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Abstract

Electroweak-scale supersymmetry is one of the most popular extensions of the Standard
Model and has many important implications for nuclear physics, particle physics, and cos-
mology. First, supersymmetric electroweak baryogenesis may explain the origin of the
matter-antimatter asymmetry in the universe. In this scenario, electroweak symmetry is
broken in the early universe by a first-order phase transition, when bubbles of broken phase
nucleate and expand, eventually consuming the unbroken phase. Charge density is gen-
erated within the expanding bubble wall and diffuses into the unbroken phase. Through
inelastic collisions in the plasma, this charge is partially converted into left-handed quark
and lepton charge, which in turn leads to the production of baryon number through weak
sphaleron transitions. In this work, we study these charge transport dynamics, from its gen-
eration within the bubble wall, to the final baryon asymmetry. We evaluate which collisions
are important for baryogenesis, and what is their impact upon the final baryon asymmetry.
Our main result is that bottom and tau Yukawa interactions, previously neglected, can play
a crucial role, affecting the magnitude and sign of baryon asymmetry. We investigate how
this works in detail in the Minimal Supersymmetric Standard Model (MSSM); we sug-
gest that these interactions may be even more important in gauge-singlet extensions of the
MSSM. Second, low-energy precision measurements of weak decays may provide interest-
ing signals of supersymmetry. We study in detail the supersymmetric radiative corrections
to (i) leptonic pion decay branching ratios, and (ii) muon and beta decay coefficients. A
deviation from the Standard Model predictions would imply strong departures from the

minimal, commonly-assumed, theoretical assumptions about supersymmetry breaking.
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Chapter 1

Introduction: Cosmology, Precision
Tests, and the Electroweak Scale

The Standard Model (SM), despite its forty years of experimental success, falls completely
flat in the cosmological arena. It fails to explain the nature of dark matter and dark en-
ergy that currently dominate the energy density of the Universe; it fails to explain why the
Universe is so flat, and why acausally-separated regions on the surface of last scattering
have the same temperature; and, lastly, it fails to explain the origin of the baryon asymme-
try of the Universe (BAU). In the near future, experiments at the Large Hadron Collider
(LHC) aim to discover the last missing piece of the SM, the Higgs boson, which is respon-
sible for electroweak symmetry breaking and the generation of mass. However, the Higgs
boson is still a wild card. Although the SM Higgs boson is the simplest incarnation of
electroweak symmetry breaking, it may not be the correct one. Electroweak-scale super-
symmetry (SUSY) is one theoretically attractive alternative. Its primary virtue lies in its
resolution of the SM’s hierarchy problem — that in the SM, the Higgs boson mass (which
sets the scale of electroweak symmetry breaking) receives large radiative corrections, and
therefore the observed electroweak scale is realized only at the expense of an extreme fine-
tuning of the underlying parameters. SUSY may also explain some of these unanswered
cosmological puzzles, potentially providing an exciting connection between the Universe
and upcoming experimental exploration of the electroweak scale. In this work, we study
two of its implications: (i) the generation of the BAU through the dynamics of super-

symmetric particles during the electroweak phase transition in the early universe, and (ii)
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signatures of supersymmetry in low-energy precision measurements of weak decays.
Characterized by the ratio of baryon number density to entropy density, the BAU has
been measured through studies of Big Bang Nucleosynthesis (BBN) and the cosmic mi-

crowave background (CMB) to be in the following range

np/s = (6.7 — 9.2) x 1071 BBN [1] (1
(8.36 — 9.32) x 10711 CMB |1, 2]
at 95% confidence level. This translates into about one baryon per cubic meter, averaged
over the entire observable universe. Anti-baryons, in comparison, are rare. The only evi-
dence for extraterrestrial anti-baryons is cosmic ray anti-protons, whose abundance is con-
sistent with secondary production from collisions of primary cosmic rays with the inter-
stellar medium [5].

Of course, the BAU might simply be an initial condition. However, this hypothesis is
nearly (but not completely) inconsistent with the much-beloved inflationary paradigm. To
explore this in more detail, let us compute the initial baryon asymmetry at the beginning
of inflation (denoted by time ¢;), required to explain the present abundance, assuming that
inflation lasted for \V, e-foldings, after which radiation domination proceeds with reheating

temperature 7ry. The required initial baryon number density is

9es(Trr) (Trer\’ N
ti) ~ ¢ ¢ 1.2
it~ ol S () (12
(T T 3
~ 10% cm3 x 95( RH) RH (1065)/\/6/50'
10 10 MeV

where t( and 7 are the present time and radiation temperature, and g.s counts the effective
number of degrees of freedom. The success of BBN requires Try = 4 MeV [4], while the
inflationary solution to the horizon and flatness problems requires N, = 50 (e.g., [3]). In

the SM baryon number is carried by quarks; at ¢; they would be a highly degenerate Fermi

gas, with Fermi energy given by the chemical potential

(T 1/3 T
j~ n? ~ 10" GeV x (—g S(loRH)> (10 &fév> (102 (1.3)
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If we require that 1 < M, where M, ~ 10* GeV is the Planck scale, so that the baryon

energy density pp ~ pu* < M3, then we must have N, and Ty extremely close to the

pl°
aforementioned bounds; it is expected that both quantities may be much greater. Therefore,
let us abandon this possibility and focus on a baryon asymmetry that arises dynamically
sometime between the end of inflation and the BBN era.

Successful baryogenesis requires three conditions, due to Sakharov [6]. First, there
must exist interactions that violate baryon number (B), or else no baryon number can be
generated. Second, there must exist interactions that violate both C and CP symmetries,
where C is charge conjugation and P is parity; otherwise, it is not possible to bias the
generation of baryons over anti-baryons. Third, there must exist an arrow of time, or else
the rate for the production of baryons will be equal to the rate for the inverse process to
destroy baryons. This arrow can stem from a violation of CPT symmetry (where T is time
reversal), or a departure from equilibrium during the evolution of the universe.

In principle, the SM does contain these ingredients; early work suggested that baryo-
genesis could occur during the electroweak phase transition (EWPT) when the universe
cooled to a temperature 7" ~ 100 GeV and the Higgs field acquired a vacuum expec-
tation value (vev) [7, 8]. In this scenario, a departure from equilibrium is provided by
a strong first-order EWPT, where bubbles of broken symmetry nucleate and expand in a
background of unbroken symmetry, filling the universe to complete the phase transition.
Second, CP-violation is present in the Cabibbo-Kobayashi-Maskawa (CKM) quark mix-
ing matrix; this induces CP-violating interactions at the expanding bubble walls, where
the Higgs vev is spacetime-dependent, that leads to the production of a CP-asymmetric
charge density. (This is the so-called CP-violating source.) This CP-asymmetry, created
for one species, diffuses ahead of the advancing bubble and is converted into other species
through inelastic interactions in the plasma; in particular, some fraction is converted into
left-handed fermion charge density, denoted n ;. Third, baryon number is violated by elec-
troweak sphaleron transitions, which are active outside the bubbles, in regions of unbroken
electroweak symmetry [10, 11, 12, 13, 14]. The presence of non-zero left-handed fermion
charge ny, biases the sphaleron processes, resulting in the production of a baryon asymme-

try [16]. Electroweak sphalerons become quenched once electroweak symmetry is broken,
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as long as the EWPT is strongly first-order; therefore, the baryon asymmetry becomes
frozen in once it is captured inside the expanding bubbles.

Despite its promise, the electroweak baryogenesis (EWB) scenario is not viable in the
SM: (i) the CKM-phase is insufficient to generate the observed BAU, and (ii) for a SM
Higgs boson with mass m; > 114.4 GeV [2], electroweak symmetry breaking occurs
by a continuous crossover, rather than a phase transition [53]. However, all is not lost.
Supersymmetric extensions of the SM can readily include all the ingredients for EWB to
work. There are many new CP-violating phases that can drive the creation of ng. In
addition, there is an extended Higgs sector, reviving the possibility that the electroweak
phase transition is first-order. In Chapter 2, we briefly describe supersymmetry and some
of its key parameters relevant for EWB.

The baryogenesis computation is essentially a two step process. First, one studies the
finite-temperature Higgs potential to determine the nature of the electroweak phase transi-
tion. It must be strongly enough first-order so that electroweak sphalerons are quenched
within the bubble of broken symmetry. One computes the “bubble solutions” — the spacetime-
dependent profiles of the vacuum expectation values (vevs) of all the Higgs fields from bub-
bles of broken electroweak symmetry expanding in a background of unbroken phase [39,
49].

Second, upon this stage of expanding bubbles, we let unfold the drama of charge trans-
port dynamics in the hot electroweak plasma. This is the subject of our thesis. We study
how charge densities, induced by the expanding bubble walls, diffuse, interact, and equi-
librate in the plasma. Ultimately, some fraction of this charge density is converted into
nr, the left-handed quark and lepton charge. Our main result is that n;, crucially depends
upon which interactions are in chemical equilibrium during the electroweak phase transi-
tion. In particular, we show how the charge transport picture is dramatically impacted by
bottom and tau Yukawa interactions, which until recently had not been included in EWB
studies [24].

In Chapter 3, we formulate the charge transport problem as a system of coupled Boltz-
mann equations for the various charge densities during the EWPT. The conversion of charge

from one species to another occurs via inelastic collisions. We compute these thermally-
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averaged interaction rates in Chapters 3 and 4, showing under what conditions they lead to
chemical equilibrium. The generation of charge density within the initially CP-symmetric
plasma occurs within the bubble wall. In Chapter 5, we describe a novel interpretation for
this physics, in analogy with neutrino oscillations.

Next, we solve the system of Boltzmann equations, both analytically (Chapter 6) and
numerically (Chapter 7). Our analytic results, verified numerically, make it clear that bot-
tom and tau Yukawa interactions can have a strong impact on ng. In previous work, the
sole contribution to n;, was quarks of all three generations. We show that bottom Yukawa
interactions, when active, strongly suppress left-handed quark charge when the scalar su-
perpartners of right-handed top and bottom quarks have (i) masses greater than 500 GeV,
or (i1) approximately equal masses. In addition, when tau Yukawa interactions are active,
significant left-handed lepton charge is generated, which had not been included in previous
studies. The question of whether quarks or leptons dominate ny, thus driving baryon-
number generation, is not purely academic. It can affect the overall sign and magnitude
of np, thus is important for connecting EWB to experiments. In the Appendix, we pro-
vide a review for how the Boltzmann equation can be derived from the Closed-Time-Path
formalism of finite-temperature field theory.

Of primary importance is the question of whether electroweak-scale SUSY is actu-
ally realized in nature. There are two complementary experimental approaches: (i) direct
production of supersymmetric particles at high-energy colliders such as the LHC, and (i1)
precision measurements of (comparatively) low-energy observables that can be sensitive to
virtual supersymmetric particles in quantum loops. In Chapters 8 and 9, we study several
precision measurements of weak decays that can provide interesting signitures of SUSY.
First, in Chapter 8, we study leptonic pion decays. In the SM, the ratio 1./, has been

computed very accurately [65, 66]:

Dlrt — e+ ve(v)]
Llrt — prv,(y)]

R/ = = 1.2352 £0.0001 . (1.4)

A discrepency between this prediction and upcoming measurements of this ratio may be

a signal for SUSY. We find that a large supersymmetric deviation in R/, implies either
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R-parity violation', or a nondegeneracy between the scalar supersymmetric partners of the
electron and muon.

Second, in Chapter 9, we study supersymmetric effects in muon and beta decays. For
each fermion f in the SM (except neutrinos), there are two scalar supersymmetric partners
fL and J?R, corresponding to the left- and right-handed chiralities f;, and fgz. We find that
these decays are sensitive to large tri-scalar, SUSY-breaking parameters that lead to mixing
between f;; and fR for the superpartners of the electron, muon, and first generation quarks.

None of these tests of weak decays will give a deviation from the SM predictions in
the most minimal supersymmetric scenarios [52] where R-parity is conserved, electron and
muon superpartners are degenerate, and the tri-scalar mixing parameters are small for the
first and second generations. Therefore, these probes are interesting in that they provide
handles on regions of parameter space that defy our theoretical prejudice and may be diffi-

cult to identify with collider studies. Lastly, we summarize our conclusions in Chapter 10.

IR-parity is a discrete symmetry under which SM particles have parity (+1), while supersymmetric par-
ticles have parity (—1).



Chapter 2

Supersymmetry, from a Baryon’s
Perspective

Electroweak-scale supersymmetry (SUSY) is one of the most popular and well-motivated
extensions of the Standard Model (SM) [52]. One of its many virtues is the possibility
that it may explain the origin of the baryon asymmetry of the universe. In this chapter,
we describe the Minimal Supersymmetric Standard Model (MSSM), at least those parts
that are relevant for electroweak baryogenesis. We also briefly comment on the Next-to-
Minimal Supersymmetric Standard Model (NMSSM).

In a supersymmetric extension of the SM, for every gauge boson or chiral fermion
degree of freedom in the SM, there is an additional supersymmetric degree of freedom dif-
fering by half-integer spin. Gauginos are fermionic superparters of gauge bosons; squarks
and sleptons are the scalar superpartners of quarks and leptons. In addition, the Higgs
sector is enlarged beyond the SM. In the MSSM, there are two Higgs doublets, and their
fermionic Higgsino superpartners; in the NMSSM, there is an additional gauge singlet,
and its fermionic superpartner the singlino. In Table 2.1, we list all of these particles, and
their respective gauge quantum numbers. For more information, we refer the reader to the
excellent review given in Ref. [52].

Here we identify which pieces of the MSSM Lagrangian are most relevant for EWB
charge transport dynamics. Recall, the key steps are (i) generation of charge density within
the expanding bubble wall, (i1) diffusion of charge into the unbroken phase, and (iii) inelas-

tic collisions that convert this charge into left-handed fermionic charge, which (iv) is then



Chiral Supermultiplets Spin-1/2 Spin-0 SUB)exSUR),x U(l)y
quarks, squarks ¢ = (wir, d;r) gi = (i, d;r) (3,2,1/6)
uj = uZTR ur=uly (3,1, —2/3)
dj’ = dl’LR (Zj = ng (3,1, 1/3)
leptons, sleptons l; = (vir, €ir) l; = (Vir, €ir) (1,2, —1/2)
6;'[ = %R € = e (1, 1, 1)
Higgs, Higgsinos H,=(Hf HY) | H,= (H, H®) (1,2,1/2)
Hy= (HY, H;) | Hy= (HY, H;) (1,2, —1/2)
Singlet, Singlinof S S (1,1,0)
Gauge Supermultiplets Spin-1/2 Spin-1 SUB)exSUQR),x U(l)y
U(l)y Bino B B# (1,1,0)
SUQ);, Wino Wi 53 Wi (1,3,0)
SUB)c gluino g GH* (8,1,0)

Table 2.1: The particles, with gauge quantum numbers, of the Minimal Supersymmetric
Standard Model. The Next-to-Minimal Supersymmetric Standard Model also includes an
additional gauge singlet, denoted by 7.

converted into baryon number by weak sphaleron transitions.

2.1 Electroweak phase transition

First and foremost, a strong, first-order phase transition is required for electroweak baryo-

genesis to work. When electroweak symmetry is broken at temperature 7', the Higgs fields

acquire their vacuum expectation values:

(Hy) = vu(T) ,

<H3> =vy(T) .

2.1

Furthermore, electroweak sphaleron transitions are no longer unsuppressed; a barrier of

height E,,;, = (const) x v(7") rises between neighboring electroweak vacua, where

u(T) = V/vu(T)]? + [va(T)? .

(2.2)

Baryon-number-changing transitions between vacua must surmount this barrier by thermal

excitation; hence, the rate for electroweak sphaleron transitions is suppressed by a Boltz-




mann factor [14]:

[ype o< e Pern/T (2.3)

This suppression is good news for EWB; electroweak sphalerons, if in equilibrium after the
phase transition, would wash out any baryon number previously created by EWB. Thus, we
require that I, be less than the Hubble rate H; this is achieved if the electroweak phase
transition is “strongly” first-order, such that v(7") /T = 1[15, 7, 9].

A first-order phase transition can occur in the MSSM [47]. The tree-level Higgs poten-

tial (including only neutral degrees of freedom) is

Vo = (Mg, +pl)1Hy* + (Mg, + |u*) | Hgl* 2.4)

2 2
+
— (VHQH] + ce) + P2 (HIP — |HJP)” |

2 . . . .
where M Hua and b are SUSY-breaking parameters, and p is the Higgsino mass parame-
ter. We can eliminate these parameters using the minimization conditions for electroweak

symmetry breaking at 7' = 0 [52]:

1
ME + |ul* = m?cos® B+ §mQZ cos 23 (2.52)
1
My, +|uf? = misin®g— §m22 cos 23 (2.5b)
b = m?sinfBcosf, (2.5¢)

where my and m 4 are the Z and pseudoscalar Higgs boson masses at 7" = 0, and tan 3 =
vy /vq. Furthermore, we assume that tan [ is approximately constant during and after the
electroweak phase transition. With this simplification, electroweak symmetry breaking
occurs along a fixed direction in H2-HY field space, defined by H? = ¢ sin 3 and H) =

@ cos (3. The tree-level potential becomes

1
Vo = — =m% cos® 230 + 2 cos? 203 ot . (2.6)

9+ 95
2 8

The origin at ¢ = 0 is unstable; the potential is minimized for m% = (g7 + ¢3) ¢?/2, as

expected.
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To study the nature of the electroweak phase transition, one computes the one-loop,

daisy-improved, finite-temperature potential. Following Ref. [9], this is given by

. . 2
V=Vt 3 mile)! {bg (mgf) ) - ;} 2.7)

+T_< Z n; Jp(mi(p)?/T?) + Z niJF(mi(SO)Q/Tz))

272

n T
127

i€bosons i€fermions

Z n; [Mz’(%T)S - mi(@)g}

i€bosons

where m;(¢)? is the field-dependent mass-squared for particle i, and M;(p, T)? = m;(p)*+
dm?, where dm? is the finite-temperature plasma mass for particle i, given below in Ta-

ble 2.2. The loop functions Jp f are

Jp(m?/T?) = /OOO dzr 2% log [1 —exp (-W) ]

o 2m? o1 (m2\Y? mA
SRR R m 2.8
sraroilm) tolw) ew
Je(m?/T?) E/ dr z* log [1+exp <—\/x2+m2/T2)]
0
Tt wim? m*
T 360 2472 +O(ﬁ> ! @9)

with n; counting the number of on-shell degrees of freedom (with an additional (-) for
fermions). Egs. (2.8,2.9) follow from a high-temperature expansion.
Electroweak symmetry restoration occurs from the terms in J = proportional to m? /T

in the high 7" expansion. As an example, consider the top quark contribution, for which

mi(p) =yl sin? B?  ny=—12. (2.10)

The top quark contributes to the potential the following term quadratic in ¢

2
Vo %t sin? B2 2 . @2.11)
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The complete set of terms of this type are
V D (sin2 ﬁéquu + cos2ﬁ5m§{d) ©? o T? %, (2.12)

where 5m§{u’d denotes the plasma masses for /1, 4, listed in Table 2.2; they are proportional
to 72 and depend on which degrees of freedom are active in the plasma. These terms
stabilize the origin and restore electroweak symmetry at sufficiently high 7.

In order for buble nucleation to occur, there must be a critical temperature 7" where the
potential has two degenerate minima, one at ¢ = 0 and another at ¢ # 0, separated by a
barrier. The symmetric minimum at ¢ = 0 is stabilized by positive quadratic terms given
in Eq. (2.12); the potential is stabilized at large (¢ by quartic terms. Therefore, in order
to have another minimum at ¢ # 0, we need a negative cubic term. This is provided by
the daisy term, the last term in Eq. (2.7), which receives contributions from bosons. To
the extent that M? o ¢?, these daisy terms will induce cubic terms in the potential. In
the MSSM, the right-handed top squark (“stop”) is the only phenomenologically viable
candidate to generate a large enough cubic term consistent with a strong first-order phase
transition [47]. If we neglect mixing with the left-handed stop, the field-dependent stop

mass is

M (¢) = Mj + (yt2 sin? § — 2 sin? Gy 9i + 95 cos 26) O’ +om: , (2.13)
R 3 2 R
where 0y is the weak mixing angle, M2 is the SUSY-breaking right-handed stop mass
parameter, and §m%R is the RH stop plasma mass. This term gives rise to a cubic term in
V only if there is a delicate cancellation between the SUSY-breaking and plasma masses,
such that

M2 ~ —5ng < 0. (2.14)

Only if the ¢? term is exposed is a cubic term generated. It is required that M2 < 0. How-
ever, this parameter cannot be made arbitrarily negative without destabilizing the MSSM
scalar potential in the t p-direction, spontaneously breaking SU(3)c. Indeed, the latest

results indicate that a strong first-order phase transition in the MSSM is consistent with
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experimental bounds only if (i) the zero-temperature right-handed stop mass is less than
approximately 125 GeV, (i1) the left-handed stop has mass in excess of 6.5 TeV, and (iii)
the zero-temperature electroweak vacuum is meta-stable (with lifetime to decay to the true,
color-breaking vacuum longer than the age of the universe) [46].

One popular and simple extension of the MSSM is the addition of a gauge singlet super
multiplet. This extension comes in several flavors, differing in which parameters in the
singlet sector are allowed or forbidden. We use the moniker NMSSM to refer to all of
them. As far as EWB is concerned, the NMSSM has a huge advantage over the MSSM in
that it is much easier to generate a strong first-order phase transition [49, 50, 51]. It is not
hard to see why. If we assume for simplicity that all three vevs (H,), (Hg), (S) are real,

then by gauge invariance, the most general tree-level potential has the form
Vo=a¢? +bp' +cp+dgl +ep; + o+ g0 0 +hol¢? (2.15)

where ¢, = (S), ¢ is defined as above, and other parameters are functions of the various
Lagrangian parameters and 3. Now, we can perform a shift ¢, — ¢,+ constant, such that
for ¢ = 0, Vj 1s minimized at s = 0. This eliminates the linear c-term. Absorbing this

shift into a redefinition of the parameters, Eq. (2.15) becomes
Vo=a@p’ +0¢' +do +epi+ fo,+9ps9" +hol e (2.16)

The fact that electroweak symmetry is broken implies a < 0. The leading field-dependent,
finite-temperature corrections from the one-loop potential lead to contributions of the form
Vi « da T2g02 in the high-T limit, with dimensionless coefficient da, restoring electroweak
symmetry. Now, let us assume that electroweak symmetry breaking occurs along a fixed
direction in the -y, plane, defined by ¢ = p cosf and p, = p sinf. We see that the

potential has the form:

V D [(6aT? — |a|) cos® § + d sin® 0] p* + [esin®@ + g cos® 0 sinb] p*  (2.17)

+ [b cos? @ + f sin® 6 + h sin? 0 cos? 0] ot
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At tree-level, there is a cubic term that may give rise to a first-order EWPT, without a
fine-tuned cancellation in the effective potential. This scenario does not require a light,
right-handed stop. In this work, we do not study the NMSSM in any detail; rather we use

it as motivation to consider a broader range of parameter space than may be viable in the

MSSM.

2.2 Particle masses, outside and inside the bubble

During the electroweak phase transition, most of the collision and diffusion dynamics take
place outside the bubble, where the charge densities are largest, in the phase of unbroken
electroweak symmetry. Therefore, when computing inelastic collision rates, we take the
degrees of freedom to be those listed in Table 2.1, with well-defined SU(3)cxSU(2), x
U(1)y quantum numbers. The particle masses are given by m3 = M? + dm?, the sum of
the renormalized mass parameters m? in the Lagrangian, and the finite temperature plasma
masses 6m? [43]; the latter are given in Table 2.2.

For Higgs bosons, the story is more potentially more complicated. In order to find the
Higgs spectrum in the unbroken phase, one must compute the curvature of the one-loop
finite temperature potential at (H,) = (H;) = 0. Here, we approximate that the quadratic

terms in the potential are given by

Vo (H+T H_) mi + |:u‘2 + 5mHu b sz_ @ 18)
u d _ 9 .
b %+ |l + o, )\ H

and the same for (H?, HgT) but with b — —0b. This is the tree-level potential, but we
have included by hand the finite temperature corrections that restore electroweak symmetry,
denoted by 6m%{u ,- These corrections, valid in the high 7" limit, are given in Tab. 2.2.

Again, we use the minimization conditions at 7" = 0 to eliminate the parameters in the
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Species 5m§M/T2 (4) 6m§USY/T2 (B) 5m§USY/T2 (C)
ar §93 5595 + 301 + 15V + 16Ys | Figvi +1503

tr 695 + 1597 + 5Vi +1591

br 193+ %g% + 1y +2591

lr ?3—29% + 3291 + 3542 +3642

TR SO+ 2 +391

H, 695 + 1691 + 690

Ha 16595 + 1691 +302 + Ly

W 295

? %95 +1229

tr 9003 t39i +3yr | —g0t

br 395+ f—gg + 3u2
~ 1 2

TR 591 + gy

i, =0+ 97 + 37 +595 — w9 + V¢ +—29

Hy 03+ =91+ 1V + 502 +i-95 + =91 — 5591+ 1Y+ 52

Table 2.2: Thermal masses ém? for active particles in the plasma during the electroweak
phase transition. The different contributions arise from thermal loops involving: (A) SM
fermions and gauge bosons only; (B) Higgsinos, Winos, Binos, and RH stops; and (C) RH
sbottoms and RH staus.

mass matrix,

1 1
m2 + |u|* = m%cos® B+ §m2Z cos 203 ~ —3 m3 (2.19a)
1 1
m;+ |ul> = m%sin® 3 — §m22 cos 203 ~ m? + 3 my (2.19b)
b = m%sinfycos3~0, (2.19¢)

where the approximations follow assuming tan 3 > 1. Therefore, in this limit, the Higgs

boson mass matrix (2.18) is diagonal, with eigenvalues

1

my, = -3 my + omj;, (2.20a)
1

my, = mi+ 5 my + 6mj;, . (2.20b)

These are the Higgs boson masses during the electroweak phase transition. We note (i)
if ma ~ O(100 GeV), then H, is also light, and (ii) for sufficiently small 7', we have

mﬂu < 0, corresponding to the destabilization of the symmetric minimum.
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Inside the bubble, within the broken phase, the spacetime-dependent Higgs field leads to
spacetime-dependent mass terms that mix supersymmetric particles with different SU(2) 7, x
U(1)y quantum numbers. This effect is what is responsible for charge generation within the
bubble wall: the so-called “CP-violating sources.” For example, the mass term for charged
Higgsinos and Winos is

L M. Uy (2 W+
£3—<W‘,Hd— 2 g2eu(a)

+ h.c. (2.21)
where I/VjE H id are two component spinors. In addition, the spacetime-dependent Higgs
vevs are v, q4(x) = (H, ;), and the gauge couplings are g;, for i = 1,2, 3. The coefficients
M, and o are the Wino and Higgsino mass parameters, which in general are complex-

valued. Now, we perform the phase redefinitions: W~ — e~i#2(M2) [/~ and H, —

e~targ(n) [ 4 - After this redefinition, we can express this mass term as

LD — |M| Uy Uy — || Vg Vg, (2.22)

— 92 Uy (vu(z) P+ € v4(x) Pr) ¥y + hec.,
where we have defined the four-component Dirac fermions

W+ o+
Ve = | V= 7 , (2.23)
w-t a;'
and CP-violating phase ¢, = arg(u M, b*). (Note: the phase of b is implicitly hiding
in Eq. (2.22); we have chosen it to vanish though our convention that the vevs v, 4 are

real.) Similar results apply for the neutral Higgsino, Bino, and Wino; the total spacetime-

dependent mass terms are

Ly = - i+ (va(z) Pp+ €% vg(z) Pr) Ugprs (2.24)

\I/ o (vu(z) P+ € vg(x) Pr) U

M“%l“ 2

\I/ o (va(z) Pp+ € vg(x) Pr) ¥ + hec.
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with Bino CP-violating phase ¢, = arg(u M; b*), with M, the Bino mass parameter. defin-

ing the four-component spinors

B e il

Vs = o , Uio = ot , Uy = flgT . (2.25)
In Eq. (2.24), we see how the CP-violating phases and Higgs vevs couple together.
Clearly, within the bubble it is no longer appropriate to regard W5 and V5, as the true
degrees of freedom in the plasma; they mix. In this work, we avoid this difficulty by
treating the vev-dependent terms in Eq. (2.22) perturbatively, following Refs. [31, 22]; this
approximation is valid sufficiently close to the bubble wall, where the vevs are small. More
sophisticated treatments, involving a spacetime-dependent diagonalization of the full vev-

dependent mass matrix, have been pursued in Refs. [32, 33, 34].

