should be considered as the

general region at which interaction effects may become relevant. Additionally, from

Eq. (4.28) as σ/mχ ∝ v−4, it should be expected that the soft-scattering bound

will vary greatly in DM systems with a range of virial velocities v. In particular,

we surmise that a bound even stronger than that estimated here can be obtained

from the dwarf galaxies that exhibit the highest observed dark-matter phase-space
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densities [125].

4.4 Weakly Coupled Models

In this Section, we examine an expanded version of our minimal model: one in

which the χ dark matter particles possess SU(2)L quantum numbers in addition to

a U(1)D charge. For such SU(2)L×U(1)D particles, the cross-section for freeze-out

in the early universe is dominated by the weak interaction σ ∼ α2/m2
χ, and the

U(1)D contribution is negligible for the small values of α̂ under consideration. At

late times the situation is reversed. The weak cross-section remains small, as it

is the result of a short-range force. However the long range cross-section for soft-

scattering increases as the dark matter cools and slows, as exemplified in Eq. (4.23).

This allows the strength of α̂ to be ∼ 10−3 as required by Galactic dynamics without

running afoul of the relic density conditions, which would require α̂ ∼ 10−2 (when

mχ ∼ 1 TeV).

We therefore take our Dirac fermion χ to be a (1,n)Y,D multiplet of SU(3)C ×

SU(2)L×U(1)Y ×U(1)D, where we shall take the U(1)D coupling to be in the region

of Fig. 4.3 allowed by soft-scattering. Thus α̂ . 10−3. The behavior of this model

in the early universe is very similar to the ‘minimal dark model’ of Ref. [126], from

which we take many of our constraints.

In outlining our original model in section 4.2, we set the coefficient of the mixing

term FµνF̂
µν to zero at the high scale. Clearly loops involving χ would generate a

non-zero mixing if the χ field possesses non-zero hypercharge Y . In order to avoid

this complication, we set Y = 0.

Our χ particle must be neutral under U(1)EM . With the assumption of Y = 0,
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this requires χ to sit in an n-plet of SU(2)L where n is odd (i.e. n = 3, 5, . . .). In

the spirit of simplicity we take n = 3, so the χ triplet contains the neutral χ0 and

(electromagnetically) charged χ±, all with U(1)D charges of +1. Due to SU(2)L

loops, the χ± are 166 MeV heavier than the χ0, and decay before BBN. If the

dark matter mass is mχ = 2.4 TeV, the correct dark matter abundance (including

production and then decay of χ±) results from thermal freeze out (see Ref. [126]).

We note that our model does have the nice feature of automatically suppressing

unwanted decays of χ into SM particles, as by assumption χ is the lightest particle

charged under U(1)D.

This minimal model is anomaly free. Triangle diagrams with one or three SU(2)L

vertexes vanish by the tracelessness of the SU(2)L generators. The diagrams con-

sisting of an odd number of U(1)D vertexes also vanish as the dark sector contains

only two Weyl fermions, one with +1 under U(1)D, and the other with −1.

This model does not run afoul of BBN (or CMB) bounds. As in the pure U(1)D

theory, the only new relativistic degrees of freedom at BBN are the two from the γ̂.

Due to the interactions between χ and the weakly charged SM fields, we expect the

temperatures T and T̂ to track, so ξ = 1 until the χ freeze-out. With small values

of α̂, the dark photons may freeze-out earlier, and would thus be colder. However,

if we take the worse-case scenario that the dark photons do not decouple until after

the χ undergo freeze-out we find (from Eq. (4.9)) that BBN bounds are satisfied as

long as freeze-out occurs when

g∗vis ≥ 18.8. (4.29)

This is easily satisfied for any model that freezes out before the QCD phase transi-
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tion.

Next we must check that our χ does not have too large of a coupling to SM

particles. We first demonstrate that no mixing occurs between the photon and the

dark photon γ̂. As indicated previously, we assume that there is no FµνF̂
µν term

at high energies. With purely SU(2)L × U(1)D coupling, we find that the diagram

Fig. 4.4a vanishes. This is because any such vertex can be rewritten as the γ̂ coupling

to a χ or χ̄ which then couples to the γ through some vertex involving SM fermions

and SU(2)L couplings (Fig. 4.4b). However, since the mass and SU(2)L couplings

of χ are the same as those of χ̄ yet the U(1)D charge is opposite, the sum of the two

diagrams is zero.

a) b)

Figure 4.4: Feynman diagrams leading to γ/γ̂ mixing. The vertex in a) can be
expanded into that shown in b), as the only particle to which the γ̂ couples is χ/χ̄.
Since the mass and SU(2)L charge of these two particles are the same, yet they
possess opposite U(1)D charge, the sum of the χ and χ̄ diagrams in b) is zero, and
the overall mixing vanishes.

Similarly, the coupling between γ̂ and a standard model fermion f is also zero.

The relevant diagrams are shown in Fig. 4.5. Again, the vertex between f and

γ̂ (Fig. 4.5a) can be divided into the χ/χ̄ vertex connecting with γ̂ and a vertex

between χ/χ̄ vertex connecting with f (Fig. 4.5b). As the latter vertex is identical

for χ and χ̄ but the former has opposite signs, the overall diagram vanishes.

