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Chapter 2

Effects of Spatial Confinements on
Biochemical Reactions

2.1 Chemical Reactions of Low Copy Number

2.1.1 System-size Resonance of a Reduced Model of Belousov–Zhabotinsky

Reaction

Introduction

Belousov–Zhabotinsky (BZ) reaction is arguably the most famous example of oscillatory chemical

reactions and nonlinear chemistry in general. Variants of BZ reactions are still attracting the interests

of scientists even 50 years after its first publication [8]. Nonlinear phenomena may be more sensitive

to the stochastic nature of chemical reactions. It is thus natural to subject BZ reactions to low copy

number conditions and investigate the influence of noise on the behavior of the system. In addition,

the recent development of microfluidic techniques [23] offers unprecedented access to femtoliter-sized

reactors where the stochastic effect is expected to be more pronounced than in bulk conditions.

This advancement enables the direct comparison between theoretical prediction and experimental

observation.

Only a subset of nonlinear chemical reactions can be conveniently used in a microfluidic device

for interrogation. Due to the complexity of world-to-chip integration, the content of a microreactor is
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normally isolated from the environment. For example, a continuously stirred tank reactor with con-

stant supply and removal of chemicals is not trivial to scale down to femtoliter range. This limits our

choice of candidate systems to batch reactions. Furthermore, a convenient method, preferably based

on an optical signal, should be available to record the kinetics of the reaction. Finally, it is extremely

useful if the reaction mechanism of the reaction is known. On the basis of these consideration, we

will focus on a variant of BZ reaction whose core elements are bromate and 1,4-cyclohexanedione

(bromate–CHD system). It supports oscillation in bulk mode. Its reaction mechanism has been

elucidated at various levels [148–151]. And optical signal, from fluorescence [150] or absorbance [42],

is available to facilitate experimental observation. In addition, during the reaction CHD does not

release carbon dioxide, which tends to form bubbles and disturbs the system. Figure 2.1 shows the

spatial pattern formed by a bromate–CHD system in a Petri dish.

(a) (b)

Figure 2.1. Ribbon (a) and spiral (b) patterns formed by bromate–CHD system in a Petri dish.

The initial concentrations were [CHD] = 0.1 M, [KBrO3] = 0.1 M, and [H2SO4] = 1.0 M. Ferroin

(0.1 mM) was used as indicator, and 0.01 M KBr was added to reduce induction time.

Bromate–CHD system was used in microfluidic channels to generate obstacle-mediated spiral

waves [42–44, 90]. The same system was also the subject of a recent experiment showing the effect

of stirring rate on the reaction kinetics [172]. The effect of reactor size on this system is yet to

be explored in theory or experiments. In this section, we report the effect of stochastic chemical

reactions on the dynamical behavior of this system by using Gillespie algorithm and a reduced model

of bromate–CHD system (Table 2.1). In particular, we studied the effect of system volume when
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Table 2.1. Reduced model of bromate–CHD system [149]
Reactiona Reaction rate expression Rate constant

X + Y → sink k1[X][Y] k1 = 3.225× 106 M−1 s−1

Y → X k2[Y] k2 = 0.158 s−1

2X → sink k3[X]2 k3 = 4.386× 103 M−1 s−1

X + Z → 2X k4[Z][X]1/2 k4 = 86.7 M−3/2 s−1

source → fZ + Y k5 k5 = 1.32× 10−6 M s−1

Z → X k6[Z] k6 = 2.04× 10−3 s−1

aX ≡ HBrO2, Y ≡ bromide and Z ≡ 1,4-dihydroxybenzene

the system was configured close to the bifurcation point and observed the existence of an optimal

volume to support oscillation. The simulation results are expected to motivate the corresponding

experiments in microreactors defined using microfluidic techniques (chapters 3 and 4).

Deterministic model

The full model of bromate–CHD system consists of 17 species and 25 reactions [148]. As shown

in Table 2.1, it can be reduced to a three-variable model [149] using quasi-steady-state assumption

and pool-component approximation. The bifurcation parameter f is essentially the ratio of 1,4-

dihydroxybenzene production rate and bromide production rate, and it can be tuned by the initial

species concentration.

It is straightforward to obtain the bifurcation diagram according to the deterministic model

(Table 2.1). The concentration of X as a function of time reaches either a steady state or an

oscillatory state after a short transient period (figure 2.3, black). By plotting the maximum and

minimum values of [X] as a function of f , we obtained a phase diagram (figure 2.2) illustrating the

Hopt bifurcation between the two possible dynamical behaviors.

Stochastic simulation and system-size resonance

In this section, Gillespie algorithm [40, 109] is used to study the influence of stochasticity of chemical

reactions on the system dynamics when f ≈ 1.05, close to the second bifurcation point.

As shown in figure 2.3(a), the deterministic limit-cycle behavior is largely preserved in all stochas-

tic simulations. The deviation from perfect periodic kinetics is bigger when the system volume is
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Figure 2.2. Bifurcation diagram based on deterministic simulation of the reduced model. The

minimum and maximum concentration of X are plotted as a function of f .

decreased, in agreement with theoretical consideration in a more general context [37, 38]. This

observation holds true independently of the value of control parameter f as long as system volume

is not too small (compare red curves with black ones in figure 2.3). However, when more noise is

present due to the decrease of system volume, the behavior of the system may show qualitatively

different feature (compare green or blue curves with black ones in figure 2.3(b) and figure 2.3(c)).

In particular, the system may be excited from steady state to limit cycle transiently and exhibit

pronounced oscillation.

To quantify the periodicity in these kinetic traces, we consider the power spectral density (PSD)

of figure 2.3. The PSD of a time series is defined as the magnitude square of its Fourier transform.

All time series being of finite length, a Hamming window is used to reduce the contribution of

spurious side peaks. The simulation data has a sampling rate of 1 Hz and around 105 points,

sufficient to get a converging estimate of PSD. It is divided by a Welch window of 1024 with 50%
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(a)

(b)

(c)

Figure 2.3. The concentration of X from deterministic (black) or stochastic simulation with system

volume of 1 fL (red), 0.1 fL (green), and 0.01 fL (blue) at f = 1.03 (a), 1.05 (b), and 1.10 (c).
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overlap to smooth the final PSD. A signal-to-noise ratio (SNR) is then obtained from the peak of

PSD using SNR ≡ P (B)
P (A)

fB
fC−fB

. Here P (B) is the PSD at the signal peak located at fB, P (A) is the

minimum PSD to the left of the peak, and fC is the frequency which satisfies P (C) = P (B)/e1/2

(figure 2.4(b)). SNR reflects the periodicity of the time series in a quantitative way. For example,

at f = 1.05, the deterministic simulation does not show any periodicity (figure 2.3(b), black), so its

PSD (figure 2.4(a)) has no nonzero peaks. With the introduction of stochastic noise, the system

undergoes significant periodic fluctuation (figure 2.3(b), green) and there is a clear peak in its PSD

(figure 2.4(b)) at 0.015 Hz, the limit-cycle frequency for f = 1.04.

(a) (b)

Figure 2.4. The PSD of [X](t) from deterministic (a) or stochastic (b) simulation with V = 0.1 fL

and f = 1.05.

Figure 2.5 summarizes the relation between SNR and system volume at different values of the

bifurcation parameter. When the system is inside the limit-cycle region (figure 2.5, red and green),

the destructive effect of stochastic noise is reflected in the decrease of SNR with decreasing volume.

The sensitivity of SNR to system volume is bigger when f is further away from the bifurcation point

mostly due to bigger SNR at large volumes, which is consistent with the intuition that limit cycle

is more stable in that region. When the system is slightly outside the limit-cycle region (figure 2.5,

blue and black), the noise induces periodic fluctuations with a characteristic frequency close to the

neighboring limit-cycle value (Table 2.2). This influence tends to be more significant when system

volume is reduced to introduce more noise (figure 2.5, black). When f is very close to the bifurcation

point, there exists an optimal volume where SNR is maximized (figure 2.5, blue). This phenomenon

has been reported previously in other systems [60–62, 64, 120, 125], and associated with stochastic
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Figure 2.5. SNR as a function of system volume at different values of the bifurcation parameter f

by spectral analysis of time series [X](t) from stochastic simulations.

resonance [32] where a system driven by external periodic force is more responsive to noise of a

certain magnitude. In the context of chemical reactions, noise is inversely proportional to the square

root of system volume [39, 166], so the optimal noise strength translates to an optimal volume. From

a mathematical point of view, SNR for small system volumes tends to be less dependent on the value

of f , whereas for big system volume, it closely follows the deterministic results. As f increases and

crosses the bifurcation point, SNR for big volumes increases significantly, and at some particular f ,

it must be very close to the SNR for small volumes. At this point, because SNR assumes similar

values at big and small volumes, there must exist at least one extremum at intermediate volumes as

long as SNR is dependent on volume.

