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ABSTRACT 

Progress in constructing biological networks will rely on the development of more 

advanced components that can be predictably modified to yield optimal system 

performance. We have engineered an RNA-based platform, which we call an shRNA 

switch, that provides for integrated ligand control of RNA interference (RNAi) by 

modular coupling of an aptamer, competing strand, and small hairpin (sh)RNA stem into 

a single component that links ligand concentration and target gene expression levels. A 

combined experimental and mathematical modeling approach identified multiple tuning 

strategies and moves towards a predictable framework for the forward design of shRNA 

switches. The utility of our platform is highlighted by the demonstration of fine-tuning, 

multi-input control, and model-guided design of shRNA switches with an optimized 

dynamic range. Thus, shRNA switches can serve as an advanced component for the 

construction of complex biological systems and offer a controlled means of activating 

RNAi in disease therapeutics. 
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INTRODUCTION 

To maintain fitness under diverse conditions, biological systems must integrate 

multiple environmental cues (inputs) to determine appropriate phenotypic outcomes 

(outputs) over short and long time scales. This relationship, which can be interpreted as 

an input–output function or transfer function, is specified by the behavior of the 

individual system components and their network interactions. The complexity of natural 

biological systems, reflected by the sheer number of associated components and network 

interactions, can appear intractable to scientists and engineers seeking to understand and 

reliably construct biological systems.  

Synthetic biological systems that perform information processing operations with 

specified transfer functions can be constructed through the design of either individual 

complex components encoding multiple integrated functionalities or simpler components 

assembled into networks with emergent properties. For example, the ultrasensitive switch 

behavior of the mitogen-activated protein kinase signaling cascade (Huang and Ferrell, 

1996) has been replicated with one component (Dueber et al, 2007) or a network of 

components (Hooshangi et al, 2005). The majority of previously engineered biological 

systems have employed design strategies focused on the assembly of simpler components 

into networks (Elowitz and Leibler, 2000; Gardner et al, 2000). However, as biological 

engineers move towards constructing large-scale systems with more advanced behaviors, 

integration of complex components into network design will be critical, especially as 

current network design strategies do not effectively scale with system complexity (Croft 

et al, 2003). Furthermore, engineering of complex components and their integration into 

networks will facilitate the construction of advanced systems with a reduced number of 
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constituent parts. Such design strategies will result in a lower energetic load on the cell 

and will comply with size limitations associated with packaging synthetic systems for 

delivery applications (Flotte, 2000; Grieger and Samulski, 2005). 

RNA is a rich biological substrate for engineering complex components (Isaacs et 

al, 2006), where scalable molecular information processing systems have been built in 

vitro from nucleic acid components (Stojanovic and Stefanovic, 2003; Seelig et al, 2006). 

Natural biological systems exhibit widespread utilization of regulatory RNAs in larger 

networks (Shalgi et al, 2007) and integrated functionalities by riboswitches (Sudarsan et 

al, 2003; Grundy and Henkin, 2006). The latter is an example of a complex RNA 

component that converts the intracellular concentration of a molecular signal into levels 

of a target protein. Building on these natural examples, researchers have integrated 

synthetic regulatory RNAs into larger networks (Deans et al, 2007; Rinaudo et al, 2007) 

and developed synthetic riboswitch elements (Isaacs et al, 2006; Suess andWeigand, 

2008) to yield desired transfer functions. Synthetic riboswitches have been developed 

through the coupling of regulatory RNA elements to aptamers, sensory elements that bind 

specific ligands, to achieve in vivo ligand control of transcription (Buskirk et al, 2004), 

RNA stability (Win and Smolke, 2007), translation (Grate and Wilson, 2001; Suess et al, 

2003; Bayer and Smolke, 2005; Lynch et al, 2007; Ogawa and Maeda, 2008; Wieland 

and Hartig, 2008), splicing (Thompson et al, 2002; Weigand and Suess, 2007), and RNA 

interference (RNAi) (An et al, 2006). As aptamers can be generated de novo to 

potentially any molecule (Lee et al, 2004; Gopinath, 2007) and regulatory RNAs can be 

designed to target practically any gene of interest, the potential exists to construct 

complex regulatory RNAs that respond to molecular inputs displaying low cytotoxicity, 
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tissue targeting, or endogenous production to impose desired phenotypic outcomes. In 

addition, the ability to alter or tune the component transfer function, which allows 

manipulation of component performance towards optimal system performance, has been 

demonstrated for in vivo (Suess et al, 2003; Isaacs et al, 2004; Bayer and Smolke, 2005; 

Win and Smolke, 2007) and in vitro systems (Hall et al, 2007) by modifying RNA 

folding energetics. However, broader implementation of these synthetic regulatory 

components has been limited, as most examples do not support domain swapping of 

different sensory and regulatory elements. Furthermore, the design of such regulatory 

systems has lacked predictive tools for the translation of sequence information into 

component transfer functions to enable in silico optimization of system behavior before 

construction. 

We have developed a framework for the construction of shRNA switches that 

mediate ligand control of RNAi across diverse mammalian cell types. Our platform 

utilizes a strand displacement strategy, where the functions of ligand binding, RNAi 

activation (Kim and Rossi, 2008), and translation of the binding interaction into reduced 

processing by the RNAi machinery are isolated to individual domains, which increases 

the generality and ease of successful domain swapping and subsequent broad application. 

In addition, we systematically investigated tunability of the shRNA switch transfer 

function through a combined experimental and mathematical modeling approach that 

resulted in the identification of five tuning strategies. Standard RNA folding algorithms 

(Mathews et al, 2004) were used to establish a quantitative sequence-to-function 

relationship. Our efforts highlight the current limitations of these broadly used algorithms 

for the design of RNAs that function in vivo and offer a framework for optimizing 
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shRNA switch behavior in silico. By demonstrating combinatorial tuning strategies, 

multi-input control, and model guided forward design of shRNA switches with an 

optimized dynamic range within a specified context, we show that shRNA switches 

extend the utility of RNAi as a regulatory tool and are valuable components for the 

construction of complex biological systems. 

 

RESULTS 

Design and characterization of a modular shRNA platform 

We engineered a complex RNAi substrate that encodes a ligand-controlled gene 

regulatory function by replacing the loop of a small hairpin (sh)RNA with two domains: 

an aptamer and a competing strand (Figure 3.1A). The shRNA switch molecule is 

designed to adopt distinct ‘active’ and ‘inactive’ conformations due to complementarity 

between the competing strand and the shRNA stem, similar to previously engineered 

RNA regulatory systems (Bayer and Smolke, 2005; Lynch et al, 2007; Win and Smolke, 

2007). In the active conformation, irreversible processing by the RNAi machinery of the 

formed shRNA stem results in small interfering (si)RNA production and subsequent 

RNAi-mediated silencing of the target gene. In the inactive conformation, base-pairing 

by the competing strand disrupts the shRNA stem, which is predicted to inhibit 

processing by the RNAi machinery (Zeng and Cullen, 2004; Macrae et al, 2006). This 

base-pairing coincides with formation of the aptamer domain, such that ligand binding 

stabilizes the inactive conformation and indirectly reduces siRNA production, thereby 

linking intracellular ligand concentration to target protein levels through a component 

transfer function. To decrease the activation energy separating the two conformations, we 
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removed two nucleotides in the passenger strand, thereby mimicking the bulge from the 

microRNA (miRNA) mir-30a (Griffiths-Jones, 2004; Griffiths-Jones et al, 2006). 

 

Figure 3.1 Design and characterization of an shRNA switch platform. Color schemes for 

switches shown in all figures are as follows: shRNA stem, green; aptamer domain, blue; 

competing strand, red; mutations to aptamer core, orange. (A)  Sequence and representative 

structures of shRNA switch S1 and proposed mechanism for ligand control of RNAi-mediated 

gene silencing. KComp, KApt, and e are parameters from the mathematical model; L denotes ligand. 
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(B) In-line probing of S4t under the following theophylline concentrations (µM): 0.001, 0.01, 0.1, 

1, 10, 100, 1000, and 8000. S4t was also resolved as unreacted (NR), partially digested with the 

G-specific RNase T1 (T1), and under basic conditions (OH). The included secondary structure of 

S4t is representative of the inactive conformation. Band quantification (right) is aligned with the 

resolved gel image. Nucleotides undergoing constant (●), increased (●), or decreased (●) 

cleavage in the presence of theophylline are shown. (C) Sequence and representative structure of 

shRNA switch S1 in the inactive conformation and associated controls. (D) Component transfer 

functions of S1 and switch controls. Dependence of GFP levels on theophylline concentration for 

HEK293T tTA-d2EGFP cells transfected with plasmids harboring the indicated constructs in the 

presence of varying theophylline concentrations. Median fluorescence values from flow 

cytometry analysis were normalized to that of untransfected cells in the same well. Error bars 

represent one standard deviation from duplicate transfected wells. 

 

  The three domains that comprise an shRNA switch perform distinct functions: the 

shRNA stem encodes the guide strand that activates RNAi-mediated silencing of the 

target gene, the aptamer detects the molecular input concentration through a ligand-

binding interaction, and the competing strand translates the binding interaction into a 

decrease in regulatory activity by affecting processing by the RNAi machinery. On the 

basis of the action of the competing strand that is complementary to the shRNA stem, the 

sequences of the shRNA stem and aptamer domains are independent of one another. 

Therefore, the shRNA stem and aptamer domains can be independently modified without 

altering the functionality of the opposing domain or requiring sequence reassignment.  

We designed an initial shRNA switch (S1) to target EGFP and respond to 

theophylline by incorporating an EGFP-targeting guide strand and the theophylline 
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aptamer (Zimmermann et al, 2000) into our switch platform (Figure 3.1A). We used in-

line probing (Soukup and Breaker, 1999) to assess the structural characteristics of a T7-

transcribed variant similar to S1 (S4t; Figure 3.1B). In-line probing provides information 

on structural changes within the molecule as a result of theophylline binding from the 

ligand dependence of spontaneous RNA cleavage. Theophylline-dependent changes in 

cleavage rates at individual nucleotides were observed in the aptamer domain, competing 

strand, and the downstream shRNA stem sequence. The results suggest that theophylline 

binding promotes structural changes in the shRNA switch as expected for dynamic RNAs 

undergoing ligand-dependent conformational switching. The apparent dissociation 

constant (KD) of ~5 µM, which was determined by quantifying the cleavage products at 

two positions (Supplementary Figure S3.1), is an order of magnitude larger than that of 

the aptamer alone (KD ≈ 0.29 µM) (Zimmermann et al, 2000). The observed increase in 

KD is in agreement with our proposed mechanism (see below), where only the inactive 

conformation provides a formed aptamer that can bind ligand. As shRNA switches can 

occupy both conformations, the apparent affinity will be lower because ligand can only 

bind the inactive conformation that is transiently present in a fraction of the shRNA 

switch population. 