The lowest order coupling of SM fermions to γ̂ occurs at α2α̂. This is due to a

two loop effect, as shown in Fig. 4.6, and unlikely to be accessible in direct detection.

We can represent this interaction by an effective Lagrangian whose lowest order term
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a) b)

Figure 4.5: Feynman diagram leading to γ̂ interactions with SM fermions f . The
vertex in a) can be expanded into that shown in b), as the only particle with an
interaction with γ̂ is the χ/χ̄. Since the mass and SU(2)L charge of these two
particles are the same, yet the U(1)D charges are opposite, the sum of the χ and χ̄
diagrams in b) is zero, and the overall coupling of f to γ̂ is therefore zero as well.

is given by β
m3
χ
F̂µνF̂

µν f̄f where β = λf
α2α̂
4π and λf is the Yukawa coupling of the

fermion that is involved. Let us estimate the order of magnitude of this interaction.

To be conservative we use the Yukawa coupling of a u quark and take α̂ = 10−2;

which by galactic dynamics is the maximum allowed value for mχ ∼ 2 TeV. With

these values we find β ∼ 10−10 and β
m3
χ
∼ 10−20 GeV−3. We estimate that the

interaction length for dark photons inside the cores of stars would be on the order

of 1018 km, and thus this interaction would not introduce a potentially dangerous

new source of stellar cooling.

Figure 4.6: The leading order interaction of the dark sector with SM fermions. The
dark photons γ̂ couple to a loop of χ particles, which couple through two SU(2)L
gauge bosons to SM fermions. Coupling through a single SU(2)L boson is zero due
to the tracelessness of τa.

Due to the high-order interaction between γ̂ and SM particles, we cannot expect
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to directly observe the dark radiation. In addition, while the χ fields would have

a direct detection cross-section of 10−44 − 10−45 cm2 [126] and so could be seen in

SuperCDMS, any such detection would be indistinguishable from a scenario without

the dark photons. Therefore, the presence of a new unbroken U(1)D in the dark

sector could only be probed via its effect on galactic dynamics. Clearly in the limit

that α̂ → 0, the Galactic structure would remain unchanged. Values of α̂ near

the maximum allowed from soft-scattering (i.e. α̂ ∼ 10−2 for the SU(2)L triplet

candidate with mχ ∼ 2 TeV) should have a measurable effect on the halo structure,

as in this regime the dark matter is no longer completely collisionless. A full study

of this effect requires simulations beyond the scope of this paper, though some

additional considerations are discussed in the following section.

4.5 Other Effects of Dark Photons

The existence of a dark matter ‘plasma’ may have additional effects that could signif-

icantly affect structure formation. We mention three possibilities here: bremsstrahlung,

early universe structure formation, and the Weibel instability in galactic halos. The

first two result in much weaker bounds than those already derived, and are men-

tioned here only for completeness. The Weibel instability may have significant and

visible effects in the halo, but requires simulation beyond the scope of this paper.

4.5.1 Bremsstrahlung

Emission of a soft γ̂ during a χ/χ̄ collision could conceivably serve as another energy

loss mechanism in the halo on par with soft and hard scattering as outlined in

section 4.3. To derive a bound on α̂ as related to mχ, we make the same assumption
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as in the case of soft scatter: over the lifetime of the universe, a dark-matter particle

cannot lose on order of its initial kinetic energy through bremsstrahlung of dark

radiation. By assuming dipole radiation during a soft collision, we find that

3
64
Gm3

χR

α̂3
ln−1

(
GNm2

χ

2α̂

)
≥ 50. (4.30)

However this bound is weaker than that from both hard and soft-scattering over the

parameter space of interest.

4.5.2 Structure Formation

In the early universe, structure cannot grow until after matter/radiation equality.

Until the matter (which can clump) decouples from the dark radiation (which can-

not), density perturbations remain fixed. We can estimate the scale factor at which

this occurs by finding the redshift z∗ at which the dissipation time (the time over

which the velocity of a dark matter particle is significantly perturbed by the radi-

ation) becomes longer than the Hubble time H−1. The argument follows that in

Ref. [127] for the decoupling of baryons from the photon bath.

The dissipation time is the logarithmic derivative of the velocity:

t−1
diss ≡ v

−1dv

dt
= v−1 F

mχ
. (4.31)

Here F is the force due to radiation pressure,

F =
4
3
σ̂TaT̂

4v , (4.32)
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where

σ̂T =
8π
3
α̂2

m2
χ

(4.33)

is the Thomson cross-section for dark matter interacting with dark photons and (as

before) T̂ is the temperature of the dark photons. As we shall see, the decoupling

occurs when the universe is radiation dominated, so the Hubble time is given by

H2 =
4π3

45
g∗
T 4

m2
Pl

. (4.34)

Here T is the photon temperature.

