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Abstract

In this thesis we have derived a new way to analyze the impedance response of mixed

conducting materials for use in solid oxide fuel cells (SOFCs), with the main focus on

anodic materials, in particular cerium oxides.

First we have analyzed the impact of mixed conductivity coupled to electrocatalytic

behavior in the linear time-independent domain for a thick ceria sample. We have derived

that, for a promising fuel cell material, Samarium Doped Ceria, chemical reactions are the

determining component of the polarization resistance.

As a second step we have extended the previous model to the time-dependent case,

where we focused on single harmonic excitation, the impedance spectroscopy conditions.

We extended the model to the case where some input diffusivities are spatially nonuniform.

For instance we considered the case where diffusivities change significantly in the vicinity

of the electrocatalytic region.

As a third and final step we use to model to capture the two dimensional behavior

of mixed conducting thin films, where the electronic motion from one side of the sample

to the other is impeded. Such conditions are similar to those encountered in fuel cells

where an electrolyte conducting exclusively oxygen ions is placed between the anode and

the cathode. The framework developed was also extended to study a popular cathodic

material, Lanthanum Manganite.
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The model is used to give unprecedented insight in SOFC polarization resistance analysis

of mixed conductors. It helps elucidate rigorously rate determining steps and to address

the interplay of diffusion with diffusion losses. Electrochemical surface losses dominate for

most experimental conditions of Samarium Doped Ceria and they are shown to be strongly

dependent on geometry.
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Chapter 1

Introduction

In this thesis we develop novel analytical and numerical methods for the study of solid oxide

fuel cells (SOFCs). The goal of this work is to understand the chemistry and the physics

of SOFCs and to develop first-principles tools that will eventually aid their design.

Work in electrochemical energy conversion systems is not only intellectually stimulating,

but it is also very relevant for the well-being of humanity because a cheap, environmentally

friendly, and reliable energy supply is a core requirement for our society. Given rising energy

prices, dwindling oil supplies, the presence of hydrocarbon resources in unstable countries

and imminent threats of global warming∗, governments and industries require better ways

to convert fuels into electrical energy. Electrochemical devices make this conversion directly,

and they could play a pivotal role in increasing efficiency.

Solid Oxide Fuel Cells (SOFCs) are currently the most efficient devices to directly con-

vert the chemical energy of a fuel into electrical energy [SK03]. In cogeneration systems for

stationary power generation and thermal energy distribution, themodynamical efficiencies

up to 75% can be achieved, much higher than for gas turbines and internal combustion

∗Recent events have sparked interest in global warming among economists. The Nobel winning Economist
Paul Krugman recently wrote in the New York Times [Kru09]: “...The scientific consensus on prospects for
global warming has become much more pessimistic over the last few years. Indeed, the latest projections
from reputable climate scientists border on the apocalyptic. Why? Because the rate at which greenhouse
gas emissions are rising is matching or exceeding the worst-case scenarios. And the growth of emissions from
China, already the worlds largest producer of carbon dioxide, is one main reason for this new pessimism...”
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engines. Solid oxide fuel cells have the great advantage over other fuel cells, such as Pro-

ton Exchange Membrane (PEM) fuel cells, of being fuel flexible: they work on hydrogen,

methanol, ethanol, methane, propane, coal-derived syngas etc. SOFCs are characterized

by higher operating temperatures (600oC - 1000oC) than PEM fuel cells and hold promise

for use in a wide variety of applications, ranging from powering small electronic devices to

large cogeneration systems.

Due to their high efficiency, fuel flexibility and scalability, SOFC could replace combus-

tion systems in the near future. In the medium term, hydrogen could serve as a way to

store energy from the sun to be used at night. To this end, researchers are developing more

efficient ways to split water with sunlight [LN06]. If we assume that producing hydrogen

from water using solar energy will someday be profitable, then SOFCs will be the technology

of choice to generate electrical power from hydrogen and, if needed, with hydrocarbon fuels.

The latter fuels are expected to be employed in the future because of their high energetic

content per unit volume under standard conditions and because they can be generated in

an environmentally friendly way. Hydrocarbon fuels can be produced from biomass, or

synthetic hydrocarbons can be produced by reaction of hydrogen with atmospheric CO2

[BSBR06].

Despite their promise, SOFCs that are still too costly†. With few exceptions, most

SOFC industrial work is a variation on half-a-century-old designs; for example the Ni/YSZ

(Yttrium Stabilized Zirconia) cermet anodes used in the vast majority of SOFCs do not

differ qualitatively from those submitted for patenting by Spacil in 1964 [Spa70]. Empirical

improvements over the years have been made, but the basic designs have not changed

†The Department of Energy’s Solid State Energy Conversion Alliance (SECA) set 60% efficiency and the
$400/kW cost target of the SECA Program by 2010. Costs in 2003 were estimated by [SK03] to be between
$1000/kW and $2000/kW. If these goals are met, the cost of electricity can be projected to $0.048/kWh for
a SOFC-Gas Turbine system, still 20% above the cost of wind energy, around $0.038/kWh [oE09].
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significantly over the past few decades and, again, SOFC technology is not yet profitable.

Figure 1.1: Schematic plot of voltage versus current density showing different types of
polarization. Polarization losses dominate at various current densities. From [SK03].

Thus, it is paramount to start improving SOFCs rationally using first-principles model-

ing tools, which are validated against accurate, repeatable and reliable experiments. State-

of-the-art experiments are usually compared against one-dimensional models [SK03]. The

approach of this thesis is to study interesting new SOFC materials, to start from first prin-

ciples and to study these materials in multiple dimensions. One of the goals is to link the

first principle physics to directly measurable quantities.

In this thesis we will attempt to study from first principles polarization losses. In

figure 1.1, we plot such polarization losses, which are voltage losses (or overpotentials)

dependent on current density. The three dominant polarizations are:

1. Ohmic losses;

2. Concentration losses;

3. Activation losses.

Specifically this work will focus on the losses that scale proportionally to the area, which

we call area specific resistance or area specific polarization. For example, we will show in
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chapter 4 that the area specific resistance of a conventional doped ceria anode is directly

related to the electrochemical properties on its electrochemically active interfaces.

1.1 Background

SOFCs have been under development since they were invented by Baur and Preis in 1937

[BP37]. In order to commercialize SOFCs it is necessary to reduce their cost of fabrica-

tion and operation. Mixed conducting materials may help decrease the internal electrical

resistance of the SOFC by reducing the polarization resistance in both the anode and the

cathode.

The electrolyte of an SOFC must consist of a good ionic conductor, which transports

oxygen ions from the cathode to the anode. An often-used electrolyte material is yttria-

stabilised zirconia (YSZ). On the other hand, the electrodes must be good electron conduc-

tors in order to facilitate the electrochemical reactions and to collect the current from the

cell. A typical SOFC anode contains metallic nickel for this purpose. The anodic oxidation

of the fuel, for example H2, takes place in the vicinity of the so-called three-phase boundary

(TPB), where gas phase, oxide (for example Yttrium Stabilized Zirconia YSZ) and metal

(Ni) meet. This provides a region for all reactants to meet. In the case of SOFCs the

reactants are oxygen ions, adsorbed species on the surface (H, OH, etc.) and electrons.

In order to increase the total reaction rate, one can extend the length of the TPB zone by

making a composite of Ni and YSZ called a Ni|Y SZ-cermet, this design was patented by

Spacil in 1970 [Spa70]. Another way to extend the total reacting area is to use a mixed

ionic and electronic conductor, which in principle can support electrochemical reactions all

over the surface as shown in figure 1.2. However mixed conductivity is not sufficient for a

SOFC electrode, because the electrode must also possess a sufficiently high electrocatalytic
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activity.

(a)

(b)

Figure 1.2: Difference between an anode based on an ionic conductor and metal assembly
and a mixed conducting anode. The latter extends the area available for electrocatalytic
reactions. (a) In an electrode where the electrode material is exclusively an electronic
conductor, the reaction zone is restrained to the vicinity of the triple phase boundary
(TPB). (b) In a mixed ionic-electronic conductor (MIEC) the electrode reactions can take
place on the entire electrode surface.

In SOFCs it is also required that the electrode material is reasonably stable and that it

does not change its volume as a result of reduction or oxidation. In addition, the thermal

expansion coefficient of the electrode material must be close to the electrolyte material.

Hence, lowering the operating temperature might be beneficial. With Ceria it is possible

to use less pretreatment and lower water (steam) partial pressure in the fuel lines due to

lower susceptibility to coke formation on ceria containing anodes. Also, ceria-based anodes

are less sensitive to sulphur poisoning.

In order to understand the electrochemistry it is important to first have a grasp onthe

crystallographical and electrical properties of Ceria. The next sections briefly describe ceria

defect chemistry, while the rest of the thesis will describe the continuum level modeling

of SOFC mixed conducting anodes in the linear regime, focusing mainly on ceria but also
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showing that the tools developed here can be applied to cathodic mixed conductors.

1.1.1 Lattice Structure of Cerium Dioxide

Cerium with a 4f25d06s2 electron configuration can exhibit both the +3 and the +4 oxida-

tion states, and there exist intermediate oxides whose composition is in the range Ce2O3-

CeO2. Thermodynamic data indicate that cerium metal is unstable in the presence of oxy-

gen and that Ce2O3 and CeO2 are easily formed, where the final stoichiometry is strongly

dependent on temperature and oxygen pressure. The CeO2 crystallizes in the fluorite struc-

ture which is named after the mineral form of calcium fluorite, CaF2. It has a face-centered

cubic unit cell (fcc) with space group Fm3m and lattice length of a = 5.411 Å. In the struc-

ture each cerium cation is coordinated by eight oxygen anions at the corner of the cube.

Each cation is tetrahedrally coordinated by four cations. The structure can be thought as a

fcc array of cerium ions with oxygen occupying all the tetrahedral holes. This clearly shows

that there are large vacant holes in the strucure, a significant feature when we consider the

movement of ions through the defect structure.

Reduced ceria arises from the removal of O2− anions from the CeO2 lattice, which in

turn generates a vacant site in the lattice. We can study this effect using the reaction

4Ce4+ +O2− → 4Ce4+ + 2e− +OxO +
1
2
O2 → 2Ce4+ + 2Ce3+ +OxO +

1
2
O2, (1.1)

where OxO is an empty site or anion vacant site (site deprived of an anion) originating from

the removal of O2− from the lattice, here represented as an oxygen tetrahedral site (Ce4O).

Electrostatic charge conservation is maintained by the reduction of two cerium cations from

+4 to +3.
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Figure 1.3: Axonometric view of the structure of CeO2, which can be decomposed as a
collection of cubic and cubic centered (with cerium in the middle) crystallographic oxygen
elements. From Trovarelli [Tro01].

1.1.2 Chemistry of Defects in Doped Ceria

In this thesis we focus on acceptor-doped ceria‡, in particular on Samarium Doped Ceria

(SDC).

Defects in doped ceria can be created intrinsically, due to thermochemical conditions of

the lattice ceria, or extrinsically, due to addition of dopant to the Ceria structure. We will

not discuss the defect chemistry of pure Cerium oxides for which we refer to the monograph

edited by Trovarelli [Tro01], but we will focus on doped Ceria.

Under reducing conditions, e.g., inH2 andH2O atmospheres, Ceria will exchange oxygen

anions to the ambient atmosphere (or equivalently lattice oxygen ions are in thermodynamic

equilibrium with ambient oxygen molecules). This exchange can also be understood as the

creation of oxygen vacancies and a change in the cerium oxidation state from Ce4+ to Ce3+.

‡During doping, impurity atoms are introduced to a mixed conductor. Impurity atoms are atoms of a
different element than the atoms of the mixed conductor acting either as donors or acceptors of electrons.
Electron donor doping makes the electron concentration increase (this will in turn decrease the resistivity)
while acceptor impurity atoms will make the vacancy concentration increase, leading to a net increase of
vacancy conductivity.
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In Kröger-Vink notation [KV56] this equilibrium can be written as

OxO 

1
2
O2 + V ••O + 2Ce′Ce, (1.2)

where OxO indicates an oxygen sitting in an oxygen lattice site, V ••O is an oxygen-vacant site

and Ce′Ce is a Ce3+ ion residing on a Ce4+ site (Ce′Ce can be denoted as e′).

We consider the case where the impurity is samarium and we will suppose Sm2O3 is

added into two CeO2 lattice elements, subsequently producing vacant sites V ••O given by

the reaction

Sm2O3 + 2CexCe + 4OxO → 2Sm′Ce + 3OxO + V ••O + 2CeO2, (1.3)

where CexCe represents a Ce4+ ion residing on a Ce4+ site and Sm′Ce is a Sm3+ ion residing

on a Ce4+ site.

The concentrations of oxygen vacancies and electrons, indicated respectively with cion

and ceon, must satisfy the equilibrium condition derived from reaction (1.2)

Kr =
ceonc

2
ionp

1/2
O2

[OxO]
, (1.4)

where [OxO] is the concentration of oxygen sites and Kr is given by an Arrhenius expression

Kr = K0
r exp

(
∆Sr
kB

)
exp

(
−∆Hr

kBT

)
, (1.5)

where kB is Boltzmann’s constant, T the temperature in Kelvin, ∆Sr the reduction entropy,

∆Hr the reduction enthalpy.
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We note that dopant addition as given by (1.3) will require neutrality in sample at

equilibrium, thus the following will need to be satisfied:

B + ceon = 2cion. (1.6)

The equations (1.4) and (1.6) form a system of two equations with two unknowns ceon

and cion; the system has one unique real solution.

1.1.3 Transport Properties

Electrical conduction and other transport properties of oxides, such as oxygen and electron

diffusion, are determined by the presence, concentration and mobility of lattice defects. The

application of materials as electrolyte or electrocatalyst relies intimately on their conductive

properties. At high temperature and low oxygen partial pressures, as they occur in SOFC

anodes, ceria behaves mesoscopically as an n-type semiconductor.

In this range the dopant can be assumed as immobile while vacancies hop between neigh-

boring anion-vacant sites as a result of a thermally activated process. Similarly, electronic

conduction does not take place on electronic bands, as it would at very low temperatures

in ionic crystals because of tunneling [Kad63] or an n-type semiconductor. Instead it is

believed to occur via small Holstein polaron hopping [Hol59a] and [Hol59b] as Tuller and

Nowick have argued experimentally [TN75].

The total conductivity σT of a solid is defined as the sum of the conductivities of its

charge carriers

σT =
∑

m

σm, (1.7)

where m is a charge carrier in the solid, which could be either electronic (electrons e′ or
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holes h•) or atomic (anionic or cationic defect). In the case of SDC the mobile defects are

only e′ (charge −e) and vacancies V ••O (charge +2e). Each conductivity σm, measured in

Scm−1§ is given by the expression

σm = cmzmeum, (1.8)

where cm, zme and um are respectively concentration, charge and mobility of species m.

For SDC the total conductivity σT is given by

σT = [Ce′Ce]eue + 2[V ••O ]euV ••O . (1.9)

1.1.3.1 Mobilities

We have seen in the previous section that the conductivities depend linearly on the mobilities

as given by (1.8). It is useful then to write a few more words about them. Mobilities in

ionic conductors follow an Arrhenius type of law because conduction is a thermally activated

process. The mobility of oxygen vacancies uion is given by

uion =
u0
ion

T
exp

(
−∆Hion

kBT

)
, (1.10)

where u0
ion is a constant and ∆Hion is the activation energy for ionic hopping [Tro01].

Similarly, at high temperature, polarons diffuse thanks to thermally activated hopping and

their mobility is generally given by [BvD70]

§1S = Ω−1 (one Siemens is the inverse of one Ohm).
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ueon =
u0
eon

Tα
exp

(
−∆Heon

kBT

)
, (1.11)

where u0
eon is a constant and ∆Heon is the activation energy for polaronic hopping and here

we choose adiabatic hopping, i.e., α = 1.

1.1.3.2 Conductivities

As we have shown above, the conductivities are the product of charge per unit of volume

and the mobility, leading to

σeon = 2euioncion, (1.12)

σion = eueonceon. (1.13)

If the sample is heavily doped and the oxygen partial pressure pO2 is sufficiently low, then

cion =
B

2
, (1.14)

ceon =

√
2Kr

B
p

1/4
O2
, (1.15)

which gives a total conductivity σT = σion + σeon

σT = σion + σ0
eonp

−1/4
O2

. (1.16)

In the ionic regime of ceria (oxidizing conditions or high pO2) the total conductivity of

SDC is independent of oxygen partial pressure. Under reducing conditions, the electronic

conductivity depends on the oxygen partial pressure via the −1/4 power law. We further
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notice that the dependence of σ0
eon on the temperature is given by [Lai07]

σ0
eon =

σ00
eon

T
exp

(
−∆Heon + 1

2∆Hr

kBT

)
, (1.17)

where σ00
eon is a constant and the activation energy is ∆Heon + 1

2∆Hr.

1.2 Measurable Quantities and General Modeling Issues of

Mixed Conductors

1.2.1 Impedance Spectroscopy

Electrochemical Impedance Spectroscopy (EIS or IS) is a powerful method for characterizing

the properties of electrochemically active materials and their interfaces. IS can be used

to investigate the fundamental microscopic processes that are activated by electric forces

imposed on ionic or mixed conducting materials. IS is a very popular tool in electrochemistry

of SOFC because it involves relatively simple electrical measurements that can be automated

and whose results can often be correlated to complex material properties (electro-catalytic

reaction rates, diffusion constants, defect concentrations, dielectric properties, etc.). IS can

also predict certain aspects of SOFC performance, notably the polarization resistance.

The IS of an electrochemical system is based on the perturbation of a steady state

condition of that system by applying a single frequency voltage or current to the interface

and measuring the phase shift and amplitude of the resulting current (see figure 1.4). The

IS measurement is usually gathered using impedance analyzers which can measure the

IS as a function of frequency in a range approximately from 1 mHz to 1 MHz. IS usually

explores a wide frequency domain, leading ultimately to knowledge of the linear macroscopic
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Figure 1.4: Schematic depiction of an impedance experiment. A sinusoidal voltage pertur-
bation ∆v(t) is applied to the system and the current response ∆i(t) is recorded, the ratio
of the two give the absolute value of the impedance and the phase difference between gives
the its argument in complex space.

response of the system under study in frequency space. If the underlying physical-chemical

phenomena of the system studied are characterized by sufficiently spaced time-scales, and

some of those constants are known a priori, then each peak of the frequency response (its

frequency location and intensity) can be, in principle, linked quantitatively to a specific

physical phenomena.

Let us stress again that IS consists of automated measurement of Z as a function of ω

over a wide frequency range. It is from the structure of Z(ω) that one can deconvolve the

physical and chemical behavior of the system under study, this makes underlying models

key. For non-linear systems (the vast majority of SOFCs are non-linear), IS measurements

are meaningful only for signals of magnitude such that the response of the system is linear

(or additive). One method to evaluate linearity is to check whether a monochromatic input

generates non monochromatic output.

There are various techniques that are commonly used to analyze impedance data. For

example, the Kramers-Kronig relations (basically formulas derived from Hilbert transform)
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allow one to check the validity of the data obtained [AOGR92] and [Bou95]. Also the

experimental data can be fitted via some non-linear technique (typically Complex Non-linear

Least Square is used) against plausible one-dimensional electric circuits which describe a

likely set of electrochemical phenomena taking place in the system under study.

(a) (b)

Figure 1.5: Schematics of the systems studied numerically. (a) Ceria slab sandwiched
between two patterned ceria metal current collectors. (b) Ionic conductor slab sandwiched
between two ceria thin films patterned with stripes of metal which serves as current collector.
The function of the ionic conduction is to inhibit the electrons to migrate from the top to
the bottom portion of the assembly.

The disadvantages of IS are mainly associated with ambiguities in its interpretation.

An important complication of analyses based on an equivalent circuit is that ideal circuits

(capacitance, resistance and inductance) represent lumped constant properties and may

be inadequate to describe the electrical response of a multidimensional system. This is

because electrochemical phenomena are distributed in three-dimensional space and they

feature nonuniform properties. The utilization of nonelementary impedance elements aids

the process of fitting observed impedance data for distributed properties. For example, one

could use nonideal capacitance with the following Fourier transform Cα =
1

iωαCα
(an ideal

capacitance has α = 1). However, such impedance elements may only have a phenomenolog-

ical nature (we shall reserve this analysis for chapter 3). Another problem with equivalent
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circuit analysis is the potential nonuniqueness of the model used to fit the experimental

data. For instance an equivalent circuit involving three or more circuit elements can often

be rearranged in many ways to give the same equivalent impedance [BM05]. In order to

solve these questions, it is beneficial to study the same electrochemical system under sev-

eral different experimental settings, for example varying geometry, temperature or chemical

conditions. However such studies could prove inconclusive if the underlying model is not

mechanistic [FKJM08].

1.3 Structure of the Thesis

We will initially develop the mathematical framework for the study of the two systems

depicted in figure 1.5. We will then specialize the framework in the one-dimensional case.

This will help lay down some of the qualitative properties for the mathematical study of

linear impedance. Incidentally, we will also derive one “new” analytical expression for the

study of quasi-one-dimensional thin films. It is important to stress that one-dimensional

formulations are usually utilized to interpret experimental data.

