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Abstract

A hard error is an error that damages a circuit irrevocably; a soft error flips the logic states without causing any physical damage to the circuit, resulting in transient corruption of data. They result in transient, inconsistent corruption of data.The soft-error tolerance of logic circuits is recently getting more attention, since the soft- error rate of advanced CMOS devices is higher than before. As a response to the concern on soft errors, we propose a new method for making asynchronous circuits tolerant to soft errors. Since it relies on a property unique to asynchronous circuits, the method is different from what is done in synchronous circuits with triple modular redundancy. Asynchronous circuits have been attractive to the designers of reliable systems, because of their clock-less design, which makes them more robust to variations on computation time of modules. The quasi delay-insensitive (QDI) design style is one of the most robust asynchronous design styles for general computation; it makes one minimal assumption on delays in gates and wires. QDI circuits are easy to verify, simple, and modular, because the correct operation of a QDI circuit is independent of delays in gates and wires.Here, we shall overview how to design a QDI circuit, and what will happen if a soft error occurs on a QDI circuit. Then the crucial components of the method are shown: (1) a special kind of duplication for random logic (when each bit has to be corrected individually), (2) special protection circuitry for arbiter and synchronizer (as needed for example for external interrupts), (3) reconfigurable circuits using a special configuration unit, and (4) error correcting for memory arrays and other structures in which the data bits can be self- corrected. The solution of protecting random logic is compared with alternatives, which use other types of error correcting codes (e.g., parity code) in a QDI circuit. It turns out that the duplication generates efficient circuits more commonly than other possible constructions. Finally, the design of a soft-error tolerant asynchronous microprocessor is detailed and testing results of the soft-error tolerance of the microprocessor are shown.
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Chapter 1

Introduction

There are two circuit-design paradigms: synchronous circuits and asynchronous circuits. In synchronous circuits, there is a single global clock signal to which all actions are synchro­nized; a clock signal is fed into each computation module. Each module must finish its computation in a clock period. If something delays the computation, the correctness of the computation cannot be guaranteed.On the other hand, asynchronous circuits operate without a clock signal. The correctness of asynchronous computation is independent of the computation time of modules, because the computation is based on local communications by handshaking protocol. Figure 1.1 shows a synchronous and an asynchronous pipeline.

(a) synchronous circuit

(b) asynchronous circuit

Figure 1.1: Pipeline of Buffers.

The quasi delay-insensitive (QDI) design style proposed in the 80s is one of the most robust asynchronous design styles for general computation [1]. The QDI style has one minimal assumption on delays in gates and wires: an electric signal occasionally must be copied to multiple destinations in such a way that the maximum difference in arrival time of



2the signal at the destinations is small compared to the gate delays. In practice, QDI-circuit designers can easily ensure that the assumption is not violated. Then the correct operation of a QDI circuit is independent of delays in gates and wires, so that QDI circuits are simple, modular, and easy to verify. The recent design of a sub-nanojoule microprocessor has demonstrated that QDI circuits can be very energy-efficient, because only active parts of the system draw power, and the energy spent by the clock is saved [2].A system of QDI circuits can adapt itself to variations of physical parameters such as supply voltage, fabrication, temperature, doping, and so on. The effect of the variations on synchronous circuits can be severe, but QDI circuits are more robust to the variations, which cause changes in timing of the components. These features make QDI circuits attractive to the designers of reliable systems.Besides the issues of variation, the tolerance of soft errors is getting even more atten­tion as technology scaling advances. A soft error is defined as the erroneous switching of a node when the electrical charges that encode the boolean value of the node are erroneously changed by radiation or other noise sources. Unlike manufacturing defects, a soft error can be corrected by applying the proper charges to the node. The International Technol­ogy Roadmap of Semiconductors (ITRS) warns that the continuation of the established semiconductor roadmap is seriously threatened by the increasing occurrence of failures in chip operation [3]. As the feature size of circuits gets smaller, circuits experience more failures of devices and interconnects. To compensate for the inevitable increase of failures, the ITRS urges circuit designers to include error tolerance in their designs, especially for soft (transient) errors caused by radiation or other noise effects.As a response to the concern, a new method, which is applied entirely at the logic level, is proposed for making QDI circuits tolerant to soft errors. Several soft errors can be simultaneously corrected provided they do not happen too close to each other in space and in time. The method has been demonstrated by designing a simple asynchronous microprocessor.In the following two chapters, first we shall overview how to design a QDI circuit, and what will happen if a soft error occurs in a QDI circuit. In Chapter 4, we shall briefly review some soft-error tolerant methods for synchronous circuits and asynchronous circuits. In Chapter 5, the crucial components of the method are shown: (1) a special kind of duplication for random logic (when each bit has to be corrected individually), (2) special protection



3circuitry for arbiter and synchronizer (as needed for example for external interrupts), (3) reconfigurable circuits using a special configuration unit, and (4) error correcting for memory arrays and other structures in which the data bits can be self-corrected. In Chapter 6, the solution of protecting random logic is compared with alternatives which use other types of error correcting codes (e.g., parity code) in a QDI circuit. It turns out that the duplication generates efficient circuits more commonly than other possible constructions. Finally, the design of a soft-error tolerant asynchronous microprocessor (STAM) is detailed, and testing results of the soft-error tolerance of the STAM are shown in Chapter 7.It is worth mentioning that a QDI circuit by itself is able to handle more malicious analog effects than a synchronous circuit. For example, radiation hitting a chip can change the charges on a node, not enough to make the bit flip, but enough to make a transition on the node much slower. On the other hand, radiation-dose effects accumulate in the chip substrate and slowly change the threshold voltages, affecting the timing. Both effects change the physical parameters of the system but do not switch a node. The changes in timing may be catastrophic for a synchronous system but can be completely transparent to a QDI system. In this way, soft-error tolerant QDI circuits can be suitable for applications where soft-error tolerance, combined with the advantages of QDI circuits (e.g., robustness to variations and low power), is needed.
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Chapter 2

Designing Quasi
Delay-insensitive (QDI) Circuits

One way of designing QDI circuits involves first writing a high-level description of a system, which is a sequential program in the communicating hardware processes (CHP) language. The sequential program is decomposed into concurrent small CHP processes that are small enough to be easily compiled into the intermediate handshaking expansion (HSE) language. The HSE description is subsequently transformed into a production rule set (PRS) that is the canonical representation of a QDI circuit and is the lowest-level description in the synthesis method. These compilation steps allow for the design of a transistor-level circuit which correctly implements a given high-level specification of a system.
2.1 Communicating Hardware Processes

A CHP program consists of one or more concurrent processes, each of which is a sequential program. There are no shared variables between concurrent processes; they communicate via channels that connect two processes.For example, a CHP process in a CHP program is as follows:
P≡ *[A?a,B?b; ...; F!∕(α, b, ...), G'.g(a, b, ...); ...; Z; ....]

*[5] means “repeat S forever.” S1',S2 means a sequential execution of SI and 52. The process P receives messages from channel A and channel B, and sends out computation results to channel F and channel G. Then it waits for the action of channel Z, which is a synchronization channel between processes. And if the sending-side process sends messages 
n times as well to channel A, the receiving-side process will receive messages n times from



5channel A and vice versa. If the process on one end of a channel is not yet ready to send or receive, the process on the other end will stay waiting.In the CHP program, there are other processes that send out messages to channel A and channel B, receive messages from channel F and channel G, and synchronize with channel Z, as follows:
Q≡ *[...; A!0;...;F?/;...]
R≡ *[...;B!1;
S≡ *[...; Z;...]

2.2 Handshaking Expansion

We can transform a CHP description into a HSE description, where everything is described in boolean notation. Before compiling a CHP description into a HSE description, we de­compose a big CHP process into a set of small concurrent processes for simple circuit-level implementation later.Let us consider a synchronization channel X without data communication between two processes:
Pq≡ ♦ [...; A;...]P1≡ *[...;X;...]

If Pq encounters the channel action A, then it will wait until Pl reaches to the channel action 
X and vice versa. The communication channels with neighboring processes are replaced with elementary actions such as waiting and assignment of boolean variables. The elementary actions are specified by a protocol such as a four-phase handshaking protocol. For example, 
Pq sets one boolean variable xo to let Pχ know that Pq initiates the communication; P1 sets the other variable Xi to let Pq know that Pχ acknowledges the communication initiated by 
Po. Then the two variables are reset. This is the four-phase handshaking protocol. In the process Pq, channel X is implemented as follows:

χo↑', M ; [-,zdwhich is called active. And channel X in the process Pj is implemented as follows:
[,⅞] ; xi↑-, [-.a:o] ; x^



6which is called passive. ‰↑ is equivalent to x :=true and ⅛] means that the process waits until Xi becomes true. Thus the sequence of events during a channel communication is as follows:
, E¾l, E '‘Toi t E ,Xi3

We introduce an alternative form of active implementation, called lazy active, which is more amenable to implementation:
E->^] ; x0↑∙, E¾] ;

The four-phase handshake protocol uses one variable for initialization and the other vari­able for acknowledgment. For data communication, a variable is replaced with a set of variables, which implements a delay-insensitive code such as one-of-n code. (The details of a delay-insensitive code are explained in Chapter 6.) For brevity, the variables used in the implementation of a channel are called channel variables, which consist of channel code 
variables and a channel acknowledgment variable.

Figure 2.1: Handshake Expansion of a Synchronization Channel.

2.3 Production Rule Set and PRS Computation

A HSE description is transformed into a production rule set (PRS), which has no explicit sequencing. A PRS is a concurrent composition of production rules, and the execution of a PRS is a concurrent execution of the production rules in the set. Each production rule (PR) has the form G -÷ S, where G is a boolean expression of boolean variables called the guard of the PR, and S is a boolean assignment. The assignment is written as z↑ or z],, which corresponds to z :=true or z :=false. An execution of a PR G -÷ S is an unbounded sequence of firings. A firing of G —> S when G is true amounts to the execution of S, and



7a firing with G false amounts to a skip. If the firing of a PR does change the value of any variable, the firing is called effective. For brevity, we shall refer to all effective firings simply as firings.A PR G —> S in a PRS is said to be stable if whenever G becomes true it remains true until the assignment S is completed. Gl -÷ z↑ and G2 —> z], are non-interfering if and only if -« Gl V ~∣G2 holds in every execution. Stability and non-interference guarantee that the execution result of PRS is deterministic. In physical implementation, an unstable PR can generate a glitch, which may cause a QDI circuit to malfunction. The interference manifests itself as a short circuit, which consumes power excessively, may damage the circuit physically, and also leads to indeterminate logic values.The two complementary PRs that set and reset the same variable, such asGl → z↑

G2 —Y 2.].,
comprise a gate. The variables in the guards are the inputs of the gate and the variable in the assignment is the output of the gate. If Gl≠-∣G2 holds, then z is a state-holding variable, and the gate is a state-holding gate·, if Gl=->G2 holds, then z is a non-state-holding variable, and the gate is a combinational gate. (These variables correspond to electrical nodes in the physical implementation.)A QDI circuit is an interconnection of gates, interacting with its environment. Each input of a gate is either connected to the output of another gate, or to an environment. The output of a gate may be connected to any number of inputs of other gates, as well as to the environment. An input of a gate that is connected to the environment is a primary 
input’, an output of a gate that is connected to the environment is a primary output.The environment of a QDI circuit sets values of primary inputs by reacting to values of primary outputs of the circuit. A pair of a circuit and an environment, like Figure 2.2, is called a system.If a PRS uses boolean variables ∙.∙,a⅛ for guards and assignments, then the stateof the PRS can be represented as an n-tuple of boolean values. Interchangeably we shall use Ό’ for false and T’ for true. And ⅛,[a⅛] is the value of x∣ι in the state s. A PR P in the state s is called enabled if and only if the guard of P is true in the state <s. A PR P is called effective in the state s if and only if the firing of P in state s changes the value of a
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Figure 2.2: Circuit and Environment.

variable. An execution path of a PRS is a trace of firings of PRs from an initial state, which is described as < Pi,..., Pm~ι∙> Pm >, where Pi is a PR. An execution-path set of a PRS is the set of every possible execution path from an initial state of the PRS.A PRS computation (PRSC) is defined as follows:
• Two disjoint sets: ∑Er∏n called the environment, and ∑c⅛rcmi, called the circuit, whoselθt>elements are PRs. (Σ — ∑τrnv U ∑c,ircwzi∙)
• An initial state sq ∈ {θ, l}n∙ (n is the number of distinct variables in Σ.)
• An eχecution-path set EP.

An environment path of an execution path is a projection of the execution path onto ∑κnv. A finite set Sv is called a valid-state set if its elements are states reachable from sq by firing of PRs in Σ. A PRS computation can be represented as a transition diagram. The vertices of the diagram correspond to the valid states in Sv. If a production rule P is effective in a state s, and the state s is turned into a state s, due to the firing of the production rule, then there is an edge labeled P from s to s' in the transition diagram.
2.4 Example of QDI Circuits: Buffer

The CHP description of a buffer, which is an essential component of an asynchronous system, is * [T; P]. Two boolean variables L.i and L.e implement the input synchronization channel 
L of the buffer, and likewise two variables R.i and R.e implement the output synchronization channel R. The corresponding HSE is



9* [ e‡; C-iL.i]; L. e†; [ R. e] ; R.i↑∙, [-'R.e]; R.i^-, ],

where L is passive, and R is lazy-active. A direct implementation of the HSE description produces an inefficient circuit, which requires extra variables and, ultimately, extra transis­tors. Instead, it is better to permute parts of the HSE to reduce the amount of sequencing and the number of extra variables. The transformation is called reshuffling, which is the source of significant optimization opportunities. Although there are several possible reshuf­flings, three reshufflings are commonly used: precharged full buffer (PCFB), precharged half 
buffer- (PCHB) and weak-conditioned half buffer (WCHB) [4].For example, the HSE based on the PCHB template is

*[[i?.eALd; R.i↑-, L.e^-, [->R.e]; R.i⅛ [-∣T.z]; L.e↑].
A corresponding PRS is

L.e Λ R.e Λ L.i —>∙ R.i↑

-ιL.e Λ -∣R.e —÷ R.i∖,

L.i ∕∖R.i —> L.e].

-*L.i ∕∖~∣R.i -÷ L.e↑.

If the PRS of the environment is
L.e —y L.if 
-'L.e —> L.i[

R.i -÷ R.e↑,

^R.i —> R.e↑,

and the initial state is (L.i, L.e, R.i, R.e) = (0,1,0,1), then the PRSC for the PCHB system is
• ∑Env = {L.e → L.i †, ->T.e → L.i †, R.i → R.e†, ^R.i → R.e†},

^Circuit = {L.e Λ R.e Λ L R.i †, ->L.e Λ -∣R.e -÷ R.i †, L.i ∕∖R.i —> L.e∖r, -∣L.i ∕∖^R.i 
→ L.e↑}

• Initial state ⅝ = (0,1, θ, 1)
• The execution-path set EP is as follows: {< L.i↑ >, < L.i↑, R↑ >, < L.i↑, R↑, R.e^>, 

< L.i↑, R↑, L.i]r>, < L.i↑, R↑, L.i]., R.e±>,...}.



