Soft-error Tolerant Quasi Delay-insensitive Circuits

Thesis by

Wonjin Jang

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008
(Defended September 11, 2007)

i

© 2008
Wonjin Jang
All Rights Reserved

il

Acknowledgments

The journey at Caltech was an incredible experience to me, for its people, its traditions,
and its enormous accumulated wealth of scientific knowledge. Lots of people have helped
me to finish the journey. Obviously things would have been different without them.

First of all, I would like to thank my advisor Alain J. Martin for being my mentor. He
has taught me the importance of choosing right research problems, which are not trivial but
not intractable; he helped me to choose a right problem and to solve the problem, which is
all about this thesis. Mika Nystrom, a former post-doc of the Asynchronous VLSI Group
at Caltech, has urged me to write everything succinctly and correctly not only in logic but
also in English. He is the best critic for me. Most of chapters owe much of their clarity
to Mika’s demands. Remaining errors are mine. In addition to that, I wish to thank the
members of the Friday morning meeting for many insightful discussions: Sean Keller, Chris
Moore, Niki Mehta, Karl Papadantonakis, Jonathan Dama, and Piyush Prakash.

Byung-Jun Yoon at Caltech, has always been supportive of me in every aspect. I
cannot imagine my life at Caltech without him; we have shared happiness and bitterness
of graduate-student life together. I am lucky to meet such a friend during my life time.
Juneseuk Shin, my high-school buddy, has kept me from taking a compromising answer for
life. Even when I was frustrated by gap between reality and expectation, he encouraged me
not to give up my faith on life and people. Moreover, he always shares his acute observation
on life while he introduce insightful books and beautiful works of music. As he is my life-time
resourceful friend, I hope to inspire him intellectually and religiously. Certainly I remnember
many delightful conversations with Jina Choi, Wonhee Lee, Ji Hun Kim, Hyunjoo Lee,
Chihoon Ahn, Seung-yub Lee, and Nayoung Ko, who have helped me to survive here in
different ways.

I owe a lot of my life-time learning to Rev. Byung-Joo Song, Rev. Dong Hwan Kim and

Jung-Suk Kim, whom I have met in my church and in the Monday bible-study meeting.

iv
They have shared with me their understanding, passion and love for God and people. I
appreciate that I could meet these spiritual mentors, who have enriched my life, and have
made me pursue what God tells us to do throughout life. Additionally, I would like to thank
the undergraduate members of the bible-study meeting for their devotion to the meeting
and Him: Hwan-seung Yeo, Jinwoo Lee, and Eui Woong Lee.

My uncle, Ki-young Kim, and my cousins, Moon-suk Kim, and Moon-sun Kim give
me a warm welcome whenever I visit Korea. I am very glad to have a chance to say my
appreciation to them.

Last, this thesis is dedicated to my parents, who started all this; I would like to give
all my thanks to my parents for their supports and their love, hoping that my achievement
comforts my mother, who have had hard time to take care of my lovely little sister, Moon-
jung Jang. Although all I have come from theirs, especially I have learned sincerity from
my mother and curiosity from my father, which are precious assets for me. I am sad to say
that my father did not live to see me finish this thesis, but I am sure that he sees this in
the Heaven.

I know that I have failed to follow His way many times, but I still admit that I cannot
finish this without the belief that Jesus Christ is the way, the truth, and the life. Now I

embark upon a new journey, through which I wish to be one step closer to Him.

Abstract

A hard error is an error that damages a circuit irrevocably; a soft error flips the logic states
without causing any physical damage to the circuit, resulting in transient corruption of
data. They result in transient, inconsistent corruption of data.

The soft-error tolerance of logic circuits is recently getting more attention, since the soft-
error rate of advanced CMOS devices is higher than before. As a response to the concern
on soft errors, we propose a new method for making asynchronous circuits tolerant to soft
errors. Since it relies on a property unique to asynchronous circuits, the method is different
from what is done in synchronous circuits with triple modular redundancy. Asynchronous
circuits have been attractive to the designers of reliable systems, because of their clock-less
design, which makes them more robust to variations on computation time of modules. The
quasi delay-insensitive (QDI) design style is one of the most robust asynchronous design
styles for general computation; it makes one minimal assumption on delays in gates and
wires. QDI circuits are easy to verify, simple, and modular, because the correct operation
of a QDI circuit is independent of delays in gates and wires.

Here, we shall overview how to design a QDI circuit, and what will happen if a soft
error occurs on a QDI circuit. Then the crucial components of the method are shown: (1) a
special kind of duplication for random logic (when each bit has to be corrected individually),
(2) special protection circuitry for arbiter and synchronizer (as needed for example for
external interrupts), (3) reconfigurable circuits using a special configuration unit, and (4)
error correcting for memory arrays and other structures in which the data bits can be self-
corrected. The solution of protecting random logic is compared with alternatives, which
use other types of error correcting codes (e.g., parity code) in a QDI circuit. It turns
out that the duplication generates efficient circuits more commonly than other possible
constructions. Finally, the design of a soft-error tolerant asynchronous microprocessor is

detailed and testing results of the soft-error tolerance of the microprocessor are shown.

vi

Contents

Acknowledgments
Abstract

List of Figures
List of Tables

1 Introduction

2 Designing Quasi Delay-insensitive (QDI) Circuits
2.1 Communicating Hardware Processes
2.2 Handshaking Expansion
2.3 Production Rule Set and PRS Computation
2.4 Example of QDI Circuits: Buffer o000

3 Soft Errors in QDI Circuits
3.1 Errorson Circuits L e
3.2 Digital Model of Soft Exrors oo oo
3.3 Analog Model of Soft Exrors o oo

4 Related Work

5 Protecting QDI Circuits from Soft Errors by Design
5.1 Duplicating QDI Circuits with Cross-coupled C-elements
5.1.1 Duplicated Double-checking QDI Circuit
5.1.2 Comparing Reliability of QDI Circuits and DD QDI Circuits
5.1.3 Simulation Results of Duplicated Double-checking Buffer

iii

ix

Xv

W O Ut

12
12
14
17

20

23
24
24
31

5.1.4 Summaryo L e e
5.2 Arbiter with Mutual Excluders
521 Overview e e e
5.2.2 Designing Error Tolerant Arbiter for DD Circuits
5.2.3 Mutual Exclusion of Qutputs of Duplicated Error Tolerant Arbiter .
5.2.4 Simulation Results of Error Tolerant Arbiter
5.2.5 Summaryo e e e e e e
5.3 Duplicated FPGA Using Self-correcting Programmable Bits
5.3.1 Overview e e e
5.3.2 Designing Error Tolerant FPGA Cells
5.3.3 Summary e
5.4 Self-correcting Memory and Hamming-coded Memory
54.1 Overviewo e e e e
5.4.2 Error Tolerant Memory Using Self-correcting Memory Cells
5.4.3 Error Tolerant Memory Based on Hamming Code
5.4.4 Simulation Results of Error Tolerant Memory

5.4.5 SUmMmMAaryt e e e e e e e

6 QDI Circuits using Error Detecting Delay-insensitive Codes

6.1 Error Detecting Delay-insensitive (EDDI) Code
6.1.1 Definition of Delay-insensitive Codes
6.1.2 Definition of Error Detecting Delay-insensitive Codes.
6.1.3 Error Detecting Delay-insensitive Code Based on Linear Code