Then we will focus on extending this work to two dimensions, first studying numerically

the system in figure 1.5(a) under small bias conditions, corresponding to an impedance

excitation at zero frequency. We will then extend the model to study the full impedance

range for both figure 1.5(a) and figure 1.5(b), where the latter configuration is close to the

fuel cell setting.
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Chapter 2

Mathematical Modeling

2.1 Bulk Material Modeling: The Drift-Diffusion Equations

In order to model the electrochemical phenomena in SOFCs, we have to be able to solve

ordinary and partial differential equations which, among other things, will let us determine

electric potentials and currents. The first step is then to determine which equations will

satisfy mass and charge transport. In ionic materials, under linear conditions (see Callen

and Welton [CW51] or Kubo [Kub66]) diffusion and migration result from a gradient in

electrochemical potential µ̃ [DGM84], [Pri61]. Consider a “small” element of ionic material

connecting two points x1 and x2 sufficiently close, where for a certain species m, µ̃m (x1) 6=

µ̃m (x2). This difference of µ̃m can arise because there is a difference of concentration (or

chemical activity) of species m or because there is an electric field. In general jPm, the

particle flux of species m, is proportional to the gradient of electrochemical potential

jPm ∝ ∇µ̃m, (2.1)
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where the constant of proportionality is
cmDm

kbT
, leading to

jPm = −cmDm∇
µ̃m
kbT

, (2.2)

where cm is the concentration of species m, Dm is its diffusivity and where the electrochem-

ical potential is given by

µ̃m = µ̃0
m + kbT log am (cm) + zmeφ. (2.3)

If we take am =
cm
c0
m

(this corresponds to the condition where species m are non-interacting

or sufficiently “dilute”), we recover the so-called Nernst-Planck equation, where the flux of

particles is given by

jPm = −Dm∇cm −
zme

kBT
Dmcm∇φ. (2.4)

If the particles are charged, i.e., zm 6= 0, then the current density j is proportional to

the flux jm of species m:

j =
∑

m zmej
P
m

=
e2

kBT

(∑

m

z2
mDmcm

)
∇φ

︸ ︷︷ ︸
DRIFT

+ e

(∑

m

zmDm∇cm
)

︸ ︷︷ ︸
DIFFUSION

.
(2.5)

We further note that um, the mobility of species m, is linked to the diffusion coefficient

Dm by the Einstein-Smochulowski equation (for a derivation see Van Kampen’s textbook

[VK07]):

um =
|zm| eDm

kBT
. (2.6)
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In order to be consistent with the principles of electromagnetism, the continuity equations

have to be used in conjunction with Gauss’s law, which in this case is equivalent to the

Poisson equation for the potential

∇ · (ε∇φ) = −ρ, (2.7)

where ρ is the local charge per unit volume of the medium and ε is the local permittivity

of the medium. Hence, in order to find the electrical properties of the MIEC, one needs

to solve Poisson’s equation for the electric field, (2.7), and the conservation equations for

each of the species present in the sample (2.2). We can summarize the equations to solve

as follows:

∇ · (ε∇φ) = −ρ, (2.8a)

∂tceon +∇ · jPeon = Ω̇eon, (2.8b)

∂tcion +∇ · jPion = Ω̇ion, (2.8c)

where ceon and cion are the electron and vacancy density (number of electrons per unit

volume) respectively and where jPeon and jPion indicate the fluxes of electrons and vacancies

respectively. In expression (2.8c) we also include the net volumetric rate of generation of

electrons and vacancies, Ω̇eon and Ω̇ion respectively.

We set here that electrons are dilute and follow a Boltzmann distribution, while vacancies

are present in much greater number. It follows that site exclusion and interaction effects

have to be taken into account. For lack of other sources Hendriks’ empirical approach can
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be used [Hen01] and we will express the electrochemical potentials in this way:

µ̃eon = µ̃0
eon + kbT log

(
ceon
c0
eon

)
− eφ, (2.9a)

µ̃ion = µ̃0
ion + kbT log

(
cion

cMAX
ion − cion

)
+ 2eφ. (2.9b)

2.2 Nondimensional Parameters and Equations

It is useful to nondimensionalize equations (2.8) and derive as many fundamental parameters

as possible. The idea is to rescale all the unknowns (concentrations and electric potential)

such that they are equal to unity in the bulk. First we define

UT =
kbT

e
, (2.10a)

λD =

√
εUT
eB

, (2.10b)

λ2 =
(
lc
λD

)2

, (2.10c)

τn =
l2c

Deon
, (2.10d)

τp =
l2c
Dion

, (2.10e)

τ = min (τn, τp) , (2.10f)

where UT is a voltage, λD is the Debye length, lc is the characteristic length (in our case

lc ≈ 10µm), τn and τp are respectively the polaron and vacancy characteristic diffusion

times. We further define the follfowing three quantities describing non dimensional bulk
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concentrations of conducting species:

n̄ =
cBULK
eon

B
, (2.11a)

p̄ =
cBULK
ion

B
, (2.11b)

α =
cMAX
ion

cBULK
ion

, (2.11c)

where n̄ is the ratio of bulk electrons to dopant, p̄ is the ratio of bulk ions to dopant (under

the assumptions above always equal to 2) and α is a phenomenological constant.

Since our goal is to rewrite (2.8) in dimensionless form, we first need to transform the

coordinates using (t,x) 7→
(
t̃, x̃
)

such that

t̃ =
t

τ
, (2.12a)

x̃ =
1
lc

x. (2.12b)

Then we need to transform the variables (φ, ceon, cion) 7→
(
φ̃, n, p

)
(n stands for negative

and p for positive) according to

φ̃ =
φ

UT
, (2.13a)

n =
ceon
n̄B

, (2.13b)

p =
cion
p̄B

. (2.13c)
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The definition above will allows us to rewrite (2.8) as

4x̃φ̃ = λ2 (1 + n̄n− 2p̄p) , (2.14a)

τn
τ
∂t̃n+∇x̃ ·

(
n∇x̃φ̃−∇x̃n

)
= 0, (2.14b)

τp
τ
∂t̃p−∇x̃ ·

(
2p∇x̃φ̃+

α

α− p∇x̃p
)

= 0. (2.14c)

The equations (2.14) with α → ∞ constitute the starting point for this thesis. Hence,

it is beneficial to describe their use, their limitations and their most striking qualitative

properties.

The range of applicability of the equations above is quite vast and in particular they

can be used to model the bulk behavior of mixed conductors that are commonly employed

in solid oxide fuel cells:

• The equations (2.14) were derived in the linear regime [CW51], where fluxes are

sufficiently small, and their range of validity is then comparable to the conditions

usually employed in electrochemisty of ionic materials [Mai04];

• The equations (2.14) are based on the continuum assumption which may break down

at the atomic level. However, works by Armstrong et al. [AH97], Corry et al. [CKC00]

and the review of Vlachy [Vla99] strongly suggest that Monte-Carlo simulations and

continuum descriptions converge to the same macroscopic results for sufficiently big

samples when the size of the system is at least three times the Debye length λD;

• We have assumed that the dielectric constant of the medium is uniform, however this

may not be the case near interfaces where orientation effects may play a role [HP07a];

• We have assumed that the chemical potential in the medium is uniquely defined by a
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function that supposes dilution or at best that accounts empirically for site exclusion.

Near interfaces, where surface states may be preferable, the chemical potential may

change significantly, hereby changing the activity.

We further note that (2.14a) depends on the very significant parameter λ2, which is the

square of the ratio of the characteristic length of the sample lc and Debye length λD. In

the case of Samarium Doped Ceria with 15% doping the Debye length is of the order of

1Å∗; if we take the characteristic length of variation to be of the order of 10µm we will

get that λ ≈ 105. We can then follow a heuristic argument: suppose we take a mixed

conducting material sample with high λ, suppose that we bias the sample with a finite

bias, and suppose also that the deviation from neutrality in the bulk of the material is

finite; then the Laplacian of the potential is very high, which results in a strong electric

field, leading to a contradiction. Hence, in order to have “small” second derivatives of the

electric potential in most of the bulk we will require that the total charge is very close to zero

or 1 + n̄− 2p̄p = 0. This results in the electroneutrality condition that has to be satisfied in

the bulk of the material and will allow us to conveniently discard (2.14a), leaving only two

time dependent partial differential equations. It is necessary to note that deviations from

the electroneutrality will be allowed for small sample sizes (lc ≈ λD) and in the vicinity of

interfaces, where charged layers may occur (in the ionics community they are commonly

called double layers).

Interfaces bring about another set of interesting questions. As it is well known, the

solution of a partial differential equation, or for that matter of a system of PDEs, is strongly

dependent on the boundary conditions utilized. In general reactions will occur at the SOFC

surfaces exposed to the gas stream (the interface for example between the MIEC and the
∗We take ε = εrε0 where ε0 = 8.85 × 10−12, εr = 3 and B = 3.7 × 1027 #particles

m3 which gives λD =p
εrε0
eB
≈ 2× 10−10m.
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GAS, in red in figure 1.2(b)) leading to net electric current, and, for our purposes, boundary

conditions for the PDEs in (2.14). Similarly interfaces between the MIEC and the metal

current collector, between the MIEC and an ionic conductors and between different grains

of the MIEC will need to be evaluated using appropriate boundary conditions.

Figure 2.1: (top): A symmetric cell with patterned Pt stripes on both sides of dense ceria
placed in a uniform gas environment. (bottom): Schematic depiction of the boundaries.
Γ1, Γ2, and Γ3 are symmetry lines, while Γ4 is the metal | ceria interface, and Γ5 is the gas
| ceria interface. The width of the metal and the of the ceria directly exposed to the gas
phase are respectively 2W1 and 2W2. The thickness of the Ceria sample is 2l2.
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2.3 Bulk Equilibrium Conditions

We indicate the equilibrium quantities, such as electron and oxygen vacancy concentration,

with the superscript (0). In order to determine equilibrium concentrations of charge carriers,

we consider the following gas phase and bulk defect reactions:

H2(gas) +O2(gas) 
 H2O(gas),

OxO 
 V ••O + 1
2O2(gas) + 2e′,

(2.15)

where the Kroger-Vink notation is used. We can also write the following equilibrium con-

stants:

Kg =
p̃2
H2O

p̃2
H2
p̃O2

, (2.16a)

Kr =

(
c

(0)
eon

B

)2
c

(0)
ion

B
p̃

1/2
O2
, (2.16b)

where p̃k =
pk

1atm
and pk is the partial pressure of species k. If we couple (2.16) (equilibrium

of reactions in (2.15)) with the electroneutrality conditions, i.e., 1 +
c

(0)
eon

B
− 2

c
(0)
ion

B
= 0, we

will be able to deduce the equilibrium concentrations of vacancies c(0)
ion and electrons c(0)

eon

in the dilute limit at a given temperature and partial pressures. As we have shown in the

section 1.1.3.2 we can assume that the equilibrium concentrations of electrons and vacancies
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is given by

cion =
B

2
(2.17)

ceon =

√
2Kr

B
p

1/4
O2
. (2.18)

For SDC-15 we have that the concentration of samaria atoms in the lattice [Sm′Ce] =

0.15, [KV56], the nc coordination number is 4 [ASS+06] and the cell length is 5.43×10−10m

[ZWTL01], so its volume V0 is given by V0 = l3cell. This implies that the concentration of

background negatively charged ions in the bulk can be expressed as B = nc
[Sm′Ce]
V0

=

3.74759× 1027 #particles
m3 .

2.4 The Model for the Off-Equilibrium Bulk Behavior

We suppose a time-independent small bias off-equilibrium perturbation is performed in our

system. Experimentally, this is achieved by subjecting the electrochemical cell to a small

DC voltage relative to the open circuit voltage. Alternatively, we can obtain the same

information by making an AC impedance measure at open circuit and taking the resistance

at the the low frequency limit where the frequency approaches zero. We indicate these

small perturbations with the subscript (1) and the basic conditions with the superscript

(0). These working conditions can be summarized as follows:

• n = n(0) + n(1) with ∇n(0) = 0 and 1 = |n(0)| � |n(1)|;

• p = p(0) + p(1) with ∇n(0) = 0 and 1 = |p(0)| � |p(1)|;

• φ̃ = φ̃(0) + φ̃(1) with ∇φ̃(0) = 0 and |φ̃(0)| � |φ̃(1)|;
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Table 2.1: Temperature range and material constants for the simulations.
T 500oC 550oC 600oC 650oC
Kg 5.059E+27 4.814E+25 7.757E+23 1.944E+22
Kr 5.008E−22 2.263E−20 6.610E−19 1.340E−17

ueon

[
m2

V 2s

]
4.762E− 8 6.257E−8 6.873E−8 8.123E−8

uion

[
m2

V 2s

]
1.166E−9 2.070E−9 3.359E−9 4.936E−9

Incidentally we note that the we chose the 0th order solution such that it corresponds

to equilibrium conditions. The ensuing equations are then greatly simplified. We could

imagine starting from off equilibrium conditions but that would make the algebra much

more complex. If we enforce electroneutrality we will have that at first order

n̄n(1) = 2p̄p(1) (2.19)

Substituting the above definitions and properties above into (2.14) and keeping only first

order terms yields the following system of linear PDEs:

4n(1) = 0, (2.20a)

4φ̃(1) = 0. (2.20b)

The (2.20) will be the starting point for the subsequent steady-state analysis.

2.4.1 Boundary Conditions for the Steady State Case

Realistic boundary conditions are complex due to the formation of charge double layers

[Sze81], [RW00]. Work by Fleig et al. [Fle05], [FMM07] suggests that such electrification
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effects are relevant for SOFC mixed conducting cathodes. Because we suppose that the

sample is sufficiently thick, we do not consider charge double layer in our system (this issue

will be addressed in Chapter 6). Furthermore, we do not consider surface diffusion since the

the need to specify the surface roughness may lead to over-fitting of the data and since the

experiments we use to check the validity of our results did not feature a thorough analysis

of the surface.

As shown in figure 2.1 (bottom), there are five boundaries in our electrochemical sys-

tem each corresponding to significantly different boundary conditions. We start with the

simplest boundary conditions: it follows from symmetry that ∂xµ̃
(1)
eon = 0, ∂xµ̃

(1)
ion = 0 on

Γ2 and Γ3. Since the metal is ion blocking we will have ∂yµ̃
(1)
ion = 0 on Γ4. By assuming

that the response of the metal to any perturbation is fast compared to the oxide, we can

suppose φ(1) is uniform on Γ4. Because of linearity, we can choose φ(1) = kbT/e on Γ4 (so

that φ̃(1) = 1) and φ(1) = 0 on Γ1.

The remaining boundary, Γ5, is complex due to the gas-solid surface reaction elec-

trochemistry. Specifically, the fuel cell anode condition under which our computation is

performed requires us to consider the interaction of oxygen vacancies and electrons SDC

and gas-phase hydrogen, oxygen and water vapor. A complete treatment of the surface

require a detailed understanding of the electrochemical reaction pathway and kinetics pa-

rameters of various reactions that occur in series and/or parallel. However, there is little

experimental data in literature regarding the surface reactions for SDC (or for any other

composition of doped ceria). In the case of ceria, AC impedance spectroscopy is unable

to separate multiple processes that occur on the electrode | electrolyte interface due to the

overwhelming ”chemical” capacitance that results from redox of cerium cation between +4

and +3 oxidation states.
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In this work, we treat the surface reaction pathway as a single step (see appendix C for

more details). Specifically, we assume that the surface chemistry can be described by

H2(gas) 
 H2O(gas) + V ••O + 2e′. (2.21)

Furthermore, we assume that the rate of reaction, specifically, the rate of injection of va-

cancies at Γ5 satisfy

jion · ey = 1
2 jeon · ey,

−jion · ey = kf p̃H2 − krp̃H2Ocionc
2
eon.

(2.22)

where ey is the unit vector that is perpendicular to Γ5, kf and kr are the forward and

reverse reaction rate constants, respectively. At equilibrium, the net rate of injection of

both oxygen vacancies and electrons are zero, so kf and kr can be related to the equilibrium

concentrations of the reactants and products

kr =
2kf p̃H2(

c
(0)
eon +B

)(
c

(0)
eon

)2
p̃H2O

. (2.23)

Using the same perturbative approach of section 2.4, we compute the perturbation in

the boundary condition upon applying a small bias perturbation. At first order we derive

a Chang-Jaffé boundary condition [CJ52] on Γ5

−ω̇(1)
eon = −ω̇eon = 1

2krp̃H2O

(
c

(0)
eon + c

(1)
eon +B

)(
c

(0)
eon + c

(1)
eon

)2
+

− krp̃H2O

(
c

(0)
eon +B

)(
c

(0)
eon

)2

=
1
2
krp̃H2Oc

(0)
eon

(
2B + 3c(0)

eon

)
c(1)
eon

=
1
2
krp̃H2O

(
c(0)
eon

)2 (
2B + 3c(0)

eon

)
n(1).

(2.24)
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We are now set to Γ5; we first remark that at equilibrium:

1
2
krp̃H2O

(
c(0)
eon +B

)(
c(0)
eon

)2
− kf p̃H2 = 0⇔ p̃H2O =

2Kr(T )
(
c

(0)
eon +B

)(
c

(0)
eon

)2 p̃H2 , (2.25)

where kf = kf (T ), kr = kr(T ) and Kr(T ) = kf
kr

;

We can finally rewrite (2.24) using (2.16a) as:

j(1)
ion · ey = 2kf

(
1 +

c
(0)
eon

4c(0)
ion

)
p̃H2n

(1). (2.26)

We go a little further and suppose kf = 2
Dion

lc
k̃f k̃f = k̃0

f p̃
β
O2
× m3

#particles
, where we

choose β = −1/4 to give†:

−ω̇(1)
eon = 2

Dion

lc
k̃0
f p̃

1/4
O2

(
1 +

c
(0)
eon

4c(0)
ion

)
p̃H2n

(1). (2.27)

It is important to note that the choice of β is based on the oxygen partial pressure

dependence of the rate limiting step(s) in the surface reaction. Since identifying the rate-

limiting step in the surface reaction is beyond the scope of this work (as we described the

surface reaction with a global reaction), we selected the β value so that the pO2 dependence

matches the experimental results [LH05] that are used for data analysis.

†The units of the kf s are

[kf ] =
#particles

s×m2
,h

k̃f
i

=

»
lc

Dion
kf

–
=

#particles

m3
,h

k̃0
f

i
=
h
k̃f
i

=
#particles

m3
,

let us look at order of magnitude of kf : p̃O2 = 10−24, lc = 10−5m, Dion = 10−10m2/s and k̃0
f ≈ 1032, so

kf ≈ 1032 × 10−10

10−5 × 10−6=1021 #particles
m2 ≈ 10−3mol

m2 ≈ 10−7 mol
cm2 .
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2.4.2 Formalization of the Model

It is useful to recast the problem under study in a mathematical form that shows the smallest

number of parameters in the equations and boundary conditions. In fact, one can deduce

from (2.20) and the boundary conditions discussed in the previous section that

4φ̃(1) = 0, (2.28a)

4n(1) = 0, (2.28b)

where n(1) = c
(1)
eon/c

(0)
eon and φ̃(1) = φ(1)/UT and that





φ̃(1) = 0 & n(1) = 0 on Γ1

∂xφ̃
(1) = 0 & ∂xn

(1) = 0 on Γ2 & Γ3

φ̃(1) = UT & ∂yn
(1) = −4 c

(0)
ion

c
(0)
eon

∂yφ̃
(1) on Γ4

∂yφ̃
(1) = Aφn

(1) & ∂yn
(1) = Ann

(1) on Γ5

, (2.29)

where Aφ = −1
2
kf p̃H2

Dionc
(0)
ion

(
1− Dion

Deon

)
and An = −1

2
kf p̃H2

Dionc
(0)
ion

(
1 + 4

Dionc
(0)
ion

Deonc
(0)
eon

)
. We further

define k̃0
f = k̃f

p̃βO2

‡§

If one defines x = lcx̃ (lc = 10µm) , Ãφ = −k̃f
p̃H2

c
(0)
ion

(
1− Dion

Deon

)
and Ãn = −k̃f

p̃H2

c
(0)
ion

(
1 + 4

Dionc
(0)
ion

Deonc
(0)
eon

)

‡Oxygen ions cannot penetrate the metal giving that

ey · ∇µ̃(1)
ion = 0⇔ ∂y

 
kbT

c
(1)
ion

c
(0)
ion

+ 2eφ(1)

!
= 0⇔ ∂y

 
1

2

c
(0)
eon

c
(0)
ion

c
(1)
eon

c
(0)
eon

+ 2φ̃(1)

!
= 0

the latter gives

∂yn
(1) = −4

c
(0)
ion

c
(0)
eon

∂yφ̃
(1)

§The chemical condition at the Gas|Ceria interface requires that the balance of fluxes at the interface(
jeon · ey = −Deon∂yc(1)

eon +Deonc
(0)
eon∂yφ̃

(1) = −ω̇eon
jion · ey = −Dion∂yc(1)

ion − 2Dionc
(0)
ion∂yφ̃

(1) = −ω̇ion
⇔

8<: ∂yc
(1)
eon − c(0)

eon∂yφ̃
(1) = ω̇

(1)
eon

Deon

∂yc
(1)
ion + 2c

(0)
ion∂yφ̃

(1) = ω̇
(1)
eon

2Dion
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then (2.20) and the boundary conditions of the previous section can be summarized as fol-

lows:

4x̃φ̃
(1) = 0,

4x̃n
(1) = 0,

(2.30)





φ̃(1) = 0 & n(1) = 0 on Γ1

∂x̃φ̃
(1) = 0 & ∂x̃n

(1) = 0 on Γ2 & Γ3

φ̃(1) = 1 & ∂ỹn
(1) = −4 c

(0)
ion

c
(0)
eon

∂ỹφ̃
(1) on Γ4

∂ỹφ̃
(1) = Ãφn

(1) & ∂ỹn
(1) = Ãnn

(1) on Γ5

. (2.31)

2.4.2.1 Numerical Method

In order to solve numerically the Equations (2.30) with the boundary conditions (2.31) we

employ an h-adapted finite element method (FEM). FEM is well known for elliptic problems

such as the one we are studying, see for example [Fic65] and [QV94].

In order to employ FEM appropriately, we first recast the problem in the following weak

form, where m and ψ are test functions on the domain Ω

∫

Ω
∇m · ∇n(1) dA+ 4

c
(0)
ion

c
(0)
eon

∫

Γ4

m∂ỹφ̃
(1) dγ − Ãn

∫

Γ5

mn(1) dγ = 0 (2.32a)
∫

Ω
∇ψ · ∇φ(1) dA− Ãφ

∫

Γ5

ψn(1) dγ = 0 (2.32b)

then since c
(1)
eon = 2c

(1)
ion8><>:

∂yn
(1) − ∂yφ̃(1) = ω̇

(1)
eon

c
(0)
eonDeon

c
(0)
eon

c
(0)
ion

∂yn
(1) + 4∂yφ̃

(1) = ω̇
(1)
eon

c
(0)
ionDion

⇔

"
1 −1

c
(0)
eon

c
(0)
ion

4

#
∂yn

(1)

∂yφ̃
(1)

ff
= ω̇eon

( 1

c
(0)
eonDeon

1

c
(0)
ionDion

)

Solving the 8><>:
∂yn

(1) = − kf p̃H2

2Dionc
(0)
ion

„
1 + 4

Dionc
(0)
ion

Deonc
(0)
eon

«
n(1)

∂yφ̃
(1) = − kf p̃H2

2Dionc
(0)
ion

“
1− Dion

Deon

”
n(1)



32

with the additional conditions that

φ̃(1) = 0 on Γ1 (2.33a)

n(1) = 1 on Γ1 (2.33b)

φ̃(1) = 1 on Γ4 (2.33c)

The discrete version of equations (2.32) is then solved using FreeFem++ [HP07b]. The

equations are initially discretized on a triangular unstructured mesh, using quadratic con-

tinuous basis functions with a third order bubble. The mesh is adaptively refined up to

seven times at each solution step and the a posteriori adaptation is performed against µ̃(1)
eon.