The conservation of entropy relates the photon temperature T at redshift z∗ with

the photon temperature today, T0,

T =
(
g∗S(T0)
g∗S(T )

)1/3 T0

a
. (4.35)

Combining Eqs. (4.31) and (4.34), we find the decoupling redshift z∗ to be

1 + z∗ =
3
16

√
π

5
ξ−4

m3
χ

α̂2T 2
0mPl

g∗(T )1/2

(
g∗S(T )
g∗S(T0)

)2/3

= 2.3× 1018ξ−4

(
10−2

α̂

)2 ( mχ

TeV

)3
g∗(T )1/2

(
g∗S(T )
g∗S(T0)

)2/3

. (4.36)

As before ξ is the ratio of dark photon temperature to photon temperature at

redshift z∗ (recall that it is difficult to construct models where ξ is much larger than

unity). The number of degrees of freedom that contribute to the entropy density

today, g∗S(T0), is of order unity. The decoupling occurs extremely early, before even

dark matter freeze-out.4 As a result, it seems that this effect will be cosmologically
4This is not a contradiction: freeze-out is the time when the dark particles and antiparticles stop
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irrelevant.

4.5.3 Plasma Instabilities

In Section 4.3, we constrained α̂ by demanding that dark matter be effectively

collisionless in galactic halos, under two-body interactions. However, there may

be collective plasma effects that affect DM dynamics on timescales much shorter

than those due to two-body interactions. Unfortunately, it is difficult to state with

confidence what the observational consequences of those effects will actually be, even

if they are relevant. Given theoretical uncertainties about the nonlinear evolution

of such instabilities, we leave the detailed implications to future work.

As a simple example we consider the Weibel instability [128], an exponential

magnetic-field amplification that arises if the plasma particles have an anisotropic

velocity distribution. Such anisotropies could arise, for example, during hierarchical

structure formation as subhalos merge to form more massive halos. Similar insta-

bilities in the baryonic gas have been postulated to account for the magnetic fields

in galaxy clusters [129]. The growth rate Γ of the magnetic field is

Γ = ωp
v

c
=

√
(4π)2α̂ρ

m2
χ

v

c
, (4.37)

where ωp is the plasma frequency, ρ ≈ 0.4 GeV/cm3 is the dark-matter density, and

v is the velocity of the dark matter within the colliding halos. Assuming v/c ∼ 10−3,

we find

Γ ∼ 10−2s−1 × α̂1/2

(mχ/TeV)
. (4.38)

annihilating, while decoupling occurs when the dark photons stop imparting significant velocity to
the dark matter.
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To be relevant for galactic-halo formation, the timescale Γ−1 for magnetic-field

amplification should be shorter than the dynamical timescale τ of the merging sub-

halos. The instability will be therefore of interest when

( mχ

TeV

)
. 1011α̂1/2

(
τ

106 yrs

)
. (4.39)

This range of α̂ and mχ encompasses the entire parameter space of interest for

any reasonable value of τ . Therefore, we suspect that galactic structure will be

affected by plasma effects in the dark matter due to the U(1)D even when α̂ is

not near the boundary of allowed values from soft-scattering. One possibility is

that nonlinear evolution would result in a strongly magnetized plasma, and if so,

dark matter would be effectively collisional and thus probably inconsistent with

data. However, theory and simulations that study the nonlinear evolution of the

Weibel instability for relativistic pair plasmas and nonrelativistic electron-proton

plasmas do not yet agree whether the magnetic fields survive, and simulations for

the equal-mass nonrelativistic plasma we are considering have not been performed.

It is therefore premature to conclude that these instabilities will result in effectively

collisional dark matter; a more detailed study will be required to assess these effects.

4.6 Conclusions

Given how little direct information we have about the nature of dark matter, it is of

crucial importance to explore models in which the DM sector has an interesting phe-

nomenology of its own. In many ways, an unbroken U(1) gauge field coupled to dark

matter is a natural way to obtain a long-range interaction between DM particles.
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In contrast to the case of hypothetical long-range scalar fields, the masslessness of

the gauge field is protected by a symmetry, and the absence of long-range violations

of the equivalence principle is naturally explained by the overall charge neutrality

of the dark plasma. New unbroken U(1)’s can appear naturally in unified models.

While a dark U(1) may be realized as a broken symmetry with massive vector

bosons, it has been pointed out that there are few constraints on the massless,

unbroken case from the early universe. We have verified that the minimal model,

with just a single massive Dirac fermion for the dark matter and a massless dark

photon, is consistent with limits obtained from the number of relativistic degrees

of freedom at BBN, with relatively mild assumptions on the reheating temperature

of the dark sector. More complicated models are also allowed, depending on the

details of spectrum and reheating.

We found that one cannot build a dark matter model charged under a hidden

unbroken U(1)D in which this new gauge group is responsible for thermal freeze

out. As can be seen in Fig. 4.3, the required values of α̂ and mχ required for

the χ particles to form a thermal relic would violate bounds coming from limits

on hard and soft-scattering of dark matter in the Galactic halo. As an important

consequence of this argument, models in which dark matter couples to an exact

copy of ordinary electromagnetism (in particular, with α̂ = α) are ruled out unless

mχ > a few TeV. This constrains the parameter space of models with hidden copies

of the SM or the MSSM in which the dark matter is electrically charged, such as

the model in Ref. [109] where the stau was suggested as a dark matter candidate.

