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Abstract

Multiscale problems arise in many scientific and engineering disciplines. A typical

example is the modelling of flow in a porous medium containing a number of low

and high permeability embedded in a matrix. Due to the high degrees of variability

and the multiscale nature of formation properties, not only is a complete analysis

of these problems extremely difficult, but also numerical solvers require an excessive

amount of CPU time and storage. In this thesis, we study multiscale numerical

methods for the elliptic equations arising in interface and two-phase flow problems.

The model problems we consider are motivated by the multiscale computations of flow

and transport of two-phase flow in strongly heterogeneous porous media. Although

the analysis is carried out for simplified model problems, it does provide valuable

insight in designing accurate multiscale methods for more realistic applications.

In the first part, we introduce a new multiscale finite element method which is

able to accurately capture solutions of elliptic interface problems with high contrast

coefficients by using only coarse quasiuniform meshes, and without resolving the

interfaces. The method is H1-conforming, and has an optimal convergence rate of

O(h) in the energy norm and O(h2) in the L2 norm, where h is the mesh diameter and

the hidden constants in these estimates are independent of the “contrast” (i.e. ratio

of largest to smallest value) of the PDE’s coefficients. The new interior boundary

conditions depend not only on the contrast of the coefficients, but also on the angles

of intersection of the interface with the element edges. We conduct some numerical

experiments to confirm the optimal rate of convergence of the proposed method and

its independence from the aspect ratio of the coefficients.

In the second part, we propose a flow-based oversampling method where the actual

two-phase flow boundary conditions are used to construct oversampling auxiliary

functions. Our numerical results show that the flow-based oversampling approach

is several times more accurate than the standard oversampling method. A partial
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theoretical explanation is provided for these numerical observations.

In the third part, we discuss “metric-based upscaling” for the pressure equation

in two-phase flow problem. We show a compensation phenomenon and design a

multiscale method for the pressure equation with highly oscillatory permeability.
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Chapter 1

Introduction

1.1 Overview

Multiscale problems appear in many important areas of modern science and engi-

neering: composite materials, porous media, turbulence transport in high Reynolds

number flows, atmosphere/ocean science, and finance. These kind of problems are

usually characterized by large disparities in spatial and temporal scales which make

them very hard to analyze. One common feature is that the relevant length and

time scales are not known a priori but are determined by the solution of the problem

itself. A direct numerical simulation of the multiple scale problems is very difficult.

To resolve a fine scale in simulation requires an extremely large amount of computer

storage and CPU time. Traditional monoscale approaches have proven to be inade-

quate, even with the fastest supercomputers, because of the range of scales and the

prohibitively large number of variables involved.

A typical example is reservoir simulation. A reservoir is usually heterogeneous; its

properties heavily depend on the spacial location. The permeability of the rock may

vary from one millidarcy (md) to thousands md. Therefore, a complete computation

may involve millions of degrees of freedom, which can easily exceed the limit of today’s

computers. Fortunately, for most applications it is sufficient to capture the behavior

of some macroscopic structure accurately, for example, the oil production rate in

reservoir simulation. This is why multiscale methods are so widely used, and are of

great practical interests: they allow us to solve the problem on a coarse scale, with

much fewer degrees of freedom, while retaining a satisfactory accuracy. In Section 1.2,

we introduce a well-developed multiscale method, multiscale finite element method

(MsFEM). The numerical methods developed in this thesis are motivated by the main
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idea of MsFEM.

Among all the multiscale problems, the following elliptic equation in divergence

form may be the most intensively studied:

−∇ · (α∇u) = f in Ω,

u = g on ∂Ω.
(1.1.1)

Because of highly oscillatory coefficient α, a simulataneous resolution of all scales in

this problem is impossible computationally. One therefore seeks to exploit scale sep-

aration to split the problem into a hierarchy of tractable models. More precisely, one

assumes α(x) = α(x/ε), with ε a small parameter, and α a smooth positive-valued

periodic function on a unit cell Y . This can be viewed as an ideal model for infinite

perfectly periodic crystal lattice. Under this assumption, the homogenization theory 1

has been developed and the concepts of Γ-, G-, H-convergence2 have been introduced.

Numerous multiscale schemes have been developed based on this framework. Most

of these methods can also be applied to non scale separation cases, but lack theoret-

ical foundation guaranteeing convergence in this cases. Recently, Owhadi and Zhang

[78] revealed a new type of compensation phenomena for PDEs with coefficients that

do not necessarily satisfy scale separation assumption. They designed numerical ho-

mogenization methods by using a coordinate transformation and provided a rigorous

mathematical analysis.

In this thesis, we will focus on two types of α(x) in equation (1.1.1): α is piecewise

constant with high contrast, and α(x) = λ(x)k(x), which arise in interface problems

and two-phase flow problems respectively. We emphasize that both types of problem

do not exhibit scale separation or periodic structures. Hence we cannot follow the

traditional approach of applying homogenization theory by exploring scale separation.

Using the local properties of the exact solutions of interface problems, we create a

special type of MsFEM and prove a robust convergence rate. More detail is given in

Section 1.3, 1.4 and later chapters.

This thesis consists of 5 chapters. In Chapter 1, we introduce the governing equa-

1A good approximation of the macroscopic property of such materials can be obtained by letting the parameter ε
tend to zero. Homogenization theory describes these limit processes. We refer the reader to the books of Bensoussan,
Lions, and Papanicolaou [18] and Jikov, Kozlov, and Oleinik [58] for more information.

2The Γ-convergence is an abstract notion of functional convergence which was introduced by De Giorgi [44]. G-
convergence is a notion of convergence associated with sequences of symmetric, second-order, elliptic operators which
was introduced by Spagnolo [85]. Murat and Tartar [77] generalized G-convergence to H-convergence to handle the
case of non-symmetric problems.
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tions and review a selected portion of the related literature. Chapter 2 discusses high

contrast interface elliptic problems; We formulate our numerical methods and demon-

strate their robustness. In Chapter 3, we study two-phase flow problems and compare

two different strategies of oversampling techniques 3. We generalize the metric based

up-scaling technique of Owhadi and Zhang [78] to two-phase flow problems in Chap-

ter 4. In Chapter 5, we give concluding remarks and discuss possible directions for

future work.

1.2 Multiscale Finite Element Method

The multiscale finite element method, in which basis functions are computed by

solving local homogeneous PDEs subject to special boundary conditions, has a large

literature. The primitive form of this method can be traced back to the early work

of Babuška, Caloz and Osborn [14, 12] who introduced special basis functions for 1D

elliptic problems with rough coefficients.

In [51], Hou and Wu developed the multiscale finite element method for multi-

dimensional problems with multiscale coefficients. The main idea of the method was

to incorporate the small scale features in the underlying physical problem into the

finite element bases locally. Within each coarse grid block, one can construct the

multiscale basis by solving the leading order governing equation locally. The small

scales then interact with the large scales through the variational formulation of the

finite element method.

To illustrate the method more clearly, consider the linear elliptic equation (1.1.1).

Let Th be a partition of Ω into finite elements (triangles, quadrilaterals and so on).

For each interior node xp of the mesh Th, we define the nodal basis function ΦMS
p ,

whose restriction ΦMS
p,τ to each τ ∈ Th is required to solve the “local problem”:

−∇ · (α∇ΦMS
p,τ ) = 0 in τ, (1.2.1)

together with a suitable boundary condition:

ΦMS
p,τ = φp,τ , on ∂τ , with φp,τ (xq) = δp,q, for all vertices xp, xq of τ .

3We remark that the notion of oversampling we consider here refers to the oversampling in the physical space when
we construct a local multiscale basis function, which is different from the oversampling trechique in the frequency
space used in signal analysis.
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The boundary condition φp,τ is usually chosen to be the restriction of the standard

finite element basis functions on ∂τ . In general, one solves (1.2.1) on the fine grid to

obtain basis functions. Nevertheless, the basis function can be computed analytically

in some cases. We extend the basis functions ΦMS
p trivially on Ω and define the

multiscale finite element space VMS
h = span{ΦMS

p }. Then the multiscale finite element

method is to find uMS
h ∈ VMS

h such that

∑
τ∈Th

∫

τ

α(x)∇uMS
h · ∇vMS

h dx =

∫

Ω

f vMS
h dx , for all vMS

h ∈ VMS
h .

In 1D, ∂τ consists of only two points and there is no need to choose boundary

condition. This unique phenomena in 1D leads to an interesting superconvergence

result, i.e., uMS
h = u at the nodal points, which has been shown by Hou, Wu and

Cai [52]. However, this superconvergence result may not be true in two or higher

dimensions. Hou and Wu [51] identified a key issue in multiscale methods in multi-

dimensions, that is the microscopic boundary condition which connects the small

scale bases to the macroscopic solution. To improve the accuracy significantly, they

suggested to use the “oscillatory” boundary condition which is defined as the solution

of the reduced elliptic equation on ∂τ :

∂

∂s
α b(s)

∂φp,τ

∂s
= 0, (1.2.2)

where s is arc-length parameter of ∂τ and α b is the restriction of α on ∂τ . They

further performed a convergence analysis to reveal a resonance error introduced by

the microscopic boundary condition [51, 52]. An oversampling technique was pro-

posed to effectively reduce the resonance error [51]. The multiscale bases are strongly

localized and adaptive. In many cases, the multiscale bases can be precomputed

and used repeatedly in subsequent computations with different source terms and dif-

ferent boundary conditions. In some situations the basis functions can be updated

adaptively. This leads to significant computational saving in upscaling the two-phase

flows where the elliptic (pressure) equation needs to be solved many times dynami-

cally. Another attractive feature of the method is the ability to both coarsen (upscale)

a fine grid solution and to reconstruct (downscale) the fine grid solution from a coarse

grid solution by using the multiscale bases. This property is very attractive in many
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engineering applications.

Most of the convergence analyses of multiscale finite element methods are for

the periodic homogenization case where, in (1.1.1), α(x) = α(x/ε), with ε a small

parameter, and are geared toward obtaining optimal convergence, robust with respect

to the “oscillation parameter” ε → 0 (e.g., [51, 52]). However, the method itself is

quite general and has been applied to non-periodic cases with considerable success.

For example, in [51] one finds an application of (1.1.1) to the case when α is a

realization of a random field, both in the isotropic and anisotropic cases and with

highly contrasting media. We refer the reader to a recent book by Efendiev and Hou

[39] for more discussions on the theory of multiscale problems and applications of and

related numerical methods.

1.3 Elliptic Interface Problems

Second order elliptic and parabolic equations with discontinuous coefficients– inter-

face problems– are often encountered in material science and fluid dynamics. For

instance, they occur when considering a system containing two or more distinct ma-

terials with different attributes (conductivity, density, diffusions, etc). The solution

of interface problems is an integral component in an even larger collection of appli-

cations, including the projection method for solving Navier-Stokes equations with

two-phase flow [26, 18] and the Hele-Shaw flow [50, 48].

The coefficients in interface problems typically have a jump across the interface

between materials. Due to the jump, the solution loses global regularity,4 and there-

fore, standard finite element and finite difference methods fail to achieve high orders

of accuracy. Numerous numerical methods have been proposed to explore the jump

conditions in order to obtain higher order convergence. We introduce some related

work in Section 1.3.2.

1.3.1 Equations and Weak Formulation

In this subsection, we briefly describe the strong and weak formulations for the elliptic

interface problem. For simplicity, we assume there is only one interface. Formulas for

multiple interfaces can be derived analogously.

4See Section 2.2.2 for more discussion.
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Let Ω be a bounded domain and Γ be an interface which divides Ω into two disjoint

subdomains, Ω+ and Ω−. Elliptic interface problems are usually formulated as

−∇ · (α∇u) = f in Ω,

u = g on ∂Ω,
(1.3.1)

where the coefficient α is a symmetric, uniformly elliptic matrix whose components

are C1 on each subdomain Ωi, but may be discontinuous across the interface Γ. Since

α is not C1 on Ω, equation (1.3.1) is only meaningful in the weak sense:

∫

Ω

α(x)∇u(x) · ∇v(x)dx =

∫

Ω

f(x)v(x)dx for all v ∈ H1
0 (Ω), (1.3.2)

where the trace of u is equal to g on ∂Ω. Using integration by parts, we obtain the

jump conditions

[u]Γ = u+ − u− = 0, (1.3.3)[
α

∂u

∂n

]

Γ

= α+∂u+

∂n
− α−

∂u−

∂n
= 0, (1.3.4)

where n is the normal unit vector of Γ, and the “±” superscripts refer to limiting

values on Γ taken from the subdomains Ω±.

Sometimes an interface problem can also be caused by a singularity in the source

term f . More precisely, the flux α ∂u
∂n

is not continuous across the interface Γ when f

is of the form

f(x) = fs(x)−
∫

Γ

q(X(s))δ(x−X(s))ds,

where fs is a smooth function,5 δ is the Dirac-delta function, X(s) is the arc-length

parametrization of the interface, and q is the source strength on the interface. In this

case, the jump condition of flux (1.3.4) is modified to

[
α

∂u

∂n

]

Γ

= α+∂u+

∂n
− α−

∂u−

∂n
= q. (1.3.5)

5Smoothness here means fs is in C(Ω) or L2(Ω).
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Therefore, equation (1.3.1) is often written in the equivalent strong form

−∇ · (α∇u) = fs in Ω±, u = g on ∂Ω,

[u]Γ = u+ − u− = 0,

[
α

∂u

∂n

]

Γ

= α+∂u+

∂n
− α−

∂u−

∂n
= q.

(1.3.6)

The reader should keep in mind that our method is designed to match the jump

conditions (1.3.3) and (1.3.4).

1.3.2 Literature Review

Before presenting our results, we first discuss relevant existing literature on interface

problems. The approach closest to ours is the immersed finite element (IFE) method

of Li, Lin and Wu [68]. They considered uniform triangular grids and approximated

the interface by a straight line segment when it intersects a coarse grid element. By

matching the jump condition, they created a special basis function for elements which

are cut through by the interface and proved a second order convergence rate in the L2

norm and a first order convergence rate in the H1 semi-norm. On the other hand, their

analysis relies on regularity assumptions of the exact solution u and the constants in

their error estimates depend strongly on the contrast of the coefficient.6 By way of

contrast, our error estimates do not depend on the contrast of α, and the Sobolev

norm of u can be bound by the Sobolev norm of source tern f a priori. Moreover,

it turns out that when the interface intersects an element in a straight line, our new

method coincides with the method of [68]. The connections between our method and

that of [68] are further discussed in Section 2.4.2.

Much earlier, Babuška [11] studied the convergence of methods based on a min-

imization problem equivalent to (2.1.1) in which the boundary and jump condition

were incorporated in the cost functions. The convergence rate of the method was

proved under technical assumptions. There are many subsequent works on such

penalty methods, for example Barrett and Elliott [16]. Another relevant work is

due to Chen and Zou [22] who approximated the smooth interface by a polygon

and used classical finite element methods to solve both elliptic and parabolic in-

terface equations. The disadvantage of this approach is that the mesh must align

6In [68], Li, Lin and Wu assumed the exact solution u is C2 on Ω± respectively and interface Γ is C1. They
obtained the error estimate ‖u − uh‖1,Ω ≤ C5 h. The hidden constant C5 is bounded by C bα4‖D2u‖∞, where bα is
the contrast (max α/min α) and C is a constant independent of u, α, h.
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with the interface. Plum and Wieners [82] studied interface problems with piece-

wise constant coefficients and proved (under certain assumptions) optimal a priori

estimates which are independent of the coefficients for standard finite element meth-

ods with meshes resolving the interface. Related results for discontinuous Galerkin

methods were given by Dryja in [31]. These body fitted methods7 require to generate

complicated meshes to resolve interfaces, and therefore, many efficient and popular

packages/solvers8 which are written in unform grids, cannot be applied directly. Un-

fitted high order finite element methods were recently studied by Li et. al. in [65],

and error estimates which are explicit in both the order of the elements and the error

in the boundary approximation were proved.

There has been a lot of effort in developing accurate and efficient finite difference

methods for the interface problem. Among them, the Immersed Boundary method

(IBM) was developed by Peskin [80] for studying the motion of one or more massless,

elastic surfaces immersed in an incompressible, viscous fluid, particularly in biofluid

dynamics problems where complex geometries and immersed elastic membranes are

present. The IBM method employs a uniform Eulerian grid over the entire domain to

describe the velocity field of the fluid and a Lagrangian description for the immersed

elastic structure. The interaction between the fluid and the structure is expressed

in terms of the spreading and interpolation operations by use of smoothed delta

functions. We refer to [81] for an extensive review of this method and its various

applications. Motivated by Peskin’s method, Unverdi and Tryggvason [89] have de-

veloped a highly successful front tracking method to study viscous incompressible

multiphase flows.

Another related work is the Immersed Interface Method (IIM) for elliptic interface

problems developed by LeVeque and Li [64]. The main idea of the IIM method is to

use the jump condition across the interface to modify the finite difference approxima-

tion near the interface. When this is done properly, one can achieve a second order

discretization. The IIM method can also be applied to the moving interface problem

[48] and to the irregular domain problem [32]. Several extensions and improvements

can be found in the references [3, 66, 67].

An important development in interface capturing methods is the Ghost Fluid

7Body fitted methods mean the meshes of the methods are aligned the interface.
8For examples, fast Poisson solvers, Clawpack [63] for conservation laws and FFT packages etc.
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Method (GFM) [42] developed by Fedkiw, Merriman, Aslam and Osher. The GFM

method incorporates the interface jump condition into the finite difference discretiza-

tion in a clever way which can be implemented efficiently. The GFM method has been

applied with considerable success to capturing discontinuities in multimedium com-

pressible flow [61] and strong shock impacting problems [62]. The GFM method has

been generalized to the elliptic interface problem in [71] and its convergence property

has been analyzed in [72]. Related works include [93, 21]. The matched interface and

boundary method [93, 92] proposed by Zhou et al. can be viewed as a generalization

of IIM and GFM. The authors introduced friction points to match the jump condition

to very high order. Very recently, Chern and Shu [21] proposed the coupling interface

method for the elliptic interface problem. They provided both first order and second

order versions of the method. We remark that there has been little progress on the

development of rigorous convergence theory for finite difference methods for interface

problems. By way of contrast, the present work proves the robust convergence of our

proposed method.

1.3.3 Summary of the Results

In Chapter 2 we propose a new type of multiscale finite element methods for the

elliptic interface problem:

∫

Ω

α(x)∇u(x) · ∇v(x)dx =

∫

Ω

f(x)v(x)dx , v ∈ H1
0 (Ω) , (1.3.7)

where α is piecewise constant with respect to the partition {Ωi : i = 0, . . . , m} of Ω.

Our method involves special “multiscale” nodal basis functions on a (coarse) quasiu-

niform triangular mesh Th. On elements on which α is constant, these basis functions

just coincide with the usual linear hat functions. Otherwise we pre-compute the basis

function by solving a homogeneous version of (1.3.7) on the relevant elements, sub-

ject to special boundary conditions described later in Chapter 2. The resulting basis

functions are then used to define a multiscale finite element solution uMS
H by the usual

Galerkin method.

We show that our method satisfies an error estimate of the form

|u− uMS
h |H1(Ω) ≤ |u− uMS

h |H1(Ω),α ≤ Ch
[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

, (1.3.8)



10

where

|v|2H1(Ω),α = a(v, v) , with a(v, w) =

∫

Ω

α∇v · ∇w ,

and the constant C is independent of h and of the contrast parameter α̂ . This should

be compared to the best result of O(h1/2−ε), with a hidden constant which generally

depends on the contrast, for standard finite element methods on a mesh which does

not resolve the interface. We also devise a non-standard duality argument which

shows that

‖u− uMS
h ‖L2(Ω) ≤ Ch2

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

, (1.3.9)

The price to pay for this improved convergence rate is the solution of subgrid problems

on elements which straddle the interface and a slightly worse dependence than normal

on the data f on the right hand sides of (1.3.8) and (1.3.9). The local subgrid

problems can be done as a preprocessing step before solution of the global finite

element problem. The accuracy needed for these subgrid problems is investigated

numerically in Section 2.5.

The convergence analysis of the new multiscale finite element method devised in

this work makes no appeal to homogenization theory but nevertheless explains why

“multiscale”-type basis construction can be beneficial in more general situations. It

turns out that the new interior boundary conditions obtained in the present work

are a genuine generalization of the “oscillatory” boundary conditions of [51], in the

sense that the two coincide if and only if the interfaces intersect the element edges

orthogonally. Some of the arguments used in this paper have already been developed

in the context of domain decomposition methods in [45, 46, 79].

To our knowledge the dependence of the accuracy of numerical methods for el-

liptic interface problems on coefficient contrast has not been previously analyzed,

even though such high contrast problems are ubiquitous in porous media problems,

especially in geophysical and oil recovery applications. We note, however, that there

is substantial literature on the performance of iterative methods (see, e.g. [45] and

the references therein) and on the analysis of a posterior error estimates (see, e.g.

[19, 4, 90]) for such high contrast problems, but this literature does not address the

issues considered in the present work.
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1.4 Two-Phase Flow in Porous Media

We now introduce the two-phase flow problem. A porous medium is a solid medium

that is permeated by miniscule pores that allow the transport of a gas or a fluid.

A petroleum reservoir is a porous medium that contains hydrocarbons. The term

“phase” stands for matter that has a homogeneous chemical composition and physical

state. Solid, liquid, and gaseous can be distinguished. The primary goal for studying

these subjects is to predict the performance of a reservoir and find the ways to optimize

recovery of hydrocarbons.

In the very early stage, a reservoir essentially contains a single fluid such as gas

or oil, and the pressure is sufficient high enough that the gas or oil is produced

by natural decompression without any pumping effort at the wells. By the time a

pressure equilibrium between the oil field and the atmosphere occurs, it usually leaves

70%-85% of hydrocarbons in the reservoir. To recover part of the remaining oil, water

is injected into injection wells while the oil is produced through the production wells.

