
Quantum Monte Carlo:
Faster, More Reliable, And More Accurate

Thesis by

Amos Gerald Anderson

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2010

(Defended June 29, 2009)

ii

c© 2010

Amos Gerald Anderson

All Rights Reserved

iii

To my beloved grandmother

Sylvia Kay Anderson, RN

1928 - 2008

From her pikkupoika

iv

Acknowledgments

I would like to thank the many people who helped make my graduate studies as pleasant as

possible. First of all, I would like to thank Dan Fisher for sharing in the burden of helping

to make QMcBeaver a useful tool. The two of us have worked together to develop the code

to the state it is in today, and I don’t think it would have been possible for us to get any

results without each other’s efforts. We came near to throwing in the towel on QMcBeaver,

but now I think we have software we can be proud of.

The other members of the Goddard group have also been quite helpful and encouraging.

Although they were gone by the time I arrived, both Mike Feldmann and Chip Kent have

been continual sources of advice, which was quite helpful since they were the ones who

started the QMcBeaver project. The foundation and organization they provided in the

source code made further development not only possible, but enjoyable. Mario Blanco has

been a joy to work with, since his enthusiasm for the science itself and the bigger picture

is contagious. I have enjoyed many interesting conversations with Andrés Jaramillo-Botero

here and in Colombia, and he always had encouraging things to say. My work has been

supported by the tireless efforts of Darryl Willick, under whose watch our computers were

always working. It is also important to recognize all the group members who over the years

have helped to make the Goddard group a place to watch exciting new science come to

fruition.

For the first several years of my studies, I had the privilege of working with Professor

Peter Schröder learning to do chemistry on GPUs. Most importantly, though, he taught

me how to write a paper. I also had the opportunity to work with Professor Jack Roberts,

doing something practical with the knowledge I’d learned. Having TA’d many classes under

Professor Aron Kuppermann, I have been prepared to teach my own classes some day.

Of course the most important member of the group is my advisor, Bill Goddard.

Through the years, he has been a fountain of crazy ideas and reality checks, some of which

v

worked. I am privileged to have had the opportunity to work with him over these years

and to learn Quantum Chemistry from the ground up. I know I have learned something

because our conversations have advanced from deer in the headlights to debates.

I am grateful for the remarkable group of friends that I have found here at Caltech.

I learned quite a bit during my time in Avery House from the other students and the

faculty who lived there. The variety of perspectives opened the door for many of the

most interesting conversations of my life. The good people of Caltech Christian Fellowship

and especially of Trinity Baptist Church provided me with a far more important source of

support than merely meals, housing, entertainment, and vacation destinations; keeping an

eternal perspective during frustration. I have found a unique and special community here

in Pasadena.

Finally, I would like to thank my family for their love, encouragement, and prayers

through the years in helping me to make it this far. During my time at Caltech, my sister

Micah has been dutifully serving our country in Iraq, helping to bring peace to that region,

and to defend the freedoms necessary for intellectual pursuits. I have been deeply inspired

by my parents, Jeff and Mary Ann, and their steadfast dedication among the urban poor

of Manila, Philippines, since 1985 and still going strong. They have taught me that even in

the face of overwhelming challenges, with God’s help it is still possible to make a difference.

Maraming salamat at pagpalain kayong lahat ng Diyos!

vi

Abstract

The Schrödinger Equation has been available for about 83 years, but today, we still strain to

apply it accurately to molecules of interest. The difficulty is not theoretical in nature, but

practical, since we’re held back by lack of sufficient computing power. Consequently, effort is

applied to find acceptable approximations to facilitate real time solutions. In the meantime,

computer technology has begun rapidly advancing and changing the way we think about

efficient algorithms. For those who can reorganize their formulas to take advantage of these

changes and thereby lift some approximations, incredible new opportunities await.

Over the last decade, we’ve seen the emergence of a new kind of computer processor, the

graphics card. Designed to accelerate computer games by optimizing quantity instead of

quality in processor, they have become of sufficient quality to be useful to some scientists. In

this thesis, we explore the first known use of a graphics card to computational chemistry by

rewriting our Quantum Monte Carlo software into the requisite “data parallel” formalism.

We find that notwithstanding precision considerations, we are able to speed up our software

by about a factor of 6.

The success of a Quantum Monte Carlo calculation depends on more than just processing

power. It also requires the scientist to carefully design the trial wavefunction used to guide

simulated electrons. We have studied the use of Generalized Valence Bond wavefunctions to

simply, and yet effectively, capture the essential static correlation in atoms and molecules.

Furthermore, we have developed significantly improved two particle correlation functions,

designed with both flexibility and simplicity considerations, representing an effective and

reliable way to add the necessary dynamic correlation. Lastly, we present our method for

stabilizing the statistical nature of the calculation, by manipulating configuration weights,

thus facilitating efficient and robust calculations.

Our combination of Generalized Valence Bond wavefunctions, improved correlation func-

tions, and stabilized weighting techniques for calculations run on graphics cards, represents

vii

a new way for using Quantum Monte Carlo to study arbitrarily sized molecules.

viii

Contents

Acknowledgments iv

Abstract vi

1 Introduction 1

2 Background 4

2.1 Wavefunctions . 5

2.2 Antisymmetry . 6

2.3 Quantum Chemistry . 9

2.4 Variational Monte Carlo . 11

2.4.1 Error Margins . 12

2.4.2 Cusp Conditions . 13

2.5 Diffusion Monte Carlo . 14

2.6 Practicum . 17

3 Quantum Monte Carlo on Graphical Processing Units 21

3.1 Abstract . 21

3.2 Introduction . 22

3.3 Introduction to Graphical Processing Units 23

3.4 Introduction to Quantum Monte Carlo . 25

3.5 Implementation on the GPU . 29

3.5.1 Walker Batch Scheme . 30

3.5.2 Basis Function Evaluation . 30

3.5.2.1 Kernel 1: Data Generation 30

3.5.2.2 Kernel 2: Layout Conversion 31

ix

3.5.3 Matrix Multiplication . 31

3.5.4 Jastrow Functions . 32

3.6 GPU Floating Point Error . 33

3.6.1 Underflow Corrections . 35

3.6.2 Kahan Method . 36

3.7 Results . 39

3.8 Conclusion . 41

4 Generalized Valence Bond Wavefunctions in Quantum Monte Carlo 43

4.1 Abstract . 43

4.2 Introduction . 43

4.3 Method . 45

4.3.1 Generalized Valence Bond Wavefunctions 45

4.3.2 Length Scaled Jastrows . 47

4.3.3 Wavefunction Optimization . 48

4.3.4 Walker Reconfiguration . 51

4.3.5 Further Details . 52

4.4 Results . 54

4.4.1 Methylene . 54

4.4.2 Ethylene . 59

4.4.3 2+2 Cycloaddition . 63

4.5 Conclusion . 65

5 Additional Work 67

5.1 Optimization . 67

5.2 Jastrows . 68

5.3 More Calculations . 70

5.3.1 Ne . 70

5.3.2 Be2 → 2Be . 72

5.3.3 O3
1Ag → O3

3B2 . 73

5.3.4 SiH2
1A1 → SiH2

3B1 . 74

5.3.5 Survey of G1 Atomization Energies 76

5.4 A Crazy New Idea . 77

x

5.5 The Preferred Number of Processors . 80

5.6 Pseudopotentials . 83

6 Kinetic Monte Carlo 85

6.1 Abstract . 85

6.2 Introduction . 85

6.3 What is Kinetic Monte Carlo? . 86

6.3.1 The General Solution . 87

6.3.2 Our Solution . 87

6.4 Our First Application . 89

6.5 Preliminary Results . 91

6.6 Conclusion . 92

A Asymptotic Scaling 93

B The Local Energy 95

C Jaguar Initial GVB Guesses and GAMESS 102

C.1 Script: jaguar2gamess.pl . 102

D Making the .ckmf file 107

D.1 Script: gamess2qmcbeaver.py . 108

D.2 A Good Set of Parameters . 126

E Wavefunction Optimization 130

E.1 Optimization by Example . 130

E.2 Script: optimized.pl . 130

F Convergence Scripts 139

F.1 Summarizing by Example . 139

F.2 Script: summary.pl . 140

F.3 Convergence by Example . 154

F.4 Script: plotter.pl . 154

F.5 Script: utilities.pl . 168

xi

Bibliography 179

xii

List of Tables

4.1 Methylene excitations. 56

4.2 Optimizing different parts of the wavefunction. 58

4.3 Single determinant calculations. 58

4.4 Vertical ethylene results . 60

4.5 Vertical ethylene results with a poor geometry 61

4.6 Adiabatic ethylene results. 63

4.7 Ethylene twist results. 64

4.8 Cycloaddition results. 64

5.1 Neon optimization results. 71

5.2 Beryllium dimer results. 73

5.3 Ozone excitation results . 74

5.4 Silylene results. 75

5.5 Calculations from the G1 test set. 76

5.6 New acceptance probability strategy. 81

5.7 Varying the number of processors. 81

xiii

List of Figures

2.1 Nodal plane in H2O. 8

2.2 An extrapolation to zero time step . 16

3.1 The cost of correcting for the summation error for square matrices. 32

3.2 The cost of correcting for the summation error for rectangular matrices. . . . 33

3.3 Helium single precision error. 35

3.4 Ethane single precision error. 36

3.5 Kahan Summation Formula, uniform distribution. 37

3.6 Kahan Summation Formula, “QMC-Distributed” data. 38

3.7 QMC performance on a GPU. 40

3.8 GPU summary. 40

4.1 Typical Jastrow functions. 50

4.2 Time step error cancelation. 53

5.1 Silylene convergence. 75

5.2 Extended distribution of p. 79

5.3 Truncated distribution of p. 80

5.4 Varying the number of processors. 82

6.1 Surface sites illustration. 90

6.2 Sample distribution drawn on product pyramid. 91

E.1 Script generated Jastrow optimization plot. 131

F.1 Script generated convergence graphic. 155

1

Chapter 1

Introduction

Although the laws governing the behavior of electrons have been understood for 80 years,

progress has been dictated by the advance of computer technology. It is not as though we do

not understand the chemical concepts involved; the problem is that sufficient accuracy in the

computation depends on minutia which scale with the size of the molecule itself. A chemist

is presented with a menagerie of ab initio and empirical tools exploiting various tradeoffs

between computational expense and accuracy. Several sweet spots have been already been

found, ending much of the search. Unfortunately, for those who seek high accuracy, no

method has distanced itself from the others. Quantum Monte Carlo (QMC) will become

the winner because of several significant advantages it has over its competitors.

1. Its theoretical scaling is a mere O(N3), which comes from matrix multiplication and

inversion. This is far better than the O(N7) to O(N !) of Coupled Cluster or Full Con-

figuration Interaction techniques. This means that with faster computers, eventually,

QMC will be the fastest method.

2. QMC is very easily parallelizable, meaning that if you give it twice as many computers,

it can complete its task in nearly half the time. Because of this, calculations using

1000s of computers to complete a QMC calculation is becoming routine. In contrast,

other methods, which require the transfer of large amounts of data between processors,

can not effectively use more than a handful of processors.

3. Computers are exponentially getting faster, but the amount of memory they have is

not rising nearly as fast. QMC requires very little memory, on the order of 10s of

megabytes. Other high accuracy methods require gigabytes of memory, a requirement

2

that scales quite quickly with size, and is their limiting factor in terms of what is

possible.

These reasons alone are sufficient to guarantee that QMC will, eventually, be the winner.

There are two primary obstacles, computational and theoretical, and we address both of

these issues in this thesis. We will show that we can surmount these, paving the way for

QMC adoption in the chemistry world.

Computing power is advancing quite rapidly, and will probably continue to do so, a

factor which favors QMC approaches over any other. This means that, essentially, we only

need to wait in order to win. However, the argument is more subtle than this because of two

competing factors. At some point, processors will reach the physical limits of the medium

used to carry out the computations, and if no better media is found, then this will signal

the end of the road. On the other hand, we can see the rise of new types of computing

devices in which several small processors are joined together to accomplish one task. The

best known example of these devices is a graphical processing unit (GPU), typically used

to accelerate computer games. Exploiting a tradeoff between general computing and spe-

cialized computing, GPUs are becoming exponentially faster than CPUs. We were the first

to study the possibility of running quantum chemistry software on a GPU, as we discuss in

Chapter 3. Even though our 2006 technology has already become obsolete, we were able

to run our software at least 6 times faster than a CPU of the same era. Were we to revisit

this problem and update our software, it is entirely reasonable that speedups on the order

of 100 times faster is possible.

The second issue is theoretical. As we will discuss, while introducing QMC in Chapter

2, a QMC approach is only as accurate as the position of the nodes in the provided wave-

function, introducing a new kind of error, the fixed-node energy. Although there is ongoing

research into QMC techniques for optimizing the wavefunction nodes, these necessarily re-

quire more computational effort. In our studies however, presented in Chapter 4, we have

found that many problems are quite tractable given judicious choice of wavefunction. In

particular, Generalized Valence Bond (GVB) wavefunctions can eliminate enough of the

fixed-node energy, for both bond breaking and electronic excitation processes, that we can

easily obtain accuracy on the order of a few tenths of a kcal/mol. The particular advantage

of a GVB wavefunction over more general types of wavefunctions is that GVB scales in

3

expense quite well with molecule size. It is very modular, allowing one to describe localized

regions of chemical activity. With this simple approach to lowering the fixed-node energy,

combined with QMC’s particular ability to measure all the dynamic correlation in molecule,

the two methods are highly complementary.

In Chapter 5, we study several molecules to find out how well the approach works

beyond simple hydrocarbons, as well as discuss a few of the most important issues in QMC.

In particular, we find that although our QMC-GVB approach fails to describe molecules

such as the atomization of CO correctly, adding in Restricted Configuration Interaction

(RCI) terms brings us to agreement with the experimental results. However, we also show

where even the QMC-RCI approach is insufficient, with for example, the atomization of

the CN molecule. Finally, we show that the even more expensive complete active space

self-consistent field (CASSCF) wavefunctions are sufficient to study even the difficult ozone

electronic excitation.

Even granted the claims we make in this thesis, we will probably never see QMC directly

used to study large systems evolve with time. QMC will be used, however, to calculate

energy reaction barriers and enthalpies, which can be used to fit force field parameters.

Once we have accurate data, we can turn to other methods and model a system in time.

We have studied one such method called Kinetic Monte Carlo (KMC), which takes reaction

enthalpies and simulates a system for time scales as long as seconds, depending on the

system. In Chapter 6, we present an O(log N) algorithm we developed for doing so.

4

Chapter 2

Background

Quantum Monte Carlo (QMC) [1, 2, 3] takes a different approach to solving the Schrödinger

equation than the other quantum chemistry methods. Most methods directly minimize the

energy of an analytically integrable wavefunction using the variational principle. Unfor-

tunately, the requirement that the wavefunction be analytically integrable is somewhat

restrictive, and in particular, it is difficult to use functions of interparticle coordinates.

Starting from a wavefunction obtained using some other method, we can obtain a proba-

bility density. Because QMC uses Monte Carlo integration over the probability density, we

can ease these restrictions by patching up the wavefunction as we like. All QMC requires

of the wavefunction is that it be easily differentiable so that we can apply the Hamiltonian,

a far simpler criteria to satisfy.

But QMC can do even better than this. If we are prepared to take the time to do a

Monte Carlo integration, then there is a simple reformulation of the Schrödinger equation

that can permit us a far more accurate calculation than the probability density itself. This

reformulation, called Diffusion Quantum Monte Carlo, or sometimes just Diffusion Monte

Carlo (DMC) is the foundation of this thesis. Because we consider QMC to be essentially

worthless without the DMC modifications, we will sometimes consider the QMC and DMC

labels to be synonymous.

A DMC calculation can extract all of the dynamic correlation from a probability density,

a truly remarkable feature. However, because the statistical error depends upon the quality

of the probability density, we are still motivated to obtain the best probability density

that we can, in order to minimize the number of statistical data points necessary to reach

a specified error margin. This is not enough, though, because the final desired accuracy

of a DMC calculation will depend on the quality of the underlying wavefunction nodes; a

5

systematic error called the fixed-node energy. This error is the focus of subsequent chapters.

2.1 Wavefunctions

According to the postulates of Quantum Mechanics (QM), all matter can be described with

a wavefunction, Ψ. The exact wavefunction contains all the data necessary to measure

observable properties. Another postulate of QM is that the wavefunction is the probability

amplitude, by which the probability of the particle being in a volume element dr around a

particular location r can be calculated as

ρ(r)dr = |Ψ(r)|2dr (2.1)

which takes into account the possibility that the wavefunction might be complex valued. In

order to find the wavefunction, we must solve the Schrödinger eigenvector equation

i! ∂

∂t
Ψ(r, t) = ĤΨ(r, t) (2.2)

or its time-independent analog

ĤΨ(r) = EΨ(r) (2.3)

where the Hamiltonian operator Ĥ for a molecule with motionless nuclei is

Ĥ = −1
2

N∑

i

∇2
i +

N∑

i>j

1
rij
−

Nnuc∑

a

N∑

i

Za

Rai
(2.4)

= −1
2

N∑

i

∇2
i + V (r), (2.5)

where N is the number of electrons and Nnuc is the number of nuclei, Za is the charge on

nucleus a, rij is the distance between electrons i and j, and Rai is the distance between

electron i and nucleus a. Although the potential energy term does depend on the positions

of all the electrons and all the nuclei, we only imply this dependency on the position of the

nuclei in our notation V (r).

6

2.2 Antisymmetry

If quantum chemistry was merely the description of an n-body problem and all we had

to do was to solve the time-independent Schrödinger Equation 2.3, the problem would be

only O(N2) hard, since each particle would interact with every other particle in a poten-

tial field. However, because electrons are fermions, the solutions are more complicated.

Nature dictates that fermion wavefunctions are constrained to be antisymmetric, which

says that swapping any two electrons in a wavefunction must produce the negative of the

wavefunction. This is the Pauli Antisymmetry Principle:

Ψ(..., ri, rj , ...) = −Ψ(..., rj , ri, ...). (2.6)

This constraint raises the complexity of the problem to at least O(N3), since we are now

required to use the antisymmeterization operator; the determinant. Thus the best scaling

any algorithm can achieve is O(N3).

Antisymmetry means that within a wavefunction, there will be some regions where

Ψ(r) = 0, which we call the nodes. By this we do not mean that no electron can ever go

somewhere; we mean that given locations of N − 1 electrons, there are certain places the

N th electron can not go. Of course those forbidden regions might become accessible just

as soon as one of the other electrons move. What do these nodes look like? The obvious

region forbidden by the Pauli principle is where any two electrons coalesce, because

Ψ(..., ri, ri, ...) = −Ψ(..., ri, ri, ...) = 0. (2.7)

Unfortunately, however, the nodal region is higher dimensional than this. This is evident

when considering the following thought experiment. Consider two (same spin) electrons at

different positions near a nucleus (for example a triplet state of Helium), and we write down

the value of the wavefunction. Due to symmetry, we can write down the wavefunction as a

function of three coordinates: Ψ(R1, R2, r12). It is entirely possible to swap the positions of

these two electrons in such a way that they never meet. Once we have moved them to each

other’s initial position, Equation 2.6 says the wavefunction will now be exactly the negative

7

of what we wrote down, since

Ψ(R1, R2, r12) = −Ψ(R2, R1, r12) (2.8)

which means that somewhere along any path the wavefunction went to zero. In this case,

we can infer that the node is wherever R1 = R2. One interesting observation is that the

nodal structure is more simple than the wavefunction itself, which is not analytically known

for even Helium. We know the analytical nodal structure of very few systems.

Electrons come in two flavors of spin which we label as α and β, a distinction de-

rived from relativity, and accordingly the wavefunction is the product of a spatial and

a spin function. Any pair of electrons can be said to be parallel spin if they are the

same flavor, or opposite spin if not. The antisymmetry condition can be satisfied by ei-

ther the spatial or the spin function. For example, opposite spin electrons can be given

the spin function χ(r1, r2) = α(r1)β(r2) − β(r1)α(r2), so that swapping them results in

α(r2)β(r1)−β(r2)α(r1) = −α(r1)β(r2)+β(r1)α(r2) = −χ(r1, r2). For parallel spin electrons

we correspondingly assign them a symmetric spin function such as χ(r1, r2) = α(r1)α(r2),

and apply spatial antisymmetry, as discussed in the next section. It is a violation of the

antisymmetry restriction to apply to a pair of electrons an antisymmetric spatial function

and an antisymmetric spin function, since the product of two antisymmetric functions is

symmetric.

For a given wavefunction we can try to visualize nodes, as we for do for H2O in Figure

2.1. To draw this image, we ran a QMC simulation for a few thousand iterations, to make

sure the electrons are all in somewhat higher probability regions, and then we stop the

simulation. We select one electron for a 3D scan over the volume of the molecule, writing

to a file the value of the wavefunction at each coordinate. Using good plotting software, we

can generate a surface at the contour level of 0. It is interesting to notice that the same

nodal plane passes through all the same spin electrons, indicating that we can approach

parallel spin electrons over only 2π steradians, which is half the total solid angle.

8

Figure 2.1: Nodal plane in H2O. The Oxygen atom is the larger sphere in the center, and
the 2 Hydrogens are the smaller white spheres. The small red sphere, located below and to
the left of the Oxygen is the initial position of our test particle, and the darker red spheres
are the other electrons of the same spin. The blue spheres are the electrons of the opposite
spin. Notice that the sheet passes through all 3 of the dark red spheres. This image was
generated with the help of MacMolPlt.

9

2.3 Quantum Chemistry

Traditional quantum chemistry programs seek to solve Equation 2.3 analytically. This is

done by choosing an approximate form for the wavefunction. We start with atomic orbitals,

called basis functions, which are similar to the orbitals of a Hydrogen atom

χj(r ← ri −Rj) = r
kj
x r

lj
y r

mj
z

∑

n

ajne−bjn|r|2 (2.9)

which are simply gaussian functions of the distance of electron i at ri to the center of

the basis function j at Rj , and all the other parameters are fit to model a typical atomic

orbital. This functional form for basis functions was motivated by the consideration that

the product of two 3D gaussian functions is another gaussian function, a nonnegotiable

benefit in computational efficiency for most quantum chemistry methods. In practice, sets

of basis functions have been standardized for each element, so that they are independent

of any molecule. Standardization is very difficult for functions of the form e−r, which is

another reason not to use them, even though they are closer to the Hydrogenic solutions.

An orbital φk(ri) will typically span across multiple nuclei, meaning that it will neces-

sarily be a linear combination of basis functions

φk(ri) =
∑

j

χj(ri)cjk (2.10)

which is sometimes referred to as a molecular orbital, and there will be as many linearly

independent orbitals possible as there are basis functions. We can pick the best of these

orbitals for the electrons to occupy. For opposite spin electrons we use spin functions to

satisfy antisymmetry, meaning that up to two opposite spin electrons can occupy the same

orbital. For parallel spin electrons there is only one way to guarantee spatial antisymmetry

no matter what the orbitals or basis functions look like. This is to put them into what is

called a Slater determinant

D =

∣∣∣∣∣∣∣∣∣∣∣∣

φ1 (r1) φ2 (r1) · · · φN (r1)

φ1 (r2) φ2 (r2)
... . . .

φ1 (rN) φN (rN)

∣∣∣∣∣∣∣∣∣∣∣∣

(2.11)

10

which represents one orbital for each electron, letting each electron “visit” all the orbitals.

This means that if two of these electrons swap places, corresponding to swapping rows,

then the determinant will change sign, satisfying the Pauli antisymmetry principle. It is

clear that by this construction, there is zero probability that two parallel spin electrons will

occupy the same location, or that two parallel electrons can share the same orbital. Putting

all the electrons of our molecule into a wavefunction of this type, we can obtain the orbital

coefficients cjk by minimizing the energy E self-consistently, which will be our solution to

Equation 2.3.

The principle failure of Self-Consistent Field (SCF) methods is that they do not ac-

count for all electron-electron interactions. The difference between the energy produced

by a SCF method and exact energy is referred to as the correlation energy. Correlation

energy can be subdivided into two components; static correlation and dynamic correlation.

Static correlation is the error resulting from optimizing an incomplete functional form for

the wavefunction during the SCF procedure, and is typically resolved by increasing the

complexity of the wavefunction by adding more orbitals and basis functions to the SCF

optimization. Dynamic correlation comes from the SCF procedure itself, where an electron

sees only an average field of the other electrons, and thus never has to move out of another’s

way. This is especially critical for a doubly occupied orbital, since those electrons share the

same space.

Either of these errors can be minimized in one of two ways. First, remember that when

we took linear combinations of the basis functions to make our orbitals, we actually received

more orbitals than we needed. Although we put our electrons into the best orbitals, we

still have quite a few unoccupied, or virtual, orbitals that we might want our electrons to

be able to visit. Even though they were not necessarily the best, they might still be pretty

good. For example, where degenerate orbitals play a role, even the ordering of the electronic

states might be wrong. In fact, some virtual orbitals might have a negative orbital energy,

meaning that an additional electron would be able to bind to the molecule. An electron

as a quantum particle will need to visit all of these orbitals. To do this, we add to our

wavefunction more determinants. For determinants that use Nocc occupied orbitals, if we

have Nvirt unoccupied orbitals, then there are

(
Nocc + Nvirt

Nocc

)
(2.12)

11

possible determinants we can make. If we include all the possibilities, then this represents

a Full Configuration Interaction (Full CI) calculation. By virtue of spanning the entire

Hilbert space, a Full CI wavefunction is by definition the exact wavefunction, if we also use

an infinite number of basis functions. Unfortunately, the convergence of the energy in the

limit of adding more determinants is very slow, so this approach is impossible in practice.

But there is a second way to minimize the error. Instead of simply adding more deter-

minants to our wavefunction, we can instead think about adding only the most important

virtual orbitals, and then reoptimizing our cjk coefficients. For this procedure, called multi-

configuration SCF (MCSCF), we use our chemical intuition to identify which orbitals are

likely to have the most error relevant to the system we are studying, and we figure out which

corresponding orbitals would be the best to correct this error. For example, a bonding or-

bital is often too evenly balanced between the nuclei, so we might add the antibonding

orbital in order to add some “left-right” correlation, permitting the two electrons in the

bond to get away from each other a little bit. The set of orbitals that are chosen to need

the most correction along with the orbitals used to add the correction is called the active

space. This technique is quite effective at lowering the error due to static correlation be-

cause typically, there are only a few important virtual orbitals. We could use these improved

orbitals in a CI treatment, improving convergence. We will further discuss MCSCF in the

context of Generalized Valence Bond (GVB) wavefunctions.

2.4 Variational Monte Carlo

Assuming that the wavefunction is normalized and real-valued, we can rearrange terms in

the Schrödinger Equation 2.3 to get

〈E〉 = 〈Ψ|Ĥ|Ψ〉 (2.13)

=
∫

Ψ(r)Ĥ(r)Ψ(r)dr (2.14)

=
∫

Ψ2(r)
1

Ψ(r)
Ĥ(r)Ψ(r)dr (2.15)

=
∫

ρ(r)EL(r)dr, (2.16)

12

where we have defined the local energy as

EL(r) =
Ĥ(r)Ψ(r)

Ψ(r)
= −1

2

N∑

i

∇2
i Ψ(r)
Ψ(r)

+ V (r) (2.17)

in order to calculate the expectation value of the energy 〈E〉. Seen in this formulation,

all we need to do is sample the local energy according to the probability density enough

times and we will eventually converge to 〈E〉. This is the Variational Monte Carlo (VMC)

method. We define a walker to represent one electronic configuration, which will be moved

around the molecule according to the Metropolis algorithm, which ensures that our sampling

reproduces ρ(r). Once we choose the number of walkers we want to use, Nw, our method

is essentially

〈E〉 =
∫

ρ(r)EL(r)dr (2.18)

(1
Nt

Nt∑

t=1

〈
1

Nw

Nw∑

i=1

EL(rt,i)

〉

A(r→r′)

+ O
(

σ√
Nt

)
(2.19)

A(r → r′) = min
[
1,

T (r ← r′)
T (r → r′)

Ψ2
T (r′)

Ψ2
T (r)

]
, (2.20)

where Nt is the number of iterations we take and σ is the standard deviation of each sample.

In this equation, A(r → r′) is the acceptance probability which is used to decide whether

a walker should move from coordinates r to some trial coordinates r′ that iteration. The

acceptance probability is designed to satisfy detailed balance, which ensures that on average

the distribution of our samples is stationary and reversible. To do this, we need to be able

to calculate the transition rate of moving from initial to final coordinates T (r → r′), and

the rate of going in reverse. The functional form of T (r → r′) depends on the algorithm

used to move electrons, which is merely an efficiency issue.

2.4.1 Error Margins

As Equation 2.19 indicates, the error margins of a VMC calculation go down as
√

Nt. Said

another way, if you want to lower your statistical error by a third, you will need to run about

10 times as many iterations. The expected number of required iterations rises exponentially.

This requires us to choose a wavefunction that will give us a lower sample error σ. If we

are using wavefunctions of the type we described so far, then our immediate choices are to

13

increase the number of basis functions used, or to use a larger active space, as discussed in

Section 2.3.

But we can do even better than that because the computational considerations required

for the evaluation of the local energy, which is discussed in detail in Appendix B, are

quite different than those of other quantum chemistry algorithms. Specifically, we can

now add functions of interelectron coordinates to our wavefunction, which is a significant

improvement over electrons only being able to see an average field of the other electrons.

These functions, which we will call Jastrows, can now help electrons to avoid each other,

beyond the repulsion established by the antisymmetry principle.

2.4.2 Cusp Conditions

Although we are unable to analytically solve for realistic wavefunctions, there are some

things that we can say, analytically, about how the wavefunction should behave in some

circumstances. The antisymmetry principle is one example of this, but we also know what

the wavefunction should look like in the limit that two particles coalesce, since in that

limit, the wavefunction is dominated by terms involving only those two particles. We know

therefore that

∂̃Ψ
∂r12

= γψ(r12 = 0) (2.21)

γ = 1/2 for opposite spin electrons (2.22)

γ = 1/4 for parallel spin electrons (2.23)

γ = −Z for electron-nucleus, (2.24)

where ∂̃Ψ
∂r12

denotes a spherical average of the derivative of the wavefunction as the distance

between any two particles, r12, reaches zero. If we are going to add Jastrows to our wave-

function, then we can easily constrain those functions to satisfy these constraints, called

the cusp conditions, and thereby eliminate some of the sources of singularities in the local

energy.

14

2.5 Diffusion Monte Carlo

There is yet another way to solve Equation 2.3, which we find by rewriting the time-

dependent Schrödinger Equation (Equation 2.2) in imaginary time, τ = it. Following the

arguments as presented by Reynolds and co-workers in [2], we write

− ∂

∂τ
Ψ(r, τ) =

[
Ĥ − ET

]
Ψ(r, τ), (2.25)

where ET is simply an energy shift whose importance will become evident. What we

actually want is the time-independent solution, which is simply the steady state of Equation

2.25. Expanding Ψ(r, τ) in a complete set of eigenfunctions ψi(r) of the Hamiltonian, the

wavefunction will look like

Ψ(r, τ) =
∑

cie
−(Ei−ET)τψi(r) (2.26)

which at long times will come to be dominated by the state with the eigenvalue closest to

ET

Ψ(r, τ) = c0e
−(E0−ET)τψ0(r), (2.27)

which will be the exact ground state ψ0(r) if ET is adjusted to our best guess. If our

Hamiltonian consisted of only the Laplacian −∇2/2, then this would be a typical diffusion

equation, which we could simulate with walkers, just as we did in VMC with Equation 2.19.

On the other hand, if the Hamiltonian was only a potential energy term V (r), then Equa-

tion 2.25 is simply a rate equation, which is simulated by using birth and death processes in

a population. For a molecular Hamiltonian, we can combine both approaches by enriching

or duplicating walkers in regions of favorable potential energy, an approach called Diffu-

sion Monte Carlo (DMC). The only problem is that because we are using a population of

walkers to represent the wavefunction, the represented wavefunction must be the same sign

everywhere. Since we are simulating fermions which have nodes, we are required to simu-

late the positive and negative regions separately, and average the results. This represents

an approximation if the nodes are not correct, introducing an error, called the fixed-node

energy.

The most interesting thing to note about the DMC algorithm is that, except for the

15

location of the nodes, we do not have to know anything about the wavefunction; in principle

any will work. To speed up convergence, we should use our best guess of the wavefunction for

importance sampling, and specific choices for this kind of “trial function” will be the subject

of later chapters. Designating ΨT (r) as our trial function, our population distribution

function is f(r, τ) = Ψ(r, τ)ΨT (r). We multiply Equation 2.25 by ΨT (r) to get

−ΨT (r)
∂

∂τ
Ψ(r, τ) = ΨT (r)

[
Ĥ − ET

]
Ψ(r, τ) (2.28)

−∂f(r, τ)
∂τ

= ΨT (r)
[
Ĥ − ET

] f(r, τ)
ΨT (r)

(2.29)

= (V (r)− ET)f(r, τ)− 1
2
ΨT (r)∇2 f(r, τ)

ΨT (r)
(2.30)

−∂f(r, τ)
∂τ

= −1
2
∇2f + (EL(r)− ET)f +∇ ·

(
f
∇ΨT (r)
ΨT (r)

)
(2.31)

which can be solved with the integral equation

f(r′, τ + δ) = eδET

∫
G(r → r′, δ)f(r, τ) (2.32)

using the Green’s function

G(r → r′, δ) = (2πδ)−3N/2 (2.33)

× exp
[
−δ

{
EL(r) + EL(r′)

2
− ET

}]
(2.34)

× exp



−
[r′ − r − δ∇ΨT (r)

ΨT (r)]2

2δ



 (2.35)

which represents the probability of N particles moving from r to r′ for time step δ. The

last term is used to move the electrons, drifting them with ∇ΨT (r)
ΨT (r) . The middle term is

incorporated by either weighting the walkers, or by branching them (or both). A DMC

calculation starts by generating some walkers which compose f(r, 0), and then we apply

Equation 2.32 as many times as it is necessary to equilibrate to the steady state of Equation

2.27. After this, we may start sampling the local energies to get our result. The average

energy carries with it a time step error, which can be eliminated by extrapolating δ → 0,

as demonstrated in Figure 2.2.

16

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.00001 0.0001 0.001 0.01 0.1 1

E
n

e
r
g

y
 -

 E
x
a
c
t

(
k
c
a
l/

m
o

l)

Time Step (au-1)!

Figure 2.2: An extrapolation to zero time step, demonstrated for a Helium atom using
unoptimized, Pade 2 particle Jastrows. This case is particularly easy since He has no
wavefunction nodes. We fit our calculations to the formula E = E0+

∑6
i=1 ciδi/2, producing

E0 = −2.903744 au, which is in error by only 0.012 kcal/mol from the exact answer Eexact =
−2.903724 au. Note: the data at δ = 10−5 actually represents δ = 0.

17

Each walker now has an associated weight which is multiplied by

dW = exp
[
−δ

{
EL(r) + EL(r′)

2
− ET

}]
(2.36)

each iteration. If this weight becomes large, a typical DMC algorithm might then duplicate

the walker, giving each of the child walkers half the weight of the parent. A walker whose

weight becomes too low is eventually deleted because it is wasting computational resources.

Because of this, the final algorithm will end up looking very similar to the algorithm in

VMC,

〈E〉 (1
Nt

Nt∑

t=1

〈
1∑
wi

Nw∑

i=1

wiEL(rt,i)

〉

A(rf |ri)

+ O
(

σ√
Nt

)
(2.37)

A(r → r′) = min
[
1,

G(r ← r′, δ)
G(r → r′, δ)

Ψ2
T (r′)

Ψ2
T (r)

]
(2.38)

using the DMC Green’s function. It turns out that this choice of transition matrix to move

the electrons is a good choice for VMC as well. We can actually use the same software,

with the only difference being that dW = 1 in VMC.

2.6 Practicum

Quantum Monte Carlo is a good deal more sophisticated than we have presented in this

Chapter, and certainly there are quite a few algorithms and variations allowed under the

rubric we have presented here. Most of the high level or theoretical aspects of our tech-

niques are addressed in Chapter 4. In that chapter, we present our recommendations for

wavefunctions, time steps, and other details. With that chapter, we justify our approach

on the basis of the remarkable accuracy of our results.

The experience gained in developing the code with accessory scripts to run a QMC

calculation is quite valuable. The software package that we have participated in developing

is called QMcBeaver [4], which is available online under the GNU Public License. We have

used a Concurrent Versions System (CVS) throughout development. This works by allowing

the developer to download a copy of the source code, and edit it at their pleasure. Once

that developer is happy with their changes and has checked for bugs, they commit all of

their changes back to the online repository, complete with a brief description of what that

18

commit entailed. With good CVS software, it is possible to observe the exact evolution of

any part of the code. Since this thesis represents a significant point in the development of

the code, we use the label amos phd thesis in the repository to record the exact version of

all of the source code files corresponding to our work.

Additionally, we document and describe here the most important scripts used for setting

up and running QMcBeaver. Let this section, along with the associated Appendices, serve

as a QMcBeaver recipe. We do not claim that these scripts can be considered as complete,

or that it is unnecessary for a user to edit them. They have only been developed as need

arose.

1. Pick an SCF wavefunction. This step will depend on your intuition and the process

you want to model, but we discuss our experiences in this regard in Chapter 4. As

we discuss there, we have found that extended MCSCF or CASSCF calculations do

not necessarily work better due to the uncertainties in optimization. On the other

hand, GVB wavefunctions are not sufficient for all problems, with the atomization

of CN or NO as examples. If you are using a GVB wavefunction, then we would

recommend using Jaguar [5] to make the wavefunction, since it does a good job at

making initial guesses. In Appendix C we discuss and provide a script to convert a

Jaguar wavefunction into a GAMESS wavefunction. We have found that GAMESS [6]

is the most useful program available for producing wavefunctions because it is free,

readily downloadable, under active development, and very flexible. One note is that

we do not allow users to use an MCSCF calculation directly. Instead, following the

recommendation from GAMESS, we require the user to run a CI calculation on the

MCSCF natural orbitals to get the best CI coefficients possible. Be sure that you set

the print cutoff low enough that GAMESS prints out enough determinants.

2. Visualize your SCF orbitals. We have found that quite often, either Jaguar or

GAMESS converged orbitals that were not what we expected. There is an excel-

lent visualization package available, called MacMolPlt [7], for seeing orbitals from a

GAMESS calculation. We prefer to use orbitals that are either symmetric or localized,

but difficult SCF optimizations might produce anything in between. In these cases,

it is helpful to start or restart the optimization with good initial orbitals such as the

kind Jaguar can generate.

19

3. Run the script gamess2qmcbeaver.py, documented in Appendix D, which will extract

the wavefunction, and make a .ckmf input file for QMcBeaver. This script has been

under continual development by several people over the years who have fixed many

bugs, and it is fairly complete. This script bases the input file for QMcBeaver on

a .ckmft file, which is a template containing a good set of non-specific parameters,

and we provide our best example in Appendix D. There are two choices to make

when using this script. First, you must choose a determinant cutoff, since our script

will by default add all of the determinants available in the GAMESS output file.

Typically, a cutoff of 0.01 is low enough to capture most of the chemistry, but as we

discuss in Chapter 4, that may be too high. For a GVB wavefunction, I typically

include all of the determinants since they are not expensive, for reasons documented

in Appendix D. Second, you must decide on a tolerance to use for deciding whether

two determinants should be constrained to use the same CI coefficient. We have found

that constraints can help avoid local minima, but obviously two determinants should

only be constrained if there is good enough reason to.

4. The script gamess2qmcbeaver.py will not automatically guess Jastrow functions for

you. We do not believe that a generic Jastrow function strategy will work, so we

leave it to the user to select Jastrow functions to initialize the optimization. We have

found it is more important to match the basis set for picking the starting Jastrow

functions than matching the SCF type of wavefunction. The 3 particle Jastrows are

particularly difficult to optimize, and for sufficiently large molecules, they add more

to the computational cost than they seem to be worth. We either need to develop

new 3 particle Jastrows, or find a better way to use the ones we have already. One

idea is to fix the length scale of 3 particle Jastrows so that they do not stretch further

than the atom on which they are centered, thus limiting their cost. More discussion

on Jastrow functions can be found in Chapter 4.

5. If the input file you generated in the previous step used the .ckmft file from Appendix

D, then this input file is ready for optimization. I typically run a calculation using

only 1 or 2 processors, since the number of optimization iterations seems to be more

important than the number of samples per optimization iteration. We have found that

some Jastrows are particularly troublesome to optimize, and we detail our strategy

20

for identifying and dealing with these in Chapter 4. As we discuss there, we have

found that in the end, most Jastrows look quite similar, even though they vary in

height or extent. We have developed a script called optimized.pl, which we document

in Appendix E, to help decide when a wavefunction is optimized. Typically, we look

for the Jastrows not to significantly change between optimization iterations, and for

the VMC energy to converge to less than a few tenths of a kcal/mol, or 0.5 kcal/mol

at the worst. As soon as it is available for each optimization step, the most recent

wavefunction is written to a .01.ckmf file.

6. Once the optimization has satisfactorily converged, we edit a few parameters to select

a DMC calculation. This involves setting run type = diffusion and optimize Psi =

0, as well as choosing an appropriate time step and number of iterations. I typically

run on 4 processors (for a total of 400 walkers) for reasons discussed in Section 5.5.

Calculations can take anywhere from a couple of days to a couple of weeks, depending

on the molecule size and the processor speeds.

7. It is important to monitor the DMC convergence as it progresses, because sometimes a

calculation can “go crazy”. Ideally, a DMC calculation will maintain an approximately

constant energy through the run, with a few wiggles. We have developed a pair of

scripts, which we document in Appendix F, to look at snapshots of the energy or to

produce a graph of the energies as they progress. Many runs will display deviations

or tails, which we typically ignore if they are less than a few tenths of a kcal/mol.

However, if instead of a tail we see a trend with non-zero slope over the length of

the calculation, then something is wrong. Perhaps the run should be restarted with

possible fixes including returning to the wavefunction optimization stage, adding more

equilibration steps, using a smaller time step, using more walkers, or improving the

SCF description.

21

Chapter 3

Quantum Monte Carlo on
Graphical Processing Units

3.1 Abstract

Quantum Monte Carlo (QMC) is among the most accurate methods for solving the time-

independent Schrödinger equation. Unfortunately, the method is very expensive and re-

quires a vast array of computing resources in order to obtain results of a reasonable con-

vergence level. On the other hand, the method is not only easily parallelizable across CPU

clusters, but as we report here, it also has a high degree of data parallelism. This facilitates

the use of recent technological advances in Graphical Processing Units (GPUs), a powerful

type of processor well known to computer gamers. In this paper we report on an end-to-end

QMC application with core elements of the algorithm running on a GPU. With individual

kernels achieving as much as 30x speed up, the overall application performs at up to 6x

relative to an optimized CPU implementation, yet requires only a modest increase in hard-

ware cost. This demonstrates the speedup improvements possible for QMC in running on

advanced hardware, thus exploring a path toward providing QMC level accuracy as a more

standard tool. The major current challenge in running codes of this type on the GPU arises

from the lack of fully compliant IEEE floating point implementations. To achieve better

accuracy, we propose the use of the Kahan summation formula in matrix multiplications.

While this drops overall performance, we demonstrate that the proposed new algorithm can

match CPU single precision.

22

3.2 Introduction

The rapid increase in GPU floating point performance and their excellent flops/$ charac-

teristics suggests that they may provide cost effective solutions for scientific computation

problems. Given that the GPU computing model is (1) quite different from standard CPU

models, (2) lacks a fully compliant IEEE floating point implementation, and (3) is opti-

mized for very specific graphics type computational kernels, it is not clear a priori which

scientific computing tasks are cost effective on GPUs.

A number of scientific computing algorithms have been pursued on the GPU, e.g., fluid

simulations [8, 9], elasticity [10], and general finite element methods [11]. At the level of com-

putational mathematics kernels, we have seen work on LU decomposition [12], matrix/vector

products [13, 14, 15, 16, 17, 18, 19, 20, 21], iterative solvers [17, 22], and transforms such

as Fourier and Wavelet [14, 23, 24, 25]. In some cases the results can be disappointing

relative to highly tuned CPU implementations, in particular when high precision answers

are required, or when problem sizes do not hit a particular sweet spot (i.e., large matrices,

or power-of-2 sized data structures, etc.). With continuing hardware development these

performance barriers are being ameliorated, and with the recent announcement by nVidia

of double precision availability on the GPU in 2007, computational precision is a fading

problem as well.

In this paper we consider quantum chemistry computations, the heart of which is the

computation of the electronic structure of a given molecule using the quantum mechanical

equations of motion. This information is critical for, among other tasks, finding optimized

geometric structures for the molecule, reaction pathways, obtaining vibrational information,

and providing a basis for developing higher level approximation methods including molecular

dynamics simulations. Accurate results have application in catalysis, nanotechnology, drug

design, and fuel cells, among many others.

Due to the large state space (3N for N electrons) and the non linear nature of the

time-independent Schrödinger equation, exact results are all but impossible. Consequently

a variety of approximation algorithms have been developed. One such approach, Quantum

Monte Carlo (QMC) [3], is based on the stochastic evaluation of the underlying integrals

and is guaranteed to produce accurate answers in the limit of infinite state space sampling.

Even though a very large number of samples are typically required, QMC is easily paral-

23

lelizable and scales as O(N3) (albeit with a very large constant). This motivates a search

for computational augmentation.

We report on our implementation of QMC on the nVidia 7800 GTX and compare it

against a 3.0 gHz Intel P4, considered to be representative of similar levels of development.

These technologies are improving very fast, both for CPUs and for GPUs. Currently how-

ever, the time to doubled performance on GPUs is noticably shorter than for CPUs, leading

to increasing performance advantages for GPUs if a computation maps well enough onto the

GPU. Since CPUs are beginning to follow the same multicore technology trend, the notion

that precision issues are temporal is reinforced.

