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Abstract 

Olefin metathesis has become an increasingly important and powerful reaction.  

The development of the well-defined ruthenium alkylidene complexes, in particular, has 

broadened the scope and utility of the olefin metathesis reaction in both organic 

synthesis and polymer science. Despite these advances, complete control of the 

parameters (activity, stability, and selectivity) that affect efficiency in olefin metathesis 

remains a major challenge, and the development of more efficient catalysts for a variety 

of applications remains a very important goal.  With that in mind, this thesis primarily 

focuses on understanding the requirements for and improving the efficiency of 

ruthenium-based olefin metathesis. 

In chapter two, a series of ruthenium olefin metathesis catalysts bearing N-

heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl 

substitution were prepared.  These complexes show greater resistance to decomposition 

through C-H activation of the N-aryl group, resulting in increased catalyst lifetimes.  This 

work utilized robotic technology to examine the activity and stability of each catalyst in 

metathesis, providing insights into the relationship between ligand architecture and 

catalyst efficiency. 

In chapter three, the high-throughput assay developed in the previous chapter 

was utilized to screen a series of ruthenium catalysts for the ring-closing metathesis 

(RCM) of acyclic carbamates to form the corresponding di-, tri-, and tetrasubstituted   

five-, six-, and seven-membered cyclic carbamates.  While disubstituted cyclic olefins 

were easily formed by a variety of catalysts, NHC-bearing catalysts were required to 

produce trisubstituted cylic olefin products at low catalyst loadings.  Furthermore, only 

catalysts bearing small N-aryl bulk on the NHC ligands were found to effectively 
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accomplish the RCM reaction for sterically challenging substrates, providing a reminder 

that more-efficient catalysts still need to be developed. 

A process for the preparation of symmetric and unsymmetric imidazolinium 

chlorides that involves reaction of a formamidine with dichloroethane and a base is 

described in chapter four. This method makes it possible to obtain numerous 

imidazolinium chlorides under solvent-free reaction conditions and in excellent yields 

with purification by simple filtration.  

In chapter five, both chiral triazolylidenes and cyclic alkyl amino carbenes 

(CAACs) were chosen as ligands for the preparation of chiral ruthenium olefin 

metathesis catalysts.  These C1 symmetric ligands were chosen to create non-

conformationally flexible environments in proximity to the ruthenium center, potentially 

bringing chirality extremely close to the site of catalysis.  These new motifs for ligand 

architecture show great promise.  The moderate enantioselectivies obtained for AROCM 

and ARCM indicate potential utility toward both synthetic methodology and mechanistic 

insight.  

Finally, appendix A describes the preparation of a series of ruthenium olefin 

metathesis catalysts bearing acenapthylene-annulated NHC ligands with varying 

degrees of N-aryl substitution.  Initial evaluation of their performance in olefin metathesis 

demonstrated that these complexes show greater resistance to decomposition, resulting 

in increased catalyst lifetimes.  While this work has significant potential, the results are 

preliminary. 
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Olefin Metathesis 

The olefin metathesis reaction is a transition metal–mediated transformation that 

rearranges the carbon atoms of carbon-carbon double bonds.1 As illustrated in scheme 

1.1, the generally accepted mechanism, originally proposed by Chauvin2 in 1971 and 

supported by Grubbs3 in 1975, involves olefin coordination to a transition metal–

alkylidene complex, followed by a [2+2]-cycloaddition reaction that generates a new 

carbon-carbon bond and affords a metallacyclobutane intermediate, and finally a [2+2]-

cycloreversion reaction, which regenerates a metal-alkylidene and a coordinated olefin 

product.  

Scheme 1.1. General mechanism for olefin metathesis. 
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 The individual steps in the catalytic cycle of the olefin metathesis reaction are 

reversible and the substrate-product equilibrium is governed by thermodynamic control.  

Therefore, most protocols rely on a driving force, such as the formation of ethylene or 

the release of ring strain, to favor the formation of a single product.4  The classifications 

of olefin metathesis reactions are summarized in figure 1.1, including cross metathesis 

(CM), ring-opening cross metathesis (ROCM), ring-closing metathesis (RCM), ring-

opening metathesis polymerization (ROMP), and acyclic diene metathesis 

polymerization (ADMET).  Through the application of these methodologies and others, 

olefin metathesis has become an increasingly important and powerful reaction that is 

widely used in both organic synthesis and polymer science.1,5 
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Figure 1.1. Types of olefin metathesis reactions commonly employed. 

 Olefin metathesis was originally observed in the mid-1950s.6  The earliest 

metathesis reactions were catalyzed by ill-defined, multi-component systems comprised 

of transition-metal halides and main-group co-catalysts, such as WCl6/EtAlCl2, 

WCl6/BuSn4, or metals  on solild supports, such as MoO3/SiO2.
1a,1b,7  The isolation of the 

first well-defined metal carbene complexes in the 1970s spurred great advances in 

catalyst design, leading to titanium,8 tungsten,9 molybdenum10 and ruthenium11 

complexes that are active in olefin metathesis reactions (Figure 1.2).  The different 

metals impart different reactivities to the alkylidenes, and, as will be discussed in detail 

for ruthenium, small adjustments in the ligand environment can cause large changes in 

catalyst behavior. 
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Figure 1.2. Well-defined transition-metal olefin metathesis catalysts. 
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Ruthenium-Based Catalysts 

 The development of the well-defined ruthenium alkylidene complexes, in 

particular, has allowed for olefin metathesis’ wide use in both organic synthesis and 

polymer science.1,5 Unlike their early transition-metal counterparts, these ruthenium 

complexes are tolerant to moisture and oxygen, allowing them to be easily handled on 

the benchtop.12  Furthermore, the high affinity of ruthenium for olefins over other 

functional groups makes these complexes generally more useful for synthetic 

applications (Table 1.1).  Despite these comparative advantages, ruthenium systems 

cannot yet match the overall activity observed with the early metal complexes in many 

cases.12 

Table 1.1. Comparison of activity and functional group tolerance for several metals 

utilized in olefin metathesis; adapted from reference 12a. 

 

 The ruthenium-based catalysts are based on a X2L2Ru=CHR platform comprised 

of a ruthenium alkylidene, two anionic, and two neutral ligands (Figure 1.3).  Nguyen and 

co-workers reported the first well-defined ruthenium-alkylidene complex (1.1) in 

1992.11b,11c In 1995, Schwab and co-workers replaced the triphenylphosphine ligands 

with the more sigma-donating tricyclohexylphosphine ligand and replaced the vinyl 

carbene with a benzylidene, generating complex 1.2.11d,11e This complex demonstrated 
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good activity and improved functional group tolerance over 1.1, greatly expanding the 

substrate scope. With Scholl and co-workers’ development of complex 1.3 

(H2IMes)(PCy3)Cl2Ru=CHPh (H2IMes = 1,3-dimesitylimidazolidine-2-ylidene) in 1999, the 

activity of the ruthenium catalyst was further increased while retaining the desirable 

functional group tolerance and stability.11f,11g  In fact, the activity of 1.3 rivals that of the 

highly active molybdenum systems.13 Finally, Hoveyda’s exchange of the final 

phosphine ligand with a chelating ether moiety has provided 1.4, which shows increased 

stability relative to previous catalysts.11h, 11i 

O

Ru
Cl

Cl
Ru

Cl

Cl

PCy3

Ph

PCy3

Ru
Cl

Cl

PCy3

Ph

NNNNPPh3

Ru
Cl

Cl

PPh3

1.1 1.2 1.3 1.4  

Figure 1.3. Ruthenium-based olefin metathesis catalysts. 

Despite the aforementioned advances, completely controlling the parameters that 

affect efficiency in olefin metathesis remains a major challenge.  These parameters, best 

described by Ritter et al., broadly include activity, stability and selectivity (Figure 1.4).14 

Activity encompasses the initiation and propagation rates of given catalyst in olefin 

metathesis.  As such, it is reaction dependent and can be quantified through kinetic 

experiments.15  Stability is directly related to activity and refers to the lifetime of a 

catalyst and its ability to perform productive metathesis events over extended periods of 

time.  Stability can be qualitatively measured by monitoring loss in catalyst activity 

throughout the course of a reaction.  Finally, selectivity describes the ability of a catalyst 

to react with a certain type of substrate (chemoselectivity) or to provide control over 

product formation (enantioselectivity and diastereoselectivity). 

 



6 

 

Figure 1.4. Parameters influencing efficiency in catalysis; adapted from reference 14. 

With that in mind, the development of more efficient catalysts for a variety of 

applications remains a very important goal and has been actively pursued.  In addition to 

H2IMes, a variety of other N-heterocyclic carbene (NHC) ligands have been examined.  

These studies have led to, among others, the design and development of ruthenium 

catalysts utilized in enantioselective olefin metathesis,16 applications in aqueous or 

protic solvents,17 and the metathesis of highly hindered substrates.18  Other areas of 

significant interest include the development of catalysts that are both highly stable and 

highly active or exhibit kinetic selectivity, as in ethenolysis and E/Z-diastereoselective 

olefin metathesis reactions.19 

Thesis Research 

This thesis primarily focuses on understanding and improving efficiency in 

ruthenium-based olefin metathesis.  Chapter two describes the effects of NHC-backbone 

substitution on the activity and stability of ruthenium catalysts and the development of a 

highly sensitive assay to measure minor modifications in catalyst architecture.  The use 

of this assay to describe trends in catalyst efficiency for the formation of cyclic 

carbamates is the focus of chapter three, with additional results outlined in appendix B.  

Chapter four describes a novel, efficient, and environmentally friendly method for the 
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production of imidazolinium salts, precursors in the synthesis of NHC-based catalysts.  

The research presented in chapter five describes ongoing efforts to utilize chiral non-

racemic C1-symmetric ligands, both triazolylidenes and cyclic alkyl amino carbenes, to 

create rigid chiral space in proximity to the ruthenium center, potentially affording highly 

efficient and enantioselective olefin metathesis catalysts.  Finally, appendix A outlines 

preliminary results from research utilizing a series of ruthenium olefin metathesis 

catalysts bearing acenapthylene-annulated (NHC) ligands. 
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Abstract 

A series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene 

(NHC) ligands with varying degrees of backbone and N-aryl substitution have been 

prepared.  These complexes show greater resistance to decomposition through C-H 

activation of the N-aryl group, resulting in increased catalyst lifetimes.  This work has 

utilized robotic technology to examine the activity and stability of each catalyst in 

metathesis, providing insights into the relationship between ligand architecture and 

enhanced efficiency.  The development of this robotic methodology has also shown that, 

under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% 

conversion in the ring-closing metathesis of diethyl diallylmalonate. 

Introduction 

Olefin metathesis has emerged as a valuable tool in both organic and polymer 

chemistry.1  Ruthenium-based catalysts, in particular, have received considerable 

attention because of their tolerance to moisture, oxygen, and a large number of organic 

functional groups.2  Following the report of the increased activity of complex 2.1 

(H2IMes)(PCy3)Cl2Ru=CHPh (H2IMes = 1,3-dimesitylimidazolidine-2-ylidene),3 and 

Hoveyda’s subsequent exchange of the phosphine ligand with a chelating ether moiety 

(2.2),4 many researchers have focused on increasing catalytic activity, selectivity and 

stability through modification of the N-heterocyclic carbene (NHC) ligand.5   

   As ligand modification has led to improved catalyst activity, a variety of 

applications have become possible, including ring-closing metathesis (RCM), cross 

metathesis (CM), ring-opening cross metathesis (ROCM), acyclic diene metathesis 

polymerization (ADMET), and ring-opening metathesis polymerization (ROMP). Among 

those metathesis reactions, ring-closing metathesis has become the most commonly 

employed metathesis reaction in organic synthesis.6  For this transformation, NHC 
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catalysts, such as 2.1, 2.2, and more recently 2.3, have allowed both high activity and 

increased catalyst lifetime to be realized (Figure 2.1).3,4,5c 

NNMes Mes

Cl2Ru

NNMes Mes

Cl2Ru

O

Ph

PCy3

2.1 2.2

Cl2Ru

O

NN
o-Tolyl o-Tolyl

2.3  

Figure 2.1.  Representative NHC-bearing olefin metathesis catalysts. 

Despite these advances, still more efficient catalysts are sought to increase the 

applicability of RCM in industry.  In many cases, olefin metathesis is still plagued by 

catalyst deactivation and the requirement of high catalyst loadings.6 Furthermore, 

decomposition products of olefin metathesis catalysts have been shown to be 

responsible for unwanted side reactions such as olefin isomerization.7  Increased 

catalyst loading could also potentially increase the level of residual ruthenium impurities 

in the final products, which becomes especially troublesome where reaction products are 

intended for pharmaceutical use.8  Collectively, these issues have a direct influence on 

the operational cost of metathesis transformations.  With these factors in mind, the next 

challenge in RCM is to substantially decrease the catalyst loading, thereby reducing both 

reaction cost and the challenges in product purification. To this effect, our goal has been 

to increase catalyst efficiency by developing even more stable and robust catalysts that 

still retain a high catalytic activity.  

    Recently, studies by our group and others have unveiled the decomposition 

pathways at play during metathesis reactions.9  Among other degradation products, 

complexes derived from C-H activation of N-aryl substituents were reported.  Since the 

NHC ring and the aryl substituent must approach co-planarity for C-H activation, it was 

anticipated that decomposition via C–H activation processes might be slowed by 
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restriction of N-aryl group of the NHC ligand, and this might be achieved by placing 

sterically hindered groups on the NHC backbone. This hypothesis was confirmed by 

successfully preparing N-phenyl complexes 2.4 and 2.5 that are more resistant to the 

decomposition initiated by C-H activation (Figure 2.2).5a,b  Having unsubstituted N-

phenyl groups, these complexes display good and exceptional reactivity, respectively, in 

the formation of highly substituted olefins.  Despite these improvements, complexes 2.4 

and 2.5 are more prone to decomposition than 2.1 and 2.2.10 

Cl2Ru

O

NN

Cl2Ru

O

NN

2.52.4  

Figure 2.2. N-phenyl substituted complexes. 

    To address and further understand the balance between activity and stability of 

2.5, we sought to investigate a homologous series of ruthenium catalysts bearing NHCs 

with varying degrees of backbone and aryl substitution.  Molecular modeling and the 

calculations of Jensen et al. suggest that a catalyst bearing an NHC with mesityl groups 

at nitrogen and a fully methylated backbone would be an improvement over existing 

catalysts.11 We expected that the degree of substitution could be central to increased 

activity and catalyst lifetimes. 

    Herein, we report the preparation and characterization of a series of catalysts 

bearing NHCs with varying degrees of backbone and aryl substitution.  Initial evaluation 

of their performance in olefin metathesis demonstrated that the common assays were 

not effective at measuring the relative efficiencies of these catalysts at standard catalyst 

loadings.12  While the standard conditions are excellent in evaluating the activity of new 
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catalysts, they are not sensitive to small variations in the efficiency profile accompanying 

subtle modification in catalyst architecture.   

    In order to examine these small changes, we have developed a highly sensitive 

parts-per-million (ppm) level assay utilizing the precision and consistency of Symyx 

robotic technology.  We utilized these techniques to examine the activity and stability of 

these catalysts in RCM at low catalyst loadings, providing increased insight into the 

relationship between ligand architecture and catalyst efficiency.  The development of this 

methodology has also shown that, under optimized conditions, complete conversion in 

the RCM of diethyl diallylmalonate is observed with catalyst loadings as low as 25 ppm 

(0.0025 mol%). 

Results and Discussion 

Catalyst Syntheses 

  The preparation of the 1,1’-dimethyl- and 1,2-dimethyl-substituted imidazolinium 

chlorides 2.6 and 2.7 (Figure 2.3) have been previously reported by Bertrand and 

Çetinkaya, respectively.13  Under analogous experimental conditions, imidazolinium 

chlorides 2.9 and 2.10, featuring 2-methylphenyl (o-tolyl) groups were obtained in good 

yields.  Unfortunately, separation of the syn- and anti- isomers of 2.10 proved to be 

extremely difficult, requiring the mixture to be carried forward. 

NN
o-Tolyl o-Tolyl

Cl 2.11

Cl 2.6

NNMes Mes NNMes Mes

Cl 2.7

NNMes Mes

BF4 2.8

Cl 2.9

NN
o-Tolyl o-Tolyl

NN
o-Tolyl o-Tolyl

Cl 2.10  

Figure 2.3.  Imidazolinium salts. 
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    Following the procedures previously reported by our group to access the NHC of 

complex 2.5, we then attempted the preparation of the highly substituted imidazolinium 

salts bearing four methyl substituents.5a  While imidazolinium chloride 2.11 was 

prepared without incident, we were unable to synthesize the intermediate 

tetramethylated diamine 2.13 of the corresponding N-mesityl analogue under various 

conditions (Scheme 2.1).  Considering the trimethylated NHC to be sufficiently 

encumbered to prevent N-aryl rotation, we prepared 2.8 instead by Grignard addition 

followed by reduction and imidazolinium salt formation. 

Scheme 2.1. Synthesis of imidazolinium chloride 2.8. 

2.12

NNMes Mes

BF4

2.8

N N MesMes

2.13

HNNHMes Mes

1. CH3MgCl, 

    toluene, 100 oC

2. LAH, THF, 

    0 oC to rt

        69 %

2.14

HNNHMes Mes

HC(OEt)3,

NH4BF4, 

120 oC

   26%  

     With precursors 2.6–2.11 in hand, the corresponding free carbenes were 

generated by treatment of the imidazolinium salts with potassium hexamethyldisilazide 

(KHMDS) at room temperature (Figure 2.4).  These carbenes (prepared in situ) were 

reacted with commercially available (PCy3)RuCl2=CH(o- OiPrC6H4) at 70 °C, affording 

the phosphine-free chelating ether complexes 2.15–2.20.  These complexes were 

isolated as crystalline green solids after flash column chromatography, and as solids are 

both air and moisture stable under standard conditions. 
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Figure 2.4. Synthesis of ruthenium complexes 2.15–2.20. 

Structural Analyses 

    To probe the electronic and steric effects of backbone substitution, crystals of 

2.17 and 2.20 were grown and their molecular structures were confirmed by single-

crystal X-ray crystallographic analysis (Figure 2.5). The complexes exhibit a distorted 

square pyramidal geometry with the benzylidene moiety occupying the apical position.  

When compared with its unsubstituted analogue 2.2, the backbone substitution of 2.17 

results in significant differences in three key structural parameters summarized in table 

2.1: (1) Ru-C(1) bond length, (2) C(1)-Ru-C(25) bond angle, and (3) the C(3)-N2-C(16) 

bond angle. Surprisingly, there are no major differences between the solid-state 

structures of complexes 2.3 and 2.20. 
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Figure 2.5.  X-ray crystal structures of complexes 2.17 and 2.20 are shown.  

Displacement ellipsoids are drawn at 50% probability.  For clarity, hydrogen atoms have 

been omitted. 

 
Table 2.1. Selected X-ray data for 2.2, 2.17, 2.3, and 2.20. 

 

    The crystal structure of complex 2.17 suggests that the backbone methyl 

substituents push the N-mesityl groups toward the ruthenium center and as a result the 

NHC-Ru-benzylidene bond angle is also increased. However, the bond distance 

between the NHC carbene carbon and the Ru center is shorter in 2.17 (1.968 Å) than in 

2.2 (1.980 Å). This effect can be explained by noting that the backbone methyl 

substituents increase the electron-donating ability of the NHC ligand. This effect is also 
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seen in the IR carbonyl stretching frequencies of the cis-[RhCl(CO)2(NHC)] complexes 

2.21–2.23 (Figure 2.6), where increased substitution resulted in lower frequencies.14  

These structural differences should have a significant impact on the efficiency of the 

different catalysts. 

NNMes Mes

Rh(CO)2Cl

NNMes Mes

Rh(CO)2Cl

NNMes Mes

Rh(CO)2Cl

CO  (cm-1)

sym

asym

2081
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2079

1995

2077
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2.21 2.22 2.23

 

Figure 2.6.  IR carbonyl stretching frequencies of cis-[RhCl(CO)2(NHC)] complexes 

2.21–2.23. 