This process maintains high reservoir pressure and flow rate. Therefore, in reservoir

simulation, people are interested in the simultaneous flow of two or more fluid phases

within a porous medium.

Flow in a porous medium is governed by the conservation of mass, Darcy’s law and

an equation of state which lead to a complicated system of PDEs. For mathematical

understanding, in this section, we introduce a simplified but representative model, the

pressure and saturation equations. We also review some existing upscaling techniques.

1.4.1 Derivation of the Model Equations

We consider two-phase flow in a reservoir Ω under the assumption that the displace-

ment is dominated by viscous effects; i.e., we neglect the effects of gravity, com-

pressibility, and capillary pressure. Porosity is assumed to be constant. In this flow

problem, the two phases are taken to be water and oil, designated by subscripts w

and o, respectively. We write Darcy’s law, with all quantities dimensionless, for each

phase as follows:

vj = −krj(S)

µj

k · ∇p, (1.4.1)
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where vj is the phase velocity, k is the permeability tensor, krj is the relative per-

meability to phase j (j = o, w), S is the water saturation (volume fraction), p is

pressure and µj is the viscosity of phase j (j = o, w). In this work, a single set of

relative permeability curves is used and k is assumed to be a diagonal tensor. Com-

bining Darcy’s law with a statement of conservation of mass allows us to express the

governing equations in terms of the so-called pressure and saturation equations:

−∇ · (λ(S)k · ∇p) = h, (1.4.2)

∂S

∂t
+ v · ∇f(S) = hw, (1.4.3)

where λ is the total mobility, f is the fractional flow of water, h = hw + ho is a

source/sink term and v is the total velocity, which are respectively given by:

λ(S) =
krw(S)

µw

+
kro(S)

µo

, f(S) =
krw(S)/µw

krw(S)/µw + kro(S)/µo

, (1.4.4)

v = vw + vo = −λ(S)k · ∇p. (1.4.5)

The above description is referred to as the fine model of the two-phase flow problem

and we look for solutions of S, p as functions of x, t. Typical boundary conditions for

(1.4.2) considered in this work are fixed pressure at some portions of the boundary

and no-flow conditions on the remainder of the boundary. For the saturation equation

(1.4.3), we impose S = 1 on the inflow boundaries. For simplicity, in further analysis

we will assume that hw = ho = 0 so that h = 0.

1.4.2 Upscaling Procedures

The upscaling of two-phase flow systems has been discussed by many authors [27, 15,

34]. In most upscaling procedures, the coarse-scale pressure equation is of the same

form as the fine-scale equation (1.4.2), but with an equivalent grid block permeability

tensor k∗ replacing k. For a given coarse-scale grid block, the tensor k∗ is generally

computed through the solution of the pressure equation over the local fine-scale region

corresponding to the particular coarse block [33]. The coarse-grid k∗ computed in

this manner has been shown to provide accurate solutions to the coarse-grid pressure

equation. For channelized porous media, the global information can be used in the

calculation of effective coarse-grid permeability [24], but these upscaling approaches
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are not exact at the initial time.

The high degree of variability and multiscale nature of formation properties such

as permeability pose significant challenges for subsurface flow modeling. Geological

characterizations that capture these effects are typically developed at scales that are

too fine for direct flow simulation, so further work is required to enable the solution

of flow problems in practice. Upscaling procedures have been commonly applied for

this purpose and are effective in many cases.9 More recently, a number of multiscale

finite element (e.g., [51, 25, 9, 1, 2, 37]) and finite volume [55, 56] approaches have

been developed and successfully applied for problems of this type.

Our purpose in this work is to propose a new oversampling strategy for constructing

multiscale basis functions within the framework of multiscale finite element method

(MsFEM). The oversampling strategy was first proposed by Hou and Wu in [51]. We

describe the details of the method in Section 3.2. Besides it, there are a number of

multiscale numerical methods (or frameworks) with a similar general objective, such

as generalized finite element methods [12], residual free bubbles [84], the variational

multiscale method [54], the multiscale finite element method (MsFEM) [51], two-scale

finite element methods [73], two-scale conservative subgrid approaches [9], the het-

erogeneous multiscale method (HMM) [36], and multiscale mortar methods [10]. We

remark that special basis functions in finite element methods have been used earlier

in [14]. Multiscale finite element methodology has been modified and successfully

applied to two-phase flow simulations in [55, 56] and later in [25, 1].

Most multiscale methods presented to date have applied local calculations for the

determination of basis functions (or, in the case of variational multiscale methods

[9], subgrid integrals). Though effective in many cases, the accuracy of these local

calculations may deteriorate for problems in which global effects are crucial. The

importance of global information has been illustrated within the context of upscaling

procedures in recent investigations [24, 23]. These studies have shown that the use

of global information in the calculation of the upscaled parameters can significantly

improve the accuracy of the resulting coarse model.

9See [91, 83, 43] for reviews and discussion.
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1.4.3 Summary of the Results

In Chapter 3, we propose a flow-based oversampling method to compute pressure

equation in the two-phase flow problem. The main idea of oversampling techniques

is to use solutions of the underlying single-phase flow equation in larger domains to

compute the basis functions. These basis functions are used in the two-phase flow

simulations with varying (dynamic) mobility. Oversampling techniques reduce the

effect of the artificial boundary conditions that are often imposed when computing

local quantities, such as upscaled permeabilities or basis functions. When there is no

scale separation, the oversampling region is taken to be the entire domain. Typically,

generic boundary conditions are used to compute the auxiliary oversampling func-

tions. These boundary conditions do not reflect the actual two-phase flow boundary

conditions, which can have large effects, in the simulations. In particular, when two-

phase flow boundary conditions contain some types of singularities, the single-phase

flow solutions obtained using generic boundary conditions are not sufficient to rep-

resent these effects. For this reason, one needs to incorporate the actual two-phase

flow boundary conditions. In the proposed flow-based oversampling method, we take

one (or more) auxiliary oversampling functions to be the solution of single-phase flow

equations with the original (two-phase flow) boundary information. We present a

partial analysis which demonstrates the importance of using the actual boundary

conditions. Moreover, our analysis explains when one needs to use the actual two-

phase flow boundary conditions which are associated with the “singularity” in the

boundary conditions of two-phase flows.

To illustrate the performance of this new strategy, we present several representa-

tive numerical results. Precisely, comparison between the flow-based and standard

oversampling are given for typical two-phase flow and transport simulations. In our

numerical experiments, we use the permeability fields from the SPE comparative

project [28]. These permeability fields are channelized and difficult to upscale. Due

to the channelized nature of these permeability fields, non-local effects are important

so often some type of limited global information is used in multiscale simulations (e.g.,

[37, 35]). In our simulations, we test various viscosity ratios and compare integrated

quantities, such as oil production rate and total flow rate, as well as saturation er-

rors at some time instances. In all cases, we observe that the flow-based oversampling
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methods are more accurate; in fact, in almost all the cases we consider, it gives several

orders of improvement.

In Chapter 4 we consider a multiscale method for the pressure equation in two-

phase flow problems:

−∇ · (λ(x)k(x) · ∇p(x)) = h in Ω,

p = 0 on ∂Ω.
(1.4.6)

We assume the mobility λ is a positive C1-function and h is a L2 function on Ω. Our

method is based on metric based upscaling introduced by Owhadi and Zhang [78].

In [78], Owhadi and Zhang developed numerical homogenization methods for di-

vergence form elliptic equations

−∇ · (k∇p) = f in Ω,

p = 0 on ∂Ω,
(1.4.7)

where k is a n×n symmetric matrix with entries in L∞(Ω) and f is a Lr(Ω) function

with r ≥ 2. They discovered that the solution p of (1.4.7) is W 2,r with respect to

the harmonic coordinates, although it is only W 1,r in Euclidean coordinates. The

harmonic coordinates F (x) = (F1(x), ..., Fn(x)) associated to (1.4.7) are given by

∇ · (k∇Fi) = 0,

Fi(x) = xi,
(1.4.8)

which are always automorphisms in 2D [7]. The mechanism of gaining extra differ-

entiability of p is following: p ◦ F−1 satisfies a non-divergence elliptic equation which

is known to have W 2,r estimate under a Cordes type condition [74]. More precisely,

if σ = (∇F )tk∇F is stable,10 then

‖p ◦ F−1‖W 2,r(Ω) ≤ C‖f‖Lr(Ω), (1.4.9)

for some constant C independent of u. This compensation phenomena has also been

observed numerically, and is important in designing effective numerical homogeniza-

10σ is stable if and only if βσ := esssupx∈Ω (n− (Trace[σ])2/Trace[σtσ]) < 1 and ‖(Trace[σ])n/2r−1‖L∞(Ω) < ∞.
See [78] for more detail.
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tion methods. For example, Owhadi and Zhang used the composition rule to construct

the numerical homogenization method. They defined the multiscale finite element

space Vh by

Vh = span{ϕ ◦ F : ϕ ∈ Xh}, (1.4.10)

where Xh is a standard C0 or C1 finite element space, and proved the error estimate:

‖p− ph‖H1(Ω) ≤ C h‖f‖Lr(Ω), (1.4.11)

However, this method is only attractive if one needs to solve (1.4.7) multiple times

with different source tern f , since it requires solving (4.1.2) n times to obtain the

harmonic coordinates F , which is the same cost of solving (1.4.7) n times.11

In this work, we show that the compensation phenomena is still true for the pres-

sure equation (1.4.6) with a C1-function λ by using the harmonic coordinate F inde-

pendent of λ. We prove that if p is the solution of (1.4.6) and F is given in (4.1.2),

both (1.4.9) and (1.4.11) hold under the same assumptions. In practice, we can pre-

compute the metric based upscaling basis functions, and use them to solve (1.4.2) for

different source tern f and mobility function λ repeatedly.

11It is necessary for metric based upscaling method to have harmonic coordinate very accurately. Therefore, one
must solve (4.1.2) in fine grid.
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Chapter 2

High-Contrast Elliptic Interface
Problems

The work presented in this chapter consists of materials from the recent paper [29]

by Chu, Graham and Hou.

2.1 Introduction

In this chapter, we present a new application of multiscale finite element methods to

the classical elliptic problem in weak form

∫

Ω

A(x)∇u(x) · ∇v(x)dx =

∫

Ω

F (x)v(x)dx , v ∈ H1
0 (Ω) , (2.1.1)

where the solution u ∈ H1(Ω) is required to satisfy a Dirichlet condition on ∂Ω and

F is given, on a bounded domain Ω ⊂ R2. To concentrate on the essential aspects

of this new theory we treat primarily the homogeneous Dirichlet problem when the

boundary of Ω is a convex polygon.1

The coefficient A, which is assumed here to be scalar, will be allowed to jump

across a number of smooth interior interfaces and the aim of the present work is

to propose and analyze a new multiscale finite element method for this problem on

coarse meshes which are not required to resolve the interfaces. Our method has the

same rate of convergence (with respect to mesh diameter) as is known for the case

when A is globally smooth2 and, moreover, this rate of convergence is independent

of the range of variation (“contrast”) of the coefficient function A.

1These are not essential restrictions: All our results are true for smooth boundaries as well. Similar results could
be obtained for non-convex polygons, treated with local mesh refinement. Moreover we state the corresponding results
for the boundary condition g 6= 0 later in the chapter.

2The rate is not degraded by the loss of solution regularity across the interfaces.
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While the method we propose could be used for the case when the interfaces in A
are of general geometry, our proofs are given for the particular case when Ω contains

a finite number of inclusions, each with smooth closed boundary not intersecting ∂Ω,

such as is depicted in Figure 2.1. Denoting the inclusions by Ω1, . . . , Ωm and setting

Ω0 = Ω\ ∪m
i=1 Ωi, we assume that the coefficient A is piecewise constant with respect

to the decomposition {Ωi : i = 0, . . . , m}. Again, there is no essential difficulty

in generalizing to piecewise smooth coefficients. Setting Amin = min{A|Ωi
: i =

1, . . . , m}, we first scale problem (2.1.1) by dividing by Amin, yielding the weak form:

find u such that u ∈ H1
0 (Ω) and

a(u, v) = (f, v)L2(Ω) for all v ∈ H1
0 (Ω) , (2.1.2)

where

a(u, v) =

∫

Ω

α(x)∇u(x) · ∇v(x)dx , (2.1.3)

with

α(x) =
1

Amin

A(x) , f(x) =
1

Amin

F (x) . (2.1.4)

Clearly then, α is piecewise constant with respect to the partition {Ωi : i = 0, . . . , m}
and α(x) ≥ 1 for all x ∈ Ω .

Figure 2.1: A domain with many inclusions.

Letting αi denote the restriction of α to Ωi, our analysis focuses on the proof

of a robust optimal order of convergence in each of these two “high contrast” cases
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characterized by a large contrast parameter α̂

Case I : α̂ := min
i=1,...,m

αi →∞ , α0 = 1 (2.1.5)

Case II : α̂ := α0 →∞ , maxi=1,...,m αi ≤ K, (2.1.6)

for some constant K. In Case I, the inclusions have high permeability compared to

the background matrix, while Case II contains the converse configuration. In Section

2.3 and 2.4, we show that in both cases, our method satisfies the estimates

|u− uMS
h |H1(Ω) ≤ |u− uMS

h |H1(Ω),α ≤ Ch
[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

(2.1.7)

and

‖u− uMS
h ‖L2(Ω) ≤ Ch2

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

, (2.1.8)

where the constant C is independent of h and of the contrast parameter α̂ .

This chapter is organized as following. In Section 2.2.1, we explain the main idea

behind our method and illustrate the analysis in the special case when the coarse mesh

can be drawn to enclose each of the inclusions Ωi : i = 1, . . . , m in Section 2.3. The

main results of the work are obtained in Section 2.4, where we construct the multiscale

basis functions for the case when the coefficient interface intersects a typical triangular

coarse mesh element. Here we present a detailed analysis, obtaining the estimates

(2.1.7) and (2.1.8) under certain technical assumptions. Numerical experiments which

illustrate these results are provided in Section 2.5. Two new technical results which

are crucial to the analysis are included as appendices: the first is a scaled version of

the trace theorem on a triangular annulus, while the second is a regularity theorem

(due to N. Babych, I. Kamotski and V.P. Smyshlyaev of the University of Bath) for

the exact solution of (2.1.2) in the high-contrast case. These should be of independent

interest.
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2.2 The Key Idea and Regularity Theorem

2.2.1 The Key Idea

For any measurable subset of D ⊂ Ω, define the local version of a:

aD(v, w) =

∫

D

α∇v · ∇w .

For a suitable index set Ih(D), let Nh(D) = {xp : p ∈ Ih(D)} denote the nodes of

the mesh Th which lie in D. For any triangular element τ ∈ Th (assumed to contain

its boundary), Nh(τ) = {xp : p ∈ Ih(τ)} is the set containing the three nodes of τ .

For each p ∈ Ih(τ) we construct nodal basis functions ΦMS
p whose restriction ΦMS

p,τ to

each τ ∈ Th is required to solve the “local problem”:

aτ (Φ
MS
p,τ , v) = 0 , for all v ∈ H1

0 (τ) , (2.2.1)

together with a suitable boundary condition:

ΦMS
p,τ = φp,τ , on ∂τ , with φp,τ (xq) = δp,q, for all p, q ∈ Ih(τ) (2.2.2)

where φp,τ ∈ C(∂τ) and

∑

p∈Ih(τ)

φp,τ = 1 on ∂τ . (2.2.3)

In general for each p ∈ Ih(Ω) the boundary data in (2.2.2) has to be prescribed

and the local problems (2.2.1) may have to be solved (e.g. on a subgrid). We will see

that there is a bounded number of these local problems for each p, independent of the

coarse mesh diameter. However if α is constant on τ then the boundary condition is

chosen so that ΦMS
p,τ is simply the linear hat function on τ centred at xp. Observe that

under conditions (2.2.1), (2.2.2) and (2.2.3),

∑

p∈Ih(τ)

ΦMS
p,τ = 1 on τ . (2.2.4)

We extend the basis functions ΦMS
p trivially on Ω and define the multiscale finite

element space VMS
h = span{ΦMS

p }. From the basis functions we construct the nodal
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interpolation operator:

IMS
h v =

∑

p∈Ih(Ω)

v(xp)Φ
MS
p ,

defined for all v ∈ C(Ω). Note that from (2.2.4) it follows that

IMS
h 1 = 1 on Ω . (2.2.5)

The multiscale finite element solution uMS
h satisfies a(uMS

h , vMS
h ) = (f, vMS

h )L2(Ω),

for all vMS
h ∈ VMS

h , which gives us the usual optimality estimate

|u− uMS
h |H1(Ω),α ≤ |u− IMS

h u|H1(Ω),α . (2.2.6)

To estimate the right-hand side of (2.2.6), we note that, since the basis func-

tions satisfy the homogeneous equation (2.2.1), and since u solves (2.1.2), the local

interpolation error EMS
h := u− IMS

h u satisfies, for all τ ∈ Th,

aτ (E
MS
h , v) = (f, v)L2(τ) , for all v ∈ H1

0 (τ) . (2.2.7)

An estimate for |EMS
h |H1(Ω),α suitable for inserting in the right-hand side of (2.2.6)

can be obtained from the following lemma.

Lemma 2.2.1. Suppose D is a Lipschitz subdomain of Ω and suppose that φ ∈ H1(D)

satisfies

aD(φ, v) = (f, v)L2(D) for all v ∈ H1
0 (D) . (2.2.8)

Then for any φ̃ ∈ H1(D) such that the trace of φ̃− φ vanishes on ∂D,

|φ|H1(D),α ≤ |φ̃|H1(D),α + C diam(D)‖f‖L2(D) ,

where C is independent of φ, φ̃, the diameter of D and α̂.

Proof. Let φ∗ be the unique solution of the problem

aD(φ∗, v) = 0 for all v ∈ H1
0 (D) , (2.2.9)

such that the trace of φ∗−φ vanishes on ∂D. Then φ−φ∗ ∈ H1
0 (D) and, subtracting
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(2.2.9) from (2.2.8),

aD(φ− φ∗, v) = (f, v)L2(D) for all v ∈ H1
0 (D) .

Then

|φ− φ∗|2H1(D),α = aD(φ− φ∗, φ− φ∗) = aD(φ, φ− φ∗) = (f, φ− φ∗)L2(D)

≤ ‖f‖L2(D)‖φ− φ∗‖L2(D) ≤ C diam(D)‖f‖L2(D)|φ− φ∗|H1(D),α ,

where in the last step we used the Poincaré-Friedrichs inequality and the fact α̂ ≥ 1.

Hence

|φ− φ∗|H1(D),α ≤ C diam(D)‖f‖L2(D),

and

|φ|H1(D),α ≤ |φ∗|H1(D),α + C diam(D)‖f‖L2(D).

On the other hand, (2.2.9) implies the minimality of the energy norm of φ∗, i.e

|φ∗|H1(D),α ≤ |φ̃|H1(D),α for all φ̃ satisfying the same boundary conditions as φ and the

result follows.

Recalling (2.2.7), and using Lemma 2.2.1 to bound the right-hand side of (2.2.6),

we obtain

Theorem 2.2.2.

|EMS
h |H1(τ),α ≤ |Ẽ MS

h |H1(τ),α + Chτ‖f‖L2(τ) , (2.2.10)

and

|u− uMS
h |H1(Ω),α ≤ C

[ ∑

τ∈T H

(
|Ẽ MS

h |2H1(τ),α + h2
τ‖f‖2

L2(τ)

) ]1/2

, (2.2.11)

where Ẽ MS
h is any function whose trace coincides with the trace of EMS

h on ∂τ and C

is a generic constant independent of Th, f , u and α.

Note that, although simple, Theorem 2.2.2 represents a genuine extension of stan-

dard estimates. For example, if α is constant on each τ ∈ Th, then the multiscale

basis functions coincide with linear basis functions. Setting Ẽ MS
h = EMS

h (which now
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equals the error in linear interpolation) leads to

|u− uMS
h |H1(Ω),α ≤ Ch

[ ∑
τ∈Th

ατ |u|2H2(τ) + ‖f‖2
L2(Ω)

]1/2

, (2.2.12)

which yields the usual O(h) estimate in the energy norm with a coefficient dependent

asymptotic constant.

However this also demonstrates the possibility that when ατ is large, small |u|2H2(τ)

could provide better estimates with respect to α. This motivates us to study the

regularity of the exact solution. Our regularity theory described in the next subsection

tells us that this is exactly what does happen. However a deeper use of Theorem 2.2.2

may be envisaged when α varies within an element. Then it turns out to be possible

(although not trivial) to define the boundary condition (2.2.2) in such a way that
∑

τ∈Th
|Ẽ MS

h |2H1(τ),α ≤ Ch2, with constant C independent of α. We explain how this

comes about in the context of a special case in Section 2.3. Then in Section 2.4 we

extend to the more difficult case where the interface cuts through a mesh element.

From now on we use the following notational conventions.

Notation 2.2.3. We write g1 . g2 when there exists a constant C that is independent

of u, f, h, α such that g1 ≤ Cg2. Similarly, g1 ∼ g2 means g1 . g2 and g2 . g1.

Notation 2.2.4. For any suitably smooth function φ defined on τ ∈ TH , and any

edge e of τ , we define Ds
eφ, for s ≥ 1 to be the derivative of φ of order s along e.

2.2.2 Regularity Estimates for High-Contrast Interface Problems

In this subsection, we discuss the regularity estimate for the interface problem. The

regularity theorem (Theorem 2.2.5) indicates that in highly conductive regions (where

α is large), the Sobolev norm of the solution behaves like O(1/α). This observation

plays an important role in designing boundary condition for our method and is a key

to the analysis. It also substantiates the results of the numerical examples studied in

[68, 49, 93].