10Accordingly the environment-patlι set of the PRSC is as follows:
EnvP = {< L.i↑ >, < L.i↑, 72.eφ>, < L.i↑, L.i},>, < L.i↑, L.i],, R.e↑,>,...}.

The transition diagram of the PCHB is shown in Figure 2.3, and a circuit diagram of the PCHB in CMOS technology is shown in Figure 2.4.

Figure 2.3: Transition Diagram of Precharged Half Buffer. Each state represents the values 
of (L.i,L.e,R.i,R.e). The double-circled state is the initial state.

Figure 2.4: Circuit Diagram of Precharged Half Buffer.

Note that in the circuit diagram, a C-element, which was introduced by David E. Muller, is represented as a circle with the letter iC,, which is a commonly used asynchronous logic
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Table 2.1: C-element Truth TableX y z0 0 01 1 10 1 previous value retained1 0 previous value retained

component. The output of a C-element reflects the inputs when the values of all inputs match. One possible CMOS implementation of a C-element is shown in Figure 2.5, and its truth table is shown in Table 2.1.

Figure 2.5: Circuit Diagram of C-element and, its Gate Diagram.
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Chapter 3

Soft Errors in QDI Circuits

In this chapter, different types of errors are overviewed first, and a digital model and an analog model of soft errors are shown. Then the effects of soft errors in QDI circuits are examined.
3.1 Errors on Circuits

Failures of a system at the circuit level can be broadly categorized as either manufacturing defects or operational errors. Manufacturing defects such as single stuck-at faults arise from a range of processing problems during fabrication. For example, improper doping in the channel of a transistor may cause a change in the threshold voltage and timing of the transistor, and may make the transistor unusable. Therefore testing methods for detecting manufacturing defects have been extensively studied. Commonly used testing methods involve adding extra test circuits to the system. While the test circuits are transparent in normal operations, the circuits are activated to detect defects in a special mode [5]. The method of testing QDI circuits has been also studied, which shows that defects in QDI circuits are testable [6].While defects occur in manufacturing processes, operational errors happen unpredictably during the lifetime of a circuit. Operational errors can be subdivided into two types: hard (permanent) errors and soft (transient) errors. A hard error is an error that dam­ages a circuit irrevocably. For example, when a high-energy particle activates a parasitic transistor to trigger a positive feedback, the current caused by the positive feedback can exceed the device’s maximum specification and can destroy the device [7]. In addition to incident high-energy particles, there are other types of destructive causes such as electro-



13migration [8J.On the other hand, soft errors deposit sufficient charges on the nodes of a circuit to flip the logic states without causing any physical damage to the circuit. They result in transient, inconsistent corruption of data. One of the main causes of soft errors is alpha particles from IC packages [9, 10]. A positively charged alpha particle from radioactive decay travels through a circuit and disturbs the distribution of electrons, as shown in Figure 3.1. If the disturbance is large enough, the value of a node can change from false to true or vice versa. In addition to alpha particles from the package, other types of radiation such as cosmic rays from space can also cause soft errors [11]. Many different particles are present in cosmic rays, but a major cause of soft errors is known to be neutrons. Since neutrons are uncharged, they cannot disturb electron distribution on their own, but they can undergo neutron capture by the nucleus of an atom in the circuit, generating an unstable isotope that produces an alpha particle when it decays. Computers operated at high altitudes or in aircraft experience an order of magnitude higher rate of soft errors compared to sea level, because the flux of cosmic ray depends on altitude. This is in contrast to alpha-particle decay from package, which does not change with location. Other than the radiation effects, soft errors can also be caused by random noise such as inductive or capacitive crosstalk, power supply noise, charge sharing, leakage noise, and so on [12, 13, 14].
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Figure 3.1: Interaction of a Particle and Silicon Substrate.

Soft-error tolerance of logic circuits has recently been receiving more attention, since the soft-error rate of advanced CMOS devices is higher than before [15]. For the past



14three decades, dense memories, including DRAM and SRAM, have been known to be more susceptible to soft errors than logic circuits. For example, the typical soft-error rate for SRAM circuits for 90 nm is reported to be about 1000 kFIT/Mbit, and a soft-error rate for logic circuits for 90 nm is reported to be about 100 kFIT/Mbit [16]. (Failure in time (FIT) is defined as the number of errors per one billion hours.) But it is anticipated that the soft-error rate for logic circuits will increase by nine orders of magnitude between 1992 to 2011, at which point it will be comparable to the soft-error rate for unprotected memory elements [17].
3.2 Digital Model of Soft Errors

A soft error is modeled as flipping the value of a single variable in a PRS; a PRS Compu­tation (PRSC) with a soft error is defined as follows:• Two disjoint finite sets ∑Env, called the environment, and ∑circuih called the circuit, whose elements are PRs. (Σ ⅛ Σje⅛w U ∑c,zrcmi∙)
• An initial state so ∈ {0, l}n. (n is the number of distinct variables in Σ.)• A soft-error execution-path set EPerror.A soft-error execution path can include a symbol errorxi representing an error on Xj. For example, a soft-error execution path is < Pχ,..., P^_i, errwx., P⅛+1..., Pm-i, Pm >, which infers that a soft error occurs on Xi after the firing of the PR P⅛-ι, and the value of Xi is flipped. Elements of the valid-state set S are states reachable from the initial state ⅜ θ∏ly by firing of PRs in Σ; elements of the invalid-state set Q are states reachable only with a soft error on a variable. The vertices of the transition diagram correspond to states in S or Q. If 6,[xJ ≠ <s,[rz^] and <s,[a7j-] = s'[τj∙] for all j ≠ f, then there is a two-way edge labeled 

error between s and s' in the transition diagram, because an error on Xi flips s to s' and vice versa.There are two types of erroneous computations that may be caused by an error. (For brevity, sometimes we will refer to soft errors as simply errors.)
Deadlock An error may put a system into an invalid state such as the state ρ, as shown in Figure 3.2 (a). The invalid state cannot be reached in a normal execution. If no PR is effective in the invalid state, deadlock occurs.
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Abnormal Computation An error may cause a transition from a valid state to another valid state. Or an error may put a system into an invalid state where some PRs are effective, and a system is put into a valid state after firings of PRs. Meanwhile some states are possibly skipped or revisited; the corresponding firings of PRs are skipped or repeated due to the abnormal transition, as shown in Figure 3.2 (b). In this case, data can be missed or can be generated accidentally.

', q ;

f
error
L__ >

(a) Deadlock (b) Abnormal ComputationFigure 3.2: Examples of Erroneous Computations Caused by Soft Error.

As an example of a PRSC with a soft error, let us consider a soft error on L.e in the buffer from the previous chapter. The PRSC with a soft error on L.e is as follows:
• ∑πnv and ∑circuU arθ the same as before.
• An initial state ⅝ = (0,1,0,1).
• EP e r ro r ~ {< errorιj.e >, < L.i ↑ >,..., < L.i †, error^e, L.i ‡, L.e↑, L.i † >,..., }.

The transition diagram, including transitions caused by the error, is shown in Figure 3.3. In a normal computation, there are the same number of transitions on output variable R.i as on input variable L.i from the specification of a buffer. (Strictly speaking, the number of output transitions of a buffer can be fewer or the same. But in the shown implementation, the next input set assignment (i.e., L.i †) cannot start until the output reset assignment (i.e., R.i ‡) is done.) But an error on L.e can cause premature acknowledgment of the communication on the channel L before an output communication on the channel R is generated. That is, compared to the normal execution cycle as shown in Figure 3.4, the



16erroneous cycle (i.e., (L.i↑, error, L.i⅛, L.e↑)) skips transitions such as R.i↑, as shown in Figure 3.5.

: the initial state state : (L.i,L.e,R.i,R.e)

Figure 3.3: Transition Diagram of PCHB with Soft Error on L.e. The dotted circles indicate 
invalid states, and the dotted edges indicate erroneous transitions caused by an error on L. e.

the initial state state :(L.i,L.e,R.i,R.e)
Figure 3.4: Example of Normal Execution Path of Firings in PCHB.
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the initial state state : (L.i , L.e,R.i,R.e)

Figure 3.5: Transition Diagram of Buffer with Soft Error on L.e. The dotted circles indicate 
invalid states, and the dotted edges indicate erroneous transitions caused by an error on L. e.

3.3 Analog Model of Soft Errors

We can also identify the erroneous computation in SPICE simulation of a linear pipeline (an array of L-R buffers), as shown in Figure 3.6. A PRS of a one-bit PCHB is as follows:
en Λ R.e Λ L.0 → _r.0‡-∣e,n Λ -∣R.e → _r.0†
en Λ R.e Λ L.l → √r.lφ
-∣en Λ -∣R.e → .r.l↑_r.O → R.0φ-∣.r.0 → R.Q↑_r.l → R.l‡→ R.l↑



18L.OVL.1 → _M 
-∣L.() A ->L.1 —> _Zav†
Jv —> lv↑,

->Jv -> lv↑_r.O Λ _r.l —> ∏4 ->_r.O V ->_r.l —> π-,↑
lv Λ rv —> L.e‡->∕v Λ ->rυ → L.e↑

L.e → _e/4-∣L.e → .en↑

.en —> enj

^.en —> en↑

Variables L.O, LI encoding a one-of-two code and an acknowledgment variable L.e imple­ment the input data channel L. Likewise variables Æ.0, R.l, and R.e implement the output data channel R.SPICE simulations of the pipeline have been done in TSMC 0.18-μm CMOS technology and at an operating voltage of 1.8 V. A soft error can be modeled in SPICE as a current pulse [18]. If the current pulse is short enough, compared to the response time of the gates, the specific shape of the pulse is not critical to the response of the circuit to the charge injection, so that we can model a soft error as a square current pulse for simplicity.If the buffer works correctly, there should be the same number of transitions on output variable R.0 as on input variable L.O: the number of rising and falling signals on RS) is the same as that of rising and falling signals on L.0. However when a charge is injected at the node L.e at 7.0 ns, the assignment TZ.O† is missed: there is no output signal between 7 ns and 8 ns, as shown in the upper panel of Figure 3.7. Since one variable is used to acknowledge communications between modules (buffers), an error on this variable can have catastrophic results.
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error

Figure 3.6: Pipeline of Buffers.
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Figure 3.7: Waveforms of Input-channel Variable L.0 and Output-channel Variable R.0, and 
Input-channel Acknowledgment Variable L.e. A soft error on L.e at 7 ns causes premature 
acknowledgment of an input communication on L before an output communication on R is 
generated.
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Chapter 4

Related Work

In order to cope with soft errors in a circuit, several approaches have been explored. At the device level, the silicon-on-insulator (SOI) process technology helps to increase the resistance of circuits to soft errors, especially those caused by radiation, because of reduced charge collection depth [19].Traditional techniques for providing soft-error tolerance at the logic level rely on triple 
modular redundancy (TMR), in which a given circuit is triplicated, and a majority voting circuit is used to determine the final output [20]. Sometimes a voting circuit is also tripli­cated to tolerate an error on the voting circuit itself. Although TMR is a straightforward solution for synchronous circuits, it cannot readily be applied to QDI circuits. A TMR version of a QDI circuit is shown in Figure 4.1. The QDI voting circuit of the design waits for input data communications from three copies of a component. Since an error on one of the triple copies of a QDI circuit results in aborting the communication of the data, the voting circuit possibly waits indefinitely for the delivery of aborted data. Unlike clocked systems, a QDI component may deadlock in the presence of a soft error. Since there is no notion of time in QDI circuits, it is not trivial to adapt the TMR scheme to QDI circuits.

Error correcting codes (ECCs) are also widely used. Except for repetition codes (e.g., duplication and triplication), ECCs are rarely used for control logic because circuits based on ECCs tend to be complex. On the other hand, ECCs are mostly suitable for a large memory array, where we can exploit the density of a complex ECC, and can minimize the cost of decoding and encoding by having just one encoder and decoder for a whole memory [21]. An example of applying a Hamming code to the instruction memory of a 8051 microprocessor has been demonstrated [22].When an ECC is applied to an array of SRAMs, the decoder corrects data later when the
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Figure 4.1: TMR QDI Circuit. It cannot tolerate a soft error, because a soft error can abort 
the communication of data, which is hard to detect in an asynchronous system.

data are accessed. On the other hand, self-correcting memory cells correct an error locally, even though the cells require more transistors than an SRAM. A self-correcting memory cell, which stores data in two different locations within the cell, restores corrupted data with an appropriate feedback. There exist several styles of self-correcting memory cells, and each style organize the feedback transistors differently [23, 24]. We shall adapt one of these self-correcting memory cells in order to design a soft-error tolerant asynchronous memory.Besides the approaches based on TMR and ECCs (namely, space redundancy), ap­proaches based on time redundancy have been also explored. For example, one circuit- level approach employs time-domain TMR, which samples the result of combinational gates multiple times [25]. Due to a larger sampling window, the approach incurs a performance overhead. The other approach for mitigating soft errors uses delay elements, which prevent malicious current pulse from spreading to latches, but it assumes short delays in restoring a soft error [26].We can apply the time redundancy not to hardware but to software. There are several software-based schemes that execute duplicated instructions over duplicated data and com­pares the results to check their integrity, called rollback recovery [27, 28, 29]. Although the software-based approaches do not require much hardware modification, they incur speed penalty. Evaluation of the cost of these approaches for four different benchmark programs shows a speed penalty varying 110% to 354% [30]. Multithreading is another software- based transient fault detection and recovery approach that reduces memory and speed cost



22by exploiting the capabilities of modern processors to execute multiple threads of compu­tation [31]. However these software-based approaches are limited to microprocessors.A variety of soft-error tolerant schemes for synchronous circuits has been studied and compared [32, 33]. Meanwhile, a few error-detect ion methods and error-tolerance techniques for QDI circuits have been proposed. A duplication method has been employed to provide an indication of an error in asynchronous circuits, but the duplication method can fail to detect an error, since it assumes the maximum delay between an output from one circuit and an output from its counterpart circuit [34]. Although the approaches can improve the robustness of QDI circuits, these methods require significant timing assumptions to detect errors, and do not always guarantee the error tolerance of a QDI circuit [35, 36]. On the contrary, exploiting the stability of a QDI circuit, we can make a duplicated QDI circuit soft-error tolerant by adding cross-coupled C-elements, which will be demonstrated in the following chapter.A reconfiguration method for designing a soft-error tolerant asynchronous circuit is presented, which is different from the above approaches [37]. In the reconfiguration method, by forcing an asynchronous circuit to stall in the case of an error, specific self-reconfigurât ion logic is activated by a detector of the stalling (e.g., watchdog timer). Then the array circuit is reconfigured around the faulty components and consequently the system recovers from errors. This approach incurs large overheads and is suitable for specific structures such as an adder.
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Chapter 5