6.2 Basic Component of QDI Circuit: Function Block and Completion Checker

6.3 Error Tolerant Function Block for Linear DI Code
6.3.1 Designing Error Tolerant Precharging-Evaluating Logic
6.3.2 Simplifying Based on Symmetry of Repetition Codes
6.3.3 Comparing Size of Function Blocks for Different Linear DI Codes . .
6.3.4 Function Blocks Using r-error Linear DI Codes

6.4 Error Tolerant Completion Checker for Linear DI Code

6.5 Cost of Error Tolerant QDI Circuits for Different Linear DI Codes
6.5.1 Size

6.5.2 Et2 .. 103
6.6 Simulation Results of QDI Circuits for Linear DI Codes 108
6.7 Summary e e e e e e e 110
Design Example: Soft-error Tolerant Asynchronous Microprocessor 115
7.1 Overview e e e e e e e e 115

7.2 Designing Soft-Error Tolerant PCUNIT from CHP Description to Layout . 118
7.2.1 Implementing Arbitrated Branch 000, 120
7.2.2 Implementing Body of PCUNIT 122

7.3 Evaluating Soft-error Tolerant Asynchronous Microprocessor in Simulations 126

7.3.1 Verifying Soft-error Tolerance, 126

7.3.2 Performance e 128

7.3.3 Comparing Overhead of Error Tolerance 130
T4 Summaryo e e e e e e e e 133
Conclusion 134
8.1 Lessons Learned 134
8.2 Future Work L e 135
Acronym Glossary 136
Controller in Memory Unit 138
Upper Bound of the Size of Code 141
Minimizing Decomposed Function Block 144
STAM Architecture 148
Arbitrated Branch 152
Designing CHP Process Using Synthesis Tool Flow 154
Checking Error Tolerance of PRS 159

Bibliography 162

1x

List of Figures

1.1

2.1
2.2
2.3

24
2.5

3.1
3.2
3.3

3.4
3.5

3.6
3.7

Pipeline of Buffers. e

Handshake Expansion of a Synchronization Channel.
Circuit and Environment. Lo oo
Transition Diagram of Precharged Half Buffer. Fach state represents the
values of (L.i,L.e,R.i,R.e). The double-circled state is the initial state. . . .
Circuit Diagram of Precharged Half Buffer.

Circuit Diagram of C-element and its Gate Diagram.

Interaction of a Particle and Silicon Substrate.
Ezamples of Erroneous Computations Caused by Soft Error.
Transition Diagram of PCHB with Soft Error on L.e. The dotted circles
indicate invalid states, and the dotted edges indicate erroneous transitions
caused by an error on L.e. L L L e
Ezample of Normal Ezecution Path of Firings in PCHB.
Transition Diagram of Buffer with Soft Error on L.e. The dotted circles
indicate invalid states, and the dotted edges indicate erroneous transitions
caused by an error on L.oe. L L0 o
Pipeline of Buffers. e
Waveforms of Input-channel Variable L.0 and Output-channel Variable R.0,
and Input-channel Acknowledgment Variable L.e. A soft error on L.e at 7 ns
causes premature acknowledgment of an input communication on L before an

output communication on R is generated.

10
10
11

13
15

16
16

17
19

19

4.1

5.4

9.9

5.6
9.7

5.9

5.10

X
TMR QDI Circuit. It cannot tolerate a soft error, because a soft error can
abort the communication of data, which is hard to detect in an asynchronous

SYSTEM. . . . L Lo e e e e e e e

Gate in Original Circuit and its Corresponding DD Gate in DD Circuit. . .
Circuit and its Corresponding DD Circwit.
Soft Error on CO Variable. The propagation of an error is blocked by the
next DD gates. L
DD Gate with weak C-elements. It can correct a corrupted CI variable in a
state-holding state. L e
Tree of C-element and its corresponding DD Tree. The DD tree of C-elements
requires cross-coupled C-elements only for the primary outputs.
Precharged Half Buffer. L o
DD PCHB. ittt e e
Waveforms of Inputs-channel Variable L0, and Output-channel Variable R0,,
and Input-channel Acknowledgment Variable Le, of DD One-bit Buffer. A
soft error on Le, at 10 ns merely causes delay on an input communication
on the input channel, which does not affect the correction of computation in
a QDI circuit. e

Basic Arbiter. When all inputs (z,y) are assigned to be 1 simultaneously, it

simultaneously, it provides the outputs of either (1,1,0,0) or (0,0,1,1) non-
determanistically. L
DD Arbiter (does not work).
Arbiter with Double-checking C-elements (does not work).
Block Diagram of Soft-error Tolerant Arbiter.

Pass-gate Soft-error Tolerant Arbiter.

21

25

29

30

31

36
38

39

42

5.15

5.16
5.17

5.18
5.19

5.21

5.23

5.24

5.25

0.26

5.28

5.30

5.31
5.32

xi
Waveforms for Nodes in DSET Arbiter. After the duplicated inputs arrive
stmultaneously, an error in the basic arbiter at 2.2 ns causes v | andu 1 (i.e.,
the result from a basic arbiter is flipped). Although the transition of one of
the duplicated output up T occurs, the transition of the other output u, T does
not occur until the previous arbitration (i.e., vo T, vp 1) is acknowledged. . . 53
FPGA Architecture. 55
(a) Double-checked Programmable Bit (b) Programmable Bit based on Dual

Interlocked Cell. e 56
Block Diagram of Soft-error Tolerant FPGA Logic Cell. 56
Decomposition of Memory Unit. 59
Array of Storage Elements. 60
Circuit of Mermoy Core. e 61
Calin’s Dual Interlocked Cell (DICE). 62
Decomposition of [7,4] Hamming-code Decoder. Each solid line represents a

one-of-two code channel. L o 65
Block Diagram of Memory Core Using Hamming Code. 65
Converting a Duplicated Codeword into a Hamming Codeword. 66
Interface Between DD Circuit and Input Side of Memory Unit. 67
Copying the Bit Lines of the Array (does not work). 68
Copying the Bit Lines with Filter (does not work). 68
Problematic Case of Invalid Bit Lines. 69
Interface Between Output Side of Memory Unit and DD Circuit. 70
Mutual Ezcluder Based on Pass-gate Transformation. 70

Waveforms for Bit Lines and Duplicated Bit Lines from Mutual Ezcluder.
Although two bit lines are flipped simultaneously, only one of the duplicated
bit lines is flipped, owing to a mutual excluder. 71
Waveforms for Duplicated Bit Lines from Pass-gate Mutual Ezcluder. An
error, which flips bit lines, occurs at 5.5 ns. 72
Soft Errors on Register File Using DICE. An error in the regfile is corrected
quickly. . . . e 73

xii

5.35 Soft Errors on a Hamming-coded Memory. An error in a DD circuit is cor-

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10

6.11
6.12

6.13

6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21

rected quickly, but an error on an SRAM in a Hamming-coded array remains

wuncorrected. e e e e e e e e e e e e e

One Error Detecting Delay-insensitive Codes and their Upper Bounds. . . .
Block Diagram of PCHB.
Block Diagram of WCHB. i i i it
Ezample of Delay-insensitive Minterm Logic (Adder).
FEzample of Direct Logic (Adder).
Ezample of Precharging-evaluating Logic (Adder).