By adding additional interactions to increase the annihilation cross-section, it is

possible to build a scenario with an unbroken dark U(1) and the correct relic abun-
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dance. Introducing another short-range force coupling to the χ, for example the

familiar SU(2)L, can provide an appropriately large cross-section for χ/χ̄ annihila-

tion. The new coupling α̂ must then be relatively small (compared to the SU(2)L

α) in order to evade Galactic dynamics bounds.

The simplest model which realizes this situation is a Dirac fermion in a triplet of

SU(2)L (in order to avoid U(1)Y /U(1)D mixing). Bounds from the early universe

then force mχ to be on the order of a few TeV, which implies α̂ . 10−2. Since all

couplings between the dark radiation and the SM enter at two loops (and require

two dark photons in the process), it would be very difficult to observe the presence

of the new gauge group through direct detection. Instead, the best search strat-

egy would be an indirect one: looking for the effects on galactic dynamics arising

from a soft-scattering mediated by a long-range force. Clearly, as α̂ goes to zero,

the model becomes indistinguishable from minimal weakly coupled dark matter.

However, if the coupling is near the limit from soft-scattering, one would expect

detectable deviations from the assumptions of collisionless dark matter currently

used in simulations.

Additionally, since the U(1)D effectively makes the dark halo a plasma (albeit

a very cold, tenuous one), there may be other effects on structure formation that

constrain this model [130]. We have estimated that the timescale for the Weibel

instability in our model is short compared to relevant timescales for galactic dy-

namics. If this instability has a dramatic effect when subhalos collide during the

assembly of a galactic halo, our U(1)D could be excluded for the entire range of in-

teresting parameters. Further work is required to before we can reliably understand

the quantitative effects of such instabilities on galactic dynamics.
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This work opens a window to new phenomenological possibilities within the dark

sector. One avenue for further investigation would be the possibility of “dark atoms,”

which would arise if there were two different stable species with dark charge, each

with an asymmetry in the number density of positive and negative charges (with one

balancing the other to maintain overall charge neutrality). From there, one is free to

contemplate dark chemistry and beyond. Dark matter constitutes a large majority

of the matter density of the universe, and there is no reason to assume a priori that

physics there is any less rich and interesting than that of ordinary matter.
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Chapter 5

Light Scalars and the
Generation of Density
Perturbations During
Preheating or Inflaton Decay

Measurements of the cosmic microwave background radiation [132, 133] have clearly

shown the presence of super-horizon primordial density fluctuations at roughly one

part in 105. Inflation provides a natural explanation for such density fluctuations,

since vacuum fluctuations of the inflaton (or any other light scalar field) get pushed

outside of the horizon and enter at a much later time as classical density perturba-

tions [134]. Recently, Dvali, Gruzinov and Zaldarriaga [135, 136] and Kofman [137]

(DGZK) have shown in a number of scenarios how the interactions of such additional

light fields to, e.g. the inflaton, could also generate adiabatic density fluctuations,

independent of those created by the inflaton dynamics. In this scenario the size

of non-Gaussian perturbations can be much larger than what occurs in single-field

inflationary models [136, 138].

This is achieved by coupling a light scalar field to a heavier field that at some time

subsequent to inflation dominates the energy of the Universe, such that the particle

properties of this heavier field are modified by the fluctuations of the light field.
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When the heavier particle decays, spatial fluctuations in either its mass or its decay

width generate energy density perturbations in the radiation. This is because before

reheating the universe is matter dominated, with the oscillating heavier particle

dominating the total energy density, while after the decay the universe is radiation

dominated. As the energy density in matter redshifts slower than energy density in

radiation, regions of the universe where the decay occurs at a later time stay matter

dominated longer and will be denser than regions where decay happens earlier. This

gives density perturbations of order

δρ

ρ
∼ −δΓ

Γ
∼ δτ

τ
, (5.1)

where

τ ≡ tRH − t0 (5.2)

is the time between the end of inflation (t0) and reheating (tRH). The evolution of

density perturbations in this scenario has been studied in detail in [135, 139].

In a similar way, modifications to the particle properties of the particles produced

during reheating can also introduce energy density perturbations. Density pertur-

bations are created if the decay products interact with fields that were light during

inflation.

To see this, we need to discuss how the inflaton reheats. Suppose reheating

occurs through direct (Born) decay of the inflaton. Then a fluctuation in the mass

of the decay product χ modifies the inflaton decay width, because of the dependence

of the available phase space on the masses of the final state particles. These lead
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to calculable density perturbations since the exact dependence of the width on the

mass of the light particles can be computed in any given model [138, 140]. If, for

example, the inflaton decays via Φ→ χχ then the tree-level decay width is modified

from phase space by an amount

δΓ
Γ

= −2
δm2

χ

m2
φ − 4m2

χ

+ 2

(
δm2

χ

m2
φ − 4m2

χ

)2

+ · · · . (5.3)

If Φ decays near threshold, then the resulting density perturbation dependence on

δm2
χ can be large and highly non-linear.