Ring-Closing Metathesis (RCM) Activity 

 RCM is widely used in organic synthesis and serves as a standard assay to 

evaluate the relative efficiency of most ruthenium-based catalysts.6,12  With this in mind, 

we began our metathesis activity studies by focusing on the catalytic activity of the N-

mesityl series (2.2, 2.15–2.17) in the RCM of diethyl diallylmalonate 2.24 to cycloalkene 

2.25.   The reactions, utilizing 1 mol% catalyst in CD2Cl2 at 30 °C, were monitored by 1H 

NMR spectroscopy.  Interestingly, the plots of cycloalkene 2.25 concentration versus 

time (Figure 2.7) revealed that the complexes affect the cyclization of 2.24, but with 

slower reaction rates as backbone substitution is increased.   

The same trend was observed for the cyclization of diethyl allylmethallylmalonate 

2.26 to form trisubstituted cyclic olefin 2.27 (Figure 2.8).  However, in the very 

challenging RCM of diethyl dimethallylmalonate 2.28, using 5 mol% catalyst in C6D6 at 

60 °C, increased substitution resulted in increased catalyst lifetimes and higher 

conversions to tetrasubstituted cyclic olefin 2.29 (Figure 2.9).  
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CO2EtEtO2C
1 mol% cat.

0.1 M, CD2Cl2

30 oC

CO2EtEtO2C

2.24 2.25  

 

Figure 2.7.  RCM of diene 2.24 using catalysts 2.2 and 2.15–2.17.  

CO2EtEtO2C
1 mol% cat.

0.1 M, CD2Cl2

30 oC

CO2EtEtO2C

2.26 2.27  

 
Figure 2.8.  RCM of diene 2.26 using catalysts 2.2 and 2.15–2.17.  
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CO2EtEtO2C

2.28

CO2EtEtO2C

2.29

5 mol% cat.

0.1 M, C6D6

3 d, 60 oC

Cat:
2.2   - 25% yield
2.15 - 54% yield
2.16 - 55% yield
2.17 - 65% yield

 
Figure 2.9.  RCM of diene 2.28 to tetrasubstituted cycloalkene 2.29 using catalysts 2.2 

and 2.15–2.17.  

    Several explanations could exist to explain these contradictory results.  Along 

with decreased initiation rate, increased backbone substitution could also alter 

propagation rate, stability, or a combination of both.  In any case, the results indicate that 

the assays reported by Ritter and co-workers, while useful for evaluating the activity of 

new catalysts,12 do not distinguish between catalysts that are both highly active15 and 

stable.16  Future improvements in, and understanding of, olefin metathesis catalysts will 

require a more sensitive assay to evaluate small variations in the efficiency profile 

accompanying subtle modification in catalyst architecture. 

Development of a ppm Level Assay 

   In order to study subtle differences in activity and stability, the standard RCM 

reactions should be observed at the lower limit of productive catalyst loading and under 

optimized conditions. With this in mind, new techniques were developed using a Symyx 

robotic system to maintain a high degree of precision and consistency when working 

with ultra-low catalyst loadings.  Our group has recently used these robotic systems to 

optimize reaction conditions and investigate new applications in olefin metathesis.17  

Similarly, utilizing an automated Vantage system, Grela and co-workers recently 

reported the successful RCM of 2.24 at just 0.02 mol% 2.2.18 

    A robotic assay was developed utilizing the RCM of diene 2.24 by complex 2.2.  

Stock solutions of catalyst and substrate were prepared in a nitrogen-filled glovebox.  

While substrate stock solutions could be stored in septum-topped vials, catalyst 
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solutions were prepared immediately prior to use. The Symyx core module was utilized 

to add all solutions to reaction vessels as well as to sample the reaction mixtures at 

programmed time intervals.  Aliquots were added into ethyl vinyl ether solution at            

-20 °C,19 and then analyzed by gas chromatography with dodecane as an internal 

standard, measuring the change in the amounts of substrate and product with time.  

With minimal deviation in reaction results, 1 M (1 mL vials) and 0.1 M (20 mL vials) 

concentrations were employed depending on reaction scale and glassware to minimize 

substrate usage.  The large vials were used in experiments where aliquots were 

withdrawn over the course of the reaction. 

    For practical reasons, most standard metathesis assays are performed in a 

closed system under inert atmosphere.12,18 However, we have observed variations in 

reaction rate and total conversion depending on the headspace of the reaction vessel.  

To circumvent this problem, reactions were carried out in open vials.  Additionally, in 

order to minimize the potential for decomposition pathways related to oxygen, all 

reactions were conducted in a nitrogen-filled glovebox.  While ruthenium-based catalysts 

are relatively stable under ambient conditions, at low catalyst loadings oxygen-related 

decomposition becomes relevant.  Control reactions were completed on a Symyx core 

module open to atmosphere, confirming the importance for oxygen-free reaction 

conditions.  Other reaction considerations, including temperature and solvent, were 

optimized based on our recent complementary studies on the RCM of diallylamines with 

low catalyst loadings (chapter 3).17a A solvent screen identified toluene as the optimal 

solvent for RCM of these diallyl substrates (Figure 2.10). 
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CO2EtEtO2C CO2EtEtO2C

2.24 2.25

x ppm 2.2

1 M, solvent

8h, 30 oC

 

 

Figure 2.10. RCM of diene 2.24 to disubstituted cycloalkene 2.25, using catalyst 2.2 in a 

variety of solvents. 

    Toluene as solvent also allowed for an increased temperature of 50 °C.  While 

increased temperatures have previously been shown to increase metathesis reaction 

rates,18,20 temperatures above 50 °C decreased assay consistency and resulted in 

significant solvent losses throughout the course of the reaction.  The use of methylene 

chloride, the solvent most commonly used for RCM, resulted in considerable solvent loss 

even at 30 °C.  Furthermore, its use resulted in decreased conversions, relative to other 

solvents.  The RCM of 2.24 was then monitored over a variety of catalyst loadings to 

calibrate the new assay (Figure 2.11).  Under optimized conditions (0.1 M, toluene,        

50 °C), complex 2.2 afforded almost quantitative yields of 2.25 after 1 hour at just 50 

ppm.  
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x ppm 2.2

0.1 M, toluene

50 oC

CO2EtEtO2C CO2EtEtO2C

2.24 2.25  

 
Figure 2.11. RCM of diene 2.24 to disubstituted cycloalkene 2.25, using catalyst 2.2. 

    Under the optimized conditions, trimethylated complex 2.17 required only 25 ppm 

to reach full conversion to disubstituted cycloalkene 2.25; a catalyst loading near 

pharmaceutical impurity limits.8 In order to directly compare the N-mesityl series (2.2 and 

2.15–2.17), catalyst loadings were further decreased to 15 ppm to ensure that no 

reactions would reach completion before the catalyst had completely decomposed.  

Again, at very low catalyst loadings, increased backbone substitution resulted in higher 

conversions to cyclic olefin 2.25.  When conversions were monitored over the course of 

the reaction, the effects of backbone substitution became evident (Figure 2.12).  The 

data suggest that the higher conversions are a direct result of longer catalyst lifetimes.  

However, as observed during the NMR studies, increased backbone substitution 

decreases catalyst reaction rate.  These results were supported through observation of 
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the same trends when complexes 2.3 and 2.20 were studied using the same assay 

(Figure 2.13).21 

CO2EtEtO2C CO2EtEtO2C

2.24 2.25

15 ppm cat.

0.1 M, toluene

50 oC

 

  

Figure 2.12. Plot of the RCM of diene 2.24 to disubstituted cycloalkene 2.25, with 

conversion monitored over 24 h using catalysts 2.2 and 2.15–2.17.  The inset depicts a 

plot expansion over 1 h of the reaction. 
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CO2EtEtO2C CO2EtEtO2C

2.24 2.25

15 ppm cat.

0.1 M, toluene

50 oC

 

 

Figure 2.13. Plot of the RCM of diene 2.24 to disubstituted cycloalkene 2.25, with 

conversion monitored over 24 h using catalysts 2.3 and 2.20. 

     The catalyst efficiency assay was then expanded to study the RCM of 2.26 to 

give trisubstituted cycloalkene 2.27. Calibration using the more sterically challenging 

substrate revealed that significantly more catalyst is necessary to effect full conversion 

to 2.27, with complex 2.2 affording yields over 90% at 400 ppm catalyst loadings (Figure 

2.14).  The increase in required catalyst loading due to the addition of a single methyl 

group demonstrates the importance and effect of the olefin substrates steric 

environment. 
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x ppm 2.2

0.1 M, toluene

50 oC

CO2EtEtO2C CO2EtEtO2C

2.26 2.27  

 

Figure 2.14. RCM of diene 2.26 to disubstituted cycloalkene 2.27, using catalyst 2.2. 

    Catalyst comparison reactions, performed at 200 ppm, reveal that the addition of 

substituents to the NHC ligands has greater impact on the efficiency of the metathesis 

catalysts than with the previous substrate, with 2.17 and 2.20 both outperforming their 

unsubstituted analogues (Figure 2.15). Notably, the RCM of 2.26 also clearly highlights 

the difference in stability between the N-mesityl (2.2 and 2.17) and the N-o-tolyl catalysts 

(2.3 and 2.20).  For this trisubstituted olefin substrate, catalyst stability is more significant 

than activity for success in RCM.  Complex 2.5 is the most active ruthenium-based 

catalyst to date, but is not particularly stable under prolonged reaction conditions. As 

expected, while 2.5 performs exceptionally well at standard loadings (1 mol%), it falters 

at low catalyst loadings. 
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CO2EtEtO2C CO2EtEtO2C

2.26 2.27

200 ppm cat.

1 M, toluene

12 h, 50 oC

Cat.      Yield (%)
  2.2           77
2.17           84

  2.3           54
2.20           64

  2.5           31  

Figure 2.15.  RCM of diene 2.26 to trisubstituted cycloalkene 2.27, using catalysts 2.2, 

2.3, 2.5, 2.17, and 2.20. 

    Finally, the ring-closing metathesis of 2.28 to tetrasubstituted cycloalkene 2.29 

was examined using the same catalyst assay.  Continuing the trend, at 0.2 mol% 

loading, complex 2.17 outperforms 2.2, yielding just 15% and 7% of the tetrasubstituted 

cycloalkene respectively (Figure 2.16).  Despite the expected low yields, the result 

reaffirmed the conclusion that backbone substitution increases the stability of the 

resulting complex.  In the case of the N-mesityl series, this increase in stability has not 

resulted in a detrimental decrease in activity.   

Cat.      Yield (%)
  2.2             7
2.17           15

  2.3           93
2.20           60

2000 ppm cat.

1 M, toluene

24 h, 50 oC

CO2EtEtO2C

2.28

CO2EtEtO2C

2.29  

Figure 2.16.  RCM of diene 2.28 to tetrasubstituted cycloalkene 2.29, using catalysts 

2.2, 2.3, 2.17, and 2.20. 

    Surprisingly, the N-o-tolyl series does not continue in the expected trend.  

Complexes 2.3, and 2.20 were compared at 0.2 mol% catalyst loading (Figure 2.16), 

revealing complex 2.3 to be the most efficient catalyst for this tetrasubstituted olefin.   To 

confirm this result, complexes 2.3, 2.5, and 2.20 were tested at a lower loading of 0.1 

mol% and the reactions were monitored over time (Figure 2.17).  At this loading, the 

effectiveness of the catalysts to complete the RCM dropped significantly, providing a 

reminder that more efficient catalysts still need to be developed.  
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CO2EtEtO2C

2.28

CO2EtEtO2C

2.29

1000 ppm cat.

0.1 M, toluene

50 oC

 

 

Figure 2.17.  RCM of diene 2.28 to tetrasubstituted cycloalkene 2.29, using catalysts 

2.3, 2.5, and 2.20. 

    Complex 2.3 outperformed both the more stable 2.20 and the more active 2.5.  At 

low catalyst loadings, the decreased stability of 2.5 becomes a larger factor than its 

increased activity.  Complex 2.20 faces the opposite challenge of substantially 

decreased activity.  The differences between 2.3, 2.5, and 2.20 suggest that increased 

activity becomes more important than, but does not negate, increased stability for the 

RCM of very challenging substrates. While conversions were low, the experiment gives 

a clear result and is a reminder that the key to catalyst efficiency is the ratio of the rate of 

productive olefin metathesis relative to the rate of catalyst decomposition. 

Conclusions 

    In summary, we describe the synthesis and characterization of a series of 

ruthenium-based olefin metathesis catalysts bearing NHCs with varying degrees of 
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backbone and aryl substitution.   In order to study their subtle differences in activity and 

stability, a highly sensitive assay was developed to operate at the lower limit of 

productive catalyst loading.  These techniques were developed using a Symyx robotic 

system to maintain a high degree of precision and consistency when working with ultra-

low catalyst loadings. 

The development of this highly sensitive assay has provided increased insight 

into the relationship between ligand architecture and efficiency.  In this study, both 

backbone and aryl substitution were found to significantly impact catalyst stability and 

activity.  Whereas low N-aryl bulk on the NHC ligands led to increased activity, it also 

decreased stability.  Increased backbone substitution, however, led to increased catalyst 

lifetimes and decreased reaction rates.   Furthermore, it was found that the relative 

importance of stability and activity on efficiency is dependent on the steric encumbrance 

of the RCM reaction.  For substrates with low steric demands, catalyst stability is quite 

important for success at low catalyst loadings.  For sterically encumbered substrates, 

catalyst activity becomes much more important than increased stability.  The ability to 

study the relationship between small changes in ligand architecture and efficiency will 

allow us to better explore new opportunities in catalyst design. 

 

Experimental 

General Information 

    NMR spectra were recorded using a Varian Mercury 300 or Varian Inova 500 

MHz spectrometer.  NMR chemical shifts are reported in parts per million (ppm) 

downfield from tetramethylsilane (TMS) with reference to internal solvent for 1H and 13C.  

Spectra are reported as follows: chemical shift (  ppm), multiplicity, coupling constant 

(Hz), and integration. IR spectra were recorded on a Perkin-Elmer Paragon 1000 
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Spectrophotometer. Gas chromatography data was obtained using an Agilent 6850 FID 

gas chromatograph equipped with a DB-Wax Polyethylene Glycol capillary column (J&W 

Scientific). High-resolution mass spectroscopy (FAB) was completed at the California 

Institute of Technology Mass Spectrometry Facility. X-ray crystallographic structures 

were obtained by the Beckman Institute X-ray Crystallography Laboratory of the 

California Institute of Technology. Crystallographic data have been deposited at the 

CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K., and copies can be obtained on 

request, free of charge, by quoting the publication citation and the deposition numbers 

670930 (2.17) and 651007 (2.20). 

  All reactions involving metal complexes were conducted in oven-dried glassware 

under a nitrogen atmosphere with anhydrous and degassed solvents, using standard 

Schlenk and glovebox techniques. Anhydrous solvents were obtained via elution through 

a solvent column drying system.22 Silica gel used for the purification of organometallic 

complexes was obtained from TSI Scientific, Cambridge, MA (60 Å, pH 6.5–7.0). 

RuCl2(PCy3)(=CH–o- OiPrC6H4), 2.2, and 2.3 were obtained from Materia, Inc.  Unless 

otherwise indicated, all compounds were purchased from Aldrich or Fisher and used as 

obtained. The compounds 2.6,13a 2.7,13b 2.12,13b 2.21,14 2.24-2.29,12 have been 

described previously and were prepared according to literature procedures or identified 

by comparison of their spectroscopic data. The initial screening of the catalysts, in RCM 

via 1H NMR spectroscopy was conducted according to literature procedures.12 

 

Low ppm Level Assays 

Experiments on the RCM of 2.24, 2.26, and 2.28 using the catalysts described were 

conducted using a Symyx Technologies Core Module (Santa Clara, CA) housed in a 

Braun nitrogen-filled glovebox and equipped with Julabo LH45 and LH85 temperature-

control units for separate positions of the robot tabletop.   
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For experiments where aliquots were not taken during the course of the reaction, 

up to 576 reactions (6 96 well plates) could be performed simultaneously in 1 mL vials 

by an Epoch software-based protocol as follows. To prepare catalyst stock solutions (0. 

25 mM), 20 mL glass scintillation vials were charged with catalyst (5 mole) and diluted 

to 20.0 mL total volume in THF.  Catalyst solutions, 6 to 800 L depending on desired 

final catalyst loading, were transferred to reaction vials and solvent was removed via 

centrifugal evaporation.  The catalysts were preheated to the desired temperature using 

the LH45 unit, and stirring was started. Substrates (0.1 mmol), containing dodecane 

(0.025 mmol) as an internal standard, were dispensed simultaneously to 4 reactions at a 

time using one arm of the robot equipped with a 4-needle assembly.  Immediately 

following substrate addition, solvent was added to reach the desired reaction molarity, 

generally 1 M.  All reactions were quenched by injection of 0.1 mL 5% v/v ethyl vinyl 

ether in toluene at a preprogrammed time. Samples were then analyzed by gas 

chromatography 

Alternatively, where aliquots were taken during the course of the reaction, the 

entire operation was performed on 12 reactions simultaneously (4 catalyst loadings in 

triplicate or 2 catalysts at 3 catalyst loadings in duplicate) by an Epoch software-based 

protocol as follows. To prepare catalyst stock solutions (1.0 mM), 20 mL glass 

scintillation vials were charged with catalyst (5 mole) and diluted to 5.0 mL total volume 

in toluene.  Catalyst solutions, 10 to 400 L depending on desired final catalyst loading, 

were transferred to glass 20 mL scintillation vials each capped with a septum having a 3 

mm hole for the purpose of needle access, and were diluted to 10 mL total volume in 

toluene.  The catalysts were preheated to 50.0 oC using the LH45 unit and stirred.  

Substrates (1 mmol), containing dodecane (0.25 mmol) as an internal standard, were 

dispensed simultaneously to 4 reactions at a time using one arm of the robot equipped 

with a 4-needle assembly.  After the 2 minutes required for completion of the transfer, 50 
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L aliquots of each reaction were withdrawn using the other robot arm and dispensed to 

1.2 mL septa-covered vials containing 5% v/v ethyl vinyl ether in toluene cooled to          

-20 oC in two 96-well plates.  The needle was flushed and washed between dispenses to 

prevent transfer of the quenching solution into the reaction vials.  16 time points were 

sampled at preprogrammed intervals and the exact times were recorded by the Epoch 

protocol. Samples were then analyzed by gas chromatography. 

 

GC Data Analysis 

Samples were analyzed by gas chromatography with dodecane as an internal 

standard, measuring the change in the amounts of substrate and product with time.  To 

obtain accurate conversion data, GC response factors were obtained for all starting 

materials and products.12  

Relevant instrument conditions: Inlet temperature = 250 ºC; detector temperature = 250 

ºC; hydrogen flow = 32 mL/min; air flow = 400 mL/min; constant col + makeup flow = 30 

mL/min.  

GC Method: 85 ºC for 1.5 minutes, followed by a temperature increase of 15 ºC/min to 

160 ºC, followed by a temperature increase of 80 ºC/min to 200 ºC and a subsequent 

isothermal period at 210 ºC for one minute (total run time = 8 minutes). 

Representative GC Traces 
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Syntheses 

1,3-dimesityl-4,4,5-trimethyl-imidazolinium tetrafluoroborate (2.8) 

 A solution of the diimine 2.12 (2.00 g, 6.24 mmol) in dry 

benzene was placed in a flask equipped with a reflux 

condenser, to it was added a solution of methylmagnesium 

chloride in tetrahydrofuran (3.0 M, 8.3 ml, 24.96 mmol). The resulting solution was 

stirred at refluxing temperature for one day. The solvents were removed under vacuum, 

the residue was dissolved in diethyl ether and treated lithium aluminium hydride (120 

mg, 3.1 mmol). After workup and purification by flash column chromatography, the 

diamine was obtained as a white solid in 69% yield. A mixture of diamine (1.62 g, 4.78 

CO2EtEtO2C CO2EtEtO2C

26 27

CO2EtEtO2C

28

CO2EtEtO2C

29

NN

BF4
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mmol), ammonium tetrafluoroborate (0.75 g, 7.17 mmol), and triethyl orthoformate (12 

ml) was stirred at 120 ºC for 10 min and cooled to room temperature. The precipitation 

was collected by filtration, and the solid was redissolved in CH2Cl2. After the insoluble 

material was filtered off, the filtrate was evaporated under vacuum, and the residue was 

recrystallized in ethyl acetate to give 2.8 as a white solid (543 mg, 1.24 mmol, Y = 26%).  

