Quantum Monte Carlo:
Faster, More Reliable, And More Accurate

Thesis by

Amos Gerald Anderson

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2010
(Defended June 29, 2009)

ii

© 2010
Amos Gerald Anderson

All Rights Reserved

iii

To my beloved grandmother
Sylvia Kay Anderson, RN
1928 - 2008

From her pikkupoika

v

Acknowledgments

I would like to thank the many people who helped make my graduate studies as pleasant as
possible. First of all, I would like to thank Dan Fisher for sharing in the burden of helping
to make QMcBeaver a useful tool. The two of us have worked together to develop the code
to the state it is in today, and I don’t think it would have been possible for us to get any
results without each other’s efforts. We came near to throwing in the towel on QMcBeaver,
but now I think we have software we can be proud of.

The other members of the Goddard group have also been quite helpful and encouraging.
Although they were gone by the time I arrived, both Mike Feldmann and Chip Kent have
been continual sources of advice, which was quite helpful since they were the ones who
started the QMcBeaver project. The foundation and organization they provided in the
source code made further development not only possible, but enjoyable. Mario Blanco has
been a joy to work with, since his enthusiasm for the science itself and the bigger picture
is contagious. I have enjoyed many interesting conversations with Andrés Jaramillo-Botero
here and in Colombia, and he always had encouraging things to say. My work has been
supported by the tireless efforts of Darryl Willick, under whose watch our computers were
always working. It is also important to recognize all the group members who over the years
have helped to make the Goddard group a place to watch exciting new science come to
fruition.

For the first several years of my studies, I had the privilege of working with Professor
Peter Schroder learning to do chemistry on GPUs. Most importantly, though, he taught
me how to write a paper. I also had the opportunity to work with Professor Jack Roberts,
doing something practical with the knowledge I'd learned. Having TA’d many classes under
Professor Aron Kuppermann, I have been prepared to teach my own classes some day.

Of course the most important member of the group is my advisor, Bill Goddard.

Through the years, he has been a fountain of crazy ideas and reality checks, some of which

v

worked. I am privileged to have had the opportunity to work with him over these years
and to learn Quantum Chemistry from the ground up. I know I have learned something
because our conversations have advanced from deer in the headlights to debates.

I am grateful for the remarkable group of friends that I have found here at Caltech.
I learned quite a bit during my time in Avery House from the other students and the
faculty who lived there. The variety of perspectives opened the door for many of the
most interesting conversations of my life. The good people of Caltech Christian Fellowship
and especially of Trinity Baptist Church provided me with a far more important source of
support than merely meals, housing, entertainment, and vacation destinations; keeping an
eternal perspective during frustration. I have found a unique and special community here
in Pasadena.

Finally, I would like to thank my family for their love, encouragement, and prayers
through the years in helping me to make it this far. During my time at Caltech, my sister
Micah has been dutifully serving our country in Iraq, helping to bring peace to that region,
and to defend the freedoms necessary for intellectual pursuits. I have been deeply inspired
by my parents, Jeff and Mary Ann, and their steadfast dedication among the urban poor
of Manila, Philippines, since 1985 and still going strong. They have taught me that even in

the face of overwhelming challenges, with God’s help it is still possible to make a difference.

Maraming salamat at pagpalain kayong lahat ng Diyos!

vi

Abstract

The Schrédinger Equation has been available for about 83 years, but today, we still strain to
apply it accurately to molecules of interest. The difficulty is not theoretical in nature, but
practical, since we’re held back by lack of sufficient computing power. Consequently, effort is
applied to find acceptable approximations to facilitate real time solutions. In the meantime,
computer technology has begun rapidly advancing and changing the way we think about
efficient algorithms. For those who can reorganize their formulas to take advantage of these
changes and thereby lift some approximations, incredible new opportunities await.

Over the last decade, we’ve seen the emergence of a new kind of computer processor, the
graphics card. Designed to accelerate computer games by optimizing quantity instead of
quality in processor, they have become of sufficient quality to be useful to some scientists. In
this thesis, we explore the first known use of a graphics card to computational chemistry by
rewriting our Quantum Monte Carlo software into the requisite “data parallel” formalism.
We find that notwithstanding precision considerations, we are able to speed up our software
by about a factor of 6.

The success of a Quantum Monte Carlo calculation depends on more than just processing
power. It also requires the scientist to carefully design the trial wavefunction used to guide
simulated electrons. We have studied the use of Generalized Valence Bond wavefunctions to
simply, and yet effectively, capture the essential static correlation in atoms and molecules.
Furthermore, we have developed significantly improved two particle correlation functions,
designed with both flexibility and simplicity considerations, representing an effective and
reliable way to add the necessary dynamic correlation. Lastly, we present our method for
stabilizing the statistical nature of the calculation, by manipulating configuration weights,
thus facilitating efficient and robust calculations.

Our combination of Generalized Valence Bond wavefunctions, improved correlation func-

tions, and stabilized weighting techniques for calculations run on graphics cards, represents

vil

a new way for using Quantum Monte Carlo to study arbitrarily sized molecules.

viii

Contents

Acknowledgments

Abstract

1 Introduction

2 Background

2.1 Wavefunctions L
2.2 Antisymmetry e
2.3 Quantum Chemistry
2.4 Variational Monte Carlo oL

2.4.1 Error Margins

2.4.2 Cusp Conditions
2.5 Diffusion Monte Carlo
2.6 Practicum L

Quantum Monte Carlo on Graphical Processing Units

3.1 Abstract e
3.2 Imtroduction L
3.3 Introduction to Graphical Processing Units
3.4 Introduction to Quantum Monte Carlo
3.5 Implementation on the GPU
3.5.1 Walker Batch Scheme
3.5.2 Basis Function Evaluation
3.5.2.1 Kernel 1: Data Generation

3.5.2.2 Kernel 2: Layout Conversion

iv

vi

NoRENe NG "N

11
12
13
14
17

X

3.5.3 Matrix Multiplication 31
3.5.4 Jastrow Functions L o 32
3.6 GPU Floating Point Error oL 33
3.6.1 Underflow Corrections, 35
3.6.2 Kahan Method 36
3.7 Results. o e 39
3.8 Conclusion 41
Generalized Valence Bond Wavefunctions in Quantum Monte Carlo 43
4.1 Abstract 43
4.2 Introduction L 43
4.3 Method 45
4.3.1 Generalized Valence Bond Wavefunctions 45
4.3.2 Length Scaled Jastrows 47
4.3.3 Wavefunction Optimization 48
4.3.4 Walker Reconfiguration 51
4.3.5 Further Details o 52
4.4 Results. 54
4.4.1 Methylene 54
442 Ethylene. 59
4.4.3 242 Cycloaddition L oo 63
4.5 Conclusion 65
Additional Work 67
5.1 Optimization 67
5.2 Jastrows 68
5.3 More Calculations L 70
5.3.1 Ne .o o e 70
5.3.2 Bea —2Be e 72
533 0314, = 033By ... 73
534 SiHp 'A; — SiHo 3Byo 74
5.3.5 Survey of G1 Atomization Energies 76

54 A Crazy New Idea 7

X

5.5 The Preferred Number of Processors

5.6 Pseudopotentials

Kinetic Monte Carlo

6.1 Abstract
6.2 Introduction L
6.3 What is Kinetic Monte Carlo?

6.3.1 The General Solution,

6.3.2 Our Solution
6.4 Our First Application
6.5 Preliminary Results oo
6.6 Conclusion e

Asymptotic Scaling

The Local Energy

Jaguar Initial GVB Guesses and GAMESS
C.1 Script: jaguar2gamess.pl L

Making the .ckmf file
D.1 Script: gamess2qmcbeaver.py
D.2 A Good Set of Parameters

Wavefunction Optimization
E.1 Optimization by Example L.
E.2 Script: optimized.pl L

Convergence Scripts

F.1 Summarizing by Example 0 oL
F.2 Script: summary.pl
F.3 Convergence by Example
F.4 Script: plotter.pl
F.5 Script: utilities.pl

85
85
85
86
87
87
89
91
92

93

95

102
102

107
108
126

130
130
130

xi

Bibliography 179

xil

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Methylene excitations. L 56
Optimizing different parts of the wavefunction. 58
Single determinant calculations.o oo 58
Vertical ethylene results L 60
Vertical ethylene results with a poor geometry 61
Adiabatic ethylene results. L 63
Ethylene twist results. 64
Cycloaddition results. e 64
Neon optimization results. 71
Beryllium dimer results. oo o 73
Ozone excitation results 74
Silylene results. L 75
Calculations from the G1 test set. 76
New acceptance probability strategy. 0oL 81

Varying the number of processors. 81

xiii

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2

5.1
5.2
5.3
5.4

6.1
6.2

E.1

F.1

Nodal plane in HoO. o 8
An extrapolation to zero time step 16
The cost of correcting for the summation error for square matrices. 32
The cost of correcting for the summation error for rectangular matrices. . . . 33
Helium single precision error. 35
Ethane single precision error. L Lo oL 36
Kahan Summation Formula, uniform distribution. 37
Kahan Summation Formula, “QMC-Distributed” data. 38
QMC performance on a GPU. 40
GPU summary. 40
Typical Jastrow functions. Lo 50
Time step error cancelation. L L oL 53
Silylene convergence. Lo 75
Extended distribution of p.o 79
Truncated distribution of p. o 80
Varying the number of processors. 82
Surface sites illustration. oL L 90
Sample distribution drawn on product pyramid. 91
Script generated Jastrow optimization plot. 131

Script generated convergence graphic. L. 155

Chapter 1

Introduction

Although the laws governing the behavior of electrons have been understood for 80 years,
progress has been dictated by the advance of computer technology. It is not as though we do
not understand the chemical concepts involved; the problem is that sufficient accuracy in the
computation depends on minutia which scale with the size of the molecule itself. A chemist
is presented with a menagerie of ab initio and empirical tools exploiting various tradeoffs
between computational expense and accuracy. Several sweet spots have been already been
found, ending much of the search. Unfortunately, for those who seek high accuracy, no
method has distanced itself from the others. Quantum Monte Carlo (QMC) will become

the winner because of several significant advantages it has over its competitors.

1. Its theoretical scaling is a mere O(N?3), which comes from matrix multiplication and
inversion. This is far better than the O(N7) to O(N!) of Coupled Cluster or Full Con-
figuration Interaction techniques. This means that with faster computers, eventually,

QMC will be the fastest method.

2. QMC is very easily parallelizable, meaning that if you give it twice as many computers,
it can complete its task in nearly half the time. Because of this, calculations using
1000s of computers to complete a QMC calculation is becoming routine. In contrast,
other methods, which require the transfer of large amounts of data between processors,

can not effectively use more than a handful of processors.

3. Computers are exponentially getting faster, but the amount of memory they have is
not rising nearly as fast. QMC requires very little memory, on the order of 10s of

megabytes. Other high accuracy methods require gigabytes of memory, a requirement

2
that scales quite quickly with size, and is their limiting factor in terms of what is

possible.

These reasons alone are sufficient to guarantee that QMC will, eventually, be the winner.
There are two primary obstacles, computational and theoretical, and we address both of
these issues in this thesis. We will show that we can surmount these, paving the way for
QMC adoption in the chemistry world.

Computing power is advancing quite rapidly, and will probably continue to do so, a
factor which favors QMC approaches over any other. This means that, essentially, we only
need to wait in order to win. However, the argument is more subtle than this because of two
competing factors. At some point, processors will reach the physical limits of the medium
used to carry out the computations, and if no better media is found, then this will signal
the end of the road. On the other hand, we can see the rise of new types of computing
devices in which several small processors are joined together to accomplish one task. The
best known example of these devices is a graphical processing unit (GPU), typically used
to accelerate computer games. Exploiting a tradeoff between general computing and spe-
cialized computing, GPUs are becoming exponentially faster than CPUs. We were the first
to study the possibility of running quantum chemistry software on a GPU, as we discuss in
Chapter 3. Even though our 2006 technology has already become obsolete, we were able
to run our software at least 6 times faster than a CPU of the same era. Were we to revisit
this problem and update our software, it is entirely reasonable that speedups on the order
of 100 times faster is possible.

The second issue is theoretical. As we will discuss, while introducing QMC in Chapter
2, a QMC approach is only as accurate as the position of the nodes in the provided wave-
function, introducing a new kind of error, the fixed-node energy. Although there is ongoing
research into QMC techniques for optimizing the wavefunction nodes, these necessarily re-
quire more computational effort. In our studies however, presented in Chapter 4, we have
found that many problems are quite tractable given judicious choice of wavefunction. In
particular, Generalized Valence Bond (GVB) wavefunctions can eliminate enough of the
fixed-node energy, for both bond breaking and electronic excitation processes, that we can
easily obtain accuracy on the order of a few tenths of a kcal/mol. The particular advantage

of a GVB wavefunction over more general types of wavefunctions is that GVB scales in

3

expense quite well with molecule size. It is very modular, allowing one to describe localized
regions of chemical activity. With this simple approach to lowering the fixed-node energy,
combined with QMC’s particular ability to measure all the dynamic correlation in molecule,
the two methods are highly complementary.

In Chapter 5, we study several molecules to find out how well the approach works
beyond simple hydrocarbons, as well as discuss a few of the most important issues in QMC.
In particular, we find that although our QMC-GVB approach fails to describe molecules
such as the atomization of CO correctly, adding in Restricted Configuration Interaction
(RCI) terms brings us to agreement with the experimental results. However, we also show
where even the QMC-RCI approach is insufficient, with for example, the atomization of
the CN molecule. Finally, we show that the even more expensive complete active space
self-consistent field (CASSCF) wavefunctions are sufficient to study even the difficult ozone
electronic excitation.

Even granted the claims we make in this thesis, we will probably never see QMC directly
used to study large systems evolve with time. QMC will be used, however, to calculate
energy reaction barriers and enthalpies, which can be used to fit force field parameters.
Once we have accurate data, we can turn to other methods and model a system in time.
We have studied one such method called Kinetic Monte Carlo (KMC), which takes reaction
enthalpies and simulates a system for time scales as long as seconds, depending on the

system. In Chapter 6, we present an O(log V) algorithm we developed for doing so.

Chapter 2

Background

Quantum Monte Carlo (QMC) [1, 2, 3] takes a different approach to solving the Schrédinger
equation than the other quantum chemistry methods. Most methods directly minimize the
energy of an analytically integrable wavefunction using the variational principle. Unfor-
tunately, the requirement that the wavefunction be analytically integrable is somewhat
restrictive, and in particular, it is difficult to use functions of interparticle coordinates.
Starting from a wavefunction obtained using some other method, we can obtain a proba-
bility density. Because QMC uses Monte Carlo integration over the probability density, we
can ease these restrictions by patching up the wavefunction as we like. All QMC requires
of the wavefunction is that it be easily differentiable so that we can apply the Hamiltonian,
a far simpler criteria to satisfy.

But QMC can do even better than this. If we are prepared to take the time to do a
Monte Carlo integration, then there is a simple reformulation of the Schrodinger equation
that can permit us a far more accurate calculation than the probability density itself. This
reformulation, called Diffusion Quantum Monte Carlo, or sometimes just Diffusion Monte
Carlo (DMC) is the foundation of this thesis. Because we consider QMC to be essentially
worthless without the DMC modifications, we will sometimes consider the QMC and DMC
labels to be synonymous.

A DMC calculation can extract all of the dynamic correlation from a probability density,
a truly remarkable feature. However, because the statistical error depends upon the quality
of the probability density, we are still motivated to obtain the best probability density
that we can, in order to minimize the number of statistical data points necessary to reach
a specified error margin. This is not enough, though, because the final desired accuracy

of a DMC calculation will depend on the quality of the underlying wavefunction nodes; a

5

systematic error called the fixed-node energy. This error is the focus of subsequent chapters.