Function Block for Repetition Code and its Simplified Function Block. Re-
dundant gates of an original function block are removed.
Simplified Function Block for Repetition Code. The DD scheme, which du-
plicates a gate and adds cross-coupled C-elements, leads to the same design.
One-error Detecting Linear Codes for Four-Bit Message.
Three-bit Function Blocks based on Repetition Codes vs Non-repetition Codes.
The z-coordinate and the y-coordinate of each point correspond to the size of
a function block using the repetition code, and the size of a function block
using a non-repetition code (e.g., the [4,3] code and the [5,3] code).
Four-bit Function Blocks based on the Repetition Codes vs Non-repetition
Codes. e

74

80
82
82
83
83
84
89
90

91

92
94

94

95

Five-bit Function Blocks based on the Repetition Codes vs Non-repetition Codes. 95

CC for Concatenation of Two One-of-two Codes.
Two-input Parity Checker.
Parity Decomposition.
CC for the [3,2] code.
Simplified CC for the [3,2] code., .
CC for the [4,2] Code.

Size Comparison of Three-bit WCHB Processes.

97
99

6.22

6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30

6.31
6.32

7.1

7.2

7.3

7.4

7.5

7.6

xiii
Size Comparison of Three-bit PCHB Processes. The PCHB using a repetition
code is always smaller than the PCHB using a non-repetition code, so that
the boundary is located outside the range of the figure.
Energy Distribution of Three-bit Function Blocks.
Energy Distribution of Three-bit PCHB Processes.
Energy Distribution of Four-bit PCHB Processes.
Distribution of Cycle Time of Three-bit PCHB Processes.
Distribution of Cycle Time of Four-bit PCHB Processes.
Distribution of Et* of Three-bit PCHB Processes.
Distribution of Et* of Four-bit PCHB Processes.
PCHB based on the [4,2] Repetition Code. It is equivalent to the DD circuit
of a 2-bit normal PCHB.
PCHB based on the [3,2] Parity Code.
Waveforms of Input and Output Channel Nodes of PCHB based on the [3,2]
Parity Code. Until an error on the first bit of the input channel is corrected,

all transitions of output-channel nodes are delayed.

Decomposition of the STAM. The dotted arrows denote control flows, and
block arrows denote data flows. Most of the units are protected by the DD
scheme. L L e e e
Circuit for Probing Branch. If there is a pending communication on the
channel DoBranch, then the value of the channel IsBranch is assigned to be
true. If not, the value is assigned to be false.
Process Graph of PCUNIT_NOARB.
Synthesis Flow from CHP Description to Layout. A boz represents a tool,
and a cloud shape represents an input description for a program.
Floor Plan of the STAM and Locations of Flipped Nodes during Digital Sim-
ulation of the STAM. Each dot represents the location of a flipped node, and
a box represents the bounding boz of a circuit of a decomposed small process,
which includes a few hundred transistors.
Waveform of One Corrupted Node in PCUNIT. An error occurs at 12 ns,

and the corrupted node is restored quickly.00

103
106
107
107
108
109
109
110

111
112

113

117

122
124

125

128

128

Xiv
7.7 Waveform of One Corrupted Node in PCUNIT. An error occurs at 44 ns,
which causes a premature transition, but it does not affect the correctness of
computation, because cross-coupled C-elements of the DD scheme prevent the
propagation of the premature firing.o oo .. 129
7.8 Compared with a Non-DD Circuit, a DD Circuit Requires More Transitions in
a Computation Cycle. A circuit for output-channel validity takes its inputs
from function blocks, but a corresponding DD circuit takes its inputs from

cross-coupled C-elements after function blocks. 131

G.1 Byte-skewed Distribution of Control Signals. 155

Xv

List of Tables

2.1

5.1
5.2

6.1
6.2

7.1

7.2

C.1

C-element Truth Table oo o L. 11
State Table of DD Gate 26
Performance Figures of PCHBand DDPCHB 38
Size of Two-bit Input/Ouput Precharging-evaluating Function Block 93
Performance Figures of PCHB for [4,2] Code and PCHB for [3,2] Code . . . 110

Performance Comparison between Simple Asynchronous Microprocessor and
Its Corresponding Soft-error Tolerant Simple Asynchronous Microprocessor 132

Performance Comparison with Synchronous Competitors 132

One-error Detecting Delay-insensitive Code 143

2
the signal at the destinations is small compared to the gate delays. In practice, QDI-circuit
designers can easily ensure that the assuinption is not violated. Then the correct operation
of a QDI circuit is independent of delays in gates and wires, so that QDI circuits are simple,
modular, and easy to verify. The recent design of a sub-nanojoule microprocessor has
demonstrated that QDI circuits can be very energy-efficient, because only active parts of
the system draw power, and the energy spent by the clock is saved [2].

A system of QDI circuits can adapt itself to variations of physical parameters such as
supply voltage, fabrication, temperature, doping, and so on. The effect of the variations on
synchronous circuits can be severe, but QDI circuits are more robust to the variations, which
cause changes in timing of the components. These features make QDI circuits attractive to
the designers of reliable systems.

Besides the issues of variation, the tolerance of soft errors is getting even more atten-
tion as technology scaling advances. A soft error is defined as the erroneous switching of a
node when the electrical charges that encode the boolean value of the node are erroneously
changed by radiation or other noise sources. Unlike manufacturing defects, a soft error
can be corrected by applying the proper charges to the node. The International Technol-
ogy Roadmap of Semiconductors (ITRS) warns that the continuation of the established
semiconductor roadmap is seriously threatened by the increasing occurrence of failures in
chip operation [3]. As the feature size of circuits gets smaller, circuits experience more
failures of devices and interconnects. To compensate for the inevitable increase of failures,
the ITRS urges circuit designers to include error tolerance in their designs, especially for
soft (transient) errors caused by radiation or other noise effects.

As a response to the concern, a new method, which is applied entirely at the logic
level, is proposed for making QDI circuits tolerant to soft errors. Several soft errors can
be simultaneously corrected provided they do not happen too close to each other in space
and in time. The method has been demonstrated by designing a simple asynchronous
MiCroprocessor.

In the following two chapters, first we shall overview how to design a QDI circuit, and
what will happen if a soft error occurs in a QDI circuit. In Chapter 4, we shall briefly review
some soft-error tolerant methods for synchronous circuits and asynchronous circuits. In
Chapter 5, the crucial components of the method are shown: (1) a special kind of duplication

for random logic (when each bit has to be corrected individually), (2) special protection

3

circuitry for arbiter and synchronizer (as needed for example for external interrupts), (3)
reconfigurable circuits using a special configuration unit, and (4) error correcting for memory
arrays and other structures in which the data bits can be self-corrected. In Chapter 6, the
solution of protecting random logic is compared with alternatives which use other types of
error correcting codes (e.g., parity code) in a QDI circuit. It turns out that the duplication
generates efficient circuits more commonly than other possible constructions. Finally, the
design of a soft-error tolerant asynchronous microprocessor (STAM) is detailed, and testing
results of the soft-error tolerance of the STAM are shown in Chapter 7.

It is worth mentioning that a QDI circuit by itself is able to handle more malicious
analog effects than a synchronous circuit. For example, radiation hitting a chip can change
the charges on a node, not enough to make the bit flip, but enough to make a transition
on the node much slower. On the other hand, radiation-dose effects accumnulate in the
chip substrate and slowly change the threshold voltages, affecting the timing. Both effects
change the physical parameters of the system but do not switch a node. The changes in
timing may be catastrophic for a synchronous system but can be completely transparent to
a QDI system. In this way, soft-error tolerant QDI circuits can be suitable for applications
where soft-error tolerance, combined with the advantages of QDI circuits (e.g., robustness

to variations and low power), is needed.