1H NMR (300 MHz, DMSO-d6):  9.00 (s, 1H), 7.13 (s, 2H), 7.11 (s, 2H), 4.71 (q, J = 6.9 

Hz, 1H), 2.34-2.29 (m, 18H), 1.52 (s, 3H), 1.36 (s, 3H), 1.19 (d, J = 6.9 Hz, 3H).  13C 

NMR (75 MHz, DMSO-d6):  159.0, 139.7, 137.5, 136.9, 136.0, 135.8, 130.2, 130.1, 

129.8, 129.2, 128.3, 73.5, 67.7, 26.3, 20.5, 20.5, 19.3, 19.1, 18.2, 17.9, 11.9. 19F NMR 

(282 MHz, DMSO-d6):  –148.7.  HRMS calculated for C24H33N2: 349.2644. Found: 

349.2648. 

 

1,3-Ditolyl-4,4-Dimethyl-imidazolinium chloride (2.9) 

To a THF solution (40 mL) of the formamidine (1 equiv) at 78 

°C was added a solution of n-BuLi in hexanes (1 equiv).  The 

mixture was stirred for 30 minutes, then was allowed to warm to 

room temperature and stirred for a further 12 hours.  The mixture was again cooled to 

78 °C, and 3-bromopropene (1 equiv) or 3-bromo-2-methylpropene (1 equiv) was 

slowly added.  The mixture was stirred for 30 minutes at 78 °C then heated at 50 °C for 

12 hours.  Removal of the volatiles under vacuum and extraction with hexanes afforded 

the corresponding alkylated derivative. 

An oven-dried, argon-flushed, sealable Schlenk tube with a Teflon stopcock was loaded 

with the alkylated derivative (1 equiv), toluene and was cooled to 0 oC, at which point 

was added a solution of HCl in Et2O (2.0 M, 1 equiv). Precipitation of a white powder 

was immediately observed. After 15 minutes at 0 oC the mixture was left to warm to r.t. 

NN

Cl
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and stirred for an additional 15 minutes. The mixture was heated at 110 oC for 24 hours, 

after which time the volatiles were removed under vacuum and the resulting salt washed 

with toluene and ether to afford salt 2.9 (overall yield = 77%).  1H NMR (300 MHz, 

CDCl3):  9.00 (s, 1H), 7.86 (d, J = 7.2 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.37-7.15 (m, 

6H), 4.32 (s, 2H), 2.42 (s, 3H), 2.40 (s, 3H), 1.62 (s, 6H). 13C NMR (75 MHz, CDCl3): 

157.8, 136.2, 134.6, 133.6, 131.9, 131.7, 131.1, 130.6, 130.1, 130.0, 128.0, 127.3.0, 

127.1, 69.8, 64.6, 26.4, 18.8, 18.3.  

 

1,3-Ditolyl-4,5-Dimethyl-imidazolinium chloride (2.10) 

A mixture of 2,3-butandione (2.00 g, 23.23 mmol), o-toluidine 

(5.00 g, 46.66 mmol), and ethanol (ca. 2 ml) was stirred at room 

temperature for 1 day. The yellow crystalline solid was collected 

by filtration and rinsed with a small amount of ethanol to yield 3.42 g (12.97 mmol, Y = 

56%) of the desired diimine. After reduction, the diamine was obtained as a mixture of 

isomers. A diethyl ether solution of the diamine was treated with a solution of hydrogen 

chloride (2 equiv) to precipitate the diamine hydrochloride salt. The white solid was 

collected by filtration and washed with copious amount of diethyl ether. The solid was 

placed in a flask and triethyl orthoformate (large excess) was added. The resulting 

mixture was stirred at 130 °C for 5 to 10 min then cooled. After cooling to room 

temperature, the white solid was collected by filtration washing with large amount of 

diethyl ether and then with acetone to give the desired imidazolidinium chloride salt 2.10. 

1H NMR (300 MHz, CDCl3):  9.04 (s, 0.3H, trans), 8.45 (s, 0.7H, cis), 8.00-7.93 (m, 2H), 

7.39-7.25 (m, 6H), 5.54 (m, 1.4H, cis), 4.64 (m, 0.6H, trans), 2.47 (s, 4.2H, cis), 2.45 (s, 

1.8H, trans), 1.53 (d, J = 6.0 Hz, 1.8H, trans), 1.32 (d, J = 5.7 Hz, 4.2H, cis). 13C NMR 

(75 MHz, CDCl3):  157.2 (trans), 156.2 (cis), 134.4 (cis), 134.3 (trans), 132.8 (cis), 

NN



38 

132.6 (trans), 131.7 (trans), 131.6 (cis), 130.0 (trans), 129.8 (cis), 127.9 (trans), 127.6 

(cis), 127.55 (trans), 127.5 (cis), 66.9 (trans), 62.8 (cis), 18.3 (cis), 18.2 (trans), 17.6 

(trans), 12.5 (cis).  HRMS Calculated for C19H23N2: 279.1861. Found: 279.1853. 

 

1,3-Ditolyl-4,4,5,5-Tetramethyl-imidazolinium chloride (2.11) 

A solution of the diimine (3.00 g, 11.35 mmol) in dry benzene was 

placed in a flask equipped with a reflux condenser, and to it was 

added a solution of methylmagnesium chloride in tetrahydrofuran 

(3.0 M, 11.3 ml, 45.4 mmol). The resulting solution was stirred at refluxing temperature 

overnight. After being cooled to room temperature, a saturated aqueous solution of 

ammonium chloride was slowly added to the reaction mixture. The organic layer was 

separated and the aqueous layer was extracted with ethyl acetate three times. The 

combined organic layer was washed with brine, dried over magnesium sulfate, and 

purified by flash chromatography on silica (eluent: hexanes/ethyl acetate = 30/1) to yield 

the desired diamine as a yellow oil (2.25 g, 7.60 mmol, Y = 67%).  The diamine was 

dissolved in diethyl ether (10 ml) and treated with a solution of hydrogen chloride (4 M in 

dioxane) to precipitate the diamine hydrochloride salt. The solid was collected by 

filtration and rinsed with an ample amount of diethyl ether then with acetone to give the 

desired amine salt as a white powder (2.19 g, 5.93 mmol, Y = 78%).  A mixture of the 

diamine salt (330 mg, 0.89 mmol) and triethyl orthoformate (1.5 ml) was placed in a vial 

and stirred at 120 °C for 18 hours. After being cooled to room temperature, the tan 

colored solid was collected by filtration and washed with diethyl ether. (11, 64 mg, 0.187 

mmol, Y = 21%).  1H NMR (300 MHz, CDCl3):  9.38 (br s, 1H), 7.58 (deformed d, 2H), 

7.40-7.30 (m, 6H), 2.47 (s, 6H), 1.50 (s, 12H).  13C NMR (75 MHz, CDCl3):  157.9, 

136.3, 131.8, 131.3, 130.4, 130.4, 127.2, 74.0, 21.6, 18.8. HRMS Calculated for 

C21H27N2: 307.2174. Found: 307.2162. 

NN
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General procedure for the preparation of catalysts 2.15-2.20: 

To a solution of imidazolinium salt in toluene (or benzene) was added KHMDS, and the 

resulting solution was stirred at room temperature for a few minutes. RuCl2(PCy3)(=CH–

o-OiPrC6H4) was then added, and the mixture was stirred for the designated time and 

temperature (vide infra). After cooling to room temperature, the mixture was purified by 

column chromatography on TSI silica (eluent: hexane/ether = 2/1  1/1) to give the 

compounds as green solids. 

 

RuCl2(4,4-dimethyl-1,3-dimesityl-imidazolin-2-ylidene)(=CH–o-OiPrC6H4) (2.15). 

2.6 (200 mg, 0.54 mmol), potassium hexamethyldisilazide (140 mg, 0.70 mmol), and 

RuCl2(PCy3)(=CH–o-OiPrC6H4) (250 mg, 0.42 mmol) were 

reacted according to the general procedure (stirred for 2 

hours at 70 ºC) to give the desired ruthenium complex 

2.15 as a green powder (135 mg, 0.21 mmol, 49%).   

1H NMR (500 MHz, CD2Cl2, 25 oC):  16.46 (br s, 1H), 7.55 (ddd, J = 8.3 Hz, J = 2.0 Hz, 

1H), 7.10 (br s, 2H), 7.05 (br s, 2H), 6.95 (dd, J = 7.5 Hz, J = 2.0 Hz, 1H), 6.91 (t, J = 7.5 

Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 4.86 (sept, J = 6.1 Hz, 1H), 3.93 (s, 2H), 2.50-2.25 (m, 

18H), 1.47 (s, 6H), 1.21 (d, J = 6.1 Hz, 6H).13C NMR (125 MHz, C6D6):  293.3 (m), 

213.3, 153.0, 146.4, 141.3, 139.0, 138.6, 130.7, 130.0, 129.3, 122.7, 122.5, 113.6, 75.4, 

68.2 (br), 65.6 (br), 28.1, 21.8, 21.5, 21.4. HRMS Calculated for C33H42Cl2N2ORu: 

654.1718. Found: 654.1725. 
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RuCl2(1,3-dimesityl-4,5-dimethyl-imidazolin-2-ylidene)(=CH–o-OiPrC6H4) (2.16). 

2.7 (100 mg, 0.27 mmol), KHMDS (70 mg, 0.35 mmol), and 

RuCl2(PCy3)(=CH–o-OiPrC6H4) (100 mg, 0.17 mmol) were 

reacted according to the general procedure (stirred for 2 

hours at 70 ºC) to give the desired ruthenium complex 2.16 

as a green powder (60 mg, 0.092 mmol, 54%).  1H NMR (500 MHz, C6D6, 25 oC):  

16.74 (s, 1H), 7.14 (dd, J = 7.5 Hz, J = 1.5 Hz, 1H), 7.11 (ddd, J = 7.5 Hz, J = 1.5 Hz, 

1H), 7.00 (br s, 4H), 6.65 (dt, J = 7.5 Hz, J = 1.0 Hz, 1H), 6.32 (d, J = 8.0 Hz, 1H), 4.49 

(sept, J = 6.1 Hz, 1H), 4.12 (s, 2H), 3.00-2.30 (br s, 12H), 2.25 (s, 6H), 1.31 (br s, 6H), 

0.81 (d, J = 6.5 Hz, 6H).13C NMR (125 MHz, C6D6):  293.8, 213.4, 153.0, 146.4, 140.7, 

138.7, 130.2, 129.9, 128.8, 122.8, 122.5, 113.6, 75.3, 62.4 (br), 21.8, 21.4, 13.9 (br).  

HRMS Calculated for C33H42Cl2N2ORu: 654.1718. Found: 654.1738. 

 

RuCl2(1,3-dimesityl-4,4,5-trimethyl-imidazolin-2-ylidene)(=CH–o-OiPrC6H4) (2.17). 

2.8 (200 mg, 0.46 mmol), KHMDS (120 mg, 0.60 mmol), 

and RuCl2(PCy3)(=CH–o-OiPrC6H4) (200 mg, 0.33 mmol) 

were reacted according to the general procedure (stirred for 

2.5 hrs at room temperature and 4 hrs at 60 ºC) to give the 

desired ruthenium complex 2.17 as a green powder (97 mg, 0.15 mmol, 44%).  Crystals 

suitable for X-ray crystallography were grown at room temperature by slow diffusion of 

pentane into a solution of 2.17 in benzene.  1H NMR (500 MHz, C6D6, 25 oC):  16.65 (br 

s, 1H), 7.13-7.07 (m, 3H), 6.94 (br m, 3H), 6.63 (td, J = 7.6, 0.8 Hz, 1H), 6.31 (d, J = 8.0 

Hz, 1H), 4.46 (sept, J = 6.1 Hz, 1H), 4.20 (br s, 1H), 2.85-2.47 (m, 12H), 2.24 (s, 3H), 

2.21 (s, 3H), 1.28 (d, J = 6.1 Hz, 6H), 1.15 (br s, 3H), 0.88 (br s, 3H), 0.69 (br d, J = 6.9 

Hz, 3H).  13C NMR (125 MHz, C6D6):  293.8 (m), 213.4 (br), 152.9, 146.5, 140.7, 138.7, 

NN

Cl2Ru

O

NN

Cl2Ru

O



41 

138.6, 130.9, 130.6, 130.3, 129.4, 122.7, 122.4, 113.6, 75.3, 71.0 (br), 68.4 (br), 25.1, 

23.1 (br), 21.8, 21.5, 21.4, 12.1. HRMS Calculated for C34H44Cl2N2ORu: 668.1875. 

Found: 668.1898. 

 

RuCl2(1,3-ditolyl-4,4-dimethyl-imidazolin-2-ylidene)(=CH–o-OiPrC6H4) (2.18). 

2.9 (190 mg, 0.60 mmol), KHMDS (157 mg, 0.78 mmol), and 

RuCl2(PCy3)(=CH–o-OiPrC6H4) (200 mg, 0.33 mmol) were 

reacted according to the general procedure (stirred for 2 hours at 

70 ºC) to give the desired ruthenium complex 2.18 as a green 

powder (112 mg, 0.19 mmol, 57%).  1H NMR (500 MHz, CD2Cl2, 25 oC):  16. 41 (br s, 

0.40H), 16.24 (br s, 0.60H), 8.59 (br s, 1.20H), 8.59 (br s, 0.80H), 7.60-7.20 (m, 7H), 

6.88-6.81 (m, 3H), 4.91 (m, 1H), 4.40-3.60 (m, 2H), 2.62-2.40 (m, 6H), 1.64-1.07 (m, 

12H). 13C NMR (125 MHz, CD2Cl2):  232.5, 152.2, 144.3, 141.9, 138.6, 134.3, 132.5, 

131.4, 129.9, 129.5, 129.2, 128.9, 128.8, 127.6, 126.9, 122.3, 122.0, 121.8, 112.9, 74.8, 

68.1, 66.6, 29.7, 27.3, 27.0, 26.9, 26.3, 24.6, 23.9, 21.5, 19.5.  HRMS Calculated for 

C29H34Cl2N2ORu: 598.1092. Found: 598.1064. 

 

RuCl2(1,3-ditolyl-4,5-dimethyl-imidazolin-2-ylidene)(=CH–o-OiPrC6H4) (2.19). 

2.10 (100 mg, 0.32 mmol), potassium hexamethyldisilazide (70 

mg, 0.35 mmol), and RuCl2(PCy3)(=CH–o-OiPrC6H4) (100 mg, 

0.17 mmol) were reacted according to the general procedure 

(stirred for 2 hours at 70 ºC) to give the desired ruthenium 

complex 2.19 as a green powder (39 mg, 0.065 mmol, 38%).  1H NMR (500 MHz, C6D6, 

25 oC):  16.64-16.41 (m, 1H), 9.00 (br s, 2H), 7.11-6.71 (m, 8H), 6.65 (m, 1H), 6.42 (t, J 

= 7.8 Hz, 1H), 4.57 (sept, J = 6.4 Hz, 1H), 4.29-3.55 (m, 2H), 2.65-2.25 (m, 6H),1.20-

NN

Cl2Ru

O

NN

Cl2Ru

O
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1.60 (m, 6H), 1.05-0.60 (m, 6H). 13C NMR (125 MHz, C6D6):  291.7, 290.9, 232.5, 

210.74, 152.8, 144.2, 140.0, 139.6, 138.6, 137.4, 132.4, 132.2, 131.5, 131.3, 130.6, 

130.3, 121.9, 121.8, 113.0, 112.8, 74.4, 61.1, 61.0, 60.4, 21.7, 21.6, 13.2, 12.9.  HRMS 

Calculated for C29H34Cl2N2ORu: 598.1092. Found: 598.1097. 

 

RuCl2(1,3-ditolyl-4,4,5,5-tetramethyl-imidazolin-2-ylidene)(=CH–o-OiPrC6H4) (2.20). 

2.11 (41 mg, 0.12 mmol), potassium hexamethyldisilazide (24 mg, 

0.12 mmol), and RuCl2(PCy3)(=CH–o-OiPrC6H4) (60 mg, 0.1 mmol) 

were reacted according to the general procedure described above 

to give the desired ruthenium complex 2.20 as a green powder as a 

ca. 3:1 mixture of isomers (45 mg, 0.072 mmol, 72%). Crystals suitable for X-ray 

crystallography were grown at room temperature by slow diffusion of pentane into a 

solution of 2.20 in benzene. 1H NMR (500 MHz, C6D6):  16.64 (s, 0.75H), 16.33 (s, 

0.25H), 8.89 (d, J = 7.7 Hz, 0.75H), 8.84 (d, J = 7.9 Hz, 0.25H), 7.43-7.25 (m, 4H), 7.20-

7.05 (m, 4H), 6.99-6.94 (m, 1H), 6.70-6.62 (m, 1H), 6.34 (d, J = 8.3 Hz, 1H), 4.45 (sept, 

J = 6.1 Hz, 1H), 2.74 (s, 0.75H), 2.68 (s, 2.25H), 2.47 (s, 0.75H), 2.44 (s, 2.25H), 1.38-

1.20 (m, 10H), 1.04 (s, 2H), 0.76-0.70 (m, 6H). 13C NMR (125 MHz, C6D6):  214.0, 

211.5, 153.1, 153.0, 145.8, 143.3, 143.2, 141.6, 140.8, 140.3, 139.8, 137.3, 136.5, 

136.0, 134.7, 134.4, 132.3, 132.2, 131.9, 129.6, 129.5, 129.4, 129.1, 128.9, 127.6, 

127.3, 126.9, 126.6, 122.7, 122.6, 122.6, 122.5, 113.5, 75.2, 75.1, 72.3, 71.8, 71.7, 71.4, 

24.9, 24.3, 24.1, 23.9, 22.7, 22.5, 22.4, 22.2, 22.1, 22.0, 20.3, 20.1, 19.7, 19.4, 19.3. 

HRMS Calculated for C31H38Cl2N2ORu: 626.1405. Found: 626.1427. 

 

 

 

 

NN

Cl2Ru

O
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RhCl(CO)2(4,4-dimethyl-1,3-dimesityl-imidazolin-2-ylidene) (2.22) 

The imidazolidinium salt 2.6 (40 mg, 0.10 mmol), KHMDS 

(22 mg, 0.11 mmol), and toluene (2 mL) was stirred at 

room temperature under N2 for 5 min, and added to a 

suspension of [RhCl(COD)]2 (25 mg, 0.05 mmol) in toluene 

(1 mL). The resulting mixture was stirred at room temperature for 1 hour, and then the 

solvent was removed under vacuum. The residue was purified by column 

chromatography on TSI silica (eluent: 2% EtOH in CH2Cl2) to give [(NHC)RhCl(COD)] as 

a yellow powder. A solution of the prepared complex in CH2Cl2 (3 mL) was bubbled with 

CO for 1 hour. The mixture was then concentrated under vacuum and the residue was 

washed with dry hexane (2 mL  3). The resulting solid was dried under vacuum to give 

2.22 (38 mg, 0.071 mmol, Y = 71% two steps).  1H NMR (300 MHz, CD2Cl2):  7.01 (s, 

2H), 6.97 (s, 2H), 3.74 (s, 2H), 2.43 (s, 12H), 2.33 (s, 6H), 1.41 (s, 6H). 13C NMR (125 

MHz, CD2Cl2):  205.6 (JC–Rh = 41 Hz), 185.7 (JC–Rh = 53 Hz), 183.4 (JC–Rh = 75 Hz), 

138.6, 138.3, 135.5, 132.8, 130.0, 129.7, 69.7, 69.7, 65.0, 25.0, 21.4, 21.0, 20.9, 18.8. 

IR (CD2Cl2): 2079, 1995 cm-1. HRMS Calculated for C25H29ClN2O2Rh: 527.0973. Found: 

527.0960. 

 

RhCl(CO)2(1,3-dimesityl-4,4,5-trimethyl-imidazolin-2-ylidene) (2.23). 