The functionality of shRNA switches was assessed in mammalian cell culture. We 

transiently transfected plasmids harboring S1 and various switch controls transcribed 

from a U6 promoter into HEK293T cells stably expressing EGFP (Abbas-Terki et al, 

2002). Flow cytometry analysis revealed that S1 elicits intermediate knockdown of EGFP 

as compared to the original shRNA targeting EGFP (sh) and a scrambled shRNA (neg) 

(Figure 3.1C and D), where the observed silencing by S1 can be attributed to activation 
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of RNAi on the basis of antisense inhibition of guide strand activity (Hutvagner et al, 

2004; Meister et al, 2004) (Supplementary Figure S3.2). In the presence of theophylline, 

GFP levels increased in a dose-dependent manner for S1 but not for the control shRNAs. 

The effective concentration to achieve 50% activity (EC50) for S1 of ~300 mM was much 

larger than the KD of 5 µM measured in vitro, which can be primarily attributed to a 

concentration drop in theophylline across the cellular membrane (Koch, 1956) (J Liang, J 

Michener, C Smolke, unpublished data, 2008). Mutating the aptamer core of S1 (S10) 

greatly reduced the observed theophylline dependence without perturbing basal 

expression levels. We attribute the minor increase in GFP levels at high theophylline 

concentrations for S10 to pleiotropic effects of the ligand (An et al, 2006) and potentially 

to reduced binding capability of the mutated aptamer. Taken together, S1 links 

theophylline concentration to GFP levels in vivo through a relationship described by a 

component transfer function (Figure 3.1D). We obtained qualitatively similar results 

when shRNA switches targeting EGFP were transiently transfected into other cell lines 

(Supplementary Figure S3.3), suggesting that shRNA switches can be broadly applied in 

different cell lines and types. 

 

Mathematical modeling offers tuning parameters to predictively modulate 

component transfer functions 

Previous switch platforms utilizing strand displacement strategies have 

demonstrated tuning on the basis of aptamer swapping and modulation of folding 

energetics (Bayer and Smolke, 2005; Win and Smolke, 2007). We systematically 

evaluated the tuning capabilities of shRNA switches with the aid of a mathematical 
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model relating ligand concentration and target gene expression levels. Standard model 

parameters were incorporated to represent each chemical step from our proposed 

mechanism (Supplementary text S3.1). We assumed that the two adopted conformations 

are at thermodynamic equilibrium, that ligand only binds the inactive conformation, and 

that the active conformation is solely processed to an siRNA with a reduced efficiency as 

compared to the original shRNA. These assumptions yield the following relationship 

between relative expression levels of the target gene (f; output) and exogenous ligand 

concentration (L; input):  

( )[ ] h- 
AptCompshRNA LK1K1 fe1   f ⋅++⋅−= , 

where e is the processing efficiency, fshRNA is the relative knockdown achieved by the 

original shRNA (sh), KComp is the partitioning constant between active and inactive 

conformations (KComp = [inactive]/[active]), KApt is the association constant for binding 

between ligand and the formed aptamer, and h is the Hill coefficient to account for non-

linearity between siRNA concentration and target expression levels. Although 

mathematical models have been developed for RNAi (Raab and Stephanopoulos, 2004; 

Bartlett and Davis, 2006; Malphettes and Fussenegger, 2006), our approach utilizes a 

minimal parameter set that is experimentally tractable, fully represents RNAi in the 

context of shRNA switches, and captures the steady-state behavior of our system 

(Supplementary Figure S3.4). For one shRNA stem sequence and input ligand (fixed 

fshRNA, h), our model provides three tuning parameters that can be varied to tune the 

component transfer function: KComp, KApt, and e (Figure 3.2A–C). Varying KComp results 

in a concomitant and opposing variation in EC50 and basal expression levels, which are 

independently tuned by KApt and e, respectively. In addition, as KComp approaches zero, 

(3.1) 
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basal expression levels approach a lower limit that is dependent on the value of e and is 

higher than that of the original shRNA (Figure 3.2D). As each tuning parameter 

represents individual steps in the proposed mechanism, we examined how modifying the 

sequence in each domain, specifically the competing strand and aptamer domains, 

corresponds to parameter variation to identify unique tuning strategies (Figure 3.3A). 

 

Figure 3.2 Model predicts tuning of the shRNA switch transfer function through variation of 

identified tuning parameters. Model predictions for the effect on the component transfer function 

of varying KComp (A), KApt (B), or e (C). (D) Effect of e on the dependence of basal expression 

levels on KComp. Minimal basal expression set by fshRNA (▬); the transfer function that fits the S1 

theophylline response curve from Supplementary Figure S3.4 (▬): KComp = 0.17, KApt = 0.016 

µM-1, e = 0.85, fshRNA = 0.94, and h = 1.33. 
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Figure 3.3 Experimental validation of competing strand tuning strategies. (A) Designated 

strategies for physical modulation of the tuning parameters. Three strategies pertain to the 

competing strand (▬) and reflect changes in KComp, and two strategies pertain to the aptamer 

domain (▬) and reflect changes in KApt and e. (B–G) Tuned theophylline response curves as 

described in Figure 3.1D and associated RNA sequences. Each family of curves represents 

iterative nucleotide modifications under a single tuning strategy within the competing strand: 3’ 

end (B), 5’ end (D), and complementarity to the shRNA stem (F). Indicated sequence variants are 

swapped into the equivalent box in (A), which designates the applied tuning strategy for each 

family of curves. Error bars represent one standard deviation from duplicate transfected wells. 

 

Competing strand tuning strategies enable predictive alteration of the component 

transfer function 

Modifying competing strand base-pairing interactions is anticipated to reflect 

changes in KComp, as this parameter represents the thermodynamic partitioning between 

active and inactive conformations. We developed competing strand tuning strategies to 

target modifications to three regions within the competing strand domain: the length of 

the competing strand on the 3’ end (Figure 3.3B and C) or the 5’ end (Figure 3.3D and 

E), or the base-pairing complementarity (Figure 3.3F and G). We introduced iterative 

nucleotide changes under each competing strand tuning strategy and generated 

component transfer functions as before. Regardless of the selected strategy, each 

nucleotide change resulted in a shift in the response curve in line with the model 

prediction for variation in KComp. The results suggest that decreasing the extent of base-

pairing interactions between the competing strand and the shRNA stem decreases the 

stability of, or bias towards, the inactive conformation (lower KComp), resulting in lower 
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basal expression levels and a higher EC50. The trend towards higher EC50 is consistent 

with the order-of-magnitude difference between the apparent KD of S4t observed in the 

in-line probing experiment and that reported for the aptamer alone (Figure 3.1B). Thus, 

sequence modifications to the competing strand that affect the extent of base-pairing 

solely map to variation of KComp. 

 

Aptamer tuning strategies enable predictive alteration of the component transfer 

function 

Although ligand binding to the formed aptamer directly relates to aptamer 

affinity, represented by KApt, sequence changes in the aptamer domain may affect other 

parameters. To evaluate how sequence modification of the aptamer domain corresponds 

to parameter variation, we tested two theophylline aptamer variants (S11 and S12) with 

dissimilar KD values (Zimmermann et al, 2000) and the mutated aptamer (S10) (Figure 

3.4A and B). Mutating the aptamer core (S10) without perturbing shRNA switch 

secondary structure or sequence length resulted in a shift in EC50, whereas decreasing 

aptamer affinity by decreasing the aptamer stem length (S11 and S12) resulted in a shift 

in both EC50 and basal expression levels. The shifts in EC50 for S11 and S12 matched the 

relative KD measured in vitro for the aptamer variants alone (Zimmermann et al, 2000), 

suggesting that modulating aptamer affinity is reflected by variation in KApt. However, 

KApt affects only EC50, suggesting that either KComp or e varies with aptamer size. As the 

competing strand sequence is preserved for S1, S10, S11, and S12, we hypothesized that 

the shift in basal expression levels independent of KApt (most obvious in comparing the 
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transfer functions of S1 and S11) is solely attributed to the third tuning parameter e 

(Figure 3.2C). 

 

Figure 3.4 Experimental validation of aptamer tuning strategies. (A) Theophylline aptamer 

variants swapped into the equivalent box in Figure 3.3A. Dissociation constants (KD) as reported 

previously (Zimmermann et al, 2000) are indicated for each aptamer. (B) Tuned theophylline 

response curves as described in Figure 3.1D for shRNA switches that incorporate aptamers from 

(A). (C) Relationship between aptamer size and the lower limit of basal expression levels 

estimated from shRNA switches that primarily adopt the active conformation. HEK293T tTA-

d2EGFP cells were transfected with shRNA switches containing the following aptamers: none 
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(― ; sh), xanthine aptamer (xa; X3), smaller theophylline aptamer (thS; S7, S14, S15), larger 

theophylline aptamer (thL; S5, S7, S9, S10), and tetracycline aptamer (tc; T1). Values represent 

the average of the indicated switches for each aptamer. The original shRNA targeting EGFP (sh) 

represents the lower theoretical limit in this cellular context. (D, E) Modular replacement of 

aptamer imparts new ligand dependence while maintaining switch functionality. Hypoxanthine 

response curves were generated for shRNA switches incorporating the xanthine aptamer as 

described in Figure 3.1D, except that cells were grown in the presence of varying concentrations 

of hypoxanthine. Indicated sequence variants are swapped into the equivalent box in Figure 3.3A. 

(F, G) Preservation of competing strand tuning strategies for shRNA switches containing the 

xanthine aptamer. Variations targeted the length of the 30-end of the competing strand. Error bars 

represent one standard deviation from duplicate transfected wells. 