Chapter 2

Designing Quasi
Delay-insensitive (QDI) Circuits

One way of designing QDI circuits involves first writing a high-level description of a system,
which is a sequential program in the communicating hardware processes (CHP) language.
The sequential program is decomposed into concurrent small CHP processes that are small
enough to be easily compiled into the intermediate handshaking expansion (HSE) language.
The HSE description is subsequently transformed into a production rule set (PRS) that is
the canonical representation of a QDI circuit and is the lowest-level description in the
synthesis method. These compilation steps allow for the design of a transistor-level circuit

which correctly implements a given high-level specification of a system.

2.1 Communicating Hardware Processes

A CHP program consists of one or more concurrent processes, each of which is a sequential
program. There are no shared variables between concurrent processes; they communicate
via channels that connect two processes.

For example, a CHP process in a CHP program is as follows:
P= x[A4%a,B?b; ..; F'f(a, b, ..), G'g(a, b, ...); .. Z; ...]

*[S] means “repeat S forever.” S1;S52 means a sequential execution of S1 and S2. The
process P receives messages from channel 4 and channel B, and sends out computation
results to channel F and channel G. Then it waits for the action of channel Z, which is a
synchronization channel between processes. And if the sending-side process sends messages

n times as well to channel A, the receiving-side process will receive messages n times from

5
channel A and vice versa. If the process on one end of a channel is not yet ready to send
or receive, the process on the other end will stay waiting.
In the CHP program, there are other processes that send out messages to channel A and
channel B, receive messages from channel F' and channel G, and synchronize with channel

7, as follows:

Q= *[..;A0;..;F?f;..]
R= *[..;B!1;...;G?g;...]
S= x[.;7;..]

2.2 Handshaking Expansion

We can transform a CHP description into a HSE description, where everything is described
in boolean notation. Before compiling a CHP description into a HSE description, we de-
compose a big CHP process into a set of small concurrent processes for simple circuit-level
implementation later.

Let us consider a synchronization channel X without data communication between two

processes:

Py= x[.;X;..]
Pr= x[..;X;..]

If Py encounters the channel action X, then it will wait until P, reaches to the channel action
X and vice versa. The communication channels with neighboring processes are replaced with
elementary actions such as waiting and assignment of boolean variables. The elementary
actions are specified by a protocol such as a four-phase handshaking protocol. For example,
Py sets one boolean variable z, to let P, know that Py initiates the communication; P; sets
the other variable z; to let Py know that P, acknowledges the communication initiated by
P,. Then the two variables are reset. This is the four-phase handshaking protocol. In the

process Py, channel X is implemented as follows:
z,T; [2i]; 2045 0]
which is called active. And channel X in the process P) is implemented as follows:

[zo]; it [—zo)s 23l

6
which is called passive. z,7 is equivalent to z :=true and [z;] means that the process waits
until z; becomes true. Thus the sequence of events during a channel communication is as

follows:
l'oT; [z,] 5 l'iT; [z;] s Zod; [—z,] ; .’L‘Z'J,; [—z;]

We introduce an alternative form of active implementation, called lazy active, which is more

amenable to implementation:
(0215 2015 (2315 20l

The four-phase handshake protocol uses one variable for initialization and the other vari-
able for acknowledgment. For data communication, a variable is replaced with a set of
variables, which implements a delay-insensitive code such as one-of-n code. (The details
of a delay-insensitive code are explained in Chapter 6.) For brevity, the variables used in
the implementation of a channel are called channel variables, which consist of channel code

variables and a channel acknowledgment variable.

XO

xi

Figure 2.1: Handshake Ezpansion of a Synchronization Channel.

2.3 Production Rule Set and PRS Computation

A HSE description is transformed into a production rule set (PRS), which has no explicit
sequencing. A PRS is a concurrent composition of production rules, and the execution of a
PRS is a concurrent execution of the production rules in the set. Each production rule (PR)
has the form G — S, where G is a boolean expression of boolean variables called the guard
of the PR, and S is a boolean assignment. The assignment is written as 21 or zJ, which
corresponds to z :=true or z :=false. An execution of a PR G — S is an unbounded

sequence of firings. A firing of G — S when G is true amounts to the execution of S, and

7
a firing with G false amounts to a skip. If the firing of a PR does change the value of
any variable, the firing is called effective. For brevity, we shall refer to all effective firings
simply as firings.

A PR G — S in a PRS is said to be stable if whenever G becomes true it remains
true until the assignment S is completed. G1 — 21 and G2 — z| are non-interfering if
and only if ~G1V =G2 holds in every execution. Stability and non-interference guarantee
that the execution result of PRS is deterministic. In physical implementation, an unstable
PR can generate a glitch, which may cause a QDI circuit to malfunction. The interference
manifests itself as a short circuit, which consuimes power excessively, may damage the circuit
physically, and also leads to indeterminate logic values.

The two complementary PRs that set and reset the same variable, such as

Gl — 2t
G2 — 2|,

comprise a gate. The variables in the guards are the inputs of the gate and the variable in the
assignment is the output of the gate. If G1#£-G2 holds, then z is a state-holding variable,
and the gate is a state-holding gate; if G1=-G2 holds, then z is a non-state-holding variable,
and the gate is a combinational gate. (These variables correspond to electrical nodes in the
physical implementation.)

A QDI circuit is an interconnection of gates, interacting with its environment. Each
input of a gate is either connected to the output of another gate, or to an environment.
The output of a gate may be connected to any number of inputs of other gates, as well as
to the environment. An input of a gate that is connected to the environment is a primary
input, an output of a gate that is connected to the environment is a primary output.

The environment of a QDI circuit sets values of primary inputs by reacting to values of
primary outputs of the circuit. A pair of a circuit and an environment, like Figure 2.2, is
called a system.

If a PRS uses boolean variables x1, 9, ..., £, for guards and assigniments, then the state
of the PRS can be represented as an n-tuple of boolean values. Interchangeably we shall
use ‘0’ for false and ‘1’ for true. And s[zx| is the value of zj in the state s. A PR P in
the state s is called enabled if and only if the guard of P is true in the state s. A PR P is

called effective in the state s if and only if the firing of P in state s changes the value of a

System

(Env

primary inputs primary output

1)

Circuit
(PRS)

Figure 2.2: Circuit and Environment.

variable. An ezecution path of a PRS is a trace of firings of PRs from an initial state, which
is described as < Py, ..., Pp—1, P >, where P; is a PR. An ezecution-path set of a PRS is
the set of every possible execution path from an initial state of the PRS.

A PRS computation (PRSC) is defined as follows:

e Two disjoint sets: X gy, called the environment, and X circust, called the circuit, whose

elements are PRs. (2 et Y Env U Zcircuit-)

e An initial state so € {0,1}". (n is the number of distinct variables in X.)
e An execution-path set FP.

An environment path of an execution path is a projection of the execution path onto X .
A finite set S, is called a valid-state set if its elements are states reachable from sy by firing
of PRs in ¥. A PRS computation can be represented as a transition diagram. The vertices
of the diagram correspond to the valid states in S,. If a production rule P is effective in
a state s, and the state s is turned into a state s’ due to the firing of the production rule,

then there is an edge labeled P from s to s’ in the transition diagram.