Protecting QDI Circuits from Soft 
Errors by Design

The key idea for protecting a system from an error is adding redundancy. We shall show how to make a QDI circuit soft-error tolerant by (1) detecting a soft error with duplicated gates and (2) preventing the propagation of an error with cross-coupled C-elements. This method is called the duplicated double-checking (DD) scheme. Although duplication by itself is not enough to correct an error, the duplicated QDI circuit with cross-coupled C-elements can correct an error by exploiting the stability property of QDI circuits. That is, if an error occurs on the output of one of duplicated gates, the cross-coupled C-elements prevent the corrupted output from propagating to the environment; the stable inputs eventually restore the proper outputs while the computation of QDI circuits is delayed. Since additional delay is transparent to QDI circuits, the result of the computation is not affected.The DD scheme is general enough to be applied to most parts of a QDI system. However, arbiters and synchronizers, which are required for handling interrupts and interfacing a synchronous domain and an asynchronous domain, need special protection circuits, called mutual excluders, because of their non-deterministic feature. In addition, arrays of bit- storage units in a memory do not rely on the DD scheme for error tolerance. In bit- storage units such as SRAMs, the stability property cannot be used to restore the value of a corrupted variable. Once data is written in a storage unit, the inputs that triggered the writing do not persist. Hence, solutions based on error correcting codes are applied in memories instead of the DD scheme.In the following sections, we first show that a QDI circuit based on the DD scheme is capable of tolerating an error. Then we show how to design a soft-error tolerant arbiter,



24field programmable gate arrays (FPGA), and memory.
5.1 Duplicating QDI Circuits with Cross-coupled C-elements

5.1.1 Duplicated Double-checking QDI CircuitIn the duplicated double-checking (DD) scheme, all gates in the original circuit are dupli­cated, and then state-holding variables are double-checked, which means that two cross- coupled C-elements are placed on state-holding variables. The reason cross-coupled C- elements for non-state-holding variables are inessential, is explained at the end of the proof of Theorem 1.A DD gate consists of two plain gates and two cross-coupled C-elements, called double­

checking C-elements, as shown in Figure 5.1. The C-elements share the inputs z'a, zb, called 
checked-in (CI) variables, whose outputs are za and ⅞, called checked-out (CO) variables. A set of CI variables and CO variables, such as za, Zb, z'a, and zb, are called cross-coupled 
variables. A gate in PRS is

Gp(..., X,...) —> z↑

Gn(..., x,...) —>and a corresponding DD gate is
..., xa,...) → <†

Φ ..., Xh, ...) →
..., xa,... ) →

g;;c..., xb,...) →
zb → ⅞↑,¾↑
Λ ~,zb →

(For brevity, two PRs G → r† and G → y↑ are written as G → r†, y↑.) The variables xa and Xf, are copies of the variable x, and the variables za and z∣, are copies of the variable z, and so forth.A DD circuit consists of duplicated gates and DD gates. Figure 5.2 shows a circuit and its corresponding DD circuit. If the PRS of a circuit is stable and non-interfering, then the PRS of its corresponding DD circuit is also stable and non-interfering. As a matter of fact, the DD PRS has a strong stability: whenever a guard (e.g., Gj)) becomes true, it remains
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Figure 5.1: Gate in Original Circuit and its Corresponding DD Gate in DD Circuit.

true until both assignments of duplicated variables (e.g., za↑, z&†) are completed. The inputs of duplicated gates, which cause the transitions of the duplicated outputs, persist until the transitions propagate to the environment. The rationale behind the error tolerance of DD circuits that have the strong stability, is explained in the following theorem.

Figure 5.2: Circuit and its Corresponding DD Circuit.

Theorem 1 If a QDI circuit is stable and deadlock-free, then its corresponding DD QDI 
circuit can tolerate a soft error: neither deadlock nor abnormal computations are caused by 
a soft error.

Proof: In a DD circuit, duplicated variables are cross-coupled by C-elements whose outputs reflect the inputs when the values of all inputs match; an error corrupts only half of a DD circuit. As a result, the only erroneous computation, if incurred, is deadlock when an error causes inputs of cross-coupled C-elements (i.e., CI variables) to mismatch. Hence, in order to show the error tolerance of a DD circuit, it is enough to show that an error cannot cause deadlock: a mismatch between the inputs of cross-coupled C-elements, caused by an error, can be resolved eventually, or the mismatch does not stop expected assignments of CO variables by disabling effective PRs.There are three kinds of variables in a DD circuit: a CI variable, a CO variable, and
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Table 5.1: State Table of DD Gate
'cτn 'cτn ^jτp 4 4 za ⅞D D D D 0 0 0 0 (a)E D 0 0 0 0 (b)1 0 0 0 (c)D E 0 0 0 0 (d)0 1 0 0 (e)E E 0 0 0 0 (f)1 0 0 0 (g)0 1 0 0 (h)1 1 0 0 (01 1 1 0 (j)1 1 0 1 (k)1 1 1 1 (1)D E 1 1 1 1 (m)E D 1 1 1 1 (n)
Ga Gb G“ G»p 4 4 Za ZbD D D D 1 1 1 1 (a’)E D 1 1 1 1 (b’)0 1 1 1 (c’)D E 1 1 1 1 (d’)1 0 1 1 (e’)E E 1 1 1 1 (f’)0 1 1 1 (g’)1 0 1 1 (h’)0 0 1 1 (*’)0 0 0 1 (f)0 0 1 0 (k’)0 0 0 0 (1’)D E 0 0 0 0 (m’)E D 0 0 0 0 (n’)
E stands for enabled, and D stands for disabled



27an ordinary variable, which is an output of combinational gates without cross-coupled C- elements. In fact, corruption caused by an error on an ordinary variable is the same as a part of corruption caused by an error on a CO variable, which will be explained when we examine what an error on a CO variable causes. Therefore, in order to show the error tolerance, we shall demonstrate that an error on a cross-coupled variable does not cause deadlock. For this, first we enumerate all possible states of a DD gate in a stable and non-interfering DD circuit, as shown in Table 5.1, where Έ’ stands for an enabled PR, and ‘D’ stands for a disabled PR of a DD gate. Because of the strong stability, only 28 possible states are allowed for a DD gate. Comparing the 14 states of the upper table to the 14 states of the lower table, we can see that the variables and the guards of the PRs are set/reset in an opposite sense. Therefore, it is enough to examine what happens if an error occurs in each of the 14 states from (a) to (n) in the upper table only.Let us consider an error on a CI variable first. We can categorize the 14 states to three types, as follows.1. Let us assume that an error occurs on z'a in the state where G® is true such as (b), (c), (f), (g), ..., (1), and (n). If z,a is 0, then the error is equivalent to z,a↑, which is a firing of the effective PR Gg → z,a↑. That is, the error is just a normal transition. On the other hand, if z,a is 1, then the error is equivalent to z'φ, which prevents 
z,a Λ z,b —> ⅞↑, zb↑ from firing. Meanwhile the corrupted z'a is restored, because Gp is persistent to be true to make G⅛ —> z,a↑ fire. Therefore, deadlock can be avoided.

2. Let us assume that an error occurs on z,a in a state where G£ is false and (⅛,⅛) is (0,0) or (1,1), such as (a), (d), or (m). If (⅛, ztb) is (0,0) or (1,1), then (za,zb) is (0,0) or (1,1) in the three states. If (⅛, zb) is (0,0), the error cannot enable z,a∕∖zb -÷ zo†, zb↑ to fire, and consequently (za,zb) remains (0,0). If (z,a,zb) is (1,1), the error cannot enable ->z' Λ ->z,b —> za},, zb⅛, to fire, and consequently (za,zb) remains (1,1). In both cases, the error does not affect the values of za and the error is masked, and the system works as if no error occurs.
3. Let us consider an error on the state (e) where (Gp,Gp : z,a, zb, za, zt,) = (D,E : 0,1,0,0). If an error occurs on ⅛, then (⅛, zb) becomes (1,1), and z,a A z,b → za↑, zb↑ are enabled to fire. Although deadlock does not occur, the firings of 20†, zb↑ caused by the error may be premature in the following sense. If the assignments of the inputs



28such as J,u↑ (or has not been completed (i.e., is still false), but the firings occur, then the environment assumes that the assignments are completed, and the state of a system is updated even before the assignments are completed. In other words, the assignments of some inputs can be missed owing to the error. But note that they do not affect the sequence of firings that the environment can observe, and do not stop the firings: the system works correctly.
As we see, an error on a CI variable is masked or corrected, so that the error does not cause deadlock in a DD circuit.Let us consider an error occurring on a CO variable such as za. If it does not enable any PRs of subsequent gates such as g% or an error on za cannot cause any erroneous behavior, and the corrupted za is restored in short order, because the values of CI variables become the same eventually, and cross-coupled C-elements of the corrupted CO variable corrects its corrupted output.⅛ Λ z,b → za↑, zb↑

~ιza Λ zb → za⅛∙> zbl

gp(..., za,...) wa↑ 
g,p(..., zb,...) → wb↑ 
g%(..., za,...) → woφ→ w4

On the other hand, if an error on a CO variable enables PRs of subsequent gates to fire, then the outputs (i.e., ordinary variables) of the subsequent gates become corrupted, and the corrupted outputs may affect the outputs of next subsequent gates, and so on. However, since the propagation of the unexpected firings is blocked by DD gates, the corrupted region is confined between a DD gate and another DD gate, as shown in Figure 5.3. Meanwhile, the corrupted za will be restored, since CI variables are not corrupted; accordingly cor­rupted ordinary variables are also restored, since the outputs of combinational gates can be corrected if the inputs are corrected. Therefore, all corrupted variables in confined regions are corrected, and then blocked computations of the DD circuit can proceed. Likewise if an error on an ordinary variable occurs, corruption caused by the error is confined between DD gates, and the corruption is restored, because inputs of the corrupted combinational



29gate are still correct. Here, we can see why cross-coupled C-elements can be omitted for combinational gates: the output of a state-holding gate may not be restored even if the in­puts of the state-holding gate are correct, but the output of a combinational gate is always restored if the inputs of the combinational gate are correct.Note that we rely on an implicit assumption in order to show that a DD circuit tolerates an error. The assumption is that each loop of gates in a DD circuit, which is a set of gates whose inputs/outputs are outputs/inputs of gates in the set, has enough DD gates in order to prevent corruption of a CO variable (e.g., za} from propagating up to a corresponding CI variable (e.g., zfa). If the assumption does not hold, then a CI variable can be corrupted because of an error on its corresponding CO variable: a set of cross-coupled variables are corrupted simultaneously, which prevents cross-coupled C-element from correcting the cor­rupted CO variable. As a result, deadlock occurs. In most practical circuits, our assumption is valid, and we can add more cross-coupled C-elements to a loop of gates to ensure the assumption, if necessary. ■

-< c )-
Figure 5.3: Soft Error on CO Variable. The propagation of an error is blocked by the next 
DD gates.

A DD circuit can tolerate not only a single error but also multiple errors, unless a set of cross-coupled variables is corrupted simultaneously. Even if multiple errors occur on a set of cross-coupled variables, and each error is corrected before the next error occurs, then the multiple errors on cross-coupled variables seem to be tolerated. However there is a problem that a CI variable (e.g., z,a) in a state-holding state can remain corrupted for a long time



30after an error occurs on the variable; a DD circuit will fail if another error occurs on the other CI variable (e.g., zfb) later.In order to avoid the accumulation of errors, weak C-elements, as shown in Figure 5.4, can be used. They play the role of duplicated “keepers”, which not only keep the voltage level of the state-holding nodes (z,a, z'b), but also can correct the nodes if one of them is corrupted, as follows. If a soft error occurs on z,a in the state s — (..., zfa, zb, za, zt>,...) = (..., 0,0,0,0,...) or (..., 1,1,1,1,...), then the weak C-elements are enabled to restore zfa. Hence the accumulated-error problem can be resolved by weak C-elements. In other possible states, the weak C-elements are functionally transparent in a DD circuit.

Figure 5.4: DD Gate with weak C-elements. It can correct a corrupted CI variable in a 
state-holding state.

Throughout the section, we have assumed that cross-coupled C-elements are added for every state-holding gate, but they are not always necessary. In fact, the necessity depends on how the environment sets/resets the inputs of a state-holding gate as a response to the change of an output of the gate. For example, let us assume that the environment of a tree of C-elements reacts to the output assignment z↑ by setting all inputs to be false, and to the output assignment z^ by setting all inputs to be true. Then the tree of C-elements can be converted to a DD tree of C-elements using one pair of double-checking C-elements, as shown in Figure 5.5. In the design, an error occurs on the output of an internal C-element, say, ya∙, which remains corrupted for the time being, but the corruption does not cause deadlock. (The effect of the error is similar to that of an error on a CI variable in the state (e), which we examined in the proof.) The environment, which only can see the intact primary outputs, causes all primary inputs to be either false or true eventually, and then



31the corrupted variable ya is corrected.

Figure 5.5: Tree of C-element and its corresponding DD Tree. The DD tree of C-elements 
requires cross-coupled C-elements only for the primary outputs.

5.1.2 Comparing Reliability of QDI Circuits and DD QDI CircuitsThe reliability of a system is defined as the probability that a system will perform its intended function during a specified period of time under stated conditions. Here we analyze the reliability of a DD circuit, comparing it with that of a normal QDI circuit.For simplicity, let us assume that an error that causes a circuit to fail occurs on each node with probability Pc, in independent and identically-distributed fashion, during a given period of time. Then the reliability of a system with N nodes is expressed as the following probability
^Reliability = P[N nodes are good] = P*od = (1 - Pg)n ≈ (1 - 7VPc) (if NPe <£ 1).
Let us consider the reliability of a DD circuit. If a given QDI circuit has N nodes and cross-coupled C-elements are added to each and every gate, then the number of the nodes in a corresponding DD circuit will be 47V, because of the duplication and cross-coupled C- elements, and there are N sets of cross-coupled variables. If multiple errors occur, at most one error should be located in one of N different sets of cross-coupled variables. If not, the DD circuit cannot tolerate the multiple errors. If n errors occur, only 4n(^) different distributions of n errors can be tolerated: each error is assigned to one set of cross-coupled



32variables, which is (^), and each set has four possible sites of an error, 4π. Accordingly we have the following reliability for a DD circuit:
-^Reliability P[4N nodes are good]1 , N ,+4i I I P[4N — 1 nodes are good]P[one error]

9 1 N .+42 I I P[4N — 2 nodes are good]P[two errors]
+ ...