2.1 Wavefunctions

According to the postulates of Quantum Mechanics (QM), all matter can be described with
a wavefunction, W. The exact wavefunction contains all the data necessary to measure
observable properties. Another postulate of QM is that the wavefunction is the probability
amplitude, by which the probability of the particle being in a volume element dr around a

particular location r can be calculated as
p(r)dr = |¥(r)|?dr (2.1)

which takes into account the possibility that the wavefunction might be complex valued. In

order to find the wavefunction, we must solve the Schrodinger eigenvector equation

mgt\y(r, t) = HU(r,t) (2.2)
or its time-independent analog
HU(r) = EY(r) (2.3)

where the Hamiltonian operator H for a molecule with motionless nuclei is

. 1 N N 1 Npue N 7
o = —2;v$+;%—z&:;R; (2.4)
_ —1§:V2+V(r) (2.5)
SRR ’

where N is the number of electrons and N, is the number of nuclei, Z, is the charge on
nucleus a, r;; is the distance between electrons 7 and j, and R,; is the distance between
electron ¢ and nucleus a. Although the potential energy term does depend on the positions
of all the electrons and all the nuclei, we only imply this dependency on the position of the

nuclei in our notation V(r).

2.2 Antisymmetry

If quantum chemistry was merely the description of an n-body problem and all we had
to do was to solve the time-independent Schrodinger Equation 2.3, the problem would be
only O(N?) hard, since each particle would interact with every other particle in a poten-
tial field. However, because electrons are fermions, the solutions are more complicated.
Nature dictates that fermion wavefunctions are constrained to be antisymmetric, which
says that swapping any two electrons in a wavefunction must produce the negative of the

wavefunction. This is the Pauli Antisymmetry Principle:
\I/(...,’I“i,’l’j,...) = —\I/(...,’I’j,’l“i,...). (26)

This constraint raises the complexity of the problem to at least O(N?), since we are now
required to use the antisymmeterization operator; the determinant. Thus the best scaling
any algorithm can achieve is O(N3).

Antisymmetry means that within a wavefunction, there will be some regions where
U(r) = 0, which we call the nodes. By this we do not mean that no electron can ever go
somewhere; we mean that given locations of N — 1 electrons, there are certain places the
Nt electron can not go. Of course those forbidden regions might become accessible just
as soon as one of the other electrons move. What do these nodes look like? The obvious

region forbidden by the Pauli principle is where any two electrons coalesce, because
\I/(...,’I“Z',’l“i,...) = —\I/(...,’l“i,TZ',...) =0. (27)

Unfortunately, however, the nodal region is higher dimensional than this. This is evident
when considering the following thought experiment. Consider two (same spin) electrons at
different positions near a nucleus (for example a triplet state of Helium), and we write down
the value of the wavefunction. Due to symmetry, we can write down the wavefunction as a
function of three coordinates: W(Ry, Ro,r12). It is entirely possible to swap the positions of
these two electrons in such a way that they never meet. Once we have moved them to each

other’s initial position, Equation 2.6 says the wavefunction will now be exactly the negative

of what we wrote down, since

U(R1, Ra,712) = —V(R2, R1,712) (2.8)

which means that somewhere along any path the wavefunction went to zero. In this case,
we can infer that the node is wherever Ry = Rs. One interesting observation is that the
nodal structure is more simple than the wavefunction itself, which is not analytically known
for even Helium. We know the analytical nodal structure of very few systems.

Electrons come in two flavors of spin which we label as o and 3, a distinction de-
rived from relativity, and accordingly the wavefunction is the product of a spatial and
a spin function. Any pair of electrons can be said to be parallel spin if they are the
same flavor, or opposite spin if not. The antisymmetry condition can be satisfied by ei-
ther the spatial or the spin function. For example, opposite spin electrons can be given
the spin function x(r1,72) = a(r1)B(r2) — B(r1)a(r), so that swapping them results in
a(ra)B(r1)—pB(re)a(ry) = —a(r1)B(re)+6(r1)a(re) = —x(r1,r2). For parallel spin electrons
we correspondingly assign them a symmetric spin function such as x(ri,r2) = a(ry)a(rs),
and apply spatial antisymmetry, as discussed in the next section. It is a violation of the
antisymmetry restriction to apply to a pair of electrons an antisymmetric spatial function
and an antisymmetric spin function, since the product of two antisymmetric functions is
symmetric.

For a given wavefunction we can try to visualize nodes, as we for do for HoO in Figure
2.1. To draw this image, we ran a QMC simulation for a few thousand iterations, to make
sure the electrons are all in somewhat higher probability regions, and then we stop the
simulation. We select one electron for a 3D scan over the volume of the molecule, writing
to a file the value of the wavefunction at each coordinate. Using good plotting software, we
can generate a surface at the contour level of 0. It is interesting to notice that the same
nodal plane passes through all the same spin electrons, indicating that we can approach

parallel spin electrons over only 27 steradians, which is half the total solid angle.

Figure 2.1: Nodal plane in HyO. The Oxygen atom is the larger sphere in the center, and
the 2 Hydrogens are the smaller white spheres. The small red sphere, located below and to
the left of the Oxygen is the initial position of our test particle, and the darker red spheres
are the other electrons of the same spin. The blue spheres are the electrons of the opposite
spin. Notice that the sheet passes through all 3 of the dark red spheres. This image was
generated with the help of MacMolPlt.

2.3 Quantum Chemistry

Traditional quantum chemistry programs seck to solve Equation 2.3 analytically. This is
done by choosing an approximate form for the wavefunction. We start with atomic orbitals,

called basis functions, which are similar to the orbitals of a Hydrogen atom
Xj(r—ri—Rj) = Tl;jrlyjrznj Z ajnefbj“|r|2 (2.9)
n

which are simply gaussian functions of the distance of electron ¢ at r; to the center of
the basis function j at R;, and all the other parameters are fit to model a typical atomic
orbital. This functional form for basis functions was motivated by the consideration that
the product of two 3D gaussian functions is another gaussian function, a nonnegotiable
benefit in computational efficiency for most quantum chemistry methods. In practice, sets
of basis functions have been standardized for each element, so that they are independent
of any molecule. Standardization is very difficult for functions of the form e™", which is
another reason not to use them, even though they are closer to the Hydrogenic solutions.

An orbital ¢y(r;) will typically span across multiple nuclei, meaning that it will neces-

sarily be a linear combination of basis functions
Sr(ri) = Y x;(ri)ci (2.10)
J

which is sometimes referred to as a molecular orbital, and there will be as many linearly
independent orbitals possible as there are basis functions. We can pick the best of these
orbitals for the electrons to occupy. For opposite spin electrons we use spin functions to
satisfy antisymmetry, meaning that up to two opposite spin electrons can occupy the same
orbital. For parallel spin electrons there is only one way to guarantee spatial antisymmetry
no matter what the orbitals or basis functions look like. This is to put them into what is

called a Slater determinant

¢1(r1) ¢2(r1) -+ on(r1)

D= (MTQ) 92 (r2) ’ (2.11)

¢1(TN) én ()

10

which represents one orbital for each electron, letting each electron “visit” all the orbitals.
This means that if two of these electrons swap places, corresponding to swapping rows,
then the determinant will change sign, satisfying the Pauli antisymmetry principle. It is
clear that by this construction, there is zero probability that two parallel spin electrons will
occupy the same location, or that two parallel electrons can share the same orbital. Putting
all the electrons of our molecule into a wavefunction of this type, we can obtain the orbital
coefficients c¢j;, by minimizing the energy E self-consistently, which will be our solution to
Equation 2.3.

The principle failure of Self-Consistent Field (SCF) methods is that they do not ac-
count for all electron-electron interactions. The difference between the energy produced
by a SCF method and exact energy is referred to as the correlation energy. Correlation
energy can be subdivided into two components; static correlation and dynamic correlation.
Static correlation is the error resulting from optimizing an incomplete functional form for
the wavefunction during the SCF procedure, and is typically resolved by increasing the
complexity of the wavefunction by adding more orbitals and basis functions to the SCF
optimization. Dynamic correlation comes from the SCF procedure itself, where an electron
sees only an average field of the other electrons, and thus never has to move out of another’s
way. This is especially critical for a doubly occupied orbital, since those electrons share the
same space.

Either of these errors can be minimized in one of two ways. First, remember that when
we took linear combinations of the basis functions to make our orbitals, we actually received
more orbitals than we needed. Although we put our electrons into the best orbitals, we
still have quite a few unoccupied, or virtual, orbitals that we might want our electrons to
be able to visit. Even though they were not necessarily the best, they might still be pretty
good. For example, where degenerate orbitals play a role, even the ordering of the electronic
states might be wrong. In fact, some virtual orbitals might have a negative orbital energy,
meaning that an additional electron would be able to bind to the molecule. An electron
as a quantum particle will need to visit all of these orbitals. To do this, we add to our
wavefunction more determinants. For determinants that use N, occupied orbitals, if we

have N,;+ unoccupied orbitals, then there are

(Nocc + Nvirt) (2 12)
Nocc

11

possible determinants we can make. If we include all the possibilities, then this represents
a Full Configuration Interaction (Full CI) calculation. By virtue of spanning the entire
Hilbert space, a Full CI wavefunction is by definition the exact wavefunction, if we also use
an infinite number of basis functions. Unfortunately, the convergence of the energy in the
limit of adding more determinants is very slow, so this approach is impossible in practice.

But there is a second way to minimize the error. Instead of simply adding more deter-
minants to our wavefunction, we can instead think about adding only the most important
virtual orbitals, and then reoptimizing our ¢;;, coefficients. For this procedure, called multi-
configuration SCF (MCSCF'), we use our chemical intuition to identify which orbitals are
likely to have the most error relevant to the system we are studying, and we figure out which
corresponding orbitals would be the best to correct this error. For example, a bonding or-
bital is often too evenly balanced between the nuclei, so we might add the antibonding
orbital in order to add some “left-right” correlation, permitting the two electrons in the
bond to get away from each other a little bit. The set of orbitals that are chosen to need
the most correction along with the orbitals used to add the correction is called the active
space. This technique is quite effective at lowering the error due to static correlation be-
cause typically, there are only a few important virtual orbitals. We could use these improved
orbitals in a CI treatment, improving convergence. We will further discuss MCSCF in the

context of Generalized Valence Bond (GVB) wavefunctions.

2.4 Variational Monte Carlo

Assuming that the wavefunction is normalized and real-valued, we can rearrange terms in

the Schrodinger Equation 2.3 to get

(B) = (V|H|V) (2.13)
= / (r)H (r)U(r)dr (2.14)
-/ \p2(r)qur)ﬁ(r)q:(r)dr (2.15)

= /p(r)EL(r)dr, (2.16)

12
where we have defined the local energy as
Bu(r) = ﬁ(ﬂ\lf(ﬂ _ _1 N V%\Ij(r) +V(r) (2.17)
BT 700 T 24 w(rn) ‘

()

in order to calculate the expectation value of the energy (FE). Seen in this formulation,
all we need to do is sample the local energy according to the probability density enough
times and we will eventually converge to (F). This is the Variational Monte Carlo (VMC)
method. We define a walker to represent one electronic configuration, which will be moved
around the molecule according to the Metropolis algorithm, which ensures that our sampling
reproduces p(r). Once we choose the number of walkers we want to use, N,,, our method

is essentially

(E) = /mwmww~ (2.18)

1 & /g e o

(2.20)

AﬁﬁﬂzmmﬁT0HmW%My

T(r— ') Ui(r)
where NV, is the number of iterations we take and o is the standard deviation of each sample.
In this equation, A(r — 7’) is the acceptance probability which is used to decide whether
a walker should move from coordinates r to some trial coordinates r’ that iteration. The
acceptance probability is designed to satisfy detailed balance, which ensures that on average
the distribution of our samples is stationary and reversible. To do this, we need to be able
to calculate the transition rate of moving from initial to final coordinates T'(r — '), and
the rate of going in reverse. The functional form of T'(r — r’) depends on the algorithm

used to move electrons, which is merely an efficiency issue.

2.4.1 Error Margins

As Equation 2.19 indicates, the error margins of a VMC calculation go down as v/N;. Said
another way, if you want to lower your statistical error by a third, you will need to run about
10 times as many iterations. The expected number of required iterations rises exponentially.
This requires us to choose a wavefunction that will give us a lower sample error o. If we

are using wavefunctions of the type we described so far, then our immediate choices are to

13
increase the number of basis functions used, or to use a larger active space, as discussed in
Section 2.3.

But we can do even better than that because the computational considerations required
for the evaluation of the local energy, which is discussed in detail in Appendix B, are
quite different than those of other quantum chemistry algorithms. Specifically, we can
now add functions of interelectron coordinates to our wavefunction, which is a significant
improvement over electrons only being able to see an average field of the other electrons.
These functions, which we will call Jastrows, can now help electrons to avoid each other,

beyond the repulsion established by the antisymmetry principle.

2.4.2 Cusp Conditions

Although we are unable to analytically solve for realistic wavefunctions, there are some
things that we can say, analytically, about how the wavefunction should behave in some
circumstances. The antisymmetry principle is one example of this, but we also know what
the wavefunction should look like in the limit that two particles coalesce, since in that
limit, the wavefunction is dominated by terms involving only those two particles. We know

therefore that

ov
_ —0 2.21
s VY (r12 = 0) (2.21)
v = 1/2 for opposite spin electrons (2.22)
v = 1/4 for parallel spin electrons (2.23)
v = —Z for electron-nucleus, (2.24)

ow

where Bris

denotes a spherical average of the derivative of the wavefunction as the distance
between any two particles, r12, reaches zero. If we are going to add Jastrows to our wave-
function, then we can easily constrain those functions to satisfy these constraints, called
the cusp conditions, and thereby eliminate some of the sources of singularities in the local

energy.

14
2.5 Diffusion Monte Carlo

There is yet another way to solve Equation 2.3, which we find by rewriting the time-
dependent Schrédinger Equation (Equation 2.2) in imaginary time, 7 = it. Following the

arguments as presented by Reynolds and co-workers in [2], we write

_667'\IJ(T’T) = [f[— ET} U(r,T), (2.25)

where FE7 is simply an energy shift whose importance will become evident. What we
actually want is the time-independent solution, which is simply the steady state of Equation
2.25. Expanding ¥(r,7) in a complete set of eigenfunctions v;(r) of the Hamiltonian, the

wavefunction will look like

U(r,) =) ce” FrBTy,(r) (2.26)

which at long times will come to be dominated by the state with the eigenvalue closest to
Er
U (r, 7) = coe” Eom BT (1), (2.27)

which will be the exact ground state ¥o(r) if Ep is adjusted to our best guess. If our
Hamiltonian consisted of only the Laplacian —V?/2, then this would be a typical diffusion
equation, which we could simulate with walkers, just as we did in VMC with Equation 2.19.
On the other hand, if the Hamiltonian was only a potential energy term V' (r), then Equa-
tion 2.25 is simply a rate equation, which is simulated by using birth and death processes in
a population. For a molecular Hamiltonian, we can combine both approaches by enriching
or duplicating walkers in regions of favorable potential energy, an approach called Diffu-
sion Monte Carlo (DMC). The only problem is that because we are using a population of
walkers to represent the wavefunction, the represented wavefunction must be the same sign
everywhere. Since we are simulating fermions which have nodes, we are required to simu-
late the positive and negative regions separately, and average the results. This represents
an approximation if the nodes are not correct, introducing an error, called the fixed-node
energy.

The most interesting thing to note about the DMC algorithm is that, except for the

15
location of the nodes, we do not have to know anything about the wavefunction; in principle
any will work. To speed up convergence, we should use our best guess of the wavefunction for
importance sampling, and specific choices for this kind of “trial function” will be the subject

of later chapters. Designating ¥y (r) as our trial function, our population distribution

function is f(r,7) = ¥(r,7)¥p(r). We multiply Equation 2.25 by ¥ (r) to get

—xpT(m;T\p(r,) = () [A - Br| w(r,7) (2.28)
6f(7“, T) _ & f(n 7—)

“S = v [B g (2.20)
— (V) - Enfr) - 3ern T) (2.30)
—8%7;7) = —%V2f~|—(EL()—Er)f+V- < > (2.31)

which can be solved with the integral equation
(', 7 406) =eFr /G(r — 7' 8)f(r,T) (2.32)

using the Green’s function
Gir—r',8) = (2r8) N2 (2.33)
X exp [5 { 210 —;EL(TI) — ET}} (2.34)
;. 5V‘PT(T)

X exp |— I —r - - V)) (2.35)

which represents the probability of N particles moving from r to r’ for time step 4. The

last term is used to move the electrons, drifting them with V\P\IJTT(S). The middle term is

incorporated by either weighting the walkers, or by branching them (or both). A DMC
calculation starts by generating some walkers which compose f(r,0), and then we apply
Equation 2.32 as many times as it is necessary to equilibrate to the steady state of Equation
2.27. After this, we may start sampling the local energies to get our result. The average
energy carries with it a time step error, which can be eliminated by extrapolating § — 0,

as demonstrated in Figure 2.2.