When the interfaces are smooth enough, the solution of the interface problem is

also very smooth in individual regions. However, the global regularity can be very

low.3 More precisely, we have u|Ωi
∈ H2(Ωi) but have only u|Ωi

∈ H1(Ω) even when

3See Littman et al. [70] and Kellogg [59, 60].
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interfaces are sufficiently smooth. And in this case, the solution u admits a priori

estimate:
m∑

i=0

‖u‖H2(Ωi) ≤ C‖f‖L2(Ω),

where C is independent of u, f but depends strongly and implicitly on the jumps in

the coefficients across the interface. While the Sobolev regularity of the solution u

to the interface problem (2.1.2) is classical, there are relatively few published results

which give estimates of how the Sobolev norms of u depend on the contrast parameter

α̂. An exception is Huang and Zou [53] which gives a partial result in this direction

which we generalize in the following theorem. The proof of the theorem below was

proposed to us by N. Babych, I.V. Kamotski and V.P. Smyshlyaev of the University

of Bath, UK.

Theorem 2.2.5. (Babych, Kamotski, Smyshlyaev) Let Ω be either a smooth C∞
bounded domain in R2 or a bounded convex polygon, containing inclusions Ωi, i =

1, 2 . . . , m, each having a C∞ boundary, and define Ω0 = Ω\ ∪m
i=1 Ωi as described

in Section 2.1. Consider problem (2.1.2) and assume that either Case I or Case II

( (2.1.5) or (2.1.6)) holds. Additionally, let Γ̃ denote any closed C∞ contour in Ω0

which encloses all the Ωi and let Ω̃0 be the domain with boundary Γ∪ Γ̃ (see Fig. 2.2

for an illustration in the case m = 1). Then we have

|u|Hs+2(Ωi) . 1

αi

‖f‖Hs(Ω), for all s ≥ 0 , i = 1, 2 . . . , m . (2.2.13)

Moreover

|u|H2(Ω0) . 1

α0

‖f‖L2(Ω), (2.2.14)

and

|u|H2+s(eΩ0) . 1

α0

‖f‖Hs(Ω), for all s ≥ 0 . (2.2.15)

The hidden constants depend on the distance of Γ from ∂Ω.

Proof. We give the proof in Appendix A.2.

Remark 2.2.6. While the estimates (2.2.14) and (2.2.15) can be recovered from the

results in [53], the result (2.2.13) can not be found there, because [53] works only with

estimates of norms and proves ‖u‖Hs+2(Ωi) . ‖f‖Hs(Ω), i = 1, . . . , m. The bounds on
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1
∂Ω

Ω

Γ∼

Γ

Figure 2.2: A domain Ω in the case m = 1. The domain Ω0 is bounded by Γ and ∂Ω while Ω̃0 is
bounded by Γ and Γ̃.

the Hs+2-seminorms in (2.2.13) are sharper in Case I and are essential to the analysis

in the present work.

2.2.3 Steps of Analysis

The accuracy of our multiscale finite element method depends critically on the con-

struction of accurate local boundary conditions for the multiscale bases independent

of the contrast of the coefficients. In the following two sections, we describe how to

design the boundary conditions for multiscale basis functions to obtain the optimal

convergence rate:

|u− uMS
h |H1(Ω),α ≤ Ch

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

and

‖u− uMS
h ‖L2(Ω) ≤ Ch2

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

.

Before we present the formal analysis, we first explain the main strategies of the

analysis. Recall the local interpolation error function EMS
h := u − IMS

h u and the

result in Theorem 2.2.2

|u− uMS
h |H1(Ω),α ≤ C

[ ∑

τ∈T H

(
|Ẽ MS

h |2H1(τ),α + h2
τ‖f‖2

L2(τ)

) ]1/2

,
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where Ẽ MS
h is any function whose trace coincides with the trace of EMS

h on ∂τ . The

key is to show there exist local boundary conditions and extensions ẼMS
h yielding

∑

τ∈T H

|ẼMS
h |2H1(τ),α . h2

(
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

)
.

This involves 3 steps:

• Step 1: Construct boundary conditions for basis functions with the desired er-

rors. When inclusions are inside of elements, we use linear functions to define

the boundary conditions. Since the error function EMS
h is zero at nodes, we

should expect to have EMS
h = O(h2

τ ) along the sides of the element τ under some

appropriate regularity condition. See Fig. 2.3 (a).

When an interface cuts through a element, the element is divided into two parts.

We denote the part with α = α̂ by τ− and the other by τ+. We use piecewise

linear functions to construct the boundary conditions. We need to have EMS
h =

O(α−1h2
τ ) on ∂τ−∩∂τ and EMS

h = O(h2
τ ) on ∂τ+∩∂τ . The factor, α−1, on ∂τ−∩

∂τ is important to eliminate the dependence on the contrast of the coefficient.

See Fig. 2.3 (b). This step is most crucial for this work. More details are

discussed in Section 2.4.

• Step 2: Construct suitable extensions inside elements that maintain the order

of the error on the boundary. This can be done by applying the trace theorem.

The H1-semi norm of the extension can be bounded by boundary values which

are controlled in Step 1.

• Step 3: Use a sharp regularity theorem (Theorem 2.2.5) to obtain a bound on

the error coefficient, which contains α̂ and the Sobolev norm of u, in terms of

the Sobolev norm of f .

2.3 Error Analysis for Inclusions Inside Elements

In this section we assume that each of the inclusions Ωi are enclosed inside elements

of Th. More precisely, for any τ ∈ Th and any sufficiently small ε > 0, let us define

τ ε = {x ∈ τ : dist(x, ∂τi) ≤ ε} . Then, for each i = 1, . . . , m, we assume that there
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2O(h  )τE
MS

h =

0 0

0

(a) An inclusion inside an element.

2O(h  )τE
MS

h =

=E
MS

h α−1O(      h  )τ
2

0 0

0

τ−

τ+

(b) An inclusion cut through an element.

Figure 2.3: Illustrations for Step 1. The error function EMS
h takes 0 at 3 nodes of the element and

the boundary conditions are designed such that EMS
h has the desired error bounds on the boundary

of the elements.

exist τi ∈ Th and εi > 0 such that

Ωi ⊆ τi\τ εi
i . (2.3.1)

That is, the boundary of Ωi lies at least a distance εi from the boundary of τi. Note

that any element could contain more than one inclusion. Our estimates will depend

on the following measure of the relative size of εi:

δ := max
i=1,...,m

hτi

εi

. (2.3.2)

Note that δ ≥ 1. Then we have the following theorem:

Theorem 2.3.1. Suppose the boundary condition in (2.2.2) is linear on the boundary

of each element τ ∈ Th. Then, for f ∈ H1/2(Ω),

(i) |u− uMS
h |H1(Ω),α . δ3h

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

, (2.3.3)

(ii) ‖u− uMS
h ‖L2(Ω) . δ6h2

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

. (2.3.4)

Proof. We give the proof in Case I (see (2.1.5)). Thus we assume αi ≥ α̂ → ∞ for

i = 1, . . . , m and α0 = 1. Case II is discussed in Remark 2.3.2.

First consider any element τi ∈ Th which contains an inclusion Ωi. We construct

Ẽ MS
h on τi by defining it to be zero on τi\τ εi

i , equal to EMS
h on ∂τi and extending
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into τ εi
i using Lemma A.1.1 of Appendix A (scaled to τi). By combining this with

standard estimates for linear approximation in 1D, we obtain

|Ẽ MS
h |2H1(τi),α

= |Ẽ MS
h |2

H1(τ
εi
i )

.
(

hτi

εi

)2

h−1
τi
‖EMS

h ‖2
L2(∂τi)

+

(
hτi

εi

)2

hτi
|EMS

h |2H1(∂τi)

. δ2h3
τi

∑

e∈E(τ)

‖D2
eu‖2

L2(e) ,

where E(τ) denotes the edges of τ . On the other hand if τ ∈ Th contains no inclusion,

then with ẼMS
h := EMS

h , it is easy to show that this estimate remains true with δ

replaced by 1, thus

|Ẽ MS
h |2H1(τ),α . δ2h3

τ

∑

e∈E(τ)

‖D2
eu‖2

L2(e) , for all τ ∈ Th . (2.3.5)

Recalling (2.2.11), we now see that (2.3.5) allows us to estimate |u − uMS
h |H1(Ω),α

in terms of the data f and certain derivatives of the solution u along edges which (in

this case) lie entirely in Ω0. In order to prove robustness to the contrast α̂, we now

estimate these edge derivatives in terms of Sobolev norms of u in Ω0, which we can in

turn estimate independently of α̂, using the regularity theory in the Appendix. The

required technical argument, which we now give, leads to (2.3.16).

First we recall the trace theorem for polygons (e.g., [47, Theorem 1.5.2.1]), which,

after scaling to any element τ ∈ Th, reads

|v|2H1(e) . h−3
τ ‖v‖2

L2(τ) + h−1
τ |v|2H1(τ) + |v|2H3/2(τ) , for all v ∈ H3/2(τ) .

Moreover, replacing v by v − γ where γ is an arbitrary constant, and then invoking

the Poincaré inequality on τ , we obtain the simpler estimate

|v|2H1(e) . h−1
τ |v|2H1(τ) +|v|2H3/2(τ) for all v ∈ H3/2(τ) and all τ ∈ Th . (2.3.6)

Now return to the case where τ = τi, an element which contains an inclusion Ωi.

Choose φ to be a C∞ cut-off function which vanishes on τi\τ εi
i , has the value 1 on ∂τi

and satisfies ‖Dβφ‖L∞(τi) . ε
−|β|
i for all multindices β. Then choose any edge e of τi
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and any constant γ. Using the fact that φγ is constant on e and (2.3.6), we obtain

‖D2
eu‖2

L2(e) = |φ(Deu− γ)|2H1(e) . h−1
τi
|φ(Deu− γ)|2H1(τi)

+ |φ(Deu− γ)|2H3/2(τi)
.

(2.3.7)

To estimate the right-hand side, we recall the Poincaré inequality for an annulus

(Lemma A.1.2) and scale it to τi to obtain a constant γ ∈ R such that

‖v − γ‖L2(τ
εi
i ) . hτi

|v|H1(τ
εi
i ) , for all v ∈ H1(τ εi

i ) , (2.3.8)

with a hidden constant that is independent of both hτi
and εi .

Now, to estimate the first term on the right-hand side of (2.3.7), use the above

estimates for the derivatives of φ and (2.3.8), to obtain

h−1
τi
|φ(Deu− γ)|2H1(τi)

. h−1
τi

ε−2
τi
‖Deu− γ‖2

L2(τ
εi
i )

+ h−1
τi
|u|2

H2(τ
εi
i )

. h−1
τi

δ2|u|2
H2(τ

εi
i )

. (2.3.9)

The estimation of the second term on the right-hand side of (2.3.7) is slightly more

involved. For any multi-index β of order 1, we have

|φ(Deu− γ)|2H3/2(τi)
.

∑

|β|=1

|(Dβφ)(Deu− γ)|2
H1/2(τ

εi
i )

+
∑

|β|=1

|φDβDeu|2H1/2(τ
εi
i )

.

(2.3.10)

Now for all ψ ∈ C∞(τ εi
i ) and v ∈ H1/2(τ εi

i ), elementary arguments show:

|ψv|2
H1/2(τ

εi
i )

≤ ‖ψ‖2
L∞(τ

εi
i )
|v|2

H1/2(τ
εi
i )

+ hτi
‖∇ψ‖2

L∞(τ
εi
i )
‖v‖2

L2(τ
εi
i )

. (2.3.11)

Hence, the first term on the right-hand side of (2.3.10) is estimated by

|(Dβφ)(Deu−γ)|2
H1/2(τ

εi
i )

. ε−2
τi
|Deu−γ|2

H1/2(τ
εi
i )

+ε−4
τi

hτi
‖Deu−γ‖2

L2(τ
εi
i )

. (2.3.12)

Interpolating (2.3.8) with the corresponding estimate for ‖Deu− γ‖H1(τ
εi
i ) we obtain

|Deu− γ|H1/2(τ
εi
i ) . h1/2

τi
|Deu|H1(τ

εi
i ) . (2.3.13)

Combining (2.3.8) and (2.3.13) with (2.3.12), we have

|(Dβφ)(Deu− γ)|2
H1/2(τ

εi
i )

. (ε−2
τi

hτi
+ ε−4

τi
h3

τi
)|u|2

H2(τ
εi
i )

. h−1
τi

δ4|u|2
H2(τ

εi
i )

. (2.3.14)
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The second term on the right-hand side of (2.3.10) is also estimated by (2.3.11):

|φDβDeu|2H1/2(τ
εi
i )

. |u|2
H5/2(τ

εi
i )

+ hτi
ε−2

τi
|u|2

H2(τ
εi
i )

. |u|2
H5/2(τ

εi
i )

+ h−1
τi

δ2|u|2
H2(τ

εi
i )

.

(2.3.15)

Then combining (2.3.14) and (2.3.15) with (2.3.10) we have

|φ(Deu− γ)|2H3/2(τi)
. h−1

τi
δ4|u|2

H2(τ
εi
i )

+ |u|2
H5/2(τ

εi
i )

.

Combining this with (2.3.9) and (2.3.7), we have

‖D2
eu‖2

L2(e) . h−1
τi

δ4|u|2
H2(τ

εi
i )

+ |u|2
H5/2(τ

εi
i )

.

By a direct application of (2.3.6), this estimate also holds (in fact with δ replaced by

1) when τ does not contain an inclusion , so that

‖D2
eu‖2

L2(e) . h−1
τ δ4|u|2H2(τ∩Ω0)+ |u|2H5/2(τ∩Ω0) , for all e ∈ E(τ) and all τ ∈ Th .

Combining this with (2.3.5) yields, for all τ ∈ Th,

|Ẽ MS
h |2H1(τ),α . δ2h2

τ

[
δ4|u|2H2(τ∩Ω0) + hτ |u|2H5/2(τ∩Ω0)

]
. (2.3.16)

Combining with (2.2.11) and employing the regularity theory from the Appendix

yields the result (i).

Let w ∈ H1
0 (Ω) be the solution of

a(w, v) = (u− uMS
h , v)L2(Ω) for all v ∈ H1

0 (Ω) (2.3.17)

and let wMS
h ∈ VMS

h satisfy:

a(wMS
h , vMS

h ) = (u− uMS
h , vMS

h )L2(Ω) for all vMS
h ∈ VMS

h . (2.3.18)

Applying (2.3.3), then the interpolation theorem for H1/2(Ω) and finally the arithmetic-
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geometric mean inequality (ab ≤ a2/2 + b2/2) yields

|w − wMS
h |H1(Ω),α . δ3h

[
h|u− uMS

h |2H1/2(Ω) + ‖u− uMS
h ‖2

L2(Ω)

]1/2

. δ3h
[
h|u− uMS

h |H1(Ω)‖u− uMS
h ‖L2(Ω) + ‖u− uMS

h ‖2
L2(Ω)

]1/2

. δ3h
[
h2|u− uMS

h |2H1(Ω) + ‖u− uMS
h ‖2

L2(Ω)

]1/2

. δ3h
[
h|u− uMS

h |H1(Ω) + ‖u− uMS
h ‖L2(Ω)

]
. (2.3.19)

Hence , taking v = u− uMS
h in (2.3.17), we get

‖u− uMS
h ‖2

L2(Ω) = a(w, u− uMS
h ) = a(w − wMS

h , u− uMS
h )

≤ |w − wMS
h |H1(Ω),α|u− uMS

h |H1(Ω),α ,

and combining this with (2.3.19) (and recalling α ≥ 1), we have

‖u− uMS
h ‖2

L2(Ω) ≤ Cδ3h
[
h|u− uMS

h |2H1(Ω),α + |u− uMS
h |H1(Ω),α‖u− uMS

h ‖L2(Ω)

]

(2.3.20)

for some constant C > 0. Now by the arithmetic-geometric mean inequality again we

have

Cδ3h|u− uMS
h |H1(Ω),α‖u− uMS

h ‖L2(Ω) ≤ 1

2
C2δ6h2|u− uMS

h |2H1(Ω),α +
1

2
‖u− uMS

h ‖2
L2(Ω)

and substitution into (2.3.20) yields

1

2
‖u− uMS

h ‖2
L2(Ω) ≤ Cδ3h2|u− uMS

h |2H1(Ω),α +
1

2
C2δ6h2|u− uMS

h |2H1(Ω),α

= Cδ3(1 + (C/2)δ3)h2|u− uMS
h |2H1(Ω),α ,

which combined with (2.3.3) leads to the desired result (2.3.4).

Remark 2.3.2. For Case II, we can use the same idea to prove

(i) |u− uMS
h |H1(Ω),α . δ3h

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

, (2.3.21)

(ii) ‖u− uMS
h ‖L2(Ω) . δ6h2

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

. (2.3.22)

We construct ẼMS
h as in the proof of Theorem 2.3.1, and notice that |ẼMS

h |H1(τi),α =

α̂1/2|ẼMS
h |H1(τi). The regularity result in Theorem 2.2.5 leads to (2.3.21). The same
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duality argument gives (2.3.22).

The estimates above can be extended to the inhomogeneous Dirichlet case. This

is discussed in detail in a more general context in Remark 2.4.19.

2.4 Error Analysis for Elements Which Intersect Inclusions

Now we consider the case in which the interface may intersect with the boundaries of

some of the mesh elements. Recalling Theorem 2.2.2, we have to show that for each

element τ there is a boundary condition for the multiscale basis functions on ∂τ such

that EMS
h := u−IMS

h u has an extension Ẽ MS
h from ∂τ into τ with a suitably bounded

energy.

In Section 2.4.1 we present some qualitative properties of the exact solution u of

(2.1.2) in the generic case when the interface intersects two edges of τ . These relate

various derivatives of u at the points of edge-interface intersection, plus controllable

remainders. These relations motivate the interior boundary conditions for the multi-

scale basis functions presented in Section 2.4.2. In particular it is explained how the

boundary conditions can be found by solving a 6× 6 linear system for each element

which intersects the interface. In Theorem 2.4.9 we estimate EMS
h on each element

boundary.

The interior error is considered in Section 2.4.3. First, Lemma 2.4.15 uses the

result of Theorem 2.4.9 to prove the existence of an extension Ẽ MS
h of EMS

h with

suitably bounded energy; this leads to Theorem 2.4.16, which proves a suitable error

estimate for the energy norm of EMS
h on each element τ , by using Theorem 2.2.2 and

the estimate for the extension proved in Theorem 2.4.9.

The procedure which we describe constructs interior boundary conditions element

by element and does not naturally lead to conforming elements. However conformity

can be regained by local averaging. This is described in Section 2.4.4, where the main

theorem, Theorem 2.4.18 is proved. An important observation, discussed in Section

2.4.2, is that in the case where the interface intersects the element edges orthogo-

nally, our boundary condition coincides with the “oscillatory boundary conditions”

proposed in [51].
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2.4.1 Properties of the Exact Solution

In this subsection we derive some properties of the exact solution of (2.1.2) in an ele-

ment τ through which an intersection cuts. To avoid some technicalities in the theory

we shall make the following geometrical assumption on elements which intersect the

interface.

Assumption 2.4.1. When the interface Γ intersects an element τ we shall assume

that it subdivides τ into two parts. We label the vertices of τ as x1, x2, x3 in such

a way that Γ intersects ∂τ at points which we denote by yi in the edges x3xi, for

i = 1, 2. We let β denote the angle of τ subtended at x3 and we let τ− denote the

part where α ≥ α̂ and τ+ denote the part where α ≤ K (see (2.1.5), (2.1.6)). A

typical situation is depicted in Figure 2.4. Letting r−i and r+
i denote, respectively,

the length of the line segments ei ∩ τ− and ei ∩ τ+, we shall assume that there exist

positive constants 0 ≤ R < R ≤ 1 and 0 < B < π such that, for all meshes

(characterised by mesh parameter h),

Rhτ ≤ min{r−i , r+
i } ≤ max{r−i , r+

i } ≤ Rhτ for i = 1, 2 and π−B ≥ β ≥ B .

(2.4.1)

For i = 1, 2 we define θi ∈ (−π/2, π/2) to be the unique angle such that

ei = cos θi ni + sin θi ti . (2.4.2)

We also assume that Γ is not tangential to either of the edges ei, i.e.

|θi| ≤ π/2− T for some T > 0 , (2.4.3)

The hidden constants in the estimates below may depend on β, R, R, B and T .

In many cases where the element intersects the interface in a different way, we

can always find a refinement to reduce to cases satisfying Assumption 2.4.1 , see, e.g.

Figure 2.5.

Referring again to Figure 2.4, for i = 1, 2, we let ei denote the unit vector directed

from x3 to xi and let ni and ti denote, respectively, the unit normal and the unit

tangent to Γ at yi. These are uniquely determined by requiring that ni is directed
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t1

t2

n1

θ1

θ2Γ

β

τ+τ−

x3 x1

x2

∂τ

1

e2

e

n2

y1

y2

Figure 2.4: An interface cutting through an element: Here τ− denotes the part where the coefficient
α is large.

Γ Γ

Figure 2.5: After a simple refinement, we can reduce the element to the case we consider.

outward from τ− and that ti = Rπ/2ni, where Rφ is the rotation matrix

Rφ =


 cos φ − sin φ

sin φ cos φ


 .

Note also that ei = Rθi
ni. In particular ei = ni if and only if θi = 0.

Later we use the easily derived relations:

Rφ ni = cos φ ni + sin φ ti and Rφ ti = − sin φ ni + cos φ ti , (2.4.4)

for i = 1, 2 and any φ. From these it follows that n2 = R−θ2 e2 = R−θ2+β e1 =

Rθ1−θ2+β n1 , and, similarly, t2 = Rθ1−θ2+β t1 . Combining these last two relations



35

with (2.4.4) yields:

n2 = cos(θ2 − θ1 − β) n1 − sin(θ2 − θ1 − β) t1, (2.4.5)

and

t2 = sin(θ2 − θ1 − β) n1 + cos(θ2 − θ1 − β) t1. (2.4.6)

As explained above, we now study how the solution u of (2.1.2) behaves on ∂τ .