 

To evaluate the relationship between aptamer size and the tuning parameter e, we 

replaced the theophylline aptamer with the smaller xanthine aptamer (Kiga et al, 1998) or 

the larger tetracycline aptamer (Berens et al, 2001). As variation of e and KComp both 

affect basal expression levels, sole evaluation of e requires estimation of the lower limit 

of basal expression levels for vanishingly small values of KComp (Figure 3.2D). To this 

end, we constructed at least one shRNA switch with each aptamer that strongly prefers 

the active conformation (low KComp) and measured GFP basal expression levels of cells 

transfected with these constructs (Figure 3.4C). Assay results indicated that aptamer size 

strongly correlated with the lower limit of basal expression levels. The results suggest 

that the tuning parameter e, which is predicted to have a significant effect on the lower 

limit of basal expression levels, maps to the size of the aptamer domain. Our observations 

led to the specification of two aptamer tuning strategies: targeted changes in aptamer 
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affinity without changing aptamer size alter KApt and targeted changes to aptamer size to 

alter the processing efficiency of the switch (e). Taken together, variation of KApt and e 

map to the aptamer domain and depend on the nature of the sequence modification. 

We examined whether placement of new aptamers into the aptamer domain 

imparts new ligand dependence while preserving shRNA switch functionality. Previous 

RNA-based regulatory platforms have demonstrated alteration of ligand dependence by 

the modular incorporation of new aptamers (Bayer and Smolke, 2005; Win and Smolke, 

2007) or minimal mutation of the base aptamer (Thompson et al, 2002; Desai and 

Gallivan, 2004). We evaluated the xanthine aptamer, as it produced low basal expression 

levels and tightly binds the water-soluble and non-cytotoxic small molecule 

hypoxanthine. Following construction of shRNA switches that incorporate the xanthine 

aptamer by direct replacement of the aptamer domain, we generated component transfer 

functions in HEK293T cells stably expressing EGFP. As observed for S1, intermediate 

basal expression levels of GFP increased in a dose-dependent manner that was abolished 

by mutating the aptamer core (Figure 3.4D and E). Furthermore, the competing strand 

tuning strategies were preserved as evidenced by the effect of changing the competing 

strand length on the hypoxanthine response curves (Figure 3.4F and G). Contrary to 

model predictions, mutation of the xanthine aptamer resulted in increased basal 

expression levels, which may be attributed to base-pairing interactions between the 

mutated aptamer and the competing strand or shRNA stem sequences, or changes in 

aptamer folding and stability. However, the shift in basal levels upon mutation of the 

aptamer sequence is less than that observed for changes in the competing strand, 

supporting the conclusion that our model serves as a sufficient first approximation. Thus, 
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our shRNA switch design can accommodate different aptamers to alter the identity of the 

molecular input that regulates gene expression. 

 

Programming transfer functions by combining competing strand or aptamer tuning 

strategies 

The ligand-regulated behavior of shRNA switches can be programmed through 

application of the competing strand and aptamer tuning strategies described above. If 

these programming strategies could be combined, then a collection of shRNA switches 

could be constructed that display finely tuned transfer functions and respond to a range of 

molecular inputs. Such capabilities will be integral to the construction of higher order 

biological networks that display multi-input control over gene expression. 

On the basis of the independence of the competing strand tuning strategies, we 

examined whether the strategies can be combined to fine-tune the component transfer 

function beyond the capabilities of any single strategy. To generate small deviations in 

the transfer function of a parent shRNA switch, we added compensatory nucleotide 

changes under each competing strand tuning strategy in a stepwise manner (Figure 3.5A 

and B): a point mutation (G68A) within the competing strand to increase 

complementarity, deletion of two base-pairs to decrease the competing strand length at 

the 5’ end, and a single insertion at the 3’ end to increase the competing strand length. 

Each nucleotide change yielded the expected shift in the transfer function corresponding 

to the relative stabilization (increased KComp) or destabilization (decreased KComp) of the 

inactive conformation. The final switch, S10, displayed a transfer function slightly shifted 

from that of the parent switch, S4, demonstrating that nucleotide changes following the 
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three competing strand tuning strategies can be combined to yield fine-tuning of the 

component transfer function. 
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Figure 3.5 Programming transfer functions through combinatorial design strategies. (A) 

Combinatorial tuning strategies enable fine-tuning of the component transfer function. Stepwise 

nucleotide changes were made to S4, where each change fell under a different competing strand 

tuning strategy. (B) Tuned theophylline response curves as described in Figure 3.1D. Arrows 

depict the systematic modifications designated in (A). (C) Circuit configuration of shRNA 

switches responsive to theophylline (S4) or hypoxanthine (X1) that both target EGFP. (D) 

Predicted transfer function on the basis of application of the mathematical model to the circuit 

depicted in (C). Fit curves represent the individual component transfer functions for S4 (▬) and 

X1 (▬), respectively. (E) Combinatorial implementation of shRNA switches enables 

construction of networks that process multiple molecular inputs. Results are shown for HEK293T 

tTA-d2EGFP cells transfected with each shRNA construct (250 ng) or cotransfected with both 

shRNA constructs (125 ng of each) in the presence of water (■), 3 mM theophylline (■), 2 mM 

hypoxanthine (■), or both theophylline and hypoxanthine (□). Error bars represent one s.d. from 

duplicate transfected wells. 

 

In addition to fine-tuning of a single shRNA switch, combining shRNA switches 

with different ligand dependencies would contribute to the construction of networks that 

integrate multiple molecular inputs, as suggested from recent work on siRNA-based logic 

evaluator systems (Rinaudo et al, 2007). To evaluate the efficacy of combining shRNA 

switches, we transfected HEK293T cells stably expressing EGFP with shRNA switches 

that incorporate the theophylline aptamer (S4) or the xanthine aptamer (X1), where both 

switches target EGFP and display similar basal expression levels. On the basis of the 

combined component transfer functions (Materials and methods), we anticipated that the 

combined regulatory effects of S4 and X1 would require the presence of both 

hypoxanthine and theophylline to fully inhibit GFP silencing (Figure 3.5C and D). 
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Relative GFP levels were measured for cells transfected in the presence of theophylline, 

hypoxanthine, or the combination of the two (Figure 3.5E). GFP levels were high when 

individual switches were paired with their cognate ligand or both ligands. Some signal 

cross talk was observed as evidenced by the lower responsiveness of S4 and X1 to their 

non-cognate ligands, and primarily attributed to low aptamer specificity as observed in 

previous theophylline aptamer studies (Jenison et al, 1994) and not explicitly tested for 

the xanthine aptamer (Kiga et al, 1998). When the switches were cotransfected, high GFP 

levels coincided only in the presence of both ligands as expected on the basis of the 

circuit configuration. On the basis of the results, shRNA switches allow the construction 

of finely tuned genetic networks that can process multiple inputs. 

 

An in silico framework towards component sequence-to-transfer function prediction 

The construction of large-scale biological systems will require the simultaneous 

optimization of the behavior of all system components to yield proper network behavior 

as suggested for natural (Suel et al, 2007) and synthetic (Gardner et al, 2000; 

Yokobayashi et al, 2002) systems. Although the transfer functions associated with 

shRNA switches and other synthetic riboswitches are amenable to physical tuning, a 

computational framework to effectively navigate through qualitatively functional 

sequences is necessary for the rapid optimization of switch performance. Folding 

energetics dictate conformational partitioning and therefore switch performance for a 

strand displacement mechanism. RNA secondary structure prediction algorithms 

(Mathews et al, 2004) have the potential to perform accurate in silico prediction of in 

vivo switch performance, although these algorithms have not been sufficiently tested for 
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in vivo folding dynamics. To investigate the applicability of the secondary structure 

algorithms to predict in vivo switch behavior, we sought to develop a sequence-to-

function relationship for shRNA switches using such algorithms in combination with our 

model (Figure 3.6A). On the basis of our tuning analysis, we identified KComp as the sole 

parameter that reflects partitioning between active and inactive conformations and maps 

to the competing strand. The free energy difference (ΔG) between conformations is 

directly related to KComp such that transfer function prediction is possible by calculating 

ΔG from sequence information with the aid of structure prediction algorithms, converting 

this value into KComp, and inserting KComp into Equation (3.1) to quantitatively relate 

ligand concentration and target gene expression levels. A fully determined model requires 

values for the remaining model parameters; as these parameters are not currently 

amenable to calculation in silico, experimental estimation can be conducted with a 

minimal set of experiments on the basis of our model construction (Supplementary text 

S3.1). 

We first determined if ΔG values calculated from the algorithm correlate with the 

measured basal expression levels for shRNA switches with varying competing strand 

sequences. The implicit assumption is that competing strand alterations affect only 

conformational partitioning, which can be calculated with the structure prediction 

algorithms. We evaluated ΔG (ΔGmethod) by separating active and inactive conformations 

on the basis of the minimal free energy (MFE) and the weighted energies from a partition 

function (PF) calculation (Supplementary text S3.2 and Supplementary Figure S3.5), 

where both methods are commonly used to evaluate RNA folding in vitro and in vivo. 
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These methods were employed to calculate ΔGmethod for shRNA switches S1–10, which 

differ only in their competing strand sequence. 
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Figure 3.6 Extended model enables sequence-to-transfer function prediction and guides the 

forward design of optimized shRNA switches. (A) General process to convert shRNA switch 

sequence information into a predicted transfer function. RNA secondary structure algorithms and 

the method displaying the highest correlation strength (‘Stems’ method; Supplementary text S3.2 

and Supplementary Figure S3.5) were used to calculate the free energy difference between active 

and inactive conformations (ΔGmethod). This value is subsequently used to calculate KComp, which 

is inserted into the extended model to yield the predicted relationship between ligand 

concentration and target gene expression levels. (B) Predicted relationship between basal 

expression levels and calculated free energy difference (ΔGmodel) between active and inactive 

conformations. (C) Sequence–function relationship for shRNA switches under the ‘Stems’ 

method. This method links sequence information to basal expression levels with the aid of RNA 

secondary structure prediction algorithms. ΔG was calculated (ΔGmethod) according to this method 

for shRNA switch sequences S1–10 and plotted with the associated measured basal expression 

levels. The strength of the three-parameter curve fit was evaluated on the basis of the coefficient 

of determination (R2). Each data point represents one shRNA switch. (D) Extended model 

predictions for the relationship between ΔGmethod and dynamic range (η). η is defined as the ratio 

of GFP (%) at high (3 mM) and low (1 mM) theophylline concentrations. Curves represent 

shRNA switches containing the smaller theophylline aptamer (▬ ; e = 0.94, KApt = 0.015 µM-1) 

or the larger theophylline aptamer (▬ ; e = 0.85, KApt = 0.016 µM-1), respectively. (E) Values of 

η for shRNA switches containing the larger theophylline aptamer (S1–10; ○) or the smaller 

theophylline aptamer (S11–25; ■) as a function of ΔGmethod. Each data point represents one 

shRNA switch. S13 (the optimized shRNA switch) and S1 (the original shRNA switch) are 

marked. (F, G) Flow cytometry data for HEK293T tTA-d2EGFP cells transfected with S1 (F) or 

S13 (G) in the presence (+th, ▬) or absence (-th, ▬) of 3 mM theophylline. Histograms are 

included for the untransfected population of each switch in the absence of theophylline (neg, ▬) 
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or cells transfected with the original shRNA targeting EGFP in the absence of theophylline (sh, 

▬). 