We expect a δm2
χ with a super-horizon spatial variation to be generated if χ

interacts with a field σ that was light during the inflationary era and through to

the era of reheating. Note that even in the absence of direct couplings of the

fields χ and σ, they are expected to interact indirectly through some intermediate

states. Quantum corrections will typically generate a dependence of m2
χ on the

super-horizon fluctuations of σ at some order in perturbation theory, as indicated by

Fig. 5.1. In this paper we focus mainly on the effect that fluctuations in the mass of

the particles produced during reheating or preheating have on density perturbations.

Besides reheating through direct Born decay, the inflaton may instead reheat

the universe through parametric resonance (preheating) [141, 142, 143, 144, 145].

Preheating can be very efficient and be completed very soon after inflation, within

O(10−100) oscillations of the inflaton field about its minimum. Whether this process

of reheating dominates over the Born decay into bosons or fermions depends on the

parameters of the model 1.
1The growth of perturbations during the matter-dominated era of the oscillating inflaton has

been studied in [146] and, if parametric resonance occurs, in [147].
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+ + ...

Figure 5.1: Quantum corrections may generate a dependence of m2
χ on super-horizon

fluctuations in σ.

In the scenario of DGZK, additional density perturbations can be created during

preheating, by modifying the time it takes for parametric resonance to complete

and for the universe to thermalize. The size of this time interval depends on the

parameters of the model, and in particular on the mass of the produced particles,

which we discuss below in a simple model. This is the main subject of this paper.

Depending on how efficient preheating is, the size of the time interval can have a

weak or strong sensitivity to the mass of the decay products.

We use the canonical model of preheating and add a scalar σ which we assume

is light during inflation so that it acquires super-horizon perturbations δσ(x) ∼ Hinf

during that era. For this to occur it is necessary that during inflation its mass

satisfies mσ < Hinf . σ is assumed to interact more strongly with the χ compared to

Φ. The interactions we consider are

− LI =
g2

2
Φ2χ2 + µχ2σ +

λ

2
χ2σ2 +

m2
χ

2
χ2 +

m2
σ

2
σ2. (5.4)

A Z2 symmetry χ → −χ has been imposed for simplicity. Self-interactions σ4 and

χ4 are assumed to be irrelevant during the first stage of preheating defined below.

We assume that at the end of inflation the fields χ and σ are near enough to the

minimum of their potential so that we can neglect the motion of their zero modes.

Inflation ends when t = t0 ' 1/mΦ and is followed by a matter-dominated era
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described by rapid oscillations of the inflaton about the minimum of its potential

which we assume to be

V (Φ) =
1
2
m2

ΦΦ2 . (5.5)

For simplicity we assume that the inflationary potential is also described by this

simple quadratic form, giving rise to chaotic inflation [148]. During inflation, Hinf '

mΦ. At the end of inflation Φ = Φ0 ' mpl/3 and thereafter decays as Φ(t) '

mpl/3mΦt.

For large enough coupling g, these oscillations trigger parametric resonance, and

the energy density in χ increases exponentially [141]. If this process is efficient,

the universe eventually is dominated by the χ particles, which then thermalize the

universe at some later time through its interactions with Standard Model or Grand

Unified Model particles.

The perturbations in the inflaton give rise to adiabatic density perturbations,

whose size depend on the form of the inflaton potential. In this letter we concentrate

on the density perturbations generated from the fluctuations in the σ scalar field.

In de Sitter space [149]

〈σ2(0)〉 =
H2

inf

4π2
N , (5.6)

〈σ(x)σ(y)〉 =
H2

inf

4π2
, (5.7)

where in Eq. (5.6) N is the number of e-foldings during inflation. In Eq. (5.7)

the comoving coordinates x, y are well seperated and we neglect the logarithmic

dependence on |x− y|.

The χ field does not acquire super-horizon perturbations because its effective
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mass

m2
χ,eff = m2

χ + g2 |Φ|2 + λ
H2

inf

4π2
N (5.8)

during inflation is larger than the Hubble parameter for parameter values which

allow for efficient parametric resonance. Henceforth we absorb the λH2
infN/(4π

2)

into m2
χ. Treating σ as an external field, its fluctuations can be absorbed into

fluctuations in the mass of the field χ,

δm2
χ = 2µ δσ + λ δσ2. (5.9)

where we have used

δσ ≡ σ − 〈σ〉 , δσ2 ≡ σ2 − 〈σ2〉 , (5.10)

and we will impose 〈σ〉 = 0. The size of the fluctuations δm2
χ is determined by the

two-point function

〈δm2
χ(x) δm2

χ(y)〉 = 4µ2〈σ(x)σ(y)〉+ 2λ2〈σ(x)σ(y)〉2

Using Eqs. (5.6) and (5.7) we find the fluctuations for widely separated comoving

coordinates x and y to be of order

δm2
χ ∼

√
µ2H2

inf + λ2H4
inf . (5.11)

While the field σ(x) is Gaussian, the fluctuation δm2
χ is only Gaussian for λ = 0.
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For λH2
inf � µHinf , δm2

χ is highly non-Gaussian. For example, consider in this limit

the three-point function for equally separated comoving coordinates. One finds for

the analog of skewness

〈δm2
χ(x)δm2

χ(y)δm2
χ(z)〉

〈δm2
χ(x)δm2

χ(y)〉3/2
(5.12)

=
8〈σ(x)σ(y)〉〈σ(y)σ(z)〉〈σ(z)σ(x)〉

23/2〈σ(x)σ(y)〉3
= 2
√

2 .