2.3 MSSM Interactions

Inelastic interactions are of utmost importance for electroweak baryogenesis. Charge den-
sity, initially created for a supersymmetric species, must be converted into left-handed
quark or lepton charge density in order to bias baryon number generation via electroweak
sphalerons. How effective this conversion is depends crucially upon which interactions are
in chemical equilibrium during the phase transition.

Two classes of interactions are relevant: gaugino interactions and Yukawa interactions.
Gaugino interactions, the supersymmetric variant of SM gauge interactions, are processes
that convert SM particles into their supersymmetric partners via the absorption or decay of
gluinos, Winos, and Binos. They lead to interaction coefficients, generically denoted I'y;,
which tend to equilibrate the chemical potentials for particles and their superpartners. All
previous studies have assumed the limit I';; — oo, which leads to superequilibrium. In

Chapter 4, we examine under what conditions this assumption is true or false.
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We list the gaugino interaction terms: for Higgs bosons and Higgsinos, we have

LoD— % [0, (Hy" P+ ¢n HY Pp)W s+ W50 (HY P — €% HY Pp)U 5]

—~ % (Ui (—Hy* P+ € H Pp)W0 + U g0 (HY Pp+ " HY) Pr) V0]

— g (Vs (HY Pp+ € Hy) Pp)Vy, + Wi (H* Py — " H Pp)¥, ]

+ h.c.; (2.26a)
for quarks and quarks, we have

Loo— 2 [aL Uiy Ppul — d Uy P dﬂ (2.26b)

V2
_ 9 [
3v2
~ g2 [aL AT Py + dif A WY Py dg}

WUy Ppul +dy U P dg]

— go d Uiy Ppuj — go Uy W6 P dj,
— 95V2 [ N PG + i N PV
22 V2

t = [ uy P V] — 5 0 [c?R d Py, \IJE} + hc.;

and for leptons and sleptons, we have

Loo— L [57 Uy PLvi — & Uy Pr el (2.26¢)
V2
g1

V2
—gpe s PLvi — g ) ‘I’%+ PLe)

— \/§g1 [E%é%PL \Ifg] + hec..

Here, the index ¢ = 1,2, 3 labels generation. Color indeces have been suppressed; the
matrices A* (\%) are the SU(3)¢ generators in the 3 (3) representation, normalized such
that Tr[A\*\?] = d,,/2. Furthermore, we have neglected flavor-violation altogether. As-

suming that the CKM matrix is the only source of flavor-mixing, we can neglect Cabibbo-
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suppressed interactions; they will be too slow compared to the dynamical time scales of
EWB.

Next, we consider Yukawa interactions, here defined as all interactions mediated by
third generation Yukawa couplings v 5 -. Until recently, it had been assumed that only top
Yukawa interactions are relevant for EWB dynamics. This assumption is false; both bottom
and tau Yukawa interactions can also be important, drastically affecting the conversion of
charge density into left-handed quarks and leptons [24]. The third generation Yukawa

interactions are

Ly, =y, (u* Hy'— A HJ) by T8+ v, (u* HY + 4, Hfj) b1 2.27)
by (W H + Ay Hy) 105+ (0 HT — Ay HY) b0l
vy W HS A HY) VLT ye (0 HE - A HY) T
+y H tr Prbr —y, Hy tr Prty,
+yp Hy br Prtr, — yy Hybr Pr by,
+y, Hf 7o PLv} —y, H) 7r P11
+yt?1rzq’%o Prtr +yt52@%+ Prby
+ ybgj% \T’EH Prtr — ybg];% \Iiﬁo Prbr
+ oy Th Uiy PLvl +y, 7 Wgo Py
it tr PLU o+ yibrtr PL U,
+yptrbr Py ‘I’%+ - ybgL br Py \I’%o
+y v TR PLYS, —y T TR PL VS, + he
with SUSY-breaking parameters A;; .. These interactions lead to top, bottom, and tau

Yukawa interaction rates, generically denoted I';, Iy, and I, respectively. In Chapter 4,

we will compute these gaugino and Yukawa rates explicitly.
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Chapter 3

Charge Transport Dynamics

The dynamics of the plasma during the electroweak phase transition are governed by a
system of Boltzmann equations. These equations describe how charge density of a given
species (i) is generated through CP-violating scattering with the expanding bubble wall,
(i1) diffuses into the phase of unbroken electroweak symmetry, and (iii) reaches chemical
equilibrium through interactions with other species in the plasma. Some fraction of the
charge density generated by the wall is converted into left-handed fermion density nj,
which in turn biases the creation of baryon number via electroweak sphaleron processes.
In this section, we will identify these Boltzmann equations and compute the collision terms

therein.

3.1 Preliminaries

The Boltzman equations leading to EWB have been derived using the closed-time-path
(CTP) formulation of non-equilibrium quantum field theory [25]. This formalism is sum-
marized in the Appendix. We note that for the pupose of computing thermally-averaged
collision rates, the CTP approach offers little over the usual semi-classical treatment (e.g.,
[36]); however, it is essential in computing scattering rates of particles with the background
Higgs field of the expanding bubble. Ultimately, we arrive at a system of equations of the

form

L, T
X
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where j!' is the charge current density of the species i. The density j*, induced by CP-
violating source Sfp , 1s coupled to other species via coefficients I'x that describe the rate
for a process 7 + j + ... <> k + £ + ... to occur. (We have explicitly factored 72 /6 out of
I'x, for reasons that will become clear below.) The chemical potentials are denoted by ;.

Chemical equilibrium, when

fi + 4= g — g — ... =0, (3.2)

is maintained when when the interaction rate I"x is sufficiently large.

Let us first consider the LHS of Eq. (3.1). First, we assume a planar bubble wall profile,
so that all charge densities are functions only of z = v, X°+ X3, the displacement from the
moving bubble wall in its rest frame (where v,, is the velocity of the bubble wall, and X*
is the plasma-frame coordinate). Second, we apply Fick’s law [26, 27, 28, 16, 29], which
allows us to replace j; — —D;Vn; on the LHS of Eq. (3.1), with charge density n; = jio.
The diffusion constant D; is the mean free path of particle 7 in the plasma. In all, the LHS
of Eq. (3.1) becomes

it =wvyn; — Dinj . (3.3)

We have neglected Hubble expansion in our Boltzmann equations; the Hubble time scale
H~' ~ M,/T? is much much longer than all dynamical time scales relevant for EWB.
Next, we turn to the RHS of Eq. (3.1). The chemical potentials are related to their

corresponding charge densities by

2

0y — %mﬁo(%)g, (3.4)

where we have performed an expansion assuming 1; /7" < 1. The statistical weight k; is

defined by
ki =g = / dr x (emil)Qw/x —m2/T? | (3.5)

in which g; counts the number of internal degrees of freedom, the 4 (—) sign is taken for

fermions (bosons), and the mass of the ¢th particle m; is taken to be the effective mass at
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temperature 7'. For reference, chiral fermions have k;(0) = 1, while Dirac fermions and
complex scalars have k;(0) = 2. In our analysis to follow, these k-factors are ubiquitous.
They essentially count the effective number of degrees of freedom for a given species in
the plasma, i.e., the true number of degrees of freedom, weighted by a Boltzmann factor.

While in principle there is an interaction coefficient ['x for every interaction in the
supersymmetric Lagrangian, we can determine which ones need to be taken into account
for the EWB computation by considering the relevant time scales. After a time ¢, charge
densities created at the bubble wall will have diffused on average by a distance dgir = VDt
(with the effective diffusion constant D to be defined below). At the same time, the moving
bubble wall advances a distance dy,; = v,, t. The diffusion time scale, defined by dgir =
dway, gives the time that it takes for charge, having been created at the bubble wall and
having diffused into the unbroken phase, to be recaptured by the advancing bubble wall
and be quenched through CP-conserving scattering within the phase of broken electroweak
symmetry. This time scale is

Tdiff = D/U?H . (36)

Numerically, we have 745 ~ 10* /T (shown later). To this, we compare 7x = F)}l, the
interaction time scale. If 7x >> 74, then the process i + j + ... <= k + ¢ + ... is slow and
I'x may be neglected from the Boltzmann equations. Physically speaking, charge density
is recaptured by the advancing bubble wall before conversion processes can occur. On the
other hand, if 7x < 74i, then these interactions are rapidly occuring as the charge density
is diffusing ahead of the advancing wall, leading to chemical equilibrium (3.2). Expressed

in terms of charge densities, the chemical equilibrium condition is

n; n; N Ty
L B TS 37
ROk B R S

In this case, the interaction I'y must be included in the Boltzmann equations.

A similar argument tells us how we expect deviations from Eq. (3.7) to arise. Suppose
that species ¢ is produced from the expanding bubble wall at z = 0. On distance scales
|z| < \/D—TX , close to the bubble wall, Eq. (3.7) will break down: particles : have not had

enough time to interact via ['x.
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Finally, we see that the Boltzmann equations are a system of coupled, second order,
ordinary differential equations for the set of charge densities n;(z). Ultimately, it is the

total left-handed fermionic charge density
3
ny = Z <nuzL +ng + 0+ TLWL) (3.8)
i=1

that biases weak sphaleron transitions, thereby determining np/s.

3.2 Boltzmann equations in the MSSM

Hypercharge Y and the third component of weak isospin 7 are conserved in the phase of
unbroken electroweak symmetry, but not in the broken phase. Both charges, generated in
the broken phase within the bubble wall, diffuse into the unbroken phase where they are
conserved. (Of course, no electromagnetic charge is generated, since it is conserved in both
phases.)

We now show that it is the hypercharge densities, carried by various species in the
plasma, rather than the T charge densities, which are relevant for the EWB computa-
tion. To see how this works, let us consider how this works for a subset of the Boltzmann
equations. The hypercharge density carried by third generation LH quarks ¢, and b, is pro-
portional to the isoscalar density (¢7, + br); the T charge density is given by the isovector
density (t;, — by). (We adopt the notation, e.g., t/ = ji. and t;, = n,,.) The Boltzmann

equations for these species are

tr, b Wt
o= T [ty b, W] (2 — = — 3,
a,“f L [L7 LJW ] (ktL kbL kW+) + ( 9a)
tr bL W+
by = T |tr,b = - = — 3.9b
a,u L [L’ LaW ] (ktL ]’CbL kWJr) + ( 9 )

where on the RHS we have isolated only the collision term for the scattering process

tr, g < b, W (g is a gluon), with interaction rate I (1, by, W] that is presumably fast
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compared to 74;. Now, we take the sum and difference of Egs. (3.9):

O, (tr +b)* = 0+ ... (3.10a)
tr, —b W
B (t, —bp)* = —2T [ty,by, WH] (L L_ ) + .. (3.10b)
kq, ky+
where k,, = k;, = k;, (valid in the unbroken phase since m;, = m;,). Therefore,

we have shown that the isoscalar density (¢, + b,) decouples from the isovector densities
(tr, — br) and W, modulo weak isospin violation within the bubble wall. Although this
is just one simple example, this idea is true in general: isoscalar and isovector densities
decouple [35]. Since baryon number generation through weak sphalerons is biased by n,
an isoscalar density, we only need to consider isoscalar densities. In other words, we only
need to keep track of the hypercharge carried in various species in the plasma, not the 7%
charge density.

Hypercharge is carried by the following isoscalar densities: left-handed quarks ¢; =
(u; + d;1), right-handed quarks u; = w;r and d; = d;g, left-handed leptons ¢; = (v, +
eir), and right-handed leptons e; = e;r, where ¢ = 1,2, 3 labels generation. In addition,
hypercharge can be carried by Higgs boson and Higgsino charge densities, respectively:
H; = (H + H?) and H = (ﬁfr + ﬁo). This last point may seem confusing, since
it is known that neutral Higgs bosons H? and Higgsinos HO decompose into real scalars
and Majorana fermions, which can carry no charge. This is statement is only true after
electroweak symmetry breaking has occured. In the unbroken phase, the neutral Higgs
boson is a complex scalar, while the neutral Higgsino is a Dirac fermion. Both species can
carry charge — which makes sense since both are charged under hypercharge, an unbroken
symmetry in the unbroken phase.

We now present the full of set of Boltzmann equations in all their glory for the weak

isoscalar charge densities relevant for EWB. First, we give the equations; then we discuss
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their ingredients. The Boltzmann equations for left-handed quarks are

q3 Us q3 ds
0,q" = —-T — — — | = T'yld - - 3.11
nd3 mus; g3 (k% ku3> mlds, g3 (kqs kd3> (3.11a)
~ qs3 q3
T~ — — =) =204 N
V[Q3,CI3} ( ko k%) 5
qs Uus Hu q3 d3 H2)
—Dlus,q3, Hy| | — — — + — | — ['plds, g3, H - - — —
yt[ 35 43 ] ( k’q3 Feu, km) yb[ 3,43 2] ( kQ3 ka, ki,
~ ~ q3 us ﬁ 5 = qs 673 ﬁ
I H|——-—+—|-Tyld HIl|——-———
?Jt[u37q37 ] <kq3 k,as + kﬁ) yb[ 3,43, ] (kq?’ k(z}) kﬁ)
o~ g3 us T~ q3 673
0. = —FM[U,(]](___>_FM[d7Q] 7. 1 (3.11b)
nls Pk P\ ke kg,
~ G s |, H, ~ G dy  Hy
_F u7Q7Hu (___+_>_F d7Q7H T
yt[ 3y Y3 ] ka?) kﬁg, k:Hu yb[ 3y 43 d] kag, kg3 kHd
o~ (@& us  H _ (@& 4 H
-I H|—=—-—+—|-Ty,ld H|—-——-—
yt[u?)u%’ ] <k§3 kug + kﬁ) yb[ 3, 3, ] <k§3 kd3 kﬁ)
+I'y (g3, G3] (13_3 - ]g_f) — 87+ Sg@
q3 q3
ougt = —Tylas @l (,3—3 - ,3-?) — 2T N (3.11c)
q3 q3
g = Tylas, gl (%—;—f) : (3.11d)
q3 q3
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For right-handed up-type quarks, we have

q U -
8;&5 = Durlus, ) (k_g - k—i) — F";[U,z}’u?}] (k—us _ k;_ﬁs

U H,
+Fyt [u37 qs, Hu] (13_3 k ? + k_H )
u3 u

_ ~ | q H
+Fyt[u3>q3aH] <Q3 8 + _> + 1—‘ss N5

q3

oA (ﬂ - E) (3.12b)

ouly = Tlus,gs) (ki];; - 5—;) + 'y us, us e o
Lyelus, g3, Hy (g;; — ;7—; ]i:) (3.12¢)
Ty [lis, g3, H] (:—; - ;L;; + %) + 5%
For right-handed down-type quarks, we have
udy = Talds,qs) (,373 - :73) — Ty ds, ds] (:73 - %) (3.13a)
+Lylds, g3, Ha) (lfq_i - :—; lii)
+Fyb[d3a(§}>7ﬁ[] (lg;; - I:l_; - %) + I'ss N5

~ ~ 673 d3 ~ .
@ = Tyld G5 B ) L rodedy] [ B
aﬂ 3 M[ 37q3] (kag kfg3> + V[ 3 3] (kdg kjgg

Tulds, Gz, Hyl | 22
+ yb[ 3,43, d] (/fag kg3 k’Hd

Tyolds, g3, H
+ yb[ 3,43, ] <kq3 kgs kﬁ
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Next, the Boltzmann equations for left-handed leptons are

63 €3 ~
D0 = —Tolests] [ — 3 1o ) [ 2 -2
uts M[€37 3} (kzg keg) V[ 35 3] (kzg k[g
0 e H
_Fy7[637£37 Hd] (ﬁ - k_3 k}Hd)
3 e3 d
o~ (e & H
_Fy7[637£37 H] (i - k_3 - k_>
3 €3 H
5 sl & s L3
o8 = —Tyles, ls] | — — — | + [l ¢ e 3.14b
nts M[ 3 3} (kgs kg3> V[ 3 3] (kES k'gg ( )
. (s ¢ H
Fyr[es,é&Hd] (k—g - k_~3 k;)
2 €3 d
I ) H
FyT[eg,gg,H] (k_3 — l:—g — k_~> + SSP
I4 €3 H
90" = 0, i=1,2
i=1,2 (3.14¢)

alt = 0,



27

For right-handed leptons we have

3 €3 - es €3
a,ueg = FM[637€3] (k_ég, - k_e3> - Ff/[eg,eg] (1{5_63 — k—%) (3.15a)
63 €3 Hd>
+I',.les, (3, H, - _ =
y les, (3, H] ( Fee Ry R,
o~ & H
r b H | =— — — — —
+ y7[63, 35 ]<kfg3 k‘es ]{,‘H>
~ z:s €3 ~ es €3
Oy = Twles b | 7= — — +F~[e,e](———> (3.15b)
w€3 mle3, 3] <k2 k’g3> 7163, €3 Koy Fa
~ 7 Zg €3 Hd
+FT{67€7Hd] — - — +
! o kzg, ke3 kHd
r Hl—= - - — — 57
-+ y7{637€37 ]<k€ ke3 kﬁ) F
ouel! = 0, i=1,2 (3.15¢)
1=1,2 (3.15d)
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Lastly, the Boltzmann equations for Higgs and Higgsino densities are

q3 uz  H; - - g3 uz H;
o,H' = -T H] | — - — -T H] = - =
re yt[u37Q37 ] <kQ3 kus - kHz) yt[u37Q37 ] <k§3 kﬁs - kHz)
q3 d3 Hi) T o~ q3 673 H;
+Llds, g3, Hy| | — — — — +Dplds, g3, H;] | — — — —
yb[ 3,43 ] (kqg de kHZ yb[ 3, 43 ] (qu;; kﬂ% kHZ
£3 €3 Hz ~ z3 53 Hz
+I, les, b3, H;| (| —— — — + Dy les, b3, Hy] | — — — —
yr (€3, U3, Hil (]% ks K yr (€3, U3, Hi (/% ks,  kn,
~ H; H H;
—Tp[H;, H] — — | —T'y[H)] +S% .,  i=ud
(3.16a)
= ~ ~ g3 us ﬁ ~ 77 q3 Uusg Ff
H* = T H|=-—+—]|-T H|—-—4+—
aﬂ yt[u37Q37 ] kqe, kﬁg; + kf{ yt[u37Q3» ] (ka3 kug, + kﬁ)
¥ = q3 C’lvs F[ ~ 7 6.73 d3 ﬁ
+lplds, g3, H] | 7= — — — — | + [plds, g3, H] | —— — — — —
! ke kg o kg ! ki, kay kg
-~ ~ fg gg ﬁ ~  ~ 23 €3 1{[
+I 7[637637}]] — = ——— | +T 7[63,63,]‘1] —_—— = —
Y key  key kg ! kzzs keo kg
- (H, H -~ (H
+ ) TplHu H] {7 == | =TwlH] | = | + 55
z_zl,:z v (k;Hi kﬁ) kf[ a
(3.16b)

In order to facilitate a comparison with results appearing previously in the literature, we
give the values for the statistical weight factors in the massless limit: k, = k;/2 = 12,
kup = kap, = kup,/2 = k:gR/Q =6, kg, = kp, =4, and kg = 8.

The general notation is that interaction rates are given by I'x[...], where X denotes the
type of interaction, while the [...] denotes the participating particles, the masses of which
determine the interaction rate. The quantities in parentheses, which multiply each interac-
tion rate, are the linear combination chemical potentials (3.7) that vanish when chemical
equilibrium is reached.

There are several different types of collision terms that appear on the RHS of these

Boltzmann equations (we have included only those that are fast compared to 74;). First,
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(a) (b)

Figure 3.1: Examples of gaugino interactions that lead to superequilibrium: (a) absorp-
tion/decay, (b) and scattering, via an additional gluon.

there are the interactions of particles with the background Higgs field of the expanding bub-
ble. These interactions come in two classes: (1) the CP-violating sources Sfp responsible
for the generation of hypercharge, and (2) CP-conserving wash-out processes (denoted by
")) that quenches hypercharge density within the broken phase [22].

Second, there are strong sphaleron processes [19]. These are non-perturbative chirality-
flipping processes Y . u;rd;;, < Y . u;rd;p that tend to wash out a asymmetry between
left- and right-handed quarks. In other words, this interaction causes the combination of

chemical potentials
3

Z (quiL + Udi, — Mg — Hdm> (3.17)

i=1
to relax to zero (thus reaching chemical equilibrium). This interaction has been included in
the quark Boltzmann equations above through the term

'« N5 (3.18)

where

i 2q; oy d;

N5 = - - = -] . 3.19

; Z(% i @) (3.19)
i=1 4 v

The rate for strong sphaleron transitions is given by

I =16K,0aiT (3.20)

with K, ~ 1 [42].
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- — =

br, 71 br, TR br, 1 br tr
(a) (b) (c)

Figure 3.2: Examples of bottom and tau interactions: (a) absorption/decay, (b) and scatter-
ing, via an additional gauge boson, and (c) F'-term-induced four-scalar scattering.

Third, there are gaugino interactions, denoted I'y;, that lead to chemical equilibrium be-
tween particles and their superpartners — a condition we call superequilibrium. In Fig. 3.1,
we show examples of gaugino interactions that lead to superequilibrium for left-handed
quarks and squarks. The dominant process involves decay and inverse-decay of the gluino
g (a); however, if the masses of the squark, quark, gluino are such that decay is kinemat-
ically forbidden, scattering processes (b) can still lead to chemical equilibration. Other
gauginos (the Bino B and Wino W) contribute similarly. Gaugino interactions only lead to
superequilibrium if the gauginos are sufficiently light.

Lastly, and most importantly for this thesis, we have the Yukawa interactions. We
include third generation Yukawa couplings only. These interaction rates are generically de-

noted by I';, where ¢ = ¢, b, 7 denotes the corresponding Yukawa coupling (v, ¥, ¥, ) that

yis
enters into the rate. In Fig. 3.2, we show examples of interactions mediated by third gen-
eration Yukawa couplings. The dominant processes are absorption and decay (a); however,
scattering processes (b), through an additional gauge boson, can be the leading contribution
when decay is kinematically forbidden. There are many supersymmetric permutations of

the Yukawa interaction, each one leading to a different chemical equilibration. For exam-

ple, we list all six supersymmetric variants of the top Yukawa interaction, along with the



31

corresponding chemical equilibrium condition if that rate is fast:

us < qs Hyg Has £ 1o, 4 — fuy =0
Uy < q3 H s + tig — iz =0 (3.21)
Uz < q3 Hyq Mgy T+ pm, 3 — Has =0
uz < Gy H Wags + M — fuz =0

Similar expressions apply for bottom and tau Yukawa interactions.

To conclude, let us make two important points. First, the standard lore [20] was, until
recently [24], that only top Yukawa interactions were fast compared to 74;¢; this is not
necessarily true. As we discuss later, bottom and tau Yukawa interactions are also fast in
large, reasonable regions of parameter space, and their inclusion has a dramatic impact
upon the final computation of the baryon asymmetry.

Second, although it appears that we have specialized our Boltzmann equations to the
MSSM, these equations apply to the NMSSM as well. Recall, we argued that only hy-
percharge densities are relevant for the computation of the BAU. Additional degrees of
freedom that do not carry hypercharge, such as the singlet in the NMSSM, do not lead to
additional Boltzmann equations. Their effect is entirely contained in the various interaction

rates and CP-violating sources that enter therein.
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Chapter 4

Collisions in the Plasma

Inelastic collisions in the plasma are an essential, but often underappreciated, ingredient in
the story of electroweak baryogenesis. Since the CP-violation that drives EWB is contained
SUSY sector, it is the job of collisions to convert this CP-asymmetry into the left-handed
fermion charge density nj that biases electroweak sphalerons into generating the baryon
asymmetry. With so many different collision rates entering into the Boltzmann equations,
one might expect that n;, depends very sensitively upon the detailed competition between
these various interactions. This is not the case. To a good approximation, a given inter-
action rate is either on or off, depending on whether it is fast or slow compared to 7.
If interactions are fast, the resulting densities are determined solely by the corresponding
chemical equilibrium conditions, not by how fast each interaction is in comparison to one
another.

In this chapter, we will compute the Yukawa and gaugino interaction rates that enter
into system of Boltzmann equations (3.11a-3.16b). We will compare them to the diffusion

time scale to see under what conditions they lead to chemical equilibration.

4.1 Thermally-averaged absorption/decay rates

The leading contribution to Yukawa and gaugino interactions comes from absorption and
decay of particles in the plasma. In this section, we will develop the building blocks so
that we may compute these interaction rates. The Yukawa and gaugino interactions, given

in Egs. (2.26-2.27), fall into two general classes: (i) tri-scalar interactions and (ii) scalar-
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fermion-fermion interactions. (Common usage of “Yukawa” refers to all interactions of
the latter type; here, we use “Yukawa” to refer to interactions proportional to the Yukawa
couplings.)

First, we consider the following tri-scalar interaction with three complex scalars
Lins = adr ¢5 9% + hec. (4.1)

Our computation of the corresponding thermally-averaged decay rate follows from the
Closed-Time-Path formalism described in the Appendix. From Eq. (A.37), the Boltzmann

equation for j}'(X), the current density for ¢4, is
X0
it (X) = / &’z / dz’ [2>(X, 2)Gy(2,X) = GT(X,2) 25(2,X)  (42)
+E<(X72)G1>(ZaX)_G1<(X72)E>(27X) )
where G7=(z,y) are CTP Green’s functions for ¢, and the self-energy for this tri-scalar

interaction is

SMa,y) = — lal* G (z,y) Galz,y) 4.3)

for A =<, >. The form for the CTP Green’s functions, which follows by assuming that the

plasma is nearly in kinetic equilibrium, is

< d4p 0 —ip-(z—y)

G<(z,y) = / S o) o = ) ¢ (4.42)
> d'p 0 —ip(ay)

G (z,y) - / s pa(0) (14050 = ) , (4.4b)

where a = 1,2,3 denotes each of the three scalars. The spectral function is p,(p), and
the distribution function is a Bose-Einstein distribution function np(p° — p1,) = [exp(p® —
ta)/T — 1]~ (with chemical potential j,). The collision term induced by L, in Eq. (4.1)

is obtained by evaluating the RHS of Eq. (4.2) explicitly, expanding to linear order in the



34
chemical potentials 1. The end result is [23]
T2

Quit(X) = —laf o Ip(my, mg,ms) (1 — pi2 — p3) 4.5)

= - ‘CL|2 IB(ml,mQ,mg) <k-_1 — k_2 _ k_3> ,

where the second line follows from Eq. (3.4). The function Zp is given by

3 °° ewt/T
Ip(my, mg,mg) = / dw ————— (4.6)

C8m3 T2 ), (e /T —1)2

e(,ul/T _ 6w;'/T ewz_/T -1
X {log ( [0(my — mg — mg3) — 0(ma — my — mg3)]

ew1/T _ gwy /T 6w;'/T —1

e—wl/T _ 6w;'/T er_/T -1
+ log < 0(ms —my — my)

e—w1/T _ owy /T 6w;"/T -1

with

1
M;ZQ_m%{wl |m2 + m2 — m2)| 4.7)

/(@ = m) (3 = (my + mg)2) (3 — (my — ms)?) }
The thermally-averaged decay rate is
L[p1, b2, ¢3] = |a|2IB(m17m2,m3) ; (4.8)

however, exactly what interaction is occuring depends on the masses. Here we list the pos-
sibilities — corresponding to the three f-functions in Zp — along with the corresponding

decay process:

my >mg + ms 1 02 O3
Mo >my +m3 G2 P13
mg >mq + Mo ¢3 P15 -

If none of the preceding inequalities are satisfied, the decay rate vanishes; all decay pro-
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cesses are kinematically forbidden. Lastly, note that Zp is symmetric under permutation of
any of its arguments, although this is far from apparent from Eq. (4.6).
Next, we move to the second type of interaction: scalar-fermion-fermion. Consider the

interaction

Line = ¢109 (g1 Pr + gr Pr) ¥3 + hec., (4.9)

where ¢; is a complex scalar, and v, 3 are fermions. Again, we consider the Boltzmann

equation (4.2), but with this interaction the self-energy is
27 (r,y) = —Tr [(QLPL +grPr) 557 (2, y) (9, Pr + g Pr) S5 (y, ) | . (4.10)
The fermion propagators are

d4 .
Selwy) = - / # pa(p) (p+m) np(p’ — ) e PEY) (4.11a)

S) = [ o) Gt m) (L= (s = ) ety

for fermion a = 2, 3; the Fermi-Dirac distribution function is ng(p® — u,) = [exp(p® —
ta)/T + 1]71 (with chemical potential j,). Evaluating the collision term on the RHS of

Eq. (4.2) explicitly, and expanding to leading order in chemical potentials, we get

The thermally-averaged decay rate is

L1, 9, 103] = (|9L|2 + ‘9R|2) TIr(mg,my,ms) + 2Re[g}.gr] Zp(mo, mi,ms) , (4.13)
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where

3 2 2 2 = eMQ/T
Tr(mg,my,ms) = TR T2 (m1 —my = mz) dws (e=2/T +1)2

m2

wi /T wa/T wi /T _
e/t te el 1
X {log (ewf/T o T e T 1) [0(mg — my —mg3) — 0(my — mg — m3)]

L ewl_/T + e—wg/T ewf’/T -1 6( )
O ms —Mm; —m
& ewi /T 4 e—w2/T gwi /T _ 1 3 ! 2

(4.14)

2m2 ms

L (m27 my, m3) = IF(mla ma, m3) ) (4.15)

2 2 2

with

1
+
Wi 5. 3

= 52 {wa |m3 +m3 —m3] (4.16)

£ /(= m3)(m3 — (ma + mo)?) (3 — (my —ma)?) | .