 

To measure the correlation strength between ΔGmethod and basal expression levels for 

either method, we performed a least-squares fit using a three parameter equation of the 

same form as our model with both data sets. Ideally, the fit relationship between ΔGmethod 

and measured basal expression levels should align with the same relationship predicted 

by the model (Figure 3.6B), where ΔG (ΔGmodel) is related to KComp according to 

Equation (3.3). Both MFE and PF calculations failed to provide a significant correlation 

between ΔGmethod and basal expression levels (Supplementary Figure S3.6), suggesting 

that these methods are insufficient for accurate prediction of RNA folding dynamics in 

vivo. 

For all competing strand tuning strategies, increasing the stability of the inactive 

conformation always resulted in an increase in basal expression (Figure 3.3B–G). The 

MFE and PF methods did not effectively capture each energetic shift potentially due to 

the inclusion of binding interactions outside of the major stems. We hypothesized that the 

interactions outside of the competing strand domain are less prevalent in vivo and are 

biasing the energetic calculations. To examine this possibility, we devised a third method, 

the ‘Stems’ method, that accounts only for the energetics of the major stem in each 

conformation (Supplementary Figure S3.5). Implementing the ‘Stems’ method resulted in 

a strong correlation (R2 = 0.94) between basal expression levels and ΔGmethod (Figure 

3.6C). 

Despite the absence of a perfect overlap between the correlation of the ‘Stems’ 

method and that predicted by our model (Figure 3.6B and C), the correlation established a 
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significant empirical link between shRNA switch sequence and behavior in the absence 

of ligand. This correlation can be assimilated into the model by equating basal expression 

levels predicted by the fit equation and the model to determine the relationship between 

ΔGmethod and KComp (Supplementary text S3.2). Doing so yields a predictive component 

transfer function that is now dependent on the calculated value of ΔGmethod: 
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where C1-3 are empirical constants from the fit correlation. Our extended model provides 

a general framework for predicting shRNA switch transfer functions from sequence 

information, where energetic values produced from structure prediction algorithms are 

inserted into the model for the prediction of switch behavior. Although the extended 

model currently requires parameter fitting to yield the predicted relationship between 

ligand concentration and target gene expression levels, the framework establishes a 

starting point for the development of methods that rely on in silico calculations for 

transfer function prediction from sequence information. 

 

Model-guided forward design of shRNA switches with optimized transfer functions 

To apply the extended model to the forward design of shRNA switches with 

defined functional properties, we sought to design a theophylline-regulated shRNA 

switch displaying a maximized dynamic range (η). η is defined as the ratio of GFP levels 

at high (3 mM) and low (1 mM) theophylline concentrations. We used our extended 

model to calculate the range of ΔG values where η is maximized. Model predictions 

suggest that γ is maximized for switches with ΔGmethod ≈ -3 kcal/mol and that use of the 

(3.2) 
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smaller theophylline aptamer (higher e) yields a higher maximum (Figure 3.6D). To 

evaluate the predicted landscape, we designed new shRNA switches (S13–25) that 

include the smaller theophylline aptamer and display ranging ΔG values, generated 

component transfer functions and calculated η. Plotting ΔGmethod against the measured 

value of η for all theophylline-regulated shRNA switches (S1–25; Figure 3.6E) shows a 

maximum for switches containing the smaller theophylline aptamer that is higher than 

that for the switches containing the larger aptamer. Furthermore, both maxima existed at 

ΔGmethod ≈ -3 kcal/mol as predicted by the extended model supplemented with the 

empirical parameter values, and the best switch (S13) was approximately equal to the 

theoretical maximum of η according to model predictions (ηmax,theor = 5). Flow cytometry 

data illustrate the improvement in dynamic range (Supplementary Figure S3.7) for the 

best shRNA switch (S13; Figure 3.6G) as compared to the original shRNA switch (S1; 

Figure 3.6F). 

To examine the generality of shRNA switch design and functionality, we 

designed a set of shRNA switches targeting the endogenous La protein. Following 

selection of an shRNA sequence that yielded moderate knockdown of La as assayed by 

qRT–PCR, six shRNA switches (L1–6) were constructed with the smaller theophylline 

aptamer and various competing strand sequences covering a range of ΔG values. Each 

shRNA switch exhibited variable response to 1.5 mM theophylline that was not observed 

for the base shRNA (Supplementary Figure S3.8). As observed for the GFP-targeting 

shRNA switches, use of the ‘Stems’ method provided a suitable correlation between 

basal levels and ΔGmethod, whereas the MFE and PF methods did not. Supplying the 

model with fit values for C1-3 yielded a predicted dynamic range trend that closely 
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matched the experimental data (Figure 3.7A and B). Interestingly, when the values of 

fshRNA and e calculated from the La-targeting base shRNA and an shRNA switch 

preferentially adopting the active conformation (L6) were combined with the remaining 

parameter values from the GFP experiments, the resulting trend predicted the same 

maximum dynamic range with a shifted value of ΔGmethod corresponding to the maximum 

dynamic range. The results suggest that the shRNA sequence affects calculations with the 

‘Stems’ method such that empirical values are specific to individual sequences and 

experimental conditions. However, the ‘Stems’ method produced a strong correlation 

such that the model may be implemented in future designs by generating a small set of 

shRNA switches covering ΔGmethod values of approximately -5 to 0 kcal/mol and 

measuring basal expression levels. Thus, shRNA switches can be constructed to target 

different genes, and the model can be used as a tool to guide the forward design of 

switches displaying optimal behavior. 
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Figure 3.7 Model application guides the forward design of shRNA switches targeting an 

endogenous gene. (A) Extended model predictions for the relationship between ΔGmethod under the 

‘Stems’ method and dynamic range (η) using empirical parameter values determined from the 

GFP experiments and experimental parameters determined from the La control experiments (▬; 

fshRNA = 0.6, e = 0.72), or extrapolated empirical parameter values determined from the La switch 

experiments (▬) (Supplementary Figure S3.8). (B) Relationship between ΔGmethod and 

experimental dynamic range (η) for La-targeting shRNA switches L1–6. Plasmids harboring 

shRNA switches L1–6 displaying a range of ΔGmethod values were transiently transfected into 

HEK293T tTA-d2EGFP cells in the presence or absence of 1.5 mM theophylline and La mRNA 

levels were analyzed by qRT–PCR (Supplementary Figure S3.8). Each data point represents one 

shRNA switch. The dashed line represents the apparent increase in La mRNA levels upon 

theophylline addition observed for the original shRNA (shL). 

 

DISCUSSION 

A comparison between the framework described here and a recently described 

ligand-controlled shRNA system (An et al, 2006) highlights important design strategies 

to engineer domain swapping and tuning of the transfer function into synthetic riboswitch 

systems. In the previous design, ligand control of RNAi was achieved through direct 

coupling of the theophylline aptamer and an shRNA stem. This design inherently limits 

aptamer swapping, as the aptamer must perform ligand binding coordinated with 

modulation of Dicer processing, and prevents tuning of the transfer function, as sequence 

changes that modulate Dicer processing cannot be implemented without a complete loss 

of ligand responsiveness. In contrast, we propose here a framework on the basis of the 

coupling of three distinct domains that carry out separate functions necessary to convert 
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ligand binding into modulation of RNAi activity. Our system requires that the aptamer 

performs one function, ligand binding, and the modulation of RNAi processing is 

performed by a separate domain, the competing strand. The competing strand permits 

fine-tuning of the transfer function and enables modular coupling of the aptamer and 

shRNA stem domains, as confirmed by independently replacing each domain and 

demonstrating preservation of functionality. 

We developed a model to enhance our understanding of shRNA switch activity 

and identified five tuning strategies reflected in three model parameters, KComp, KApt, and 

e, that map specifically to sequence changes in the competing strand or aptamer domains. 

Our model also established important shRNA switch design guidelines. The first is that 

basal expression levels are determined by a collection of factors: shRNA potency 

(fshRNA), shRNA switch processability (e) and prevalence of the active conformation 

(KComp). To achieve a desired basal expression level, all factors must be considered in the 

switch design. Another guideline originates from the observation that larger aptamers 

coincided with increased basal expression levels, potentially due to sterically hindering 

processing by the RNAi machinery. The specific contribution of secondary or tertiary 

structure to the inhibitory effect is unclear, although further understanding of how the 

RNAi machinery specifically interacts with the shRNA through crystallographic or 

mutational studies may shed light on this dependence. Our results suggest that shRNA 

switch sequence length has an upper limit before compromising activity, where future 

engineering efforts may focus on alleviating or entirely removing this limitation. 

Furthermore, if achieving low basal expression levels is critical and a set of aptamers 

against the same ligand are available, use of smaller aptamers may be preferred even at a 
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cost to aptamer affinity. Such a guideline may even direct library design for the selection 

of new aptamers by placing an upper limit on the length of the randomized sequence. 