Table 2.2. The peak frequency of PSD as a function of volume and bifurcation parameter

Volume Peak frequency (Hz)
(L) f = 1.04 f = 1.04 f = 1.05 f = 1.1

(deterministic) (stochastic) (stochastic) (stochastic)
5× 10−18 0.015 — 0.016 —
1× 10−17 0.015 0.016 0.016 0.016
5× 10−17 0.015 — 0.016 —
1× 10−16 0.015 0.016 0.015 0.016
5× 10−16 0.015 — 0.015 —
1× 10−15 0.015 0.015 0.015 0.017

Finally, even when the system volume is big enough to prevent the appearance of significant
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fluctuation around the steady state (figure 2.3(b) and 2.3(c), red), there is still a well-defined peak

in the PSD with SNR > 1. PSD being the Fourier transform of the correlation function, a peak in

PSD implies that the system relaxes to the steady state in an oscillatory fashion [37]. A high SNR

means the relaxation time is longer than the oscillation period. Considering that the peak frequency

is still similar to the neighboring limit-cycle frequency, one could extract some information regarding

the limit cycle region from a spectral analysis of the fluctuation around the steady state.

Conclusion

In this section, we analyze a reduced model of bromate–CHD system which supports oscillatory

kinetics in bulk under appropriate conditions. Comparison between deterministic and stochastic

simulations reveals the effect of random noise on the dynamical features of the system. In general,

noise adds a perturbation to the deterministic trajectory. When the system is configured very

close to the bifurcation point, chemical reaction noise may transiently push the system over the

bifurcation point, and one would observe limit-cycle behavior when steady state is predicted by the

deterministic model. Even when the noise is not strong enough to change the dynamics qualitatively,

it induces fluctuation whose power spectrum contained valuable information on the nearby limit-

cycle region. Moreover, when the bifurcation parameter assumes some particular value very close

to the bifurcation point, there exists an optimal system volume for the excitation of steady state by

stochastic noise. This phenomena is closely related to stochastic resonance.

This study may lead to the experimental verification of the conclusions drawn above from nu-

merical investigations. With the advancement of microfluidic techniques, it is straightforward to

observe the bromate–CHD reaction in femtoliter reactors with tunable volume [68, 116] and study

the influence of chemical noise on reaction kinetics.
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2.1.2 Stochastic Defocusing of Peroxidase–Oxidase System in Response

to Initial Conditions

Introduction

Chemical reactions are in nature a random process, but the stochasticity does not manifest itself in

traditional bulk experiments dictated by the ensemble average of the behavior of a large number of

molecules [166]. Chemical reactions essential to biological systems are conveniently studied in terms

of the time evolution of the components’ concentrations, and lots of useful information has been

extracted and used to construct complicated metabolic [5] and genetic [31, 132] oscillators in vivo.

Real cellular environment, however, differs from in vitro experiments in two fundamental aspects.

First, in many cases only a small number of molecules are involved in biochemical interactions [110].

For example, in a highly compartmentalized cell, reactions often take place in a small volume on

the order of femtoliters, so the copy numbers of involved molecules are much smaller than that in

bulk experiments. Small copy numbers are also characteristic of genetic materials [89]. In addition,

cellular environment is extremely crowded, so diffusion of molecules is much slower than in dilute

solution [99].

An intuitive way to address the first problem is to study biochemical reactions in microreactors.

With the development of “lab on a chip,” fabrication of microreactors have been more and more

accessible to chemists and biologists [23, 66]. Much effort has been put into understanding the physics

of fluid at micrometer scale [133], and integrating and parallelizing processes in microfluidic chips [93].

High throughput, low reagent consumption, and fast turnout rate are among the most often cited

advantages of microfluidics. More relevant to this work, it is possible to fabricate microreactors

comparable in size to real cellular compartments and thus more relevant to the investigation of

biochemical reactions in their native conditions. The deterministic approach of reaction kinetics

based on law of mass action should give way to its stochastic counterpart when it is used to predict or

interpret experimental results in microreactors. For a well mixed microreactor, the stochasticity can

be accounted for by using Gillespie’s stochastic simulation algorithm or its variants [40]. Although,

as mentioned above, diffusion in cellular environment is hindered due to molecular crowding, there
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is some evidence that only minor modification is required to take crowdedness into account [41]. So

for this work, Gillespie algorithm [40, 109] is used to simulate biochemical reactions in a confined

volume of femtoliter scale.

The inherent randomness of chemical reactions adds noise to the deterministic evolution of a

biochemical system. The effect is more significant when a nonlinear system is of interest. Noise-

induced phenomena have been explored in both abstract [37, 59] and realistic chemical reaction

networks [6, 47, 171]. Peroxidase–oxidase (PO) oscillator [103] is a well-studied nonlinear system

of biological importance. A recent review summarizes the current models for PO system [12, 56,

119], and the list of relevant reactants are still being updated. Although an abstract model was

proposed around 30 years ago [103], realistic models have been the interest of different groups to

explain various dynamical behavior observed in PO systems in appropriate part of its parameter

space [9, 11, 12, 104, 119]. By taking stochastic effects into consideration, it is possible to predict

the behavior of the PO system in a confined space and compare it against experimental results.

We compared the asymptotic behavior of the PO system as a function of initial H2O2 concentra-

tion [56] using stochastic and deterministic simulation methods. The results demonstrated the effect

of the randomness of chemical reactions even when the system volume is as big as 100 fL. It may be

compared to stochastic defocusing [72] reported for other systems. This work is expected to prompt

future experimental investigations to quantitatively test the prediction of numerical simulation.

Deterministic model

PO system can manifest oscillatory or steady-state behavior under different conditions. For example,

it was observed that initial concentration of H2O2 determined the asymptotic behavior of the PO

system (i.e., steady state or periodic oscillation). To be particular, deterministic simulation of the

BFSO model [56] showed that when [H2O2]0 < c0, the system oscillated with a defined period,

and when [H2O2]0 > c0, steady state was eventually achieved. The critical concentration c0 was

determined to be ≈ 0.29998 µM from a reaction network (BFSO model) composed of 14 reactions

and 11 species (Table 2.3). We take this as a case study to explore the stochastic effect of chemical
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Table 2.3. BFSO model for PO system [56]

Reaction Rate constant Unit
NADH+O2 + H+ → NAD+ + H2O2 10.0 M−1 s−1

H2O2 + Per3+ → compound I 1.8× 107 M−1 s−1

compound I + NADH → compound II + NAD• 4.0× 105 M−1 s−1

compound II + NADH → Per3+ + NAD• 2.6× 105 M−1 s−1

NAD• + O2 → NAD+ + O−2 2.0× 107 M−1 s−1

O−2 + Per3+ → compound III 1.7× 107 M−1 s−1

2O−2
2H+

−−−→ H2O2 + O2 2.0× 107 M−1 s−1

compound III + NAD• → compound I + NAD+ 6.0× 107 M−1 s−1

2NAD• → NAD2 5.6× 107 M−1 s−1

Per3+ + NAD• → Per2+ + NAD+ 1.8× 106 M−1 s−1

Per2+ + O2 → compound III 1.0× 105 M−1 s−1

→ NADH 7× 10−8 M s−1

→ O2 5.28× 10−8 M s−1

O2 → 4.4× 10−3 s−1

reactions.

The transition is quantified by plotting the probability of limit cycle behavior with respect to

[H2O2]0. As expected, deterministic simulation predicts that the transition from limit cycle to

steady state is discontinuous, and the system’s behavior is not well defined if [H2O2] starts exactly

from c0. The behavior of the system starting away from c0 ends up to be either steady state or

periodic oscillation after a short transient period. As is shown in figure 2.6 (red lines), deterministic

simulation shows that PO system will assume either steady state or oscillatory state depending on

the initial concentration of H2O2 even if it is very close to c0 (figure 2.6(c)).

Stochastic simulation and result

The transition around c0 should be sharp but continuous in reality. In this case stochastic simulation

is invoked to resolve the discontinuity by taking stochastic effect into consideration.

Intuitively, the concentrations of involved species in the system are fluctuating around the de-

terministic results in stochastic simulations as shown in figure 2.6. However, when the system is

initiated using [H2O2]0 ≈ c0, the system’s fate lost its predictability. Either steady state or oscil-

lation may be the ultimate choice (compare blue and green lines in figure 2.6). Interestingly, no

transition between the two choices was observed within a realistic period of time (data not shown).



18

(a)

(b)

(c)

Figure 2.6. Oxygen concentration as a function of time for [H2O2]0 = 0.28 µM (a), 0.32 µM (b),

or 0.30 µM (c). Red: Deterministic simulation results; green and blue: stochastic simulation with

qualitatively different results (system volume is 10−15 L).
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The response of the system to initial conditions is then quantified by running the simulation a suf-

ficient number of times and calculating the probability of finding the system in either of the two

attractors.

Among N independent simulations of the system, the number n of instances of oscillation obeys

a binomial distribution of mean Np and variance Np(1−p), where p is the probability of the system

assuming oscillatory behavior. With a confidence of 95%, N should satisfy

2
√
Np(1− p)
Np

< 0.05

to achieve an error ≤ 5% in p. In particular, N > 1600 if p ≈ .5. Therefore, more than 1600

simulations of the BFSO model for each initial [H2O2]0 were used to calculate p and its error using

p =
n

N
,

∆p =
2
√
Np(1− p)
N

,

respectively.

Figure 2.7 shows the convergence of p to a constant when the number of simulation is increased.