The imidazolidinium 2.8 (46 mg, 0.10 mmol) was treated 

as described above to give 2.23 (36 mg, 0.066 mmol, Y = 

66% two steps). IR (CD2Cl2): 2078, 1994 cm-1. HRMS 

Calculated for C26H32ClN2O2Rh: 542.1207. Found: 542.1228. 
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Complex 2.17   2.20 

    
CCDC # 670930  651007 

    
Emperical formula C34H44N2OCl2Ru, (C5H12)  C31H38N2OCl2Ru 

    
Formula weight 704.25  626.60 

    
Crystallization Benzene/pentane  Benzene/pentane 

solvent    
    

Crystal color Blue  Dichroic - green/blue  
    

T (K) 100(2)   100(2)  
    

 range (o) 2.37 to 30.72  2.37 to 41.27 
    

a (Å) 11.5182(8)   9.1757(3) 
    

b (Å) 12.3831(8)   10.6130(4) 
    

c (Å) 12.4144(8)   16.2638(6) 
    

 (Å) 99.737(3)  85.3300(10) 
    

 (Å) 92.627(4)  77.2650(10) 
    

 (Å) 92.065(4)  72.2060(10) 
    

V (Å3) 1741.6(2)   1470.76(9)  
    

Crystal system Triclinic  Triclinic 
    

Space group P-1  P-1 
    

dcalc (g/cm3) 1.343  1.415 
    

μ  (mm-1) 0.634  0.741 
    

GOF on F2 2.665  1.187 
    

R1, wR2 [I > 2 (I)] 0.0605, 0.0916   0.0444, 0.0893 
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Abstract 

Utilizing a high throughput and sensitive assay, a series of ruthenium catalysts 

have been screened for the ring closing metathesis (RCM) of acyclic carbamates to form 

the corresponding di-, tri-, and tetrasubstituted five-, six-, and seven-membered cyclic 

carbamates.  While disubstituted cyclic olefins were easily formed by a variety of 

catalysts, NHC-bearing catalysts were required to produce trisubstituted cylic olefin 

products at low catalyst loadings.  Furthermore, only catalysts bearing small N-aryl bulk 

on the NHC ligands were found to effectively accomplish the RCM reaction for sterically 

challenging substrates, providing a reminder that more efficient catalysts still need to be 

developed. 

Introduction 

Olefin metathesis has become an indispensable tool for the formation of new 

carbon-carbon bonds; its success in organic synthesis and materials chemistry driven by 

the development of increasingly efficient catalysts.1  Ruthenium-based catalysts have 

received considerable attention because of their tolerance to moisture, oxygen, and a 

large number of organic functional groups.2  Ring-closing metathesis (RCM), in 

particular, has become the most commonly employed metathesis reaction in organic 

synthesis.3  RCM has had an especially large impact on the pharmaceutical industry 

since the reaction allows for an efficient and direct formation of heterocycles from acyclic 

dienes. Unfortunately, pharmaceutical efforts and applications typically use 

unnecessarily high catalyst loadings. 

With this in mind, an important challenge in RCM is to substantially decrease 

“standard” catalyst loading, thereby reducing both reaction cost and the challenges in 

product purification, especially critical where reaction products are intended for 

pharmaceutical use.4  
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Herein, we report studies to optimize conditions for olefin metathesis and explore 

the viability of RCM of acyclic carbamates with low catalyst loadings of ruthenium-based 

catalysts. In order to examine the widest possible variety of catalysts and conditions, we 

have employed a highly sensitive ppm level assay utilizing the precision and consistency 

of Symyx robotic technology.  Our group and others have recently used robotic systems 

to study catalyst efficiency, reaction optimization and new applications in olefin 

metathesis.5 

The evolution of ruthenium-based catalysts (Figure 3.1) from first generation 

catalyst 3.1 (PCy3)2RuCl2(=CHPh) to the highly active complex 3.10 bearing a 

tetramethyl-substituted NHC ligand, has been driven by a continued need for 

increasingly efficient catalysts.  Generally, phosphine-ligated complexes, such as 3.1 

and 3.3, have been suitable for the formation of disubstituted cyclic olefins.6, 7a  The 

increased activity of H2IMes-ligated complexes (H2IMes = 1,3-dimesitylimidazolidine-2-

ylidene), such as 3.2, 3.4, 3.5 and 3.6, have allowed for the facile production of 

trisubstituted olefins.7b-e  Finally, decreasing N-aryl steric bulk (3.7 and 3.8) on the N-

heterocyclic carbene (NHC) and adding methyl-groups to the backbone (3.9 and 3.10) 

have greatly increased activity and stability, allowing for efficient synthesis of highly 

hindered olefin products.5a, 7f,g   
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Figure 3.1. Ruthenium olefin metathesis catalysts (Mes = 2,4,6-trimethylphenyl).5a,7 

Due the wide variety of catalysts now available, the judicious choice of one 

catalyst for any particular application can be a daunting challenge. There are many 

substrate-dependent variables as well as catalyst stability, activity, and initiation rate 

considerations that determine catalyst efficiency for a given reaction.  Therefore, it is 

important to examine and understand trends in relative catalyst efficiencies based on 

both reaction conditions and substrate design.  With this in mind, the performance of 

several commercially available catalysts along with recently reported variants were 

utilized in this study (Figure 3.1), reaffirming the notion that no single catalyst is best for 

all olefin metathesis applications. 
1f, 5c, 5d
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Research and Discussion 

Research focused on the RCM of acyclic carbamates to form the corresponding 

di-, tri-, and tetrasubstituted five-, six-, and seven-membered cyclic carbamates: valuable 

intermediates in organic synthesis (Scheme 3.1). 

Scheme 3.1. RCM of acyclic carbamates to form the corresponding di-, tri-, and 

tetrasubstituted five-, six-, and seven-membered cyclic carbamates. 

N

R

N

R

500-5000 ppm

R'
R'

Boc Boc

m m nn

L

Cl2Ru
R''

L'

 

Reaction conditions including solvent, concentration, and temperature, were 

chosen based on recent complementary studies on catalyst efficiency.5a  Methylene 

chloride, a solvent often used in olefin metathesis reactions, was shown to greatly 

decrease catalyst efficiency and was not utilized in our experiments.5a  Instead, methyl 

tert-butyl ether (MTBE) and toluene were utilized and consistently provided excellent 

conversions throughout our studies.  MTBE, in particular, is an exciting alternative to 

chlorinated solvents and other peroxide forming ethers.  

While increased temperatures have previously shown to improve metathesis 

efficiency,5c,8 temperatures above 50 °C decreased assay consistency and resulted in 

significant solvent losses throughout the course of the reaction.  With this in mind, 

assays were generally completed at 50 °C.  

There is a clear substrate dependence for optimized concentration.  Five- and 

six-membered rings can be formed in high concentration. Notably, RCM conversions to 

form five-membered rings are only marginally lower without any solvent.  However, as 
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ring size is increased, there is an evident trend for lower concentrations leading to higher 

conversions (Table 3.1).  

Table 3.1. Effects of concentration on the formation of di-substituted five, six, and seven-

membered cyclic carbamates by complex 3.4. 

N N500 ppm 3.4

50 oC

x M, Toluene, 8 h

Boc Boc

m m nn

Substrate                   Product                      Conc.                   Conv. 
                                                                        [M]                        (%)

NBoc

  neat                        87
   1 M                     >99
0.2 M                     >99

     1 M                       96
  0.2 M                     >99

0.05 M                       92

     1 M                       46
  0.2 M                       82
0.05 M                       90

NBoc

NBoc

3.11

3.13

3.15

NBoc

NBoc

NBoc

3.12

3.14

3.16

 
 

This is exemplified in the formation of disubstituted five-, six-, and seven-membered 

cyclic carbamates by complex 3.4.  Under varying concentrations, complex 3.4 afforded 

excellent yields of 3.12, 3.14, and 3.16 at just 500 ppm. 

The ring-closing metathesis of 3.11 was then examined utilizing the full battery of 

catalysts (Figure 3.2). Results indicate that lower conversions were attained with 

catalysts containing labile phosphine (3.1, 3.2, 3.5, and 3.7) than the Hoveyda and Piers 

type catalysts.  The lower conversions with catalysts containing labile phosphine may be 

a result of competitive phosphine-based decomposition pathways.9  On average, 

complexes 3.3 and 3.4 perform this RCM most efficiently.  

Any change in substrate, either increased steric hindrance or chain length, 

resulted in dramatic differences in relative catalyst efficacy.  For example, an increase in 

chain length of one methylene unit from substrate 3.11 to substrate 3.13 results in a 
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large increase in efficiency for complex 3.5.  Notably, 3.5 is easier to prepare but 

generally less active than benzylidene analogue 3.2 and less stable than the chelating 2-

isopropoxy-benzylidene analogue 3.4.  However, 3.5 matches the performance of both 

3.2 and 3.4 in the RCM of 3.13 at just 500 ppm (Figure 3.3).  Furthermore, 3.5 continues 

to perform exceptionally well in the RCM of 3.19—a substrate designed to study 

increased steric hindrance. 

N N500 ppm [Ru]

50 oC
x M, solvent

8 h

Boc Boc

 

 
 

Figure 3.2.  RCM of 3.11 utilizing complexes 3.1–3.10. 

500 ppm [Ru]

50 oC

1 M, MTBE

8 h

NBoc

3.13; R=H
3.19; R=Me

NBoc

[Ru]          % Conv.
                 3.14     3.20

   3.2            95      88
   3.3          >99        2
   3.4            95      68
   3.5          >99    >99

R
R

3.14; R=H
3.20; R=Me  

Figure 3.3.  RCM of 3.13 and 3.19 utilizing complexes 3.2–3.5. 
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While disubstituted cyclic olefins are easily formed by a variety of catalysts, NHC-

bearing catalysts are required to produce trisubstituted cylic olefin products at low 

catalyst loadings, as seen in the failure of 3.3 to peform the ring-closing of substrate 3.19 

(Figure 3.3).  As a general trend, the increased activity of H2IMes-ligated catalysts is 

demonstrated in the RCM of sterically challenging substrates 3.17, 3.19 and 3.21 (Figure 

3.4). 

500 ppm [Ru]

50 oC
x M, MTBE

8 h
3.17; m=n=1
3.19; m=1; n=2
3.21; m=n=2

N N

Boc Boc

m m nn

3.18; m=n=1
3.20; m=1; n=2
3.22; m=n=2  

 
Figure 3.4. RCM of 3.17, 3.19 and 3.21 utilizing complexes 3.1–3.8. 

Surprisingly, in the RCM of 3.17 by quickly initiating phosphonium alkylidene 3.6, 

conversions increase to >99% at 30 °C from 92% at 50 °C.  We hypothesize that 

decreased reaction temperatures increase conversion to product by decreasing the 

relative rate of complex decomposition compared to productive metathesis.  This could 
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be quite relevant when utilizing thermally unstable substrates and products in organic 

synthesis and will be further explored in our laboratories. 

Recent catalyst design and synthesis has focused on increasing the utility of 

olefin metathesis when working with highly hindered substrates.5a,7f,g   Our comparison 

of 3.8–3.10 for the RCM of diethyl dimethylallylmalonate prompted further comparison in 

this study.5a We began this study with the RCM of N-Boc-Dimethylallylamine, 3.23, 

utilizing 1000 ppm catalyst loadings (Figure 3.5). 

N N1000 ppm [Ru]

50 oC

x M, MTBE

8 h

Boc Boc

3.23 3.24  

 
Figure 3.5. RCM of 3.23 utilizing complexes 3.7–3.10. 

Changes in concentration had a negligible effect on reaction conversion.  As in 

previous examples, the Grubbs-Hoveyda catalysts outperformed the phosphine variants.  

The delicate balance between activity and stability is also suggested by this reaction; 

complex 3.8 is more stable than 3.10 yet more active than 3.9, and leads to the highest 

conversions for this reaction. 
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This balance is altered by the addition of methylene units to the substrate, 

increasing the significance of catalyst stability.   The low catalyst loading of 1000 ppm, 

which was adequate for 3.23, was not sufficient for the RCM of 3.25.  Catalysts 3.8 and 

3.9 were comparable in activity, however, low conversions resulted: 17%-34%. Thus, the 

RCM of the more challenging substrates 3.25 and 3.27 required catalysts loadings up to 

0.5 mol% (Figure 3.6) to achieve high yields. Furthermore, only catalysts 3.8–3.10 were 

found to effectively accomplish the RCM reaction for these substrates, providing a 

reminder that more efficient catalysts still need to be developed. 

0.5 mol% [Ru]

50 oC

0.2 M, MTBE

8 h

NBoc NBoc

[Ru]          % Conv.
                  3.26     3.28

  3.8             90       97
  3.9             94       95
  3.10           52       98

m m

3.25; m=1

3.27; m=2
3.26; m=1
3.28; m=2  

Figure 3.6. RCM of 3.25 and 3.27 utilizing complexes 3.8–3.10. 

Conclusions 

We have synthesized di-, tri-, and tetrasubstituted five-, six-, and seven-

membered cyclic carbamates via RCM using low loadings of Ru-based catalysts. A high 

throughput and sensitive assay was developed and implemented using a Symyx robotic 

technology. This method has provided an overall assessment of catalyst activity with the 

carbamate substrates. This chapter focuses on just a small portion of the results from 

this study.  Additional results can be found in appendix B. 

In general, catalyst loadings as low as 500 ppm gave high yields of the cyclic 

carbamates. The di, tri, and tetrasubstituted five-membered cyclic carbamates were 

more dependent on catalyst choice and less dependent on concentration. Among the 

six- and seven-membered carbamates, lower concentrations gave higher yields. 

Furthermore, increasing steric bulk in the substrate required less bulky aryl substitution 
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on NHC-bearing catalysts. The use of MTBE as a substitute for chlorinated solvents 

provides a useful option for scale optimization. 

Experimental 

General Information 

NMR spectra were recorded using Varian Mercury 300, Inova 500, and VNMRS 

400 MHz NMR spectrometers.  NMR chemical shifts are reported in parts per million 

(ppm) downfield from tetramethylsilane (TMS) with reference to internal solvent for 1H 

and 13C nuclei.  Spectra are reported as follows: chemical shift (  ppm), multiplicity, 

coupling constant (Hz), and integration. Gas chromatography data was obtained using 

an Agilent 6850 FID gas chromatograph equipped with a DB-Wax Polyethylene Glycol 

capillary column (J&W Scientific). High-resolution mass spectroscopy (FAB) was 

completed at the California Institute of Technology Mass Spectrometry Facility. 

Catalysts 3.1-3.10 were obtained from Materia, Inc. Unless otherwise indicated, 

all compounds were purchased from Aldrich or Fisher and used as obtained. The 

compounds 3.11, 3.12, 3.14,10 3.16-3.18,11 and 3.23-3.2412 have been described 

previously and were prepared according to literature procedures or identified by 

comparison of their spectroscopic data. The initial screening of the catalysts, in ring-

closing metathesis (RCM) via 1H NMR was conducted according to literature 

procedures.13  
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General procedure for the synthesis of N-Boc-1-(3-butenyl)allylamine (3.13), N-

Boc-1-(3-butenyl)methallylamine (3.19), and N-Boc-1-(3-methyl-3-

butenyl)methallylamine (3.25) RCM substrates: 

N

Boc

BocHN

R
Br

R'

R

R'

13; R=R'=H

19; R=H, R'=Me

25; R=R'=Me

 

The Boc-protected olefin (1 equiv) was added at room temperature to a suspension of 

60% NaH (1.5 equiv) mineral oil dispersion in 150 mL of DMF. The slurry was stirred for 

2 h followed by addition of the allylbromide (1.3 equiv) at 0 ºC. The reactions were 

monitored by gas chromatography until all of the Boc-protected olefin was consumed. 

The reaction was quenched with MeOH and water followed by extraction with hexanes 

(3 x 60 mL). The organic phases were combined and dried over MgSO4; the organic 

solvent was removed to give light-yellow oil. The crude product was purified by column 

chromatography on silica and eluted with 0%-4% EtOAc in hexanes. The pure products 

(97% by GC) were clear colorless oils and 60%-70% yields were obtained.  

 

General procedure for the synthesis of N-Boc-1-(3-dibutenyl)amine (3.15), N-Boc-

1-(3-butenyl)-1-(3-methyl-3-butenyl)amine (3.21), N-Boc-1-(3-methyl-3-

dibutenyl)amine (3.27) RCM substrates:   

NH3Cl

R

R'

15; R=R'=H

21; R=H, R'=Me

27; R=R'=Me

X

X = -Br or -OTs

N

Boc

R R'

Boc2O, Et3N

 

 The 4-bromo-1-butene or 4-tosylic-1-butene (1 equiv), butenylamine 

hydrochloride (1.1 equiv), and NaHCO3 (1.1 equiv) were suspended in 150 mL of THF 

and heated to 60˚C for 2 days. After cooling to room temperature, triethylamine (2.8 
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equiv) was added followed by addition of di-tert-butyl dicarbonate (1.1 equiv) over 15 

minutes maintaining a constant gas evolution. The suspension was stirred for 90 

minutes and the solids were removed by filtration. The filtrate was concentrated, re-

dissolved in 50 mL of MeOH, and 5 mL of 1M NaOH (aq) was added. This mixture was 

stirred at room temperature for 16h and formed a cream-colored slurry.  The solids were 

removed by filtration, and the filtrate was concentrated, and the residue partitioned 

between Et2O and saturated NaHCO3 (aq). The organic phase was washed with water 

and brine, dried over Na2SO4, filtered, and concentrated to yield a brown oil. The crude 

product was purified by column chromatography on silica and eluted with 0%-4% EtOAc 

in hexanes. The pure products were clear, pale-yellow oils and 40%-50% yields were 

obtained.  

 

N-Boc-1-(3-butenyl)allylamine (3.13) 

1H NMR (400 MHz, CDCl3):  5.75 (m, 2H), 4.97-5.12 (m, 4H), 3.80 (br, 

2H), 3.21 (br, 2H), 2.25 (br, 2H), 1.44 (s, 9H). 13C NMR (75 MHz, CDCl3):  

155.54 (s), 135.66 (s), 134.47 (s), 116.51 (s), 79.49 (s), 49.96/49.65 (s, 

rotamers), 46.32 (s), 33.16/32.86 (s, rotamers), 28.51 (s). HRMS Calculated for 

C13H23O2N: 212.1650. Found: 212.1640. 

 

N-Boc-1-(3-dibutenyl)amine (3.15) 

1H NMR (400 MHz, CDCl3):  5.75 (m, 2H), 5.07 (m, 1H), 5.02 (m, 2H), 

4.99 (m, 1H), 3.22 (br, 4H), 2.26 (br, 4H), 1.44 (s, 9H). 13C NMR (75 

MHz, CDCl3):  155.58 (s), 135.69 (s), 116.54 (s), 79.36 (s), 47.09 (s), 

33.49/32.94 (s, rotamers), 28.57 (s). HRMS Calculated for C14H25O2N: 226.1807. Found: 

226.1797. 

 

N

Boc

N

Boc
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N-Boc-1-(3-butenyl)methallylamine (3.19) 

1H NMR (400 MHz, CDCl3):  5.76 (m, 1H), 5.06 (d, 1H, J3 = 32 Hz), 

5.02 (d, 1H, J2 = 4 Hz), 4.82 (s, 1H), 4.76 (s, 1H), 3.75 (br, 2H), 3.20 

(br, 2H), 2.26 (br, 2H), 1.67 (s, 3H), 1.45 (s, 9H). 13C NMR (75 MHz, 

CDCl3):  140.17 (s), 134.25 (s), 115.50 (s), 110.61 (s), 79.43 (s), 53.67/53.11 (s, 

rotamers), 46.83 (s), 34.16/33.61 (s, rotamers), 29.76 (s), 21.46 (s). HRMS Calculated 

for C13H23O2N: 226.1807. Found: 226.1807. 

 

1-(tert-Butoxycarbonyl)-3-methyl-1,2,5,6-tetrahydropyridine (3.20) 

1H NMR (400 MHz, CDCl3):  5.50 (br, 1H), 3.72 (br, 2H), 3.42 (t, 2H, J3 = 

6 Hz), 2.06 (s, 2H), 1.66 (s, 1H), 1.46 (s, 9H). 13C NMR (75 MHz, CDCl3):  

155.05 (s), 119.83 (s), 79.51 (s), 47.30 / 46.05 (s, rotamers), 40.86/39.55 

(s, rotamers), 28.62 (s), 28.41 (s), 20.60 (s). HRMS Calculated for C13H23O2N: 196.1338. 

Found: 196.1333. 

 

N-Boc-1-(3-butenyl)-1-(3-methyl-3-butenyl)amine (3.21) 

1H NMR (400 MHz, CDCl3):  5.76 (m, 1H), 5.07 (d, 1H, J3 = 34 Hz), 

5.02 (d, 1H, J2 = 5Hz), 4.74 (s, 1H), 4.68 (s, 1H), 3.23 (br, 4H), 2.18-

2.27 (br m, 4H), 1.74 (s, 3H), 1.45 (s, 9H). 13C NMR (75 MHz, CDCl3): 

 153.51 (s), 134.19 (s), 115.51 (s), 111.01 (s), 110.70 (s), 79.28 (s), 46.98/47.23 (s, 

rotamers), 47.60/47.85 (s, rotamers), 37.44/38.10 (s, rotamers), 34.06/34.59 (s, 

rotamers), 29.79 (s), 23.99 (s). HRMS Calculated for C14H25O2N: 240.1964. Found: 

240.1974. 