16

-0.8 i

~ 0.6 $
g t
g 0.4 %
]
ui -0.2 §§ ,
] i i ! |
g i :
0 4

0.2

1 0.1 0.01 0.001 0.0001 0.00001
Time Step (au})

Figure 2.2: An extrapolation to zero time step, demonstrated for a Helium atom using
unoptimized, Pade 2 particle Jastrows. This case is particularly easy since He has no
wavefunction nodes. We fit our calculations to the formula £ = Fy+ Z?:l ¢i6"/2, producing
Ep = —2.903744 au, which is in error by only 0.012 kcal/mol from the exact answer Eeyqer =
—2.903724 au. Note: the data at § = 107> actually represents § = 0.

17

Each walker now has an associated weight which is multiplied by

AW = exp [—5 { 20 J; EL) ETH (2.36)

each iteration. If this weight becomes large, a typical DMC algorithm might then duplicate
the walker, giving each of the child walkers half the weight of the parent. A walker whose
weight becomes too low is eventually deleted because it is wasting computational resources.
Because of this, the final algorithm will end up looking very similar to the algorithm in

VMC,

Ny Ny
(B) ~]\2 ; <lei ; w; EL(W)> +0 <J(;V7> (2.37)

Alrglrs)
G(r —v',8) Wi.(r')
G(r —1',0) \IJQT(T)

A(r — r’) = min [1, (2.38)
using the DMC Green’s function. It turns out that this choice of transition matrix to move

the electrons is a good choice for VMC as well. We can actually use the same software,

with the only difference being that dW =1 in VMC.

2.6 Practicum

Quantum Monte Carlo is a good deal more sophisticated than we have presented in this
Chapter, and certainly there are quite a few algorithms and variations allowed under the
rubric we have presented here. Most of the high level or theoretical aspects of our tech-
niques are addressed in Chapter 4. In that chapter, we present our recommendations for
wavefunctions, time steps, and other details. With that chapter, we justify our approach
on the basis of the remarkable accuracy of our results.

The experience gained in developing the code with accessory scripts to run a QMC
calculation is quite valuable. The software package that we have participated in developing
is called QMcBeaver [4], which is available online under the GNU Public License. We have
used a Concurrent Versions System (CVS) throughout development. This works by allowing
the developer to download a copy of the source code, and edit it at their pleasure. Once
that developer is happy with their changes and has checked for bugs, they commit all of

their changes back to the online repository, complete with a brief description of what that

18
commit entailed. With good CVS software, it is possible to observe the exact evolution of
any part of the code. Since this thesis represents a significant point in the development of
the code, we use the label amos_phd_thesis in the repository to record the exact version of
all of the source code files corresponding to our work.

Additionally, we document and describe here the most important scripts used for setting
up and running QMcBeaver. Let this section, along with the associated Appendices, serve
as a QMcBeaver recipe. We do not claim that these scripts can be considered as complete,
or that it is unnecessary for a user to edit them. They have only been developed as need

arose.

1. Pick an SCF wavefunction. This step will depend on your intuition and the process
you want to model, but we discuss our experiences in this regard in Chapter 4. As
we discuss there, we have found that extended MCSCF or CASSCF calculations do
not necessarily work better due to the uncertainties in optimization. On the other
hand, GVB wavefunctions are not sufficient for all problems, with the atomization
of CN or NO as examples. If you are using a GVB wavefunction, then we would
recommend using Jaguar [5] to make the wavefunction, since it does a good job at
making initial guesses. In Appendix C we discuss and provide a script to convert a
Jaguar wavefunction into a GAMESS wavefunction. We have found that GAMESS [6]
is the most useful program available for producing wavefunctions because it is free,
readily downloadable, under active development, and very flexible. One note is that
we do not allow users to use an MCSCF calculation directly. Instead, following the
recommendation from GAMESS, we require the user to run a CI calculation on the
MCSCF natural orbitals to get the best CI coefficients possible. Be sure that you set

the print cutoff low enough that GAMESS prints out enough determinants.

2. Visualize your SCF orbitals. We have found that quite often, either Jaguar or
GAMESS converged orbitals that were not what we expected. There is an excel-
lent visualization package available, called MacMolPlt [7], for seeing orbitals from a
GAMESS calculation. We prefer to use orbitals that are either symmetric or localized,
but difficult SCF optimizations might produce anything in between. In these cases,
it is helpful to start or restart the optimization with good initial orbitals such as the

kind Jaguar can generate.

19
3. Run the script gamess2qmcbeaver.py, documented in Appendix D, which will extract
the wavefunction, and make a .ckmf input file for QMcBeaver. This script has been
under continual development by several people over the years who have fixed many
bugs, and it is fairly complete. This script bases the input file for QMcBeaver on
a .ckmft file, which is a template containing a good set of non-specific parameters,
and we provide our best example in Appendix D. There are two choices to make
when using this script. First, you must choose a determinant cutoff, since our script
will by default add all of the determinants available in the GAMESS output file.
Typically, a cutoff of 0.01 is low enough to capture most of the chemistry, but as we
discuss in Chapter 4, that may be too high. For a GVB wavefunction, I typically
include all of the determinants since they are not expensive, for reasons documented
in Appendix D. Second, you must decide on a tolerance to use for deciding whether
two determinants should be constrained to use the same CI coefficient. We have found
that constraints can help avoid local minima, but obviously two determinants should

only be constrained if there is good enough reason to.

4. The script gamess2qmcbeaver.py will not automatically guess Jastrow functions for
you. We do not believe that a generic Jastrow function strategy will work, so we
leave it to the user to select Jastrow functions to initialize the optimization. We have
found it is more important to match the basis set for picking the starting Jastrow
functions than matching the SCF type of wavefunction. The 3 particle Jastrows are
particularly difficult to optimize, and for sufficiently large molecules, they add more
to the computational cost than they seem to be worth. We either need to develop
new 3 particle Jastrows, or find a better way to use the ones we have already. One
idea is to fix the length scale of 3 particle Jastrows so that they do not stretch further
than the atom on which they are centered, thus limiting their cost. More discussion

on Jastrow functions can be found in Chapter 4.

5. If the input file you generated in the previous step used the .ckmft file from Appendix
D, then this input file is ready for optimization. I typically run a calculation using
only 1 or 2 processors, since the number of optimization iterations seems to be more
important than the number of samples per optimization iteration. We have found that

some Jastrows are particularly troublesome to optimize, and we detail our strategy

20
for identifying and dealing with these in Chapter 4. As we discuss there, we have
found that in the end, most Jastrows look quite similar, even though they vary in
height or extent. We have developed a script called optimized.pl, which we document
in Appendix E, to help decide when a wavefunction is optimized. Typically, we look
for the Jastrows not to significantly change between optimization iterations, and for
the VMC energy to converge to less than a few tenths of a kcal/mol, or 0.5 kcal/mol
at the worst. As soon as it is available for each optimization step, the most recent

wavefunction is written to a .01.ckmf file.

. Once the optimization has satisfactorily converged, we edit a few parameters to select
a DMC calculation. This involves setting run_type = diffusion and optimize_Psi =
0, as well as choosing an appropriate time step and number of iterations. I typically
run on 4 processors (for a total of 400 walkers) for reasons discussed in Section 5.5.
Calculations can take anywhere from a couple of days to a couple of weeks, depending

on the molecule size and the processor speeds.

. It is important to monitor the DMC convergence as it progresses, because sometimes a
calculation can “go crazy”. Ideally, a DMC calculation will maintain an approximately
constant energy through the run, with a few wiggles. We have developed a pair of
scripts, which we document in Appendix F, to look at snapshots of the energy or to
produce a graph of the energies as they progress. Many runs will display deviations
or tails, which we typically ignore if they are less than a few tenths of a kcal/mol.
However, if instead of a tail we see a trend with non-zero slope over the length of
the calculation, then something is wrong. Perhaps the run should be restarted with
possible fixes including returning to the wavefunction optimization stage, adding more
equilibration steps, using a smaller time step, using more walkers, or improving the

SCF description.

21

Chapter 3

Quantum Monte Carlo on
Graphical Processing Units

3.1 Abstract

Quantum Monte Carlo (QMC) is among the most accurate methods for solving the time-
independent Schrodinger equation. Unfortunately, the method is very expensive and re-
quires a vast array of computing resources in order to obtain results of a reasonable con-
vergence level. On the other hand, the method is not only easily parallelizable across CPU
clusters, but as we report here, it also has a high degree of data parallelism. This facilitates
the use of recent technological advances in Graphical Processing Units (GPUs), a powerful
type of processor well known to computer gamers. In this paper we report on an end-to-end
QMC application with core elements of the algorithm running on a GPU. With individual
kernels achieving as much as 30x speed up, the overall application performs at up to 6x
relative to an optimized CPU implementation, yet requires only a modest increase in hard-
ware cost. This demonstrates the speedup improvements possible for QMC in running on
advanced hardware, thus exploring a path toward providing QMC level accuracy as a more
standard tool. The major current challenge in running codes of this type on the GPU arises
from the lack of fully compliant IEEE floating point implementations. To achieve better
accuracy, we propose the use of the Kahan summation formula in matrix multiplications.
While this drops overall performance, we demonstrate that the proposed new algorithm can

match CPU single precision.

22

3.2 Introduction

The rapid increase in GPU floating point performance and their excellent flops/$ charac-
teristics suggests that they may provide cost effective solutions for scientific computation
problems. Given that the GPU computing model is (1) quite different from standard CPU
models, (2) lacks a fully compliant IEEE floating point implementation, and (3) is opti-
mized for very specific graphics type computational kernels, it is not clear a priori which
scientific computing tasks are cost effective on GPUs.

A number of scientific computing algorithms have been pursued on the GPU, e.g., fluid
simulations [8, 9], elasticity [10], and general finite element methods [11]. At the level of com-
putational mathematics kernels, we have seen work on LU decomposition [12], matrix/vector
products [13, 14, 15, 16, 17, 18, 19, 20, 21], iterative solvers [17, 22], and transforms such
as Fourier and Wavelet [14, 23, 24, 25]. In some cases the results can be disappointing
relative to highly tuned CPU implementations, in particular when high precision answers
are required, or when problem sizes do not hit a particular sweet spot (i.e., large matrices,
or power-of-2 sized data structures, etc.). With continuing hardware development these
performance barriers are being ameliorated, and with the recent announcement by nVidia
of double precision availability on the GPU in 2007, computational precision is a fading
problem as well.

In this paper we consider quantum chemistry computations, the heart of which is the
computation of the electronic structure of a given molecule using the quantum mechanical
equations of motion. This information is critical for, among other tasks, finding optimized
geometric structures for the molecule, reaction pathways, obtaining vibrational information,
and providing a basis for developing higher level approximation methods including molecular
dynamics simulations. Accurate results have application in catalysis, nanotechnology, drug
design, and fuel cells, among many others.

Due to the large state space (3N for N electrons) and the non linear nature of the
time-independent Schrodinger equation, exact results are all but impossible. Consequently
a variety of approximation algorithms have been developed. One such approach, Quantum
Monte Carlo (QMC) [3], is based on the stochastic evaluation of the underlying integrals
and is guaranteed to produce accurate answers in the limit of infinite state space sampling.

Even though a very large number of samples are typically required, QMC is easily paral-

23
lelizable and scales as O(N?) (albeit with a very large constant). This motivates a search
for computational augmentation.

We report on our implementation of QMC on the nVidia 7800 GTX and compare it
against a 3.0 gHz Intel P4, considered to be representative of similar levels of development.
These technologies are improving very fast, both for CPUs and for GPUs. Currently how-
ever, the time to doubled performance on GPUs is noticably shorter than for CPUs, leading
to increasing performance advantages for GPUs if a computation maps well enough onto the
GPU. Since CPUs are beginning to follow the same multicore technology trend, the notion
that precision issues are temporal is reinforced.

In the present paper, scientific results as well as underlying formalisms were simplified for
purposes of presentation and to focus on the essential computational aspects. We admit that
it is unclear how single precision results might be useful, especially for an algorithm designed
to produce highly accurate results. In the mean time, our single precision implementation is
presented. Aside from the performance of individual kernels we consider (1) precision issues
arising from the noticeable differences to single precision IEEE floating point arithmetic,
(2) performance issues arising from the specific sizes of matrices we must use, and (3) the
overall performance of an end to end application when compared against a heavily tuned

CPU based version.

3.3 Introduction to Graphical Processing Units

GPUs have received much interest outside the graphics world recently due to their immense
processing power even though they are actually devices designed for very specialized tasks.
Many reviews of GPU adaptability and compatibility are already available [26, 8, 27], and
we do not attempt to improve upon them. In addition, there has been the development
of specialized programming environments [13, 28, 29] for GPUs specifically designed to
smooth the porting of non-graphics applications, and GPU vendors themselves have recently
released general purpose GPU programming environments.

Our approach was to start from the ground up in hopes of squeezing the best perfor-
mance we can from the device. To describe our techniques, a truncated description of the
technology is required. The motivating principle for GPU design is that simple calcula-

tions do not need general processors, so the addition of an auxiliary processor could both

24

speed up graphics related calculations as well as free the CPU to complete other tasks.
Since graphical calculations most typically involve drawing 2D images of colors ultimately
intended for a screen, GPUs start with pixels (more generally referred to as fragments or
texels) as the atomistic unit of data. Fragments are manifested here as 4 single precision
floats, aliased as xyzw channels. A 2D array of fragments is called a texture, and is the
fundamental storage class. A GPU will stream a region of a texture through an array of
simple fragment processors (our nVidia 7800 GTX has 24), where each of these will produce
one fragment as output. A programmer can utilize this process by designating a kernel for
the fragment processors to use, resulting in the evaluation of data for a specified region in
a texture. This entire procedure is commonly referred to as a pass. A kernel is a small
program which in the graphics context would typically perform some shading calculation.
There is nothing in principle preventing the user from writing a “shader” which performs
some scientifically relevant computation using the broad class of functions available at the
programmable shader level.

In practice, many considerations are necessary in order to maximize efficiency. Graphics
processing can be thought of as a sophisticated queuing system where a CPU sends a list of
tasks to one (or more) connected GPUs and collects the results when the calculations are
complete. This means that there are also processor communication factors that need to be

included. As far as the GPU itself is concerned, we mention here the considerations:

e padding empty slots in texture data with 0 whenever data dimensions do not match

dimensions on the GPU,

e running as many passes with a kernel before swapping it for another since the GPU

can only have one kernel loaded at a time,
e careful data arrangement,
e a tuning of how much of the computation as a whole should be assigned to each kernel
e and, in general, keeping the GPU busy at all times.

Before discussing how these concerns play out in our setting, we give a brief high level
introduction to Quantum Monte Carlo computations to understand the needed computa-

tional components which we seek to map to the GPU.

25

3.4 Introduction to Quantum Monte Carlo

The most important information about a molecule is its ground state energy, calculated by

means of the time-independent Schrodinger equation

[e(7) 7)dr
<E>_ f\IJ2 ’

(3.1)

where ¥(7) : R3N — R is the wavefunction, mapping the 3N Cartesian coordinates of N
electrons into a probability amplitude related to the probability density in Equation 3.4.
(Equation 3.1 includes the common restriction that W(7) is a real valued function.) The

Hamiltonian operator H is given by
X 1_, -

where the Laplacian is over all 3V electronic coordinates and calculates the kinetic energy
(in the unitless Hartree measure) of the electrons in the molecule. The V(7) term represents
the potential energy due to Coulomb interactions between all pairs of electrons and nuclei.
The energy E is the eigen value of H operating on the eigen function ¥(7). The ground
state energy is the lowest such eigen value, and is of primary interest here.