In the present paper, scientific results as well as underlying formalisms were simplified for

purposes of presentation and to focus on the essential computational aspects. We admit that

it is unclear how single precision results might be useful, especially for an algorithm designed

to produce highly accurate results. In the mean time, our single precision implementation is

presented. Aside from the performance of individual kernels we consider (1) precision issues

arising from the noticeable differences to single precision IEEE floating point arithmetic,

(2) performance issues arising from the specific sizes of matrices we must use, and (3) the

overall performance of an end to end application when compared against a heavily tuned

CPU based version.

3.3 Introduction to Graphical Processing Units

GPUs have received much interest outside the graphics world recently due to their immense

processing power even though they are actually devices designed for very specialized tasks.

Many reviews of GPU adaptability and compatibility are already available [26, 8, 27], and

we do not attempt to improve upon them. In addition, there has been the development

of specialized programming environments [13, 28, 29] for GPUs specifically designed to

smooth the porting of non-graphics applications, and GPU vendors themselves have recently

released general purpose GPU programming environments.

Our approach was to start from the ground up in hopes of squeezing the best perfor-

mance we can from the device. To describe our techniques, a truncated description of the

technology is required. The motivating principle for GPU design is that simple calcula-

tions do not need general processors, so the addition of an auxiliary processor could both

24

speed up graphics related calculations as well as free the CPU to complete other tasks.

Since graphical calculations most typically involve drawing 2D images of colors ultimately

intended for a screen, GPUs start with pixels (more generally referred to as fragments or

texels) as the atomistic unit of data. Fragments are manifested here as 4 single precision

floats, aliased as xyzw channels. A 2D array of fragments is called a texture, and is the

fundamental storage class. A GPU will stream a region of a texture through an array of

simple fragment processors (our nVidia 7800 GTX has 24), where each of these will produce

one fragment as output. A programmer can utilize this process by designating a kernel for

the fragment processors to use, resulting in the evaluation of data for a specified region in

a texture. This entire procedure is commonly referred to as a pass. A kernel is a small

program which in the graphics context would typically perform some shading calculation.

There is nothing in principle preventing the user from writing a “shader” which performs

some scientifically relevant computation using the broad class of functions available at the

programmable shader level.

In practice, many considerations are necessary in order to maximize efficiency. Graphics

processing can be thought of as a sophisticated queuing system where a CPU sends a list of

tasks to one (or more) connected GPUs and collects the results when the calculations are

complete. This means that there are also processor communication factors that need to be

included. As far as the GPU itself is concerned, we mention here the considerations:

• padding empty slots in texture data with 0 whenever data dimensions do not match

dimensions on the GPU,

• running as many passes with a kernel before swapping it for another since the GPU

can only have one kernel loaded at a time,

• careful data arrangement,

• a tuning of how much of the computation as a whole should be assigned to each kernel

• and, in general, keeping the GPU busy at all times.

Before discussing how these concerns play out in our setting, we give a brief high level

introduction to Quantum Monte Carlo computations to understand the needed computa-

tional components which we seek to map to the GPU.

25

3.4 Introduction to Quantum Monte Carlo

The most important information about a molecule is its ground state energy, calculated by

means of the time-independent Schrödinger equation

〈E〉 =
∫

Ψ(r̄)ĤΨ(r̄)dr̄∫
Ψ2(r̄)dr̄

, (3.1)

where Ψ(r̄) : R3N → R is the wavefunction, mapping the 3N Cartesian coordinates of N

electrons into a probability amplitude related to the probability density in Equation 3.4.

(Equation 3.1 includes the common restriction that Ψ(r̄) is a real valued function.) The

Hamiltonian operator Ĥ is given by

Ĥ = −1
2
∇2 + V (r̄), (3.2)

where the Laplacian is over all 3N electronic coordinates and calculates the kinetic energy

(in the unitless Hartree measure) of the electrons in the molecule. The V (r̄) term represents

the potential energy due to Coulomb interactions between all pairs of electrons and nuclei.

The energy E is the eigen value of Ĥ operating on the eigen function Ψ(r̄). The ground

state energy is the lowest such eigen value, and is of primary interest here.

There are many methods to calculate Equation 3.1 with varying degrees of accuracy

and computational complexity. The highly accurate QMC family of algorithms [2] uses

Metropolis [30] integration to fine tune the result provided by a cheaper method. It uses

the local energy

EL(r̄) =
ĤΨ(r̄)
Ψ(r̄)

= −1
2
∇2Ψ(r̄)
Ψ(r̄)

+ V (r̄) (3.3)

which represents an evaluation of the energy for a set of electronic coordinates. In terms of

the stationary probability distribution of electrons

ρ(r̄) =
Ψ2(r̄)∫
Ψ2(r̄)dr̄

(3.4)

we can transform Equation 3.1 into the Monte Carlo integration form

〈E〉 =
∫

ρ(r̄)EL(r̄)dr̄ = lim
Nt→∞

1
Nt

Nt∑

t=1

EL(r̄t). (3.5)

26

Here r̄t are a series of electronic coordinates generated with respect to ρ(r̄) by some impor-

tance sampling scheme [31]. Since error scales as 1/
√

Nt in Monte Carlo methods a rather

large number of samples is required to achieve useful accuracies. Additionally, it is common

to run several independent series, called walkers, in order to minimize the error due to serial

correlation between the Nt data points.

In terms of computational complexity, the difficulty for QMC lies in the evaluation of

∇2Ψ(r̄t) for each EL(r̄t) as well as the evaluation of Ψ(r̄t) and ∇Ψ(r̄t) which are used

for importance sampling. The most common functional form for Ψ(r̄) has at least three

nested stages of evaluation. At the first stage, we place a collection of Nbf basis functions

centered at the nuclei in the 3D coordinate space. Typically a given nucleus is associated

with multiple basis functions. The basis function takes as argument the local coordinates of

a given electron (i) relative to the nucleus (j), -rij = -ri − -Rj . The best results are achieved

with the following functional form

χj(xij , yij , zij) = x
kj

ij y
lj
ijz

mj

ij

∑

nj

anje
−bnj r2

ij . (3.6)

For each basis function, Rj , kj , lj , mj , nj , anj and bnj are parameters given as input to

the QMC program. The kj , lj ,mj ∈ N parameters give the basis function the required

symmetry, and nj ∈ N+ helps select the quality of fit. The other parameters are all real

numbers.

The second stage of evaluation takes linear combinations of basis functions to create

molecular orbitals. The kth orbital is given by φk(-ri) =
∑

j χj(rij)cjk, where cjk ∈ R are

coefficients input to QMC. These orbitals represent the spread of the electron across the

entire molecule.

Finally, the third stage of evaluation relevant to this study is the Slater determinant,

chosen for its antisymmetric properties. For the Ns electrons of a given quantum spin

(N = Nα +Nβ ∼ 2Nα) the determinant is a function of the φk (which in turn are functions

27

of the χj(rij))

Ds(r̄s) = |Ms(r̄s)| =

∣∣∣∣∣∣∣∣∣∣∣∣

φ1 (-r1) φ2 (-r1) · · · φNs (-r1)

φ1 (-r2) φ2 (-r2)
... . . .

φ1 (-rNs) φNs (-rNs)

∣∣∣∣∣∣∣∣∣∣∣∣

(3.7)

(here we partition r̄ into r̄α and r̄β) and the wavefunction is

Ψ(r̄) = Dα(r̄α)Dβ(r̄β).

To calculate the kinetic energy, we first obtain ∇2
i φk(-ri) =

∑
j ∇2

i χj(-rij)cjk, and then sum

the contributions from all the electrons in all the orbitals

∇2Ψ(r̄)
Ψ(r̄)

=
∑

s∈{α,β}

∑

i,k∈Ns

[
M−1

s (r̄s)
]
ki
∇2

i φk(-ri). (3.8)

A similar procedure is followed for calculating the gradient of the wavefunction for each

electron with the exception that the final summation results in a vector of gradients.

To summarize the algorithm, we are given a set of nuclear coordinates, basis function

parameters, and the cjk, which describe the wavefunction as fit by some other (more ap-

proximate and cheaper) method. Additionally, we choose some parameters including the

number of steps Nt, the number of walkers W , an initial guess scheme for positions r̄ of

all the electrons, as well as several parameters relating to the importance sampling. Al-

though specific choices are often related to the computational resources available and to

the importance sampling method used, W is usually O(10) to O(103), Nt is O(104) to

O(108), and the dimensions of cjk are usually between O(10) and O(103), depending upon

the molecule. With these in hand, the algorithm can be stated as shown in Algorithm 1

(the ⊗ represents matrix multiplication), where simplifications have been included based

on assumptions about the importance sampling.

The high degree of parallelism is evident since each processor can calculate all the linear

algebra for its walkers and only needs to produce a single value; the energy. ∗

∗While some QMC algorithms only update one electron per Monte Carlo step, our method updates all
at once [31].

28

Algorithm 1 The QMC algorithm
Esum ← 0
for w = 1 to W do

-rij ← initialize()
for t = 1 to Nt do

for s = α and s = β do
Ms ← χj(-rij)⊗ cjk

Xs ← ∂
∂xi

χj(-rij)⊗ cjk

Ys ← ∂
∂yi

χj(-rij)⊗ cjk

Zs ← ∂
∂zi

χj(-rij)⊗ cjk

Ls ← ∇2
i χj(-rij)⊗ cjk

end for
Jastrow ← J(r̄)
Ψ ← det Mα ∗ det Mβ∗ Jastrow
Esum ← Esum+

EL(Ms, Jastrow, {derivatives}...)
-rij ← sampling(Ψ, -rij , Xs, Ys, Zs, Ls)

end for
end for
Eavg ← Esum/(Nt ∗W)

One big advantage of QMC relative to alternative methods is the freedom one has in

choosing the functional form of Ψ(r̄). This is exploited by multiplying the Slater determi-

nant wavefunction with a set of pairwise interaction terms which explicitly model electron

correlation by employing inter-electronic coordinates. The only condition is that these

terms, called Jastrow functions, preserve the antisymmetry of the wavefunction. To satisfy

this condition, we use the functional form

J(r̄) =
∏

q<p

eupq(rpq) (3.9)

which provides a term for each particle-particle interaction, where

upq(rpq) =
∑Γ

κ=1 apqκrκ
pq

1 +
∑Λ

κ=1 bpqκrκ
pq

(3.10)

and p and q index all electrons and nuclei, and rpq is the distance separating the two

particles. The number of terms (Γ and Λ) is arbitrary, and depends on the quality of fit.

These parameters, along with apqκ, bpqκ ∈ R, are input to the QMC algorithm. With this

modification, our wavefunction is now ΨQMC(r̄) = Dα(r̄α)Dβ(r̄β)J(r̄), and there are chain

29

rule effects for the gradient and Laplacian. The rationale for these additional terms is the

improved convergence if the wavefunction is a better approximation of the eigen function

of Ĥ to begin with. Jastrow functions involving 3 particles were not considered here.

Within the family of QMC algorithms, there are two popular varieties. The first is

called Variational Monte Carlo (VMC) in which the procedure described in this section is

employed to provide an exact integration for the given wavefunction. The method is termed

variational since it is commonly coupled with a wavefunction optimization step. Diffusion

Monte Carlo (DMC) uses the wavefunction only as a guide. Instead of a direct integration,

it has a mechanism to project out a (mostly) correct wavefunction, and thus provide exact

energies for the system. That said, a DMC calculation will converge better for higher quality

wavefunctions. The subject matter considered here is agnostic to this choice except that

DMC includes slightly more computational effort than VMC.

3.5 Implementation on the GPU

The QMcBeaver [4] code, under development in our group to perform QMC calculations,

was used as the CPU implementation on which to base our study of a GPU implementation.

In order to locate the computationally expensive components in the code, we minimize file

I/O, ignore localization procedures which lead to sparser matrices [32, 33], and we only

consider single determinant, restricted Hartree-Fock wavefunctions. Moving all electrons at

once allows us to use the highly optimized matrix multiplication routines available in the

ATLAS 3.7.11 [34, 35] BLAS library and use the LAPACK extension to ATLAS to perform

the necessary matrix inversions. Using this representation of QMC as our starting point, we

find that the computational effort on the CPU for N electrons is approximately 11% focused

on the 10 dense matrix multiplications at O(N3) each, 73% on the 10 basis function set

evaluations at O(N2) each, and 4% on the (electron - electron) pairwise Jastrow function

evaluations at O(N2). These fractional estimates are relatively stationary for molecules

with as many as 150 electrons. The leading components not yet ported to the GPU include

matrix inversion and electron-nuclear Jastrow functions as well as other processes specific

to DMC.

For the molecule sizes we are targeting the matrices are small and rectangular; special-

izations currently overlooked in GPU code. Combined with the fact that the cjk matrix can

30

be reused for all matrix multiplications, we pursued several optimization strategies in detail.

In particular, all of our kernels were designed to evaluate as many walkers simultaneously

as GPU hardware limitations permit.

3.5.1 Walker Batch Scheme

The GPU pipeline is very deep, so there is a substantial overhead cost for any calculation

we wish to perform. This is in terms of work the GPU has to do to prepare for a given

calculation, effort needed to move the GPU into full production efficiency, and any costs

incurred by traversing the CPU/GPU boundary. This can be amortized by processing as

many fragments simultaneously on the GPU as possible. For Monte Carlo type algorithms,

we can accomplish this by increasing the number of walkers processed per GPU pass. This

has allowed us to tune both the size of the problem and the texture aspect ratio to the

GPU. For example, we can arrange our data in GPU memory according to an empirically

optimized pattern such as 4 rows by 4 columns so that each pass amounts to 16 walker

evaluations in parallel.

3.5.2 Basis Function Evaluation

The number of basis functions, as well as their controlling parameters, are chosen according

to chemical considerations. Typical are 5 basis functions for each Hydrogen and 15 basis

functions for each atom Lithium to Neon, leading to a matrix aspect ratio of between 4 and

8. The choice of basis set and all associated parameters are held fixed during a run and

evaluation only depends on the 3N electronic coordinates, producing value, gradient, and

Laplacian.

3.5.2.1 Kernel 1: Data Generation

The major choice regarding basis function evaluation (Equation 3.6) concerns the organi-

zation of the output data: different regions of one output texture or separation by channel

(xyzw) resulting in two output textures. We opted for keeping the output in different re-

gions so as to allow specialization (i.e., derivatives) of the kernels. As regards input data

reuse, we opted for evaluating a single basis function for 4 electrons. This choice minimizes

texture lookups and increases instruction parallelism since only one nj from Equation 3.6

31

is used in the same fragment.

3.5.2.2 Kernel 2: Layout Conversion

Most matrix multiplication approaches on the GPU pack 2x2 submatrices into a single xyzw

memory slot and we employed this layout as well. The basis function evaluation output

is in 4x1 layout, necessitating a conversion which we used to filter out any bad values as

well. Due to the batching (Section 3.5.1) texture layout, fences between rows and columns

of walkers required special maintenance at this stage.

3.5.3 Matrix Multiplication

For purposes of performance comparison, we used the ATLAS 3.7.11 [34, 35] library’s single

precision matrix multiplication on our 3 GHz Pentium 4 as a CPU benchmark. For the GPU,

several studies of matrix multiplication performance have been performed [14, 15, 16, 18, 20,

21] so our main focus is on the performance for the (relatively) small rectangular matrices

we encounter in our application, as well as the fact that we use the same multiplicand for

all multiplications.

For the 2x2 layout the inner product for the pixel at C[i,j] becomes the series of pixel

products

for(k=0; k<N; k++){

C[i,j].xyzw += A[i,k].xxzz*B[k,j].xyxy

+ A[i,k].yyww*B[k,j].zwzw;

}

with N representing the number of pixels used in the inner product. In the GPU vector

notation above, the C[i, j].x data written separately is

C[i,j].x += A[i,k].x*B[k,j].x

+ A[i,k].y*B[k,j].z}.

The values are stored in row-major format across the xyzw channels. This method can be

modified to take advantage of multiple render target (MRT) [15] functionality on the GPU.

Essentially, MRTs can take advantage of up to 4 related data structures on the GPU with

which to arrange and facilitate reuse of data.

32

0

2

4

6

8

10

12

14

16

18

20

0 64 128 192 256 320 384

Dimension of Square Matrix

G
F
L
O

P
S

Standard, 16

Standard, 1

KSF, 16

KSF, 1

ATLAS

Figure 3.1: The cost of correcting for the summation error in multiplication of square
matrices. Indicated is the number of multiplications performed simultaneously, reusing the
multiplicand.

The results shown in Figures 3.1 and 3.2 both show the matrix performance speedups for

a variety of matrix sizes and parameter choices. The effect of multiplying several matrices

simultaneously is to raise the performance level (in terms of GFLOPS) for smaller matrices.

When performing calculations using rectangular matrices, the set up costs can be quenched

almost entirely. It is also apparent that for some domains, the GPU has significant per-

formance gains relative to the CPU when CPU cache peculiarities play a role. Although

the KSF error correcting algorithm (described in Section 3.6.2) negates most speedup gains

for the particular technologies compared here, the hidden advantage remaining is that the

calculation is performed on the GPU, minimizing GPU/CPU communication.

3.5.4 Jastrow Functions

The third most computationally demanding component of our QMC algorithm is the eval-

uation of the pairwise Jastrow function in Equation 3.9. For the GPU implementation,

we focused on porting the electron-electron terms (electron-nuclei terms are substantially

fewer). We need to evaluate N choose 2 polynomials (one for each electron-electron pair)

33

0

2

4

6

8

10

12

14

16

18

20

0 64 128 192 256 320 384

Short Dimension of Rectangular Matrix

G
F
L
O

P
S

Standard, 5

Standard, 1

KSF, 5

KSF, 1

ATLAS

Figure 3.2: The dimension of the inner product is 6 times that of the short dimension
shown. The multiplicand is reused for all 5 multiplications.

which are then summed. Since parameters in Equation 3.10 differ between same/opposite

spin electron pairs, texture data is partitioned in order to allow kernel specialization.

We proceed in 3 steps:

Kernel 1 evaluates the magnitude and normalized vector between all pairs of electrons

for a total of 4 values per fragment.

Kernel 2 finds the value, Laplacian, and gradient of Equation 3.9, writing the first two

to one texture and the latter three to another.

Kernel 3 computes the sums, maintaining the electron indices for the gradient summands.

3.6 GPU Floating Point Error

One of the goals of quantum chemistry is the calculation of the electronic energy of a

molecule with sufficient accuracy, stated as 1 to 2 kcal/mol. To this end, absolute error of

the final result must not be worse than 1 × 10−3 hartrees. An appropriately parameter-

ized QMC calculation can meet this criterion given enough Monte Carlo iterations. For this

34

study, we want to consider whether single precision is satisfactory. To test this, three simple

DMC calculations were performed on a large CPU cluster to compare numerically a result

calculated in double precision with exactly the same calculation in single precision. First,

a calculation is performed on a Helium atom using a 17s basis set [36] and a 2 determinant

expansion in natural orbitals obtained using GAMESS [6]. Figure 3.3 shows that the sin-

gle and double precision results are very similar, where the exact answer is approximately

-2.903724 [37] hartrees. Second, the torsional barrier in ethane was studied using the cc-

pCVTZ [38] basis set with CCSD(T) optimized Eclipsed and Gauche configurations [39].

Figure 3.4 again shows similar results between single and double precision, where the ex-

perimental value is 2.73 kcal/mol [39]. While these results are by no means conclusive,

especially since the quality of the result is dependent upon the quality of the wavefunction,

they provide evidence that single precision is not altogether unreasonable. This is can be

seen since the iterates are decoupled to some degree from each other by random numbers,

and since the Monte Carlo statistics itself happens in double precision. Furthermore, if a

pathological electronic configuration is identified, it can always be more delicately handled

on the CPU in double precision. Lastly, single precision QMC calculations might be useful

in an independent VMC wavefunction optimization calculation. Since DMC only employs

the wavefunction as a guide, variationally optimized parameters are far less restrictive in

terms of precision.

As far as our nVidia 7800 GTX GPU is concerned, we studied the floating point error

to obtain a best estimate for single point evaluations. We considered two principal sources

of error relevant to our problem as compared to the level of error available on a CPU:

underflow and effects of rounding. The evaluation of basis functions (Equation 3.6), for

example, can easily underflow if the bnj are too negative. We investigated whether the lack

of de-normals on GPUs was a problem since this means a GPU will underflow faster than

a CPU. As regards rounding, the IEEE floating point standard calls for a relative error of

±0.5 × 10−7 in the basic arithmetic operations for single precision. On current GPUs the

relative error in these operations appears to be [40] at least ±0.5× 10−7 and ±1.0× 10−7.

For dense linear algebra, this yields a difference in error between CPU and GPU computed

results.

35

-2.90380

-2.90378

-2.90376

-2.90374

-2.90372

-2.90370

-2.90368

-2.90366

-2.90364

-2.90362

-2.90360

0 20 40 60 80 100 120 140 160 180

Number of Samples (x10
6
)

E
n

e
r
g

y
 (

H
a
r
tr

e
e
s
)

Float

Double

Figure 3.3: Helium calculation showing the average and the error as the calculation pro-
gresses. The calculation was done at dt = 0.001, with 200 walkers each on 128 CPU
processors.

3.6.1 Underflow Corrections

To begin with, it is questionable whether one would permit de-normals to be included in

calculations even on some CPUs. Many processor manufacturers elect software implemen-

tations of de-normals, which severely penalize the processing speed. Since we were unable

to get decent timing results in matrix multiplication on the CPU unless de-normals were

flushed to zero before multiplication, our performance comparisons actually already repre-

sent a lack of de-normals on both processors.

Basis function evaluation involves exponentials with arguments negative enough to cause

underflow, an effect we do not want to ignore. To avoid underflow error one may simply

scale relevant variables to avoid the de-normal range, but must do so carefully to avoid

the worse problem of overflow. The effect of this type of error depends heavily on the

distribution of parameters, which is highly specific to our application. Thus we measured

the effect of these shifts on the final calculated EL(r̄) for each iteration, compared to the

same calculation as performed on the CPU in double precision.

36

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20
Number of Samples (x10

6
)

E
n

e
r
g

y
 (

k
c
a
l/

m
o

l)

Eclipsed, Double

Eclipsed, Float

Gauche, Double

Gauche, Float

Figure 3.4: Ethane calculation showing the average and the error as the calculation pro-
gresses. The calculation was done at dt = 0.005, with 200 walkers each on 128 CPU
processors.

The effect of shifting the exponential turns out to be relatively small for the set of

parameters we considered. We conclude that shifting helps, but the lack of de-normals

on the GPU turned out not to be a significant source of error. For parameter sets which

consistently produce de-normals, single precision should probably be avoided entirely.

3.6.2 Kahan Method

Dense matrix multiplication is the most significant source of error in our computations when

run on the GPU. Figure 3.5 shows the roundoff error inherent in matrix multiplication, as

estimated by multiplying two matrices created with a uniform distribution of data. As a

function of the dimension of the inner product, we calculate the relative error averaged

over all the elements in the resultant 1000x1000 matrix using CPU double precision as our

reference data. The problem is due to the propagation of errors, which scales approximately

linearly with the length of the inner products. A CPU typically minimizes this by performing

the calculations at a higher precision than the data type.

37

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

0 100 200 300 400 500 600 700 800 900 1000

Length of Inner Product

R
e

la
ti

v
e

 E
rr

o
r

GPU Standard

CPU Standard

GPU KSF

Figure 3.5: KSF corrects for rounding error in matrix multiplication. The resultant matrix
is 1000x1000, and the operand data is sampled from a uniform distribution [0,1].

When summing a sequence of floating point numbers using the basic formula
∑

xj , the

floating point result is
∑

xj(1+δj), where the perturbation error is defined as |δj | < (n−j)ε

and ε is the machine error. To compensate for the propagation of errors, we use the Kahan

summation formula (KSF) [41, 42] in the context of matrix multiplication. This alternative

method for summing a sequence of n numbers is shown below:

S = x[1];

C = 0;

for(j=2; j<=n; j++){

Y = x[j] - C;

T = S + Y;

C = (T - S) - Y;

S = T;

}

This method is algebraically equivalent, but if these steps are preserved during compilation,

the algorithm has the power to produce the result
∑

xj(1 + δj) + O(nε2)
∑

|xj |, where

38

1.0E-07

1.0E-06

1.0E-05

1.0E-04

0 100 200 300 400 500 600 700 800 900 1000
Length of Inner Product

R
e
la

ti
v
e
 E

r
r
o

r

BF (GPU), GPU KSF

BF (GPU), GPU Standard

BF (CPU), GPU KSF

BF (CPU), GPU Standard

BF (CPU), CPU Standard

Figure 3.6: The “QMC-Distributed” data for the multipliers was generated either on the
CPU or on the GPU, and the matrix multiplication was either corrected using KSF or left
as the standard method

|δj | ≤ 2ε [43]. To explain this algorithm, one first observes that the low order bits of Y are

lost when adding it to S. These bits can be recovered with the correction term C. The value

for C is found by subtracting Y from the part of Y which is properly accounted for in the

sum (the parenthesis are critical). This is not the only summation improvement available

although it does compete well [44].

A simple modification makes the KSF suitable for use in matrix multiplications as shown

in Algorithm 2. Here (i, j) represents the coordinates of the element in the product matrix

we are working on. It is important to note that the propagation error in addition is corrected

for, but not any error due to multiplication, even though such corrections are possible [45].

However, as Figure 3.5 shows, the improvement is enough to even beat single precision on

the CPU for long enough inner products.

To estimate the improvement that KSF provides for our QMC methods, we move to

a “QMC distribution” of data for our multiplier matrices while keeping the multiplicand

(representing cjk) as a uniformly random matrix. The distribution was formed by generating

a representative set of basis function parameters and a pseudo-random configuration of

39

Algorithm 2 KSF-corrected GPU Matrix Multiplication
float4 T = 0, C = 0, Y = 0, S=0;
int j = 0;
while(j < N){

Y = A[i,k].xxzz*B[k,j].xyxy - C;
T = S + Y;
C = (T - S) - Y;
S = T;
Y = A[i,k].yyww*B[k,j].zwzw - C;
T = S + Y;
C = (T - S) - Y;
S = T;
j++;

}
return S;

electrons. This distribution was evaluated either on the GPU or on the CPU and then

sent to the GPU for multiplication. The relative error was again estimated against double

precision on the CPU. Although the results in Figure 3.6 have a higher variance, it shows

that using the KSF method, we are able to approximately obtain equivalent results as CPU

single precision.

3.7 Results

To test the GPU port of our code, we sample 7 arbitrary molecules spanning the range over

which we wish to measure performance. We present speedup estimates for the calculation

time spent on equivalent tasks performed on both our 7800 GTX GPU and our 3GHz

Pentium 4, as well as compare the final cost of incorporating the KSF correction. We ran

the calculations long enough to converge the speedup ratio.

It is evident that for the range of molecules considered, the speed penalty incurred with

KSF rose as the matrix multiplication cost became more prominent. The KSF formula

served to keep the relative error in the calculated EL(r̄) to a constant across all molecules

at approximately 1x10−6. It is worth noting that KSF did not make a significant difference

in either speed nor correction for many of the smaller molecules.

To provide an estimate for the impact of these speedup factors, we point out that

for HMX, the calculation is now 5 to 7 times faster. This means that the new fractions

40

Number of Number of Basisfunction Jastrow

Name Formula Electrons Basisfunctions Standard KSF Speedup Speedup

Acetic acid CH3COOH 32 80 3.2 3.1 18.2 0.7

Benzaldehyde C6H5CHO 56 150 4.4 4.1 25.9 2.1

[10]Annulene C10H10 70 200 6.3 5.6 30.2 3.4

Diazobenzene C12H10N2 96 326 5.3 4.5 31.6 6.4

Lysine C6H14N2O2 102 280 4.5 3.9 29.2 7.2

Arginine C6H14N4O2 116 387 4.9 4.1 28.5 9.3

HMX C4H8N8O8 152 516 6.6 5.3 33.3 14.0

Total Speedup

Figure 3.7: QMC performance results on arbitrary molecules picked to represent varying
problem sizes. Speedup is defined as the time spend processing on the CPU divided by the
time spend processing on the GPU.

Problem Size

T
im

e
 T

a
k
e
n

Figure 3.8: Problem size is defined as the number of basis functions × the number of
electrons. The data points are from the arbitrary molecules listed in Figure 3.7

.

of evaluation cost are that matrix multiplication, which formerly composed 15% of the

cost, is now only 4% (non-KSF) of the original total cost; the basis function cost went

from 73% to 2.2%; and the electron-electron Jastrow evaluations, which used to cost 3.5%

of the effort, are now 0.3%. If we approximate the effect of improving GPU technology

over CPU technology as well as the possibility of multiple GPUs per CPU by setting the

residual percentages at 0%, the original unaccounted for 8% suggests a theoretical factor

of 13 speedup. A recent calculation [46] on free-base porphyrin which has 162 electrons

and 938 basis functions in the cc-pVDZ basis set cost 40,000 CPU hours on an IBM SP

POWER3+ cluster. Thus, ignoring the precision issue, we speculate that this calculation

could theoretically cost 3,000 processor hours.

Although some of the performance numbers for the individual kernels are very good, the

41

code suffers from Amdahl’s Law type inefficiencies because of diminishing returns discovered

during porting. This is for several reasons. A few of the elements of the computation,

like the Monte Carlo statistical manipulations, can not be permitted to be run in single

precision. Furthermore, there are several portions of the code for which a GPU port is

currently unsuitable due to a lack of sufficient data parallelism either as O(N) components

or as problems with GPU-unfriendly data interdependencies. With increasing capability on

the GPU, more of the code will be available to porting considerations.

It is obvious however that there is a GPU kind of Gustafson’s Law [47] advantage

available. Specifically, if basis function and Jastrow function evaluations can be considered

as essentially free, then one is encouraged to employ whatever functional form is deemed

best, regardless of computational complexity. This is likely to increase both the quality

of individual iterates as well as improve the overall convergence characteristics of a Monte

Carlo calculation. Of course this assumes that these advantages are not washed out by

precision errors stemming from other parts of the code.

3.8 Conclusion

QMC type algorithms for first principles chemistry calculations are simple to parallelize and

capable of exploiting the data parallel aspects of GPU based computing. While the matrix

sizes needed in actual application practice are on the small side, recent generation GPUs,

coupled with a few tricks, have become significantly better in achieving high performance at

these sizes. The overall result is a 3x to 6x speedup in the end to end simulation application

with a modest increase in hardware cost, making this a very cost effective solution. The lack

of full IEEE floating point support is perhaps the most critical issue for QMC. We were able

to correct for the error propagation, albeit only with a performance penalty due to the more

complex evaluation cost of the Kahan summation formula. Clearly a more complete IEEE

floating point treatment would be an excellent improvement, and forthcoming improvements

will be welcomed.

Beyond that, we note that due to the rapid evolution of GPU hardware (and the associ-

ated driver software), attaining a sweet spot in the performance landscape is a never ending

quest of parameter and algorithm tweaking. We speculate that adoption of the GPU as a

computational engine will be greatly facilitated if approaches such as ATLAS [34, 15] and

42

application specific libraries can be further brought to the GPU arena.

43

Chapter 4

Generalized Valence Bond
Wavefunctions in Quantum Monte
Carlo

4.1 Abstract

We present a comprehensive technique for using Quantum Monte Carlo (QMC) to obtain

high quality energy differences. We use Generalized Valence Bond (GVB) wavefunctions,

for an intuitive approach to capturing the important sources of static correlation. Using

our modifications to walker branching and Jastrows, we can then use Diffusion Quantum

Monte Carlo to add in all the dynamic correlation. This simple approach is easily accurate

to within 0.2 kcal/mol for a variety of problems, which we demonstrate for the adiabatic

triplet-singlet splitting in methylene, the vertical and adiabatic singlet-triplet splitting in

ethylene, the ethylene twist barrier, and the 2+2 cycloaddition to make cyclobutane.

4.2 Introduction

The Quantum Monte Carlo (QMC) algorithm is rapidly advancing as a tool competitive

with the best available ab initio electronic structure methods. It has already been used with

remarkable success to calculate energies and other properties for a wide variety of molecules

and periodic systems across the periodic table. Although it will probably never replace

cheaper methods such as Density Functional Theory (DFT), given advances in computing

power, it will surely begin to serve as a complementary method, brought in for calibration

or to resolve disagreements.

44

The principle failure of Self-Consistent Field (SCF) methods is that they do not include

all electron-electron interactions. The difference between the energy produced by an SCF

method and exact energy is referred to as the correlation energy. Correlation energy can be

further subdivided into two components; static correlation and dynamic correlation. Static

correlation is the error resulting from using an incomplete functional form for the wave-

function during the SCF procedure, and is typically resolved by increasing the complexity

of the wavefunction by adding more orbitals and basis functions to the SCF optimization.

Dynamic correlation comes from the SCF procedure itself, where an electron sees only an

average field of the other electrons, and thus never has to move out of another’s way. This

error is typically corrected after SCF with a Configuration Interaction procedure, in which

determinants are added to the wavefunction by combinatorially choosing different orbitals

for the electrons to occupy.

QMC methods can capture the correlation energy in two ways. First, a privilege shared

with many Monte Carlo approaches, we are free to use whatever representation of the wave-

function we want, since we never need to analytically integrate anything. That is, we can

add purpose-designed functions, called Jastrow functions, to explicitly model inter-particle

interactions. Second, and even better, provided a guess for the wavefunction nodes, we can

include all the dynamic correlation energy through the diffusion Monte Carlo (DMC) algo-

rithm. The nodal assumption results in an error called the fixed-node energy, which is not

negligible. Fortunately, the same techniques used to deal with the static correlation energy

can be used to lower the fixed-node energy, and thus multi-configuration SCF (MCSCF)

techniques can be considered to be quite complementary to DMC.

Fully accurate SCF techniques can be expensive, typically scaling quite poorly with

molecule size, motivating a search methods which do not overkill the problem. On the other

hand, we need at least within chemical accuracy of 1 kcal/mol, so underkill is undesirable.

Explored in this paper is an evenkill solution where we use Generalized Valence Bond

(GVB) wavefunctions [48] to correct for the fixed-node error. By working with valence

bond orbitals, GVB has the advantage over more general approaches of being chemically

intuitive and of scaling well with molecule size, while efficiently correcting for the important

sources of static correlation.

To demonstrate the validity of the GVB approach, as well as to validate our overall

methodology, we present a study of a few molecules for which experimental data or reliable

45

calculations are available, testing excitation energies and bond breaking. The methylene

triplet-singlet adiabatic splitting is one of the few processes for which experimental data is

available, accurate to tenths of a kcal/mol. Thus it is a good test to see exactly how close

to the exact answer we can get. Among the most studied processes is surely the ethylene

singlet-triplet splitting (both adiabatic and vertical), with quite a few experimental and

computational studies. Both of these processes have even been the subject of other QMC

studies, providing an excellent basis on which to compare our results with those of more

standardized approaches. We go further than this with ethylene, examining the energy

barrier of a rotation about the CC axis, which breaks the double bond. Lastly, we look at

the cycloaddition of two ethylene molecules to make a cyclobutane molecule and show how

our approach is successful at modeling multiple bond changes at once.

4.3 Method

In this section, we present the QMC approach we use in our QMcBeaver [4] code, which is

available online. First, we discuss our choice of trial wavefunction, which is to use GVB for

the SCF part of the wavefunction, and second, our modifications to the Jastrow functions

recommended by Drummond and co-workers [49]. Third, we talk about our experiences in

optimizing this kind of wavefunction, starting from the approach of Toulouse and Umri-

gar [50]. Fourth, we diverge from Umrigar’s DMC algorithm [1] to use the reconfiguration

method for walker branching provided by Assaraf and co-workers [51], with more of our

modifications. Finally, we summarize our approach.

4.3.1 Generalized Valence Bond Wavefunctions

A GVB wavefunction [48] starts with a localized restricted Hartree-Fock (RHF) wavefunc-

tion and replaces an orbital (e.g., a single bond) with two singlet paired orbitals in a geminal

called a perfect pair

ΨGV B = A [{core} {ϕuϕv} {αβ − βα}] , (4.1)

where A is the antisymmeterizer, or determinant, operator. Although we allow ϕu and ϕv

to overlap each other, they are orthogonal to all the other orbitals in the wavefunction.

This can be thought of as permitting each electron to have its own orbital. We can rotate

46

these intuitive orbitals into the more computationally useful, but fully equivalent, natural

orbital form:

ΨGV B = A
[
{core}

{
σuφ2

u − σvφ
2
v

}
{αβ}

]
, (4.2)

where σ2
u + σ2

v = 1. We typically interprete φu as a “bonding” orbital, and φv as an

“antibonding” orbital. Where a perfect pair is used to represent a single bond, the benefit

is to add left-right correlation to the bond, allowing the electrons to get away from each

other a little bit, and this is the simplest wavefunction that permits H2 to dissociate to 2H.

In the same way, we can add left-right correlation to double or triple bonds. When it comes

to lone pairs, the perfect pairing scheme can be used to add in an important orbital left

out by RHF (such as 1 b1 in 1A1 methylene) to incorporate some angular correlation, or,

in other cases, to add in-out correlation to the lone pair.

Although GVB is a subset of MCSCF calculations, the main advantage to GVB over

MCSCF is that it is the only variety that is able to avoid integral transformations [52]. But

additionally, it allows a simple, modular, and balanced way of selecting the active space,

since everything is localized. The researcher perhaps does not even need to look at any

orbitals to do this, since reliable routines exist to generate good initial guesses [53] for a

GVB wavefunction based on RHF orbitals.

For our QMC wavefunctions, we expand the geminals in each NGV B pair wavefunction

into the equivalent 2NGV B determinant wavefunction. Although the number of determinants

grows quickly, we use a simple algorithm to sort these determinants such that sequential

determinants in the wavefunction differ by only one column (orbital). To calculate the local

energy of the wavefunction, the algorithm only needs to perform one Sherman-Morrison

update per determinant in the wavefunction. This is a significant performance boost where

many pairs are used.

All of the cases we present here are adequately modeled with perfect pairing. How-

ever, for increased accuracy in some of our calculations, we can add Restricted Configura-

tion Interaction (RCI) terms [54] to the GVB reference wavefunction, without reoptimiz-

ing the orbitals. With these terms, the GVB-RCI geminal now takes the “excited” form
{
σuφ2

u + φuφv − σvφ2
v

}
, adding some charge-transfer character in the pair. Although we

could add these RCI terms to all geminals, for a total of 3NGV B determinants, we excite

only up to 2 geminals at per determinant.

47

4.3.2 Length Scaled Jastrows

We implemented the 2 and 3 particle Jastrow functions recommended by Drummond and

co-workers [49] because we like the cutoffs, flexible shapes, and simplicity. However, we

found that their length scale parameter L was too difficult to optimize for the algorithms

we use, so we use the following modifications instead. For 2 particle interactions, we use

the functional form

uij [x ← rijS] = (x− 1)3
(

M∑

k=0

akx
k

)
, if 0 ≤ x ≤ 1 (4.3)

= 0, if x > 1, (4.4)

where rij is the distance between the two particles (electrons or nuclei) i and j, S is the

length scale parameter (x = rijS), and a1 is constrained to satisfy the cusp conditions. The

(x − 1)C prefactor is used to force the C − 1 lowest order derivatives to go to zero at the

cutoff. We have found that C < 3 inhibits the optimization of S using our routines, and

that C > 3 does not make much difference. Our three customizations are that the function

uses the scaled coordinate x instead of r, we optimize 1/L instead of L, and we only use

C = 3. These do not change the variational flexibility of the function, but they make the

ak parameters less dependent on S, easing their optimization. This makes a total of M + 1

independent parameters, and in all calculations presented here, we use M = 8. Optimizing

the ak parameters was still delicate during concurrent optimization with S, so we eventually

turn off the optimization of S for some final fine tuning, as discussed in Section 4.3.3. We

make analogous modifications to their electron-electron-nuclear Jastrows for our software.

Our tests did not indicate that differentiating between spin for electron-nuclear Jastrows

significantly changed the energy, so we use the same Jastrow for all electrons. For hydro-

carbons, then, we use four 2 particle Jastrow classes: Carbon-Electron, Hydrogen-Electron,

Opposite-Electron, and Parallel-Electron. Adding the 8 parameters for the Jastrow’s poly-

nomial and the 1 length scale parameter, there are 9 parameters for each 2 particle Jastrow,

for a total of 36 parameters for 2 particle Jastrows in all of our calculations.

Similarly, we ignore spin distinctions in our 3 particle Jastrows, leaving us with only one

3 particle Jastrow per element represented in the molecule. Although there are 43 terms

of the form xa
i x

b
jx

c
ij in the polynomial for 3 particle Jastrows, there are several necessary

48

constraints including symmetry and cusp conditions. Thus, the number of independent

parameters is reduced considerably to only 27 parameters, including the length scale, per

Jastrow class. As a further simplification, we have found 3 particle Jastrows centered on

Hydrogen atoms to be unhelpful. This makes physical sense given that these Jastrows are

primarily useful for modeling the interaction of two 1s electrons with the nucleus, and on

average only 1 electron will be near a Hydrogen nucleus.

With minimalistic Jastrows added to single determinant wavefunctions, we estimate that

Jastrow function evaluation uses 10% or less of the time spent during a QMC calculation.

With the addition of 3 particle complexity to Jastrows, however, this fraction can increase

to 70% or 80% or higher. In the future, however, we believe [55] that SIMD computing

technology in devices such as GPUs will eliminate the cost (comparatively) of Jastrow

evaluation. In the mean time, however, it is important to seek practical short cuts.

4.3.3 Wavefunction Optimization

To optimize our wavefunctions, we use the method recommended by Toulouse and Umri-

gar [50], with the following modifications. To make a wavefunction, we copy into our input

file the best Jastrows we have from among similar systems, noting that it is more important

that we match the basis set than the type of SCF wavefunction. If we found that two CI

coefficients were the same (or additive inverses) to within a relative difference of 10−5, we

constrained them to maintain the relationship. Furthermore, even though QMC is insensi-

tive to the normalization of the wavefunction, we do not take the opportunity to eliminate

a degree of freedom in the CI coefficients. Starting at around 20,000 samples per optimiza-

tion step, we double the number of samples collected per iteration, with a maximum of

500,000 samples, if the variational energy does not go below the statistical error between

successive iterations. Umrigar makes use of an adiag factor to stabilize the eigenvector from

the solver. Just as he does, we obtain this factor on the basis of a short correlated sampling

run in between optimization steps. Our correlated sampling runs are produced using the

best optimized wavefunction from the previous iteration as the guiding trial function, and

including 7 wavefunctions produced with preselected adiag factors, logarithmically spaced

between 10−7 and 103. The larger adiag is, the less the wavefunction will change as com-

pared with the previous iteration. The wavefunction for the next step is chosen from the 7

49

by selecting the one i with the lowest quantity:

0.95(Ei − E0) + 0.05(σ2
i − σ2

0)/σ2
0,

thus optimizing for lowering the energy compared to the guiding trialfunction, indexed at

0, while penalizing a wavefunction with too large of a sample variance. With this scheme, if

an optimization step goes bad, the step can effectively be ignored by choosing adiag = 1000.

There are two problems with this procedure applied to our Jastrow functions. First,

despite our improvements, the length scale parameter remains a source of instability. Thus

once we observe the length scale to be changing by less than a few percent, we turn off its

optimization, allowing us to fine tune the other Jastrow parameters. Second, the algorithm

occasionally leads to a local minima. Some of our wavefunctions, for example the 3B1

methylene wavefunction, initially optimized to an absurd parallel spin Jastrow, which was

only discovered upon examining a plot of the Jastrow itself. In these cases, neither the

energy nor the variance were suspicious, since after all, we did not know how deep the

global minima goes. The problem is that some of the local minima we found raised the

VMC energy by about a few kcal/mol. For DMC, this is not a problem upon time step

extrapolation, but we are not doing time step extrapolation as discussed in Section 4.3.5.

For this reason, and since the CI coefficients might be affected by poor Jastrows, we carefully

monitored our Jastrows during optimization.

Once satisfactorily optimized, all of the Jastrows within each class looked qualitatively

very similar. A few examples are plotted in Figure 4.1, exponentiated. With this in mind,

we were easily able to identify bad Jastrows as ones which cross the exp(uij) = 1 line, which

were not monotonic, or which took on extremely high or low values. In some exceptional

cases, the global minima was only obtained by first optimizing all Jastows except the trou-

blesome one, constraining it to a good Jastrow from another system. Once that converges,

we optimize the troublesome Jastrow (and possibly its length scale) holding all the oth-

ers fixed. We repeat this cycle until all of the Jastrows are sufficiently close to the global

minima that concurrent optimization of all the Jastrows can lock it in. There were not

many cases like this, but this problem casts doubt on the rest of our optimization efforts,

especially for the CI coefficients which we can not monitor visually.

50

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7

E
x
p
[
u
i
j
]

rij (Bohr)

Parallel Spin

CH2

C4H8

C2H4

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 1 2 3 4 5 6 7
E
x
p
[
u
i
j
]

rij (Bohr)

Opposite Spin

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 0 1 2 3 4 5 6 7

E
x
p
[
u
i
j
]

rij (Bohr)

Electron-H

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5 6

E
x
p
[
u
i
j
]

rij (Bohr)

Electron-C

Figure 4.1: Typical ground state Jastrow functions used in this study, for the aug-tz basis
set. Based on our experience, we do not believe that any Jastrows would look significantly
different than these. In our optimization, we ignored minor flaws in the Jastrows, such as
wiggles in the Electron-H Jastrows, or the brief crossing of the exp(uij) = 1 line in Opposite
Spin Jastrows.

51

4.3.4 Walker Reconfiguration

There are a variety of ways to design the branching process such that the number of walkers

is always constant, and we use the algorithm designed by Assaraf and co-workers [51], which

we dub ACK reconfiguration. This is made possible with a reconfiguration step, where

low weight walkers are replaced with duplicates of high weight walkers. This is done by

calculating the average walker weight Wavg, and using Wavg to bifurcate the list of walkers.