The h-adaptation ensures high regularity of the H1 a posteriori estimator [BS00], locally

below 0.01%, and it guarantees that the mesh is finer where the sharpest gradients occur.

We note that mesh adaptivity results in coarseness everywhere except in the vicinity of the

interfaces. In particular, the refinement increases as we approach the triple phase boundary;

this fact indicates strong nonlinearities around that area. Eleven integral tests were also

implemented in order to ensure that at each solution step the numerical method satisfies

conservation of species and charge.

Finally we note that FreeFem++ execution time is comparable to custom-written C++

code and its speed is enhanced by the utilization of fast direct linear solvers such as the

multifrontal package UMFPACK [Dav04]. Due to the sparsity of the problem we make

extensive use of the latter feature.
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2.5 Time Dependent Modeling

2.5.1 Asymptotic Modeling of Mixed Conduction in the Bulk

We focus now on the time dependent version of equations (2.14) and we will utilize the

same approach of section 2.4. We will perturb the fundamental equations as follows:

4(1 + φ̃(1)) = λ2
(

1 + n̄(1 + n(1))− 2p̄(1 + p(1))
)

(2.34a)

τn
τ
∂t

(
1 + n(1)

)
+ ∇x̃ ·

(
−∇x̃(1 + n(1)) + (1 + n(1))∇x̃φ̃(1)

)
= 0, (2.34b)

τp
τ
∂t

(
1 + p(1)

)
− ∇x̃ ·

(
∇x̃(1 + p(1)) + 2(1 + p(1))∇x̃φ̃(1)

)
= 0. (2.34c)

If we retain in (2.34) only first order terms, we will obtain

4φ̃(1) = λ2
(
n(1) − 2p̄p(1)

)
(2.35a)

τn
τ
∂t̃n

(1) − 4x̃n
(1) +4x̃φ̃

(1) = 0, (2.35b)

τp
τ
∂t̃p

(1) − 4x̃p
(1) − 24x̃φ̃

(1) = 0. (2.35c)

The electroneutrality condition, zero total charge, at first order gives p(1) =
1
2
c

(0)
eon

c
(0)
ion

n(1) =

1
2
n̄

p̄
n(1). Using the latter we can drop (2.35a). Defining the following two time scales:

τ?n =
τn + n̄

4p̄τp

1 + n̄
4p̄

, (2.36a)

τ?φ =
τp − τn
1 + 4p̄

n̄

, (2.36b)
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helps rewrite the (2.35) as (see also appendix C) a

τ?n
τ
∂t̃n

(1) −4x̃n
(1) = 0, (2.37a)

τ?φ
τ
∂t̃n

(1) −4x̃φ̃
(1) = 0. (2.37b)

2.5.2 Boundary Conditions for the Time Dependent Case

It follows from symmetry, figure 2.1, that ∂x̃φ̃(1) = ∂x̃ñ
(1) = 0 on Γ2 and Γ3. Since the

metal is ion blocking, the condition 1
2
n̄
p̄∂ỹn

(1) + 2∂ỹφ̃(1) = 0 will be satisfied on Γ4. We

assume as well that the response of the metal to an electric perturbation is fast compared

to the MIEC, and it follows that we can take the electric potential φ̃(1) uniform on Γ4. Due

to inherent linearity and given the impedance setting, we can choose φ̃(1) = 1√
2π
<
(
eiωτ t̃

)

on Γ4 and φ̃(1) = n(1) = 0 on Γ1.

We assume the chemistry of the chemical reactions on Γ5 has a finite speed and that it

is correctly characterized by a one-step reaction [CWHG09] which is frequency independent

(for a generalization see appendix C). Hence the y-flux of electrons and vacancies can

be assumed to satisfy the same Chang-Jaffé condition that we derived in Section 2.4.1,

giving the following expression along Γ5: jPeon · ey = 2jPion · ey = −ω̇eon,S . If we define

Ãφ = k̃f
p̃H2

c
(0)
ion

(
1− Dion

Deon

)
and Ãn = k̃f

p̃H2

c
(0)
ion

(
1 + 4

Dionc
(0)
ion

Deonc
(0)
eon

)
, we can rewrite the boundary

conditions on Γ5 as ∂ỹφ̂(1) = Ãφn̂
(1) and ∂ỹn̂

(1) = Ãnn̂
(1).
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2.5.3 Weak Formulation of the Time Dependent Model

If we Fourier transform (2.37) and the boundary conditions with respect to t̃¶, we find the

following system of elliptic equations ((̂·) indicates Fourier transformed quantity)‖ which

we call IS equations

iωτ?nn̂
(1) −4n̂(1) = 0, (2.38a)

iωτ?φn̂
(1) −4φ̂(1) = 0, (2.38b)

with boundary conditions:

φ̂(1) = 0 & n̂(1) = 0 on Γ1,

∂x̃φ̂
(1) = 0 & ∂x̃n̂

(1) = 0 on Γ2 & Γ3,

φ̂(1) = 1 & ∂ỹn̂
(1) = −4 p̄n̄∂ỹφ̂

(1) on Γ4,

∂ỹφ̂
(1) = Ãφn̂

(1) & ∂ỹn̂
(1) = Ãnn

(1) on Γ5,

(2.39)

We can recast the (2.38) and (2.39) in weak form taking as test functions mRe, mIm ∈

H1(Ω \ Γ1), ψRe, ψIm ∈ H1(Ω \ (Γ1 ∪ Γ4)) [AF03]:

¶We choose unitary Fourier transform f̂(ω) = 1√
2π

R∞
−∞ f(x)e−iωx dx.

‖We factored out the Dirac distribution that comes out of Fourier transformation of an exponential.
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ωτ?n

∫

Ω
n̂

(1)
ImmRe dÃ −

∫

Ω
∇n̂(1)

Re · ∇mRe dÃ+
∫

Γ5

Ãnn̂
(1)
RemRe dx̃+

− 4
p̄

n̄

∫

Γ4

∂ỹφ̂
(1)
RemRe dx̃ = 0,

(2.40a)

ωτ?n

∫

Ω
n̂

(1)
RemIm dÃ +

∫

Ω
∇n̂(1)

Im · ∇mIm dÃ−
∫

Γ5

Ãnn̂
(1)
ImmIm dx̃

+ 4
p̄

n̄

∫

Γ4

∂ỹφ̂
(1)
ImmIm dx̃ = 0,

(2.40b)

ωτ?φ

∫

Ω
n̂

(1)
ImψRe dÃ−

∫

Ω
∇φ̂(1)

Re · ∇ψRe dÃ+
∫

Γ5

Ãφn̂
(1)
ReψRe dx̃ = 0, (2.40c)

ωτ?φ

∫

Ω
n̂

(1)
ReψIm dÃ+

∫

Ω
∇φ̂(1)

Im · ∇ψIm dÃ−
∫

Γ5

Ãφn̂
(1)
ImψIm dx̃ = 0. (2.40d)

with the additional condition that:

φ̂
(1)
Re = 0 & φ̂

(1)
Im = 0 on Γ1, (2.41a)

n̂
(1)
Re = 0 & n̂

(1)
Im = 0 on Γ1, (2.41b)

φ̂
(1)
Re = 1 & φ̂

(1)
Im = 0 on Γ4. (2.41c)

It is easy to show that the sum of (2.40) is bounded and thus the bilinear form associated

to the weak formulation of (2.38) with (2.39) is continuous. Further, the problem is weakly

coercive hence it admits one unique solution [Agm65].

2.5.4 Numerical Solution Procedure for the Two-Dimensional Case

In order to solve numerically (2.40) with boundary conditions (2.41) we employ an h-adapted

finite element method (FEM), implemented with FreeFem++ [HP07b]. The governing

equations are discretized on a triangular unstructured mesh using quadratic continuous basis
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functions with a centered third order bubble. We use a direct method to solve the linear

system following integration of (2.40) in the discretized mesh. Then the mesh is adaptively

refined nine times for each case. The a posteriori adaptation is performed the first six times

against the 4 dimensional vector
(
∇<

[
µ̂

(1)
eon

]
,∇<

[
µ̂

(1)
ion

])
and subsequently against ηε (see

appendix A). The h-adaptation ensures high regularity of the H1 a posteriori estimator

[BS00], locally below 10−5, and it guarantees that the mesh is finer where sharper gradients

occur. Independent of frequency, mesh adaptivity results in coarseness everywhere except

in the vicinity of the interfaces, in particular the refinement increases towards the triple-

phase boundary (the intersection of metal, oxide and gas phases, which is thought to be a

particularly active site for electrochemical reactions [Tro01] [MST00]); this fact indicates

strong non-linearities around that area. Finally we note that FreeFem++ execution time

is comparable to custom-written C++ code and its speed is enhanced by the utilization

of fast sparse linear solvers such as the multi-frontal package UMFPACK [Dav04]. Due

to the sparsity of the problem we make extensive use of this last feature. We further

note that the utilization of asymptotic expansion and Fourier transformation techniques,

while guaranteeing linearity, has a great speed advantage over direct sinusoidal [Goo06] and

step relaxation techniques [Bes07]. Further, this method can be directly used to examine

chemical reactions within the cell and draw directly conclusions about fast and rate-limiting

chemical reactions. Also, this procedure lends itself to direct error estimation and its

implementation can be done automatically for a time-dependent problem [CG07].

2.5.5 One-Dimensional Case: Analytical Solution

Since we also aim at comparing the 1D and 2D solutions, it is beneficial to revisit the 1D

solution of (2.38) [Mac73]. The solution (n̂(1), φ̂(1)) will satisfy (if ω 6= 0):
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n̂(1) =
∑

±
a±e

±
√
i
√
τ?nωỹ, (2.42a)

φ̂(1) = φ̂
(1)
0 + (φ̂(1)

0 )′ỹ +
τ?φ
τ?n
n̂(1), (2.42b)

where for simplicity we indicate
√
i = ei

π
4 . The boundary conditions, as in the 2D case, at

ỹ = 0 (Γ1) are

φ̂(1) = 0 & n̂(1) = 0. (2.43)

The latter can help rewrite (2.42) as

n̂(1) = 2a+ sinh
(√

i
√
τ?nωỹ

)
, (2.44a)

φ̂(1) = (φ̂(1)
0 )′ỹ + 2a+

τ?φ
τ?n

sinh
(√

i
√
τ?nωỹ

)
. (2.44b)

If we set γφ = R⊥ionelcDec
(0)
eon

UT

“
1+ 1

4
n̄
p̄

” and γn = 1
4
n̄
p̄γφ, then at ỹ = l2 we have the following conditions

[LH05]:

φ̂(1) = 1 & n̂(1) + γφ
dφ̂(1)

dỹ
+ γn

dn̂(1)

dỹ
= 0. (2.45)

The boundary conditions (2.45) will lead to the determination of a+ and (φ̂(1)
0 )′ in

(2.44) and the 1D model leads to the impedance given in (3.23). We will expand on the 1D

analytical solution in next chapter.
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Chapter 3

One Dimensional Modeling

In this chapter we will discuss equivalent circuit representation of electrochemical systems

and we will focus on the analytical derivation of the impedance response of the two systems

in figure 1.5. This serves as a starting point for later multidimensional analysis and the

new formula derived in Section 3.2.2 can be used as a starting point for the experimental

analysis of blocking electrode conditions.

3.1 Equivalent Circuits

The most attractive aspect of IS as a tool for understanding electrochemical properties

of materials is the direct link between the behavior of the system and that of model cir-

cuits, consisting of discrete electric circuits. Experimentalists typically fit impedance data

to physically plausible equivalent circuits, which represent the basic physical-chemical phe-

nomena taking place in the system under study. Hence, there exist some map between the

experimental results and the physics of the system via equivalent circuits. This makes the

utilization of one-dimensional models interesting and useful. The impedance mapping to

an equivalent circuit is unique as proved by Bott and Duffin in 1949 [BD49] and [BIG03]∗

∗A passive 1-port is a box filled with various resistors, capacitors and inductors, with two wires
sticking out. If one applies a current I(t) = exp(iωt), the response voltage across the port will be
V (t) = Z(ω) exp(iωt), where Z(ω) is called the impedance of the circuit. It is fairly easy to see that Z
is a rational function with real coefficients, mapping the right half-plane to itself. Such functions are called
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Figure 3.1: The Nyquist plot of the impedance of a ZARC circuit normalized versus R and
parametrized as a function of α.

however the interpretation of the underlying physical phenomena may not be unique, may

not be one-dimensional, may not be rational (with the presence of disordered systems) and

furthermore, sufficient scattering of the data can result in non unique deconvolution of the

equivalent circuit.

We shall start with a brief review on a few elementary circuit elements: the resistors,

the capacitor and the inductor. Each one represents a different physical phenomena, the

resistor indicates the “resistance” to conduction of ions or electrons, the capacitor can

indicate double layer build up (a common phenomenon at interfaces), and the inductor

indicates the coupling between magnetic and electric field. In SOFCs we can easily assume

that magnetization is not present, thus it is apparent that resistors and capacitors and

their combinations will be the only elements. We report the impedance of these elementary

circuit elements in table 3.1.

Another common element is the Constant Phase Element (CPE) whose Fourier response

prfs in the literature. The fundamental result of circuit theory, proved by Bott and Duffin, asserts that every
prf is the impedance of some 1-port. This is really a result in complex analysis.
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Table 3.1: Elementary circuit elements and their Fourier transform ∆V (t) is the potential
drop at the element’s ends, I(t) the current passing through the circuit and the symbol (̂·)
indicates the Fourier transform.

Name Time Dependence Fourier Transform Impedance
Resistor ∆V (t) = RI(t) ∆V̂ = RÎ R

Capacitor Q = C∆V Î = iωC∆V̂ 1
iωC

Inductor ∆V = Lİ ∆V̂ = iωLÎ iωL

is a generalization of the capacitance and it is defined as

Zα(ω) =
1

(iω)αCα
, (3.1)

Incidentally we note that Zα=1 is the impedance response of the capacitance. Solving

anomalous diffusion equations with absorbing boundaries, see for example Bisquert’s work

[Bis02] or the more general fractional calculus monograph [KST06], gives the so-called

Generalized Finite-Length Warburg Element (GFLW)

ZGFLW (ω) = RGFLW
tanh ((iωCGFLW )αGFLW )

(iωCGFLW )αGFLW
, (3.2)

with parameters RGFLW , CGFLW and αGFLW .

We notice that |ωCGFLW |αGFLW � 1 one recovers the CPE element. If αGFLW = 1
2 one

gets the Finite-Length Warburg Element (FLW) which will be instrumental for understand-

ing the equivalent circuit representation of the system in figure 1.5. In the Nyquist plot, the

GFLW gives a half-tear-drop arc called a Warburg arc. Such arcs are commonly retrieved

when analyzing thick mixed conductors with absorbing boundaries and will be treated in

more detail in the following section. Other relevant circuits for our analysis, in particular

in reference with the figure 1.5(b) or thin film interfaces, is the RC circuit (a resistor and

a capacitor in parallel) and its generalization, the ZARC circuit (a CPE and a resistor in
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parallel). The ZARC impedance is

Z =
1

1
R

+ i (ω)αCα
. (3.3)

A visual Nyquist plot representation of its impedance is given in figure 3.1. As α decreases

from the base value of one the perfect semicircular arc of the RC circuit becomes increasingly

depressed, where the minumum of the function −=(ZZARC) occurs always for ω =
1
RC

and

it decreases with α†.

3.2 Linear One-Dimensional Modeling

As we have shown in Section 2.1, electroneutrality is a fair assumption for doped SOFC

materials. The only equations we need to solve are the continuity equations for the migrating

species along with the condition that electroneutrality is satisfied. In the general setting of

N migrating species, the concentration of a species m (m = 1, . . . , N) satisfies

∂tcm +∇ ·
(
−Dmcm∇

µ̃m
kBT

)
= 0. (3.4)

If we multiply the previous equation by zme and call ρm = ezmcm the charge associated

with species m, we will get

∂tρm +∇ ·
(
−Dmcmz

2
me

2

kBT
∇µ?m

)
= 0, (3.5)

where σm = Dmcmz2
me

2

kBT is the conductivity and µ?m = µ̃m
zme

is the star potential (or ?−potential).

†It is trivial to see that the minimum of =(ZZARC) occurs for <
“

i−1+α

(1+(iCRx)α)2

”
= 0 which has one solu-

tion for α ∈ R+ which is ω = 1
RC

so the ZARC peak frequency is the same as the RC circuit peak frequency.
The minimum of =(ZZARC) is strictly increasing with α because |1 + i| > |1 + iα|. It is straightforward to
deduce that the depression is given by = (iα) = sin

`
απ

2

´
.
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Figure 3.2: The system of equations describing mixed conductivity under the electroneu-
trality condition can be approximated locally as an equivalent circuit featuring one ionic
and one electronic resistive rail connected by a capacitor.

If we expand the dilute electrochemical potential of species m with respect to its con-

centration cm around equilibrium c
(0)
m we will obtain that

µ?m = φ+
kBT

zme
log

cm

c
(0)
m

= φ+
kBT

zme

cm − c(0)
m

c
(0)
m

+
kBT

zme
× o

(
cm − c(0)

m

c
(0)
m

)
. (3.6)

We now use the formulas above in the special case where the majority carriers are vacancies

(ion) and electrons (eon), if we subtract the ?-potentials of electrons and vacancies, we will

obtain

µ?eon − µ?ion ≈
kBT

zeone

c
(1)
eon

c
(0)
eon

− kBT

zione

c
(1)
ion

c
(0)
ion

, (3.7)

where we indicated c
(1)
m = cm − c

(0)
m . We can now use the electroneutrality condition,

zeonc
(1)
eon + zionc

(1)
ion = 0 to deduce that

µ?eon − µ?ion =
kBT

e

(
1

zeonc
(0)
eon

+
zeon

z2
ionc

(0)
ion

)
c(1)
eon =

(
1

z2
eonc

(0)
eon

+
1

z2
ionc

(0)
ion

)
kBT

e
zeonc

(1)
eon.

(3.8)

The latter will give that
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e2

kBT

1
1

z2
eonc

(0)
eon

+ 1

z2
ionc

(0)
ion

(µ?eon − µ?ion) = ρ(1)
eon = zeonec

(1)
eon. (3.9)

If we conveniently define the χchem =
e2

kBT

1
1

z2
eonc

(0)
eon

+ 1

z2
ionc

(0)
ion

and if we Fourier-transform

with respect to time the (3.5) with m = ion, eon, we will get

iχchemω (µ̂?eon − µ̂?ion) +∇ · (−σeon∇µ̂?eon) = 0, (3.10a)

iχchemω (µ̂?ion − µ̂?eon) +∇ · (−σion∇µ̂?ion) = 0. (3.10b)

We note that the current densities are given by

ĵeon = −σeon∇µ̂?eon, (3.11a)

ĵion = −σion∇µ̂?ion. (3.11b)

We now constrain our study to one spatial dimension, thus we can drop the vector

notation and define the total ionic and electronic currents as the product of the respective

current densities and the cross sectional area

Îeon = Aĵeon, (3.12a)

Îion = Aĵeon. (3.12b)
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We will also define the resistances R(·) and the chemical capacitance Cchem as follows:

Reon =
L

σeonA
, (3.13a)

Rion =
L

σionA
, (3.13b)

Cchem = LχchemA. (3.13c)

In one dimension the (3.10b) can be conveniently rearranged in the following system of

autonomous linear ordinary equations in C4:

d

dx
µ̂?eon = −Reon

L
Îeon, (3.14a)

d

dx
µ̂?ion = −Rion

L
Îion, (3.14b)

d

dx
Î?eon = iω

Cchem
L

(µ̂?ion − µ̂?eon) , (3.14c)

d

dx
Î?ion = iω

Cchem
L

(µ̂?eon − µ̂?ion) . (3.14d)

The equations (3.14) admit an analytical solution of the following form:

Îion(x) =
Reon

Rion +Reon
Itot + C1e

kx + C2e
−kx, (3.15a)

Îeon(x) = Îtot − Îion(x), (3.15b)

µ̂?ion(x) = − ReonRion
Rion +Reon

x

L
Itot − C1

(
ekx − 1

)
+ C2

(
e−kx − 1

)
+ (µ?ion)0 , (3.15c)

µ̂?eon(x) = − ReonRion
Rion +Reon

x

L
Itot + C1

(
ekx − 1

)
− C2

(
e−kx − 1

)
+ (µ?ion)0 , (3.15d)
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where k =
1
L

√
iωCchem (Rion +Reon). In the remainder of this chapter we will suppose

that

• the sample is the segment [−L,L];

• the electrochemical potential of electrons in the sample is set at the boundaries and

it is harmonically varying according as exp(iωt);

• the ionic rail is electrically connected to the current collector via a certain resistance.

It follows immediately from the assumptions above that the equations (3.14) satisfy the

following boundary conditions:

µ̂?ion(x = 0) = 0, (3.16a)

µ̂?eon(x = L) = 1, (3.16b)

µ̂?eon(x = L) = µ̂?ion(x = L)− Z⊥ionÎion(x = L). (3.16c)

Incidentally, plugging in (3.16) into (3.15) gives that

(µ̂?eon)0 = (µ̂?ion)0 + (C1 − C2)
Reon +Rion

kL
, (3.17a)

(µ̂?ion)0 = 0; (3.17b)

hence, we can safely drop the boundary condition (3.16a).

The equations (3.14) have the characteristic that they can be mapped easily into an

equivalent circuit with “infinitesimal” elements. From elementary calculus, we recall that
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the derivative of a continuosly differentiable function can be approximated by a forward

finite difference, with constant step ∆x→ 0, i.e.,
df

dx
≈ ∆f

∆x
, then

µ̂?eon(x+ ∆x)− µ̂?eon(x) = −Reon
L

Îeon(x)∆x, (3.18a)

µ̂?ion(x+ ∆x)− µ̂?ion(x) = −Rion
L

Îion(x)∆x, (3.18b)

Î?eon(x+ ∆x)− Î?eon(x) = iω
Cchem
L

(µ̂?ion(x)− µ̂?eon(x)) ∆x, (3.18c)

Î?ion(x+ ∆x)− Î?ion(x) = iω
Cchem
L

(µ̂?eon(x)− µ̂?ion(x)) ∆x. (3.18d)

Using Kirchhoff’s laws, one deduces that the (3.18) have locally the same Fourier trans-

form of the equivalent circuit in figure 3.2; a derivation of the latter property can be found

in the works of Lai [Lai07] or Jamnick and Maier [JM01].