This information will be used to construct suitable internal boundary conditions for

multiscale basis functions in Section 2.4.2.

Throughout, we denote the restriction of u to τ± by u±. Also, for any unit vector

v we let Dvu denote the derivative of u in the direction v. The boundary conditions

derived in the following section will be motivated by the relationships between the

quantities (Dei
u±)(yi), for i = 1, 2, where u is the exact solution of (2.1.2). Our first

relationship is the following:

Lemma 2.4.2. Let u be the exact solution of (2.1.2) and define the vector ε =

(ε1, ε2)
T ∈ R2 by requiring

r−i (Dei
u−)(yi) + r+

i (Dei
u+)(yi) = u(xi)− u(x3) + εi , i = 1, 2 . (2.4.7)

Then

|εi| . h3/2
τ

(‖D2
ei
u−‖L2(ei∩τ−) + ‖D2

ei
u+‖L2(ei∩τ+)

)
, for i = 1, 2. (2.4.8)

Proof. This follows from straightforward Taylor expansions at the point yi and the

interface matching condition u+(yi) = u−(yi) plus the fact that u± ∈ H2(τ±).

Now, when u is known at the three node points xi, x2, x3, then, setting εi = 0 in

(2.4.7) gives us two equations for (approximations of) the four unknown quantities

(Dei
u±)(yi), i = 1, 2.

To determine additional equations for these quantities, we use the interface jump

conditions for u at y1, y2 to obtain in a straightforward way:
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Lemma 2.4.3. Let u be the exact solution of (2.1.2). For i = 1, 2,




Dei
u−(yi)

Dei
u+(yi)


 = Abα,θi




Dni
u−(yi)

Dtiu
−(yi)


 (2.4.9)

where

Abα, θ =


 cos θ sin θ

α̂ cos θ sin θ


 . (2.4.10)

Proof. The proof is obtained by simply combining the interface conditions:

(Dni
u+)(yi) = α̂(Dni

u−)(yi) and (Dtiu
+)(yi) = (Dtiu

−)(yi), for i = 1, 2.

(2.4.11)

with (2.4.2).

We can use (2.4.9) to define a relation between (Dei
u±)(yi), i = 1, 2, provided

we have a relation between (Dn1u
−)(y1), (Dt1u

−)(y1), (Dn2u
−)(y2), and (Dt2u

−)(y2).

Such a relation is provided by the following lemma.

Lemma 2.4.4. Let u be the exact solution of (2.1.2).




Dn2u
−(y2)

Dt2u
−(y2)


 = Rθ2−θ1−β




Dn1u
−(y1)

Dt1u
−(y1)


 + ε′ , (2.4.12)

where

‖ε′‖∞ . h1/2
τ

[∥∥De2Dn1u
−∥∥2

L2(e2∩τ−)
+

∥∥De1Dn1u
−∥∥2

L2(e1∩τ−)

]1/2

.

Proof. From equations (2.4.5) and (2.4.6) we have, for all x ∈ τ−,




Dn2u
−(x)

Dt2u
−(x)


 = Rθ2−θ1−β




Dn1u
−(x)

Dt1u
−(x)


 , (2.4.13)

Then, using Taylor expansions and the fact that u− is H2 on each ei ∩ τ−, we obtain

the desired estimate.
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Before we move on to the definition of the multiscale basis functions, in Corollary

2.4.5 we collect the results of Lemmas 2.4.2, 2.4.3 and 2.4.4 in a simpler form. To do

this, we introduce the 6× 6 matrix

Mbα,θ1,θ2,β :=




I 0 −Abα,θ1

0 I −Abα,θ2Rθ2−θ1−β

R1 R2 0


 ,

where

R1 =


 r−1 r+

1

0 0


 and R2 =


 0 0

r−2 r+
2


 . (2.4.14)

Also, for each v ∈ H1
0 (Ω) with suitably well-defined point values at yi, i = 1, 2, we

define the vectors c(v) d(v) ∈ R6 by

c(v) = [0, 0, 0, 0, v(x1)− v(x3), v(x2)− v(x3)]
T , (2.4.15)

and

d(v) := [(De1v
−)(y1), (De1v

+)(y1), (De2v
−)(y2), (De2v

+)(y2), (Dn1v
−)(y1), (Dt1v

−)(y1)]
T .

(2.4.16)

Note that c(v) and d(v) depend linearly on v. Then we have

Corollary 2.4.5. If u is the exact solution of the problem (2.1.2), then for each

element τ which intersects the interface as in Assumption 2.4.1, and with the notation

defined there, we have

Mbα,θ1,θ2,β d(u) = c(u) + δ ,

where δ ∈ R6 is defined by

δ =




0

Abα,θ2ε
′

ε


 , (2.4.17)

and ε, ε′ are as defined in Lemmas 2.4.2 and 2.4.4.

Proof. This is obtained by writing down: (i) Lemma 2.4.3 for i = 1; (ii) Lemma 2.4.3

for i = 2 combined with Lemma 2.4.4 and (iii) Lemma 2.4.2.
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2.4.2 Novel Interior Boundary Condition and Boundary Error

We now use the relations derived in the previous subsection to derive suitable bound-

ary conditions for multiscale basis functions.

For any element τ ∈ Th, let xp, p = 1, 2, 3 denote its nodes. The multiscale basis

functions ΦMS
p are found as solutions to the subgrid problems (2.2.1) on τ , subject to

Dirichlet boundary data φp,τ on ∂τ which has to be specified, subject to the nodal

condition:

φp,τ (xq) = δp,q , p, q ∈ {1, 2, 3} (2.4.18)

(see (2.2.2)). If the interface Γ does not intersect τ , then we choose φp,τ on ∂τ to be

the linear interpolant of (2.4.18) on each edge of τ , and then the solution of (2.2.1)

is also linear on τ . Otherwise (under Assumption 2.4.1), our construction for φp,τ

(described below) will be continous on ∂τ , linear on each of the intersected edge

segments, {x3yi, yixi, for i = 1, 2} and linear on the third edge x1x2. Because

of (2.4.18), it remains to specify the gradient of φp,τ on each of the two pieces of

the intersected edges. These gradients are computed by Algorithm 2.4.7 below. This

requires solving two 6 × 6 linear systems with the same coefficient matrices. Before

we give the algorithm we first establish the solvability of these systems and obtain

bounds on their solution which will be needed later.

Theorem 2.4.6. Under Assumption 2.4.1, suppose φ := θ2 − θ1 − β 6= 0 and

introduce the 2× 2 matrix

D := R1Abα,θ1 + R2Abα,θ2Rφ.

Then, for all α̂ sufficiently large, D is nonsingular, and Mbα,θ1,θ2,β is nonsingular with

(Mbα,θ1,θ2,β)−1 =




I 0 Abα,θ1

0 I Abα,θ2Rφ

0 0 I







I 0 0

0 I 0

−D−1R1 −D−1R2 D−1




.

(2.4.19)

Moreover

‖D−1‖∞ . α̂−1h−1
τ (sin φ)−1. (2.4.20)
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Proof. A tedious but elementary calculation shows that with

E :=




r+
1 cos θ1 0

r+
2 cos θ2 cos φ −r+

2 cos θ2 sin φ


 ,

we have ‖α̂−1D−E‖∞ ≤ Cα̂−1hτ , where the constant C is independent of θ1, θ2, φ,

β and hτ . Since E is non-singular, standard matrix perturbation theory shows that,

for large enough α̂,

‖α̂D−1‖∞ = ‖(α̂−1D)−1‖∞ ≤ C ′‖E−1‖∞

with C ′ also independent of the above parameters. In fact

E−1 =




(r+
1 cos θ1)

−1 0

−(r+
1 cos θ1 sin φ)−1 cos φ −(r+

2 cos θ2 sin φ)−1


 ,

and so (2.4.20) follows directly, recalling Assumption 2.4.1. Because D−1 exists, the

formula for M−1 is verified by simple matrix manipulation.

This now leads us to Algorithm 2.4.7 for computing the boundary data φp,τ for

the multiscale basis functions ΦMS
p on τ .

Algorithm 2.4.7. For p = 1, 2, 3,

1. Solve the linear system:

Mbα,θ1,θ2,β dp = c(φp,τ ) . (2.4.21)

2. Then set





(De1φp,τ )|x3y1 = (dp)1, (De1φp,τ )|y1x1 = (dp)2 ,

(De2φp,τ )|x3y2 = (dp)3, (De2φp,τ )|y2x2 = (dp)4 .

(2.4.22)

Remark 2.4.8. (i) The right hand side c(φp,τ ) in system (2.4.21) is determined by

(2.4.15) and (2.4.18). It is easy to see that c(φ1,τ ) + c(φ2,τ ) + c(φ3,τ ) = 0, so
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d1 + d2 + d3 = 0 and only two of the three systems (2.4.21) has to be solved.

Moreover since the function φ1,τ + φ2,τ + φ3,τ has value 1 at each node of τ and

zero derivative along each x3yi, yixi, i = 1, 2 and along x1x2, it thus satisfies

the requirements of (2.2.2) and (2.2.3).

(ii) Since φp,τ is defined to be linear on each ei ∩ τ− and ei ∩ τ+ and to satisfy the

nodal condition (2.4.18), the continuity of φp,τ at each intersection point yi is

guaranteed by the last two equations in (2.4.21).

(iii) If θi = 0 (i.e. the interface intersects edge ei orthogonally) then the boundary

condition computed by Algorithm 2.4.7 coincides with the “oscillatory boundary

condition” proposed in [51]. More precisely, if θ1 = 0, it is easy to see that the

first two equations and last two equations of (2.4.21) imply

(dp)2 = α̂(dp)1 and r−1 (dp)1 + r+
1 (dp)2 = φp,τ (x1)− φp,τ (x3)

and hence

(dp)1 =
φp,τ (x1)− φp,τ (x3)

r−1 + α̂ r+
1

, (dp)2 = α̂
φp,τ (x1)− φp,τ (x3)

r−1 + α̂ r+
1

. (2.4.23)

Thus φp,τ is the solution of the reduced elliptic differential equation −(α φ′p,τ )
′ =

0 on x3x1, which is exactly how the “oscillatory” boundary condition is con-

structed.

(iv) When θi 6= 0 for i = 1, 2 the boundary condition on each ei depends on both

θ1 and θ2. In particular, if p = 1 (respectively 2), the function φp,τ does not

necessarily vanish on the edge e2 (respectively e1).

(v) Algorithm 2.4.7 determines φp,τ and hence ΦMS
p on each τ individually and does

not guarantee that ΦMS
p will be continuous across element edges, so that approx-

imation in span{ΦMS
p : p ∈ Ih(Ω)} may not be conforming. We resolve this issue

later by averaging across element edges (see Section 2.4.4).

In the next theorem we show that the nodal interpolant IMS
h u =

∑
p u(p)φp,τ is a

good approximation to u along the boundary of the element τ . Recall the notation

EMS
h := u− IMS

h u.
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Theorem 2.4.9. Let u be the exact solution of (2.1.2). Consider an element τ which

intersects the interface as in Assumption 2.4.1. Suppose also φ := θ2−θ1−β 6= 0 .

Then we have, for m = 0, 1

max
i=1,2

{
α̂hm

τ ‖Dm
ei

EMS
h ‖L∞(ei∩τ−) , hm

τ ‖Dm
ei

EMS
h ‖L∞(ei∩τ+)

}

. h3/2
τ max

i=1,2

|k|=1

[
α̂2‖DkDei

u‖2
L2(ei∩τ−) + ‖DkDei

u‖2
L2(ei∩τ+)

]1/2

. (2.4.24)

The hidden constant may blow up if φ → 0 . (See Remark 2.4.10 below.)

Proof. We give the proof on the assumption that τ± are as depicted in Figure 2.4

(i.e. α is large in the region containing x3 and small in the region containing x1, x2).

Making use of (2.4.21) and the fact that c(u) depends only on the nodal values of u,

we have

Mbα,θ1,θ2,β

(
3∑

p=1

u(xp)dp

)
= c(IMS

h u) = c(u) .

Combining this with Corollary 2.4.5 we obtain

Mbα,θ1,θ2,β

(
d(u)−

3∑
p=1

u(xp)dp

)
= δ .

Hence, using (2.4.19) and (2.4.17), we obtain

(
d(u)−

3∑
p=1

u(xp)dp

)
=




I 0 Abα,θ1

0 I Abα,θ2Rφ

0 0 I







0

Abα,θ2ε
′

D−1(ε−R2Abα,θ2ε
′)




.

(2.4.25)

Now by (2.4.16), and (2.4.22), we see that the first four entries of the left-hand

side of (2.4.25) are

De1(u−IMS
h u)−(y1), De1(u−IMS

h u)+(y1), De2(u−IMS
h u)−(y2), and De2(u−IMS

h u)+(y2).

Examining the right-hand side of (2.4.25), we see that the first two entries are

Abα,θ1D
−1(ε−R2Abα,θ2ε

′) .
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Now, recalling Lemmas 2.4.2, 2.4.4 and (2.4.20) we obtain

‖D−1(ε−R2Abα,θ2ε
′)‖∞ . h

1/2
τ

sin φ
max
i=1,2

|k|=1

{
‖DkDei

u‖2
L2(ei∩τ−) +

1

α̂2
‖DkDei

u‖2
L2(ei∩τ+)

}1/2

.

Hence

max
{
α̂|De1(u− IMS

h u)−(y1)|, |De1(u− IMS
h u)+(y1)|

}

. h1/2
τ max

i=1,2

|k|=1

[
α̂2‖DkDei

u‖2
L2(ei∩τ−) + ‖DkDei

u‖2
L2(ei∩τ+)

]1/2

.

Similarly, the third and fourth components of (2.4.25) yield the same estimate for

max
{
α̂|De2(u− IMS

h u)−(y2)|, |De2(u− IMS
h u)+(y2)|

}
.

The estimates (2.4.24) for m = 1 then readily follow. For example, since IMS
h u is

linear on ei ∩ τ−, we have, for x ∈ ei ∩ τ−,

α̂|Dei
(u− IMS

h u)(x)| ≤ α̂|(Dei
u)(x)− (Dei

u−)(yi)| + α̂|Dei
(u− IMS

h u)−(yi)|

. h1/2
τ max

i=1,2

|k|=1

[
α̂2‖DkDei

u‖2
L2(ei∩τ−) + ‖DkDei

u‖2
L2(ei∩τ+)

]1/2

.

(2.4.26)

To obtain the estimate for m = 0, recall that u− IMS
h u vanishes at the nodes, so we

can write, for x ∈ e1 ∩ τ−,

(u− IMS
h u)(x) =

∫ x

x3

De1(u− IMS
h u)(t)dt, (2.4.27)

and the required estimates for ‖u−IMS
h u‖L∞(e1∩τ−) follow directly. The remainder of

the estimates (2.4.24) for m = 0 are similar.

Remark 2.4.10. The critical case φ = θ2− θ1−β = 0 in Theorem 2.4.9 occurs when

the unit outward normals n1 and n2 to Γ at the two intersection points y1, y2 coincide.

In this case, if the interface Γ is not a straight line, then τ may be subdivided into

two sub-elements, in each of which φ no longer vanishes and Algorithm 2.4.7 applies

to each of these sub-elements.

However if Γ ∩ τ is a straight line, no such refinement will succeed. Instead

(referring to the geometry in Fig. 2.4), one may simply subdivide the quadrilateral
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τ+ into two triangles and combine this with τ− to yield a new mesh which locally

resolves Γ and then discretise using standard linear basis functions on each of these

three elements.

An alternative approach is suggested by the “Immersed Finite Element (IFE)

method” of Li, Lin and Wu [68], where in any case the interface segment τ ∩ Γ is

approximated by a straight line and a special finite element basis Ψp,τ : p = 1, 2, 3 is

constructed on τ which is required to be affine on each of τ− and τ+ and to satisfy

the six conditions (with the same geometry as in Assumption 2.4.1):

Ψp,τ (xq) = δp,q , q = 1, 2, 3 , (2.4.28)

Ψ−
p,τ (yi) = Ψ+

p,τ (yi) , i = 1, 2 , (2.4.29)

and DnΨ−
p,τ = α̂DnΨ+

p,τ , (2.4.30)

where n denotes the (constant) normal direction to the straight line Γ ∩ τ pointing

from τ− to τ+ and t the corresponding tangential direction (as in Fig. 2.4). Note

that in (2.4.30), the quantities on each side of the equation are constant since the

Ψ±
p,τ are assumed affine.

The following lemma shows that the immersed finite element algorithm defines a

solution to (2.4.21) even when Γ ∩ τ is a straight line (so that φ = 0). However the

error estimates of Theorem 2.4.9 are no longer true in general for the IFE approach,

as the following example shows.

Example 2.4.11. Consider an element τ with vertices (0, 0), (0, h), (h, h) and the

interface is the segment connected by (0, h/2), (h/2, h/2). If we consider α = α̂ on

τ−(left part) and α = 1 on τ+(right part), then the IFE nodal basis function with

value 1 at (h, 0) is given by

2 x

(α̂ + 1)h
− y

h
, on τ− and

2 α̂ (x− h)

(α̂ + 1)h
− y − h

h
, on τ+ .

The directional derivative along the edge from (0, 0), (h, h) in τ− is
√

2
(bα+1)h

− 1√
2h

of

O(1/h) but not O(1/(α̂ h)). Hence the estimate in Theorem 2.4.9 is not true.

Lemma 2.4.12. Suppose Γ∩ τ is a straight line segment and suppose Ψp,τ is defined

via (2.4.28), (2.4.29) and (2.4.30). Then the vector d(Ψp,τ ) (defined as in (2.4.16))

provides a solution to system (2.4.21).
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Proof. Using the fact that Ψp,τ is affine on each of τ±, and using also (2.4.29), we

have, for i = 1, 2,

(∇Ψ−
p,τ )

T (yi − x3) + (∇Ψ+
p,τ )

T (xi − yi) = Ψ−
p,τ (yi)−Ψp,τ (x3) + Ψp,τ (xi)−Ψ+

p,τ (yi)

= Ψp,τ (xi)−Ψp,τ (x3) .

Since r−i ei = (yi − x3) and r+
i ei = (xi − yi), and since the gradients ∇Ψ±

p,τ are

constant, it follows that

r−i Dei
Ψ−

p,τ (yi) + r+
i Dei

Ψ+
p,τ (y1) = Ψp,τ (xi)−Ψp,τ (x3) for i = 1, 2 ,

and so the last two equations of (2.4.21) are satisfied.

By a similar argument,

(∇Ψ−
p,τ )

T (y1−y2) = Ψ−
p,τ (y1)−Ψ−

p,τ (y2) = Ψ+
p,τ (y1)−Ψ+

p,τ (y2) = (∇Ψ+
p,τ )

T (y1−y2) ,

and since y1 − y2 is in the direction of t (the tangent direction along Γ), this implies

DtΨ
+
p,τ = DtΨ

−
p,τ on Γ ∩ τ .

Combining this with (2.4.2) and (2.4.30), we have

De1Ψ
−
p,τ = cos θ1DnΨ−

p,τ + sin θ1DtΨ
−
p,τ

De1Ψ
+
p,τ = α̂ cos θ1DnΨ−

p,τ + sin θ1DtΨ
−
p,τ ,

and thus the first two equations in (2.4.21) are satisfied. The verification of the third

and fourth equations in (2.4.21) is entirely analogous.

Remark 2.4.13. The previous lemma shows that the system (2.4.21) is consistent

when Γ ∩ τ is a straight line, which is a particular case of φ = 0. Under the general

assumption only that φ = 0, and examining the proof of Theorem 2.4.6 we see that

in this case D = R1Abα,θ1 +R2Abα,θ2 . The (non)singularity of this for general choices

of α̂, and θi, r
−
i , r+

i , i = 1, 2 has not yet been analysed.
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2.4.3 Interior Error

The main result in this section is Theorem 2.4.16, which gives an α− explicit estimate

for the error |u−uMS
h |H1(τ),α, in the case where the interface may cut through τ . This

is obtained by an application of Theorem 2.2.2, and thus requires we first show that

EMS
h = u−IMS

h u can be extended from the boundary to the interior of τ in a suitably

robust way. This extension is proved in Lemma 2.4.15, which requires a further

technical assumption on the geometry of Γ ∩ τ .

Assumption 2.4.14. We impose Assumption 2.4.1 and further assume that when

Γ intersects any element τ , Γ ∩ τ is star shaped about x3. That is, introducing

polar coordinates with origin x3 and polar angle θ measured anticlockwise from e1,

we assume that each (x, y) ∈ Γ ∩ τ can be written (x, y) = (r(θ) cos θ, r(θ) sin θ), for

θ ∈ [0, β]. Writing also the edge x1x2 as (x, y) = (r∗(θ) cos θ, r∗(θ) sin θ) for a suitable

function r∗, we assume there exist constants C > 0 and, 1 > C∗ > 0 such that

|r′(θ)| ≤ Cr(θ) and r(θ) ≤ C∗r∗(θ) , for all θ ∈ [0, β]. (2.4.31)

Note that under this assumption, we can integrate the left-hand side of (2.4.31) to

obtain | log(r(θ)/r(0))| ≤ Cβ, and since r(0) = r−1 , we can combine this with (2.4.1)

to obtain

r(θ) ∼ hτ for all θ ∈ [0, β] . (2.4.32)

Now letting s denote arclength along Γ ∩ τ , it is easily seen that

ds =
√

(r(θ))2 + (r′(θ))2dθ ∼ hτdθ. (2.4.33)

Moreover, since (2.4.31) implies r∗(θ) ∼ hτ , we also have

|τ+| =

∫ β

0

∫ r1(θ)

r(θ)

rdrdθ =
1

2

∫ β

0

[
(r∗)2(θ)− r2(θ)

]
dθ ∼ h2

τ .