N+47v I I P[4N — N nodes are good]P[AΓ errors]
p4 N pθ 

-r good r e

+41
+42
+ ...+4

N

N

N

N

p4N-l pi 
r gυυd rt∙.

p4N-2 p'2 
r good ^r('

N I j, I p4N-NpN 
*goo<l 1>

(1 - Pe)3'v(l + 3Pe)'v (1 - 6P⅛i + 8P3 - 3Pιf)-v 1 - 6ΛrPtr (if NP? « 1)
Compared with the reliability of a given QDI circuit, the first-order term of Pe does not appear in the reliability of a DD circuit. The difference between the reliability of a normal circuit and its DD circuit is obvious when NPe ≈ 1. For example if N = 106, and Pe = 10-θ, then Pliability (Normal Circuit) = 0.37, but Payability (DD Circuit) = 0.9999.Although we have considered the occurrence of errors to be independent, the occurrence of errors on adjacent nodes is likely to be more probable than that of an error on non- adjacent nodes. For example, given the occurrence of an error on za, the probability of an



33error on the counterpart node zt, may increase by a constant factor of c, compared with the probability of the occurrence of an error on 2⅛ without that of an error on za. It can be written, as follows:
P(error on zα∣error on Zfi) = c × P(error on 2rt∣n0 error on z∣,)
P(error on 2⅛∣error on za) = c × P(error on 27>∣no error on za)

The notation P(A∖B) means the conditional probability of A given B. Then we have the following:
P(error on both za and Zb} _ P(error on za and no error on z^)P (error on ,¾j P(no error on z^

P(error on both za and z^} P(cîîqî on z⅛ and no error on za}P(error on ¾) P(no error on za}

P(error on za) — P(error on both za and Zfi) ÷ P(error on za and no error on ¾) = Pe

P(error on Zf,) = P(error on both za and ⅞) + P(error on z^ and no error on za) = Pe
Solving the equations, we obtain the following:

P(error on neither za nor z^) =

P(error on za and no error on ¾) =
P(error on z^ and no error on ¾) =

P(error on both za and ⅞) =

c(l — Pe)(l + (c — 2)Pe) 
l + (c-l)Pe

cPe(l-Pe)
1 + (c — l)Pe 
c⅞(l-Pe) 
l + (c-l)Pe

1 ÷ (c — l)Pe

Here, we let P (error on a node) = Pe. Considering the effect of proximity on the error



34probability, we obtain the following reliability:
PReliablιlty(DD) ≈1-C× 6 TVPg2

Hence, if the correlation between errors on adjacent nodes is weak enough (i.e., c « jr)∙ then we still get better reliability by applying the DD scheme to a QDI circuit.Although the DD scheme improves the reliability of a system, it has the area overhead of extra circuits, and a performance overhead, too. The size of transistors has decreased by a factor of 0.7 in each technology node so that the area of the same system becomes half, and the cycle time of the system can be increased by a factor of almost θ^∙ ≈ 1.4 [3]. (The technology node signifies the feature size of a circuit.) Meanwhile the soft-error rate is increasing by a factor of about seven in each technology node. If so, an old technology whose error rate is lower and whose performance is worse than that of a new technology may be considered an alternative to DD circuits for a reliable system. But it turns out that the DD circuit in a newer technology will be better than the normal circuit in an older technology.For example, let us assume that the reliability of a normal circuit in an older technology and the reliability of its DD circuit in a newer technology are the same. Then,
(1- Pe)κ = (l-P,f∙-(l + P,j'

is satisfied, where pe is the probability of the occurrence of an error in the older technology, 
Pe is the probability in the newer technology, and if s signifies the gap between the two technology nodes,

pe×7s = Pe

is satisfied, since the soft-error rate is increasing by a factor of about seven in each technology node. If we use the numbers Pe = 10-θ again, then we obtain s ≈ 7, which means that the feature size of the normal circuit is larger by a factor of 1.47 ≈ 10. In the newer technology, a DD circuit, which reduces the throughput by 50% and enlarges a protected circuit by a factor of three at worst, is faster and smaller than the normal circuit in the older technology. In fact, if Pe ≪ 1, DD circuits can achieve superior reliability and performance figures than



35the corresponding normal circuit in an old technology.
5.1.3 Simulation Results of Duplicated Double-checking BufferLet us apply the DD scheme to a one-bit PCHB whose CMOS-implementable PRS is as follows:

en A R.e A L.0 —> .r.0φ->en A -∏R.e → _r.0†
en A R.e A L.l → _r.l‡
-*en A ->R.e → _r.l†_r.O —r.o;-i_r.O → R.Q↑_r.l → R.U—i_r. 1 → R.l†
L.0 V LA —-Z^4--∣L.0 A -ιL.l → Jv↑

.lv —> Zrφ
~~*J,v → lv↑_r.O A _r.l —> rr‡-i_r.O V -i_r. 1 → rv↑

lv A rv —> L.e±

^lv A ^rv L.e↑

L.e → _en‡
-∣L.e -÷ _en†_en —> en ‡∏.en -÷ en†

Its circuit diagram is shown in Figure 5.6. Variables L.0, LA encode a one-of-two code and the variables with an acknowledgment variable L.e implement the one-bit input data channel L. Likewise variables R.0, R.l, and R.e implement the one-bit output data channel 
R. The PRS of the corresponding DD PCHB is as follows:
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ena Λ R.ea Λ L.Qa → _r.Oa‡->en0 Λ ^R.ea —> -,r.0α↑
ena f∖ R.ea ∕∖ L.la → .r.loφ
^ena Λ ~ιR.ea —> _r.la†
enb Λ R.eb Λ L.0b —> -Z'.0⅛4^->en⅛ Λ ~>R.eb

erιb Λ R.eb Λ L.lb —>

^enb Λ ^R.eb

-r.0a Λ .r.0ft —> β.0oφ->-r.0α Λ -».r.Oft —> β.Oaf-Γ.lα Λ .r.l6 -÷ ∕2.1o∙∣∙->,r.lα Λ ->-Γ.lft —> Â-lût
-Γ.0o Λ .r.Gb —⅜∙ β.o⅛4^
^~r.Ga Λ ->-Γ.0ft -÷ R.Qb↑

.r.la Λ .r.lb —⅛ R. 1 ⅛4--,-Γ.lα Λ ->-r.l6 —> ß.löt
L.Oa ∖∕ L.la —> -lva∖,

-∣L.Qa Λ -∣L.lα -h,a↑

L.Ob V L.lb → Jr&‡
~>L.Ob Λ ~,LAb —> -lvb↑
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R.Qa V RΛa → ~rval 
^R.0a Λ ->R.la → -,rva↑

R.0b V 7?.I/, —> -rvft‡-ι,β.0ft Λ -∣R.lb -÷ -/'Vft†
-lva A .rva → -le.a], 
->Jva A ->-∏',a -÷ -le<Λ

Jvb A .rvb -÷ -leb↑, 
~>-lvf, Λ ~>~rvb —> -∕βft↑
-lea ∕∖ -let, —> L.e.a↑ 
->Jea A ~>Jeb —> L.ea± 
-lea A Jeb —> L. Cft† 
-^Jea A ->Jcft —> L.eb},

^j∙ea -÷ -i-f⅞4*
^L.e.a → .e.na↑

~ena → enal 
-∣-ena → ena↑

L. 6ft —-t-7Zft-j- 

->L.eb → -cmft†

.enb → enft‡->-e∏ft → enb↑

Now variables T.Oa, L.Ob, L.la, L.lb encode duplicated one-of-two codes, and the variables with two acknowledgment, variables, L.e.a and L.eb, implement the input data channel L. (L.0 becomes L.0a, T.0∕√ L.l becomes L.la, L.lb∖ L.e becomes L.eα, L.e.b.) Likewise vari­ables ,β.0o, 7Z.0ft, jR∙lα, 7Alft, R.e.a, and R.e.b implement the output data channel R. The circuit diagram of the one-bit DD PCHB is shown in Figure 5.7, where a circle with the letter iC, stands for a cross-coupled C-element.Table 5.2 summarizes the performance figures of the conventional PCHB, and the DD PCHB. The number of nodes in the DD PCHB is more than twice that of nodes in the
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Figure 5.7: DD PCHB.

Table 5.2: Performance Figures of PC 4B and DD PCHBelof4 PCHB elof4 DD PCHB# of nodes 25 52Repetition Rate 610 MHz 360 MHzTransitions in Cycle 14 18Area(λ2) 36736 79192Energy per Cycle(pJ) 1.16 2.95
conventional PCHB; the DD PCHB is enlarged by a factor of 2.2 in area, because cross- coupled C-elements are introduced in addition to duplicating all of the existing gates: three pairs of cross-coupled C-elements are added in the given example. (In fact, at least three pairs of C-elements are necessary for making the conventional PCHB soft-error tolerant, and we cannot design an error tolerant PCHB with less than three pairs of cross-coupled C- elements.) The throughput is reduced by 40%, because the DD PCHB takes more transitions in a cycle due to the added cross-coupled C-elements. That is, in the conventional PCHB, the completion checker of the channel R (i.e., a NAND gate in Figure 5.6) takes its inputs (Ä.0 and Ä.1) from the pulldown stack; in a DD PCHB, a completion checker of the channel 
R (i.e., a NOR gate in Figure 5.7) takes its inputs (R.0o and R.lα) from the cross-coupled



39C-elements. Therefore it takes more transitions to generate acknowledgment signals: the PCHB takes 14 transitions per cycle, but the DD PCHB takes 18 transitions. In addition to that, some of the gates in the DD PCHB have more load, because the outputs are shared between cross-coupled C-elements, and the wiring tends to be longer, which also affects the latency.One way of showing the error tolerance of the DD circuit is to simulate the circuit with soft errors. Doing this, we obtain the following results, which are depicted in Figure 5.8. Charges (i.e., a soft error) are injected to L.ea at 10 ns. Since the value of the node L.ea is flipped, the environment considers the buffer ‘not ready’ for a new input so that L.0o↑ and Z.Oft† do not fire until the corrupted value of L.ea is restored. That is, after the node L.ea has the same value as the node L.e^ at 11 ns, the whole system works correctly, except that the computation was delayed momentarily.

10n 15n
Time (lin) (TIME)

Figure 5.8: Waveforms of Inputs-channel Variable LQa and Output-channel Variable R0a, 
and Input-channel Acknowledgment Variable Lea of DD One-bit Buffer. A soft error on 
Lea at 10 ns merely causes delay on an input communication on the input channel, which 
does not affect the correction of computation in a QDI circuit.
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5.1.4 SummaryWhen a soft error occurs, a QDI system may compute incorrectly, or deadlock may occur. The DD scheme provides a simple way of making QDI circuits tolerant to soft errors: cross- coupled C-elements prevent a corrupted result caused by a soft error from propagating to subsequent gates, and the stability property ensures that the inputs of a DD gate persist until the duplicated outputs are properly generated, which provides the redundancy neces­sary to restore the corrupted node. Compared with a normal QDI circuit, the size of a DD circuit is enlarged by a factor of between two and three, and the throughput is reduced by between 40% and 50%, owing to the fact that the number of transitions in a cycle increases, and the loads on some gates increase.
5.2 Arbiter with Mutual Excluders

While most of computations in an asynchronous system are deterministic, sometimes the system requires non-determinism in order to make a choice among several possibilities. For example, if two or more components request a resource simultaneously in an asynchronous system, then an arbiter, which is a circuit to choose one of the requests non-deterministically, is necessary.The DD scheme cannot be applied for a soft-error tolerant arbiter due to its non- deterministic property: two identical arbiters may produce different outputs even when the same inputs are provided to the arbiters. Therefore, we need another scheme to make an arbiter soft-error tolerant.In the following subsections, we shall review a basic arbiter. Then a soft-error tolerant arbiter is proposed, and the correctness of the design is verified. Finally, the results of SPICE simulations of the soft-error tolerant arbiter with an error are shown.
5.2.1 OverviewLet us consider a PRS of a bare arbiter whose inputs arc two variables x and y: 

x ∕∖^t → s† 
yf∖-s → t↑

-*x∖∕ t —> s‡
-*y V s —>



41The arbiter provides a non-deterministic choice when both ar† and y↑ fire. While s↑ or i† fires to indicate which firing is chosen, the arbiter is intended to guarantee that -*s V 
->t always holds (i.e., the mutual exclusion of s and £). Without the mutual exclusion, the environment cannot discern which request has been chosen to be handled. However if the two events :c† and y↑ happen simultaneously, the bare arbiter may fall into the 
metastable state, in which mutual exclusion may be violated. In the PRS model, the arbiter in the metastable state, x Λ y Λ (s = t), may produce the unbounded sequence of firings: s†, i†; s‡, t-∖,', 6'↑, t↑∙,∙ Physically, the variables s and t take on an intermediate voltage for an unbounded time in the metastable state. Although the metastable state normally does not persist for long, the intermediate voltage of the nodes during the metastable state violates mutual exclusion.To solve this problem, a filter is introduced, which blocks the appearance of the inter­mediate voltage on the output of the arbiter during the metastable state. The PRS of the filter is as follows:

s Λ —>t -÷ w†-’S V t —> u‡
-<sΛ f → υ↑ s V->i —> υφ

The filter, which is NOR gates with an inverted input, is combined with the bare arbiter to yield a basic arbiter, as shown in Figure 5.9, where s and t are replaced with ^s and t for CMOS implementability, and pass gates are used. The outputs u and v of the basic arbiter do not change until the voltages on ^s and 7 are separated by at least a p-transistor threshold voltage. That is, u and v will be assigned after the internal nodes s and t leave the metastable state. At the HSE level, the basic arbiter can be described as follows:* [ Pc —> u↑', [-χc] ; u‡∖y —> υ↑i [-,2∕] ; *4]]
In the HSE, ‘ ∣ ’ represents a non-deterministic selection between two enabled commands.The environment of a basic arbiter can be
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Figure 5.9: Basic Arbiter. When all inputs (x,y) are assigned tυ be 1 simultaneously, it 
provides the outputs of either (1,0) or (0,1) non-deterministically.

u —> x.ack↑

->u x.ack).

x.ack → :r†
x.ack —x).

v —> y.ack↑

~*v → y.ack).

-^y.ack → y↑

y.ack

where x.ack and y.ack are the acknowledgment variables of x and y. The event x.ack↑ (or 
y.ack↑) can be interpreted as a module’s acquiring a resource, and x.ack). (or y.ack).) as the module’s releasing the resource. Accordingly, mutual exclusion of x.ack and y.ack should hold, but there is a transient moment when the mutual exclusion does not hold. While both acknowledgment variables are false initially, both :c† and y↑ fire. The basic arbiter chooses τ↑, and then u† fires. The environment acknowledges the choice by the firing of 
x.ack↑. Consequently x). fires. Since x becomes false, and y is true in the current state, v† fires. If the firing of ii‡ is slow, and u has not yet been reset, then (u, v) becomes (1,1); (x.ack, y.ack) also becomes (1,1). Hence a mutually exclusive resource is given to two modules simultaneously.The problem can be avoided by the strengthened environment:
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u ∕∖ -yy.ack —> x.ach↑

V A ->x.ack —> y.ack↑

When a choice (w†) is being acknowledged (i.e., x.ack is true) in the environment, the other choice (r†) cannot be acknowledged (i.e., y.ack↑ cannot fire). Therefore, the mutual exclusion of the acknowledgment variables is guaranteed; the environment can discern which choice is made first by the basic arbiter. As a result, a basic arbiter processes resource requests in a mutually exclusive way.
5.2.2 Designing Error Tolerant Arbiter for DD CircuitsIn this section, we shall specify a duplicated soft-error tolerant (DSET) arbiter, which is suitable for DD circuits.A soft-error tolerant arbiter that is used with DD circuits behaves like a basic arbiter, but the inputs (τ, y) and the outputs (u, v) are duplicated. That is, a duplicated soft-error 
tolerant (DSET) arbiter accepts duplicated inputs (,τrt, ⅞. ya, yb) and provides duplicated outputs (‰, u⅛, va, ι⅛), as shown in Figure 5.10. If (xa∕∖xt,) is true, then {tiβ↑, u∕,↑} will fire, and if (ya^yb) is true, then {υo↑, Vf,↑} will. If all of the inputs become true simultaneously, then a non-deterministic choice will be made between {uα↑, u^,↑} and {⅝↑, ⅜↑}.