 

 

N
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N

Boc

N
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1-(tert-Butoxycarbonyl)-4-methyl-2,3,6,7-tetrahydroazepine (3.22) 

1H NMR (400 MHz, CDCl3):  5.46 (m, 1H), 3.44 (br, 4H), 2.20 (br, 4H), 

1.70 (br, 3H), 1.44 (s, 9H). 13C NMR (75 MHz, CDCl3):  155.33 (s), 

123.50/123.17 (s, rotamers), 79.22 (s), 47.18/46.44 (s, rotamers), 

45.33/44.61 (s, rotamers), 35.32/35.11 (s, rotamers), 28.62 (s), 26.65 (s). 

HRMS Calculated for C12H21O2N: 211.1572. Found: 211.1564. 

 

N-Boc-1-(3-methyl-3-butenyl)methallylamine (3.25) 

1H NMR (400 MHz, CDCl3):  4.83 (s, 1H), 4.76 (s, 1H), 4.74 (s, 1H), 

4.74 (s, 1H), 4.68 (s, 1H), 3.75 (d, 2H, rotamers), 3.24 (d, 2H, 

rotamers), 2.20 (br, 2H), 1.73 (s, 3H), 1.67 (s, 3H), 1.45 (br s, 9H). 13C 

NMR (75 MHz, CDCl3):  140.22 (s), 111.04 (s), 110.71 (s), 79.41 (s), 53.54/52.93 (s, 

rotamers), 46.11 (s), 37.67/37.00 (s, rotamers), 29.76 (s), 23.97 (s), 21.44 (s). HRMS 

Calculated for C14H25O2N: 240.1964. Found: 240.1963. 

 

1-(tert-Butoxycarbonyl)-3,4-dimethyl-1,2,5,6-tetrahydropyridine (3.26) 

1H NMR (400 MHz, CDCl3):  3.68 (br, 2H), 3.43 (t, 2H, J3 = 5.6 Hz), 1.99 

(s, 2H), 1.63 (s, 3H), 1.59 (s, 3H), 1.45 (s, 9H). 13C NMR (75 MHz, 

CDCl3):  154.95 (s), 79.30 (s), 47.80 (br, rotamers), 41.47/40.16 (s, 

rotamers), 31.26 (s), 28.60 (s), 18.77 (s), 16.13 (s).  
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N-Boc-1-(3-methyl-3-dibutenyl)amine (3.27) 

1H NMR (400 MHz, CDCl3):  4.74 (s, 2H), 4.68 (s, 2H), 3.25 (br, 4H), 

2.21 (br, 4H), 1.74 (s, 6H), 1.44 (s, 9H). 13C NMR (75 MHz, CDCl3):  

153.44 (s), 141.62 (s), 111.02 (s), 110.74 (s), 79.26 (s), 47.08 / 46.77 

(s, rotamers), 38.13/37.47 (s, rotamers), 29.81 (s), 24.00 (s). HRMS 

Calculated for C15H27O2N: 254.2120. Found: 254.2121. 

 

1-(tert-Butoxycarbonyl)-4,5-dimethyl-2,3,6,7-tetrahydroazepine (3.28) 

1H NMR (400 MHz, CDCl3):  3.29 (br, 4H), 2.24 (br, 4H), 1.67 (s, 6H), 1.46 

(s, 9H). 13C NMR (75 MHz, CDCl3):  155.62 (s), 79.35 (s), 45.22/44.41 (s, 

rotamers), 37.10/36.43 (s, rotamers), .35.32/35.11 (s, rotamers), 28.62 (s), 

21.76 (s). HRMS Calculated for C13H24O2N: 226.1807. Found: 226.1812. 

 

Low Catalyst Loading Assay. 

Experiments on the RCM of 3.11, 3.13, 3.15, 3.17, 3.19, 3.21, 3.23, 3.25, and 

3.27 using the catalysts described were conducted using a Symyx Technologies Core 

Module (Santa Clara, CA) housed in a Braun nitrogen-filled glovebox and equipped with 

Julabo LH45 and LH85 temperature-control units for separate positions of the robot 

tabletop.   

Up to 576 reactions (6x96 well plates) could be performed simultaneously in 1 

mL vials by an Epoch software-based protocol as follows. To prepare catalyst stock 

solutions (0.25 mM), 20 mL glass scintillation vials were charged with catalyst (5 mole) 

and diluted to 20.0 mL total volume in THF.  Catalyst solutions, 6 to 800 L depending 

on desired final catalyst loading, were transferred to reaction vials and solvent was 

removed via centrifugal evaporation.  The catalysts were preheated to the desired 

N

Boc

N

Boc
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temperature using the LH45 unit, and stirring was started. Substrates (0.1 mmol), 

containing dodecane (0.025 mmol) as an internal standard, were dispensed 

simultaneously to 4 reactions at a time using one arm of the robot equipped with a 4-

needle assembly.  Immediately following substrate addition, solvent was added to reach 

the desired reaction molarity.  All reactions were quenched by injection of 0.1 mL 5% v/v 

ethyl vinyl ether in toluene. 

GC Data Analysis. 

Samples were analyzed by gas chromatography with dodecane as an internal 

standard, measuring the change in the amounts of substrate and product with time.  

Relevant instrument conditions: Inlet temperature = 150 ºC; detector temperature = 250 

ºC; hydrogen flow = 32mL/min; air flow = 400 mL/min; constant col + makeup flow = 30 

mL/min.  

GC Method: 75 ºC for 4 minutes, followed by a temperature increase of 25 ºC/min to 160 

ºC, and a subsequent isothermal period at 160 ºC for between 2 and 8 minutes, 

depending on substrate mass. (total run time = 10-16 minutes).  Method for 3.27 and 

3.28 began at 80 ºC. 

Representative GC traces. 
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Chapter 4 

 

 

A Facile Preparation of Imidazolinium Chlorides 
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Abstract 

A process for the preparation of symmetric and unsymmetric imidazolinium 

chlorides that involves reaction of a formamidine with dichloroethane and a base is 

described. This method makes it possible to obtain numerous imidazolinium chlorides 

under solvent-free reaction conditions and in excellent yields with purification by simple 

filtration. Alternatively, symmetric imidazolinium chlorides can be prepared directly in 

moderate yields from substituted anilines by utilizing half of the formamidine 

intermediate as sacrificial base. 

Introduction 

Since the first isolation of a stable N-heterocyclic carbene (NHC) by Arduengo,1 

their use as ligands in organometallic complexes has become routine. NHCs, as neutral, 

two-electron donors with little -accepting character, have replaced phosphines in a 

variety of applications.2 Particularly, the use of NHCs as ligands in ruthenium-based 

olefin metathesis has allowed for great gains in both activity and stability.3 There is also 

increasing interest in the use of NHCs as nucleophilic reagents and organocatalysts, 

with wide application in reactions such as the benzoin condensation, among others.4 

NHCs are often prepared in situ via the deprotonation of their corresponding 

imidazol(in)ium salts (Scheme 4.1).5 Therefore, facile and high-yielding methods for the 

synthesis of imidazol(in)ium salts are of great interest. 

Scheme 4.1. Deprotonation of imidazol(in)ium salts. 

N N
R R

base
N N

R R

H
X

 

The synthesis of unsaturated imidazolium salts, previously optimized by Arduengo and 

co-workers, involves a one-pot procedure from glyoxal, substituted aniline, 

formaldehyde, and acid starting materials.
6 Saturated imidazolinium salts, however, are 
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prepared from the reaction of triethylorthoformate with the corresponding diamine.7 This 

approach suffers several drawbacks: the preparation of the diamine generally includes 

either a palladium C-N coupling or a condensation and reduction sequence (Scheme 

4.2);8 moreover, purification of the unstable diamine sometimes requires careful 

chromatography. Unsymmetric imidazolinium salts are especially challenging synthetic 

targets due to the introduction of the differing substituents.9   

Scheme 4.2. Common syntheses of imidazolinium salts. 
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Recently, Bertrand and co-workers developed an alternative retrosynthetic 

disconnection and prepared a range of five-, six-, and seven membered imidazolinium 

salts from the addition of “di-electrophiles” to lithiated formamidines.10 For example, 1,3-

dimesitylimidazolinium lithium sulfate was prepared in high yield with 1,3,2-

dioxathiolane-2,2-dioxide as the dielectrophile (Scheme 4.3). 

Scheme 4.3. Reaction of 1,3,2-dioxathiolane-2,2-dioxide with lithium-N,N’-bis(2,4,6-

trimethylphenyl)formamidine. 
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Following Bertrand’s report, we reasoned that imidazolinium chlorides could be 

more easily prepared directly from the reaction of formamidines with dichloroethane 

(DCE) in the presence of a base.  Formamidines are ideal precursors for the preparation 

of imidazolinium chlorides because they are generally prepared in a one-step solvent-
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free reaction from materials already utilized in imidazolinium salt synthesis, namely 

anilines and triethylorthoformate.   

Herein, we report this new synthetic strategy for the preparation of imidazolinium 

chlorides under solvent-free reaction conditions and in excellent yields with purification 

by simple filtration. This strategy also allows for the preparation of symmetric 

imidazolinium chlorides in a one-step, three-component procedure directly from 

substituted anilines. 

Results and Discussion 

Our preliminary efforts focused on the preparation of 1,3-dimesitylimidazolinium 

chloride (4.1b) from N,N’-bis(mesityl)formamidine (4.1a).11 The formamidine can act as 

both substrate and sacrificial base in the reaction. After optimization, the reaction led to 

nearly quantitative, reproducible yields of pure 4.1b (Scheme 4.4).                        

N,N’-bis(mesityl)formamidine hydrochloride could also be isolated and easily reverted to 

the formamidine for future use by solvation in pyridine and precipitation into water.12 

Scheme 4.4. Preparation of 1,3-dimesitylimidazolinium chloride (4.1b).13 
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Numerous bases were screened to find an effective replacement for the sacrifical 

formamidine. Only diisopropylethylamine (DIPA) was shown to perform well in the 

reaction.  Bases such as pyridine and triethylamine were too nucleophilic and reacted 

preferentially with dichloroethane.  Strong bases such as sodium hydride deprotonated 

the final product. 

The two methods were both successful in preparing a series of other 

imidazolinium chlorides starting from a variety of anilines (Table 4.1).  In all cases, 
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reactions were completed neat in ten to twenty equivalents of dichloroethane and a 

slight excess of base.  Products were easily purified by removal of excess 

dichloroethane, trituration in acetone, hot toluene or water, and filtration. 

Table 4.1. Preparation of 1,3-diarylimidazolinium chlorides from formamidines.14 

N
H
N

R1 R2

DCE

DIPA

120 ºC

DIPA-HCl

N
H
N

R1 R2

Method A

Method B

DCE

120 ºC

N N
R1 R2

+
H
N

H
N

R1 R2

Cl Cl

N N
R1 R2

+

Cl

 

  entry   product                                time       A              B              

                                                         (h)     yield (%)a  yield (%)a,b

4.1                                                 24        92            49 (98)

      

4.2                                                 24        43c           48 (96)

 

4.3                                                 36        91            46 (92)

 

4.4                                                 168d     42            19 (38)

4.5                                                 36        75            41 (82)

4.6                                                 24        80            43 (86)

Cl

NN

NN

i-Pr

i-Pr

i-Pr

i-Pr

Cl

NN

Cl

Cl

NN
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t-Bu

Cl

NN

F

F

NN
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Cl

 

Notably, two challenging unsymmetrical imidazolinium chlorides were prepared in 

good yields (entries 4.5 and 4.6).  Our synthesis of 1-(2,6-difluorophenyl)-3-

(mesityl)imidazolinium chloride (4.5b), prepared here in two steps and a 65% overall 

yield, is a marked improvement over its previous four-step synthesis.9a This method 

should allow for the properties and applications of unsymmetrical NHCs to be further 

explored. 
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In our ongoing efforts we have found several substrate limitations. As steric bulk 

at the N-aryl ortho positions is increased, the steric hinderance decreases reaction rate, 

and longer reaction times are necessary. This is exemplified by the reaction of             

N,N’-bis(2-tertbutylphenyl)formamidine, which only reached 60% conversion after 7 days 

(entry 4.4). Highly electron withdrawing N-aryl subsituents also hinder the reaction; the 

reaction of N,N’-bis(2,6-trifluoromethylphenyl)formamidine was unsuccessful.  Finally, 

reaction of a dialkyl formamidine, N,N’-bis(cyclohexyl)formamidine, gave only poor yields 

of the desired product, most likely due to the increased basicity of dialkyl formamidines.   

Further efforts focused on a one-step, three-component synthesis of commonly 

utilized symmetric 1,3-diarylimidizolinium chlorides from substituted anilines (Table 4.2). 

The formamidine, as base and intermediate, is formed in situ and the cyclization then 

proceeds as normal.  Regretably, replacement of the sacrificial formamidine with 

diisopropylethylamine hindered the initial reaction and resulted in very limited product 

formation. While yields are lower than the two-step procedure, reaction optimization and 

recycling of the formamidine hydrochloride could be successful on the large scale.  In 

our studies, 1,3-dimesitylimidazolinium chloride has been prepared on a 20 gram scale 

without loss in yield or ease of purification. 

Table 4.2. Preparation of 1,3 diarylimidizolinium chlorides from anilines in one step.15 

2 R-NH2  +  1 HC(OEt)3 N NR R
+

H
N

H
NR R

Cl Cl

DCE

120 ºC

Cl

NN

NN

i-Pr

i-Pr

i-Pr

i-Pr

NN

Cl

Cl

entry    product                                   time (h)         yield (%)a,b

1                                                              24           45 (90)

 
2                                                              24           26 (52)

3                                                              36           42 (84)
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Conclusions 

We have devised a new synthetic strategy for the preparation of symmetric and 

unsymmetric imidazolinium chlorides from formamidines in excellent yields. Because the 

formamidine precursors and imidazolinium products are both formed in solvent-free 

conditions and purified by simple trituration and filtration, this approach is more 

straightforward as well as more atom economical than the previously available methods. 

We have also demonstrated that symmetric imidazolinium chlorides can be prepared 

directly in moderate yields from substituted anilines.  We believe these experimentally 

convenient procedures will find wide application as N-heterocyclic carbenes become 

even more common as ligands and organocatalysts. 

Experimental 

General Information 

NMR spectra were recorded on an Oxford 300 MHz NMR spectrometer running 

Varian VNMR Software.  Chemical shifts are reported in parts per million (ppm) 

downfield from tetramethylsilane (TMS) with reference to internal solvent for 1H NMR 

and 13C NMR spectra.  Spectra are reported as follows: chemical shift (  ppm), 

integration, multiplicity, and coupling constant (Hz). (Multiplicities are abbreviated as 

follows: singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), septet (sept), 

multiplet (m), and broad (br).  All new compounds were also characterized by high-

resolution mass spectrometry(FAB) at the California Institute of Technology Mass 

Spectrometry Facility.  Compounds are numbered according to their entry number in 

Table 4.1; (a) denotes the formamidine and (b) denotes the imidazolinium chloride. All 

commercial chemicals were used as obtained. 
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A Note on Formamidine Isomerization and NMR Spectra 

Although many diarylformamidines are well known and highly utilized 

compounds, their NMR spectra are rarely found in the literature.  While this is presumed 

to be a result of their age in the literature, it could also be a result of their surprisingly 

complex NMR spectra.  Formamidines have two rotational isomers that interconvert at 

rates dependent on both substituents and solvent. This often leads to spectra that are 

considerably more complex than expected for these small molecules. Because the NMR 

spectra of a single formamidine can vary significantly depending on the solvent, we have 

tried to provide spectral data for the known formamidines in solvents that supply the 

most information about each compound. 

General Procedure for the Preparation of Symmetric Formamidines 

Acetic acid (86 L, 1.5 mmol) was added to a round bottom flask charged with 

the corresponding aniline (60 mmol, 2 equiv) and triethyl orthoformate (5 mL, 30 mmol, 1 

equiv).  The flask was fitted with a distillation head and was heated with stirring 

overnight.  Upon cooling to room temperature, the solution solidified.  The crude product 

was triturated with cold hexanes (30 mL), collected by vacuum filtration and dried in 

vacuo, providing pure product as a colorless powder (80%-92%).  The following 

formamidines were prepared by the following procedure: 

 

N,N’-Bis(2,4,6-trimethylphenyl)formamidine (1a).  Prepared according to the above 

general procedure (140 °C) in 92% yield as a white semi-crystalline solid. In C6D6 (25 °C) 

the formamidine exists in two isomeric forms in a 1:1 ratio.  1H NMR chemical shifts for 

the two isomers will be listed separately. Isomer 1: 1H NMR (C6D6):  1.86 [s, 6H], 2.03 

[s, 3H], 2.23 [s, 3H], 2.31 [s, 3H], 4.99 [d, 1H, JHH = 7.2 Hz], 6.55 [s, 2H], 6.90 [s, 2 H], 

6.94 [d, 1H, JHH = 7.2 Hz]. Isomer 2: 1H NMR (C6D6):  2.12 [s, 6H], 2.16 [s, 12H], 6.74 
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[s, 4H], 6.83 [s, 1H]. 13C{1H} NMR (C6D6):  18.62, 18.86, 19.14, 21.18, 21.27, 21.29, 

129.50, 129.74, 129.83, 134.52, 134.93, 135.97, 144.44, 146.77. 

 

N,N’-Bis(2-methylphenyl)formamidine (2a). Prepared according to the above general 

procedure (140 °C) in 90% yield as a white semi-crystalline solid. 1H NMR (C6D6):  2.03 

[s, 6H], 6.87-7.04 [m, 8H], 7.68 [s, 1H]. 13C{1H} NMR (C6D6):  18.20, 118.50, 123.95, 

127.59, 131.24, 147.92. 

 

N,N’-Bis(2,6-diisopropylphenyl)formamidine (3a). Prepared according to the above 

general procedure (160 °C) in 85% yield as a white semi-crystalline solid. Major 

isomer(>95%): 1H NMR (C6D6):  1.12 [d, 24H, JHH = 6.7 Hz], 3.42 [sept, 4H, JHH = 6.7 

Hz], 6.99-7.1 [m, 6H].  13C{1H} NMR (C6D6):  24.11, 28.71, 123.84, 126.23 (br), 144.17 

(br), 155.92 (br).  

 

N,N’-Bis(2-tert-butylphenyl)formamidine (4a). Prepared according to the above 

general procedure (160 °C) and was obtained in 85% yield as a white solid.  1H NMR 

(CD2Cl2):  1.50 [s, 18H], 7-7.5 [m, 8H], 7.86 [s, 1H]. 13C{1H} NMR (CD2Cl2):  30.81, 

35.55, 121.99, 124.27, 127.01, 127.52, 148.22. HRMS (FAB+) calculated for C21H29N2 

[M+] 309.2331, observed 309.2325. 

 

General Procedure for the Preparation of Unsymmetric Formamidines 

Acetic acid (86 L, 1.5 mmol) was added to a round bottom flask charged with 

the first aniline (30 mmol, 1 equiv) and triethyl orthoformate (5 mL, 30 mmol, 1 equiv).  

The flask was fitted with a distillation head and was heated with stirring to 140 °C until 

ethanol (3.5 ml, 60 mmol, 2 equiv) was collected by distillation.  The second substituted 
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aniline (30 mmol, 1 equiv) was then added to the reaction mixture.  Heating at 140 °C 

continued until ethanol (1.75 mL, 30 mmol, 1 equiv) was collected by distillation. Upon 

cooling to room temperature, the solution solidified.  The crude product was triturated 

with cold hexanes and collected by vacuum filtration.  Solids were then dissolved in 

minimal hot acetone and recrystallized at -15 °C to remove traces of symmetric 

formamidine byproducts. The crystals were collected by vacuum filtration and dried in 

vacuo, providing pure product (82%-86%).  The following formamidines were prepared 

by this procedure: 

 

N-(2,6-difluorophenyl)-N’-(2,4,6-trimethylphenyl)formamidine (5a). Prepared 

according to the above general procedure in 86% yield as colorless needles. 1H NMR 

(DMSO-d6):  2.21 [s, 6H], 2.23 [s, 3H], 6.89-7.1 [m, 5H], 7.83 [s, 1H], 8.70 [s, 1H]. 