We incorporated RNA folding algorithms into our model for in silico prediction 

of shRNA switch behavior in vivo. The resulting model yielded a framework for the 

forward design of shRNA switches with specified functional properties. This was 

achieved by linking RNA secondary structure prediction algorithms, which convert 

sequence information into energetic values, to our model, which converts energetic 

values into switch behavior, to provide an empirical sequence–function relationship. The 

specific method used to calculate the free energy difference (ΔGmethod) between active 

and inactive conformations deviated from commonly used methods (MFE and PF 

calculations) on the basis of observations from the experimental tuning trends. Our 

alternative method may provide a better correlation with experimental results by focusing 

the prediction of KComp to the region of the switch in which the competing strand binding 

events are occurring, ignoring energetic contributions from other regions of the switch 

molecule that may not be relevant to the in vivo conformational switching process. Our 

analysis moves towards direct sequence-to-function relationships and suggests that 

commonly used methods for predicting RNA structure and behavior should be carefully 

evaluated when applied to in vivo environments. RNA folding in vivo is a complex 

process, and algorithms that account for folding kinetics (Danilova et al, 2006) and 

ulterior structural formation (Parisien and Major, 2008), such as pseudoknots or non-

canonical base-pairing interactions, may increase the accuracy of the model as well as 

provide insight into sequences that deviate from model predictions (Figures 3.6E and 

7B). For practical application, newer algorithms will need to be more fully developed to 
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offer the same functionalities as existing algorithms, such as the ability to rapidly scan 

suboptimal structures, calculate the energetics of multiple RNA strands, and perform a 

partition function calculation. Although the PF method did not produce a strong 

correlation using existing algorithms, non-canonical base-pairing interactions may have 

been an important factor that will be accounted for with newer algorithms. 

On the basis of the demonstrated modularity and tunability of our platform, 

shRNA switches can be implemented towards various applications. The required 

dynamic regulatory range of a given application will be one of the main considerations in 

utilizing shRNA switches, as the switches are practically limited to an ~10-fold induction 

ratio on the basis of the maximum achievable knockdown with an endogenously 

expressed shRNA. However, many endogenous non-coding RNAs, including miRNAs, 

exhibit similar restrictions on dynamic regulatory range and have important functions in 

diverse biological processes, suggesting that this limited dynamic range is not absolutely 

restrictive to the utility of shRNA switches as dynamic gene regulatory components. 

As one potential application, shRNA switches can be applied to disease therapy 

by sensing intracellular disease markers and inducing apoptosis or cell cycle arrest only 

in the affected cells as suggested previously (Rinaudo et al, 2007). When a context-

dependent concentration threshold divides diseased and normal cells, tunability is 

essential to reduce the likelihood of false positives or negatives. In addition, shRNA 

switches can be integrated into synthetic genetic circuits to generate advanced control 

schemes in biological systems. Such systems often exhibit complex dependencies on the 

dynamics of component interactions, and tuning of component behavior is often 

necessary to achieve optimal system performance. Through the fine-tuning strategies and 
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model-guided forward design tools described here, shRNA switches may be used to 

address challenges faced in biological network design and serve as complex regulatory 

components in synthetic biology (Endy, 2005; Keasling, 2008; Savage et al, 2008). 

 

MATERIALS AND METHODS 

Plasmid construction. All shRNAs were cloned into pSilencer 2.1-U6 puro (Ambion). 

The original shRNA present in pSilencer was used as a scrambled shRNA control. The 

pSilencer backbone was modified to co-express DsRed-Express in 293T cells by cloning 

the SV40 origin of replication, CMV IE promoter, and DsRed-Express into the NsiI/MfeI 

restriction sites. The original XhoI site present in the backbone was removed by XhoI 

cleavage, extension with the large Klenow fragment (New England Biolabs), and 

ligation. To clone the shRNA switches, the original shRNA followed by a 6-nucleotide 

(nt) string of T’s was cloned into BamHI/HindIII directly downstream of the U6 

promoter. The original shRNA was converted into an shRNA switch by cloning the 

remaining sequence (Supplementary Table S3.1) into XhoI/XbaI contained within the 

shRNA loop region. This allowed cloning in parallel of multiple shRNA switches that are 

comprised of the same shRNA region. All cloning steps involved annealing of 5’-

phosphorylated synthetic oligonucleotides (Integrated DNA Technologies) and ligation 

into the backbone vector. All restriction enzymes and T4 DNA ligase were purchased 

from NEB. All constructs were sequence-verified (Laragen Inc.), where sequences are 

provided in Supplementary Table S3.1. 
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Preparation of RNAs. S4t was transcribed in vitro from an annealed template containing 

the T7 promoter (5’-TTCTAATACGACTCACTATAGGG-3’, where G is the first 

transcribed nucleotide) using the Ampliscribe T7 transcription kit (Epicentre) according 

to the manufacturer’s instructions. Following transcription and DNase treatment, 

unincorporated NTPs were removed using a NucAway clean-up column (Ambion). 5’-

phosphates were subsequently removed using Antarctic phosphatase (NEB). 

Dephosphorylated RNA was then gel-purified on a 6% denaturing polyacrylamide gel 

and quantified using an ND-1000 spectrophotometer (NanoDrop). RNAs were 5’-

radiolabeled using T4 PNK (NEB) and [γ-32P]-ATP, purified using a NucAway clean-up 

column, and gel-extracted on a 6% denaturing polyacrylamide gel. 

 

In-line probing. In-line probing was conducted as described previously (Soukup and 

Breaker, 1999). After heating at 70°C for 2 min followed by slow cooling to room 

temperature, 5’-radiolabeled RNAs (0.2 pmol) were incubated for 40 h at 25°C in varying 

amounts of theophylline with 50 mM Tris–HCl pH 8.5 and 20 mM MgCl2. Reactions 

were terminated by adding an equal volume of loading buffer (10 M urea, 1.5 mM 

EDTA). The alkaline hydrolysis ladder was generated by incubating RNA in 50 mM 

NaHCO3/Na2CO3 pH 9.2 and 1 mM EDTA for 6 min at 95°C. The G-specific cleavage 

ladder was generated by incubating RNA in 1U RNase T1 (Ambion) with 20 mM sodium 

citrate pH 5.0, 1 mM EDTA, 7 M urea, and 3 mg yeast RNA for 25 min at 25°C. RNAs 

were resolved on an 8% denaturing polyacrylamide gel, dried for 90 min at 70°C, then 

visualized on an FX phosphorimager (Bio-Rad). Band quantification was performed 

using the Quantity One software package (Bio-Rad). To account for well-loading 
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variability, quantified band intensities were normalized to an adjacent band of similar 

intensity showing negligible theophylline dependence. 

 

Cell culture and transfection. All cells were maintained at 37°C in a 5% CO2-

humidified incubator. HEK293T, HEK293, HeLa, and HEK293T tTA-d2EGFP cells 

were maintained in minimal essential medium alpha media (Invitrogen) supplemented 

with 10% fetal bovine serum (FBS) (Invitrogen), whereas MDA-MB-231 cells were 

maintained in RPMI 1640 with glutamine (Invitrogen) supplemented with 10% FBS. 

Cells were transfected 1 day after seeding using Fugene 6 (Roche) according to the 

manufacturer’s instructions, followed by the immediate addition of ligand. HEK293T 

tTA-d2EGFP were transfected with shRNA vector (250 ng), whereas cells lacking 

endogenous GFP were cotransfected with shRNA vector (250 ng) and pcDNA3.1(+) 

(Invitrogen) harboring the d2EGFP gene (25 ng) (Clontech). One day post-transfection, 

the media and ligand were replaced. Transfected cells were collected 3 days post-

transfection for flow cytometry analysis. 

 

Cell fluorescence analysis. Three days post-transfection, cells were trypsinized and 

subjected to flow cytometry analysis using the Cell Lab Quanta SC MPL (Beckman 

Coulter). Cells were first gated twice for (1) viability as assessed by electronic volume 

versus side scatter and (2) green fluorescence above autofluorescence to remove a non-

fluorescent subpopulation. Cells were then gated for either low or high DsRed-Express 

fluorescence, representing untransfected or transfected cells, respectively. To minimize 

well-to-well variability, the median green fluorescence value of transfected cells were 
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divided by that of untransfected cells in the same well and reported as GFP(%). For cells 

cotransfected with shRNA and GFP plasmids, GFP(%) is the relative GFP levels when 

normalized to mean red fluorescence followed by normalization to cells transfected with 

the scrambled shRNA. See Supplementary Figure S3.9 for representative plots and the 

corresponding gates for transfected and untransfected cells. 

 

Modelling and RNA energetic calculations. Calculation of RNA free energy and 

partition functions were performed using RNAStructure (Mathews et al, 2004). KComp 

and the energy difference between inactive and active conformations are related by the 

following expression: 
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where NA is Avogadro’s number, kB is the Boltzmann constant, and T is temperature (K). 

See Supplementary texts S3.1 and S3.2 for a full description of the model derivation, 

methods for calculating folding energetics, and prediction of the transfer function for a 

given shRNA switch sequence. Equation fits to measure the correlation strength between 

ΔGmethod and basal expression levels were performed by least squares analysis using the 

following expression that has the same mathematical form as Equation (3.1): 
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where C1-3 are the fit constants. Supplementary Table S3.2 contains energetic values 

calculated under each method along with experimentally determined expression levels. 

To model the multi-input system attained by cotransfecting equimolar 

concentrations of plasmids harboring S4 and X1, the knockdown achieved by the original 

(3.3) 

(3.4) 
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shRNA was halved to reflect the 50% decrease in delivered plasmid DNA. The ligand-

dependent contributions to decreased expression levels were combined into a single 

expression to reflect the additive nature of shRNA levels mediating knockdown of the 

target gene: 
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where the subscripts S4 and X1 designate parameter values generated by a fit to the 

corresponding individual component transfer functions, and Lth and Lxan represent the 

exogenous theophylline or hypoxanthine concentration, respectively. 
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SUPPLEMENTARY INFORMATION 

 

 

 

Supplementary Figure S3.1 Theophylline dependence of in-line cleavage at C56 (■) and C74 

(○) of S4t. Individual bands from the in-line gel (Figure 3.1B) were quantified and normalized to 

an adjacent constant region to remove bias from inconsistent well loading. C56 bands were 

normalized to U47 bands, while C74 bands were normalized to U100-G102 bands. Curves were 

fit using a standard Michaelis-Menten model, with determined KD values of 3.6 µM and 6.8 µM 

for C56 and C74, respectively. 
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Supplementary Figure S3.2 Antisense inhibition of guide strand activity represses RNAi-

mediated silencing of GFP. Cells stably expressing EGFP were cotransfected with the designated 

oligo and a plasmid that expresses a scrambled shRNA (neg), shRNA switch S1, or an shRNA 

targeting a different region of the EGFP mRNA (sh’). Mean fluorescence relative to neg are 

based on flow cytometry measurements of transfected cells. The guide strands are shown in 

green, 2’-O-Methyl nucleotides in black, and deoxy nucleotides in blue. Error bars represent one 

standard deviation from duplicate transfected wells. 
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Supplementary Figure S3.3 Functionality of shRNA switches in different cell lines. Cells 

lacking endogenous EGFP expression were cotransfected with the shRNA construct and an EGFP 

expression plasmid in the presence (■) or absence (□) of 3 mM theophylline. Mean fluorescence 

values were normalized to red fluorescence values (DsRed-Express) contributed by the shRNA 

construct. These values were then normalized to those cells transfected with a scrambled shRNA 

(neg). Error bars represent one standard deviation from triplicate transfected wells.  
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Supplementary Figure S3.4 Derived model equation and model fit of theophylline response 

curve for S1 data from Figure 3.1D. See Supplementary Text S3.1 for model derivation. The 

value of fshRNA was set by a separate transfection experiment with the original shRNA targeting 

EGFP (sh) under the same conditions. The value of e was determined from the average basal 

expression levels of shRNA switches that highly favor the active conformation (S5, S7, S9, S10). 