We delete a total of

Nreplacements ∝
∑

i∈{wi<Wavg}

∣∣∣∣
wi

Wavg
− 1

∣∣∣∣ (4.5)

walkers, where a walker with weight wi is selected with probability proportional to |wi/Wavg−

1|. The same proportionality relation is used to select enough high weight walkers for dupli-

cation, so that the total number of walkers is restored. After this, the weights of all walkers

are set to Wavg, so that the total weight of the walkers is also unchanged. This method

adds significant stabilization to the ordinary DMC process since any instabilities affecting

one walker are instantaneously disbursed to the others.

We add further stabilization to the method, partly because of the added instability of our

all-electron move iterations. This is done simply by selectively ignoring in the duplication

and elimination candidate lists walkers which fail our criteria. That is, we keep Wavg, the

probabilities, and Nreplacements the same as prescribed. The only difference is that the actual

length of either of the two lists might be different than the ACK algorithm predicted. The

penalty for this is that in rare cases, the algorithm will be unable to maintain the same

number of walkers it started with. We modify our elimination lists to ensure that walkers

with wi < 10−5 are guaranteed to be replaced this iteration, since they are a complete

waste of computational effort. Defining age as the number of iterations since the walker

last moved and dW as the multiplicative factor by which the weight changed this iteration,

our acceptable duplication criteria are:

1. age > 4,

2. pow(dW, age + 1) > 5,

3. or if the walker has not been duplicated this iteration.

52

Persistent walkers, those stuck in one location, can be a problem in a Monte Carlo calcula-

tion. Our improvement is to ensure through Criteria (1) that at least these walkers never

become duplicated. Duplication will also be prohibited by Criteria (2) if a slow walker

is in a location where its weight grows too fast. The reason is that we have found that

some walkers can become stuck close to a wavefunction node, which is a singularity in the

local energy, where they often spawn more quickly than they can move away. Lastly, with

Criteria (3), we do not allow a walker to duplicate more than once per iteration, a fail-safe

to slow the damage that one walker might cause.

4.3.5 Further Details

To make our wavefunctions, we have used both Jaguar [5] and GAMESS-US [6], and we

obtained our basis sets from the EMSL website [56, 57]. For this study, we have chosen two

basis sets, which we label aug-tz, and tz. Our aug-tz basis set is aug-cc-pwCVTZ, which is

Peterson and Dunning’s new [58] weighted basis functions, which were optimized with the

inclusion of some core-core correlation energy for better overall performance. This basis set

puts 25 basis functions from [4s3p2d] on H, and 69 basis functions from [7s6p4d2f] on C.

We also use cc-pCVTZ, labeled here as tz, which uses their recent [38] scheme for adding

core-valence correlation. This basis puts 15 basis functions from [3s2p1d] on H, and 49 basis

functions from [6s5p3d1f] on C. All Hartree-Fock, coupled-cluster [59], and GVB [48], and

MCSCF results were obtained in GAMESS using the same geometry as the corresponding

QMC calculation. We included all determinants in the CI expansion, except where noted.

All of our DFT calculations were done using Jaguar with high precision settings. We

include results using the LDA, PBE, B3LYP, and the m06-2x [60] functionals, using the

same geometries as the corresponding QMC wavefunctions. We used Jaguar to make our

GVB wavefunctions, since it has a good mechanism for generating initial guesses [53]. But

any wavefunctions that we used were handed over to GAMESS for final convergence since

Jaguar restricts us to 7 f basis functions, and we want to use all 10 cartesian functions.

Our QMC calculations are done using the QMcBeaver [4] software developed in our

group. The C++ source code is available online under the GNU Public License. Starting

with a script generated input file based on an SCF calculation and similar Jastrows, we use

our own efficient algorithm [61] to initialize the walkers. We evaluate the local energy in

all-electron updates, using the cusp replacement algorithm of Ma and co-workers [62]. We

53

use Variational Quantum Monte Carlo to optimize all CI coefficients and Jastrows by the

method recommended by Toulouse and Umrigar [50], with our modifications as outlined

in Section 4.3.3. Using the resulting optimized parameters, we run Diffusion Quantum

Monte Carlo based on Umrigar’s seminal algorithm [1], with our modifications as described

here. Our calculations are run on 4 CPU cores, for a total of 400 walkers, using a different

parallelization [63] technique than is typical for QMC calculations. All energies reported

have been fully decorrelated using our efficient algorithm [64], which automatically finds

the smallest decorrelated block size.

-9.45

-9.4

-9.35

-9.3

-9.25

-9.2

-9.15

-9.1

-9.05

 0 5000 10000 15000 20000 25000

E
n
e
r
g
y

(
k
c
a
l
/
m
o
l
)

Time (Hartrees-1)

exp

0.0025

0.005

0.0075

0.01

0.0125

0.015

Figure 4.2: Cancellation of time step error between triplet to singlet energies in methylene,
using 3 pair delocalized GVB wavefunction. For this plot, individual calculations were
stopped when they reached a statistical error of exactly 0.065 kcal/mol, corresponding to
an error of 0.092 kcal/mol for the difference. We plot the differences here against the amount
of simulated time, iterations × time step × average move acceptance probability.

Based on the results shown in Figure 4.2 and other comparisons we have done not

included here, we can see that the majority of the time step error cancels off for each time

step. This indicates that the dominant source of error is not the time step error itself,

but an instability on the order of a few tenths of a kcal/mol. With this in mind, the

consensus result appears to be about 9.2(1) kcal/mol. Since the computational cost of the

54

calculation scales linearly with the time step, we are motivated to choose just one time step,

as large as reasonable. We can also see that after running for about 15,000 au−1, most of

the calculations have converged to within the 0.092 kcal/mol statistical error. Based on

this observation, we typically choose a time step of 0.0075 and run for 20,000 au−1, which

corresponds to 2.7 million iterations. Looking ahead at Table 4.1, our converged result is

9.239(88) kcal/mol for this case, in agreement with our qualitative assessment of Figure 4.2.

The length of time for each calculation varied with many factors, but ranged from about

40 hours on methylene to about 100 hours on ethylene to about 400 hours on cyclobutane.

However, for these same calculations, each processor only required about 15 to 40 megabytes

of RAM∗ each. It is illustrative to compare these performance numbers with coupled cluster

methods, which not only scale poorly in computation time with larger molecules, but scale

poorly in memory requirements as well. Even if a researcher is willing to wait for completion,

memory is certainly a finite resource, and random access memory will remain a bottleneck

resource for the foreseeable future. In contrast, even though QMC scales somewhat poorly in

computation time at O(N3)† with a large prefactor, where N is the number of electrons, the

memory requirements are negligible. This is a favorable situation since machines are rapidly

getting faster, and it is even possible to run QMC on a Graphical Processing Unit [55] for

remarkable speedups.

4.4 Results

We present our results for several related molecules for which good experimental or com-

putational results are available to use as a reference. We wish to examine the effectiveness

of adding GVB pairs to our wavefunctions, as well as the importance of different basis sets.

In this section, we examine methylene, ethylene, and cyclobutane.

4.4.1 Methylene

The singlet-triplet splitting in methylene is among the most studied problems in quantum

chemistry. It has been notoriously difficult to get correct results for, and thus it remains

a very useful benchmark for QMC. The 2s and 2p atomic orbitals on Carbon are nearly
∗Low memory requirements are one of the benefits of all-electron updates.
†assuming dense matrices

55

degenerate, necessitating the inclusion of all 4 into any Carbon containing molecule. Any
3B1 wavefunction does this, while one orbital is left out at the RHF level for 1A1. Thus

the simplest reasonable description of the 1A1 state is to add the missing orbital by perfect

pairing it with the lone pair as an angular correlation term. It is important to also recognize

that triplet paired electrons are much better correlated, due to orbital orthogonality, than

closed shell counterparts in a singlet wavefunction. Consistency requires at least that the

number of orbitals on each side of a comparison is the same, adding another reason for the

perfect pairing.

We present our results in Table 4.1. Our GVB-1 calculations represent RHF for the

triplet state, and one GVB perfect pair for the singlet, indicating our policy of using the label

from the comparison with the highest number of pairs. The GVB-3 level adds correlation to

the bonds, for a total active space of 6 orbitals, and there are two ways to do this. GVB-3 is

supposed to use localized bonding and anti-bonding orbitals, but we also include a version

with the same 4 orbitals delocalized, even though the GVB splittings are 0.02 kcal/mol

different. The RCI-3 level of theory excites up to two perfect pairs into their corresponding

open shell singlet, without optimizing the orbitals. Finally, by CAS-3, we mean the complete

active space in the 6 orbitals, optimizing the orbitals in SCF. There is some question about

which zero point energy (ZPE) we should use since we see two values used in the literature

to convert the experimental [65] T0=3147± 5 cm−1 to Te. First, we find that many people

use ∆ZPE=68 cm−1 to produce Te=9.192(14) kcal/mol, a ZPE derived [66] by fitting a

potential energy surface to reproduce experimental excitation energies. We also find a

theoretical ∆ZPE=128 ± 18 cm−1 obtained [67] with accurate quartic force fields leading

to Te=9.364(53) kcal/mol. We use the latter value for our comparisons. We also note that

in contrast with other theoretical studies of this system, we do not incorporate any other

energy corrections to our measurements.

For methylene, we have run each calculation shown in Table 4.1 twice so that we can

average some of the instabilities out, a luxury we do not employ for our other molecules.

Additionally, one of these two runs for our GVB-3/aug-tz was run for much longer, since

we were surprised that the localized orbitals are further from experiment. This error is

compensated for at the RCI-3 level. All of our results are within 0.4 kcal/mol of the

experimental estimate, with the exception of our RHF calculation which does quite poorly

at an error of about 4 kcal/mol. Additionally, we include our estimation of the lowest

56

Table 4.1: Methylene excitations: 1A1 ←3B1 and 1B1 ←3B1. For 3B1, [RCH ,ΘHCH] =
[1.0753Å,133.93] from experiment [65], for 1A1 [1.107Å,102.4] from experiment [68], and for
1B1 [1.0723Å,142.44] from theory. [69]. By ‘B’, we are indicating our basis, by ‘O’ we are
indicating, where it matters, whether our GVB pairs are localized or delocalized, and by
‘J’ we are indicating whether we are using 2 or 3 particle Jastrows.
SCF B O J ∆e

1A1
3B1

kcal/mol au au
GVB-3 aug-tz L 2 9.071(80) -39.121669(91) -39.136124(89)
GVB-3 aug-tz D 2 9.239(88) -39.120847(81) -39.13557(11)
GVB-3 aug-tz D 3 9.340(71) -39.124461(79) -39.139345(82)
Expa 9.364(53)
RCI-3 aug-tz L 2 9.37(11) -39.12176(13) -39.13670(12)
GVB-1 aug-tz 2 9.40(10) -39.12149(12) -39.13648(12)
RCI-3 aug-tz D 2 9.519(95) -39.12137(11) -39.13654(11)
GVB-3 tz D 2 9.53(10) -39.12065(11) -39.13584(12)
GVB-3 tz D 3 9.557(74) -39.123975(83) -39.139205(83)
GVB-1 aug-tz 3 9.560(76) -39.124248(91) -39.139483(80)
GVB-1 tz 2 9.65(11) -39.12093(12) -39.13631(12)
GVB-1 tz 3 9.673(73) -39.123838(84) -39.139253(81)
CAS-3 aug-tz 2 9.792(92) -39.12353(10) -39.13913(10)
RHF aug-tz 2 13.80(10) -39.11449(12) -39.13648(12)
RHF aug-tz 3 13.844(73) -39.117421(85) -39.139483(80)
SCF B O J ∆e

1B1
3B1

kcal/mol au au
PESb,c 31.897
GVB-1 aug-tz 2 32.06(11) -39.08539(12) -39.13648(12)
GVB-1 aug-tz 3 32.114(71) -39.088306(80) -39.139483(80)
MRCIc 32.807
a) Experimental Te = T0 + ∆ZPE, where T0 [65]=3147 ± 5 cm−1 and ∆ZPE [67] =128 ±
18 cm−1 b) From Ref [[66]] c) From Ref [[69]]

57

singlet-singlet vertical excitation, even though there is little consensus for what the right

answer should be. Adding augmented basis functions improves our estimates by 0.1 to 0.2

kcal/mol, while 50% more basis functions added computational time of only 10% to 30%.

There is no reason not to use the augmented version of the chosen basis set class. Looking at

our timing data, we see that if we had stopped our calculations at an error of 0.1 kcal/mol,

our 3 particle wavefunctions would have finished 30% to 40% quicker, demonstrating their

value in variance reduction. This comparison encourages their use, but this conclusion

changes for cyclobutane.

It is clear that beyond the statistical error, there are some additional sources of error.

As mentioned previously in reference to Figure 4.2, there is some error due to instability

in the convergence, which we have attempted to minimize for methylene by running each

calculation twice. But more importantly, there appears to be some error due to incomplete

optimization of wavefunction parameters. For example, using our tz basis set, the addition

of 3 particle Jastrows does not appreciably change the energy difference, a result which

makes sense given our assumption that the time step error cancels out. This is not the

case for our aug-tz basis set, which changes by at least 0.1 kcal/mol with the addition of 3

particle Jastrows. We are also puzzled by our CAS-3 results. In this case, our first optimized

wavefunctions produced a DMC splitting of 9.877(92) kcal/mol, which is clearly wrong. We

returned to the optimization stage, keeping the optimized Jastrows but starting with the

original CI coefficients, and this time we improved to 9.792(92) kcal/mol. This indicates

that we eliminated a local minima in the wavefunctions worth 0.085 kcal/mol. We also

tried using a determinant cutoff of 0.01 so that there were fewer parameters to optimize,

but this produced 10.291(94) kcal/mol. Clearly, there is no fundamental flaw with CAS

wavefunctions themselves, which work quite well for us in ethylene. But this leaves us in a

precarious balance where theoretically better wavefunctions are perhaps more likely to fall

into local minima during optimization.

We wanted to discover the effect of optimizing different parts of the wavefunction. We

pursued this by choosing some standard state for each atom for the Jastrows, and then

selectively optimizing parts of the wavefunction, and comparing these results to the com-

parable result from Table 4.1. Our results, shown in Table 4.2, tell us that optimizing the

CI coefficients was worth 0.5 kcal/mol, and that optimizing the electron-nuclear Jastrows

was worth another 0.4 kcal/mol. Of course, in the limit of zero time step, there should

58

Table 4.2: The effect of optimizing different parts of our aug-tz GVB-3 delocalized methylene
wavefunctions, with 2 particle Jastrows, and all calculations run at 0.0075 time step. The
starting point for these calculations are the CI coefficients from GVB, Electron-Carbon and
Electron-Electron Jastrows from optimized Carbon GVB-1 atom, and Electron-Hydrogen
Jastrows from an optimized GVB-1 H2 molecule. Each row corresponds to a different set
of parameters which were optimized, where EN stands for electron-nuclear and EE for
electron-electron.

Optimization ∆e
1A1

3B1

kcal/mol au au
EN and CI 9.20(11) -39.12184(13) -39.13650(12)
Fully Optimized 9.239(88) -39.120847(81) -39.13557(11)
EE and CI 9.51(11) -39.12133(13) -39.13648(12)
CI 9.58(11) -39.12161(13) -39.13687(12)
EE and EN 9.97(11) -39.11872(12) -39.13460(12)
EE 10.05(11) -39.11801(12) -39.13403(12)
No Optimization 10.08(11) -39.11806(13) -39.13412(11)

only be two results in this table, since in that case Jastrows should not matter, so much

of the error here can be called time step error. But it appears to be crucial that we opti-

mize the CI coefficients. Returning to the question of the CAS discrepancy, we tried the

experiment of optimizing all the Jastrows, while keeping the original CI coefficients. This

produced 15.80(11) kcal/mol as the DMC energy splitting, the worst of all the results we

have obtained. Since this represents the comparison of the SCF functions directly without

worrying about whether the VMC optimization is falling into local minima, we can see that

given our methodology, a better SCF wavefunction does not always improve accuracy. In

separate investigations, we have found that CAS wavefunctions are necessary.

Table 4.3: Methylene excitations using single determinant wavefunctions. Using our aug-tz
basis set, we obtained orbitals from RHF or DFT, and added 2 particle Jastrows.

∆e
1A1

3B1

kcal/mol au au
CAS-3 13.76(10) -39.11499(13) -39.13693(10)
RHF 13.80(10) -39.11449(12) -39.13648(12)
B3LYP 14.05(11) -39.11539(12) -39.13778(12)
LDA 14.39(15) -39.11481(18) -39.13773(16)
PBE 14.64(17) -39.11527(24) -39.13860(12)

Another interesting consideration is whether we could use DFT orbitals. In Table 4.3, we

present our results for several single-determinant representations of the trial wavefunction.

Here we can see that none of these wavefunctions are capable of addressing the missing

59

angular correlation. Furthermore, although all the results are poor, the DFT wavefunctions

are even worse than RHF.

4.4.2 Ethylene

There has been continued interest in calculating various excitation energies for ethylene in

QMC, from the ground state singlet 1Ag, also known as the N state, to the first excited

triplet 3B1u, the T state, or singlet 1B1u, the V state. Experimentally measured energies for

the N-T splitting will tend to be artificially low since the molecule twists immediately upon

excitement to the triplet state, and indeed, measured values span a range of 4.32 eV [70] to

4.6 eV [71]. Calculations have been in better agreement, with results ranging from recent

QMC calculations [72, 73] both producing 4.50(2) eV and 4.51 eV for a CCSD(T)/CBS [74]

calculation, up to about 4.6 eV for MRCI [75] and auxiliary field Monte Carlo [76]. In

the many comparisons made with experimentally based results, researchers typically do not

bother to account for the zero point energy, which is difficult to calculate for the vertical

triplet state, so we do not bother to incorporate this either.

To our surprise, even DMC was off by several kcal/mol from the correct energy splitting

when we used RHF wavefunctions. Part of the problem, as discussed for methylene, is that

the RHF level of theory is inconsistent between the N and T states. Thus the simplest level

of theory for which we obtained correct results was the GVB-1 level, which perfect-pairs

the π∗ orbital to the π orbital for the N state. This indicates that for ethylene, the most

important source of fixed-node error is the left-right correlation in the double bond. The

ππ∗ electrons in the triplet RHF wavefunction are already correlated at the GVB-1 level

since they occupy orthogonal orbitals, and both states use the same 9 orbitals, satisfying

consistency. The next level of theory is GVB-2, which adds left-right correlation to the CC

single bond for both states. Finally, for GVB-6, we add correlation to all 4 CH bonds. RCI

and CAS have the same meaning as we described for methylene.

Among our consistent results for aug-tz, shown in Table 4.4, we can see agreement to

within 0.26 kcal/mol with each other and with the other DMC results, with the exception

of our RCI-6 calculation. This is a clear indication that the GVB level of theory is sufficient

to capture the chemistry, and that going beyond this is unnecessary. Here, we can see that,

unlike our methylene CAS wavefunctions, our ethylene CAS wavefunctions are correct. On

the other hand, our RCI calculation seems to have a problem whereas our methylene RCI

60

Table 4.4: Vertical ethylene: 3B1u ← 1Ag and 1B1u ← 1A1. For 3B1u. For all calculations,
we used RCC = 1.339Å, RCH = 1.086Å, and ΘHCH = 117.6, in order for our results to be
directly comparable with Schautz [73]. The entries below the horizontal line are inconsistent,
with the number of GVB pairs indicated in parenthesis for each state individually.

SCF B J ∆e
3B1u

1Ag

kcal/mol au au
Expa 100.54
GVB-1 tz 2 103.13(16) -78.39872(18) -78.56307(18)
GVB-6 tz 2 103.38(27) -78.39781(40) -78.56256(16)
GVB-2 aug-tz 2 103.45(17) -78.39759(18) -78.56245(22)
DMCb Partridge 3 103.5(3)
DMCc,d 2 103.5(5)
CAS-6h aug-tz 2 103.51(26) -78.40208(38) -78.56703(17)
GVB-6 aug-tz 2 103.56(14) -78.39742(16) -78.56246(16)
CAS-2 aug-tz 2 103.68(41) -78.39781(17) -78.56303(63)
GVB-1 aug-tz 2 103.71(42) -78.39724(18) -78.56251(64)
GVB-2 tz 3 103.91(39) -78.40320(60) -78.56879(14)
GVB-2 tz 2 103.98(16) -78.39676(18) -78.56246(18)
CCSD(T)e CBS 104.1
RCI-6i aug-tz 2 104.29(14) -78.39897(16) -78.56516(16)
RCI-6h aug-tz 2 105.14(38) -78.39727(15) -78.56483(59)
Expf 106.1
RHF tz 2 100.17(31) -78.39872(18) -78.55836(47)
RHF aug-tz 2 101.91(38) -78.39724(18) -78.55964(57)
GVB-(1,1) aug-tz 2 103.49(42) -78.39759(18) -78.56251(64)
SCF B J ∆e

1B1u
1Ag

kcal/mol au au
Expg 177.57
DMCc,d 182.9(5)
CAS-2 aug-tz 2 190.81(41) -78.25896(19) -78.56303(63)
“CAS 6-6”c 192.6(5)
CAS-6 aug-tz 2 199.65(15) -78.24887(16) -78.56703(17)

a) Energy-Loss spectra, from Ref[[70]] b) Single determinant from CASSCF(4,8), using
pseudopotentials, from Ref [[72]] c) Using pseudopotentials and their custom basis set,
from Ref [[73]] d) These DMC results use VMC optimized orbitals. e) Computed value

from Ref [[74]]]. f) Optical spectra, from Ref[[71]] g) Adsorption spectra, from Ref [[77]] h)
Only determinants with coefficients > 0.01 were included. i) Only determinants with

coefficients > 0.001 were included.

61

calculations were good. We believe that these outliers are evidence again of our wavefunc-

tions getting caught on local minima during optimization. Presumably, we could pay as

much attention to these wavefunctions as we did for our methylene CAS wavefunction and

perhaps improve the result, but this would represent an unfair selection bias to our overall

methodology. Either way, this speaks well for GVB, which does not appear to have any

problems.

Examining our inconsistent results, below the horizontal line, we can see that left-right

correlation in the double bond (found by comparing GVB-1 with RHF) is worth 1.80 or 2.96

kcal/mol. Our GVB-(1,1) case, an inconsistent wavefunction which correlates the CC single

bond for the T state, but only the double bond for the N state, does produce an excellent

energy difference, showing that consistency is not always critical. Once the double bond’s

correlation is included, the QMC results have reached convergence, suggesting that the re-

maining correlation energy from the SCF perspective is almost entirely dynamical. Looking

at the SCF results, the RHF splitting was 83 kcal/mol, GVB calculations all produced about

100 kcal/mol, RCI calculations produced 108 kcal/mol, and our CASSCF(12,12) calculation

produced 110 kcal/mol. We can clearly see the advantage of QMC over other approaches,

even when inconsistent.

Table 4.5: Vertical ethylene: 3B1u ← 1Ag and 1B1u ← 1A1. For 3B1u. For these calculations,
we used MP2 optimized RCC = 1.331046Å, RCH = 1.080564Å, and ΘHCH = 121.35.

SCF B J ∆e
3B1u

1Ag

kcal/mol au au
GVB-2 aug-tz 2 105.05(16) -78.39480(18) -78.56220(18)
GVB-6 aug-tz 2 105.14(14) -78.39556(16) -78.56311(16)
GVB-6 tz 2 105.38(14) -78.39464(16) -78.56257(16)
RCI-6a aug-tz 2 105.55(14) -78.39558(16) -78.56379(15)
GVB-2 tz 2 105.64(16) -78.39401(18) -78.56236(18)
CAS-2 aug-tz 2 105.82(16) -78.39502(18) -78.56366(19)
GVB-1 tz 2 105.99(16) -78.39400(18) -78.56290(18)
GVB-2 tz 3 106.14(13) -78.39984(15) -78.56899(14)
RCI-2 tz 2 106.16(16) -78.39460(18) -78.56377(18)
CAS-6a aug-tz 2 106.54(14) -78.39733(15) -78.56711(15)
SCF B J ∆e

1B1u
1Ag

kcal/mol au au
CAS-2 aug-tz 2 192.27(17) -78.25726(19) -78.56366(19)
CAS-2 tz 2 193.83(18) -78.25489(22) -78.56377(18)

a) Only determinants with coefficients > 0.001 were used.

62

Originally, we had used an MP2 and the tc basis set to obtain our ethylene geometry,

and we include those results in Table 4.5. Concerned about the disagreement of about 2

kcal/mol between these results and the other DMC results, we decided to switch and use

exactly the same geometry as Schautz [73], and our results did agree. We include these

results to illustrate a few key lessons. First, we point out that most of the difference came

from the energy of the T state, underscoring its steep energy slope, an error that not even

QMC can correct. Second, notice that previously our RCI-6 calculation was not as much of

an outlier, as it is with the new geometry. One difference was that previously, we had used

a determinant cutoff of 0.001 for our RCI-6 and our CAS-6 wavefunctions, whereas for the

new geometry, we raised the cutoff to 0.01 so that they would run faster (about 2 to 3 times

for the N state). This change in truncation appears to have helped the CAS-6 calculation

relative to consensus, but hurt the RCI-6 calculation. Thirdly, in rerunning the calculation,

we used the optimized Jastrows in the new wavefunctions, and reoptimized everything. This

appears to have helped improve consistency, which can be seen by comparing the spread in

∆e for aug-tz. If RCI-6 and CAS-6 are this sensitive to determinant cutoffs, then this is yet

another reason not to use them.

For the N-V vertical splitting, at the bottom of Table 4.4, our energies are 8 kcal/mol

higher than the best values reported by Schautz and Filippi [73], for which they even opti-

mized orbitals within their QMC treatment. This underscores the importance of including

dynamic correlation during [78, 73] orbital optimization. We use the same geometry, but

our results are only comparable when neither of us optimize orbitals. Our CAS-2 N-V split-

ting, based on a CASSCF(4,4) calculation, is about 2 kcal/mol better than their “CAS 6-6”.

The difference could be due to pseudopotentials, or because we did not need to truncate

our CI expansion like they did, for coefficients below 0.01. Our CAS-6 calculation, based on

a CASSCF(12,12) wavefunction with determinants truncated at 0.01, is 7 kcal/mol worse

than theirs, perhaps due to a failure on our part to fully optimize this wavefunction.

The N-T vertical splitting is difficult to study experimentally, since the triplet state is

far from its D2d minimum. In Table 4.6, we examine the adiabatic splitting, the geometry

for which we obtained by optimizing the structure with MP2 using the tz basis set. We

use the same N state QMC energies as before, but include them again in this table for

completion. Although there doesn’t appear to be sufficient experimental data to make

a good comparison, we do have some recent high quality CCSD(T)/CBS results [74] to

63

Table 4.6: Adiabatic ethylene: 3B1u ← 1Ag. For 3B1u, we use RCC = 1.449148Å, RCH =
1.080469Å, and ΘHCH = 121.5, and we use the same geometry as previously for 1A1. The
entries below the horizontal line are unbalanced in terms of the number of orbitals.

SCF B J ∆e
3B1u

1Ag

kcal/mol au au
Expa 61.(3)
CCSD(T)a CBS 68.8
GVB-1 aug-tz 2 69.14(42) -78.45233(18) -78.56251(64)
GVB-2 aug-tz 2 69.20(17) -78.45217(17) -78.56245(22)
DMCa Partridge 3 69.6(3)
GVB-2 tz 2 69.79(16) -78.45124(18) -78.56246(18)
GVB-1 tz 2 70.13(16) -78.45131(17) -78.56307(18)
GVB-6 tz 2 70.31(14) -78.45051(16) -78.56256(16)
CAS-6b aug-tz 72.13
RHF tz 2 67.17(31) -78.45131(17) -78.55836(47)
RHF aug-tz 2 67.34(37) -78.45233(18) -78.55964(57)

a) We “uncorrect” the experimental value from Ref [79] of 58(3) kcal/mol and all the
computed results from Ref [74] by ∆ZPE = 3.2 kcal/mol, so that we can directly compare
calculations. b) Single determinant from CASSCF(4,8), using pseudopotentials, computed

value from Ref [72]. c) Our own CASSCF(12,12) calculation.

compare with, and with which our best result only differs by 0.5 kcal/mol. Akramine

and co-workers [72] also recently studied this transition using QMC, and our results are in

agreement with theirs, even given the differences in our wavefunctions.

Finally, we investigate singlet D2d ethylene, obtained by twisting the D2h ground state

90 degrees around the CC bond leaving all other degrees of freedom fixed. Upon twisting,

the two π orbitals become degenerate, a complication that many theoretical methods fail

to handle correctly. A ππ∗ GVB perfect pair for the planar wavefunction becomes a double

helix, affecting not only the CC single bond, but the CH bonds as well. We have been

unable to find any experimental results for this, so we compare our results against our

own CASSCF(12,12) calculation. Our best result, shown in Table 4.7, is only 0.2 kcal/mol

higher than the best literature value.

4.4.3 2+2 Cycloaddition

The ethylene + ethylene reacting to make cyclobutane is the textbook example of a con-

certed reaction forbidden by the Woodward-Hoffman rules. We are only doing a two point

calculation, one for an isolated ethylene molecule, and one for an isolated cyclobutane

molecule, bypassing any questions related to allowed reaction paths. This is one of the

64

Table 4.7: Ethylene Twist: D2h → D2d. The geometry is the same as previously, except
that now we have twisted the CC bond by 90 degrees. These results were produced with
the MP2 geometry, and are being rerun with the new geometry.

SCF B J ∆e D2d D2h

kcal/mol au au
GVB-1 aug-tz 2 76.96(42) -78.43987(17) -78.56251(64)
GVB-2 tz 2 77.04(16) -78.43968(18) -78.56246(18)
GVB-2 aug-tz 2 77.14(18) -78.43952(19) -78.56245(22)
GVB-6 aug-tz 2 77.30(41) -78.43928(63) -78.56246(16)
GVB-6 aug-tz 2 77.89(18) -78.43834(23) -78.56246(16)
GVB-1 tz 2 77.54(16) -78.43951(18) -78.56307(18)
GVB-6 tz 78.37
GVB-6 tz 2 78.61(14) -78.43728(16) -78.56256(16)
CAS-6 aug-tz 78.88

simplest reactions that DFT gets wrong, disagreeing with experiment by 5 to 10 kcal/mol,

even with some of the more recent functionals, so we consider this to be an ideal test case

for QMC. Our cyclobutane geometry was obtained by optimizing the D2d structure with

MP2 using the tc basis set.

Table 4.8: Cycloaddition: 2C2H4 ← C4H8. We use the same ethylene geometry as
previously, and our cyclobutane geometry is RCC = 1.545029Å, RCHax = 1.089404Å,
RCHeq = 1.0877Å, and ΘHCH = 109.18. Below the solid horizontal line are inconsistent
calculations, where the number of GVB pairs for the two states are in the parenthesis.

SCF B J ∆e C2H4 C4H8

kcal/mol au au
GVB-4 tz 2 21.98(28) -78.56246(18) -157.15993(27)
GVB-4 aug-tz 2 22.05(32) -78.56245(22) -157.16004(27)
Expa 22.3(2)
CCSD(T) tc 22.54
GVB-4 tz 3 22.65(23) -78.56879(14) -157.17367(23)
M06-2x tz 2 25.67(30) -78.56121(19) -157.16333(30)
RHF tz 2 27.37(61) -78.55836(47) -157.16034(28)
GVB-(1,0) tz 2 21.45(28) -78.56307(18) -157.16034(28)
GVB-(1,4) aug-tz 2 21.98(82) -78.56251(64) -157.16004(27)
GVB-(0,4) aug-tz 2 25.58(74) -78.55964(57) -157.16004(27)
GVB-(0,4) tz 2 27.12(61) -78.55836(47) -157.15993(27)

a) Enthalpy [80, 81] difference of 68.97(71) kJ/mol, corrected with ∆ZPE [82] 5.84
kcal/mol

Below the dashed line in Table 4.8 we show our single determinant results using RHF,

and also using the orbitals from an M06-2X DFT calculation. We were disappointed to be

65

unable to get any single-determinant DMC calculation to do any better than DFT, with

errors of 3-4 kcal/mol. This process breaks and then makes two bonds, suggesting that

at least 2 GVB pairs should be used. However, since the CC bonds in cyclobutane are

equivalent, we can not justify using fewer than 4 GVB pairs on either side of the reaction.

Indeed, upon adding left-right correlation to the bonds, our best answer agrees perfectly

with our experimental estimate to within our 0.2 kcal/mol statistical error. We should

mention here that this near perfect agreement should be considered coincidental, since

there is perhaps as much error in the ZPE and geometry as in the calculation.

Looking back to our tc ethylene calculations, we estimated that the static correlation

in the double bond was worth 2.96 kcal/mol. Seeing here that our single-determinant

calculation is in error by about 5.4 kcal, we conclude that most of this error comes from

ethylene. With this in mind, we could have accepted decent results by only correlating the

double bond in ethylene, which is our GVB-(1,0) result from below the horizontal line in

Table 4.8. Although this provides some opportunity for short-cuts in larger calculations,

when possible only balanced calculations should be considered, such as those above the line.

We note that all 3 of our calculations were successful, disagreeing by only 0.3 kcal/mol.

Therefore, the augmented basis functions did not make a difference. We do not have

timing comparisons since they were run on different machines, so unfortunately we can not

estimate how much computer time was “wasted.” If we would have stopped all cyclobutane

calculations once they reached 0.2 kcal/mol error, our cyclobutane RHF/tc wavefunction

with 3 particle Jastrows (not in the Table) would have spent 33% more computational

time than the equivalent wavefunction without the 3 particle Jastrows. Additionally, the

analogous GVB-4/tc 3 particle Jastrow calculation would have taken 4% more time than

when we left the 3 particle Jastrows out. The reason is because at a length scale of over 6

a0, the 3 particle Jastrows can reach almost 4 times as many electrons in cyclobutane than

in methylene. In contrast with our conclusions for methylene, the 3 particle Jastrows are

not worth the hassle, even if we were entirely confident in their optimization.

4.5 Conclusion

In this paper, we have use QMC to study the effect of various types of wavefunctions on

calculations for which we have high quality results to compare against. We have found that

66

in all cases presented here, a GVB wavefunction was sufficient to obtain results accurate to

a few tenths of a kcal/mol, whereas RHF wavefunctions have not been sufficiently accurate.

Based on this, we conclude that wavefunction consistency is necessary and sufficient in

obtaining the correct wavefunction nodes. This conclusion is drawn with the exception

of singlet-singlet ethylene, for which our simple wavefunctions were unable to obtain the

correct splitting.

Furthermore, we have discussed our difficulty in studying these same problems using

extended CASSCF wavefunctions and RCI wavefunctions. There are two issues that have

affected our results. First, our results have been somewhat sensitive to how we truncate the

CI expansion for inclusion in our QMC wavefunctions, and it appears that 0.01 is not always

good enough for them to perform even as well as GVB. Second, even where we have applied

concentrated effort in optimizing CASSCF wavefunctions with all determinants included,

there are still concerns that our optimizations are becoming trapped in local minima, such

as our CAS-3 methylene result.

Finally, regardless of perhaps minor issues, it is remarkable how well QMC performs

even for difficult cases, since all our consistent calculations were within chemical accuracy.

We believe that given a simple GVB description with 2 particle Jastrows, we are able to

describe a significant amount of chemistry, and given the excellent scalability of both QMC

and GVB, we are confident that this high accuracy approach can be applied with confidence

to ever larger molecules.

67

Chapter 5

Additional Work

In this section, we provide more results and commentary on the state of the software.

Over the last several years, the software has changed significantly, as we learned what was

necessary for a successful QMC calculation, and where we can take short cuts. We document

here several results, such as they are, so that future users can understand the conclusions

that we have drawn.

5.1 Optimization

When we began our work on QMC, our software was unable to optimize wavefunctions. At

first, it was unclear that this was even a problem, given the theoretical claim that DMC

results are independent of symmetric Jastrow functions, which do not affect the nodes which

are the result of antisymmetry. There was code in place to optimize wavefunctions [83], but

the problem was that using it involved writing gigabytes of walker configuration data to

disk, and then reading all of that data back in several times for each optimization step. This

is a prime example of the Von Neumann bottleneck. This meant that, for example, 2000

samples in a methylene calculation would take only minutes to produce, but a few hours

to generate the next optimization iteration, even after converting the files to be written in

binary instead of ascii. We tried to fix this in a variety of different ways. First, we attempted

to improve the genetic algorithm optimization routines and the line search algorithms to

see if they could make more effective use of the data, expensive as they were. Eventually,

we concluded that these algorithms simply needed far more data samples. The next thing

we tried was to convert the data streams to use the HDF5 file structure from UIUC, but

this did not significantly lower the read/write cost of accessing the walker data. In the end,

68

we switched to the routines that we use now, which do not write anything to disk.

We still believe that the optimization routines that we were using should have worked,

since those methods retain their popularity in other research groups. Our problem was most

likely simply a poor demarcation of what to write to file, and what to recalculate during

optimization. However, it was around the time that we were coming to understand that a

major reprogramming effort would be necessary when we discovered that there was another

way [50]. Although it was a lot of effort to add analytic derivatives with respect to the

optimizable parameters, it was worth the effort. The improvements available [84] would be

worth investigating. Now our Jastrows were not only completing their optimization, but

doing so in less time than it took our previous methods to fail.

5.2 Jastrows

Riding on the sudden success of our optimization routines, we proceeded to explore more

sophisticated Jastrow functions. Initially, we had only been using single parameter Pade

Jastrow functions, which took the form

u(rij) =
arij

1 + brij
(5.1)

as a function of the interparticle distance, rij . These functions have only a single optimizable

parameter, since the coefficient a is fixed by the cusp condition. Although these Jastrows

are easily generalized to longer expansions such as

uij(rij) =
∑M

k aijkrk
ij

1 +
∑N

k bijkrk
ij

, (5.2)

they never seemed to work as well as the form we settled on

uij [x ← rijS] = (x− 1)3
(

M∑

k=0

akx
k

)
, if 0 ≤ x ≤ 1 (5.3)

= 0, if x > 1, (5.4)

where S is the length scale, inspired by the functional form of Drummond and co-workers [49],

which we discussed extensively in Section 4.3.2. Almost all QMC results found in the lit-

erature use 3 particle Jastrows, implying their necessesity. We felt thus behooved to add

69

them to our own code. We decided to continue using the functional form from Drummond,

since the functional form from Huang [85] is significantly more complicated, and as shown

in Table 5.1, the results are allegedly almost the same. We added

fAij [xi, xj , xij] = (xi − 1)3 (xj − 1)3
(

M−1∑

l=0

M−1∑

m=0

N−1∑

n=0

clmnxl
ix

m
j xn

ij

)
(5.5)

= 0, if xi > 1 (5.6)

= 0, if xj > 1 (5.7)

to our software. These functions have proven to be fairly expensive to evaluate, partly

because of the expense of calculating the Laplacian of a function U , which depends upon

the coordinates of 2 electrons. This expression turns out to be

∇2r1U +∇2
r2

U =
4

r12

∂U

∂r12
+ 2

∂2U

∂r2
12

(5.8)

+
2
r1

∂U

∂r1
+

∂2U

∂r2
1

+
2
r2

∂U

∂r2
+

∂2U

∂r2
2

(5.9)

+ 2-r′12 ·
(

-r′1
∂2U

∂r1∂r12
− -r′2

∂2U

∂r2∂r12

)
. (5.10)

The main expense of these functions, however, turns out to be the process of converting

derivatives with respect to all of the parameters into derivatives with respect to the indepen-

dent, optimizable parameters. The constraints must satisfy symmetry, so that the function

is unchanged if we swap the 2 electrons, and cusp conditions, which must be zero since we

are not using these Jastrow functions to obtain the correct cusps. It is (almost) necessary

to apply the constraints on the polynomial for each sample because of how the independent

derivatives are used in the various expectation values necessary for optimization.

Furthermore, we feel that this was a poor choice for our 3 particle Jastrow function

because after constraining the function, very few of the N3 terms survived to be independent

parameters. For example, if N = 3, then the 27 terms reduce to only 8 independent

parameters, and if N = 4, then the 64 terms reduce down to 26 independent parameters,

for totals of 9 and 27 when we include the length scale parameter. The main problem is

that two of the basis functions, xi and xj , in the 3 particle Jastrow functions themselves

do not satisfy symmetry. If they did, then we would not have to spend so much time

constraining the polynomial. For example, a better choice would have been the polynomial

70

basis functions xixj and xi + xj .

Despite the conclusions we drew in Chapter 4, we think that it is still possible that 3

particle Jastrows could be worth their computational effort. However, we would need to

try something different. The functional form in Equation 5.5 is still probably a good idea

because the ability to truncate Jastrows seems to be important. The key is probably to

use different basis functions. On the advice of Goddard, we attempted to use Chebyshev

polynomials for our 2 particle Jastrows, with the hope that they would be easier to optimize.

We also attempted to use the basis function (x − 1) instead of just x. Neither of these

noticeably helped, but it would be good to revisit the ideas now that we have some definitive

results of our own to measure progress against.

5.3 More Calculations

5.3.1 Ne

Now that we were able to optimize good Jastrows, we evaluated their effectiveness using

the Neon atom. A summary of our efforts is provided in Table 5.1. We first remark that

the time step of 0.001 is quite small, and should have been sufficiently close to the zero

extrapolation that the results are of sufficient quality to evaluate the Jastrows themselves

without actually extrapolating.

Our first discovery was that optimization was absolutely essential. It was quite surprising

to us to observe that a VMC calculation, which is an effective tool in its own right, was

unable to do better than even Hartree-Fock itself unless we first optimized the Jastrow.

Even after optimizing that Jastrow, our results were still quite poor using this Jastrow

function. The other interesting discovery was that a poor Jastrow leads to DMC energies

which are below the exact value. We can see, by comparing the optimized and unoptimized

versions of the Pade Jastrow, that convergence in DMC is from below. For results not

extrapolated to zero time step, the fact that lower does not mean better should be taken

into account. This is our explanation for why the 3 particle Jastrow DMC energy is “worse”

than the 2 particle Jastrow DMC energy.

Turning now to the improved functional form, we were again surprised, this time because

our results were much better than any other published 2 particle Jastrows. In this case,

it is perhaps our technique which is responsible, since we can optimize all 3 length scale

71

Table 5.1: Neon atom, using the aug-cc-pwCVTZ basis set. At the top of the table, we
provide the VMC energies, and at the bottom of the table we use the same wavefunctions
in a DMC calculation. The Drummond results are from [49], and the Huang results are
from [85]. We do not include their variances, because they depend on more factors than the
Jastrow. Unfortunately, we have lost the original files, but we estimate that our uncertainties
are smaller than the last digit.

VMC Variance

Pade, Unoptimized -128.295 6.90

HF -128.547

Pade -128.620 1.52

2 Particle, Huang -128.713

2 Particle, Drummond -128.757

2 Particle -128.810 0.11

3 Particle, 27 terms -128.866

3 Particle, 64 terms -128.873 0.23

3 Particle, Similar, Drummond -128.886

3 Particle, Best, Drummond -128.898

3 Particle, Huang -128.901

4 Particle, Huang -128.903

DMC (dt=0.001) Variance

CCSD(T) -128.884

3 Particle, 64 terms -128.932 0.08

2 Particle -128.933 0.12

Exact -128.938

B3LYP -128.977

Pade -129.081 2.06

Pade, Unoptimized -129.245 3.40

72

parameters, whereas they only optimize 2, holding both electron-electron length scales to

be fixed. The other difference is that they use C=2 instead of our C=3 as the exponent

of the cutoff prefactor. We found that C=2 prevented smooth optimization of the length

scale parameters. Our best explanation for the difference is that our length scales are better

optimized than theirs. Our improvement is despite the fact that it seems their Hartree-Fock

orbital representation is probably better than our basis set, aug-cc-pwCVTZ.

On the other hand, our best wavefunction with 3 particle Jastrows, which have a total

of 54 independent parameters, is worse than the 49 parameter wavefunction of theirs which

is probably the most similar. We do not believe that our wavefunctions have been caught

in a local minima since we spent quite a bit of effort optimizing them, but it is hard to be

sure. Looking at the variances we report, the 3 particle variance should be lower than the

2 particle variance, so perhaps this wavefunction needs more work. We did try allowing

the opposite and parallel spin 3 particle Jastrows to vary independently from each other,

to attempt to reproduce their “Best” result of -128.898 au, but this did not work.

5.3.2 Be2 → 2Be

The Be2 molecule is notable as being particularly difficult to study using most quantum

chemistry methods. The difficulty stems from the near degeneracy of the 2s and 2p orbitals,

significantly distorting the symmetry of the Be atom, and making the RHF wavefunction a

particularly poor choice. In the molecular orbital (MO) picture, the 4 valence electrons fill

the 2s and 2s* bonding orbitals, resulting in an interaction that is not quite a bond.

The well depth of the dimer has been studied recently by Toulouse [84], where they

demonstrate their orbital and basis function optimization, along with all the other first row

dimers. There are numerous experimental results, or at least, potential energy fits (PES) to

experimental spectra. It is difficult to distinguish which among them is the most accurate

for us to compare against, especially since we are not including relativity, and neither do

we necessarily have either the exact or the optimized geometry.

We present our results for the well depth of the Beryllium dimer in Table 5.2, using the

same aug-cc-pwCVTZ basis set (called aug-tz) used in our other studies. For the Beryllium

atom, we use a GVB pair to describe the 2s electrons, correlating them with a 2p orbital.

For the dimer, we use a GVB pair to describe the single bond, and a second GVB pair

to correlate the lone pair electrons. This wavefunction was particularly difficult to obtain,

73

Table 5.2: Be ← Be2 at the experimental geometry of 4.65 bohr. The DMC results from
Toulouse include their basis function optimizations. Our GVB approach is intermediate to
theirs, and we do not optimize basis functions.