2.4 Example of QDI Circuits: Buffer

The CHP description of a buffer, which is an essential component of an asynchronous system,
is * [L; R]. Two boolean variables L.i and L.e implement the input synchronization channel
L of the buffer, and likewise two variables R.i and R.e implement the output synchronization

channel R. The corresponding HSE is

9

*[[L.i];L.el; [-~L.i1; L.et;[R.e]l; R.it; [-R.el; R.il;1,

where L is passive, and R is lazy-active. A direct implementation of the HSE description
produces an inefficient circuit, which requires extra variables and, ultimately, extra transis-
tors. Instead, it is better to permute parts of the HSE to reduce the amount of sequencing
and the number of extra variables. The transformation is called reshuffling, which is the
source of significant optimization opportunities. Although there are several possible reshuf-
flings, three reshufflings are commonly used: precharged full buffer (PCFB), precharged half
buffer (PCHB) and weak-conditioned half buffer (WCHB) [4].
For example, the HSE based on the PCHB template is

*[[R.e ALil; R.at; Lel; [-R.el; R.il; [-L.i]; L.et].

A corresponding PRS is

LeANR.eNLi — R.it
-LeAN-Re — R.i
L.i AR.i — L.el
-L.i A-R.4 — L.et.

If the PRS of the environment is
Le — L.it
-~Le — L.
R.i — R.el
-R.i = R.et,

and the initial state is (L.i, L.e, R.7, R.e) = (0,1,0,1), then the PRSC for the PCHB system
18

® Ypgo ={L.e > Lit,~Le— Lil,Ri— R.el,~R.i - R.et},
Y Circuit = {L.e N\R.e NL = Rit,-L.eAN-R.e = R.il,LiAR.i —» L.el,~LiA-R.i
— L.et}

e Initial state s = (0,1,0,1)

e The execution-path set EP is as follows: {< L.it >, < L.it, Rt >, < L.if, RT, R.el>,
< Lit, R, Lil>, < L.it, Rt, L.}, R.el>, ...}

10

Accordingly the environment-path set of the PRSC is as follows:
EnvP = {< L.it >,< Lit, R.el>,< Lit,Lil>, < L.it, Lil,R.el>,...}.

The transition diagram of the PCHB is shown in Figure 2.3, and a circuit diagram of the

PCHB in CMOS technology is shown in Figure 2.4.

/__ L.e_ Li \
/.(1111' | 1011 0011 !
/ \ J

. ~—

R.1i+ \r_/ \T/
1101 R.e- .
Jﬂ“ = A
1100 1110 % 4’1 1010
(/
L.i+ -~ L.
0100 |
/\/ R N
\0101
{ 1001 1000
\ L.e+
AN R.e
\ 0001 0000
L.e+
—~

@: the initial state state: (L.i,L.e,R.1i,R.e)

Figure 2.3: Transition Diagram of Precharged Half Buffer. Each state represents the values
of (L.i,L.e,R.i,R.e). The double-circled state is the initial state.

e —dc)

Figure 2.4: Circuit Diagram of Precharged Half Buffer.

Note that in the circuit diagram, a C-element, which was introduced by David E. Muller,

is represented as a circle with the letter ‘C’, which is a commonly used asynchronous logic

12

Chapter 3

Soft Errors in QDI Circuits

In this chapter, different types of errors are overviewed first, and a digital model and an
analog model of soft errors are shown. Then the effects of soft errors in QDI circuits are

examined.

3.1 Errors on Circuits

Failures of a system at the circuit level can be broadly categorized as either manufacturing
defects or operational errors. Manufacturing defects such as single stuck-at faults arise
from a range of processing problems during fabrication. For example, improper doping in
the channel of a transistor may cause a change in the threshold voltage and timing of the
transistor, and may make the transistor unusable. Therefore testing methods for detecting
manufacturing defects have been extensively studied. Commonly used testing methods
involve adding extra test circuits to the system. While the test circuits are transparent in
normal operations, the circuits are activated to detect defects in a special mode [5]. The
method of testing QDI circuits has been also studied, which shows that defects in QDI
circuits are testable [6].

While defects occur in manufacturing processes, operational errors happen unpredictably
during the lifetime of a circuit. Operational errors can be subdivided into two types:
hard (permanent) errors and soft (transient) errors. A hard error is an error that dam-
ages a circuit irrevocably. For example, when a high-energy particle activates a parasitic
transistor to trigger a positive feedback, the current caused by the positive feedback can
exceed the device’s maximum specification and can destroy the device [7]. In addition to

incident high-energy particles, there are other types of destructive causes such as electro-

14
three decades, dense memories, including DRAM and SRAM, have been known to be more
susceptible to soft errors than logic circuits. For example, the typical soft-error rate for
SRAM circuits for 90 nm is reported to be about 1000 kFIT /Mbit, and a soft-error rate for
logic circuits for 90 nm is reported to be about 100 kFIT/Mbit [16]. (Failure in time (FIT)
is defined as the number of errors per one billion hours.) But it is anticipated that the
soft-error rate for logic circuits will increase by nine orders of magnitude between 1992 to
2011, at which point it will be comparable to the soft-error rate for unprotected memory

elements [17].

3.2 Digital Model of Soft Errors

A soft error is modeled as flipping the value of a single variable in a PRS; a PRS Compu-

tation (PRSC) with a soft error is defined as follows:

e Two disjoint finite sets X gy, called the environment, and Ycjreyir, called the circuit,

whose elements are PRs. (X let Y nv U Zcircuit-)
e An initial state so € {0,1}". (n is the number of distinct variables in X.)

e A soft-error execution-path set E P, o

A soft-error execution path can include a symbol error;, representing an error on z;. For
example, a soft-error execution path is < Py, ..., Py_y,errory,, Peyq..., Pm—1, P >, which
infers that a soft error occurs on z; after the firing of the PR P,_,, and the value of z; is
flipped. Elements of the valid-state set S are states reachable from the initial state sy only
by firing of PRs in X; elements of the invalid-state set () are states reachable only with a
soft error on a variable. The vertices of the transition diagram correspond to states in S
or Q. If s[x;] # s'[z;] and s[z;] = s'[z;] for all j # 4, then there is a two-way edge labeled
error between s and s’ in the transition diagram, because an error on z; flips s to ' and
vice versa.

There are two types of erroneous computations that may be caused by an error. (For

brevity, sometimes we will refer to soft errors as simply errors.)

Deadlock An error may put a system into an invalid state such as the state ¢, as shown
in Figure 3.2 (a). The invalid state cannot be reached in a normal execution. If no

PR is effective in the invalid state, deadlock occurs.

15
Abnormal Computation An error may cause a transition from a valid state to another
valid state. Or an error may put a system into an invalid state where some PRs are
effective, and a system is put into a valid state after firings of PRs. Meanwhile some
states are possibly skipped or revisited; the corresponding firings of PRs are skipped
or repeated due to the abnormal transition, as shown in Figure 3.2 (b). In this case,

data can be missed or can be generated accidentally.

(a) Deadlock (b) Abnormal Computation

Figure 3.2: Ezamples of Erroneous Computations Caused by Soft Error.