Parameters KComp, KApt, and h were produced by a least-squares fit (▬) to the S1 data (●). 

Parameter values are reported to the right of the plot. 
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Supplementary Figure S3.5 Depiction of methods to calculate ΔG from shRNA switch 

sequence information. Base-pairing probabilities of base-pairs designated by arrows were used 

for the PF method. The boxed sections designate the major stem in the active and inactive 

conformations used under the Stems method. 
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Supplementary Figure S3.6 Alternative methods to relate shRNA switch sequence and in vivo 

basal expression levels. ΔG was calculated (ΔGmethod) for shRNA switches S1-10 using RNA 

secondary structure prediction algorithms. Plots relating ΔGmethod and measured basal expression 

level for shRNA switches S1-10, where ΔG was calculated using the MFE method or the PF 

method. A three-parameter equation with the same mathematical form as the model was fit by 

least-squares analysis to each data set. 
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Supplementary Figure S3.7 Theophylline response curve for the initial (S1, ●) and optimized 

(S13, ●) shRNA switches. Median fluorescence values from flow cytometry analysis were 

normalized to that of untransfected cells in the same well. Error bars represent one standard 

deviation from duplicate transfected wells. 
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Supplementary Figure S3.8 Theophylline-mediated gene regulation of endogenous La protein 

with shRNA switches. (A) qRT-PCR of La protein mRNA from HEK293T tTA-d2EGFP cells 

transfected in the presence (■) or absence (□) of 1.5 mM theophylline. Calculated free energy 

differences from the ‘Stems,’ MFE, and PF methods are displayed below each shRNA switch. 

Our model predicts decreasing basal levels for increasing bias toward the active conformation 

(higher values of ΔGmethod). Coefficient of determination (R2) for each method is included. Error 

bars represent the standard deviation for quadruplicate qRT-PCR measurements. (B) Curve fit to 

extrapolate empirical parameters C1-3 using the ‘Stems’ method using a least-squares fit. Dashed 

line marks knockdown achieved by base shRNA shL.  
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Supplementary Figure S3.9 Representative histograms and dot plots for HEK293T tTA-

d2EGFP cells transiently transfected with a plasmid expressing DsRed-Express and either a 

scrambled shRNA (Scr), the base shRNA targeting EGFP (sh), or shRNA switch S13. Gates in 

the histogram capture the transfected (H) and untransfected (L) populations in each well, where 

the untransfected gate was set based on a mock-transfected control that was below the limit of 

detection (data not shown). The two bottom rows show the resulting GFP histograms on linear or 

logarithmic axes for the transfected (▬) and untransfected (▬) gates. The calculation of GFP(%) 

used in the main text is shown on the right. Median GFP levels of each transfected population 

were normalized to that of untransfected cells in the same well, thereby reducing well-to-well 

variability. As compared to the mean, the median of each histogram gave more consistent results 

for the transient assays. 
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Supplementary Table S3.1 shRNA and shRNA switch sequences. Color schemes 
correspond to Figure 1A. Oligos are written from 5’ to 3’ and reflect the insert sequence 
cloned into the base plasmid. L1-6 were cloned into shL, while all other switch sequences 
were cloned into sh. 

Name Aptamer Sequence Cloning 
sites (5'/3') 

Database 
# 

neg 
GGATCCACTACCGTTGTTATAGGTGTTCAAG
AGACACCTATAACAACGGTAGTTTTTTGGAA
AAGCTT 

pCS626 

sh 
GGATCCGGTGCAGATGAACTTCAGGGTCAG
CTCGAGTCTAGAGCTGACCCTGAATCATCT
GCACCTTTTTTGGAAGCTT 

pCS741 

shL 

N
/A

 

GGATCCGGCTTCCCAACGATGATGCAACTC
CTCGAGTCTAGAGGAGTTGCATCAGTTGGG
AAGCCTTTTTTGGAAGCTT 

BamHI/ 
HindIII 

pCS1457 

        

S1 CTCGAGATACCAGCATCGACTCTTCGATGC
CCTTGGCAGCTCGGGCTGACCCTGACTAGA pCS630 

S1' 
CTCGAGGACCCAGCATCGACTCTTCGATGC
AAATGGCAGCTCGGGCTGACCCTGACTAG
A 

pCS847 

S2 
CTCGAGATACCAGCATCGACTCTTCGATGC
CCTTGGCAGCTCGGGCTGACCCTGAAGCTA
GA 

pCS633 

S3 
CTCGAGATACCAGCATCGACTCTTCGATGC
CCTTGGCAGCTCGGGCTGACCCTGAACTAG
A 

pCS631 

S4 CTCGAGATACCAGCATCGACTCTTCGATGC
CCTTGGCAGCTCGGGCTGACCCTGCTAGA pCS628 

S5 CTCGAGATACCAGCATCGACTCTTCGATGC
CCTTGGCAGCTCGGGCTGACCCTCTAGA pCS632 

S6 
CTCGACGATACCAGCATCGACTCTTCGATG
CCCTTGGCAGCGTCGGGCTGACCCTGCTA
GA 

pCS848 

S7 CTCGATACCAGCATCGACTCTTCGATGCCC
TTGGCAGCGAGCTGACCCTGCTAGA pCS807 

S8 CTCGAGATACCAGCATCGACTCTTCGATGC
CCTTGGCAGCTCGAGCTGACCCTGCTAGA pCS629 

S9 CTCGAGATACCAGCATCGACTCTTCGATGC
CCTTGGCAGCTCGAGCTGATCCTGCTAGA pCS1005 

S10 CTCGATACCAGCATCGACTCTTCGATGCCC
TTGGCAGCGAGCTGACCCTGACTAGA pCS808 

S11 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGGGCTGACCCTGACTAGA pCS634 

S12 CTCGAGATACCACCGAAAGGCCTTGGCAGC
TCGGGCTGACCCTGACTAGA pCS635 

S13 

th
eo

ph
yl

lin
e 

CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGGGCTGACCCTGCTAGA 

XhoI/ 
XbaI 

pCS911 
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Supplementary Table S3.1 cont’d. 

Name Aptamer Sequence Cloning 
sites (5'/3') 

Database 
# 

S14 CTCGATACCAGCCGAAAGGCCCTTGGCAGC
GAGCTGACCCTGCTAGA pCS908 

S15 CTCGATACCAGCCGAAAGGCCCTTGGCAGC
GGGCTGACCCTGCTAGA pCS909 

S16 CTCGATACCAGCCGAAAGGCCCTTGGCAGC
GAGCTGACCCTGACTAGA pCS910 

S17 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGAGCTGACCCTGCTAGA pCS941 

S18 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGAGCTGACCCTACTAGA pCS942 

S19 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGGGCTGACCCTGAACTAGA pCS1001 

S20 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGGGCTGACCCTGAAGCTAGA pCS1002 

S21 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGGGCTGACCCTGGCTAGA pCS1003 

S22 CTCGATACCAGCCGAAAGGCCCTTGGCAGC
GAGCTGACCCTGAACTAGA pCS1004 

S23 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGAGCTGATCCTGCTAGA pCS1061 

S24 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGGGCTGATCCTGCTAGA pCS1062 

S25 

th
eo

ph
yl

lin
e 

CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGGGCTGATCCTGACTAGA 

XhoI/ 
XbaI 

pCS1063 

        

X1 CTCGAGTGTATTACCCAGCGAGGTCGACTC
GAGCTGACCCTGACTAGA pCS870 

X1' CTCGAGTTTCAAACCCAGCGAGGTACACTC
GAGCTGACCCTGACTAGA pCS913 

X2 CTCGAGTGTATTACCCAGCGAGGTCGACTC
GAGCTGACCCTGAACTAGA pCS972 

X3 

xa
nt

hi
ne

/g
ua

ni
ne

 

CTCGAGTGTATTACCCAGCGAGGTCGACTC
GAGCTGACCCTGCTAGA 

XhoI/ 
XbaI 

pCS869 

        

T1 

te
tra

cy
cl

in
e 

CTCGAAAACATACCAGAGAAATCTGGAGAG
GTGAAGAATACGACCACCTCGAGCTGACCC
TGCTAGA 

XhoI/ 
XbaI pCS895 
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Supplementary Table S3.1 cont’d. 

Name Aptamer Sequence Cloning 
sites (5'/3') 

Database 
# 

L1 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGAGGAGTTGCATCCTAGA pCS1458 

L2 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGAGGAGTTGCATTCTAGA pCS1459 

L3 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTTGAGGAGTTGCATCCTAGA pCS1460 

L4 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTTGAGGAGTTGCATACTAGA pCS1462 

L5 CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTCGAGGAGTTGCACTAGA pCS1463 

L6 

th
eo

ph
yl

lin
e 

CTCGAGATACCAGCCGAAAGGCCCTTGGCA
GCTTGAGGAGTTGCACTAGA 

XhoI/ 
XbaI 

pCS1464 
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Supplementary Table S3.2 Calculated free energies and corresponding expression 
levels of theophylline-regulated shRNA switches. η: ratio of relative GFP levels at 
exogenous theophylline concentrations of 3 mM and 1 µM for each shRNA switch.  