δt ∆e Be DMC Be2 DMC
au−1 kcal/mol au au
. 1.769(18) DMC, full valence CAS from [84]

0.0075 2.24(11) atc0p1o -14.660410(69) atc0p2o -29.32439(11)
. 2.259(86) Exp from [86]
. 2.37(18) DMC/CASSCF(4,8) from [87]
. 2.399(29) Exp from [88]

0.0075 2.44(12) atc0p1 -14.660254(72) atc0p2 -29.32439(12)
0.0075 2.555(85) atc4p1o -14.660549(54) atc4p2o -29.325169(84)
. 2.582(23) Non Rel. Exp Fit from [89]
. 2.699(71) PES fit to Spectra from [90]

0.0075 2.772(90) atc4p1 -14.660479(52) atc4p2 -29.325375(98)
. 2.882568 DMC, 1 det from [84]

because the GVB calculations would typically swap during convergence the σ∗ orbital for a

pi orbital. Where a 4 replaces a 0 in the labels for our calculations, we are indicating that

3 particle Jastrows were employed.

We have implemented a simple form of orbital optimization, where we optimize all

orbital coefficients as parameters equivalent with all other Jastrow and CI parameters.

The only difference is that we hold fixed any coefficients given to QMcBeaver as 0.0. We

do not pay attention to any considerations beyond this. Our results using this simple

technique are presented with the suffix ‘o’ in Table 5.2, where we are now 0.019 or 0.159

kcal/mol from the experimental data for our calculations which use only 2 particle Jastrows.

Unfortunately, for Be2 this already includes 292 parameters, and the analytical calculation

of orbital derivatives is not cheap. For these reasons, this is the only reaction that we ended

up using orbital optimization to study. We also note that the error dropped by about 5%.

5.3.3 O3
1Ag → O3

3B2

Another interesting problem in Quantum Chemistry is ozone excitation from the ground

state into the lowest triplet state. The difficulty here is that ozone is a highly multi-

configurational molecule, necessitating the inclusion of quite a few configurations into the

wavefunction. Our studies have found that this system is not easy for QMC either, since our

GVB wavefunctions did not prove to be of sufficient quality. We thus turned to CASSCF

74

wavefunctions, and have run simulations using these. We present two calculations in Table

5.3 for the adiabatic transition, and one for the vertical transition.

There are a total of 12 valence orbitals in ozone, which are not necessarily all important,

and we have chosen 2 subsets. Our CASSCF-7 calculations include the complete active space

of the 4 single bond orbitals (bonding and anti-bonding), as well as the 3 π orbitals. This

turned out not to be sufficient, so we have added a CASSCF-9 which is the active space of

all nine 2p atomic orbitals.

Table 5.3: Adiabatic ozone excitation: 3B2 ← 1Ag. We assume that the CASSCF-9 result
has similar errors as the CASSCF-7 calculation, but the error estimators did not converge
for this calculation due to problems at the ends of the runs. Our ground state geometry is
[r,θ]=[1.27276Å,116.7542] from [91], and for the excited state we used [r,θ]=[1.3542Å,108.54]
from [92].

SCF B J ∆e
3B2

1Ag

eV au au
CASSCF-7 aug-tz 2 1.278(11) -225.31625(28) -225.36323(28)
CASSCF-9 aug-tz 2 1.343(31) -225.3201(11) -225.36949(34)

1.346 Expa

CASSCF-7b aug-tz 2 1.557(11) -225.30601(29) -225.36323(28)
a) T0 = 1.30 eV, from [93], ∆ZPE = 0.046 from [94] b) vertical transition.

5.3.4 SiH2
1A1 → SiH2

3B1

Given all of our efforts in methylene, it seemed reasonable to also study silylene, and we

present the results of these calculations in Table 5.4. Part of the reason why this system

is interesting is because in contrast with methylene, the singlet state is the ground state

in silylene. The difference is that for methylene, the 2s and the 2p orbitals are nearly

degenerate on the Carbon atom, but for Silicon, the 3p orbitals are far higher in energy

relative to the 3s orbitals due to electron shielding of the sub-valence electrons.

Silylene offers a few challenges to our technique that have not been fully resolved. First

of all, we see that because we are running all electron simulations instead of using pseudopo-

tentials or one electron at a time iterations, we are getting far more warning messages in

our output files. Second, we see significant trends in the convergence of the energies shown

in Figure 5.1, so it looks like our results could be off by as much as 1.0 kcal/mol. As bad as

this might seem, it is worth noting that values typically seen in the literature are about 18

kcal/mol, which is different from our result by up to 4 kcal/mol! We differ from Berkowitz

75

-23.5

-23

-22.5

-22

-21.5

-21

-20.5

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

E
n
e
r
g
y

(
k
c
a
l
/
m
o
l
)

Num Iterations

QMC Runs, dt=0.0075, B-A
Sat Jun 13 21:56:30 PDT 2009

awt0a2_3b1_exp_1 awt0p2_3b1_exp_1

Figure 5.1: Convergence of silylene SiH2
1A1 → SiH2

3B1 excitation. Results with trends
in the data like these should be discarded, but they are the only ones we have for this
system.

and co-worker’s[95] best experimental value by only 0.79 kcal/mol, but they leave the door

open to the 18 kcal/mol value. This is perhaps a better result than we deserve, given the

convergence results. On the other hand, this result helps to affirm that if we have captured

the essential chemistry in the SCF part of the wavefunction, then QMC will achieve at least

chemical accuracy. The problems indicated in Figure 5.1 are clear evidence of the need for

pseudopotentials.

Table 5.4: SiH2
1A1 → SiH2

3B1. The experimental results are from [95], where their best
result is 0.91 eV. They say that an alternative interpretation of their data would indicate
0.78 eV.

SCF B J ∆e
3B1

1A1

kcal/mol au au
Exp 18.0(7)
Exp 21.0(7)
GVB-3 aug-tz 2 21.78(60) -290.57724(91) -290.61195(29)
CAS-3 aug-tz 2 22.54(18) -290.57871(28) -290.6146209464

76

5.3.5 Survey of G1 Atomization Energies

Given the success of our GVB wavefunctions in QMC calculations, we wanted to find

out how well this type of calculation would work in general. To do this, we ran several

calculations from the G1 test set, following after the work of Grossman [96], who also

performed this type of calculation. These results are not intended to be representative of

the best we can do, but instead find the boundaries of where our approach would work.

Unfortunately, the online database from which we obtained our geometries was taken down,

so we do not know exactly how they were obtained. As we have remarked in Chapter 4,

there is possibly as much error in a poor geometry or in the zero point energies as there is

in a high quality QMC calculation itself. Regardless of the relatively poor quality of these

results, we present them in Table 5.5 as they are because there is already a lot we can

learn. These results were based on GVB wavefunctions, and we added doubly excited RCI

determinants to some of them.

Table 5.5: Calculations from the G1 test set. The O2 calculation was actually based on
a CAS wavefunction, and not an RCI calculation. Grossman’s results [96] were obtained
with single determinant wavefunctions by selecting the best determinant from a CASSCF
wavefunction. The errors are measured as the absolute difference from the G1 recommended
experimental.

Molecule p QMC-GVB Error QMC-RCI Error Grossman02 Error

H2 1 109.47 0.08

LiH 1 57.78 0.03 55.3 0.70

BeH 1 53.14 3.45 53.132 3.44 43 3.95

CH 2 83.60 0.23 79.5 0.42

CH2.trp 2 189.12 0.86 181.9 1.87

CH2.sng 3 180.01 0.64 169.7 0.89

CH3 3 306.96 0.36 290.9 1.65

CH4 4 419.81 0.29 395 2.58

NH 2 81.29 2.20 82.297 1.19 78.2 0.78

NH2 3 181.03 0.49 169.2 0.80

NH3 4 297.10 0.34 276.5 0.20

OH 1 106.01 0.33 101.2 0.04

H2O 2 231.40 0.83 219.4 0.04

HF 4 140.95 0.14 135.9 0.65

SiH2.sng 3 154.46 3.18 145.5 1.32

SiH2.trp 2 132.78 2.24 125.8 2.59

Li2 1 22.92 1.45 23.5 0.44

H2C_CH2 6 561.48 2.02 533.5 1.59

H3C-CH3 7 710.88 0.13 669.3 3.23

CN 4 167.26 13.66 173.87 7.05 170.5 7.89

CO 5 253.50 5.79 258.67 0.62 253.2 2.98

N2 5 221.84 6.73 228.18 0.39 221 4.05

NO 2 143.50 9.27 144.33 8.44 142.9 7.03

O2 3 119.34 1.19 111.7 6.28

F2 7 36.13 2.39 32 4.93

C4H8.d2d 4 1144.18 2.92

SH 1 87.99 1.12

Average 2.30 1.61 2.37

77

As we can see from these results, it looks like GVB wavefunctions are sufficient to study

most of the molecules in the table. We can see that we get essentially the exact result for

H2, the only wavefunction here with no nodes. Beyond this, we get decent results for almost

all molecules except CN, CO, N2, NO, which fail catastrophically. This observation should

be sufficient to dispel any remaining doubt that the fixed-node error can be quite large. For

CO and N2, however, we see that an RCI wavefunction is sufficient to capture the remaining

error in these nodes. On the other hand, even though RCI helps, apparently we are not yet

using a wavefunction of significant quality to study CN or NO. The problem with these two

ground state doublet molecules is that the unpaired electron has significant occupation in

orbitals that would otherwise be GVB paired. For the molecule which we employed a CAS

wavefunction, O2, we managed to measure a respectable atomization energy, even if the

error is larger than we would like. A few of the other molecules expressed large errors, but

did not take the time to isolate the problems. Our calculations produced a lower average

error than those of Grossman, but since our calculations were run without pseudopotentials

and his were, we were not able to run as many molecules as he.

We are glad to observe that most of our results, where we seem to have captured the

essential chemistry, are within the error margins of chemical accuracy. Pointing out again

that there is often as much error in the geometry as there is in the zero point energy,

we should not necessarily expect better results than those we have presented here, given

the survey nature of these results. However, we would have expected to do better for our

ethylene atomization calculation because of the attention to detail from Chapter 4, which

here is in error by about 2 kcal/mol. Our error for cyclobutane, for which our geometry

is only mostly accurate, was in error by 3 kcal/mol. We assume this is because we are

only adding perfect pairs to the CC bonds, and not for any of the CH bonds. With these

considerations in mind, we are cautious about using QMC and our methodology to calculate

atomization energies, even though we have seen several such calculations in the literature.

5.4 A Crazy New Idea

We have investigated a few of the fundamental elements of the QMC algorithm, starting

with the accept/reject step. Both VMC and DMC measure the quantity (introduced in

78

Equation 2.19)

p =
T (r ← r′)
T (r → r′)

Ψ2
T (r′)

Ψ2
T (r)

, (5.11)

where T is some transition matrix. The acceptance probability

A = max[min[1, p], 0] (5.12)

is compared to a uniformly distributed random number to determine whether a proposed

trial configuration should be accepted for the walker in question. We present a distribution

of the value p for all electron moves in Figure 5.2 using GVB/tz wavefunctions, where we

can see that about half of the distribution is above 1. Looking to the left of p = 0, which

corresponds to crossing a node, we can see roughly how far walkers try to jump past the

node. The fixed-node condition sets the probability of all such moves to zero, as shown in

Equation 5.12. Figure 5.2 shows that the peak at p = 1 broadens as either the time step gets

larger, or as the molecule gets larger, a feature which results in a lower average acceptance

probability. Crudely assuming symmetry in the distribution, one might guess that the

average acceptance probability would not drop below 0.5 〈p > 1〉+ 0.25 〈p < 1〉 = 0.75, but

this remains to be determined.

There is a very interesting feature visible when we bin the data after the fixed-node

condition has been applied for the same data, as we have done for Figure 5.3. Here, we can

see that all the p < 0 tail has been mapped into the p > 0 region, producing the large peak

in the left-most bin. But what is more obvious now is that the peak does not appear to be

discontinuous and that the abnormalities are seen out to about p = 0.05. This suggests a

new strategy for the acceptance probability

A = max[min[1, p], 0.05] (5.13)

which not only prohibits the p < 0 moves forbidden by the fixed-node condition, but also

a few more moves. For our methylene 0.05 time step, the cumulative probability up to

p = 0.05 is approximately 3.4%, of which 2.3% was in the p = 0 bin. This means that

our new strategy would prohibit an additional 1.1% of the moves, possibly helping the

calculation to avoid some of the instabilities that have made calculations difficult. If we

apply this new rule, we get the results shown in Table 5.6, where both results have improved.

79

!"#$%#&'

!"#$%#('

!"#$%#)'

!"#$%#*'

!"#$%#+'

!"#$%#,'

!"#$%#!'

!"#$-##'

%,' %!")' %!' %#")' #' #")' !' !")' ,'

!
"#
$
%
#
&
'(
)*
+)
,
''
#
-
./
&
'#
)0
"*
1
/
1
23
2.
(
)

,''#-./&'#)0"*1/1232.()

./0123456789'#"##&)':;8'<58='

$5>/18789'#"##&)':;8'<58='

?85>/18789'#"##&)':;8'<58='

?85>/18789'#"#)':;8'<58='

Figure 5.2: The probability distribution function of the acceptance probability over the
range -2 to 2. This data was collected by binning the acceptance probability before manip-
ulation. Values outside of this range were added to the nearest bin for the histogram.

80

These very preliminary results are quite encouraging, and we believe that pursuit of this

route will be fruitful.

!"#$%#&'

!"#$%#('

!"#$%#)'

!"#$%#!'

#' #")' #"&' #"*' #"+' !' !")' !"&' !"*' !"+')'

!
"#
$
%
#
&
'(
)*
+)
,
''
#
-
./
&
'#
)0
"*
1
/
1
23
2.
(
))

,''#-./&'#)0"*1/1232.()

,-./01234567'#"##89':;6'<36='

$3>-/6567'#"##89':;6'<36='

?63>-/6567'#"##89':;6'<36='

?63>-/6567'#"#9':;6'<36='

Figure 5.3: The probability distribution function of the acceptance probability over the
range 0 to 2. This data was collected by binning the acceptance probability after the fixed-
node condition has been applied. Values outside of this range were added to the nearest
bin for the histogram.

5.5 The Preferred Number of Processors

Most QMC programs keep the number of walkers Nw constant as the number of processors

Np is increased by putting Nw/Np walkers on each processor. We, on the other hand, put

Nw walkers on each of the processors for a total of NwNp walkers in the calculation, syn-

chronizing the energies across all the processors every few iterations. For us, this introduces

the important question of how many processors should we use in a calculation since, now,

the error associated with a finite walker population depends on this decision. To test this

question, we ran several GVB-3/aug-tz (delocalized) with 2 particle Jastrows methylene

calculations, keeping NtNp = 6.4 million, where Nt is the number of iterations with a 0.01

81

Table 5.6: A new acceptance probability strategy, as shown in Equation 5.13, where L
indicates localized GVB orbitals, and D indicates delocalized GVB orbitals.

SCF B J ∆e
3B1

1A1

kcal/mol au au
GVB-3* L/aug-tz 2 9.071(80) -39.121669(91) -39.136124(89)
GVB-3 L/aug-tz 2 9.178(97) -39.12145(10) -39.13607(11)
Exp* 9.364(53)
GVB-3 D/tz 2 9.500(93) -39.120544(90) -39.13568(12)
GVB-3* D/tz 2 9.53(10) -39.12065(11) -39.13584(12)

* results copied from Table 4.1.

time step. This is equivalent to holding the computational effort to a constant. We present

our results in Figure 5.4 and Table 5.7.

In this data, we can see that the energies are relatively independent of the number of

processors, with no deviations more than 0.15 kcal/mol from the reference, and as seen in

Table 5.7, the errors are also relatively constant. The largest deviation is for 16 processors,

which is probably because at 400,000 iterations, it did not have enough time to sample the

entire wavefunction. This conclusion is supported by our results from varying the time step

Section 4.3.5, where we concluded that a 0.01 time step needs at least 1.5 million iterations

on 4 processors. If this is strictly the case, then by this experiment’s design, only our 4

processor calculation, which ran for 1.6 million iterations, is reliable. This is perhaps the

most significant conclusion from this data because it implies that a calculation needs to be

run for a minimal number of iterations on each processor; that the prerequisite among of

time can not be parallelized.

Table 5.7: The effect of holding the number of samples collected constant at NtNp = 6.4
million, where Nt is the number of iterations of 0.01 time step, while varying the number
of processors used. We have added our fully converged value for reference, which was run
at 0.0075 time step.

Np ∆e
1A1

3B1

kcal/mol au au
16 9.05(11) -39.12086(13) -39.13529(13)
1 9.17(12) -39.12072(13) -39.13534(13)
4 9.23(11) -39.12064(13) -39.13536(12)

9.239(88) -39.120847(81) -39.13557(11)
8 9.25(10) -39.12064(13) -39.13538(11)
2 9.38(11) -39.12060(13) -39.13554(13)

The other conclusion to draw here is that one processor is not enough, and that two

82

!"#$%&

!"#$&

!"#'%&

!"#'&

!"#"%&

"&

"#"%&

"#'&

"#'%&

"& '& $& (&)&

!
"
#
$%
&
'(
)
*+
,-
.
/
,0
'

12.3#$'/4'5$/*#66/$6'(780'

'*'&

(+'&

Figure 5.4: An experiment holding the number of samples collected constant at NtNp = 6.4
million, where Nt is the number of iterations, while varying the number of processors used.
Each calculation spent 5000 iterations from the total equilibrating, after our high quality
initialization. The energy is measured relative to energy on 4 processors.

83

is suspect, even though both of them were run for more than the 1.5 million minimum we

guessed are necessary from our 4 processor simulations. Part of the problem, we suspect,

lies in the total number of walkers in the calculation, and that some of the error incurred is

due to finite population bias. The larger source of error is likely from the instabilities in the

algorithm itself, and that runs on multiple processors are benefitting from some cancelation

of errors between the individual processors. Indeed, it would appear that only our 4 and 8

processor calculations produced good results.

To be clear, we are not claiming that a calculation can never be run on more than

8 processors, we are only claiming that 4 or 8 processors made the most efficient use of

equivalent processing power in this test. A more thorough test would quadruple the number

of iterations for each calculation so that all of them run for at least 1.6 million iterations.

In our research, we have had access to several Department of Energy machines, including

large clusters at LANL and LLNL, where we were routinely able to use up to 256 processors

at a time. The problem was that those processors were slow, leading us to attempt to

compensate for slow individual processors by using more processors to collect the desired

number of samples quicker. However, we now view this strategy with suspicion.

5.6 Pseudopotentials

We have attempted to perform more calculations than those we have presented here which

by some standard have worked. Our very best results were in Chapter 4, results for which

we paid close attention to detail. The results from this chapter were significantly more time

consuming both in terms of computation time, and in terms of trying wavefunctions or

geometries that did not work. This is substantial justification for using pseudopotentials.

It is not because they save computational effort on a per iteration basis, which they often

do not, but because sample errors become significantly lower when the troublesome core

electrons are removed.

We spent some time attempting to add pseudopotentials to our code, but never got them

to work, even though we believe we are really close. We observed reasonable VMC results,

but when we ran our calculations in DMC, the energy would very frequently jump to some

absurd value. We were very disappointed that despite our efforts, we were never able to

get a transition metal calculation to succeed. This was mentioned in a recent conversation

84

with Ken Esler at NCSA, who pointed out that other software packages put a lot of effort

into “protecting” walkers from the new singularities introduced with pseudopotentials. For

example, some will watch for jumps in the energy, which when encountered will backtrack

several iterations. So perhaps this type of procedure is all that we need. This illustrates one

of the difficulties in working on this project, that none of us have had much opportunity to

discuss the unpublished “folklore” or conventional wisdom with experts in the field. There

are a lot of ideas in the literature, and a lot of time to waste implementing all of them.

Pseudopotentials are necessary.

85

Chapter 6

Kinetic Monte Carlo

6.1 Abstract

We present an O (log N) implementation of lattice based Kinetic Monte Carlo (KMC), where

N is the number of grid sites. In our initial tests, we can run for extremely long simulation

times, of the order of seconds, on a single processor in a couple of days, depending on the

system. Furthermore, our computation time scales as a constant with respect to the number

of molecule types and reaction types included. This implementation opens up the KMC

method to a wide variety of applications, and we present one involving CH3Cl(g) molecules

adsorbing onto Copper slabs with Silicon impurities.

6.2 Introduction

Quantum chemistry has become capable of reliably, quickly, and accurately producing an

abundance of data, measuring energy differences between different species, energy barriers,

and reaction rates, but only for very limited numbers of small molecules at a time. There

are several ways to take data from these calculations, and simulate such a system as might

be found in a test tube, and on useful time scales. For one popular technique, molecular

dynamics (MD), we might fit quantum data to potential energy curves representing bond

strengths, bending angles, and other representative motions in a molecule, and then simulate

a box of these molecules as particle simulation of forces. This method has been enormously

successful at modeling anything from materials to proteins. While MD does not normally

allow bonds to break or to be made, it can be modified to do so for a price. The downside

of MD is that it is really slow, and is typically only run for a simulation time between nano

86

and micro seconds, although with enormous expense, simulations of up to milliseconds are

now becoming possible.

KMC, an increasingly popular alternative, swaps continuous spatial coordinates for a

grid, allowing the user to specify reaction rates directly. This approximation permits fast

algorithms to be developed which easily run for as long as a second of simulation time,

depending of course on the nature of the system being studied. It is well known that KMC

should scale as O (log N) per iteration, where N is the size of the grid, and we discuss a

simple algorithm which achieves this. We also show how we achieve constant time scaling

with respect to the number of species or reactions in our system.

6.3 What is Kinetic Monte Carlo?

There are a wide variety of approaches to kinetics using Monte Carlo techniques. We focus

here on those which use a grid of some form since we want to include spatial competition

in our model. Furthermore, we only specify a set of species which can exist on the surface,

and provide reaction constants (forward and reverse) to convert between them. This not

only includes reactions, but diffusion, adsorption, and desorption processes. Thus, given

any state of the surface, we can count all possible “actions” that could happen. The effects

we include in our model allow molecules to diffuse to an adjacent empty site, an empty site

to receive a molecule from the gas phase, or two adjacent molecules could react, possibly

to form gas products. For all of these actions, we have a rate calculated from the energy

barrier, which is directly proportional to the probability Pa that it will happen in a given

iteration. There are a couple ways of handling this, for example, the Metropolis method

would pick a random particle and associated action, and act on it with probability Pa. The

best way of handling this is described in Algorithm 6.3.

Algorithm 3 KMC algorithm
loop

Identify all possible actions, and their associated rates ri

R ←
∑N

1 ri

u ∼ [0, R]
Find j such that:

∑j
1 ri < u <

∑j+1
1 ri

Perform action ‘j’
t = t− ln([0,1])

R
end loop

87

This efficiently produces a Poisson distribution, meaning that all the events are indepen-

dent from each other. This allows the same molecule to be involved in successive actions,

if it has sufficient propensity to do so. The computationally expensive steps is the first one

listed here, of collecting all possible actions, as well as the fourth step, of searching the list.

6.3.1 The General Solution

At a first glance, this is a linearly scaling process, since one would need to first make an array,

and then search the array for a cumulative probability. But this array of actions does not

change much from step to step, especially if there is some degree of locality to each change.

It is well known that any KMC algorithm could scale as O (log N) per event through the use

of binary trees [97] to perform the array updates and searching. However, the realization

of this is often application dependent [98]. Although we have found several theoretical

analyses [97, 98] of KMC, we have found very few discussions of actual implementation and

how to design the binary trees.

6.3.2 Our Solution

To initialize a calculation, we start by evaluating the rates of all the forward and reverse

reactions that were specified in an input file. We then separate all processes into two

categories: those which only involve one site, and those which involve two sites. For all

the one site processes, we create a static array indexed to each specie in the system (which

includes the “empty” specie), summing all the rates for processes it might perform. For

example, an empty site might receive a non-disociating gas molecule, or might receive an

atom percolating up from below the surface. In these instances, the reaction would look

like the conversion of an empty site into an occupied site. Two site processes are handled

in an analogous fashion by allocating a matrix with each dimension indexed to the species

in the system. If two species can interact in any processes, we sum all the corresponding

rates into that matrix element. Based on this understanding, the matrix is symmetric.

To model reactions on a rectangular 2D surface, we design a binary tree such that

each node contains the sum of all the reaction constants for a 1/2L fraction of the surface,

where L is the level in the binary tree of the node in question. Thus the root node covers

the whole surface with L = 0 and stores R. Its left and right children are defined as

partial sums such that R = Rl + Rr, and upper and lower distinctions are specified at

88

the grandchildren level so that R = Rul + Rur + Rll + Rlr, and so on. This means that a

sum of the reaction constants across all the nodes for a given level will produce R. The

leaves of this binary tree are the grid sites themselves, which store the reaction constants

for everything that can happen at that site individually, as well as half (so that we do not

double count) of its neighbors. Of course this could be adjusted for the topology of any 2D

surface. Furthermore, this approach is general enough to allow some 3D systems by either

modeling them as connected 2D structures, or by adding a dimensional index to the labels

of the species in the input file.

To find a particular reaction starting at the root, we see if U , our uniformly drawn

random number on [0, R], is lower than the left child. If it is, then we proceed down the

left branch passing along the same value for U . If it is higher, then we proceed down the

right branch using U − Rl as our new uniformly distributed random number. Either way,

U is uniformly distributed between 0 and the cumulative value R for the lower node, so we

repeat this comparison moving down the tree until we reach a grid site.

Once we reach a grid site, we note that the residual value of U is uniformly distributed

on [0, r] where r is the sum of the 4 ri representing everything that can happen between

ourself (1 term) and half of our neighbors (3 terms). The cost of this search is constant,

since the ri were precomputed, resulting in a maximum of 3 comparisons and 3 subtractions.

Once we have found the ri corresponding to U , we scan through only the precomputed list

separating all the few ways that the two species can interact. After performing the sought

after process, we update the ri which changed and then update r. Then follows one update

per level, in an O (log N) overall update of the binary tree.

This implementation has several merits. First, in contrast with the general techniques

described [98], we never have to update any lists of nearest neighbors, or change the structure

of our binary tree. Each node in the binary tree remains responsible for exactly the same

grid sites throughout the calculation, and an update only involves propagating terms like

R = Rl+Rr up a tree, involving very little math for each update. Second, our method scales

in constant time with respect to the number of species in the system, since the sum of all

the ways they can interact is precomputed and stored in a matrix in random access memory

(RAM). Thirdly, our method scales as constant time with respect to the number of reactions

included in the input file. The reason is that all the ways two species can interact is known

at compile time, so instead of writing code which searches through the list of reactions to

89

find all the ways two species can relate, we use a script to generate sparse search code based

on the input file which automatically skips any meaningless comparisons. This stores the

equivalent of a matrix into the executable itself. Thus our RAM requirement scales as the

square of the number of species, and our hard disk requirement scales as the square of the

number of reactions. In our studies, neither of these requirements have been high. With

this implementation, we believe that we have an original O (log N) implementation of the

KMC method that is more efficient than any other.

It is worth pointing out that because the simulated time increment scales as 1/R, the

number of iterations required to reach a desired simulation time scales as O (N) for an over

all scaling of O (N log N). However, this scaling also depends on other parameters such

as temperature and pressure, which affect the individual rates leading to R. The biggest

concern however comes from large differences in the energy barriers. If an input file specifies

reactions which all have comparable energy barriers, then they’ll also have comparable

rates, and fewer iterations should be necessary to produce interesting results. However,

the rates scale exponentially with the energy barrier, so if you include fast processes (like

diffusion) along with slow but interesting processes, then the probability per iteration that

an interesting reaction will occur will drop exponentially. These factors underscore the vast

variability in the number of iterations that might be required to complete a calculation.

6.4 Our First Application

For our initial project, our research group has been working on modeling a system for con-

verting MeCl(g) into MenSiCl4−n(g) on a copper surface, where Si atoms diffuse through

the copper slab, and MeCl(g) is maintained at a constant pressure against the copper. We

are particularly interested in factors that influence the product branching ratio, including

the rate of introducing Si atoms, pressure of MeCl(g), temperature, and others. Addition-

ally, we have been interested in how to change the branching ratio by placing constraints

on various species MexSiCly intermediate on the surface. A lot of work has been done to

identify all the important molecules on the surface, and to write equations for reactions

between all the species. We had taken the approach of modeling the system using a dif-

ferential equation solver, but it was felt that surface competition might play a major role,

so we have been developing this KMC algorithm to model this. Since this represents work

90

in progress, we have little to report as far as final conclusions, but we can provide some

preliminary results as produced by KMC.

Figure 6.1: This image was provided by Mario Blanco, and illustrates a few of the surface
sites possible.

The species in play are classified in 5 categories, illustrated in Figure 6.1. We have gas

molecules, denoted with the (g) suffix, subsurface atoms denoted with (s), and adatoms

which normally would have the (a) suffix, but as the default state, the suffix is implied and

left off. Under this notation, Cu(s) is the label for a normal, or empty site. We include

Cu(v) to denote a vacancy in the copper surface. Lastly, we also have Si(int), for interstitial

Silicon, diffusing through the surface but doesn’t fill a grid site, waiting to be converted

into Si(s). Gas molecules are not explicitly included in the model. Product gas molecules

are counted, but then immediately disappear. Only MeCl(g) gas exists above the surface,

but only implicitly until one of them lands and sticks to the surface. Neither are Si(int)

atoms countable, until they push up to the subsurface layer, at a prescribed rate.

We start by hypothesizing that the rates can be adequately modeled using the follow-

ing simple expressions, written in terms of the energy barrier Eb of the process, and the

temperature T and pressure P:

rdiffusion =
kBT

h
exp

(
−0.5
RT

)
∼ 8.1× 103 nHz

rreaction =
kBT

h
exp

(
−Eb

RT

)
∼ 10−17 to 1.3× 104 nHz

radsorption =
kBT

h
exp

(
−Eb

RT

)
pconπP

4µ

√
πµ

8rgmvT
∼ 5.0× 10−5 nHz,

where all Eb for the forward and the reverse processes are provided as input to the soft-

ware. For the sake of illustration, the rates have been estimated for 600K and 2 atm. The

adsorption reaction only applies to MeCl(g), the only gas phase reactant. In the adsorption

reaction, µ is the mass of MeCl(g), rgmv is a gas velocity factor, and pcon is a unit conversion

91

factor. We do not necessarily include all possible reactions, since the rates quickly die off

for barriers above ∼40 kcal/mol.

6.5 Preliminary Results

In our initial simulation runs, we found that Si atoms were filling the surface, blocking any

MeCl(g) from landing and beginning the reaction chain. Thus we introduced a somewhat

artificial way of limiting the number of Si atoms by preventing the introduction of more

Si(int) if Si occupies more than some percent of the surface. This is exactly the sort of

problem that a differential equation solver would be unable to detect. We are seeing that

whatever choices are made for the input file, all the available empty sites are filled, inhibiting

quite a few diffusion possibilities, or slowing the introduction of more Me or Cl.

SiMe4 Me SiCl3 Me SiCl2 2 MeSiCl3 SiCl 4

28.6

(A)=0 2

(B)=−28.7 17 (C)=−10.1 55

(F)=−17.4 91(E)=−37.3 131(D)=−52.0 19

4.9 1.7 4.9** 4.5

(I)=−44.0 743(H)=−62.1 229(G)=−76.9 142

8.5
0.0 6.3 0.0 4.9** 4.5

(J)=−23.1 1577

(K)=−96.8 12 (M)=−64.7 80166(L)=−82.4 35600 (N)=−41.6 24794 (O)=−14.5 4188

30.225.921.021.7 ?

4.9**

23.5

28.2

12.2**

32.1**

13.5

33.4 31.1

10.6**

31.5**

13.018.6

Positive direction is down, or right
Blue means net reactions
Red means equilibrated counts

−1682

+48124

1789717897

6208

18600

5930
1980

−63694

353 29182
51283

−45913−17154

30136

−12132

418824794801663560012

 0.029 0.171 0.554 0.246 0.000

Si

Me

Si

Cl

Si

Si
ClCl

Si
Me Me

Si Cl
Cl

ClSi

Me
ClClSiMe

Me
ClSiMe Me

Me

Si
Me Cl

Figure 6.2: The reaction data was provided by Francesco Faglioni, annotated to include
KMC data. In magenta, we’ve written the product fractions. The numbers shown are based
on speculative energy barriers in our incomplete model, and are shown here for illustrative
purposes only.

As demonstrated in Figure 6.2, we show the cascade of reactions representing all possible

92

MexSiCly species. During a calculation, we count the number of times each reaction occurs,

as well as the number of times the reaction is reversed. At any point we wish, we calculate

the net number of times a reaction occurred, count the number of each species currently

on the grid, and print these numbers on the pyramid graph. We only include the reactions

that relate one species directly to an adjacent species, meaning that some of the numbers

do not add up, since there may be additional sources/sinks from off of the pyramid. For

some of the species, though, all associated reactions are included, so if you add up all the

sources and sinks, you will arrive at the species count shown.

This simulation ran for about 23 hours representing simulated time of 0.01 seconds from

29 billion iterations. The vast majority of these iterations were spent doing diffusion and

other readily reversible reactions. In fact, only about 0.001% of the iterations did something

interesting, so we will want to incorporate averaging techniques to increase this percent.

This calculation was done on a 100x100 grid. Referring back to the scaling issue, if we were

to double the grid to 200x100, the calculation should run for 23 ∗ O (log(2N)) ∼ 46 hours,

and if 200x200, then 69 hours. It is remarkable how fast O (log N) scaling is.

These results are highly speculative, since they represent energy barriers that do not

even include entropic effects. The model is not yet complete, and we are uncertain about

whether we are correctly handling the introduction of Si or MeCl(g). However, the core of

the algorithm is complete.

6.6 Conclusion

We have developed a new O (log N) algorithm for KMC. This scaling is extremely fast,

recommending further research into improving the model so that it can compete with more

expensive methods. We have discussed an initial application, for which simulations as long

as 0.01 seconds are easy to achieve. We believe that these results could make a significant

impact in computational chemistry.

93

Appendix A

Asymptotic Scaling

As mentioned, there are a number of approximations one might take in order to simulate

systems of molecules. With each approximation, the calculation becomes more simple, and

thus will require less computer time. To describe computational complexity, we use big-O

notation. We want to be able to study how much computer time a calculation will take, as a

function of some parameter N like the number of particles, grid size, basis functions, orbitals,

or something else. We take an algorithm and decompose it into tasks, and count how many

primitive computer operations (e.g., +,-,*,/) it takes to complete each task as a function

of N, and our calculation will look like a polynomial in powers of N. As an example, scalar

operations are O (1), vector addition is O (N), matrix addition is an O
(
N2

)
operation,

matrix multiplication is O
(
N3

)
, Hartree-Fock and density functional theory (DFT) are

O
(
N4

)
, and Full Configuration Interaction (FCI) calculations are O (N !). In a program

with multiple tasks, these terms probably have constant prefactors, so that if a task has

a complexity of 1000N2 + N3, there will be a crossover point. In big-O notation, we just

state the highest power and ignore the prefactors such that O
(
1000 ∗N2

)
= O

(
N2

)
, since

asymptotically, it’s only the highest power that really matters.

Although these scaling estimates are rigorous, they are not always useful because there

are numerous additional approximations that can be added at each level in order to sim-

plify the calculation. For example, matrix diagonalization is O
(
N3

)
, but if the matrix is

sufficiently sparse, we can write it as a block diagonalized matrix. It now costs O
(
BM3

)

to diagonalize the matrix, where B is the number of blocks and M is the dimension of a

single block. If increasing the size of the calculation changes B but not M , then the cost of

diagonalizing the block can be treated as a constant k, and the new price to pay is merely

O (kB) = O (B), or linear. This simplification in the computational complexity is typically

94

derived from localization in computational chemistry. Another example is in molecular

dynamics, since even though the Coulomb interaction between two charges is substantial,

even if they are far away, eventually, we will be able to truncate the term so that each

molecule need only interact with the neighbors within some prescribed radius. This can

lower the computational cost from O
(
N2

)
down to a scaling of O (N log N). Theoretically

speaking, any of these methods could be lowered down to O (N) once the simulated system

is large enough since eventually, two particles will be so far away that closer interactions will

dominate. This can be described as “linear scaling” because even though a localized cluster

retains the original computational scaling, adding another cluster only doubles the cost.

That is, originally our scaling was measured in terms of the number of particles, but now

we can measure in terms of the number of clusters, albeit with a large prefactor representing

the time to calculate for each cluster. Although it’s unclear how large a molecule must be

for this to work, all ab initio methods are eventually linear in complexity. Unfortunately,

the crossover point from O
(
Nk

)
to O (N) is for molecules much larger than we currently

have processing power for.

95

Appendix B

The Local Energy

We have seen a number of different approaches in the literature, explaining how to evaluate

the local energy of a wavefunction. Not very many of them present what we feel is the

simplest, and therefore easiest to understand, formulation of the process, so we include it

here. We start with the time-independent Schrödinger equation:

E|Ψ〉 = Ĥ|Ψ〉, (B.1)

where Ĥ is the Hamiltonian for the system. For an isolated molecule, the Hamiltonian

operator, in atomic units of energy, will be

Ĥ = −1
2

N∑

i

∇2
i +

N∑

i>j

1
rij
−

Nnuc∑

a

N∑

i

Za

Rai
(B.2)

= −1
2

N∑

i

∇2
i + V (r), (B.3)

where N is the number of electrons and Nnuc is the number of nuclei, Za is the charge on

nucleus a, rij is the distance between electrons i and j, and Rai is the distance between

electron i and nucleus a. This equation does not take the motion of the nuclei into effect.

Making the additional assumption that the wavefunction is normalized and real-valued, we

96

can write that

〈E〉 = 〈Ψ|Ĥ|Ψ〉 (B.4)

=
∫

Ψ(x)Ĥ(x)Ψ(x)dx (B.5)

=
∫

Ψ2(x)
1

Ψ(x)
Ĥ(x)Ψ(x)dx (B.6)

=
∫

ρ(x)EL(x)dx, (B.7)

where we have now defined the local energy as

EL(x) =
Ĥ(x)Ψ(x)

Ψ(x)
= −1

2

N∑

i

∇2
i Ψ(x)
Ψ(x)

+ V (r), (B.8)

where our notation implies that the operator must act on the wavefunction before we can

divide by the wavefunction. A typical wavefunction in QMC will be the product of a deter-

minant based wavefunction, which we will represent as ψ, with one or more configurations,

times a Jastrow function, written as eU = eu12eu13eu13 ..., the product of all particle interac-

tions, which might involve 2 or 3 particles. For simplicity, we drop the explicit coordinate

dependence of the wavefunction, and ignore the summation. If we use Ψ = ψeU , we find

that

EL = −1
2
∇2

(
ψeU

)

ψeU
+ V (B.9)

= −1
2

[
∇2ψ

ψ
+ 2

(
∇ψ

ψ

)
· ∇U +∇U · ∇U +∇2U

]
+ V. (B.10)

It is interesting to note that eU is never explicitly evaluated here, although it is evaluated

as a part of the Metropolis algorithm. Furthermore, since only derivatives of U show up

in the local energy, the local energy is independent of any constant terms in U . We will

not consider the evaluation of the derivatives of U here, which are typically polynomials or

other simple to evaluate terms.

The evaluation of the gradient and laplacian terms of ψ is more complicated. In general,

ψ =
∑

t ctDtαDtβ, where ψ is a t indexed linear combination of determinants D, weighted

by coefficient ct, specific to each spin α or β. In a Hartree-Fock calculation, for example,

there will only be one term in the summation, but there can be as many as millions of

97

terms in MCSCF or CI wavefunctions. QMC is typically used with less than a thousand for

practical reasons. We can break the problem down into evaluating the derivatives of a single

Slater determinant with respect to electronic coordinates and then build up to the gradient

and laplacian of one determinant D. Now in our case, we are using Slater determinants as

our antisymmeterizing operator,

D = |A| =

∣∣∣∣∣∣∣∣∣∣∣∣

φ1 (r1) φ2 (r1) · · · φN (r1)

φ1 (r2) φ2 (r2)
... . . .

φ1 (rN) φN (rN)

∣∣∣∣∣∣∣∣∣∣∣∣

(B.11)

φk(ri) =
∑

j

χj(ri)cjk (B.12)

χj(r ← ri −Rj) = r
kj
x r

lj
y r

mj
z

∑

n

ajne−bjn|r|2 , (B.13)

where k indexes the orbital, j the basis function χ, and i the electron. The electron index i

does not include all the electrons, but only the electrons with the same spin (α or β) go into

the same determinant. Each term t in the wavefunction will use a different set of orbitals,

so over all there will be more orbitals than electrons. However, each determinant represents

one orbital for each electron, letting each electron “visit” all the orbitals. This means that if

two of these electrons swap places, corresponding to swapping rows, then the determinant

will change sign, satisfying the Pauli antisymmetry principle. It is obvious that by this

construction, there is zero probability that two electrons will occupy the same location, or

that two electrons will share the same orbital. Of course two electrons with different spins

are also required to satisfy antisymmetry, but that happens another way.

For a matrix A, the Jacobi formula tells us that

∇|A| = |A|tr
(
∇A A−1

)
(B.14)

and the derivative of A with respect to one of the coordinates of the ith electron will just

be the

∇iφk(ri) =
∑

j

∇iχj(ri)cjk (B.15)

98

terms put on the kth row in ∇iA, the only row that is a function of electron i, filling the

rest of the matrix with zeros. Multiplying this by A−1 will leave only a single element on

the diagonal,

1
|A|∇i|A| = tr

(
∇iAA−1

)
=

∑

k

∇iφk(ri)A−1
ki . (B.16)

The second derivative of the determinant is more work, but all we need to know is that the

trace is a linear operator and that dA−1 = −A−1 dA A−1, so that

∇2|A| = ∇|A|tr
(
∇A A−1

)
+ |A|tr

(
∇2A A−1

)
+ |A|tr

(
∇A ∇A−1

)
(B.17)

= |A|
(
tr

(
∇A A−1

))2 + |A|tr
(
∇2A A−1

)
+ |A|tr

(
∇A ∇A−1

)
(B.18)

1
|A|∇

2|A| =
(
tr

(
∇A A−1

))2 + tr
(
∇2A A−1

)
− tr

(
∇A A−1∇A A−1

)
(B.19)

= tr
(
∇2A A−1

)
. (B.20)

Now we point out that, as before, the matrix∇A is zero everywhere except row k. This mul-

tiplied by A−1 also results in a row matrix, and thus the third term in the above expression

uses the product of two row matrices, the result of which is also a row matrix. This means

we can cancel the first and third terms because the diagonal element in
(
∇A A−1∇A A−1

)

is the square of the diagonal element of
(
∇A A−1

)
. Therefore, by comparing with Equation

B.16, we can see that

1
|A|∇

2
i |A| = tr

(
∇2

i AA−1
)

=
∑

k

∇2
i φk(ri)A−1

ki (B.21)

In software we can calculate all these terms simultaneously. First, we make 5 matrices, all

dimensioned Nelectrons ×Nbasisfunctions. One is the evaluation of each basis function at the

coordinates of each electron, three of the matrices are the x, y, and z first derivatives of

each basis function with respect to each electron, and finally, the last matrix is the laplacian

of each basis function with respect to each electron. These 5 matrices are all multiplied

by the coefficient matrix dimensioned Nbasisfunctions×Norbitals, to produce square matrices

dimensioned Nelectrons×Norbitals. When we generalize this to the calculation of many terms

in ψ, since we will be doing the same algebra for each orbital, we might as well do them

all at once, so the matrix multiplication does not produce square matrices, requiring us

99

to pull out the appropriate square matrices as needed. After this, we calculate both the

determinant and inverse of the matrix A in one step using LU decomposition. Summing

over all electrons, the laplacian is

1
D
∇2D =

∑

i

1
D
∇2

i D =
∑

i

∑

k

∇2
i φk(ri)D−1

ki (B.22)

which is merely a dot product, if the inverse matrix was stored in memory as its transpose.

Calculating the gradient of determinant,

1
|D|∇i|D| =

∑

k

∇iφk(ri)D−1
ki (B.23)

is only slightly more complicated than the laplacian only because we can not sum over

the electrons. The final results for one determinant are 2 scalar quantities, one for the

determinant itself and the other for the laplacian, and one matrix, dimensioned Nelectrons×

N3 for the gradient. For each term in ψ then, there will be twice as much data, half for

the α electrons, and half for the β electrons. Although each term in ψ will use a different

set of orbitals, the core orbitals will never change, and among the active space orbitals,

only a few (of the columns in A) will change at a time. This means that we can use the

Sherman-Morrison formula to update a column in the determinant, a procedure done once

per different orbital compared to the previous term. In Generalized Valence Bond (GVB)

wavefunctions, as explained in Appendix D, there is a simple way of sorting all the terms

in ψ so that we only need to update one orbital to get the next determinant from the

current determinant. Standard chain rule calculus is then used to combine results from the

individual terms to find the gradient and laplacian of ψ =
∑

t ctDtαDtβ.

As these steps make clear, there is a substantial amount of work that needs to be done

to calculate the local energy for just one electronic configuration. The relative expense of

each step depends on Nbasisfunctions, Norbitals, and Nelectrons. For augmented basis sets,

Nbasisfunctions (10 Nelectrons, meaning that the matrix multiplication step will take ap-

proximately Nbasisfunctions ∗ Nelectrons ∗ Norbitals (10 N3
electrons computer operations. By

comparison, the matrix inversion step will cost about N3
electrons, since the product of the

matrix multiplication is much smaller. This means that the matrix multiplication step will

dominate the expense asymptotically. For smaller molecules, the cost evaluating the basis

100

functions will dominate the calculation because even though this cost will scale as only

10 N2
electrons, each basis function evaluation requires us to calculate the ex function.

One variation on the procedure outlined above is the ability to update just one electron

per iteration, instead of all of them. In this case, the matrix multiplication turns into

a vector-matrix multiplication, and instead of LU decomposition to calculate the inverse

of the matrix, we would use the Sherman-Morrison formula to update rows in our Slater

determinant. The motivation for this is that it will substantially raise the acceptance

probability, which might drop quite low for large molecules. But if we move one electron at

a time, there are several computational penalties to consider.