We will now study in more detail two very relevant analytical solutions of (3.14). The

first expression we will derive corresponds to the single slab case, figure 1.5(a), while the sec-

ond corresponds to the blocking electrode case, figure 1.5(b). These analytical expressions

will pave the way for the two dimensional results.

3.2.1 Single Slab Case

The single slab case, 1.5(a), can be conveniently mapped into an equivalent circuit featuring

an ionic and an electronic rail connected to one another by an infinite number of capacitors.

At the two ends of the circuit the ionic rail merges into the electronic rail and the current

is drawn out via a metal current collector giving rise to a polarization resistance or an area

specific resistance denoted by Z⊥ion. From the circuit we can note that the system is mirror
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Table 3.2: Definitions of the key terms in the 1D model of the single-slab system of fig-
ure 1.5(a)

R⊥ion Measured
Reon 2L/σeon
Rion 2L/σion
R0 1/

(
1/Reon + 1/

(
Rion + 2Z⊥ion

))

R∞ 1/ (1/Reon + 1/Rion)

Cchem
e2

kbT
2l2/

(
1/(z2

eonc
(0)
eon) + 1/(z2

ionc
(0)
ion)
)

D̃ 4L2/ ((Rion +Reon)Cchem)

s
√
iωL2/(D̃)

symmetric and, as a consequence, that

µ̂?eon(x = 0) = 0, (3.19)

which in turn gives that

(µ̂?eon)0 = 0, (3.20a)

C1 = C2. (3.20b)

A few algebraic manipulations of (3.18) will lead to the determination of C1 and Itot,

where Itot denotes the total current out of the system

C1 =
kLZ⊥ion

2kLZ⊥ionRion cosh(kL) + 2
(
R2
ion +Reon(Z⊥ion +Rion)

)
sinh(kL)

, (3.21)

Itot =
(Reon +Rion)(−kLZ⊥ion cosh(kL)− (Reon +Rion) sinh(kL))

kLReonZ⊥ionRion cosh(kL) +Reon
(
R2
ion +Reon(Z⊥ion +Rion)

)
sinh(kL)

.(3.22)

The total impedance of the sample is Z = − 2
Itot

and can be rearranged in the following
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Figure 3.3: One dimensional equivalent circuit representation of the single slab problem of
figure 1.5(a).
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Figure 3.4: One dimensional equivalent circuit representation of the thin film system of
figure 1.5(b). The electronic rail has zero net current at the YSZ | MIEC interface.

way:

Z = R∞ + (R0 −R∞)
(

1 +
Rion +Reon

2Rion

)
tanh s

s+
Rion +Reon

2Z⊥ion
tanh s

(3.23)

where the key parameters are reported in table 3.2. The impedance response has been

extensively studied numerically and experimentally in the case of Ceria by Lai and Haile

[LH05]. We report here the graph of the expression (3.23) in figure 3.4, it is clear that a

Warbürg type of response is recovered (a tear drop shape in the Nyquist plot).
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Figure 3.5: One dimensional equivalent circuit representation of the thin film system of
figure 1.5(b). The electronic rail has zero net current at the YSZ | MIEC interface.

3.2.2 Blocking Electrode Case

The blocking electrode of figure 1.5(b) has an equivalent circuit representation given in

figure 3.5. The electronic current is blocked at the interface between the ionic conductor

and the mixed conductor. Physically this is equivalent to the assumption that the ionic

conductor has infinite electronic resistivity. In this case we can assume

Ieon(x = 0) = 0. (3.24)

From the latter condition it will follow that

Itot =
Reon +Rion

Rion
(C1 + C2) , (3.25)

which leaves only the boudary conditions at x = L

C1 =

(
e−kLkL

(
ekLkLReonZ

⊥
ion −Rion

(
Reon − kLZ⊥ion +Rion

)))

denominator
, (3.26)

C2 =

(
kL
(
−kLReonZ⊥ion − ekLRion

(
Reon + kLZ⊥ion +Rion

)))

denominator
, (3.27)
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Table 3.3: Definitions of the key terms in the 1D model of the thin-film system of fig-
ure 1.5(b)

R0 Rion + Z⊥ion

R∞
1

1
Reon

+
1

Rion
N0 −kLγ0

Nch kL(γ0 + γ1)
Nsh k2L2 − γ1

Dch
kL(Reon +Rion)

Z⊥ion
Dsh k2L2

γ0
2R∞

Z⊥ion + Rion
Reon

R∞

γ1
R2
ion

Z⊥ion

(
Z⊥ion + Rion

Reon
R∞

)

where

denominator = 4kLReonZ⊥ionRion

+ 2kL
(
ReonR

2
ion + Z⊥ionR

2
ion +R2

eon(Z⊥ion +Rion)
)

cosh(kL)

+ 2Rion
(
k2L2ReonZ

⊥
ion +Rion(Reon +Rion)

)
sinh(kL).

(3.28)

This allows us to compute the impedance of the circuit Z, which is given by

Z = − 1
Itot

= R0 + (R∞ −R0)
N0 +Nch cosh(kL) +Nsh sinh(kL)
Dch cosh(kL) +Dsh sinh(kL)

,

(3.29)

where lim
ω→0

Z(ω) = R0 and lim
ω→∞

Z(ω) = R∞, all the parameters in (3.29) are given explicitely

in table 3.3.

We report the graph of the expression (3.29) in the limiting cases that the thickness

l2 is small, 1µm, and large, 1000µm. In the case l2 = 1µm, figure 3.6, the resistance to
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Figure 3.6: Impedance response of a one-dimensional equivalent circuit thin film figure 3.3,
with l2 = 1µm, where the electronic rail has zero net current at the YSZ | MIEC interface
and the area specific polarization resistance is 3Ωcm2and other conditions are derived from
table 2.1 at 650oC. An RC circuit behavior is recovered which is indicated with black dots.
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Figure 3.7: Impedance response of a one-dimensional equivalent circuit thin film figure 3.3,
with l2 = 1000µm. All other conditions are the same as in figure 3.6. For completeness the
closest RC circuit is plotted with black dots.

ionic conduction is negligible and the response of the sample is very close to that of an RC

circuit where R is the resistance to the chemical reactions at the mixed conductor | gas

interface and C is the chemical capacitance, defined in table 3.2. In the casel2 = 1000µm,

see figure 3.7, deviations from the RC behavior are apparent at high frequency where a

shoulder appears in the Nyquist plot. This feature emerges for blocking mixed conductors

whenever the resistance of the ionic rail and of the polarization have the same order of

magnitude [FBB+06].
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Chapter 4

Two-Dimensional Steady State
Modeling

A two-dimensional small bias model has been developed for a patterned metal current

collector | mixed oxygen ion and electronic conductor (MIEC) | patterned metal current

collector electrochemical cell in a symmetric gas environment figure 2.1. Specifically, we

compute the electrochemical potential distributions of oxygen vacancies and electrons in

the bulk and near the surface for Pt | Sm0.15Ce0.85O1.925 | Pt symmetric cell in a H2 −

H2O−Ar (reducing) atmosphere from 500 to 650oC. Using a two-dimensional finite-element

model, we show that two types of electronic current exist within the cell: an in-plane drift-

diffusion current that flows between the gas | ceria chemical reaction site and the metal

current collector, and a cross-plane current that flows between the two metal electrodes on

the opposite side of the cell. By fitting the surface reaction constant k̃0
f to experimental

electrode resistance values while fixing material properties such as bulk ionic and electronic

equilibrium defect concentrations and mobilities, we are able to separate the electrode

polarization into the surface reaction component and the in-plane electron drift-diffusion

component. We show that for mixed conductors with a low electronic conductivity (a

function of oxygen partial pressure) or a high surface reaction rate constant, the in-plane

electron drift-diffusion resistance can become rate limiting in the electrode reaction.
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4.1 Introduction

Mixed ionic and electronic conductors have received significant attention for their potential

as fuel cell components, permeation membranes, oxygen storage capacitors, electrochemical

sensors, etc. Electrical DC and AC conductivity measurements of the bulk focused mostly

on separating the ionic and electronic contributions to the electrical conductivity as well as

determining the dielectric and chemical capacitances. Physically derived one-dimensional

models have aided in the interpretation of electrical conductivity data in the bulk and mate-

rials defect chemistry. On the other hand, investigations of interfaces in mixed conductors,

specifically the gas | mixed conductor and the metal | mixed conductor interface, require a

two-dimensional model to adequately describe the interplay of various physical phenomena

due to their inherent spatial multidimensionality. For example, the electrochemical poten-

tial lines near the interface are expected to have a strong non-linear behavior. However,

the majority of the work in the community employs the one-dimensional treatment [JM01],

[JMP99] and only a handful of works attempted to scale up to two-dimensional models,

[MLL07], [Fle04] and [AHW+00]. In this chapter we develop a two-dimensional small bias

model for a symmetric metal current collector | mixed conductor | metal current collector

cell. In particular, we focus on the numerical analysis of the cross-plane electronic current

that flows through the mixed conductor between patterned metal stripes on both side of

the cell, and the in-plane electronic current that flows between the gas | mixed conductor

interface and the metal. In order for an electrochemical reaction to occur on the gas | mixed

conductor interface, electrons need to diffuse from the reaction site to the external circuit

and viceversa. Such a step, termed in-plane electron drift-diffusion, could play a significant

role in the interfacial behavior of mixed conductors, particularly for exhibiting a low bulk
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Table 4.1: Data for the domain geometry and background doping
W1 1.5 µm
W2 2.5 µm
l2 500 µm
lc 10 µm
B 3.47× 10+27 #particles

m3

electronic conductivity.

For this study, we selected Pt | Sm0.15Ce0.85O1.925(SDC) | Pt as mixed oxygen ion and

electron conductor model system. High oxygen ion conductivity of acceptor-doped ceria at

intermediate temperatures (500−700oC) has attracted a great deal of interest in the SOFC

community. In addition, under mildly reducing condition, doped ceria exhibits moderate

electronic conductivity (≈ 0.1S/cm at 650oC, pO2 = 10−25atm [LH05]), making it attractive

for fuel cell anode applications. Recent studies have also shown that when operating SOFCs

on hydrocarbon gases a ceria-based anode is significantly less susceptible to carbon coking

[PVG00].

Finally, insight into the in-plane electron diffusion path in ceria (the diffusion due to

electrons injected at the gas | Ceria interface) could lead to improved designs of anode

geometries and reduced interfacial resistance.

4.2 Background

The physical model, depicted in figure 2.1 (top), consists of a mixed oxygen ion and elec-

tron conductor (ceria) with patterned metal current collectors (Pt) on both sides placed

in a uniform gas environment (H2 − H2O − Ar mixture). The patterned metal current

collectors permit the system to be reduced to a repeating cell (figure 2.1(bottom)) using

mirror symmetry lines (Γ1, Γ2, Γ3). The thickness of the cell is given by 2l2 = 1mm, while
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the surface dimensions are 2W1 ≈ 3µm, the width of the metal | ceria interface (Γ4), and

2W2 ≈ 5µm, the width of the gas | ceria interface (Γ5) (figure 4.1 and Tab. 4.1). Two

charge carriers species are considered: oxygen vacancies, denoted by the subscript “ion,

and electrons, denoted by “eon. We solve the electrochemical potential and current of both

charge carriers using a linear and time-independent model.

We assume that the gas | ceria interface is the prevailing surface active site facilitating

the reaction between electrons and oxygen vacancies in the oxide and the gas phase species.

In other words, the gas | metal | ceria triple-phase boundary interface is nonreacting. As we

conjectured in chapter 2, mixed conductivity coupled with sufficient electrocatalytic activity

allows electrochemical reactions to take place away from the triple-phase boundary. As a

result, in the general 3D setting, the metal | gas | ceria interface, a 1D line, has substantially

less area for reaction compared to the gas | ceria interface, a 2D area. We further treat the

surface chemistry as one global reaction, and do not consider diffusion of adsorbed species

on the surface. Combined with the final assumption that the metal | ceria interface is

reversible to electrons, we are only considering two steps in the electrode reaction pathway:

the surface reaction, and the electron drift-diffusion from the electroactive site to the metal

current collector.

4.2.1 Value of the Polarization Resistance

To compute the electrode polarization resistance, let us first consider the relevant electro-

chemical currents that take place within our system. Due to the mixed conducting nature

of ceria, there will be an inherent cross-plane electronic current, termed ICPe , that flows

between the metal current collectors located on the opposite side of ceria (Figure 4.1). The

surface reaction taking place on Γ5 will simultaneously inject one oxygen vacancy and two
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Figure 4.1: Various electronic and ionic current within the cell. The solid line indicates
the electronic current and dashed line indicates the oxygen vacancy (ionic) current. The
superscript IP refers to the in-plane current that flows between the gas | ceria chemical
reaction site and the metal current collector, while “CP refers to the cross-plane current
that flows between the metal current collectors located on the opposite side of ceria. The
subscript g indicates that the current originates from the gas, while the subscript ‘e indicates
that it comes from the electrodes.

electrons into ceria. Two distinct currents result: the cross-plane ionic current ICPg that

flows between the two sides of the cell, and the in-plane electron drift-diffusion current IIPg

that flows between gas | ceria interface and the metal | ceria interface. By electroneutrality,

ICPg = IIPg . We formally define these currents as follows:

ICPe =
∫

Γ1

jeon · n dx =
∫

Γ4

jeon · n dx, (4.1a)

IIPg =
∫

Γ5

jeon · n dx =
∫

ϕSe (Γ5)
jeon · n dx. (4.1b)

Note that to obtain IIPg , we could integrate the current density either over Γ5 or over ϕSe (Γ5),

which, as depicted figure 4.4, represents some fraction of Γ4 accessed by the current injected

from the gas | ceria interface. Direct comparison with the work of Jamnik and Maier [JM01]

and Lai and Haile [LH05] leads to the following definitions of the bulk electronic resistance
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Figure 4.2: Simplified one-dimensional equivalents circuit employed by Lai and Haile [LH05],
and Jamnik and Maier [JM01], where Reon is the bulk electronic resistance, Rion is the
bulk ionic (oxygen vacancy) resistance, and R⊥ion is the electrode polarization resistance
normalized by the cell area. µ̃?ion and µ̃?eon are the electrochemical potential of oxygen
vacancies and electrons, respectively.

Reon, bulk ionic resistance Rion, and the electrode polarization resistance normalized by the

sample area R⊥ion:

Reon = 2
< µ̃?eon >Γ4 − < µ̃?eon >Γ1

je
= 2

< µ̃?eon >Γ4

je
, (4.2a)

Rion = 2
< µ̃?eon >Γ5 − < µ̃?eon >Γ1

jg
= 2

< µ̃?eon >Γ5

jg
, (4.2b)

R⊥ion =
< µ̃?eon >Γ4 − < µ̃?ion >Γ5

jg
, (4.2c)

where je =
ICPe

W1 +W2
and jg =

IIPg
W1 +W2

are the current densities averaged over the

total sample area and where the ?−potentials, defined in chapter 2, are the electrochemical

potentials divided by the elementary charge of the species under study. Our two-dimensional

model allows us to distinguish among various contributions of R⊥ion. Two of them are

particularly relevant. It is possible to separate R⊥ion into a surface reaction resistance term
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Rsurf and in-plane electron drift-diffusion term Reon−DD:

Rsurf =
< µ̃?eon >Γ5 − < µ̃?ion >Γ5

Ig
=
(

1 +
n̄

4p̄

)
< n(1) >Γ5

jg
, (4.3a)

Reon−DD = R⊥ion −Rsurf , (4.3b)

where Rsurf corresponds to the electron-vacancy electrochemical potential difference at the

gas | ceria interface, and Reon−DD corresponds to the electron potential difference at the

gas | ceria interface and at the metal | ceria interface. The resistance Rsurf represents

the resistance associated with the chemical transformation of electrons to vacancy at the

gas | ceria chemical reaction site. Specifically, Rsurf is due to the migration of oxygen

vacancies from the bulk to the surface, and the subsequent chemical reactions that give

rise to the electronic current. Finally, the drift-diffusion of the injected electrons from the

reaction site to the metal current collector results in Reon−DD.

Alternatively, we could also separate R⊥ion into a “true” polarization term, Rpol, and a

“deviation” term, Ravg, that results from averaging:

Rpol =
< µ̃?eon >ϕSe (Γ5) − < µ̃?ion >Γ5

jg
, (4.4a)

Ravg = R⊥ion −Rpol. (4.4b)

In (4.2) R⊥ion is proportional to the difference of the electronic electrochemical potential

averaged over the metal | ceria and averaged over gas | ceria interface. In (4.4), we define

the Rpol by averaging only some portion of Γ4 (rather than over the entire interface) by
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considering the interface mapped by current lines injected from gas | ceria interface. Ravg,

defined as the difference between the electrode polarization resistance and the true electrode

polarization, is simply a spurious contribution due to averaging.

Knowledge of n(1) and φ̃(1) is interesting, but appropriate integrals of n(1) and φ̃(1) are

worth more attention because they directly relate to measurable quantities. If we note that

jg =
1

(W1 +W2)
Deonec

(0)
eon

∫

Γ5

(
∂ỹφ̃

1 − ∂ỹn(1)
)

dx̃

=
2W2

(W1 +W2)
kf

(
1 +

c
(0)
eon

4c(0)
ion

)
p̃H2 < n(1) >Γ5 ,

(4.5)

then:

R⊥ion =
W1 +W2

W2

1

2kf

(
1 + c

(0)
eon

4c
(0)
ion

)< µ̃?eon >Γ4 − < µ̃?ion >Γ5

< n(1) >Γ5

, (4.6)

Rpol =
W1 +W2

W2

1

2kf

(
1 + c

(0)
eon

4c
(0)
ion

)< µ̃?eon >ϕSe (Γ5) − < µ̃?ion >Γ5

< n(1) >Γ5

, (4.7)

Rsurf =
W1 +W2

W2

1
2kf

, (4.8)

From the latter we can immediately notice that R⊥ion, Rpol and Rsurf depend semi-

linearly upon
W1 +W2

W2

1

Deonec
(0)
eon

. Their ratios will be

feon−DD =
< µ̃?eon >ϕSe (Γ5) − < µ̃?ion >Γ5

< µ̃?eon >Γ4 − < µ̃?ion >Γ5

, (4.9)

fsurf =
(

1 +
n̄

4p̄

)
< n(1) >Γ5

< µ̃?eon >Γ4 − < µ̃?ion >Γ5

. (4.10)



61

4.3 Results

4.3.1 Potential Distributions and Surface Regions

Electrochemical equipotential lines for oxygen vacancies (figure 4.3, right) calculated using

various values for the surface reaction rate constant, k̃0
f reveal that the potential and cur-

rent distribution exhibit a relatively weak dependence on k̃0
f . In general, oxygen vacancy

equipotential lines bend as they approach the oxygen vacancy blocking metal | ceria inter-

face Γ4 from the bulk. On the other hand, equipotential lines for electrons (figure 4.3, left),

display substantial deviations from those for oxygen vacancies, due to the presence of two

current sources: cross-plane electronic current that flows between the current collectors on

opposite side of the cell, and the in-plane electronic current injected by the surface reaction

that flows between the metal | ceria (Γ4) and the gas | ceria (Γ5) interface. The electron

potential distributions also depend strongly on the magnitude of k̃0
f , indicating that elec-

tronic current injected from the surface reaction taking place at (Γ5) strongly influence the

electron penetration depth of the so-called “surface region.”

The boundary of the surface region, given by the “trajectory” of electrons injected from

the surface reaction site furthest from the metal current collector (the intersection of Γ3

and Γ5 in figure 2.1) is shown in figure 4.5. Physically, the surface zone can be viewed as

a region where electronic current is entirely the in-plane electronic current (IIPg ), rather

than the cross-plane current ICPe . The surface region dimensions (figures 4.4, 4.5, 4.6) are

specified by the largest length l, largest depth d, and the area A. All dimensions increases as

a function of k̃0
f . As the penetration area increases, the in-plane electrons will flow through

a larger cross section of ceria, thereby reducing the diffusion resistance. It is interesting to

note that the surface region approaches an asymptote for large k̃0
f , suggesting that when
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Figure 4.3: Electrochemical equipotential lines (left) and the corresponding current flow
lines (right) computed for various surface reaction rate constants k̃0

f at 650oC, p̃O2 = 4.1×
10−26. Only the portion of the domain close to the metal current collector is shown.

surface reactions are sufficiently fast, i.e., when they are in electrochemical equilibrium,

the total electron injection current will be dominated by the in-plane electron diffusion

resistance.

The surface region dimensions also grow with increasing p̃O2 , though it is more pro-

nounced for higher k̃0
f . At lower k̃0

f values, the penetration area is virtually independent of

p̃O2 . The penetration depth is a function of the relative magnitude of IIPe to ICPe . As the
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Figure 4.4: Illustration of the surface region, where the in-plane electronic drift-diffusion
current prevails. The dimension of the region is indicated by the length l and depth d.The
fraction of the metal | ceria interface mapped by the electronic current injected from gas | ce-
ria interface is ϕSe (Γ5).

ratio IIPe /ICPe grows, for instance, as a function of p̃O2 , the penetration depth is expected

to increase. In figure 4.6, we see that an increase in the penetration dimensions is indeed ac-

companied by an increase in IIPe /ICPe . We note that this relationship is counterintuitive, as

the p̃O2 increases, the conductivity of electrons increases and, on the basis of mere common

sense, one would expect that IIPe /ICPe decreases as well.

However, the tools developed so far, lead to a straightforward explanation of this be-

havior. We refer back to figures 4.1 and 4.2 and we shall analyze two cases, corresponding

to high and low injection rate kf :

1. For high kf the resistivity of the bulk dominates over the polarization resistance, i.e.,

Rion � R⊥ion, hence for high kf the cross-plane gas current ICPg is set by Rion and

it is constant, independent of p̃O2 . Yet ICPe is dependent on p̃O2 , specifically, ICPe

decreases with pO2 because the electronic resistivity increases with pO2 . Hence, the

ratio ICPg /ICPe = IIPg /ICPe increases with pO2 with a 1/4 slope.

2. At low kf , the polarization resistance dominates over the bulk resistance, i.e., Rion�
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Figure 4.5: The boundary of the surface region, where electrons undergo in-plane drift-
diffusion between the gas | ceria inteface and the metal current collectors, computed for
various surface reaction rate constants k̃0

f at 650oC, p̃O2 = 4.1 × 10−26 (top) and p̃O2 =
2.1× 10−21 (bottom).