In these simulations, [H2O2]0 is chosen to be 0.30 µM, and 1600 simulation runs were carried out

with different length of simulation time. The probability for the system to be in either oscillatory or

steady state was estimated after the completion of each simulation and plotted against the number

of finished simulation runs. Clearly, once a sufficient number of simulations are realized, we would

be able to get a very accurate estimate of p. In addition, even if different simulation time is used,

the estimated p is within statistical error of one another, suggesting that 5000 s is enough for the

system to relax to an attractor.

The purpose of this work is to explore the effect of system size on the behavior of the system

when [H2O2]0 is changed in the critical region. Simulations were carried out using different [H2O2]0,

and the probability p of oscillatory state was calculated as above. From the results summarized in

figure. 2.8, one readily sees the effect of stochastic nature of chemical reactions: the transition from
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Figure 2.7. Convergence of p when the number of simulation runs is increased. System volume

was 10−15 L, and simulation time was 5000 (red), 10,000 (green), or 20,000 (blue) s. After 1600

simulation runs, p is within statistical error (purple bar) of one another.

oscillatory behavior to steady state is a continuous function of [H2O2]0. This transition approaches

to step function as system volume is increased. However, even when V = 10−13 L, the probability

of oscillatory dynamics for [H2O2]0 close to c0 is still about 0.5, far away from possible deterministic

values of 0 or 1.

It is intuitive to understand the results with a much simplified picture of a particle moving in a

double-well potential. Here the valley of the double well corresponds to either oscillatory behavior

or steady state. [H2O2]0 determines the initial position of a ball moving under the influence of

both the potential and a random force. The potential, originated from the reaction network, exerts

a deterministic force on the ball’s movement; the random force is due to the stochastic nature of

chemical reactions, and its magnitude is inversely proportional to the square root of the system

volume [39]. In our particular PO system, the barrier between the wells is so high compared with

random force that no transition between wells is observed once the system settles in either well.

But if the system starts very close to the top of the barrier, random force may be strong enough to

perturb it to either side with almost equal probability. Even when the random noise in decreased

by increasing system volume, the fate of the system is undetermined as long as it is close enough to
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Figure 2.8. The probability of observing oscillatory behavior in PO system as a function of

initial H2O2 concentration. System volume was 10−13 L (red), 10−14 L (green), or 10−15 L (blue).

Deterministic result was also shown as a line.

the top of the barrier; in fact, p is independent of system volume ranging from 1 fL to 100 fL when

[H2O2]0 = 0.30 µM. It turns out that p is very close to 0.5 under this condition, and this suggests

that the potential is quite symmetric at the barrier top. The symmetric feature of the potential is

also reflected in the symmetric shape of the curves in figure 2.8 in smaller volumes around the point

(c0, 0.5).

Conclusion and discussion

In summary, we carried out stochastic as well as deterministic simulations of PO system using re-

alistic reaction models. The behavior of the system, controlled by the initial H2O2 concentration,

exhibits a continuous transition when reaction noise is accounted for. Its deviation from the dis-

continuous transition predicted by deterministic simulation is more obvious when system volume

is smaller, but very close to the critical H2O2 concentration, all stochastic results show significant

deviation from deterministic prediction independent of system volume.

The experimental verification of the above conclusion is expected to be a direct corroboration of
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master-equation approach to chemical reaction kinetics. From a practical point of view, this system

is easier to handle for the control parameter is the initial concentration of a reagent. This saves

us from maintaining the concentrations of certain chemicals during the course of the experiment as

normally required by some other oscillators. The fate of the system after a short transient period

may assume either one of the two qualitatively different choices, leaving little uncertainty in the

interpretation of the data. With the advent of microfluidics, such experiments may be carried out

with high throughput to gain enough statistics for comparison with numerical results.

The smoothing of a discontinuous transition is very similar to stochastic defocusing where the

steepness of the system’s response curve to the control parameter is reduced by stochastic noise in

chemical reactions [72]. It would be interesting to determine whether this is detrimental or beneficial

to living organisms and how nature avoids or employs this effect.

2.2 The Effect of Diffusion on Confined Enzymatic Reaction

Cascades

2.2.1 Introduction

In vitro studies on biological systems have attracted more and more interests among biologists

and chemists by offering a typical reductionists’ way of tackling complex problems pertaining to

life sciences [1]. Practically, chemists in this area are working in a biological setting by leveraging

their expertise on chemical reactions. Just as the property of a molecule can, at least in principle,

be deduced from the constituent atoms and bonds, the interesting behaviors of complex biological

systems can also be explained by studying their basic elements, that is, chemical reactions and their

communications.

Most of the chemical reactions in cells are catalyzed by different enzymes with a very high

specificity and efficiency. Usually, enzymes are regarded as factories converting raw materials to

end products. These factories are not working independent of one another; rather, they function

as a whole entity to generate the multitude of life sciences. To wire these enzymes together, na-
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ture has to tune the communication among them appropriately. This communication is mediated

through the coupling of enzymatic reactions. Two reactions are coupled by sharing the same type

of molecule in their reaction schemes. The shared molecule may be small metabolites or macro-

molecules, including enzymes themselves. These communications usually lead to a very large and

correlated reaction network whose dynamics cannot be predicted simply by intuition. Numerical

simulation using stochastic algorithm has been successful in solving the dynamics of complicated

reaction networks [40, 108].

Compared with bulk chemical reactions, the complexity of biological system is more evident when

spatial constraints are taken into consideration. In this sense, diffusion is influential in determining

the dynamics of the reaction network. In section 2.1, biochemical reaction networks are studied under

the assumption that all species are well mixed. In living cells, however, molecules interact with each

other in a crowded and confined environment [99], where diffusion is closely coupled with reactive

collisions. In biological systems, due to the coexistence of molecules with extremely different diffusion

constants, the significance of diffusion may exhibit itself evidently. So far, people have studied the

effect of diffusion on different biological systems and showed that diffusion is indispensable in the

explanation [126] and prediction [35] of some complex behaviors such as synchronization and pattern

formation.

The effect of diffusion may be modeled directly as discussed below in section 2.3, but it is

instructive to explore its influence on the basis of some scaling analysis. Recently, a group of

authors investigated the effect of spatial limitation or compartmentalization starting from timescale

analysis of diffusion process and using stochastic simulations of a group of enzymes [80, 96, 136–

139]. Their system (termed molecular network) is unique in that law of mass action is not valid,

and nonlinear dynamics emerge. We will summarize this theory and then make some extension in

different experimental contexts in this section. The following section is devoted to an outline of

molecular network. In section 2.2.3, the effect of free diffusion of small molecules on one or several

molecular networks are described. In section 2.2.4, a possible method is proposed to enslave the

dynamics of a group of enzymes by a strong external injection of signal molecules. The feasibility

of this scheme depends largely on the legality of the model in section 2.2.2.
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2.2.2 Molecular Network

Consider a cellular compartment of size L in which an enzyme is converting substrates into products.

The following timescale analysis [58] will reveal the existence of two different dynamic regimes,

namely, local or global. First of all, because the size of enzyme is much larger than that of small

molecules (substrates or products), one can neglect the diffusion of enzymes. In mathematical

language, the diffusion constant of enzyme is much smaller than that of small molecules, so only the

latter contributes significantly to the relative diffusion constant D. Then one has a good estimate

of the time needed for a small molecule to diffuse throughout the compartment (tmix),

tmix ≈ L2/D. (2.1)

In another word, it takes about tmix for a molecule to forget its initial location.

The substrate molecule has to collide with the active site of an enzyme to start a reaction,

so another important characteristic time is the traffic time, ttraffic, the small molecule spends on

diffusion before meeting the active site of an enzyme (figure 2.9). According to reaction–diffusion

theory [57], in three-dimensional space, if there is only one enzyme in the system,

ttraffic ≈ L3/DR = tmix · L
R
, (2.2)

where R is the size of the active site. The last expression in equation (2.2) means it always takes

longer for a small molecule to collide with the active site of an enzyme than to transverse the cell

volume. Equivalently, the small molecule has forgot its initial position before it finds an enzyme. For

a real biological system, there are usually many enzymes (say, N). Then it takes a shorter period

of time (ttransit) for the molecule to dock an active site. If the enzymes are randomly distributed in

the volume,

ttransit =
1
N
ttraffic =

L3

NDR
= tmix · L

NR
. (2.3)

Now the relation between ttransit and tmix can be changed qualitatively by tuning N around a
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Figure 2.9. The physical meaning of ttraffic. In a small volume of dimension L ≈ √Dtmix containing

only one enzyme, the small substrate molecule spends ttraffic in diffusion before colliding with the

active site (of dimension R) of enzyme E.

critical number

Ncrit = L/R.

If N � Ncrit, ttransit � tmix which means the substrate molecule has lost its memory of initial

condition before docking an enzyme’s active site. In another word, it is equally possible for the

substrate to react with any enzyme in the system. So the enzyme can feel the global change of

the number of substrate molecules. In the regime where N � Ncrit, that ttransit � tmix indicates

the substrate molecule finds a docking site before traveling a significant portion of the volume.

Alternatively, the substrate molecule only interacts locally with nearby enzymes.

To have a feeling of the order of magnitude, consider a volume of micrometer size contain-

ing enzymes with nanometer-sized active sites, then Ncrit = 1000 and the critical concentration

ccrit ≈ 10−6 M. With this number of enzymes, if the diffusion constant for small molecules is about

10−5 cm2/s, then tmix = ttransit ≈ 1 ms and ttraffic = 1 s.