First of all, if we move all electrons each iteration, then we can see that we do not need

to keep any of the intermediate data, since the next step will start from scratch. The fact

that we do not need to keep it means that when we move to evaluating the local energy for

the next walker (which has a different electronic configuration) then the same memory is

immediately available to us and our memory requirement does not increase with the number

of walkers we are using. If on the other hand we are evaluating one electron at a time, then

we must keep the data, because we will need it during the next iteration when updating the

determinant and inverse. For single electron updates, our memory requirements will scale

linearly with the number of walkers we want to use.

Secondly, the number of algebra steps during the matrix multiplication stage remains

the same, since the matrix multiplication will take exactly as many operations a vector-

matrix multiplication done Nelectrons times. But because we are doing this on a computer,

the cost will not be exactly equivalent. The reason is because it takes a computer some time

to load memory into high level cache in order to do the operations efficiently. Furthermore,

efficient matrix multiplication routines are able to reuse memory. That is, once some values

are loaded into registers, they can be used to update several elements of the product matrix

simultaneously. Although not all is lost during a vector-matrix multiplication, we do incur

a computational penalty.

Thirdly, the number of operations involved in updating a matrix one row (or column) at

a time is twice as many operations as it would have taken do perform the whole inversion

in one step. Furthermore, all of the subsequent steps, inconsequential though they were

before, will now be Nelectrons times expensive because we have to do all of it each time an

electron is updated. It will depend on a number of other factors to determine the final

101

impact on the calculation.

We have run several test cases to compare the relative merits of one electron or all

electron updates. In our measurements, we ran a calculation to a predetermined error level.

Because our software is able to decorrelate serial iterations on the fly, the software knew

exactly when to stop. To compare then, we simply look at how long it took to complete

each calculation, and we found that for methylene, one electron updating took twice as long

if when we used all electron updates.

Although QMC algorithms are more sophisticated than what has been presented here,

all of them have to work through these steps. Most codes, including ours, allow individual

electron updates.

102

Appendix C

Jaguar Initial GVB Guesses and
GAMESS

I have found this script to be very useful because Jaguar does an excellent job of generating

initial guesses [53] for GVB wavefunctions, whereas GAMESS is very hard to use. On the

other hand, Jaguar is somewhat limited in terms of what types of SCF calculations it can

do, whereas GAMESS is quite general and capable, once you have a good initial guess. For

example, if you want to run a CASSCF calculation using the GVB orbitals, then you will

want to mix the capabilities of both software packages. With these considerations in mind,

I developed this script to take a Jaguar wavefunction, and convert it to a GAMESS input

file.

It turns out that Jaguar and GAMESS order their f basis functions differently, and this

script does not attempt to fix this. However, this is not a problem if you reconverge the GVB

wavefunction in GAMESS before you do anything else with the wavefunction. The other

limitation of this script is that Jaguar can not handle basis functions beyond f. Perhaps

this limitation will be fixed for Jaguar in the future. In the meantime, a useful future

modification to this script might be to allow it to add extra basis functions, initializing

their coefficients to zero.

C.1 Script: jaguar2gamess.pl

#!/usr/bin/perl1

2

#input input file, $header, @orbitals3

#output num electrons4

sub parseJagInput {5

my ($filename, $sub_Header, $sub_Orbitals) = @_;6

7

103

my $sub_Orbital;8

my $sub_Protons = 0;9

$$sub_Header = "";10

11

open IN, "<$filename" or die;12

my $read = 2;13

my $line = <IN>;14

while ($line) {15

16

if ($read == 0) { #nothing special so far17

18

if ($line =~19

/(\s+)(\d+) Orbital Energy\s+([\-0-9.]+)\s+Occupation\s+([\-0-9.]+)/20

)21

{22

23

#we only want to grab the occupied orbitals24

if ($4 >= 0.0) {25

$sub_Protons += 2.0 * $4;26

printf27

"Orbital %2i has occupation %20.10e and energy %20.10f\n",28

$2, $4, $3;29

$read = 1;30

31

#$sub_Orbital = $line;32

$sub_Orbital = "";33

}34

}35

$line = <IN>;36

37

}38

elsif ($read == 1) { #we’re reading an orbital39

40

if ($line =~41

/(\s+)(\d+) Orbital Energy\s+([\-0-9.]+)\s+Occupation\s+([\-0-9.]+)/42

)43

{44

$read = 0;45

push(@$sub_Orbitals, $sub_Orbital);46

}47

else {48

$sub_Orbital .= $line;49

$line = <IN>;50

}51

52

}53

elsif ($read == 2) { #we’re reading in the header54

55

if ($line =~56

/(\s+)(\d+) Orbital Energy\s+([\-0-9.]+)\s+Occupation\s+([\-0-9.]+)/57

)58

{59

$read = 0;60

}61

else {62

$$sub_Header .= $line;63

$line = <IN>;64

}65

66

}67

}68

69

close IN;70

return $sub_Protons, $#$sub_Orbitals + 1;71

}72

73

sub printGamessOrb {74

104

my ($index, $orb) = @_;75

76

if ($$orb eq "") {77

print "Error: orbital $index is blank!\n";78

die;79

}80

81

my $output = "";82

$$orb =~ s/^\s+//;83

@coeffs = split /\s+/, $$orb;84

85

$count = 0;86

$linec = 0;87

foreach $co (@coeffs) {88

if ($count % 5 == 0) {89

$linec += 1;90

$output .= sprintf "\n%2i%3i", $index % 100, $linec;91

}92

$output .= sprintf "%15.8e", $co;93

$count += 1;94

}95

return $output;96

}97

98

die "Need Jaguar restart (with ip168=2) file, not $ARGV[0]\n"99

if ($#ARGV < 0 || $ARGV[0] !~ /.\d\d.in$/);100

if ($ARGV[1]) {101

open(OUTFILE, ">$ARGV[1]");102

$outfh = *OUTFILE;103

}104

else {105

$newfile = $ARGV[0];106

$newfile =~ s/.01.in/.inp/;107

open(OUTFILE, ">$newfile");108

print "Writing $newfile\n";109

$outfh = *OUTFILE;110

111

#$outfh = *STDOUT;112

}113

114

$file = $ARGV[0];115

$output = $file;116

$output =~ s/.01.in/.out/;117

$gamin = $file;118

$gamin =~ s/.01.in/.gamess/;119

120

my @orbitals;121

my $header;122

($numP, $numO) = parseJagInput($file, \$header, \@orbitals);123

124

my %gvb_coeffs;125

my %gvb_pairs;126

$doubleocc = 0;127

$singleocc = 0;128

open(OUTPUT, "<$output");129

while (<OUTPUT>) {130

$doubleocc = (split /\.+/)[1] if (/number of doubly-occ/);131

$doubleocc = int($doubleocc);132

$singleocc = (split /\.+/)[1] if (/number of open shell orbs/);133

$singleocc = int($singleocc);134

135

if (/first natural orbital/) {136

$_ = <OUTPUT>;137

$_ = <OUTPUT>;138

$_ = <OUTPUT>;139

$_ = <OUTPUT>;140

while (/[0-9]/) {141

105

@pairdata = split /\s+/;142

$gvb_pairs{ $pairdata[2] } = $pairdata[6];143

$gvb_coeffs{ $pairdata[2] } = sprintf "%11.8f,%11.8f", $pairdata[5],144

$pairdata[9];145

146

#printf147

print "pair $gvb_coeffs{$pairdata[2]} $_";148

$_ = <OUTPUT>;149

}150

151

}152

}153

154

my $npair = keys(%gvb_pairs);155

my $norb = $doubleocc + $singleocc + 2 * $npair;156

157

print "ERROR: GAMESS can’t handle more than 12 GVB pairs!" if ($npair > 12);158

print159

"Start printing GAMESS input file with $norb orbs: $npair pairs, $doubleocc doubly occ orbs, $singleocc singly occ orbs\n\n";160

printf $outfh " \$SCF NCO=%i NSETO=%i NPAIR=%i", $doubleocc, $singleocc, $npair;161

162

if ($singleocc > 0) {163

printf $outfh " NO(1)=";164

for (my $so = 0 ; $so < $singleocc ; $so++) {165

printf $outfh "1,";166

}167

168

}169

170

if ($npair > 0) {171

printf $outfh "\n CICOEF(1)=";172

foreach $key (sort keys %gvb_pairs) {173

printf $outfh "$gvb_coeffs{$key},\n";174

}175

}176

printf $outfh " \$END\n";177

printf $outfh " \$GUESS GUESS=MOREAD NORB=%i PRTMO=.TRUE. \$END\n", $norb;178

printf $outfh " \$SYSTEM MWORDS=200 \$END\n", $norb;179

180

open(GAMESS, "<$gamin");181

while (<GAMESS>) {182

if (/contrl/ && $npair > 0) {183

chomp;184

185

#I need to intercept the contrl group to change the scftyp186

printf $outfh "$_ maxit=100 scftyp=gvb\n";187

}188

else {189

190

#The $data group is already good to go191

printf $outfh $_;192

}193

}194

195

print $outfh " \$VEC";196

197

$orbIndex = 1;198

for (my $i = 1 ; $i <= $doubleocc + $singleocc ; $i += 1) {199

$orb = $orbitals[$i - 1];200

print $outfh printGamessOrb($orbIndex, \$orb);201

if ($i <= $doubleocc) {202

print "Closed orbital $i\n";203

}204

else {205

print "Open orbital $i\n";206

}207

$orbIndex += 1;208

106

}209

210

my $pairCount = 1;211

foreach $key (sort keys %gvb_pairs) {212

print "GVB ${pairCount}u orbital $orbIndex <-- $key\n";213

$orb = $orbitals[$key - 1];214

print $outfh printGamessOrb($orbIndex, \$orb);215

$orbIndex += 1;216

217

print "GVB ${pairCount}v orbital $orbIndex <-- $gvb_pairs{$key}\n";218

$orb = $orbitals[$gvb_pairs{$key} - 1];219

print $outfh printGamessOrb($orbIndex, \$orb);220

$orbIndex += 1;221

$pairCount += 1;222

}223

224

print $outfh "\n \$END\n";225

107

Appendix D

Making the .ckmf file

This script will convert a GAMESS output file into a QMcBeaver input file, and has been

the subject of many bug fixes by Amos Anderson (myself) and Dan Fisher, as well as the

original developers, Mike Feldmann and Chip Kent. We have programmed it to handle a

variety of different wavefunctions, but we have not made an effort to get it to handle all

possible minutia of a GAMESS calculation. This script will look for a .ckmft file on which

to base the input file it produces, and we provide the .ckmft file below.

One point of interest is how this script chooses to sort the determinants. For a GVB

wavefunction, there is a simple ordering available wherein each determinant differs from

the previous determinant by only one orbital. This means that the QMcBeaver code only

needs to run one Sherman-Morrison column update on each determinant to get to the

next determinant. Any other sorting might involve several updates per determinant. For

wavefunctions with many determinants, these savings add up significantly. This has been

embedded in the loop recursion near line 539, and here we provide an example for a 3 pair

wavefunction. The 23 determinants in the 6 orbitals look like

a b c d e f
1. 1 0 1 0 1 0
2. 0 1 1 0 1 0
3. 0 1 0 1 1 0
4. 1 0 0 1 1 0
5. 1 0 0 1 0 1
6. 0 1 0 1 0 1
7. 0 1 1 0 0 1
8. 1 0 1 0 0 1,

where 1 indicates that orbital is occupied, and a 0 indicates that orbital is not occupied

108

for that determinant. For the sake of the discussion, we assume there are no core orbitals.

Each determinant will contain a different set of 3 orbitals. To go from determinant 1 to

determinant 2, we only need to swap the first orbital from a to b. To go from determinant

2 to 3, we swap the second orbital from c to d. Then we swap the first orbital from b to

a, then the third orbital from e to f, and so on. That is, moving from one determinant

from the next only involves one update. Consider the following example for the 8 highest

coefficient determinants from a 6 orbital CAS wavefunction.

a b c d e f
1. 1 1 1 0 0 0
2. 1 1 0 1 0 0
3. 1 0 1 0 1 0
4. 0 1 1 1 0 0
5. 1 1 0 1 0 0
6. 0 1 1 0 0 1
7. 0 1 1 1 0 0
8. 0 1 1 0 0 1
...

In this case, we had to update 1, 2, 2, 2, 3, 1, 1, ... columns in our progression through

the determinants, for a total of 5 more updates than the GVB wavefunction required, which

is almost twice as expensive! This is yet another advantage of GVB wavefunctions. It is

likely that there are ways to minimize this kind of expense for CAS wavefunctions, but we

have not worked out the details.

D.1 Script: gamess2qmcbeaver.py

#!/usr/bin/env python1

2

This script will convert the output from a GAMESS calculation into an input3

file for QMcBeaver.4

* It will copy all the basis function data and orbitals5

* It will look for the energies calculated in GAMESS6

and add them as comments.7

* To find a good set of QMcBeaver flags, it will look for a "ckmft" file8

in a few directories (see "templatedir" variable below)9

to copy a good set of defaults.10

#11

Usage:12

gamess2qmcbeaver.py <GAMESS output file> [determinant cutoff = 0.0]13

* We recognize .log and .inp.out as GAMESS output extensions.14

* If the absolute value of the CI coefficient is below the determinant15

cutoff, then it will not be included in the ckmf file.16

#17

Permissible RUNTYP = ENERGY and OPTIMIZE18

Permissible SCFTYP = anything other than MCSCF19

109

#20

To use SCFTYP=MCSCF:21

1) Run the MCSCF calculation in GAMESS. This is the hardest part... Look in22

the GAMESS manual and the "Further Information" document for hints.23

2) Make a 2nd GAMESS input file with a $VEC section from the natural orbitals24

and minimized geometry of the MCSCF run. Specify SCFTYP=NONE and CITYP=ALDET.25

This will produce a CI expansion in these orbitals. You might be able to use26

other CITYP, but we haven’t programmed them.27

3) This script can read the ALDET output file, and will find as many determinants28

as were printed out, and put them in the ckmf file. You might need to modify29

PRTTOL in the $DET section to get more determinants.30

#31

NOTE: check your ALDET runs... I’ve found that the occupations don’t always match32

the orbitals printed! For one of my runs, it sorted the natural orbitals according to occupation,33

which was different from the input order.34

35

import re36

import sys37

import copy38

import math39

import string40

import time41

import os42

from utilities import *43

44

if len(sys.argv) < 2:45

print "gamess2qmcbeaver.py <filename>[.log, .inp.out] [detcutoff=0.0]"46

sys.exit(0)47

48

Infile = sys.argv[1]49

IN = open(Infile,’r’)50

gamess_output = IN.readlines()51

IN.close()52

53

filebase = ""54

if string.find(Infile,’.inp.out’) != -1:55

filebase = sys.argv[1][0:len(sys.argv[1])-7]56

elif string.find(Infile,’.log’) != -1:57

filebase = sys.argv[1][0:len(sys.argv[1])-3]58

else:59

print "The file ", Infile, " is not recognized as a GAMESS log file!"60

sys.exit(0)61

62

Datafile = filebase + "dat"63

IN2 = open(Datafile,’r’)64

gamess_data = IN2.readlines()65

IN2.close()66

67

Outfile = filebase + "ckmf"68

OUT = open(Outfile,’w’)69

70

run_type = "ENERGY"71

scf_type = "RHF"72

ci_type = "NONE"73

pp_type = "NONE"74

spin_mult = 175

istate = 176

77

detcutoff = 1e-1078

if len(sys.argv) == 3:79

detcutoff = string.atof(sys.argv[2])80

print "Removing all determinants with coefficients less than ",detcutoff81

82

Get run type and scf type83

84

for i in range(len(gamess_output)):85

if string.find(gamess_output[i],’$CONTRL OPTIONS’) != -1:86

110

k = i87

while string.find(gamess_output[k],’$SYSTEM OPTIONS’) == -1:88

line = re.split(’[\s=]+’,gamess_output[k])89

for j in range(len(line)):90

if string.find(line[j],’SCFTYP’) != -1:91

scf_type = line[j+1]92

if string.find(line[j],’VBTYP’) != -1:93

if string.find(line[j+1],’NONE’) == -1:94

scf_type = line[j+1]95

if string.find(line[j],’RUNTYP’) != -1:96

run_type = line[j+1]97

if string.find(line[j],’CITYP’) != -1:98

ci_type = line[j+1]99

if string.find(line[j],’MULT’) != -1:100

spin_mult = string.atoi(line[j+1])101

if string.find(line[j],’PP’) != -1:102

pp_type = line[j+1]103

k += 1104

105

if ci_type == "GENCI":106

#These are effectively the same kind of calculation107

#Just different lists of determinants108

ci_type = "ALDET"109

110

#################### EXTRACT GEOMETRY: START ####################111

112

Find where the geometry is stored.113

114

if run_type == "ENERGY" or run_type == "HESSIAN":115

for i in range(len(gamess_output)):116

if string.find(gamess_output[i], ’RUN TITLE’) != -1:117

start_geometry = i118

if string.find(gamess_output[i], ’INTERNUCLEAR DISTANCES’) != -1:119

end_geometry = i120

break121

122

elif run_type == "OPTIMIZE":123

for i in range(len(gamess_output)):124

if string.find(gamess_output[i],’EQUILIBRIUM GEOMETRY LOCATED’) != -1:125

start_geometry = i126

for j in range(i,len(gamess_output)):127

if string.find(gamess_output[j],’INTERNUCLEAR DISTANCES’) !=-1:128

end_geometry = j-1129

break130

elif string.find(gamess_output[j],’INTERNAL COORDINATES’) !=-1:131

end_geometry = j-3132

break133

elif string.find(gamess_output[j],’SUBSTITUTED Z-MATRIX’) !=-1:134

end_geometry = j-1135

break136

break137

138

try:139

geom_data = gamess_output[start_geometry:end_geometry]140

except:141

print "Failed to find geometry for run_type = ", run_type142

raise143

geometry = []144

145

start = 0146

147

if run_type == "ENERGY":148

for line in geom_data:149

if start: geometry = geometry + [line]150

if string.find(line,’CHARGE’) != -1: start = 1151

geometry = geometry[:len(geometry)-1]152

153

111

elif run_type == "OPTIMIZE":154

for line in geom_data:155

if start == 2: geometry = geometry + [line]156

if string.find(line,’CHARGE’) != -1: start = start + 1157

geometry = geometry[1:]158

159

#split up the data160

for i in range(len(geometry)):161

geometry[i] = string.split(geometry[i])162

for j in range(2,5):163

geometry[i][j] = string.atof(geometry[i][j])164

165

#convert from ANGs to BOHR if necessary166

167

ANGtoBOHRconversion = 1.0/0.529177249168

169

for line in geom_data:170

if string.find(line,’(ANGS)’) != -1:171

for i in range(len(geometry)):172

for j in range(2,5):173

geometry[i][j] = geometry[i][j] * ANGtoBOHRconversion174

break175

176

#################### EXTRACT GEOMETRY: END ######################177

178

#################### EXTRACT BASIS SET: BEGIN ###################179

180

start_basis = 0181

end_basis = 0182

for i in range(len(gamess_output)):183

if string.find(gamess_output[i], ’ATOMIC BASIS SET’) != -1:184

start_basis = i185

if string.find(gamess_output[i], ’$CONTRL OPTIONS’) != -1:186

end_basis = i187

break188

basisdata = gamess_output[start_basis:end_basis]189

190

end = 0191

for i in range(len(basisdata)):192

if string.find(basisdata[i],’TOTAL NUMBER OF SHELLS’) != -1 :193

end = i194

break195

if string.find(basisdata[i],’TOTAL NUMBER OF BASIS SET SHELLS’) != -1 :196

end = i197

break198

basisdata = basisdata[7:end]199

200

basis = []201

atom = []202

bf = []203

atomnumber = -1204

bfnumber = 0205

for line in basisdata:206

if line != ’\n’:207

line = string.replace(line,’)’,’ ’)208

line = string.replace(line,’(’,’ ’)209

line = string.split(line)210

if len(line) == 1:211

We are starting a new atom212

if bf != []:213

We add the old contracted basis function to the atom and clear the temp214

atom = atom + [bf]215

bf = []216

if atom != []:217

We add the old atom to the basis and clear the temp space218

basis = basis + [atom]219

atom = []220

112

We start the new atom with the label221

atom = atom + [line]222

223

elif len(line) > 1 and line[0] != str(bfnumber):224

bfnumber = string.atoi(line[0])225

We are starting a new contracted basis function for this atom226

if bf != []:227

We add the old contracted basis function to the atom and clear the temp228

atom = atom + [bf]229

bf = []230

We start the new contracted basis function231

temp = [line[1]] + line[3:]232

if len(line) > 6:233

temp = temp + [line[6]]234

line = temp235

bf = [line]236

237

elif len(line) > 1 and line[0] == str(bfnumber):238

We are continuing to add primitive basis functions to the contracted one239

temp = [line[1]] + line[3:]240

if len(line) > 6:241

temp = temp + [line[6]]242

line = temp243

bf = bf + [line]244

atom = atom + [bf]245

basis = basis + [atom]246

247

extract some flags data from this section248

for line in gamess_output:249

if string.find(line,’TOTAL NUMBER OF BASIS FUNCTIONS’) !=-1 :250

nbasisfunc = string.atoi(string.split(line)[6])251

if string.find(line,’NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS’) !=-1 :252

nbasisfunc = string.atoi(string.split(line)[7])253

if string.find(line,’CHARGE OF MOLECULE’) !=-1 :254

charge = string.atoi(string.split(line)[4])255

#we’ll rely on orbital occupations to indicate charge256

charge = 0257

if string.find(line,’TOTAL NUMBER OF ATOMS’) !=-1 :258

atoms = string.atoi(string.split(line)[5])259

if string.find(line,’NUMBER OF OCCUPIED ORBITALS (ALPHA)’) != -1 :260

nalpha = string.atoi(line.split(’=’)[1])261

if string.find(line,’NUMBER OF OCCUPIED ORBITALS (BETA)’) != -1 :262

nbeta = string.atoi(line.split(’=’)[1])263

264

#################### EXTRACT BASIS SET: END #######################265

266

#################### EXTRACT WAVEFUNCTION: BEGIN ##################267

268

269

First, we want to load in all the $VEC .. $END sections we can find.270

We look in both the .dat file, and in the .inp file, and we save271

the name that GAMESS gave it.272

collecting = 0273

Inputfile = filebase + "inp"274

INPFILE = open(Inputfile,’r’)275

input_data = INPFILE.readlines()276

INPFILE.close()277

278

name = "MOREAD orbitals from " + Inputfile + "\n"279

raw_orbitals = []280

orbital_vecs = []281

orbital_name = []282

iorder_vecs = []283

norder_vecs = 0284

for i in range(len(input_data)):285

m = re.search(’norder\s*=(\d+)’,input_data[i],re.I)286

if m:287

113

norder_vecs = int(m.group(1))288

m = re.search(’iorder\((\d+)\)=([\d,]+)’,input_data[i],re.I)289

if m:290

iorder_vecs.append(int(m.group(1)))291

iorder_vecs += [int(k) for k in m.group(2).split(’,’)]292

293

if string.find(input_data[i],’$END’) != -1 and collecting == 1:294

collecting = 0295

orbital_vecs = orbital_vecs + [raw_orbitals]296

orbital_name = orbital_name + [name]297

raw_orbitals = []298

if string.find(input_data[i],’$VEC’) != -1:299

collecting = 1300

elif collecting == 1:301

raw_orbitals = raw_orbitals + [input_data[i]]302

303

if norder_vecs == 1:304

print "Notice: found IORDER section for MOREAD orbitals: ",iorder_vecs305

306

for i in range(len(gamess_data)):307

if string.find(gamess_data[i],’NO-S OF CI STATE’) != -1 or \308

string.find(gamess_data[i], ’GVB ORBITALS’) != -1 or \309

string.find(gamess_data[i], ’LOCALIZED’) != -1 or \310

string.find(gamess_data[i], ’OPEN SHELL ORBITALS’) != -1 or \311

string.find(gamess_data[i], ’CLOSED SHELL ORBITALS’) != -1 or \312

string.find(gamess_data[i], ’MP2 NATURAL ORBITALS’) != -1 or \313

string.find(gamess_data[i], ’OPTIMIZED MCSCF’) != -1 or \314

string.find(gamess_data[i], ’NATURAL ORBITALS OF MCSCF’) != -1:315

name = gamess_data[i]316

if string.find(gamess_data[i],’$END’) != -1 and collecting == 1:317

collecting = 0318

orbital_vecs = orbital_vecs + [raw_orbitals]319

orbital_name = orbital_name + [name]320

raw_orbitals = []321

if string.find(gamess_data[i],’$VEC’) != -1:322

collecting = 1323

elif collecting == 1:324

raw_orbitals = raw_orbitals + [gamess_data[i]]325

m=re.search(’^E\([\w\-]+\)=\s*([\d\-\.]+)’,gamess_data[i])326

if m:327

energy = m.group(1)328

m=re.search(’CI STATE\s+\d+\sE=\s*([\d\-\.]+)’,gamess_data[i])329

if m:330

energy = m.group(1)331

332

if scf_type == "RHF":333

default_orb_string = ’CLOSED SHELL ORBITALS’334

elif scf_type == "ROHF":335

default_orb_string = ’OPEN SHELL ORBITALS’336

elif scf_type == "UHF":337

default_orb_string = ’’338

elif scf_type == "GVB":339

default_orb_string = ’GVB ORBITALS’340

elif scf_type == "NONE" and ci_type == "ALDET":341

default_orb_string = ’MOREAD’342

elif scf_type == "VB2000":343

cicoef=[]344

for i in range(len(gamess_output)):345

if string.find(gamess_output[i],’Normalized structure coefficients’) != -1:346

line = gamess_output[i+1]347

cicoef += string.split(line)348

if string.find(gamess_output[i],’ENERGY AND DIFF OF MACROITER’) != -1:349

line = gamess_output[i]350

energy = (string.split(line))[7]351

352

pcum = 0353

for i in range(len(cicoef)):354

114

cicoef[i] = string.atof(cicoef[i])355

pcum += cicoef[i]*cicoef[i]356

print "VB Coeff = ",cicoef, "\nnorm = ",pcum357

print "VB Energy = ",energy358

359

print "Fix VB2000 to get the right orbitals!";360

sys.exit(0)361

Datafile = filebase + "vec"362

IN2 = open(Datafile,’r’)363

gamess_data = IN2.readlines()364

IN2.close()365

else:366

print "SCFTYP", scf_type, "is not supported."367

sys.exit(0)368

369

orb_choice = len(orbital_name)-1370

print "We found %i orbital sets:"%len(orbital_name)371

for i in range(len(orbital_name)):372

lines_per_orb = int(nbasisfunc/5)+1373

print "%i) %g orbitals"%(i,((len(orbital_vecs[i]))/float(lines_per_orb))),374

print "for: ", orbital_name[i],375

if string.find(orbital_name[i],default_orb_string) != -1:376

orb_choice = i377

try:378

orb_choice = string.atoi(raw_input("Your choice [%i]:"%orb_choice))379

except:380

print "",381

382

Get the wavefunction parameters from the .dat file.383

orbital_number = []384

orbital_coeffs = []385

wavefunction = []386

current_index = 1387

for n in range(len(orbital_vecs[orb_choice])):388

orbital_index = string.atoi(orbital_vecs[orb_choice][n][0:2])389

390

#if the index changed, then we completed the old orbital, so we add it to the wf391

if orbital_index != current_index:392

wavefunction.append(orbital_coeffs)393

current_index = orbital_index394

orbital_coeffs = []395

396

#turn the text into numbers: index coeff1 coeff2 coeff3 coeff4 coeff5397

len_line = len(orbital_vecs[orb_choice][n])398

number_of_entries = len_line/15399

line_data = range(number_of_entries)400

for i in range(number_of_entries):401

line_data[number_of_entries-i-1] = \402

orbital_vecs[orb_choice][n][len_line-15*(i+1)-1:len_line-15*i-1]403

for j in range(len(line_data)):404

line_data[j] = string.atof(line_data[j])405

406

#append the current line to the current orbital407

orbital_coeffs = orbital_coeffs + line_data408

409

#Add that last orbital410

wavefunction.append(orbital_coeffs)411

norbitals = len(wavefunction)412

413

if re.search("MOREAD",orbital_name[orb_choice],re.I) and len(iorder_vecs) > 0 and norder_vecs == 1:414

print "Reordering according to IORDER: ",415

new_orbitals = []416

num = len(iorder_vecs)-1417

print num, ", first = ",iorder_vecs[0]418

for i in range(iorder_vecs[0]-1):419

print i+1,420

new_orbitals.append(wavefunction[i])421

115

for i in range(num):422

print iorder_vecs[i+1],423

new_orbitals.append(wavefunction[iorder_vecs[i+1]-1])424

for i in range(iorder_vecs[0]-1+num,norbitals):425

print i+1,426

new_orbitals.append(wavefunction[i])427

print "\n"428

wavefunction = new_orbitals429

430

################ Set up the occupation and CI coefficent arrays.431

if scf_type == "RHF" or scf_type == "ROHF" or scf_type == "UHF":432

AlphaOcc = [0]433

BetaOcc = [0]434

AlphaOcc[0] = range(norbitals)435

BetaOcc[0] = range(norbitals)436

437

for j in range(0,norbitals):438

AlphaOcc[0][j] = 0439

BetaOcc[0][j] = 0440

441

for i in range(nalpha):442

AlphaOcc[0][i] = 1443

444

#The VEC section is double in size... The first half are the alpha445

#orbitals, and the second half are the beta orbitals... If that statement446

#isn’t always true, then this will have problems.447

beta_start = 0448

if scf_type == "UHF":449

if norbitals % 2 == 0:450

beta_start = norbitals/2451

else:452

print "Error: unexpected problem reading UHF wavefunction...\n"453

sys.exit(0)454

455

for i in range(beta_start,nbeta+beta_start):456

BetaOcc[0][i] = 1457

458

ncore = 0459

ndeterminants = 1460

CI = [1]461

462

elif scf_type == "GVB":463

#the CI Coefficients in the dat file are more precise, so we want them464

#this might have a problem if too many GVB pairs are used465

cicoef=[]466

for i in range(len(gamess_data)):467

if string.find(gamess_data[i],’CICOEF’) != -1:468

line = gamess_data[i]469

p = re.compile("\(\s+")470

line = p.sub("(",line)471

line = string.replace(line,’,’,’ ’)472

cicoef += string.split(line)473

474

core_line_number = -1475

start_ci = 0476

end_ci = 0477

for i in range(len(gamess_output)):478

if string.find(gamess_output[i],’ROHF-GVB INPUT PARAMETERS’) != -1:479

core_line_number = i+3480

core_line = string.split(gamess_output[core_line_number])481

norb = string.atoi(core_line[2])482

ncore = string.atoi(core_line[5])483

pair_line = string.split(gamess_output[core_line_number+1])484

npair = string.atoi(pair_line[2])485

nseto = string.atoi(pair_line[5])486

odegen = 0487

if re.search("NO",gamess_output[core_line_number+2],re.I):488

116

no_line = string.split(gamess_output[core_line_number+2])489

odegen = string.atoi(no_line[2])490

491

print "GVB settings: mult=",spin_mult,"ncore=",ncore,"norb=",norb,"npair=",npair,"nseto=",nseto492

493

#if odegen > 0:494

print "Error: open shell too complicated, no = ",odegen495

sys.exit(0)496

break497

498

AlphaOcc = range(1)499

CI = range(1)500

CI[0] = 1.0501

502

for i in range(len(AlphaOcc)):503

AlphaOcc[i] = range(norbitals)504

505

for i in range(len(AlphaOcc)):506

for j in range(norbitals):507

if j < ncore:508

AlphaOcc[i][j] = 1509

else:510

AlphaOcc[i][j] = 0511

512

if npair == 0:513

ndeterminants = 1514

ncore = 0515

516

if npair > 0:517

#The two perfect paired electrons are spin coupled into a singlet518

See Eq 56 from "SCF Equations for GVB" by Bobrowicz and Goddard519

WF = anti[(c1 11 - c2 22)ab] = c1 anti[11ab] - c2 anti[22ab]520

521

for j in range(core_line_number,len(gamess_output)):522

if string.find(gamess_output[j],’CI COEFFICIENTS’) != -1:523

start_ci = j+2524

break525

526

for i in range(start_ci,len(gamess_output)):527

ci_line = string.split(gamess_output[i])528

if len(ci_line) != 9:529

end_ci = i530

break531

532

we need to expand out the geminal pairs into separate determinants533

the start in the form (c1 + c2) * (c3 + c4) * (c5 + c6)...534

expanding to (c1*c3 + c1*c4 + c2*c3 + c2*c4)*(c5 * c6)*(...)535

I’ve implemented a recursion in a loop.536

index = 2537

idet = 0538

for p in range(npair):539

#for p in range(npair-1,-1,-1):540

old = len(CI)541

coef1 = string.atof(cicoef[index])542

index += 1543

coef2 = string.atof(cicoef[index])544

index += 2545

546

ci_line = string.split(gamess_output[p+start_ci])547

orb1 = string.atoi(ci_line[1]) - 1548

orb2 = string.atoi(ci_line[2]) - 1549

550

pairCI = range(old*2)551

pairAlpha = range(old*2)552

for i in range(len(pairAlpha)):553

pairAlpha[i] = range(norbitals)554

555

117

for ci in range(len(pairCI)):556

branch1 = ci%old557

branch2 = old-1-ci%old558

#branch2 = branch1559

for i in range(len(AlphaOcc[ci%old])):560

if ci < old:561

pairAlpha[ci][i] = AlphaOcc[branch1][i]562

else:563

pairAlpha[ci][i] = AlphaOcc[branch2][i]564

565

if ci < old:566

pairCI[ci] = CI[branch1] * coef1567

pairAlpha[ci][orb1] = 1568

else:569

pairCI[ci] = CI[branch2] * coef2570

pairAlpha[ci][orb2] = 1571

572

#for ci in range(len(pairAlpha)):573

for o in range(2*(p+1)):574

if o % 2 == 0:575

print pairAlpha[ci][o+ncore],576

print577

print "Geminal ",p," with coeffs ",coef1, ", ",coef2, " uses orbitals ", orb1, " and ", orb2578

#print "Determinant CI coefficients = ",pairCI579

580

CI = pairCI581

AlphaOcc = pairAlpha582

ndeterminants = pow(2,(end_ci - start_ci))583

#end npair > 0584

585

BetaOcc = copy.deepcopy(AlphaOcc)586

587

if nseto > 0 and nseto != 2 and npair > 0:588

print "\n\nWarning: the script maybe doesn’t know how to handle npair=",npair, " with nseto=",nseto589

if nseto > 2:590

print "\n\nWarning: the script does not handle nseto=",nseto," correctly!!!"591

592

#if nseto == 2 and spin_mult == 3:593

if nseto > 0 and spin_mult > 1:594

This case is easy, since the NSETO orbitals are alpha595

WF = anti[12aa]596

for det in range(len(AlphaOcc)):597

for orb in range(len(AlphaOcc[det])):598

if orb >= ncore and orb < ncore+nseto:599

AlphaOcc[det][orb] = 1600

If you want the other triplet (even though there doesn’t appear to be a difference):601

WF = anti[12(ab + ba)] = anti[12ab] - anti[21ab]602

then you need to use spinCouple603

604

elif nseto == 2:605

#The two electrons are spin coupled into a singlet606

See Eq 33a from "SCF Equations for GVB" by Bobrowicz and Goddard607

WF = anti[12(ab - ba)] = anti[(12 + 21)ab] = anti[12ab] + anti[21ab]608

for j in range(core_line_number,len(gamess_output)):609

if string.find(gamess_output[j],’OPEN SHELL ORBITALS’) != -1:610

start_ci = j+1611

break612

613

ci_line = string.split(gamess_output[start_ci])614

orb1 = string.atoi(ci_line[4])-1615

ci_line = string.split(gamess_output[start_ci+1])616

orb2 = string.atoi(ci_line[4])-1617

(AlphaOcc,BetaOcc,CI) = spinCouple(orb1,orb2,AlphaOcc,BetaOcc,CI,spin_mult)618

619

ndeterminants = len(CI)620

621

assert(ndeterminants == len(CI))622

118

623

elif scf_type == "VB2000":624

rumer = []625

for i in range(len(gamess_output)):626

if string.find(gamess_output[i],’GENERAL CONTROLS ($GENCTL)’) != -1:627

core_line_number = i+8628

core_line = string.split(gamess_output[core_line_number])629

ncore = string.atoi(core_line[3])630

print "VB2000 settings: ncore=",ncore631

if string.find(gamess_output[i],’RUMER PATTERN’) != -1:632

for r in range(len(cicoef)):633

line = gamess_output[i+r+1]634

#the first number is just the index635

rumer = rumer + [(string.split(line))[1:]]636

637

coreO = range(1)638

for i in range(len(coreO)):639

coreO[i] = range(norbitals)640

641

for i in range(len(coreO)):642

for j in range(norbitals):643

if j < ncore:644

coreO[i][j] = 1645

else:646

coreO[i][j] = 0647

648

AlphaOcc = []649

BetaOcc = []650

CI = []651

for r in range(len(rumer)):652

print "rumer =", rumer[r]653

tempA = copy.deepcopy(coreO)654

tempB = copy.deepcopy(coreO)655

tempC = range(1)656

tempC[0] = cicoef[r]657

pcum += tempC[0]*tempC[0]658

for p in range(len(rumer[r])/2):659

orb1 = ncore-1 + string.atoi(rumer[r][2*p])660

orb2 = ncore-1 + string.atoi(rumer[r][2*p+1])661

(tempA,tempB,tempC) = spinCouple(orb1,orb2,tempA,tempB,tempC,1)662

#for ci in range(len(tempA)):663

print tempC[ci], ": ",664

for o in range(ncore,norbitals):665

print tempA[ci][o],666

print667

AlphaOcc = AlphaOcc + tempA668

BetaOcc = BetaOcc + tempB669

CI = CI + tempC670

671

ndeterminants = len(CI)672

#sys.exit(0)673

elif scf_type == "NONE" and ci_type == "ALDET":674

core_line_number = -1675

nstates = 1676

for i in range(len(gamess_output)):677

if string.find(gamess_output[i],’NUMBER OF CORE ORBITALS’) != -1:678

core_line_number = i679

core_line = string.split(gamess_output[core_line_number])680

ncore = string.atoi(core_line[5])681

if string.find(gamess_output[i],’NUMBER OF CI STATES REQUESTED’) != -1:682

line = string.split(gamess_output[i])683

nstates = string.atoi(line[6])684

if string.find(gamess_output[i],’PARTIAL TWO ELECTRON INTEGRAL TRANSFORMATION’) != -1:685

break686

687

print ""688

for i in range(core_line_number,len(gamess_output)):689

119

if string.find(gamess_output[i],’ENERGY=’) != -1 and \690

string.find(gamess_output[i],’CONVERGED’) == -1:691

print gamess_output[i],692

693

if nstates > 1:694

istate = string.atoi(raw_input("Choose which CI state you want [1 to %i]: "%nstates))695

696

for i in range(core_line_number,len(gamess_output)):697

if string.find(gamess_output[i],’ENERGY=’) != -1 and \698

string.find(gamess_output[i],’CONVERGED’) == -1:699

line = string.split(gamess_output[i])700

if string.atoi(line[1]) == istate:701

start_mc_data = i702

break703

704

end_ci = -1705

start_ci = -1706

for j in range(start_mc_data,len(gamess_output)):707

m=re.search(’STATE\s+\d+\s+ENERGY=\s*([\d\-\.]+)’,gamess_output[j])708

if m:709

energy = m.group(1)710

711

if string.find(gamess_output[j],’ALPH’) != -1:712

start_ci = j+2713

if start_ci != -1 and len(gamess_output[j]) == 1:714

end_ci = j-1715

break716

717

for i in range(start_ci,end_ci):718

try:719

ci_line = string.split(gamess_output[i])720

coeffs = string.atof(ci_line[4])721

if abs(coeffs) < detcutoff:722

end_ci = i-1723

break724

except:725

print "Error extracting ALDET state ", istate, ":"726

print "First det line = ", start_ci727

print "Last det line = ", end_ci728

print "ENERGY= line = ", start_mc_data729

print "Cur det index = ", i730

print "Cur det data = ", gamess_output[i]731

raise732

733

if string.find(gamess_output[i+1],’DONE WITH DETERMINANT CI’) != -1 or string.find(gamess_output[i+1],’DONE WITH GENERAL CI’) != -1:734

end_ci = i735

break736

737

ndeterminants = end_ci - start_ci + 1738

739

AlphaOcc = range(ndeterminants)740

BetaOcc = range(ndeterminants)741

CI = range(ndeterminants)742

743

for i in range(ndeterminants):744

AlphaOcc[i] = range(norbitals)745

BetaOcc[i] = range(norbitals)746

747

for i in range(ndeterminants):748

for j in range(ncore):749

AlphaOcc[i][j] = 1750

BetaOcc[i][j] = 1751

752

for i in range(ndeterminants):753

ci_line = string.split(gamess_output[i+start_ci])754

CI[i] = string.atof(ci_line[4])755

alpha_occ = ci_line[0]756

120

beta_occ = ci_line[2]757

for j in range(len(alpha_occ)):758

AlphaOcc[i][j+ncore] = string.atoi(alpha_occ[j])759

BetaOcc[i][j+ncore] = string.atoi(beta_occ[j])760

for k in range(len(alpha_occ)+ncore,norbitals):761

AlphaOcc[i][k] = 0762

BetaOcc[i][k] = 0763

764

######### Use a cutoff criteria to decide which CSFs to include765

for i in range(ndeterminants-1,-1,-1):766

try:767

if abs(CI[i]) < detcutoff:768

#print "Removing",i,"with",CI[i]769

del CI[i]770

del AlphaOcc[i]771

del BetaOcc[i]772

except:773

continue774

ndeterminants = len(CI)775

776

######## Remove any orbitals that aren’t used777

778

for i in range(norbitals-1,-1,-1):779

keep_this_orbital = 0780

for j in range(ndeterminants):781

if AlphaOcc[j][i] == 1 or BetaOcc[j][i] == 1:782

keep_this_orbital = 1783

break784

if(keep_this_orbital == 1):785

continue786

del wavefunction[i]787

for j in range(ndeterminants):788

del AlphaOcc[j][i]789

del BetaOcc[j][i]790

norbitals = len(wavefunction)791

792

################## PRINT FLAGS: BEGIN ########################793

#794

We’ll use ckmf template files (extension ckmft) to help make795

our ckmf file. The reason is to save us from having to go through796

and manually choose all our parameters. These template files are meant797

to be pretty close to what we’ll end up wanting.798

my_path, my_name = os.path.split(__file__)799

800

#A couple default placed to look for "ckmft" files801

templatedir = [".","..","../..","../examples","/ul/amosa/ckmf_origs",my_path]802

803

templates = []804

for dir in templatedir:805

if os.path.exists(dir):806

for file in os.listdir(dir):807

if file[-5:] == "ckmft":808

templates.append(dir+"/"+file)809

810

print "\nAvailable ckmf templates:"811

for i in range(len(templates)):812

print " %3i : " % i, templates[i]813

choice = i814

815

try:816

choice = string.atoi(raw_input("Your choice [%i]:"%choice))817

except:818

print "",819

820

myStandardFlags=open(templates[choice],’r’)821

822

OUT.write(’# Created on %s\n’%(time.strftime("%a, %d %b %Y %H:%M:%S", time.gmtime())))823