ΔG (method) 
Name Aptamer Basal expression 

levels (%) η 
MFE PF Stems 

neg 90.7 1.07 N/A 

sh 

N
/A

 

4.6 1.19 N/A 

              

S1 33.8 2.71 -0.1 0.6 -5.1 

S1' 37.0 1.39 -0.3 0.8 -5.1 

S2 76.7 1.25 0.0 -0.2 -8.6 

S3 52.8 1.68 -0.6 -0.1 -6.1 

S4 23.8 3.65 3.2 3.4 -3.2 

S5 21.1 3.58 6.2 6.2 -0.6 

S6 42.5 2.20 2.1 2.7 -5.7 

S7 14.5 2.32 2.5 3.2 0.4 

S8 37.3 2.47 0.3 1.2 -4.1 

S9 12.1 4.75 2.9 3.2 -1.5 

S10 29.4 3.60 -0.9 -0.1 -1.5 

S11 20.0 4.20 0.6 0.9 -5.1 

S12 13.4 4.06 -0.1 0.8 -5.1 

S13 16.7 5.61 4.0 3.8 -3.2 

S14 14.3 2.86 2.6 3.3 0.4 

S15 

th
eo

ph
yl

lin
e 

11.2 2.56 9.9 9.1 1.3 
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Supplementary Table S3.2 cont’d. 

ΔG (method) 
Name Aptamer Basal expression 

levels (%) η 
MFE PF Stems 

S16 21.7 3.85 0.1 0.1 -1.5 

S17 17.5 3.12 2.5 2.0 -4.1 

S18 19.5 3.89 5.7 4.5 -1.5 

S19 38.3 2.38 -0.6 0.0 -6.1 

S20 49.8 1.75 0.0 -0.2 -8.6 

S21 10.8 2.52 4.6 4.6 -4.2 

S22 35.0 2.73 -0.9 -0.9 -2.4 

S23 16.6 3.30 5.1 4.4 -1.5 

S24 10.8 3.00 6.6 6.1 -0.6 

S25 

th
eo

ph
yl

lin
e 

11.8 2.63 3.2 3.3 -2.5 
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Supplementary Text S3.1 

 

DERIVATION OF MATHEMATICAL MODEL 

 

We initially developed a mathematical model to examine the mechanism through 

which shRNA switches mediate ligand control of RNA interference (RNAi). Instead of 

drawing from existing models (Bartlett and Davis, 2006; Malphettes and Fussenegger, 

2006; Raab and Stephanopoulos, 2004) that take into account the mechanistic steps and 

kinetics of RNAi that are well characterized, we chose to derive a simplified model that 

captures the steady-state behavior of shRNA switches and the fundamental mechanism 

that provides for ligand regulation of gene expression. The goal was to develop a model 

that predicts the relative steady-state expression levels of the target gene (f; output) as a 

function of exogenous ligand concentration (L; input) and can be easily adapted to 

predict shRNA switch activity in different cellular environments. 

To accomplish this we first began with the proposed mechanism for shRNA 

switch functionality (Figure 3.1A). This mechanism asserts that a single shRNA switch 

can adopt two conformations due to distinct base-pairing interactions. The active 

conformation (left) is processed by the RNAi machinery to an siRNA that initiates RNAi-

mediated silencing of target transcripts. Processing includes nuclear export by Exportin-5 

(Yi et al, 2003) and cleavage by the RNase III-like enzyme Dicer (Ketting et al, 2001). 

Conversely, the inactive conformation (middle) is not processed by the RNAi machinery. 

Ligand binding to the formed aptamer domain in the inactive conformation stabilizes this 
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conformation (right), thereby reducing overall processing of the shRNA switch to an 

siRNA. 

Model derivation began by assuming that the three conformations (active, 

inactive, and inactive bound to ligand) are at thermodynamic equilibrium as determined 

by KComp and KApt. KComp is the equilibrium partitioning constant between active and 

inactive conformations, while KApt is the association constant for binding between ligand 

and the inactive conformation. When normalized to the total shRNA switch 

concentration, the fraction of shRNA switches in the active conformation is 

   

 The next step was correlating the fraction of shRNA switches in the active 

conformation to relative expression levels of the target gene. Previous models have 

highlighted the importance of absolute expression levels of the RNAi substrate, target 

gene transcripts, and the RNA-induced silencing complex (RISC), as well as the rate of 

cell division (Bartlett and Davis, 2006). Recent work has elaborated on the mechanism of 

RNAi, including the emerging role of Dicer binding partners TRBP and PACT (Gregory 

et al, 2005; Kok et al, 2007; Lee et al, 2006), association of RISC and Dicer (Gregory et 

al, 2005), shuttling of the cleaved siRNA from Dicer to RISC (Gregory et al, 2005), 

cleavage and release of the passenger strand (Matranga et al, 2005; Rand et al, 2005), 

target site availability for efficient degradation of the target transcript (Westerhout and 

Berkhout, 2007), and the potential for saturation of Exportin-5 (Grimm et al, 2006; Yi et 

al, 2005). Rather than offer a descriptive model of RNAi that incorporates all of these 

( )LK1K1
1     

aptcomp ⋅++
=⎥

⎦

⎤
⎢
⎣

⎡
(3.6) . 
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mechanisms that are still under investigation, we chose an empirical route that requires 

minimal experimental data. 

 Excluding nuclear export by Exportin-5, the mechanistic steps described above 

apply to the linear cascade downstream of and including Dicer recognition and 

processing. Incorporation of three parameters, fshRNA, e, and h, can account for the 

dynamics of these steps. fshRNA is the relative knockdown achieved by the original shRNA 

– an RNA molecule comprised of a loop region and the shRNA stem sequence, e is the 

efficiency of shRNA switch processing by the RNAi machinery, and h is the hill 

coefficient that accounts for the nonlinearity between the concentration of Dicer-cleaved 

siRNAs and relative expression levels of the target gene. To capture the correlation 

between the prevalence of the active conformation and target gene expression levels, we 

used the following relationship: 

 

Introducing equation (3.6) into equation (3.7) yields the final form of the model: 

 

where the relative expression levels of the target gene (f) are a function of exogenous 

ligand concentration (L).  

 The power of our model lies in the ability to calculate realistic parameter values 

from a minimal set of experiments: fshRNA can be found in one experiment by measuring 

the relative knockdown of the target gene induced by an shRNA that contributes the 

shRNA stem, e can be calculated from basal expression levels from a few shRNA 

(3.8) ( )[ ] h- 
AptCompshRNA LK1K1 fe1   f ⋅++⋅−= , 

h 

shRNA

     
fe1   f ⎥

⎦

⎤
⎢
⎣

⎡
⋅−= (3.7) . 
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switches that strongly prefer the active conformation, and h can be calculated by 

generating a ligand response curve with one shRNA switch – as long as administration of 

the highest ligand concentration results in negligible knockdown of the target gene. The 

remaining model parameters, KComp and KApt, can be found from the same response curve 

used to calculate e, since varying KApt only changes the EC50 while varying KComp 

changes both EC50 and basal expression levels. A summary of the model parameters and 

how values are experimentally obtained are included in Supplementary Table S3.3 below. 

  

Supplementary Table S3.3 Description of model parameters. 

parameter initial determination description 

KComp fit to data Equilibrium partitioning constant between 
conformations equal to [inactive]/[active] (-) 

KApt fit to data Association constant between ligand and formed 
aptamer (1/μM) 

e extrapolated from data RNAi processing efficiency (-) 

fshRNA from shRNA data Relative knockdown by original shRNA (-) 

h fit to data Hill coefficient (-) 

 

 

To investigate the validity of the model, we experimentally determined model 

parameter values as described above: fshRNA was equated to the knockdown achieved with 

the original shRNA targeting EGFP (sh); e was calculated from the average basal 

expression levels produced by shRNA switches S5, S7, S9, and S10; and KComp, KApt, and 

h were determined by a model fit of the theophylline response curve for S1. The resulting 

parameter values are shown in Supplementary Figure S3.4. The fit curve aligns with the 
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response curve for S1, and the fit parameter values are realistic as described below for 

KApt and KComp. The EC50 is related to KApt and KComp according to the following: 

 

From the in-line assay results, the ratio of the apparent KD of S4t (5 µM) to the KD of the 

aptamer alone (0.29 µM (Zimmermann et al, 2000)) was ~ 17. Solving for KComp in 

equation (4) yields a value of 0.06. While this is below the fit value from the S1 data of 

0.17, S1 has one less base pair than S4 contributed by the competing strand. Thus, the 

value from S4t is anticipated to be closer to 0.17 if the extra base pair is included. The fit 

value for KApt (0.016 µM-1) from the S1 data was lower than that for the aptamer alone 

(3.4 µM), which can be attributed to a theophylline concentration drop across the cellular 

membrane as observed in E. coli (Koch, 1956) and S. cerevisiae (J Liang, J Michener, C 

Smolke, unpublished data, 2008). Hence the model faithfully follows the underlying 

mechanism of ligand regulation of gene expression mediated by shRNA switches and can 

capture in vivo behavior by utilizing a minimal set of experiments. 
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Supplementary Text S3.2 

 

FREE ENERGY CALCULATIONS AND MODEL EXTENSION 

 

The model derived in Supplementary Text S3.1 identified different tuning trends 

that were observed in our experimental analysis, although this form of the model only 

predicts qualitative shifts in the transfer function based upon nucleotide changes to a 

parent shRNA switch. We sought to augment the model with predictive capabilities for 

the forward design of shRNA switch sequences that yield desired transfer functions. We 

initially focused on KComp, the partitioning coefficient between active and inactive 

conformations, since it solely captured the effect of multiple changes to the competing 

strand and has a thermodynamic basis. Under basic thermodynamic assumptions, KComp is 

related to the free energy difference (ΔG) between the active and inactive conformations 

according to 

 

where NA is Avogadro’s number, kB is the Boltzmann constant, and T is temperature (K). 

If ΔG can be calculated for a given shRNA switch sequence, then the corresponding 

value of KComp can be calculated. When paired with the other experimentally-determined 

parameter values (Supplementary Text S3.1), this value of KComp can then be used in the 

model to predict the transfer function relating ligand concentration and relative gene 

expression levels. The initial challenge is calculating an experimentally valid ΔG from a 

given shRNA switch sequence. 