A similar but simpler argument shows |τ−| ∼ h2
τ . Collecting these relations, we have

|Γ ∩ τ | ∼ hτ , |τ±| ∼ h2
τ . (2.4.34)

These are needed in the proof of the following result.
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Lemma 2.4.15. Under Assumption 2.4.14 there exists Ẽ MS
h ∈ H1(τ) with Ẽ MS

h =

EMS
h on ∂τ and satisfying

|Ẽ MS
h |2H1(τ),α . h2

τ

(
α̂ max

i=1,2,3
‖Dei

EMS
h ‖2

L∞(ei∩τ−) + max
i=1,2,3

‖Dei
EMS

h ‖2
L∞(ei∩τ+)

)
.

(2.4.35)

Proof. For notational convenience in the proof we make the abbreviations: E = EMS
h ,

Ẽ = Ẽ MS
h . We assume the geometric situation as in Figure 2.4, so that τ− (the

region where α is high) contains the node x3. The case where τ− contains two nodes

is entirely analogous.

Using Assumption 2.4.14, we parameterize τ− by introducing local coordinates

(t, θ) such that

x = t r(θ) cos θ, y = t r(θ) sin θ, t ∈ [0, 1] , θ ∈ [0, β] . (2.4.36)

Then we define Ẽ on τ− explicitly by:

Ẽ(t, θ) =

(
θ

β

)
E(x3 + tr−2 e2) +

(
1− θ

β

)
E(x3 + tr−1 e1) , t ∈ [0, 1] , θ ∈ [0, β] .

(2.4.37)

Clearly Ẽ coincides with E on ei ∩ τ−, for each i = 1, 2 and, moreover,

∂Ẽ

∂x
(t, θ) =

((
θ

β

)
r−2 (De2E)(x3 + tr−2 e2) +

(
1− θ

β

)
r−1 (De1E)(x3 + tr−1 e1)

)
∂t

∂x

+
1

β

(
E(x3 + tr−2 e2)− E(x3 + tr−1 e1)

)
∂θ

∂x
(2.4.38)

with an analogous formula for ∂Ẽ/∂y. Defining the Jacobian

J :=




∂x
∂t

∂x
∂θ

∂y
∂t

∂y
∂θ


 , we have det(J) = t r2(θ) (2.4.39)

and (abbreviating r(θ) by r), the partial derivatives of θ and t are computed:




∂t
∂x

∂t
∂y

∂θ
∂x

∂θ
∂y


 = J−1 =

1

t r2


 t(r cos θ + r′ sin θ) t(r sin θ − r′ cos θ)

−r sin θ r cos θ


 . (2.4.40)
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Making use of (2.4.40) and then Assumption 2.4.14 (which includes Assumption

2.4.1), the first term on the right-hand side of (2.4.38) is estimated by

hτ

r(θ)

∣∣∣∣cos θ +
r′(θ)
r(θ)

sin θ

∣∣∣∣ max
i=1,2

‖Dei
E‖L∞(ei∩τ−) . hτ

r(θ)
max
i=1,2

‖Dei
E‖L∞(ei∩τ−) .

(2.4.41)

Moreover since E(x3) = 0, we have |E(x3 + tr−i ei)| . thτ‖Dei
E‖L∞(ei∩τ−), i = 1, 2,

and hence the second term on the right-hand side of (2.4.38) is bounded exactly as

in the right-hand side of (2.4.41). An analogous procedure can be applied to ∂Ẽ/∂y,

thus yielding, overall,

|∇Ẽ(t, θ)| . hτ

r(θ)
max
i=1,2

‖Dei
E‖L∞(ei∩τ−) for t ∈ [0, 1], θ ∈ [0, β] .

Therefore, using also (2.4.39), we obtain the estimate on τ−:

|Ẽ|2H1(τ−),α =

∫

τ−
α̂|∇Ẽ(x, y)|2 dx dy = α̂

∫ 1

0

∫ β

0

|∇Ẽ(t, θ)|2 t r2(θ) dθ dt

. h2
τ α̂ max

i=1,2
‖Dei

E‖2
L∞(ei∩τ−) .(2.4.42)

Note that we constructed above an explicit expansion Ẽ into τ− whose precise

behaviour is quite delicate. For the extension into τ+, it turns out to be sufficient to

apply the inverse trace theorem, which only obtains the extension implicitly. Since

τ+ is a Lipschitz domain, the (inverse) trace theorem (using also (2.4.34)), gives an

extension Ẽ which satisfies ( since α . 1 on τ+),

|Ẽ|2H1(τ+),α . |Ẽ|2H1(τ+)

. hτ
−1‖Ẽ‖2

L2(∂τ+) + hτ |Ẽ|2H1(∂τ+)

=
∑

i=1,2,3

(
hτ

−1‖E‖2
L2(ei∩τ+) + hτ |E|2H1(ei∩τ+)

)

+ hτ
−1‖Ẽ‖2

L2(Γ∩τ) + hτ |Ẽ|2H1(Γ∩τ)

. h2
τ max

i=1,2,3
‖Dei

E‖2
L∞(ei∩τ+) + hτ

−1‖Ẽ‖2
L2(Γ∩τ) + hτ |Ẽ|2H1(Γ∩τ),

(2.4.43)

where in the final estimate we used E(x1) = 0 = E(x2) .

It remains to estimate the final two terms in (2.4.43). First note that on Γ∩ τ , we
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can write Ẽ = Ẽ(1, θ), for some θ ∈ [0, β] and by (2.4.37) we have (as above),

‖Ẽ‖L∞(Γ∩τ) . max
i=1,2

|E(yi)| . hτ max
i=1,2

‖Dei
E‖L∞(ei∩τ+) . (2.4.44)

Moreover, writing θ = θ(s) where s denotes arclength along Γ ∩ τ , we have

∣∣∣∣
d

ds
{Ẽ(1, θ(s))}

∣∣∣∣ =
1

β
|E(y2)− E(y1)|

∣∣∣∣
dθ

ds

∣∣∣∣ . hτ max
i=1,2

‖Dei
E‖L∞(ei∩τ+)

∣∣∣∣
dθ

ds

∣∣∣∣ .

Hence, making use of (2.4.33) and (2.4.34), we have

|Ẽ|2H1(Γ∩τ+) . h2
τ max

i=1,2
‖Dei

E‖2
L∞(ei∩τ+)

∫ |Γ∩τ |

0

∣∣∣∣
dθ

ds

∣∣∣∣
2

ds

∼ hτ max
i=1,2

‖Dei
E‖2

L∞(ei∩τ+). (2.4.45)

The Lemma follows on insertion of (2.4.44) and (2.4.45) into (2.4.43).

Theorem 2.4.16. Let u be the solution of (2.1.2) and suppose τ is one of the elements

which are cut through by the interface Γ. Then, under Assumption 2.4.14,

|EMS
h |2H1(τ),α . h2

τ α̂2
[
|u|2H2(τ−) + hτ |u|2H5/2(τ−)

]

+ h2
τ

[
|u|2H2(τ+) + hτ |u|2H5/2(τ+)

]
+ h2

τ ‖f‖2
L2(τ). (2.4.46)

Remark 2.4.17. When τ is an element which is not intersected by the interface, the

estimate (2.4.46) still holds but the terms in |u|H5/2(τ±) are absent.

Proof. From Theorem 2.2.2 and Lemma 2.4.15 we have

|EMS
h |2H1(τ),α . h2

τ

(
α̂ max

i=1,2,3
‖Dei

EMS
h ‖2

L∞(ei∩τ−)

+ max
i=1,2,3

‖Dei
EMS

h ‖2
L∞(ei∩τ+) + ‖f‖2

L2(τ)

)
. (2.4.47)

The edge derivatives on the right-hand side of (2.4.47) may be estimated by Theorem

2.4.9, yielding

|EMS
h |2H1(τ),α . h3

τ max
i=1,2,3

|k|=1

[
α̂2‖DkDei

u‖2
L2(ei∩τ−) + ‖DkDei

u‖2
L2(ei∩τ+)

]

+ h2
τ‖f‖2

L2(τ) . (2.4.48)
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+η−η

x2

x1 x3

x4

Figure 2.6: Left: Γ is the curved interface and η− (η+) is the polygon inside τ− (respectively τ+).
Right: Two elements intersected by the interface.

Now we adapt the procedure from the proof of Theorem 2.3.1 to bound the terms

in u appearing on the right-hand side of (2.4.48). Let η− be a polygon chosen inside

τ− with the property that ∂τ ∩ τ− ⊂ ∂η− and let η+ be chosen analogously (see

Figure 2.6, left). Clearly we may choose these polygons so that |η±| ∼ |τ±|.
Then, for |k| = 1 and i = 1, 2, we have (cf. (2.3.6))

‖DkDei
u−‖2

L2(ei∩τ−) = |Dku−|2H1(ei∩τ−)

. h−1
τ |Dku−|2H1(η−) + |Dku−|2H3/2(η−)

. h−1
τ |u−|2H2(τ−) + |u−|2H5/2(τ−). (2.4.49)

Analogously we have

‖DkDei
u+‖2

L2(ei∩τ+) . h−1
τ |u+|2H2(τ+) + |u+|2H5/2(τ+). (2.4.50)

The required result follows by combining (2.4.49) and (2.4.50) with (2.4.48)

2.4.4 Conforming Modification and Global Error Estimate

The multiscale basis functions discussed in the previous sections were obtained by

solving (2.2.1) on each element τ individually, using a boundary condition relevant to

that particular element. When an interface cuts an element edge there is no guarantee

that the boundary condition will match across that edge, and so the basis constructed

in this way may be discontinuous (i.e. the element may be non-conforming). However,

as we now show, it is easy to make the basis functions continuous by local averaging.

Consider the interface crossing an edge belonging to two adjacent elements, as in
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Fig. 2.6 (right). Let xp denote any one of the nodes of this pair of triangles and

denote the boundary condition on x2x3 (constructed by the method in Section 2.4.2)

for τ = 4x1x2x3 by φp,τ and the analogous boundary condition for τ ′ = 4x4x2x3 by

φp,τ ′ . Then we simply define the averaged boundary condition on x2x3 to be

(φp,τ + φp,τ ′)

2
.

Doing this for all edges cut by the interface yields a conforming method. Moreover a

simple application of the triangle inequality shows that the new boundary condition

yields multiscale basis functions and an interpolation operator which satisfies the

estimate in Theorem 2.4.9 and hence Theorem 2.4.16 remains true. However, the

price we pay is that the resulting basis functions may have a slightly bigger support

than the standard linear functions. For example, in Fig. 2.6 (Right), when p = 4 the

basis function ΦMS
p will not necessarily vanish in the triangle x1x2x3.

Theorem 2.4.18. Suppose Assumption 2.4.14 holds for each element which is cut

through by the interface. Suppose also that f ∈ H1/2(Ω). Let u be the solution of

(2.1.2). Assume also that h is sufficiently small. Then

(i) |u− uMS
h |H1(Ω),α . h

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

, (2.4.51)

(ii) ‖u− uMS
h ‖L2(Ω) . h2

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

. (2.4.52)

Proof. Consider first Case I (see (2.1.5)). By the optimality of uMS in the energy

norm, we get

|u− uMS
h |2H1(Ω),α ≤ |EMS

h |2H1(Ω),α =
∑

τ

|EMS
h |2H1(τ),α, (2.4.53)

We now employ Theorem 2.4.16 to estimate the right-hand side. Bearing in mind the

regularity estimates in Theorem 2.2.5, since ∂Ω is assumed to be a convex polygon,

we need to assume here that h is small enough that all elements which cross Γ are

separated from ∂Ω by at least a fixed distance. For example, h ≈ dist(Γ, ∂Ω)/2 is
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sufficient. Under this assumption, and bearing in mind Remark 2.4.17, we have

|u− uMS
h |2H1(Ω),α .

h2

{
α̂2

m∑
i=1

(
|u|2H2(Ωi)

+ h|u|2H5/2(Ωi)

)
+ |u|2H2(Ω0) + h|u|2H5/2(Ω0) + ‖f‖2

L2(Ω)

}
.

(2.4.54)

The required estimate (2.4.51) follows from regularity theorem 2.2.5. The estimate

(2.4.52) is derived by adapting the duality argument used in the proof of Theorem

2.3.1. The proof in Case II similar.

Remark 2.4.19. If u is required to satisfy an inhomogeneous boundary condition g

(as described in Remark A.2.1) then we have the following estimates for Case I,

(i) |u− uMS
h |H1(Ω),α . h

[
‖f‖2

L2(Ω) + ‖g‖2
H2(Ω0) + h(|f |2H1/2(Ω) + |g|2H5/2(Ω0))

]1/2

,

(ii) ‖u− uMS
h ‖L2(Ω) . h2

[
‖f‖2

L2(Ω) + ‖g‖2
H2(Ω0) + h(|f |2H1/2(Ω) + |g|2H5/2(Ω0))

]1/2

,

and, for Case II,

(i) |u− uMS
h |H1(Ω),α . h

[
‖f‖2

L2(Ω) + α̂2‖g‖2
H2(Ω0) + h(|f |2H1/2(Ω) + α̂2|g|2H5/2(Ω0))

]1/2

,

(ii) ‖u− uMS
h ‖L2(Ω) . h2

[
‖f‖2

L2(Ω) + α̂2‖g‖2
H2(Ω0) + h(|f |2H1/2(Ω) + α̂2|g|2H5/2(Ω0))

]1/2

,

The latter estimates are pessimistic in some inhomogeneous Dirichlet cases. For

example if u = u0 + C where u0 enjoys the same estimates as in Theorem 2.2.5, then

since IMS
h preserves constants (see (2.2.5)),

|u− uMS
h |H1(Ω),α ≤ |u− IMS

h u|H1(Ω),α = |u0 − IMS
h u0|H1(Ω),α (2.4.55)

and the results of Theorem 2.4.18 remain valid in this case.

2.5 Numerical Experiments

In this section, we perform three numerical experiments to verify the convergence

rates established above. We consider the weak form of the Dirichlet boundary value
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problem:

−∇ · (α∇u) = f, in Ω, with u = g, on ∂Ω , (2.5.1)

for different domains Ω, piecewise constant function α, source term f and boundary

condition g. To compute the multiscale basis functions, we subdivide each coarse

grid element into M uniform triangular sub-elements and apply the IFE method of

[68] for basis function calculation on each coarse element. As discussed in Remark

2.4.10, this involves approximating the interface by a straight line in each element

of the fine grid which it intersects. Clearly extending the theoretical results in this

paper to this case will require M to be sufficiently large relative to h and α. In the

following three experiments, we use M = 1024 to ensure that the errors in computing

the basis functions are small. At the end of this section we study in more detail how

the choice of M affects the overall error in the method.

Experiment 1. In this experiment, Ω = [−1, 1]× [−1, 1], f = −9 r, g =

r3

α0
+

(
1

α1
− 1

α0

)
r3
0, and

α =





α1 , r < r0,

α0 , r ≥ r0.
, (2.5.2)

where r = (x2 + y2)1/2 and r0 = π/6.28 (see also [68]). The exact solution is

u(r, θ) =





r3

α1
, r < r0,

r3

α0
+

(
1

α1
− 1

α0

)
r3
0 , r ≥ r0.

(2.5.3)

Recalling (2.1.5) and (2.1.6) we shall study Case I: α1 = α̂, α0 = 1 and Case II:

α1 = 1, α0 = α̂. Notice that the source term f is independent of α̂. By examining

the form of u and recalling (2.4.55) it follows that our method will enjoy the error

estimates of Theorem 2.4.18 in both Cases I and II.

The coarse grid in this case is a uniform triangular grid on Ω. We depict the

numerical solutions for both cases in Fig. 2.7. The solutions are flat in the region

where the coefficient α is high. Fig. 2.8 shows that the errors are small but are

concentrated along the interface. The errors presented in Tables 2.1 and 2.2 show

that the method is first order in the H1 semi-norm and second order in the L2 norm,
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Figure 2.7: Numerical solutions uMS
h with h = 1/32 for Experiment 1.
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h | for Case I with bα = 100000.
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h | for Case II with bα = 100000.

Figure 2.8: Pointwise errors EMS
h and h = 1/32 for Experiment 1.

as predicted by the theory.4 The independence of α̂ can be observed from Figure 2.9.

In this experiment, we can see that our new multiscale finite element method

gives much better performance than the standard linear finite element method on the

same grid (see Fig 2.10). The improvement is more significant when α̂ is very large,

which may be expected since we have proved that our multiscale method converges

independently of α̂ whereas the asymptotic constant in the error estimate for the

standard finite element method may depend on α̂. For example, when α̂ = 105, the

multiscale finite element method has an L2 norm error about 66 times smaller than

that of the standard linear finite element method, while in the H1 semi-norm the

error is better by a factor of about 15.

We have also compared our multiscale finite element method with the IFE method

4Throughout, we use least squares fitting to estimate the convergence rates.



54

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 8.9457e-2 9.0295e-2 8.9569e-2 8.9489e-2 9.0375e-2
1/8 2.2833e-2 2.2877e-2 2.2881e-2 2.2891e-2 2.2912e-2
1/16 5.7666e-3 5.7703e-3 5.7791e-3 5.7824e-3 5.7808e-3
1/32 1.4548e-3 1.4521e-3 1.4511e-3 1.4517e-3 1.4511e-3
1/64 3.6619e-4 3.6242e-4 3.6482e-4 3.6369e-4 3.6366e-4
rate 1.9837 1.9899 1.9858 1.9865 1.9895

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 5.1756e-1 5.5251e-1 5.1793e-1 5.2480e-1 5.5458e-1
1/8 2.4868e-1 2.5246e-1 2.4854e-1 2.4858e-1 2.5381e-1
1/16 1.2349e-1 1.2339e-1 1.2355e-1 1.2297e-1 1.2377e-1
1/32 6.2156e-2 6.1687e-2 6.1456e-2 6.1289e-2 6.1355e-2
1/64 3.1374e-2 3.1011e-2 3.0915e-2 3.0651e-2 3.0662e-2
rate 1.0088 1.0343 1.0149 1.0216 1.0402

Table 2.1: The L2-norm errors (upper) and the H1 semi-norm errors (lower) for the Case I: α1 = α̂,
α0 = 1 in Experiment 1.
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Figure 2.9: Figures (a)-(d) show that the errors are not affected by the values of α̂ in Experiment 1.
Each line represents the error versus α̂ for fixed h. The values of h are 1/4, 1/8, 1/16, 1/32, 1/64
from top to bottom.
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h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 1.2782e-2 9.0781e-3 9.3489e-3 9.2490e-3 9.2439e-3
1/8 3.7991e-3 2.8410e-3 3.0394e-3 2.9212e-3 2.9314e-3
1/16 1.0235e-3 9.3213e-4 9.2752e-4 8.3648e-4 8.5214e-4
1/32 2.7485e-4 2.7843e-4 2.4049e-4 2.2169e-4 2.2716e-4
1/64 7.7605e-5 6.6592e-5 5.4716e-5 5.7664e-5 5.9580e-5
rate 1.8517 1.7533 1.8493 1.8371 1.8245

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 1.3950e-1 1.2346e-1 1.2486e-1 1.2422e-1 1.2408e-1
1/8 6.7497e-2 5.7930e-2 5.7251e-2 5.7320e-2 5.7267e-2
1/16 3.3704e-2 3.0806e-2 2.6738e-2 2.6893e-2 2.6961e-2
1/32 1.8304e-2 1.4854e-2 1.2806e-2 1.2563e-2 1.2609e-2
1/64 9.9543e-3 7.3327e-3 6.2600e-3 6.0577e-3 6.2529e-3
rate 0.9987 0.9708 0.9982 1.0063 1.0160

Table 2.2: The L2-norm errors (upper) and the H1 semi-norm errors (lower) for the Case II: α1 = 1,
α0 = α̂ in Experiment 1.
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Figure 2.10: Figures (a) and (b) show that the errors computed by our method (solid lines) are
smaller than those by the standard finite element method (dash lines) among all α̂ in Experiment
1 Case II. Each line represents the error versus α̂ for fixed h. The values of h are 1/4, 1/8, 1/16,
1/32, 1/64 from top to bottom.

[68] applied on the coarse grid and we found that our method gives a consistently

better performance for all values of α̂, although the gain is less pronounced compared

with that over the standard finite element method. From Fig. 2.11, we see that the

errors computed by the IFE method increase as α̂ increases. This shows that our

method improves the accuracy and remove the dependence of α̂.

Experiment 2. In this experiment Ω is the unit disk, α is as defined in (2.5.2),
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Figure 2.11: Figures (a) and (b) show that the errors computed by our method (solid lines) are
smaller than those by the IFE method (dash lines) among all α̂ in Experiment 1 Case II. Each line
represents the error versus α̂ for fixed h. The values of h are 1/4, 1/8, 1/16, 1/32, 1/64 from top to
bottom.

with r0 = 1/3, f = 0 and g(x) = x. The exact solution can be obtained analytically:

u(x, y) =





−2
(β−1) r2

0−(β+1)
x , r < 0,

−(β+1)

(β−1) r2
0−(β+1)

x +
(β−1)r2

0

(β−1) r2
0−(β+1)

x
x2+y2 , r ≥ r0,

(2.5.4)

where β = α1/α0. Unlike in Experiment 1, the exact solution depends on the polar

angle θ. We investigate convergence for the case α1 = α̂, α0 = 1, with increasing α̂

(i.e., Case I), using quasi-uniform meshes, with a typical example shown in Figure

2.12. A typical numerical solution and pointwise error are shown in Fig. 2.13. As

in Experiment 1, we see that the solution is flat in the high conductivity region and

the errors are small and concentrated along the interface. From Table 2.3, we see

the convergence rates are very close to optimal and independent of α̂. Although the

theory presented above is for polygonal ∂Ω, the error estimates in Remark 2.4.19

could easily be extended to prove α̂-independent convergence of optimal order for

this experiment, as observed in the tables.