In this work, only Zr will come into play. (A word of caution: when writing I'[¢1, ¢5, ¥5]
we will not worry about the ordering of the fields; however, in evaluating the function Zp,
the scalar mass must always be in the middle slot, as per the convention in Ref. [23]. These
functions are symmetric only under the exchange of the two fermion masses.) Once again,

the f-functions permit only those decays that are allowed kinematically:

my >mg +mg P12ty
mo >my + Mgy ¢2 <—>¢1 ¢3
m3 >my + Mgy U3 Hﬂ&z'

To conclude, we present a useful analytic form of Zp. For the case of a scalar decaying

into two fermions, ¢ < 1), 1, this function is approximately given by

T3 / mg \5/2 my + ma\’
7 , , ~ (—) 1— ——= —mo/T 4.17
F(ma, mg, mo) 4 \27nT [ < me c ( )

This simplied form for Zr is obtained by assuming mg4 > m+msy >> |my —ms|, and taking
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Figure 4.1: Gaugino absorption/decay rates I'y; as a function of gaugino mass my, for
SU3)¢ (red/solid), SU(2);, (green/dashed), and U(1)y (blue/dotted), normalized to Tcﬁflf.
Where I'; / Tcﬁflf > 1, superequilibrium is maintained; here, this is when the curves exceed
the horizontal line.

Maxwell-Boltzmann statistics for these particles; it is valid at the O(25%) level for my 2>
2(mq + msy). This form clearly illustrates that Zr — 0 when (i) ¢ is Boltzmann suppressed
in the plasma (m, > T), or (ii) the allowed phase space for the decay approaches zero

(m¢ — MMy — Moy — 0)

4.2 Gaugino interactions

Gaugino interactions, denoted I'y;, lead to superequilibrium, i.e., chemical equilibrium be-
tween particles and their supersymmetric partners. The most important parameters govern-
ing these interaction rates are the gaugino masses. Consider a fermion f and its superpart-
ner f, superequilibrium is maintained through the decay Vo f* f, or through gaugino
absorption f Ve f, depending on which process is kinematically allowed. In Fig. 4.1, we

plot the gaugino absorption/decay rates

g% IF(mf7 mf? mé)
v[f:f] = g%IF(mf,mf,mVV) ; (4.18)

93 Ir(my, mz, mg)
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the total gaugino interaction rate will be a linear combination of these three rates, depending
on the quantum numbers of f. In the figure, we have set m 7 = 300 GeV and m; = 60
GeV (approximately equal to a quark thermal mass). Furthermore, the rates have been
normalized with respect to the inverse diffusion time, given by 746 ~ 5x 1073 GeV (shown
below). The condition for superequilibrium is realized when the gaugino interaction time
scale T, = F‘i/l satisfies 7; < Tqi; in Fig 4.1 this is when the curves exceed the horizonal
line.

The general conclusion from Fig. 4.1 is that the gaugino interaction rates can indeed
be large enough to enforce superequilibrium. However, there are two exceptions. First,
in the region near my ~ 300 GeV, the interaction rate vanishes; here absorption/decay
is kinematically forbidden, since |m; — mf| < my. In this region, scattering processes
(Fig. 3.1b), suppressed by O(«; 2 3) over absorption/decay, may still be sufficient for su-
perequilibrium. Second, the interaction rate is suppressed for my — oo, since gauginos
become Boltzmann suppressed in the plasma; here departures from superequilibrium may
occur. From Fig. 4.1, this occurs for my; 2 1 TeV.

Now, we list all the gaugino interaction rates that enter the Boltzmann equations (3.11a-

3.16b):

I“;[Hu,ﬁ] = g%IF(mﬁ,mHu,mg)%— 3g§Ip(mﬁ,mH1,mW) (4.19a)
Uy[Hy H) = ¢2Tp(mp,mu,,mg) + 392 Ze(my, mu,, mg) (4.19b)
N 2
Pole,q = %gl Tr(mg, mg,my) + 3 No g2 T (mg, mg, ms) (4.19¢)
—|—2(Ng - 1) gg Ir (mq,ma, m@)
T _ 8Negi, N2 12T 4.1
V[u7m - 9 F(mU7mﬁvm§) +( c )93 F(mU7mﬁ7mé)( . 9d)
rojgd = Negis ma)+ (N2 —1) 32T -~ m~)(4.19
V[ ) ] - 3 F(mdvmd7mB) +( c )93 F(mdamdam(;)( .19¢)
Tyle.e] = 4¢iZp (me,me,mp) (4.19g)

In Egs. (4.19c-g), we have omitted a generational index since these expressions are identical

for all generations.
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Figure 4.2: Leading top Yukawa interactions from the decay H s tr (solid) and scat-
tering H, q3 < ug g (dashed), compared to T(Eflf, the inverse diffusion time scale. When
Lyi/Tye > 1, top Yukawa chemical equilibrium is satisfied.

4.3 Yukawa interactions

Yukawa interactions are of the utmost importance for the dynamics of EWB. Before we
explore the phenomenology of these interaction rates, we first list all the Yukawa rates
that enter into the Boltzmann equations (3.11a-3.16b). The top Yukawa interaction rates

are [23]

Dyltis, 33, Ha] = 2Ncy} |AJ* Ip (ma,, mg,, mp,) (4.20a)
Dyltis, 33, Hi) = 2Ncw; |ul® Zp (ma,, mag,, mu,) (4.20b)
Uyiltis, g3, H) = 2 Noy? T (my, ma,, mey, ) (4.20c)
Uyilus, s, Ha = 2Ncy; Ip (Mg, ma,, mg,) (4.20d)
Uyilus, Gs, H) = 2 Noy? Ir (Mg, mg,, my) (4.20e)

For EWB in the MSSM, only a subset of these rates are relevant. First, the left-handed
third generation squarks must be very heavy, with masses in excess of 6.5 TeV, as required
by precision electroweak constraints and having a viable electroweak phase transition [46].
Therefore, all Yukawa interactions involving decays of g3 will be Boltzmann suppressed,

shown in Eq. (4.17). Second, decay processes involving H,,, g3, us are kinematically for-
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bidden. However, scattering processes (H, q3 < us g, and permutations) also contribute to

'y lq3,us, H,| and are very active; their total rate was estimated in Refs. [20, 29] to be
Cyilus, Hy,q3] =~ 020,97 T . 4.21)

Lastly, the rate for decays H < s tr can be largest top Yukawa rate of all. In particular,
viable EWB requires both a light right-handed top squark (for a strong first-order phase
transition) and a light Higgsino (to have a sufficiently large CP-violating source to generate
the observed BAU). In Fig. 4.2, we show the ratio I, [us, g3, H]/ T @s a function of the
Higgsino mass parameter j (red, solid curve), for m;, = 80 GeV. When this ratio is much
greater than unity, chemical equilibrium is reached; the combination of chemical potentials
(145 — pws — pt77) vanishes. In addition, we also plot I'y:[us, H,, g3] /754 (dashed green),
for the scattering contribution in Eq. (4.21).

The bottom Yukawa interaction rates are

Dylds, @, Hy = 2New} |uf Ip (mg,, mg, ma, ) (4.22a)
Tylds, @3, Ha) = 2Ncyi |Af* T (mg,, mg, ma,) (4.22b)
Dylds a3, H] = 2Neyi I (mg,mg, . my,) (4.22¢)
Lylds, g3, Ha) = 2Ncys Zp (May, ma,, mg,) (4.22d)
Tyolds, Gs, H) = 2 Noy?Zr (may, mg,, mp) (4.22¢)

The tau Yukawa interaction rates are

Dyrl€s, b3, Hy = 292 |uf* Tp (me,, mg,, mu,) (4.23a)
Uyrles, 05, Ho] = 242 |Af® Tp (mey, my,, ma,) (4.23b)
Tyells, &, H) = 29> Ir (mg, me, me,) (4.23¢)
Uy.les, b3, Hy) = 292 Tp (Mey, M, my,) (4.23d)
Dyrles, b3, H] = 292 Tp (mey,my,, mp) (4.23¢)

The determination of the bottom and tau Yukawa couplings themselves is the subject of
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Figure 4.3: Contour plot of 74 /7, (left) and 7gi /7~ (right) in tan 5-m 4 parameter space.
Values of 7., and 7, include contributions from H; < qrbr and H; < {7 only. Tau
Yukawa chemical equilibrium is maintained for 74 /7, 2 10; similarly for the bottom
Yukawa.

some care. At tree-level, these couplings are determined by

m, my my

yT:’UCOSﬁ7 Yp Yt

(4.24)

wcosB3’ ~ vsing’

where v >~ 174 GeV is the Higgs vev at 1" = (. Both couplings are enhanced over their SM
values for tan 5 > 1. Quantum corrections lead to two complications. First, we include
the QCD (QED) running of ¥, (y,) from the scale where the mass m; (m.) is measured
to the electroweak scale () = M; this reduces vy, by a factor 7, ~ 1.4 and has negligible
impact on y, [37]. Second, we allow for the possibility that v , is smaller than expected at
tree-level, due to m;, ; receiving large one-loop corrections enhanced by tan 3, denoted as
0p and 0., for which we include only the dominant contributions [37, 38]. Including both

of these effects, we have

B M/ N
w(Q) = v cos B (1+dptan3) (4.25)

— mT
~weosB(1+d,tanB)

Y- (Q)

One important class of bottom and tau Yukawa interactions comes from the decays

Hy+— G3ds, l3es, (4.26)
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shown in Fig. 3.2a. The rate for these decays is largest when (i) the Yukawa couplings
are enhanced by tan 3 >> 1, and (ii) the zero-temperature pseudoscalar Higgs mass m 4
sufficiently light, so that H; is not Boltzmann suppressed in the plasma; cf. Eq. (2.20).
In Fig. 4.3 (left panel), we show a contour plot of ratio I'y,[gs, Hg, us]/ T(:-Eflf = Taifr/Typ 0
the m 4-tan 3 plane. Where the ratio is large, indicated by the darker regions, this bottom
Yukawa interaction is in chemical equilibrium; we have (4, — ptg, — ftus) — 0. This
occurs for tan 3 2 5 and m4 < 800 GeV. Similarly, In Fig. 4.3 (right panel), we show the
same plot for I',.[(5, Hy, €3]/ Td’iflf = Taifr/ Ty~ Tau Yukawa chemical equilibrium occurs for
tan # 2 15 and my4 < 600 GeV. (The reason that the Yukawa interaction is weaker for tau
than for bottom is because the latter is enhanced over the former by Nemj /m2n; ~ 8.)

Not only are bottom and tau Yukawa interactions enhanced when m, is light, CP-
violating sources in the MSSM are enhanced as well. The leading, resonantly-enhanced
contributions are proportional to the parameter AS, the change in = tan~!(v,/vy) as
one moves from the symmetric to the broken phase. (We show how this arises in a toy
model in Chapter. 5.) It has been shown numerically that A3 — 0 for my — oo [39].
However, even in this limit, there still survive contributions to the Higgsino CP-violating
source that, though smaller, are sufficient to generate the BAU [41, 33].

Scattering contributions, shown in Fig. 3.2b, also contribute to bottom and tau Yukawa
rates. They are suppressed in comparison by a; or «,,, but become the dominant contribu-
tion when absorption and decay are kinematically forbidden. In addition, F-term-induced
four-scalar interactions, shown in Fig. 3.2¢, also induce transport coefficients proportional
to top, bottom, and tau Yukawa couplings; however, one can show that if all I'y; (for
v = t,b,T) interactions are in chemical equilibrium, then chemical equilibrium is satis-
fied for these four-scalar interactions as well.

Additional bottom and tau Yukawa interactions (4.22, 4.23) may also be significant,
depending on the supersymmetric spectrum. In our results to follow, we work within the

approximation that gaugino interactions successfully lead to superequilibrium. In this case,
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it is the total Yukawa rates that enter into the transport equations:

Fyt = Fyt [ﬂg, 637 Hu] + I_\yt [ﬁg, 6/37 Hd] (4273)

+ Fyt[a?n g3, H] + Fyt[USa qs, Hu] + Fyt[u?n a?n H]

Ty = Tylds, Gs, Ha] + Tyolds, s, Hyl (4.27b)

+ Fyb[g?n%?ﬁ] + Typlds, g3, Ha) + Fyb[d?nas,ﬁ]

Tyr = Tyelfs, b5, Hy + Tyr[€3, b3, H) (4.27¢)

+ L'y, [ls, €3, ﬁ] + Ty les, U3, Hy| + FyT[e?ﬂz& lff] .

We will evaluate these rates numerically in Chapter 7.
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Chapter 5

Intermission: a Novel Interpretation of
the CP-violating Source

So far, we have formulated the problem of charge transport during the electroweak phase
transition. We derived a system of Boltzmann equations; we described which interactions
are relevant and how to compute their rates. In subsequent chapters, we will solve these
equations and investigate their phenomenology. However, we pause here for a brief, but
somewhat tangential, intermission: the nature of the physics that gives rise to the CP-
violating source. Our results here are not meant to be quantitative, but only a heuristic
guide; for numerical evaluation, we rely upon Refs. [31, 22]. In the literature, the compu-
tation of the CP-violating source has been the subject of on-going scrutiny and significant
theoretical machinery involving the Closed-Time-Path formalism [31, 32, 33, 34]. Here,
we attempt to strip the CP-violating source down to its barest essence, and to answer: how
does a spacetime-dependent Higgs field give rise to a CP-asymmetric charge from an ini-
tially CP-symmetric plasma?

We present a very simplified toy model that shows how a CP-violating source arises
from two-flavor oscillations, similar to neutrino oscillations, with a spacetime-dependent
mass matrix. This statement may seem peculiar; it is well-known that there can be no
CP-violation in two-flavor neutrino oscillations in vacuum. Here, however, CP-violation is
physical; the spacetime-dependence of the mixing matrix plays a key role.

Consider a system with two states {|L), |R)} (“flavor basis” states). The spacetime-

dependent Higgs field induces spacetime-dependent masses for these states. For simplicity,
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we neglect the spatial-dependence of the Higgs field and consider a time-dependent Hamil-
tonian H(t). We diagonalize H(t) using the time-dependent mixing matrix V'(¢), such

that

V(AT . [ w0
)" Ht) V()" =w(t) = . o | (5.1)

where w; 5 are the energy eigenvalues and V' (¢) is given in Eq. (2.7). Let us define a new

basis {|1), |2)} (“mass basis” states), by
o) = Ve (B i(1)) (5.2)

where o = L, R and 7 = 1, 2. The Schrodinger equation for the mass basis states is

P9 1i0) = (w0 + 57(0)),, 150 53)

where ¥ = i V1 V. The solution to this equation is

i) = e |=i [ ar () 570)) | i) 54

ij

= exp {—z’ (w(t) t+ ST ) 4+ d(t) g) L 15(0))

where the second line follows by expanding to linear order in derivatives of H (t) (i.e. linear
order in w and Y0).

The initial condition for our states is one of thermal equilibrium. In equilibrium, the
density matrix is diagonal in the mass basis. Therefore, we assume that for ¢ < 0, we have
H(t) = constant; our initial condition at ¢ = 0 is an ensemble of mass basis states |1(0))
and |2(0)), with weights w; ». The weights are the thermal abundances of the mass states
in the plasma, given by

1

Note that w; # ws since in general w; # ws.

Now suppose that for ¢t > 0, we have H # 0. We ask: what is the probability that | L)
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states will be produced after time ¢? Consider the following amplitude:
t
Ani(t) = V() exp [—z/ dt' (w@)+35"()) | (5.6)
0 ij
This is the amplitude for a mass state |j(0)) to be converted into a flavor state state |«)

after time ¢. Let us evaluate explicitly the probabilities for states |1(0)) and |2(0)) to be

converted into state |L). We have

in 2 A : A
|AL ()] = cos? 0 — 2 Siwe sin (th) {9 Cos (th) (5.7a)
— sin# cosf o sin (%) 1
| Ao (t)]? = sin? 6 + 2 31258 sin <%) {9 Cos (%) (5.7b)

— sinf cosf & sin (%)] ,

where Aw = w; — ws. These amplitudes have been evaluated to linear order in the deriva-
tives w;, 0, and & — collectively denoted as O(Jx). The probability of finding a state L
after time ¢ is

Pr(t) =wy |Ap(0)]? 4+ wa |AL ()] . (5.8)

This probability does not equal unity, as long as w; # ws.

Now, consider an analogous two-state system corresponding to antiparticles, with flavor

states | L), |R). It is helpful to regard these states as related to their particle counterparts

by the time-reversal operator ©: O |a) = (@|. (By CPT-symmetry, this is equilivalent to

CP-conjugation.) Using the fact that (i|«) = V¥, we have

o

(i) = (ali) = Via (5.9)

with mass basis antiparticle states |1), |2). The antiparticle states transform differently from

the particle states, according to

) = Vai(t) [u(2)) - (5.10)
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The mass-basis Schrodinger equation is

ST} = (w(t) = 2(0)) 7)) 5.1

We wish to consider the amplitudes

t
Auj(t) = Vai(t) exp {—z’ / dt’ (w(t') —%(t')) (5.12)
0 ij
for producing an |a) state after time ¢ from state |j(0)). In particular, the formulae are
identical to the particle amplitudes (5.7) with the replacement 0 — —o. We assume that
the thermal bath is initially CP-symmetric; therefore, the antiparticle mass states |i(0))
have the same weights w; as the particle states |i(0)). The probability of finding state L

after time ¢ is

Po(t) = wy |Ap ()] +ws [Aa(t)] (5.13)
Given this analysis, is a CP-asymmetry created? The CP-violating source
o, d
Sp (t) = — (Pr(t) = Pr(t)) (5.14)

is the rate of production of an asymmetry between L and L states, given a CP-symmetric,

equilibrium initial state. Using Eq. (5.7), it is
S (t) = (wy — wa) & sin® 26 sin (Awt) | (5.15)

to linear order in derivatives of H(t), with Aw = (w; — wy). The spacetime-dependent
phase o(t) leads to a CP-violating source that generates more L than L. If we apply this

toy model to the case of Higgsino/Wino mixing (2.21), we find
o =arg [Myv, + p* vy , (5.16)

so that
& =sings 3. (5.17)
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We note that (3 # 0 when the vevs v, 4 are spacetime-dependent; therefore, the CP-violating

source is non-zero only within the bubble walls themselves.
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Chapter 6

Computing the Baryon Asymmetry, Part
I: Analytic Results

We now embark upon a long road of solving the full system of Boltzmann equations. Ulti-

mately, we are interested in

3
ng = Z (nuz‘L +ng + s+ ngzL) , (6.1)

i=1
the total left-handed quark and lepton charge density that biases electroweak sphalerons.

The Boltzmann equations, given in Egs. (6.16-6.18), may seem like a dark and impene-
trable jungle. Charge density, created in one species, is converted into other species through
a web of Yukawa, gaugino, and supergauge interactions. We can illumimate the situation
greatly by considering the Boltzmann equation, not for a single species, but for the total
hypercharge in the plasma

3

2, 1 -1 ~
YEZI<6(%+Qi)+§(ui+ui)_g(di‘f‘di)—§(£i+fi)—(€i+6i)) (6.2)

7

1 ~
+3 (Hu—HdJrH) .
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The Boltzmann equation for Y is

) 1 Us qs q3 ds
a0, (X)=—=|T —_— = Tyld = - — 6.3
L Jy (X) 5 { M|us, qs] (kug q;;) + arlds, s3] (q3 kd3> (6.3)
(U G ~ (& d
+ Tarlus, gs) (—3 - §> + I'ar[ds, g5] ? -2
kas a3 a kg,
1 e o~ 2 e
+ FM[€3,£3] (—3——3> +FM[€3,»€3] —3—~—3
k’gB €3 kz?) €3
H, H ~ O
+ Ty[H =% — Ty [Hg) —2 + Ty [H] —
kHu kHd ]{/’Ij[
Licor | aob | aop | coF | b | ooF

If all charge densities on the RHS are proportional to Y, as we show below, then this
equation takes the form

(X)) = =Ty Y + 5. (6.4)

All Yukawa, gaugino, and strong sphaleron rates cancel from the hypercharge Boltzmann

equation; the only terms that remain are the total CP-violating source

1
S?fz§(S?+S§”+S?+S§+S§M+S§d> (6.5)

), a linear combination of various I',; rates in

that generates hypercharge, and rate rt
Eq. (6.3), that washes out hypercharge within the broken phase.

In writing Eq. (6.4), we have decoupled the full system of coupled Boltzmann equa-
tions into two separate, much simpler questions. First, how is hypercharge generated, dif-
fused into the unbroken phase, and ultimately washed out? The answer is provided by
the single Boltzmann equation for Y. Second, how much hypercharge is converted into
the left-handed quark and lepton charge density that drives weak sphaleron processes? By

assuming certain interactions are in chemical equilibrium, we find a series of algebraic

relations between various charge densities, using which we find

ng = KYY ) (66)
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where ky is a constant of proportionality that depends on various statistical k-factors. The
hypercharge Y depends on interactions with the expanding bubble wall; the conversion
factor xky depends on which inelastic interactions are chemical equilibrium in the plasma.

In this section, we pursue these arguments in more detail.

6.1 Superequilibrium

If we assume that gauginos are sufficiently light (mg < 1 TeV), so that 77 < 74, then
superequilibrium is satisfied. This assumption is extremely useful; it allows us to consider
supermultiplet charge densities, e.g., Q; = ¢; + ¢, rather than ¢; and g; separately.

Let us see how this works in more detail. For example, consider left-handed quarks and

squarks; their Boltzmann equations are

Opa; = —Tylai @) (kq— - kq—~) - (6.72)
qi qi
~ ~ q; qi
Wi = Tyla,ql (k:_ - k_~) + .. (6.7b)
qi qi

where we have isolated only the gaugino interaction terms. By taking a linear combina-

tion of these equations, we can write a Boltzmann equation for the difference of chemical

potentials (p,, — f4g,):

6 ( L w)
17 qu‘ ! k@' g
d
= % (/’Lqi - :Uti') - qu'VQIqu + DﬁiVQIU@L

1 1
= -2 —+— ) I'ylg, q = )+ ..
(kqi + kt?i) 7%, @i (g — 1g,) +
It is clear that in the limit that I';; — oo, the plasma is rapidly driven to chemical equilib-
rium, where (u,, — p5,) — 0. In other words, on time scales longer than 7, superequilib-
rium is approximately satisfied; we have

qi i 1
O — 6.
qu‘ k?ii © ( ) ’ (©9)
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where the RHS vanishes in the limit of I'; — oo. (In practice, we will neglect these
and other O (%) corrections; their impact upon the analytic solution to the Boltzmann
equations was studied to some extent in Ref. [23].) Expressing this relation in terms of
charge densities, we have

4% _ G _ Qi

qu‘ B k'di N in 7

(6.10)

where kg, = k,, + kg,. Furthermore, if we take the sum of Eqgs. (6.7), the resulting Boltz-
mann equation for (); is independent of I';.
Similar arguments can be repeated for all species. Ultimately, the complete set of su-

permultiplet isoscalar charge densities is

D, = ngi, +ng33 , H=nyg+ +ngo — Mg =Ny + N + Njpo (6.11)
RZ’ETLe%—"ngzé, LiEnyz_FneiL_‘_nD]’;_‘_nE"L )

where i € {1,2, 3} labels the generations. Furthermore, we define the following additional
notation: ) = Q3,7 = Uz, B= D3, L = L3, and R = R;s.

However, not all of these supermultiplet densities are independent, or relevant for EWB.
Because we have neglected both flavor mixing and first and second generation Yukawa cou-
plings, first and second generation lepton charge is not produced. We have L = 0, which
follows directly from Eqgs. (3.15). Similarly, first and second generation quark charge is pro-
duced solely through strong sphaleron processes, e.g., t1, t by, by — D iy UL U di d,.
Clearly, first and second generation left- and right-handed quarks are produced in equal

numbers; therefore, we have
Q1 =Qy=-2U;=-2U,=—-2D;=-2D,. (6.12)

Next, we have decoupled weak sphalerons from the system of Boltzmann eqns, since I',;} ~
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10° /T > Tqi [44]; therefore, lepton and baryon number are individually conserved:

3

/OodzZ(Qi—i-Ui—l—Di):/Oodz(L—l—R):O. (6.13)

—0 i=1 —
Because the left- and right-handed (s)lepton have different gauge quantum numbers, they
have different diffusion constants in the plasma. Even though lepton number is globally
conserved, regions of net lepton number can develop since R diffuses more easily than L.
For quarks and squarks, this does not occur since the left- and right-handed (s)quark diffu-
sion constants, dominated by strong interactions, are approximately equal [29]. Therefore,

baryon number is locally conserved:

3

> (Qi+Ui+Dy)=0. (6.14)

=1

Combining Egs. (6.12,6.14), we have
B=—-(T+Q). (6.15)

Therefore, we may consider a reduced set of Boltzmann equations involving only the den-
sities QQ, T', 1, L , R, H; the remaining densities are then determined by Egs. (6.12,6.15).
We now present the Boltzmann equations that result under the present assumptions: (1)

superequilibrium, (ii) no first and second generation Yukawa couplings, and (iii) no flavor
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mixing. For the quarks and squarks, we obtain

T, T H
UwQ/—DQQ” = —Ty (g - )— (Q +Q > (6.16a)
]{ZQ k‘ B kH
Q Q T+¢ o oor
-1, (- — -5 =5
t(kQ ko ks t '
O T Q+T 1< 111
2T, (25— = 22 Yt e
( kq kT+ kg +QZZ1 in+kUi+kDi o
Q T H Q T
T _DyT" = T ¢ L O [ % — — S 6.16b
v Q yt(kQ e k) T ko  kr M (6169
O T O+T 1< 111
1_\ss 2——— B 4— Lrr .
’ ( kq ke ks +2; inJrkUiJrkDi o
Q T T+Q 1-[, 1 1 1
w D T = _QFSS 2——— 9 4 Forr ko, ’
v Ql QQ ( kQ /{;T+ /{ZB +22221: sz +kUz+sz Ql
(6.16¢)

and for Higgs bosons and Higgsinos we have

T H H
v H — Dy H' = —T, (Q——Jr ) Ty ——+S% (6.17)
ko kr  knm ki

T H L R H
N CICE AN A
ko ks knm

and lastly for leptons and sleptons we have

L R H L R
Wl =D L' = —T, (=~ )T~ -2 -5%6.18
v L y(k;L . kH) (k:L k:R> 57 (6.18)
L R H L R
/_D "o _ F _ - P * 618b
UwR RR yT <kL kR k]{) + Lonr (kL kR) +S ( )

The relevant interaction coefficients in Eqgs. (6.16-6.18) are as follows:

e The coefficients I'y;, where 7 € {t,b, T}, denote the total interaction rates arising
from third generation Yukawa couplings y;, as defined in Eq. (4.27). (The top Yukawa

interaction rate has been denoted I'; in previous work.)

e The strong sphaleron rate is 'y, = 16 k' o T', where « is the strong coupling and
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K~ O(1) [42].

e The coefficients I'y, and I',,,;, where i € {t, b, 7}, denote the CP-conserving scattering
rates of particles with the background of broken electroweak symmetry within the

bubble [22].