There are many methods to calculate Equation 3.1 with varying degrees of accuracy
and computational complexity. The highly accurate QMC family of algorithms [2] uses
Metropolis [30] integration to fine tune the result provided by a cheaper method. It uses

the local energy
HY(r) 1V2¥(r)

Er(r) = ETONE 5W+V(f} (3.3)

which represents an evaluation of the energy for a set of electronic coordinates. In terms of

the stationary probability distribution of electrons

v3(r)
rF) = 34
we can transform Equation 3.1 into the Monte Carlo integration form
1
(E) = / pPELFr = Jim <> BL(F). (3.5)

26
Here 7, are a series of electronic coordinates generated with respect to p(7) by some impor-
tance sampling scheme [31]. Since error scales as 1/1/N; in Monte Carlo methods a rather
large number of samples is required to achieve useful accuracies. Additionally, it is common
to run several independent series, called walkers, in order to minimize the error due to serial
correlation between the N; data points.

In terms of computational complexity, the difficulty for QMC lies in the evaluation of
V2U(7;) for each EL(7;) as well as the evaluation of W(7;) and V¥(#;) which are used
for importance sampling. The most common functional form for ¥(7) has at least three
nested stages of evaluation. At the first stage, we place a collection of Ny basis functions
centered at the nuclei in the 3D coordinate space. Typically a given nucleus is associated
with multiple basis functions. The basis function takes as argument the local coordinates of
a given electron (i) relative to the nucleus (j), 7i; = 75 — éj. The best results are achieved

with the following functional form
o k]' lj m; —bnv'rlz,
X (Tijs Yig» 2ij) = T35 Y525 Zanje 7 (3.6)
nj

For each basis function, Rj, kj, l;, m;, nj, an; and by; are parameters given as input to
the QMC program. The kj;,1;,m; € N parameters give the basis function the required
symmetry, and n; € NT helps select the quality of fit. The other parameters are all real
numbers.

The second stage of evaluation takes linear combinations of basis functions to create
molecular orbitals. The k" orbital is given by ¢ (7;) = > Xj(rij)cjk, where cj, € R are
coefficients input to QMC. These orbitals represent the spread of the electron across the
entire molecule.

Finally, the third stage of evaluation relevant to this study is the Slater determinant,
chosen for its antisymmetric properties. For the Ny electrons of a given quantum spin

(N = No+ Ng ~ 2N,) the determinant is a function of the ¢, (which in turn are functions

27

of the x;(r4j))

Dy(7s) = [M(7s)| = : . (3.7)

(here we partition 7 into 7, and 7g) and the wavefunction is
U(7) = Da(7a)Dp(73).

To calculate the kinetic energy, we first obtain VZ¢y () = > V2x;(7i;)cik, and then sum

the contributions from all the electrons in all the orbitals

g~
T = XS (M], Vo), (38)
s€{a,B} i,kEN;
A similar procedure is followed for calculating the gradient of the wavefunction for each
electron with the exception that the final summation results in a vector of gradients.

To summarize the algorithm, we are given a set of nuclear coordinates, basis function
parameters, and the c;j, which describe the wavefunction as fit by some other (more ap-
proximate and cheaper) method. Additionally, we choose some parameters including the
number of steps N, the number of walkers W, an initial guess scheme for positions = of
all the electrons, as well as several parameters relating to the importance sampling. Al-
though specific choices are often related to the computational resources available and to
the importance sampling method used, W is usually O(10) to O(10%), N; is O(10%) to
O(10%), and the dimensions of cj; are usually between O(10) and O(10%), depending upon
the molecule. With these in hand, the algorithm can be stated as shown in Algorithm 1
(the ® represents matrix multiplication), where simplifications have been included based
on assumptions about the importance sampling.

The high degree of parallelism is evident since each processor can calculate all the linear

algebra for its walkers and only needs to produce a single value; the energy. *

*While some QMC algorithms only update one electron per Monte Carlo step, our method updates all
at once [31].

28

Algorithm 1 The QMC algorithm
Esym <0
for w=1to W do
Ti; < initialize()
for t =1 to N; do
for s=a and s = do

end for
Jastrow «— J(7)
U «— det M, * det Mg* Jastrow
Esum — Esum+
Ep (Mg, Jastrow, { derivatives}...)
7i; < sampling(V, 755, X, Ys, Zs, Ls)
end for
end for
Eavg — sum/(Nt * W)

One big advantage of QMC relative to alternative methods is the freedom one has in
choosing the functional form of W(7). This is exploited by multiplying the Slater determi-
nant wavefunction with a set of pairwise interaction terms which explicitly model electron
correlation by employing inter-electronic coordinates. The only condition is that these
terms, called Jastrow functions, preserve the antisymmetry of the wavefunction. To satisfy

this condition, we use the functional form

J(’F) — H e“pq(rpq) (39)

q<p

which provides a term for each particle-particle interaction, where

> “

k=1 apqﬂrpq
A

1+ Em:l bpqﬁrﬁq

Upq(Tpg) = (3.10)
and p and ¢ index all electrons and nuclei, and ry,, is the distance separating the two
particles. The number of terms (I" and A) is arbitrary, and depends on the quality of fit.
These parameters, along with a,qx, bpgx € R, are input to the QMC algorithm. With this

modification, our wavefunction is now Yourc(7) = Do (7a)Dg(75)J(7), and there are chain

29

rule effects for the gradient and Laplacian. The rationale for these additional terms is the
improved convergence if the wavefunction is a better approximation of the eigen function
of H to begin with. Jastrow functions involving 3 particles were not considered here.

Within the family of QMC algorithms, there are two popular varieties. The first is
called Variational Monte Carlo (VMC) in which the procedure described in this section is
employed to provide an exact integration for the given wavefunction. The method is termed
variational since it is commonly coupled with a wavefunction optimization step. Diffusion
Monte Carlo (DMC) uses the wavefunction only as a guide. Instead of a direct integration,
it has a mechanism to project out a (mostly) correct wavefunction, and thus provide exact
energies for the system. That said, a DMC calculation will converge better for higher quality
wavefunctions. The subject matter considered here is agnostic to this choice except that

DMC includes slightly more computational effort than VMC.

3.5 Implementation on the GPU

The QMcBeaver [4] code, under development in our group to perform QMC calculations,
was used as the CPU implementation on which to base our study of a GPU implementation.
In order to locate the computationally expensive components in the code, we minimize file
I/0, ignore localization procedures which lead to sparser matrices [32, 33], and we only
consider single determinant, restricted Hartree-Fock wavefunctions. Moving all electrons at
once allows us to use the highly optimized matrix multiplication routines available in the
ATLAS 3.7.11 [34, 35] BLAS library and use the LAPACK extension to ATLAS to perform
the necessary matrix inversions. Using this representation of QMC as our starting point, we
find that the computational effort on the CPU for N electrons is approximately 11% focused
on the 10 dense matrix multiplications at O(N?3) each, 73% on the 10 basis function set
evaluations at O(N?) each, and 4% on the (electron - electron) pairwise Jastrow function
evaluations at O(N?). These fractional estimates are relatively stationary for molecules
with as many as 150 electrons. The leading components not yet ported to the GPU include
matrix inversion and electron-nuclear Jastrow functions as well as other processes specific
to DMC.

For the molecule sizes we are targeting the matrices are small and rectangular; special-

izations currently overlooked in GPU code. Combined with the fact that the c¢;; matrix can

30

be reused for all matrix multiplications, we pursued several optimization strategies in detail.
In particular, all of our kernels were designed to evaluate as many walkers simultaneously

as GPU hardware limitations permit.

3.5.1 Walker Batch Scheme

The GPU pipeline is very deep, so there is a substantial overhead cost for any calculation
we wish to perform. This is in terms of work the GPU has to do to prepare for a given
calculation, effort needed to move the GPU into full production efficiency, and any costs
incurred by traversing the CPU/GPU boundary. This can be amortized by processing as
many fragments simultaneously on the GPU as possible. For Monte Carlo type algorithms,
we can accomplish this by increasing the number of walkers processed per GPU pass. This
has allowed us to tune both the size of the problem and the texture aspect ratio to the
GPU. For example, we can arrange our data in GPU memory according to an empirically
optimized pattern such as 4 rows by 4 columns so that each pass amounts to 16 walker

evaluations in parallel.

3.5.2 Basis Function Evaluation

The number of basis functions, as well as their controlling parameters, are chosen according
to chemical considerations. Typical are 5 basis functions for each Hydrogen and 15 basis
functions for each atom Lithium to Neon, leading to a matrix aspect ratio of between 4 and
8. The choice of basis set and all associated parameters are held fixed during a run and
evaluation only depends on the 3N electronic coordinates, producing value, gradient, and

Laplacian.

3.5.2.1 Kernel 1: Data Generation

The major choice regarding basis function evaluation (Equation 3.6) concerns the organi-
zation of the output data: different regions of one output texture or separation by channel
(xyzw) resulting in two output textures. We opted for keeping the output in different re-
gions so as to allow specialization (i.e., derivatives) of the kernels. As regards input data
reuse, we opted for evaluating a single basis function for 4 electrons. This choice minimizes

texture lookups and increases instruction parallelism since only one n; from Equation 3.6

31

is used in the same fragment.

3.5.2.2 Kernel 2: Layout Conversion

Most matrix multiplication approaches on the GPU pack 2x2 submatrices into a single xyzw
memory slot and we employed this layout as well. The basis function evaluation output
is in 4x1 layout, necessitating a conversion which we used to filter out any bad values as
well. Due to the batching (Section 3.5.1) texture layout, fences between rows and columns

of walkers required special maintenance at this stage.

3.5.3 Matrix Multiplication

For purposes of performance comparison, we used the ATLAS 3.7.11 [34, 35] library’s single
precision matrix multiplication on our 3 GHz Pentium 4 as a CPU benchmark. For the GPU,
several studies of matrix multiplication performance have been performed [14, 15, 16, 18, 20,
21] so our main focus is on the performance for the (relatively) small rectangular matrices
we encounter in our application, as well as the fact that we use the same multiplicand for
all multiplications.

For the 2x2 layout the inner product for the pixel at C[i, j] becomes the series of pixel

products

for(k=0; k<N; k++){
Cli,j].xyzw += A[i,k].xxzz*B[k,j].xyxy

+ A[i,k].yyww*B[k,j].zwzw;

with N representing the number of pixels used in the inner product. In the GPU vector

notation above, the C|[i, j].z data written separately is

Cli,jl.x += A[i,k].x*B[k,j].x
+ A[i,k].y*Blk,jl.z}.

The values are stored in row-major format across the xyzw channels. This method can be
modified to take advantage of multiple render target (MRT) [15] functionality on the GPU.
Essentially, MRTs can take advantage of up to 4 related data structures on the GPU with

which to arrange and facilitate reuse of data.

32

20

18

16 /
14 R

|

" 12 /
S
S 10
: /] |
8 - 3
/ //\\ ;" T
6 \ —— /' —&— Standard, 16 ||
4 '/ / \ / Standard, 1 ||
/’ ———__ _ —e—KSF, 16
2 / - KSF, 1 L
— — ATLAS
0 T T T T T
0 64 128 192 256 320 384

Dimension of Square Matrix

Figure 3.1: The cost of correcting for the summation error in multiplication of square
matrices. Indicated is the number of multiplications performed simultaneously, reusing the
multiplicand.

The results shown in Figures 3.1 and 3.2 both show the matrix performance speedups for
a variety of matrix sizes and parameter choices. The effect of multiplying several matrices
simultaneously is to raise the performance level (in terms of GFLOPS) for smaller matrices.
When performing calculations using rectangular matrices, the set up costs can be quenched
almost entirely. It is also apparent that for some domains, the GPU has significant per-
formance gains relative to the CPU when CPU cache peculiarities play a role. Although
the KSF error correcting algorithm (described in Section 3.6.2) negates most speedup gains
for the particular technologies compared here, the hidden advantage remaining is that the

calculation is performed on the GPU, minimizing GPU/CPU communication.

3.5.4 Jastrow Functions

The third most computationally demanding component of our QMC algorithm is the eval-
uation of the pairwise Jastrow function in Equation 3.9. For the GPU implementation,
we focused on porting the electron-electron terms (electron-nuclei terms are substantially

fewer). We need to evaluate N choose 2 polynomials (one for each electron-electron pair)

GFLOPS

20

18

16

14

12

10

33

Short Dimension of Rectangular Matrix

A —]
v
N/
/ Y
/ A /\'/‘\’/.__dhwylﬁ —?
/ / B el / —
~ —&— Standard, 5

// / Standard, 1 | |

‘{ // —e—KSF, 5
\7__ — 7 KSF, 1]

— — ATLAS

0 64 128 192 256 320 384

Figure 3.2: The dimension of the inner product is 6 times that of the short dimension
shown. The multiplicand is reused for all 5 multiplications.

which are then summed. Since parameters in Equation 3.10 differ between same/opposite

spin electron pairs, texture data is partitioned in order to allow kernel specialization.

We proceed in 3 steps:

Kernel 1 evaluates the magnitude and normalized vector between all pairs of electrons

for a total of 4 values per fragment.

Kernel 2 finds the value, Laplacian, and gradient of Equation 3.9, writing the first two

to one texture and the latter three to another.

Kernel 3 computes the sums, maintaining the electron indices for the gradient summands.

3.6 GPU Floating Point Error

One of the goals of quantum chemistry is the calculation of the electronic energy of a

molecule with sufficient accuracy, stated as 1 to 2 kcal/mol. To this end, absolute error of

the final result must not be worse than 1 x 1073 hartrees. An appropriately parameter-

ized QMC calculation can meet this criterion given enough Monte Carlo iterations. For this

34

study, we want to consider whether single precision is satisfactory. To test this, three simple
DMC calculations were performed on a large CPU cluster to compare numerically a result
calculated in double precision with exactly the same calculation in single precision. First,
a calculation is performed on a Helium atom using a 17s basis set [36] and a 2 determinant
expansion in natural orbitals obtained using GAMESS [6]. Figure 3.3 shows that the sin-
gle and double precision results are very similar, where the exact answer is approximately
-2.903724 [37] hartrees. Second, the torsional barrier in ethane was studied using the cc-
pCVTZ [38] basis set with CCSD(T) optimized Eclipsed and Gauche configurations [39].
Figure 3.4 again shows similar results between single and double precision, where the ex-
perimental value is 2.73 kcal/mol [39]. While these results are by no means conclusive,
especially since the quality of the result is dependent upon the quality of the wavefunction,
they provide evidence that single precision is not altogether unreasonable. This is can be
seen since the iterates are decoupled to some degree from each other by random numbers,
and since the Monte Carlo statistics itself happens in double precision. Furthermore, if a
pathological electronic configuration is identified, it can always be more delicately handled
on the CPU in double precision. Lastly, single precision QMC calculations might be useful
in an independent VMC wavefunction optimization calculation. Since DMC only employs
the wavefunction as a guide, variationally optimized parameters are far less restrictive in
terms of precision.

As far as our nVidia 7800 GTX GPU is concerned, we studied the floating point error
to obtain a best estimate for single point evaluations. We considered two principal sources
of error relevant to our problem as compared to the level of error available on a CPU:
underflow and effects of rounding. The evaluation of basis functions (Equation 3.6), for
example, can easily underflow if the by, are too negative. We investigated whether the lack
of de-normals on GPUs was a problem since this means a GPU will underflow faster than
a CPU. As regards rounding, the IEEE floating point standard calls for a relative error of
4+0.5 x 1077 in the basic arithmetic operations for single precision. On current GPUs the
relative error in these operations appears to be [40] at least 0.5 x 1077 and +1.0 x 1077,
For dense linear algebra, this yields a difference in error between CPU and GPU computed

results.

35

Number of Samples (x10°)

0 20 40 60 80 100 120 140 160 180
-2.90360 - - - - - - - -
—— Float
-2.90362 =
Double

-2.90364 T -i-

‘s
-2.90366 \
-2.90368

-2.90370 \ N / \
\
-2.90372 L) |) AN

Energy (Hartrees)

-2.90374

-2.90376

-2.90378

-2.90380

Figure 3.3: Helium calculation showing the average and the error as the calculation pro-
gresses. The calculation was done at dt = 0.001, with 200 walkers each on 128 CPU
processors.

3.6.1 Underflow Corrections

To begin with, it is questionable whether one would permit de-normals to be included in
calculations even on some CPUs. Many processor manufacturers elect software implemen-
tations of de-normals, which severely penalize the processing speed. Since we were unable
to get decent timing results in matrix multiplication on the CPU unless de-normals were
flushed to zero before multiplication, our performance comparisons actually already repre-
sent a lack of de-normals on both processors.