13C{1H} NMR (DMSO-d6):  18.20, 20.51, 111.34, 111.54, 111.65, 121.41, 128.35, 

128.81, 133.10, 134.74, 135.30, 152.34. 19F{1H} NMR (DMSO-d6):  -126.87 [s]. HRMS 

(FAB+) calculated for C16H17N2F2 [M
+] 275.1357, observed 275.1360. 

 

N-(2,6-diisopropylphenyl)-N’-(2-methylphenyl)formamidine (6a). Prepared according 

to the above general procedure in 82% yield as faintly pink plates. In CDCl3 (25 °C) this 

formamidine exists in two isomeric forms in a 2:1 ratio (unassigned). 1H NMR chemical 

shifts that differ between isomers will be denoted by (maj) and (min). 1H NMR (CDCl3):  

1.22 [d, 12H, JHH = 6.9 Hz], 1.975(min) [s, 1H], 2.31(maj) [s, 2H], 3.13(min) [sept, 0.68H, 

JHH = 6.9 Hz], 3.24(maj) [sept, 1.32H, JHH = 6.9 Hz], 6.95-7.26 [m, 7H], 7.79(maj) [s, 

0.66H], 7.91(min) [d, 0.34H, JHH = 11 Hz]. 13C{1H} NMR (CD2Cl2):  18.15, 18.24, 23.83, 

24.01, 28.55, 116.90, 118.30, 123.31, 123.58, 123.74, 123.85, 123.97, 124.35, 126.80, 
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126.85, 126.89, 127.38, 127.76, 131.04, 131.52, 139.18, 143.98. HRMS (FAB+) 

calculated for C20H27N2 [M
+] 295.2174, observed 295.2175. 

 

Preparation of Imidazolinium Chlorides 

Three procedures were used to prepare the imidazolinium chlorides. 

 

From the Corresponding Formamidine 

Method A:  Diisopropylethylamine (0.96 mL, 5.5 mmol, 1.1 equiv) was added to a stirred 

solution of formamidine (5 mmol, 1 eq) and dichloroethane (3.8 mL, 50 mmol, 10 equiv) 

in a Schlenk tube.  The tube was evacuated until the solvent began to bubble, then 

sealed under static vacuum and heated to 120 °C for 24-168 hours.  The reaction 

mixture was then cooled to room temperature, and excess dichlorooethane was 

removed in vacuo. The residue was triturated with acetone or hot toluene, and the 

product was collected by vacuum filtration, washed with excess solvent and dried in 

vacuo, providing pure product as a colorless powder (85%-95%).  Upon sitting overnight, 

the diisopropylethylamine hydrochloride precipitated from the filtrate.  

 

Method B:  Dichloroethane (7.6 mL, 100 mmol, 10 equiv) was added to a Schlenk flask 

charged with formamidine (10 mmol, 1 equiv). The tube was evacuated until the solvent 

began to bubble, then sealed under static vacuum and heated to 120 °C for 24-168 

hours.  The reaction mixture was then cooled to room temperature, and excess 

dichlorooethane was removed in vacuo. The residue was triturated with acetone or hot 

toluene, and the product was collected by vacuum filtration, washed with excess solvent 

and dried in vacuo, providing pure product as a colorless powder (85%-95%).  Upon 

sitting overnight, the formamidine hydrochloride precipitated from the filtrate. 
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From the Corresponding Aniline 

Dichloroethane (1.9 mL, 25 mmol, 5 equiv) was added to a Schlenk flask charged with 

the aniline (10 mmol, 2 equiv) and triethyl orthoformate (0.83 mL, 5 mmol, 1 equiv). The 

tube was evacuated until solvent began to bubble, then sealed under static vacuum and 

heated to 120 °C for 24-36 hours.  The reaction mixture was then cooled to room 

temperature.  Unreacted substrates were then removed in vacuo. The residue was 

triturated with acetone or hot toluene, and the product was collected by vacuum filtration, 

washed with excess solvent and dried in vacuo, providing pure product as a colorless 

powder (85%-95%).  Upon sitting overnight, the formamidine hydrochloride precipitated 

from the filtrate. 

 

1,3-Bis(2,4,6-trimethylphenyl)-imidazolinium chloride (1b). Prepared according to 

methods A (92%), B (49%), and C (45%) in 24 hours. 

The product was collected as a white solid after 

trituration with boiling toluene.  The NMR data are in 

accordance with those reported.16 1H NMR (CDCl3):  2.29 [s, 6H], 2.31 [s, 12H], 4.49 [s, 

4H], 6.87 [s, 4H], 9.46 [s, 1H].  13C{1H} NMR (CDCl3):  18.09, 21.15, 52.02, 130.03, 

130.39, 135.07, 140.41, 160.14. 

 

1,3-Bis(2-methylphenyl)-imidazolinium chloride (2b). Prepared according to methods 

A (43%), B (48%), and C (26%) in 24 hours. The product 

was collected as a white solid after trituration with acetone.  

The NMR data are in accordance with those reported.17 1H 

NMR (CDCl3):  2.43 [s, 6H], 4.64 [s, 4H], 7.21-7.79 [m, 8H], 8.86 [s, 1H]. 13C{1H} NMR 

(CDCl3):  18.34, 53.07, 126.82, 127.80, 130.0, 131.78, 133.66, 134.57, 157.68. 

Cl

NN

1b

2b

NN

Cl
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1,3-Bis(2,6-diisopropylphenyl)-imidazolinium chloride (3b). Prepared according to 

methods A (91%), B (46%), and C (42%) in 36 hours. The 

product was collected as a white solid after trituration with 

minimal acetone.  The NMR data are in accordance with 

those reported.1 1H NMR (CDCl3):  1.22 [d, 12H, JHH = 6.9 Hz], 1.35 [d, 12H, JHH = 6.9 

Hz], 2.97 [sept, 4H, JHH = 6.9 Hz], 4.77 [s, 4H], 7.2-7.5 [m, 6H], 8.56 [s, 1H]. 13C{1H} NMR 

(CDCl3):  23.90, 25.61, 29.36, 55.52, 125.14, 129.39, 131.73, 146.24, 158.46. 

 

1,3-Bis(2-tert-butylphenyl)-imidazolinium chloride (4b). Prepared according to 

methods A (91%) and B (46%) in 168 hours (7 days). The 

product was collected as a white solid after trituration in 

acetone.  1H NMR (CDCl3):  1.46 [s, 18H], 4.86 [s, 4H], 7.35-7.50 [m, 6H], 7.97 [s, 1H], 

8.70 [br, 2H]. 13C{1H} NMR (CDCl3):  32.36, 35.96, 56.68, 128.21, 128.98, 130.93, 

132.43, 134.14, 146.28, 159.19. HRMS (FAB+) calculated for C23H31N2 [M+] 335.2487, 

observed 335.2479. 

 

1-(2,6-difluorophenyl)-3-(2,4,6-trimethylphenyl)-imidazolinium chloride (5b). 

Prepared according to methods A (75%) and B (41%) in 36 

hours. The product was collected as a white solid after 

trituration with acetone.  The NMR data are in accordance 

with those reported.18 1H NMR (DMSO-d6):  2.29 [s, 3H], 2.31 [s, 6H], 4.42-4.5 [m, 2H], 

4.6-4.7 [m, 2H], 7.1 [s, 2H], 7.41-7.47 [m, 2H], 7.57-7.67 [m, 2H], 9.45 [s, 1H]. 13C{1H} 

NMR (DMSO-d6):  17.15, 20.57, 51.53, 112.88, 113.17, 129.5, 130.7, 135.13, 139.84, 

161.06. 19F{1H} NMR (DMSO-d6):  -119.84 [s]. 
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1-(2,6-diisopropylphenyl)-3-(2-methylphenyl)-imidazolinium chloride (6b). Prepared 

according to methods A (80%) and B (43%) in 24 hours. The 

product was collected as a white solid after trituration with 

acetone. 1H NMR (CDCl3):   1.22 [d, 6H, JHH = 6.6 Hz], 1.28 [d, 6H, JHH = 6.6 Hz], 2.41 

[s, 3H], 3.05 [sept, 2H, JHH = 6.6 Hz], 4.44-4.52 [m, 2H], 4.76-4.83 [m, 2H], 7.18-7.28 [m, 

5H], 7.36-7.41 [m, 1H], 7.6-7.63 [m, 1H], 9.15 [s, 1H]. 13C{1H} NMR (CDCl3):  18.16, 

24.07, 25.18, 28.83, 53.25, 54.43, 124.83, 126.05, 127.72, 129.83, 131.13, 131.87, 

133.15, 134.18, 146.31, 158.58. HRMS (FAB+) calculated for C2sH29N2 [M+] 321.2331, 

observed 321.2342. 
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Abstract 

Both chiral triazolylidenes and cyclic alkyl amino carbenes (CAACs) were chosen 

as ligands for the preparation of chiral ruthenium olefin metathesis catalysts.  These C1 

symmetric ligands were chosen to create non-conformationally flexible environments in 

proximity to the ruthenium center, potentially bringing chirality extremely close to the site 

of catalysis.  These new motifs for ligand architecture show great promise.  The 

moderate enantioselectivies obtained herein for AROCM and ARCM indicate a potential 

utility for both synthetic methodology and mechanistic insight.  Due to the abundance of 

chiral starting materials and facile ligand synthesis, the most rational approach to 

understanding the structure/enantioselectivity relationship in these systems is the 

preparation of related ligands.   

Enantioselective Olefin Metathesis 

To date, olefin metathesis has played only a supporting role in the synthesis of 

optically pure materials.   In general, optically pure olefin products are derived from 

optically pure substrates or are resolved from racemic product mixtures.1  Although 

these methods have proven effective in many cases, it would be advantageous to 

transform achiral or racemic substrates into complex optically pure olefin metathesis 

products via olefin metathesis.   

A highly enantioselective olefin metathesis catalyst could produce chiral 

molecules in a single step that are typically unavailable by other methods or that can 

only be reached by multi-step reaction pathways.  Because no sp3-hybridized carbons 

are formed during a metathesis reaction, asymmetric induction in the reaction does not 

seem possible at first glance.  Instead, asymmetric metathesis reactions form chiral 

compounds through either kinetic resolutions of racemates or desymmetrizations of 
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achiral or meso compounds. Metathesis applications already commonly in use are thus 

easily rendered asymmetric (Figure 5.1). 

The kinetic resolutions ideally involve selective ring closing of one enantiomer of 

a chiral diene while leaving the other enantiomer untouched. Asymmetric ring-closing 

metathesis (ARCM) and asymmetric cross-metathesis (ACM) are intramolecular and 

intermolecular reactions that result in the formation of a chiral center through 

desymmetrizations of trienes or dienes, respectively. Asymmetric ring-opening/cross-

metathesis (AROCM) reactions create multiple chiral centers by desymmetrizing meso 

compounds. 
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Figure 5.1. Examples of asymmetric olefin metathesis. 

Asymmetric Molybdenum Catalysts 

Fujmura and Grubbs made a major advancement in the field of enantioselective 

olefin metathesis with the development of the first chiral molybdenum catalyst (5.1) that 

demonstrated mild selectivity in kinetic resolution reactions (Figure 5.2).2  Since then, 

Hoveyda and Schrock have prepared numerous catalysts based on the same bidentate 

chiral ligand motif, such as 5.2, that show high enantioselectivity in ring-closing and ring-
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opening metathesis reactions.3  More recently, they have found great success with 

molybdenum complexes that are both stereogenic at the metal and bear only 

monodentate ligands.  For example, complex 5.3 was used successfully in the total 

synthesis of the natural product (+)-quebrachamine.4 
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t-Bu

O

t-Bu

O

 

Figure 5.2. Representative asymmetric molybdenum catalysts. 

Unfortunately, the above molybdenum catalysts possess the same functional 

group tolerance and stability problems of earlier molybdenum catalysts.  Most 

molybdenum systems also require specific substrate-to-catalyst matching, necessitating 

the preparation of numerous catalysts and extensive reaction optimization. 

Asymmetric Ruthenium Catalysts 

Due to the expected increase in functional group tolerance and stability, the 

development of ruthenium-based enantioselective olefin metathesis catalysts has been 

of considerable interest.  Although the utilization of either chiral phosphine or chiral N-

heterocyclic carbene (NHC) ligands could be envisioned to provide the necessary 

chirality in the standard systems, studies have focused on NHCs due to the increased 

activity and stability of the resulting catalysts.  Furthermore, N-heterocyclic carbenes are 

quite suitable for chiral modification.5 

Three classes of chiral ruthenium catalysts have been explored (Figure 5.3). The 

first class, developed by Grubbs and co-workers, contains C2-symmetric monodentate 
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NHCs (5.4).6  The second, developed by Hoveyda and co-workers, contains C1-

symmetric bidentate NHCs (5.5).7  Recent work by Collins has shown that C1-symmetric 

monodentate NHCs are also viable as ligands in the ruthenium-based systems (5.6).8 
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PhPh
i-Pr

Ru

PCy3

NN Me

i-Pr

PhCl

Cl

t-But-Bu

 

Figure 5.3. Examples of ruthenium-based asymmetric olefin metathesis catalysts. 

Despite these successes, there still remains a need for further catalyst 

development.  Chiral ruthenium catalysts developed to date still lack substrate 

generality: enantioselectivity drops dramatically with only minor changes in the substrate 

structure.  Furthermore, a complex that can efficiently catalyze the asymmetric cross 

metathesis of olefins has yet to be developed.  Further catalyst development should 

continue to employ NHCs due to their functional group tolerance, ease of use, and the 

myriad of possibilities in chiral modification. 

Intrigued by Collins’ successful use of C1-symmetric monodentate NHCs in 

catalyst design, exploration of novel C1-symmetric carbenes was envisioned.  

Unfortunately, while chiral transfer through gearing has proven mildy effective, the large 

degree of rotational freedom about the N-bound arenes may result in inadequate 

transfer and lower enantioselectivity.  With that in mind, chiral triazolylidenes (5.7) and 

cyclic alkyl amino carbenes (CAACs) (5.8) were chosen as ligands (Figure 5.4) to create 

non-conformationally flexible environments in proximity to the ruthenium center, 

engendering constrained chiral space at the site of catalysis. 
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Figure 5.4. C1-symmetric monodentate ligands chosen for study. 

Results and Discussion 

Chiral Triazolylidenes†  

Triazolyl NHCs, conveniently prepared from readily available chiral amino-

alcohols using a modified literature procedure,10b have been previously employed, 

among others, in the Benzoin condensation9 and Stetter reaction.10  The abundance of 

chiral amino-alcohols allows for direct ligand modification and optimization.  Triazolium 

salts, the carbene precursors, are air- and water-stable crystalline solids.  The chiral 

amino-alcohol (1R, 2S)-(+)-cis-1-amino-2-indanol was initially chosen as the building 

block for ligand design due to the rigid steric environments that its structure would create 

in the ruthenium systems. 

Complex 5.13 

First, the triazolium salt (5.12) was prepared from commercially available (1R, 

2S)-(+)-cis-1-amino-2-indanol (Scheme 5.1).   Reaction of the amino-alcohol and ethyl 

chloroacetate, using the method of Clarke,11 led to substituted morpholin-3-one 5.9.  

Methylation with Meerwein’s reagent afforded imino ether 5.10, and subsequent reaction 

with mesitylhydrazine hydrochloride gave amidrazone hydrochloride 5.11. Heating with 

                                                

† This work was completed in 2005 and is reproduced in part from my candidacy 

progress report. 
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triethyl orthoformate effected the formylation and cyclization of 5.11, cleanly yielding 

triazolium salt 5.12 (29% overall yield from the amino-alcohol). 

Scheme 5.1. Synthesis of aminoindanol-derived triazolium salt 5.12. 
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In situ formation of the carbene from 5.12 by deprotonation with NaH in a 50/50 solvent 

mixture of benzene and methylene chloride (Scheme 5.2), followed by the addition of 

(PCy3) 2Cl2Ru=CHPh and subsequent heating to 50 °C, resulted in a 60% yield of the 

desired complex (5,6-Indenyl-2-Mes-Tri)(PCy3)(Cl)2Ru=CHPh (5.13). This reaction could 

be performed on up to a 200 mg scale without loss in efficiency. 

Scheme 5.2. Synthesis of chiral triazolylidene complex 5.13. 
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The complex displays a singlet at 19.9 ppm in the 1H NMR (C6D6) and a singlet at 

36.3 ppm in the 31P NMR. Compound 5.13 was found to be stable in benzene for over 

24 hours at ambient temperature, as well as stable to heating for 24 hours at 40 °C.  In 

addition, the complex is stable to air in the solid state and to flash chromatography on 

silica gel.  To date, crystallization efforts have proven unsuccessful. 
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Activity in Olefin Metathesis 

General metathesis activity of 5.13 was first evaluated in the RCM of diethyl 

diallyl malonate (5.14) (Scheme 5.3).  Standard procedure calls for the reaction to be at 

30 °C, but initial attempts at this temperature resulted in no reaction.12  Increasing the 

reaction temperature to 40 °C resulted in 95% conversion to 5.15 after a thirty-minute 

reaction time.  The necessary increase in temperature is most likely due to slow initiation 

of the catalyst into the catalytic cycle or slow propagation due to the steric bulk of the 

ligand.  Studies to understand this temperature effect have not yet been undertaken. 

Scheme 5.3. Screening of complex 5.13 in RCM. 

CO2EtEtO2C
1 mol% 5.13

0.1 M, CD2Cl2

CO2EtEtO2C

5.14 5.15
30 oC: no reaction

40 oC: 95% conversion  

The reactivity and diastereoselectivity of catalyst 5.13 were then tested in the 

olefin cross metathesis of cis-1,4-diacetoxy-2-butene (5.16) with allyl benzene (5.17) 

(Scheme 5.4).  This reaction allows for examination of both the catalyst’s 

diastereoselectivity in the formation of the cross product (5.19 versus 5.20) and the 

catalyst’s propensity for secondary metathesis by monitoring the isomerization of 5.16 to 

5.18.  Reaction progress was monitored via gas chromatography using tridecane as an 

internal standard. 

Scheme 5.4. Screening diastereoselectivity of complex 5.13. 
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The cross metathesis reaction catalyzed by 5.13 was monitored for 24 hours and 

did not reach completion.  The results, in terms of both reactivity and selectivity, were 

comparable to the chiral bidentate catalyst (5.5).  Figure 5.5 illustrates the isomerization 

of the cis-1,4-diacetoxy-2-butene starting material (5.16) as a function of the 

disappearance of the cross partner, allyl benzene (5.17). 

 

Figure 5.5. Isomerization of 5.16 by complex 5.13. 

With a Z-selective catalyst, isomerization of the predominantly cis starting 

material should be minimal, as any non-productive metathesis should regenerate the cis-

olefin.  However, as seen in Figure 5.5, the starting material was isomerized to the trans-

olefin.   Another strong indication of a Z-selective catalyst would be a low E/Z ratio of the 

cross-metathesis product.  However, the major product observed at equilibrium was the 

trans product (5.20).  Figure 5.6 compares this result with 5.5, as well as the much more 

active 5.23 (H2IMes)(PCy3)Cl2Ru=CHPh.  This comparison illustrates both the poor 

activity and diastereoselectivity of 5.13 in cross metathesis. 
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Figure 5.6. E/Z ratio of cross-metathesis products. 

The enantioselectivity of 5.13 was then studied using several standard, 

asymmetric olefin metathesis reactions.6  The ARCM of substrate 5.24 resulted in a 

promising 75% conversion to 5.25 with 48% ee (Scheme 5.5). For comparison, complex 

5.4 provides the product in 98% yield and 83% ee.  Despite the moderate 

enantioselectivity, this reaction set precedence for triazolyl N-heterocyclic carbene-

ligated ruthenium complexes transfering chirality in metathesis.   

Scheme 5.5.  ARCM of 5.24 with complex 5.13. 

1 mol % 5.13

0.1 M CH2Cl2 

40 ºC

O
Si

O
Si

5.24 5.2575%, 48% ee  

Results in asymmetric ring-opening cross metathesis were less promising.  The AROCM 

of 5.26 and 5.28 resulted in the complete conversion to 5.27 and 5.29 with only 24% and 

29% ee, respectively (Scheme 5.6).  
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Scheme 5.6.  AROCM with complex 5.13. 
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Although the enantioselectivity shown by 5.13 in AROCM and ARCM was lower 

than the previously reported chiral catalysts, the new motif for ligand design does show 

promise.6  Employing an alternative amino alcohol starting material should provide a 

new steric environment around the metal, and comparison of this new complex to 5.13 

could provide insight into the mode of enantioselectivity provided by the triazolium ligand 

motif. 