Finally, the characteristic time of an enzyme reaction, tturnover ≈ 1/kcat, should be taken into

consideration. If tturnover is smaller than both ttransit and tmix, the system is equivalent to a diffusion-

controlled reactor in the local dynamics regime or a well-stirred reactor in the global dynamics regime.

These two scenarios are familiar to chemists. On the other hand, if enzyme dynamics is the slowest

process in the system, in the global regime, during the enzyme turnover cycle, the change in the

number of the substrates can be experienced by every enzyme with equal probability, because tmix

is the smallest timescale in the system. For local dynamics, one can divide the volume into several
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smaller ones, each of which gives a smaller tmix with almost the same ttransit until global dynamics

is possible in these element cells. This is feasible because tmix is dependent on the size of the system

(equation (2.1)), but ttransit is controlled by enzyme concentration (equation (2.3)). In summary,

the only interesting regime for new dynamics is

tturnover � ttransit � tmix, (2.4)

that is, the enzyme turnover cycle is the slowest process in the system, and the diffusion of substrate

is the fastest. This criterion may be fulfilled by the compartmentalization of enzymes in a volume

of appropriate size, which is common in biological systems.

When equation (2.4) is satisfied, any substrate molecule has traveled throughout the system be-

fore finding an active site, and enzyme reaction is very slow compared with these two processes. From

an enzyme’s point of view, at every moment of its turnover cycle, it can collide with any substrate

with the same possibility, and thus the change of the number of substrates affects the dynamics of

each enzyme with the same strength. In such a system, the dynamics of a group of enzymes may

be synchronized through the diffusion of small molecules, and it is called a molecular network [58].

To enable the synchronization, there should be a mechanism in the system for small molecules to

exert their effect on the dynamics of enzymes. Various feedback mechanisms have been proposed,

including product inhibition [137], product activation [96, 136, 139], allosteric activation [80], and

substrate recycling [138].

It is the interest of this report to concentrate on the substrate recycling scheme in which the

product is converted back to substrate by an additional fast pathway in the background (figure 2.10).

It is easy to find such a reaction system in the repertoire of biological pathways. A case in point is

the cycling between adenosine triphosphate (ATP) and pyrophosphate (PPi) [54] (figure 2.11). In

the language of figure 2.10, substrate ATP is converted to product PPi by luciferase, and product

is transformed back to substrate by another enzyme (ATP sulfurylase) which has a faster dynamics

than luciferase [54]. A more well-known example, namely, enzyme cascade, is also related to this

scheme. In this case the substrate is not a small molecule but a protein which can be covalently
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Figure 2.10. A schematic description of an enzyme in a molecular network. Substrate S is supplied

and decays at a constant rate ζ and γ, respectively. Enzymatic cycle is characterized by a phase

variable φ. When φ = 0, the enzyme is available to bind with a substrate at a probability rate of α.

Product P is released once φ > φc and converted back to substrate immediately.

modified, say, by a phosphorylating kinase. The modified protein is then subjected to dephospho-

rylation spontaneously or catalytically (by a phosphatase). This cycle of phosphorylation level is

equivalent to the hydrolysis of ATP. The energy stored in ATP is seemingly wasted, so it is also called

a futile cycle. In a futile cycle, although the substrate is not a small molecule, its diffusion constant

may assume an appropriate value to make a molecular network possible. There has been a large

body of literature on the significance of this futile cycle since 1970s. It is clear now the futile cycle

renders ultrasensitivity [17, 28, 29, 123, 135], zero-order sensitivity [46], memory storage [85, 86],

noise reduction [158], and stochastic focusing [105]. To the best of my knowledge, all these works,

either simulations or experiments, are concerned with steady-state behavior or fluctuation around

the steady state. The uniqueness of molecular network is its departure from steady-state simulation

to real dynamic exploration. The surprising results show the synchronization of the dynamics of the

enzymes in a molecular network [138].

Before showing the numerical result reproduced by me, it is useful to briefly describe how to sim-

ulate a system described in figure 2.10 (for more detail, see reference [137]). One first approximates

the turnover cycle of an enzyme as a one-dimensional diffusion process on a biased potential surface.

Numerical simulation has shown the possibility of this reduction of dimensionality in the context
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Figure 2.11. A possible realization of the enzymatic cycle in figure 2.10. Substrate ATP is

converted to product PPi by luciferase with the consumption of luciferin. PPi is readily used by

ATP sulfurylase to regenerate ATP using APS (adenosine phosphosulfate). The activity of luciferase

can be monitored by luminescence.

of protein folding [10]. A phase parameter φ ∈ [0, 1) is used to characterize the state of enzyme or

enzyme–substrate complex in its configuration space [79]. When φ = 0, the enzyme is ready to bind

with a substrate with probability rate α. In a molecular network, the possibility of the binding of a

substrate molecule with an enzyme in time interval dt is

1− (1− αdt)s ≈ αsdt,

where s is the number of free substrate molecules in the system. After the formation of enzyme–

substrate complex, phase parameter φ is evolved according to the following Langevin equation,

dφ

dt
= v + η(t), (2.5)

where v is the drift velocity along the potential surface of enzyme–substrate complex, and η(t) is

a Gaussian noise introduced to simulate the effect of thermal fluctuation. Drift velocity is simply

assumed to be the reciprocal of tturnover, which is equivalent to approximating the conformational

evolution of enzyme–substrate complex as a “clock.” This clock, however, is not accurate due to the
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existence of Gaussian noise η(t) with a delta correlation function

〈η(t)η(t′)〉 = 2σδ(t− t′),

where correlation intensity σ can be related to the dispersion ξ of turnover time as follows [79, 138]

ξ ≈ (2στenzyme)1/2. (2.6)

As φ is increased from 0 according to equation (2.5), it will pass a critical point φc when a

product is released and the enzyme begins the relaxation toward the initial configuration which is

also the end of an enzymatic turnover cycle. This clock approximation, despite of its roughness,

grasps the essence of a typical enzymatic cycle. Indeed, the binding of substrate molecule changes

the potential surface of a single enzyme so that the initial configuration is not an energy minimum

for the enzyme–substrate complex, and this complex relaxes along the rugged downslope of potential

surface [10]. This is consistent with the fact that it is the transition state rather than substrate that

is stabilized by an enzyme. After the release of product, the potential energy surface recovers and

the enzyme relaxes backward toward initial configuration. The rate of relaxation may be different

from that of the previous downslope motion because the substrate is absent. It should be noted that

the detail of the reaction is not covered in the turnover cycle simulated by equation (2.5).

Under this simulation scheme, the dynamics of a group of enzymes in a molecular network shows

the synchronization of the turnover cycle of individual enzymes. In particular, the enzymes self-

organize into group(s) which behaves like a single enzyme. Figure 2.12 depicts the time evolution

of the number of substrate molecules in a molecular network. The oscillation is the result of syn-

chronized activity of individual enzymes. Without synchronization, the number of substrates would

be distributed randomly around the steady-state value. With synchronization, the enzymes in the

system release products, which are converted back to substrates at once, almost simultaneously and

thus peaks of substrate generation are observed. The number of free enzymes also oscillates at the

same frequency as expected.
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Figure 2.12. The number of substrates (line) and free enzymes (dots) as functions of time in

a molecular network consisting N = 1000 enzymes. Other parameters were φc = 0.2, ξ = 0.02,

γ = 15/τenzyme, ζ = 200/τenzyme, and α = 10/τenzyme.

The generation of synchronization might be related to the clock nature of every single enzyme.

In a highly abstract mathematical theory of Kuramoto, clocks can be synchronized by strong enough

coupling to give coherent dynamics [143]. This idea has been verified in a real chemical system [73,

98]. It is interesting to ask if similar behavior is possible in biochemical systems. It seems difficult

to find a biological system that can be described by a clock as simple as that in Kuramoto theory.

Also, the coupling in real world is more complicated. But the molecular network mentioned in this

section is a reasonable approximation to real biological dynamics and possible connection between

real biological systems and Kuramoto theory. It would be instructive to understand molecular

network within the framework of a mathematical theory on coupled oscillators or clocks.

Oscillation is important to the control of metabolism [25, 75], so people have been interested in its

origin. In general, oscillation is typical of nonlinear chemical reactions whose dynamics have inherent

periodic solutions. The resulting periodicity is a feature of the nonlinear differential equation based

on law of mass action. Researchers have proposed different mechanism to elucidate the oscillations

observed in biological systems along this line [45]. In contrast, in the cycling scheme in figure 2.10,

traditional kinetic equations do not have nonlinearity [138]. When space constraints are considered,
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periodicity emerges in the dynamics. It is interesting to study if this mechanism can be exemplified

in a real biologically relevant system in vitro. If that is the case, one may further look for its existence

in vivo.

2.2.3 The Coupling among Molecular Networks

As mentioned above, the emergence of oscillation is related to the clocklike assumption on the

dynamics of the enzymes in the molecular network. In the original model [138], the communication

among enzymes is analyzed a priori in terms of the separation of timescales, so the detail of this

communication is not embodied in the model. Other researchers have made simulations of similar

systems using more realistic models, for example, network [147] or random walk [168], to describe

communication among enzymes and revealed their significance on the synchronization of enzymes.