As an example of a PRSC with a soft error, let us consider a soft error on L.e in the

buffer from the previous chapter. The PRSC with a soft error on L.e is as follows:
e Ypne and Yeirenirn are the same as before.
e An initial state so = (0,1,0,1).
 EPeppor = {< errory, o >, < Lit >,...,< Lit,errory e, L {,Let,LitT >, ..}

The transition diagram, including transitions caused by the error, is shown in Figure 3.3.
In a normal computation, there are the same number of transitions on output variable R.i
as on input variable L.i from the specification of a buffer. (Strictly speaking, the number of
output transitions of a buffer can be fewer or the same. But in the shown implementation,
the next input set assignment (i.e., L.7 1) cannot start until the output reset assignment
(i.e., R.i |) is done.) But an error on L.e can cause premature acknowledgment of the
communication on the channel L before an output communication on the channel R is

generated. That is, compared to the normal execution cycle as shown in Figure 3.4, the

16
erroneous cycle (i.e., (L.if, error, L.i}, L.et)) skips transitions such as R.if, as shown in

Figure 3.5.

L.e+

@: the initial state state: (L.i,L.e,R.1i,R.e)

Figure 3.3: Transition Diagram of PCHB with Soft Error on L.e. The dotted circles indicate
invalid states, and the dotted edges indicate erroneous transitions caused by an error on L.e.

& L.e- L.1i
NS

, R.i+
101 R.e- R.e- R.e-

R AL+
L.1i /
/ 1100 \
4 L.i+ L.e- L.1i

0100
/ R.i- =
y 0101 R.1
R. R.e+
1001 1009
N L.i- L.i/ R-i-
\ L.e 4 g
AN R.e4 e
\ {0001 f—— 0904
~ ‘

L.e+¥/
@: the initial state state:(L.i,L.e,R.i,R.e)

Figure 3.4: Ezample of Normal Ezecution Path of Firings in PCHB.

(’ : an abnormal cycle of [3177 ----_
premature acknowledgment / /x error

@: the initial state

17

state: (L.i,L.e,R.1i,R.e)

Figure 3.5: Transition Diagram of Buffer with Soft Error on L.e. The dotted circles indicate
invalid states, and the dotted edges indicate erroneous transitions caused by an error on L.e.

3.3 Analog Model of Soft Errors

We can also identify the erroneous computation in SPICE simulation of a linear pipeline

(an array of L-R buffers), as shown in Figure 3.6. A PRS of a one-bit PCHB is as follows:

en NReANLO —
—enAN-Re —
en ANR.eNL.1
—en A R.e

_r.0

N

_r.0d
_r.0t
.1l
_r.1t
R.OJ
R.Ot
R.1|
R.1t

18

LOV L1 — vl
-LOAN-L1 — _lt
v — vl
=_lv — Wt
rOA_rl — el
—_r.0V-_rl — ret
lvArv — L.el
=lv A—rv — L.et
L.e — _end
-L.e — _ent
_en — enl
—_en — ent

Variables L.0, L1 encoding a one-of-two code and an acknowledgment variable L.e imple-
ment the input data channel L. Likewise variables R.0, R.1, and R.e implement the output
data channel R.

SPICE simulations of the pipeline have been done in TSMC 0.18-pm CMOS technology
and at an operating voltage of 1.8 V. A soft error can be modeled in SPICE as a current
pulse [18]. If the current pulse is short enough, compared to the response time of the gates,
the specific shape of the pulse is not critical to the response of the circuit to the charge
injection, so that we can model a soft error as a square current pulse for simplicity.

If the buffer works correctly, there should be the same number of transitions on output
variable R.0 as on input variable L.0: the number of rising and falling signals on R.0 is
the same as that of rising and falling signals on L.0. However when a charge is injected at
the node L.e at 7.0 ns, the assignment R.0T is missed: there is no output signal between
7 ns and 8 ns, as shown in the upper panel of Figure 3.7. Since one variable is used to
acknowledge communications between modules (buffers), an error on this variable can have

catastrophic results.

20

Chapter 4

Related Work

In order to cope with soft errors in a circuit, several approaches have been explored. At
the device level, the silicon-on-insulator (SOI) process technology helps to increase the
resistance of circuits to soft errors, especially those caused by radiation, because of reduced
charge collection depth [19].

Traditional techniques for providing soft-error tolerance at the logic level rely on triple
modular redundancy (TMR), in which a given circuit is triplicated, and a majority voting
circuit is used to determine the final output [20]. Sometimes a voting circuit is also tripli-
cated to tolerate an error on the voting circuit itself. Although TMR is a straightforward
solution for synchronous circuits, it cannot readily be applied to QDI circuits. A TMR
version of a QDI circuit is shown in Figure 4.1. The QDI voting circuit of the design waits
for input data communications from three copies of a component. Since an error on one
of the triple copies of a QDI circuit results in aborting the communication of the data, the
voting circuit possibly waits indefinitely for the delivery of aborted data. Unlike clocked
systems, a QDI component may deadlock in the presence of a soft error. Since there is no
notion of time in QDI circuits, it is not trivial to adapt the TMR scheme to QDI circuits.

Error correcting codes (ECCs) are also widely used. Except for repetition codes (e.g.,
duplication and triplication), ECCs are rarely used for control logic because circuits based
on ECCs tend to be complex. On the other hand, ECCs are mostly suitable for a large
memory array, where we can exploit the density of a complex ECC, and can minimize
the cost of decoding and encoding by having just one encoder and decoder for a whole
memory [21]. An example of applying a Hamming code to the instruction memory of a
8051 microprocessor has been demonstrated [22].

When an ECC is applied to an array of SRAMs, the decoder corrects data later when the

22
by exploiting the capabilities of modern processors to execute multiple threads of compu-
tation [31]. However these software-based approaches are limited to microprocessors.

A variety of soft-error tolerant schemes for synchronous circuits has been studied and
compared [32, 33]. Meanwhile, a few error-detection methods and error-tolerance techniques
for QDI circuits have been proposed. A duplication method has been employed to provide
an indication of an error in asynchronous circuits, but the duplication method can fail to
detect an error, since it assumes the maximum delay between an output from one circuit
and an output from its counterpart circuit [34]. Although the approaches can improve the
robustness of QDI circuits, these methods require significant timing assumptions to detect
errors, and do not always guarantee the error tolerance of a QDI circuit [35, 36]. On the
contrary, exploiting the stability of a QDI circuit, we can make a duplicated QDI circuit
soft-error tolerant by adding cross-coupled C-elements, which will be demonstrated in the
following chapter.

A reconfiguration method for designing a soft-error tolerant asynchronous circuit is
presented, which is different from the above approaches [37]. In the reconfiguration method,
by forcing an asynchronous circuit to stall in the case of an error, specific self-reconfiguration
logic is activated by a detector of the stalling (e.g., watchdog timer). Then the array circuit
is reconfigured around the faulty components and consequently the system recovers from
errors. This approach incurs large overheads and is suitable for specific structures such as

an adder.

23

Chapter 5

Protecting QDI Circuits from Soft
Errors by Design

The key idea for protecting a system from an error is adding redundancy. We shall show
how to make a QDI circuit soft-error tolerant by (1) detecting a soft error with duplicated
gates and (2) preventing the propagation of an error with cross-coupled C-elements. This
method is called the duplicated double-checking (DD) scheme. Although duplication by itself
is not enough to correct an error, the duplicated QDI circuit with cross-coupled C-elements
can correct an error by exploiting the stability property of QDI circuits. That is, if an error
occurs on the output of one of duplicated gates, the cross-coupled C-elements prevent the
corrupted output from propagating to the environment; the stable inputs eventually restore
the proper outputs while the computation of QDI circuits is delayed. Since additional delay
is transparent to QDI circuits, the result of the computation is not affected.