121

OUT.write(’# Using gamess output file: %s\n’% os.path.abspath(Infile))824

OUT.write(’# Using ckmft template file: %s\n’% templates[choice])825

OUT.write(’# Orbitals are: %s’%orbital_name[orb_choice])826

#let’s save some of the important info from a GAMESS calculation827

for i in range(len(gamess_output)):828

line = -1;829

if string.find(gamess_output[i],’RUN TITLE’) != -1:830

line = i+2831

if string.find(gamess_output[i]," STATE %i"%istate) != -1 and \832

string.find(gamess_output[i],’ENERGY=’) != -1 and \833

string.find(gamess_output[i],’SYM=’) != -1:834

line = i835

if string.find(gamess_output[i],’CCSD(T) ENERGY:’) != -1:836

line = i837

if string.find(gamess_output[i],’CCSD[T] ENERGY:’) != -1:838

line = i839

if string.find(gamess_output[i],’CCSD’) != -1 and \840

string.find(gamess_output[i],’ENERGY:’) != -1 and \841

string.find(gamess_output[i],’CORR.’) != -1:842

line = i843

if string.find(gamess_output[i],’MBPT(2) ENERGY:’) != -1:844

line = i845

if string.find(gamess_output[i],’CORR.’) != -1 and \846

string.find(gamess_output[i],’CR-CC’) != -1:847

line = i848

if string.find(gamess_output[i],’FINAL’) != -1:849

line = i850

if string.find(gamess_output[i],’$BASIS’) != -1:851

line = i852

if string.find(gamess_output[i],’ITER:’) != -1:853

line = -1854

855

if line > 0:856

OUT.write(’#%s’ % gamess_output[line])857

print ’#%s’ % gamess_output[line],858

859

860

OUT.write("\n")861

OUT.write(myStandardFlags.read());862

myStandardFlags.close()863

864

OUT.write(’atoms\n %i\n’%atoms)865

OUT.write(’charge\n %i\n’%charge)866

OUT.write(’energy\n %s\n’%energy)867

868

if string.atof(energy) >= 0.0:869

print "\nEnergy",energy," didn’t converge!!! Quitting.\n"870

sys.exit(0)871

872

OUT.write(’norbitals\n %i\n’%norbitals)873

OUT.write(’nbasisfunc\n %i\n’%nbasisfunc)874

OUT.write(’ndeterminants\n %i\n’%ndeterminants)875

OUT.write(’&\n’)876

877

################## PRINT FLAGS: END #######################878

879

################## PRINT GEOMETRY: BEGIN #######################880

881

OUT.write(’&geometry\n’)882

p = re.compile("[0-9]+")883

for line in geometry:884

atom = line[0]885

if the atom title has a number in it, then we need to remove it886

so that QMC believes that all the atoms are the same,887

since Jastrows are specific to the label.888

atom = p.sub("",atom)889

OUT.write(’%s\t%i\t%f\t%f\t%f\n’\890

122

%(atom,string.atof(line[1]),line[2],line[3],line[4]))891

OUT.write(’&\n’)892

893

################## PRINT GEOMETRY: END ########################894

895

################## PRINT BASIS: BEGIN ########################896

897

calculate the number of basis functions for atom and maximum gaussians898

in any basis function899

for i in range(len(basis)):900

label = basis[i][0][0]901

basis[i] = basis[i][1:]902

nbf = 0903

maxgaussian = 0904

for bf in basis[i]:905

if bf[0][0] == ’S’ : nbf = nbf + 1906

elif bf[0][0] == ’P’ : nbf = nbf + 3907

elif bf[0][0] == ’D’ : nbf = nbf + 6908

elif bf[0][0] == ’F’ : nbf = nbf + 10909

elif bf[0][0] == ’G’ : nbf = nbf + 15910

elif bf[0][0] == ’H’ : nbf = nbf + 21911

elif bf[0][0] == ’I’ : nbf = nbf + 28912

elif bf[0][0] == ’L’ : nbf = nbf + 4913

else:914

print "Error: we don’t know about basis function type: ",bf[0][0]915

sys.exit(0)916

if len(bf) > maxgaussian : maxgaussian = len(bf)917

basis[i] = [[label,nbf,maxgaussian]] + basis[i]918

919

OUT.write(’&basis\n’)920

for atom in geometry :921

for ATOM in basis:922

if atom[0] == ATOM[0][0] :923

atomicbasis = ATOM924

head = atomicbasis[0]925

atomicbasis = atomicbasis[1:]926

OUT.write(’%s\t%i\t%i\n’%(head[0],head[1],head[2]))927

for pbf in atomicbasis :928

There are a few special basis function types, and you have to929

program them individually930

if pbf[0][0] == ’L’ :931

mterms = getM(’S’)932

for m in mterms:933

OUT.write(’\t%i\t%s\n’%(len(pbf),m))934

for gs in pbf:935

OUT.write(’\t\t%s\t%s\n’%(gs[1],normalize(m,gs[2],gs[1])))936

mterms = getM(’P’)937

for m in mterms:938

OUT.write(’\t%i\t%s\n’%(len(pbf),m))939

for gs in pbf:940

OUT.write(’\t\t%s\t%s\n’%(gs[1],normalize(m,gs[3],gs[1])))941

else:942

mterms = getM(pbf[0][0])943

for m in mterms:944

OUT.write(’\t%i\t%s\n’%(len(pbf),m))945

for gs in pbf:946

OUT.write(’\t\t%s\t%s\n’%(gs[1],normalize(m,gs[2],gs[1])))947

948

949

OUT.write(’&\n’)950

951

################## PRINT BASIS: END ########################952

953

################## PRINT WAVEFUNCTION: BEGIN ###################954

955

OUT.write(’&wavefunction\n\n’)956

print "charge = %i"%charge957

123

print "norbitals = %d\nnbasisfunc = %d\nenergy = %s\n" % (norbitals,nbasisfunc,energy)958

959

960

for i in range(norbitals):961

if len(wavefunction[i]) != nbasisfunc:962

print "Error: Orbital",i,"has",len(wavefunction[i]),"basisfunctions, instead of the expected",nbasisfunc963

sys.exit(0)964

for j in range(nbasisfunc):965

try:966

OUT.write(’%20s’%wavefunction[i][j])967

except:968

print "Error:\nnorbitals = %d\nnbasisfunc = %d\ni = %d\nj = %d\n" % (norbitals,nbasisfunc,i,j)969

print "wavefunction is %d by %d\n" % (len(wavefunction),len(wavefunction[i]))970

sys.exit(1)971

if (j+1)%5 == 0:972

OUT.write(’\n’)973

OUT.write(’\n\n’)974

975

print "Alpha Occupation:"976

OUT.write("Alpha Occupation\n")977

for i in range(ndeterminants):978

nume = 0979

for j in range(norbitals):980

nume += AlphaOcc[i][j]981

OUT.write(’%i ’%AlphaOcc[i][j])982

if j >= ncore:983

sys.stdout.write(’%i’%AlphaOcc[i][j])984

OUT.write(’\n’)985

print " (=",nume,")"986

OUT.write(’\n’)987

print ""988

print "Beta Occupation:"989

OUT.write("Beta Occupation\n")990

for i in range(ndeterminants):991

nume = 0992

for j in range(norbitals):993

nume += BetaOcc[i][j]994

OUT.write(’%i ’%BetaOcc[i][j])995

if j >= ncore:996

sys.stdout.write(’%i’%BetaOcc[i][j])997

OUT.write(’\n’)998

print " (=",nume,")"999

OUT.write(’\n’)1000

print ""1001

constraints = []1002

OUT.write("CI Coeffs\n")1003

for i in range(ndeterminants):1004

match = 01005

constraints.append(-1)1006

if ci_type == "ALDET" or 1:1007

for j in range(i):1008

ratio = string.atof(CI[i])/string.atof(CI[j])1009

if abs(abs(ratio)-1.0)< 1e-5:1010

match = 11011

There are some couplings that are required to get the correct spin function.1012

We want to include the constraints so that QMC knows which are free to optimize.1013

You’ll get ratio = 1 for singlet (ab-ba), and ratio = -1 for triplet (ab+ba)1014

#print "Using CI constraint: Det[%i] = %5.3f * Det[%i]"%(i,ratio,j)1015

constraints[i] = j1016

OUT.write(’c %i %5.3f\n’%(j, ratio))1017

break1018

if match == 0:1019

OUT.write(’%s\n’%CI[i])1020

OUT.write(’\n’)1021

1022

print str(ndeterminants) + " CI determinant(s) used, with coefficients:"1023

cum = 01024

124

for i in range(ndeterminants):1025

try:1026

ci = string.atof(CI[i])1027

cum += ci*ci1028

print "%3i) %25.7e has percentage %15.8f, cumulative remaining %15.8e" % (i+1,ci,ci*ci*100,1.0-cum),1029

if constraints[i] == -1:1030

print ""1031

else:1032

rel_diff = ci/string.atof(CI[constraints[i]])-1.01033

print ", constrained to %2i %25.7e"%(constraints[i]+1,rel_diff)1034

except:1035

print "%3i) %25s has percentage %15.10e, cumulative remaining %15.10e" % (i+1,CI[i],0,1.0-cum)1036

1037

1038

1039

OUT.write(’&\n’)1040

1041

################## PRINT WAVEFUNCTION: END ###################1042

1043

################## PRINT JASTROW: BEGIN ##############################1044

1045

Make a list of all the different atom types1046

atom_types = []1047

atom_type_charges = []1048

for atom in geometry:1049

is_in_list = 0;1050

for atom_type in atom_types:1051

if atom[0] == atom_type:1052

is_in_list = 1;1053

if not is_in_list:1054

atom_types = atom_types + [atom[0]]1055

atom_type_charges = atom_type_charges + [atom[1]]1056

1057

write out the jastrow1058

OUT.write(’\n&Jastrow\n\n’)1059

1060

if 0:1061

up down jastrow1062

if nalpha > 0 and nbeta > 0:1063

OUT.write(’ParticleTypes: Electron_Up Electron_Down\n’)1064

OUT.write(’CorrelationFunctionType: Cambridge2\n’)1065

OUT.write(’NumberOfParameterTypes: 2\n’)1066

OUT.write(’NumberOfParametersOfEachType: 1 8\n’)1067

OUT.write(’Parameters: 0.30 0.3\n’)1068

OUT.write(’NumberOfConstantTypes: 2\n’)1069

OUT.write(’NumberOfConstantsOfEachType: 1 1\n’)1070

OUT.write(’Constants: 0.5 3\n’)1071

OUT.write(’\n’)1072

1073

up up jastrow1074

if nalpha > 1:1075

OUT.write(’ParticleTypes: Electron_Up Electron_Up\n’)1076

OUT.write(’CorrelationFunctionType: Cambridge2\n’)1077

OUT.write(’NumberOfParameterTypes: 2\n’)1078

OUT.write(’NumberOfParametersOfEachType: 1 8\n’)1079

OUT.write(’Parameters: 0.30 0.1\n’)1080

OUT.write(’NumberOfConstantTypes: 2\n’)1081

OUT.write(’NumberOfConstantsOfEachType: 1 1\n’)1082

OUT.write(’Constants: 0.25 3\n’)1083

OUT.write(’\n’)1084

1085

down down jastrow1086

if nbeta > 1:1087

OUT.write(’ParticleTypes: Electron_Down Electron_Down\n’)1088

OUT.write(’CorrelationFunctionType: Cambridge2\n’)1089

OUT.write(’NumberOfParameterTypes: 2\n’)1090

OUT.write(’NumberOfParametersOfEachType: 1 8\n’)1091

125

OUT.write(’Parameters: 0.30 0.1\n’)1092

OUT.write(’NumberOfConstantTypes: 2\n’)1093

OUT.write(’NumberOfConstantsOfEachType: 1 1\n’)1094

OUT.write(’Constants: 0.25 3\n’)1095

OUT.write(’\n’)1096

1097

up nuclear jastrow1098

if nalpha > 0:1099

for i in range(len(atom_types)):1100

OUT.write(’ParticleTypes: Electron_Up ’ + atom_types[i] + ’\n’)1101

OUT.write(’CorrelationFunctionType: Cambridge2\n’)1102

OUT.write(’NumberOfParameterTypes: 2\n’)1103

OUT.write(’NumberOfParametersOfEachType: 1 8\n’)1104

OUT.write(’Parameters: 0.30 -0.3\n’)1105

OUT.write(’NumberOfConstantTypes: 2\n’)1106

OUT.write(’NumberOfConstantsOfEachType: 1 1\n’)1107

OUT.write(’Constants: 0 3\n’)1108

OUT.write(’Constants: -’ + atom_type_charges[i] + ’\n’)1109

OUT.write(’\n’)1110

1111

down nuclear jastrow1112

if nbeta > 0:1113

for i in range(len(atom_types)):1114

OUT.write(’ParticleTypes: Electron_Down ’ + atom_types[i] + ’\n’)1115

OUT.write(’CorrelationFunctionType: Cambridge2\n’)1116

OUT.write(’NumberOfParameterTypes: 2\n’)1117

OUT.write(’NumberOfParametersOfEachType: 1 8\n’)1118

OUT.write(’Parameters: 0.30 -0.3\n’)1119

OUT.write(’NumberOfConstantTypes: 2\n’)1120

OUT.write(’NumberOfConstantsOfEachType: 1 1\n’)1121

OUT.write(’Constants: 0 3\n’)1122

OUT.write(’\n’)1123

else:1124

print "\nDont forget to add jastrows!"1125

1126

OUT.write(’&Jastrow\n’)1127

1128

################## PRINT JASTROW: END ################################1129

1130

################## PRINT PSEUDOPOTENTIAL: BEGIN #####################1131

if pp_type != "NONE":1132

Inpfile = filebase + "inp"1133

INP = open(Inpfile,’r’)1134

gamess_input = INP.readlines()1135

INP.close()1136

1137

#Copy the PP right from the input file. QMcBeaver is programmed to use1138

#exactly the same format, except it needs to be a GEN PP1139

OUT.write(’&pseudopotential\n’)1140

for i in range(len(gamess_input)):1141

if string.find(gamess_input[i].upper(),’$ECP’) != -1:1142

k = i+11143

while string.find(gamess_input[k].upper(),’$END’) == -1:1144

line = string.split(gamess_input[k])1145

if len(line) == 4 and line[1].upper() != "GEN" and line[1].upper() != "NONE":1146

print "Pseudoptential for",line[0], "is",line[1],1147

print ": is unknown. It needs to be GEN or NONE.\n";1148

OUT.write(gamess_input[k])1149

k += 11150

OUT.write(’&\n’)1151

################## PRINT PSEUDOPOTENTIAL: END #######################1152

1153

print "\nFinished writing file ", Outfile1154

126

D.2 A Good Set of Parameters

A listing of examples/optimize.ckmft, representing a good set of parameters to use for be-

ginning the optimization. The gamess2qmcbeaver.py script will look for a file with a .ckmft

suffix such as this one on which to base the input file it produces.

&flags
Parameters for QMC
run_type
variational

dt
0.01

dt_equilibration
0.01

number_of_walkers
100

max_time_steps
20000

equilibration_steps
5000

desired_convergence
0

iseed
0

optimize_Psi
1

max_time
-1

one_e_per_iter
0

output_interval
1000

Parameters for wavefunction optimization
optimize_UD_Jastrows
1

optimize_UU_Jastrows
1

optimize_DD_Jastrows
1

optimize_EN_Jastrows
1

optimize_NEE_Jastrows
0

optimize_L
0

optimize_CI
1

optimize_Orbitals
0

optimize_Psi_method
automatic

optimize_Psi_criteria
generalized_eigenvector

a_diag
-1e-05

ksi
0.5

max_optimize_Psi_steps
30

equilibrate_first_opt_step
1

equilibrate_every_opt_step
1

127

optimization_max_iterations
1

optimization_error_tolerance
0.001

singularity_penalty_function_parameter
1e-06

optimize_Psi_barrier_parameter
1

numerical_derivative_surface
umrigar88

line_search_step_length
Linearize

ck_genetic_algorithm_1_population_size
1000

ck_genetic_algorithm_1_mutation_rate
0.2

ck_genetic_algorithm_1_initial_distribution_deviation
1

Parameters specific to the Green’s function
sampling_method
umrigar93_importance_sampling

QF_modification_type
umrigar93_unequalelectrons

umrigar93_equalelectrons_parameter
0.5

warn_verbosity
0

rel_cutoff
100

limit_branching
1

energy_modification_type
umrigar93

energy_cutoff_type
umrigar93

lock_trial_energy
0

synchronize_dmc_ensemble
0

synchronize_dmc_ensemble_interval
1000

Parameters specific to weights, branching, and fusion
walker_reweighting_method
umrigar93_probability_weighted

branching_method
nonunit_weight_branching

branching_threshold
2

fusion_threshold
0.45

population_control_parameter
1

correct_population_size_bias
1

old_walker_acceptance_parameter
50

Parameters for initialization
use_equilibration_array
0

equilibration_function
ramp

CKAnnealingEquilibration1_parameter
500

walker_initialization_method

128

dans_walker_initialization
walker_initialization_combinations
3

Parameters for added functionality/improvements
calculate_bf_density
0

use_hf_potential
0

hf_num_average
100

replace_electron_nucleus_cusps
1

print_replacement_orbitals
0

nuclear_derivatives
none

future_walking
0

Parameters relating to output
checkpoint
0

checkpoint_interval
100000

use_available_checkpoints
0

checkpoint_input_name
awt0p0_1

zero_out_checkpoint_statistics
1

checkpoint_energy_only
0

print_configs
0

print_config_frequency
50

temp_dir
/temp1/amosa/awt0p0_1

write_all_energies_out
0

write_electron_densities
0

max_pair_distance
-1

print_transient_properties
0

print_transient_properties_interval
10000

Parameters for computation/MPI
parallelization_method
manager_worker

mpireduce_interval
100

mpipoll_interval
5

walkers_per_pass
1

use_basis_function_interpolation
0

number_basis_function_interpolation_grid_points
1000

basis_function_interpolation_first_point
1e-10

Parameters for the molecule and wavefunction

129

trial_function_type
restricted

pseudo_gridLevel
1

pseudo_cutoff
0.0001

link_Jastrow_parameters
1

link_NEE_Jastrows
2

link_Orbital_parameters
1

link_Determinant_parameters
1

reproduce_NE_with_NEE_jastrow
1

reproduce_EE_with_NEE_jastrow
1

Other parameters
chip_and_mike_are_cool
Yea_Baby!

130

Appendix E

Wavefunction Optimization

Optimizing a wavefunction is a process that can take a very long time, and we have made

only tentative steps towards algorithm assessment of convergence. Therefore, it is quite

useful to be able to monitor progress manually, and we use this script to do so. If this script

is given an output file, it will generate a plot showing the Jastrows for each optimization

step.

E.1 Optimization by Example

As an example, we provide sample output from optimizing a GVB-4 cyclobutane wavefunc-

tion in Figure E.1. In this figure, we can see that after the first two steps, the Jastrows

did not significantly change. This optimization was the result of starting from another set

of optimized cyclobutane Jastrows, demonstrating that the Jastrows often do not need to

change by very much.

E.2 Script: optimized.pl

#!/usr/bin/perl1
#assume utilities.pl is in the same directory as summary.pl2
my $path = ‘dirname $0‘;3
chomp($path);4
require "$path/utilities.pl";5

6
my $publication = 0;7
my $printFunc = 1;8
my $useScaled = 0;9
my $multiPlot = 1;10
my $showOpt = 1;11
my $makeGraph = 1;12

13
#my $summary = 1;14
my $i_active = 1;15

16
#put the jastrow in the exponential17
my $useExp = 1;18

19
#square the whole thing (so that the y axis20
#can be interpreted as a percentage)21

131

0
.
6

0
.
6
5

0
.
7

0
.
7
5

0
.
8

0
.
8
5

0
.
9

0
.
9
5

1

0

1

2

3

4

5

6

7

Exp[uij]

r
i
j

(
B
o
h
r
)

P
a
r
a
l
l
e
l

S
p
i
n

S
a
t

J
u
n

1
3

1
6
:
5
9
:
4
2

P
D
T

2
0
0
9

1

-
1
5
6
.
8
9
2
9

3

-
1
5
6
.
9
1
7
8

5

-
1
5
6
.
9
4
2
2

7

-
1
5
6
.
9
4
7
7

9

-
1
5
6
.
9
4
9
3

1
1

-
1
5
6
.
9
4
9
4

1
3

-
1
5
6
.
9
3
8
7

1
5

-
1
5
6
.
9
4
6
3

1
7

-
1
5
6
.
9
4
6
0

1
9

-
1
5
6
.
9
4
5
0

2
1

-
1
5
6
.
9
4
7
6

2
3

-
1
5
6
.
9
4
6
3

2
5

-
1
5
6
.
9
4
6
1

0
.
5
5

0
.
6

0
.
6
5

0
.
7

0
.
7
5

0
.
8

0
.
8
5

0
.
9

0
.
9
5

1
0

1

2

3

4

5

6

Exp[uij]

r
i
j

(
B
o
h
r
)

O
p
p
o
s
i
t
e

S
p
i
n

0
.
8

1

1
.
2

1
.
4

1
.
6

1
.
8

2

2
.
2

2
.
4

2
.
6

0

1

2

3

4

5

6

7

Exp[uij]

r
i
j

(
B
o
h
r
)

E
l
e
c
t
r
o
n
-
H

1

1
.
5

2

2
.
5

3

3
.
5

4

0

1

2

3

4

5

6

Exp[uij]

r
i
j

(
B
o
h
r
)

E
l
e
c
t
r
o
n
-
C

Figure E.1: Sample output from the script optimized.pl showing the progression of optimiz-
ing a GVB-4 cyclobutane wavefunction.

132

my $useSqr = 0;22
23

my $date = ‘date‘;24
chomp $date;25

26
while ($#ARGV >= 0 && $ARGV[0] =~ /^-/) {27

$type = shift(@ARGV);28
$param = "";29

30
if ($type eq "-o") {31

$showOpt = !$showOpt;32
print "Using showOpt = $showOpt\n";33

}34
elsif ($type eq "-p") {35

$makeGraph = ($makeGraph + 1) % 2;36
print "Using makeGraph = $makeGraph\n";37

}38
elsif ($type eq "-i") {39

$i_active = ($i_active + 1) % 2;40
print "Using i_active = $i_active\n";41

}42
elsif ($type eq "-f") {43

$param = shift(@ARGV);44
push(@fileFilters, $param);45
print "Adding file filter $param\n";46

}47
elsif ($type eq "-x") {48

$param = shift(@ARGV);49
push(@exclusionFilters, $param);50
print "Adding file exclusion filter $param\n";51

}52
elsif ($type eq "-u") {53

$param = shift(@ARGV);54
if ($param == 0) {55

$units = 627.50960803;56
$unitsL = "kcal/mol";57

}58
elsif ($param == 1) {59

$units = 27.211399;60
$unitsL = "eV";61

}62
elsif ($param == 2) {63

$units = 2625.5002;64
$unitsL = "kJ/mol";65

}66
elsif ($param == 3) {67

$units = 219474.63;68
$unitsL = "cm^-1";69

}70
elsif ($param == 4) {71

$units = 1;72
$unitsL = "au";73

}74
print "Using $unitsL energy units, conversion = $units\n";75

}76
else {77

print "Unrecognized option: $type\n";78
exit;79

}80
}81

82
my @files = sort @ARGV;83
if ($#files < 0) {84

push(@files, ".");85
}86

87
getFileList(".out", \@files);88
$showOpt = 1 if ($#files == 0);89

90
my $Cnormal = "\x1b[0m";91
my $Chilite = "\x1b[37m";92

93
%jastrows;94
%plotters;95
my %optEnergies;96
my $base = "";97
my $numjw = "";98
my $numjwID = 0;99
my $numbf = 0;100
my $numci = 1;101
my $refE = 0;102
my $step = 1;103
my $lastS = "";104
my $short = "";105
for (my $index = 0 ; $index <= $#files ; $index++) {106

$lastS = $short;107
$base = substr($files[$index], 0, -4);108
$short = ‘basename $base‘;109
chomp $short;110
$short =~ s/_[\d]+$//g;111

112

133

#print "base = $base\n";113
my @stuff = split /[\s:]+/, getCKMFSummary("$base.ckmf");114
$numci = $stuff[7];115
$numbf = $stuff[8];116
$optStr = $stuff[9];117
$refE = $stuff[10];118

119
open(CKMFFILE, "$base.ckmf");120
$numjw = "";121
$numjwID = 0;122

123
while (<CKMFFILE> !~ /Jastrow/) { }124
while (<CKMFFILE>) {125

if (/NumberOfParametersOfEachType/) {126
if (!($numjw eq "")) {127

$numjw .= ",";128
}129
my @line = split /\s+/;130
my $numthis = "$line[1]";131
$numjwID += $line[1];132
for ($i = 2 ; $i <= $#line ; $i++) {133

$numthis .= "$line[$i]";134
$numjwID += $line[$i];135

}136
$numjw .= "$numthis";137

}138
}139
$numjw = "$numjwID=$numjw";140
close CKMFFILE;141

142
open(FILE, "$files[$index]");143
my $name = "";144
my $L = 1;145
my $best;146
if ($showOpt == 1) {147

$best = $step;148
}149

150
if ($lastS ne $short) {151

$step = 1;152
if ($showOpt == 1) {153

$best = $step;154
}155

}156
157

my $iterNRG = 0;158
my $iterSTD = 0;159
my $iterN = 0;160
my @dat;161
my $line;162
while (!eof FILE) {163

$line = <FILE>;164
@dat = split /\s+/, $line;165
my $func = "";166
if (($line =~ /Eup/ || $line =~ /Edn/) && $line !~ /parameters/) {167

$name = $line;168
chomp($name);169
if ($line =~ /Nuclear/170

&& ($line =~ /EupE/ || $line =~ /EdnE/))171
{172

173
#it’s a 3 body jastrow174
while ($line !~ /x/) {175

$line = <FILE>;176
}177
@dat = split /\s+/, $line;178
chomp;179
$L = $dat[4];180

}181
else {182

183
#it’s a 2 body jastrow184
$line = <FILE>;185
my $type = $line;186
chomp;187
if ($type =~ /Fixed/) {188

$func = <FILE>;189
chomp($func);190
$func .= <FILE>;191
chomp($func);192
$L = 10.0;193

}194
else {195

$line = <FILE>;196
$line = <FILE>;197
chomp($func);198
@dat = split /\s+/, $line;199
$L = $dat[4];200
$func = <FILE>;201

}202
chomp($func);203

134

}204
205

$name =~ s/[:()]//g;206
$name =~ s/Nuclear//;207
$name =~ s/EupEup/Parallel Spin/g;208
$name =~ s/EupEdn/Opposite Spin/g;209
$name =~ s/Eup/Electron\-/g;210

211
$jastrows{"$name&$best&$refE&$numci,$numbf&$numjw&$short"} =212

"$step&$L&$func&$base";213
}214

215
if ($line =~ /full step/) {216

$step += 2;217
if ($showOpt == 1) {218

$best = $step;219
}220

}221
222

if ($line !~ /[A-Za-df-z]/ && $#dat == 9) {223
$iterNRG = $dat[2];224
$iterSTD = $dat[3];225
$iterN = int($dat[4] / 1000 + 0.5);226

227
#print "energy line nrg=$iterNRG std=$iterSTD iterN=$iterN\n";228

}229
230

if ($line =~ /Objective Value/ && $line !~ /params/) {231
$optEnergies{"$short&$best"} = "$iterNRG&$iterSTD&$iterN&$optStr";232

}233
}234

235
if (!defined $optEnergies{"$short&$best"}) {236

$optEnergies{"$short&$best"} = "$iterNRG&$iterSTD&$iterN&$optStr";237
}238

239
close(FILE);240

}241
242

printf243
"%15s %4s %11s %11s %7s %10s %8s %8s %10s %8s %-30s %5s %8s %-s\n",244
"Type", "Iter", "RefE", "VMC E", getOPTHeader(), "Corr E ", "std.e.",245
"% diff", "L (bohr)", "% diff", "Jastrow", "NumBF", "NSmpl(k)", "File Name";246

247
my $lastL = 0;248
my $lastE = 0;249
my $lastN = "";250

251
my @optAvg;252
my @optWeight;253
my $avgLen = 4;254
my $startStep = -1;255

256
foreach $key (sort a2n3 keys %jastrows) {257

258
#$jastrows{"$name&$best&$refE&$numci,$numbf&$numjw&$base"} = "$step&$L&$func";259

($jName, $best, $refE, $dType, $jType, $short) = split /&/, $key;260
($step, $L, $func, $base) = split /&/, $jastrows{$key};261

262
($nrg, $std, $nsamples, $optStr) = split /&/,263

$optEnergies{"$short&$best"};264
$corrE = ($refE - $nrg) * 627.5095;265
$std *= 627.5095;266

267
if ($base ne $startStep) {268

@optAvg = ();269
@optWeight = ();270

}271
$startStep = $base;272

273
my $stepVar = 0;274
push(@optAvg, $corrE);275
push(@optWeight, $std);276
shift @optAvg if ($#optAvg >= $avgLen);277
shift @optWeight if ($#optAvg >= $avgLen);278
my $x = 0;279
my $x2 = 0;280
my $ws = 0;281
for (my $i = 0 ; $i <= $#optAvg ; $i += 1) {282

my $val = $optAvg[$i];283
my $w = $optWeight[$i];284
$ws += $w;285
$x += $val * $w;286
$x2 += $val * $val * $w;287

}288
$x /= $ws if (abs($ws) > 0);289
$x2 /= $ws if (abs($ws) > 0);290
$stepVar = $x2 - $x * $x;291
$stepVar = sqrt(abs($stepVar));292

293
printf "%-15s %4i %11.6f %11.6f %7s", $jName, $step, $refE, $nrg, $optStr;294

135

295
my $corrEstr = "";296
if (abs($corrE) > 1e4 || $std == 0) {297

$corrEstr = sprintf " %10.1e", $corrE;298
}299
else {300

$corrEstr = sprintf " %-10s", getEnergyWError($corrE, $std);301
}302
if ($corrE < 0) {303

printf "$Chilite$corrEstr$Cnormal";304
}305
else {306

printf "$corrEstr";307
}308

309
printf " %8.2f", $stepVar;310
if ($jName ne $lastN) {311

$lastL = $L;312
$lastE = $corrE;313
$lastN = "$jName";314
printf " %8s", "";315
printf " %10.5f %8s", $L, " ";316

}317
else {318

$diffE = $corrE - $lastE;319
if (abs($diffE) > 1e4) {320

printf " %8.1e", $diffE;321
}322
else {323

printf " %8.2f", $diffE;324
}325
printf " %10.5f %8.2f", $L, 100.0 * ($L - $lastL) / $L;326

}327
$lastL = $L;328

329
#$lastE = $corrE;330

331
printf " %-30s %7s %8g %-s\n", $jType, $dType, $nsamples, $base;332

333
if (!($func eq "")) {334

$plotters{$jName} .= "$jName&$dType&$L&$jType&$func&$nrg&$short&$step#";335
}336

}337
338

exit if ($makeGraph == 0);339
340

my $gnuplot = "/ul/amosa/bin/gnuplot";341
$base =~ s/_[\d]+$//g if (!$showOpt);342
my $modbase = $base;343
$modbase =~ s/_/_/g;344
my $printedHeader = 0;345
my @goodlt;346
push(@goodlt, 3); # if($publication == 0);347
push(@goodlt, 1);348
push(@goodlt, 5);349
push(@goodlt, 4);350
push(@goodlt, 6);351
push(@goodlt, 7);352

353
my $allPlots = "set key outside below box Left reverse;\\\n";354
my $lastPlot = "set key outside below box Left reverse;\\\n";355

356
foreach $key (reverse sort keys %plotters) {357

my $filename;358
if ($multiPlot) {359

$file_name = "jastrows";360
}361
else {362

$file_name = "$key";363
$printedHeader = 0;364

}365
if ($showOpt) {366

367
#$file_name .= "_${base}_plot.pdf";368
$file_name .= "_plot.pdf";369

}370
else {371

$file_name .= "_plot.pdf";372
}373

374
if ($showOpt) {375

$caption .= ", $modbase";376
}377
else {378

$caption .= ", key L; CI,BF; JW; ID";379
}380
my $xlabel = "r_{ij} (Bohr)";381
my $ylabel = "u_{ij}";382

383
if ($useExp) {384

$ylabel = "Exp[$ylabel]";385

136

if ($useSqr) {386
$ylabel = "|$ylabel|^2";387

}388
}389

390
print "Adding graph of $key to: $file_name\n";391

392
if (!$printedHeader) {393

if ($i_active) {394
$gnuplot .=395

" -geometry 1280x740"; #this is optimized for Amos’ laptop...396
open(GNUPLOT, "|$gnuplot");397
print GNUPLOT398

"set terminal x11 persist raise enhanced font \"Courier-Bold,12\" title \"$file_name\" dashed linewidth 2\n";399
}400
else {401

‘/bin/rm -f $file_name‘;402
403

#open(GNUPLOT, ">gnuplot.gnu");404
open(GNUPLOT, "|$gnuplot");405
if ($publication == 1) {406

print GNUPLOT407
"set term pdf color enhanced font \"Courier-Bold,16\" linewidth 10 dashed dl 3 size 17.5,10\n";408

}409
else {410

print GNUPLOT411
"set term pdf color enhanced font \"Courier-Bold,14\" linewidth 5 dashed dl 3 size 17.5,10\n";412

}413
print GNUPLOT "set output \"$file_name\"\n";414

}415
print GNUPLOT <<gnuplot_Commands_Done;416

#fonts with extensions "ttf" and "dfont" will work417
#here is a list of available fonts: Chalkboard Helvetica Times418
#Courier Monaco LucidaGrande419
#set term gif crop enhanced font ’Monaco’ 8420

421
#fonts on hive:422
#set term gif crop enhanced font ’VeraMono’ 8423
#set term svg dynamic enhanced font "VeraMono,8"424

425
#fonts built into PDFLib Lite:426
#Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique,427
#Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique,428
#Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic, Symbol, ZapfDingbats429
set size 0.9,1430
unset colorbox431
show style line432
#set logscale y 2433
set grid ytics434
set mytics435
set tics scale 1.5, 0.75436
set nokey437
#set key noenhanced438
set xlabel "$xlabel"439
set ylabel "$ylabel"440
#set yrange[$y_min:$y_max]441
gnuplot_Commands_Done442

443
if ($multiPlot) {444

$numPlots = scalar keys %plotters;445
$numR = 2;446
$numC = 2;447
$numC = 3 if ($numPlots > 4);448
$numR = 3 if ($numPlots > 6);449
die "Too many plots: $numPlots" if ($numPlots > 9);450
$allPlots .= "set multiplot layout $numR,$numC;\\\n";451
$lastPlot .= "set multiplot layout $numR,$numC;\\\n";452

}453
}454

455
my $caption = "$key";456
$caption =~ s/Eup/E_{up} /g;457
$caption =~ s/Edn/E_{dn} /g;458
$caption =~ s/Nuclear([\w]+)/$1/g;459
$caption = "$caption Jastrow Functions";460
if ($printedHeader || $publication == 1) {461

$allPlots .= "set title \"$caption\";\\\n";462
$lastPlot .= "set title \"$caption\";\\\n";463

}464
else {465

$allPlots .= "set title \"$caption\\n{/=8${date}}\";\\\n";466
$lastPlot .= "set title \"$caption\\n{/=8${date}}\";\\\n";467

}468
$printedHeader = 1;469

470
#$jastrows{"$name&$best&$refE&$numci,$numbf&$numjw&$base"} = "$step&$L&$func&$energy";471

my @plots = split /\#/, $plotters{$key};472
473

my $xmax = 0;474
my $longestJW = 0;475

476

137

for (my $i = 0 ; $i <= $#plots ; $i++) {477
if ($useScaled) {478

$xmax = 1;479
}480
else {481

my $new = (split /&/, $plots[$i])[2];482
if ($new > $xmax) {483

$xmax = $new;484
}485

}486
}487

488
$allPlots .= "plot [0:$xmax]";489
$lastPlot .= "plot [0:$xmax]";490

491
for(my $i=0; $i<=$#plots; $i++){492
for (my $i = $#plots ; $i >= 0 ; $i -= 1) {493

($jName, $dType, $max, $jw, $func, $optE, $example, $step) =494
split /&/, $plots[$i];495

$jw =~ s/18,//g;496
$jw =~ s/18//g;497

498
my $title;499

500
if ($showOpt) {501

$title = sprintf "%2i %8.4f", $step, $optE;502
503

#$title = $example;504
}505
else {506

if ($max >= 10.0) {507
$title = sprintf "%-4.1f;", $max;508

}509
else {510

$title = sprintf "%-4.2f;", $max;511
}512

513
#$title = "";514
$title .= sprintf " %3s; %s; %s", $dType, $jw, $example;515

}516
$title =~ s/_/_/g;517

518
#change the font size of the key519
#$title = "{/=10$title}";520

521
$func =~ s/\^/**/g;522
$func =~ s/ +//g;523

524
#a polynomial might not be completed. it might end with a +)525
$func =~ s/\+\)/\)/g;526

527
#add in the implicit multiplications528
#this line confuses emacs’ indentation algorithm...529
$func =~ s/([\d])([x\(])/$1*$2/g;530

531
if ($useScaled) {532

$max = 1;533
}534
else {535

$func =~ s/x/(x\/$max)/g;536
}537

538
if ($useExp) {539

$func = "exp($func)";540
if ($useSqr) {541

$func = "(${func})**2";542
}543

}544
545

my $lt;546
if ($publication == 1) {547

$lt = $goodlt[$i % 12];548
}549
else {550

$lt = $goodlt[int($i / 12)];551
}552
my $lc = ($i + 1) % 12;553

554
#print "line number $i has type lc $lc lt $lt\n";555
$func = "x > $max ? 1/0 : $func";556

557
#$func = "x";558
$func = " $func lc $lc lt $lt title \"$title\"";559
$allPlots .= $func;560

561
#print GNUPLOT " [0:$kd[2]] $func title \"$kd[3]\"";562
if ($i == 0) {563

$allPlots .= ";\\";564
$lastPlot .= " $func;\\\n";565

}566
elsif ($i == 1) {567

138

$allPlots .= ",\\";568
$lastPlot .= " $func,\\\n";569

}570
else {571

$allPlots .= ",\\";572
}573
$allPlots .= "\n";574

}575
576

if ($multiPlot) {577
578

#In order to only include the key once, we must make sure that the579
#plots are always sorted the same!!!580
$allPlots .= "set nokey;\\\n";581
$lastPlot .= "set nokey;\\\n";582

}583
584

#‘/bin/rm $_.dat‘;585
586

#‘open $file_name‘;587
}588
$allPlots .= "unset multiplot";589
$lastPlot .= "unset multiplot";590

591
#print $lastPlot;592
#print "bind e ’v=v+1; if(v%2) $lastPlot; else $allPlots;’\n";593
#die;594
print GNUPLOT "v=0\n";595
print GNUPLOT "bind l ’v=v+1; if(v%2) $lastPlot; else $allPlots’\n";596

597
print GNUPLOT "$allPlots\n";598

599
if ($multiPlot) {600

601
#print GNUPLOT "unset multiplot\n";602

}603
print GNUPLOT "pause mouse button2\n";604
close(GNUPLOT);605

606
if ($i_active == 0) {607

my $email = "nitroamos\@gmail.com";608
print "Check $email...\n";609

‘bash -c \"echo Current directory \" | /usr/bin/mutt -s \"[jastrows] $file_name\" -a $file_name $email‘;610
‘rm $file_name‘;611

}612

139

Appendix F

Convergence Scripts

The downside of a Monte Carlo simulation is that many iterations are required to lower the

statistical error, which goes down only as slowly as O
(

1√
N

)
. On the other hand, a Monte

Carlo simulation will fairly quickly give a reasonable estimate of the final converged value,

a fact that it is useful to take advantage of. Therefore, we consider it very important that

we are able to quickly examine the progress of a calculation because if the calculation has

gone bad, then we will want to stop it and fix the problem before wasting more computer

power.

To do this, we provide several tools. First, we have a script summary.pl which will

intelligently scan through directories looking for DMC results, and can figure out which

calculations are comparable. For example, if it is pointed at directories containing ethylene

and cyclobutane calculations, it will figure out the stoichiometric ratio it needs to provide

you with the best estimate possible, and associated error, for the difference in energy. This

script has numerous time saving features. Second, using a file produced by summary.pl, we

have developed a second script called plotter.pl which can produce time series data using

gnuplot. Third, we provide numerous routines in utilities.pl that provide helpful services,

such as estimating how long a calculation will take to finish based on parameters in the

input file and the amount of time taken so far.

F.1 Summarizing by Example

Most of the features that summary.pl provides are detailed by running the script with the

help option, -h, or by reading lines 50-77. The script works by using the getFileList routine

form utilities.pl. This routine will be passed all the files or directories provided on the

140

command line to summary.pl, defaulting to the directory ‘.’ if nothing else was provided,

and will recursively scan all provided directories to find all the files whose names end with

.qmc. Although you can select files using the command line, the script summary.pl also

provides ways to exclude or include files based on their names. For example, if we descend

into a directory containing all of our ethylene calculations, we can run the command as

follows.

../bin/summary.pl -x Ntw -x Ta -x V -c -u eV

<snip>

3 15) 0.0075 ct0p0_Tv_exp_1 - ct0p1_N_exp_1 = 4.4723(69) eV VMC = 4.54592

10 22) 0.0075 ct0p5_Tv_exp_1 - ct0p6_N_exp_1 = 4.483(12) eV VMC = 4.40799 GVB = 4.28825

8 18) 0.0075 awt0p1_Tv_exp_1 - awt0p2_N_exp_1 = 4.4862(76) eV VMC = 4.30773 GVB = 4.25262

12 25) 0.0075 awt0a5_Tv_exp_1 - awt0a6_N_exp_1 = 4.488(11) eV VMC = 4.54305 CI = 4.70210

9 23) 0.0075 awt0p5_Tv_exp_1 - awt0p6_N_exp_1 = 4.4910(61) eV VMC = 4.43636 CI = 4.26616

7 21) 0.0075 awt0a1_Tv_exp_1 - awt0a2_N_exp_1 = 4.496(18) eV VMC = 4.53507 CI = 4.56880

5 16) 0.0075 awt0p0_Tv_exp_1 - awt0p1_N_exp_1 = 4.497(18) eV VMC = 4.49094 GVB = 4.25834

6 19) 0.0075 ct0p1_Tv_exp_1 - ct0p2_N_exp_1 = 4.5088(70) eV VMC = 4.52583 GVB = 4.27410

11 24) 0.0075 awt0r5_Tv_exp_1 - awt0r6_N_exp_1 = 4.560(17) eV VMC = 4.50111 CI = 4.67214

Here we have selected to exclude any files with Ntw in the title (the twisted geometry),

to exclude Ta (adiabatic triplet), and V (vertical singlet). We have also selected to include

whatever underlying SCF comparisons are available (with -c), and we have chosen to display

the results in energy units of eV. In the output shown here, each row starts with two indices

which were defined in the output that we have not displayed. We can then see the time

step that calculation represented, the file names represented, the energy differences, and the

other comparisons. The VMC results are typically stored as comments at the beginning of

the input file based on optimization iterations.