In contrast to these studies, the dynamics of several molecular networks coupled together by the

diffusion of small molecules seems interesting if we think about the problem at a higher level. Here,

each molecular network rather than each enzyme behaves like a clock and influences other networks

through different communication methods. This idea is not new in literature. For example, some

researchers were interested in the synchronization of many neuron networks rather than that of

neurons in a single network [97]. The interaction among several molecular networks was only reported

very recently [14].

In terms of experimental research, it is also useful to study the behavior of several molecular

networks for it is easier to observe the dynamics of each network (∼micrometers) than that of a

single enzyme (∼nanometers). In our lab, protein patterns have been made with a high precision of

spatial definition [67]. These protein patches might act as molecular networks and interact among

one another by the diffusion of small molecules. Furthermore, in real biological systems, like cell

membrane, domains with a high concentration of a certain enzyme are universal, and they might talk

with each other rather than work independently [51, 92]. All these can be cast into a model composed

of several molecular networks connected by the diffusion of small molecules. Before tackling this

problem, it is also useful to start from a much simpler scheme.
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Figure 2.13. Connected molecular networks. The transportation of small molecules among vesicles

is approximated by a stochastic hopping process with probability rate D. Each sphere labeled “1”

denotes a GUV in which the criterion for molecular network is satisfied and enzymatic cycles in

figure 2.10 are also found. Those labeled “0” lack the key enzymes in figure 2.10, but still have the

source and the sink pathways of substrates.

2.2.3.1 Hopping Mechanism

The simplest method to model the diffusion among molecular networks is random walk. Actually

there have been efforts to set up a network of giant unilamellar vesicles (GUVs) connected by lipid

tubules [69, 71]. Normally, these microtubules are barely visible under light microscopy because of

their small diameters, but mass transportation through these lipid “bridges” has been confirmed

by fluorescence microscopy. By tuning the diameter and length of the bridge, the effective trans-

portation coefficient among connected GUVs may be adjusted. If the reaction in each GUV can be

treated as a molecular network, it is possible to study the effect of connectivity on the dynamics of

coupled molecular networks by running biochemical reactions in vesicle networks. Thus, it is useful

to get some insight of the dynamics of coupled molecular networks by numerical simulation.

Figure 2.13 shows the cyclic connection of six molecular networks which may be vesicles in real

experiments. These vesicles are of an appropriate size to satisfy the criterion of molecular networks

(equation (2.4)), but they may or may not be loaded with the key enzymes in figure 2.10 and
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thus labeled “1” or “0”, respectively. A parameter D is used to describe the probability rate for

small molecules to jump to adjacent vesicles. By increasing this parameter, the correlation between

adjacent molecular networks is enhanced. As a proof of concept, the numbers of substrates in

the two type 1 vesicles in figure 2.13 are simulated and compared in figure 2.14 for two different

values of D. The cyclic arrangement in figure 2.13 is equivalent to an infinite array of molecular

networks separated by two “empty” compartments lacking enzymes. As D increases, the phase

difference between the substrate oscillation in the two molecular networks changes from 180◦ to

0◦. This is consistent with our intuition because D is a measure of coupling strength between

molecular networks. In a different context, increasing coupling also leads to the synchronization of

electrochemical oscillators [73]. Note that usually it is the cumulative behavior that is the output of

a biological unit, so the ability to tune the correlation among constituent molecular networks enables

a cell to generate qualitatively different output to other pathways. In particular, the oscillation of a

single molecular network is buried in the overall output if there is no correlation among constituent

networks, whereas oscillatory output is achieved if every molecular network rocks almost in phase.

In a case as simple as figure 2.13, a phase difference of 180◦ makes the overall output only half of

that for two synchronized networks. The ability of generating oscillation and tuning its amplitude

is significant in the control of the metabolism and signal transmission, because oscillatory signal

can trigger cell response even if average signal intensity is below the threshold [25]. It is also

straightforward to test this conclusion in a real GUV network.

2.2.3.2 Effect of Free Diffusion and Distance

Let us returned to address the question put forward at the beginning of this section: the dynamics of

several molecular networks coupled by the diffusion of small molecules. Besides the effect of diffusion

on a single molecular network, the significance of internetwork distance is also considered in this

subsection.

To simulate this system numerically, one has to combine the simulation of diffusion equation

and molecular networks. We start this endeavor from the simplest case, that is, one-dimensional
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Figure 2.14. The number of substrates (n) in the two molecular networks (labeled “1” in fig-

ure 2.13) as a functions of time. Upper panel: Hopping probability rate (D) is 50/τenzyme and the

dynamics of two networks (A and B in figure 2.13) are not synchronized. Lower panel: D is increased

to 100/τenzyme and the dynamics of A and B are synchronized.
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Figure 2.15. The solutions to a test diffusion equation ∂N(x,t)
∂t = ∂2N(x,t)

∂2x2 with Dirichlet boundary

condition and a given initial condition (square) by Crank–Nicholson (cross) and analytical (diamond)

method.

diffusion. First of all, one-dimensional space was divided to many cells of dimension ∆x and the

substrate concentration inside each cell was assumed to be uniform. Diffusion equation

∂N(x, t)
∂t

= D
∂2N(x, t)
∂2x2

(2.7)

was solved numerically to give the number of substrates (N) at time t and in the cell with coor-

dinate x. Among different discretization schemes to approximate equation (2.7), Crank–Nicholson

method was chosen [107]. It gave a fairly good result in a test case (figure 2.15). In mathematical

language, the discretization of diffusion equation couples different oscillators by adding to the gov-

erning differential equation of each oscillator an additional term dependent linearly on the state of

other oscillators. In this sense, although the individual oscillator is not modeled here by a differen-

tial equation explicitly, the coupling of molecular networks can still be compared to the coupling of

neurons. The difference lies in the fact that the coupling term for a neural network is highly abstract

and not necessarily an approximation to Fick diffusion. Still, it would be interesting to compare the

coupling of neurons to that of molecular networks in future works.
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Figure 2.16. The discretization of one-dimensional space into several cells. The meanings of “1”

and “0” are clarified in the text.

Figure 2.17. The numbers of substrates in compartments with (red) and without (green) enzymes

as functions of time (in unit of τenzyme). One-dimensional space was divided into 11 compartments

of either types. Further increase of the number of surrounding type 0 cells did not change the result

qualitatively.

In my simulation, the elementary cells of size ∆x fell into two kinds labeled by “0” or “1”

(figure 2.16) as in section 2.2.3.1. From the property of molecular networks (equation (2.4)) and

equation (2.1), it is reasonable to choose ∆x ≈ √D∆t. The parameters defining a molecular network

were the same as those to obtain figure 2.12. In solving the diffusion equation, Dirichlet boundary

condition was always assumed. Boundary condition had no effect on the dynamics of type 1 cells as

long as the number of type 0 cells is big enough at the two ends.

As the first example, the effect of free diffusion of small molecules into surrounding medium is

investigated. In figure 2.17, the numbers of substrates in the molecular network and an enzyme-free

compartment are depicted. Due to the diffusion of small molecules into the surrounding medium,
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Figure 2.18. The correlation functions of the numbers of substrates in compartment with (red)

and without (green) enzymes calculated from figure 2.17. The unit for time is τenzyme.

one can hardly find any oscillation in the number of substrates.

Another method to show the oscillatory behavior of a function y(t) is to calculate the time

correlation function C(τ),

C(τ) =
〈(y(t)− 〈y(t)〉)(y(t+ τ)− 〈y(t)〉)〉

〈(y(t)− 〈y(t)〉)2〉 ,

where angular brackets denote time average. For a sinusoidal function, its correlation function is still

sinusoidal with the same period. Generally the periodicity and amplitude of a correlation function is

an indication of the oscillatory component of the original function. For figure 2.17, the corresponding

correlation function is shown in figure 2.18 which exhibits the remnant oscillation in the molecular

networks. In addition, it is not a surprise that correlation is smaller in the surrounding cells than

that in the molecular network.

Furthermore, it is interesting to study the dynamics when more molecular networks are included

in the system. In figure 2.19 the correlation functions of substrate numbers in molecular networks are

depicted to show the effect of distance between two molecular networks. When they are separated

by an appropriate distance, they can reinforce each other to counter the effect of diffusion, as we
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can observe that the amplitude of the correlation function reaches maximum when internetwork

distance is 4∆x, or, in another work, there are three type 0 cells separating two molecular networks.

Here, we are interested in the effect of coupling on the amplitude of autocorrelation functions which

indicates the extent to which enzymes in a single molecular network are synchronized (figure 2.19).

Additionally, similar to section 2.2.3.1, it is meaningful to study the cross-correlation between two

Figure 2.19. The correlation functions of substrate number as functions of distance between two

molecular networks. The configuration of the system was similar to figure 2.18 except that there

were two molecular networks separated by 1 (green), 3 (blue), 6 (purple), or 9 (black) type 0 cells.