R⊥ion, and it is dependent upon p̃O2 to the 1/4. The same p̃O2 dependence occurs also

for the electronic resistivity of the bulk, hence for very low kf the IIPg /ICPe is p̃O2

independent.

4.3.2 Electrode Polarization Resistance

It is clearly shown in (4.4) that the electrode polarization resistance, R⊥ion, can be expressed

as a sum of the true polarization term Rpol and a deviation term Ravg that results from

averaging the electrochemical potential of electrons across the entire metal | ceria interface

Γ4 rather than just the region accessed by the in-plane electronic current ϕSe (Γ5) (figure 4.4).
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Figure 4.6: Dimensions of the surface region as a function of p̃O2 and k̃
(0)
f at 650oC.

We examine the extent of deviation of the R⊥ion from Rpol by computing:

fpol =
Rpol

R⊥ion
(4.11)

Under a variety of conditions, fpol is very close to unity (figure 4.8, top), indicating that

the deviation term is quite small compared to the true polarization resistance. For the

remainder of the thesis we will approximate Rpol = R⊥ion.

4.3.3 Electron Diffusion Resistance

In equation (4.8), the total electrode polarization resistance, R⊥ion, is expressed as a sum

of a surface reaction resistance term, Rsurf , and an in-plane electron diffusion resistance

term, Reon−DD. Under the moderately reducing p̃O2 regime where the electron carrier
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Figure 4.7: The values of the various contributions of the polarization resistance as a func-
tion of partial pressure of oxygen and injection rate.

concentration is negligible compared to the extrinsic oxygen vacancies formed by acceptor

doping, Reon−DD is proportional to approximately p̃
1/4
O2

(figure 4.7(b), bottom), following

the same p̃O2 dependence as bulk electronic resistivity. As for Rsurf , it is also proportional

to p̃1/4
O2

as a result of our choice of β (figure 4.7(b), top). Turning to the dependence on k̃0
f ,

we observe that both Rsurf and Reon−DD decrease with increasing k̃0
f . However, a significant

difference between Reon−DD and Rsurf is that, in a log-log plot the former approaches an

asymptotic value as a function of k̃0
f , whereas the latter does not. This interesting behavior

of Reon−DD is directly related with the asymptotic behavior of the the penetration depth of

electrons injected from Γ5 to Γ4 (and vice versa) as a function of k̃0
f (figure 4.5). To help us

examine IIPg , we further define fractional surface reaction resistance and fractional electron

drift-diffusion as:

fsurf =
Rsurf

R⊥ion
(4.12a)

feon−DD = 1− fsurf (4.12b)
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Figure 4.8: Fractional true polarization resistance (top) and fractional surface reaction
resistance (bottom) as a function of k̃(0)

f at 650oC, parametrized with respect to log10 p̃O2 .

Plotting fsurf as a function of k̃0
f (figure 4.8, bottom) reveals that when the surface

reaction is very fast, or conversely when k̃0
f is large, fsurf approaches zero and the polar-

ization resistance R⊥ion is dominated by drift-diffusion Reon−DD. On the other hand, when

the surface reaction is slow, fsurf approaches unity and R⊥ion is dominated by Rsurf , as we

would expect. When considering only material property dependencies (i.e., neglecting p̃O2 ,

T , and sample geometry), Rsurf is only a function of k̃0
f whereas Reon−DD is a function

of both k̃0
f and σeon. As k̃0

f tends toward infinity, Rsurf approaches zero and Reon−DD

approaches an asymptotic limit that is a function of only σeon. In other words, as the

surface reaction resistance term becomes negligible, electron carrier concentration and mo-

bility alone determines the penetration dimensions and therefore R⊥ion. The condition under

which fsurf approaches zero corresponds to the physical case where the electrode reaction
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is limited by the rate in which the electrons migrate from the gas | ceria reaction site to

the metal rather than the rate of surface reaction. Generally speaking, for a wide-bandgap

mixed conductor exhibiting a low or moderate electronic conductivity and high k̃0
f , such as

ceria, in-plane electron drift-diffusion cannot be neglected. Accordingly, the electron diffu-

sion length (the separation between the metal stripes in figure 2.1 top) needs to be tuned

in order to minimize the electrode polarization resistance.

4.3.4 Topological Considerations

There are two degrees of freedom in the metal current collector topology: the metal stripe

width (2W1) and the intermetal distance (2W2). Figure 4.9 shows parametric plots of the

the fractional surface resistance (top row) and the total electrode polarization resistance

(normalized for the total sample area) (middle row) and as a function of W1,
W2

W1
, and k̃0

f at

select temperatures and p̃O2 . We observe the general trend that increasing
W2

W1
(gas | ceria

interface to metal | ceria interface ratio) leads to a reduction in the polarization resistance.

Specifically, under the conditions that the fractional surface reaction resistance is greater

than 0.99, we observe a linear decrease in the polarization resistance with increasing
W2

W1
.

When the electron drift-diffusion resistance is negligible, the current density of electrons

injected from Γ5 is essentially uniform as a function of the position (and distance to the

metal), and thus the fraction of area available for electrochemical surface reaction, given by

f =
W2

W1 +W2
, determines the polarization resistance. Figure 4.9 (bottom row) shows the

polarization resistance normalized by the gas | ceria interface area and confirms that the

normalized resistance remains relatively constant as long as the electron diffusion fractional

resistance is negligible. However, as the fractional surface resistance decreases (due to

an increase in k̃0
f , for instance), electrochemical surface reactions taking place closer to
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the metal will inject a larger current into the oxide. For example, at k̃0
f = 7.5 × 1033,

p̃O2 = 4.1× 10−26 and T = 650oC, a significant nonlinearity as well as a distinct minima in

the polarization resistance as a function of W1 and W2 (figure 4.9 is observed (top right)).

Furthermore, figure 4.9 (lower right) shows the polarization resistance normalized for the

gas | ceria interface area begins to deviate from the constant values, confirming that parts

of the interface are becoming less active due to increased electron diffusion resistance at

spatial positions further away from the metal current collector.
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Figure 4.9: Parametric plots of the fractional surface reaction resistance (top row), the elec-
trode polarization resistance R⊥ion normalized for the sum of the metal | ceria and gas | ceria
interfacial area (middle row), and normalized for the gas | ceria interfacial area (bottom
row), as a function of W2/W1 and W1.

In general, when the surface reaction rate constant is small or when the bulk electronic

conductivity is large, one should increase f in order to increase the area available for surface

reactions, as long as the electron diffusion fractional resistance is kept low. On the other
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hand, when the surface rate constant is large or when the bulk electronic conductivity is

small, one needs to find an intermediate f in order to balance the area available for surface

reaction and the in-plane electron diffusion distance.

4.3.5 Comparison to Experimental Results

We fit the polarization resistance data obtained by Lai and Haile [LH05] using AC impedance

spectroscopy on a cell geometry consistent with our model description. The experimental

result was based on a (porous Pt) | SDC | (porous Pt) cell in an atmosphere consisting of

H2, H2O and Ar. We approximated the porous Pt electrode as line patterns by estimating

W1 and W2 based on the actual pore size and interpore distance. We fit the polarization

resistance using k̃0
f as the only parameter and fixed dopant and equilibrium carrier con-

centration according to the values obtained in the experiment. It should be noted that

all parameters were obtained from the same electrochemical cell by Lai and Haile and are

highly self-consistent. The fitting (figure 4.10) shows computed k̃0
f corresponding to the po-

larization resistance obtained experimentally. Because we phenomenologically set the p̃O2

dependence of Rsurf to 1/4 so that R⊥ion would exhibit the same p̃O2 as the experimental

data (and the other component of the polarization resistance, Reon−DD, is also proportional

to p̃1/4
O2

in the same way as the bulk electronic conductivity), obtaining the same dependence

in p̃O2 for the experimental and fitted value is automatic.

Taking the fitted k̃0
f values, we can further separate the polarization resistance into

the surface reaction and the electron drift-diffusion contributions. At the temperatures

and p̃O2 examined, the computed fsurf (figure 4.12) is close to unity (for W1 ≈ 1.5µm

and W2/W1 ≈ 1.67), implying that the surface reaction step is the rate-limiting step. To

examine the dependence of fsurf on the geometric parameter (which directly influences the
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Figure 4.10: Electrode polarization resistance , R⊥ion, plotted as a function of p̃O2 and k̃(0)
f at

500oC, 550oC, 600oC and 650oC. The open triangles show the experimental data obtained
in ref [LH08].

electron diffusion length and area of the gas | ceria interface), we fit k̃0
f to the polarization

resistances while varying W1 and W2 . The parametric plot (figure 4.12) again shows that

fsurf is close to unity for a wide range of W1, W2, T and p̃O2 . However, we do observe

the general trend that fsurf decreases slightly with increasing W1 and decreasing W2/W1.

Decreasing W2/W1 (at a fixed W1) reduces the electron diffusion length and reduces the

area of the gas | ceria interface, and k̃0
f needs to be increased in order to fit to the observed

polarization resistance (figure 4.11). For the same reason discussed in Section 4.3, this leads

to a decrease in fsurf . On the other hand, increasing W1 (at a fixed W2/W1) increases the

electron diffusion length without affecting the available reaction area. As a result, increased
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Reon−DD leads to an decrease in fsurf .
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Figure 4.11: If we assume that that our initial choice of W1 and W2 is not the correct one,
it is legitimate to ask the following question: ”which k̃0

f fit the ASRP data best?”. We find
that the fitting depends only on the ratio W2

W1
and not on the chosen value of W1, the label

indicates that W1 = 0.5, 1.0, 1.5, . . . , 3.0µm.

Approximating a gridlike porous metal on ceria as line patterns could lead to some

errors, such as overestimating the fraction of gas | ceria interface and the electron diffusion

length. However, given that the computed fsurf is far from 0.5 (the case where surface

reaction and electron drift-diffusion are equally colimiting) for a wide range of W1 and W2,

these errors will not change the fsurf significantly and will only rescale the magnitude of the

resistances slightly. Therefore, based on the numerical analysis in this work, the electrode

reaction in (porous Pt) | SDC | (porous Pt) cell in H2, H2O and Ar is likely to be surface

reaction limited.
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Figure 4.12: Fractional surface reaction resistance, obtained after fitting k̃(0)
f to the experi-

mental data in the paper of Lai and Haile [LH05], and plotted as a function of pO2 , k̃0
f at

650oC. It is noticeable that all fittings give fsurf ≈ 1.

Finally, it should be noted that our assumption that the electron mobility and equilib-

rium carrier concentration is the same in the near-surface region and in the bulk directly

determines the contribution of the in-plane electron drift-diffusion resistance to the elec-

trode polarization resistance. Since electron penetration depth is predicted to be on the

order of 1µm, dopant segregation and presence of blocking grain boundaries near the surface

could, in principle, affect the local electron mobility and concentration.
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4.4 Conclusions

A two-dimensional electrochemical model has been developed for mixed conductors with

patterned metal current collectors. Numerical simulation for a Pt | SDC | Pt in reducing

atmosphere revealed a strong nonlinearity in the electronic potential and current distri-

butions near the surface. In particular, we show that the in-plane electron drift-diffusion

current plays a crucial role in determining the surface electrochemical behavior. Under cer-

tain conditions, the in-plane electron drift-diffusion resistance could dominate the electrode

resistance.
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Chapter 5

Computation of Impedance
Spectra in Two-Dimensional Mixed
Conductors

5.1 Introduction

The study of the alternate current properties of Mixed Ionic and Electronic Conductors

(MIEC) aides in understanding many of the physical chemical phenomena related to the

behavior of defects, electrochemistry and interfaces. As we have shown in Chapter 1, a

technique frequently used to probe the interplay between these processes is impedance

spectroscopy (IS). IS consists in injecting a ”small” sinusoidal current into an electrochem-

ical sample, a fuel cell for example, which is initially under steady-state conditions. This

perturbation in turn induces a small sinusoidal and dephased perturbation of the voltage.

From the measurements of voltage and current over a wide set of frequencies, one can com-

pute the complex impedance of the system. When an IS experiment is compared against a

suitable model, impedance spectroscopy helps understand the linear physics of electro-active

system.

The tools used to deconvolute impedance spectra and relate them to physical-chemical

quantities are usually limited to one-dimensional equivalent circuits [JM01] [Jam03]. Even
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though the 1D approach is very useful because it enables the comparison of different pro-

cesses, it sometimes fails to help satisfactorily interpret physical chemical phenomena that

extend to several dimensions. Only a handful of works attempted to scale up to two dimen-

sions, and they generally have been constrained to the steady-state setting [MLL07] [Fle04]

[AHW+00].

In this chapter of the thesis we develop a method for the computation of impedance

spectra for highly doped mixed conductors in a 2D setting under geometrically symmetric

conditions. Here we will consider essentially the same system of Chapter 4. The system

studied was chosen so that it is not too cumbersome algebraically and readily relatable to

well defined experiments. However the methodology is very general and it can be easily

extended to 3D, to dissymmetric systems under non-zero bias and to complex chemical

boundary conditions.

The chapter proceeds as follows: we first develop a model for impedance spectroscopy

and determine the impedance equations [Mac73], then we compare our results to experi-

mental data, finally we study the influence of parameter variation on the IS: the thickness

of the sample, the rates of the chemical reactions at the exposed MIEC surface and the

diffusivity profiles.

As shown in chapter 2, after non-dimensionalization of the full drift-diffusion equations,

we find that the ratio between the Debye length and the characteristic length scale of the

material is remarkably large, hence we singularly perturb the governing equations and we

deduce that electroneutrality is satisfied for a large portion of the sample. Then we apply

a small sinusoidal perturbation to the potential, which mathematically translates into a

regular perturbation of the equations; after formal algebraic manipulations we collect first-

order terms and deduce two complex and linear partial differential equations in 2D space
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and time. Thanks to linearity, the Fourier transformation of these equations and their

boundary conditions leads to the determination of the complex impedance spectroscopy

equations which we solve in 2D space for the frequencies of interest.

We verify our numerical results against experiments that are relevant for fuel cell ap-

plications. In particular, we study the case of a Samarium Doped Ceria (SDC) sample,

immersed in a uniform atmosphere of argon, hydrogen and water vapor. The sample is

symmetric and reversible and has been the subject of extensive research [CLH08], [LH08],

[LH05]. We find excellent agreement between the computed impedance spectra and exper-

imental data. This shows that this framework could help address a number of important

fundamental physical/chemical issues in mixed conductors.

5.2 System under Study

The physical system under study is a two-dimensional assembly which consists of a mixed

oxygen ion and electron conductor slab of thickness 2l2 sandwiched between two identical

patterned metal current collectors, figure 2.1. The patterned collectors are repeated and

symmetrical with respect to the centerline Γ1. Hence the system can be reduced to a

repeating cell using the mirror symmetry lines Γ1, Γ2 and Γ3. All sides of the sample are

placed in a uniform gas environment. Two charge-carrying species are considered: oxygen

vacancies, denoted by the subscript ion, and electrons, denoted by “eon”.

The framework we propose is very broad in scope, however we specialize our study to

Samarium Doped Ceria (SDC). We chose to to analyze SCP because doped ceria is a class

of materials that has recently gained prominent relevance in fuel cell technology [PVG00]

[Tro01]. We suppose that the uniform gas environment consists of a mixture of hydrogen

and water vapor and we solve the electrochemical potential and current of both charge
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carriers using a linear and time-independent model developed via perturbation techniques

and Fourier transformation. We mainly compare our computational work to the data of Lai

et al. [LH08] but we also leverage on some results of Chueh et al. [CLH08] to justify the

boundary conditions. We focus on studying SDC-15 (15% samarium doping), where the

background dopant particles per unit volume, B, is well defined and reported in Tab. 4.1.

The surface dimensions are kept constant: the width of the metal | ceria interface (Γ4)

is 2W1 = 3µm and the width of the gas | ceria interface (Γ5) is 2W2 = 5µm. The thickness

of the MIEC is set to be 2l2 = 1mm, unless otherwise specified. Due to high electronic

mobility in the metal, the thickness of the metal stripe does not affect the calculation, and

thus the thickness of the electrolyte is, in effect, the thickness of the cell. Hence we assume

that the characteristic length scale of the sample under study is lc = 10µm. The data

mentioned above is summarized in Tab. 4.1.

The assumptions of the model are rather standard for MIEC. We set that the gas |

metal | ceria interface, or triple-phase boundary, has a negligible contribution compared to

surface reactions [ALS96]. We further treat the surface chemistry as one global reaction,

and do not consider diffusion of adsorbed species on the surface [KZG05]. Combined with

the final assumption that the metal | ceria interface is reversible to electrons, i.e., an Ohmic

condition [MLL07], as in Chapter 4 we are considering only two steps in the electrode

reaction pathway: surface reactions at the active site of the SDC | Gas interface and electron

drift-diffusion from the active site to the metal current collector both along the SDC | gas

interface and through the SDC bulk.

We indicate the equilibrium quantities, such as electron and oxygen vacancy concentra-

tion, with the superscript (0). The equilibrium concentrations of vacancies and electrons

are given respectively by c(0)
ion ≈ B/2 and c(0)

eon ≈ B
√

2Kr
[Sm′Ce]

1.5p̃0.25
O2

. Finally we assume that the
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mobilities u of all species are given in Tab. 2.1, where the values are derived from Lai et

al. [LH08].

5.3 Results

5.3.1 Comparison with Experiments

The electron electrochemical potential drop across the sample, i.e., the electron electro-

chemical potential difference between the top and bottom electrodes (Γ4 and its symmetric

reflection), is given by the following expression:

V̂ (1) = 2UT
[
<
(
µ̂(1)
e

)?
>Γ4 − <

(
µ̂(1)
e

)?
>Γ1

]
(5.1)

where < a >Λ indicates the average of the quantity a over the set Λ. At first order the

?-electrochemical potential is given by
(
µ̂

(1)
e

)?
= φ̂(1) − n̂(1). The electric current density

at the two ends of the circuit is:

ĵ(1) =
Deonec

(0)
eon

∫

Γ4

∇x̃
µ̃

(1)
eon

kbT
· ey dx̃

(W1 +W2) lc
(5.2)

Hence, the 2D impedance is given by the expression:

Z2D(ω, p̃O2 , T ) = V̂ (1)/ĵ(1). (5.3)

We define the error of the 2D impedance Z2D with respect to experimental impedance Z1D
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Figure 5.1: The triangle indicates fitted computations while the solid line is the experimental
value. The results are presented at 650oC varying the p̃O2 partial pressure from [LH05].

Table 5.1: Fitted values of k̃0
f = Ap̃αO2

, 95% confidence interval

T [oC] log10 Ā log10 εA ᾱ εα R2 σ

500 32.48 0.150 0.05349 0.1655 -0.0439 0.1577
550 32.10 0.045 0.04160 0.0482 0.7622 0.04589
600 32.02 0.055 0.06674 0.0637 0.5378 0.06067
650 31.95 0.055 0.05596 0.0623 0.4981 0.05938
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spectra (3.23) as follows:

εF (ω, p̂O2 , T ) =
∣∣∣∣1−

Z2D(ω, p̃O2 , T )
Z1D(ω, p̃O2 , T )

∣∣∣∣ . (5.4)

For every data point, uniquely defined by the couple (p̃O2 , T ), we fit the 2D data against the

measured 1D equivalent circuit data in [LH05] by minimizing εF (ω, p̃O2 , T ) with respect to

the surface reaction constant k̃0
f = Ap̃αO2

, which is a function of both O2 partial pressure and

temperature. We remark that k̃0
f is the sole parameter we allow to vary in this procedure

and all necessary data are obtained from the literature and presented in Tab. 5.1. With only

one parameter variation, we obtained excellent agreement between experimental results and

2D calculations, i.e., εF (ω, p̂O2 , T ) < 2%. As an example, 2D results at four different oxygen

partial pressures and at 650◦C are shown in figure 5.1. We computed the k̃0
f by minimizing

the εF for a total of 28 cases (7 pressures times 4 temperature). We report in Tab. 5.1 the

results of linear regression of these minimizing values (each line is derived by keeping the

temperature fixed and varying p̃O2). We also write in Tab. 5.1, the 95% confidence intervals

for the fitting of A, i.e., A ≈ Ā±εA, and α, i.e., α = ᾱ±εα; we finally report the root mean

square error σ and the adjusted R-squared [DS98] (regarding the latter, a value close to

unity indicates a perfect fit while negative values indicate poor data correlation). Directly

from analysis of Tab. 5.1 we deduce that k̃0
f fitting to a straight line is reasonable for ”high”

temperatures (T ≥ 550oC). We note that k̃0
f is temperature dependent via Ā (Ā decreases

with T ). Furthermore k̃0
f is slightly pressure dependent via the coefficient α; the average

value of ᾱ ≈ 0.05 ≥ 0. However, the error is of the same order of the slope. Hence, the

total rate of reaction is very likely to be ω̇eon,S ∝ p̃−1/4+β
O2

where β is somewhere in the set
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[0, 0.1], most likely equal to 0.05.

5.3.2 The Polarization Resistance in Frequency Space

One of the goals of fuel cell science is to understand and possibly reduce the polarization

resistance, i.e., that portion of the resistance due to electric field effects at interfaces. For

that purpose it is key to identify and understand the main processes that intervene in

the definition of this quantity. Specifically, the area specific polarization resistance for our

system is defined as [CWHG09]

Z⊥ion = UT
< µ̂?ion >Γ5 − < µ̂?eon >Γ4

ĵ
(1)
IP

, (5.5)

where ĵ(1)
IP =

1
W1 +W2

∫

Γ5

ω̇eon,S dx is the ionic contribution to the area specific current.

The Z⊥ion can be understood as the sum of a surface Zsurf and a bulk polarization resistance,

Zbulk = Z⊥ion − Zsurf , where the Zsurf is the portion of the area-specific resistance due to

effects of the exposed boundary Γ5 and it is given by

Zsurf = UT
< µ̂?ion >Γ5 − < µ̂?eon >Γ5

ĵ
(1)
IP

. (5.6)

In our model, by definition, the Zsurf ∈ R+ is proportional to (1 +W1/W2) and inversely

proportional to both p̃H2 and kf

Zsurf =
1
2

(
1 +

W1

W2

)
UT

ekf p̃H2

. (5.7)

The fraction fsurf =
Zsurf

Z⊥ion
indicates what portion of the polarization impedance is due

to surface effects. From figure 5.2 we note two fundamental facts: first, as we expect, at
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Figure 5.2: Plot of fsurf = Rsurf

R⊥ion
as a complex function of ω. We present two cases, both

at 650oC, the one to the left at very reducing conditions p̃O2 = 10−25.32 and the one to the
right at p̃O2 = 10−20.66, parametrized versus k̃(0)

f .