F.2 Script: summary.pl

#!/usr/bin/perl1

2

Quick start guide is found by running: summary.pl -h3

#4

#5

#6

#use strict;7

#assume utilities.pl is in the same directory as summary.pl8

my $path = ‘dirname $0‘;9

chomp($path);10

require "$path/utilities.pl";11

12

First, select the default values for all our parameters.13

my $useVar = 0;14

my $dtFilter = 0;15

my $orbFilter = 1;16

my $compareE = 0;17

my $sumResults = 1;18

141

my $latexHelp = 0;19

my $latexDTcol = 0;20

my $averageTitle = 0;21

my $estd_stop = 0.0; #in $units22

23

#my $extraTag = "trail_eps2";24

25

my @fileFilters;26

my @exclusionFilters;27

28

my $units = 627.50960803;29

my $unitsL = "kcal/mol";30

31

#keep only 1 line every $drop lines32

#also look at $every in plotter.pl33

my $drop = 1;34

if ($drop != 1) {35

print "Keeping only 1 line in $drop\n";36

}37

38

#Second, read in user input.39

my @files;40

while ($#ARGV >= 0) {41

$type = shift(@ARGV);42

$param = "";43

44

if ($type !~ /^-/) {45

46

#assume for now that it an output file47

push(@files, $type);48

}49

elsif ($type eq "-h") {50

print "Usage:\n";51

print "-h Print this help.\n";52

print "-v Include VMC calculations (currently = $useVar).\n";53

print "-a Average equivalent files (currently = $averageTitle).\n";54

print55

"-t <param> Only include dt=<param> (or all if 0, currently = $dtFilter).\n";56

print "-f <param> Only include files that match <param>.\n";57

print "-x <param> Exclude files that match <param>.\n";58

print59

"-u <param> Convert energy units to <param> units. E.g. <param> = ev or kcal\n";60

print61

"-o Include comparisons between inconsistent orbitals (currently = $orbFilter).\n";62

print63

"-c Include non-DMC energy comparisons, if available (currently = $compareE).\n";64

print65

"-e <param> Stop reading calculations when the error goes below <param>, in the selected units (currently = $estd_stop).\n";66

print67

"-s Summarize output if sumResults=1 (currently = $sumResults).\n";68

print "-l Make a LaTeX table (currently = $latexHelp).\n";69

print70

"Any option not starting with a ’-’ will be interpreted as a calculation file/directory.\n";71

print72

"Directories are recursively scanned, ignoring any directories named \"hide\"\n";73

print74

"If you don’t include any calculation files, then we’ll add directory \".\"\n";75

print "So far, you’ve selected \"@files\".\n";76

exit;77

}78

elsif ($type eq "-v") {79

$useVar = ($useVar + 1) % 2;80

print "Using useVar = $useVar\n";81

}82

elsif ($type eq "-a") {83

$averageTitle = ($averageTitle + 1) % 2;84

print "Using averageTitle = $averageTitle\n";85

142

}86

elsif ($type eq "-t") {87

$param = shift(@ARGV);88

$dtFilter = $param if ($param >= 0);89

print "Using dt filter $dtFilter\n";90

}91

elsif ($type eq "-f") {92

$param = shift(@ARGV);93

push(@fileFilters, $param);94

print "Adding file filter $param\n";95

}96

elsif ($type eq "-x") {97

$param = shift(@ARGV);98

push(@exclusionFilters, $param);99

print "Adding file exclusion filter $param\n";100

}101

elsif ($type eq "-u") {102

$param = shift(@ARGV);103

$param = lc($param);104

if ($param =~ /kcal/) {105

$units = 627.50960803;106

$unitsL = "kcal/mol";107

}108

elsif ($param =~ /ev/) {109

$units = 27.211399;110

$unitsL = "eV";111

}112

elsif ($param =~ /kj/) {113

$units = 2625.5002;114

$unitsL = "kJ/mol";115

}116

elsif ($param =~ /cm/) {117

$units = 219474.63;118

$unitsL = "cm^-1";119

}120

elsif ($param =~ /au/ || $param =~ /hart/) {121

$units = 1;122

$unitsL = "au";123

}124

print "Converting energy units: 1.0 $unitsL = $units au\n";125

}126

elsif ($type eq "-o") {127

$orbFilter = ($orbFilter + 1) % 2;128

if ($orbFilter == 1) {129

print "Filtering to only include balanced orbitals\n";130

}131

else {132

print "Not filtering results based on orbital usage.\n";133

}134

}135

elsif ($type eq "-c") {136

$compareE = ($compareE + 1) % 2;137

print "Comparing with reference energies, compareE = $compareE.\n";138

}139

elsif ($type eq "-e") {140

$param = shift(@ARGV);141

$estd_stop = 1 * $param;142

143

#Print the message later, once we’re sure $unitsL has been set144

}145

elsif ($type eq "-s") {146

$sumResults = ($sumResults + 1) % 2;147

print "Summarize report, sumResults = $sumResults.\n";148

}149

elsif ($type eq "-l") {150

$latexHelp = ($latexHelp + 1) % 2;151

print "LaTex Helper, latexHelp = $latexHelp.\n";152

143

}153

else {154

print "Unrecognized option: $type\n";155

die;156

}157

}158

159

if ($estd_stop > 0.0) {160

print161

"Notice: we will stop reading calculations once they reach an error of $estd_stop $unitsL!\n\n";162

}163

164

push(@files, ".") if ($#files < 0);165

166

#getFileList(".out",\@files);167

getFileList(".qmc", \@files);168

open(DATFILE, ">plotfile.dat");169

170

my $Cnormal = "\x1b[0m";171

my $Chilite = "\x1b[37m";172

173

my $lenLong = 0;174

my $num_results;175

my $ave_result;176

my $headerLine = "";177

178

my %dt_ave_results;179

my %label;180

my %dt_err_results;181

my %dt_num;182

my %dt_num_results;183

my %dt_nme_results;184

my %summary;185

my %shortnames;186

my %referenceE = ();187

188

my $lastlines = "";189

for (my $index = 0 ; $index <= $#files ; $index++) {190

my $cur = $files[$index];191

next if (!(-f $cur));192

193

my $isIncluded = 1;194

my $filterMatch = 0;195

foreach $filter (@fileFilters) {196

197

#we only include a file if it matches one of the filters198

$filterMatch = 1 if ($cur =~ /$filter/);199

}200

$isIncluded = 0 if ($filterMatch == 0 && $#fileFilters >= 0);201

202

foreach $filter (@exclusionFilters) {203

204

#exclude a file if it matches one of the exclusion filters205

#print "filter = $filter cur = $cur\n";206

$isIncluded = 0 if ($cur =~ /$filter/);207

}208

next if ($isIncluded == 0);209

210

my $base = "";211

if ($cur =~ /.out$/) {212

$base = substr($cur, 0, -4);213

}214

elsif ($cur =~ /.qmc$/) {215

$base = substr($cur, 0, -4);216

}217

else {218

next;219

144

}220

my $short = ‘basename $base‘;221

chomp($short);222

223

#remove the restart index224

$short = $1 if ($short =~ /([\w\d]+)\.\d\d$/);225

226

if ($averageTitle == 1) {227

228

#remove any _\d at the end229

$short = $1 if ($short =~ /([\w\d]+)_[\d]+$/);230

}231

232

my $vare = "";233

234

my $dt = 0;235

my $oepi = 0;236

my $nw = 0;237

my $effnw = 0;238

my $opt = -1;239

my $isd = -1;240

my $hfe = 0;241

my $numbf = 0;242

my $numci = 0;243

my $numor = 0;244

my $use3 = 0;245

my $extraVal = 0;246

my %refEnergies = ();247

248

open(CKMFFILE, "$base.ckmf");249

while (<CKMFFILE>) {250

if ($_ =~ /^\#/ && $_ !~ /[A-DF-Za-df-z]+/ && $vare eq "") {251

chomp;252

my @line = split /[]+/;253

254

#This is from the header; the top energy is the best255

$vare = $line[2];256

$refEnergies{"VMC"} = $vare;257

}258

259

$refEnergies{"RHF"} = (split /\s+/)[5] if (/FINAL RHF ENERGY/);260

$refEnergies{"RHF"} = (split /\s+/)[5] if (/FINAL ROHF ENERGY/);261

$refEnergies{"GVB"} = (split /\s+/)[5] if (/FINAL GVB ENERGY/);262

$refEnergies{"CI"} = (split /\s+/)[4]263

if (/^\#/ && /STATE/ && /ENERGY/);264

$refEnergies{"$1"} = (split /\s+/)[3]265

if (/^\#/ && /\s+([\w\d\(\)]+)\s+ENERGY:/);266

267

if ($_ =~ m/^\s*run_type\s*$/) {268

$_ = <CKMFFILE>;269

chomp;270

my @line = split /[]+/;271

$isd = $line[1];272

if ($useVar == 0) {273

last if ($isd eq "variational");274

}275

}276

if ($_ =~ m/^\s*dt\s*$/) {277

$_ = <CKMFFILE>;278

chomp;279

my @line = split /[]+/;280

$dt = $line[1];281

}282

if ($_ =~ m/^\s*one_e_per_iter\s*$/) {283

$_ = <CKMFFILE>;284

chomp;285

my @line = split /[]+/;286

145

$oepi = $line[1];287

}288

if ($_ =~ m/^\s*number_of_walkers\s*$/) {289

$_ = <CKMFFILE>;290

chomp;291

my @line = split /[]+/;292

$nw = $line[1];293

}294

if ($_ =~ m/^\s*optimize_Psi\s*$/) {295

$_ = <CKMFFILE>;296

chomp;297

my @line = split /[]+/;298

$opt = $line[1];299

}300

if ($_ =~ m/^\s*energy\s*$/) {301

$_ = <CKMFFILE>;302

chomp;303

my @line = split /[]+/;304

$hfe = $line[1];305

}306

if ($_ =~ m/^\s*nbasisfunc\s*$/) {307

$_ = <CKMFFILE>;308

chomp;309

my @line = split /[]+/;310

$numbf = $line[1];311

}312

if ($_ =~ m/^\s*norbitals\s*$/) {313

$_ = <CKMFFILE>;314

chomp;315

my @line = split /[]+/;316

$numor = $line[1];317

}318

if ($_ =~ m/^\s*ndeterminants\s*$/) {319

$_ = <CKMFFILE>;320

chomp;321

my @line = split /[]+/;322

$numci = $line[1];323

}324

if ($_ =~ m/^\s*use_three_body_jastrow\s*$/) {325

$_ = <CKMFFILE>;326

chomp;327

my @line = split /[]+/;328

$use3 = $line[1];329

}330

if ($extraTag ne "") {331

if ($_ =~ m/^\s*$extraTag\s*$/) {332

$_ = <CKMFFILE>;333

chomp;334

my @line = split /[]+/;335

$extraVal = $line[1];336

}337

}338

if ($_ =~ m/&geometry$/) {339

last;340

}341

}342

343

#next if($opt == 1);344

if ($useVar == 0) {345

next if ($isd eq "variational");346

}347

if ($nw < 100) {348

print "Not including $base because it has $nw walkers.\n";349

next;350

}351

next if ($dtFilter != 0 && $dt != $dtFilter);352

353

146

while (<CKMFFILE> !~ /Jastrow/) { }354

my $numjw = "";355

my $numjwID = 0;356

while (<CKMFFILE>) {357

if (/NumberOfParametersOfEachType/) {358

if (!($numjw eq "")) {359

$numjw .= ",";360

}361

my @line = split /\s+/;362

my $numthis = "$line[1]";363

$numjwID += $line[1];364

for ($i = 2 ; $i <= $#line ; $i++) {365

$numthis .= "$line[$i]";366

$numjwID += $line[$i];367

}368

$numjw .= "$numthis";369

}370

}371

$numjw = "$numjwID=$numjw";372

close CKMFFILE;373

374

open(RUNFILE, "$base.run");375

my $machine = "";376

while (<RUNFILE>) {377

if (/lamboot/) {378

$machine = "m";379

}380

elsif (/machinefile/) {381

$machine = "h";382

}383

}384

close(RUNFILE);385

386

open(QMCFILE, "$cur");387

my $line;388

my @data;389

my $more = 1;390

my $eavg;391

my $estd;392

my $iteration;393

my $num_samples = 0.00001;394

my $fordatfile = "";395

my $counter = 0;396

my $wallclock = "";397

my $totalclock = "";398

my $sampleclock = "";399

my $effdt = 0;400

my $sampleVar = 0;401

my $sampleVarCorLen = 0;402

my $corLength = 0;403

404

while (<QMCFILE>) {405

$headerLine = $_ if (/iteration/ && /Eavg/ && /Samples/);406

407

next if ($estd > 0 && $estd * $units < $estd_stop);408

409

#this is to avoid processing lines with warnings410

next if ($_ =~ /[=:]/ && $_ !~ /Results/);411

412

chomp;413

@data = split /[]+/;414

415

#this is the number of data elements per line416

#it can have the letter ’e’ or ’E’ since scientific notation uses them417

if ($#data >= 8 && $_ !~ /[A-DF-Za-df-z]+/ && $more) {418

$counter++;419

$iteration = $data[1];420

147

$iteration /= 8 if ($oepi == 1);421

$eavg = $data[2];422

$estd = $data[3];423

424

#In the old format, this was trial energy425

#In the new format, this is the acceptance probability, which uses parenthesis426

if ($data[6] =~ /\(/) {427

428

#new output format429

$num_samples = $data[4];430

$corLength = $data[5];431

$effnw = $data[7];432

if ($isd eq "variational") {433

$effdt = $dt;434

}435

else {436

$effdt = $data[10];437

}438

}439

else {440

$effnw = $data[4];441

442

#old output format443

if ($isd eq "variational") {444

$effdt = $data[5];445

$num_samples = $data[6];446

}447

else {448

$effdt = $data[7];449

$num_samples = $data[8];450

451

}452

}453

454

#this is equal to sample variance * correlation length455

$sampleVarCorLen = $estd * $estd * $num_samples;456

457

next if ($num_samples <= 0);458

459

#make sure we have the first and last data points included460

next461

if ($counter % $drop != 0462

&& $counter != 1463

&& $iteration % 100 == 0);464

next if ($iteration < 0);465

$fordatfile .= sprintf "%20i %20.10f %20.10f %20i\n", $num_samples,466

$eavg, $estd, $iteration;467

if ($extraTag ne "") {468

$line = sprintf "%30s $_ %15s\n", "$base", "$extraVal";469

}470

else {471

$line = sprintf "%30s $_\n", "$base";472

}473

474

}475

elsif (/Results/) {476

$more = 0;477

}478

}479

close QMCFILE;480

481

my @times = ‘grep Time $base.out‘;482

$wallclock = (split /\s+/, $times[0])[11];483

$totalclock = (split /\s+/, $times[1])[11];484

$sampleclock = (split /\s+/, ‘grep "per sample per" $base.out‘)[8];485

chomp($sampleclock);486

my $numwarnings = ‘grep WARNING $base.out | wc -l‘;487

148

488

#This is "number of warnings per 1000 samples"489

#$numwarnings /= $num_samples;490

$numwarnings = sprintf "%4i", $numwarnings;491

$numwarnings = " $Chilite$numwarnings$Cnormal" if ($numwarnings > 0.5);492

my $numerrors = ‘grep ERROR $base.out | wc -l‘;493

494

#$numerrors /= $num_samples;495

$numerrors = sprintf "%4i", $numerrors;496

497

$lastlines .= "$line";498

my $key = "$dt&$numbf&$numjw&$nw&$numci&$numor&$oepi&$short";499

if ($vare eq "") {500

501

#use the value for energy in the key502

$key = "$hfe&$key";503

}504

else {505

506

#use the variational energy from the header in the key507

$key = "$vare&$key";508

}509

510

my $runage = getFileAge("$base.out", 1);511

512

updated in the last 15 minutes513

$short = "*$short" if ($runage < 900 && $estd * $units > $estd_stop);514

if (exists $shortnames{$key}) {515

my $orig = $shortnames{$key};516

$shortnames{$key} = $short if (length $orig > length $short);517

}518

else {519

520

$shortnames{$key} = $short;521

}522

$lenLong = length $short if (length $short > $lenLong);523

524

foreach $etype (keys %refEnergies) {525

$referenceE{$key}{$etype} = $refEnergies{$etype};526

}527

528

if ($eavg < 0) {529

my $weight = $num_samples / 100000;530

531

$dt_ave_results{$key} += $eavg * $weight;532

$dt_num_results{$key} += $weight;533

$dt_num{$key} += 1.0;534

535

if ($estd > 0) {536

$dt_err_results{$key} += $estd * $estd * $weight;537

$dt_nme_results{$key} += $weight;538

}539

540

$ave_result += $eavg;541

$num_results++;542

}543

my $in_kcal = $eavg * $units;544

545

#printf "%50s %15s %15s E_h=%20.14f E_kcal=%20.10f Err=%i Warn=%i\n","$base","dt=$dt","nw=$nw",$eavg,$in_kcal,$numerrors,$numwarnings;546

547

$summary{$key} .=548

sprintf ".. %-30s%1s%7s %5s %16s %4s %5s",549

"$base", "$machine", "$dt", "$effnw", getEnergyWError($eavg, $estd),550

$numerrors, $numwarnings;551

552

if ($wallclock ne "") {553

554

149

#the calculation completed, and some extra data is available555

if (abs($corLength) < 1e-10) {556

557

#The old format of output printed the Sample variance directly558

$sampleVar = (split /\s+/, ‘grep "Sample variance" $base.out‘)[3];559

$corLength = $sampleVarCorLen / $sampleVar;560

}561

else {562

$sampleVar = $sampleVarCorLen / $corLength;563

}564

565

#This is similiar to the Kappa from the 2007 Dolg ECP paper.566

#Lower is better. Sample clock is in microseconds.567

my $wfEfficiency = $dt * $sampleVar * $corLength * $sampleclock * 10.0;568

569

$summary{$key} .=570

sprintf " %10.3e %10.2f %10.2f %10s %10s %10s %15.5f\n",571

$sampleVar,572

$corLength,573

$wfEfficiency,574

$wallclock, $totalclock,575

$iteration, ($effdt * $iteration);576

}577

else {578

$summary{$key} .=579

sprintf " %10s %10s %10s %10s %10s %10s %15.5f\n",580

"", "", "", "", "",581

$iteration, ($effdt * $iteration);582

}583

584

#if we are in enhanced text mode, we need to double escape the "_"585

#$base =~ s/_/_/g;586

printf DATFILE "#%19s %20s %20s %40s\n", "dt=$dt", "$base", "E=$eavg",587

"$key";588

print DATFILE "$fordatfile\n\n";589

}590

close DATFILE;591

592

chomp($headerLine);593

if ($extraTag ne "") {594

printf "%30s $headerLine %15s\n$lastlines", " ", $extraTag;595

}596

else {597

printf "%30s $headerLine \n$lastlines", " ";598

}599

600

foreach $key (sort byenergy keys %dt_ave_results) {601

if (!exists $label{$key}) {602

$label{$key} = sprintf "%2i", (scalar keys %label) + 1;603

}604

}605

printf "ID %-30s %7s %5s %16s %4s %5s %10s %10s %10s %10s %10s %10s %15s\n",606

"File Name", "dt", "nw", "Avg E", "Err", "Warn",607

"Variance",608

"Corr Len", "WF Eff", "Wall", "Total", "Iter", "effdt*iters";609

610

foreach $sum (sort bydt keys %summary) {611

$summary{$sum} =~ s/../$label{$sum}/;612

print "$summary{$sum}";613

}614

615

die if ($num_results <= 0);616

617

$ave_result /= $num_results;618

619

#print "Average result = $ave_result\n";620

$labelLen = $lenLong;621

150

$labelLen = length "Label" if (length "Label" > $labelLen);622

printf "%5s %*s %10s %1s %20s %5s %7s %-25s %5s %20s %20s %10s\n",623

"ID", $labelLen, "Label",624

"dt", "e", "Ref. Energy", "Num", "CI:BF", "NumJW", "NumW", "Average",625

"Corr. E.", "Weight";626

my %qref;627

my %href;628

my $dtref = 0;629

my $cure = "";630

631

foreach $key (sort byenergy keys %dt_ave_results) {632

my @keydata = split /&/, $key;633

634

if ($dt_num_results{$key} > 0) {635

$dt_ave_results{$key} /= $dt_num_results{$key};636

}637

else {638

print "Why does $key have $dt_num_results{$key} results?\n";639

die;640

}641

642

if ($dt_nme_results{$key} > 0) {643

$dt_err_results{$key} =644

sqrt($dt_err_results{$key} / $dt_nme_results{$key});645

}646

else {647

648

}649

650

printf651

"%5i %*s %10s %1i %20s %5i %3i:%-3i %-25s %5i %20s %20.10f %10.5f\n",652

$label{$key},653

$labelLen,654

$shortnames{$key},655

"$keydata[1]", $keydata[7], "$keydata[0]",656

$dt_num{$key},657

$keydata[5],658

$keydata[2],659

$keydata[3],660

$keydata[4],661

getEnergyWError($dt_ave_results{$key}, $dt_err_results{$key}),662

($keydata[0] - $dt_ave_results{$key}),663

$dt_num_results{$key};664

}665

666

print "\n\n";667

668

#matrix output669

#the data is sorted according to dt first670

#we calculate the difference for for all results available671

#but we don’t compare calculations if dt and energy are different672

my %comparisons;673

674

#A + B = C + D675

foreach $A (sort bydt keys %dt_ave_results) {676

my @Adata = split /&/, $A;677

foreach $C (sort bydt keys %dt_ave_results) {678

my @Cdata = split /&/, $C;679

next if (!areComparable($A, $C));680

681

foreach $B (sort bydt keys %dt_ave_results) {682

683

#next if($A eq $B || $A eq $C || $B eq $C);684

next if (!areComparable($A, $B));685

686

my @Bdata = split /&/, $B;687

my $a = $dt_ave_results{$A};688

151

my $b = $dt_ave_results{$B};689

my $c = $dt_ave_results{$C};690

next691

if ($a < $c || $a < $b)692

; #otherwise we’ll get two of every comparison693

#next if($a < $c); #otherwise we’ll get two of every comparison694

695

my $aOrb = $Adata[6];696

my $bOrb = $Bdata[6];697

my $cOrb = $Cdata[6];698

699

($aMult, $bMult, $cMult) =700

getFormula($Adata[2], $Bdata[2], $Cdata[2], $orbFilter);701

702

#print "$a $b $c ($aMult,$bMult,$cMult) \n" if($bMult != 0);703

next if ($a < $b && $bMult > 0);704

next705

if ($aMult == 0 || $cMult == 0)706

; #the results are not comparable if either is zero707

#This eliminates a lot of the meaningless comparisons708

my $orbsMatch = 0;709

$orbsMatch = 1 if ($aMult * $aOrb == $cMult * $cOrb);710

next if ($orbsMatch == 0 && $orbFilter == 1 && $bMult == 0);711

712

#So that we’re comparing the difference713

$cMult *= -1;714

715

#print "$orbsMatch = ($aMult * $aOrb == $cMult * $cOrb) ($aMult,$bMult,$cMult)\n";716

#print "$orbsMatch \n";717

718

my $diff = $a * $aMult + $b * $bMult + $c * $cMult;719

my $stdA = abs($dt_err_results{$A} * $aMult);720

my $stdB = abs($dt_err_results{$B} * $bMult);721

my $stdC = abs($dt_err_results{$C} * $cMult);722

my $diffe = sqrt($stdA * $stdA + $stdB * $stdB + $stdC * $stdC);723

724

$diff *= $units;725

$diffe *= $units;726

727

my $comparison = "";728

my $aStr =729

getEnergyWError($dt_ave_results{$A}, $dt_err_results{$A});730

my $bStr =731

getEnergyWError($dt_ave_results{$B}, $dt_err_results{$B});732

my $cStr =733

getEnergyWError($dt_ave_results{$C}, $dt_err_results{$C});734

my $diffStr = getEnergyWError($diff, $diffe);735

736

#print "($Adata[2],$Bdata[2],$Cdata[2]) => ($aMult,$bMult,$cMult) := $diffStr\n";737

738

if ($sumResults == 1) {739

$comparison .= sprintf "%3i %3i) %6s", $label{$A}, $label{$C},740

$Adata[1];741

my $aM = $aMult;742

my $bM = $bMult;743

my $cM = $cMult;744

$aM = " " if ($aMult == 1);745

$bM = " " if ($bMult == 1);746

$cM = "- " if ($cMult == -1);747

748

my $compType = sprintf " ${aM} %*s ", $lenLong, $shortnames{$A};749

750

if ($bMult != 0) {751

$compType .= sprintf " +${bM} %*s ",752

$lenLong, $shortnames{$B};753

}754

$compType .= sprintf " +${cM} %*s ", $lenLong, $shortnames{$C};755

152

756

$compType =~ s/\+\-/\-/g;757

$comparison .= sprintf "%s =", $compType;758

}759

else {760

my $AJW = (split /=/, $Adata[3])[0];761

my $BJW = (split /=/, $Bdata[3])[0];762

my $CJW = (split /=/, $Cdata[3])[0];763

$comparison .= sprintf "%3i) %*s %15s %6s %3s:%2s:%-3s %5s | ",764

$label{$A}, $lenLong, $shortnames{$A},765

$aStr, $Adata[1], $Adata[5], $aOrb, $Adata[2], $AJW;766

767

if ($bMult != 0) {768

$comparison .=769

sprintf "%3i) %*s %15s %6s %3s:%2s:%-3s %5s | ",770

$label{$B}, $lenLong, $shortnames{$B},771

$bStr, $Bdata[1], $Bdata[5], $bOrb, $Bdata[2], $BJW;772

773

$compType = "${aMult}A+${bMult}B+${cMult}C";774

}775

else {776

$compType = "${aMult}A+${cMult}B";777

}778

779

$comparison .= sprintf "%3i) %*s %15s %6s %3s:%2s:%-3s %5s | ",780

$label{$C}, $lenLong, $shortnames{$C},781

$cStr, $Cdata[1], $Cdata[5], $cOrb, $Cdata[2], $CJW;782

783

$compType =~ s/1//g;784

$compType =~ s/\+\-/\-/g;785

$comparison .= sprintf "%6s=", $compType;786

}787

788

if ($orbsMatch) {789

$comparison .= " ";790

}791

else {792

$comparison .= "*";793

}794

795

if (0) {796

$comparison .= sprintf " %9.5f", $diff;797

$comparison .= sprintf " +/- %-9.5f $unitsL", $diffe;798

}799

else {800

$comparison .= sprintf " %10s $unitsL", $diffStr;801

}802

803

if ($compareE) {804

foreach $etype (reverse sort keys %{ $referenceE{$A} }) {805

$eA = $referenceE{$A}{$etype} * $aMult;806

$eB = $referenceE{$B}{$etype} * $bMult;807

$eC = $referenceE{$C}{$etype} * $cMult;808

my $temp = ($eA + $eB + $eC) * $units;809

810

next811

if (!exists $referenceE{$C}{$etype}812

|| abs($temp) < 1e-10);813

814

if ($sumResults == 1) {815

816

#$comparison .= sprintf " %*s = %9.5f %s\n",(2*$lenLong+22),"",$temp,$etype;817

$comparison .= sprintf " %s = %9.5f", $etype, $temp;818

}819

else {820

$comparison .=821

sprintf822

153

"\n %*s %15.10f %23s | %*s %15.10f %23s | %7s %9.5f %s",823

$lenLong, "", $referenceE{$A}{$etype}, "", $lenLong,824

"", $referenceE{$C}{$etype}, "", "", $temp, $etype;825

}826

}827

}828

$comparison .= sprintf "\n";829

830

if ($latexHelp) {831

832

#strip off any of the title after the first underscore833

my $nameA = $1 if ($shortnames{$A} =~ /([\dA-Za-z]+)_/);834

my $nameC = $1 if ($shortnames{$C} =~ /([\dA-Za-z]+)_/);835

836

$tempStr = "";837

$tempStr = sprintf "%5s & ", $Adata[1] if ($latexDTcol);838

$tempStr .= sprintf "%20s & %15s & %20s & %15s & %15s \\\\",839

$nameA, $aStr, $nameC, $cStr, $diffStr;840

$tempStr =~ s/\./\&/g;841

$comparison = "$tempStr\n";842

}843

844

$comparisons{$comparison} = $diff if (abs($diff) < 1000);845

}846

}847

}848

849

if ($latexHelp) {850

if ($latexDTcol) {851

print <<LATEX_HEADER;852

\\begin{center}853

\\begin{table}[htdp]854

\\caption{A \$\\leftarrow\$ B}855

\\label{table:gen}856

\\begin{tabular}{r\@{.}l r r\@{.}lr r\@{.}lr\@{.}l}857

\\hline \\hline858

\\multicolumn{2}{c}{\$\\delta t\$} & A &859

\\multicolumn{2}{c}{DMC} & B &860

\\multicolumn{2}{c}{DMC} &861

\\multicolumn{2}{c}{\$\\Delta\$} \\\\862

\\multicolumn{2}{c}{au\$^{-1}\$} & &863

\\multicolumn{2}{c}{au} & &864

\\multicolumn{2}{c}{au} &865

\\multicolumn{2}{c}{$unitsL} \\\\866

\\hline867

LATEX_HEADER868

}869

else {870

print <<LATEX_HEADER;871

\\begin{center}872

\\begin{table}[htdp]873

\\caption{A \$\\leftarrow\$ B}874

\\label{table:gen}875

\\begin{tabular}{r r\@{.}lr r\@{.}lr\@{.}l}876

\\hline \\hline877

A &878

\\multicolumn{2}{c}{DMC} & B &879

\\multicolumn{2}{c}{DMC} &880

\\multicolumn{2}{c}{\$\\Delta\$} \\\\881

&882

\\multicolumn{2}{c}{au} & &883

\\multicolumn{2}{c}{au} &884

\\multicolumn{2}{c}{$unitsL} \\\\885

\\hline886

LATEX_HEADER887

}888

}889

154

foreach $key (sort { $comparisons{$a} <=> $comparisons{$b} }890

keys %comparisons)891

{892

print "$key";893

}894

if ($latexHelp) {895

print <<LATEX_TAIL;896

\\hline \\hline897

\\end{tabular}898

\\end{table}899

\\end{center}900

LATEX_TAIL901

}902

903

print "\n\n";904

F.3 Convergence by Example

After we have run summary.pl, a data file was produced summarizing the data into a format

that gnuplot can understand. To create the plots, we simply run the plotter.pl script in the

same directory. For example, the command:

../bin/plotter.pl -i -t 2 -err -e 100

will run in non-interactive mode, selected by -i, instead of X11 mode. This command

also selects the x-axis to be time, instead of iterations, -err indicates that we want error

bars, and -e 100 specifies that only 1 out of every 100 data points should be plotted. The

output is shown in Figure F.1. In this figure, we can see a few points of interest. First,

notice that the result for awt0r5 Tv exp 1 is quite distinct from the other data points. This

could indicate a variety of problems, but on the other hand, it is fairly constant, so the

calculation seems to be ok. We also notice that the error bars for this stream jump towards

the end, which is evidence that the calculation ran into some problems. We see a similar

jump in the error bars for some of the other calculations even though on the whole, there

is remarkable agreement around the 103.5 kcal/mol expected answer.

F.4 Script: plotter.pl

#!/usr/bin/perl1

#use strict;2

my $path = ‘dirname $0‘;3

chomp($path);4

require "$path/utilities.pl";5

6

my $orbFilter = 1;7

my $calcDiff = 1;8

155

-
1
0
6

-
1
0
5
.
5

-
1
0
5

-
1
0
4
.
5

-
1
0
4

-
1
0
3
.
5

-
1
0
3

-
1
0
2
.
5

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

1
6
0
0
0

1
8
0
0
0

2
0
0
0
0

Energy (kcal/mol)

T
i
m
e

(
H
a
r
t
r
e
e
s
-
1
)

Q
M
C

R
u
n
s
,

d
t
=
0
.
0
0
7
5

S
a
t

J
u
n

1
3

1
6
:
2
3
:
1
4

P
D
T

2
0
0
9

a
w
t
0
a
5
_
T
v
_
e
x
p
_
1

a
w
t
0
r
5
_
T
v
_
e
x
p
_
1

a
w
t
0
p
5
_
T
v
_
e
x
p
_
1

c
t
0
p
5
_
T
v
_
e
x
p
_
1

a
w
t
0
a
1
_
T
v
_
e
x
p
_
1

c
t
0
p
1
_
T
v
_
e
x
p
_
1

a
w
t
0
p
1
_
T
v
_
e
x
p
_
1

a
w
t
0
p
1
_
N
_
e
x
p
_
1

c
t
0
p
0
_
T
v
_
e
x
p
_
1

Figure F.1: Sample output from the script plotter.pl.

156

my $useAvg = 1;9

my $withErr = 0;10

my $spacef = 0.3;11

my $i_active = 1;12

13

#absolute energies (=0) or relative (=1) to each other?14

my $shift = 1;15

16

#should the x axis be iteration (=0), samples (=1) or time (=2)?17

my $xtype = 0;18

19

#add lines with these values:20

my @exact_titles;21

my @exact;22

23

my $every = 15;24

if ($withErr) {25

26

#error lines can be very messy, so decrease the27

#freqency of points28

$every = 100;29

}30

31

my $units = 627.50960803;32

my $unitsL = "kcal/mol";33

34

while ($#ARGV >= 0 && $ARGV[0] =~ /^-/) {35

$type = shift(@ARGV);36

$param = "";37

38

if ($type eq "-s") {39

$calcDiff = ($calcDiff + 1) % 2;40

print "Using calcDiff = $calcDiff\n";41

}42

elsif ($type eq "-a") {43

$useAvg = ($useAvg + 1) % 2;44

print "Using useAvg = $useAvg\n";45

}46

elsif ($type eq "-o") {47

$orbFilter = ($orbFilter + 1) % 2;48

print "Using orbFilter = $orbFilter\n";49

}50

elsif ($type eq "-i") {51

$i_active = ($i_active + 1) % 2;52

print "Using interactive = $i_active\n";53

}54

elsif ($type eq "-t") {55

$param = shift(@ARGV);56

$xtype = $param;57

print "Using xtype = $xtype\n";58

}59

elsif ($type eq "-f" || $type eq "-space") {60

$param = shift(@ARGV);61

$spacef = $param;62

print "Using spacef = $spacef\n";63

}64

elsif ($type eq "-e" || $type eq "-every") {65

$param = shift(@ARGV);66

$every = $param;67

$withErr = 1;68

print "Using every = $every\n";69

}70

elsif ($type eq "-err" || $type eq "-error") {71

$withErr = ($withErr + 1) % 2;72

print "Using withErr= $withErr\n";73

}74

elsif ($type eq "-exp") {75

157

$title = shift(@ARGV);76

$nrg = shift(@ARGV);77

push(@exact_titles, $title);78

push(@exact, $nrg);79

print "Adding line called $title at $nrg\n";80

}81

elsif ($type eq "-x") {82

$param = shift(@ARGV);83

if ($param eq "ch2") {84

push(@exact_titles, "exp");85

push(@exact, -9.353);86

}87

elsif ($param == 1) {88

push(@exact_titles, "exp");89

push(@exact, -21.5539);90

push(@exact_titles, "ccsdt");91

push(@exact, -22.5373);92

}93

else {94

print "Unrecognized energy choice: $param\n";95

}96

}97

elsif ($type eq "-u") {98

$param = shift(@ARGV);99

$param = lc($param);100

if ($param =~ /kcal/) {101

$units = 627.50960803;102

$unitsL = "kcal/mol";103

}104

elsif ($param =~ /ev/) {105

$units = 27.211399;106

$unitsL = "eV";107

}108

elsif ($param =~ /kj/) {109

$units = 2625.5002;110

$unitsL = "kJ/mol";111

}112

elsif ($param =~ /cm/) {113

$units = 219474.63;114

$unitsL = "cm^-1";115

}116

elsif ($param =~ /au/ || $param =~ /hart/) {117

$units = 1;118

$unitsL = "au";119

}120

print "Using $unitsL energy units, conversion = $units\n";121

}122

else {123

print "Unrecognized option: $type\n";124

die;125

}126

}127

if ($#ARGV >= 0) {128

print "Unrecognized options: @ARGV\n";129

}130

my $d = qx! date +%F.%H-%M-%S !;131

chomp($d);132

my $date = ‘date‘;133

chomp $date;134

135

#my $gnuplot = "/usr/local/bin/gnuplot";136

my $gnuplot = "/ul/amosa/bin/gnuplot";137

138

#you might need to add this command to your .cshrc139

‘setenv GDFONTPATH /Library/Fonts:/System/Library/Fonts‘;140

‘setenv GDFONTPATH /usr/share/fonts/bitstream-vera/‘;141

142

158

my @gnutype = split / +/, ‘$gnuplot -V‘;143

if ($gnutype[1] < 4.3) {144

145

#we need the extra features that version 4.3 has146

print147

"GNUPLOT version = $gnutype[1] is incompatible for executable $gnuplot\n";148

die;149

}150

151

sub deleteData {152

foreach $test (@_) {153

154

#print "Deleting $test\n";155

}156

157

open(DATA, "plotfile.dat");158

159

my $newdata = "";160

my $match = 0;161

my $num = 0;162

my $line = <DATA>;163

while ($line) {164

if ($num < $#_ + 1) {165

foreach $test (@_) {166

if ($line =~ /$test/) {167

chomp($line);168

$match = 1;169

}170

}171

}172

173

if ($match == 1) {174

$line = <DATA>;175

while ($line =~ /\d/) {176

$line = <DATA>;177

}178

$line = <DATA>;179

$match = 0;180

$num += 1;181

}182

else {183

$newdata .= "$line";184

}185

186

$line = <DATA>;187

}188

189

close(DATA);190

191

open(NEWDATA, ">new_plotfile.dat");192

print NEWDATA "$newdata";193

close(NEWDATA);194

195

‘mv new_plotfile.dat plotfile.dat‘;196

}197

198

sub operateTwo {199

my $newdata = "";200

201

#202

Operate on two streams:203

final = $fconst * $fkey + $sconst * $skey204

my ($fconst, $fkey, $sconst, $skey) = @_;205

printf "%10.5f * (%-60s) + %10.5f * (%-60s)\n", $fconst, $fkey, $sconst,206

$skey;207

208

open(DATA, "plotfile.dat");209

159

210

my $line = <DATA>;211

$line = <DATA> while ($line !~ /$fkey$/ && $line !~ /$skey$/);212

if ($line =~ /$skey/ && $fkey ne $skey) {213

214

#we found the second key first, so swap215

$temp = $fkey;216

$fkey = $skey;217

$skey = $temp;218

219

$temp = $fconst;220

$fconst = $sconst;221

$sconst = $temp;222

}223

224

my @ftitle = split /[=]+/, $line;225

$line = <DATA>;226

my @first_data;227

while ($line =~ /\d/) {228

push(@first_data, $line);229

$line = <DATA>;230

}231

232

#this is the second blank line233

$line = <DATA>;234

235

#this is header of the next data236

$line = <DATA>;237

238

while ($line !~ /$skey$/) {239

$line = <DATA>;240

}241

my @stitle = split /[=]+/, $line;242

$line = <DATA>;243

my @second_data;244

while ($line =~ /\d/) {245

push(@second_data, $line);246

$line = <DATA>;247

}248

249

if ($#first_data < $#second_data) {250

251

#it’s easier to add the shorter to the longer252

my @temp = @first_data;253

@first_data = @second_data;254

@second_data = @temp;255

256

@temp = @ftitle;257

@ftitle = @stitle;258

@stitle = @temp;259

260

$temp = $fkey;261

$fkey = $skey;262

$skey = $temp;263

264

$temp = $fconst;265

$fconst = $sconst;266

$sconst = $temp;267

}268

269

$first_max = (split / +/, $first_data[$#first_data])[1];270

$second_max = (split / +/, $second_data[$#second_data])[1];271

chomp($first_max);272

chomp($second_max);273

$first_min = (split / +/, $first_data[0])[1];274

$second_min = (split / +/, $second_data[0])[1];275

chomp($first_min);276

160

chomp($second_min);277

278

#print "First max = $first_max Second max = $second_max fmin = $first_min smin = $second_min\n";279

#print "Data first = $#first_data Data second = $#second_data\n";280

#print "last = $first_data[$#first_data]";281

my $s = 0;282

my @sl = split / +/, $second_data[$s];283

my $si = $sl[1];284

285

($fe, $fw) = split /:/, $ftitle[5];286

($se, $sw) = split /:/, $stitle[5];287

288

#if the stream hasn’t been a weight yet, then initialize it with 1289

$fw = 1.0 if ($fw eq "");290

$sw = 1.0 if ($sw eq "");291

292

my $fbase = ‘basename $ftitle[3]‘;293

chomp($fbase);294

295

#$fbase =~ s/_[\d]+$//g;296

my $sbase = ‘basename $stitle[3]‘;297

chomp($sbase);298

299

#$sbase =~ s/_[\d]+$//g;300

301

my $title_new;302

my $new_weight;303

if ($fconst * $sconst > 0) {304

305

#we’re adding streams306

if (length $fbase < length $sbase) {307

$title_new = "$fbase";308

}309

else {310

$title_new = "$sbase";311

}312

313

#the weight of the product stream will be314

#the sum of the weights from the input streams,315

#each scaled by a constant316

$new_weight = $fw * $fconst + $sw * $sconst;317

$fconst *= $fw / $new_weight;318

$sconst *= $sw / $new_weight;319

}320

else {321

322

#we’re subtracting streams323

324

#$title_new = "${fconst}x${fbase}-${sconst}x${sbase}";325

my $ffactor;326

if (abs($fconst + 1) < 1e-5) {327

328

-1329

$ffactor = "-";330

}331

elsif (abs($fconst - 1) < 1e-5) {332

333

+1334

$ffactor = "";335

}336

else {337

$ffactor = "$fconst";338

}339

my $sfactor;340

if (abs($sconst + 1) < 1e-5) {341

342

-1343

161

$sfactor = "-";344

}345

elsif (abs($sconst - 1) < 1e-5) {346

347

+1348

$sfactor = "";349

}350

else {351

$sfactor = "$sconst";352

}353

354

#normalize the weights now355

$new_weight = $fw + $sw;356

$title_new = "$fbase:${ffactor}A+${sfactor}B";357

$title_new =~ s/A\+\-B/A\-B/;358

$title_new =~ s/-A\+B/B\-A/;359

}360

361

my $e_new = sprintf "%-.10f", ($fconst * $fe + $sconst * $se);362

363

#printf " E_New: $fconst * $fe + $sconst * $se = $e_new\n";364

$e_new .= ":$new_weight";365

366

$newdata .= sprintf "#%19s %20s %20s %40s", "dt=$ftitle[2]", "$title_new",367

"E=$e_new", "$ftitle[6]=$ftitle[7]";368

369

#printf "#%19s %20s %20s %40s\n", "dt=$ftitle[2]","$ftitle[3]","E=$e_new","$ftitle[6]=$ftitle[7]";370

371

for (my $f = 0 ; $f <= $#first_data ; $f++) {372

@fl = split / +/, $first_data[$f];373

$fi = $fl[1];374

375

my $new;376

377

#num samples378

$new = ($fl[1] + $sl[1]) / 2;379

$newdata .= sprintf "%20s ", $new;380

381

#energy382

$new = $fconst * $fl[2] + $sconst * $sl[2];383

$newdata .= sprintf "%20.10e ", $new;384

if ($f == 0) {385

386

#printf "Energy: %10.5f * (%-20.10f) + %10.5f * (%-20.10f) = %20.10f\n",$fconst, $fl[2], $sconst, $sl[2], $new;387

}388

389

#variance390

$new =391

($fconst * $fl[3]) * ($fconst * $fl[3]) +392

($sconst * $sl[3]) * ($sconst * $sl[3]);393

$newdata .= sprintf "%20.10e ", sqrt($new);394

395

#num samples396

$new = ($fl[4] + $sl[4]) / 2;397

$newdata .= sprintf "%20s ", $new;398

399

$newdata .= sprintf "\n";400

401

#print "Averaging $f:$s $fi with $si\n";402

403

while ($si < $fi && $s <= $#second_data) {404

@sl = split / +/, $second_data[$s];405

$si = $sl[1];406

$s += 1;407

}408

}409

410

162

close(DATA);411

412

$newdata .= "\n\n";413

return $newdata;414

}415

416

sub averageTwo {417

418

#419

This function will look for two plots that represent equilvalent data and can420

be averaged.421

#422

423

my @lines = ‘grep dt plotfile.dat‘;424

chomp(@lines);425

foreach (my $fset = 0 ; $fset < $#lines ; $fset++) {426

@fdata = split /\s+/, $lines[$fset];427

chomp @fdata;428

foreach (my $sset = $fset + 1 ; $sset <= $#lines ; $sset++) {429

@sdata = split /\s+/, $lines[$sset];430

chomp(@sdata);431

432

if ($fdata[4] eq $sdata[4]) {433

print "Average $fdata[2] with $sdata[2]\n";434

my $newdata = operateTwo(1.0, $fdata[4], 1.0, $sdata[4]);435

deleteData($lines[$fset], $lines[$sset]);436

437

open(NEWDATA, ">>plotfile.dat");438

print NEWDATA "$newdata";439

close(NEWDATA);440

return 1;441

}442

}443

}444

return 0;445

}446

447

sub subtractTwo {448

my @lines = ‘grep dt plotfile.dat‘;449

my @keys;450

my @titles;451

foreach $line (@lines) {452

my @data = split / +/, $line;453

chomp @data;454

push(@keys, $data[4]);455

push(@titles, $data[2]);456

}457

@keys = sort byenergy @keys;458

459

my %newdata;460

for (my $i = $#keys ; $i >= 0 ; $i--) {461

$iKey = $keys[$i];462

my @iData = split /&/, $iKey;463

for (my $j = 0 ; $j < $i ; $j++) {464

$jKey = $keys[$j];465

my @jData = split /&/, $jKey;466

next if (!areComparable($iKey, $jKey));467

468

my $temp = 0;469

($iMult, $temp, $jMult) =470

getFormula($iData[2], 0, $jData[2], $orbFilter);471

my $orbsMatch = 0;472

$orbsMatch = 1 if ($iMult * $iData[6] == $jMult * $jData[6]);473

next if ($orbsMatch == 0 && $orbFilter == 1 && $temp == 0);474

475

#the results are not comparable if either is zero476

next if ($iMult == 0 || $jMult == 0);477

163

478

#printf "(%2i,%2i) $iMult x %-60s : $jMult x %-60s\n",$i,$j,$iKey,$jKey;479

#printf "(%2i,%2i) ",$i,$j;480

$key = "";481

$key .= ($iMult > $jMult ? $iMult : $jMult);482

$key .= "x";483

$key .= ($iMult < $jMult ? $iMult : $jMult);484

485

print "Subtracting: $i) $titles[$i] - $j) $titles[$j]\n";486

$newdata{"$key"} .=487

operateTwo($iMult, $iKey, -1.0 * $jMult, $jKey);488

}489

}490

491

return 0 if (scalar keys %newdata == 0);492

493

open(NEWDATA, ">new_plotfile.dat");494

foreach $key (reverse sort keys %newdata) {495

496

#assume that one one with the highest numbers in the formula497

#are the ones we want to print498

print NEWDATA "$newdata{$key}";499

500

#if you want all, commment this line:501

last;502

}503

close(NEWDATA);504

return 0;505

}506

507

if ($useAvg) {508

while (averageTwo()) { }509

}510

511

if ($calcDiff) {512

my $once = 0;513

subtractTwo();514

515

if (-e "new_plotfile.dat") {516

‘mv new_plotfile.dat plotfile.dat‘;517

}518

}519

520

#now it’s time to generate gnuplot gifs521

my @titles;522

my @energies;523

my @dt_values;524

my @keys;525

526

my $all_dt = "";527

my $all_form = "";528

529

#let’s not assume we know what’s in the data files530

my @lines = ‘grep dt plotfile.dat‘;531

chomp(@lines);532

foreach $line (@lines) {533

my @data = split /[=]+/, $line;534

my ($nrg, $num) = split /:/, $data[5];535

536

#print "$line\n";537

printf538

"%-30s: from $num data sets, dt=$data[2], with final energy %20.10e $unitsL\n",539

$data[3], ($nrg * $units);540

541

if ($all_dt eq "") {542

$all_dt = $data[2];543

}544

164

elsif ($all_dt eq "-1") {545

546

}547

elsif ($data[2] ne $all_dt) {548

$all_dt = "-1";549

}550

551

if ($calcDiff) {552

my @td = split /:/, $data[3];553

if ($all_form eq "") {554

$all_form = $td[1];555

}556

elsif ($all_form == -1) {557

558

}559

elsif ("$all_form" ne "$td[1]") {560

$all_form = -1;561

}562

}563

}564

565

my $y_min;566

my $y_max;567

my $y_err;568

open(DAT_FILE, "plotfile.dat");569

my $line = <DAT_FILE>;570

while ($line) {571

chomp $line;572

my @data = split /[=]+/, $line;573

574

if ($line =~ "dt=") {575

push(@energies, "$data[5]");576

push(@dt_values, "$data[2]");577

push(@keys, "$data[6]");578

579

my @td = split /:/, $data[3];580

my $ti = $td[0];581

if ($all_dt == -1 && $data[2] != 0) {582

$ti .= ", dt=$data[2]";583

}584

if ($all_form == -1 && $data[2] != 0) {585

$ti .= ", $td[1]";586

}587

588

my $key = (split / +/, $line)[4];589

my @kd = split /&/, $key;590

591

my $bf = $kd[2];592

my $jw = $kd[3];593

594

$jw =~ s/18,//g;595

$jw =~ s/18//g;596

597

$ti .= sprintf " %3s; %s", $bf, $jw;598

599

push(@titles, "$ti");600

}601

602

$line = <DAT_FILE>;603

604

#Make sure we have the last line in a series605

if ($line !~ /[0-9]/ && "$data[2]" =~ /[0-9]/) {606

$y_err = $data[3];607

if ($data[2] < $y_min || $y_min == 0) {608

$y_min = $data[2];609

$y_min -= $y_err if ($withErr || $#lines == 0);610

}611

165

if ($data[2] > $y_max || $y_max == 0) {612

$y_max = $data[2];613

$y_max += $y_err if ($withErr || $#lines == 0);614

}615

}616

}617

close(DAT_FILE);618

619

$y_min *= $units;620

$y_max *= $units;621

my $intr;622

my $reference;623

if ($calcDiff == 0) {624

625

#make a guess for the stoicheometry626

my $ratio = $y_min / $y_max;627

$intr = int($ratio + 0.5);628

629

#and shift the axis to reflect this630

#we’ll have gnuplot shift the plots631

$y_max *= $intr;632

$reference = $y_min;633

634

if ($shift == 1) {635

$shift = $y_min;636

$y_max = $y_max - $y_min;637

$y_min = 0;638

}639

else {640

$shift = 0;641

}642

}643

else {644

645

since we use shift as a flag and a parameter, we need to646

set to zero before plotting647

$shift = 0;648

}649

650

my $space = $spacef * ($y_min - $y_max);651

$y_min += $space;652

$y_max -= $space;653

654

my $file_name = "qmc";655

my $title_extra = "";656

if ($all_dt != -1 && $all_dt != 0) {657

$title_extra .= ", dt=$all_dt";658

$file_name .= "_$all_dt";659

}660

if ($all_form != -1 && $all_form ne "") {661

$title_extra .= ", $all_form";662

}663

664

my $ylabel = "Energy ($unitsL)";665

my $xindex;666

my $xlabel;667

if ($xtype == 0) {668

$xindex = 4;669

$xlabel = "Num Iterations";670

}671

elsif ($xtype == 1) {672

$xindex = 1;673

$xlabel = "Num Samples";674

}675

elsif ($xtype == 2) {676

$xindex = 4;677

$xlabel = "Time (Hartrees^{-1})";678

166

}679

$file_name .= sprintf "_%i", ($#{titles} + 1);680

$gnuplot .= " -geometry 1280x740"; #this is optimized for Amos’ laptop...681

open(GNUPLOT, "|$gnuplot") or die "Can’t open GNUPLOT= $gnuplot\n";682

683

#open(GNUPLOT, ">gnuplot.gnu") or die "Can’t open GNUPLOT= $gnuplot\n";684

685

if ($i_active) {686

print "Plotting graph $file_name with X11\n";687

688

#print GNUPLOT "set terminal x11 reset persist enhanced font \"Courier-Bold,12\" linewidth 2\n";689

print GNUPLOT690

"set terminal x11 persist raise enhanced font \"Courier-Bold,12\" title \"$file_name\" dashed linewidth 2\n";691

}692

else {693

$file_name .= sprintf "_$d.pdf", ($#{titles} + 1);694

print "Writing graph in: $file_name\n";695

‘/bin/rm -f $file_name‘;696

print GNUPLOT697

"set term pdf color enhanced font \"Courier-Bold,12\" linewidth 7 dashed dl 3 size 17.5,10\n";698

print GNUPLOT "set output \"$file_name\"\n";699

}700

701

print GNUPLOT <<gnuplot_Commands_Done;702

#fonts with extensions "ttf" and "dfont" will work703

#here is a list of available fonts: Chalkboard Helvetica Times704

#Courier Monaco LucidaGrande705

#set term gif crop enhanced font ’Monaco’ 8706

707

#fonts on hive:708

#set term gif crop enhanced font ’VeraMono’ 8709

#set term svg dynamic enhanced font "VeraMono,8"710

set mouse zoomjump711

set size 0.9,1712

713

set nokey714

set key outside below box noenhanced Left reverse715

set yrange[$y_min:$y_max]716

set xrange[0:]717

set title "QMC Runs${title_extra}\\n{/=8${date}}"718

set xlabel "$xlabel"719

set ylabel "$ylabel"720

set grid ytics721

set mytics722

set tics scale 1.5, 0.75723

724

gnuplot_Commands_Done725

726

my $numLC = 11;727

my @goodlt;728

push(@goodlt, 1);729

push(@goodlt, 3);730

push(@goodlt, 5);731

push(@goodlt, 4);732

push(@goodlt, 6);733

push(@goodlt, 7);734

735

my $plotline = "plot ";736

if ($#exact >= 0) {737

for (my $i = 0 ; $i <= $#exact ; $i++) {738

$plotline .= "$exact[$i] title \"$exact_titles[$i]\" with lines,\\\n";739

}740

}741

for (my $i = 0 ; $i <= $#titles ; $i++) {742

my $factor = 1;743

744

if ($calcDiff == 0) {745

167

746

#now we calculate the factor used to indicate stoicheometry747

if (abs($intr * $energies[$i] - $reference / $units) < 0.1748

&& $intr != 1)749

{750

$factor *= $intr;751

$titles[$i] .= " x$factor";752

}753

}754

755

my $xfactor = 1;756

$xfactor = $dt_values[$i] if ($xtype == 2);757

758

my $lt = $goodlt[int($i / $numLC)];759

my $lc = $i % $numLC;760

761

$plotline .=762

" \"plotfile.dat\" index $i every vEvery using (\$$xindex * $xfactor):(\$2*vUnits*$factor-$shift):(\$3*vUnits) lc $lc lt $lt title \"$titles[$i]\"";763

$plotline .= " with yerrorlines";764

765

#$plotline .= ",\\" if($i != $#titles);766

#$plotline .= "\n";767

$plotline .= "," if ($i != $#titles);768

769

}770

my $plotline_noerr = $plotline;771

$plotline_noerr =~ s/yerrorlines/lines/g;772

print GNUPLOT "vEvery = $every\n";773

print GNUPLOT "vUnits = $units\n";774

if ($withErr) {775

print GNUPLOT "$plotline\n";776

}777

else {778

print GNUPLOT "$plotline_noerr\n";779

}780

781

print GNUPLOT "v=0\n";782

print GNUPLOT "bind e ’v=v+1; if(v%2) $plotline; else $plotline_noerr’\n";783

print GNUPLOT "k=0\n";784

print GNUPLOT785

"bind k ’k=k+1; if(k%2) set nokey; replot; else set key; replot’\n";786

print GNUPLOT787

"bind ’-’ ’vEvery=vEvery+5; if(v%2) $plotline; else $plotline_noerr’\n";788

print GNUPLOT789

"bind ’=’ ’vEvery=vEvery-5; if(vEvery < 1) vEvery = 1; if(v%2) $plotline; else $plotline_noerr’\n";790

print GNUPLOT791

"bind ’1’ ’vUnits=1; set yrange [$y_min/$units:$y_max/$units]; if(v%2) $plotline; else $plotline_noerr’\n";792

793

print GNUPLOT "pause mouse button2\n";794

795

#print GNUPLOT "pause -1 ’Hit return to continue’\n";796

#print GNUPLOT "pause -1\n";797

close(GNUPLOT);798

799

#‘/bin/rm $_.dat‘;800

#‘open $file_name‘;801

if ($i_active == 0) {802

‘bash -c \"echo Current directory \" | /usr/bin/mutt -s \"[jastrows] $file_name\" -a $file_name nitroamos\@gmail.com‘;803

‘rm $file_name‘;804

}805

168

F.5 Script: utilities.pl

Finally, we include our script utilities.pl which contains several routines used by our other

scripts. Of particular interest is the routine areComparable which is used to decide whether

two calculations are comparable. Some of the checks are based on what it finds in the

input file, such as time step, but others are based on the file names themselves, which can

be used to store some additional information about the calculation. For example, I might

want to make sure that the last number in the file name, which is usually used as an index,

matches. The routine getFormula is used to guess the stoichiometry of a reaction, and

estimateTimeToFinish can be used to guess how much time remains before a calculation

completes. This function is particularly useful in conjunction with a queue command such

as qstat, since you can submit a job requesting only the amount of time necessary, perhaps

improving the run priority in the queue.