We also allow for new CP-violating sources SEC;, o although in the present work we do
not evaluate their magnitudes. In the MSSM, the most viable CP-violating source is Sg,
arising from CP-violating Higgsino-Wino or Higgsino-Bino mixing within the expanding
bubble wall [45]. The constant v,, >~ 0.05 is the velocity of the expanding bubble wall. The
k-factors, e.g.

kr=ke, + ks, ko=kg+ kg ..., (6.19)
follow the same notation as in Egs. (6.11). The diffusion constants are, e.g.,

— kq Dq + kﬁDﬁ

Dq T

(6.20)
again following Eqgs. (6.11).

These Boltzmann equations are different from those in the established literature [20],
because of the inclusion of bottom and tau Yukawa interactions. Below, we will show how

ours reduce to those in the limit that v, y, — O.

6.2 Yukawa equilibrium

Top, bottom, and tau Yukawa interactions may all be in chemical equilibrium during EWB.
The corresponding chemical equilibrium conditions allow one to express all charge densi-
ties in terms of a single charge density. Instead of expressing them in terms of Y, we will
express them all in terms of H, the Higgs and Higgsino charge density, which has been the
convention in previous work.

First, we consider the lepton densities. When tau Yukawa interactions are in chemical
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equilibrium condition, the relation

L H R
— 0. 6.21
kr, kg kg ©.21)

is satisfied. The sum of the Boltzmann equations for L and R (6.18) is

Vo (R+ L)+ (DrR'"+ D, L") =0. (6.22)

Since the left- and right-handed lepton diffusion constants are not equal, there is no simple
relation that would allow us to relate 1? to L. However, in the limit that v,, — 0, Eq. (6.22)
implies that

Dy L=—-DrR. (6.23)

(We have assumed the boundary conditions L(co) = L'(00) = R(o0) = R/(c0) = 0.)

Therefore, we have

k Drk
L(z) = kpH(z)+ AL(z) = é b kLi l};R ™ H(z)+AL(z)  (6.24a)
kr Dy kp

R(z) = krH(z)+ AR(2) =

—— H A .24b
b HE) + AR(:) L (624b)

where AL and AR are the O(v,,) corrections to these relations, derived below.

Let us now describe the physics of Egs. (6.24) through two limiting cases. Case (i):
set Dr = Dy. In this limit, Eq. (6.22) implies that lepton number is locally conserved:
L + R = 0. Higgs density H, created by the CP-violating source, is converted into L

through tau Yukawa interactions, until chemical equilibrium (6.21) is reached, when

_ b ke
 ky kp + kg

L(2) H(z) . (6.25)

Case (i1): take Dr — o0, keeping D, finite. Any R density created by tau Yukawa inter-

actions instantly diffuses away to z = +o00; therefore, we set R = 0. Now, tau Yukawa
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chemical equilibrium (6.21) implies

k
M@:EiH@. (6.26)

In other words, tau Yukawa interactions will enforce chemical equilibrium locally. Since
RH lepton density is diffusing away, reducing the local 12, more conversion of H into I
and L occurs to compensate, thereby resulting in more LH lepton density. This conversion
ceases when Eq. (6.26) is reached. Therefore, a large diffusion constant for RH leptons en-
hances the density for LH leptons close to the bubble wall. This enhancement, maximized

for D — o0, lies in the range

< krthe o 6.27)
o

)
3

since 1 < kr < 3and 2 < k;, < 6. The lower (upper) bound is reached when mg, > T >
mg, (me, KT K mZS).

Next, consider the case of physical relevance, where Dy > Dy, but keeping both
Dpg, Dy, finite. Close to the bubble wall, LH lepton density will be enhanced, as argued
above. However, far from the bubble wall, an additional effect occurs: RH lepton density,
having diffused far into the unbroken phase, is converted into L and H by tau Yukawa
interactions. This effect suppresses L. Close to the bubble wall, Higgsinos created by the
CP-violating source (e.g., > 0) will be converted into LH leptons (L > 0) and RH anti-
leptons (R < 0), and then, far from the wall, the RH anti-leptons will be converted into LH
anti-leptons, thereby suppressing L. This physics is incorporated in the O(v,,) corrections
AL and A R, which we now derive. Using Egs. (6.21, 6.22, 6.24), we can derive differential

equations for these densities:

kg k? Dy — Dgr
—Dir AL + v, AL = v, L H' 6.28
b v ! ku(kr +kr)*>  Drr (0.282)

]{32 k)L DL—DR
—Dir AR" + v, AR = v, R H' 6.28b
LR ! Y kn(kr + k) Drg (6.28b)

where Dyr = (Dpkr + Drkg)/(kr + kr). With the boundary conditions AL(+o0) =
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AR(+00) = 0, the solutions to these equations are

]{32 k)R DL - DR o ’
AL = L dz H(2')etw=#)/Prr (629
(2) ! kg (kg + kr)? D%R /z < H(Z)e ( 2
kr k% Dy — Dp /Oo -
AR = v, dz H(2)etw==#)/PLr  (6.29h
() ! ky (kr+kp)> Dip . S H(Z)e ( )

Using Eqgs. (6.24,6.29), it is straight-forward to show that these solutions for L and R
satisfy
/ dz(L+R)=0, (6.30)

so lepton number is globally conserved, even though L(z) + R(z) # 0 locally. Regions
of net lepton-number can arise due to the different diffusion constants of left- and right-
handed (s)leptons. Numerically, as we show in Sec. 7, the impact from AL and AR on the
analytic computation of ng /s is only O(10%). Since there are much larger uncertainties in
the analytic computation, it is safe to neglect AL and AR from Egs. (6.24).

Next, we consider the quark densities. When top and bottom Yukawa interactions are

in chemical equilibrium, the relations

Q H T
A 631
et O (6.31)
Q H B

A 6.31b
ko Fn ok (6.31b)

are satisfied; cf. Eqns. (3.2, 3.4). These equations imply that

2— = — - — =0. (6.32)

First and second generation quark densities only couple to third generation densities, via
strong sphaleron interactions, through the linear combination (2Q)/kg — T'/kr — B/kg),
as can be seen from Eqns. (6.16). Since this combination vanishes, third generation quark

densities do not source 1st/2nd generation quark densities. Mathematically, if we impose
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Eq. (6.32), the ); Boltzmann equation (6.16¢) becomes

Vw Qll - Dq Qll/ xX — 1—\ss Ql 3 (633)

which, with the boundary conditions @Q1(f+00) = 0, implies )1(z) = 0. According to
Eq. (6.14), we have U; = D; = —Q;/2 = 0, for i = 1,2. Therefore, we conclude that
all first and second generation quark and squark charge densities vanish in the presence of
fast top and bottom Yukawa interations. Strong sphalerons only induce first and second
generation densities in order to wash out an asymmetry between left- and right-handed
quark chemical potentials; when bottom Yukawas are active, this asymmetry vanishes and

strong sphalerons have no effect. Eqns. (6.31) imply

ke 2kp + kg
T = wpH="L _ZiB1Tle
" e kg + kg + kr
ko kg — kr
= hoH="Q BT g 6.34
R o Sy (6:34)
B o= e tm 2wtk

Cky kp+ko+kr

To summarize, we have expressed all quark and lepton charge densities in terms of H,
the Higgs and Higgsino charge density, assuming that their generation Yukawa interactions
are in chemical equilibrium.

Using these Yukawa chemical equilibrium relations, it is now possible to see how hy-
percharge is converted into ny. The contribution to n;, from third generation LH quarks

18
kq kg — kr

~o BB p 6.35
ku kg + ko + kr (635)

n,s ng g =
uL+ dy,

while that from first and second generation LH quarks is suppressed. Furthermore, the

contribution to n;, from third generation leptons is

_ky  Dpkg
’ k’H DLkL+DRkTR

H(z)+ IZ—EE AL(2) . (6.36)

T

It is by convention that these densities are expressed in terms of /. Neglecting the non-
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local AL, AR terms, we can express H in terms of Y using

KQ 2 KB KL 1
Y=-| >4+ —-—=-—=— - | H. 6.37
( 6 "3 3 2 “R+2> (6.37)

To the extent that the non-local lepton terms can be neglected, the charge densities are
proportional to the total hypercharge Y, generated by the CP-violating source; the constants
of proportionality describe how much hypercharge is converted into each species, which
depends on which interactions are in chemical equilibrium.
Let us contrast these results to previous work that neglected bottom Yukawa interac-
tions [20]:
kq kp — 9kr

= = H .
Mg + Ny ky kg +9%kg + 9%kr (6.382)
kg, 2ko(kp — k1) + 2k (9kr + 2kp) ,

; g = — H =1,2, (6.38b
nuL _'_ndL kH kB +9kQ +9kT ) ? I ) ( )

The formulae are completely different. Whereas in previous work significant baryon asym-
metry could arise from first and second generation LH quarks, the presence of bottom
Yukawa interactions completely changes the picture: no first and second generation quark
density is created. In addition, with fast bottom Yukawa interactions, the third generation
quark charge vanishes when kr >~ kp, or equivalenty mj;, ~ my_; without them, this can-
cellation never occurs. Let us explain the physical origin of this cancellation. Suppose that
the CP-violating source creates positive Higgs/Higgsino density, such that 4 > 0. Due
to hypercharge conservation, top Yukawa interactions will convert Higgsinos and Higgs
bosons into LH quark and squark antiparticles (driving ) < 0), while bottom Yukawa
interactions will convert Higgsinos and Higgs bosons into LH quark and squark parti-
cles (driving ¢) > 0). Which effect wins depends on the masses mj, and my_, since the
equipartition of / charge density prefers lighter degrees of freedom in the plasma. In the

lepton-mediated scenario, the quark contribution is suppressed by choosing mz, ~ my_,

or mg,, my, . >T.
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6.3 Solving the Boltzmann equation

In terms of H, the left-handed fermion charge density (6.46) becomes

kg kp—kr
 ky kp+ kg + kr

ko kr Dg

ke
ku ki Dy + kr Dg

kr

nr(z) (2) + H(z)+ — AL(2), (6.39)

where AL is given in Eq. (6.24a). The first term is the contribution to n; from third
generation quarks, while the second and third terms are contributions from third generation
leptons. The lepton contribution is predominantly given by the second term only; the third
term, as discussed above, is suppressed for v,, < 1. This equation is the main result of this

paper; from it, we infer several conclusions:

e The lepton contribution is enhanced for mz, < mz , when kg is largest and k.
smallest; (cf. Egs. (6.19,3.4)). It is also enhanced for Dg > Dy. Its sign is fixed
with respect to A, which in turn is fixed by the sign of the CP-violating source,
as we show below. Therefore, in a lepton-mediated EWB scenario, where nj, is
predominantly leptonic, the sign of the CP-violating phase most relevant for EWB

uniquely fixes the sign of np/s.

e [eft-handed charge comes from third generation quarks and leptons, and not first and
second generation quarks and leptons. The form of n, is qualitatively different than
in previous treatments that neglected I'y, and I',;, where left-handed charge came

from quarks of all generations, and not from leptons.

e Furthermore, the quark contribution to ny vanishes for kg = k7, which occurs (i)

when ms;

ins M, > T, or (i)when m;, = my . If either or both squarks are light,

then the sign of this contribution is opposite to that of the leptonic contribution for

my,, < m;,and the same for mg, > my .

We explore these implications in more detail numerically in Chapter 7.
We emphasize that our conclusions are quite general, although it appears that our Boltz-
mann equations (6.16-6.18) have been specialized to the MSSM. In any extention of the

MSSM, if the following conditions hold — (i) that third generation Yukawa interaction
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rates are faster than the diffusion rate, (ii) CP-violation is communicated to the first and
second generation quark sectors solely through strong sphalerons, and (iii) any beyond-
the-MSSM supermultiplets carry no hypercharge — then Eq. (6.39) and its conclusions
remain valid.
Since np/s is determined by 7, all that remains is to solve for the Higgs charge density
H. We can reduce the Boltzmann equations (6.16-6.18) into a single equation for // by

taking the appropriate linear combination of equations

(6.16a) + 2 x (6.16b) + (6.17) + (6.18a) , (6.40)

such that the Yukawa and strong sphaleron rates all cancel, and expressing the densities
L, Q,T in terms of H using Egs. (6.24,6.34). This master Boltzmann equation equation is
an integro-differential equation for H(z), due to the presence of the AL term. Therefore,
for simplicity, we treat AL perturbatively: first, we neglect AL in our solution for H, and
then, given our solution H, we include the A L contribution in Eq. (6.39) for n;,. Neglecting

AL, the master Boltzmann equation is

vwH —DH"= —TH+S, (6.41)
where
D: DH—FDQ(K,T—/QB)—FDLHL (6423.)
1—|—KJT—I€B—|—KJL .
_ I+ T+ T+
P:k” o Lmb + (6.42b)
H(1+I€T—/€B+I€L)
e i
S =4 b . (6.42¢)

1+ kr — K+ K
Although the form of Eq. (6.41) is identical to that in the established literature [20, 22],
the form of Egs. (6.42) is dramatically different. We note that there is no dependence on
the first/second generation quark sector, owing to the fact that they do not participate in the

dynamics which determines ny,.
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To solve Eq. (6.41), we follow Ref. [20] making the approximations (a) that the true
spatial dependence of the chiral relaxation rates may be replaced by a step-function, so that
we may write ['(z) = ['0(2); and (b) that S(z) ~ 0 for z < —L,,/2. For the symmetric

phase, where z < —L,,/2, we obtain

H=Ae"#P (6.43)
where _
6 '\H_y O _ ,y_ efva/D
A= / dy S(y / dy S(y) + : (6.44)
D%r —Lw/2 Vw Y+ Vw
Furthermore, we have defined
L |y, £ /o2 £ 41D (6.45)
= — | vy ) . )
T+ 2D w

Although the form of Eqns. (6.43-6.45) is similar to that in previous work [20], our results
for D, T', and S are different, due to the modified structure of the Boltzmann equations in
the presence of fast bottom and tau Yukawa rates.

After solving the system of Boltzmann equations (6.16-6.18) for each density, the left-
handed fermion charge density is

nL—< >Q+ZZM( )Q1+(k‘)L, (6.46)

where k;, = ki, + ko, k¢ = ky; + kirp, etc. The three terms in Eq. (6.46) correspond to

the contributions to n; from third generation quarks, first/second generation quarks, and
third generation leptons, respectively. If the masses of all left-handed squarks and sleptons
is much above the temperature of the phase transition, only fermions contribute to the left-
handed density and we have

np~Q+2Q1+ L. (6.47)

Finally, we show how our Boltzmann equations reproduce those given in previous work

in the limit v, y. — 0. In this limit, we can neglect the rates I'y, - and I',,; -, and CP-
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violating sources ng‘;. First, since there is no source for lepton charge, we have L. = R = 0.

Second, the only source for B density is strong sphaleron processes; therefore, we have
—2B =0 (6.48)

in analogy with Eq. (6.12). Thus, Egs. (6.15,6.48) imply that Q; = 2(Q + T'). Therefore,
by Eq. (6.47), we have the often-used relation n; = 5@ + 47'; this relation is no longer
valid for 7, 7,» < 7Taie. In addition, the Boltzmann equations of Refs. [20, 22, 23] follow

from Eqgs. (6.16a,b,6.17); they too are no longer valid for 7, 7r S Taigr-

6.4 Baryons at last

Baryon number generation is decoupled from the dynamics that determines n; because

F;; > Tqig. The Boltzmann equation for np is [21]

3
vwny = Donp + Rnp = =5 Tusni(2) (6.49)

where [',,; is the weak sphaleron rate, and the relaxation term

. 9 Negg\ 1 3
R=T,. [Z (1+ : ) +§} (6.50)

describes how baryon-number generation ceases when weak sphalerons reach chemical
equilibrium, when » ., p,. + pr, = 0. (Also, n, is the number of light squarks.) The weak

sphaleron rate is spacetime-dependent; here, we take
Cws — TusO(—Ly/2 — 2) (6.51)

so that weak sphalerons are active only in the unbroken phase, for = < —L, /2. The

solution to Eq. (6.49) is

By [h/? _
ng = _ZDQ)\+ / dznp(z)e 7. (6.52)

— 00
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with
1

Az—(wi 2 14D R) 6.53
+ 2DQ v (%) + Q ( )

The entropy density is given by

272

=" g7, 6.54
§= 5 98 (6.54)

where g.s ~ 130, for the parameters given in the text. Given nj, either numerically or

analytically, we can compute ng/s.
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Chapter 7

Computing the Baryon Asymmetry, Part
II: Numerical Results

In the preceding chapter, we showed how the Boltzmann equations may be solved analyt-
ically. We argued that bottom and tau Yukawa interactions are not only relevant to EWB
dynamics, but dramatically change how hypercharge is converted into left-handed quark
and lepton density. Independent of the nature of the CP-violating source, this collisional
effect can suppress or flip the sign of the baryon asymmetry. In some regions of parameter
space, these interactions will be crucial for connecting EWB to experiments.

We now investigate these claims by studying the Boltzmann equations numerically. We

< 1 TeV);

~

assume that superequilibrium is maintained (assuming gaugino masses my;
therefore, we work with the reduced system of Boltzmann equations given in Egs. (6.16-
6.18). First, we study a “lepton-mediated scenario” that strongly illustrates the key features
described above: (i) the quark contribution to n, is suppressed for mg, ~ My, and (ii) the
baryon asymmetry, driven by left-handed leptons, has opposite sign compared to what one
would predict if neglecting bottom and tau Yukawa interactions.

Next, we investigate other regions of parameter space: (i) a “light-stop scenario,” simi-
lar to that in Ref. [46], and (i1) a heavy squark and slepton scenario, which may be relevant
for EWB the NMSSM. In the latter case, we find that lepton-mediated EWB is the default

scenario over a wide range of parameter space.
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i [120GeV || MZ | —(60GeV)Z][ T | 100GeV | Do 6/T
M, | 120Gev | M2 | (100 GeV)? || o(T) | 125GeV | Dy, Dy | 100/T
M, | 250GeV | M2 | (300Gev)? | AB | 0.015 Dr | 380/T

tan 3 20 ma 150 GeV UV 0.05 L, 25/T

Table 7.1: Important parameters for electroweak baryogenesis.

7.1 Lepton-mediated electroweak baryogenesis: input pa-

rameters

We now consider an MSSM scenario that illustrates some of the novel features discussed
in Sec. 6. As we will see, the picture here is that the BAU is induced predominantly
by leptonic left-handed charge: hence, lepton-mediated. The key parameters that govern
the behavior of this scenario are (i) tan 5 = 20 and pseudoscalar Higgs mass (at zero

temperature) m, <

~

500 GeV, ensuring 7., 7,r < Tag, and (i1) right-handed top and
bottom squarks with approximately equal mass, thereby suppressing the quark contribution
to ny. Here, we take both squarks to be light, with O(100 GeV) masses, since a strong
first-order phase transition requires a light top squark.

Although we work within the context of the MSSM, many of our conclusions are much
more general. In EWB scenarios beyond the MSSM, light squarks are not required for a
strong first-order phase transition (see e.g. Refs. [49, 50, 51]). Even if the squarks are very
heavy, EWB is still mediated by leptons as long as the previous two conditions are met.

The computation of npg/s relies upon many numerical inputs, described here. We have
evaluated the masses of particles during the EWPT assuming that electroweak symmetry is
unbroken, as discussed in Chapter 2. This approximation is motivated by the fact that most
of the charge transport dynamics takes place outside the bubble, in the region of unbroken
symmetry. These masses receive contributions from the mass parameters in Tab. 7.1 and
from finite-temperature corrections, listed in the Tab. 2.2. The right-handed stop, sbottom,
and stau SUSY-breaking mass-squared parameters are M2, M3, and M3, respectively. The
RH stop is required to be light to achieve a strong first-order phase transition [46]; taking
the RH sbottom and stau to be light as well ensures that the quark contribution to n, is

suppressed, while the lepton contribution is enhanced, in accord with Eq. (6.39). We take
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all other squark and slepton mass-squared parameters to be 10 TeV. (In addition, we take
Ay = 7 TeV; with these parameters the lightest zero-temperature stop mass is m;, ~ 102
GeV.)

The diffusion constants D; have been computed in Ref. [28, 29]; the fact that Dr > Dy,
enhances the left-handed lepton charge, as discussed in Sec. 6. The bubble wall velocity
Uy, thickness L,,, profile parameters AS and v(7") describe the dynamics of the expand-
ing bubbles during the EWPT, at temperature 7' [40]. The spacetime-dependent vevs are

approximated by

I~
—
I\
~—
12

o) |1 = o (-2 )
3(T) — %Aﬁ {1 + tanh (—i—z)} , (7.2)

w

=
X
l

following Ref. [32].

We consider a CP-violating source Sg arising solely from Higgsino-Bino mixing, en-
hanced for © = M, and calculated following Refs. [31, 22]. The relevant CP-violating
phase ¢; = arg(M;ub*) virtually unconstrained from electric dipole moment searches if
we assume that the gaugino phases are non-universal, such that ¢; > ¢ [45]. The Hig-
gsino and Bino thermal widths are I'; ~ 0.0257 and I'y; ~ 0.0207" [48]. Numerically,
we find

S ~ —0.15GeV x f'(z)v(z)” singy . (7.3)

The magnitude of SIQ; — and thus ng/s — is proportional to AfJ, which itself goes
as Af o« 1/ mQA. Therefore, within this computation, viable EWB requires m 4 to be
sufficiently light; this leads to significant bottom and tau Yukawa interaction rates. (In
other computations, there exist contributions to S%P that are not suppressed as my —
oo [41, 46].)

The CP-conserving relaxation rates wash-out CP-violating asymmetries within the bro-
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Figure 7.1: Left-handed charge densities for quarks that source ng/s, for lepton-mediated
scenario. Solid (dashed) curve is our numerical (analytic) result, as function of distance z
from bubble wall. Shaded region denotes broken electroweak symmetry. Dotted curve are
numerical results obtained neglecting tau/bottom Yukawa interactions. The effect of these
interactions is to suppress LH quark charge, while enhancing LH lepton charge, thereby
flipping the sign of n;, and np/s compared to previous computations.

ken phase. Computed following Ref. [22], these rates are

[h(z) ~ 2.5 x 1073 GeV ™ x v(2)? (7.4)
[pi(2) 3.0 x 1072 GeV ™! x v(2)?sin’® B(z) (7.5)
2
Cante) 2 () ot 5:) Do) 76)
t

We neglect additional CP-violating relaxation rates from squarks, (s)leptons, and Higgs

scalars.

7.2 Lepton-mediated scenario: results

We now solve the Boltzmann equations (6.16-6.18) numerically for the lepton-mediated
EWB scenario, with input parameters defined above. In Fig. 7.1, we show the left-handed
charge density n, that arises from quarks, for maximal CP-violating phase ¢; = —7/2.

Our numerical results are shown by the solid curves, plotted as a function of the distance z
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Figure 7.2: Left-handed charge densities for leptons and quarks (right) that source np /s, for
lepton-mediated scenario. Solid (dashed) curve is our numerical (analytic) result, as func-
tion of distance 2z from bubble wall. Shaded region denotes broken electroweak symmetry.
Dotted curve (at zero) is our numerical result obtained neglecting tau/bottom Yukawa inter-
actions. The effect of these interactions is to suppress LH quark charge, while enhancing
LH lepton charge, thereby flipping the sign of n;, and ng/s compared to previous compu-
tations.

to the moving bubble wall. The region of broken electroweak symmetry (denoted v # 0) is
for z > 0, while unbroken symmetry is for z < 0 (denoted v = 0). As advertised, the total
left-handed quark charge is suppressed compared to our computation neglecting bottom
and tau Yukawa interactions (dotted curve).

In Fig. 7.2, we show the left-handed, third generation lepton charge density, for ¢; =
—m/2. Without tau Yukawa interactions, no lepton charge density is generated; this is
indicated by the dotted curve at zero. However, our numerical (solid) and analytic (dashed)
results indicate that tau Yukawa interactions do generate significant lepton charge. In fact,
as promised, ny, is predominantly leptonic, while the quark contribution is suppressed.

The resulting baryon asymmetry depends crucially upon whether or not bottom and tau

Yukawa interactions have been incorporated into the Boltzmann equations. We find

6 X sin ng/s Bottom/tau included
nB/s ~ ¢1 ( B/ )CMB (7.7)

— 11 x sin¢y (np/s)cyp Bottom/tau neglected

where (ng/s)ems = 8.84 x 107! is the central value obtained from the CMB [2], re-
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Figure 7.3: Baryon asymmetry (np/s), normalized to (ng/s)cmp, for sin ¢, = 7/2, as a
function of lightest (RH) bottom squark mass at zero temperature, for lightest (RH) stau
mass mz = 90 GeV (lower solid and dashed curves) and msz = 1 TeV (middle solid
and dashed). The uppermost, dotted curve is numerical results neglecting bottom and tau
Yukawa interactions.

quiring sin ¢; ~ 1/6. However, if we had neglected bottom/tau Yukawa interactions, we
would have required sin ¢; &~ —1/11. If electric dipole moment searches uncover new CP-
violating phases, such as ¢, the inclusion I'y;, and I',. will clearly be essential in testing
the consistency of supersymmetric EWB scenarios.

The agreement in the unbroken phase between our numerical and analytic results is
good. (The latter has been plotted only for z < 0.) However, close to the bubble wall,
there is some disagreement between numerical and analytic lepton charge densities. For
lz| S \/D—Ty.,- ~ 2 GeV, the lepton density has not had enough time to reach chemical

equilibrium; here, our analytic approximation is breaking down, as discussed in Chapter 3.

7.3 MSSM parameter exploration

In the preceding section, the lepton-mediated scenario dramatically illustrated the novel
effects from bottom and tau Yukawa interactions. However, this scenario relied up having
mg, ~ my_, so that the quark contribution to n;, would be suppressed. Now we ask: as we

deviate away from these parameters, what happens to the baryon asymmetry? In Fig. 7.3,
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we show how the baryon asymmetry is affected by increasing my; _, while keeping the right-
handed stop mass fixed. There are two pairs of solid and dashed curves; the upper and lower
solid curves correspond to our numerical results, with a lightest (mostly right-handed) stau
mass mz = 1 TeV and 90 GeV, respectively. The dashed curves are the corresponding
analytic results, in good agreement with our numerical curves. As my  is increased, the
baryon asymmetry is reduced in magnitude and then flips sign. For my_ > m;,, the
quark contribution to ny, is no longer suppressed and has opposite sign compared to the
lepton contribution; the former overwhelms the latter. The mass of the right-handed tau
slepton also plays a minor role; from Eq. (6.36), we see that the lepton contribution to ny, is
enhanced slightly when the right-handed stau is light, i.e., not Boltzmann suppressed. Our
numerical result neglecting bottom and tau Yukawa interactions is shown by the uppermost,
dotted curve.

The favored region of MSSM parameter space for EWB is the so-called “light-stop
scenario,” where all squarks and sleptons, except the right-handed stop, have TeV-scale
masses [46]. In Fig. 7.3, this corresponds to the region where my = mz = 1 TeV.
(Increasing these masses further has no impact on EWB; they are effectively decoupled
from the plasma.) In this region, the impact of bottom and tau Yukawa couplings is only a
factor-of-two. Furthermore, if in addition we take m4 — oo, then bottom and tau Yukawa

interactions will be suppressed; one regains the dotted curve.