For the remainder of this paper we set µ = 0 which corresponds to imposing a σ →

−σ symmetry. We make this decision to simplify the analysis of the backreaction

of χ on σ discussed below. Then

δm2
χ

m2
Φ

∼ λ
H2

inf

m2
Φ

' λ . (5.13)

These fluctuations in δm2
χ are non-Gaussian and always positive.

This situation would be excluded if this were the only source of density perturba-

tions. A more interesting scenario in this situation would be if the dominant source

of perturbations came from the inflaton potential. Then the perturbations gener-

ated during preheating providing a sub-dominant, non-Gaussian contribution. Since

here the source for the non-Gaussian perturbations is not the same as the source

-the inflaton- providing the dominant Gaussian contribution, the current limits on

non-Gaussianity [150] do not apply, since those limits assume that the non-Gaussian

and Gaussian perturbations are generated by the same field.

We define preheating to last until significant particle production of χ occurs and

the energy densities in Φ and χ become equal. The duration of this stage depends
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on mχ and coupling constant g,

τ = τ(g,mχ) . (5.14)

Fluctuations inmχ and the coupling g give rise to density fluctuations from Eq. (5.1).

Fluctuations in g can be generated if it is replaced by an effective coupling

g2
eff = g2

(
1 +

σ2

M2

)
, (5.15)

where M is some mass scale [151]. The σ dependence of geff generates non-Gaussian

perturbations δg ≡ δg2/g2 = H2
inf/M

2. It also modifies the large time-dependent

mass of χ, an effect that is distinct from modifying mχ. Here too we have to worry

about the backreaction of χ on σ.

Next we describe our numerical method for determining the energy density in

χ during preheating. Neglecting the backreaction of χ on the inflaton, which only

becomes significant at the end of the preheating stage when ρχ = ρΦ [143], the

equation of motion for the fields χ ≡ χ̂(a0/a)3/2 (a is the scale factor) and σ are

χ̂′′k + [Ak + 2q cos(2(z − z0))] χ̂k = 0 (5.16)

δσ′′ +
2
z
δσ′ +m2

σ,effδσ = 0 , (5.17)

where derivatives are with respect to z ≡ mΦt and we have chosen z0 ≡ 1. We have
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defined

q =
g2Φ2

0a
3
0

4a3m2
Φ

≡ q0
a3

0

a3
, a0 ≡ a(t0)

Ak =
1
m2

Φ

(
k2a

2
0

a2
+ m̃2

χ

)
+ 2q , (5.18)

and the mass parameters are given by

m̃2
χ = m2

χ + λ δσ2

m2
σ,eff = m2

σ + λχ2 . (5.19)

The equation for χ̂k describes a time-dependent harmonic oscillator with frequency

Ω2
k = m2

Φ [Ak + 2q cos(2(z − z0))]. In the limit of a static universe and constant δσ

this equation reduces to the Mathieu equation.

Efficient parametric resonance requires q0 � 1 and m̃χ . mφ. Note that we

included a term of order λH2
infN into the definition of m2

χ, where N is the number

of e-foldings during inflation. The bound m̃χ . mφ therefore implies N . λ−1. For

the values of λ we consider, this is a very weak bound on the number of e-foldings

during inflation.

For a given value of k the energy density in χ is

ρk(z) = Ωk(z)Nk(z) , (5.20)

where Nk(t) is the number density for a mode with given wave number k. The num-

ber density can be calculated by numerically solving for the Bogolyubov coefficient,
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giving [142]

Nk(t) =
a3

0

2Ωka3(t)
(
Ω2
k(t)|χ̃k|2 +m2

Φ|χ̃′k|2
)
, (5.21)

with initial conditions χ̃k(t0) = 1/
√

2Ωk, mΦχ̃
′
k(t0) = −i

√
Ωk/2. The field χ̃k

satisfies the same equation as χ̂k and is related to it (see Appendix B of [142]). The

energy density is obtained by integrating Eq. (5.20) to obtain

ρχ(z) =
1

2π2

∫ ∞
0
k2dk Ωk(z)Nk(z) . (5.22)

The exponentially large number density of χ particles leads to a large backreac-

tion on σ that must be included to correctly determine the size of the effect we are

describing. The backreaction of χ on σ can have two effects: first, it can lead to pro-

duction of large numbers of σ particles, and second it gives rise to a large effective

mass of the σ field. The first effect was analyzed by Felder and Kofman [152] using a

numerical lattice simulation of preheating and the subsequent thermalization of the

χ with the σ fields. In their Figures 14 and 15 they show the number densities of Φ,

χ and σ. Their numerical results show that during preheating the number density

in σ is much smaller than in either χ or Φ and its effect on the evolution of either

nχ or nΦ is negligible. The second effect is more significant. Once mσ,eff gets larger

than H, the amplitude δσ will decrease rapidly [153]. To simplify the analysis we

will assume that the dependence of mσ,eff on mσ can be neglected. To estimate the

time at which the backreaction becomes important, we compare the effective mass

m2
σ,eff ∼ λ〈χ2〉 to the Hubble parameter. The ratio that determines their relative