Basis function evaluation involves exponentials with arguments negative enough to cause
underflow, an effect we do not want to ignore. To avoid underflow error one may simply
scale relevant variables to avoid the de-normal range, but must do so carefully to avoid
the worse problem of overflow. The effect of this type of error depends heavily on the
distribution of parameters, which is highly specific to our application. Thus we measured
the effect of these shifts on the final calculated Ep(7) for each iteration, compared to the

same calculation as performed on the CPU in double precision.

36

Number of Samples (x10°)
10 15 20

Ay

-~

E Eclipsed, Double
S —&— Eclipsed, Float
= 1.5

g \ Gauche, Double
N

2 1 —— Gauche, Float

E L

E 0.5]

st -

-0.5 77]. T

-1

Figure 3.4: Ethane calculation showing the average and the error as the calculation pro-
gresses. The calculation was done at dt = 0.005, with 200 walkers each on 128 CPU
processors.

The effect of shifting the exponential turns out to be relatively small for the set of
parameters we considered. We conclude that shifting helps, but the lack of de-normals
on the GPU turned out not to be a significant source of error. For parameter sets which

consistently produce de-normals, single precision should probably be avoided entirely.

3.6.2 Kahan Method

Dense matrix multiplication is the most significant source of error in our computations when
run on the GPU. Figure 3.5 shows the roundoff error inherent in matrix multiplication, as
estimated by multiplying two matrices created with a uniform distribution of data. As a
function of the dimension of the inner product, we calculate the relative error averaged
over all the elements in the resultant 1000x1000 matrix using CPU double precision as our
reference data. The problem is due to the propagation of errors, which scales approximately
linearly with the length of the inner products. A CPU typically minimizes this by performing

the calculations at a higher precision than the data type.

37

Length of Inner Product
0 100 200 300 400 500 600 700 800 900 1000

1.0E-04
.0-0-0-0""""-0
1.0E-05 =2
4‘_.
"-.
S Y’ - - - -GPU Standard
w L CPU Standard
2 1.0E-06 | —* —=— GPU KSF T
©
S
14

10807 L e e o S M |

1.0E-08

Figure 3.5: KSF corrects for rounding error in matrix multiplication. The resultant matrix
is 1000x1000, and the operand data is sampled from a uniform distribution [0,1].

When summing a sequence of floating point numbers using the basic formula) z;, the
floating point result is) z;(140;), where the perturbation error is defined as |d;| < (n—j)e
and € is the machine error. To compensate for the propagation of errors, we use the Kahan
summation formula (KSF) [41, 42] in the context of matrix multiplication. This alternative

method for summing a sequence of n numbers is shown below:

S

x[1];
C =0;

for(j=2; j<=n; j+H){

Y = x[j] - C;
T=S+1Y;
C=(T-95) -Y;
S =T;

This method is algebraically equivalent, but if these steps are preserved during compilation,

the algorithm has the power to produce the result Y z;(1 + ;) + O(ne?) Y |z;|, where

38

Length of Inner Product
0 100 200 300 400 500 600 700 800 900 1000

1.0E-04

—a— BF (GPU), GPU KSF
BF (GPU), GPU Standard
—/— BF (CPU), GPU KSF
BF (CPU), GPU Standard
BF (CPU), CPU Standard

1.0E-06 w/\‘m
-\./I

A _{Aﬁs—-n

1.0E-05

Relative Error

1.0E-07

Figure 3.6: The “QMC-Distributed” data for the multipliers was generated either on the
CPU or on the GPU, and the matrix multiplication was either corrected using KSF or left
as the standard method

|0 < 2€ [43]. To explain this algorithm, one first observes that the low order bits of Y are
lost when adding it to S. These bits can be recovered with the correction term C. The value
for C is found by subtracting Y from the part of Y which is properly accounted for in the
sum (the parenthesis are critical). This is not the only summation improvement available
although it does compete well [44].

A simple modification makes the KSF suitable for use in matrix multiplications as shown
in Algorithm 2. Here (i, j) represents the coordinates of the element in the product matrix
we are working on. It is important to note that the propagation error in addition is corrected
for, but not any error due to multiplication, even though such corrections are possible [45].
However, as Figure 3.5 shows, the improvement is enough to even beat single precision on
the CPU for long enough inner products.

To estimate the improvement that KSF provides for our QMC methods, we move to
a “QMC distribution” of data for our multiplier matrices while keeping the multiplicand
(representing c;j) as a uniformly random matrix. The distribution was formed by generating

a representative set of basis function parameters and a pseudo-random configuration of

39

Algorithm 2 KSF-corrected GPU Matrix Multiplication
float4d T=0, C =0, Y = 0, S=0;
int j = 0;
while(j < N){

Y = A[i,k].xxzz*B[k,j].xyxy - C;
=S +Y;
=(T-98) -Y;
=T;
Ali,k].yyww*B[k,j].zwzw - C;
=S +Y;
=(T-98) -Y;
=T;

. aoHA<naA
I

return S;

electrons. This distribution was evaluated either on the GPU or on the CPU and then
sent to the GPU for multiplication. The relative error was again estimated against double
precision on the CPU. Although the results in Figure 3.6 have a higher variance, it shows
that using the KSF method, we are able to approximately obtain equivalent results as CPU

single precision.

3.7 Results

To test the GPU port of our code, we sample 7 arbitrary molecules spanning the range over
which we wish to measure performance. We present speedup estimates for the calculation
time spent on equivalent tasks performed on both our 7800 GTX GPU and our 3GHz
Pentium 4, as well as compare the final cost of incorporating the KSF correction. We ran
the calculations long enough to converge the speedup ratio.

It is evident that for the range of molecules considered, the speed penalty incurred with
KSF rose as the matrix multiplication cost became more prominent. The KSF formula
served to keep the relative error in the calculated E(7) to a constant across all molecules
at approximately 121075, It is worth noting that KSF did not make a significant difference
in either speed nor correction for many of the smaller molecules.

To provide an estimate for the impact of these speedup factors, we point out that

for HMX, the calculation is now 5 to 7 times faster. This means that the new fractions

40

Number of Number of Total Speedup Basisfunction Jastrow

Name Formula Electrons Basisfunctions Standard KSF Speedup Speedup
Acetic acid CH;COOH 32 80 3.2 3.1 18.2 0.7
Benzaldehyde CsHsCHO 56 150 4.4 4.1 25.9 2.1
[10]Annulene CioH1o 70 200 6.3 5.6 30.2 3.4
Diazobenzene Ciz2H1oN; 96 326 5.3 4.5 31.6 6.4
Lysine CeH14N20; 102 280 4.5 3.9 29.2 7.2
Arginine CsH14N402 116 387 4.9 4.1 28.5 9.3
HMX C4HgNgOg 152 516 6.6 5.3 33.3 14.0

Figure 3.7: QMC performance results on arbitrary molecules picked to represent varying
problem sizes. Speedup is defined as the time spend processing on the CPU divided by the
time spend processing on the GPU.

~
OntheCPU _—"
/
/
/
= On the GPU
4: e

Problem Size

Time Taken

Figure 3.8: Problem size is defined as the number of basis functions x the number of
electrons. The data points are from the arbitrary molecules listed in Figure 3.7

of evaluation cost are that matrix multiplication, which formerly composed 15% of the
cost, is now only 4% (non-KSF) of the original total cost; the basis function cost went
from 73% to 2.2%; and the electron-electron Jastrow evaluations, which used to cost 3.5%
of the effort, are now 0.3%. If we approximate the effect of improving GPU technology
over CPU technology as well as the possibility of multiple GPUs per CPU by setting the
residual percentages at 0%, the original unaccounted for 8% suggests a theoretical factor
of 13 speedup. A recent calculation [46] on free-base porphyrin which has 162 electrons
and 938 basis functions in the cc-pVDZ basis set cost 40,000 CPU hours on an IBM SP
POWERS3+ cluster. Thus, ignoring the precision issue, we speculate that this calculation
could theoretically cost 3,000 processor hours.

Although some of the performance numbers for the individual kernels are very good, the

41

code suffers from Amdahl’s Law type inefficiencies because of diminishing returns discovered
during porting. This is for several reasons. A few of the elements of the computation,
like the Monte Carlo statistical manipulations, can not be permitted to be run in single
precision. Furthermore, there are several portions of the code for which a GPU port is
currently unsuitable due to a lack of sufficient data parallelism either as O(N) components
or as problems with GPU-unfriendly data interdependencies. With increasing capability on
the GPU, more of the code will be available to porting considerations.

It is obvious however that there is a GPU kind of Gustafson’s Law [47] advantage
available. Specifically, if basis function and Jastrow function evaluations can be considered
as essentially free, then one is encouraged to employ whatever functional form is deemed
best, regardless of computational complexity. This is likely to increase both the quality
of individual iterates as well as improve the overall convergence characteristics of a Monte
Carlo calculation. Of course this assumes that these advantages are not washed out by

precision errors stemming from other parts of the code.

3.8 Conclusion

QMC type algorithms for first principles chemistry calculations are simple to parallelize and
capable of exploiting the data parallel aspects of GPU based computing. While the matrix
sizes needed in actual application practice are on the small side, recent generation GPUs,
coupled with a few tricks, have become significantly better in achieving high performance at
these sizes. The overall result is a 3x to 6x speedup in the end to end simulation application
with a modest increase in hardware cost, making this a very cost effective solution. The lack
of full IEEE floating point support is perhaps the most critical issue for QMC. We were able
to correct for the error propagation, albeit only with a performance penalty due to the more
complex evaluation cost of the Kahan summation formula. Clearly a more complete IEEE
floating point treatment would be an excellent improvement, and forthcoming improvements
will be welcomed.

Beyond that, we note that due to the rapid evolution of GPU hardware (and the associ-
ated driver software), attaining a sweet spot in the performance landscape is a never ending
quest of parameter and algorithm tweaking. We speculate that adoption of the GPU as a

computational engine will be greatly facilitated if approaches such as ATLAS [34, 15] and

42

application specific libraries can be further brought to the GPU arena.

43

Chapter 4

Generalized Valence Bond

Wavefunctions in Quantum Monte
Carlo

4.1 Abstract

We present a comprehensive technique for using Quantum Monte Carlo (QMC) to obtain
high quality energy differences. We use Generalized Valence Bond (GVB) wavefunctions,
for an intuitive approach to capturing the important sources of static correlation. Using
our modifications to walker branching and Jastrows, we can then use Diffusion Quantum
Monte Carlo to add in all the dynamic correlation. This simple approach is easily accurate
to within 0.2 kcal/mol for a variety of problems, which we demonstrate for the adiabatic
triplet-singlet splitting in methylene, the vertical and adiabatic singlet-triplet splitting in

ethylene, the ethylene twist barrier, and the 2+2 cycloaddition to make cyclobutane.

4.2 Introduction

The Quantum Monte Carlo (QMC) algorithm is rapidly advancing as a tool competitive
with the best available ab initio electronic structure methods. It has already been used with
remarkable success to calculate energies and other properties for a wide variety of molecules
and periodic systems across the periodic table. Although it will probably never replace
cheaper methods such as Density Functional Theory (DFT), given advances in computing
power, it will surely begin to serve as a complementary method, brought in for calibration

or to resolve disagreements.

44

The principle failure of Self-Consistent Field (SCF) methods is that they do not include
all electron-electron interactions. The difference between the energy produced by an SCF
method and exact energy is referred to as the correlation energy. Correlation energy can be
further subdivided into two components; static correlation and dynamic correlation. Static
correlation is the error resulting from using an incomplete functional form for the wave-
function during the SCF procedure, and is typically resolved by increasing the complexity
of the wavefunction by adding more orbitals and basis functions to the SCF optimization.
Dynamic correlation comes from the SCF procedure itself, where an electron sees only an
average field of the other electrons, and thus never has to move out of another’s way. This
error is typically corrected after SCF with a Configuration Interaction procedure, in which
determinants are added to the wavefunction by combinatorially choosing different orbitals
for the electrons to occupy.

QMC methods can capture the correlation energy in two ways. First, a privilege shared
with many Monte Carlo approaches, we are free to use whatever representation of the wave-
function we want, since we never need to analytically integrate anything. That is, we can
add purpose-designed functions, called Jastrow functions, to explicitly model inter-particle
interactions. Second, and even better, provided a guess for the wavefunction nodes, we can
include all the dynamic correlation energy through the diffusion Monte Carlo (DMC) algo-
rithm. The nodal assumption results in an error called the fixed-node energy, which is not
negligible. Fortunately, the same techniques used to deal with the static correlation energy
can be used to lower the fixed-node energy, and thus multi-configuration SCF (MCSCF)
techniques can be considered to be quite complementary to DMC.

Fully accurate SCF techniques can be expensive, typically scaling quite poorly with
molecule size, motivating a search methods which do not overkill the problem. On the other
hand, we need at least within chemical accuracy of 1 kcal/mol, so underkill is undesirable.
Explored in this paper is an evenkill solution where we use Generalized Valence Bond
(GVB) wavefunctions [48] to correct for the fixed-node error. By working with valence
bond orbitals, GVB has the advantage over more general approaches of being chemically
intuitive and of scaling well with molecule size, while efficiently correcting for the important
sources of static correlation.

To demonstrate the validity of the GVB approach, as well as to validate our overall

methodology, we present a study of a few molecules for which experimental data or reliable

45
calculations are available, testing excitation energies and bond breaking. The methylene
triplet-singlet adiabatic splitting is one of the few processes for which experimental data is
available, accurate to tenths of a kcal/mol. Thus it is a good test to see exactly how close
to the exact answer we can get. Among the most studied processes is surely the ethylene
singlet-triplet splitting (both adiabatic and vertical), with quite a few experimental and
computational studies. Both of these processes have even been the subject of other QMC
studies, providing an excellent basis on which to compare our results with those of more
standardized approaches. We go further than this with ethylene, examining the energy
barrier of a rotation about the CC axis, which breaks the double bond. Lastly, we look at
the cycloaddition of two ethylene molecules to make a cyclobutane molecule and show how

our approach is successful at modeling multiple bond changes at once.

4.3 Method

In this section, we present the QMC approach we use in our QMcBeaver [4] code, which is
available online. First, we discuss our choice of trial wavefunction, which is to use GVB for
the SCF part of the wavefunction, and second, our modifications to the Jastrow functions
recommended by Drummond and co-workers [49]. Third, we talk about our experiences in
optimizing this kind of wavefunction, starting from the approach of Toulouse and Umri-
gar [50]. Fourth, we diverge from Umrigar’s DMC algorithm [1] to use the reconfiguration
method for walker branching provided by Assaraf and co-workers [51], with more of our

modifications. Finally, we summarize our approach.

4.3.1 Generalized Valence Bond Wavefunctions

A GVB wavefunction [48] starts with a localized restricted Hartree-Fock (RHF) wavefunc-
tion and replaces an orbital (e.g., a single bond) with two singlet paired orbitals in a geminal

called a perfect pair

Yovp = A [{core} {SOU(PU} {045 - /804}] 5 (4'1)

where A is the antisymmeterizer, or determinant, operator. Although we allow ¢, and ¢,
to overlap each other, they are orthogonal to all the other orbitals in the wavefunction.

This can be thought of as permitting each electron to have its own orbital. We can rotate

46
these intuitive orbitals into the more computationally useful, but fully equivalent, natural

orbital form:

Uoyp=A [{core} {augéi — ovqbg} {aﬁ}] , (4.2)

where o2 + 02 = 1. We typically interprete ¢, as a “bonding” orbital, and ¢, as an
“antibonding” orbital. Where a perfect pair is used to represent a single bond, the benefit
is to add left-right correlation to the bond, allowing the electrons to get away from each
other a little bit, and this is the simplest wavefunction that permits Ho to dissociate to 2H.
In the same way, we can add left-right correlation to double or triple bonds. When it comes
to lone pairs, the perfect pairing scheme can be used to add in an important orbital left
out by RHF (such as 1 by in !4; methylene) to incorporate some angular correlation, or,
in other cases, to add in-out correlation to the lone pair.