”lower” injection rates the fsurf increases, physically this means that if the chemistry is

sufficiently slow it will dominate the polarization resistance leading to an fsurf of approxi-

mately unity. Second, we notice frequency dependent behavior of R⊥ion. Our computations

show that fsurf decreases with ω, while the dephasing between Zsurf and Z⊥ion, described

by arg(fsurf), increases with k̃0
f and decreases with ω. The behavior of fsurf in phase space

clearly shows that Zsurf includes two interrelated processes:

1. reactions on the surface exposed to the gas;

2. transport of charged species in MIEC.

Within this framework, as ω increases, the losses in the polarization due to drift diffusion

increase and surpass the (constant) reaction or surface losses.
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5.3.3 Analysis of the 2D Solution

5.3.3.1 Qualitative Considerations

We can then use the framework to study the two complex electrochemical potentials µ̂eon =

n̂(1) − φ̂(1) and µ̂ion = φ̂(1) +
n̄

2p̄
n̂(1) as functions of frequency. In figures 5.3 and 5.4

we plot the 2D distributions of the latter in the computational domain at T = 650◦C,

p̃O2 = 10−25 and k̃0
f = 1032 with frequency ω increasing from 10−3 to 105 rad/s. Thanks

to the figures 5.3 and 5.4, we can address the qualitative behavior of the solution. We first

analyze the qualitative distribution of fluxes using the gradient of |µ̂eon|, which gives an

idea of electron flux, that electrons flow from the gas|ceria interface Γ5 onto the ceria|metal

interface Γ4 through a cross-plane current ÎCPg , and concurrently electrons flow onto the

ceria|metal interface Γ5 from its mirror symmetric counterpart. Similarly, the MIEC|metal

interface is vacancy blocking, hereby the vacancies correctly flow from the bottom to the

top ceria|gas interface Γ5. It is also clear that the complex potential of the electrons µ̂eon

changes significantly as ω increases, while µ̂ion is relatively unaffected. The penetration

depth, which is defined as the vertical displacement from Γ4 where surface electrons can

penetrate into the bulk, decreases with ω as the 1D model hints (in (2.44) the solution

decays exponentially with 1/
√
τ?nω). As ω increases, the dephasing of µ̂eon first increases

and then decreases and it is weakly dependent on the distance from Γ4, or conversely, the

penetration depth into the MIEC. We notice that the same dephasing increases and then

decreases for µ̂ion. However, while for the vacancies, the behavior of |µ̂ion| and arg(µ̂ion) is

qualitatively the same, this is not the case for the electrons, where through a wide array of

ω’s, the qualitative behavior of |µ̂eon| and arg(µ̂eon) is distinctly different.

Deriving the electronic and ionic currents from the computations requires some care and
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Figure 5.3: Plots of the complex electrochemical potential of electrons µ̂eon(x, y, ω) as a
function of x and y in the case where T = 650oC and p̃O2 = 10−25. In the top panels we
depict its absolute value |µ̂eon| while at the bottom we show its argument arg(µ̂eon). The
applied frequency is increased from left to right, going from 0.001 rad/s to 1 rad/s.

it will not simply be ∇|µ̂m|. For example, for electrons, we note that:

µ̃(1)
eon =

(
n(1) − φ(1)

)
eiωt. (5.8)

We will call the complex current jCeon:

jCeon = c(0)
eonDeonF−1[∇µ̂(1)

eon], (5.9)

the physical current will be∗:

jeon = <
(
jCeon

)
. (5.10)

In order to compare the 1D and 2D solutions qualitatively, we first focus on the case

∗We remark that for complex valued function µ in general we have abs(∇µ̃) 6= ∇ (abs (µ)).
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Figure 5.4: Similar to figure 5.3, we depict the complex electrochemical potential of ions
µ̂ion(x, y, ω) where at the top we show |µ̂ion| and at the bottom arg(µ̂ion). The conditions
are the same as figure 5.3 and so is the frequency range.

ω = 0 where k̃
(0)
f = 1032, and we shrink the size of the slab while keeping the same

framework and model parameters. This corresponds to a decrease of the aspect ratio of the

sample defined as AR =
l2

W1 +W2
. We show in figure 5.6 the results of the computations

in the case where the conditions are very reducing. We depict what happens to Rion, Reon,

R⊥ion and fsurf as AR changes. We notice that decreasing AR corresponds to an increase

in effective electronic and ionic resistance compared to the ideal case computed using the

definitions of Tab. 3.2 which in turn corresponds to AR → ∞. Deviations from ideality

occur already for AR ≈ 25, hence even for reasonably large AR the ionic and electronic

resistances deviate from the ideal 1D case, this is clearly shown in figures 5.6 a and b. The

same applies to the polarization resistance R⊥ion, figure 5.6c, which is flat above AR ≈ 25,

below this value R⊥ion sharply increases due to bulk polarization effects. As the deviation

from the 1D setting starts, not only ionic and electronic resistivities change, but so does the

relative importance of surface and drift diffusion effects. Hence the polarization resistance is
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thickness-dependent, and the dependence is due to the emergence of two-dimensional effects.

The increase in drift diffusion resistance due to the motion of electrons from Γ5 to Γ4 is also

shown in the fsurf which increases with the AR reaching unity for AR → ∞. This effect

is even clearer if we plot the electrochemical potentials of electrons and vacancies at ω = 0,

we note a shrinking of the affected area as the sample thickness decreases corresponding to

an increase of polarization resistance. This effect is purely 2D and cannot be studied using

a 1D model.

5.3.3.2 Quantitative Analysis

In order to compare the 1D and 2D solution quantitatively we define the following two

functionals:

ν [µ̂1D, µ̂2D, ỹ, ω] =
1

W1 +W2

∫

y′=ỹ

∣∣µ̂1D(y′, ω)− µ̂2D(x̃, y′, ω)
∣∣ dx̃

|µ̂1D(l2, ω)| , (5.11a)

ζ [µ̂1D, µ̂2D, ỹ, ω] =
1

W1 +W2

∣∣∣∣
∫

y′=ỹ

(
µ̂1D(y′, ω)− µ̂2D(x̃, y′, ω)

)
dx̃
∣∣∣∣

|µ̂1D(l2, ω)| . (5.11b)

The functional ν describes the “pointwise” distance between 1D and 2D solutions of µ̂

at a section ỹ and the functional ζ describes the ”average” distance between 1D and 2D

descriptions. Physically ν indicates how far apart the 1D and 2D electrochemical potential

are, while ζ ’“measures” the soundness of fitting a 1D case with the 2D model. We can

examine the applicability of the 1D approximation for data fitting via ζ.

In order to further compare the 2D model and 1D model and demonstrate the importance

of 2D effects adjacent to the injection sites, the pointwise distance ν and the average distance

ζ defined by (5.11b) are computed at the same conditions (T , p̃O2 , k̃0
f ) in the frequency range

of 10−3 ≤ ω ≤ 105 rad/s along the symmetry axis Γ2, figure 5.7. In the first line we plot the
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Figure 5.5: Potentials and current lines under small bias excitation, i.e. impedance at
ω = 0, at T = 650oC and p̃O2 = 10−25.33. The µ̂eon (left column) and µ̂ion (right column)
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case where the sample is very thick with respect to the horizontal dimension (AR = 125),

both the νeon(ỹ, ω) = ν [µeon,1D, µeon,2D, ỹ] and the ζion(ỹ, ω) = ζ [µion,1D, µion,2D, ỹ] are

extremely small and the adjacency between 1D and 2D impedance is near perfect. If we

decrease AR to 12.5, then the 1D and 2D solutions tend to be further apart with νe ≈ 25%

and ζe up to 20%. The difference between the two further increases at AR = 5 where the

difference between impedance spectra is significant.

5.4 The Effect of Diffusivity Gradients

5.4.1 Extension of the Model

Interface effects are one of the biggest sources of uncertainty in doped ionics because impu-

rities in doped materials tend to segregate near interfaces and affect electro-catalytic pro-

cesses, absorption and diffusivities near the affected interfaces. Many studies [HJBSM07]

[SFK+05] [WHB03] have attempted to address these issues. However, to the authors’ knowl-

edge, no continuum model has addressed the relationship of these changes to polarization

resistance nor to impedance spectra. In this part of the paper we intend to address the

effects of nonuniform diffusivities, which are localized near the interfaces, and which we

imagine are due to impurity segregation at the exposed surface (Γ5 in figure 2.1) and to the

MIEC|metal interface (Γ4)

We shall assume that diffusivities near the MIEC | Gas interface and MIEC | Metal

interfaces have non-zero derivatives only along the y direction. We further assume that

diffusive effects are symmetric on both ends of the sample y = ±l2, hence do not affect our

initial symmetry assumptions. Lastly we suppose that the functional form of the diffusivities
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are known in the MIEC and are given by:

D?
m = 1 +

(
DSURF
m

DBULK
m

− 1
)
e−
|lcỹ±l2|
λm (5.12)

where m can be either eon or ion, and λm, the length scale of diffusive changes, is much

smaller than lc, the characteristic length scale of the sample (λm � lc). We stress again

that the main assumptions are that the diffusivity gradients parallel to the interfaces are

null and that the diffusivity gradients do not affect bulk properties of the material or the

defect chemistry. In other words, near-interface effects involve only diffusivities.

Under the same small perturbation assumptions we used above we can deduce that the

equations that describe the impedance spectra behavior of ions and electrons are given by†:

n(1) =
n̄

p̄
p(1) (5.13a)

τn
τ
∂t̃n

(1) +∇x̃ ·
(
−D?

eon

(
∇x̃n(1) −∇x̃φ̃(1)

))
= 0 (5.13b)

τp
τ
∂t̃p

(1) +∇x̃ ·
(
−D?

ion

(
∇x̃p(1) + 2∇x̃φ̃(1)

))
= 0 (5.13c)

The sum of the (5.13) and their weighted difference lead to (see appendix B):

τ?n
τ
∂t̃n

(1) +∇x̃ ·
(
−a11∇x̃n(1) − a12∇x̃φ̃(1)

)
= 0 (5.14a)

τ?φ
τ
∂t̃n

(1) +∇x̃ ·
(
−a21∇x̃n(1) − a22∇x̃φ̃(1)

)
= 0 (5.14b)

†In order to ensure linearity, we assume that
˛̨̨
Dkn

(1)∇φ̃(1)
˛̨̨
�
˛̨̨
Dk∇n(1)

˛̨̨
≈
˛̨̨
Dk∇φ̃

˛̨̨
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where:

a11 =
D?
eon + n̄

4p̄D
?
ion

1 + n̄
4p̄

; a12 =
D?
ion −D?

eon

1 + n̄
4p̄

(5.15a)

a21 =
D?
ion −D?

eon

1 + 4p̄
n̄

; a22 =
D?
eon + 4p̄

n̄ D
?
ion

1 + 4p̄
n̄

(5.15b)

The (5.14) with appropriate boundary conditions, (2.39), are quasilinear and hence can be

Fourier transformed. In short they can be recast in weak form as in (2.40):

ωτ?n

∫

Ω
n̂

(1)
ImmRe dÃ −

∫

Ω
a11∇n̂(1)

Re · ∇mRe dÃ−
∫

Ω
a12∇φ̂(1)

Re · ∇mRe dÃ

+
∫

Γ5

Ãn,2n̂
(1)
RemRe dx̃− 4

p̄

n̄

∫

Γ4

∂ỹφ̂
(1)
RemRe dx̃ = 0

(5.16a)

ωτ?n

∫

Ω
n̂

(1)
RemIm dÃ +

∫

Ω
a11∇n̂(1)

Im · ∇mIm dÃ+
∫

Ω
a12∇φ̂(1)

Im · ∇mIm dÃ

−
∫

Γ5

Ãn,2n̂
(1)
ImmIm dx̃+ 4

p̄

n̄

∫

Γ4

∂ỹφ̂
(1)
ImmIm dx̃ = 0

(5.16b)

ωτ?φ

∫

Ω
n̂

(1)
ImψRe dÃ −

∫
Ω a21∇n̂(1)

Re · ∇ψRe dÃ−
∫

Ω a22∇φ̂(1)
Re · ∇ψRe dÃ

+
∫

Γ5

Ãφ,2n̂
(1)
ReψRe dx̃ = 0

(5.16c)

ωτ?φ

∫

Ω
n̂

(1)
ReψIm dÃ +

∫
Ω a21∇n̂(1)

Im · ∇ψIm dÃ+
∫

Ω a22∇φ̂(1)
Im · ∇ψIm dÃ

−
∫

Γ5

Ãφ,2n̂
(1)
ImψIm dx̃ = 0

(5.16d)

where:

Ãn,2 = a11Ãn + a12Ãφ (5.17)

Ãφ,2 = a21Ãn + a12Ãφ (5.18)

(5.19)
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If we change the diffusivity of vacancies at the gas | ceria (Γ5) and metal | ceria (Γ4) interface

by changing αion, we need to adjust the k̃0
f as follows, in order to keep the same rate of

injection ω̇Seon, (2.24):

k̃
(0)
f (αion) =

(αion)ref

αion

(
k̃0
f

)
ref

(5.20)

Numerically we use the same approach described for the linear case but we need the error

estimator to account for off-diagonal and space dependent parameters, (5.15) (in the linear

case a11 = a22 = 1, a12 = a21 = 0).

Finally we note that we assume that the model holds for length-scales just one order of

magnitude greater that the lattice parameter [ZWTL01]. This approximation can be justi-

fied heuristically using the work of Armstrong [AH97] [HA99], which shows that deviations

of the continuum drift-diffusion approach from atomistic models are usually small, even in

cases where field effects are big.

5.4.2 Results of the Model

We first ran the model at steady state (ω = 0) with the objective to analyze the fsurf = Rsurf
R⊥ion

for a wide array of parameters αeon = DSURF
eon /DBULK

eon and αion = DSURF
ion /DBULK

ion , where

αeon = αion and λeon = λion at varying k̃(0)
f . For reasonable fitted values (Tab. 5.1) and for

a wide parameter set, we show that the polarization resistance is surface dominated making

fsurf ≈ 1 robustly.

If chemical reaction rates are ”sufficiently” slow (e.g., k̃0
f ≈ 1032) and if the sample is

sufficiently thick, then the polarization resistance is dominated by surface effects in the

linear case (αion = 1), corresponding to an absence of diffusive gradients at the exposed

surface. If impurities are present at the exposed surface, diffusivities of charged species may
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Figure 5.8: Depiction of fsurf in the case T = 650oC and p̃O2 = 10−25.32 as a function of
the ratio between near interface and bulk diffusivity, αion = DSURF

ion /DBULK
ion and αeon =

DSURF
eon /DBULK

eon (αion = αeon), and length scale of the diffusive gradient λion = λeon, for
k

(0)
f = 1032 (left panel) and k

(0)
f = 1034 (right panel).

change and hence one could argue that the polarization resistance is not surface dominated.

In order to address this point, we ran two limiting cases, one featuring ”slow” chemistry

(k̃0
f (αion = 1) ≈ 1032) and the other one at ”fast” chemistry (k̃0

f (αion = 1) ≈ 1034). We

present the results of these calculations in figure 5.8 where we plot fsurf as a function of

both αion = αeon and the diffusive gradients λion = λeon. We notice from figure 5.8a that

fsurf is very close to unity for two order of variation of surface-to-bulk diffusivity ratio

0.1 ≤ αion ≤ 10 and for a wide span of diffusivity length-scales 5nm ≤ λion ≤ 1µm. This

indicates that if we perturb the surface diffusivity up to one order of magnitude with respect

to its bulk value its impact on polarization resistance is minimal. The qualitative effect on

the impedance is also small as shown for a variety of cases in figure 5.9.

If we choose a “fast” chemistry condition instead, e.g. k̃0
f ≈ 1034, the situation changes

significantly from the base case (αion = 1), figure 5.8b. In this figure we focus on points

A through D. (Pt. A), having αion = 0.1 and λion = 5nm, indicates that near surface
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Figure 5.9: Impedance of the sample under the conditions: k̃
(0)
f = 1032, p̃O2 = 10−25.33

and T = 650oC, where αeon = αion (αm = DSURF
m /DBULK

m ) and λion = λeon. The solid
line represents the case where αion = 1, the triangles and the squares indicate respectively
λion = 5nm and λion = 1µm. Each panel corresponds to a different value of αion. Only
small deviations occur from the case αion = 1
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diffusivities are an order of magnitude lower than their bulk value and this deviation is

concentrated near the surface: in this case the polarization resistance is drift-diffusion

dominated. If the diffusive length scale is increased to λion = 1µm, while keeping αion = 0.1,

(Pt. B), the fsurf will not decrease much further. Starting from (Pt. A) we can move to

(Pt. C), where diffusivity gradients are sharp (λion = 5nm) but the diffusivities at the

surface are an order of magnitude greater than its bulk value. In this case, the fsurf

increases because of the increase in the bulk diffusivity. Going from (Pt. C) to (Pt. D)

increases the length-scale of the diffusive effects leading in turn to bigger increase of fsurf .

We can summarize our findings as follows:

1. if the rate of injection of electrons is sufficiently ”small” (slow chemistry) and of the

order of the fitted values reported in Tab. 5.1, then the diffusivity grandients localized

at interfaces will affect little the polarization resistance and the impedance spectra;

2. if the chemistry is sufficiently fast, sharp changes in diffusivity can strongly affect not

only the impedance behavior but also the polarization. In particular, if the diffusivi-

ties increase sufficiently, strictly near the interfaces, the polarization effects will shift

to be surface dominated, while a decrease is associated to drift-diffusion dominated

polarization resistance.

5.5 Concluding Remarks

In this chapter we developed a general two-dimensional numerical framework for the coupled

surface chemistry, electrochemistry and transport processes in mixed conductors based on

the finite element method. As a specialized application of the framework, a time dependent

model was formulated based on first principles for the AC impedance spectra (IS) of a
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samaria doped ceria (SDC) electrolyte with symmetric metal patterns on both sides, and

the IS was simulated for typical fuel cell operation conditions in a uniform gas atmosphere

(H2, H2O, Ar) at thermodynamic equilibrium using the small perturbation technique.

The validity of the model is demonstrated by fitting to experimental (1D) impedance

spectra data of an SDC cell in literature, varying only the reaction rate at the SDC | gas

interface. Excellent agreement (≤ 2% error) was obtained. We then numericallly inves-

tigated the influence of the variation of several parameters on the polarization resistance

and the impedance spectra, especially within regimes not probable for the 1D studies. Our

calculation shows that the 2D effect of cell thickness variation on the spectra becomes

pronounced as the aspect ratio goes below a certain threshold (25 for this work); surface

reaction dominates the polarization resistance when the injection rate at the SDC surface

exposed to gas is sufficiently slow; sharp gradients in diffusion coefficient strongly influence

both impedance behavior and polarization when surface chemistry is sufficiently fast.

The discussions in this work provide useful insights into the correlation between materi-

als properties of SDC and its applications in fuel cells, intensely studied by the solid oxide

fuel cell researchers. In addition, the geometric capability (up to 3D) and high computa-

tion efficiency makes this numerical framework an ideal tool for the general study of mixed

conductors.
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Chapter 6

Fast Impedance Spectra for Thin
Film Mixed Conductors

6.1 Background

In this chapter we study the impedance of thin film mixed conductors. We utilize the same

impedance spectra calculation method of chapters 2 and 5. We shall consider a symmetric

cell, reported in figures 1.5(b) and 6.1, where a thin single crystal doped Ceria layer is

deposited on top of a thick single crystal YSZ slab and a current collecting pattern of metal

is present on top of the Ceria. Typically the Ceria layer thickness ranges from 0.1 to 10 µm.

The YSZ is much thicker, of the order of 1 mm.

Due to its thickness, the YSZ slab is approximated as one-dimensional; similarly, due

to its high electronic conductivity, the behavior of the metal is one-dimensional. Hence,

we suppose that the only two-dimensional effects will arise from drift diffusion and surface

reactions in the thin mixed conducting layer.

The tools used to solve this problem are very similar to the ones used in the thick MIEC

case. However. in the thin film case we cannot assume that the net capacitance of interfaces

is negligible. In particular, we will need to analyze the interfaces Ceria | Metal, Ceria | YSZ
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Figure 6.1: (right) Schematic depiction of the thin film assembly, a thin film of mixed
conductor is deposited on top of the ionic conductor (YSZ) and a electronic current collector
(metal) is deposited on top the MIEC. (left) Depiction of the ionic and electronic fluxes in
this system.

and Gas | Ceria∗ in more detail. In order to understand qualitatively the impact of these

interfaces on the impedance, it is useful to refer back to the equivalent circuit description

of this system, figure 6.2. It is straightforward to deduce that since electrons are minority

carriers the effects of Ceria | Metal and Ceria | YSZ will act in series, with respect to the

MIEC. If the relevant time scales are significantly different, then their contribution can

be directly subtracted from the impedance spectra data. It is important to stress also

that the resistance of the Ceria | Metal and Ceria | YSZ interfaces can be assumed to be

significantly smaller than the polarization resistance. On the other hand, the contribution

of the Gas | Ceria interface will act in parallel with the MIEC drift-diffusion and with the

subsequent transport of electrons onto the current collector.

This justifies choosing a model satisfying the following hypotheses:

∗The chemical capacitance, defined in Tab. 3.2, and the interface capacitances have the same order of
magnitude: C ≈ 10−3F/cm2.
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Figure 6.2: Equivalent circuit representation of the the thin film system of figure 6.1

1. the YSZ slab behavior can be approximated as one-dimensional and the interface

between YSZ and the MIEC under small bias conditions is reversible, hence we can

fix its potential to a constant at the Ceria | YSZ interface;

2. The Metal can be approximated as one-dimensional and the interface Metal | Ceria

can be assumed reversible and having constant electric potential;

3. At Gas | Ceria interface gaseous species are adsorbed, leading to a charged layer, which

in turn generates a capacitive effect. The adsorbed species react with electrons and

ions in the bulk of Ceria leading to net fluxes of electrons and ions injected onto the

MIEC. This process, when linearized, gives rise to a local impedance response. Here

we assume that such response is ideal, i.e., the same response of an ideal capacitor

and a resistor in parallel.
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6.1.1 Impedance Spectra Equations

The Impedance Spectroscopy (IS) equations have been derived in chapter 2 and they can

be rewritten here in Fourier Space as follows:

iωτ?nn̂
(1)
EN −4x̃n̂

(1)
EN = 0, (6.1a)

iωτ?φn̂
(1)
EN −4x̃φ̂

(1)
EN = 0, (6.1b)

where the usual notation for n̂(1)
EN and φ̂

(1)
EN is used, see the Section 2.5, and the subscript

EN is added in order to emphasize that the solution of (6.1) supposes electroneutrality. We

recall also that by definition

τ?n =
τn + n̄

4p̄τp

1 + n̄
4p̄

, (6.2a)

τ?φ =
τp − τn
1 + 4p̄

n̄

, (6.2b)

where τn = l2c/Deon and τp = l2c/Deon.