96

importance can be expressed as

m2
σ,eff

3H2
=

2λ
3g2

ρχ
ρΦ

m2
Φ

H2
, (5.23)

where we have used mχ,eff ' g|Φ| and ρχ ' g|Φ|nχ ' g2Φ2〈χ2〉 [143]. For λ ∼ 10−5

and H ∼ 2mΦ/300 we find that this backreaction becomes important when ρχ/ρΦ ≈

3 g2. For λ ∼ 10−7 the backreaction becomes important when ρχ/ρΦ ≈ 300 g2. In

this letter we will not solve the full coupled set of differential equations, but rather

deal with this backreaction by turning off δm2
χ at the time zc when m2

σ,eff = 3H2,

i.e. defined implicitly by

ρχ(zc)
ρΦ(zc)

≡ g2

λ

2
3z2
c

. (5.24)

Although for different values of δm2
χ the intercept time zc is different, that difference

is second order in δm2
χ. It is then sufficient to use the zc obtained by setting δm2

χ = 0.

If Eq.(5.24) intercepts R along a plateau corresponding to no particle production,

then we make the conservative choice of cutting off the mass fluctuation at the

location of the first intercept.

In Fig. 5.2 we display a logarithmic plot of the ratio R ≡ ρχ(t)/ρΦ(t) together

with Eq. (5.24) for scenario 1, as defined in Table 5.1. In order to estimate the

sensitivity of zRH = 1 + mΦτ on δm2
χ, we show in Fig. 5.3 a magnification of the

region where R(zRH) = 1. We also show these plots for the three other scenarios

defined in Table 5.1 (keeping mΦ/mpl = 10−6 fixed).

We are interested in the change in τ generated by a fluctuation δm2
χ/m

2
Φ ' λ.
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scenario g λ m2
χ/m

2
Φ zc κm

1 4× 10−4 10−7 0.1 88 0.8
2 6× 10−4 10−7 0.4 82 0.15
3 4× 10−4 10−5 0.1 47 0.14
4 6× 10−4 10−5 0.4 50 0.06

Table 5.1: Definition of the four choices parameter sets. Also shown are the numer-
ical results for zc and κm, as defined in Eqs (5.24) and (5.25).
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Figure 5.2: Logarithmic plot of R = ρχ/ρΦ. The chosen parameters are g = 4×10−4,
mΦ = 10−6mpl, m2

χ/m
2
Φ = 0.1. Also shown is Eq. (5.24) with λ = 10−7.

Since λ is tiny, that change can be expressed as

δτ

τ
= κm

δm2
χ

m2
Φ

. (5.25)

From Table 5.1 we can see that the typical κm is O(0.1− 1).

The reader may wonder why we are using larger values for δm2
χ that are not

consistent with the λ we choose. Since the perturbation δτ is linear in δm2
χ, the

κm obtained this way is unchanged if we were to use smaller values for δm2
χ. The

reason for this choice of δm2
χ is that the plots are easier to read. We also repeat

that zc was determined with the correct λ.

One may also wonder why the presence of a δm2
χ at early times has any effect

at all, especially given that it only persists while R . 10−5 − 10−3. Parametric

resonance is dramatic because of stimulated emission. So even if at earlier times
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Figure 5.3: Logarithmic plot of the effect of the mass fluctuation δm2
χ on zRH. The

chosen parameters are given in each figure. The solid line corresponds to δm2
χ = 0,

while the long and short dashed lines correspond to δm2
χ/m

2
Φ = 10−3 and 2× 10−3,

respectively.

109.9 110 110.1 110.2

1

1.5

109.9 110 110.1 110.2

1

1.5g = 4x10−4

χ φ
2 2m  /m  =0.1

M  /m  =102
φ
2 5

g = 4x10−4

χ φ
2 2m  /m  =0.1

M  /m  =102
φ
2 7R

zRH

R

zRH

Figure 5.4: Logarithmic plot of the effect of the fluctuation in the coupling constant
δg2 on zRH. The chosen parameters are given in each figure. The solid line corre-
sponds to δg2 = 0, while the long and short dashed lines correspond to δg2/g2 = 10−3

and 2× 10−3, respectively.

the production of χ particles is affected due to a non-zero δm2
χ, this will impact the

much greater growth occurring at later times. A more detailed numerical simulation,

including all the effects of backreaction and scattering, such as done in [152] for

preheating without a fluctuating σ field, is needed to explore in detail the sensitivity

of δρ/ρ to super-horizon fluctuations in σ.