1 Xb

1 Xa

1 y*

ι yι-∙

DSET
Arbiter

UbU¾
Va

Vb

1 0
1 0

or
0 1
0 1

Figure 5.10: Duplicated Soft-error Tolerant Arbiter. When all inputs are assigned to be 1 
simultaneously, it provides the outputs of either (1,1,0,0) or (0,0,1,1) non-deterministically.

The environment of a DSET arbiter, which is a DD version of the environment shown in the previous section, is as follows:
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ua Λ ub Λ ->y.acka Λ -^y.ackb —> 
~ιua Λ ->ub —>

x.acka↑, x.ackb↑ 
x.acka^, x.ackb],

-^x.acka f∖~^x.ackb -÷ ⅞↑, τ⅛↑ 
x.acka Λ x.ackb —> xa^ a⅛φ
υα Λ vb Λ ~^x.acka Λ x.ackb -÷ y.acka↑,y.ackb↑

^va Λ ~>vb → y.acka∖,, y.ackb^

-^y.acka N->y.ackb → ya↑,yι>↑ 
y.acka Λ y.ackb → ya±, yb±

(For brevity, two PRs G -ϊ x↑ and G -÷ y↑ are written as G → τ↑, y↑.) The PRs of the DD environment are not enabled until the values of a pair of duplicated variables are the same. Accordingly, if only one of the primary outputs of a DSET arbiter is corrupted (e.g., (1,1,0,1), (1,1,1,0), (0,1,1,1), and (1,0,1,1)), it is still clear to the DD environment which module wins the arbitration.As a basic arbiter guarantees the mutual exclusion between the outputs, a DSET ar­biter guarantees the mutual exclusion of the duplicated outputs. Strictly speaking, a DSET arbiter with the DD environment guarantees the mutual exclusion of the duplicated ac­knowledgment variables, as explained in the previous section. Even if an error occurs on a DSET arbiter, it is critical to ensure that (x.acha, x.ackb, y.acka, y.ackb) never becomes (1,1,1,1): two modules never acquire one resource simultaneously. From the construc­tion of the environment, we can see that the mutual exclusion can be violated only if 
(ua, ub, va, vb) becomes (1,1,1,1) while (x.acka, x.ackb, y.acka, y∙ackb) is (0,0,0,0). There­fore, a DSET arbiter should ensure the mutual exclusion of the primary outputs when 
(x.acka, x.ackb, y.acka, y.ackb} is (0,0,0,0) even if an error occurs.We show how to implement a DSET arbiter step by step from a first failed design to a successful design. Let us apply the DD scheme to a basic arbiter, as shown in Figure 5.11. If all inputs arα, xb, ya, and yb of the circuit become true simultaneously, one arbiter, whose inputs are xa and ya, may execute ⅛↑, and the other arbiter, whose inputs are xb and 
yb, may execute vj†. The discrepancy prevents primary outputs from firing, so that the environment cannot observe transitions of any outputs: deadlock occurs.
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Figure 5.11: DD Arbiter (does not work).

Instead of using two arbiters, we shall use one basic arbiter to make a non-deterministic choice between inputs, and then duplicate the choice. The corresponding HSE is as follows:* E Lxa —> ta⅛] ; ua↑, ub↑'∙, C~ι¾ A ->a⅛] ; u0‡, ub]r I y a —> ιyb ] ; υo↑, vb↑', ι^ya A ~^yb^] ;]]
The corresponding PRS is

u A xb →
u A xb → ub↑

-ut A ~,xb →-tw A ~^^xb → Ub±

v Λyb → Va↑

v Λyb → ⅛↑-∏υ A ->yb →-φ A ~^yb → Vb±

That is, the outputs of an arbiter are copied with cross-coupled C-elements, as shown in Figure 5.12. Although it works as an arbiter for duplicated inputs and outputs, the mutual exclusion can be violated if an error occurs. For example, after the four inputs are assigned to be true simultaneously (i.e., (xa, xb, ya, yb) = (1,1,1,1)), the internal arbiter may choose 
u↑ to fire, and, if so, {uα↑, w⅛↑} will fire. However, if an error on J occurs at that moment, the outputs of the internal arbiter can be changed from (tz, v) = (1,0) to (0,1). (An error in



46the internal basic arbiter can put the arbiter into metastable state, and then the metastable state can be resolved to a different stable state such as (0,1) from the initial stable state such as (l,0)∙) Now {υα↑, ⅜↑} is firing: (‰,⅜,⅜,⅛) becomes (1,1,1,1). It can cause 
{x.acka, x.ackb, y.acka, y.ackb) of the environment to be (1,1,1,1).

Figure 5.12: Arbiter with Double-checking C-elements (does not work).

The problem of the design is that the erroneous change of the outputs of the internal arbiter causes an unwanted resource grant even if the resource is still used. To address the problem, a DSET arbiter requires a feature that once a mutually exclusive resource is granted to one module, another resource grant should be prevented even if the change of the outputs of an internal arbiter occurs accidentally. That is, once {u0↑, ti∕,↑} fire, the firing of {Λ,λ‰ ⅛↑} is not allowed until {x.ackal, x.ackb},}, and then {u0φ, fire. Likewise once -(Υ,n↑, v∕,↑} fire, the firing of {wα↑, u&†} is not allowed. For this, the cross-coupled C-elements are modified as follows:
U Λ Xb Λ (-'Va V ~'Vb) -÷ ua↑

U ∕∖ Xb → Ub↑

V ∕∖yb A (-mα V -u⅛) → ι>rt↑ 
v Λ yb → vb↑

This modification seems to ensure the mutual exclusion, but still it is vulnerable to a specific error: if an error causes (u, v) to be (1,1), and (ua, ub, va, vb) is (0,0,0,0) initially, then
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Figure 5.13: Block Diagram of Soft-error Tolerant Arbiter.

all PRs of the primary outputs are enabled to fire simultaneously; physically all primary outputs take intermediate voltages.Here is the design which ensures the mutual exclusion in the presence of an error by checking whether the outputs (u,v) of the internal arbiter are valid (i.e., (1,0) or (0,1)). Therefore, the terms of (u Λ ->v) and (υ Λ ->u} are added to the guards of the modified C-elements:
u Λ ->v Λ Xb ∕∖ (->va V ~'V(i) → uα↑ ........... (1)

u Λ X(, -÷ U(f↑   (2)
V Λ -∣u Λ yι, Λ (-ιiitt V ->u⅛) -÷ va↑ ............... (3)
v Λ yb → vb↑   (4)

The duplicated primary outputs can be assigned when the outputs of the internal arbiter are valid. The set of gates whose guards are strengthened to be mutually inhibited by checking counterparts, is called a mutual excluder. It will be shown in the following section that the mutual exclusion of the duplicated outputs holds even if an error occurs.In order to implement the given PRS of a DSET arbiter in CMOS technology, the output variables are inverted, as follows:
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u Λ ~'V Λ Xb Λ (⅝ V Vft) → ‰"4^ 
u Λ Xb —> Wl^
-∣ιz Λ —*Xb —> "‰↑

iwΛ -'Xb —> ^Ub↑

V Λ -∏w Λ y b A (‰ V üb) → I¼∣
V Λ y b → Vbl

-ιr Λ ^yb → ⅛^↑-,r Λ ^yb → Vb↑

PR (1) and PR (3), specifically the literals -∣v and of are implemented according to the pass-gate transformation, which replaces a transistor in a series with the inverse of the signal of the transistor. Then the remaining part of the PRS can be directly implemented, as shown in Figure 5.14. In the CMOS implementation, the outputs ua and va do not change until the voltages on u and v are separated by at least a n-transistor threshold voltage. That is, the pass-gate part of a DSET arbiter in CMOS technology ensures that neither of uo† nor va↑ is enabled, until an intermediate state of u and v caused by an error is resolved into (0,1) or (1,0). (In fact, the pass-gate part of the implementation is similar to the implementation of a filter in a basic arbiter.)Overall a DSET arbiter grants a mutually exclusive resource to a module only if the internal arbiter makes a valid choice (i.e., (u, v) is (1,0) or (0,1)), and the resource is not completely granted to another module (i.e., (urt,w∕,) and (va,Vb) are (0,0), (1,0), or (0,1)).
The suggested DSET arbiter works correctly with the given DD environment, but the DSET arbiter with a different type of environments may incur deadlock, since a corrupted output of the DSET arbiter is not self-corrected. For example, let us consider a specific environment:

ua A Ub Λ ~>va Λ ~'Vb Λ ~^y.acka Λ ->y.ackb -÷ x.acka↑, x.ackb↑ 
υa Λ vb Λ ->w0 Λ ~^Ub Λ ~^x.acka Λ ->x.ackb → y.ucka↑, y.ackb↑

If the duplicated outputs (ua,Ub,va,Vb) is (1,1,1,0) (i.e., va is corrupted) and are not
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Figure 5.14: Pass-gate Soft-error Tolerant Arbiter.

corrected, then deadlock may occur. Fortunately we can easily avoid the deadlock by adding the following circuitry, which restore a corrupted output:(-,u ∕∖va Λ ι⅛) →
(-ιu Λ va Λ vb) → ut,l 
(->v Λ ua A ub) → ¾J 

(-it; A ua ∕∖ub) → vb^

In other words, if a resource is granted to one module (e.g., (urt, ub) becomes (1,1)), then granting signals for another module (e.g., va and vb) are expected to be reset. In fact, most of the practical environments for a DSET arbiter are similar to the previous DD environment, so that the extra restoring PRs are usually unnecessary.
5.2.3 Mutual Exclusion of Outputs of Duplicated Error Tolerant ArbiterWe have shown an implementation of a DSET arbiter, which is soft-error tolerant in a sense that mutual exclusion of the primary outputs is not violated even if an error occurs. A way of showing that the mutual exclusion, (i.e., ->iiα V ^ub V ->rtt V ~'Vb}, always holds, is to check all normal and erroneous states of a DSET arbiter with the DD environment exhaustively. The number of states is a few hundred, so that we can easily check them automatically, but it is not convenient to present all of them here. Instead, we categorize an error into three cases: an error on the outputs, an error on the inputs that are not inputs for the internal arbiter (i.e., xb and yb), and an error in the internal arbiter. Then we show that each case of errors does not lead to the violation of the mutual exclusion of the primary outputs.



50First, let us consider an error on the output. If there is no error, (ua, U(,, va, V(,) is always (1,1,0,0), (0,0,1,1) or an intermediate state from the initial state (0,0,0,0) to the two states (e.g., (0,1,0,0)). That is, there are at least two variables whose values are false. Accordingly, even if an error on one of the outputs occurs, there exists at least one variable whose value is false: the mutual exclusion holds. Note that the error on one of the outputs, which is an error on the inputs of the DD environment, can be tolerated by the DD environment.Second, let us consider an error on either a⅛ (or τ∕(,). The design of the mutual excluders, specifically, the terms u∕∖x(j and -ΙiΛ->τ⅛, can mask out the error. (Note that this is similar to cross-coupled C-elements of DD circuits.) τα, which is the twin of a⅛, holds a correct value, and accordingly u holds a correct value, since u† follows xa↑ and u‡ follows eventually: the assignments of u are considered to be delayed assignments of xa. As a result, even if an error on X(, occurs, the value of u, which reflects the value of xa, prevents the corrupted value of xb from enabling the PRs of the primary outputs prematurely. This is the same to the case of an error on y^. Hence, the mutual exclusion is ensured even though an error on either ¾ or yt, occurs.Third, let us consider an error in the internal basic arbiter of a DSET arbiter, which is an error on xa, ya, u, v,^s, and t. Specifically out concern is the error that flips the outputs of the internal arbiter simultaneously: (u, υ) is changed from (1,0) to (0,1) or from (0,1) to (1,0). If the flipping causes all PRs of uo†, u⅛↑, υα↑, V{i↑ to fire, the mutual exclusion can be violated.Here we show that the violation of the mutual exclusion (i.e., all PRs of primary outputs fire) happens only if two or more abnormal changes of the outputs of the internal arbiter (e.g., (u,?;): (1.0)-÷(0,1)-÷(1,1)). For showing that, we take the following two steps. (1) Constraints on concurrent firings between the PRs of ua↑, u⅛↑, ι>,0↑, and υft↑ are shown. (2) All possible sequences of the firings, which satisfy the constraints, are enumerated; the sequences always require two abnormal changes of (u, υ). Hence, we can conclude that a single error in the internal basic arbiter cannot break the mutual exclusion of a DSET arbiter.There is a constraint that ua↑ and υα↑ cannot fire concurrently
Wq↑ ~c∖ t¼↑ or ΐ’οψ ~*s u∩↑.