The DD scheme is general enough to be applied to most parts of a QDI systemn. However,
arbiters and synchronizers, which are required for handling interrupts and interfacing a
synchronous domain and an asynchronous domain, need special protection circuits, called
mutual excluders, because of their non-deterministic feature. In addition, arrays of bit-
storage units in a memory do not rely on the DD scheme for error tolerance. In bit-
storage units such as SRAMs, the stability property cannot be used to restore the value
of a corrupted variable. Once data is written in a storage unit, the inputs that triggered
the writing do not persist. Hence, solutions based on error correcting codes are applied in
memories instead of the DD scheme.

In the following sections, we first show that a QDI circuit based on the DD scheme is

capable of tolerating an error. Then we show how to design a soft-error tolerant arbiter,

24

field programmable gate arrays (FPGA), and memory.

5.1 Duplicating QDI Circuits with Cross-coupled C-elements

5.1.1 Duplicated Double-checking QDI Circuit

In the duplicated double-checking (DD) scheme, all gates in the original circuit are dupli-
cated, and then state-holding variables are double-checked, which means that two cross-
coupled C-elements are placed on state-holding variables. The reason cross-coupled C-
elements for non-state-holding variables are inessential, is explained at the end of the proof
of Theorem 1.

A DD gate consists of two plain gates and two cross-coupled C-elements, called double-
checking C-elements, as shown in Figure 5.1. The C-elements share the inputs z,, z;, called

checked-in (CI) variables, whose outputs are z, and z,, called checked-out (CO) variables.

!

A set of CI variables and CO variables, such as z,, z, 2},

and z,, are called cross-coupled
variables. A gate in PRS is

Gp(oyz,...) = 2t

Gnloyz,...) — 24,

Gy Tay) = 2571
Gz',’(...,z;,,...) — 2zt
Ga(.yTqy..) — 2,
Gh(yzp,) = 24l
z(ll A Zl,; = 2zt 21
-zl Az = Zad, 2.

(For brevity, two PRs G — z1 and G — yt are written as G — z1,y?.) The variables z,
and z;, are copies of the variable z, and the variables z, and z; are copies of the variable z,
and so forth.

A DD circuit consists of duplicated gates and DD gates. Figure 5.2 shows a circuit and
its corresponding DD circuit. If the PRS of a circuit is stable and non-interfering, then the
PRS of its corresponding DD circuit is also stable and non-interfering. As a matter of fact,

the DD PRS has a strong stability: whenever a guard (e.g., G) becomes true, it remains

Figure 5.1: Gate in Original Circuit and its Corresponding DD Gate in DD Circuit.

true until both assignments of duplicated variables (e.g., z,T, 2,T) are completed. The
inputs of duplicated gates, which cause the transitions of the duplicated outputs, persist
until the transitions propagate to the environment. The rationale behind the error tolerance

of DD circuits that have the strong stability, is explained in the following theorem.

Figure 5.2: Circuit and its Corresponding DD Circuit.

Theorem 1 If a QDI circuit is stable and deadlock-free, then its corresponding DD QDI
circuit can tolerate a soft error: neither deadlock nor abnormal computations are caused by

a soft error.

Proof: In a DD circuit, duplicated variables are cross-coupled by C-elements whose
outputs reflect the inputs when the values of all inputs match; an error corrupts only half of
a DD circuit. As a result, the only erroneous computation, if incurred, is deadlock when an
error causes inputs of cross-coupled C-elements (i.e., CI variables) to mismatch. Hence, in
order to show the error tolerance of a DD circuit, it is enough to show that an error cannot
cause deadlock: a mismatch between the inputs of cross-coupled C-elements, caused by an
error, can be resolved eventually, or the mismatch does not stop expected assignments of
CO variables by disabling effective PRs.

There are three kinds of variables in a DD circuit: a CI variable, a CO variable, and

26

Table 5.1: State Table of DD Gate

(")

2b

Za,

%

0

z

1

b
p

a
P

b
P

a
P

b
n

a
n

G

D D|D D

b
n

a
n

G

D D|D D

* E stands for enabled, and D stands for disabled

27

an ordinary variable, which is an output of combinational gates without cross-coupled C-
elements. In fact, corruption caused by an error on an ordinary variable is the same as
a part of corruption caused by an error on a CO variable, which will be explained when
we examine what an error on a CQ variable causes. Therefore, in order to show the error
tolerance, we shall demonstrate that an error on a cross-coupled variable does not cause
deadlock. For this, first we enumerate all possible states of a DD gate in a stable and
non-interfering DD circuit, as shown in Table 5.1, where ‘E’ stands for an enabled PR, and
‘D’ stands for a disabled PR of a DD gate. Because of the strong stability, only 28 possible
states are allowed for a DD gate. Comparing the 14 states of the upper table to the 14 states
of the lower table, we can see that the variables and the guards of the PRs are set/reset in
an opposite sense. Therefore, it is enough to examine what happens if an error occurs in
each of the 14 states from (a) to (n) in the upper table only.

Let us consider an error on a CI variable first. We can categorize the 14 states to three

types, as follows.

1. Let us assume that an error occurs on 2}, in the state where G is true such as (b),
(c), (f), (g), ..., (1), and (n). If 2/ is O, then the error is equivalent to 2,1, which is
a firing of the effective PR G — 2. 1. That is, the error is just a normal transition.
On the other hand, if 2/ is 1, then the error is equivalent to z.J, which prevents
2y Nz, = 2,1, T from firing. Meanwhile the corrupted z, is restored, because G is

persistent to be true to make G — 2,1 fire. Therefore, deadlock can be avoided.

2. Let us assume that an error occurs on 2 in a state where G, is false and (2, 2}) is
(0,0) or (1,1), such as (a), (d), or (m). If (2}, z;) is (0,0) or (1, 1), then (z,, 2) is (0,0)
or (1,1) in the three states. If (2}, 2;) is (0,0), the error cannot enable z;Az; — 2T, 25T
to fire, and consequently (z,,2) remains (0,0). If (2),z) is (1,1), the error cannot
enable 2z, A —z; — 2|, 2| to fire, and consequently (z,,2) remains (1,1). In both
cases, the error does not affect the values of z, and z,: the error is masked, and the

system works as if no error occurs.

3. Let us consider an error on the state (e) where (Gp, G;)’ D252, 2ay %) = (D, E ¢
0,1,0,0). If an error occurs on z),, then (2, z;) becomes (1,1), and 2z, Az, — 2,1, 2T
are enabled to fire. Although deadlock does not occur, the firings of 2,7, 2,1 caused

by the error may be premature in the following sense. If the assignments of the inputs

28
such as z,7 (or z,J) has not been completed (i.e., Gy is still false), but the firings
occur, then the environment assumes that the assignments are completed, and the
state of a system is updated even before the assignments are completed. In other
words, the assignments of some inputs can be missed owing to the error. But note
that they do not affect the sequence of firings that the environment can observe, and

do not stop the firings: the system works correctly.

As we see, an error on a CI variable is masked or corrected, so that the error does not cause
deadlock in a DD circuit.