7.4 Beyond the MSSM

In the MSSM, lepton-mediated EWB can occur only in a small window of parameter space,
where

mg, ~ my =~ 100 GeV. (7.8)

iR

Is there a compelling reason to expect that the SUSY-breaking right-handed stop and sbot-
tom masses will conspire to satisfy Eq. (7.8)?
In extensions of the MSSM, lepton-mediated EWB can be much more generic, without

fine-tuning between RH stop and sbottom masses — namely, when both species are Boltz-
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mann suppressed in the plasma. In Eq. (6.39), we note that the left-handed quark charge

vanishes when kz ~ k7. For My, My, > T, we have

kay, ki — 0, (7.9)

ds
and then

kﬁT—k’B ~ kug_kdg ~ O, (710)

since the plasma masses for top and bottom quarks, largely determined by QCD interac-
tions, are approximately equal.

We previously argued that structure of EWB Boltzmann equations, which describe how
hypercharge is generated and equilibrated in the plasma, is not modified in the presence
of an additional gauge singlet, since the singlet carries no hypercharge. The singlet sector
will modify the nature of the phase transition, the properties of the expanding bubbles,
and, perhaps, the CP-violating sources. The singlet, however, will not negate the impact
of Yukawa interactions. Therefore, it makes sense to decouple these issues: we can study
how chemical equilibration might work in the NMSSM by going to larger m;, , assuming
that a first-order phase transition is provided by the singlet and carrying the bubble wall
parameters and CP-violating sources over from the MSSM.

In Fig. 7.4, we show how the lepton-mediated EWB is the default scenario for mg,_, my
> T. We plot (ng/s), normalized to (ng/s)cmp and taking ¢ = /2, as a function of
tan 3. In each panel, the three curves correspond to zero-temperature stop mass my, = 102
GeV (solid), 323 GeV (dashed), and 612 GeV (dotted). On the left, we have m,4 = 150
GeV; on the right, we have m4 = 1 TeV. All other squark and slepton masses have been
taken to be TeV-scale. Where (np/s) is negative, the ny is quark-dominated; where it
is positive, ny, is lepton-dominated. We have taken the CP-violating source to be fixed,

despite the fact that we are varying m 4:

S¥ ~ —1.0GeV x () v(2)*, (7.11)



74

40 30
my=150GeV e my = 1000 GeV IURTITTEE
30 20
20 S 10 -
g ’ -7 o ="
3] N _--" 3 -7
& 10 N - ) -
) ; , = -~
= s = P
= 4 Z Pid
~ 0 — ~ -101 =~
©w / )
= ’ S
E / E
-10 -20
-20 \// -30 /
-30 -40
0 10 20 30 40 50 0 10 20 30 40 50
tan B tan B

Figure 7.4: Baryon asymmetry (np/s), normalized to (ng/s)cwms, for sing; = m/2, as
a function of tan 3, for my = 150 (left panel) and m4 = 1 TeV. The plotted curves
correspond to zero-temperature stop mass m; = 102 GeV (solid), 323 GeV (dashed), and
612 GeV (dotted), with m; = 1 TeV. Positive (np/s) is lepton-driven, negative (np/s) is
quark-driven.

with corresponding relaxation rate
[h(2) ~1.3x 1072 GeV ™! x v(2)?. (7.12)

All other parameters are the same as before.

The important lesson of Fig. 7.4 is not the overall magnitude of (ng/s); it is how the
np transitions from quark-driven to lepton-driven as one increases mj,, . First, consider the
solid curve in the left-panel, for which my, ~ 100 GeV < my,. Here, ny, is dominated by
quarks. Increasing tan 3 suppresses n, slightly, as I, turns on, generating some lepton
charge that partially cancels the quark-dominated n ;. Next, notice the dramatic effect when
we increase to my, ~ 300 GeV (dashed curve). At small tan [, the magnitude of ny is
suppressed in comparison to the previous curve; bottom Yukawa interactions are suppress-
ing the quark contribution to ny, as (kr — kp) is decreased. At larger tan (3, bottom and tau
Yukawa interactions become more efficient; the lepton charge density quickly overwhelms

the already-suppressed left-handed quark charge. Last, we increase to m;, ~ 600 GeV
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(dotted curve). Even at small tan (3, bottom Yukawa interactions have completely sup-
pressed the quark charge, since (kg — k) ~ 0. At larger tan 3, [, turns on, generating
significant lepton density.

In Fig. 7.4, right panel, we repeat this story for m4 = 1 TeV. Even at large m 4, the
same story holds, albeit with a slower turn-on of tau Yukawa interactions with tan 3. For
My, MG, 2 500 GeV, bottom and tau Yukawa interactions are very important. For small
tan 3, the magnitude of the baryon asymmetry is suppressed because (i) bottom Yukawa
interactions have suppressed the quark contribution to ny, since (kr — kg) ~ 0, and (ii)
tau Yukawa interactions are still too small to generate lepton charge. For moderate tan /3,
the quark charge is still suppressed, but now I',; is large enough to generate leptonic ny,.
We emphasize that this scenario does not require any fine-tuning, as in Eq. (7.8). All that

matters is that both right-handed stop and sbottom are Boltzmann suppressed in the plasma.



76

Chapter 8

Pion Decays and Supersymmetry

8.1 Introduction

Low-energy precision tests provide important probes of new physics that are comple-
mentary to collider experiments[54, 55, 56]. In particular, effects of weak-scale super-
symmetry (SUSY) — one of the most popular extensions of the Standard Model (SM)
— can be searched for in a wide variety of low-energy tests: muon (g — 2) [119], (-
and p-decay [57, 58], parity-violating electron scattering [59], electric dipole moment
searches [18], and SM-forbidden transitions like 1 — ey [60], etc. (For a recent review,
see Ref. [61].) In this chapter, we compute the SUSY contributions to pion leptonic (7;2)
decays and analyze the conditions under which they can be large enough to produce ob-
servable effects in the next generation of experiments. This work is somewhat tangential
to the preceeding chapters: it is not directly related to the baryon asymmetry, but may
provide important handles on parameters (e.g., chargino masses) that govern electroweak
baryogenesis.

In particular, we consider the ratio R, /,, defined by

e/ s

It — efv. + etrey)

I(rt — v, + ptvey)

R.j, = (8.1)

The key advantage of ./, is that a variety of QCD effects that bring large theoretical
uncertainties— such as the pion decay constant /. and lepton flavor independent QCD

radiative corrections — cancel from this ratio. Indeed, R/, is one of few electroweak
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Figure 8.1: Representative contributions to ARg%f Y: (a) tree-level charged Higgs boson exchange,
(b) external leg diagrams, (c) vertex diagrams, (d) box diagrams. Graph (a) contributes to the pseu-
doscalar amplitude, graphs (b,c) contribute to the axial vector amplitude, and graph (d) contributes
to both amplitudes.

observables that involve hadrons and yet are precisely calculable (see [62] for discussion
and Refs. [63, 64] for explicit computations). Moreover, measurements of this quantity
provide unique probes of deviations from lepton universality of the charged current (CC)
weak interaction in the SM that are induced by loop corrections and possible extensions
of the SM. In the present case, we focus on contributions from SUSY that can lead to
deviations from lepton universality [74].

The current, state-of-the-art SM computation of R/, is

RJ) = (1.2352 + 0.0001) x 107*, (8.2)

following a recent, improved treatment of hadronic effects through Chiral Perturbation
Theory [65, 66].

Experimentally, the most precise measurements of R/, have been obtained at TRI-
UMF [67] and PSI [68]. Taking the average of these results gives [1]

REXPT = (1.230 4+ 0.004) x 107* (8.3)

e/u

in agreement with the SM. Future experiments at these facilities will make more precise
measurements of 2./, aiming for precision at the level of < 1 x 10~3 (TRIUMF [69]) and
5 x 10~* (PSI [70]). These projected uncertainties are close to the conservative estimate of
theoretical uncertainties given in Ref. [63].

Deviations AR, /,, from the SM predictions in Eq. (8.2) would signal the presence of
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new, lepton flavor-dependent physics. In the Minimal Supersymmetric Standard Model
(MSSM), a non-vanishing ARE/ZSY may arise from either tree-level or one-loop correc-
tions. In section 8.2, we consider contributions to AReS/LLSY arising from R-parity conserv-
ing interactions (Fig. 8.1). Although tree-level charged Higgs exchange can contribute to
the rate I'[7* — ¢*v(vy)], this correction is flavor-independent and cancels from R, . One-
loop corrections induce both scalar and vector semileptonic dimension six four-fermion
operators. Such interactions contribute via pseudoscalar and axial vector pion decay am-
plitudes, respectively. We show that the pseudoscalar contributions are negligible un-
less the ratio of the up- and down-type Higgs vacuum expectation values (vevs) is huge
(vu/vg = tan B = 10%). For smaller tan 3 the most important effects arise from one-loop
contributions to the axial vector amplitude, which we analyze in detail by performing a nu-
merical scan over MSSM parameter space. We find that experimental observation of SUSY
loop-induced deviations at a significant level would require further reductions in both the
experimental error and theoretical SM uncertainty. Such improvements could lead to strin-
gent tests of “slepton universality” of the charged current sector of the MSSM, for which
it is often assumed that the left-handed first and second generation sleptons e, and /i, are
degenerate (see e.g. [52] ) and thus ARGSHLSY ~ 0.

In section 8.3, we consider corrections to 2./, from R-parity violating (RPV) processes.
These corrections enter at tree-level, but are suppressed by couplings whose strength is
contrained by other measurements. In order to analyze these constraints, we perform a fit
to the current low energy precision observables. We find that, at 95% C.L., the magnitude of
RPV contributions to ARf /ZSY could be several times larger than the combined theoretical
and anticipated experimental errors for the future R.,/, experiments. Details regarding the
calculation of one-loop corrections are given in Section 8.4. We summarize the main results

and provide conclusions in Section 8.5.
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8.2 R-parity conserving interactions

8.2.1 Pseudoscalar contributions

The tree-level amplitude for 7+ — ¢* v, that arises from the (V — A) ® (V — A) four

fermion operator is

ZMEL?‘)/ = —iQﬁGuVud <O‘ J’}/\PLU |7T+> ﬂ,/}/)\PL ()

= 2VudF7rGum€ EVPR Vy (84)
where Py, i are the left- and right-handed projection operators,
Fr=924+£007+£0.25 MeV (8.5)

is the pion decay constant, G, is the Fermi constant extracted from the muon lifetime, and
Viua is the (1, 1) component of the CKM matrix. The first error in Eq. (8.5) is experimental
while the second arises from uncertainties associated with QCD effects in the one-loop
SM electroweak radiative corrections to the 7, decay rate. The superscript “(0)” and
subscript “AV” in Eq. (8.4) denote a tree-level, axial vector contribution. At one-loop
order, one must subtract the radiative corrections to the muon-decay amplitude — since
G, is obtained from the muon lifetime — while adding the corrections to the semileptonic
CC amplitude. The corrections to the muon-decay amplitude as well as lepton flavor-
independent contributions to the semileptonic radiative corrections cancel from R, ,,.

Now consider the contribution from an induced pseudoscalar four fermion effective
operator of the form

ij;“d (1 +~°) dyou . (8.6)

Contributions to R/, from operators of this form were considered in a model-independent

operator framework in Ref. [71] and in the MSSM in Ref. [72]. In the MSSM, such an

ALps = —

operator can arise at tree-level (Fig. 8.1a) through charged Higgs exchange and at one-loop

through box graphs (Fig. 8.1d). These amplitudes determine the value of Gpg. The total
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amplitude is

G
zM(/?\)/ + iMps = VaaFrGmy @, (1 + 47 )y {1 - C;S wg] (8.7)
I
where
2 5 x 103 l=e
= — (8.8)
me(1My + ma) 20 (= u

is an enhancement factor reflecting the absence of helicity suppression in pseudoscalar con-
tributions as compared to (V' — A)® (V — A) contributions [73]. Pseudoscalar contributions

will be relevant to the interpretation of R,/ if

‘GPS we > 0.0005 , (8.9)

I

and if G'pg wy is lepton-flavor dependent.

The tree-level pseudoscalar contribution (Fig. 8.1a) gives

my tan 3(m,, cot f — mg tan [3)

GO = Vi , (8.10)
where m g+ is the mass of the charged Higgs boson. Thus, we have
GO oy — m? tan 3(m, cot 8 — mgtan 3) | &.11)
G, (M, +mg)m2,,
It is indeed possible to satisfy (8.9) for
tan 8 > 20 (ﬁ%) (8.12)

Note that the combination G% /G x wg entering Eq. (8.7) is independent of lepton flavor

and will cancel from R, ,. In principle, however, the extraction of F; from 7, decay could
be affected by tree-level charged Higgs exchange if the correction in Eq. (8.9) is 2 0.003
in magnitude, corresponding to a shift comparable to the theoretical SM uncertainty as

estimated in Ref. [63]. In the case of charged Higgs exchange, one would require tan 3 2>
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120 (mpy+/100 GeV) to generate such an effect.

One-loop contributions to G pg are generated by box graphs (Fig. 8.1d). The magnitude
of these contributions is governed by the strength of chiral symmetry breaking in both the
quark and lepton sectors. Letting € generically denote either a Yukawa coupling y; or a
ratio mys/Mgysy (Where f = e, u, u, or d), we find that

G%?s - my \* 2
~—s = (8.13)
GH 87TSW MSUSY

where the superscript “(1)” denotes one loop induced pseudoscalar interaction. We have
verified by explicit computation that the O(¢) contributions vanish. The reason is that in
each pair of incoming quarks or outgoing leptons the two fermions must have opposite
chirality in order to contribute to G%. Since CC interactions in the MSSM are purely left-
handed, the chirality must change at least twice in each graph, with each flip generating
a factor of e. For example, we show one pseudoscalar contribution in Fig. 8.2 that is
proportional to €2 = y,y,. Here, the chirality changes at the udH and l/ﬁﬁ vertices.
Potentially, this particular contribution can be enhanced for large tan 3; however, to satisfy

(8.9), we need

tan g > 10° (M)g . (8.14)
~ 100 GeV

These extreme values of tan 3 can be problematic, leading y; and y, to become nonpertur-

batively large. To avoid this scenario, we need roughly tan 3 < 65 (see [52] and references

therein).

Pseudoscalar contributions can also arise through mixing of left- and right-handed
scalar superpartners. Since each left-right mixing insertion introduces a factor of €, the lead-
ing contributions to G% will still be O(e?). However, if the triscalar SUSY-breaking pa-
rameters ay are not suppressed by y; as normally assumed, it is possible to have e ~ O(1),
potentially leading to significant contributions. This possibility, although not experimen-
tally excluded, is considered theoretically “unnatural” as it requires some fine-tuning to

avoid spontaneous color and charge breaking (see Ref. [58] for discussion). Neglecting

this possibility and extremely large values of tan 3, we conclude that loop-induced pseu-
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Figure 8.2: This contribution to GSD% is suppressed by € = y,yq.

doscalar contributions are much too small to be detected at upcoming experiments. These

conclusions are consistent with an earlier, similar analysis in Ref. [72].

8.2.2 Axial vector contributions

One-loop radiative corrections also contribute to the axial vector amplitude. The total am-

plitude can be written as
iMay = Vo frGume i, (1 +9°)ve [L + Ay — AR, (8.15)

where A7, and A7, denote one-loop contributions to the semileptonic and ;-decay am-
plitudes, respectively and where the hat indicates quantities renormalized in the modified
dimensional reduction (DR) scheme. Since At cancels from R/, we concentrate on the
SUSY contributions to A7 that do not cancel from R./,. Itis helpful to distinguish various

classes of contributions
APSUSY — AL AL LAY L AL 4+ Ap + Ags (8.16)

where A} (A1), Al (AY), Ap, and Agp denote leptonic (hadronic) external leg (Fig. 8.1b),
leptonic (hadronic) vertex (Fig. 8.1c), box graph (Fig. 8.1d), and gauge boson propagator
contributions, respectively. The corrections Aqu and A¢p cancel from R, /u» S0 We do not
discuss them further (we henceforth omit the “¢”” superscript). The explicit general formu-
lae for Ay, v, p, calculated in DR, are given in Section 8.4. We have verified that A, and

Ay agree with Ref. [75] for case of a pure SU(2),, chargino/neutralino sector.
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At face value, it appears from equations (8.37-8.39) that AR?}EY carries a non-trivial
dependence on MSSM parameters since the SUSY masses enter both explicitly in the loop
functions and implicitly in the mixing matrices Z, defined in equations (8.32-8.36). Nev-
ertheless, we are able to identify a relatively simple dependence on the SUSY spectrum.

We first consider ARf /llﬂsy in a limiting case obtained with three simplifying assump-
tions: (1) no flavor mixing among scalar superpartners; (2) no mixing between left- and
right-handed scalar superpartners; and (3) degeneracy between ‘, 1, and v, and no gaugino-
Higgsino mixing. Our first assumption is well justified; experimental bounds on flavor
violating processes constrain the contributions to 1./, from lepton flavor violation in the
slepton soft-breaking sector to be less than the sensitivies at upcoming experiments by a
factor of 10 — 20 [72].

Our second assumption has minimal impact. In the absence of flavor mixing, the
charged slepton mass matrix decomposes into three 2 x 2 blocks; thus, for flavor ¢, the

mass matrix in the {, {5} basis is

M} + (st — 3)ymcos28  my (% - utanﬁ)

my (% — ptan ﬂ) M2 — s%,m?% cos2f3

where M? (M?3) is the SUSY-breaking mass parameter for left-handed (right-handed) slep-
tons, ay is the coefficient for the SUSY-breaking triscalar interaction, y, is the Yukawa cou-
pling, and y is the Higgsino mass parameter. Under particular models of SUSY-breaking
mediation, it is usually assumed that a,/y, ~ Msysy, and thus left-right mixing is negli-
gible for the first two generations due to the smallness of m. and m,,. Of course, a, could
be significantly larger and induce significant left-right mixing [58]. For reasons discussed
above, we neglect this possibility.

We have adopted the third assumption for purely illustrative purposes; we will relax

it shortly. Clearly, fermions of the same weak isospin doublet are not degenerate; their
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masses obey

m%L = m%@ — m3y cos 20 + m; (8.17)
m?ﬂ = m%L — myy cos 23 +m3 —m? . (8.18)

In addition, gaugino mixing is certainly always present, as the gaugino mass matrices con-
tain off-diagonal elements proportional to m  [see Egs. (8.33, 8.34)]. However, the third
assumption becomes valid for Mgygy > my.

Under our three assumptions, the SUSY vertex and external leg corrections sum to a
constant that is independent of the superpartner masses, leading to considerable simpli-
fications. The Bino [U(1)y gaugino] vertex and external leg corrections exactly cancel.
The Wino [SU(2), gaugino] vertex and leg corrections do not cancel; rather, Ay + Ap =
«/4ms?,, a constant that carries no dependence on the slepton, gaugino, or Higgsino mass
parameters. The occurrence of this constant is merely an artifact of our use of the DR renor-
malization scheme. (In comparison, in modified minimal subtraction, we find Ay +Ap =0
in this same limit.") This dependence on renormalization scheme cancels in R, /u- (In addi-
tion, this scheme-dependent constant enters into the extraction of G ,; hence, the individual
decay widths I'(m — f1;) are also independent of renormalization scheme.)

The reason for this simplification is that under our assumptions, we have effectively
taken a limit that is equivalent to computing the one-loop corrections in the absence of elec-
troweak symmetry breaking. In the limit of unbroken SU(2); xU(1)y, the one-loop SUSY
vertex and external leg corrections sum to a universal constant which is renormalization
scheme-dependent, but renormalization scale-independent [75]. (For unbroken SU(2), the
SM vertex and external leg corrections yield an additional logarithmic scale dependence;
hence, the SU(2); [-function receives contributions from both charge and wavefunction
renormalization.) In addition, virtual Higgsino contributions are negligible, since their in-
teractions are suppressed by small first and second generation Yukawa couplings. Setting

all external momenta to zero and working in the limit of unbroken SU(2); symmetry, we

1Technically, since M S breaks SUSY, it is not the preferred renormalization scheme for the MSSM.
However, this aspect is not important in the present calculation.
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find that the Higgsino contributions to Ay, + Ay are y7 /327>
In this illustrative limit, the only non-zero contributions to ARS}JEY come from two
classes of box graphs (Fig. 8.1d) — one involving purely Wino-like interactions and the

other with both a virtual Wino and Bino. The sum of these graphs is

2

0 _ - myy
Ap = 12rs2, <ﬁ22) [Fi(zr,2q) + tiy Fa(zp, 2p, 2q)] (8.19)

where we have defined

_ 3| _wlrr —2)Inay
Fi(rr,29) = 5 {(xL —2Q)(1 —zp)? o
ro(rg —2)Inwg !
(1 —zL)(1 —2q)* (1 —xL)(1 - 2q)
and
1 zp(zp +2/Tp)Inzp

Fy(ep, 2, 20) = 5 {(1 —xp)(rp —xr)(rp — 7q)

L (e +2yaE) In, (8.21)

(1 —ap)(zp —zB) (7L — 2q)
rq(2q +2y/Tp) Inzq
(1 —2q)(zq — 2r)(xQ — 7n)

)

where xp = M?2/M2, x; = m%/MZ, and g = m%/MQ, with masses My, Mo, mj,
and meg of the Bino, Wino, left-handed /-flavored slepton, and left-handed 1st generation
squark, respectively. Numerically, we find that always F; > F5; the reason is that the sum
of Bino-Wino graphs tend to cancel, while the sum of pure Wino graphs all add coher-
ently. Hence, Bino exchange (through which the term proportional to F5 arises) does not
significantly contribute to ARS;>Y.

In Fig. 8.3, we show F}(xp, z¢) as a function of z, for fixed z¢. Since F} is symmetric
under x;, < x¢, Fig. 8.3 also shows F} as a function of z¢, and hence how Ap depends
on mg,. For x;,, xg ~ 1, we have F; ~ O(1), while if either z;, > 1 or zo > 1, then

F} — 0, which corresponds to the decoupling of heavy sleptons or squarks. There is no

enhancement of Ap for x;, < 1or g < 1 (i.e. if M; is very heavy) due to the overall
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Figure 8.3: The box graph loop function F\(xp,xq) as a function of xy, = m%/MQ2 for several
values of g = m%/MQ2 For xy, ~ xg ~ 1 (i.e. SUSY masses degenerate), Fi(xp,xq) ~ 1. For
xr, > 1orxzg > 1 (i.e. very massive sleptons or squarks), Fi(xr,xq) — 0.

1/M? suppression in (8.19).

The total box graph contribution is

ARSUSY
e/ e
L = 2Re[Al — AW

RSM
(07 mw 2
652 (V) (8.22)

e/p
2 2 2
P i i B N B R A T
M3" M3 Mz' M3

Clearly ARS}LSY vanishes if both sleptons are degenerate and is largest when they are far

12

X

from degeneracy, such that mz, > my, or ms, < my, . In the latter case, we have

ARSUSY 100 GeV 2
—er 1< 0.001 x (—e> (8.23)
R, SUSY

fore.g. Msysy = My ~ mg, ~ mg, < myg,.

We now relax our third assumption to allow for gaugino-Higgsino mixing and non-
degeneracy of ¢ and 7. Both of these effects tend to spoil the universality of Ay + Ay,
giving

a o

Ay +Ap —

= ~ (0.001 1. 8.24
4#512/‘, 87T8%V / / ( )
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Figure 8.4: ARS%‘EY versus (i, with fixed parameters My = 100 GeV, My = 150 GeV, mg, = 100

GeV, my, = 500 GeV, my, = 200 GeV. Thin solid line denotes contributions from (Ay +Ap) only;
dashed line denotes contributions from A g only; thick solid line shows the sum of both contributions
to ARS;/SY.

e/u

The factor f measures the departure of Ay + Ay from universality. If the SUSY spectrum
is such that our third assumption is valid, we expect f — 0 . For realistic values of the
SUSY parameters, two effects lead to a non-vanishing f: (a) splitting between the masses
of the charged and neutral left-handed sleptons that results from breaking of SU(2),, and

(b) gaugino-Higgsino mixing. The former effect is typically negligible. To see why, we

2
14+0 (m—gV)] , (8.25)
mz

where we have neglected the small non-degeneracy proportional to the square of the lepton

recall from Eq. (8.17) that

TTLZ = my,

Yukawa coupling. We find that the leading contribution to f from this non-degeneracy is
at least O(my, /m3), which is < 0.1 for my 2 2myy.

Significant gaugino mixing can induce f ~ (O(1). The crucial point is that the size
of f from gaugino mixing is governed by the size of M,. If My > my, then the Wino
decouples from the Bino and Higgsino, and contributions to Ay + Ay, approach the case of
unbroken SU(2);,. On the other hand, if My ~ my, then Ay + Ay can differ substantially
from a/47s?,.

In the limit that mg, > My (¢ = e, 1), we also have a decoupling scenario where Ag =
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Figure 8.5: AR?;]SY/RE/A;[ as a function of Ma, with u = 200 GeV and all other parameters fixed
as in Fig. 8.4. Each line shows the contribution indicated as in the caption of Fig. 8.4.

0, Ay + A = ﬁ, and thus f = 0. Hence, a significant contribution to AR, /,, requires
at least one light slepton. However, regardless of the magnitude of f, if mg, = my, , then
these corrections will cancel from R, ,,.

It is instructive to consider the dependence of individual contributions Ag and Ay +Ap
to ARf/’iLSY, as shown in Figs. 8.4 and 8.5. In Fig. 8.4, we plot the various contributions
as a function of the supersymmetric mass parameter p, with M; = 100 GeV, My = 150
GeV, mg, = 100 GeV, my;, = 500 GeV, myz, = 200 GeV. We see that the Ay + Ap
contributions (thin solid line) vanish for large p, since in this regime gaugino-Higgsino
mixing is suppressed and there is no Ay + Ay, contribution to ARZ/Y. However, the
Ap contribution (dashed line) is nearly p-independent, since box graphs with Higgsino
exchange (which depend on p) are suppressed in comparison to those with only gaugino
exchange. In Fig. 8.5, we plot these contributions as a function of My, with © = 200 GeV
and all other parameters fixed as above. We see that both Ay + Ay and Apg contributions

vanish for large M.

One general feature observed from these plots is that Ay + Ay and Ap contributions

SUSY
e/

either Ay + Ay or Ap is suppressed in comparison to the other. This can occur in the

tend to cancel one another; therefore, the largest total contribution to AR occurs when

following ways: (1) if i > my, then A may be large, while Ay + A is suppressed, and
(2) if mg,, mg, > mgz, then Ay + A may be large, while A is suppressed. In Fig. 8.5,
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we have chosen parameters for which there is a large cancellation between Ay + A and

SUSY

e/ would coincide

Ap. However, by taking the limits ;o — oo or my, , mg — 00, AR
with the Ag or Ay 4+ Ay contributions, respectively.

Because the Ay + Ay and Apg contributions tend to cancel, it is impossible to deter-
mine whether ey, or i, is heavier from R./,, measurements alone. For example, a positive
deviation in R/, can result from two scenarios: (1) ARE%SY is dominated by box graph

contributions with mz, < mg,, or (2) ARE/ZSY is dominated by Ay + Ay, contributions

with mz, > my, .

SUSY .

Guided by the preceding analysis, we expect for AR” i

e The maximum contribution is ARfﬁSY /Re/u| ~ 0.001.

e Both the vertex + leg and box contributions are largest if My ~ O(my) and vanish if

My > my. If My ~ O(my), then at least one chargino must be light.

e The contributions to ARZFSY vanish if mz, = mj, and are largest if either my, <

Mg, Or My, > Mg, .

e The contributions to ARES/I{L SY are largest if €, or fiy, is O(my).

e If ;4 > my, then the lack of gaugino-Higgsino mixing suppresses the Ay + Ajp

contributions to ARE/ILSY.

o If my,, mg > my, then the Ay contributions to ARS /(LSY are suppressed due to

squark decoupling.

o Ifu;, d, 1, and p are all O(my), then there may be cancellations between the Ay +A
and Ap contributions. AR} is largest if it is dominated by either Ay + A, or

A g contributions.