51A sequential order -√ is a relation between firings: p √ q means that the event p happens before the event q. The constraint comes from the fact that the conjunction of the guards of (1) and (3) is invariably false:
(u Λ ->υ A xb ∕∖ ...) A (v A ~>u A yb A ...) ≡ false

Likewise, other constraints between the firings of wα↑, w&†, ra↑, υ⅛↑ also exist.
ua↑ -< vb↑ or vb↑ √ ua↑M -< ⅝↑ or Va↑ Ub↑-

The constraints come from the invariable relationships among the guards of (1), (2), (3), and (4):
(u A ->υ A xb A (->vtt V ~'Vb)) A (v A yb) ≡ false 

(u A xb) A (v A ~~,u A yb A (-,ua V ~'Ub)) ≡ false

In addition to this, zra† cannot fire after both υa↑ and υ⅛↑ fire because of the term (-*va∖∕->vb) in the guard of (1), and similarly ra† cannot fire after both zja↑ and zιb↑ fire. Accordingly we obtain the following constraints from the design of a mutual excluder:
ua↑ vtt↑ or ua↑ n† 
υa↑ ‰↑ or υa↑ ub↑

The mutual exclusion (i.e., ^ua V ->ubV ~yva V ->vb) can be violated only if all PRs of wii↑, w∕,↑, ⅜↑, Vft† fire. Given the ordering constraints on the concurrent firings, we can enumerate all possible sequences of firings of {wa↑, ub↑, υα↑, t½↑}. Each sequence of the firings, if it occurs, contains one of the following sub-sequences:
u0↑ √ t’a† ^υ>b↑ ............. (a)υ0↑ -< ‰↑ -< vb↑ ............. (b)

In order to show that an error cannot induce neither of the sub-sequences, let us assume without loss of generality that ua↑ √ ⅝↑. Including the assignments of u and v, the



52sub-sequence (a) can be expanded as follows:
M, r∣} √ u„† -< {«J., i;†} √ j>„† -√ {iz↑} √ ¾↑

The sequence implies that the internal arbiter changes its choice two times. That is, an internal arbiter makes a choice (i.e., {w↑, v‡}), and then changes its choice (i.e., {u‡, υ↑}) after ua↑, and changes it again (i.e., {w↑}). As we know, a single error in a basic arbiter can flip the choice (i.e., from (u,v) = (1,0) to (0,1) or from (0,1) to (l,0)) at most one time. Hence, the sequence that satisfies the ordering constraints and leads to the violation of the mutual exclusion cannot occur unless two or more errors occur in the DSET arbiter. The mutual exclusion of a DSET arbiter holds even if an error occurs.
5.2.4 Simulation Results of Error Tolerant ArbiterThe layout of a DSET arbiter has been done in the TSMC 0.18—μιn CMOS process, and has been tested in SPICE simulations.A SPICE simulation result of a DSET arbiter is shown in Figure 5.15. In the simulation, all the inputs of a DSET arbiter become true simultaneously, and an error is injected into an internal basic arbiter, which results in a change of the choice of the internal basic arbiter. Specifically, the duplicated inputs arrive simultaneously at 1.5 ns, and an error on the basic arbiter inside the DSET arbiter occurs at 2.2 ns. Since the choice of the internal basic arbiter is changed from υ↑ to n†, Uf,↑ fires at 2.4 ns. But the firing of ιrn↑ is restrained by a mutual excluder because {υtt↑, ι⅛↑} has already fired at 2.2 ns; after {υα↑, ⅛↑} is acknowledged at 2.6 ns, ua↑ can fire. Accordingly the DD environment first sees the choice of {υo↑, υf,↑} at 2.2 ns, and then the choice of {tzo†, '⅜↑} at 2.7 ns. Throughout the simulations, the mutual exclusion between the duplicated outputs of a DSET arbiter holds.
5.2.5 SummaryArbiters are essential components in most asynchronous systems, but the DD scheme cannot be applied to an arbiter, because two copies of an arbiter may not provide the same result. For use with DD circuits, we have devised a DSET arbiter: one basic arbiter is used to make a non-deterministic choice, and the choice is duplicated through a mutual excluder, which prevents an error inside a DSET arbiter from being duplicated. In a DSET arbiter, mutual
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Figure 5.15: Waveforms for Nodes in DSET Arbiter. After the duplicated inputs arrive 
simultaneously, an error in the basic arbiter at 2.2 ns causes v ‡ and u ↑ (i.e., the result 
from a basic arbiter is flipped). Although the transition of one of the duplicated output † 
occurs, the transition of the other output ua ↑ does not occur until the previous arbitration 
(i.e., va †? vb↑) is acknowledged.

exclusion of the outputs is ensured, which allows granting of a shared resource mutually exclusively even if an error occurs.
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5.3 Duplicated FPGA Using Self-correcting Programmable 

Bits

5.3.1 OverviewField Programmable Gate Arrays (FPGA) are becoming steadily more attractive because of recent enhancements in their capacity and performance. Meanwhile, the concern for clock distribution and increased power consumption of synchronous FPGA is growing. As an alternative, it is noteworthy to consider QDI FPGA. Several general QDI FPGA architec­tures have been proposed [38, 39]. In the following sections, we shall demonstrate how to make the Wong’s FPGA architecture soft-error tolerant.A basic FPGA tile consists of a cluster, two connection boxes (C-boxes) and a switch box (S-box) [40]. A system described in a high-level language is decomposed into imple­mentable modules, which correspond to clusters, and whose interconnection information is mapped into C-boxes and S-boxes. C-boxes are used for connecting a cluster to interconnect paths and S-boxes are used for switching interconnect paths. Logic cells in a cluster share inputs and outputs, and each logic cell is based on the PCHB template, which consists of a computation part and completion checkers of input and output channels. The cell contains programmable bits: some of the bits are for configuring computations and the others are for setting patterns of communication between cells.There is the possibility of two types of soft errors in an FPGA: an error in computation parts (e.g., pulldown stacks) can cause temporarily incorrect computations, and an error on programmable bits may change the device’s configuration semi-permanently, as well as leading to incorrect computations.
5.3.2 Designing Error Tolerant FPGA CellsThe computation parts of a FPGA cell are based on the PCHB template, which can be protected by the DD scheme. A programmable bit to control the functionality of a FPGA cell employs an SRAM cell, which consists of six transistors. To protect programmable bits, the duplicated keeper, which was explained in the Section 5.1.1, can be adapted, as shown in Figure 5.17 (a), which consists of 18 transistors.Another protection scheme is based on a dual interlocked cell (DICE) [24]. A DICE



Figure 5.16: FPGA Architecture.

with the pass transistors, as shown in Figure 5.17 (b), consists of 10 transistors; this is more compact than the duplicated keeper, so we prefer to use this construction for soft- error tolerant FPGA. The way of tolerating an error in the DICE is the following. Four nodes in a DICE encode a bit with two pairs of complementary values: (ctt,cα,c5,c5) is (0,1,0,1) or (1,0,1,0). If one of four nodes in the cell is corrupted by an error, one of the adjacent nodes always keeps a correct value to restore corrupted data. For example, an error on ca in the state (0,1,0,1) causes c∕, to be an unknown state since both pullup and pulldown transistors are turned on. But ca still holds 1, which turns on the pulldown transistor of ca to restore the corrupted ca. Then c∕, is also restored. Other erroneous cases can be similarly analyzed. Each DICE can tolerate any single error or even two errors in a pair of non-adjacent nodes (i.e., {cα,<⅞}, {cα,c,,}).We can construct a soft-error tolerant FPGA logic cell based on the DD scheme with DICEs, as shown in Figure 5.18. In the same manner, we can construct soft-tolerant S-boxes and C-boxes.
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Figure 5.17: (a) Double-checked Programmable Bit (b) Programmable Bit based on Dual 
Interlocked Cell.

-4É-------- 4Γj

output_enable

Figure 5.18: Block Diagram of S oft-error Tolerant FPGA Logic Cell.
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5.3.3 SummaryBesides the computing logic, an FPGA has programmable bits, which determines the func­tion the FPGA computes and its communication patterns. In order to protect an FPGA from soft errors, both the computation part and the configuration bits must be protected. While the DD scheme is applied to the computation part, the dual interlocked cells, which can self-correct an error, are used for programmable bits. Since the whole architecture of soft-error tolerant FPGAs is based on dual copies of a conventional FPGA, existing synthesis procedures for FPGAs can be easily adapted to the soft-error tolerant FPGAs.
5.4 Self-correcting Memory and Hamming-coded Memory

In this section, the overview of a memory unit is given first. Then two designs of error tolerant memory are detailed. Instead of applying the DD scheme to an entire memory unit, we employ conventional solutions to protect an array of bit storages in the memory unit. In one design, SRAMs are replaced with dual interlocked cells, which have a self­recovering structure; in another design, a Hamming code is applied to the array of SRAMs.
5.4.1 OverviewWe shall study a memory unit whose description in CHP is
MEM ≡ *ιRWlrw, ADDRtaddr;[rw = read —> DATA-OUT∖mem [addr]Drw = write —> DATA-IN?mem [addr]]]
The memory unit stores data from the input channel DATA-IN to an array of storage elements, and loads data from the array onto the output channel DATA-OUT, according to the control channel RW and to the address channel ADDR.We can decompose a memory unit with a large array into several memory units with a small array for synthesizing circuits easily. For example, a decomposition of the memory unit, if it has 64 words, is as follows:
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Convert Addr

Split Control

≡ *[ADDR7addr, RW7rw,

RWC∖rw,

CONTROL∖(addr [4], addr [5] ),
ADDR-LSB∖(addr [0], addr [1], addr [2], addr [3] ); 
[rw = read —> MergeCl(addr[A], addr[5]) 0rw = write —> SplitC∖(addr [4], addr [5] )]

* [CONTROL? c, RWCIrw, ADDR-LSB?addr; [c = 0 —> RW0!rw, ADDROladdr Dc = 1 —> RWl!rw, ADDRl!addr 
Qc = 2 → RW2!rw, ADDR2∖addr □ c = 3 → RW3lrw, ADDR3∖addr]]

SplitData ≡ [SplitClc;[c = 0 —> DATA-IN? d∖ DATAJNWdDc = 1 —> DATA-IN? d∖ DATA-IN lidDc = 2 —> DATA-IN? d; DATAJN2∖dDc = 3 → DATA-IN? d; DATAJN3'.d

MemCoreO ≡

Mem Corel ≡

MemCore2 ≡

MemCore3 ≡

]]
*[W07rw, ADDROladdr;

[rw = read —> DATA-OUTOlmem[addr] Drw = write —> DATA-IN0?mem Laddr^∖]]*LRPΓ17rw, ADDRIIaddr;... ]
*[RW2t!rw, ADDR2?addr;... ]
*[RW3Trw, ADDR3?addr;... ]
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MergeData ≡ *[MergeC7c[c = 0 → D ΑΤΑ .0 UT 0? data Qc = l —> D ΑΤΑ .0 UT 1? data Qc = 2 → DATA.OUT21data Dr = 3 → DATA-OUTS? datuI;

DATA.OUT↑data]
(The notation iaddr[nY represents the zι-th bit of the address value.) The corresponding process diagram is shown in Figure 5.19. The 64-word memory unit is decomposed into four 16-word memory units, processes distributing controls, and processes splitting/merging data. When data is written on the memory unit, the process SρlitData sends data from the channel DATA.IN into one of the four memory units, which is selected according to the address; when data is read, the process MergeData reads data from one of the memory units, and sends out the data to the channel DATA-OUT.

RW ÄDDR

Figure 5.19: Decomposition of Memory Unit.

In the decomposition, each MemCore is identical to the process Mem except for the size of the array, so that we can apply this decomposition recursively, if necessary. Ultimately,



60the array of the memory unit can be decomposed into an array of bit-storage processes. But the fine-grained decomposition causes channel proliferation and excessive wirings at the circuit level. In order to avoid channel proliferation, we implement a memory unit in the following way. The control signals, input channels, and output channels are shared for the array, as shown in Figure 5.20. The bit lines are the shared input and output channels of the array, and the word lines are the shared address channel for the array. As a result, a circuit of the data array has a simple and regular structure. For the shared structure, auxiliary circuits around the array are added, as shown in Figure 5.21. For example, an address decoder converts the address of the channel ADDR into word lines, which are based on a one-of-n code; a controller, whose specification is in Appendix B, generates signals for precharging bit lines and acknowledgment signals for the input channels DATA-IN, ADDR, and RW.

bit.o bit.l
bit.0 bit.lFigure 5.20: Array of Storage Elements.

5.4.2 Error Tolerant Memory Using Self-correcting Memory CellsWe protect auxiliary circuits around the array by employing the DD scheme: gates of original circuits are duplicated, and cross-coupled C-elements are added. On the other hand, we cannot apply the DD scheme to an array of SRAMs. As we have shown in the previous chapter, the DD scheme exploits the persistence of inputs of gates in QDI circuits, but the persistence does not hold for storage elements like SRAMs. (In fact, we can apply the DD scheme, but it requires adding cross-coupled C-elements to every SRAM, which is impractical.)Instead, the dual interlocked cell (DICE), as shown in Figure 5.22, is adapted as an
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Figure 5.21: Circuit of Mermoy Core.

DATÄOUT [η]'',.iDAJA-OUT [n) . ί

DA⅛A-OUT.

error tolerant storage element [24]. A DICE encodes a bit as two pairs of complementary values: (rr.Oα, aλlα, x.0t,,xAb) = (0, 1,0, 1) θr (1,0, 1,0). The value of each of four nodes of a DICE is controlled by the value of two complementary adjacent nodes. For example, rr.lα is assigned to be true if x.0a is false, and x.la is assigned to be false if xX⅛ is true.A DICE corrects an error by itself. If an error, which occurs on x.la in the (0,1,0,1) state, turns the state into (0,0,0,1), then x.0(> will become an unknown state, because both n-transistor and p-transistor of the node x.0t, are turned on. However the p-transistor of jr.lα is kept from being turned on, because the node x.Qa holds Vdd. Consequently rr.lα is restored to be true, and the unknown state of rr.O∕> will be settled into false, so that the state of the four nodes becomes (0,1,0,1) again. (Similarly an error on the other nodes in different states can be tolerated.) Hence, a DICE tolerates an error.A DICE has two pass gates in series, which are switched by duplicated word lines from a DD address decoder. The duplicated word lines are necessary to tolerate an error on a



62word line. If a DICE is accessed by a single word line and an error occurs on the single word line, then an incorrect row of an array can be read, or data can be written to an incorrect row by accident.

bit.0a bit.la bit.Ob bit.lbFigure 5.22: Calin’s Dual Interlocked Cell (DICE).

Although a DICE is easy to use and is well matched with DD auxiliary circuits, a DICE at the circuit level is hard to design compactly due to its interwoven connections. A DICE is larger by approximately a factor of four than an SRAM, so that an error tolerant memory unit using DICEs becomes larger by a factor of four than the original memory unit.
5.4.3 Error Tolerant Memory Based on Hamming CodeAn alternative to DICEs is Hamming code: redundant bits are added to each word. A Hamming code, which is a type of error correcting code, is widely used because it can be encoded/decoded using minimal circuitry compared with other error correcting codes. The Hamming-coded array uses less redundancy for restoration than the array of DICEs. For example, eight extra bits are needed for eight bits in the array of DICEs; only four extra parity bits are needed to tolerate an error in an eight-bit Hamming-coded array. Therefore a Hamming-coded memory unit with a large array is smaller than a corresponding DICE memory unit, even though a Hamming-coded array requires an encoder and a decoder whose extra cost does not depend on the size of the array. Note that a Hamming-coded array consists of SRAMs, so that it cannot correct an error by itself, and consequently multiple errors in one row of the Hamming-coded array cannot be tolerated. If necessary, this problem can be easily addressed by scrubbing the array continuously: reading out the



63data, checking the parity for data errors, then writing back any corrections to the array [41].A Hamming-coded memory requires encoding incoming data and decoding outgoing data. For encoding, redundant bits are added to an original message. The redundant bits(i.e., parity bits) are the sums of selected bits in the message. For example, a four-bit message u = (u1,u2,u3, w∣) is mapped into a codeword of a Hamming code, which encodes four-bit data with three parity bits:
('Ul, U2, U3, U-4, U2ΦU3φU4φ, U↑ θU3φtZ4θ, U1θU2θU4)

A CHP description of a corresponding encoder is as follows:
Encoder ≡

* [Datatu;

EncodedD∖(u [0], u [1], u [2], u [3], 
u [1] Θu [2] φw [3], u [0] φu [2] φu [3], u [0] θu [1] φu [3] )].