Red line is the same as figure 2.18 for comparison. Note that it is the autocorrelation function in one

of the two molecular networks in each system that is depicted here. The amplitude of correlation

function reaches a maximum when internetwork distance assumes an optimal value indicating the

substrate oscillation in the coupled molecular networks can reinforce each other by the diffusion of

substrates. The unit for time is τenzyme.

molecular networks separated by different numbers of type 0 cells. In general, for two time-dependent

functions y1(t) and y2(t), we may calculate their difference y(t) = y1(t) − y2(t) and compare the

variance of y(t) (σy) = 〈(y(t) − 〈y(t)〉)2〉) with the sum of variances of y1(t) and y2(t). Here, the

ensemble average used to calculate variance is replaced by average over time. The ratio

R =
σy

σy1 + σy2

(2.8)



39

should be one for two independent processes y1 and y2, and it differs from one if y1 and y2 are

correlated such that

〈(y1 − 〈y1〉)(y2 − 〈y2〉)〉 6= 〈y1 − 〈y1〉〉〈y2 − 〈y2〉〉 = 0, (2.9)

where brackets denote average over time. Along this line, we plot in the upper panel of figure 2.20

the variances (σ1 and σ2) of the number of substrates in the two molecular networks as functions

of the number of type 0 cells in between. These variances reach maximum when two molecular

networks are separated by three type 0 cells, because oscillation is more pronounced in this case.

The variance σ of the difference between two networks is also plotted. Note that σ is not a maximum

when distance is 4∆x. According to equation (2.8), R is calculated and depicted in the lower panel of

figure 2.20. R is significantly different from one when distance is 3, suggesting significant correlation

between the two molecular networks. On the other hand, when R is not far from one and thus

equation (2.9) almost becomes an equality, although it is mathematically insufficient to rule out the

correlation between y1 and y2, it is still safe to say that there is little correlation between the two

molecular networks. In fact, the cross-correlation1 between the two molecular networks in question

is almost zero for large spatial separation where R ≈ 1 (figure 2.21). Finally, note that the more

molecular networks in a system, the bigger the amplitude of correlation functions (figure 2.22).

On the basis of the numerical simulation, one can discuss its biological significance. As mentioned

in section 2.2.3.1, the ability of generating and tuning oscillatory signal output is important for

biological entities. Using a simple one-dimensional model, we show a possible method to achieve

this, namely, simply changing the spatial arrangement of several molecular networks. A similar

result was also reported in a different context [126]. This scheme is plausible in that nature does not

have to evolve new enzymes to generate qualitatively different signal output, and smart utilization

of existing function is usually the trick of nature.

1The cross-correlation between y1(t) and y2(t) is defined as

C(τ) =
〈(y1(t)− 〈y1(t)〉)(y2(t+ τ)− 〈y2(t)〉)〉p
〈(y1(t)− 〈y1(t)〉)2〉〈(y2(t)− 〈y2(t)〉)2〉

.
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σ and σ1 + σ2.
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In summary, this section discusses the coupling of several molecular networks which can also

be studied in experiments. Further work will be concentrated on its verification by experiments

and generalization to more complex configurations in simulation [14]. These works, however, are

constructed on the basis of molecular network. Therefore, it is still important to study other aspects

of this model and search for new implications which are significant to biological systems and verifiable

experimentally.

2.2.4 Effect of Source Oscillation

Molecular network also makes it possible to control the dynamics of a group of enzymes by ex-

ternal manipulation. Experimentally, many enzymes can be enslaved by pulsed light to act syn-

chronously [49, 50]. Similar to this, in the regime of molecular network, external source of substrate

may also serve to control the dynamics of enzymes.

To simulate this effect, the same molecular network as in figure 2.10 is used as a model. In

addition to the substrate supply at constant rate ζ, an oscillatory source with rate

ζ1 = f

(
1 + cos(

2πt
T

)
)

(2.10)

is used to enslave the enzymes in the network, where f is the adjustable variable equivalent to the

average rate of this oscillatory substrate influx. In real simulation, the number of substrates supplied

by this source in an interval dt is generated by a Poisson distribution with mean ζ1dt. The period

T in equation (2.10) is chosen to be close to the average period without ζ1.

The results may be analyzed in terms of the number of free enzymes as a function of time. Similar

to figure 2.12, the number of free enzymes is still periodic with the existence of oscillatory substrate

source. Further analysis reveals two periods in the timecourse of the number of free enzymes (see

figure 2.23). This indicates that there are two groups of enzymes in the molecular network. The

enzymes in each group behave almost in phase such that they return to the free state (i.e., ready to

bind substrate) almost at the same moment. The appearance of a second enzyme group is attributed
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Figure 2.23. The Fourier analysis of the number of free enzymes in a molecular network. Two

peaks show up as opposed to one without oscillatory source. In the simulation, f = 512 s−1, T = 0.9

s, and other parameters were the same as figure 2.12 and τenzyme = 1 s.

to the oscillatory source without which only one group of enzyme is formed for the system simulated.

The two peaks in figure 2.23 have different origins. One is from the intrinsic oscillation which is

independent of the source oscillation, and the other is the result of an external oscillatory substrate

source. This is obvious if we pay attention to the positions of these peaks. In figure 2.24, the periods

corresponding to intrinsic and external peaks are plotted as functions of f with external period T

being equal to 0.9 s. The external peak has the same period as the oscillatory source as expected, but

the period of the intrinsic oscillation approaches asymptotically the period under constant source

as f is decreased. Furthermore, we plot the ratio of the heights of the two peaks as a function of f

in figure 2.25. With the increase of f , the intrinsic peak is weaker compared with the external one.

Note that the height of two peaks is almost equal when f = 512 s−1, although the strength ζ of the

constant source is only 200 s−1. This is an indication of the robustness of the intrinsic oscillation.

Figure 2.25 also gives a threshold of 4 < fc < 8 for the external peak to be observable.

As noticed by others, some biological systems have responses to the changes in thermal noise [105].

In this context, we will study the change of external and intrinsic peaks when the intensity of
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Figure 2.24. The period corresponding to intrinsic (diamond) and external (cross) peak as a

function of f . The period of oscillatory source was kept as 0.9 s. As f is decreased, the intrinsic

period approaches 1.08 s which is the period when only constant source is used. Different f was

used to simulate the dynamics of a molecular network, and the timecourse of the number of free

enzymes is Fourier transformed to obtain the positions of peaks. Other parameters were the same

as figure 2.23.

noise (equation (2.6)) is varied to see, for example, if there is stochastic focusing [105]. Indeed, as

shown in figure 2.26, the height of intrinsic and external peak changes with noise strength, and the

ratio between the two can be varied qualitatively by tuning noise strength through, for example,

temperature. If we replot figure 2.25 with a different noise strength (figure 2.27), it is obvious that

the response of the system to periodic substrate source in terms of the ratio of the two peaks is

enhanced by bigger noise intensity. In addition, the maximum in figure 2.26 might also be related

to stochastic resonance [32].

The simulation in this section proposes a method to effectively change the collective dynamics

of enzymes through the application of an external source of substrate. In addition, it is interesting

to ask if nature utilizes this phenomenon to encode the information from a source to some output,

because enzyme compartments in the cell may have the property of molecular networks. People

have been using the radio wave to transport information for a long while, and the above simulation
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Figure 2.25. The ratio of the height Iext of external peak over that (Iintr) of intrinsic peak as

a function of f . Different f was used to simulate the dynamics of a molecular network and the

timecourse of the number of free enzymes was Fourier transformed to obtain the height of peaks.

Other parameters were the same as figure 2.23.

shows the possibility for a molecular network to encode and carry the information to other metabolic

pathways. Interestingly enough, there is evidence that specificity is realized by enzyme’s differential

responses to signals of different frequencies [25], so the ability of preserve frequency information

should be indispensable to biological systems. Of course, this simulation can and should be subject

to experimental verification in the future.

2.3 Statistical Properties of Molecular Collisions

2.3.1 Analytical Result of Off-time Distribution

An intuitive way to study the effect of diffusion on biochemical reactions is to consider the statistical

property of molecular collisions which are a prerequisite of all bimolecular reactions. As a first

step, let us consider the collision between a mobile particle A and a static particle B (figure 2.28).

According to Smoluchowsky theory, the probability of such an event in a small time interval dt is

kDdt, where kD = 4πrDA/V , determined by the distance r at contact between the two particles,



46

0

200

400

600

800

1000

1200

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

I (a.u.)

ξ

Intrinsic Peak

♦

♦

♦

♦
♦

♦ ♦ ♦ ♦

♦
External Peak

+
+

+ + + +
+ + +

+

Figure 2.26. The heights (I) of external and internal peaks as functions of noise strength ξ when

f = 128 s−1 and T = 0.9 s. Other parameters were the same as figure 2.23.

0

0.5

1

1.5

2

2.5

3

3.5

4

4 5 6 7 8 9

Iext/Iintr

f (s−1)

ξ = 0.07

♦ ♦

♦

♦

♦

♦
♦

ξ = 0.02

+

+
+

+++

+

Figure 2.27. The ratio of the height Iext of external peak over that (Iintr) of intrinsic peak as

a function of f under different noise strength ξ = 0.02 or 0.07. Different f and ξ were used to

simulate the dynamics of a molecular network and the timecourses of the number of free enzymes

were Fourier transformed to obtain the height of interested peaks. Other parameters were the same

as figure 2.23.
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bB b
b

Trajectory of A between collisions

Figure 2.28. The collision between a static particle B (blue dot) and a mobile particle A (red dot)

in a cubic reactor of size L.

the diffusion coefficient DA of particle A, and the system volume V . In other words, the off-time

toff between consecutive collision events should follow an exponential distribution, or

p(toff) ∝ e−kDtoff . (2.11)

A closer look at the process, however, suggests that after a collision event, particle A should have

higher probability to collide with particle B than it would if placed far away from particle B [101].