6.1.2 Boundary Layer Correction

The derivation of the (6.1) came from singular expansion and subsequent linearization of

the drift diffusion (the two operations commute since small external forcing can be chosen

arbitrarily small). In the previous chapters, since the sample under study was sufficiently

thick it was not paramount to solve the double layer near the exposed surface. Because our
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current focus is on the study of thin films, we will need to correct the (6.1). In other words,

we will need to add to the electroneutral equations a simplified boundary layer solution for

the MIEC | Gas interface. Again, the starting point of this analysis is the following set of

linearized drift-diffusion equations in Fourier space, (2.14):

4x̃φ̂
(1) = λ2

(
n̄n̂(1) − p̄p̂(1)

)
, (6.3a)

iωτnn̂
(1) + 4x̃φ̂

(1) −4x̃n̂
(1) = 0, (6.3b)

iωτpp̂
(1) − 24x̃φ̂

(1) −4x̃p̂
(1) = 0. (6.3c)

For only highly doped oxides at high temperatures the condition λ� 1 is common,(in the

case SDC at T ≈ 600oC and if lc = 10 µm, we will have λ ≈ 1010). The solution of the full

problem
(
φ̂

(1)
FULL, n̂

(1)
FULL, p̂

(1)
FULL

)
can be thought as the sum of the electroneutral solution

(subscript EN) plus a double layer correction (subscript DL):

φ̂
(1)
FULL (x̃) = φ̂

(1)
EN (x̃) + φ̂

(1)
DL (x̃) , (6.4a)

n̂
(1)
FULL (x̃) = n̂

(1)
EN (x̃) + n̂

(1)
DL (x̃) , (6.4b)

p̂
(1)
FULL (x̃) = p̂

(1)
EN (x̃) + p̂

(1)
DL (x̃) , (6.4c)

where the scale of variation of the correction
(
φ̂

(1)
DL, n̂

(1)
DL, p̂

(1)
DL

)
is much smaller than the

scale of variation of the electroneutral solution
(
φ̂

(1)
EN, n̂

(1)
EN, p̂

(1)
EN

)
and where, as shown

previously, p(1)
EN =

n̄

2p̄
n

(1)
EN. If we plug the definitions (6.4) into the equations (6.3) we will

obtain that
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Figure 6.3: Fitted electrochemical impedance, solid line, versus the experimental impedance
of a Ceria thin film [CH09] for l2 = 380nm, T = 650oC and p̃O2 = 7.94 × 10−26, 7.94 ×
10−25, 7.94× 10−25. The fitted k̃0
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4x̃

(
φ̂

(1)
EN + φ̂

(1)
DL

)
= λ2

(
n̄
(
n̂

(1)
EN + n̂

(1)
DL

)
− p̄

(
p̂

(1)
EN + p̂

(1)
DL

))
, (6.5a)

iωτn

(
n̂

(1)
EN + n̂

(1)
DL

)
+4x̃

(
φ̂

(1)
EN + φ̂

(1)
DL

)
−4x̃

(
n̂

(1)
EN + n̂

(1)
DL

)
= 0, (6.5b)

iωτp

(
p̂

(1)
EN + p̂

(1)
DL (x̃/λ)

)
− 24x̃

(
φ̂

(1)
EN + φ̂

(1)
DL

)
−4x̃

(
p̂

(1)
EN + p̂

(1)
DL

)
= 0. (6.5c)

Using (6.1) and the electroneutrality condition in (6.5), it follows that

4x̃φ̂
(1)
DL + iωτ?nn̂

(1)
EN = λ2

(
n̄n̂

(1)
DL − 2p̄p̂(1)

DL

)
, (6.6a)

iωτnn̂
(1)
DL + 4x̃φ̂

(1)
DL −4x̃n̂

(1)
DL = 0, (6.6b)

iωτpp̂
(1)
DL − 24x̃φ̂

(1)
DL −4x̃p̂

(1)
DL = 0. (6.6c)
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We now transform the coordinates from x̃ to x+ as follows x̃ → x+ : x+ = (x+, y+) =

(x̃, ỹ/λ) and the equations above become

(
1
λ2

∂2

∂x2
+

+
∂2

∂y2
+

)
φ̂

(1)
DL + i

ωτ?n
λ2

n̂
(1)
EN = n̄n̂

(1)
DL − 2p̄p̂(1)

DL, (6.7a)

i
ωτn
λ2

n̂
(1)
DL +

(
1
λ2

∂2

∂x2
+

+
∂2

∂y2
+

)
φ̂

(1)
DL

(
1
λ2

∂2

∂x2
+

+
∂2

∂y2
+

)
n̂

(1)
DL = 0, (6.7b)

i
ωτp
λ2

p̂
(1)
DL − 2

(
1
λ2

∂2

∂x2
+

+
∂2

∂y2
+

)
φ̂

(1)
DL −

(
1
λ2

∂2

∂x2
+

+
∂2

∂y2
+

)
p̂

(1)
DL = 0. (6.7c)

We assume that
ωτn
λ2

,
ωτp
λ2
� 1† and we note that from the latter it also follows that

ωτ?n
λ2
� 1. Hence, we will be able to neglect the terms of order O

(
1
λ2

)
and rewrite the

layer equations (6.7) in a small neighborhood of the point (x̃, ỹ) on Γ4 as a one-dimensional

time independent drift-diffusion system:

∂2φ̂
(1)
DL

∂y2
+

= n̄n̂
(1)
DL − 2p̄p̂(1)

DL, (6.8a)

∂2φ̂
(1)
DL

∂y2
+

− ∂2n̂
(1)
DL

∂y2
+

= 0, (6.8b)

2
∂2φ̂

(1)
DL

∂y2
+

+
∂2p̂

(1)
DL

∂y2
+

= 0. (6.8c)

If we indicate the non-dimensional charge close to Γ4 as ρ̃DL(x̃, y+) = 2p̄p̂(1)
DL − n̄n̂

(1)
DL, then

we can further simplify the (6.8) as

†For SDC ω < 105, τn, τp ≈ 1 and λ ≈ 1010 which makes
ωτn.

λ2
,
ωτp
λ2
≈ 10−10 � 1



106

∂2φ̂
(1)
DL

∂y2
+

= −ρ̃DL, (6.9a)

ρ̃DL +
∂2n̂

(1)
DL

∂y2
+

= 0, (6.9b)

−2ρ̃DL +
∂2p̂

(1)
DL

∂y2
+

= 0. (6.9c)

If we multiply the (6.9b) by −n̄ and the (6.9c) by 2p̄ and if we sum the latter two, we will

get

∂2ρ̃DL
∂y2

+

= (4p̄+ n̄)ρ̃DL. (6.10)

The (6.10) admits one unique non-diverging solution of the form

ρ̃DL = A exp
(
−
√

4p̄+ n̄y+
)

= A exp
(
−
√

4p̄+ n̄

λ
ỹ

)
. (6.11)

The total charge q̂ per unit of surface area of the layer is then given by

q̂ = eB

∫ ∞

0
ρDL = AeBlcλ

∫ ∞

0
exp

(
−
√

4p̄+ n̄y+

)
dy+,

= A
eBlc√
4p̄+ n̄

.

(6.12)

Using the appropriate conditions at infinity ∂y+ n̂
(1)
DL = ∂y+ p̂

(1)
DL = 0 and n̂

(1)
DL = p̂

(1)
DL = 0,

we obtain that

n̂
(1)
DL = − qλ2

eBlc
√

4p̄+ n̄
exp

(
−
√

4p̄+ n̄

λ
ỹ

)
, (6.13a)

p̂
(1)
DL = 2

qλ2

eBlc
√

4p̄+ n̄
exp

(
−
√

4p̄+ n̄

λ
ỹ

)
. (6.13b)
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If we suppose that q̂ = Cqn̂
(1)
EN, then we are left with

n̂
(1)
DL = − qλ2

eBlc
√

4p̄+ n̄
exp

(
−
√

4p̄+ n̄

λ
ỹ

)
, (6.14a)

p̂
(1)
DL = 2

qλ2

eBlc
√

4p̄+ n̄
exp

(
−
√

4p̄+ n̄

λ
ỹ

)
. (6.14b)

Under the assumptions above, the behavior of the double layer is then purely capacitive,

where the capacitance is constant with frequency. Species conservation of the full solution

requires that

iωCqn̂
(1)
EN + ĵPeon

∣∣∣
SURF→DL︸ ︷︷ ︸

ω̇Seon∝kf n̂
(1)
EN

− ĵeon
∣∣∣
DL→BULK

= 0, (6.15)

where ĵPeon

∣∣∣
SURF→DL

is the Fourier transform of the rate of injection of electrons at the

surface due to the chemical reactions into the material (from the surface into the double

layer), and ĵeon

∣∣∣
DL→BULK

is the net rate of injection (in Fourier space) of the electrons from

the double layer into the bulk (the part of the material satisfying the electroneutrality con-

ditions). The latter term indicates that the local linearized behavior of Γ5, the Ceria |Metal

interface, is capacitive-resistive; from the definition of Zsurf , equation (5.6), it follows that

Zsurf = UT
< µ̂?ion >Γ5 − < µ̂?eon >Γ5

ĵ
(1)
IP

∣∣∣
DL→BULK

=
1

1
1
2

(1 +W1/W2)
UT

ekf p̃H2

+ iω
CQ

UT

(
1 +

c0
eon

4c0
ion

) 1
1 +W1/W2

.

(6.16)

Hence, the chemical reactions reduce to an RC circuit with the following resistance and
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capacitance:

Rsurf =
1
2

(1 +W1/W2)
UT

ekf p̃H2

, (6.17a)

Csurf =
CQ

UT

(
1 +

c0
eon

4c0
ion

) 1
1 +W1/W2

. (6.17b)

The equations above show that the surface resistance depends linearly on (1 +W1/W2), an

important geometrical feature of the system, while the capacitance is inversely proportional

with respect to the latter.

The mathematical description of the model will need to change in order to account for

non-penetration of electrons into the ionic conductor and the resistive capacitive behavior

of the surface. Analogously what we did for equations (2.40), we will need to solve:

ωτ?n

∫

Ω
n̂

(1)
ImmRe dÃ −

∫

Ω
∇n̂(1)

Re · ∇mRe dÃ+
∫

Γ5

(
Ãnn̂

(1)
Re − ÃCn n̂

(1)
Im

)
mRe dx̃+ . . .

− 4
p̄

n̄

∫

Γ4

∂ỹφ̂
(1)
RemRe dx̃−

∫

Γ1

∂ỹφ̂
(1)
RemRe dx̃ = 0

(6.18a)

ωτ?n

∫

Ω
n̂

(1)
RemIm dÃ +

∫

Ω
∇n̂(1)

Im · ∇mIm dÃ−
∫

Γ5

(
Ãnn̂

(1)
Im + ÃCn n̂

(1)
Re

)
mIm dx̃

+ 4
p̄

n̄

∫

Γ4

∂ỹφ̂
(1)
ImmIm dx̃+

∫

Γ1

∂ỹφ̂
(1)
ImmIm dx̃ = 0

(6.18b)

ωτ?φ

∫

Ω
n̂

(1)
ImψRe dÃ −

∫

Ω
∇φ̂(1)

Re · ∇ψRe dÃ+ · · ·

+
∫

Γ5

(
Ãφn̂

(1)
Re −ACφ n̂

(1)
Im

)
ψRe dx̃ = 0

(6.18c)

ωτ?φ

∫

Ω
n̂

(1)
ReψIm dÃ +

∫

Ω
∇φ̂(1)

Im · ∇ψIm dÃ+ · · ·

−
∫

Γ5

(
Ãφn̂

(1)
Im − ÃCφ n̂

(1)
Re

)
ψIm dx̃ = 0

(6.18d)
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with the additional conditions that:

φ̂
(1)
Re = 0 & φ̂

(1)
Im = 0 on Γ1, (6.19a)

φ̂
(1)
Re = 1 & φ̂

(1)
Im = 0 on Γ4, (6.19b)

and where the parameters C̃Q, ÃCφ and ACn are given by the following expressions:

CQ = 2
Dion

lc
C̃Q, (6.20a)

ACn = − C0

1 + c0eon
4c0ion

ωlc
1 + 4 c

0
ion
c0eon

Dion
Deon

4c0
ionDion

UT
e
, (6.20b)

ÃCφ = − C0

1 + c0eon
4c0ion

ωlc
1− Dion

Deon

4c0
ionDion

UT
e
. (6.20c)

6.2 Discussion of the Results

The input parameters for the model are reported in Tab. 2.1. Two main input model

parameters were systematically changed: the k̃0
f and the C̃Q defined in Eqn 6.20a. Unless

it is otherwise specified, the horizontal length-scales of the sample W1 and W2 were fixed

to the values 1.5 and 2.5µm respectively, while l2, the thickness of the sample, was allowed

to vary. The experimental data was taken from recent work of Chue and Haile [CH09].

6.2.1 Qualitative Considerations

We first ran the thin film model in the steady state regime ω = 0 Hz in order to check for

consistency with the intuitive flux configuration of figure 6.1. In figure 6.4 we report the

results for k̃0
f = 1031 at T = 650oC and p̃O2 = 10−25 We note that the expected qualitative
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f = 1031

at 650oC and p̃O2 = 10−25, varying the film thickness: (left) The computed electron elec-
trochemical potentials in the thin film MIEC. (right) The computed ionic electrochemical
potentials.
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features are recovered, the electrons flow from the gas | Ceria interface onto the current

collector while the ions move from the ionic conductor | Ceria interface through the mixed

conductors to react with the species adsorbed on the surface. We remark also that by

increasing the thickness of the sample the electron current lines change significantly while

the vacancy current lines change very little. It is also interesting to note that, in the case

where the thickness l2 = 5µm, the vast majority of the electrons move from the gas up

to 3 µm down into the MIEC; this hints that by increasing the thickness of the thin film,

the active layer active might be limited to a few microns near the gas | Ceria surface in

accordance with previous calculations.
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6.2.2 Comparison with Experiments

For thin films of thickness of approximately 1µm we recover the result of Section 3.2.2

(Reon ≈ Rion � Rsurf and Cchem ≈ Csurf ): the frequency response of the system under

study fits well a resistor-capacitor circuit. Two-dimensional calculations against the exper-

imental impedance (T = 650oC and the O2 partial pressure is of the order of 10−25atm) are

shown in figure 6.3 where the typical RC feature of the impedance are recovered. Also the

location of the low frequency point in the Nyquist plot depends only on k̃0
f . The capacitance

of the thin film can also be fitted using this model, we show 2D computations and measured

values of the capacitance in figure 6.5. By parametrically varying C̃Q, we note that the ca-

pacitance plots move upward with increasing C̃Q indicating that the total capacitance of

the sample is the sum of the surface capacitance (6.17b) and the one-dimensional chemical

capacitance reported in Tab. 3.2. This linear dependence is valid for ”low” k̃(0)
f (for fitted

values k̃0
f ≈ 1031 we notice that the capacitive effects are additive). If chemical reactions

are sufficiently fast, as shown in figure 6.7, then the deviations from the one-dimensional

(additive or linear) behavior is more pronounced. This can be understood if we go back to

the definition of Zsurf , (6.16), which shows that if kf is big then the contribution of the

capacitance decreases to the surface impedance increases, hereby shifting its behavior to a

simple resistor for sufficiently small ω. Furthermore as kf increases, we expect that the de-

viations from the one-dimensional behavior will be enhancing giving a non-linear correlation

between total capacitance and injection rate.

6.2.3 Polarization Resistance

The study of the polarization resistance and its separation into a surface and a drift diffusion

component is a key quantity that helps understand anodic polarization losses. It is thus
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interesting to plot fsurf , the ratio of the surface resistive losses to the total polarization

losses, (4.12a), as a function of k̃0
f (or Rsurf ) for varying W1 and W2. We set W1 = W2 and

we vary W1 = 2.5µm, 10µm, 80µm. We report the results of the calculations in figure 6.8.

One feature is most striking, as W1 increases the fsurf decreases. Keeping the injection rate

and W2
W1

fixed while varying W1 will keep Rsurf constant, (6.17a), and, at the same time,

the distance that electrons need to travel in order to reach the metal current collector will

increase, hereby increasing the drift-diffusion component of the polarization resistance. The

latter in turn corresponds to a decrease of fsurf . The monotonically decreasing dependence

of R⊥ion with k̃0
f is also recovered. This is in accordance with the results of Chapter 3.
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6.3 Extension of the Model to Cathode Materials

The model we have employed to study thin film Ceria electrodes can be extended to the

study thin film cathodic materials in a circular symmetric configuration. Here we shall con-

sider one system widely studied in Maier’s group at Max Planck Institute in Stüttgart, the

thin film Lanthanum Manganite (LSM- (La0.8Sr0.2)0.92MnO3) Model Cathode [BMF08],

[FBB+06] [FKJM08].

The system studied consists of cylindrical LSM microelectrodes from 20 to 100µm di-

ameter that are deposited on top of a YSZ substrate and a small current collector is placed

on top of the microelectrodes (during impedance measurements the LSM is contacted with

a tungsten-carbide tip whose diameter is around 4µm). Thus the configuration Fleig et al.

[FKJM08] studied is very similar to the one studied here, however the materials’ properties

are entirely different. For instance, LSM conducts vacancies and holes, and the latter are

the dominant conductive species. Hence LSM is characterized by a very high electronic

conductivity and a fairly low ionic conductivity. Also LSM is a cathode material work-

ing under oxidizing atmosphere, thus its electrochemistry is entirely different from Ceria’s.

However the linear tools we have developed thus far can be applied, with minor modifica-

tions, to the study of LSM thin films. We shall focus on a cylindrical LSM thin film of

thickness l2 = 250nm, of radius W2 of exactly 30µm and with a current collecting tip of

radius W1 = 2µm which is perfectly centered with respect to the LSM. We suppose that

the behavior of the LSM | gas interface is capacitive resistive and we consider as well that a

double layer forms at the YSZ | LSM interface. The latter is characterized by a generalized

capacitive behavior, having a CPE element response with characteristic α = 0.8.

Equations (6.18) with the extra conditions given by (6.19) and a local CPE element
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Table 6.1: Input data for the cathode model, the ionic conductivity is given by σion, the
surface RC behavior is described by an area specific resistance RS and area specific capac-
itance CS . The ionic concentration in given as a chemical capacitance via Cchem and Qi is
the generalized capacitance of the CPE element.

T = 800oC p̃O2 = 4× 10−5 p̃O2 = 1.5× 10−2

σion [Ω−1cm−1] 7.3× 10−7 6.37× 10−8

RS [Ωcm2] 5.3× 104 2.7× 103

Cchem [F/cm2] 5.5× 10−4 5.5× 10−4

CS [F/cm2] 7× 10−4 7× 10−4

Qi [F/cm2] 4.2× 10−5 4.2× 10−5

on Γ1 are taken in cylindrical coordinates (r̃, ỹ) such that dx̃ = r̃ dr̃ and dÃ = r̃ dr̃ dỹ.

We computed the impedance response of the system for the values in Tab. 6.1, taken from

Fleig et al. [FKJM08]. We compare the cylindrical coordinate computations against the

experimental results of [FKJM08] and find good qualitative agreement both at low and

high frequency for various pressures, figures 6.9 and 6.10. This shows that the framework

developed in this thesis can be also used to study cathodic materials and, to the author’s

knowledge, this work is first to compute the impedance response of a cathode mixed con-

ductor.
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Chapter 7

Conclusions

In this thesis we have derived a new way to analyze the impedance response of mixed con-

ducting materials for use in fuel cells. Our main focus was the study new anodic materials,

in particular doped cerium oxides, but we show that the approach presented in the thesis

also works well for mixed conducting cathode.

First we have analyzed the impact of mixed conductivity coupled to electro-catalytic

behavior in the linear time-independent domain for a thick ceria sample. We have derived

that, for a promising fuel cell material, i.e., SDC-15, chemical reactions are the determining

component of the polarization resistance. We have also have shown that first principle

parameters, such as chemical reaction rates and diffusivities, can be connected in a fairly

straightforward way to directly measurable electrochemical quantities, like resistances to

ionic and electronic diffusion and area specific resistance. Finally, the results obtained

match well the experimental results of Lai and Haile [LH05].

As a second step we have extended the previous model to the time dependent case,

where we focused on single harmonic excitation, i.e., the impedance spectroscopy conditions.

Again the computed results compare very well to experimental impedance spectra and some

interesting physical phenomena can be understood using a 2D model. We show that the

1D equivalent circuit approximation is sufficiently accurate to fit data in the case of a
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thick symmetric mixed conductor and, for the given conditions, the deviations from the 1D

approximation are in general limited to the vicinity of the electroactive area. It is important

to remark also that in the case of ceria if the aspect ratio (the ratio between thickness of the

mixed conductor and the current collector length scale) drops below 10 the sample deviates

significantly in the frequency domain from the 1D case. We confirm that for both harmonic

and steady state excitation, the chemistry is rate limiting; however, as frequency increases,

the chemistry dominance decreases. The impedance spectra model can be extended to

the case where some input parameters are not uniform. For instance we considered the

case where diffusivities change significantly in the vicinity of the electro-catalytic region.

Again, we show that such effects impact very little the impedance spectra for the projected

chemical reaction rates; if the chemical reactions are sufficiently fast compared to diffusive

phenomena, such non-linearities could play an important rôle.