Let us consider an error occurring on a CO variable such as z,. If it does not enable
any PRs of subsequent gates such as g, or g;, an error on z, cannot cause any erroneous
behavior, and the corrupted z, is restored in short order, because the values of CI variables
become the same eventually, and cross-coupled C-elements of the corrupted CO variable

corrects its corrupted output.

zo N 2y = 2ot 27

—zp A2y = Zald, 2l

9y (s 2ay) = wg?
g},’(.. s 2hyeer) — wp?
G (ceey Zay) = Wad
gl (s 2y) — wpd

On the other hand, if an error on a CO variable enables PRs of subsequent gates to fire,
then the outputs (i.e., ordinary variables) of the subsequent gates become corrupted, and
the corrupted outputs may affect the outputs of next subsequent gates, and so on. However,
since the propagation of the unexpected firings is blocked by DD gates, the corrupted region
is confined between a DD gate and another DD gate, as shown in Figure 5.3. Meanwhile,
the corrupted z, will be restored, since CI variables are not corrupted; accordingly cor-
rupted ordinary variables are also restored, since the outputs of combinational gates can be
corrected if the inputs are corrected. Therefore, all corrupted variables in confined regions
are corrected, and then blocked computations of the DD circuit can proceed. Likewise if
an error on an ordinary variable occurs, corruption caused by the error is confined between

DD gates, and the corruption is restored, because inputs of the corrupted combinational

30
after an error occurs on the variable; a DD circuit will fail if another error occurs on the
other CI variable (e.g., z;) later.

In order to avoid the accumulation of errors, weak C-elements, as shown in Figure 5.4,
can be used. They play the role of duplicated “keepers”, which not only keep the voltage
level of the state-holding nodes (2], z;), but also can correct the nodes if one of them is
corrupted, as follows. If a soft error occurs on 2z, in the state s = (..., 25,2}, zas 2b, ...) =
(...,0,0,0,0,...) or (...,1,1,1,1,...), then the weak C-elements are enabled to restore z.

Hence the accumulated-error problem can be resolved by weak C-elements. In other possible

states, the weak C-elements are functionally transparent in a DD circuit.

N) —

—wC e

Figure 5.4: DD Gate with weak C-elements. It can correct a corrupted CI variable in a
state-holding state.

Throughout the section, we have assumed that cross-coupled C-elements are added for
every state-holding gate, but they are not always necessary. In fact, the necessity depends
on how the environment sets/resets the inputs of a state-holding gate as a response to the
change of an output of the gate. For example, let us assume that the environment of a tree
of C-elements reacts to the output assignment 21 by setting all inputs to be false, and to
the output assignment zJ by setting all inputs to be true. Then the tree of C-elements can
be converted to a DD tree of C-elements using one pair of double-checking C-elements, as
shown in Figure 5.5. In the design, an error occurs on the output of an internal C-element,
say, Ya, which remains corrupted for the time being, but the corruption does not cause
deadlock. (The effect of the error is similar to that of an error on a CI variable in the
state (e), which we examined in the proof.) The environment, which only can see the intact

primary outputs, causes all primary inputs to be either false or true eventually, and then

31

the corrupted variable y, is corrected.

Zv

Figure 5.5: Tree of C-element and its corresponding DD Tree. The DD tree of C-elements
requires cross-coupled C-elements only for the primary outputs.

5.1.2 Comparing Reliability of QDI Circuits and DD QDI Circuits

The reliability of a system is defined as the probability that a system will perform its
intended function during a specified period of time under stated conditions. Here we analyze
the reliability of a DD circuit, comparing it with that of a normal QDI circuit.

For simplicity, let us assume that an error that causes a circuit to fail occurs on each
node with probability P,, in independent and identically-distributed fashion, during a given
period of time. Then the reliability of a system with N nodes is expressed as the following

probability

Preliabitity = P[N nodes are good] = P;Xod =(1- PN ~ (1-NP,) (if NP, K 1).

Let us consider the reliability of a DD circuit. If a given QDI circuit has N nodes and
cross-coupled C-elements are added to each and every gate, then the number of the nodes
in a corresponding DD circuit will be 4N, because of the duplication and cross-coupled C-
elements, and there are N sets of cross-coupled variables. If multiple errors occur, at most
one error should be located in one of N different sets of cross-coupled variables. If not,
the DD circuit cannot tolerate the multiple errors. If n errors occur, only 4”(1:1’7) different

distributions of n errors can be tolerated: each error is assigned to one set of cross-coupled

32
variables, which is (IT\L’), and each set has four possible sites of an error, 4*. Accordingly we

have the following reliability for a DD circuit:

Pretiability = P[4N nodes are good]
[N
+4 P[4N — 1 nodes are good]P[one error]
1
o[N
+4 P[4N — 2 nodes are good] P[two errors]
2
+...

N
44N P[4N — N nodes are good]P[N errors]

N
= Pla.P!
N
1 AN—-1 pl
+4 1 Pgood Pe
N
2 AN -2 p2
+4 9 Pgood Pe
+..
N AN—N pN
+4 N Pgwd P,
= Pioa(1+3P)Y

= (1-P)*(1+3P)"
= (1-6P?+8P?—3PH)Y

1-6NP? (if NP? « 1)

Q

Compared with the reliability of a given QDI circuit, the first-order term of P, does not
appear in the reliability of a DD circuit. The difference between the reliability of a normal
circuit and its DD circuit. is obvious when NP, ~ 1. For example if N = 10, and P, = 1075,
then Preliabitity(Normal Circuit) = 0.37, but Pgeliability (DD Circuit) = 0.9999.

Although we have considered the occurrence of errors to be independent, the occurrence
of errors on adjacent nodes is likely to be more probable than that of an error on non-

adjacent nodes. For example, given the occurrence of an error on z,, the probability of an

33
error on the counterpart node z, may increase by a constant factor of ¢, compared with the
probability of the occurrence of an error on 2z, without that of an error on z,. It can be

written, as follows:

P(error on zg|error on z,) = ¢ X P(error on z,|no crror on zp)

P(error on zlerror on z,) = ¢ X P(error on z,|no crror on 2,)

The notation P(A|B) means the conditional probability of A given B. Then we have the

following:
P(crror on both z, and z,) P(crror on z, and no crror on z)
P(error on z) ’ P(no crror on z)
P(crror on both z, and z) P(error on z, and no ecrror on z,)

P(crror on z) P(no crror on z,)

P(error on z,) = P(crror on both 2, and z,) + P(ecrror on z, and no error on 2,) = P,

P(error on z,) = P(error on both z, and z,) + P(crror on 2, and no error on 2,) = P,

Solving the equations, we obtain the following:

c(1-P)1+(c=2)P)

P(error on neither z, nor z,) =

1+ (c—1)P.
P(error on z, and no error on z,) = 1158(((1 —_ 11;;)3e
P(error on z; and no error on z,) = 1fp((cl —_ 11;;))8
P(ecrror on both z, and z,) = 1+ (:;Pf 1)P,

Here, we let P(error on a node) = P,. Considering the cffect of proximity on the error

34

probability, we obtain the following reliability:
Pretiantitty(DD) =1 — ¢ x 6N P

Hence, if the correlation between errors on adjacent nodes is weak enough (i.e., ¢ € P%)’
then we still get better reliability by applying the DD scheme to a QDI circuit.

Although the DD scheme improves the reliability of a system, it has the area overhead
of extra circuits, and a performance overhead, too. The size of transistors has decreased
by a factor of 0.7 in each technology node so that the area of the same system becomes
half, and the cycle time of the system can be increased by a factor of almost 5= ~ 1.4 [3].
(The technology node signifies the feature size of a circuit.) Meanwhile the soft-crror rate
is increasing by a factor of about seven in each technology node. If so, an old technology
whose error rate is lower and whose performance is worse than that of a new technology
may be considered an alternative to DD circuits for a rcliable system. But it turns out
that the DD circuit in a newer technology will be better than the normal circuit in an older
technology.

For example, let us assume that the reliability of a nor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>