Equation (2.11), in fact, implicitly assumes that the initial position of A is random, that is, particle A

has no memory of its trajectory history. The collision–recollision clustering is of important biological

consequence. For example, it may be responsible for the rapid recognition of gene sequence by

transcription factors [52]. Quantitatively, the off-time distribution scales as t
−3/2
off when toff �

V 2/3/D [111]. The divergence at toff = 0 is consistent with the intuition that the probability of a

collision event immediately after the previous collision approaches certainty. Indeed, a numerical

simulation verifies this power-law scaling in figure 2.29.
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Figure 2.29. The off-time distribution obtained from Brownian motion simulation of the collision

between a moving and a static particle in a cubic box of size L (for details, see section 2.3.2). The

power-law scaling for small t is indicated by plotting p(t)t3/2 as well.

A closely related problem is the collision of a molecule with the boundary of the reactor. Ex-

perimentally, one could observe the fluorescence from the transient association of a single Nile Red

molecule, confined inside a unilamellar lipid vesicle, with the bilayer wall [33]. The off-time, defined

as the dark time between fluorescence events, also follows different distribution in different regimes.

To calculate this distribution, we consider the diffusion of a particle inside a spherical reactor with

radius R (figure 2.30). Due to the symmetry of this system, the probability distribution c of the

particle’s position is only a function of its radial position r and time t. The initial condition, as a

result, should also exhibit this symmetry as

c(r, t = 0) = δ(r − r0)/(4πr2
0),

where r0 is the initial position of the particle [111].Here, c(r, t) is the solution to the well-known

diffusion equation,

∂c

∂t
= D∇2c, (2.12)
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Figure 2.30. The collision between a diffusing particle and the reactor wall.

where D is the diffusion coefficient of particle A. The solution of equation (2.12) can be facilitated

by a transformation of variable u ≡ rc. The new variable satisfies wave equation, or

∂u

∂t
= D

∂2u

∂x2
.

and the following boundary conditions,

u(r, t = 0) =
δ(r − r0)

4πr0
,

u(r = 0, t) = 0,

u(r = R, t) = 0.

By using Laplace transformation, one obtains its solution in Laplace space [111],

u(r, s) =
sinh(

√
s/Dr<) sinh(

√
s/D(R− r>))

4πr0

√
sD sinh(

√
s/DR)

, (2.13)

where r< ≡ min(r, r0), and r> ≡ max(r, r0). The dark time distribution can be identified with the

flux out of the absorbing boundary,

p(t) = −4πR2D
∂c

∂r

∣∣∣∣
r=R

. (2.14)
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From equation (2.13), one has

c(r, s) =
sinh(

√
s/Dr0) sinh(

√
s/D(R− r))

4πrr0 sinh(
√
s/DR)

, (2.15)

for r > r0. After each collision, the particle starts diffusion from a region very close to the boundary,

so r0 . R. This prompts us to work with a new variable y ≡ R − r which is expected to be much

smaller than R. In terms of y, the solution equation (2.15) is written as

c(y, s) =
sinh(

√
s/D(R− y0)) sinh(

√
s/Dy)

4πr0(R− y) sinh(
√
s/DR)

, (2.16)

where y0 = R − r0. The off-time distribution is then evaluated using equation (2.14) and equa-

tion (2.16) to be

p(s) =
R

R− y0

[
cosh(

√
s/Dy0)− sinh(

√
s/Dy0) coth(

√
s/DR)

]
,

=
R

R− y0

sinh(
√
s/D(R− y0))

cosh(
√
s/DR)

. (2.17)

It is instructive to consider two limiting cases of equation (2.17) whose inverse Laplace transforms

admit analytical solutions. When sR2/D � 1 and sy2
0 � 1,

p(s) ≈ 1
1− y0

R

[
1 +

sy2
0

2D
−
√
s/Dy0

]
,

≈
(

1 +
y0

R
+ o(y2

0)
)(

1−
√
s/Dy0 + o(sy2

0)
)
,

≈ 1−
(√

s/D − 1/R
)
y0 + o(y2

0) + o(sy2
0),

≈ 1−
√
s/Dy0.

This implies p(t) ∝ t−3/2 when y2
0/D � t � R2/D. On the other end of the spectrum when
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sR2/D � 1,

p(s) ≈ R

R− y0

[
1 +

sy2
0

2D
− y0

R

(
1 +

sR2

2D

)]
,

≈ 1− sy0R

2D
.

This implies that p(t) ∝ e−t/(y0R/2D) when t� R2/D. Interestingly, the scaling behavior of off-time

distribution is qualitatively similar to that of the first case we considered. There is some difference,

though, when figure 2.29 is compared with figure 2.31 at intermediate t. The algebraic scaling for

small t is illustrated in figure 2.31 obtained by numerical inverse of equation (2.17) [165].

Figure 2.31. The off-time distribution exhibits power-law scaling when t � R2/D. Off-time

distribution was obtained by numerical inversion of equation (2.17) with y0/R = 0.01.

2.3.2 Numerical Simulation of the Reactant–Reactant and Reactant–Wall

Collision

2.3.2.1 Algorithms for Spatial Stochastic Reaction Simulation

Biochemical reactions rarely happen in a well-mixed reactor as assumed throughout section 2.1.

Instead, the coupling of reaction, diffusion, and convection gives rise to spatial patterns in the distri-
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bution of biomolecules. To resolve the spatial features in reaction network simulation, it is necessary

to incorporate mass transport into the theoretical framework. As a first step, diffusion should be ac-

counted for appropriately in the simulation algorithm. There are currently two approaches popular

in literature with different emphasis on the discretization of space or time.

Space discretization is the approach to divide the reactor into small compartments where well-

mixed condition is assumed to be valid. Diffusion between adjacent compartments is treated as

a first-order reaction with rate constant deduced from diffusion coefficient. Although consistent

with intuition, it has several practical and theoretical issues to be resolve before gaining wider

applicability. First of all, the number of reactions is increased drastically by the inclusion of diffusion

steps, although modified stochastic simulation algorithm was proposed to accelerate the process [55].

More importantly, there is some ambiguity in the choice of compartment size. On one hand, if it is

too big, diffusion cannot mix reactants thoroughly within each compartments. On the other hand, if

it is too small, there would be virtually no chance for bimolecular reactions to take place, because the

possibility of both reactants being in the same compartment approaches zero. To solve this problem,

people have proposed to modify the reaction rate according to the size of the compartments such

that simulation result is less dependent on the fineness of spatial discretization [27].

Temporal discretization essentially simulates the Brownian motion trajectory of each molecule in

the system. Different software packages [4, 140] are available to couple the diffusion with biochemical

reactions. The spatial resolution of the algorithm is determined by the time step ∆t used for

simulation as well as the diffusivity of the molecules. Although the diffusion process can be faithfully

reproduced, the correct treatment of reaction is not trivial. Recognizing that unimolecular reaction

do not have spatial dependence and trimolecular reactions are extremely rare, one only needs to

simulate bimolecular reactions appropriately. It is widely accepted that two molecules have to be

close enough for reaction to take place and not every close encounter leads to product formation. As

such, the interaction radius σ and the probability of reactive collision p (during ∆t) are required to

simulate bimolecular reactions even in this oversimplified model. Because it is difficult to estimate

σ and p from first principle, one has to make the choice by some phenomenological arguments.

The most intuitive one is to stipulate that the effective rate constant calculated according to the
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Figure 2.32. The influence sphere VB of B is centered at B with radius σ. Molecule A may react

with B if it is within the sphere.

simulation algorithm is consistent with bulk measurement results, which is normally supplied as an

input to the simulation. Mathematically, one has to choose ∆t, σ and p such that

k = f(∆t, σ, p),

where k is the rate constant for the bimolecular reaction of interest with unit m3/s. The exact

functional form of f will be discussed in the context of heteroreaction

A + B −→ C

following the discussion in reference [27]. For convenience, we will generally consider the movement of

A relative to B. Furthermore, we fix our attention on a single B located at the center of our coordinate

system, and A molecules are floating around with an effective diffusion coefficient of D = DA +DB,

where DA and DB are the diffusion coefficients for A and B in lab frame, respectively.

When ∆t → 0, the simulation approximates the infinitely detailed Brownian dynamics coupled

with reaction inside B’s influence sphere VB (figure 2.32). The steady-state concentration of A is
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the solution to the following reaction–diffusion equation

D∇2c = 0 for r > σ,

D∇2c− λc = 0 for r < σ, (2.18)

where r is the radial coordinate, and λ = p/∆t is the reaction rate inside the sphere. The reaction

rate due to the removal of A can be expressed in terms of the total flux of A through the surface

∂VB of the influence sphere VB as

Reaction rate =
NB

V

∫
VB

λc dV,

= cB

∫
VB

D∇2c dV,

= cBD

∫
∂VB

∂c

∂r

∣∣∣∣
r=σ

dS,

where NB is the total number of B in a system of volume V and cB is the concentration of B. The

solution to equation (2.18) is straightforward, and the resulting reaction rate divided by the bulk

concentration of A and B gives the desired expression for k:

k(∆t→ 0) = 4πD
(
σ −

√
D/λ tanh

(
σ
√
λ/D

))
. (2.19)

In particular, if all the collisions are reactive, that is, p = 1 or λ → ∞, Equation (2.19) reduces to

the well-known Smoluchowsky equation k(∆t→ 0) = 4πDσ.