We now study ARf /(/]f Y quantitatively by making a numerical scan over MSSM param-
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Figure 8.6: ARSUSY as a function of the ratio mg, /my, . The dark and light regions denote the
regions of MSSM parameter space consistent and inconsistent, respectively, with the LEP Il bound.

eter space, using the following ranges:

mz/2 < {My, |Msl, |u|, ms,} < 1TeV
mz/2 < {mgy,mg} < 5TeV (8.26)
1 < tanf3 < 50

sign(u), sign(Mz) = +1,

where mg, , my, , and mg, are determined from Eqgs. (8.17,8.18).

Direct collider searches impose some constraints on the parameter space. Although
the detailed nature of these constraints depends on the adoption of various assumptions
and on interdependencies on the nature of the MSSM and its spectrum [1], we implement
them in a coarse way in order to identify the general trends in corrections to R, /,. First,
we include only parameter points in which there are no SUSY masses lighter than m /2.
(However, the current bound on the mass of lightest neutralino is even weaker than this.)

Second, parameter points which have no charged SUSY particles lighter than 103 GeV are
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Figure 8.7: AR*:USY as a function of Min[mz,, my, |, the mass of the lightest first or second
generation charged slepton. The dark and light regions denote the regions of MSSM parameter
space consistent and inconsistent, respectively, with the LEP Il bound.

said to satisfy the “LEP II bound.” (This bound may also be weaker in particular regions of
parameter space.)

Additional constraints arise from precision electroweak data. We consider only MSSM
parameter points whose contributions to the oblique parameters S, T, and U [76] agree
with electroweak precision observables (EWPO). A recent fit to both high- and low-energy
EWPO using the value of m; = 170.9 £+ 1.8 GeV [77] has been reported in Ref. [78],
yielding

T = —0.111+0.109
= —0.126 + 0.096 (8.27)

U = 0.164+0.115

where the errors quoted are one standard deviation and where the value of the Standard
Model Higgs boson mass has been set to the LEP lower bound m;, = 114.4 GeV. Using

the correlation matrix given in Ref. [78] and the computation of superpartner contributions
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to the oblique parameters reported in Ref. [59], we determine the points in the MSSM
parameter space that are consistent with EWPO at 95% confidence. Because we have
neglected the 3rd generation and right-handed scalar sectors in our analysis and parameter
scan, we do not calculate the entire MSSM contributions to .S, 7', and U. Rather, we only
include those from charginos, neutralinos, and the first two generation left-handed scalar
superpartners. Although incomplete, this serves as a conservative lower bound; in general,
the contributions to S, 7', and U from the remaining scalar superpartners (that we neglect)
only causes further deviations from the measured values of the oblique parameters. In
addition, we have assumed that the lightest CP-even Higgs mass is the same as the SM
Higgs mass reference point: m; = 114.4 GeV, neglecting the corrections due to the small
mass difference, and the typically small contributions from the remaining heavier Higgs
bosons.

We do not impose other electroweak constraints in the present study, but note that they
will generally lead to further restrictions. For example, the results of the E821 measure-
ment of the muon anomalous magnetic moment [79] tend to favor a positive sign for the u
parameter and relatively large values of tan 3. Eliminating the points with sign(pu) = —1
will exclude half the parameter space in our scan, but the general trends are unaffected.

We show the results of our numerical scan in Figs. 8.6-8.9. In Figs. 8.6-8.8, the dark
regions contain all MSSM parameter points within our scan consistent with the LEP II
bound, while the light regions contain all MSSM points inconsistent with the LEP II bound,
but with no superpartners lighter than m /2. In effect, the dark (light) regions show how

large ARE/ZSY / R/, can be, assuming consistency (inconsistency) with the LEP II bound,

SUSY

as a function of a given parameter. In Fig. 8.6, we show AR’ o

/R.,, as a function of the
ratio of slepton masses mg, /my;, . If both sleptons are degenerate, then ARf /I{LSY vanishes.
Assuming the LEP II bound, in order for a deviation in ./, to match the target precision

at upcoming experiments, we must have
OResu = |ARZLS [ Reyu] 2 0.0005 . (8.28)

and thus mg, /my, 2 2 or my, /mg, 2 2. (This result is consistent with an earlier anal-
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Figure 8.8: ARiUSY versus my,, the mass of the lightest chargino. The dark and light regions
denote the regions of MSSM parameter space consistent and inconsistent, respectively, with the
LEP Il bound.

ysis [72], where the authors conclude that AR@S /ZSY would be unobservably small if m,,
and m,,, differ by less than 10%.)

In Fig. 8.7, we show ARE/ZSY/RQ/H as a function of Min[mg, , mg, ], the mass lightest
first or second generation slepton. If the lighter slepton is extremely heavy, then both heavy
sleptons decouple, causing ARZ/SY to vanish. Assuming the LEP II bound, to satisfy
(8.28), we must have mz, < 300 GeV or my;, < 300 GeV.

In Fig. 8.8, we show ARf/ILSY /R, as a function of m,, the lightest chargino mass.
If m,; is large, AReS/ZSY vanishes because )M, must be large as well, suppressing Ap and

forcing Ay and Ay, to sum to the flavor independent constant discussed above. Assuming

the LEP II bound, to satisfy (8.28), we must have m,; < 250 GeV.

SUSY

Finally, we illustrate the interplay between Ay + Ay and Ap by considering ¢ /22 i

as a function of |uz| and myg, . In Fig. 8.9, we show the largest values of §R2//*" obtained
in our numerical parameter scan, restricting to parameter points which satisfy the LEP II
bound. The solid shaded areas correspond to regions of the |x|-my, plane where the largest

value of GRJ[S" lies within the indicated ranges. It is clear that JR}/®" can be largest
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Figure 8.9: Contours indicate the largest values of 5R‘275Y obtained by our numerical parameter

scan (8.26), as a function of || and my;, . The solid shaded regions correspond to the largest values
of 6R£U5 Y within the ranges indicated. All values of 5R§75Y correspond to parameter points which
satisfy the LEP Il bound.

in the regions where either (1) p is small, my, is large, and the largest contributions to
ARS /[{LS Y are from Ay + Ap, or (2) (¢ 1s large, my, is small, and the largest contribution to
ARZFSY is from Ap. If both y and my, are light, then ARZFSY can still be very small due
to cancellations, even though both Ay + Ay and Apg contributions are large individually.
More precisely, to satisfy (8.28), we need either < 250 GeV, or 1 2 300 GeV and

ma, < 200 GeV.

8.3 Contributions from R-parity Violating Processes

In the presence of RPV interactions, tree-level exchanges of sfermions (shown in Fig. 8.10),
lead to violations of lepton universality and non-vanishing effects in R./,. The magnitude

of these tree-level contributions is governed by both the sfermion masses and by the pa-
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Figure 8.10: Tree-level RPV contributions to R /,,.

rameters A}, and )}, that are the coefficients in RPV interactions:

Lrpv, ap=1 = N LiQ;d}, + . .. (8.29)
Defining [81, 82] ,
N
A’ =27 >0, 8.30
zgk:(f) 4\/§Gum?; - ( )

contributions to 1./, from RPV interactions are

RR/PV
e/u

Note that RPV contribution to the muon lifetime (and, thus, the Fermi constant ) cancels
in R, ,, therefore does not enter the expression.

The quantities Aj;; etc. are constrained by existing precision measurements and rare
decays. A summary of the low energy constraints is given in Table III of Ref. [61], which
includes tests of CKM unitarity (primarily through RPV effects in superallowed nuclear (3-
decay that yields a precise value of |V,4| [80]), atomic parity violating (PV) measurements
of the cesium weak charge Q%,S [83], the ratio R./, itself [67, 68], a comparison of the
Fermi constant G, with the appropriate combination of «, m , and sin® Oy [84], and the
electron weak charge determined from SLAC E158 measurement of parity violating Mgller
scattering[85].

In Fig. 8.11 we show the present 95% C.L. constraints on the quantities A’,, and A/,

obtained from the aforementioned observables (interior of the blue curve). Since the A,
are positive semidefinite quantities, only the region of the contour in the upper right hand

quadrant are shown. The green curve indicates the possible implication of a future mea-
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Figure 8.11: Present 95% C.L. constraints on RPV parameters A’,,, j = 1,2 that enter
R., obtained from a fit to precision electroweak observables. Interior of the dark blue
contour corresponds to the fit using the current value of AR, Ju / Rf/jlvf [67, 68], while the
dashed red contour corresponds to the fit using the future expected experimental precision
[69], assuming the same central value. The light green curve indicates prospective impact
of a future measurement of the proton weak charge at Jefferson Lab [86].

surement of the proton weak charge planned at Jefferson Lab [86], assuming agreement
with the Standard Model prediction for this quantity and the anticipated experimental un-
certainty. The dashed red curve shows the possible impact of future measurements of R, ,,,
assuming agreement with the present central value but an overall error reduced to the level
anticipated in Ref. [69]; with the error anticipated in Ref. [70] the width of the band would
be a factor of two smaller than shown.

Two general observations emerge from Fig. 8.11. First, given the present constraints,
values of A}, and A,, differing substantially from zero are allowed. For values of these
quantities inside the blue contour, ARf /[{LS Y could differ from zero by up to five standard
deviations for the error anticipated in Ref. [69]. Such RPV effects could, thus, be consider-
ably larger than the SUSY loop corrections discussed above. On the other hand, agreement
of R/, with the SM would lead to considerable tightening of the constraints on this sce-
nario, particularly in the case of Af,,, which is currently constrained only by R./, and
deep inelastic v (/) scattering [87].

The presence of RPV interactions would have significant implications for both neu-

trino physics and cosmology. It has long been known, for example, that the existence of
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AL = =1 interactions — such as those that could enter R/, — will induce a Majorana
neutrino mass [88], while the presence of non-vanishing RPV couplings would imply that
the lightest supersymmetric particle is unstable and, therefore, not a viable candidate for
cold dark matter. The future measurements of ./, could lead to substantially tighter con-
straints on these possibilities or uncover a possible indication of RPV effects. In addition,
we note that the present uncertainty associated with RPV effects entering the m,, decay
rate would affect the value of F); at a level about half the theoretical SM uncertainty as

estimated by Ref. [63].

8.4 General Radiative Corrections in the MSSM

In this section, we present the complete formulae for the R-parity conserving vertex, exter-
nal leg, and box graphs. The reader that wishes to avoid these technicalities is advised to
move to our conclusions in Section 8.5.

The MSSM Lagrangian and Feynman rules [89] are expressed in terms of chargino and
neutralino mixing matrices Z1 and Zy, respectively, which diagonalize the superpartner
mass matrices, defined as follows. The four neutralino mass eigenstates x! are related to

the gauge eigenstates 1° = (B, W3, H®, H°) by

W =Z3x), (8.32)
where
M, 0 —Cg SwMyz  Sg Swiyg
0 M. mX1 0
9 CgCwMyz  —Sgcwmyg
Zy ’ o Ty =
—Cp Swimyz Cg Cwmz 0 — M
0 Mxa
Sg Swmz  —SgCwmyz —u 0

is the diagonalized neutralino mass matrix. The chargino mass eigenstates Xf are related
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to the gauge eigenstates ¢+ = (W*, Hf) and v~ = (W~ H; )by

=79 x5 (8.33)
where
gr[ M VB (a0 (8.34)
V2w 0 my,

is the diagonalized chargino mass matrix. We note that the off-diagonal elements which
mix gauginos and Higgsinos stem solely from electroweak symmetry breaking.

The charged slepton mass eigenstates L; are related to the gauge eigenstates =

(5L;/7L7?L75R7/73,?R) by

G;=2701;, (8.35)
where
2
i 0
Z} M2 Z;, = (8.36)
2
0 mz.

is the diagonalized slepton mass matrix. There are two classes of off-diagonal elements in
M% which can contribute to slepton mixing: mixing between flavors and mixing between
left- and right-handed components of a given flavor, both of which arise through SUSY-
breaking terms. (Left-right mixing due to SUSY-preserving terms will be suppressed by
my/ my and is irrelevant for the first two generations.)

Similarly, up-type squarks, down-type squarks, and sneutrinos have mixing matrices
Zu, Zp, and Z,, respectively, defined identically to Z; — except for the fact that there
are no right-handed sneutrinos in the MSSM and thus there are only three sneutrino mass
eigenstates.

There are three types of contributions to ARE/({LSY in the MSSM: external leg, vertex,
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and box graph radiative corrections. The leptonic external leg corrections (Fig. 8.1b) are

(0%

Ap = (1238w = 23 Bmyg,mz) + 2|22 B(my,my,)  (8.37)

167'('8%[/

|23t + Z3P Blmyg.mz) + 2|25 Blmy,ms) ) |

where the loop function is [91]

1 M2
B(my,ma) :/ dx x ln< 5 5 > :
0 mi(l —x)+mix

The leptonic vertex corrections (Fig. 8.1c) are

« ] 1 ) )
Ay = 872, ( (ZNtw + Z3) (2 tw = ZY") Calma,my0,my ) (8.38)
w
. . . 1.
+2(Z" —tw Zy") 23 [ (ZN 2 - EZ?(T]Z—%-’C) Camyo, mi, my,)

+ (ZJQ\; Zik_‘__ZJ?{? sz) mx?ka Cl(mx?vmﬁivmm) }

V2

, . . 1 .
+ 225 +tw ZY) 2 | (2722 + o232 ol m, )

V2

. 1 ..
+ (ZZQVJZ}rk_ _ZﬁZi’“) M0y, Cl(mxk,mzi,mxg) ] > ,

V2
with loop functions

1
1

Ci(mqy,mo,m :/ dx d

e ms) = J Ay gy T A1 — )

1 M2
Cy(my, ma, mg3) :/ dx dy ln( ) )
0

miz +m3y +m3(l —x —y)
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The corrections from box graphs (Fig. 8.1d) are

2
(h — 20w (8.39)
B 8ms?,
1
(1224 (23 4w Z) (20— Stw 24 Dalmygmg, )

+ |Zij|2 (Z3m — tyw Z3™) (Z3m* + gtWZ}v ) Di(my;, ma, , myo , my;)
Co 1
+ ZE 2023 — twZN) (25 - gtWZJIVm) My, My Da(mys g, my, mi,)
* mx* mx 1 mx*
+ 2020 (3 + twZNT) (28 4 StwZR)

X M0 My, D2(ka’maL’mX9n’mf,i) > )

with loop functions

1
miz +miy +miz+mi(l -z —y—2)|"

1
D,,(mq, ma, mg, my) :/ dr dy dz [
0

In formulae (8.37-8.39), I = 1 corresponds to m — e v, and I = 2 corresponds to m —
v, All other indeces are summed over. We use DR renormalization at scale M. We have
defined ¢ty = tanfy and sy = sinfy,. We have neglected terms proportional to either
Yukawa couplings or external momenta (which will be suppressed by O(m,/Msysy)).

Finally, the SUSY contribution to 1./, is

ARSUSY
R—e//“ =2Re[Al) - AP L A AP L AL ADY (8.40)
e/p

In addition, the following are some useful formulae needed to show the cancellations

of vertex and leg corrections in the limit of no superpartner mixing:

CZ(m17 ma, ml) = B(m27 ml)

me C’l(ml,mg,ml) -2 B(ml,mg) + 2 B(mg,ml) =1.
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8.5 Conclusions

Given the prospect of two new studies of lepton universality in 7y, decays [69, 70] with ex-

perimental errors that are substantially smaller than for existing measurements and possibly

approaching the 5 x 10~ level, an analysis of the possible implications for supersymmetry

is a timely exercise. In this study, we have considered SUSY effects on the ratio ., in the

MSSM both with and without R-parity violation. Our results indicate that in the R-parity

conserving case, effects from SUSY loops can be of order the planned experimental error

in particular, limited regions of the MSSM parameter space. Specifically, we find that a

deviation in R/, due to the MSSM at the level of

SUSY
e/p

0.0005 < < 0.001,

e/

implies (1) the lightest chargino y; is sufficiently light

my < 250 GeV |

(2) the left-handed selectron e, and smuon ji;, are highly non-degenerate:

(3) at least one of €}, or 77, must be light, such that

me, S 300GeV or my,

~Y

< 300 GeV,

~Y

(8.41)

and (4) the Higgsino mass parameter y and left-handed up squark mass my, satisfy either

1] < 250 GeV
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or

|| 2 300 GeV, my, < 200 GeV.

Y

Under these conditions, the magnitude ARE/ZSY may fall within the sensitivity of the new
R/, measurements.

In conventional scenarios for SUSY-breaking mediation, one expects the left-handed
slepton masses to be comparable, implying no substantial corrections to SM predictions for
Rej,. Significant reductions in both experimental error and theoretical, hadronic physics
uncertainties in RES/J){ would be needed to make this ratio an effective probe of the super-
partner spectrum.

On the other hand, constraints from existing precision electroweak measurements leave
considerable latitude for observable effects from tree-level superpartner exchange in the
presence of RPV interactions. The existence of such effects would have important conse-
quences for both neutrino physics and cosmology, as the presence of the AL # 0 RPV
interactions would induce a Majorana mass term for the neutrino and allow the lightest
superpartner to decay to SM particles too rapidly to make it a viable dark matter candi-
date. Agreement between the results of the new R./, measurements with Rff‘f could yield

significant new constraints on these possibilities.
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Chapter 9

Supersymmetric Signatures in Muon
and Beta Decays

9.1 Introduction

The search for physics beyond the Standard Model (SM) lies at the forefront of particle
and nuclear physics. Among the prospective candidates for SM extensions, low-energy su-
persymmetry (SUSY) remains one of the most attractive possibilities. Its elegant solution
to the naturalness problem associated with stability of the electroweak scale, its generation
of coupling unification near the GUT scale, and its viable particle physics explanations for
the abundance of matter (both visible and dark), have motivated a plethora of phenomeno-
logical studies over the years. With the advent of the Large Hadron Collider (LHC), direct
evidence for low-energy SUSY may become available in the near future.

In the search for new physics, studies of precision electroweak observables and rare
or SM-forbidden processes provide an important and complementary probe to collider
searches (for recent discussions, see Refs. [54, 55]). Indeed, precise measurements of
Z-pole observables and other electroweak precision measurements, as well as the branch-
ing ratios of rare decays such as b — sy or B, — pt ™ have placed important constraints
on supersymmetric models. At low energies, the recent evidence for a possibly significant
deviation of the muon anomalous magnetic moment, (g, — 2), from SM expectations pro-
vides at least a tantalizing hint of low-energy SUSY in the regime of large tan 3 [79, 92].

Similarly, new searches for the permanent electric dipole moments of various systems will
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probe SUSY (and other) CP-violation sources at a level of interest to explaining the baryon
asymmetry of the universe[18, 54], while precision studies of fixed target, parity-violating
electron scattering will be strongly sensitive to the existence lepton-number violating su-
persymmetric interactions[93].

In this paper, we study the implications of SUSY for weak decays of the muon, neutron,
and nuclei. Our work is motivated by the prospect of significantly higher precision in
future measurements of the muon lifetime (7,,) and decay correlation parameters, as well
as of considerably higher precision in studies of neutron and nuclear (-decay at various
laboratories, including the Spallation Neutron Source (SNS), Los Alamos Neutron Science
Center (LANSCE), NIST, the Institut Laue-Langevin (ILL), and a possible high-intensity
radioactive ion beam facility. Recent experimental progress including: new measurements
of muon decay parameters at TRIUMF and PSI[94, 95, 96]; new measurements of the muon
lifetime at PSI[97, 98]; Penning trap studies of nuclear 3-decay[99]; the development of
cold and ultracold neutron technology for the study of neutron decay; and plans for new
measurements of the leptonic decays of the pion[100, 101] — point to the high level of
experimental activity in this direction.

Theoretically, recent efforts have focused on the use of such experiments to test the
unitarity of the Cabibbo-Kobayashi-Maskawa matrix, including analyses of SUSY correc-
tions to the (V' — A) ® (V' — A) structure of the SM charged current (CC) interaction
[57, 81, 102] and improved limits on hadronic structure effects in neutron and nuclear (-
decays[103]. Going beyond the (V' — A) @ (V — A) structure of the SM CC interaction,
it has recently been shown that the scale of neutrino mass implied by neutrino oscillation
experiments and the cosmic microwave background implies stringent bounds on chirality-
changing scalar and tensor operators that could contribute to weak decays[104, 105, 106].
Comprehensive reviews of non-(V — A) ® (V' — A) effects in §-decay have been given in
Refs. [107, 108, 109]

Here, we study the effects of supersymmetric interactions that give rise to non-(V —A)®
(V — A) interactions but evade the neutrino mass bounds. Such effects can arise through
radiative corrections in supersymmetric models containing only left-handed neutrinos. For

concreteness, we focus on the minimal supersymmetric Standard Model (MSSM). We do
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not consider simple extensions of the MSSM with right-handed or Majorana neutrinos
and their superpartners as required by non-vanishing neutrino mass, as the effects of the
corresponding neutrino sector on weak decays is highly constrained.!. We show that in the
MSSM, radiatively-induced non-(V — A) ® (V' — A) interactions are particularly sensitive
to flavor and left-right mixing among first and second generation sleptons and squarks. The
flavor structure of the MSSM has been the subject of extensive scrutiny, and as we show
below, experimental studies of lepton flavor violation (LFV) lead to tight constraints on
the corresponding effects in weak decays. In contrast, there exist few independent probes
of left(L)-right(R) mixing among scalar fermions. It is generally assumed that this mixing
is proportional to the relevant Yukawa couplings, implying that it is highly suppressed in
processes involving only first and second generation sfermions. However, this “alignment”
assumption is not inherent in the structure of the SUS Y-breaking sector of the MSSM, and
while its use can simplify MSSM phenomenology, it is of interest to explore experimental
observables that may test this assumption. In what follows, we argue that studies of weak

decay correlations may provide such experimental tests. Specifically, we find that:

(1) Supersymmetric box graph corrections to the p-decay amplitude generates a non-
vanishing scalar interaction involving right handed charged leptons (g%, # 0 in the
standard parameterization used below) in the presence of flavor mixing among left-
handed (LH) sneutrinos and among right-handed (RH) sleptons, or flavor-diagonal

mixing among LH and RH sleptons.

(i1)) Analogous box graph effects can give rise to non-vanishing scalar and tensor inter-
actions in light quark (-decay. The generation of these interactions requires non-
vanishing left-right mixing among first generation sleptons and squarks. Studies of
the energy-dependence of $-decay correlations and 3-polarization — as well as of the
energy-independent spin-polarization correlation — provide a probe of these interac-

tions and the requisite L-R mixing.

(i11) Flavor-mixing among the LH sleptons (v, (r)is highly constrained by searches for

'In see-saw scenarios, for example, the scale of the additional sneutrino mass is sufficiently large that
these degrees of freedom decouple from low-energy observables.
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lepton flavor violation in processes such as ;1 — ey and @ — e conversion. Thus, any
observable departure from (V' — A)® (V — A) interactions in p-decay associated with
the MSSM would arise from large, flavor diagonal L-R mixing among smuons (/i)
and selectrons (€). The former are also constrained by the present value of (g, — 2).
At present, we are not aware of any analogous constraints on L-R mixing among first

generation squarks and sleptons.

(iv) The magnitude of the effects in p-decay are below the present sensitivity of decay
correlation studies. However, the presence of the SUSY-induced scalar interaction
could modify the extraction of the Fermi constant (G,) from the next generation of
7, measurements at PSI. Similarly, improvements in 3-decay correlation precision
by < an order of magnitude would allow one to probe the SUSY-induced scalar
and tensor interactions generated by large L-R mixing. Such measurements could in

principle provide a unique test of L-R mixing among first generation superpartners.

In the remainder of the paper, we provide details of our analysis. Section 9.2 gives a
general overview of weak decay correlations and our notation and conventions. In Sec-
tion 9.3 we discuss the computation of the relevant SUSY corrections and give analytic
expressions for the resulting operators. Section 9.4 contains a discussion of constraints re-
sulting from other measurements and numerical implications for the p-decay and [3-decay

correlations. We summarize our conclusions in Section 9.5.

9.2 Weak Decay Correlations: General Features

Departures from the SM (V' — A) ® (V — A) structure of the low-energy leptonic and
semileptonic CC weak interactions can be characterized by an effective four fermion La-
grangian containing all independent dimension six operators. In the case of p-decay, it is

conventional to use

4
ﬁu—decay: _& Z g’Y éer’yl/e DILLF'YM/,L (9'1)



107

where the sum runs over Dirac matrices '’ = 1 (S), v* (V), and 0*? / v/2 (T) and the sub-
scripts y and € denote the chirality (R,L) of the muon and final state lepton, respectively?.
Note that the use of this Lagrangian is only appropriate for the analysis of processes that
occur at energies below the electroweak scale, as it is not SU(2);, xU(1)y invariant. At
tree-level in the SM one has g}, = 1 with all other 92, = 0. In the limit of vanishing
lepton masses, non-QED SM electroweak radiative corrections to the tree-level amplitude
are absorbed into the definition of G ,,.

In the literature, there exist several equivalent parameterizations of non-Standard Model

contributions to light quark 5-decay[107, 108, 109]. In analogy with Eq. (9.1) we use

16,
V2

£ﬁ—decay — Z aZ(S éEFﬂ/Ve EF7d5 (92)

v, €0

where the notation is similar to that for the y-decay effective Lagrangian. As with £+~decay
only the purely left-handed (V' — A) ® (V — A) interaction appears at tree-level in the SM.
In this case, one has aZL = V.4, the (1,1) element of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix. Including electroweak radiative corrections leads to
ay;, = Ve (14 AF5 — A7) (9.3)

where A7z contains the electroweak radiative corrections to the tree-level (V —A)®(V —A)
(3-decay amplitude and A7), contains the corresponding corrections for yi-decay apart from
the QED corrections that are explicitly factored out when definiting G, from the muon
lifetime.

Supersymmetric contributions to A7z — A7, have been computed in Refs. [57, 81, 102].
These corrections can affect tests of the unitarity of the first row of the CKM matrix, as
they must be subtracted from a}; when determining V4 from (3-decay half lives. The
corresponding implications for CKM unitarity tests have been discussed in those studies.
Supersymmetric corrections can also give rise to non-vanishing g7, and as that parame-

terize the non-(V — A) ® (V — A) interactions in Egs. (9.1,9.2). The presence of these

2The normalization of the tensor terms corresponds to the convention adopted in Ref. [110]
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operators cannot be discerned using the muon lifetime or 3-decay half lives alone, but they
can be probed using studies of the spectrum, angular distribution, and polarization of the
decay products. We consider here non-(V — A) ® (V — A) that are generated by one-loop
corrections and are, thus, suppressed by a factor of «/47. Consequently, we focus on those
operators that interfere linearly with SM contributions in weak decay observables and have
the largest possible phenomenological effects.

In the case of polarized ;= (u™) decay, the electron (positron) spectrum and polar-
ization are characterized by the eleven Michel parameters[111, 112], four of which (p, 1,
&, and ) describe the spectral shape and angular distribution. An additional five (¢, £”,
n”, a/A, 5/A) are used to characterize the electron (positron) transverse and longitudinal
polarization, while the final two («//A, '/ A) parameterize time-reversal odd correlations
between the muon polarization and the outgoing charged lepton spin. In what follows, we
find that SUSY box graphs generate non-vanishing contributions to ¢%5. This coupling
appears quadratically in the parameters £ and £’ and interferes linearly with the SM term
gy inmn, n", and 3’ /A. The linear-dependence of 1) on g5, is particularly interesting, since

n = 0 in the SM, and since a non-zero value for this parameter enters the extraction of G,

from 7,,:
1 G2m5 m me \ 2 3/ m, \°
— = 1+ 6 °_8 = 14 = —£ 94
7. 1027 5 [1+ dqup] m, (mu) M (MW> 04

where dqgp denote the QED corrections the decay rate in the low-energy (Fermi) effective
theory.
For (3-decay, it is customary to use the description of the differential decay rate written

down by Jackson, Treiman, and Wyld [113] (see also [107, 108, 109]):

- Dy Dy
dl' o N(Ee){1+ 5L, +b { +B_+DE6EV] 9.5)
+7 { <ﬁ>+GE +Q’M-<ﬁ) R<ﬁ> Z—]}deQdEe,

where N'(E,) = p.E.(Ey — E.)* E. (E,), p. (p,), and & are the 3 (neutrino) energy,
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momentum, and polarization, respectively; J is the polarization of the decaying nucleus;
and ' = /1 — (Z«)2.