The CHP can be implemented according to the conventional synthesis method.On the other hand, a decoder in the memory unit restores an original message even if abit is corrupted in a codeword from a Hamming-coded array. In order to check whether a codeword is corrupted or not, a decoder of the four-bit message first computes the following parities:
pi ≡ x2 θ τ3 e x4 θ τ5

p2 ≡ Xι φx3 φx4 φ x6

P3 ≡ χ1 θ χ2 φ χ4 θ χι

(xt is an z-th bit of a codeword.) If a codeword is intact, then all the parities are false; if one bit in a codeword is corrupted, then the values of the parities indicate the location of the corrupted bit. For example, the first bit of a codeword is corrupted, then ⅛1,P2,P3) becomes (0,1,1), since aq is included only in the computation of p2 and p3: if the second bit of a codeword is corrupted, then ⅛1,P25P3) becomes (1,0,1). Exploiting the conditions,



64a decoder reconstructs an original message, as follows:
?,1 = ∙'Γι θ (pΓ∙p2 ∙∕⅛)
V'l = τ2 φ (Pi ∙p2'P3)V3 = .T3 θ ⅛1 ∙ Prλ ∙ P⅛} υ4 = rr4 Θ (pi ∙p2 ∙P3)

The reconstructed message from a codeword (xι,xι2, ∙∙∙,^7) is (7;1 j⅝⅝t⅛)∙ A decomposed CHP description of a corresponding decoder is as follows:
Copier ≡

*[ CodeWord? x; C0deW0Mx, CodeWordl'.(x E0], x [1], x [2], x [3] )]
Buffer ≡

*[CodeWordYtχ∙, CodeWordlBuf∖xl

Parity Checker ≡* E Code Wordtf! x ;

Parity∖(x [1] φτ [2] θτ [3] ®x [4], x [0] ®x [2] ®x [3] ®x [5], x [0] ®x [1] θx [3] ®x [6] )]
Corrector ≡* ECodeWordlBuffered?x, Parity7p∖

DecodedDl(x E0] θ(p E0] ∙p El] ∙p E2] ), x El] Θ⅛ E0] ∙p El] -p E2] ), 
x E2] Θ(p E0] φ El] -ÏÏË2T), χ E3] Θ⅛ E0] -p El] ∙p E2] ))]

Decoder ≡ Copier ∣∣ Buffer ∣∣ Parity Checker ∣∣ Corrector

The process graph of the decomposed CHP is shown in Figure 5.23. All of the processes are buffer-like processes, so that we can implement the processes easily according to the conven­tional synthesis method. Combined with an encoder and a decoder, the final block diagram of an error-tolerant memory core based on the Hamming code is shown in Figure 5.24.Hamming codes are suitable for the storage array, but they cannot be applied readily to computing logic for error tolerance, because computations based on a Hamming code
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Decoder

Figure 5.23: Decomposition of [7,f] Hamming-code Decoder. Each solid line represents a 
one-of-two code channel.

ADDR

RWFigure 5.24: Block Diagram of Memory Core Using Hamming Code.

generally require complex circuits. Therefore, the DD scheme is applied to an encoder, a decoder, a controller and an address decoder of a memory unit in order to tolerate an error. Since the circuits around the array, including an encoder and a decoder, use duplication codes while the array adopts a Hamming code, it is necessary to change an encoding of a duplicated code into an encoding of a Hamming code and vice versa.It is easy to convert a duplicated codeword into a Hamming codeword. For example, a DD encoder provides a duplicated Hamming codeword, and then half of the outputs are used as the inputs of the storage array, as shown in Figure 5.25, and half of the redundancy is discarded. The discarding does not affect the error tolerance of encoded codewords, since sufficient redundancy to tolerate one error is already encoded into a Hamming codeword. The circuit diagram of the interface between a DD circuit and an input side of a memory unit is shown in Figure 5.26. Note that all signals are duplicated in order to tolerate an
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Figure 5.25: Converting a Duplicated Codeword into a Hamming Codeword.

However, it is not straightforward to convert a Hamming codeword to a duplicated codeword. The outputs of the array consist of one-of-two codes, each of which represents a bit of a Hamming codeword, while a DD circuit (e.g., a DD decoder) expects copies of a one-of-two code for each bit. A simple way of interfacing is to fork the outputs, as shown in Figure 5.27. But if an error occurs, it is copied to several places, and the copied errors can cause the DD decoder to fail as if multiple errors occurred in the DD decoder.We can address the problem by inserting a circuit to check the validity of the bit lines, say, whether bit SA Λ -d)it.l V ^bitX} Λ bit A holds or not, as follows:
bitXl∕∖^bitA —> bitX)a↑ 
bit.0 Λ -Ibit.1 —> 6z£.0&†
bit.l Λ -<bitX) —> bit.la↑ 
bit.l Λ -d>itX) —> bitAi)↑

The corresponding circuit diagram is shown in Figure 5.28. However there is another problem that we need to address: an error on one of the bit lines can cause two bit flips. Since bitX) and bit.l drive each other through inverters, an error causes (bitX),bit.Γ) to
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Figure 5.26: Interface Between DD Circuit and Input Side of Memory Unit.

change from (1,0) to (0,1) or vice versa. Consequently, the two bit flips cause the duplicated bit lines (bit.()a, bit.0b, bit.la, bit.l(,) to be (1,1,1,1) even with the filter. If the duplicated bit lines are copied to two or more circuits, as shown in Figure 5.29, the invalid state is problematic: one circuit may read the duplicated bit lines of (1,1,1,1) as (1,1,0,0), but another circuit may read it as (0,0,1,1), since the ordering of assignments is not assumed in a QDI circuit. In other words, the invalid state provides different information to different parts (e.g., parity computation and message reconstruction) of a DD decoder, and ultimately it can cause erroneous decoding.In order to avoid the problem, a protection interface is added to the bit lines, which disables the assignments of {bit.Qa↑, bit.0b↑} once the assignments of {fo'Mα↑, bitΛb↑} are completed, and vice versa:
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bit.0a

bit.Ob

bit.lb

- bit.la

Figure 5.27: Copying the Bit Lines of the Array (does not work).

Figure 5.28: Copying the Bit Lines with Filter (does not work).

bit.0 A -∣bitA Λ (-∣bit.la V bit.Oa↑

bit.0 A -∣bit.l —> bit.Ot>↑

bit A Λ ^bit.0 A (^bit.Oa V ^bit.Ob) bitAa↑ 
bit A A ^bit.0 —> bitAf,↑

The firings of bit.Oa↑ and bitAa↑ are mutually inhibited by cross-checking, which is similar to the mutual excluder of a DSET arbiter. The mutual excluder prevents an error from causing the state of the duplicated bit lines to be the invalid state (1,1,1,1).There are two possible CMOS implementations of the interface. For the first implemen-
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Figure 5.29: Problematic Case of Invalid Bit Lines.

tation, the inverted signals are introduced explicitly, as follows:
bit.Q -÷ bit.Q↑ 

bit.Q —> 6z7.04-
-d)it.l → bit.l↑ 
bit. 1 —6ii.l-j,
bit.Q Λ bit.l Λ (bit.la V bit.lf,) ~÷ bit.Qa↑r 
bit.Q A bit.l —l· bit.Q^

bit.l Λ bit.Q Λ (bit.Qa V bit.Qb) —l· bit.lal 
bit.l Λ bit.Q —> bit.l{,i

The inverted bit lines bit.Q and bit.l come directly from the array. The circuit diagram of the interface with the mutual excluder between an output side of Hamming-coded memory and a DD circuit is shown in Figure 5.30. In CMOS implementation, an SRAM cannot charge the bit line up to Vdd because the signal comes out through n-type pass gates controlled by duplicated word lines. As a result, after an error flips a bit of the SRAM cell, a bit line holding GND may take on an intermediate voltage. In order to prevent this, a 
keeper is attached to the bit lines, which enables one bit line holding GND to drive another bit line up to Vdd.Besides the implementation, there is a pass-gate implementation, which replaces a tran­sistor in a series with the inverse of the signal of the transistor. That is, the literals ^bit.Q
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Figure 5.30: Interface. Between Output Side of Memory Unit and DD Circuit.

and ^bit.l are replaced with pass gates, as shown in Figure 5.31. Since the bit lines con­nected to the pass gates are also driven through pass gates in an SRAM cell, the inverters on the input sides of the mutual excluder are inserted in order to avoid pass gates driving- other pass gates.

Figure 5.31: Mutual Excluder Based on Pass-gate Transformation.

We have simulated the two mutual excluders in TSMC 0.18-μm CMOS technology. Figure 5.32 and Figure 5.33 show the results of the SPICE simulations of the non-pass-gate mutual excluder and the pass-gate mutual excluder respectively. In these specific examples,



71charges have been injected into an SRAM cell around at about 5.3 ns after the bit lines are loaded at 2 ns, and the environment has intentionally kept the bit lines from being reset for illustration purpose. As we see, even after an error flips two bit lines bit.0 and 6zt.l, the duplicated bit lines (bit.Oa, bit.O(,, bit.la, bit.lι,) do not become the invalid state (1,1,1,1), because of the mutual excluders.

time∕[ns]

Figure 5.32: Waveforms for Bit Lines and Duplicated Bit Lines from Mutual Excluder. 
Although two bit lines are flipped simultaneously, only one of the duplicated bit lines is 
flipped, owing to a mutual excluder.
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time∕ΓnslFigure 5.33: Waveforms for Duplicated Bit Lines from Pass-gate Mutual Excluder. An 
error, which flips bit lines, occurs at 5.5 ns.

5.4.4 Simulation Results of Error Tolerant MemoryA small memory unit (i.e., a register file), which has eight 32-bit registers, was designed with DICEs, and a big memory unit (i.e., a 512-byte instruction memory) was designed with the Hamming-coded array. In fact, as the number of rows in the array increases, the more advantageous a Hamming-coded memory is, since a Hamming-coded uses less redundancy, and the cost of an encoder and a decoder is fixed.The soft-error tolerance has been tested in two different ways. One method was to inject errors randomly while the memory unit was running in a digital-level simulator. Then the result of the random-flipping simulation was compared with a normal simulation. Another method was to inject charges on randomly chosen nodes at every 4 ns in SPICE simulations.For the first test, about five errors were injected in each cycle. Meanwhile, all enabled production rules were firing with random timing. Unless multiple errors occur together in one DICE of the register file, or on the same row of a Hamming-coded array, data from the memory units are read correctly.For the second test, excess charges were injected to randomly chosen nodes every 4 ns in SPICE simulations. Initially, all data in the register file and the instructions memory were set to ‘0.’ Figure 5.34 shows the waveforms of two corrupted nodes of the register file, first in a DICE and then in a DD control circuit. The corrupted nodes were restored quickly,



73and the errors do not affect the result of reading the register file: the environment could read the value of each register as ‘0’ throughout the simulations.error on a node in a DD circuit

Figure 5.34: Soft Errors on Register File Using DICE. An error in the regfile is corrected 
quickly.

Figure 5.35 shows the waveforms of two corrupted nodes in the instruction memory. In the figure, an error on a DD control circuit occurs at 84 ns, and another error on an SRAM cell occurs at 88 ns. The node in a DD circuit is restored; the node in a SRAM cell remains corrupted, which is the weakness of a Hamming-coded memory unit, compared to a DICE memory unit. However, if at most one error occurs in each row of the array, the environment still can read instructions as Ό.’
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error on a SRAM

stored bit is flipped

60
time∕inslFigure 5.35: Soft Errors on a Hamming-coded Memory. An error in a DD circuit is corrected 

quickly, but an. error on an SRAM in a Hamming-coded array remains uncorrected.

5.4.5 SummaryOne error tolerant memory consists of DD auxiliary circuits and a DICE array. It has the feature of self-correcting, but it incurs large area overhead. A DICE array is larger by a factor of almost, four than a corresponding SRAM array.Another error tolerant memory employs Hamming codes. Although it requires an en­coder and a decoder, the use of Hamming codes leads to an area-efficient array. Since the cost of an encoder and a decoder does not depend on the size of the array, a Hamming-coded array is more advantageous than a DICE array as the number of words in a data array in-



lbcreases. A Hamming code is applied to the array; the DD scheme is applied to auxiliary circuits around the array. Since the codings between auxiliary circuits and the array are different, it is necessary to convert a Hamming codeword into a duplicated codeword and vice versa. It is simple to convert a duplicated codeword to a Hamming codeword, but the conversion from a Hamming codeword to a duplicated codeword requires an interface circuit, which is similar to the mutual excluder of a DSET arbiter.The soft-error tolerance of a memory unit with a DICE array and a memory unit with a Hamming-coded array have been verified in digital and analog simulations.
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Chapter 6

QDI Circuits using Error 
Detecting Delay-insensitive Codes

We have devised the DD scheme to protect QDI circuits from soft errors. In the DD scheme, the data communications between CHP processes are encoded with repetition codes, which are a type of error correcting codes (ECCs). (For brevity, we use the term ΕCC, to refer to both error correcting codes and error detecting codes.) Instead of using repetition codes, we can use other ECCs, such as parity codes, in communication channels to protect a QDI circuit. Among various ECCs, which code is the best for designing a small and fast soft- error tolerant QDI circuit? To address the question, we shall design soft-error tolerant QDI circuits with different ECCs, and then compare them according to several metrics.
6.1 Error Detecting Delay-insensitive (EDDI) Code

In this section, a class of codes that can be used in asynchronous communications is defined. Then asynchronous versions of ECCs are defined, and applied to QDI circuits for error tolerance.
6.1.1 Definition of Delay-insensitive CodesWe start from the definition of a code. Let I be a finite set of indices of the boolean variables, and let C, called set of codewords, be a set of subsets of I. Each codeword represents a message (or data) for communications. A code is defined as a pair (J, C) where ∣J∣ is the length of the code, and ∣C∣ is the size of the code [42]. Elements of a codeword 
X in C correspond to the indices of the variables that are set to be true. For example,
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one-of-two code is defined as (∕, C) = ({l,2},{Cι ,(⅞}), where Cγ = {1} and (X = {2}; the two codewords are can be written as cχ = (0,1) and c⅛ — (1,0) in tuple representation. (A capital letter will be used for the set representation of a codeword, and a small letter will be used for the tuple representation of a codeword.)A code (J, C) is called a delay-insensitive (DI) code when ∣JV — Y∣ >0 and ∣K — X∖ > 0 are satisfied for all X,YeC. In other words, delay-insensitive codewords do not contain each other, which is called no-containment property. For example, a one-of-two code is a DI code, because a codeword (1,0) and another codeword (0,1) do not contain each other. What happens if a codeword contains another codeword? Let us assume that two codewords (1,1,1) and (1,0,1) are used for data communication in a QDI circuit. If a sender sets a codeword (1,0,1) on a channel, then the receiver without timing information cannot tell whether the sender sent the codeword (1,0,1), or it is in the middle of sending the codeword (1,1,1). To avoid the confusion, the no-containment property is necessary, which guarantees a correct communication even without the notion of time. Widely-used codes in QDI circuits are the concatenation of one-of-two codes or one-of-four codes, which have four codewords: (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0). For brevity, (0,0...,0), which corresponds to 0 in the set-representation, is called the spacer, and the subsets of a valid codeword X are called intermediate codewords of X. The remaining subsets of I are called invalid codewords. For example, in one-of-two code, (0,0) is the spacer, (1,0) and (0,1) are valid codewords, and (1,1) is an invalid codeword.A DI code does not use any extra information, such as a clock signal to communicate messages. Since the timing information should be encoded into the codewords themselves, a DI code is inefficient at utilizing code variables. While the n variables of a binary code encode ,2n messages, the n variables of ∣ one-of-two codes encode 22 messages. It was shown that the maximum number of messages which a DI code can encode, given a length of code n, is Q2j) < 2n [43]. A DI code that encodes the maximum amount of messages within the lenth of the code given, is called an optimal DI code; it is hard to find in practice, because of the complexity of the corresponding decoding/encoding circuit.
6.1.2 Definition of Error Detecting Delay-insensitive CodesIn a QDI circuit, the steps of communication using a DI code are usually specified by the four-phase protocol. If two variables r.0, r.l encode a one-of-two code, and the variables



78with an acknowledgment variable r.e implement a channel R between a sender process and a receiver process, then the steps of a communication between two processes through the channel R can be described as follows:1. The sender process sets a DI codeword on the channel variables (r.0, r.l); the sender assigns (1,0) (or (0,1)) to the variables.
2. The receiver process acknowledges the codeword by setting the acknowledgment vari­able r.e.