Experiment 3. In this experiment Ω = [−1, 1] × [−1, 1] and we consider the

case of two inclusions, with

α =





α1 , when (x− x1)
2 + (y − y1)

2 < r2
1,

α2 , when (x− x2)
2 + (y − y2)

2 < r2
2,

α0 , otherwise.
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Figure 2.12: Illustration of computation domain and meshes for Experiment 2. The black circle
indicates the interface in the problem.
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Figure 2.13: Numerical solution uMS
h and pointwise error EMS

h for Experiment 2 with α̂ = 100000
and h = 1/32.

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/8 2.2893e-3 4.6732e-3 3.4460e-3 3.3769e-3 3.3855e-3
1/16 7.0721e-4 1.7751e-3 9.0811e-4 8.8256e-4 8.8731e-4
1/32 1.8442e-4 3.1863e-4 2.5463e-4 2.4886e-4 2.8548e-4
1/64 5.2058e-5 7.9585e-5 7.0451e-5 7.0448e-5 7.0659e-5
rate 1.8315 2.0105 1.8671 1.8575 1.8383

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/8 7.3816e-2 9.1749e-2 9.0765e-2 9.1247e-2 9.1505e-2
1/16 4.1501e-2 4.6103e-2 4.5586e-2 4.5827e-2 4.5973e-2
1/32 2.2267e-2 2.4132e-2 2.3906e-2 2.3967e-2 2.4874e-2
1/64 1.3250e-2 1.3547e-2 1.2411e-2 1.2333e-2 1.2382e-2
rate 0.8332 0.9213 0.9543 0.9597 0.9543

Table 2.3: The L2-norm errors (upper) and the H1 semi-norm errors (lower) for Experiment 2.
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Figure 2.14: Numerical solutions uMS
h for Experiment 3.
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Figure 2.15: Pointwise errors EMS
h for Experiment 3.

Here we choose f = 1 and g = 0. Since an analytical solution is unknown, we use

the solution on the finest mesh (here with 16641 grid points) as the reference solution

to compute the error for solutions on coarser meshes. We choose (x1, y1) = (1/2, 0),

(x2, y2) = (−1/2, 1/2) and r1 = 2/5, r2 = 1/3.

Recalling that (2.1.5) allows α1 and α2 to approach infinity with different rates, we

set α1 = α̂, α2 = 5 α̂ and α0 = 1 as an example of Case I. For Case II, we let α1 = 1,

α2 = 5 and α0 = α̂. The numerical solution and pointwise error are shown in Fig. 2.14

and Fig. 2.15. We see that the error is still small and concentrated along the interface.

Table 2.4 and 2.5 show that our method enjoys a roughly optimal convergence rate

and the errors are independent of α̂, as predicted by Theorem 2.4.18.

Discussion of the Choice of the Number of Subgrid Elements
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h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 2.2150e-2 7.2008e-3 7.0956e-3 7.2309e-3 8.1280e-3
1/8 2.9498e-3 2.5855e-3 2.5863e-3 2.6387e-3 3.1500e-3
1/16 1.0142e-3 7.0168e-4 7.1187e-4 7.5761e-4 1.1063e-3
1/32 1.6523e-4 1.9426e-4 1.5366e-4 1.5484e-4 1.7776e-4
rate 2.2740 1.7518 1.8449 1.8436 1.8054

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 1.0715e-1 3.5010e-2 3.5559e-2 3.5590e-2 3.5765e-2
1/8 2.2953e-2 1.5407e-2 1.5854e-2 1.6046e-2 1.8413e-2
1/16 1.2119e-2 5.9967e-3 6.7962e-3 7.9550e-3 1.6621e-2
1/32 5.8558e-3 3.1782e-3 2.0319e-3 2.2558e-3 4.0509e-3
rate 1.3502 1.1746 1.3610 1.2951 0.9574

Table 2.4: The L2-norm errors (upper) and the H1 semi-norm errors (lower) for the Case I: α1 = α̂,
α2 = 5 α̂, α0 = 1 in Experiment 3.

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 6.6651e-3 1.3188e-3 1.2837e-3 1.2870e-3 1.2343e-3
1/8 7.7081e-4 4.9420e-4 3.3161e-4 3.3314e-4 3.2842e-4
1/16 1.8952e-4 1.6737e-4 6.9212e-5 6.9211e-5 6.6224e-5
1/32 4.9532e-5 5.8600e-5 1.4979e-5 1.5999e-5 1.6192e-5
rate 2.3240 1.5039 2.1524 2.1257 2.1067

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 5.9426e-2 9.7096e-3 8.7966e-3 8.7811e-3 8.1776e-3
1/8 1.1250e-2 6.9732e-3 4.4793e-3 4.2302e-3 4.4192e-3
1/16 4.7793e-3 5.0584e-3 1.3624e-3 1.2180e-3 1.1965e-3
1/32 3.0188e-3 2.9506e-3 6.1242e-4 4.0833e-4 4.7003e-4
rate 1.4132 0.5618 1.3250 1.5076 1.4248

Table 2.5: The L2-norm errors (upper) and the H1 semi-norm errors (lower) for the Case II: α1 = 1,
α2 = 5, α0 = α̂ in Experiment 3.
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Figure 2.16: The sensitivity test of M for Case I in Experiment 1 with α̂ = 100(- - * line), 1000(- -
x line), 10000(- - diamond line).The values of h are 1/4, 1/8, 1/16, 1/32, 1/64 from top to bottom.

Finally we discuss the sensitivity of the error in the overall multiscale method

to the choice of M (the number of subgrid elements) used to compute the basis

functions. Here we test how the errors depend on M in Experiment 1 (Case I), with

α̂ = 100, 1000, 10000, and h = 1/4, 1/8, 1/16, 1/32, 1/64 and plot the error against M

in Fig. 2.16. In each plot there are five groups of three lines; each group corresponds

to a different value of h, with h decreasing from 1/4 (top group) to 1/64 (bottom

group). In each group of three lines, the dash-asterisk line is for α̂ = 100, the dash-x

line is for α̂ = 1000 and the dash-diamond line is for α̂ = 10000. (In the case of the

L2 error, the cases h = 1/32 and 1/64 are almost coincident.)

From these graphs we see that the errors decrease as M increases, and with M =

64, the multiscale finite element method gives an error that is comparable to that

using M = 1024 when the coarse mesh size is less then 1/4 for all α̂. This indicates

that, at least in this example, it is possible to use relatively few subgrid elements

to compute the basis function with the desired accuracy, for example by choosing

M = 64. We expect that the use of adaptive subgrid elements may lead to further

computational savings in computing the multiscale basis function.

2.6 Concluding Remarks and Discussions

In this work we propose and analyze a new multiscale finite element method for the

elliptic interface problem. From Theorem 2.2.2, we see that the boundary conditions

of basis functions play an essential role in error control. The most important con-



61

tribution of this work is finding the boundary conditions for the basis functions to

obtain optimal convergence rates independent of the contrast. We provide the com-

plete analysis for error estimates without scale separation assumptions. This has not

been done by previous studies in the MsFEM framework.

Our method can be considered as a generalization of the immersed finite element

method (IFE) proposed by Li, Lin and Wu [68]. Our method improves IFE in several

aspects. The analysis of the IFE method relies on strong regularity assumptions of

the exact solution u, which has not been proved and may not be true in general.

Specifically, Li, Lin and Wu assumed that u is C2 in each sub-regions, and the con-

stants in their error estimates for the IFE method depend on the contrast α̂ and the

C2-norm of u. On the other hand, our analysis requires only f ∈ H1/2(Ω). The

numerical experiments in Section 2.5 indicate that the convergence of IFE has some

mild dependence on the contrast, α̂, while the convergence of our multiscale finite ele-

ment method is completely independent of the contrast. However, the computational

cost of our method is slightly higher than that of the IFE method since we need to

construct the basis functions numerically.

The standard finite element method with body fitted mesh for interface prob-

lem has optimal convergence rates and the hidden constants are independent of the

contrast [82]. With today’s well-developed mesh generating software and fast linear

solvers, the standard finite element method with body fitted mesh could be more

efficient and accurate than our method. On the other hand, the multiscale finite

element approach breaks down a large system into many small local problems. The

basis functions can be computed locally and can be carried out in perfect parallel.

Moreover, the MsFEM approach reduces the size of the computation which offers a

big saving in computer memory. This is useful when dealing with complicated do-

mains. For example, Strouboulisl, Zhang and Babuška [86] considered the Laplace

equation in a square domain minus 597 voids. To resolve the voids, it requires 30372

quadrilateral elements with 133180 degrees of freedom (See Fig. 2.6). Strouboulisl

et al used generalized finite element method on the 8x8 mesh with 243 degrees of

freedom to solve the problem and obtained a satisfactory accuracy. Although our

method cannot be applied to such a complicated problem yet, it may be possible to

extend our method to this problem in the future.
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Figure 2. An FEM mesh with 30 372 quadrilateral elements used in the classical -version FEM

Figure 2.17: An FEM mesh with 30372 quadrilateral elements used. This figure is from [86].
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Chapter 3

Flow-Based Oversampling
Techniques for Two-Phase Flow
Problem

The work presented in this chapter consists of materials from the paper [30] by Chu

et al. In the next section we give a preliminary explanation of the multiscale fi-

nite volume element method (MsFVEM). In Section 3.2, we present the flow-based

oversampling approach and analysis. Finally, in Section 3.3, numerical results are

presented.

3.1 The Multiscale Finite Volume Element Procedure

Mass conservative schemes play an important role in groundwater simulation. There-

fore, it is essential to use methods which provide a mass conservative approximation

to the flux v = −k∇p. In this section, we briefly recall the multiscale finite volume

element method (MsFVEM) [55, 38], one of the popular mass conservative methods.

To demonstrate the concept of MsFVEM, we denote by Kh the set of coarse el-

ements (rectangles in this case) K and Zh(K) the set of the vertices of K. The

quantity ξK indicates the center of coarse element K. Element K is divided into

four rectangles of equal area by connecting ξK to the midpoints of the element edges.

These quadrilaterals are denoted by Kξ, where ξ∈ Zh(K), are the vertices of K. We

designate Zh =
⋃

K Zh(K) and Z0
h ⊂ Zh the vertices which do not lie on the Dirichlet

boundary of Ω. The control volume V ξ is defined as the union of the quadrilaterals

Kξ sharing the vertex ξ. The grid comprised of elements K (solid squares in Figure

3.1) is sometimes referred to as the primal grid and the grid defined by V ξ (dashed
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Figure 3.1: Schematic of nodal points and grid.

square in Figure 3.1) as the dual grid. In our procedure we compute pressure at the

vertices of the primal grid. This differs from the approach of [55, 56] in which pressure

is computed at the centroids of the primal grid blocks. This also leads to a different

treatment of global boundary conditions.

The goal of the MsFVEM is to determine coarse scale basis functions that in-

corporate the fine scale information in the underlying permeability description. The

technique applied here follows the multiscale finite element method of [51], as the

basis functions are determined from the solution of the leading order homogeneous

elliptic equation on each coarse element. For a coarse rectangular element K, the

basis functions φi, i = 1, 2, 3, 4, are computed via solution of:

∇ · (k · ∇φi) = 0 in K

φi = gi on ∂K,
(3.1.1)

for prescribed boundary functions gi. The basis function associated with the vertex

xi is constructed from the union of the basis functions that share this xi and are zero

elsewhere. Note that φi must satisfy φi(xj) = δij.

Hou and Wu [51] showed that the accuracy of the resulting coarse model is im-

pacted by the treatment of boundary effects in (3.1.1). Enhanced accuracy can be

achieved by solving local 1D problems [55] for the determination of gi or, as is consid-

ered here, by solving (3.1.1) in a domain that includes more than just the fine scale

cells corresponding to the coarse block K (this approach is referred to as oversam-
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pling). The specific boundary conditions that are used in this paper for the deter-

mination of the basis functions will be discussed in detail below. A vertex-centered

finite volume procedure is used to solve (3.1.1).

As discussed in [37], once the basis functions are constructed we determine ph ∈ V h,

where V h is the space of approximate pressure solutions, with ph =
∑

xj∈Z0
h
pjφj, by

enforcing

∫

∂Vξ

(
λ(S)k · ∇ph

) · n dl =

∫

Vξ

qdx, (3.1.2)

for every control volume V ξ⊂ Ω. Here n defines the normal vector on the boundary

of the control volume ∂V ξ and S is the fine scale saturation. Note that the integral

in (3.1.2) is performed over a coarse cell in the dual grid (V ξ) and the finite element

test function is unity. For this reason, the technique is referred to as a finite volume

element method. In this way the method differs from multiscale finite element pro-

cedures (e.g., [51]). The equation (3.1.2) results into a system of linear equations for

the solution values at the nodal points of the coarse mesh. In particular, we have

Ap = b,

where A = (aij), aij =
∫

∂Vξi
(λ(S)k · ∇φj) · n dl, bi =

∫
Vξi

qdx.

3.2 Flow-Based Oversampling for Multiscale Finite Element

Methods

First, we describe the oversampling technique. Denote a target coarse block by K (we

assume rectangular partition in 2D, for simplicity) and an extended coarse region by

K ′ (see Figure 3.2). For K ′ with vertices yi (i = 1, 2, 3, 4), we denote by ψi(x) a nodal

basis on K ′, such that ψi(yj) = δij. The nodal basis functions ψi (i = 1, 2, 3, 4) are

constructed by solving (3.1.1) in the region K ′ (see Figure 3.2) with linear boundary

conditions. Once the auxiliary functions ψi (also called oversampling functions) are

constructed, we compute the basis functions φi as a linear combination of the ψi (as
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Figure 3.2: Schematic description of coarse block and extended coarse block regions.

is done in oversampling for MsFEM [51]) as follows:

φi(x) =
4∑

j=1

cijψj(x), (3.2.1)

where xj are the nodes of the target coarse block K and cij are coefficients determined

by imposing φi(xj) = δij. The resulting multiscale basis functions are nonconforming.

Using these basis functions, the global problem is solved using (3.1.2). We emphasize

that this method is not limited to rectangular global domains. In the case of non-

rectangular domains, one can still use global auxiliary solutions with some generic

boundary conditions. These auxiliary fields are required to be linearly independent,

so that one can construct linearly independent multiscale basis functions φi.

In our simulations, we are interested in taking the oversampled domain to be the

entire region, i.e., K ′ = Ω. This is in particular used for porous media without scale

separation which exhibit strong non-local effects, such as those considered in this

work. By taking the oversampling region to be the entire domain, one avoids the

resonance errors endemic to numerical homogenization (see, e.g., [51, 41]). The ψi

computed in this manner are the global solutions corresponding to single-phase flow

problems which are computed once. We refer to the standard oversampling technique

when generic oversampling functions are used (as described above) for constructing

multiscale basis functions.

In this work, we propose the use of flow-based oversampling auxiliary functions
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for the construction of basis functions which differs from the standard oversampling

method. In the flow-based oversampling method, we replace some of the standard

oversampling auxiliary functions (solutions of single-phase flow equations) by ones

obtained from solving the single-phase flow problem with the actual boundary con-

ditions of two-phase flow. More precisely, if the two-phase flow equations are solved

subject to some boundary conditions, then we replace some of the generic oversam-

pling auxiliary functions, ψj in (3.2.1), with oversampling functions with the same

boundary conditions as those in the two-phase flow. Note that the standard oversam-

pling assumes that the oversampling functions have linear boundary conditions. In

applications, the boundary conditions are often non-smooth and can have an impact

on the flow solutions. For this purpose, one needs to take into account non-smooth

effects via auxiliary oversampling functions. Such situations occur, for example, when

the flow is corner-to-corner (see the next section for details). In this case, the bound-

ary conditions are no longer smooth and one of the oversampling functions is taken

to be the solution of corner-to-corner flow.

We remark that the computational time required for the standard oversampling

and the flow-based oversampling is similar. Indeed, in the flow-based oversampling

approach, some of the standard oversampling auxiliary functions are replaced by

flow-based single-phase flow solutions. The latter does not affect the computational

time unless we incorporate many flow boundary conditions into the multiscale basis

functions. However, the computational time required for flow-based approaches is,

generally, larger than that required for local multiscale methods. Since in local ap-

proaches one still needs to solve the local problems over each coarse grid block, the

total computational time can be similar to solving the global problems. This holds

particularly if the oversampling regions are larger than the target coarse grid blocks.

We stress again that the global solutions are computed off-line for the calculation of

the multiscale basis functions. One can incorporate multiple sources of global infor-

mation in the flow-based oversampling approach, in the form of multiple multiscale

bases, which is not the case with the multiscale finite element method introduced in

[37, 35] which uses limited global information.
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3.2.1 Analysis

In this section, we show that the use of the actual flow boundary conditions in over-

sampling methods is important. For flow based oversampling approach, we can see

that the solution of the single-phase flow problem with exact boundary conditions lies

in the approximation space V h. Solutions with generic boundary conditions also lie

in the approximation space V h. Our analysis shows that the two-phase flow solution

can be well approximated in V h if we add flow-based oversampling basis.

Consider the flow equations for two-phase flow in the form

−∇ · (λ(S)k · ∇p) = 0, p|Γ1 = gD, ∂p
∂n
|Γ2 = gN ; (3.2.2)

where gD and gN may be discontinuous along the boundaries Γ1, Γ2. Let Q be the

solution for the single phase flow equation,

−∇ · (k · ∇Q) = 0, Q|Γ1 = gD, ∂Q
∂n
|Γ2 = gN . (3.2.3)

Using equation (3.2.2), and (1.4.3) (with hw = 0), we derive the equation for p:

−∇ · (k · ∇p) = − 1

λ(S)
∇ · (λ(S)k · ∇p)− 1

λ(S)2
(λ(S)k · ∇p) · λ′(S)∇(S)

= − λ′(S)

λ(S)2
v · ∇(S)

=
1

f ′(S)

(
1

λ(S)

)

t

(3.2.4)

with p|Γ1 = gD, ∂p
∂n
|Γ2 = gN . Now let w = p − Q; subtracting equations (3.2.2) and

(3.2.4) we get

−∇ · (k · ∇w) = 1
f ′(S)

(
1

λ(S)

)
t
, w|Γ1 = 0, ∂w

∂n
|Γ2 = 0. (3.2.5)

Thus the difference between p and Q satisfies the elliptic equation with a nonzero

source term and homogeneous boundary conditions. Therefore, if 1
f ′(S)

( 1
λ(S)

)t is suffi-

ciently regular, w can be approximated by generic solutions very well. Thus p = Q+w,

where w is a smooth function of two linearly independent solutions of single-phase

flow equation, as was shown in [78]. This result further justifies the use of Q, the

solution of the single-phase flow problem with the actual flow boundary conditions.
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3.3 Numerical Results

In this section, we present representative simulation results with quadratic relative

permeabilities, krw(S) = S2 and kro(S) = (1 − S)2. In all cases the system uses

permeability fields from one of the upper Ness layers in the SPE comparative project

[28], a benchmark test. These permeability fields are highly heterogeneous, channel-

ized, and difficult to upscale. Figure 3.3 depicts the log-permeability of one of the

layers.

We employ the flow-based multiscale finite volume element method for solving

the pressure equation (1.4.2). The basis functions are constructed once and used

throughout the simulations without updating them. The saturation equation (1.4.3)

is solved on the fine grid using upwind finite volume method with flux limiter. For

this purpose, the fine-scale velocity field is reconstructed from the multiscale basis

functions representation of the pressure via Darcy’s Law.

Simulation results are presented for the saturation fields, as well as total flow rate

and the oil cut as a function of pore volume injected (PVI). The oil cut is also referred

to as the fractional flow of oil. The oil cut (or fractional flow) defined as the fraction

of oil in the produced fluid, is given by qo/qt, where qt = qo + qw. Here qo and qw are

the flow rates of oil and water at the production edge of the model. In particular,

qw =
∫

∂Ωout f(S)v ·ndω, qt =
∫

∂Ωout v ·ndω, and qo = qt− qw, where ∂Ωout is the outer

flow boundary. We use the notation Q for total flow qt and F for fractional flow qo/qt

in numerical results. Pore volume injected, defined as PVI = 1
Vp

∫ t

0
qt(τ)dτ , with Vp

being the total pore volume of the system, provides the dimensionless time for the

displacement. When using multiscale finite volume element methods for two-phase

flow, one can update the basis functions near the sharp fronts. Indeed, sharp fronts

modify the local heterogeneities and this can be taken into account by resolving the

local equations, (3.1.1), for basis functions. If the saturation is smooth in the coarse

block, it can be approximated by its average in (3.1.1), and consequently, the basis

functions do not need to be updated. It can be shown that this approximation yields

first-order errors (in terms of coarse mesh size). In our simulations, we found only

slight improvement when the basis functions are updated, thus the numerical results

for the MsFVEM presented here do not include the basis functions update near the

sharp fronts.
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Figure 3.3: Log-permeability for one of the layers of upper Ness.

= 5 × 1 = 5× 1

Figure 3.4: Total single-phase flow rate for 50 layers of SPE 10 using the standard oversampling
(left) and the flow-based oversampling (right). Domain size is 5× 1.

In all numerical examples, the fine-scale field is 220 × 60, while the coarse-scale

field is 22× 6. We have observed similar results for other coarse grids. The boundary

condition is imposed by specifying p = 1, S = 1 along the x = 0 edge for 0 ≤ z ≤ 0.1

and p = 0 along the x = L edge for 0.9 ≤ z ≤ 1. On the remainder of the boundary,

we assume a no flow boundary condition. Here, L is the horizontal size of the global

rectangular domain. We note that these boundary conditions are different from those

used in constructing generic oversampling functions.

In our first numerical results, we compare the total flow rate Q for single-phase

flow using the standard oversampling and the flow-based oversampling methods. The

global domain sizes are 5 × 1 (Figure 3.4) and 20 × 1 (Figure 3.6), i.e., L = 5 and

L = 20, respectively. In both cases, we observe that the flow-based oversampling

gives nearly exact results, while standard oversampling methods are not as accurate.