Although GVB is a subset of MCSCF calculations, the main advantage to GVB over
MCSCEF is that it is the only variety that is able to avoid integral transformations [52]. But
additionally, it allows a simple, modular, and balanced way of selecting the active space,
since everything is localized. The researcher perhaps does not even need to look at any
orbitals to do this, since reliable routines exist to generate good initial guesses [53] for a
GVB wavefunction based on RHF orbitals.

For our QMC wavefunctions, we expand the geminals in each Ngyp pair wavefunction
into the equivalent 2V¢VB determinant wavefunction. Although the number of determinants
grows quickly, we use a simple algorithm to sort these determinants such that sequential
determinants in the wavefunction differ by only one column (orbital). To calculate the local
energy of the wavefunction, the algorithm only needs to perform one Sherman-Morrison
update per determinant in the wavefunction. This is a significant performance boost where
many pairs are used.

All of the cases we present here are adequately modeled with perfect pairing. How-
ever, for increased accuracy in some of our calculations, we can add Restricted Configura-
tion Interaction (RCI) terms [54] to the GVB reference wavefunction, without reoptimiz-
ing the orbitals. With these terms, the GVB-RCI geminal now takes the “excited” form
{JUQS% + Py — avqbg}, adding some charge-transfer character in the pair. Although we
could add these RCI terms to all geminals, for a total of 3VévB determinants, we excite

only up to 2 geminals at per determinant.

47
4.3.2 Length Scaled Jastrows

We implemented the 2 and 3 particle Jastrow functions recommended by Drummond and
co-workers [49] because we like the cutoffs, flexible shapes, and simplicity. However, we
found that their length scale parameter L was too difficult to optimize for the algorithms
we use, so we use the following modifications instead. For 2 particle interactions, we use

the functional form

M

wijlw — ;8] = (x—1)° <Z akﬂvk) , if 0<x<1 (4.3)
k=0

= 0, if x>1, (4.4)

where r;; is the distance between the two particles (electrons or nuclei) ¢ and j, S is the
length scale parameter (x = 74;5), and a; is constrained to satisfy the cusp conditions. The
(x — 1)¢ prefactor is used to force the C' — 1 lowest order derivatives to go to zero at the
cutoff. We have found that C' < 3 inhibits the optimization of S using our routines, and
that C > 3 does not make much difference. Our three customizations are that the function
uses the scaled coordinate z instead of r, we optimize 1/L instead of L, and we only use
C = 3. These do not change the variational flexibility of the function, but they make the
aj, parameters less dependent on S, easing their optimization. This makes a total of M + 1
independent parameters, and in all calculations presented here, we use M = 8. Optimizing
the a; parameters was still delicate during concurrent optimization with S, so we eventually
turn off the optimization of S for some final fine tuning, as discussed in Section 4.3.3. We
make analogous modifications to their electron-electron-nuclear Jastrows for our software.
Our tests did not indicate that differentiating between spin for electron-nuclear Jastrows
significantly changed the energy, so we use the same Jastrow for all electrons. For hydro-
carbons, then, we use four 2 particle Jastrow classes: Carbon-Electron, Hydrogen-Electron,
Opposite-Electron, and Parallel-Electron. Adding the 8 parameters for the Jastrow’s poly-
nomial and the 1 length scale parameter, there are 9 parameters for each 2 particle Jastrow,
for a total of 36 parameters for 2 particle Jastrows in all of our calculations.
Similarly, we ignore spin distinctions in our 3 particle Jastrows, leaving us with only one
3 particle Jastrow per element represented in the molecule. Although there are 4% terms
c

of the form $fl‘g$

i; in the polynomial for 3 particle Jastrows, there are several necessary

48
constraints including symmetry and cusp conditions. Thus, the number of independent
parameters is reduced considerably to only 27 parameters, including the length scale, per
Jastrow class. As a further simplification, we have found 3 particle Jastrows centered on
Hydrogen atoms to be unhelpful. This makes physical sense given that these Jastrows are
primarily useful for modeling the interaction of two 1s electrons with the nucleus, and on
average only 1 electron will be near a Hydrogen nucleus.

With minimalistic Jastrows added to single determinant wavefunctions, we estimate that
Jastrow function evaluation uses 10% or less of the time spent during a QMC calculation.
With the addition of 3 particle complexity to Jastrows, however, this fraction can increase
to 70% or 80% or higher. In the future, however, we believe [55] that SIMD computing
technology in devices such as GPUs will eliminate the cost (comparatively) of Jastrow

evaluation. In the mean time, however, it is important to seek practical short cuts.

4.3.3 Wavefunction Optimization

To optimize our wavefunctions, we use the method recommended by Toulouse and Umri-
gar [50], with the following modifications. To make a wavefunction, we copy into our input
file the best Jastrows we have from among similar systems, noting that it is more important
that we match the basis set than the type of SCF wavefunction. If we found that two CI
coefficients were the same (or additive inverses) to within a relative difference of 1075, we
constrained them to maintain the relationship. Furthermore, even though QMC is insensi-
tive to the normalization of the wavefunction, we do not take the opportunity to eliminate
a degree of freedom in the CI coefficients. Starting at around 20,000 samples per optimiza-
tion step, we double the number of samples collected per iteration, with a maximum of
500,000 samples, if the variational energy does not go below the statistical error between
successive iterations. Umrigar makes use of an ag;qq factor to stabilize the eigenvector from
the solver. Just as he does, we obtain this factor on the basis of a short correlated sampling
run in between optimization steps. Our correlated sampling runs are produced using the
best optimized wavefunction from the previous iteration as the guiding trial function, and
including 7 wavefunctions produced with preselected agiqg factors, logarithmically spaced
between 107 and 103. The larger Qdiag is, the less the wavefunction will change as com-

pared with the previous iteration. The wavefunction for the next step is chosen from the 7

49

by selecting the one ¢ with the lowest quantity:
0.95(E; — Eo) + 0.05(c7 — a3) /a8,

thus optimizing for lowering the energy compared to the guiding trialfunction, indexed at
0, while penalizing a wavefunction with too large of a sample variance. With this scheme, if
an optimization step goes bad, the step can effectively be ignored by choosing a4;qq = 1000.

There are two problems with this procedure applied to our Jastrow functions. First,
despite our improvements, the length scale parameter remains a source of instability. Thus
once we observe the length scale to be changing by less than a few percent, we turn off its
optimization, allowing us to fine tune the other Jastrow parameters. Second, the algorithm
occasionally leads to a local minima. Some of our wavefunctions, for example the 3B;
methylene wavefunction, initially optimized to an absurd parallel spin Jastrow, which was
only discovered upon examining a plot of the Jastrow itself. In these cases, neither the
energy nor the variance were suspicious, since after all, we did not know how deep the
global minima goes. The problem is that some of the local minima we found raised the
VMC energy by about a few kcal/mol. For DMC, this is not a problem upon time step
extrapolation, but we are not doing time step extrapolation as discussed in Section 4.3.5.
For this reason, and since the CI coefficients might be affected by poor Jastrows, we carefully
monitored our Jastrows during optimization.

Once satisfactorily optimized, all of the Jastrows within each class looked qualitatively
very similar. A few examples are plotted in Figure 4.1, exponentiated. With this in mind,
we were easily able to identify bad Jastrows as ones which cross the exp(u;;) = 1 line, which
were not monotonic, or which took on extremely high or low values. In some exceptional
cases, the global minima was only obtained by first optimizing all Jastows except the trou-
blesome one, constraining it to a good Jastrow from another system. Once that converges,
we optimize the troublesome Jastrow (and possibly its length scale) holding all the oth-
ers fixed. We repeat this cycle until all of the Jastrows are sufficiently close to the global
minima that concurrent optimization of all the Jastrows can lock it in. There were not
many cases like this, but this problem casts doubt on the rest of our optimization efforts,

especially for the CI coefficients which we can not monitor visually.

50

Parallel Spin Opposite Spin
1 L R =
= N
-l
2
o
] _
4]
T
0o 1 2 3 4 5 6 1
ij (Bohr) r;; (Bohr)
Electron-H Electron-C
1.2 4.5 ‘
1.18
4 _
1.16
1.14 3.5 i
1.12
7 1.1 n 3 e
2 2
E 1.08 E, 2.5 i
1.06
1.04 2 _|
1.02
1.5 _
1
0.98 | | | | | | | 1
o 1 2 3 4 5 6 17 (V] 1 2 3 4 5 6
r;; (Bohr) ry; (Bohr)

Figure 4.1: Typical ground state Jastrow functions used in this study, for the aug-tz basis
set. Based on our experience, we do not believe that any Jastrows would look significantly
different than these. In our optimization, we ignored minor flaws in the Jastrows, such as
wiggles in the Electron-H Jastrows, or the brief crossing of the exp(u;;) = 1 line in Opposite
Spin Jastrows.

o1
4.3.4 Walker Reconfiguration

There are a variety of ways to design the branching process such that the number of walkers
is always constant, and we use the algorithm designed by Assaraf and co-workers [51], which
we dub ACK reconfiguration. This is made possible with a reconfiguration step, where
low weight walkers are replaced with duplicates of high weight walkers. This is done by
calculating the average walker weight Wy, and using W, to bifurcate the list of walkers.

We delete a total of

Nrcptacements % 3 ‘Mf’ g - 1‘ (4.5)
i€{w; <Waug}

walkers, where a walker with weight w is selected with probability proportional to |w;/Weyg—
1]. The same proportionality relation is used to select enough high weight walkers for dupli-
cation, so that the total number of walkers is restored. After this, the weights of all walkers
are set to Wy.g, so that the total weight of the walkers is also unchanged. This method
adds significant stabilization to the ordinary DMC process since any instabilities affecting
one walker are instantaneously disbursed to the others.

We add further stabilization to the method, partly because of the added instability of our
all-electron move iterations. This is done simply by selectively ignoring in the duplication
and elimination candidate lists walkers which fail our criteria. That is, we keep W4, the
probabilities, and Nyepiacements the same as prescribed. The only difference is that the actual
length of either of the two lists might be different than the ACK algorithm predicted. The
penalty for this is that in rare cases, the algorithm will be unable to maintain the same
number of walkers it started with. We modify our elimination lists to ensure that walkers
with w; < 1075 are guaranteed to be replaced this iteration, since they are a complete
waste of computational effort. Defining age as the number of iterations since the walker
last moved and dW as the multiplicative factor by which the weight changed this iteration,

our acceptable duplication criteria are:
1. age > 4,
2. pow(dW,age + 1) > 5,

3. or if the walker has not been duplicated this iteration.

52
Persistent walkers, those stuck in one location, can be a problem in a Monte Carlo calcula-
tion. Our improvement is to ensure through Criteria (1) that at least these walkers never
become duplicated. Duplication will also be prohibited by Criteria (2) if a slow walker
is in a location where its weight grows too fast. The reason is that we have found that
some walkers can become stuck close to a wavefunction node, which is a singularity in the
local energy, where they often spawn more quickly than they can move away. Lastly, with
Criteria (3), we do not allow a walker to duplicate more than once per iteration, a fail-safe

to slow the damage that one walker might cause.

4.3.5 Further Details

To make our wavefunctions, we have used both Jaguar [5] and GAMESS-US [6], and we
obtained our basis sets from the EMSL website [56, 57]. For this study, we have chosen two
basis sets, which we label aug-tz, and tz. Our aug-tz basis set is aug-cc-pwCVTZ, which is
Peterson and Dunning’s new [58] weighted basis functions, which were optimized with the
inclusion of some core-core correlation energy for better overall performance. This basis set
puts 25 basis functions from [4s3p2d] on H, and 69 basis functions from [7s6p4d2f] on C.
We also use cc-pCVTZ, labeled here as tz, which uses their recent [38] scheme for adding
core-valence correlation. This basis puts 15 basis functions from [3s2p1d] on H, and 49 basis
functions from [6s5p3d1f] on C. All Hartree-Fock, coupled-cluster [59], and GVB [48], and
MCSCEF results were obtained in GAMESS using the same geometry as the corresponding
QMC calculation. We included all determinants in the CI expansion, except where noted.
All of our DFT calculations were done using Jaguar with high precision settings. We
include results using the LDA, PBE, B3LYP, and the m06-2x [60] functionals, using the
same geometries as the corresponding QMC wavefunctions. We used Jaguar to make our
GVB wavefunctions, since it has a good mechanism for generating initial guesses [53]. But
any wavefunctions that we used were handed over to GAMESS for final convergence since
Jaguar restricts us to 7 f basis functions, and we want to use all 10 cartesian functions.
Our QMC calculations are done using the QMcBeaver [4] software developed in our
group. The C++4 source code is available online under the GNU Public License. Starting
with a script generated input file based on an SCF calculation and similar Jastrows, we use
our own efficient algorithm [61] to initialize the walkers. We evaluate the local energy in

all-electron updates, using the cusp replacement algorithm of Ma and co-workers [62]. We

53

use Variational Quantum Monte Carlo to optimize all CI coefficients and Jastrows by the
method recommended by Toulouse and Umrigar [50], with our modifications as outlined
in Section 4.3.3. Using the resulting optimized parameters, we run Diffusion Quantum
Monte Carlo based on Umrigar’s seminal algorithm [1], with our modifications as described
here. Our calculations are run on 4 CPU cores, for a total of 400 walkers, using a different
parallelization [63] technique than is typical for QMC calculations. All energies reported
have been fully decorrelated using our efficient algorithm [64], which automatically finds

the smallest decorrelated block size.

~9.05 i | W =
-9.1 | -
i . exp
-9.15 \ =
- 1 0.0025
- \ =
o] N]
-9.2 i LAl
£ "" ! i §() /5 o.005
3 \ ' A
-9.25 ‘/ —
g -9. ,{ . 0.0075
B -9.3 1 « g. —-——— 0.01
o dL .
é -9.35 N — 0.0125
-9.4 4 o.015
-9.45 | . =
| | | | T

0 5000 10000 15000 20000 25000

Time (Hartrees_l)

Figure 4.2: Cancellation of time step error between triplet to singlet energies in methylene,
using 3 pair delocalized GVB wavefunction. For this plot, individual calculations were
stopped when they reached a statistical error of exactly 0.065 kcal/mol, corresponding to
an error of 0.092 kcal/mol for the difference. We plot the differences here against the amount
of simulated time, iterations x time step X average move acceptance probability.

Based on the results shown in Figure 4.2 and other comparisons we have done not
included here, we can see that the majority of the time step error cancels off for each time
step. This indicates that the dominant source of error is not the time step error itself,
but an instability on the order of a few tenths of a kcal/mol. With this in mind, the

consensus result appears to be about 9.2(1) kcal/mol. Since the computational cost of the

54

calculation scales linearly with the time step, we are motivated to choose just one time step,

L most of

as large as reasonable. We can also see that after running for about 15,000 au™
the calculations have converged to within the 0.092 kcal/mol statistical error. Based on
this observation, we typically choose a time step of 0.0075 and run for 20,000 au™"', which
corresponds to 2.7 million iterations. Looking ahead at Table 4.1, our converged result is
9.239(88) kcal/mol for this case, in agreement with our qualitative assessment of Figure 4.2.

The length of time for each calculation varied with many factors, but ranged from about
40 hours on methylene to about 100 hours on ethylene to about 400 hours on cyclobutane.
However, for these same calculations, each processor only required about 15 to 40 megabytes
of RAM™* each. It is illustrative to compare these performance numbers with coupled cluster
methods, which not only scale poorly in computation time with larger molecules, but scale
poorly in memory requirements as well. Even if a researcher is willing to wait for completion,
memory is certainly a finite resource, and random access memory will remain a bottleneck
resource for the foreseeable future. In contrast, even though QMC scales somewhat poorly in
computation time at O(N3)" with a large prefactor, where N is the number of electrons, the
memory requirements are negligible. This is a favorable situation since machines are rapidly
getting faster, and it is even possible to run QMC on a Graphical Processing Unit [55] for

remarkable speedups.

4.4 Results

We present our results for several related molecules for which good experimental or com-
putational results are available to use as a reference. We wish to examine the effectiveness
of adding GVB pairs to our wavefunctions, as well as the importance of different basis sets.

In this section, we examine methylene, ethylene, and cyclobutane.

4.4.1 Methylene

The singlet-triplet splitting in methylene is among the most studied problems in quantum
chemistry. It has been notoriously difficult to get correct results for, and thus it remains

a very useful benchmark for QMC. The 2s and 2p atomic orbitals on Carbon are nearly

*Low memory requirements are one of the benefits of all-electron updates.