As we discuss below, SUSY box graphs may generate non-zero contributions to the
operators in Eq. (9.2) parameterized by a3, a3;, and ak;. The latter interfere linearly
with the SM parameter a}; in terms in Eq. (9.5) that depend on (3 energy, including the
so-called Fierz interference coefficient, b; the parity-violating correlation involving neu-
trino momentum and nuclear spin, B; and the polarization correlation coefficient, )’. In
addition, the energy-independent spin-polarization correlation coefficient /V also contains

: S .8 T :
a linear dependence on app, a;, and ap; . Specifically, one has

b=+ 4Re [M% gvgs GZL(afZL + G%R)* - 2M62:T gagr CLXL@?L] (9.6)
I'm .
B({=2Re [i AJrg MéT ((Qi |CLEL|2 +4 9% ’a£L|2) + B 4 gagr GXLGEL) 9.7)

J
+ 05 MpMer | T <2 gvgalay,)?

I'm

F L2 (avar alial - 2aags el + o)) )|

I'm

Q (=2Re |:)\J’J M(2;T <(9,24 ‘GZLP + 49% ]CLELF) T FE

2 gagr aXLa?‘L) (9.8)

J
F dpg MpMer | —— (2 gvaalay, |

J+1
I'm . .
+ B (4 gvgr agLaRji —29a9s GEL(CL%L + G%R) ) >}
2 I'm 2 T |2 2V |2 T Vs
N¢=2Re | Ayjg Mgy . (497 lag,|” + g4 lap, ") F 49794 agpar] 9.9)
+ 0y 5 MpMer 51 <(4gng aypag; — 29s9a (afg + af)ayr)
I'm .
£ 5 Cgsar (afn + afu)afi — 2van ) )]
¢= QM% (912/ |CLZL|2 + 9?? |Q%L + a%RP) + 2Mg¥T (931 |a¥L|2 + 49% |a£L|2) )
(9.10)
9.11)

where J (J') are the initial (final) nuclear spin and A\, ; = (1,1/J + 1,—J/J + 1) for
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J' = (J —1,J,J + 1). The quantities My and Mgy are Fermi and Gamow-Teller matrix
elements and gy, 4 s 7 are vector, axial vector, scalar, and tensor form factors. For transitions
between initial () and final (f) nuclear states the corresponding reduced matrix elements

are

) = gv(¢®)Mp

) = ga(¢®)Mar (9.12)
) = gs(@®)Mp
) (4°)

(fHa’y’\d—l— H.C.||i
(fllay ysd + H.C.||i

(f]|ud +H.C.||d

|
Q

(flluc**d+H.C.||i) = gr(¢*)Mar

The conserved vector current property of the SM CC interaction implies that gy (0) = 1
in the limit of exact isospin symmetry. Isospin breaking corrections imply deviations from
unity of order a few x10~* [114] (for an earlier estimate, see Ref. [115]). A two param-
eter fit to (-decay data yields g4(0)/gv(0) = 1.27293(46)[109], assuming only a non-
vanishing SM coupling, a};, and neglecting differences in electroweak radiative correc-
tions between hadronic vector and axial vector amplitudes. Theoretical expectations for gg

and g are summarized below.

9.3 SUSY-Induced Scalar and Tensor Interactions

We compute the SUSY contributions to the weak decay correlations in the MSSM and
obtain non-vanishing contributions to g3, a3, and ai’g from the box diagrams in Figures
9.1 (u-decay) and 9.2 ((3-decay). These amplitudes — as well as others not shown explicitly
in Figures 9.1 and 9.2 — also contribute to the parameters gY,; and a}; that arise in the
SM. A complete analysis of those contributions, along with the gauge boson propagator,
vertex, and external leg corrections, is given in Ref. [57]. Here, we focus on the non-
(V —A)® (V — A) operators generated by the diagrams shown explicitly.

Since the SM CC interaction is purely left-handed (LH), the generation of operators

3The quantity ¢ is often denoted by ¢ in the literature. However, we have modified the notation to avoid
confusion with the Michel parameter €.
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Figure 9.1: Feynman diagrams relative to supersymmetric contributions giving rise to non (V —
A) ® (V — A) amplitudes in the muon decay. The amplitude relative to the diagram shown in (a)
involves left-right slepton mixing, while those in (a) are non-vanishing if lepton flavor mixing is
present in the slepton sector.

e 4 5 Ve Ve 5 e
ly Iy

X5 4 i X X Xy
di ﬂz

d U d U
(a) (b)

Figure 9.2: Feynman diagrams relative to supersymmetric contributions giving rise to anomalous
amplitudes in (3 decay processes.

involving the right-handed (RH) SM fields requires the presence of RH fermion superpart-
ners in the one-loop graphs. These particles appear either by virtue of left-right mixing
among superpartners in Figures 9.1(a) and 9.2(a,b) or through coupling of the neutralinos
()2?) to the RH sleptons as in Figures 9.1(b.1, b.2). Note that in the latter case, a given vir-
tual slepton mass eigenstate I; will couple to both the first and second generation charged
leptons, thereby requiring the presence of non-zero flavor mixing. In contrast, the contribu-
tions of Figures. 9.1(a) and 9.2(a,b) involve only L-R mixing but no flavor mixing among
the sfermions in the loops.

To set our notation, we largely follow the conventions of Refs. [89, 90]. The L-R and
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flavor mixing among the sfermions is determined by the sfermion mass matrices. In the
flavor basis, one has
M2, M?

ME= | b 9.13)
Mir Mgr
where for quark and charged slepton superpartners M35 (A, B = L, R) are 3 X 3 matrices
with indices running over the three flavors of sfermion of a given chiral multiplet (L, R).

For sneutrinos, only MZ; is non-vanishing. After electroweak symmetry-breaking, the

M32 5 take the forms (using squarks as an illustration)

Mi, = md +m? + Ag (9.14)
M%{R = m% + mfl + A¢ (9.15)
with
A — (L{ — Qysin? ew) cos 20M2 (9.16)
A¢ = Qysin® Oy cos23M} (9.17)
and
) ) viagsin 3 — uYgcos 5] , @ — type sfermion
M2, — M2, — , (9.18)

vlagcos B — uYesing] | d — type sfermion
where tan § = v, /vy gives the ratio of the vacuum expectation value of the two neutral
Higgs fields, Y¢ and af are the 3 x 3 Yukawa and soft triscalar couplings and  is the
supersymmetric coupling between the two Higgs supermultiplets. The matrices m(zg, m%,
and mg are the mass matrices for the LH squarks, RH squarks, and quarks, respectively. It
is often customary to assume that az o< Yy, in which case one may diagonalize M7 by
the same rotation that diagonalizes the fermion mass matrices and leads to a magnitude for
L-R mixing proportional to the relevant fermion mass. In what follows, however, we will
avoid making this assumption. Indeed, studies of the decay correlation parameters may

provide a means of testing this alignment hypothesis.
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The matrix M% can be diagonalized by the unitary matrix Z¢. The corresponding
sfermion mass eigenstates Fj are given as a linear combination of the flavor eigenstates
JE ras

Fy=2fi (9.19)

where [ = 1,2, 3 indicate the flavor states f r; and I = 4,5, 6 refer to the RH flavor states
Fri_s

In general, the charginos ()Zj) and neutralinos entering the loop graphs are mixtures of
the electroweak gauginos and Higgsinos. Since the characteristics of this mixing are not
crucial to our analysis and a detailed discussion can be found elsewhere (e.g., Refs. [89,

90]), we simply give our notation for the relevant mixing:

X? = Nz’ng ,j=1...4 (9.20)
for the neutralinos and
+ W - W
ACE VA B R S I O B (9.21)
Xs oy X2 Hy

for the charginos. Here, the fields /0 denote the (B, W°, HY, H?) fields.
Using the foregoing conventions, we obtain the following contributions to the g3, a3,

S,T.
and a'p;

e = 5£La)+5£b.1)+5£b.2)

a3p = 05 (9.22)
Q%L:—MEL = Sg(ab)
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where

G — on% U |2 72 75 gk 74k (N 2 o (Moo. M.+ . M- . M- 9.23

m - T | ml’ L L “L L | Jl‘ 1 X?’ Xﬁ,’ 1 I ( )

CED. —aMj N1 (N%, — tanfy N7,) Ni{(Nyo — tanfy Ny (9.24)

BT gp ULV WiV 1) Ve EVk2 Wtk '
x Zim*Zstél*Z% fl <MX?’ sz’ Mii’MDm>

502 —alMj N;1(N;y — tanfy N;1) Ny (N;y — tanfy Ny)) (9.25)

P = o 1(Vjo wVi1) N (Vo NOw Vg1 :
X 2 22 Mg Mg By (Myg. Mg My M, )

~(a QA4QVL 1% r744 r71m rz4mx

0y = — = \Unl 2y 25 21 21 NP (9.26)
x Fy (Mg, My, Mg, My )

- —aM2V, w rylik rrdi rplm rydms

0y = e UpVAZE ZE 2 2 [Nl 9.27)

X M, Mg Fy (ij, My, My, M[m>
and where we have defined the loop functions

1 11—z l—z—y
Fn (Mg, My, me, myg) = / dx/ dy/ dz (9.28)
0 0 0

[am24+ymi+zmi+(1—z—y—2)mj] "

9.4 Phenomenological Constraints and Implications

We now analyze the possible magnitude of the box graph contributions. At first glance,
the results in Egs. (9.23-9.27) exhibit the expected scaling with masses and couplings:
o ~ (a/4m) x (My/M)2, where M is a generic superpartner mass. Thus, one expects
these contributions to be of order 10~3 when M is comparable to the electroweak scale.
However, the prefactors involving products of the sfermion mixing matrices can lead to
substantial departures from these expectations. (The impact of the neutralino and chargino
mixing matrices N, Ujy efc. is less pronounced). In particular, there are two general
classes box graph contributions: those which depend on slepton flavor mixing ((5,Sb'1’2)) and

those which depend on L-R mixing (6,(f) and 5[(;1,5)). We examine each class of contributions
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independently by performing a numerical scan over MSSM parameter space while taking
into consideration the results of direct searches for superpartners, precision electroweak
data, and LFV studies. In particular, we attempt to constrain the viable parameter space —
and thus the magnitude of these box graph contributions — by requiring consistency with

the experimental bounds for the branching ratio for ;x — e and for (g, — 2).

9.4.1 Lepton Flavor Mixing Contributions

The contributions to g3 from (5,(?'1’2) depend on the products of stermion mixing matri-

ces Zlm* 72 and Z3'Z}*, which are non-vanishing only in the presence of flavor mixing
among the first two generations of sneutrinos and RH charged sleptons, respectively. The
existence of such flavor mixing also gives rise to lepton flavor violating (LFV) processes
such as 1 — ey and u — e conversion and, indeed, the products Z!™*Z>™ and Z3'Z}™*
enter the rates for such processes at one-loop order. Consequently, the non-observation of
LFV processes leads to stringent constraints on these products of mixing matrix elements.

To estimate the order of magnitude for these constraints, we focus on the rate for the
decay ;1 — ey, which turns out to be particularly stringent. In principle, one could also
analyze the constraints implied by limits on the ;© — e conversion and ;1 — 3e branching
ratios. This would possibly make our conclusions on the maximal size of the flavor violat-
ing contributions to g3, more severe, but it would not change our main conclusion: lepton
flavor mixing contributions to g%, are unobservably small.

Experimentally, the most stringent bound on the corresponding branching ratio has been

obtained by the MEGA collaboration[116]:

I(p" —e™y)

<12x1071 90% C.L. 9.29
[(ut — etvw) % % ( )

Br(p—ey) =

Theoretically, a general analysis in terms of slepton and sneutrino mixing matrices has
been given in Ref. [60]. Using the notation of that work, we consider those contributions
to the ¢ — ey amplitude that contain the same combinations for LFV mixing matrices
as appear in the S,Sb). For simplicity, we also set (in the present analytical estimate, but

not in the following numerical computation) the chargino and neutralino mixing matrices
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to unity and neglect contributions that are suppressed by factors of m,, /My,. With these
approximations, the combination Z!™Z?™ appears only in the first term of the chargino
loop amplitude AéC)R according to the notation of Ref. [60]. Setting the chargino mixing to

1 (or, equivalently, considering the pure wino contribution alone), gives

1 my
APR ~ 2 ZZE) [ @)+, w = 9.30

2 87 sin2 QW m%m ( v v ) f (-T ) ) x mw ( )
where f(©)(z) is a loop function. Analogously, the combination Z#Z> appears only in
the first term of the neutralino loop amplitude Aé")L. This time the amplitude reads (again

considering only the pure bino loop)

Ag”)L = 47 C(f; Ow ml%l (Zéizgi) f(n)(xi) T me (%) O3
The resulting muon decay widths respectively read
o a? m’ 2 2
K= e7) = 4 (87 sin? Oy )2 m%i (Zl}ngm) (f(C) ($m)) 632
and ) .
D= o) = G ot (GEZE) (Uw)T 0

For simplicity, we consider two extremes: my, ~ mg A my Rm =100, 1000 GeV

= M. For either choice, we find
(fO1))* = (f™(1))" ~ 0.007 9.34)

Inserting the numerical values, and requiring that '™ < 1073° GeV as required by the

limit (9.29), we find that

1073 for M = 100 GeV
~ (Z;mzfm) < (9.35)

(Z#ZE’L) max ~
1071 for M = 1000 GeV

max
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Figure 9.3: A scatter plot showing |AT,|/ TEM (left vertical axis) and |giy | (right vertical axis), as
functions of Br(in — ev) (a) and of drpv (b) (smaller d1,pv means more lepton flavor mixing; see
the text for the precise definition). Filled circles represent models consistent with the current bound
Br(p — ey) < 1.2 x 1071, while empty circles denote all other models.

This implies that for superpartner masses of the order of 100 GeV, the amplitudes 5,Sb'1’b'2)

are suppressed by a factor 107 relative to the naive expectations discussed above, while
for 1000 GeV masses by a factor 1072, In this latter case, however, the loop functions in the
amplitudes Sﬁb) experience a further suppression factor of order 10~2. Thus, the magnitude
of the Sﬁb) should be no larger than ~ 1077,

We substantiate the previous estimates by performing a numerical scan over the pa-
rameter space of the C'P-conserving MSSM [117]. We do not implement any universality
assumption in the slepton soft supersymmetry breaking mass sector or in the gaugino mass

terms. However, in this section only, we neglect L-R mixing and consider flavor mixing be-

0 my msy (MEy)ij, (Mgg)i; | tanp3
30 = 10000 | 2+ 1000 | 50 = 1000 102 = 20002 1-=60

Table 9.1: Ranges of the MSSM parameters used to generate the models shown in Fig. 9.3. Here,
f is the usual higgsino mass term, while m o indicate the soft supersymmetry breaking U(1)y and
SU(2) gaugino masses. The matrices M%L and M%{R are symmetric; hence, we scanned over 6
independent masses within the specified range. All masses are in GeV.
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tween the first and second generation sleptons only. Under these assumptions, the mixing

that causes non-vanishing g&b.1,2)

stems solely from off-diagonal elements in the two 2x2
slepton mass matrices M?; and M%,. We scan independently over all the parameters
indicated in Table 9.1, within the specified ranges. For all models, we impose constraints
from direct supersymmetric-particles searches at accelerators and require the lightest su-
persymmetric particle (LSP) to be the lightest neutralino (see also [118] for more details).

The result of this scan is shown in Fig. 9.3. Although general models can accommodate
g%r ~ 1075, the current constraint on Br(y — e7) severely restricts the available parameter
space and reduces the allowed upper limit on g5 by over an order of magnitude, as shown
in Fig. 9.3 (a). It is also instructive to exhibit the sensitivity of g7 to the degree of flavor-

mixing and to show the corresponding impact of the LFV searches. To that end, we quantify

the amount of lepton flavor mixing by a parameter Jr pv, defined as
5LFV = |5L’ + |5R| , (9.36)

where

2 (M&g)12
(Mg )11 + (Mg )22

2
5, = 10g< 2 (Mfp )12 )

op =lo
(MZp)11 + (M2 )20 f g(

) (9.37)

and e.g., (M2,));; is the (i, j)-th component of left-handed slepton mass matrix. For exam-
ple, if |0y| is close to zero, then there is a large flavor mixing contribution from left-handed
sleptons; but if |0 | is large, then this flavor mixing is suppressed. Since the amplitudes
5,(?'1’2) depend on flavor mixing among both LH and RH sleptons, they contribute only if
both 7, and dp are small. (In contrast, Br(x — e7v) survives in the presence of flavor
mixing among either LH or RH sleptons.) Naturally, the flavor mixing contribution to g7,
is largest when oy py is smallest, as shown in Fig. 9.3(b). We note that to obtain a large
flavor mixing contribution to g%, it is not sufficient simply to have maximal mixing (i.e.
|ZZLJ| — 1/4/2); in addition, one needs the absence of a degeneracy among the slepton mass

eigenstates, or else the sum over mass eigenstates [e.g., sum over ¢ and ¢’ in Eqn (9.24)]

will cancel. In any case, we conclude that the flavor mixing box graph contributions are too
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small to be important for the interpretation of the next generation muon decay experiments,

where the precision in 7, is expected to be of the order of one ppm.

9.4.2 Left-Right Mixing Contributions

Significantly larger contributions to g% can arise from 5 (a), which requires only L-R mix-
ing among same generation sleptons. In the case of smuon L-R mixing, some considera-
tions follow from the present value for the muon anomalous magnetic moment, or (g, —2),
which is a chirality odd operator and which can arise from L-R mixing in one-loop graphs
[119]. The only supersymmetric contribution da, to a, = (g, — 2)/2 proportional to
one single power of the ratio of the muon mass and of supersymmetric particles is in fact

proportional to the smuon L-R mixing, and reads

- Z 3m>;~l Re[g1 Nt (92Ni + 91N ) 21" 2} ]FQN(mig/mZm), (9.38)
Hm,

i,m

5aLR7mix —
H 1672

where F}Y is the appropriate loop function specified in [119]. The expression features the
same dependence upon the smuon mixing matrix as does Eq. (9.23). Under the widely
considered alignment assumption that ag o Yy this term is usually suppressed, as the
smuon L-R mixing is also suppressed. Here, however, we drop that hypothesis, and allow
for large L-R mixing: this, in general, enhances the aforementioned contribution, and we
therefore expect that the experimental constraints on (g, — 2) will set limits on g35. In
particular, assuming a common mass M for all the supersymmetric particles, and maximal

L-R mixing, Eq. (9.38) approximately reduces to

sl o I L (M) 0ot o i 100 Gev (9.39)
a ~ —— | — ~ T ~ (§ .

Z 4 127 \ M1 0 ’

where ¢; indicates the U(1)y gauge coupling. We consider here the 95% C.L. limit on
beyond-the-SM contributions to (g, — 2) as quoted in Ref. [120],

xp_ gth=SM — (959 +9.2) x 10717, (9.40)

a, jz
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bearing in mind that a more conservative approach to the evaluation of the sources of the-

th—SM

oretical uncertainty in the SM contribution could inflate the error associated with a,,

(see e.g. Ref. [121] for the hadronic light-by-light contribution).

A large value for da,, however, does not imply automatically a large g% 5, since the
latter also depends upon the mixing in the selectron sector, to which da,, is blind. On the
other hand, large values of |g% 5| in general should produce a sizable da,,, although the
possibility of cancellations with other terms, and the different loop function structures can
lead, in principle, to a suppression of da,, even for large g5 . This possibility is illustrated
in Fig. 9.4, showing a scan over MSSM parameters (discussed below). As indicated by the
results of this scan, imposing the (g, — 2) constraints restricts, but does not exclude, the
possibility of obtaining relatively large values of |g%|.

The possible existence of nearly flat directions in the MSSM potential leads to addi-
tional constraints on the size of the scalar trilinear couplings from the condition of avoiding
charge and color breaking minima. Quantitatively, one can express those constraints in the

form [122]

3Y2 (ui +mg + mﬁ)

o
A

afi < 3Yf1 (u?l—l—méijg)

a2 < 3Y2(p;+m?+md) (9.41)
where i ; = mj , + |uf*. The conditions above can be fulfilled for large values of a¢
for accordingly large values of Y¢ X mg or Y¢ X fiyy 4. Since g;%R depends on the product
F1 x |(Z#)* Z32], the presence of large scalar fermion masses leads to a suppression of g5 p,
via the loop functions ;. Thus, large values of g%, are possible only when L-R mixing
is nearly maximal and the constraints of Egs. (9.41) are satisfied with large values of “i,d'
Making use of the electroweak symmetry breaking (EWSB) conditions, one can express
,ui 4 as functions of M and of the CP-odd Higgs mass, m 4. At the expense of introducing
some fine-tuning, one may then achieve arbitrarily large values for the right hand sides of
Egs. (9.41), and hence of the trilinear scalar couplings, as long as m 4 is sufficiently large,

independently of the other sfermion soft supersymmetry breaking mass terms. The heavy
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Higgs sector does not enter in the loops contributing to any of the quantities at stake here,
and the size of m 4 therefore does not affect our results.

While this argument cannot be applied to models such as minimal supergravity, where
the sfermion and the heavy Higgs sector are connected at the GUT scale, in extended mod-
els (e.g., the non-universal Higgs mass extension of mSUGRA, [123]) the size of the tri-
linear scalar couplings can be taken to be much larger than the size of the soft breaking
sfermion mass terms. In turn, this implies the possibility of having a sizable L-R mixing
not only in the third generation sfermions but, in principle, in the first two generations as
well.

In contrast to the situation for p-decay, the box graph contributions to the semilep-
tonic parameters a3, and a}q%’LT live entirely on L-R mixing among first generation sleptons
and squarks. To our knowledge, there exist no strong bounds on such mixing from pre-
cision electroweak measurements or searches for rare or SM-forbidden processes. Conse-
quently, we will consider the possibility of maximal L-R mixing which simply requires that
|\M3p| ~ |M}?, — M?g|. From Egs. (9.14-9.18), this situation amounts to having a; of
order the electroweak scale and m?. not too different from mf;. The foregoing discussion
of charge and color breaking minima applies to this case as well as to p-decay.

Taking into account the foregoing considerations, we carry out a numerical analysis
of the magnitude of the SUSY contributions to g3, a3y, and a%T. As before, we con-
sider the C' P-conserving MSSM [117], and proceed to a random scan over its parameter
space. We do not resort to any universality assumption, neither in the scalar soft super-

symmetry breaking mass sector, nor in the gaugino mass terms nor in the soft-breaking

o ma mo ms
30 = 10000 2 <1000 50 =+ 1000 | mysp + 10000
ma mp Ap tan 3
100 = 10000 | (1 + 10)mysp | £(mZ/mg) | 1+ 60

Table 9.2: Ranges of the MSSM parameters used to generate the models shown in Figs. 9.4 and
9.5. All masses are in GeV, and mygp = min(|u|, |ma|,|ma|). ms and m 4 indicate the gluino
and the C'P odd heavy Higgs boson masses, respectively. The quantity m g indicates the various
soft supersymmetry breaking masses, which we independently sampled; we dub the mass of the
corresponding SM fermion F' as mp.
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Figure 9.4: A scatter plot showing ’ATM‘/TEM (a) and |g3R| (b), relative to muon decay, left, and
aﬁR + af{L, relative to 3 decay, right, as a function of the supersymmetric contribution to the muon
anomalous magnetic moment da,,. Filled circles represent models consistent with the current 95%
C.L. range for beyond the standard model contributions to (g, — 2), while empty circles denote all
other models.

trilinear scalar coupling sector, and scan independently over all the parameters indicated in
Table 9.2, within the specified ranges. We indicate with mz a generic scalar fermion soft
mass (corresponding to a standard model fermion whose mass is mg), and with mgp the
smallest mass parameter entering the neutralino mass matrix (namely, mq, mo and p), in
absolute value. For all models, we impose constraints from direct supersymmetric-particles
searches at accelerators, rare processes with a sizable potential supersymmetric contribu-
tion, the lower bound on the mass of the lightest C'P-even Higgs boson, and precision
electroweak tests. We also require the lightest supersymmetric particle (LSP) to be the
lightest neutralino (see also [118] for more details) and avoid parameter choices that lead
to tachyonic solutions.

We show the results of our scan in Fig. 9.4-9.6. In particular, we indicate in Fig. 9.4,
(a), the values of |A7,|/ TEM (left axis) and |g5g| (right axis) we obtained in our scan, as
a function of the supersymmetric contribution to the muon anomalous magnetic moment,

da,,. Filled circles represent models consistent with the current 95% C.L. range for beyond
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Figure 9.5: The correlation between af{R and gfm (a) and between af{R and aﬁL (b). Filled
circles represent models consistent with the current 95% C.L. range for beyond the standard model
contributions to (g,, — 2), while empty circles denote all other models.

the standard model contributions to (g, — 2), while empty circles denote all other models.
As we anticipated, large values of da, do not always imply large g5y |, and, vice-versa.
The values of |g5y| compatible with the limits on (g,, — 2) and with all constraints on the
supersymmetric setup can be as large as a few times 107%, though the size of the effect
could also be many orders of magnitude smaller. The models giving the largest effects tend
to have large L-R mixing (and hence large trilinear scalar couplings) both in the smuon and
in the selectron spectrum, and, naturally, a light supersymmetric particle spectrum. In con-
trast, assuming alignment between the triscalar and Yukawa matrices leads to unobservably
small effects in p-decay.

Current limits on the parameter g7, obtained from direct studies of y-decay observables
lead to an upper bound of 0.067 according to the recent global analysis of Ref. [124]. Thus,
improvements in precision by more than two orders of magnitude would be required to
probe these non-(V — A) ® (V' — A) contributions in the large L-R mixing regime. On
the other hand, the impact of g%, on the extraction of G, from the muon lifetime could
become discernible at the level of precision of the muon lifetime measurements underway

at PSI[97, 98]. These experiments expect to improve the precision on 7, such that the
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experimental error in G, is 107%. At such a level, a contribution to 7 from g%, of order
10~* would begin to be of interest, as per Eq. (9.4). In particular, we note that there exist
regions of the MSSM parameter space that generate contributions to A7, /7, as large as a
few x 107 via the ) parameter in Eq. (9.4), corresponding to ~ ppm corrections to G,,.

Consideration of this correction could be particularly interesting if future measurements
at a facility such as GigaZ lead to comparable improvements in other electroweak parame-
ters, such as M and sin® éW(M 7). A comparison of these quantities can provide a test of

the SM (or MSSM) at the level of electroweak radiative corrections via the relation[125]

. 2h A — T 9.42
sin” Oy (Mz) cos™ Ow (Mz) V2MZG, [1 — AF(My)] o

where A7 (M) contains electroweak radiative corrections to the (V —A)®(V — A) u-decay
amplitude, the Z-boson self energy, and the running of &. Any discrepancy in this relation
could signal the presence of new physics contributions to A7 (M) beyond those obtained
in the SM (or MSSM). Inclusion of ppm corrections to G, arising from the presence of
a non-zero 7 in Eq. (9.4) would be important in using Eq. (9.42) to carry out a ppm self-
consistency test. Resolution of other theoretical issues in the computation of A7(My) —
such as hadronic contributions to the running of & — would also be essential in performing
such a test.

In the case of [-decay, we show the analogue of the figure described above for the
muon decay, in Fig. 9.4, (b). We show, as a function of da,,, the value of a3 + a%;. We
find that values of a5, + a3, as large as 10~2 are consistent with all phenomenological
constraints. Since the amplitudes Sgl’b) depend on L-R mixing among first, rather than
second, generation sleptons and squarks (the factors Z}" Z§"* and Z§*Z}', Q = U or
D, respectively) the parameters a7, af;, and ak; are not as constrained by precision
measurements as is g%z. Thus, it is possible for the $-decay parameters to reach their
naive, maximal scale /47 in the limit of maximal L-R mixing.