The accuracy of standard oversampling methods deteriorates as the anisotropy ratio

increases.

Next, we present numerical results for dynamic quantities, such as fractional flow,

total flow rate and saturation maps for two-phase flow and transport. In Figures
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PVI

F

PVI

Q

Figure 3.5: Fractional flow (left figure) and total production (right figure) comparison for the stan-
dard oversampling and the flow-based oversampling techniques. The viscosity ratio is µo/µw = 5.

3.5 and 3.7, we present the fractional flow (F = qo/qt, left figure) and the total flow

(Q = qt, right figure) for two viscosity ratio cases, µo/µw = 5 and µo/µw = 15. The

solid line designates the fine-scale reference solution, while the dotted line designates

the standard oversampling method where generic global single-phase flow solutions

are used, and the dashed line designates the flow-based oversampling method. We

observe from these figures that the flow-based oversampling method is more accurate.

This is more evident from the total flow plot (Figure 3.4 and 3.6). Next, we compare

the saturation fields at different time instances. In Figure 3.8, the saturation fields at

the time instances, PVI = 0.1, ..., 0.9 are depicted. One observes that the saturation

fields obtained from the standard oversampling method are not very accurate. This

is more evident in the regions close to the upper right corner.

To compare the saturation maps at different time instances quantitatively, we plot

L2 errors of the saturations fields in Figure 3.9. In particular, we present the er-

rors for 4 different layers of SPE 10 with two different viscosity ratios µ0/µw = 5

(left figures) and µo/µw = 15 (right figures). The saturation errors are computed at

PV I = 0.1, 0.2, ..., 0.9. We observe that the errors in saturation fields from flow-based

oversampling techniques are smaller compared to these from the standard oversam-

pling method in all cases. In most cases, the error is smaller by several factors. We

note again that the cost of these computations are the same and involve computing

four auxiliary oversampling functions. We have also tried numerical results with dif-

ferent boundary conditions where Dirichlet boundary conditions are imposed over two

coarse grid blocks at x = 0 and x = L. In these cases, we have observed consistent

improvement when the flow-based oversampling method is used.
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= 20 × 1 = 20× 1

Figure 3.6: Total single-phase flow rate for 50 layers of SPE 10 using the standard oversampling
(left) and the flow-based oversampling (right). Domain size is 20× 1.

PVI

F

PVI

Q

Figure 3.7: Fractional flow (left figure) and total production (right figure) comparison for the stan-
dard oversampling and the flow-based oversampling techniques. The viscosity ratio is µo/µw = 15.

In the work, we discussed the cases with singular type boundary conditions and

assumed no source terms. Source terms representing well information are common

in applications. One can consider singular source terms (such as Dirac δ functions)

within the proposed framework. In this case, the flow-based auxiliary functions will

be the global solutions containing the singular sources. We will present these results

in a future paper.

3.4 Concluding Remarks

In this work, we study oversampling techniques for multiscale simulation of two-phase

immiscible flow in heterogeneous porous media with strong non-local effects. We pro-

pose the flow-based oversampling technique where the actual two-phase flow boundary

conditions are used to construct the oversampling functions. In our numerical simu-

lations, the oversampling region is taken to be the entire domain to capture strong
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Figure 3.8: Saturation maps at PVI=0.1–0.9 for fine-scale solution (left figure), standard MsFVEM-
os (middle figure), and flow-based MsFVEM-os (right figure). Corner-to-corner boundary condition
is used. Layer 61 in SPE 10.
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µ = 5 µ = 15

µ = 5 µ = 15

µ = 5 µ = 15

µ = 5 µ = 15

Figure 3.9: L2 saturation errors at different PVIs.
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non-local effects. We compare our approach to standard oversampling technique,

which uses generic global boundary conditions that do not reflect the actual flow

boundary conditions. The flow-based oversampling approach replaces some of the

global oversampling basis functions with the solutions of single-phase flow equation

with actual two-phase flow boundary conditions. Our numerical results show that

the second approach is several times more accurate in almost all the cases considered.

We provide a partial theoretical explanation of these numerical observations.
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Chapter 4

Metric Based Upscaling Methods
for the Pressure Equation

Many multiscale methods [27, 15, 34] for two-phase flow systems have been proposed

over the decades. However, most of them can be only demonstrated numerically. A

complete analysis of the pressure and saturation is very difficult. In this chapter, we

focus on the pressure equations in two-phase flow problems

−∇ · (λ(x)k(x) · ∇p(x)) = f in Ω,

p = 0 on ∂Ω,
(4.0.1)

where Ω is a bounded convex domain, k is a n×n symmetric positive definite matrix

with entries in L∞(Ω) and f is a L∞(Ω) function. We generalize the metric based

upscaling techniques introduced by Owhadi and Zhang [78] to solve (4.0.1) when the

mobility function λ is a positive C1(Ω̄)-function.

4.1 Compensation Phenomena

We begin with an introduction to the so-called k-harmonic coordinates F (x) associ-

ated with

−∇ · (k∇p) = f in Ω,

p = 0 on ∂Ω.
(4.1.1)
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The harmonic coordinates F are defined by F (x) = (F1(x), ..., Fn(x)), where each

component Fi is the solution of the homogeneous partial differential equation

∇ · (k∇Fi) = 0 in Ω,

Fi(x) = xi on ∂Ω.
(4.1.2)

Alessandrini and Nesi [5, 6, 7] studied the properties of the k-harmonic coordinates

due to its origin in application to homogenization. They proved that F is always a

homeomorphism in two dimensions [6, 7] and connected their result to homogenization

when k has periodic structures [6].

Owhadi and Zhang [78] showed that the k-harmonic coordinates also play an im-

portant role in homogenization for non-periodic k. They discovered that the solution

p of (4.1.1) is W 2,r with respect to the harmonic coordinates, although it is only W 1,r

in Euclidean coordinates. When F is an automorphism, they converted (4.1.1) to the

harmonic coordinates y = F (x) and obtained the elliptic equation in non-divergence

form:

−
n∑

i,j=1

Qij
∂

∂yi

∂

∂yj

w = f̃ in Ω,

w = 0 on ∂Ω,

(4.1.3)

where

w(y) = p ◦ F−1(y), f̃(y) =

(
f

|det(∇F )|
)
◦ F−1(y), (4.1.4)

and

Q(y) =

(
(∇F )tk∇F

|det(∇F )|
)
◦ F−1(y). (4.1.5)

Maugeri, Palagachev and Softova proved that the solution u of the linear Dirichlet

problem

n∑
i,j=1

aijDiju = f in Ω,

u = 0 on ∂Ω,

(4.1.6)

belongs to W 2,r
0 (Ω) for some r > 2, if the uniformly elliptic coefficient aij satisfies the
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Cordes condition [74]. The Cordes condition takes the form

∑n
i,j=1 aij(x)2

[
∑n

i=1 aii(x)]2
≤ 1

n− 1 + ε
, a.e Ω (4.1.7)

for some 0 < ε < 1. If in addition aij is a symmetric matrix, (4.1.7) can be written

as ∑n
i=1 λi(a(x))2

[
∑n

i=1 λi(a(x))]2
≤ 1

n− 1 + ε
, a.e Ω, (4.1.8)

where λi(a(x)) is the i-th eigenvalue of a(x).

Owhadi and Zhang [78] applied the same techniques to analyze (4.1.3). They

defined σ by

σ = (∇F )tk∇F,

and βσ the Cordes parameter associated to σ by

βσ = esssupx∈Ω

(
n− (Trace[σ])2

Trace[σtσ]

)
.

The coefficient σ is called stable if and only if βσ < 1 and ‖(Trace[σ])n/2r−1‖L∞(Ω) <

∞. The definition is a modification of the Cordes condition for equation (4.1.3). De-

fine the notation λmin(M) = essinfx∈Ωλmin(M(x)) and λmax(M) = essupx∈Ωλmax(M(x))

for matrix-valued functions M on Ω. Using the equivalent relation between (4.1.1)

and (4.1.3), and a regularity theorem analogous to Theorem 1.2.3 of [74], Owhadi

and Zhang proved the following theorem.

Theorem 4.1.1. (Owhadi and Zhang [78]) Assume that σ is stable and F is an

automorphism on Ω, then there exist constants r > 2 and C > 0 such that p ◦ F−1 ∈
W 2,r

0 (Ω) and

‖p ◦ F−1‖W 2,r
0 (Ω) ≤ C‖f‖Lr(Ω) (4.1.9)

The constant r depends on n, Ω, λmax(k), λmin(k), and βσ. The constant C depends

on the constants above and ‖(Trace(σ))
n
2r
−1‖Lr(Ω).

Remark 4.1.2. In 2D, the k-harmonic coordinates F is always an automorphism [7]

and the Cordes condition holds trivially. Therefore, the assumption of Theorem 4.1.1

can be simplified to

0 < λmin(σ) ≤ λmax(σ) < ∞,
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which can be checked more easily. Moreover, one can show that there exists constants

α > 0 and r such that p ◦ F−1 ∈ C1,α(Ω) and

‖∇(p ◦ F−1)‖Cα(Ω) ≤ C‖f‖Lr(Ω), (4.1.10)

by the Sobolev embedding inequality and Theorem 4.1.1.

4.2 Numerical Homogenization for the Pressure Equation

Now we come back to the pressure equation:

−∇ · (λ(x)k(x) · ∇p(x)) = f in Ω,

p = 0 on ∂Ω,
(4.2.1)

The harmonic coordinates G associated with (4.2.1) should satisfy

∇ · (λk∇G) = 0 in Ω,

G(x) = x on ∂Ω.
(4.2.2)

By (4.2.2) we mean that G is a n-dimensional vector field G(x) = (G1(x) . . . Gn(x)).

It implies that the harmonic coordinates G need to be updated when λ changes, and

hence the numerical upscaling methods based on the harmonic coordinates are not

attractive in practice. However, the following theorem shows that the compensation

phenomena still holds by using the k-harmonic coordinates F , instead of G, when λ is

a positive C1(Ω̄)-function. Based on this fact, we develop a multiscale finite element

independent of λ to solve (4.2.1) repeatedly.

Theorem 4.2.1. Let p be the solution of (4.2.1), λ be a positive C1(Ω̄)-function

and F be the k-harmonic coordinates defined by (4.1.2). Assume σ is stable and F

is an automorphism on Ω, then there exist constants r > 2 and C > 0 such that

p ◦ F−1 ∈ W 2,r
0 (Ω) and

‖p ◦ F−1‖W 2,r
0 (Ω) ≤ C‖f‖Lr(Ω). (4.2.3)

The constant r depends on n, Ω, λmax(k), λmin(k), and βσ. The constant C depends

on the constants above and λ, ‖(Trace(σ))
n
2p
−1‖Lr(Ω).
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Proof. Since p satisfies the elliptic equation in divergence form (4.2.1), p is in W 1,r
0 (Ω)

and ‖ p ‖W 1,r
0 (Ω) ≤ C‖f‖Lr(Ω) by Meyers Theorem [8]. As λ is a positive C1(Ω̄)-

function, we can rewrite (4.2.1) in the following equivalent form

−∇ · (k∇p) = f̃ in Ω,

p = 0 on ∂Ω,
(4.2.4)

where f̂ = 1
λ

(f + k∇λ · ∇p). From the assumption that k and ∇λ are uniformly

bounded, we obtain

‖f̂‖Lr(Ω) = ‖1

λ
(f + k∇λ · ∇p)‖Lr(Ω) ≤ C‖f‖Lr(Ω). (4.2.5)

The required result follows by applying Theorem 4.1.1 with (4.2.5).

Remark 4.2.2. This compensation phenomenon can also be observed numerically.

Consider an example: the domain Ω is the unit circle in 2D, k is a trigonometric

multiscale function and λ is 3 + sin(2πx) + cos(2πy). In Figure 4.1, we see that both

∇(p ◦ F−1) and ∇(p ◦G−1) are smoother than ∇p, and there is not much difference

between ∇(p ◦ F−1) and ∇(p ◦G−1).

Remark 4.2.3. The smoothness of λ is a necessary condition for Theorem 4.2.1. If

λ is not smooth (for example, highly oscillatory), then p ◦ G−1 may no longer be in

C1,α(Ω) but p ◦ F−1 is still. See Figure 4.2.

4.2.1 Multiscale Method Using Harmonic Coordinates

According to Theorem 4.2.1, whatever the choice of h and λ, solutions to (4.2.1) live in

the neighborhood of a functional space correlated to F of dimension n. This property

can be used in designing numerical methods. In fact, the k-harmonic coordinates

can be viewed as single-phase flow solutions with particular boundary conditions. In

industry single-phase flow solutions have been widely used in designing multiscale

methods for upscaling in two-phase flow problem because of their efficiency and easy

implementation. However, there is still a lack of understanding as to why these

methods succeed in some cases. In this subsection, we propose a multiscale finite

element method using harmonic coordinates (single-phase flow solutions) and provide

a rigorous justification of the convergence rate. For simplicity, we describe our method
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(a) k is a trigonometric multiscale function.
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(b) λ = 3 + sin(2πx) + cos(2πy)
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(d) The first component of ∇p.
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(e) The first component of ∇(p ◦ F−1).
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(f) The first component of ∇(p ◦G−1).

Figure 4.1: Comparison of the gradients of p, p ◦ F−1 and p ◦G−1 when λ is smooth.



82

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

1

2

3

4

5

6

(a) k is a trigonometric multiscale function.
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(b) λ = 3 + sin(2000πx) + cos(2πy)
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(d) The first component of ∇p.
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(e) The first component of ∇(p ◦ F−1).
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(f) The first component of ∇(p ◦G−1).

Figure 4.2: From (e) and (f) we see that the k-harmonic metric fails to adapt the oscillation of λk
when λ is highly oscillatory but p ◦G−1 is still smooth.
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in 2D only. The method can be easily extended to higher dimensional cases. Our

idea is to solve (4.2.1) in the k-harmonic coordinates with the standard finite element

method.

Let Th be a quasi-uniform triangulation on Ω, where h is the maximal length of

the mesh. Denote by γ the maximum over the elements τ in Th of the ratio between

the radius of the smallest ball containing τ and the largest ball inscribed in τ . For

a suitable index set Ih(Ω), let Nh(Ω) denote the nodes of the mesh Th which lie in

D. Let Xh be the standard finite element space and ψi ∈ Xh be the usual piecewise

linear hat functions associated to xi ∈ Nh(Ω). For each i ∈ Ih(Ω), we construct

nodal basis functions ΦMS
i by

ΦMS
i = ψi ◦ F. (4.2.6)

Define the multiscale finite element space VMS
h = span{ΦMS

i }. Then the multiscale

finite element solution pMS
h ∈ VMS

h satisfies

k(pMS
h , vMS

h ) = (f, vMS
h )L2(Ω), for all vMS

h ∈ VMS
h , (4.2.7)

where k(pMS
h , vMS

h ) =
∫

Ω
k(x)∇pMS

h (x) · ∇vMS
h (x)dx.

In the standard MsFEM methods, the meshes are determined by users and usu-

ally are regular shapes in the computational domain. The basis functions are then

computed locally on the meshes. Conversely, the meshes of our method are reg-

ular (quasi-uniform triangles) in the harmonic coordinates (physical domain), but

the basis function ΦMS
i can be supported on highly distorted and non-local domains

since support(ΦMS
i ) = F−1(support(ψi)). This concept is similar to flow-based coor-

dinate systems [40]. The advantage of using irregular meshes is that the solution p

is smoother in the harmonic coordinates. We apply the regularity estimate (4.2.3) to

prove the following error estimates.

Theorem 4.2.4. Assume λ is a positive C1(Ω)-function and σ satisfies

0 < λmin(σ) ≤ λmax(σ) < ∞.

Then there exist constants r > 2, C > 0 such that

|p− pMS
h |H1(Ω) ≤ Ch‖f‖Lr(Ω). (4.2.8)
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Furthermore we have the L2 error estimate

‖p− pMS
h ‖L2(Ω) ≤ Ch2‖f‖Lr(Ω). (4.2.9)

The constant C depends on γ, Ω, λmax(k), λmin(k), µσ.

Proof. Since the multiscale finite element space VMS
h is contained in H1

0 (Ω), (4.2.7)

gives us the usual optimality estimate

|p− pMS
h |H1(Ω),k ≤ inf

vMS
h ∈VMS

h

|p− vMS
h |H1(Ω),k, (4.2.10)

where |v|H1(Ω),k is the energy norm defined by
√

k(v, v). By uniform ellipticity of k,

we have λmin(k) > 0 and

|p− pMS
h |2H1(Ω) ≤

1

λmin(k)
|p− pMS

h |2H1(Ω),k ≤
1

λmin(k)
inf

vMS
h ∈VMS

h

|p− vMS
h |H1(Ω),k (4.2.11)

Using the change of variable y = F (x), we obtain

inf
vMS

h ∈VMS
h

|p− vMS
h |2H1(Ω),k = inf

vh∈Xh

|p ◦ F−1 − vh|2H1(Ω),Q

≤ λmax(Q) inf
vh∈Xh

|p ◦ F−1 − vh|2H1(Ω)

≤ C inf
vh∈Xh

|p ◦ F−1 − vh|2H1(Ω),

(4.2.12)

where Q is defined by (4.1.5) and can be easily bounded by

λmax(Q) ≤ (λmax(k)λmin(k))
1
2 µσ. (4.2.13)

Notice that p ◦ F−1 ∈ H2(Ω) and ‖p ◦ F−1‖H2(Ω) ≤ C‖f‖Lr(Ω) for some r > 2 from

Theorem 4.2.1. Combining these facts with the standard approximation properties

of the hat functions (see for instance [20]) yields

inf
vh∈Xh

|p ◦ F−1 − vh|H1(Ω) ≤ Ch‖p ◦ F−1‖H2(Ω) ≤ Ch‖f‖Lr(Ω). (4.2.14)

The H1 error estimate (4.2.8) follows straightforwardly from (4.2.11), (4.2.12) and

(4.2.14). The L2 error estimate (4.2.9) can be obtained directly from the Aubin-

Nitsche duality argument.1

1We refer the reader to Theorem 5.7.6 of [20] for more detail about the duality argument.
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4.3 Numerical Experiments

In this section, we perform a numerical experiment to verify the convergence rates

established in Theorem 4.2.4. We consider the weak form of the Dirichlet boundary

value problem:

−∇ · (λk∇p) = f, in Ω, with p = 0, on ∂Ω , (4.3.1)

for different λ and k. The computational domain Ω is the unit disk in dimension

two and the source term f is the constant function 1. Since an analytical solution

is unknown for general λ and k, the equation (4.3.1) is solved on a fine tessellation

characterized by 66049 nodes and 131072 triangles as the reference solution to com-

pute the error for solutions on coarser meshes. The k-harmonic coordinates F are

solved on the same fine tessellation to construct the basis functions.

Experiment Trigonometric multiscale

This example is extracted from [76, 78] as a problem without scale separation:

k(x1, x2) =
1

6

(
1.1 + sin(2πx1/ε1)

1.1 + sin(2πx2/ε1)
+

1.1 + sin(2πx2/ε2)

1.1 + cos(2πx1/ε2)
+

1.1 + cos(2πx1/ε3)

1.1 + sin(2πx2/ε3)

+
1.1 + sin(2πx2/ε4)

1.1 + cos(2πx1/ε4)
+

1.1 + cos(2πx1/ε5)

1.1 + sin(2πx2/ε5)
+ sin(4x2

1x
2
2) + 1

)
,

(4.3.2)

where ε1 = 1/5, ε2 = 1/13, ε3 = 1/17, ε4 = 1/31, ε5 = 1/65. We choose two different

forms of λ to test our method:

λ1(x1, x2) = 1 + x2
1 + x2

2

and

λ2(x1, x2,m) = 3 + sin(2πx1) + cos(2πx2).

The errors presented in Tables 4.1 and 4.2 show that the method is first order in

the H1 semi-norm and second order in the L2 norm for both choice of λ, as predicted

by the theory.2

2Throughout, we use least squares fitting to estimate the convergence rates as in Chapter 2.
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(a) k (b) λ1 (c) λ2

Figure 4.3: Experiment, trigonometric multiscale.

h L1 L2 L∞ H1

1/8 2.1094e-3 2.1512e-3 5.9798e-3 4.0551e-2
1/16 4.7713e-4 5.0305e-4 1.5916e-3 1.7797e-2
1/32 1.1284e-4 1.2006e-4 3.0037e-4 7.8346e-3
1/64 2.4952e-5 2.6550e-5 9.4547e-5 2.9255e-3
rate 2.1285 2.1088 2.0354 1.2563

Table 4.1: The L1, L2, L∞ and H1-norm errors in Experiment with λ = λ1.

h L1 L2 L∞ H1

1/8 6.8181e-3 8.1436e-3 2.2236e-2 7.4690e-2
1/16 1.5581e-3 1.8766e-3 5.6243e-3 3.4630e-2
1/32 3.2637e-4 3.9260e-4 1.3172e-3 1.5312e-2
1/64 5.4230e-5 6.5253e-5 3.4422e-4 5.6696e-3
rate 2.3178 2.3147 2.0134 1.2336

Table 4.2: The L1, L2, L∞ and H1-norm errors in Experiment with λ = λ2.
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Figure 4.4: Numerical errors for Experiment with two different λ. The -diamond line is for L∞ norm
error, the -x line is for L1 norm error, the -asterisk line is for L2 norm error and the -star is for H1

norm error.
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Chapter 5

Discussions and Future Work

Local boundary condition. In Chapters 2 and 3, we have shown how important

the local boundary condition is in designing MsFEM basis functions. Our meth-

ods are successful because the local boundary condition adapts the behavior of the

exact solutions on the interior boundary. The regularity result of the interface prob-

lem serves as a solid foundation for developing methods. There are still many open

problems related to constructing optimal local boundary conditions.

Recently Babuška et al. [13] proposed the penetration function to measure the ef-

fect of the interior boundary condition. The penetration function is used to assess the

accuracy of global-local approaches for recovering local solution from coarse grained

solutions. We can apply this technique to examine the optimality of our methods.