Tassuming dense matrices

55

degenerate, necessitating the inclusion of all 4 into any Carbon containing molecule. Any
3B wavefunction does this, while one orbital is left out at the RHF level for '4;. Thus
the simplest reasonable description of the 'A; state is to add the missing orbital by perfect
pairing it with the lone pair as an angular correlation term. It is important to also recognize
that triplet paired electrons are much better correlated, due to orbital orthogonality, than
closed shell counterparts in a singlet wavefunction. Consistency requires at least that the
number of orbitals on each side of a comparison is the same, adding another reason for the
perfect pairing.

We present our results in Table 4.1. Our GVB-1 calculations represent RHF for the
triplet state, and one GVB perfect pair for the singlet, indicating our policy of using the label
from the comparison with the highest number of pairs. The GVB-3 level adds correlation to
the bonds, for a total active space of 6 orbitals, and there are two ways to do this. GVB-3 is
supposed to use localized bonding and anti-bonding orbitals, but we also include a version
with the same 4 orbitals delocalized, even though the GVB splittings are 0.02 kcal/mol
different. The RCI-3 level of theory excites up to two perfect pairs into their corresponding
open shell singlet, without optimizing the orbitals. Finally, by CAS-3, we mean the complete
active space in the 6 orbitals, optimizing the orbitals in SCF. There is some question about
which zero point energy (ZPE) we should use since we see two values used in the literature
to convert the experimental [65] To=3147+5 cm™! to T.. First, we find that many people
use AZPE=68 cm~! to produce T.=9.192(14) kcal/mol, a ZPE derived [66] by fitting a
potential energy surface to reproduce experimental excitation energies. We also find a
theoretical AZPE=128 4 18 cm~! obtained [67] with accurate quartic force fields leading
to T.=9.364(53) kcal/mol. We use the latter value for our comparisons. We also note that
in contrast with other theoretical studies of this system, we do not incorporate any other
energy corrections to our measurements.

For methylene, we have run each calculation shown in Table 4.1 twice so that we can
average some of the instabilities out, a luxury we do not employ for our other molecules.
Additionally, one of these two runs for our GVB-3/aug-tz was run for much longer, since
we were surprised that the localized orbitals are further from experiment. This error is
compensated for at the RCI-3 level. All of our results are within 0.4 kcal/mol of the
experimental estimate, with the exception of our RHF calculation which does quite poorly

at an error of about 4 kcal/mol. Additionally, we include our estimation of the lowest

56

Table 4.1: Methylene excitations: 'A4; «3B; and !By «3By. For ®By, [Rou,Oncu] =
[1.0753A,133.93] from experiment [65], for '4; [1.107A,102.4] from experiment [68], and for
1By [1.0723A,142.44] from theory. [69]. By ‘B’, we are indicating our basis, by ‘O’ we are
indicating, where it matters, whether our GVB pairs are localized or delocalized, and by
‘J” we are indicating whether we are using 2 or 3 particle Jastrows.

SCF B o J A, TAy 3By
kcal /mol au au
GVB-3 augtz L 2 9.071(80) -39.121669(91) -39.136124(89)
GVB-3 augtz D 2 9.239(88) -39.120847(81) -39.13557(11)
GVB-3 augtz D 3 9.340(71) -39.124461(79) -39.139345(82)
)

Exp? 9.364(53

RCL3 augtz L 2 9.37(11) -39.12176(13) -39.13670(12)
GVB-1 aug-tz 2 9.40(10) -39.12149(12) -39.13648(12)
RCL3 augtz D 2 9.519(95) -39.12137(11) -39.13654(11)
GVB3 tz D 2 953(10) -39.12065(11) -39.13584(12)
GVB-3 tz D 3 9.557(74) -39.123975(83) -39.139205(83)
GVB-1 aug-tz 3 9.560(76) -39.124248(91) -39.139483(80)
GVB-1 tz 2 9.65(11) -39.12093(12) -39.13631(12)
GVB-1 tz 3 0.673(73) -39.123838(84) -39.139253(81)
CAS-3 aug-tz 2 9.792(92) -39.12353(10) -39.13913(10)
RHF augtz 2 13.80(10) -39.11449(12) -39.13643(12)
RHF aug-tz 3 13.844(73) -39.117421(85) -39.139483(80)
SCF B o J A 'B; 3By
kcal/mol au au
PESY* 31.897
GVB-1 aug-tz 2 32.06(11) -39.08539(12) -39.13648(12)
GVB-1 aug-tz 3 32.114(71) -39.088306(80) -39.139483(80)
MRCI® 32.807

a) Experimental T, = Ty + AZPE, where Tg [65]=3147 £5 cm~! and AZPE [67] =128 +
18 ecm~! b) From Ref [[66]] ¢) From Ref [[69]]

57

singlet-singlet vertical excitation, even though there is little consensus for what the right
answer should be. Adding augmented basis functions improves our estimates by 0.1 to 0.2
kcal/mol, while 50% more basis functions added computational time of only 10% to 30%.
There is no reason not to use the augmented version of the chosen basis set class. Looking at
our timing data, we see that if we had stopped our calculations at an error of 0.1 kcal/mol,
our 3 particle wavefunctions would have finished 30% to 40% quicker, demonstrating their
value in variance reduction. This comparison encourages their use, but this conclusion
changes for cyclobutane.

It is clear that beyond the statistical error, there are some additional sources of error.
As mentioned previously in reference to Figure 4.2, there is some error due to instability
in the convergence, which we have attempted to minimize for methylene by running each
calculation twice. But more importantly, there appears to be some error due to incomplete
optimization of wavefunction parameters. For example, using our tz basis set, the addition
of 3 particle Jastrows does not appreciably change the energy difference, a result which
makes sense given our assumption that the time step error cancels out. This is not the
case for our aug-tz basis set, which changes by at least 0.1 kcal/mol with the addition of 3
particle Jastrows. We are also puzzled by our CAS-3 results. In this case, our first optimized
wavefunctions produced a DMC splitting of 9.877(92) kcal/mol, which is clearly wrong. We
returned to the optimization stage, keeping the optimized Jastrows but starting with the
original CI coefficients, and this time we improved to 9.792(92) kcal/mol. This indicates
that we eliminated a local minima in the wavefunctions worth 0.085 kcal/mol. We also
tried using a determinant cutoff of 0.01 so that there were fewer parameters to optimize,
but this produced 10.291(94) kcal/mol. Clearly, there is no fundamental flaw with CAS
wavefunctions themselves, which work quite well for us in ethylene. But this leaves us in a
precarious balance where theoretically better wavefunctions are perhaps more likely to fall
into local minima during optimization.

We wanted to discover the effect of optimizing different parts of the wavefunction. We
pursued this by choosing some standard state for each atom for the Jastrows, and then
selectively optimizing parts of the wavefunction, and comparing these results to the com-
parable result from Table 4.1. Our results, shown in Table 4.2, tell us that optimizing the
CI coefficients was worth 0.5 kcal/mol, and that optimizing the electron-nuclear Jastrows

was worth another 0.4 kcal/mol. Of course, in the limit of zero time step, there should

58

Table 4.2: The effect of optimizing different parts of our aug-tz GVB-3 delocalized methylene
wavefunctions, with 2 particle Jastrows, and all calculations run at 0.0075 time step. The
starting point for these calculations are the CI coefficients from GV B, Electron-Carbon and
Electron-Electron Jastrows from optimized Carbon GVB-1 atom, and Electron-Hydrogen
Jastrows from an optimized GVB-1 Hs molecule. Each row corresponds to a different set
of parameters which were optimized, where EN stands for electron-nuclear and EE for
electron-electron.

Optimization A, 14, 3By
kcal/mol au au
EN and CI 9.20(11) -39.12184(13) -39.13650(12)
Fully Optimized 9.239(88) -39.120847(81) -39.13557(11)
EE and CI 9.51(11) -39.12133(13) -39.13648(12)
CI 0.58(11) -39.12161(13) -39.13687(12)
EE and EN 9.97(11) -39.11872(12) -39.13460(12)
EE 10.05(11) -39.11801(12) -39.13403(12)
No Optimization ~ 10.08(11) -39.11806(13) -39.13412(11)

only be two results in this table, since in that case Jastrows should not matter, so much
of the error here can be called time step error. But it appears to be crucial that we opti-
mize the CI coefficients. Returning to the question of the CAS discrepancy, we tried the
experiment of optimizing all the Jastrows, while keeping the original CI coefficients. This
produced 15.80(11) kcal/mol as the DMC energy splitting, the worst of all the results we
have obtained. Since this represents the comparison of the SCF functions directly without
worrying about whether the VMC optimization is falling into local minima, we can see that
given our methodology, a better SCF wavefunction does not always improve accuracy. In

separate investigations, we have found that CAS wavefunctions are necessary.

Table 4.3: Methylene excitations using single determinant wavefunctions. Using our aug-tz
basis set, we obtained orbitals from RHF or DFT, and added 2 particle Jastrows.

A, Ay 3By

kcal/mol au au
CAS-3 13.76(10) -39.11499(13) -39.13693(10)
RHF 13.80(10) -39.11449(12) -39.13648(12)
B3LYP 14.05(11) -39.11539(12) -39.13778(12)
LDA 14.39(15) -39.11481(18) -39.13773(16)
PBE 14.64(17) -39.11527(24) -39.13860(12)

Another interesting consideration is whether we could use DFT orbitals. In Table 4.3, we
present our results for several single-determinant representations of the trial wavefunction.

Here we can see that none of these wavefunctions are capable of addressing the missing

59
angular correlation. Furthermore, although all the results are poor, the DF'T wavefunctions

are even worse than RHF.

4.4.2 Ethylene

There has been continued interest in calculating various excitation energies for ethylene in
QMC, from the ground state singlet 1Ag, also known as the N state, to the first excited
triplet 3By, the T state, or singlet ! By,,, the V state. Experimentally measured energies for
the N-T splitting will tend to be artificially low since the molecule twists immediately upon
excitement to the triplet state, and indeed, measured values span a range of 4.32 eV [70] to
4.6 €V [71]. Calculations have been in better agreement, with results ranging from recent
QMC calculations [72, 73] both producing 4.50(2) eV and 4.51 eV for a CCSD(T)/CBS [74]
calculation, up to about 4.6 eV for MRCI [75] and auxiliary field Monte Carlo [76]. In
the many comparisons made with experimentally based results, researchers typically do not
bother to account for the zero point energy, which is difficult to calculate for the vertical
triplet state, so we do not bother to incorporate this either.

To our surprise, even DMC was off by several kcal /mol from the correct energy splitting
when we used RHF wavefunctions. Part of the problem, as discussed for methylene, is that
the RHF level of theory is inconsistent between the N and T states. Thus the simplest level
of theory for which we obtained correct results was the GVB-1 level, which perfect-pairs
the 7* orbital to the 7 orbital for the N state. This indicates that for ethylene, the most
important source of fixed-node error is the left-right correlation in the double bond. The
7w electrons in the triplet RHF wavefunction are already correlated at the GVB-1 level
since they occupy orthogonal orbitals, and both states use the same 9 orbitals, satisfying
consistency. The next level of theory is GVB-2, which adds left-right correlation to the CC
single bond for both states. Finally, for GVB-6, we add correlation to all 4 CH bonds. RCI
and CAS have the same meaning as we described for methylene.

Among our consistent results for aug-tz, shown in Table 4.4, we can see agreement to
within 0.26 kcal/mol with each other and with the other DMC results, with the exception
of our RCI-6 calculation. This is a clear indication that the GVB level of theory is sufficient
to capture the chemistry, and that going beyond this is unnecessary. Here, we can see that,
unlike our methylene CAS wavefunctions, our ethylene CAS wavefunctions are correct. On

the other hand, our RCI calculation seems to have a problem whereas our methylene RCI

60

Table 4.4: Vertical ethylene: 3By, «— 1Ag and ' By, «— 'A;. For 3By,. For all calculations,
we used Roe = 1.339A, Roy = 1.086A, and © oy = 117.6, in order for our results to be
directly comparable with Schautz [73]. The entries below the horizontal line are inconsistent,
with the number of GVB pairs indicated in parenthesis for each state individually.

SCF B J A, 3Biu tA,
kcal/mol au au
Exp® 100.54
GVB-1 tz 2 103.13(16) -78.39872(18) -78.56307(18)
GVB-6 tz 2 103.38(27) -78.39781(40) -78.56256(16)
GVB-2 aug-tz 2 103.45(17) -78.39759(18) -78.56245(22)
DMC? Partridge 3 103.5(3)
DMCed 2 103.5(5)
CAS-6" aug-tz 2 103.51(26) -78.40208(38) -78.56703(17)
GVB-6 aug-tz 2 103.56(14) -78.39742(16) -78.56246(16)
CAS-2 aug-tz 2 103.68(41) -78.39781(17) -78.56303(63)
GVB-1 aug-tz 2 103.71(42) -78.39724(18) -78.56251(64)
GVB-2 tz 3 103.91(39) -78.40320(60) -78.56879(14)
GVB-2 tz 2 103.98(16) -78.39676(18) -78.56246(18)
CCSD(T)® CBS 104.1
RCI-6 aug-tz 2 104.29(14) -78.39897(16) -78.56516(16)
RCI-6" aug-tz 2 105.14(38) -78.39727(15) -78.56483(59)
Exp’ 106.1
RHF tz 2 100.17(31) -78.39872(18) -78.55836(47)
RHF aug-tz 2 101.91(38) -78.39724(18) -78.55964(57)
GVB-(1,1) aug-tz 2 103.49(42) -78.39759(18) -78.56251(64)
SCF B J A, B, A,
kcal /mol au au
Exp? 177.57
DMCe4 182.9(5)
CAS-2 aug-tz 2 190.81(41) -78.25896(19) -78.56303(63)
“CAS 6-67¢ 192.6(5)
CAS-6 aug-tz 2 199.65(15) -78.24887(16) -78.56703(17)

a) Energy-Loss spectra, from Ref[[70]] b) Single determinant from CASSCF(4,8), using
pseudopotentials, from Ref [[72]] ¢) Using pseudopotentials and their custom basis set,
from Ref [[73]] d) These DMC results use VMC optimized orbitals. e) Computed value
from Ref [[74]]]. f) Optical spectra, from Ref[[71]] g) Adsorption spectra, from Ref [[77]] h)
Only determinants with coefficients > 0.01 were included. i) Only determinants with
coefficients > 0.001 were included.

61
calculations were good. We believe that these outliers are evidence again of our wavefunc-
tions getting caught on local minima during optimization. Presumably, we could pay as
much attention to these wavefunctions as we did for our methylene CAS wavefunction and
perhaps improve the result, but this would represent an unfair selection bias to our overall
methodology. Either way, this speaks well for GVB, which does not appear to have any
problems.

Examining our inconsistent results, below the horizontal line, we can see that left-right
correlation in the double bond (found by comparing GVB-1 with RHF) is worth 1.80 or 2.96
kcal/mol. Our GVB-(1,1) case, an inconsistent wavefunction which correlates the CC single
bond for the T state, but only the double bond for the N state, does produce an excellent
energy difference, showing that consistency is not always critical. Once the double bond’s
correlation is included, the QMC results have reached convergence, suggesting that the re-
maining correlation energy from the SCF perspective is almost entirely dynamical. Looking
at the SCF results, the RHF splitting was 83 kcal/mol, GVB calculations all produced about
100 keal /mol, RCI calculations produced 108 kcal /mol, and our CASSCF(12,12) calculation
produced 110 kcal/mol. We can clearly see the advantage of QMC over other approaches,

even when inconsistent.

Table 4.5: Vertical ethylene: 3B, — lAg and ' By, < 'A;. For 3By, For these calculations,
we used MP2 optimized Roc = 1.331046A, Reg = 1.080564A, and © oy = 121.35.