#!/usr/bin/perl1

use POSIX;2

3

sub areComparable {4

5

This function is used by the code to see if two calculations can be compared.6

The script will generate output comparing each result against all other results,7

which add up to quite a few comparisons, most of which are actually meaningless.8

So if they’re meaningless, then return 0. You’ll probably want to edit this function9

to choose your own comparisons.10

#11

The input is from summary.pl, where each a key is created for each calculation:12

my $key = "$refE&$dt&$numbf&$numjw&$nw&$numci&$numor&$oepi&$short";13

#14

my ($one, $two) = @_;15

my @od = split /&/, $one;16

my @td = split /&/, $two;17

18

return 019

if (20

$od[0] == $td[0] || #compare energies21

$od[1] != $td[1] || #compare dt22

$od[4] != $td[4] || #compare num walkers23

$od[7] != $td[7]24

); #compare oepi25

26

#make sure the jastrows are comparable27

return 0 if ($od[3] =~ /44/ && $td[3] !~ /44/);28

return 0 if ($od[3] !~ /44/ && $td[3] =~ /44/);29

30

#the files are named something like awt0p2, so extract the letter after the 0 (or 4),31

#p in this case, and make sure they match32

my $oType = "";33

my $tType = "";34

$oType = $1 if ($od[8] =~ /t\d(\w)/);35

$tType = $1 if ($td[8] =~ /t\d(\w)/);36

37

#this probably needs to be turned off for atomization energies38

return 0 if ($oType ne $tType);39

40

#make sure the last number in the file matches41

169

#This only makes a difference if we didn’t average over the results.42

my $oLast = "";43

my $tLast = "";44

$oLast = $1 if ($od[8] =~ /([\d\.]+)$/);45

$tLast = $1 if ($td[8] =~ /([\d\.]+)$/);46

47

#return 0 if($oLast ne $tLast);48

49

return 1;50

}51

52

#alphabet first, numerical second53

sub a1n2 {54

my @adata = split /&/, $a;55

my @bdata = split /&/, $b;56

$bdata[1] <=> $adata[1];57

if ($adata[0] eq $bdata[0]) {58

if ($adata[3] eq $bdata[3]) {59

$bdata[1] cmp $adata[1];60

}61

else {62

$adata[3] <=> $bdata[3];63

}64

}65

else {66

$bdata[0] cmp $adata[0];67

}68

}69

70

sub a2n3 {71

my @adata = split /&/, $a;72

my @bdata = split /&/, $b;73

if ($adata[0] eq $bdata[0]) {74

if ($adata[5] eq $bdata[5]) {75

76

#sort by opt iter77

$bdata[1] <=> $adata[1];78

}79

else {80

81

#sort by reference energy82

$adata[5] cmp $bdata[5];83

}84

}85

else {86

87

#Sort by jastrow type (e.g. s, t, UC, etc)88

$bdata[0] cmp $adata[0];89

}90

}91

92

sub byenergy {93

my @adata = split /&/, $a;94

my @bdata = split /&/, $b;95

if ($adata[0] != $bdata[0]) {96

$bdata[0] <=> $adata[0];97

}98

else {99

$bdata[1] <=> $adata[1];100

}101

}102

103

sub bydt {104

my @adata = split /&/, $a;105

my @bdata = split /&/, $b;106

if ($adata[1] != $bdata[1]) {107

108

170

#compare dt109

$bdata[1] <=> $adata[1];110

}111

else {112

113

#compare energies114

$bdata[0] <=> $adata[0];115

}116

}117

118

sub gcf {119

my ($x, $y) = @_;120

($x, $y) = ($y, $x % $y) while $y;121

return $x;122

}123

124

sub getEnergyWError {125

my ($nrg, $err) = @_;126

my $str = "";127

if (abs($err) == 0) {128

$str = "$nrg";129

}130

else {131

my $d = 1 - int(floor(log($err) / log(10.0)));132

my $energy = floor($nrg * pow(10.0, $d) + 0.5) / pow(10.0, $d);133

$str = sprintf "%.*f", $d, $energy;134

my $error = floor($err * pow(10.0, $d) + 0.5);135

$str = "$str($error)";136

}137

138

#printf("nrg=%10.5f err=%10.5f d=%3i energy=%20f str=%s\n",$nrg,$err,$d,$energy,$str);139

return $str;140

}141

142

sub getFormula {143

my ($a, $b, $c, $orbFilter) = @_;144

my $am = $c;145

my $bm = $b;146

my $cm = $a;147

148

my $factor = 100;149

while ($factor != 1) {150

$factor = gcf($am, $cm);151

152

#print "gcf($ar,$cr) = $factor\n";153

$am /= $factor;154

$cm /= $factor;155

}156

157

if ($am == int($am)158

&& $cm == int($cm)159

&& $am < 10160

&& $cm < 10)161

{162

163

#return (0,0) if($ar*$cd[6] != $cr*$ad[6] &&164

$arbFilter);165

#print "($a, 0, $c) => ($am, 0, $cm)\n";166

return ($am, 0, $cm);167

}168

169

my $maxF = 6;170

for ($am = 1 ; $am <= $maxF ; $am += 1) {171

for ($bm = 1 ; $bm <= $maxF ; $bm += 1) {172

for ($cm = 1 ; $cm <= $maxF ; $cm += 1) {173

if ($am * $a + $bm * $b == $cm * $c) {174

175

171

#print "($a, $b, $c) => ($am, $bm, $cm)\n";176

return ($am, $bm, $cm);177

}178

}179

}180

}181

182

return (0, 0, 0);183

}184

185

sub getFileAge {186

my ($file, $abstime) = @_;187

my $curTime = qx! date +%s !;188

my $data = ‘/bin/ls -lh --time-style=+%s $file‘;189

my @list = split / +/, $data;190

$outSize = $list[4];191

my $outModTime = $curTime - $list[5];192

193

return $outModTime if ($abstime == 1);194

$char = " ";195

196

if ($outModTime > 3600) {197

$outModTime /= 3600;198

$char = "h";199

if ($outModTime > 24) {200

$outModTime /= 24;201

$char = "d";202

}203

}204

if ($char eq " ") {205

$outModTime = sprintf "%5.0f $char", $outModTime;206

}207

else {208

$outModTime = sprintf "%5.1f $char", $outModTime;209

}210

211

#$outModTime .= sprintf " %3s", $list[5];212

#$outModTime .= sprintf " %2s", $list[6];213

#$outModTime .= sprintf " %5s", $list[7];214

return $outModTime;215

}216

217

sub estimateTimeToFinish {218

my ($outfile, $time) = @_;219

return 0 if (!(-e $outfile));220

my $base = substr($outfile, 0, -4);221

@newsteps = ‘grep "new steps" $outfile‘;222

223

my $equilSteps = 0;224

my $totalSteps = 0;225

if ($#newsteps < 0) {226

open(CKMFFILE, "${base}.ckmf");227

while (<CKMFFILE>) {228

if ($_ =~ m/^\s*max_time_steps\s*$/) {229

$_ = <CKMFFILE>;230

chomp;231

my @line = split /[]+/;232

$totalSteps += $line[1];233

}234

if ($_ =~ m/^\s*equilibration_steps\s*$/) {235

$_ = <CKMFFILE>;236

chomp;237

my @line = split /[]+/;238

$equilSteps = $line[1];239

240

#$totalSteps += $line[1];241

}242

172

}243

}244

else {245

$totalSteps = (split /\s+/, $newsteps[$#newsteps])[12];246

}247

248

@itertime = ‘grep "Average iterations per hour:" $outfile‘;249

my $curIter = (split /\s+/, ‘tail -n 1 ${base}.qmc‘)[1];250

$curIter += $equilSteps if ($curIter <= 0);251

252

my $itersPerHour = 0;253

if ($#itertime < 0 && $time != 0) {254

$itersPerHour = $curIter / $time;255

$itersPerHour *= 3600;256

}257

elsif ($#itertime >= 0) {258

my $shift = $#itertime;259

260

#the correlated sampling phase runs faster per iteration, and we assume that we’re currently261

#in the longer phase, so we want to look back 2 iterations262

$shift -= 1 if ($shift > 0);263

$itersPerHour = (split /\s+/, $itertime[$shift])[4];264

}265

else {266

return "0:0";267

}268

return "0" if ($itersPerHour == 0);269

my $est = ($totalSteps - $curIter) / $itersPerHour;270

my $hrs = int($est);271

my $mns = int(($est - $hrs) * 60.0 + 0.5);272

if ($mns < 10) {273

$mns = "0$mns";274

}275

276

#print "$est => hrs = $hrs mns = $mns\n";277

#print "totalSteps = $totalSteps curiter = $curIter itertime = $itersPerHour est = $est\n";278

return "${hrs}:${mns}";279

}280

281

sub getOPTHeader {282

return "IDUE3L";283

}284

285

sub getCKMFHeader {286

my $header = sprintf "%69s%5s\n", "", " CUUN";287

288

$header .= sprintf "%-30s %2s O %3s %11s %1s %-7s %-7s %6s %-15s %8s %8s\n",289

"Name", " ", "NW", "EQ/Steps", "e", "dt", "nci:nbf",290

getOPTHeader(),291

"HF", "Age", "Size";292

return $header;293

}294

295

sub getCKMFSummary {296

my ($ckmf) = @_;297

298

$base = substr($ckmf, 0, -5);299

my $dirname = ‘dirname $base‘;300

chomp($dirname);301

my $shortbase = ‘basename $base‘;302

303

if ($dirname eq ".") {304

305

}306

else {307

my $nextbase = ‘basename $dirname‘;308

chomp($nextbase);309

173

$shortbase = "$nextbase/$shortbase";310

}311

312

chomp($shortbase);313

open(CKMFFILE, "$ckmf");314

315

while (<CKMFFILE> !~ /&flags/) { }316

$rt = "";317

$numbf = 0;318

$numci = 0;319

$hfe = "";320

$nw = 0;321

$dt = 0;322

$steps = 0;323

$eqsteps = 0;324

$iseed = 0;325

$oepi = 0;326

327

$opt = 0;328

$optl = 0;329

$optci = 0;330

$opt3 = 0;331

$optUD = 0;332

$optUU = 0;333

$optNE = 0;334

while (<CKMFFILE>) {335

336

if ($_ =~ m/^\s*run_type\s*$/) {337

$_ = <CKMFFILE>;338

chomp;339

my @line = split /[]+/;340

$rt = $line[1];341

}342

if ($_ =~ m/^\s*energy\s*$/) {343

$_ = <CKMFFILE>;344

chomp;345

my @line = split /[]+/;346

$hfe = $line[1];347

}348

if ($_ =~ m/^\s*nbasisfunc\s*$/) {349

$_ = <CKMFFILE>;350

chomp;351

my @line = split /[]+/;352

$numbf = $line[1];353

}354

if ($_ =~ m/^\s*ndeterminants\s*$/) {355

$_ = <CKMFFILE>;356

chomp;357

my @line = split /[]+/;358

$numci = $line[1];359

}360

if ($_ =~ m/^\s*dt\s*$/) {361

$_ = <CKMFFILE>;362

chomp;363

my @line = split /[]+/;364

$dt = $line[1];365

}366

if ($_ =~ m/^\s*one_e_per_iter\s*$/) {367

$_ = <CKMFFILE>;368

chomp;369

my @line = split /[]+/;370

$oepi = $line[1];371

}372

if ($_ =~ m/^\s*number_of_walkers\s*$/) {373

$_ = <CKMFFILE>;374

chomp;375

my @line = split /[]+/;376

174

$nw = $line[1];377

}378

if ($_ =~ m/^\s*optimize_Psi\s*$/) {379

$_ = <CKMFFILE>;380

chomp;381

my @line = split /[]+/;382

$opt = $line[1];383

}384

if ($_ =~ m/^\s*optimize_L\s*$/) {385

$_ = <CKMFFILE>;386

chomp;387

my @line = split /[]+/;388

$optl = $line[1];389

}390

if ($_ =~ m/^\s*optimize_EE_Jastrows\s*$/) {391

$_ = <CKMFFILE>;392

chomp;393

my @line = split /[]+/;394

$optUU = $line[1];395

$optUD = $line[1];396

}397

if ($_ =~ m/^\s*optimize_EN_Jastrows\s*$/) {398

$_ = <CKMFFILE>;399

chomp;400

my @line = split /[]+/;401

$optNE = $line[1];402

}403

if ($_ =~ m/^\s*optimize_UD_Jastrows\s*$/) {404

$_ = <CKMFFILE>;405

chomp;406

my @line = split /[]+/;407

$optUD = $line[1];408

}409

if ($_ =~ m/^\s*optimize_UU_Jastrows\s*$/) {410

$_ = <CKMFFILE>;411

chomp;412

my @line = split /[]+/;413

$optUU = $line[1];414

}415

if ($_ =~ m/^\s*optimize_CI\s*$/) {416

$_ = <CKMFFILE>;417

chomp;418

my @line = split /[]+/;419

$optci = $line[1];420

}421

if ($_ =~ m/^\s*optimize_NEE_Jastrows\s*$/) {422

$_ = <CKMFFILE>;423

chomp;424

my @line = split /[]+/;425

$opt3 = $line[1];426

}427

if ($_ =~ m/^\s*max_time_steps\s*$/) {428

$_ = <CKMFFILE>;429

chomp;430

my @line = split /[]+/;431

$steps = $line[1];432

}433

if ($_ =~ m/^\s*equilibration_steps\s*$/) {434

$_ = <CKMFFILE>;435

chomp;436

my @line = split /[]+/;437

$eqsteps = $line[1];438

}439

if ($_ =~ m/^\s*iseed\s*$/) {440

$_ = <CKMFFILE>;441

chomp;442

my @line = split /[]+/;443

175

$iseed = $line[1];444

}445

446

#any other interesting parameters?447

#if($ARGV[0] != "" && $_ =~ m/$ARGV[0]/ && $_ !~ /\#/){448

$name = $_;449

chomp $name;450

$_ = <CKMFFILE>;451

chomp;452

my @line = split/[]+/;453

$val = $line[1];454

$searchdata .= sprintf "%20s: %30s = %30s\n", "", $name, $val;455

#}456

if ($_ =~ m/&geometry$/) {457

last;458

}459

}460

461

if ($rt eq "variational") {462

$rt = "v";463

}464

elsif ($rt = "diffusion") {465

$rt = "d";466

}467

468

my $outModTime = "";469

my $outSize = "";470

my $ovData = "";471

my $failed = 0;472

473

if (-e "$base.out") {474

$outModTime = getFileAge("$base.out", 0);475

}476

477

if (-e "$base.out" && $opt) {478

$data = ‘grep failed $base.out‘;479

$failed = 1 if (length($data) > 0);480

481

if ($failed == 1) {482

$outModTime .= "*";483

}484

else {485

$outModTime .= " ";486

}487

488

@list = ‘grep "Objective Value" $base.out‘;489

$ovData = $list[$#list];490

chomp($ovData);491

492

@list = split /[=]+/, $ovData;493

$ovData = "";494

if ($#list == 9) {495

$ovData .= sprintf "%2i", $list[1];496

$ovData .= sprintf " %15.10f", $list[5];497

$ovData .= sprintf " %8.5f", $list[7];498

$ovData .= sprintf " %10s", $list[9];499

}500

501

@newsteps = ‘grep "new steps" $base.out‘;502

my $curSteps = $steps;503

if ($#newsteps >= 0) {504

$curSteps = (split /\s+/, $newsteps[$#newsteps])[12];505

}506

$ovData .= sprintf " %10s", $curSteps;507

}508

509

$steps_str = "";510

176

if ($steps >= 1000 * 1000 * 1000) {511

$steps /= int(1000 * 1000 * 1000);512

$steps_str = sprintf "%2.1fB", ${steps};513

}514

elsif ($steps >= 1000 * 1000) {515

$steps /= int(1000 * 1000);516

$steps_str = sprintf "%2.1fM", ${steps};517

}518

elsif ($steps >= 1000) {519

$steps /= int(1000);520

$steps_str = sprintf "%2.1fK", ${steps};521

}522

else {523

$steps_str = "$steps";524

}525

526

$eqsteps_str = "";527

if ($eqsteps >= 1000 * 1000 * 1000) {528

$eqsteps /= int(1000 * 1000 * 1000);529

$eqsteps_str = sprintf "%2.1fB", ${eqsteps};530

}531

elsif ($eqsteps >= 1000 * 1000) {532

$eqsteps /= int(1000 * 1000);533

$eqsteps_str = sprintf "%2.1fM", ${eqsteps};534

}535

elsif ($eqsteps >= 1000) {536

$eqsteps /= int(1000);537

$eqsteps_str = sprintf "%2.1fK", ${eqsteps};538

}539

else {540

$eqsteps_str = "$eqsteps";541

}542

543

my $oneliner = "";544

$oneliner .=545

sprintf546

"%-30s %2s %1i %3i %5s/%-5s %1s %-7s %3i:%-3s %1i%1i%1i%1i%1i%1i %-15s",547

$shortbase, $rt, $opt,548

$nw, $eqsteps_str, $steps_str,549

$oepi, $dt,550

${numci}, ${numbf},551

$optci, $optUD, $optUU, $optNE, $opt3, $optl, $hfe;552

$oneliner .= sprintf " %10s", $outModTime;553

$oneliner .= sprintf " %7s", $outSize;554

$oneliner .= sprintf " %50s", $ovData;555

if ($iseed != 0) {556

$oneliner .= sprintf " iseed = $iseed";557

}558

$oneliner .= sprintf "\n";559

560

close(CKMFFILE);561

return $oneliner;562

}563

564

sub getEnergies {565

my ($filename, $energies) = @_;566

open(FILE, "$filename");567

568

$more = 1;569

while (<FILE>) {570

$sampleclock = (split /[]+/)[8]571

if (/Average microseconds per sample per num initial walkers/);572

$sampleVar = (split /[]+/)[3]573

if (/Sample variance/ && $sampleVar == 0);574

575

#this is to avoid processing warnings576

next if ($_ =~ /[=:]/ && $_ !~ /Results/);577

177

578

chomp;579

@data = split /[]+/;580

581

#this is the number of data elements per line582

#it can have the letter ’e’ or ’E’ since scientific notation uses them583

if ($#data >= 8 && $_ !~ /[A-DF-Za-df-z]+/ && $more) {584

$counter++;585

$iteration = $data[1];586

$eavg = $data[2];587

$estd = $data[3];588

if (abs($eavg) > 1e-10) {589

push(@$energies, $eavg);590

}591

}592

elsif (/Results/) {593

594

#$more = 0;595

}596

}597

close(FILE);598

}599

600

this function will fill in the files array with601

all files that have the extension ext. there are602

a few known directories it will not descend into603

sub getFileList {604

my ($ext, $files) = @_;605

606

#this will scan through all the subdirectories in the $files array looking for $ext files607

my $clean = 0;608

my $loops = 0;609

while ($clean == 0) {610

$loops++;611

$clean = 1;612

my @newfiles;613

614

for (my $index = 0 ; $index <= $#$files ; $index++) {615

my $cur = ${@$files}[$index];616

chomp($cur);617

618

#there are some obvious directories we don’t need to search.619

#we also don’t look in folders that end in ’hide’, unless it was specified on the command line620

if (-d $cur621

&& $cur !~ /src$/622

&& $cur !~ /bin$/623

&& $cur !~ /include$/624

&& ($cur !~ /hide$/ || $loops <= 1))625

{626

my @list = ‘ls $cur‘;627

foreach $item (@list) {628

629

#we have a directory in the list, so we’re going to need to loop again630

$clean = 0;631

chomp($item);632

if ($cur eq ".") {633

push(@newfiles, "$item");634

}635

else {636

push(@newfiles, "$cur/$item");637

}638

}639

}640

elsif ($cur =~ /$ext$/641

&& $cur !~ /.step[\d]+./642

&& $cur !~ /.opt[\d]+./)643

{644

178

645

#turn all // in file paths to just one /646

$cur =~ s/\/\//\//;647

push(@newfiles, $cur);648

}649

}650

@$files = @newfiles;651

652

if ($loops > 8) {653

print "Stopping recursion at $loops.\n";654

}655

}656

}657

1;658

179

Bibliography

[1] C. J. Umrigar, M. P. Nightingale, and K. J. Runge. A diffusion monte carlo algorithm

with very small time-step errors. The Journal of Chemical Physics, 99(4):2865–2890,

1993.

[2] P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester. Fixed-node Quantum

Monte Carlo for molecules. Journal of Chemical Physics, 77(11):5593–5603, 1982.

[3] D. M. Ceperley and B. J. Alder. Quantum Monte Carlo. Science, 231(4738):555–560,

1986.

[4] Amos G Anderson, Dan Fisher, Mike Feldmann, and David R Kent. Qmcbeaver, 2009.

URL: http://qmcbeaver.sourceforge.net.

[5] M. N. Ringnalda, J.-M. Langlois, R. B. Murphy, B. H. Greeley, C. Cortis, T. V. Russo,

B. Marten, R. E. Donnelly, Jr., W. T. Pollard, Y. Cao, R. P. Muller, D. T. Mainz,

J. R. Wright, G. H. Miller, W. A. Goddard III, and R. A. Friesner. Jaguar v7.5, 2008.

[6] Michael W. Schmidt, Kim K. Baldridge, Jerry A. Boatz, Steven T. Elbert, Mark S.

Gordon, Jan H. Jensen, Shiro Koseki, Nikita Matsunaga, Kiet A. Nguyen, Shujun Su,

Theresa L. Windus, Michel Dupuis, and John A. Montgomery Jr. General atomic

and molecular electronic structure system. Journal of Computational Chemistry,

14(11):1347–1363, 1993.

[7] Brett M. Bode and Mark S. Gordon. Macmolplt: a graphical user interface for gamess.

Journal of Molecular Graphics and Modelling, 16(3):133 – 138, 1998.

[8] Matt Pharr, editor. GPU Gems 2. Addison-Wesley, 2005.

[9] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. Gpu cluster for high

performance computing. In Proc. of ACM/IEEE Superc. Conf., page 47, 2004.

180

[10] J. Georgii and R. Westermann. A multigrid framework for real-time simulation of

deformable bodies. Computers & Graphics, 30(3), 2006.

[11] Dominik Göddeke, Robert Strzodka, and Stefan Turek. Accelerating double precision

fem simulations with gpus. In Proc. of ASIM 2005, pages 139–144, 2005.

[12] Nico Galoppo, Naga K. Govindaraju, Michael Henson, and Dinesh Manocha. Lu-gpu:

Efficient algorithms for solving dense linear systems on graphics hardware. In Proc.

of ACM/IEEE Superc. Conf., page 3, Washington, DC, USA, 2005. IEEE Computer

Society.

[13] nVidia. Compute unified device architecture. http://developer.nvidia.com/cuda.

[14] Naga K. Govindaraju, Scott Larsen, Jim Gray, and Dinesh Manocha. A memory model

for scientific algorithms on graphics processors. In Proc. of ACM/IEEE Superc. Conf.,

Washington, DC, USA, 2006. IEEE Computer Society.

[15] C. Jiang and M. Snir. Automatic tuning matrix multiplication performance on graphics

hardware. PACT’05, pages 185–196, 2005.

[16] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency of gpu

algorithms for matrix-matrix multiplication. In Proc. of ACM/EG Conf. on Graph.

HW, pages 133–137, 2004.

[17] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. Sparse matrix solvers on

the gpu: conjugate gradients and multigrid. ACM Trans. Graph., 22(3):917–924, 2003.

[18] J. D. Hall, N. A. Carr, and J. C. Hart. Cache and Bandwidth Aware Matrix Multipli-

cation on the GPU. Technical Report UIUCDCS-R-2003-2328, University of Illinois,

2003.

[19] Jens Krüger and Rüdiger Westermann. Linear algebra operators for gpu implementa-

tion of numerical algorithms. ACM Trans. Graph., 22(3):908–916, 2003.

[20] Á. Moravánszky. Dense matrix algebra on the gpu, 2003. NovodeX AG.

[21] S. Larsen and D. McAllister. Fast matrix multiplies using graphics hardware, 2001.

181

[22] Nolan Goodnight, Cliff Woolley, Gregory Lewin, David Luebke, and Greg Humphreys.

A multigrid solver for boundary value problems using programmable graphics hard-

ware. In Proc. of ACM/EG Conf. on Graph. HW, pages 102–111, 2003.

[23] F. Xu and K. Mueller. Accelerating popular tomographic reconstruction algorithms on

commodity pc graphics hardware. In Proc. of ACM/IEEE Superc. Conf., volume 52,

pages 654–663, 2005.

[24] P. A. Heng J. Q. Wang, T. T. Wong and C. S. Leung. Discrete wavelet transform on

gpu. In ACM Workshop on GPGPU, 2004.

[25] Kenneth Moreland and Edward Angel. The fft on a gpu. In Proc. of ACM/EG Conf.

on Graph. HW, pages 112–119, 2003.

[26] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger, Aaron E.

Lefohn, and Timothy J. Purcell. A survey of general-purpose computation on graphics

hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[27] David Luebke, Mark Harris, Jens Krüger, Tim Purcell, Naga Govindaraju, Ian Buck,

Cliff Woolley, and Aaron Lefohn. Gpgpu: general purpose computation on graphics

hardware. In Course Notes, 2004.

[28] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-

rahan. Brook for gpus: Stream computing on graphics hardware. In Proc. of ACM

SIGGRAPH, 2004.

[29] Michael McCool and Stefanus Du Toit. Metaprogramming GPUs with Sh. AK Peters,

Ltd., 2004.

[30] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equa-

tion of state calculations by fast computing machines. Journal of Chemical Physics,

21:1087, 1953.

[31] C. J. Umrigar, M. P. Nightingale, and K. J. Runge. A diffusion Monte Carlo algorithm

with very small time-step errors. Journal of Chemical Physics, 99(4):2865–2890, 1993.

[32] AJ Williamson, R.Q. Hood, and JC Grossman. Linear-Scaling Quantum Monte Carlo

Calculations. Physical Review Letters, 87(24):246406, 2001.

182

[33] A. Aspuru-Guzik, R. Salomon-Ferrer, B. Austin, and W.A. Lester. A sparse algorithm

for the evaluation of the local energy in quantum Monte Carlo. Journal of Computa-

tional Chemistry, 26(7):708–715, 2005.

[34] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical opti-

mization of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

[35] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software.

In Proc. of ACM/IEEE Superc. Conf., 1998.

[36] S. Huzinaga, E. Miyoshi, and M. Sekiya. A method of generating an effective or-

bital set for configuration interaction calculations. The Journal of Chemical Physics,

100(2):1435–1439, 1994.

[37] C. Schwartz. Experiment and theory in computations of the he atom ground state.

Int. J. of Mod. Phys., 15(4):877–888, 2006.

[38] David E. Woon and Jr. Thom H. Dunning. Gaussian basis sets for use in correlated

molecular calculations. v. core-valence basis sets for boron through neon. The Journal

of Chemical Physics, 103(11):4572–4585, 1995.

[39] Attila G. Csaszar, Wesley D. Allen, and Henry F. Schaefer III. In pursuit of the

ab initio limit for conformational energy prototypes. Journal of Chemical Physics,

108(23):9751–9764, 1998.

[40] K. E. Hillesland and A. Lastra. Gpu floating-point paranoia. In GP2, pages C–8, 2004.

[41] W. Kahan. Pracniques: Further remarks on reducing truncation errors. Com. of the

ACM, 8(1):40–40, 1965.

[42] David Goldberg. What every computer scientist should know about floating-point

arithmetic. ACM Comput. Surv., 23(1):5–48, 1991.

[43] Donald E. Knuth. The art of computer programming, volume 2 (3rd ed.): seminumer-

ical algorithms. Addison-Wesley, 1997.

[44] John Michael McNamee. A comparison of methods for accurate summation. SIGSAM

Bull., 38(1):1–7, 2004.

183

[45] T. J. Dekker. A floating point technique for extending the available precision. Nu-

merische Mathematik, 18(3):224–242, 1971.

[46] A. Aspuru-Guzik, O. El Akramine, J.C. Grossman, and W.A. Lester Jr. Quantum

Monte Carlo for electronic excitations of free-base porphyrin. Journal of Chemical

Physics, 120(7):3049–3050, 2004.

[47] J.L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31(5):532–

533, 1988.

[48] Frank W. Bobrowicz and William A. Goddard, III. The self-consistent field equations

for generalized valence bond and open-shell Hartree-Fock wave functions. In Henry F.

Schaefer, III, editor, Methods of Electronic Structure Theory, volume 3 of Modern

Theoretical Chemistry, page 79. Plenum Press, New York, 1977.

[49] N. D. Drummond, M. D. Towler, and R. J. Needs. Jastrow correlation factor for atoms,

molecules, and solids. Phys. Rev. B, 70(23):235119, Dec 2004.

[50] Julien Toulouse and C. J. Umrigar. Optimization of quantum monte carlo wave func-

tions by energy minimization. The Journal of Chemical Physics, 126(8):084102, 2007.

[51] Roland Assaraf, Michel Caffarel, and Anatole Khelif. Diffusion monte carlo methods

with a fixed number of walkers. Phys. Rev. E, 61(4):4566–4575, Apr 2000.

[52] Michael W. Schmidt and Mark S. Gordon. The construction and interpretation of

mcscf wavefunctions. Annual Review of Physical Chemistry, 49(1):233–266, 1998.

[53] Jean-Marc Langlois, Terumasa Yamasaki, Richard P. Muller, and William A. III God-

dard. Rule-based trial wave functions for generalized valence bond theory. The Journal

of Physical Chemistry, 98(51):13498–13505, 1994.

[54] Robert B. Murphy, Richard A. Friesner, Murco N. Ringnalda, and William A. Goddard

III. Pseudospectral contracted configuration interaction from a generalized valence

bond reference. The Journal of Chemical Physics, 101(4):2986–2994, 1994.

[55] Amos G. Anderson, William A. Goddard III, and Peter Schrder. Quantum monte carlo

on graphical processing units. Computer Physics Communications, 177(3):298 – 306,

2007.

184

[56] David Feller. The role of databases in support of computational chemistry calculations.

Journal of Computational Chemistry, 17(13):1571–1586, 1996.

[57] Karen L. Schuchardt, Brett T. Didier, Todd Elsethagen, Lisong Sun, Vidhya Guru-

moorthi, Jared Chase, Jun Li, and Theresa L. Windus. Basis set exchange: A com-

munity database for computational sciences. Journal of Chemical Information and

Modeling, 47(3):1045–1052, 2007.

[58] Kirk A. Peterson and Jr. Thom H. Dunning. Accurate correlation consistent basis sets

for molecular core–valence correlation effects: The second row atoms al–ar, and the

first row atoms b–ne revisited. The Journal of Chemical Physics, 117(23):10548–10560,

2002.

[59] Piotr Piecuch, Stanislaw A. Kucharski, Karol Kowalski, and Monika Musial. Efficient

computer implementation of the renormalized coupled-cluster methods: The r-ccsd[t],

r-ccsd(t), cr-ccsd[t], and cr-ccsd(t) approaches. Computer Physics Communications,

149(2):71 – 96, 2002.

[60] Yan Zhao and Donald G. Truhlar. Density functionals with broad applicability in

chemistry. Accounts of Chemical Research, 41(2):157–167, 2008.

[61] Daniel R. Fisher, David R. Kent IV, Michael T. Feldmann, and William A. Goddard

III. An optimized initialization algorithm to ensure accuracy in quantum monte carlo

calculations. Journal of Computational Chemistry, 29(14):2335–2343, 2008.

[62] A. Ma, M. D. Towler, N. D. Drummond, and R. J. Needs. Scheme for adding electron–

nucleus cusps to gaussian orbitals. The Journal of Chemical Physics, 122(22):224322,

2005.

[63] Michael T. Feldmann, Julian C. Cummings, David R. Kent IV, Richard P. Muller,

and William A. Goddard III. Manager-worker-based model for the parallelization

of quantum monte carlo on heterogeneous and homogeneous networks. Journal of

Computational Chemistry, 29(1):8–16, 2008.

[64] David R. Kent IV, Richard P. Muller, Amos G. Anderson, William A. Goddard III,

and Michael T. Feldmann. Efficient algorithm for “on-the-fly” error analysis of local or

185

distributed serially correlated data. Journal of Computational Chemistry, 28(14):2309–

2316, 2007.

[65] Per Jensen and P. R. Bunker. The potential surface and stretching frequencies of X̃ 3b1

methylene (ch2) determined from experiment using the morse oscillator-rigid bender

internal dynamics hamiltonian. The Journal of Chemical Physics, 89(3):1327–1332,

1988.

[66] J. P. Gu, G. Hirsch, R. J. Buenker, M. Brumm, G. Osmann, P. R. Bunker, and

P. Jensen. A theoretical study of the absorption spectrum of singlet ch2. Journal

of Molecular Structure, 517-518:247 – 264, 2000.

[67] Tibor Furtenbacher, Gbor Czak, Brian T. Sutcliffe, Attila G. Csszr, and Viktor Sza-

lay. The methylene saga continues: Stretching fundamentals and zero-point energy

of ch2. Journal of Molecular Structure, 780-781:283 – 294, 2006. Spectroscopic and

Theoretical Determination of Molecular Properties - Spectroscopic and Theoretical De-

termination of Molecular Properties: - A Collection of Invited Papers in Honor of Dr.

Jean Demaison.

[68] Hrvoje Petek, David J. Nesbitt, David C. Darwin, Peter R. Ogilby, C. Bradley Moore,

and D. A. Ramsay. Analysis of ch2 ã 1a1 (1,0,0) and (0,0,1) coriolis-coupled states, ã
1a1–X̃ 3b1 spin–orbit coupling, and the equilibrium structure of ch2 ã 1a1 state. The

Journal of Chemical Physics, 91(11):6566–6578, 1989.

[69] A Kalemos, TH Dunning, A Mavridis, and JF Harrison. CH2 revisited. CANADIAN

JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 82(6):684–693,

JUN 2004.

[70] W. M. Flicker, O. A. Mosher, and A. Kuppermann. Singlet –¿ triplet transitions in

methyl-substituted ethylenes. Chemical Physics Letters, 36(1):56 – 60, 1975.

[71] D. F. Evans. 347. magnetic perturbation of singlettriplet transitions. part iv. unsatu-

rated compounds. Journal of the Chemical Society, pages 1735–1745, 1960.

[72] O. El Akramine, A. C. Kollias, and Jr. W. A. Lester. Quantum monte carlo study of

singlet–triplet transition in ethylene. The Journal of Chemical Physics, 119(3):1483–

1488, 2003.

186

[73] Friedemann Schautz and Claudia Filippi. Optimized jastrow–slater wave functions for

ground and excited states: Application to the lowest states of ethene. The Journal of

Chemical Physics, 120(23):10931–10941, 2004.

[74] Minh Tho Nguyen, Myrna H. Matus, William A. Lester, and David A. Dixon. Heats

of formation of triplet ethylene, ethylidene, and acetylene. The Journal of Physical

Chemistry A, 112(10):2082–2087, 2008.

[75] Bernhard Gemein and Sigrid D. Peyerimhoff. Radiationless transitions between the

first excited triplet state and the singlet ground state in ethylene: A theoretical study.

The Journal of Physical Chemistry, 100(50):19257–19267, 1996.

[76] Shlomit Jacobi and Roi Baer. The well-tempered auxiliary-field monte carlo. The

Journal of Chemical Physics, 120(1):43–50, 2004.

[77] R McDiarmid. On the electronic spectra of small linear polyenes. Advances in Chemical

Physics, pages 177–214, 1999.

[78] Weston Thatcher Borden and Ernest R. Davidson. The importance of including dy-

namic electron correlation in ab initio calculations. Accounts of Chemical Research,

29(2):67–75, 1996.

[79] Fei Qi, Osman Sorkhabi, and Arthur G. Suits. Evidence of triplet ethylene pro-

duced from photodissociation of ethylene sulfide. The Journal of Chemical Physics,

112(24):10707–10710, 2000.

[80] L.V. Gurvich, I. V. Veyts, and C. B Alcock. Thermodynamic Properties of Individual

Substances. Hemisphere Pub. Co., 4 edition, 1989.

[81] K.N. Frenkel, M; Marsh, R.C. Wilhoit, G.J. Kabo, and G.N. Roganov. Thermodynam-

ics of organic compounds in the gas state. International Journal of Chemical Kinetics,

28(7):553–554, 1996.

[82] David Feller and David A. Dixon. Extended benchmark studies of coupled cluster

theory through triple excitations. The Journal of Chemical Physics, 115(8):3484–3496,

2001.

187

[83] C. J. Umrigar, K. G. Wilson, and J. W. Wilkins. Optimized trial wave-functions for

quantum monte carlo calculations. Physical Review Letters, 60(17):1719–1722, 1988.

[84] Julien Toulouse and C. J. Umrigar. Full optimization of jastrow–slater wave functions

with application to the first-row atoms and homonuclear diatomic molecules. The

Journal of Chemical Physics, 128(17):174101, 2008.

[85] C. J. Huang, C. J. Umrigar, and M. P. Nightingale. Accuracy of electronic wave

functions in quantum monte carlo: The effect of high-order correlations. Journal of

Chemical Physics, 107(8):3007–3013, 1997.

[86] V. E. Bondybey. Electronic structure and bonding of be2. Chemical Physics Letters,

109(5):436 – 441, 1984.

[87] J. A. W. Harkless and K. K. Irikura. Multi-determinant trial functions in the determi-

nation of the dissociation energy of the beryllium dimer: Quantum monte carlo study.

International Journal of Quantum Chemistry, 106(11):2373–2378, 2006.

[88] G. A. Petersson and William A. Shirley. The beryllium dimer potential. Chemical

Physics Letters, 160(5-6):494 – 501, 1989.

[89] Robert J. Gdanitz. Accurately solving the electronic schrdinger equation of atoms and

molecules using explicitly correlated (r12-)mr-ci.: The ground state of beryllium dimer

(be2). Chemical Physics Letters, 312(5-6):578 – 584, 1999.

[90] Jan M. L. Martin. The ground-state spectroscopic constants of be2 revisited. Chemical

Physics Letters, 303(3-4):399 – 407, 1999.

[91] Vl.G. Tyuterev, S. Tashkun, P. Jensen, A. Barbe, and T. Cours. Determination of the

effective ground state potential energy function of ozone from high-resolution infrared

spectra. Journal of Molecular Spectroscopy, 198(1):57 – 76, 1999.

[92] Apostolos Kalemos and Aristides Mavridis. Electronic structure and bonding of ozone.

The Journal of Chemical Physics, 129(5):054312, 2008.

[93] Don W. Arnold, Cangshan Xu, Eun H. Kim, and Daniel M. Neumark. Study of low-

lying electronic states of ozone by anion photoelectron spectroscopy of o[sup -][sub 3].

The Journal of Chemical Physics, 101(2):912–922, 1994.

188

[94] Sabine F. Deppe, Uwe Wachsmuth, Bernd Abel, Martina Bittererová, Sergy Yu.

Grebenshchikov, Rüdiger Siebert, and Reinhard Schinke. Resonance spectrum and

dissociation dynamics of ozone in the [sup 3]b[sub 2] electronically excited state: Ex-

periment and theory. The Journal of Chemical Physics, 121(11):5191–5200, 2004.

[95] J. Berkowitz, J. P. Greene, H. Cho, and B. Ruščić. Photoionization mass spectrometric

studies of sih[sub n] (n=1–4). The Journal of Chemical Physics, 86(3):1235–1248, 1987.

[96] Jeffrey C. Grossman. Benchmark quantum monte carlo calculations. The Journal of

Chemical Physics, 117(4):1434–1440, 2002.

[97] James L. Blue, Isabel Beichl, and Francis Sullivan. Faster monte carlo simulations.

Phys. Rev. E, 51(2):R867–R868, Feb 1995.

[98] Abhijit Chatterjee and Dionisios G. Vlachos. An overview of spatial microscopic and

accelerated kinetic monte carlo methods. Journal of Computer-Aided Materials Design,

14(2):253–308, 2007.