Global information. In Chapters 3 and 4, we used global solutions to construct

the basis function. More and more research [24, 23, 78, 57, 30] demonstrates the

importance of using global information. For example, homogenization without scale

separation is very difficult to approach. The metric based up-scaling method [78]

provides a solution for this kind of problem by using harmonic solutions. However,

it is more expensive to construct the basis functions by using global solutions than

traditional MsFEM methods.

One potential way to reduce the cost of computation of global solutions is to design

adaptive coarse meshes using the k-harmonic transformation, and then construct

the MsFEM basis functions locally on these coarse meshes with suitable boundary

condition. This enables us to capture the global connectivity of the solution if the

heterogeneous media do not have scale separation and the small scale solution has a

long range correlation. Since the k-harmonic transformation is used for computing

the adaptive meshes, we only solve it on a coarse grid. The idea is to combine the
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advantages of adaptive mesh techniques and multiscale finite element methods.

5.1 Future Work

Following upon our with multiscale problems, we plan to further develop this research

area by studying the following problems.

• Interface Problems with Many Inclusions and Close Distance

In [29], we assume the inclusions are separated from each other with order h

distance for analysis. We observe numerically that the solution in Experiment 3

in Section 2.5 becomes more singular as the distance between pairs of inclusions

decreases. The exact relation between the regularity of the solution and the

distance is unknown. Our method can be applied to such problems, but the

hidden constant may blow up as the distance tends to zero. Adjustments are

needed to handle the singularity of the solution.

From the homogenization theory point of view, another challenging problem

is to solve a domain containing many inclusions of size ε with distance ρ be-

tween neighboring inclusions, where ε and ρ tend to 0 simultaneously. This is

an interesting problem especially when the inclusions are not periodic located.

Strouboulis et al [86] used the generalized FEM (GFEM) to solve the Laplace

equation in a square domain minus 597 voids. This problem can be viewed as

the limiting case for many inclusions with conductivities tending to zero.

We are currently investigating the dependence of the regularity of the solution on

ε and ρ with Professors Babych, Kamotski and Smyshlyaev of the University of

Bath, UK. Based on this understanding, we can then design suitable boundary

condition for basis functions. The numerical solutions should provide a good

approximation for the Laplace equation with voids.

• 3-Dimensional Interface Problems

The regularity of the solution of the 3D interface problem is similar to that of the

solution in the 2D problems (see [53]). However, the geometry in the 3D problem

is much more complicated than that of the 2D problems. The intersection of the

interface and the boundary of the element is a curve, instead of two points in

2D. To design an appropriate boundary condition for the 3D basis function, we



89

propose projecting the elliptic equation to the face of the coarse grid elements,

which is a 2D plane, and using our 2D method to design the boundary condition.

• Homogenization of the pressure equation with piecewise smooth mo-

bility

In Chapter 4, we proposed a multiscale method to solve the pressure equation

when λ is smooth. However, from numerical simulations, we see the saturation

S of two-phase flow problems is usually at most piecewise smooth, and hence

λ(S) is not C1 on Ω. The next step is to consider the case where λ is a piecewise

smooth function, or a piecewise constant function. More precisely, we assume λ

has a jump discontinuity along a curve Γ and is C1 in the sub-domains Ω1 and

Ω2, where Ω = Ω1

⋃
Ω2

⋃
Γ and Γ = ∂Ω1

⋂
∂Ω2.

We propose to use the k-harmonic coordinates F to remove the multiscale effect

caused by k as we have done in Chapter 4. We shall show that u ◦F−1 is Hölder

continuous on each sub-domain F (Ω1) and F (Ω2). The transferred equation

becomes an interface problem (in harmonic coordinates) which can be solved by

the immersed finite element method [68] or the multiscale method we introduced

in Chapter 2. Thus we define the multiscale finite element space Vh as

Vh = span{ϕ ◦ F : ϕ ∈ Wh}, (5.1.1)

where Wh is the immersed finite element space or the multiscale finite element

space introduced in Chapter 2.

The difficulty in applying the proposing method is the smoothness of the in-

terface. To use the IFE or our multiscale method, the interface must be C1.

However, the harmonic coordinates F can be at most Cα and so is F (Γ). A new

analysis technique must be introduced to overcome this issue.
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Appendix A

Proofs of Technical Theorems and
Lemmas

A.1 Extension Theorem and Poincaré Inequality on an An-

nulus

Now we prove some technical lemmas used in Chapter 2.

Lemma A.1.1. Extension theorem on an annulus. Consider an equilateral

triangle denoted τ , with side 1 depicted in Fig A.1, and let τ δ be the closed annulus

of uniform width δ bounded by Γ1 and Γ2 as pictured. Let Γ := Γ1 ∪ Γ2 and let

v ∈ H1/2(Γ). Then v has an extension ṽ ∈ H1(τ δ) such that

|ṽ|H1(τδ) ≤ C δ−1‖v‖H1/2(Γ), (A.1.1)

where C is a generic constant independent of δ and v.

Proof. For this proof only, we use the notation A . B to mean that A ≤ CB with

C independent of δ and u. We use standard tools for Lipschitz domains (as found for

example in [75]). Let {Wi}N
i=1 be an overlapping open covering of τ δ and let {φi}N

i=1 be

a corresponding partition of unity with the properties: (i) Each Wi is the intersection

of τ δ with an open ball of diameter . δ and either Wi ∩ Γ1 = ∅ or Wi ∩ Γ2 = ∅; (ii)

‖∇φi‖L∞(τ) . δ−1; and (iii) each Wi has nonempty intersection with at most m Wj

for some number m independent of δ.

Define σi = Wi∩Γ. By property (i), σi is either a straight line segment or a corner

segment of Γ. Therefore there exists a bijective H1 map Fi : R2 → R2 such that

σ̃i := Fi(σi) is a subinterval of the x-axis in R2 and Fi(Wi) is a bounded subset of
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Γ1

Γ2

δ

τδ

Figure A.1: The graph of the triangular strip.

the upper half plane R2
+. Since v ◦ F−1

i ∈ H1/2(σ̃i) and σ̃i is an open subset of R, by

the Extension Theorem (e.g. [75, Theorem A.4]), we can find an extension function

wi on R such that wi|eσi
= v ◦ F−1

i and

‖wi‖H1/2(R) . ‖v ◦ F−1
i ‖H1/2(eσi) . ‖v‖H1/2(σi).

Then, by the (inverse) Trace Theorem on a half-space (e.g. [75, Lemma 3.36]), we

can extend wi to a function w̃i on the upper half plane R2
+ such that w̃i ∈ H1(R2

+),

w̃i(x, 0) = wi(x) , x ∈ R, and

‖w̃i‖H1(R2
+) . ‖wi‖H1/2(R) . ‖v‖H1/2(σi). (A.1.2)

Now define ṽi = w̃i ◦ Fi and ṽ =
∑N

i=1 φiṽi. Then ṽ = v on Γ and, using property

(ii), (iii) and (A.1.2), we obtain

|ṽ|2H1(τδ) ≤
N∑

i=1

|ṽ|2H1(Wi)
.

N∑
i=1

|φiṽi|2H1(Wi)
. δ−2

N∑
i=1

‖ṽi‖2
H1(Wi)

. δ−2

N∑
i=1

‖w̃i‖2
H1(R2

+) . δ−2

N∑
i=1

‖v‖2
H1/2(σi)

. δ−2‖v‖2
H1/2(Γ),

as required.
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Lemma A.1.2. Poincaré inequality on an annulus. Let τ δ, δ and Γ = Γ1 ∪ Γ2

be as in Lemma A.1.1. Then for all u ∈ H1(τ δ), there exists a constant γ such that

‖u− γ‖L2(τδ) . |u|H1(τδ) ,

where the hidden constant is independent of δ.

Proof. Surprisingly there seems to be no good source for a proof of this result. How-

ever a proof may be easily constructed by first writing down the estimate

‖u− γ‖2
L2(τδ) . δ‖u− γ‖2

L2(Γ2) + δ2|u|2H1(τδ) .

This may be found as equation (3.15) in [88] and can then be combined with the

estimate (proven in [79, Lemma 4.3]) that there exists a choice of γ which ensures

that

‖u− γ‖2
L2(Γ) . δ−1|u|2H1(τδ) .

To be precise, γ may be chosen as the average of u over any of the edges of τ . These

two estimates imply the required result.

A.2 Proof of Theorem 2.2.5

Theorem 2.2.5 (Babych, Kamotski, Smyshlyaev) Let Ω be either a smooth C∞
bounded domain in R2 or a bounded convex polygon, containing inclusions Ωi, i =

1, 2, . . . , m, each having a C∞ boundary, and define Ω0 = Ω\ ∪m
i=1 Ωi as described

in Section 2.1. Consider problem (2.1.2) and assume that either Case I or Case II

( (2.1.5) or (2.1.6)) holds. Additionally, let Γ̃ denote any closed C∞ contour in Ω0

which encloses all the Ωi and let Ω̃0 be the domain with boundary Γ∪ Γ̃ (see Fig. A.2

for an illustration in the case m = 1). Then we have

|u|Hs+2(Ωi) . 1

αi

‖f‖Hs(Ω), for all s ≥ 0 , i = 1, 2, . . . , m . (A.2.1)

Moreover

|u|H2(Ω0) . 1

α0

‖f‖L2(Ω), (A.2.2)
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1
∂Ω

Ω

Γ∼

Γ

Figure A.2: A domain Ω in the case m = 1. The domain Ω0 is bounded by Γ and ∂Ω while Ω̃0 is
bounded by Γ and Γ̃.

and

|u|H2+s(eΩ0) . 1

α0

‖f‖Hs(Ω), for all s ≥ 0 . (A.2.3)

The hidden constants depend on the distance of Γ from ∂Ω.

Proof. In the proof, we consider only the case when Ω is a convex polygon. The case of

smooth ∂Ω is simpler. Also only the case of one inclusion is considered, although the

proof for m inclusions is similar. Thus the geometry which we consider is illustrated

in Fig. A.2. Also, we shall consider only Case I (2.1.5), i.e.

α̂ = α1 →∞ , α0 = 1 , (A.2.4)

As we shall explain at the end of the proof, Case II is easy once the proof for Case I

is clear.

Thus our required result in Case I is, for all s ≥ 0,

|u|Hs+2(Ωi) . 1

α̂
‖f‖Hs(Ω), i = 1, 2 . . . , m , (A.2.5)

|u|H2(Ω0) . ‖f‖L2(Ω), and |u|H2+s(eΩ0) . ‖f‖Hs(Ω) . (A.2.6)

The result is clear for all α̂ ∈ [1, A] for some fixed A so we only have to prove (A.2.5),

(A.2.6) for α̂ sufficiently large.

Before beginning the proof, we recall two classical regularity results for elliptic



94

boundary value problems. Let s ≥ 0 and let φ ∈ Hs+3/2(Γ). Then





∆z = ω on Ω1

z = φ on Γ

ω ∈ Hs(Ω1)





=⇒ ‖z‖Hs+2(Ω1) . ‖ω‖Hs(Ω1) + ‖φ‖Hs+3/2(Γ) ,

(A.2.7)

and





∆z = ω on Ω0

z = φ on Γ

z = 0 on ∂Ω

ω ∈ Hs(Ω0)





=⇒





‖z‖H2(Ω0) . ‖ω‖L2(Ω0) + ‖φ‖H3/2(Γ)

and

‖z‖Hs+2(eΩ0) . ‖ω‖Hs(Ω0) + ‖φ‖Hs+3/2(Γ)





.

(A.2.8)

A suitable reference for (A.2.7) is [69, §2, Theorem 5.4]. For the first inequality on

the right-hand side of (A.2.8), we can construct a proof by first extending φ to a

function φ′ ∈ H2(Ω0) which vanishes on ∂Ω and with ‖φ′‖H2(Ω0) . ‖φ‖H3/2(Γ). Then

∆(z − φ′) = ω − ∆φ′ on Ω0 and z − φ′ vanishes on ∂Ω0. So using estimates for

elliptic equations on domains with convex corners (for example [47, §3.2]) we obtain

the estimate. To obtain the second inequality on the right-hand side of (A.2.8), we

use interior regularity results (a suitable reference is [87, Theorem 11.1]) and then

the trace theorem to obtain

‖z‖Hs+3/2(Γ̃) . ‖ω‖Hs(Ω0) + ‖z‖H1(Ω0) . ‖ω‖Hs(Ω0) + ‖φ‖H1/2(Γ) .

Again applying regularity estimates on the smooth domain Ω̃0 ([69, §2, Thm 5.4]),

we obtain the required estimate.

Now the first step in the proof is to introduce a decomposition of the form

u = û + ũ , (A.2.9)

where û solves independent Dirichlet problems with homogeneous boundary data on

each Ωi:

−αi∆û = f on Ωi, with û = 0 on ∂Ωi i = 0, 1 .
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Then, from (A.2.7) and (A.2.8) and recalling (A.2.4), we obtain, for all s ≥ 0 ,

‖û‖H2+s(Ω1) . 1

α̂
‖f‖Hs(Ω1) , ‖û‖H2(Ω0) . ‖f‖L2(Ω0) and ‖û‖H2+s(eΩ0) . ‖f‖Hs(Ω0) .

(A.2.10)

Thus û satisfies all the estimates (A.2.5), (A.2.6) and the remainder of the proof is

concerned with obtaining the same estimates for ũ. Since ũ = u− û, it follows that

∆ũ = 0 on Ωi, i = 0, 1 , and ũ = 0 on ∂Ω . (A.2.11)

Since ũ is continuous across Γ, we can define ṽ = ũ|Γ .

For any suitably smooth v defined on Ω, we let ∂vi/∂n denote the normal derivative

of v evaluated on Γ, with value taken from within Ωi, i = 0, 1. (The normal direction

is fixed as outward from Ω1.) Then the usual jump relation for the solution u of

the interface problem (2.1.2) reads: (∂u0/∂n) − α̂(∂u1/∂n) = 0, which immediately

implies that the function ũ satisfies the following equation on Γ:

∂ũ0

∂n
− α̂

∂ũ1

∂n
= G := α̂

∂û1

∂n
− ∂û0

∂n
. (A.2.12)

This may be readily written:

(N0 − α̂N1)ṽ = G , (A.2.13)

with Ni denoting appropriate Dirichlet to Neumann maps on Ωi (taking ṽ as Dirichlet

data on Γ and using homogeneous Dirichlet data on ∂Ω).

To analyze (A.2.13) as α̂ → ∞, we might consider scaling by α̂−1 to obtain a

small perturbation of N1. However, because N1 has a non-trivial kernel (namely the

constant functions on Γ, henceforth denoted 〈1〉), we must study the operator N1 in

the orthogonal complement of this space. Thus we introduce

Pv =
1

|Γ|
∫

Γ

v(s) ds ,

the orthogonal projection from L2(Γ) onto 〈1〉 and (I−P), the orthogonal projection

onto L2(Γ)⊥ := {v ∈ L2(Γ) : Pv = 0}. Then writing

ṽ = P ṽ + (I − P)ṽ =: c̃ + w̃ ,
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equation (A.2.13) may be expressed as the system in 〈1〉 × L2(Γ)⊥:


 P(N0 − α̂N1)P P(N0 − α̂N1)(I − P)

(I − P)(N0 − α̂N1)P (I − P)(N0 − α̂N1)(I − P)





 c̃

w̃


 =


 PG

(I − P)G


 .

(A.2.14)

Moreover, since PN1 = N1P are null operators on L2(Γ), (A.2.14) may be rewritten:

(P− α̂−1Q)


 c̃

α̂w̃


 =


 PG

(I − P)G


 , (A.2.15)

where

P =


 PN0P 0

(I − P)N0P −N1


 and Q =


 0 PN0(I − P)

0 (I − P)N0(I − P)


 .

We next show that P is invertible on 〈1〉 × L2(Γ)⊥. Note first that N1 is invertible

on L2(Γ)⊥. To analyse PN0P , consider the boundary value problem:

∆η = 0 in Ω0, with η = 1 on Γ, and η = 0 on ∂Ω, (A.2.16)

which has a unique solution η ∈ H2(Ω0). The linear operator PN0P operates on 〈1〉
as multiplication by the scalar

γ := P
[
∂η

∂n

]
=

1

|Γ|
∫

Γ

∂η

∂n
ds ,

and this scalar does not vanish, since (by (A.2.16)),

γ |Γ| =

∫

Γ

∂η

∂n
ds =

∫

∂Ω0

η
∂η

∂n
ds =

∫

Ω0

∇ · (η∇η) dx =

∫

Ω0

|∇η|2 dx > 0 .

Moreover the linear operator (I − P)N0P operates on 〈1〉 as multiplication by the

function ρ := (I − P)(∂η/∂n) = ∂η/∂n− γ ∈ L2(Γ)⊥ . Hence

P =


 γ 0

ρ −N1


 and P−1 =


 γ−1 0

γ−1N−1
1 ρ −N−1

1


 .

Now combining (A.2.7) and (A.2.8) with the Trace Theorem we obtain that N1 :

L2(Γ)⊥ ∩ Hs+3/2(Γ) → L2(Γ)⊥ ∩ Hs+1/2(Γ) is a bounded operator and in fact has a
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bounded inverse (see, e.g. [69, §2, Th. 5.4]). Moreover N0 : Hs+3/2(Γ) → Hs+1/2(Γ)

is also bounded and it is straightforward to show that P−1Q is a bounded operator

on 〈1〉 ×Hs+3/2(Γ) and that

∥∥∥∥∥∥
P−1


 PG

(I − P)G




∥∥∥∥∥∥
〈1〉×Hs+3/2(Γ)

. ‖G‖Hs+1/2(Γ) . (A.2.17)

Hence, considering (A.2.15) for α̂ sufficiently large, we have the estimate

max{|c̃| , α̂‖w̃‖Hs+3/2(Γ)} . ‖G‖Hs+1/2(Γ) ≤ α̂

∥∥∥∥
∂û1

∂n

∥∥∥∥
Hs+1/2(Γ)

+

∥∥∥∥
∂û0

∂n

∥∥∥∥
Hs+1/2(Γ)

. α̂‖û‖Hs+2(Ω1) + ‖û‖Hs+2(eΩ0) (A.2.18)

. ‖f‖Hs(Ω) , (A.2.19)

where the last three estimates are obtained from employing the definition of G in

(A.2.12), then the trace theorem and finally (A.2.10).

Now recall that ũ is harmonic on Ω1 and that ũ|Γ =: ṽ = c̃ + w̃, where c̃ ∈ R.

Hence, if we define ũ1 on Ω1 by requiring it to be harmonic and to coincide with w̃

on Γ, we have, by uniqueness, ũ = c̃ + ũ1 on Ω1. Thus by using (A.2.7) and then

(A.2.18), we have, for all s ≥ 0,

|ũ|Hs+2(Ω1) = |ũ1|Hs+2(Ω1) . ‖w̃‖Hs+3/2(Γ) . 1

α̂
‖f‖Hs(Ω) , (A.2.20)

Combining (A.2.20) with the first inequality in (A.2.10) (and recalling (A.2.4)) then

yields the first required estimate (A.2.5). To obtain (A.2.6), we note that (A.2.18)

implies that ‖ṽ‖Hs+3/2(Γ) . ‖f‖Hs(Ω) and hence the required estimates follow from

(A.2.8).

Finally we remark why the result is easier to prove in Case II, i.e.

α̂ = α0 →∞ , α1 = 1 .

In this case the analysis of û is unchanged, but in the analysis of ṽ we obtain, instead

of (A.2.13), the equation

(α̂N0 −N1)ṽ = G :=
∂û1

∂n
− α̂

∂û0

∂n
.
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Since N0 is invertible the estimate for ṽ can then be obtained by premultiplying this

equation by α̂−1N−1
0 and letting α̂ get sufficiently large, without having to go through

the projection procedure leading to the system (A.2.14).

Remark A.2.1. Here we briefly discuss the case of inhomogeneous Dirichlet con-

ditions. Consider problem (2.1.2) but replace u ∈ H1
0 (Ω) by the requirement that

u ∈ H1(Ω) with u = g on ∂Ω. For simplicity assume that g is the restriction to ∂Ω of

a function g ∈ Hs+2(Ω0) with g = 0 on Γ and with s as large as we wish. Assume also

that there is only one inclusion Ω1. Then an analogous argument to that in Theorem

2.2.5 can be carried out, but with û now required to satisfy û = g on ∂Ω, so that, in

Case I, by (A.2.8),

‖û‖H2+s(Ω1) . 1

α̂
‖f‖Hs(Ω) , and

‖û‖H2(Ω0) . ‖f‖L2(Ω0) + ‖g‖H2(Ω0) and ‖û‖H2+s(eΩ0) . ‖f‖Hs(Ω0) + ‖g‖H2+s(Ω0).

The analysis for ũ is as in (A.2.18), (A.2.19) and (A.2.20), leading to the estimates

for u:

|u|H2+s(Ω1) . 1

α̂

[‖f‖Hs(Ω) + ‖g‖Hs+2(Ω0)

]
,

|u|H2(Ω0) . ‖f‖L2(Ω) + ‖g‖H2(Ω0) and |u|H2+s(eΩ) . ‖f‖Hs(Ω) + ‖g‖H2+s(Ω0).

Thus the higher seminorms of u in the inclusions still decay as α̂ → ∞. However in

Case II the seminorms on Ω0 and Ω̃0 do not necessarily decay and the best estimate

for general g is

|u|H2+s(Ω1) . ‖f‖Hs(Ω) + ‖g‖Hs+2(Ω0) ,

|u|H2(Ω0) . 1

α̂

{‖f‖L2(Ω) + α̂‖g‖H2(Ω0)

}
,

and

|u|H2+s(eΩ0) . 1

α̂

{‖f‖Hs(Ω) + α̂‖g‖H2+s(Ω0)

}
.
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