SCF B J A 3Biu TA,
kcal/mol au au
GVB-2 aug-tz 2 105.05(16) -78.39480(18) -78.56220(18)
GVB-6 aug-tz 2 105.14(14) -78.39556(16) -78.56311(16)
GVB-6 tz 2 105.38(14) -78.39464(16) -78.56257(16)
RCL6° augtz 2 105.55(14) -78.39558(16) -78.56379(15)
GVB-2 tz 2 105.64(16) -78.39401(18) -78.56236(18)
CAS-2 augtz 2 105.82(16) -78.39502(18) -78.56366(19)
GVB-1 tz 2 105.99(16) -78.39400(18) -78.56290(18)
GVB-2 tz 3 106.14(13) -78.39984(15) -78.56899(14)
RCI-2 tz 2 106.16(16) -78.39460(18) -78.56377(18)
CAS-6% augtz 2 106.54(14) -78.39733(15) -78.56711(15)
SCF B J A, 'Biy T4,
kcal/mol au au
CAS-2 aug-tz 2 192.27(17) -78.25726(19) -78.56366(19)
CAS-2 tz 2 193.83(18) -78.25480(22) -78.56377(18)

a) Only determinants with coefficients > 0.001 were used.

62

Originally, we had used an MP2 and the tc basis set to obtain our ethylene geometry,
and we include those results in Table 4.5. Concerned about the disagreement of about 2
kcal/mol between these results and the other DMC results, we decided to switch and use
exactly the same geometry as Schautz [73], and our results did agree. We include these
results to illustrate a few key lessons. First, we point out that most of the difference came
from the energy of the T state, underscoring its steep energy slope, an error that not even
QMC can correct. Second, notice that previously our RCI-6 calculation was not as much of
an outlier, as it is with the new geometry. One difference was that previously, we had used
a determinant cutoff of 0.001 for our RCI-6 and our CAS-6 wavefunctions, whereas for the
new geometry, we raised the cutoff to 0.01 so that they would run faster (about 2 to 3 times
for the N state). This change in truncation appears to have helped the CAS-6 calculation
relative to consensus, but hurt the RCI-6 calculation. Thirdly, in rerunning the calculation,
we used the optimized Jastrows in the new wavefunctions, and reoptimized everything. This
appears to have helped improve consistency, which can be seen by comparing the spread in
A, for aug-tz. If RCI-6 and CAS-6 are this sensitive to determinant cutoffs, then this is yet
another reason not to use them.

For the N-V vertical splitting, at the bottom of Table 4.4, our energies are 8 kcal/mol
higher than the best values reported by Schautz and Filippi [73], for which they even opti-
mized orbitals within their QMC treatment. This underscores the importance of including
dynamic correlation during [78, 73] orbital optimization. We use the same geometry, but
our results are only comparable when neither of us optimize orbitals. Our CAS-2 N-V split-
ting, based on a CASSCF(4,4) calculation, is about 2 kcal/mol better than their “CAS 6-6”.
The difference could be due to pseudopotentials, or because we did not need to truncate
our CI expansion like they did, for coefficients below 0.01. Our CAS-6 calculation, based on
a CASSCF(12,12) wavefunction with determinants truncated at 0.01, is 7 kcal/mol worse
than theirs, perhaps due to a failure on our part to fully optimize this wavefunction.

The N-T vertical splitting is difficult to study experimentally, since the triplet state is
far from its Doy minimum. In Table 4.6, we examine the adiabatic splitting, the geometry
for which we obtained by optimizing the structure with MP2 using the tz basis set. We
use the same N state QMC energies as before, but include them again in this table for
completion. Although there doesn’t appear to be sufficient experimental data to make

a good comparison, we do have some recent high quality CCSD(T)/CBS results [74] to

63

Table 4.6: Adiabatic ethylene: 2By, «— 1Ag. For 3By, we use Reo = 1.449148A, Ropy =
1.080469A, and © oy = 121.5, and we use the same geometry as previously for 'A;. The
entries below the horizontal line are unbalanced in terms of the number of orbitals.

SCF B J A, 5By A,
kcal/mol au au

Exp® 61.(3)

CCSD(T)* CBS 68.8

GVB-1 augtz 2 69.14(42) -78.45233(18) -78.56251(64)

GVB-2 augtz 2 69.20(17) -78.45217(17) -78.56245(22)

DMC* Partridge 3 69.6(3)

GVB-2 tz 2 69.79(16) -78.45124(18) -78.56246(18)

GVB-1 tz 2 70.13(16) -78.45131(17) -78.56307(18)

GVB-6 tz 2 70.31(14) -78.45051(16) -78.56256(16)

CAS-6° aug-tz 72.13

RIF 2 2 67.17(31) -78.45131(17) -78.55836(47)

RHF aug-tz 2 67.34(37) -78.45233(18) -78.55964(57)

a) We “uncorrect” the experimental value from Ref [79] of 58(3) kcal/mol and all the
computed results from Ref [74] by AZPE = 3.2 kcal/mol, so that we can directly compare

calculations. b) Single determinant from CASSCF(4,8), using pseudopotentials, computed
value from Ref [72]. ¢) Our own CASSCF(12,12) calculation.

compare with, and with which our best result only differs by 0.5 kcal/mol. Akramine
and co-workers [72] also recently studied this transition using QMC, and our results are in
agreement with theirs, even given the differences in our wavefunctions.

Finally, we investigate singlet Doy ethylene, obtained by twisting the Do ground state
90 degrees around the CC bond leaving all other degrees of freedom fixed. Upon twisting,
the two 7 orbitals become degenerate, a complication that many theoretical methods fail
to handle correctly. A #m* GVB perfect pair for the planar wavefunction becomes a double
helix, affecting not only the CC single bond, but the CH bonds as well. We have been
unable to find any experimental results for this, so we compare our results against our
own CASSCF(12,12) calculation. Our best result, shown in Table 4.7, is only 0.2 kcal /mol

higher than the best literature value.

4.4.3 242 Cycloaddition

The ethylene + ethylene reacting to make cyclobutane is the textbook example of a con-
certed reaction forbidden by the Woodward-Hoffman rules. We are only doing a two point
calculation, one for an isolated ethylene molecule, and one for an isolated cyclobutane

molecule, bypassing any questions related to allowed reaction paths. This is one of the

64

Table 4.7: Ethylene Twist: Doy, — Dsy. The geometry is the same as previously, except
that now we have twisted the CC bond by 90 degrees. These results were produced with
the MP2 geometry, and are being rerun with the new geometry.

SCF B J A, Doy Dy,
kcal/mol au au
GVB-1 augtz 2 76.96(42) -78.43987(17) -78.56251(64)
GVB-2 tz 2 77.04(16) -78.43968(18) -78.56246(18)
GVB-2 augtz 2 77.14(18) -78.43952(19) -78.56245(22)
GVB-6 augtz 2 77.30(41) -78.43928(63) -78.56246(16)
GVB-6 aug-tz 2 77.89(18) -78.43834(23) -78.56246(16)
GVB-1 tz 2 77.54(16) -78.43951(18) -78.56307(18)
GVB-6 tz 78.37
GVB-6 tz 2 78.61(14) -78.43728(16) -78.56256(16)
CAS-6 aug-tz 78.88

simplest reactions that DFT gets wrong, disagreeing with experiment by 5 to 10 kcal/mol,
even with some of the more recent functionals, so we consider this to be an ideal test case
for QMC. Our cyclobutane geometry was obtained by optimizing the Dsyy structure with
MP2 using the tc basis set.

Table 4.8: Cycloaddition: 2C.Hy «— C4Hg. We use the same ethylene geometry as
previously, and our cyclobutane geometry is Roc 1.545029A, Robaz = 1.089404A,
ReHeq = 1.0877A, and ©gcoy = 109.18. Below the solid horizontal line are inconsistent
calculations, where the number of GVB pairs for the two states are in the parenthesis.

SCF B J Ae CoHy CyHg
kcal/mol au au
GVB-4 tz 2 21.98(28) -78.56246(18) -157.15993(27)
GVB-4 aug-tz 2 22.05(32) -78.56245(22) -157.16004(27)
Exp® 22.3(2)
CCSD(T) te 92.54
GVB-4 tz 3 22.65(23) -78.56879(14) -157.17367(23)
MO6-2x tz 2 25.67(30) -78.56121(19) -157.16333(30)
RHF tz 2 27.37(61) -T8.55836(47) -157.16034(28)
GVB-(1,0) tz 2 21.45(28) -78.56307(18) -157.16034(28)
GVB-(1,4) augtz 2 21.98(82) -78.56251(64) -157.16004(27)
GVB-(0,4) augtz 2 25.58(74) -78.55064(57) -157.16004(27)
GVB-(04) tz 2 27.12(61) -78.55836(47) -157.15993(27)
a) Enthalpy [80, 81] difference of 68.97(71) kJ/mol, corrected with AZPE [82] 5.84
kcal/mol

Below the dashed line in Table 4.8 we show our single determinant results using RHF,

and also using the orbitals from an M06-2X DFT calculation. We were disappointed to be

65

unable to get any single-determinant DMC calculation to do any better than DFT, with
errors of 3-4 kcal/mol. This process breaks and then makes two bonds, suggesting that
at least 2 GVB pairs should be used. However, since the CC bonds in cyclobutane are
equivalent, we can not justify using fewer than 4 GVB pairs on either side of the reaction.
Indeed, upon adding left-right correlation to the bonds, our best answer agrees perfectly
with our experimental estimate to within our 0.2 kcal/mol statistical error. We should
mention here that this near perfect agreement should be considered coincidental, since
there is perhaps as much error in the ZPE and geometry as in the calculation.

Looking back to our tc ethylene calculations, we estimated that the static correlation
in the double bond was worth 2.96 kcal/mol. Seeing here that our single-determinant
calculation is in error by about 5.4 kcal, we conclude that most of this error comes from
ethylene. With this in mind, we could have accepted decent results by only correlating the
double bond in ethylene, which is our GVB-(1,0) result from below the horizontal line in
Table 4.8. Although this provides some opportunity for short-cuts in larger calculations,
when possible only balanced calculations should be considered, such as those above the line.

We note that all 3 of our calculations were successful, disagreeing by only 0.3 kcal /mol.
Therefore, the augmented basis functions did not make a difference. We do not have
timing comparisons since they were run on different machines, so unfortunately we can not
estimate how much computer time was “wasted.” If we would have stopped all cyclobutane
calculations once they reached 0.2 kcal/mol error, our cyclobutane RHF /tc wavefunction
with 3 particle Jastrows (not in the Table) would have spent 33% more computational
time than the equivalent wavefunction without the 3 particle Jastrows. Additionally, the
analogous GVB-4/tc 3 particle Jastrow calculation would have taken 4% more time than
when we left the 3 particle Jastrows out. The reason is because at a length scale of over 6
ag, the 3 particle Jastrows can reach almost 4 times as many electrons in cyclobutane than
in methylene. In contrast with our conclusions for methylene, the 3 particle Jastrows are

not worth the hassle, even if we were entirely confident in their optimization.

4.5 Conclusion

In this paper, we have use QMC to study the effect of various types of wavefunctions on

calculations for which we have high quality results to compare against. We have found that

66
in all cases presented here, a GVB wavefunction was sufficient to obtain results accurate to
a few tenths of a kcal/mol, whereas RHF wavefunctions have not been sufficiently accurate.
Based on this, we conclude that wavefunction consistency is necessary and sufficient in
obtaining the correct wavefunction nodes. This conclusion is drawn with the exception
of singlet-singlet ethylene, for which our simple wavefunctions were unable to obtain the
correct splitting.

Furthermore, we have discussed our difficulty in studying these same problems using
extended CASSCF wavefunctions and RCI wavefunctions. There are two issues that have
affected our results. First, our results have been somewhat sensitive to how we truncate the
CI expansion for inclusion in our QMC wavefunctions, and it appears that 0.01 is not always
good enough for them to perform even as well as GVB. Second, even where we have applied
concentrated effort in optimizing CASSCF wavefunctions with all determinants included,
there are still concerns that our optimizations are becoming trapped in local minima, such
as our CAS-3 methylene result.

Finally, regardless of perhaps minor issues, it is remarkable how well QMC performs
even for difficult cases, since all our consistent calculations were within chemical accuracy.
We believe that given a simple GVB description with 2 particle Jastrows, we are able to
describe a significant amount of chemistry, and given the excellent scalability of both QMC
and GVB, we are confident that this high accuracy approach can be applied with confidence

to ever larger molecules.

67

Chapter 5

Additional Work

In this section, we provide more results and commentary on the state of the software.
Over the last several years, the software has changed significantly, as we learned what was
necessary for a successful QMC calculation, and where we can take short cuts. We document
here several results, such as they are, so that future users can understand the conclusions

that we have drawn.

5.1 Optimization

When we began our work on QMC, our software was unable to optimize wavefunctions. At
first, it was unclear that this was even a problem, given the theoretical claim that DMC
results are independent of symmetric Jastrow functions, which do not affect the nodes which
are the result of antisymmetry. There was code in place to optimize wavefunctions [83], but
the problem was that using it involved writing gigabytes of walker configuration data to
disk, and then reading all of that data back in several times for each optimization step. This
is a prime example of the Von Neumann bottleneck. This meant that, for example, 2000
samples in a methylene calculation would take only minutes to produce, but a few hours
to generate the next optimization iteration, even after converting the files to be written in
binary instead of ascii. We tried to fix this in a variety of different ways. First, we attempted
to improve the genetic algorithm optimization routines and the line search algorithms to
see if they could make more effective use of the data, expensive as they were. Eventually,
we concluded that these algorithms simply needed far more data samples. The next thing
we tried was to convert the data streams to use the HDF5 file structure from UIUC, but

this did not significantly lower the read/write cost of accessing the walker data. In the end,

68
we switched to the routines that we use now, which do not write anything to disk.

We still believe that the optimization routines that we were using should have worked,
since those methods retain their popularity in other research groups. Our problem was most
likely simply a poor demarcation of what to write to file, and what to recalculate during
optimization. However, it was around the time that we were coming to understand that a
major reprogramming effort would be necessary when we discovered that there was another
way [50]. Although it was a lot of effort to add analytic derivatives with respect to the
optimizable parameters, it was worth the effort. The improvements available [84] would be
worth investigating. Now our Jastrows were not only completing their optimization, but

doing so in less time than it took our previous methods to fail.

5.2 Jastrows

Riding on the sudden success of our optimization routines, we proceeded to explore more
sophisticated Jastrow functions. Initially, we had only been using single parameter Pade
Jastrow functions, which took the form

ar; j

=4 5.1
1 +bTZ'j ()

u(rij)

as a function of the interparticle distance, r;;. These functions have only a single optimizable
parameter, since the coefficient «a is fixed by the cusp condition. Although these Jastrows

are easily generalized to longer expansions such as

M k
2ok QijkT;

wij(rij) = m, (5.2)
they never seemed to work as well as the form we settled on
M
uij v —ri;S] = (x—1)>° <Z akxk) , if 0<x<1 (5.3)
= 0, if x i:i (5.4)

where S is the length scale, inspired by the functional form of Drummond and co-workers [49],
which we discussed extensively in Section 4.3.2. Almost all QMC results found in the lit-

erature use 3 particle Jastrows, implying their necessesity. We felt thus behooved to add

69
them to our own code. We decided to continue using the functional form from Drummond,
since the functional form from Huang [85] is significantly more complicated, and as shown

in Table 5.1, the results are allegedly almost the same. We added

M-1M-1N-1

faig i wgwg] = (@ —1)% (2, — 1)° (Z >N sznwiwgnx?]) (5.5)
=0 m=0 n=0

— 0, if x>1 (5.6)

= 0, if x>1 (5.7)

to our software. These functions have proven to be fairly expensive to evaluate, partly
because of the expense of calculating the Laplacian of a function U, which depends upon

the coordinates of 2 electrons. This expression turns out to be

4 OU 92U
2 2
\V4 \V4 — 42—)
mU + V2 U . o7, (5.8)
2 2 2 2
N oU 09U oU 92U (5.9)

r1 01 87‘% 79 OT9 87“%

- - QU - 0%U
2r'9 - | 7! —r! . 5.10
+ e (T 187“187“12 " 237‘287“12) ()

The main expense of these functions, however, turns out to be the process of converting
derivatives with respect to all of the parameters into derivatives with respect to the indepen-
dent, optimizable parameters. The constraints must satisfy symmetry, so that the function
is unchanged if we swap the 2 electrons, and cusp conditions, which must be zero since we
are not using these Jastrow functions to obtain the correct cusps. It is (almost) necessary
to apply the constraints on the polynomial for each sample because of how the independent
derivatives are used in the