Complex 5.34 

With that in mind, a triazolylidene ligand based on (R)-2-amino-3-phenyl-1-

propanol was synthesized. Unlike in 5.12, the phenyl functionality of the ligand has the 

potential for rotation, creating a less sterically rigid environment.  Triazolium salt 5.33, 

derived from commercially available (S)-2-Amino-3-phenyl-1-propanol, was synthesized 

by modifying the synthetic route to 5.12 and obtained in 39% overall yield from the 

amino-alcohol (Scheme 5.7). 

Scheme 5.7. Synthesis of (S)-2-Amino-3-phenyl-1-propanol-derived triazolium salt 5.33. 
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Standard carbene formation from 5.33 by deprotonation with KHMDS followed by 

addition of (PCy3)RuCl2=CH(o-OiPrC6H4)  gave 70% conversion to two products after 24 

hours at room temperature.  After the addition of CuCl to scavenge free 

tricyclohexylphosphine, 5.34 was formed as the exclusive product (Scheme 5.8). This 

complex, purified by column chromatography, was found to be stable in benzene for 

over 24 hours at ambient temperature, but decomposition was evident after only four 

hours at 40 °C. To date, crystallization efforts have proven unsuccessful. 

Scheme 5.8. Synthesis of chiral triazolylidene complex 5.34. 
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The general metathesis activity of 5.34 was first tested in the RCM of diethyl 

diallyl malonate (5.14) but no reaction was evident at 30 °C.  An increase in the reaction 

temperature to 40 °C resulted in only 20% conversion to 5.15 after two hours.  This 

result was coupled with complete decomposition of the catalyst during the reaction 

period, as monitored by total loss of peaks in the alkylidene region of the 1H NMR.  The 

attempted AROCM of 5.26 and of 5.28 with styrene also resulted in no reaction at room 

temperature or 30 °C.  A reaction temperature of 40 °C resulted in complete catalyst 

decomposition without evidence of olefin metathesis.  No decomposition products from 

these reactions could be isolated or identified.  

Taken together, these results provided few clues about the 

structure/enantioselectivity relationship in the triazolylidene systems, which would allow 

for a rational approach in future research.  With that in mind, further investigation into 

this motif was not conducted. 
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Chiral CAACs§ 

Recently, another class of ruthenium based olefin metathesis catalysts, featuring 

C1 symmetric cyclic (alkyl) (amino) carbenes (CAACs), has emerged (Figure 5.7).13  In 

some cases these species, such as 5.35 and 5.36, compete or surpass the activity 

and/or selectivity observed with traditional NHC based catalysts.  

Cl2Ru

O

N
Et

Et
Cl2Ru

O

N

Et

Et

5.365.35  

Figure 5.7. Examples of CAAC-based olefin metathesis catalysts. 

CAACs differ from traditional NHCs in that they contain a quaternary carbon atom 

adjacent to the carbene center. The presence of this sp3 carbon atom increases the 

electron-donating ability of the ligand, and at the same time produces an unusual steric 

environment around the metal center. Moreover, due to the quaternary carbon atom in 

the -position of the metal center, CAAC ligands have the potential to bring chirality 

closer to the site of catalysis. 

It was anticipated that ruthenium alkylidenes containing a chiral CAAC ligand 

would afford highly efficient and enantioselective olefin metathesis catalysts.  With that in 

mind, menthone was initially chosen as the building block for ligand design due to the 

rigid steric environment that its structure would create in the ruthenium systems. 

                                                

§ This work has been completed in collaboration with Dr. Vincent Lavallo and Jean Li. 

Vince completed ligand synthesis and Jean has completed many of the metathesis 

reactions reported. I would like to thank them for their contribution to the project. 
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Complex 5.39 

Cyclic (alkyl) (amino) carbenes based on (-)-menthone have been previously 

reported by Bertrand and co-workers.14  Under analogous experimental conditions, 

iminium chloride 5.37, featuring a 2,6-diethylphenyl group was obtained in good yield. 

With this precursor in hand, the corresponding free carbene (5.38) was generated by 

treatment with lithium diisopropylamide (LDA) (Scheme 5.9).  5.38 was then reacted with 

commercially available (PCy3)RuCl2=CH(o-OiPrC6H4) at room temperature, affording the 

phosphine-free chelating ether complexes 5.39 over the course of 24 hours.  This 

complex was isolated as a crystalline green solid after flash column chromatography. 

Scheme 5.9. Synthesis of chiral CAAC complex 5.39. 
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Structural Analysis 

    To probe the electronic and steric effects of the ligated CAAC, crystals of 5.39 

were grown and its molecular structure was confirmed by single-crystal X-ray 

crystallographic analysis (Figure 5.8). Like other ruthenium-based olefin metathesis 

catalysts, the complex exhibits a distorted square pyramidal geometry with the 

benzylidene moiety occupying the apical position.  
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Figure 5.8.  X-ray crystal structure of complex 5.39 is shown.  Displacement ellipsoids 

are drawn at 50% probability.  For clarity, hydrogen atoms have been omitted. 

When compared with its dimethyl CAAC analog (5.35) and 

(H2IMes)(PCy3)Cl2Ru=(=CH–o-OiPrC6H4) (5.40),13,15 the menthone substitution of 5.39 

results in significant differences in both the Ru-C(1) bond length and the Ru-O bond 

length (Table 5.1).  

Table 5.1. Selected X-ray data for 5.35, 5.39, and 5.40. 

 

The bond distance between the ligand carbene carbon and the Ru center is longer in 

5.39 (1.961 Å) than in 5.35 (1.948 Å), suggesting that the bulk of the menthone 

substituent pushes the ligand away from the metal center.  However, this bond distance 

is shorter in 5.39 than in 5.40 (1.980 Å). This observation is consistent with the 



103 

increased -donating properties of the CAAC ligands over than NHC counterparts.  The 

increased Ru-O bond distance in 5.39 (2.381 Å), relative to 5.40 (2.261 Å), supports this 

conclusion. 

Activity in Olefin Metathesis 

 General metathesis activity of 5.39 was first evaluated by performing the RCM of 

diethyl diallylmalonate (5.14) (Figure 5.9).  The reaction, utilizing 1 mol% catalyst in C6D6 

at 30 °C, was monitored by 1H NMR spectroscopy.  Note that the plot of cycloalkene 

5.15 concentration versus time reveals that complex 5.39 does effect the cyclication of 

5.14, but with a slower reaction rate than the standard NHC complex 5.40. 

CO2EtEtO2C
1 mol% cat.

0.1 M, C6D6

CO2EtEtO2C

5.14 5.15  

 

Figure 5.9. Screening of complex 5.39 in RCM. 

As with the triazolylidene-based complexes, the enantioselectivity of CAAC-

based complex (5.39) was then studied using known asymmetric olefin metathesis 
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reactions.6  Preliminary results in asymmetric ring-opening cross metathesis were 

promising, but provided few details about how to move forward (Table 5.2).  As was the 

case with the triazolylidene catalyst 5.13, replacement of the anhydride oxygen with a 

tert-butylamine (5.28) increased the enantioselectivity of the reaction.  When 

unprotected diols 5.41 and 5.42 were examined, the yields were dramatically reduced to 

35% and ~38%, respectively.  As discussed in the literature, substrate coordination to 

the catalyst may inhibit the reaction.6  Surprisingly, the stereochemistry of the 

norbornene diols had little affect on the ee of the trans products as the exo-diol 5.41 

gave 12% and the endo-diol 5.42 gave 19%. 

Table 5.2. AROCM with complex 5.39. 

5 mol% 5.39
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 Asymmetric ring-closing metathesis also presented mixed results (Figure 5.10).  

The reaction of complex 5.39 with 5.43 gave the 7-membered cyclic olefin 5.44 in 

reasonable enantiomeric excess (77%).  Shortening the tether by two methylene units, 

however, greatly decreased selectivity with the 5-membered cyclic olefin 5.46, which 

was obtained in only 15% ee. 

5 mol% 5.39

0.1 M C6D6, 

rt, 48 h

O
O

5 mol% 5.39

0.1 M C6D6, 

rt, 48 h

O O

xx%, 77% ee

5.43 5.44

5.45 5.46

30%, 15% ee  

Figure 5.10. Screening of complex 5.39 in ARCM. 

As with the triazolylidene complex 5.13, the enantioselectivity shown by CAAC 

complex 5.39 in AROCM and ARCM was considerably lower than the previously 

reported chiral catalysts.6  Despite that, the chiral CAAC motif for ligand design does 

show promise, so further investigation into a related complex utilizing a CAAC ligand 

based on cholestanone has continued. 

Complex 5.49 — Preliminary Work 

Under analogous conditions from previous work, iminium chloride 5.47 was 

obtained in good yield.14 With this precursor in hand, the corresponding free carbene 

(5.48) was generated by treatment with lithium diisopropylamide (LDA) (Scheme 5.10).  

5.48 was then reacted with commercially available (PCy3)RuCl2=CH(o-OiPrC6H4) at 

room temperature, affording the phosphine-free chelating ether complexes 5.49 over the 
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course of 24 hours.  This complex was isolated as a crystalline green solid after flash 

column chromatography. 

Scheme 5.10. Synthesis of chiral CAAC complex 5.49. 
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Structural Analysis 

    Crystals of 5.49 were grown and its molecular structure was confirmed by single-

crystal X-ray crystallographic analysis (Figure 5.11). Like other ruthenium-based olefin 

metathesis catalysts, the complex exhibits a distorted square pyramidal geometry with 

the benzylidene moiety occupying the apical position.  

 

Figure 5.11.  X-ray crystal structure of complex 5.49 is shown.  
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Activity in Olefin Metathesis 

 The general metathesis activity of 5.49 was first tested in the RCM of diethyl 

diallyl malonate (5.14) but no reaction was evident at 30-55 °C.  An increase in the 

reaction temperature to 60 °C, however, resulted in 70% conversion to 5.15 after two 

hours.  This result was coupled with complete decomposition of the catalyst during the 

reaction period, as monitored by total loss of peaks in the alkylidene region of the 1H 

NMR.  Subsequent experimentation with other substrates, including ethylene, has 

demonstrated that 5.49 is completely unreactive below 60 °C, suggesting that a major 

conformational change in the complex is necessary for reactivity. 

Conclusions 

Both chiral triazolylidenes and cyclic alkyl amino carbenes (CAACs) were chosen 

to create non-conformationally flexible environments in proximity to the ruthenium center 

in olefin metathesis catalysts.  Although the enantioselectivity shown by these 

complexes in AROCM and ARCM was considerably lower than previously reported 

chiral catalysts, they represent an important proof of princicple and work is ongoing to 

improve the yields and enantioselectivities for asymmetric olefin metathesis through 

modifcation of the ligand frameworks.  

 

Experimental 

NMR spectra were recorded using a Varian Mercury 300 or Varian Inova 500 

MHz spectrometer.  NMR chemical shifts are reported in parts per million (ppm) 

downfield from tetramethylsilane (TMS) with reference to internal solvent for 1H and 13C.  

Spectra are reported as follows: chemical shift (  ppm), multiplicity, coupling constant 

(Hz), and integration. Gas chromatography data were obtained using an Agilent 6850 
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FID gas chromatograph equipped with a DB-Wax Polyethylene Glycol capillary column 

(J&W Scientific). High-resolution mass spectroscopy (FAB) was completed at the 

California Institute of Technology Mass Spectrometry Facility. X-ray crystallographic 

structures were obtained by the Beckman Institute X-ray Crystallography Laboratory of 

the California Institute of Technology. Crystallographic data have been deposited at the 

CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K., and copies can be obtained on 

request, free of charge, by quoting the publication citation and the deposition numbers 

696348 (5.34) and 735366 (5.49). 

  All reactions involving metal complexes were conducted in oven-dried glassware 

under a nitrogen atmosphere with anhydrous and degassed solvents, using standard 

Schlenk and glovebox techniques. Anhydrous solvents were obtained via elution through 

a solvent column drying system.16  Silica gel used for the purification of organometallic 

complexes was obtained from TSI Scientific, Cambridge, MA (60 Å, pH 6.5–7.0). 

(PCy3)RuCl2(=CH–o-OiPrC6H4), and (PCy3)2RuCl2=CHPH were obtained from Materia, 

Inc.  Unless otherwise indicated, all compounds were purchased from Aldrich or Fisher 

and used as obtained.  The initial screening of the catalysts in RCM via 1H NMR 

spectroscopy was conducted according to literature procedures.17    Screening in 

asymmetric olefin metathesis was also conducted according to literature procedures.6 

 

(4aR,9aS)-4,4a,9,9a-tetrahydroindeno[2,1-b][1,4]oxazin-3(2H)-one (5.9) 

A flame-dried 100 mL two-neck round bottom flask with magnetic stir bar 

was charged with (1R, 2S)-(+)-cis-1-amino-2-indanol and toluene (0.5 M).  

The flask was cooled to 0 °C.  Under argon, 1.5 equiv NaH (dispersed in 

oil, 60% by weight) was added to the flask.   Ethyl chloroacetate, in slight excess, was 

added drop-wise over a 15 minute period.  During this time, bubbling was evident in the 

flask.  After this addition, the reaction was allowed to warm to room temperature (21-

NH

O O
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26ºC).  The reaction was stirred for 3 hour at room temperature, then diluted with 

methylene chloride, washed with dilute aqueous HCl, dried (NaHCO3), and evaporated 

under reduced pressure.  Crystallization from benzene gave the morpholin-3-one (1.2 g, 

95%) as a white powder.  Characterization data for 5.9 are identical to those reported in 

the literature.18  

 

(5aS,10bR)-2-mesityl-4,5a,6,10b-tetrahydroindeno[2,1-b][1,2,4]triazolo[4,3-

d][1,4]oxazin-2-ium chloride (5.12)  

A flame-dried 100 mL round bottom flask was charged with 5.9 

and methylene chloride (0.5 M).  Trimethyloxonium 

tetrafluoroborate, in slight excess was added and the reaction 

mixture was allowed to stir for 12 hours at 23 °C.  1 equiv 

mesitylhydrazine was added and the reaction mixture stirred for 3 hours.  The solvent 

was removed under reduced pressure and the mixture was transferred to a Schlenk 

tube.  The mixture was then heated with an excess of triethyl orthoformate–methanol 

(2:1) in the sealed tube at 80 °C for 12 hours.  Upon cooling, volatiles were removed 

under reduced pressure. Crystallization from hexanes:toluene 10:1 gave the triazolium 

salt (0.31 g, 32%) as an orange crystal. 1H NMR (300 MHz, CDCl3)  11.44 (s, 1H), 

7.66-7.71 (m, 2H), 7.21-7.43 (m, 4H), 6.14 (d, 1H, J = 4.1 Hz), 5.17 (dd, 1H, J = 16, 37.7 

Hz), 4.94 (ddd, 1H, J = 3.8, 3.8, 1.4 Hz), 3.93 (dd, 1H, J = 16, 37.7 Hz), 3.16 (d, 1H, J = 

17.2 Hz), 2.97 (d, 1H, J = 17.2 Hz), 2.37 (s, 3H), 2.12 (s, 6H). 

 

 

 

 

 

N

N N

O

Mes

Cl
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(5,6-Indenyl-2-Mes-Tri)(PCy3)(Cl)2Ru=CHPh (5.13)  

In a glove box, a Schlenk flask was charged with triazolium chloride 

5.12 (147 mg, 0.4 mmol) and NaH in oil (60% by wt.) (16 mg, 0.4 

mmol).  Benzene (3 mL) was added, and the ligand 5.12 was 

allowed to deprotonate by stirring at room temperature for 20 minutes.  Ruthenium 

complex (PCy3)2RuCl2=CHPH (220 mg, 0.27 mmol) was then added as a solution in 

methylene chloride (3 mL).  The sample was sealed and removed from the glove box. 

The reaction mixture was stirred for 12 hours at 50 °C.  The reaction mixture was cooled 

to room temperature, filtered, and concentrated in vacuo. Column chromatography 

(gradient from 10:90 to 50:50 ethyl ether/hexanes) of the concentrate gave purified 

complex 34 as a brown solid in 60% yield. 1H NMR (C6D6) 
  19.9 (s, 1H), 6.96-7.4 (m, 

11H), 6.22 (d, 1H, J = 4.1 Hz), 4.37 (d, 2H, J = 2.1 Hz) 1.5-3.1 (m, 44H) .  31P NMR 

(C6D6):  36.3 ppm. HRMS (FAB) analysis m/z: calculated [M+] 873.2895, found 

873.2912. 

 

 (R)-3-(Phenylmethyl)morpholin-2-one (5.30) 

A flame-dried 100 mL two-neck round bottom flask with magnetic stir bar 

was charged with (R)-2-Amino-3-phenyl-1-propanol (1.0 g, 6.6 mmol) 

and toluene (0.5 M).  The flask was cooled to 0 °C.  Under Argon, 1.5 

equiv NaH (dispersed in oil -60% by weight) was added to the flask.   Ethyl 

chloroacetate, in slight excess, was added drop-wise over a 15 minute period.  During 

this time, bubbling was evident in the flask.  After this addition, the reaction was allowed 

to warm to room temperature (21-26 °C).  The reaction was stirred for 3 hours at room 

temperature, then diluted with methylene chloride, washed with dilute aqueous HCl, 

dried (NaHCO3), and evaporated under reduced pressure.  Crystallization from benzene 

N

N N

O

Cl2Ru

PCy3

Ph

Mes

NH

O O

5.30

Ph
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gave the morpholin-3-one (1.14 g, 90%) as a white powder. Characterization data for 

5.30 are identical to those reported in the literature.19 

  

(R)-5-benzyl-2-mesityl-6,8-dihydro-5H-[1,2,4]triazolo[3,4-c][1,4]oxazin-2-ium 

chloride (5.33) 

A flame-dried 100 mL round bottom flask was charged with 5.30 

and methylene chloride (0.5 M).  Trimethyloxonium 

tetrafluoroborate, in slight excess was added and the reaction 

mixture was allowed to stir for 12 hours at 23 °C.  1 equiv mesitylhydrazine was added 

and the reaction mixture stirred for 3 hours.  The solvent was removed under reduced 

pressure and the mixture was transferred to a Schlenk tube.  The mixture was then 

heated with an excess of triethyl orthoformate–methanol (2:1) in the sealed tube at 80 °C 

for 12 hours.  Upon cooling, volatiles removed under reduced pressure. Purification by 

column chromatography (CH2Cl2/MeOH) gave the triazolium salt (0.5 g, 43%) as tan 

powder. 1H NMR (CDCl3)  11.64 (s, 1H), 6.44-7.47 (m, 7H), 5.09 (dd, 1H, J = 16.5, 31.1 

Hz), 4.64 (dd, 1H, J = 16.6, 18.4 Hz), 4.0-4.12 (m, 2H), 3.44 (dd, 1H, J = 6.9, 7.2 Hz), 

3.18-3.34 (m, 1H), 2.8-2.96 (m, 1H), 2.38 (s, 6H), 2.1 (s, 3H). 

 

(5-Bn-2-Mes-Tri)(Cl)2Ru=CH-o-OPriC6H4 (5.34)  

In a glove box, a Schlenk flask was charged with triazolium 

chloride 5.33 (120 mg, 0.325 mmol) and KHMDS (75 mg, 0.375 

mmol).  Benzene (5 mL) was added, and the ligand 5.33 was 

allowed to deprotonate by stirring at room temperature for 20 

minutes.  Ruthenium complex RuCl2(PCy3)(=CH–o-OiPrC6H4) (250 

mg, 0.25 mmol) was then added as a solution in benzene (3 mL).  The sample was 

sealed and removed from the glove box. The reaction mixture was stirred for 24 hours at 

N

N N

O

Mes

Cl

5.33

Ph

Cl2Ru

O

5.34

N

N N

O

Mes

Ph
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room temperature, then CuCl was added to the flask under positive argon. The 

heterogeneous mixture was stirred vigorously for 1 hour. The reaction mixture was then 

filtered, and concentrated in vacuo. Column chromatography (gradient from 0:100 to 

5:95 methanol/methylene chloride) of the concentrate gave purified complex 5.34 as a 

brown solid in 70% yield. 1H NMR (C6D6) 
 16.8 (s, 1H), 6.7-7.4 (m, 11H), 5.97 (dd, 1H, 

J = 4.0, 7.9 Hz), 5.5 (d, 1H, J = 14.7 Hz), 5.24 (dd, 1H, J = 3.54, 9.5 Hz), 3.2-3.6 (m, 4H), 

1.5-2.4 (m, 16H).  HRMS (FAB) analysis m/z: calculated [M+] 653.115, found 653.1161. 