 , ( )CompBA KlnTkN
     

E
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Free energy calculation  

To calculate ΔG, we employed the RNA secondary structure prediction program 

RNAStructure 4.5 (Mathews et al, 2004) to output structural and energetic information 

for a given sequence. The program’s dynamic folding algorithm utilizes empirical energy 

values measured in vitro (Mathews et al, 2004) to predict RNA conformations and their 

relative free energy. Since application of the program to in vivo folding has rarely been 

addressed (Mathews et al, 2004), we first asked if ΔG values calculated from the program 

(ΔGmethod) correlated with measured basal expression levels for each shRNA switch. Two 

commonly used methods were initially employed to calculate ΔGmethod for S1-10 

(switches with the same aptamer domain and shRNA stem): minimal free energy of the 

active and inactive conformation (MFE method) and partition function calculation to find 

the relative probability of either general conformation (PF method). ΔGmethod values were 

then plotted with the associated basal expression levels measured in vivo (Supplementary 

Table S3.2) and compared to the expected trend from the model (ΔGmodel; Figure 3.6B). 

A three-parameter equation with the same mathematical form as the model was then fit to 

each data set using a least-squares analysis to evaluate the correlation strength, since a 

strong correlation is necessary for accurate prediction of the transfer function. The 

mathematical form used to fit the data was 

 

where C1 , C2 , and C3 are fit constants and ffit is the basal expression of the target gene 

for the fit curve. 

 

 , (3.11) 
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MFE method 

The minimal free energy conformation – the most stable conformation – has been 

considered to be representative of the actual tertiary structure, and the free energy of this 

conformation is often considered to represent overall energetics of the RNA sequence. 

Under the MFE method, the free energy is recorded for the most stable active and 

inactive conformation. The difference in these free energy values is then reported as 

ΔGmethod. The resulting plot (Supplementary Figure S3.6) shows no significant correlation 

and an associated weak fit (R2 = 0.35), suggesting that this method is insufficient for 

predicting transfer functions. 

 

PF method 

Calculation of the partition function is a more advanced and considered to be a 

more accurate method for the approximation of RNA energetics. All possible secondary 

structure conformations and their energies are calculated in order to identify the most 

prevalent conformation, which often deviates from the minimal free energy 

conformation. Under the PF method, the program outputs the probability of a given base-

pair based on the partition function calculation. To convert these probabilities into a value 

of ΔG, we first found the smaller value of the base-pair probabilities near the top and 

bottom of the upper shRNA stem (starting at the stem bulge) in the active conformation 

and the stem formed by the competing strand and the shRNA stem in the inactive 

conformation (Supplementary Figure S3.5). Base-pairs were chosen such that the same 

nucleotide in the shRNA stem was part of the selected base-pair in both conformations. 

This ensures that a base-pair probability only applies to one of the two conformations. In 
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other words the sum of the base-pair probabilities that include the same nucleotide for 

both conformations should always be less than one. Ideally, the sum should equal one, 

where all calculated sums for S1-10 were between 85% and 99% (data not shown). The 

value of ΔGmethod can be calculated from the base-pair probabilities according to the 

following: 

 

where PA and PI are the base-pair probabilities representing the active or inactive 

conformations, respectively. ΔGmethod values were calculated using the PF method and 

plotted in the same way as above (Supplementary Figure S3.6). The PF method provided 

a better fit (R2 = 0.53) when compared to the MFE method that qualitatively matched the 

model trend, although the fit is not suitable for predictive purposes. 

 

Stems method 

While increasing the extent of base-pairing between the competing strand and 

shRNA stem always resulted in an increase in basal expression levels (Figure 3.3B-G), 

the MFE and PF calculations output predicted an increase or decrease in free energy 

changes based on binding interactions outside of the major stems. We attributed the 

inaccuracy of the MFE and PF methods to the equal weight placed on these binding 

interactions. To remove these contributions to the energetic calculation, we devised a 

third method we term the ‘Stems’ method. This method only accounts for the energetic 

contributions from the major stems in the active and inactive conformations. The major 

stem for the active conformation spans from the shRNA stem bulge to the top of the 
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shRNA stem, while the major stem for the inactive conformation includes base-pairs 

formed between the shRNA stem and the competing strand (Supplementary Figure S3.5). 

The lower portion of the shRNA stem is ignored since it is present in both conformations. 

As before, we calculated ΔGmethod for S1-10 and plotted these values against the basal 

expression levels. The resulting plot (Figure 3.6C) shows a strong correlation (R2 = 0.94), 

a significant improvement over the other methods. 

 It is surprising yet insightful that the most accurate method only accounts for 

energetic contributions from regions that interact with the competing strand, which is 

precisely and solely where KComp maps. An inequality does exist between the fit curve 

from the ‘Stems’ method and model predictions in terms of the abscissa values and curve 

slope, which suggests that sequences outside of the major stem contribute to folding 

energetics in vivo in a way that is improperly treated by the MFE or PF method.  

 

Model extension 

Based on the strong correlation between ΔGmethod calculated from shRNA switch 

sequence and in vivo basal expression levels, the fit curve from the ‘Stems’ method can 

be incorporated into our model for the forward design of shRNA switches. This is 

accomplished by converting the value of ΔGmethod calculated from the ‘Stems’ method 

into KComp that can be used in the model to predict the transfer function. To perform this 

conversion, f from the model equation and ffit from the curve fit are set equal to each 

other. For successful conversion, the dynamic range (the range of f) of the model and fit 

curves must match exactly. This can be done by ensuring that 

 
 , (3.13) ( )∞→=⋅ methodfitshRNA ΔGf   fe-1



 104

where e and fshRNA are model parameters. Once set equal to each other, KComp can be 

found in terms of ΔGmethod: 

 

 Replacing KComp in the model with equation (5) yields the extended model: 

 

Following experimental determination of the remaining model parameter values 

(Supplementary Text S3.1), this equation can be used to predict relative expression levels 

of the target gene (fmodel) as a function of ligand concentration (L) by calculating ΔGmethod 

under the ‘Stems’ method using RNAStructure. 

Since the obtained fit parameter values are specific to shRNA switches S1-10, 

there is a question as to how parameter values and model accuracy will change for a new 

aptamer, target sequence, or cellular context. To address the generality of the model, we 

constructed six shRNA switches (L1-6) targeting the endogenous La protein that covered 

a range of values for ΔGmethod. Cells were transiently transfected with plasmids harboring 

each shRNA in the presence or absence of theophylline and assayed for La levels by 

qRT-PCR (Figure 3.7, Supplementary Figure S3.8). Parameter values C1-3 were again 

extrapolated through a least-squares fit of the basal expression data for L1-6. Similar to 

the GFP-targeting shRNA switches, a strong correlation was determined using the 

‘Stems’ method, which was not observed with the MFE and PF methods, that yielded a 

relationship between dynamic range and ΔGmethod closely matching experimental results. 
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However, the predicted relationship between ΔGmethod and dynamic range was slightly 

shifted as compared to that generated from the fit parameter values for S1-10 

supplemented with the shRNA potency (fshRNA) and aptamer inhibitory effect (e) 

determined for the La-targeting shRNA switches. The parameters fshRNA and e were 

calculated using basal levels from the base shRNA (shL) and an shRNA switch (L6) 

strongly biased toward the active conformation, respectively. The results suggest that the 

‘Stems’ method is suitable for the prediction of shRNA switch behavior in vivo when 

supplemented with empirical parameter values specific to each shRNA stem sequence. 

As demonstrated here the parameter values can be determined from the basal expression 

levels of only a few switches. As our understanding of dynamic RNA behavior in vivo 

progresses, future modeling efforts may provide more accurate methods that move 

toward de novo sequence-function prediction. 
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Supplementary Methods 

 

Antisense inhibition of RNAi. Oligonucleotides were chemically synthesized 

(Integrated DNA Technologies) with 3’ amino linkers (L). The following sequences were 

used, where 2’-O-methyl nucleotides are underlined and all other nucleotides are 2’-

deoxy: 2’OMe anti, 5’-CUGACCCUGAAGUUCAUCUGCACCL-3’; 2’OMe rev, 5’-

CCACGUCUACUUGAAGUCCCAGUCL-3’; deoxy anti, 5’-CTGACCCTGAAGTTCA 

TCTGCACCGCGL-3’. Oligonucleotides were cotransfected with the designated shRNA 

plasmid (500 ng) into HEK293T tTA-d2EGFP cells seeded in a 12-well plate using 

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions with a final 

oligo concentration of 50 nM. The media was replaced one day post-transfection and the 

cells were trypsinized and assayed by flow cytometry three days post-transfection. Only 

transfected cells were included in the analysis based upon high DsRed-Express 

expression levels. A separate shRNA (sh’) that targets the EGFP mRNA in a different 

location was included in the analysis. 

 

qRT-PCR. The following oligos were used for qRT-PCR against La protein (Acc # 

X13697) and the loading control GAPDH (Acc # NM_002046): La_fwd, 5’-

GGTTGAACCGTCTAACAACAG-3’; La_rev, 5’-ATGTCATCAAGAGTTGCATCAG-

3’; GAPDH_fwd, 5’-GAAGGTGAAGGTCGGAGTC-3’; GAPDH_rev, 5’-GAAGATG 

GTGATGGGATTTC-3’. HEK293T tTA-d2EGFP cells were transfected in a 12-well 

plate in the presence or absence of 1.5 mM theophylline with plasmids harboring the 

hygromycin B resistance gene and an shRNA targeting La protein mRNA (Acc # 
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X13697). shRNA sequences are contained in Supplementary Table S3.1. One day post-

transfection, cells were subcultured and seeded into a 6-well plate. One day later, the 

media was replaced and supplemented with 300 µg/ml puromycin. Four days after adding 

hygromycin, dead cells were removed with a 1X PBS wash and total RNA was extracted 

using the RNeasy Protect Mini kit (Qiagen) according to the manufacturer’s instructions 

and DNase I-treated for 20 minutes at 37°C. Following purification using a NucAway 

column (Ambion), total RNA (up to 5 µg) was reverse-transcribed using Superscript III 

reverse transcriptase (Invitrogen) according to the manufacturer’s instructions using the 

gene-specific reverse primers for La protein and GAPDH followed by the recommended 

incubation with RNase H. qRT-PCR was conducted with this cDNA on the iCycler iQ 

system (BioRAD) according to the manufacturer’s instructions. Samples were prepared 

in quadruplicate using the iQ SYBR green supermix and data were analyzed using the 

iCycler iQ software. 

 