Mathematically, the intuition expressed above may be expressed in the following



99

way. The density in χ is approximately given by

ρχ ' Ñ
a3

0

a3
exp

[∫ tRH

t0

dt ν(t)
]

(5.26)

where Ñ is a prefactor that depends on the parameters of the model. Here ν

is a characteristic exponent leading to exponential growth. We approximate its

dependence on k as given by its value near k ' 0. The coefficient ν also depends on

m2
χ, so

ν = ν0 − ν1

δm2
χ

m2
Φ

Θ(zc − z) . (5.27)

Numerically we find that ν1/ν0 ∼ O(1) and is positive. A negative correlation is

expected, since both the characteristic exponents of the Mathieu equation and the

instability bands are the largest near the kinematic limit A = 2q, corresponding to

mχ=k=0. Increasing m2
χ removes more instability bands from the available phase

space. Using the approximate formula above, we can solve for the change in the

reheat time due to a fluctuation δm2
χ, approximating all the dependence of δτ on

δm2
χ as occurring from the exponential. This gives

δτ

τ
' −ν1

ν0

δm2
χ

m2
Φ

zc
zRH

'
δm2

χ

m2
Φ

zc
zRH

. (5.28)

This result has O(1) agreement with our previous numerical computations. (Com-

pare zc/zRH with κm.) It illustrates that δτ/τ is not suppressed by any very small

numbers other than δm2
χ/m

2
Φ.

We also explore the dependence of τ on fluctuations in geff [151]. For non-

zero particle number nχ the interaction (5.15) introduces a backreaction of χ on σ
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corresponding to an effective mass m2
σ,eff = g2Φ2〈χ2〉/M2. As before, we cut off the

fluctuation in geff when m2
σ,eff = 3H2. This occurs when

ρχ
ρΦ

=
M2

m2
pl

. (5.29)

The fluctuation in geff

δg ≡
δg2

g2
=
H2

inf

M2
, (5.30)

gives rise to non-Gaussian density perturbations.

In Fig. 5.4 we display the ratio R for g = 4 × 10−4, mΦ/mpl = 10−6 and

m2
χ/m

2
Φ = 0.1. We choose two values of M that give δg = 10−5 and δg = 10−7.

According to (5.29), the fluctuation in geff is cut off at ρχ/ρΦ = 10−7 and 10−5,

respectively, corresponding to zc = 26 and zc = 47. For both of these parameters

we find that there is a large linear effect which we express as

δτ

τ
= κgδg . (5.31)

For δg = 10−5 we find κg = 0.9 and for δg = 10−7 we find κg = 1.4. As in the

previous case, in obtaining our plots we used larger values of δg to determine κg.

In conclusion, we have shown that during preheating, interactions of the “decay

products” of the inflaton with other light scalar fields can give rise to super-horizon

mass fluctuations in these decay products. These fluctuations will then give rise

to density perturbations of the universe. Depending on the coupling of the decay

products of the inflaton to the light scalar fields, the dominant density perturbations

generated from this effect will be either Gaussian or non-Gaussian.
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Appendix A

Convergence of the Differential
Map Maker

As described in Section 3.2.2, we introduce one new step to the differential map

making algorithm presented by Wright et al. [96]: We initialize the iterations at the

exact solution of Equation 3.7 evaluated at low resolution, which in this paper is

taken to be Nside = 16, with 3072 pixels.

To demonstrate the improvement in convergence due to this choice of initial-

ization, we revisit the analytic case considered in Section 3.4, which compared the

results from our simulation pipeline with an exact analytic case, but taking into

account the actual WMAP scanning strategy.

In Figure A.1 we show a set of difference maps taken between the intermediate

solutions produced by the differential map maker and the analytic and isotropic

map solution. From top to bottom, the panels show the residuals after 2, 5 and 10

iterations, and at the bottom, the final converged solutions. The left panel shows

the series obtained when initializing the search at the low-resolution solution, while

the right panel shows the series when initializing at zero. Convergence was achieved

respectively after 67 and 123 iterations in the two cases.

Note that the WMAP team initializes their search at the CMB dipole, which is
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the dominant component in their data set. However, this is in our setting equivalent

to initializing at zero, since our simulation does not include a dipole.

Taking the difference between the two final solutions, we have verified that the

peak-to-peak residuals in the two maps are less than 0.1 µK, of which essentially all

is concentrated in a single dipole component. The solution is thus independent of

initialization, and the only difference lies in computational speed.

Finally, note that even though the two maps are internally indistinguishable,

they are both quite different from the isotropic reference map. To be precise, the

RMS difference between the derived maps and the isotropic reference map is 0.91

µK, with a spatial pattern similar to the overall WMAP scanning pattern.

The cause of these residuals is once again the differences in the treatment of

the effective pixel windows: The HEALPix pixel window is computed by uniformly

averaging over the full sky, whereas the simulation pipeline takes into account the

actual pointing directions of the satellite. Sub-pixel variations in the CMB sky

therefore leads to significant differences in the two estimates on small scales. The

effect of such pixel window variations on the 5-year WMAP power spectrum will be

considered in a future paper.



103

Figure A.1: Comparison of convergence of the differential map maker for two dif-
ferent choices of initialization. The left column shows the snapshots from the series
obtained with initializing at a solution obtained by brute-force evaluation at low
resolution, while the right column shows the series obtained when initializating at
zero. Each plot is a difference map between the current solution for a data set in-
cluding asymmetric beams and real scanning strategy and the corresponding map
convolved with the analytic Gaussian beam and isotropic HEALPix pixel window.
The bottom row shows the final solutions obtained in the two cases, which were
obtained after 67 and 123 iterations, respectively. These final maps are idential up
to a ∼ 0.1µK dipole.
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