As a third and final step we extended the model to capture the two-dimensional behavior

in thin films, where the aspect ration drops significantly and where the electrons’ motion

from one side of the sample to the other is impeded. Such conditions are similar to those

encountered in fuel cells where an electrolyte conducting exclusively oxygen ions is placed

between the anode and the cathode. Even though electronic transmission is not particularly

fast in cerium oxide and the samples are geometrically two-dimensional (in this case the

aspect ratio drops below unity), one-dimensional models still are likely to be valid and

the effects influencing the most the polarization are always confined close to the interface

for thickness comparable to current collector spacing length-scale. This is another strong

indication that in order to improve the performance of cerium-based anodes one should work

on enhancing the catalytic capability of the material. The framework developed was also

extended to study a widely used cathode material, e.g. Lanthanum Strontium Manganite
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(LSM), in the thin film setting. The calculations were compared to the work of Fleig et

al. [FKJM08] on microelectrodes. Good agreement was achieved between numerical results

and experimental work.

7.1 Ongoing Work

Our ongoing work features a few topics that were briefly addressed in the thesis, in partic-

ular:

• non-linear impedance spectroscopy;

• deconvolution of hydrogen electrochemistry of ceria using the thin film data.

Non-linear impedance spectroscopy (NLIS) could help deconvolve the chemistry of elec-

troactive materials. The experimental work of to Wilson et al. [WSA06] is first to have

shown the capability of NLIS as a tool for electrochemistry. Even though the techniques

used in NLIS are seemingly a mere extension of the analysis in Appendix C, for a 1D a

thick MIEC sample, there is no experimental work in support to cerium oxide NLIS com-

putations. It is important to stress that due to the intrinsic non-linearity, this technique

could help understand more physical phenomena than traditional impedance spectroscopy.

In particular, we are currently attempting the deconvolution of plausible mechanistic mod-

els against the polarization resistance and capacitance data for the thin ceria samples and

NLIS could help select the correct electro-chemical hydrogen reduction mechanism among

all the plausible ones. It is key to stress that understanding chemistry of hydrogen on ceria

could be extremely important for the future SOFC development and that this methodology

could be extended to the study of other mixed conductors.
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7.2 Future Work

The future work we propose will focus on understanding and optimizing fuel cell electrodes

that are used in real industrial applications. Fuel cell electrodes are typically geometrically

extremely complex and can be idealized as a collection of spherical elements of variable

sizes having characteristic properties similar to the thin film systems studied here. In fact

the characteristic length-scale is in the order of microns and their local behavior is typically

linear or a few orders non-linear. However in real electrodes are strongly coupled with the

gas-phase chemistry and diffusion of reacting species. Hence, the research presented in the

thesis and the ongoing work could be used as the foundation for multi-particles models,

such as the ones developed in Goodwin’s group at Caltech, and it will help extend them to

the interesting case of mixed conductors.

Classically, the effective properties are derived via averaging or homogenization. In

particular homogenization [BLP78] replaces a micro and heterogenous system by one that

macroscopically behaves in the same effective manner as the original. One of the goals of our

future work is not only to develop complex multi-particle models but also to understand via

analytical homogenization techniques the main properties of real world electrodes, possibly

leading to their local optimization [All01]
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Appendix A

Error Estimator and Refinement
Strategy

The goal of this appendix is to find a weak residual estimator for the variational discretiza-

tion of the problem (2.40). This approach is rather standard in numerical finite element

methods [BS00]. We will set this error estimator inH1(Ω) = W 1
2 (Ω) =

{
f ∈ L1

loc(Ω) : ||f ||L2
+ ||∇f ||L2

}

where Ω is a polyhedral domain of R2 and it is where (2.40) is defined. Such error estimator

will guarantee that the discretized solution is close to the exact solution in term of both

(n̂, φ̂) and its gradients (∇n̂,∇φ̂) ensuring that both voltages and currents are correctly

computed. We consider that the problem is discretized on a triangular mesh Th, where

T ∈ Th is a triangle of the mesh, we assume an edge of T is indicated by e. The approx-

imation space is indicate by Vh which is the space of piecewise polynomials of degree k on

Th.

We indicate the exact complex valued solution is (n̂, φ̂) ∈ H1(Ω), while the discretized

solution is (n̂h, φ̂h) ∈ Vh and we choose the test functions (mh, φ̂h) ∈ Vh. We shall consider

only the first equation in the system (2.40) and we recall that it satisfies

ωτ?n

∫

Ω
n̂

(1)
ImmRe dÃ−

∫

Ω
∇n̂(1)

Re · ∇mRe dÃ +
∫

Γ5

Ãnn̂
(1)
RemRe dx̃

− 4
p̄

n̄

∫

Γ4

∂ỹφ̂
(1)
RemRe dx̃ = 0

(A.1)
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while the discretized problem satisfies

ωτ?n

∫

Ω
n̂

(1)
Im,hmRe,h dÃ−

∫

Ω
∇n̂(1)

Re,h · ∇mRe,h dÃ

+
∫

Γ5

Ãnn̂
(1)
Re,hmRe,h dx̃− 4

p̄

n̄

∫

Γ4

∂ỹφ̂
(1)
Re,hmRe,h dx̃ = 0

(A.2)

In general, a weak formulation can be written as a(u, v) = 0 and its discretized version is

a(uh, vh) then we can recast the error formulation eh = u− uh as a(eh, v = R(uh, v) where

R is the residual. The residual can be in general bound with |R(eh, eh)| ≤ ||R||H−1 ||eh||H1

(Hölder inequality), if the problem is coercive then |a(eh, eh)| ≥ α0 ||eh||2H1 ( a “weak”

G̊arding inequality can be used for systems of elliptic equations [Gia93]), using the last

two we can get ||eh||2H1 ≤ C ||R||H−1 . In order to bound the error, one can compute the

H−1 norm of the residual R, a quantity that involves only the data of the problem and

its approximation. Since the negative norm of a function is hard to compute, we will then

need to find an appropriate approximation. The reminder of this appendix is devoted to

this task.

In the ∞ dimensional case we can use mh as test function so that the difference of (A.1)

and (A.2) is given by

ωτ?n

∫

Ω

(
n̂

(1)
Im − n̂

(1)
Im,h

)
mRe,h dÃ −

∫

Ω
∇
(
n̂

(1)
Re − n̂

(1)
Re,h

)
· ∇mRe,h dÃ

+
∫

Γ5

Ãn

(
n̂

(1)
Re − n̂

(1)
Re,h

)
mRe,h dx̃

− 4
p̄

n̄

∫

Γ4

∂ỹ

(
φ̂

(1)
Re − φ̂

(1)
Re,h

)
mRe,h dx̃ = 0

(A.3)
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We now note that the term
∫

Ω
∇(n̂Re − n̂Re,h) · ∇mRe can be rewritten using (A.3) as

∫

Ω
∇(n̂Re − n̂Re,h) · ∇mRe =

∫

Ω
∇(n̂Re − n̂Re,h) · ∇(mRe −mRe,h)

+ ωτ?n

∫

Ω

(
n̂

(1)
Im − n̂

(1)
Im,h

)
mRe,h

+ Ãn

∫

Γ5

(
n̂

(1)
Re − n̂

(1)
Re,h

)
mRe,h

− 4
p̄

n̄

∫

Γ4

∂ỹ

(
φ̂

(1)
Re − φ̂

(1)
Re,h

)
mRe,h.

(A.4)

The function (mRe −mRe,h) is an admissible test function for the full ∞ dimensional prob-

lem, then it follows that

∫
Ω∇(n̂Re − n̂Re,h) · ∇mRe = −

∫

Ω
∇n̂Re,h · ∇(mRe −mRe,h)

+ ωτ?n

[∫

Ω

(
n̂

(1)
Im − n̂

(1)
Im,h

)
mRe,h +

∫

Ω
n̂

(1)
Im (m−mRe,h)

]

+ Ãn

[∫

Γ5

(
n̂

(1)
Re − n̂

(1)
Re,h

)
mRe,h +

∫

Γ5

n̂
(1)
Re (mRe −mRe,h)

]

− 4
p̄

n̄

[∫

Γ4

∂ỹ

(
φ̂

(1)
Re − φ̂

(1)
Re,h

)
mRe,h +

∫

Γ4

∂ỹφ̂
(1)
Re (mRe −mRe,h)

]
.

(A.5)

We also have that over a triangulation Th that covers Ω with T ∈ Th the following holds:

∫

Ω
∇n̂Re,h · ∇(mRe −mRr,h) =

∑

T∈Th

∫

T
4n̂Re,h(mRe −mRe,h)

−
∑

T∈Th

∫

∂+T

∂n̂Re,h
∂n

(mRe −mRe,h)

=
∑

T∈Th

∫

T
iωτ?nnRe,h(mRe −mRe,h)

−
∑

T∈Th

∫

∂+T

∂n̂Re,h
∂n

(mRe −mRe,h)

(A.6)



127

We recall that the residual for the problem discussed here is then given by

rnRe = ωτ?n

∫

Ω

(
n̂

(1)
Im − n̂

(1)
Im,h

)
mRe −

∫

Ω
∇
(
n̂

(1)
Re − n̂

(1)
Re,h

)
· ∇mRe

+ Ãn

∫

Γ5

(
n̂

(1)
Re − n̂

(1)
Re,h

)
mRe − 4

p̄

n̄

∫

Γ4

∂ỹ

(
φ̂

(1)
Re − φ̂

(1)
Re,h

)
mRe dx̃.

(A.7)

Using the previous results we can deduce that over the triangulation Th

rnRe =
∫

Ω

(
4n̂(1)

Re,h − ωτ?nn̂
(1)
Im,h

)
(mRe −mRe,h)

−
∑

T∈Th

∫

∂+T\∂Ω

∂n̂
(1)
Re,h

∂n
(mRe −mRe,h)

+
∫

∂Γ5

(
Ann

(1)
Re,h − ∂ỹn

(1)
Re,h

)
(mRe −mRe,h)

+
∫

∂Γ5

(
∂ỹn

(1)
Re − 4

p̄

n̄
∂ỹn

(1)
Re,h

)
(mRe −mRe,h).

(A.8)

Hence, the local residual rnRe can be bounded using classical approximation theory as

follows |rnRe | ≤
∑

T∈Th ηT,nRe = ηnRe . Each summation term in the latter can be expressed

as

ηT, nRe =
∫

T

∣∣∣4n̂(1)
Re,h − ωτ?nn̂

(1)
Im,h

∣∣∣h2

+
s
∂n̂

(1)
Re,h

∂n

{

T

h
1/2
T

+
∫

Γ5∩T

∣∣∣Ann̂(1)
Re,h − ∂ỹn̂

(1)
Re,h

∣∣∣h2

+
∫

Γ4∩T

∣∣∣∂ỹn̂(1)
Re − 4

p̄

n̄
∂ỹn̂

(1)
Re,h

∣∣∣h2

+
∫

(Γ2∪Γ3)∩T

∣∣∣∂x̃n̂(1)
Re

∣∣∣h2

(A.9)

where J·K is the jump across T , h is the length scale of T and hT is the maximum side

length of the triangle T . Similar residuals can be found for n(1)
Im, φ(1)

Re , φ
(1)
Im. Their sum

(ηnRe + ηnIm + ηφRe + ηφIm) constitutes a reasonable error estimate and it is an upper bound

for (|ηnRe |+ |ηnIm |+ |ηphiRe |+ |ηphiIm |) which is itself an upper bound for the variational

error a(u−uh, v). The latter can be bounded from below by a‖u‖L2−b‖∇u‖L2 where a and
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b are constants [Agm65]. So the sum (ηnRe + ηnIm + ηphiRe + ηphiIm) is a weak H1 bound

for the the solution of the problem.

A similar bound can be found for the general quasi-linear problem, for example, the

ηT, nRe term can be written as

ηT, nRe =
∫

T

∣∣∣∇ ·
(
a11∇n̂(1)

Re,h + a12∇φ̂(1)
Re,h

)
− ωτ?nn̂(1)

Im,h

∣∣∣h2

+
s
a11

∂n̂
(1)
Re,h

∂n + a12
∂φ̂

(1)
Re,h

∂n

{
h

1/2
T

+
∫

Γ5∩T

∣∣∣Ãn,2n̂(1)
Re,h − ∂ỹn̂

(1)
Re,h

∣∣∣h2 +
∫

Γ4∩T

∣∣∣∂ỹn̂(1)
Re − 4

p̄

n̄
∂ỹn̂

(1)
Re,h

∣∣∣h2

+
∫

(Γ2∪Γ3)∩T

∣∣∣∂x̃n̂(1)
Re

∣∣∣h2.

(A.10)
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Appendix B

Derivation of the Nonlinear
Impedance Spectra Equations

We consider here the condition such that

1. the diffusivities vary through the system or that the activity changes through the

sample;

2. the electroneutrality condition is enforced.

We shall start with the electro-neutral form of the drift-diffusion equations, where we as-

sume that the diffusion coefficients normalized with respect to their bulk value D?
m =

DSURF
m /DBULK

m :

τn
τ
∂t̃n

(1) + ∇x̃ ·
(
−D?

eon

(
∇x̃n(1) −∇x̃φ̃(1)

))
= 0, (B.1a)

n̄

4p̄
τp
τ
∂t̃n

(1) + ∇x̃ ·
(
−D?

ion

(
n̄

4p̄
∇x̃n(1) +∇x̃φ̃(1)

))
= 0. (B.1b)

We first sum the (B.1a) and (B.1b) and obtain

(
τn
τ

+
n̄

4p̄
τp
τ

)
∂t̃n

(1) +∇x̃ ·
(
−
(
D?
eon +

n̄

4p̄
D?
ion

)
∇x̃n(1) − (D?

ion −D?
eon)∇x̃φ̃(1)

)
= 0.

(B.2)
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Finally we multiply (B.1b) by
4p̄
n̄

and sum to (B.1a):

(τp
τ
− τn

τ

)
∂t̃n

(1) +∇x̃ ·
(
− (D?

ion −D?
eon)∇x̃n(1) −

(
D?
eon +

4p̄
n̄
D?
ion

)
∇x̃φ̃(1)

)
= 0 (B.3)

From (B.2) and (B.3), the equations (5.14) follow immediately and so do their coefficients

given in (5.15).
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Appendix C

Nonlinear Impedance
Spectroscopy:
a Perturbative Approach

We study here the regular expansion of Eqn.s 2.14 with α→∞, i.e.,

4x̃φ̃ = λ2 (1 + n̄n− 2p̄p) , (C.1a)

τn
τ
∂t̃n+∇x̃ ·

(
n∇x̃φ̃−∇x̃n

)
= 0, (C.1b)

τp
τ
∂t̃p−∇x̃ ·

(
2p∇x̃φ̃+∇x̃p

)
= 0. (C.1c)

We then derive a formal expansion in order to study the effects of a medium sized per-

turbation of the electric potential at the electrodes of a mixed conducting sample; we will

take, with the usual convention

φ̃ = φ̃(0) + φ̃(1) + . . .+ φ̃(k) + . . . , (C.2a)

n = n(0) + n(1) + . . .+ n(k) + . . . , (C.2b)

p = p(0) + p(1) + . . .+ p(k) + . . . . (C.2c)
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If we plug in the latter into the Eqn.s C.1 and obtain

4x̃φ̃
(k) = λ2

(
n̄n(k) − 2p̄p(k)

)
, (C.3a)

τn
τ
∂t̃n

(k) − 4n(k) +4φ̃(k) +∇ ·


 ∑

k>l∈Z+

n(l)∇φ̃(k−l)


 = 0, (C.3b)

τp
τ
∂t̃p

(k) − 4p(k) − 24φ̃(k) − 2∇ ·


 ∑

k>l∈Z+

p(l)∇φ̃(k−l)


 = 0. (C.3c)

We then Fourier transform the equations above using the unitary convention

4x̃φ̂
(k) = λ2

(
n̄n̂(k) − 2p̄p̂(k)

)
, (C.4a)

iωτnn̂
(k) − 4n̂(k) +4φ̂(k) +∇ ·


 ∑

k>l∈Z+

n̂(l) ∗ ∇φ̂(k−l)


 = 0, (C.4b)

iωτpp̂
(k) − 4p̂(k) − 24φ̂(k) − 2∇ ·


 ∑

k>l∈Z+

p̂(l) ∗ ∇φ̂(k−l)


 = 0, (C.4c)

where ∗ indicates the convolution [Fol09]. We specialize (C.4) to the 1D case; it will

transform (C.4) as follows:

d2φ̂(k)

dx̃2
= λ2

(
n̄n̂(k) − 2p̄p̂(k)

)
, (C.5a)

iωτnn̂
(k) − d2n̂(k)

dx̃2
+
d2φ̂(k)

dx̃2
+

d

dx̃


 ∑

k>l∈Z+

n̂(l) ∗ dφ̂
(k−l)

dx̃


 = 0, (C.5b)

iωτpp̂
(k) − d2p̂(k)

dx̃2
− 2

d2φ̂(k)

dx̃2
− 2

d

dx̃


 ∑

k>l∈Z+

p̂(l) ∗ dφ̂
(k−l)

dx̃


 = 0, (C.5c)
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In order to keep the algebraic manipulations simple we choose the case such that φ̃(0) =

n(0) = p(0) = 0. In frequency space the latter can be rewritten as φ̂(k)(0) = n̂(k)(0) =

p̂(k)(0) = 0. We shall also consider that potential is given by a single harmonic φ̃(1)(l) =

1√
2π
eiω0τ t̃ so its Fourier transform is φ̂(1)(l) = δ(ω − ω0) and in turn φ̂(k), n̂(k), p(k) ∝

δ(ω− kω0). Hence, the terms
∑

k>m∈Z+ p̂(m) ∗ dφ̂(k−m)

dx̃ ∝ δ(ω− kω0) are harmonics of order

k. We solve (C.5) with the condition φ̂(1)(l) = 1 and with φ(k)(l) = 0 and we remark that

the remaining boundary condition on n(k) and p(k) are conditions on their fluxes. Thus we

will need to solve at order k, the following three equations need to be solved:

d2φ̂(k)

dx̃2
= λ2

(
n̄n̂(k) − 2p̄p̂(k)

)
, (C.6a)

ikω0τnn̂
(k) − d2n̂(k)

dx̃2
+
d2φ̂(k)

dx̃2
+
dγ

(k)
n

dx̃
= 0, (C.6b)

ikω0τpp̂
(k) − d2p̂(k)

dx̃2
− 2

d2φ̂(k)

dx̃2
− 2

dγ
(k)
p

dx̃
= 0, (C.6c)

with the appropriate conditions and with the following definition of the γk’s:

γ(k)
n =


 ∑

k>m∈Z+

n̂(m)dφ̂
(k−m)

dx̃


 , (C.7)

γ(k)
p =


 ∑

k>m∈Z+

p̂(m)dφ̂
(k−m)

dx̃


 . (C.8)

If we define u(k) =

(
φ̂(k),

dφ̂(k)

dx̃
, n̂(k),

dn̂(k)

dx̃
, p̂(k),

dp̂(k)

dx̃

)
, we can write(C.6) in compact

form as follows:
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u̇(1) = A(ω0) u(1), (C.9a)

u̇(2) = A(2ω0) u(2) + b2(x̃, ω), (C.9b)

. . . , (C.9c)

u̇(k) = A(kω0) u(k) + bk(x̃, ω), (C.9d)

where the A(ω) : R→ C6×6 is given by

A(ω) = M + iωK, (C.10)

bk is given by the summation above and is dependent on u(k−1),u(k−2), . . . ,u(1). specifically,

we will have

b(k) =




0

0

0

γ
(k)
n

0

−2γ(k)
p




. (C.11)

The matrices K and M can be written as follows (αn = λ2n̄, αp = −2λ2p̄):
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M =




0 1 0 0 0 0

0 0 αn 0 −αp 0

0 0 0 1 0 0

0 0 αn 0 −αp 0

0 0 0 0 0 1

0 0 −2αn 0 2αp 0




, K =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 τn 0 0 0

0 0 0 0 0 0

0 0 0 0 τp 0




. (C.12)

It is elementary to notice that the closed form solution of (C.9) is then given by the following

cascade of equations:

u(k)(x̃, ω) = eA(kω)x̃

{
u(k)(0, ω) +

∫ x̃

0
e−A(kω)x′bk(x′, ω) dx′

}
, (C.13)

where u(k)(0, ω) is determined by the boundary conditions. If we enforce electroneutrality,

i.e. n̄n(k) = 2p̄p(k), we recover at first order the IS equations whose 1D solution is given in

Eqn.s 2.42. It is clear that the kth order, electroneutral, homogeneous problem is such that

one eigenvalue is zero and twice degenerate while the other two are such |λk| ∝
√
kω0.

C.1 Linearization of the Chemical Boundary Conditions

We will now study the linear dynamics of chemical reactions, we will start from an equilib-

rium condition and then look at the small order harmonic perturbations. The objective of

the section is to prove that a Chang-Jaffé boundary condition fully describe the DC char-

acteristic of the response of surfaces. In general the following holds at the exposed surface
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if there is no diffusion

dθ

dt
= gf (θ, ceon,D · en, p̃H2 , p̃H2O)− gb (θ, ceon,D · en, p̃H2 , p̃H2O) , (C.14)

at 0th order (superscript (0)) under steady state condition the (C.14) can be written as

0 =
dθ(0)

dt
= gf

(
θ, c(0)

eon,D · en, p̃H2 , p̃H2O

)
− gb

(
θ, c(0)

eon,D · en, p̃H2 , p̃H2O

)
. (C.15)

If we assume that there is no dependence on the electric field D · en we will have that

θ(0) = fθ (p̃H2 , p̃H2O) ,

c
(0)
eon = feon (p̃H2 , p̃H2O) .

(C.16)

Linearization of (C.14) leads to the following expression:

dθ(1)

dt
= Jθθθ

(1) + Jθnc
(1)
eon + JθDD, (C.17)

where we indicate Jacobians or gradients with the capital letter J ; Jθθ = ∂
∂θ (gf − gb) is an

n × n real matrix, Jθn = ∂
∂ceon

(gf − gb) and JθD = ∂
∂Dn

(gf − gb) are two vectors in Rn.

The Fourier transform of the coverages is

θ̂(1) = (Jθθ − iωId)−1
[
Jθnĉ

(1)
eon + JθDD̂

]
. (C.18)

If we suppose that the vector JθDn = 0 (no field contribution) and we consider only steady

state conditions, we will get that

θ(1) = − (Jθθ)−1 Jθnc
(1)
eon. (C.19)
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the boundary condition on Γ5 reads at steady state

−ω̇eon = Jnθθ
(1) + Jnnc

(1)
eon =

[
−Jnθ (Jθθ)−1 Jθn + Jnn

]
c

(1)
eon, (C.20)

where the prefactor of c(1)
eon is a function of p̃H2 and p̃H2O. This justifies the use of Chang-

Jaffé boundary conditions at Γ5 if ω = 0.
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