 

RuCl2(menthone-CAAC)(=CH–o-OiPrC6H4) (5.39) 

 To a solution of free CAAC (5.37) (2 equiv) in benzene was 

added ruthenium complex RuCl2(PCy3)(=CH–o-OiPrC6H4) and the 

mixture was stirred for 24 hours at room temperature. After 

concentrating the mixture in vacuo, the mixture was purified by 

column chromatography on TSI silica (eluent: toluene).  The green band was collected 

and volatiles were removed under vacuum, providing 5.39 as a green solid in 95% yield. 

Crystals suitable for X-ray crystallography were grown from a saturated solution of 

hexanes (0 °C). 1H NMR (500 MHz, C6D6, 25 oC):  0.61 [s, 3H], 0.657-0.697 [m, 6H], 

0.718 [s, 3H], 0.879 [d, 3H, J = 6.59 Hz], 0.946-0.99 [m, 1H], 1.1 [d, 2H, J = 6.18 Hz], 

1.268-1.304 [m, 9H], 1.445-1.511 [m, 1H], 1.68 [d, 1H, J = 12.76 Hz], 1.815 [br s, 3H], 

2.068-2.18 [m, 2H], 2.396 [br s, 2H], 2.254-2.605 [m, 2H], 2.862 [br s, 1H], 3.318 [d, J = 

7 Hz], 4.25-4.323 [m, 1H], 6.147 [d, 1H, J =8.23], 6.38 [t, 1H, J =7.42], 6.7-6.72 [m, 1H], 

6.92-6.937 [m, 2H], 7.019 [t, 1H, J = 7.42 Hz], 16.463 [s, 1H].  13C NMR (125 MHz, 

C6D6):  14.794, 14.890, 20.419, 22.050, 22.076, 25.268, 25.701, 29.503, 50.935, 

71.369, 74.244, 75.987, 113.618, 121.780, 124.071, 124.489, 125.507, 126.866, 

126.957, 128.689, 130.880, 140.467, 143.655, 143.700, 144.456, 145.246, 152.699, 

Cl2Ru

O

N

Et

Et
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268.009, 303.565.  HRMS (FAB+) calculated for C35H51Cl2NORu [M+] 673.2392, 

observed 673.2413. 

 

RuCl2(cholestenone-CAAC)(=CH–o-OiPrC6H4) (5.49) 

To a solution of free cholestenone-CAAC (2 

equiv) in benzene was added ruthenium 

complex RuCl2(PCy3)(=CH–o-OiPrC6H4) and the 

mixture was stirred for 24 hours at room 

temperature. After concentrating the mixture in 

vacuo, the mixture was purified by column 

chromatography on TSI silica (eluent: toluene).  

The green band was collected and volatiles were removed under vacuum, providing 5.49 

as a green solid in 70% yield. Crystals suitable for X-ray crystallography were grown 

from a slow diffusion of pentane into a saturated solution of toluene (0 °C). 1H NMR (500 

MHz, C6D6)  16.76 (s, 1H), 7.31 (t, J = 7.7, 1H), 7.22 (dd, J = 7.7, 2.2, 2H), 7.19 – 7.14 

(m, 6H), 7.02 (dd, J = 7.5, 1.7, 2H), 6.69 – 6.63 (m, 1H), 6.41 (d, J = 8.5, 1H), 4.65 (hept, 

J = 6.1, 1H), 3.26 – 3.09 (m, 1H), 3.04 – 2.72 (m, 3H), 2.42 (ddq, J = 15.0, 10.5, 7.4, 

2H), 2.14 (dd, J = 9.1, 3.4, 1H), 2.11 (s, 1H), 2.02 – 1.90 (m, 2H), 1.90 – 1.80 (m, 1H), 

1.79 – 1.70 (m, 1H), 1.64 – 1.11 (m, 16H), 1.10 (d, J = 3.3, 1H), 1.08 (d, J = 2.8, 1H), 

0.98 (dd, J = 4.6, 2.8, 2H), 0.96 (d, J = 2.1, 1H), 0.95 – 0.92 (m, 3H), 0.82 (s, 3H), 0.43 

(s, 1H). 13C NMR (126 MHz, C6D6)  301.41, 267.05, 153.10, 145.58, 144.06, 143.81, 

140.93, 131.97, 130.79, 130.04, 129.49, 123.07, 121.85, 114.66, 76.35, 74.44, 74.30, 

60.59, 57.65, 56.87, 55.38, 46.19, 43.66, 40.57, 37.24, 36.33, 35.76, 29.39, 26.64, 

26.42, 25.47, 23.90, 23.53, 23.32, 15.83, 15.61. HRMS (FAB+) calculated for 

C52H79Cl2NORu [M+] 905.4583, observed 905.4540. 

 

RuCl2

O

N
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Et
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Complex 5.34   5.49 

    
CCDC # 696348  735366 

    
Emperical formula C35H51NOCl2Ru  C52H79NOCl2Ru 

    
Formula weight 673.74  906.13 

    
Crystallization Hexanes  Toluene/pentane 

solvent    
    

Crystal color Olive green  Green  
    

T (K) 100(2)   100(2)  
    

 range (o) 2.21 to 31.91  2.21 to 27.49 
    

a (Å) 8.8753(7)  12.7795(11) 
    

b (Å) 18.4415(13)  13.2943(12) 
    

c (Å) 10.1004(8)  28.071(3) 
    

 (Å)    
    

 (Å) 92.987(4)   
    

 (Å)    
    

V (Å3) 1650.9(2)  4769.2(8) 
    

Crystal system Monoclinic  Orthorhombic 
    

Space group P21  P212121 
    

dcalc (g/cm3) 1.355  1.262 
    

μ  (mm-1) 0.664  0.478 
    

GOF on F2 1.704  1.323 
    

R1, wR2 [I > 2 (I)] 0.0444, 0.0584   0.0320, 0.0408 
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Abstract 

A series of ruthenium olefin metathesis catalysts bearing acenapthylene-

annulated N-heterocyclic carbene (NHC) ligands with varying degrees of N-aryl 

substitution have been prepared. Initial evaluation of their performance in olefin 

metathesis demonstrated that these complexes show greater resistance to 

decomposition, resulting in increased catalyst lifetimes.  While this work has great 

potential, the results are preliminary.  To fully understand the effect that these ligands 

can have on ruthenium complexes, related ligands need to be developed and compared 

against standard NHC analogs. 

Introduction 

As discussed in depth in chapters two and three, an important challenge in ring-

closing metathesis (RCM) is to substantially decrease “standard” catalyst loading, 

thereby reducing both reaction cost and challenges associated with product purification, 

an especially critical concern when reaction products are intended for pharmaceutical 

use.1  To this effect, our goal has been to increase catalyst efficiency by developing 

even more stable and robust catalysts that still retain high catalytic activity.  Preliminary 

work in this project was completed concurrently with the methyl-substitution studies 

discussed in chapter two.  As in that study, we expected that the backbone substitution 

in acenapthylene-annulated NHCs could play a central role in increased activity and 

catalyst lifetimes.  We were also very interested in the effects of the forced syn-

conformation of the N-aryl substituents on catalyst activity and stability. 
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Results 

Catalyst Syntheses 

  The preparation of the mesityl and 2,6-diisopropylphenyl substituted acenaptho-

imidazolinium chlorides have been previously reported by Çetinkaya and Grubbs, 

respectively.2  Under analogous experimental conditions, acenaptho-imidazolinium 

chlorides A.1 and A.2 were obtained in good yields (Figure A.1). 

NN

Cl

NN

i-Pri-Pr

Cl

A.1 A.2  

Figure A.1. Acenapthol-imidazolinium chlorides. 

With these precursors in hand, the corresponding free carbenes were generated by 

treatment of the imidazolinium salts with potassium hexamethyldisilazide (KHMDS) at 

room temperature (Scheme A.1).  These carbenes (prepared in situ) were reacted with 

commercially available (PCy3)RuCl2=CH(o-OiPrC6H4) at 70 °C, affording the phosphine-

free chelating ether complexes A.3 and A.4.  These complexes were isolated as 

crystalline green solids after flash column chromatography, and as solids are both air 

and moisture stable under standard conditions. 
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Scheme A.1. Synthesis of ruthenium complexes A.3 and A.4. 

NN

RR

Cl

Cl2Ru

O

KHMDS

benzene

70 C, 4 h

Cl2Ru

O

PCy3

NN

RR

A.3, R=Me; 35%
A.4, R=i-Pr; 75%  

Structural Analyses 

    To probe the electronic and steric effects of this new backbone substitution, 

crystals of A.3 and A.4 were grown and their molecular structures were confirmed by 

single-crystal X-ray crystallographic analysis (Figures A.2 and A.3). As expected, the 

complexes exhibit a distorted square pyramidal geometry with the benzylidene moiety 

occupying the apical position.  As desired, the N-aryl substituents are on the same face 

in both examples. 

              

Figure A.2.  X-ray crystal structure of complex A.3, including side view. 
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Figure A.3.  X-ray crystal structure of complex A.4, including top view. 

Activity in Olefin Metathesis 

Catalysts A.3 and A.4 were compared to highly active complex A.5 

(H2ITol)(PCy3)Cl2Ru=CHPh (H2ITol = 1,3-di-o-tolylimidazolidine-2-ylidene).   First, they 

were examined in the ring-closing metathesis of diethyl diallylmalonate (A.6) (Figure 

A.4). The reaction, utilizing 1 mol% catalyst in CD2Cl2 at 30 °C, was monitored by 1H 

NMR spectroscopy.  While A.3 and A.4 both complete the reaction, they initiate much 

slower than complex A.5.  The same trend was observed for the cyclization of diethyl 

allylmethallylmalonate A.8 to form trisubstituted cyclic olefin A.9 (Figure A.5), and in the 

challenging RCM of diethyl dimethallylmalonate (A.10) (Figure A.6). 
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CO2EtEtO2C
1 mol% cat.

0.1 M, CD2Cl2

30 oC

CO2EtEtO2C

A.6 A.7  

 

Figure A.4. RCM of diene A.6 to disubstituted cycloalkene A.7. 

CO2EtEtO2C
1 mol% cat.

0.1 M, CD2Cl2

30 oC

CO2EtEtO2C

A.8 A.9  

 

Figure A.5. RCM of diene A.8 to trisubstituted cycloalkene A.9. 
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CO2EtEtO2C

A.10

CO2EtEtO2C

A.11

5 mol% cat.

0.1 M, C6D6

60 oC

 

 

Figure A.6. RCM of diene A.10 to tetrasubstituted cycloalkene A.11. 

 As in chapter two, these initial results provide little insight into the effects of 

ligand modification on total catalyst efficiency.  While it was clear that the acenapthol-

annulated ligands decreased the initiation rate of the catalysts, we remained interested 

in catalyst lifetimes relative to standard catalysts.  With that in mind, the highly sensitive 

assay designed in chapter two was implemented to compare complexes A.4 and A.5 

(Figure A.7).  At these very low catalyst loadings (250 ppm), acenapthylene substitution 

resulted in higher conversions to cyclic olefin A.7. The data suggest that the higher 

conversions are a direct result of longer catalyst lifetimes.  However, as observed during 

the initial studies, the backbone substitution decreases reaction rate. 
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CO2EtEtO2C
250 ppm cat.

0.1 M, toluene

50 oC

CO2EtEtO2C

A.6 A.7  

 

Figure A.7. Low ppm assay for RCM of A.6 utilizing complexes A.4 and A.5. 

Future Directions 

This preliminary work has demonstrated that the acenapthylene annullation of 

NHCs has great potential.  To fully understand the effect that these ligands can have on 

ruthenium complexes in metathesis, related ligands need to be developed and 

compared against standard NHC analogs.  Future work should focus on the preparation 

and testing of the N-phenyl derivative of these complexes.  Ideally, this new complex will 

exhibit high activity while showing greater resistance to decomposition, resulting in 

increased catalyst lifetimes and larger turnover numbers. 

Experimental 

NMR spectra were recorded using a Varian Mercury 300 or Varian Inova 500 

MHz spectrometer.  NMR chemical shifts are reported in parts per million (ppm) 

downfield from tetramethylsilane (TMS) with reference to internal solvent for 1H and 13C.  
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Spectra are reported as follows: chemical shift (  ppm), multiplicity, coupling constant 

(Hz), and integration. Gas chromatography data was obtained using an Agilent 6850 FID 

gas chromatograph equipped with a DB-Wax Polyethylene Glycol capillary column (J&W 

Scientific). High-resolution mass spectroscopy (FAB) was completed at the California 

Institute of Technology Mass Spectrometry Facility. X-ray crystallographic structures 

were obtained by the Beckman Institute X-ray Crystallography Laboratory of the 

California Institute of Technology. Crystallographic data have been deposited at the 

CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K., and copies can be obtained on 

request, free of charge, by quoting the publication citation and the deposition numbers 

687311 (A.3) and 684753 (A.4). 

  All reactions involving metal complexes were conducted in oven-dried glassware 

under a nitrogen atmosphere with anhydrous and degassed solvents, using standard 

Schlenk and glovebox techniques. Anhydrous solvents were obtained via elution through 

a solvent column drying system.3  Silica gel used for the purification of organometallic 

complexes was obtained from TSI Scientific, Cambridge, MA (60 Å, pH 6.5–7.0). 

(PCy3)RuCl2(=CH–o-OiPrC6H4), was obtained from Materia, Inc.  Unless otherwise 

indicated, all compounds were purchased from Aldrich or Fisher and used as obtained.  

The initial screening of the catalysts, in RCM via 1H NMR spectroscopy was conducted 

according to literature procedures.4 Low ppm level screening was conducted according 

to procedures outlined in chapter two and the related literature.5 
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RuCl2[1,3-di-2-methylphenylacenaphtho[1,2-d]imidazolin-2-ylidene](=CH–o-

OiPrC6H4) (A.3) 

In a glove box, a Schlenk flask was charged with A.1 (2 equiv) 

and KHMDS (2.1 equiv).  Benzene (10 mL) was added, and the 

ligand was allowed to deprotonate by stirring at room 

temperature for 20 minutes.  Ruthenium complex 

RuCl2(PCy3)(=CH–o-OiPrC6H4) was then added.  The sample 

was sealed and removed from the glove box. The reaction mixture was stirred for 4 

hours at 70 °C.  After concentrating the mixture in vacuo, the mixture was purified by 

column chromatography on TSI silica (eluent: toluene).  The green band was collected 

and volatiles were removed under vacuum, providing A.3 as a green solid in 35% yield. 

Crystals suitable for X-ray crystallography were grown from a saturated solution of 

methanol (0 °C). 1H NMR (500 MHz, C6D6, 25 oC):  16.20 (s, 1H), 8.27(s, 1H), 7.1-7.2 

(m, 3H), 6.6-6.8 (m, 6H), 6.25-6.4 (m, 4H), 6.0-6.1 (m, 1H), 5.5-5.6 (m, 2H), 4.1-4.2 (m, 

1H), 2.27-2.47 (m, 6H), 0.97-1.09 (m, 6H). HRMS Calculated for C37H34Cl2N2ORu: 

694.1092. Found: 694.1073. 

 

RuCl2[1,3-di-2-isopropylphenylacenaphtho[1,2-d]imidazolin-2-ylidene](=CH–o-

OiPrC6H4) (A.4) 

In a glove box, a Schlenk flask was charged with A.2 (2 equiv) 

and KHMDS (2.1 equiv).  Benzene (10 mL) was added, and the 

ligand was allowed to deprotonate by stirring at room 

temperature for 20 minutes.  Ruthenium complex 

RuCl2(PCy3)(=CH–o-OiPrC6H4) was then added.  The sample 

was sealed and removed from the glove box. The reaction 

mixture was stirred for 4 hours at 70 °C.  After concentrating the mixture in vacuo, the 

Cl2Ru

O

NN

Cl2Ru

O

NN

i-Pri-Pr
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mixture was purified by column chromatography on TSI silica (eluent: toluene).  The 

green band was collected and volatiles were removed under vacuum, providing A.4 as a 

green solid in 70% yield. Crystals suitable for X-ray crystallography were grown from a 

saturated solution of methanol (0 °C). 1H NMR (500 MHz, C6D6):  16.63 (s, 1H), 8.60(d, 

2H, J=8.0Hz), 7.17-7.47 (m, 8H), 6.92-7.04 (m, 4H), 6.48-6.7 (m, 4H), 6.28 (d, 1H, 

J=8.7Hz), 5.90-6.13 (m, 2H), 4.37 (m, 1H), 3.70-3.84 (m, 2H), 1.63-1.66 (m, 3H), 1.27-

1.42 (m, 12H), 1.19-1.25 (m, 3H). HRMS Calculated for C41H42Cl2N2ORu: 750.1718. 

Found: 750.1690. 
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Complex A.3   A.4 

    
CCDC # 687311  684753 

    
Emperical formula C37H34N2OCl2Ru  C41H42N2OCl2Ru 

    
Formula weight 694.63  750.74 

    
Crystallization Methanol  Methanol 

solvent    
    

Crystal color Dichroic – brown/green  Green  
    

T (K) 100(2)   100(2)  
    

 range (o) 2.41 to 46.41  2.23 to 28.76 
    

a (Å) 18.3236(7)  24.1277(7) 
    

b (Å) 12.3481(5)  13.2139(4) 
    

c (Å) 28.3579(10)  25.2901(7) 
    

 (Å)    
    

 (Å) 94.035(2)  117.6880(10) 
    

 (Å)    
    

V (Å3) 6400.4(4)  7139.7(4) 
    

Crystal system Monoclinic  Monoclinic 
    

Space group C2/c  P21/n 
    

dcalc (g/cm3) 1.442  1.397 
    

μ  (mm-1) 0.689  0.624 
    

GOF on F2 1.602  1.324 
    

R1, wR2 [I > 2 (I)] 0.0395, 0.0743   0.0400, 0.0491 
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Abstract 

In chapter three, a high-throughput assay was utilized to screen a series of 

ruthenium catalysts for the ring-closing metathesis (RCM) of acyclic carbamates to form 

the corresponding di-, tri-, and tetrasubstituted five-, six-, and seven-membered cyclic 

carbamates.  Due to the large amount of data collected, the discussion in chapter three 

focused on only a small portion of the results from this study, providing an overall 

assessment of catalyst activity with the carbamate substrates. Because the additional 

results are relevant and provide additional insight into the trends discussed in chapter 

three, they have been reported in this appendix. 

Results  
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Figure B.1. Ruthenium-based olefin metathesis catalysts utilized in this study. 
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Figure B.2.  RCM of 3.11 utilizing complexes 3.1–3.10 at 50 °C. 
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Figure B.3.  RCM of 3.11 utilizing complexes 3.1–3.10 at 30 °C. 
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Figure B.4.  RCM of 3.13 utilizing complexes 3.1–3.10 at 50 °C. 
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Figure B.5.  RCM of 3.13 utilizing complexes 3.1–3.10 at 30 °C. 
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Figure B.6.  RCM of 3.15 utilizing complexes 3.1–3.10 at 50 °C. 
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Figure B.7.  RCM of 3.15 utilizing complexes 3.1–3.10 at 30 °C. 
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Figure B.8.  RCM of 3.17 utilizing complexes 3.1–3.10 at 50 °C. 
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Figure B.9.  RCM of 3.17 utilizing complexes 3.1–3.10 at 30 °C. 
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Figure B.10.  RCM of 3.19 utilizing complexes 3.2–3.5 and 3.7–3.10 at 50 °C. 
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Figure B.11.  RCM of 3.21 utilizing complexes 3.2–3.4 and 3.6–3.10 at 50 °C. 
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Figure B.12.  RCM of 3.23 utilizing complexes 3.4 and 3.7–3.10 at 50 °C. 
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Figure B.13.  RCM of 3.25 utilizing complexes 3.8–3.10 at 50 °C. 
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Figure B.14.  RCM of 3.27 utilizing complexes 3.7–3.10 at 50 °C. 
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