When ∆t→∞, the simulation process can no longer be described by the reaction–diffusion equa-

tion. During ∆t, the concentration gradient of A is removed by diffusion. Reactions are simulated

at the end of the diffusion step by removing A inside the influence sphere according to probability

p. In another word, the reaction rate is proportional to the size of VB:

Reaction rate = p
NB

4
3πσ

3

V NA

V∆t
,

=
4
3
πσ3cAcB

p

∆t
.
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Here, cA and cB are the bulk concentration of A and B, respectively, so the rate constant is

k(∆t→∞) =
4
3πσ

3p

∆t
, (2.20)

For intermediate values of ∆t, no analytical solution is available yet. The following numerical

scheme can be used to correlate k with σ, p, and ∆t. Let us consider the effect of diffusion during

∆t. Reactions not being simulated in this period, diffusion equation can be used to describe the

spatial distribution of A around a single B. To render the equation dimensionless, we scale c by the

bulk value cA, r by the interaction radius σ, and t by σ2/D. The diffusion equation now reads

∂g(ρ, τ)
∂τ

= ∇2
ρg(ρ, τ), (2.21)

where g ≡ c/cA, ρ ≡ r/σ, and τ ≡ tD/σ2 are dimensionless variables. The boundary conditions are

g(ρ→∞) = 1,

g(ρ = 0) < ∞.

Our question is to determine the distribution g(ρ, τ + ∆τ) given an arbitrary g(ρ, τ). This can be

achieved by obtaining the Green’s function G(ρ, ρ′; ∆τ) which is the solution to equation (2.21)

subjected to the initial condition g(ρ, τ = 0) = δ(ρ− ρ′)/(4πρ′2). As before, the spherical symmetry

allows for a convenient change of variable u ≡ gρ, and the differential equation for u,

∂u

∂τ
=
∂2u

∂ρ2
,

with initial condition u(ρ, τ = 0) = δ(ρ− ρ′)/(4πρ′) and boundary condition u(ρ = 0, τ) = 0 can be

solved to obtained the Green’s function. In the end, one has

G(ρ, ρ′; ∆τ) =
1

ρρ′
√

4π∆τ
e−

(ρ−ρ′)2
4∆τ − 1

ρρ′
√

4π∆τ
e−

(ρ+ρ′)2
4∆τ .
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The evolution of g(ρ, τ) can be expressed using Green’s function

g(ρ, τ + ∆τ) =
∫ ∞

0

G(ρ, ρ′; ∆τ)g(ρ′)4πρ′2 dρ′.

The effect of reaction is to remove molecule A within the influence sphere with probability p. It can

be realized before or after the diffusion step. After some iteration, g(ρ) will approach a steady state

which satisfies the following equation

g(ρ) = (1− p)
∫ 1

0

G(ρ, ρ′; ∆τ)g(ρ′)4πρ′2 dρ′

+
∫ ∞

1

G(ρ, ρ′; ∆τ)g(ρ′)4πρ′2 dρ′ (reaction first) (2.22)

g(ρ) =
∫ ∞

0

G(ρ, ρ′; ∆τ)g(ρ′)4πρ′2 dρ′

− pH(1− ρ)
∫ ∞

0

G(ρ, ρ′; ∆τ)g(ρ′)4πρ′2 dρ′ (diffusion first), (2.23)

where H(1− ρ) is the Heaviside function. To be self-consistent, the solutions to these two equations

should be related to each other by a diffusion step. In fact, equations (2.22) and (2.23) can be

rewritten in matrix format if g(ρ) is discretized and then expressed as a column vector g = {g(ρi)}

where ρi ∈ (0,∞):

g1 = DRg1 (reaction first) (2.24)

g2 = RDg2 (diffusion first). (2.25)

Here the effect of reaction and diffusion is accounted for by the operation of matrices R and D,

respectively. Multiplying equation (2.25) with D from left, one immediately realizes that Dg2 is a

solution to equation (2.24). Indeed, if the solution to equation (2.23) is further evolved by a diffusion

step, the result is the same as the solution to equation (2.22) (figure 2.33).
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Figure 2.33. The solution to equation (2.22) (red circle, reaction followed by diffusion) and equa-

tion (2.23) (green line, diffusion followed by reaction). The latter is further evolved by a diffusion

step to obtain the blue dotted line which is equivalent to the solution of equation (2.22). Parameters:

p = 0.5 and
√

2∆τ = 0.5. Discretization: 1000 points each in (0, 1] and (1, 40] and g(ρ > 40) ≡ 1.

The solution to equation (2.22) or equation (2.23) can then be used to compute reaction rate

Reaction rate =
NB

V∆t
p

∫ σ

0

cAg(r/σ)4πr2 dr,

=
cAcB
∆t

p

∫ 1

0

g(ρ)4πρ2σ3 dρ.

The rate constant is thus

k =
σ3p

∆t

∫ 1

0

g(ρ)4πρ2 dρ. (2.26)

In summary, given p, σ, and ∆t, one could solve for g(ρ) from equation (2.22) (or equation (2.23)

supplemented by an extra diffusion step) and then k is related to these parameters by equation (2.26).

In particular, when ∆t→∞, g(ρ) approaches unity, and equation (2.26) reduces to equation (2.20)

as expected.

It is also possible to derive such a relation on the basis of other diffusion models. Based on
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Table 2.4. Classification of spatial stochastic simulation algorithms
Methods MCell [140] Smoldyn [3] reference [27]

Independent parameter σ, ∆t p(= 1), ∆t ∆t, either p or σ
Dependent parameter p σ p or σ

ray-tracing method, MCell [140] uses the following expression

k = pπσ2

(
4D
π∆t

)1/2

,

=
√

2π
σ3p

∆t

√
2D∆t
σ

, (2.27)

to correlate p, σ and ∆t with k. The last expression (equation (2.27)) suggests that the reduced

reaction rate κ ≡ k∆t/σ3 is proportional to p and γ ≡ √2D∆t/σ, the latter of which is the root-

mean-square displacement of A (relative to B) scaled by σ. This scaling is consistent with the result

of Green’s function approach [27] when γ is big.

In all of the schemes discussed above, it is not sufficient to fully determine all of the three

parameters required for the simulation using a single constraint on k. In practice, user would

normally choose ∆t first according to the desired temporal and spatial resolution; a rule of thumb

is that the spatial resolution scales as
√
D∆t. Then either p or σ can be freely adjusted. Available

literatures differ in their choices of user inputs as summarized in Table 2.3.2.1.

2.3.2.2 Numerical Results from Smoldyn Simulation

Smoldyn was used to study the collision between reactants or reactant and wall in a confined space.

The source code of Smoldyn was slightly modified to report the position and time of each collision

event. In a typical simulation, an enzyme, with diffusion coefficient 7×10−11 m2/s, and a substrate,

with diffusion coefficient 4.4× 10−10 m2/s, were placed randomly in a cubic box. By design, every

collision leads to reaction in Smoldyn simulation, so one can conveniently follow the collision between

molecules. Figure 2.34(a) shows the positions of the collision between a pair of substrate and enzyme

in a 60 nm box. Clearly, some of the collision events cluster at a “hot spot.” To determine if they

also cluster in time domain, we also plot the time of the collision events in figure 2.34(b). Indeed, the
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30,000th to 70,000th collision happen during a short time window of less than 0.5 µs. The collision

frequency in this short period of time is much higher than the average collision frequency. This

was also reported by others [15]. The close proximity of the molecules to the edge or corner of the

reactor is expected to be the reason for the clustering of collisions. If we consider the diffusion of

substrate molecule relative to the enzyme, after a collision event the asymptotic probability of the

substrate returning to the enzyme for another collision is zero. But if they are temporarily confined

by the edge or corner of the reaction, repetitive collision is more likely to happen, and this will have

important implications on the reaction rate.

Similar results were also obtained when we considered the collision between a diffusing molecule

and the reactor wall (figure 2.35). Repetitive collisions take place in clusters, and this may effectively

increase the interaction between the reactor wall and the diffusing molecules. When the reactor size

is decreased, this interaction may result in the significant nonspecific adsorption of macromolecules

to the wall and change the activity of the molecule due to either denaturation or size-exclusion

effect. The efficiency of surface passivation is thus required to be optimized further in micro- or

nanoreactors. Alternatively, more frequent interaction between diffusing molecules and the reactor

wall may significantly modify the apparent reaction kinetics, as shown recently in the oxidation of

Amplex Red catalyzed by horseradish peroxidase confined in femtoliter chambers [48].

(a) (b)

Figure 2.34. The position (a) and time (b) of the collision events between a pair of substrates and

enzymes. The box was 60 nm × 60 nm × 60 nm. The time step was 1.5 ps. The interaction radius

was 3.5 nm.



60

(a) (b)

Figure 2.35. The position (a) and time (b) of the collision events between an enzyme and reactor

wall. The box was 100 nm × 100 nm × 100 nm. The time step was 1.5 ps.