The correlations between g3 and ay,, and between a3, and a3, are shown in the
panels (a) and (b), respectively, of Fig. 9.5. In the figure, again, filled circles represent

models consistent with the current 95% C.L. range for beyond the standard model contri-
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Figure 9.6: (a): The correlation between ajy + af; and gag in “minimal supergravity” models
with maximal left-right mixing (i.e., where the trilinear scalar couplings have been set to the values
corresponding to a maximal contribution to the quantities of interest). The scalar mass universality
condition at the GUT scale dictates the strong correlation between the two quantities 0.7 < (afm +
aﬁL) / gﬁR < 1.5, Again, filled circles represent models consistent with the current 95% C.L.
range for beyond the standard model contributions to (g,, — 2), while empty circles denote all other
models. (b): MSSM-induced non-(V — A) ® (V — A) contributions to the energy-dependence of the
(B-decay neutrino asymmetry parameter, B. Here, we have scaled out the energy-dependence and
have plotted B = B/(I'm/E) for various randomly generated MSSM parameters. As before, dark
circles indicate models consistent with (g,, — 2) We have also assumed gs/gy =1 = gr/ga

butions to (g, — 2), while empty circles denote all other models. We notice that in general
there exists no strong correlation among the various quantities, ane we find some corre-
lation only for very large values of the quantities under investigation, in the upper right
portions of the plots. Also, no hierarchy between a7, and a3, exists.

A correlation between the various quantities of interest does arise, however, when some
priors are in place on the supersymmetric particle spectrum. In particular, we show the
results of a scan of minimal supergravity models (where scalar soft breaking mass univer-
sality is imposed at the GUT scale) in Fig. 9.6 (a). In particular, we display on the vertical
axis the values of a% + a%;, and on the horizontal axis g5, for models where we im-
posed a maximal L-R mixing. In this case, we obtain that 0.7 < (agg + a3y)/98r < 1.5.

In contrast to the model-independent parameter space scans, a nearly linear correlation be-
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tween these parameters arises due to the mSUGRA-dependent relations between sfermion
masses and requirement of maximal L-R mixing. Moreover, the magnitude of the 3-decay
couplings is generally less than < 10~* due to the (g, — 2) constraints on smuon masses
and the mSUGRA sfermion mass relations. It is interesting to note that within this model
scenario, the observation of a non-zero 3-decay correlation at the ~ 10~ level would im-
ply a non-zero g3, of similar magnitude, along with the corresponding correction to the
theoretical u-decay rate.

In the more general, model-independent situation, it is important to emphasize that
large L-R mixing in the first generation slepton and squark sectors can lead to a3y, a5,
and ak; as large as O(107?). Coefficients of this magnitude could, in principle, be probed
with a new generation of precision (3-decay correlation studies. At present, the most precise
tests of these quantities arises from superallowed Fermi nuclear 3-decay, from which one
obtains constraints on the Fierz interference coefficient by = 0.0026(26) [126, 80]. For

this transition one has
s s
295 ap + ajp

-
v arr,

bp ==+

(9.43)

independent of the details of the nuclear matrix elements*. In Fig. 9.4, (b), we also show the
quantity by assuming gs/gy = 1 in the right-hand vertical axis. The present experimental
sensitivity lies just above the upper end of the range of possible values of b.

It is also interesting to consider the recent global analysis of Ref. [109], where several
different fits to $-decay data were performed. The fit most relevant to the presence analysis

corresponds to “case 2 in that work, leading to bounds on the following quantities:

S 5
gs Apr + GRrp

Rg = - (9.44)
gv arr,

R, = 297 0m
gv QEL

In particular, including latest results for the neutron lifetime[127] that differs from the pre-
vious world average by six standard deviations leads to a non-zero Rr: Ry = 0.0086(31)

and Rs = 0.00045(127) with x*/d.o.f. = 1.75. In contrast, excluding the new 7,, result

“Here, we have assumed all quantities are relatively real.
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implies both tensor and scalar couplings consistent with zero. We note that SUSY box
graphs could not account for tensor couplings of order one percent since the natural scale
of the relevant correction — Sg’) —is a/2m ~ 0.1% in the case of maximal L-R mixing and
SUSY masses of order My [see Eq. (9.27)]. Moreover, there exist no logarithmic or large
tan J enhancements that could increase the magnitude of this amplitude over this scale.

Future improvements in experimental sensitivity by up to an order of magnitude could
allow one to probe the MSSM-induced non-(V — A) ® (V' — A) contributions to the 3-decay
correlation coefficients in the regime of large L-R mixing. For example, future experiments
using cold and ultracold neutrons could allow a determination of the energy-dependent
component of the neutrino asymmetry parameter 5 in polarized neutron decay at the level
of a few x107*. As indicated by the scatter plot in Fig. 9.6 (b) — where we show the range
of values for the energy-dependent part of the neutrino asymmetry — experiments with this
level of sensitivity could probe well into the region of parameter space associated with
large L-R mixing[128]. Similarly, prospects for significant improvements in the sensitivity
to the Fierz interference term using nuclear decays at a new radioactive ion beam facility
are under active consideration [129].

As with other low-energy, semileptonic observables, the theoretical interpretation of the
(-decay correlation coefficients requires input from hadron structure theory. For example,
the form factors that multiply the scalar and tensor couplings have not been determined ex-
perimentally, and there exists some latitude in theoretical expectations for these quantities.

The current estimates are [107]

025 < g5 < 1 0.6 < gr < 2.3:. (9.45)

~

These ranges derive from estimates for neutral current form factors assuming the quark
model and spherically-symmetric wavefunctions [130]. In obtaining the dependence of by
and B on MSSM parameters as in Figs. 9.4,9.6, we have assumed gs/gv = 1 = gr/ga,
so the final sensitivities of correlation studies to MSSM-induced non-(V — A) @ (V — A)
interactions will depend on firm predictions for these ratios. Similarly, the effects of sec-

ond class currents generated by the small violation of strong isospin symmetry in the SM
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may generate (5 energy-dependent contributions to the correlation coefficients that mimic
the effects of the MSSM-induced scalar and tensor interactions discussed here. An analy-
sis of these effects on the correlation coefficients a and A has been recently performed in
Ref. [131]. To our knowledge, no such study has been carried out for the correlation coeffi-
cients of interest here. Carrying out such an analysis, as well as sharpening the theoretical
expectations of Eq. (9.45), would clearly be important for the theoretical interpretation of

future correlation studies.

9.5 Discussion

If supersymmetric particles are discovered at the LHC, it will be then important to draw
predictions on a wide array of observables in order to determine the parameters that de-
scribe the superpartners interactions. As we have discussed above, precision studies of
weak decay correlations may provide one avenue for doing so. In particular, such studies
could probe a unique feature of SUSY not easily accessed elsewhere, namely, triscalar in-
teractions involving first and second generation scalar fermions. The presence of triscalar
interactions is implied by both purely supersymmetric Yukawa and bilinear components of
the superpotential and by soft, SUSY-breaking triscalar interactions in the Lagrangian. The
flavor and chiral structure of the latter are particularly vexing, since — in the MSSM — one
has both a large number of a priori unknown parameters and — experimentally — a limited
number of handles with which to probe them.

In light of this situation, it has been the common practice to rely on models that re-
late various parameters and reduce the number of inputs that must be determined from
data. Conventionally, one makes the “alignment” assumption, wherein the soft-triscalar
couplings for a given species of fermion are proportional to the corresponding Yukawa ma-
trices. Under this assumption, one would expect the effects of soft triscalar interactions to
be suppressed for the first and second generations. While the supersymmetric triscalar in-
teractions are, indeed, proportional to the Yukawa couplings, the soft triscalar interactions
need not be. As we have argued above, the study of weak decay correlations offer a means

for testing this possibility experimentally.
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The effects of triscalar couplings in weak decay correlations arise from one-loop graphs
that generate scalar and tensor interactions. These interactions are forbidden in the SM
CC interaction in the limit of massless fermions since it involves only LH fermions and
since the scalar and tensor operators couple fields of opposite chirality. In the MSSM,
such terms can arise via L.-R mixing of virtual scalar fermions in one-loop box graphs,
and this L-R mixing can be significant when the corresponding soft, triscalar couplings
are unsuppressed. In the case of p-decay, additional contributions to scalar and tensor
four-fermion operators can also be generated by flavor-mixing among same-chirality scalar
leptons, but this flavor-mixing is highly constrained by LFV studies such as @ — ev. Thus,
for both p- and 3-decay, observable, SUSY-induced scalar and tensor couplings can only
be generated by flavor diagonal L-R mixing.

Probing these interactions would require improvements in precision of one- and two-
orders of magnitude, respectively, for 3-decay and p-decay correlation coefficients. Order
of magnitude improvements for (3-decay appear realistic, while the necessary advances for
p-decay appear to be more daunting. On the other hand, if SUSY is discovered at the
LHC, then considerations of SUSY-induced, four-fermion scalar interactions involving RH
charged leptons may become necessary when extracting the Fermi constant from the muon
lifetime. Doing so could become particularly important when ppm tests of electroweak

symmetry become feasible.



130

Chapter 10

Conclusions

Electroweak-scale supersymmetry, if realized in nature, has many important implications
for nuclear physics, particle physics, and cosmology. Supersymmetric electroweak baryo-
genesis may explain the origin of the baryon asymmetry. We studied how the charge
transport dynamics of collisions and diffusion play an important role in determining the
BAU. Gaugino, strong sphaleron, and third generation Yukawa interactions are the most
important interactions that convert hypercharge, generated within the bubble wall, into left-
handed quark and lepton charge that drives baryon number generation. We evaluated the
gaugino and third generation Yukawa thermally-averaged interaction rates for decay and

absorption processes in the plasma. We found:

¢ Gaugino interactions are generally in chemical equilibrium for gaugino masses my <
1 TeV. These interactions enforce superequilibrium — chemical equilibrium between

a particle and its superpartner.

e Top Yukawa interactions are always in chemical equilibrium due to the large scatter-
ing rate q3 H, < us g. In addition, the decay process H « ds tr can be even larger,

further enhancing chemical equilibrium.

e Bottom and tau Yukawa interactions can be in chemical equilibrium for large regions
of parameter space. For example, the decay processes Hy < qsds ({3¢3) are in

chemical equilibrium for tan 5 2 5(15), and m4 < 800 GeV (600 GeV).

These interaction rates enter into the system of Boltzmann equations that governs the

charge densities.
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Next, we solved the Boltzmann equations for the charge densities. Our main result was
to show how the resulting charge densities depend strongly on the inclusion of bottom and

tau Yukawa interactions, which had been previously neglected. We found:

e Bottom Yukawa interactions suppress the conversion of charge from third generation
quarks to the first and second generations, via strong sphalerons. Without bottom
Yukawa interactions, strong sphalerons generate significant first and second genera-

tion left-handed quark charge.

e Bottom Yukawa interactions lead to a suppression of third generation left-handed
quark charge when (1) my,, My, 2 500 GeV, or (ii) Mg, ~ my . Without bottom

Yukawa interactions, this suppression does not occur.

e Tau Yukawa interactions allow for the generation of significant left-handed lepton

charge; without them, no lepton charge is generated.

One interesting possibility that emerges is that the baryon asymmetry is “lepton-mediated,”
i.e., induced by left-handed lepton charge, rather than left-handed quarks, as previously
considered. Phenomenologically, the baryon asymmetry in this scenario can differ in both
magnitude and sign from what one would have computed neglecting these Yukawa inter-
actions. To the extent that electric dipole moment searches and collider studies can give
information about the CP-violating phases and supersymmetric spectrum, these interac-
tions play a crucial in making connections with experiment.

Lastly, we investigated how supersymmetry can be studied experimentally through pre-
cision measurements of weak decays. Leptonic pion decay is sensitive to R-parity viola-
tion in the first and second generations, the mass splitting between left-handed electron
and muon scalar superpartners, and the Higgsino-Wino spectrum. Deviations from the
SM expectation in precision studies of muon and beta decays can arise for large tri-scalar,
left-right mixing parameters. If a supersymmetric signal was observed through these tests,
it would point to regions of supersymmetric parameter space beyond the minimal SUSY-

breaking scenarios to which theoretical prejudice has been mostly confined.
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Appendix A

From Green’s Functions to Boltzmann
Equations: an Overview of the
Closed-Time-Path Formalism

The standard tool for discussing particle dynamics in the early universe is the Boltzmann
equation. The purpose of this section is to show how to derive it using the Closed-Time-
Path (CTP) formulation of quantum field theory, and apply these techniques to supersym-
metric electroweak baryogenesis. The CTP formalism is a language of finite-temperature,
non-equilibrium Green’s functions. These propagators are powerful tools: they contain all
the information about the dynamics of the theory — from the microscopic interactions to
the macroscopic evolution of the thermal plasma. After a brief review of this formalism, we
describe how to extract this information, and how our results related to standard treatments
of the Boltzmann equation (see, e.g., Ref. [36]).

To be concrete, we will consider the example of a single complex scalar field ¢, with
Lagrangian

L =10u0> = m |o” + Lint - (A1)

We define f,(k,X, ) and fz(k,X,?) to be the particle and antiparticle distribution func-
tions, for 3-momentum k, position X, and time ¢t = X 0. The distribution function for the

charge density is f = f, — f5; its Boltzmann equation is

af k B
E+w—k'vxf—c[fcpaf¢z] ) (A.2)
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with collision term C, a functional of f, and f;. (We have neglected Hubble expansion and
external forces.)

Ultimately, it turns out that there are two classes of interactions that arise from the col-
lision term in Eq. (A.2). First, there are the usual elastic and inelastic collisions of particles
in the plasma. The interactions in Egs. (2.26,2.27) are all of this type. The collision terms
from these interactions are the usual thermally-averaged interaction rates; here, there is
little benefit for using the CTP approach. Second, there are interactions that arise from
the presence of the expanding bubble of broken electroweak symmetry, giving rise to a

CP-violating source. Here, the CTP approach is essential.

A.1 Closed-time-path Green’s functions

At zero temperature, perturbation theory is essentially the study of time-ordered propaga-

tors, such as

Ga,y) = (T {en@ )} ) . (A3)

where oy is the Heisenberg-picture field. The key difference when moving to finite tem-
perature is that the expectation value in Eq. (A.3) is taken with respect, not to the vacuum,

but to the thermal bath, an ensemble of states defined by a density matrix
p= walm)(ml | (A4)

where the time-independent Heisenberg-picture states |n;,) have weight w;,.

Now, let us move to the interaction picture. First, the interaction-picture states |n(t))
are functions of time; we define the interaction states at time ¢ = —oo to coincide with the
Heisenberg states: [n_) = |n(—o0)) = |ny). The density matrix is p = > wy|n_){n_|.
Second, the interaction fields ¢ are related to their Heisenberg counterparts by the time-

evolution operator U

on(x) = Ul(xy, —oo)Jr o(x) Uz, —00) . (A.5)
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The operator U obeys the usual relations:

U(tl,tg) - U(tg,tl)T = U(tg,tl)il (A6)

t2
Ulty,te) = T{exp <z/ dzo/dgz ,Cmt(z)) } ) (A.7)
t1

With these relations, Eq. (A.3) becomes

Glz,y) = an<n)7{exp [i/dA‘zﬁint(z)}}T

n

and

X T{go(x) ot (y) exp {z / d4z.cim(z)]} ‘n,> . (A8)

4 o o0 0 3 . . .
where [ d'z = [~ dz° [ d*z. Reading from right to left, Eq. (A.8) corresponds to starting
with the “in”-state |n_), then time-evolving from —oo to +o00, acting with the field oper-
ators at times 2" and 1° along the way, and lastly time-evolving from +oo back to —oo,
returning to the “in”-state. This time-contour, denoted C, is the “closed time path”; it is

closed in the sense that the contour begins and ends at ¢ = —oo, connecting “in”-states

with “in”-states. Eq. (A.8) can then be succintly written as

Gi(ay) = <P {m(l‘)wi(y) exp [ / d4z£im<z>} }>
- (Ple@iles |i [ (R0 -c0@)|]) @9

where P means path-ordering of fields along C. In the second line, we have broken C into
the sum of its two branches. The notation ¢ (x) and Li(nit) () — itself a function of ¢ ()
— denotes whether ¥ is on the time-increasing (+), or time-decreasing () branch of C.
The path-ordering prescription is to time-order the (+) fields, to anti-time-order (7 ') the
(-) fields, and lastly to put all the (-) fields to the left of the (+) fields.

A perturbative evaluation of G*(x,y) proceeds similarly to zero-temperature field the-

ory. Wick’s theorem applies as usual, but with P-ordering instead of 7 -ordering. There-

fore, we must consider not one but four different propagators, corresponding to all possible
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path-ordering of 2° and ° in (p(2)p'(y)):

G”(z,y) = <7’{<p y}> () (A.10a)
G<(z,y) = <73{g0+ y}> g;)> (A.10D)
G'(ry) = (Ple@ ek} ) = <T{<,o W) Al

(y)
0(y’ — 2°) G<(z,y)
Gl(x,y) = <7’{ 3/)}>_<TT{<P )e'(y)}) (A.10d)

= 9(560—3/) “(z,y) +
= 9(y°—w) “(x,y) +0(2° = y°) G(z,y) .

These Green’s functions are the free or full propagators for fields in the interaction- or
Heisenberg-pictures, respectively. In particular, we see from Eq. (A.9) that a perturbative
expansion of G*(z,y) will necessarily involve contracting (+) and (-) fields together (i.e.,
those contained in £mt ); these additional propagators are inescapable. These propagators
can be assembled into the matrix

t (<

G>(l’,y) _Gt($7y)
In this form, the propagators have the simple perturbative expansion
Glz,y) = GOz,y)+ /d4w / d*z é(o)(x, 2) (2, w) G(w, y)) (A.12a)

G(z,y) = (x,y) /d4 /d4 (z,w) GO (w, y)) . (A.12b)

These equations are the CTP version of the Schwinger-Dyson equations, where now both
the propagator and the self-energy 11 (defined by L)) are 2 x 2 matrices. The free propa-

gator GO)(z, y) satisfies
(92 + mi) GO (z,y) = ((92 +m ) GO (z,y) = —id*(x —y) 1, (A.13)

where I denotes the 2 x 2 identity matrix in CTP propagator space.
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In vacuum, the Green’s functions G<~(x,y) depend only on the relative coordinate

iik'r’ with frequency wy and Wavelength |k|_1-

r = x — y, through plane wave factors e
At finite temperature, however, expectation values are taken with respect to the thermal
plasma. The plasma itself is dynamical — namely, distribution functions for species in
the plasma depend on spacetime — so G~ (z,y) depends also the average coordinate

X = (z + y)/2. The Wigner transform, defined as
G~ (k, X) = /d4r kT G (x,y) (A.14)

naturally separates the microscopic dynamics (relevant over scales w; ', [k|™* ~ O(T71))
from the macroscopic evolution of the plasma. This separation between macro- and mi-
croscopic scales is valid only as long as the plasma dynamics is characterized by scales
much longer than 7. In our analysis, we rely upon this separation of scales to perform a
gradient expansion; formally denoted as an expansion in Oy, it is essentially an expansion
in the ratio of micro- to macroscopic scales.

The Wigner-transformed propagators in Eq. (A.14) are the functions of primary interest.

In particular, we define the function

Fk,X)== (G”(k, X) + G<(k, X)) . (A.15)

DN | —

The CP-asymmetric distribution function f = f, — f; from Eq. (A.2) is
dk?
fk, X) /—Qko X). (A.16)

In addition, we can define “moments’ of this distribution function. The zeroth moment is

the charge density

n()()z/(;’lng)3 f(k,X):/(;i:; 2K°F(k, X) , (A.17)

the difference between particle and antiparticle densities. The first moment is the charge
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current
d*k

j(X)z/%%f(k,X):/W2kF(k,X). (A.18)

Justification of these relations follows from the fact that

/(;Z:; 2k F(h, X) =i (: 61(X) 0% 0(X) ) | (A.19)

using equations (A.10, A.15). The normal-ordered combination of fields on the RHS is

precisely the current j#(X) = (n, j)*. Lastly, the second moment is a velocity flux tensor

Bk ko ky d'k ) kaky
V(X)) = k, X)= 2 F(k,X), A.20
b( ) /(27_{_)3 w]g{ f( ) /(27_‘_)4 L0 ( ) ( )
with spatial indeces a,b = 1,2,3. In what follows, our goal is to derive and solve a

Boltzmann equation for F'(k, X).

A.2 Spectral functions

In the preceeding section, we described the formulation of CTP propagators, and how they
are related to the charge current density j#(X) for a complex scalar field ¢. Before we
derive the Boltzmann equation, we now show how the Wigner-transformed propagators
G<~(k, X) contain the microscopic information about the spectrum of excitations in the
plasma. We will see that G<~(k, X) is proportional to a spectral function that vanishes
unless the appropriate dispersion relation is satisfied.

We begin with the Schwinger-Dyson equations (A.12). Acting with the Klein-Gordon

operator on the full propagator, we have

(82 +m?) GMx,y) = —i [ d*z [ (x, z) G(z,y)r (A.21a)

(35—1—771?0) GMz,y) = —i/d4z |:G(ZE,Z) H(z,y)r : (A.21Db)
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where A =< or >. Taking the Wigner transform of the sum of Eqgs. (A.21), we have

1 ' . ~ ~ ~ ~ A

(k2 —m? — 1 8%) G Mk, X) = % /d4'r e T /d4z [ (x, 2) G(z,y) + G(x, 2) 1I(2,y)
(A.22)
This is the “constraint equation”; it determines the spectra of the degrees of freedom of ¢.

The free propagator satisfies (setting II = 0 and neglecting the 9% term)
(K —m2) Gk, X)) =0. (A.23)

The free propagators G<>(k, X)(®) are non-zero only if the appropriate dispersion rela-
tion k° = £./|k|? + m? is satisfied. Therefore, they are proportional to the free spectral
function

PO (k) = 2m sign(k°) 6 (k* — m?2) . (A.24)

©

Let us consider how p(k) is modified in the presence of interactions by studying a

simple example:

A
Lim() = = 7 [e(@)]" - (A.25)
With this interaction, the self energy is
~ Gt(x, 0
H(z,y) =i A6*(z — y) (#:9) ) : (A.26)
0 GY(,y)

Plugging into Eqn. (A.22), we have

1 A .
(k2 —m? — 1 83() Gk, X) = 5/6147“ e <G’t(a:,x) + Gt(y,y)> Gz, y) .
(A.27)
Now, by Taylor expanding
10°GH X, X)

G'(z,2) + G'(y,y) =2G" (X, X) + -

1o 4
1 oxroxv | + O0(9%) , (A.28)
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we have at linear order in A
(K* —m? —AGHX, X)) GMk, X) =0, (A.29)

neglecting O (9% ) terms. (We return to these terms later.) The effect at O(\) is a shift in the
pole of the spectral function. Later, we will be able to evaluate this shift more explicitly;
in the relativistic limit, and assuming an equilibrium distribution for ¢, it has the familiar
form

A

ANGHX, X) = ET2+/

dp 1
Py

(A.30)

The first term is the usual one-loop thermal mass, while the second term is the usual zero-
temperature ultraviolet divergence that must be removed through renormalization. This
is a simple example for how the spectral function is modified at one-loop and at finite
temperature; other interactions can affect p(k) in more complicated ways. For example,
massless fermions develop a non-analytic dispersion relation, including the propagation
of hole modes [43]; or, particles can develop a non-zero decay width. For the purposes of
evaluating collision rates of particles in the plasma, the dominant corrections to the spectral
function are the finite-temperature masses.

Therefore, we can write

GZ(k,X) = p(k)g”(k, X) (A.31a)
G=(k,X) = p(k)g=(k,X) (A.31b)

where p(k) is the one-loop spectral function. Furthermore, the canonical commutation

relations

([e(t,x), ¢'(t,y)]) = = ([o(t,x), ©'(t,y)]) =i 0°(x —y) (A.32)

imply that g~ (k, X) — g<(k, X)) = 1. Thus, finally, we have

G (k,X) = pk)(1+ gk, X)) (A.33a)
G<(k,X) = p(k)g(k,X) (A.33b)
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and

F(k, X) = p(k) (% + g(k, X)) . (A.34)

To summarize, we have shown that the Wigner-transformed propagators G<~ (k, X)
can be written in terms of the spectral function p(k) and the distribution function g(k, X).
The form of the p(k, X) follows from the constraint equation, and agrees with our expec-
tations for free and 1-loop spectral functions. In the next section, we show how to solve for

g(k, X) by solving the Boltzmann equation. Once we know g(k, X ), we can evaluate the

F(k, X) in (A.34).

A.3 Quantum Boltzmann equation

We now show how the Boltzmann equation emerges in the CTP formalism. The Boltzmann
equation will allow us to solve for the dynamical evolution of the distribution function
g(k, X) in the presence of collisions and a CP-violating source. Let us begin by taking the

Wigner transform of the difference of Eqgs. (A.21). Thus we obtain the “kinetic equations”
2k - OxG*(k, X) = Clg; k, X1, (A.35)

where A =< or >, and

Clg; k, X :/d4r6ik'r/d4z [ﬁ(az,z) G(z,y) — G(z,2) H(z,y)]/\ . (A36)

Furthermore, we have

2k - Ox F(k, X) = Clg: k. X] , (A37)

defining C = (C~ +C<)/2. Eq. (A.37) is the CTP analog of the usual Boltzmann equation.
Indeed, Eq. (A.2) follows upon integrating by | dk°.

The collision term, to zeroth order in gradients, has the simple form

Clg; k, X]” =Clg; k, X]® =117 (k, X) G~(k, X) = II"(k, X) G (k, X) . (A38)
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In writing Eq. (A.38), we have neglected terms proportional to Ox G<~ (k, X ) and Ox 1=~ (k, X),
as per the gradient expansion. There are two general classes of interactions that enter into
the collision term: those that conserve ¢-charge, and those that do not. The former lead
to kinetic equilibrium of ¢, while the latter lead to chemical equilibration of ¢ with other
species in the plasma. Therefore, we write C = Cy;, + Cgp, to distinguish these two classes.
To be pedegogical, we will now evaluate explicitly an example for each.

First, let us consider the |p|*-interaction in Eq. (A.25). This collision term describes
elastic scattering of ¢ and ¢ in the thermal plasma, causing them to reach kinetic equilib-
rium. We must compute the 2PI contribution to 11, arising from the diagram in Fig. We

have
2

I~ (z,y) = —/\? G2 (2, y) G577 (2,y) G (y, z) . (A.39)

The Wigner transform is

<> (k,X) = (H /éﬁ;) (2m)* 6% (k + p1 — pa — p3) (A.40)

x G7=(p1, X) G (p2, X) G=7(ps, X) -

This contribution to the collision term 1is

Gunlg 5. X] = —A—Q(H [o2 p<pi,X>) (2)!84(k + ps — pa — pa) ik )

2
x| gk, X) g(pr, X) (1+ g(p2, X)) (1 + g(ps, X))

= (1 gk, X)) (1+ 901, X)) 9(p2 X) 900, X) | . (A4D)

This form is indeed reminiscent of the collision term in the usual treatment. There is the
momentum conserving J-function, the A\? is the matrix element squared, and the terms in
square brackets are familiar combination of distribution functions for a 2 — 2 scattering
process.

Second, we consider an interaction that leads to chemical equilibrium. Suppose that ¢
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is coupled to complex scalars x; 2 by
Line = ho x| x2 +he. (A.42)

with coupling constant h. The self-energy for this interaction is

== (z,y) = —|h]* G~ (2,9) G~ (y, 2) (A43)
with
G; (p7 X) - IOX'L' (p> ng', (p7 X) : (A44)
This interaction gives
d'p [ d'q
) _ 2
Cch[ga k7 X] = —h /(271’)4 /W ,ng(k'; X) le (p7 X) sz (Q7 X) (A45)

X (2m) 3k = p+0) | 90k X) (1+ g, (9, X)) g (0, X)

— (14 gp(k, X)) g, (0, X) (1 + gy (q, X)) |

which is the usual collision term for decay and inverse decay processes. We have added
subscripts to p and g to clarify the species to which they correspond.

Now that we have evaluated some collision terms, it is clear why the gradient expansion
is valid. According to the kinetic equation, 0%G<(k, X) is O(e), where e generically
denotes the square of a coupling constant (i.e. ¢ = A\? or h?). Therefore, our expansion in
Ox in both the constraint equation (A.22) and the collision term (A.38) corresponds to an

expansion in €.
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