3. The sender resets the spacer on the channel variables; (r.0, r.l) becomes (0,0).
4. The receiver resets the acknowledgment variable r.e.

If an error occurs on one of the code variables of a channel, an unintended message can be communicated. For example, an error on r.0 can turn the spacer into (r.0, r.l) = (1,0), which is a codeword, and the accidental codeword can be acknowledged by the receiver. Although the sender did not initiate a communication, the receiver can observe an unexpected data communication, because of the error. If an error occurs on r.0 while the codeword (0,1) is sent, then the codeword (0,1) is turned into an invalid codeword (1,1), and the receiver may interpret the invalid codeword (1,1) as the codeword (1,0). That is, an error can cause the receiver to get the wrong message. These erroneous communications can happen if the spacer and a codeword X are too close (∣X∣ ≤ 1), or if two codewords X and Y are too close to each other (∣X — Y∣ = ∣ JV∩yr∣ ≤ 1 or ∣y — X∣ = ∣T∩Υc∣ ≤ 1).In order to avoid the erroneous communications, an error detecting DI (EDDI) code is defined in such a way that, even if some of the code variables are corrupted, the no­containment property still holds. A code C is a one-error EDDI code if and only if ∣X∣ > 1,I A? — y I > 1 for all X, Y £ C. The definition implies the following:
• ∣A∣ > 1 ensures that an error cannot cause an unexpected communication.
• IX — TI > 1 ensures that an error cannot turn a valid message X into another valid message Y.

In the following sections, we shall examine error tolerant QDI circuits based on different one-error EDDI codes. (The duplicated DI codes that are used in the DD scheme, are also one-error EDDI codes.) In the same manner, a code C is an r-error EDDI code if and only



79if ∖X — KI > r for all X, Y ∈ <7; 7,-error tolerant QDI circuits use r-error EDDI codes for channel communications.
6.1.3 Error Detecting Delay-insensitive Code Based on Linear CodeMethods for constructing EDDI codes from non-linear ECCs have been studied [44, 45, 46]. But the decoding/encoding circuits for non-linear EDDI codes are complex, so they are not widely used in computing logic.On the other hand, EDDI codes from linear codes are easily analyzed and implemented. In addition to that, the coding densities of EDDI codes from linear codes (e.g., repetition code and parity code) are comparable to optimal codes, especially in the range of a small number of bits, as shown in Figure 6.1, where the upper bound is decided by the following theorem. Hence, we shall focus on EDDI codes from linear codes from now on.
Theorem 2 If C is an r-error detecting DI code, then

(6.1)

holds.

Proof: See Appendix C.A code is an [n, k] linear code if and only if codewords x = (τι, x2,..., xn) of length n, where x∣ belongs to a field F, comprise a dimensional subspace of the n-dimensional vector over the field F [47]. (A field is an algebraic structure in which the operation of addition, subtraction, multiplication, and division are defined.) If the Hamming distance between every pair of codewords in an [n, k] code is at least dπιm. then the code can be also referred as a [n, h, dmm] code.An [n, k] linear code can be completely described by any set of k linearly independent codewords. We can arrange the independent codewords of an [n, k] linear code into k × n matrix Gf, called a generator matrix. A message u = (uι,..., u∣c) is mapped into a codeword
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Figure 6.1: One Error Detecting Delay-insensitive Codes and their Upper Bounds.

U' G = (xι,... ,∙cn). For example, a 3 × 9 generator matrix for a three-repetition code is
G1 =

1 0 0 1 1 0 0 0 00 1 0 0 0 1 1 0 00 0 1 0 0 0 0 1 1
There is another useful matrix associated with a linear code, called a parity-check matrix. For every codeword x, a parity-check matrix H satisfies H • xτ = 0. If a generator matrix 
G has the form G = [⅛A], then a parity-check matrix H has the form H = [—Aτ∕n-j⅛]. For example, H∖ is a corresponding parity-check matrix of G∖ ,.

H1 =

1 0 0 1 0 0 0 0 01 0 0 0 1 0 0 0 00 1 0 0 0 1 0 0 00 1 0 0 0 0 1 0 00 0 1 0 0 0 0 1 00 0 1 0 0 0 0 0 1
A parity-check matrix of a linear code takes an important role in constructing error tolerant QDI circuits, which will be explained in the following sections.



81We can obtain an EDDI code by converting a linear code into a set of DI codes. For example, a binary linear code whose codewords consist of elements of{0,1} can be converted into a set of one-of-two codes; a linear code whose F is a non-binary field, is converted into a set of one-of-n codes, where n is the size of a field (i.e., ∖F∖). The following theorem shows that we can obtain an EDDI code by the conversion.Before proving the theorem, we first define the following notations. Let [n] be {1, ...,n}. Let f be a mapping of the power set of [n] onto the power set of [2n]: 2x ∈ f(X) iff x ∈ X, and 2x — 1 ∈ ∕(X) iff x ∈ ∣n] — X. (The power set of S is the set of all subsets of S.) In other words, f maps a codeword of the ECC onto a codeword of the concatenation one-of-two codes.
Theorem 3 A binary [n,k,r + 1] ECC, ([n],C) is given such that ∣X — K∣ ≥ r + 1 or ∣Fr - X∣ ≥ r + 1 for all X ≠ Y ∈ C. The code ([2n],∕(C)) based on the mapping is an 
r-error EDDI.

Proof: Let us assume that ([2n],∫(C)) is not an r-error EDDI code. Then,
3X,y ∈ Csuch thatX ≠ Y, ∣∕(X) - ∕(Γ)∣ = k <r∖f(X) ∩ f(Y)∖ = n-k because ∖f(X) ∣ = ∖f(X) - f(Y)∖ + ∖f(X) ∩ ∕(Y)] = n l/W ∩ /001 = l(* ∩ Y) U (Λ^c ∩ yc)∣ = n — k from the definition of ∕, ∣(X∩Yc)U(Xc∩Y)∣ = k∣X ∩ Yc∣ = ∣Λ∙ - y∣ < k < r and ,Λ'i' ∩ Y∣ = ∣y - %∣ < fe ≤ r

which contradicts the condition that ∣AΓ - y∣ ≥ r + 1 or ∣Y - X > r + 1 for all X ≠ Y ∈ C. Thus, ∣∕(X) — ∕(Y)∣ > r and ∣∫(Iz) — ∕(A^)∣ > r are satisfied. According to the definition of an r-error EDDI code, the ([2n], ∕(C)) code is also an r-error EDDI code. ■Although we have proved the code consisting of one-of-two codes, it is easy to generalize the theorem for one-of-n codes; a DI code we obtain from a linear code by applying the mapping, is called a linear DI code.
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6.2 Basic Component of QDI Circuit: Function Block and 

Completion Checker

Although several styles of buffers exist such as the PCHB shown in Figure 6.2, and the WCHB shown in Figure 6.3, most of the styles have two major components in common: a function block and a completion checker (CC) of variables of DI codes for delay-insensitive communications.

input^enable_____________________________________________ ∣ ÷JgoFigure 6.2: Block Diagram of PCHB.

Figure 6.3: Block Diagram of WCHB.

A function block is a circuit to map a message of an input channel to a message of an output channel, which are encoded with DI codes. There are several styles of function



83blocks: delay-insensitive minterm logic (DIML), direct logics, precharging-evaluating logics, and so on [48, 49].The DIML resembles the traditional sum-of-products (SOP) construction, but the min- terms are formed using C-elements instead of AND gates, as shown in Figure 6.4 [50]. The C-elements guarantee that the outputs will not change until the transitions of all inputs are completed (i.e., the inputs read as either a codeword or the spacer). The direct logic can be obtained by merging inputs of the OR gate of the DIML function block, as shown in Figure 6.5 [51].A problem of the direct logic is that it requires a long series chain of p-transistors, which is inefficient in CMOS technology. That is the reason why precharging-evaluating logics, as shown in Figure 6.6, are mostly used. This logic can be formed by replacing slow 
p-transistor nets with the control signals (e.g., en), which come from other circuits such as completion checkers of channels.

Figure 6.4: Example of Delay-insensitive Minterm Logic (Adder).

Figure 6.5: Example of Direct Logic (Adder).

The inputs of a CC are channel-code variables, and the output of the CC reflects whether
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Figure 6.6: Example of Precharging-evaluating Logic (Adder).

the inputs read as a codeword or as the spacer. In other words, a CC checks whether a data communication on a channel is completed or not. There are several styles of CCs. (1) A design of CCs for various DI codes has been suggested in a form of a two-level circuit [52]. The design is similar to the DIML. (2) Enumeration-based CCs and comparison-based CCs have been proposed [53]. (3) A CC for important classes of DI codes, including m-of-n codes and the Berger codes, can be built in a systematic way by using a multi-output threshold circuit [54]. These constructions for general DI codes are not commonly used in practice, because of their complexity. Instead, we shall employ a simple CC for the concatenation of one-of-n codes, which will be shown in the following section.A buffer is a good example to study, which is one of basic units of a QDI system. The buffer, *[T?Z; -R!∕(∕)] in CHP, accepts an input from the channel L, computes the function ∕, and sends the result on the channel R. In the WCHB implementation of the buffer, a direct-logic function block and one CC are used. In the PCHB implementation, precharging­evaluating logics and two CCs are used: one CC for an input channel, and another CC for an output channel. The results of the CCs are combined through a C-element to provide the acknowledgment/control signals. (The way of combining the results depends on how to use channels such as conditional inputs, conditional outputs, and so on; the details are explained elsewhere [4]).
6.3 Error Tolerant Function Block for Linear DI Code

We show how to design an error tolerant function block based on a linear DI code. Then we shall compare the size of function blocks using various linear DI codes in order to find an efficient code for designing error tolerant function blocks. It will turn out that the family



85of repetition codes is generally advantageous.
6.3.1 Designing Error Tolerant Precharging-Evaluating LogicIn order to build an error tolerant function block, linear DI codes are used to encode input and output messages; an error tolerant function block must satisfy the following conditions:
Cond. El An error on the input of an error tolerant function block is masked out: while an invalid codeword is assigned to the inputs owing to an error, an error tolerant function block does not set an invalid codeword on the outputs.
Coπd. E2 Once a codeword has been established on the primary output of an error toler­ant function block, the codeword should be retained until it is acknowledged by the environment. Even if an error turns the codeword into an intermediate codeword, the intermediate codeword should be restored to the original codeword.
Cond. El ensures that an error is not propagated to the environment; Cond. E2 is necessary to avoid deadlock. It is clear what happens in case that Cond. El does not hold, but it is better to give an example in case that Cond. E2 does not hold. Let us assume that currently the outputs of a function block hold a DI codeword of two one-of-two codes such as (⅛.O,Zo.l,∕ι.O,Zι.l) = (1,0,1,0). If an error turns the codeword into the intermediate codeword (0,0,1,0), then the environment cannot acknowledge the intermediate codeword, and will wait indefinitely until the intermediate codeword is restored to the codeword. Therefore, Cond. E2 is needed to avoid deadlock. An intermediate codeword caused by an error is called a underflowed codeword, in order to distinguish it from a normal intermediate codeword, which appears during transitions from the space to a codeword or vice versa.We shall start to design an error tolerant function block from a normal function block step by step. A normal PRS of the precharging-evaluating function block of *[T?Z; Rll] is as follows:

en Λ Z1.0 —> ri .0↑
->en → ri.O‡ czzΛ∕ι.l → r1.l↑→ Γι∙U->ezz
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en A Zn.0 → rn.0↑ ->en —> rn.(4 
en Λ lnΛ → rn.l↑ -•en → rn.l^

Here, Zz.0, llΛ implement a one-of-two code, which represents the z-th bit of a linear DI code of the channel L. Likewise r⅛.0, r«.l represent the 2-th bit of the channel R. The variable ‘en’ is a control signal, which indicates whether both input channel and output channel are ready to be used. Cond El of error tolerance does not hold in this function block. For example, if an error causes ⅛.0, lιΛ) to be (1,1), then the PRs of rz.0↑ and r^.l† are effective, and accordingly (rz.0, r2.l) becomes an invalid codeword (1,1).To solve the problem, we strengthen the function block to check whether an input codeword is corrupted or not. (To strengthen a PR is to multiply conjunctive factors to the guard of the PR.) For the strengthening, we use conditions of valid codewords, which are specified by a parity-check matrix in the function block: (Z1, ...,ln) is a codeword if andof1 1 1only if H ∙ (Zχ,..., ln)τ = 0. For example, given a parity-check matrix H =^- the [3,2] parity code, a codeword (Zχ, Z2, Z3) satisfies H ∙ (Zχ,Z2, h)τ = Z1 φ Z2 Θ Z3 = 0. which is written in the corresponding linear DI code, as follows:
(Z1.OΛ Z2.0Λ ⅛∙θ) V (Zi.0Λ Z2.l Λ Z3.l) V (Z1.1 Λ Z2.0Λ Z3.l) V (Z1.1 Λ Z2.l A Z3.0)

If Zχ.0 is true for a codeword, then (Z2.O Λ Z3.0 V ⅛.1 Λ Z3.l) should evaluate to true; if Zχ.l is true for a codeword, then (Z2.0 Λ Z3.l V Z2.l Λ Z3.0) should evaluate to true. Based on the conditions, we can strengthen the guards of rχ.0↑ and rχ.l↑, and then we obtain the following PRS:ezzχ Λ enι2 Λ Zχ.0 Λ (Z2-O Λ Z3.0 V Z2.l Λ Z3.l) —> rχ.0↑
en∖ Λ en-2 Λ Zχ.l Λ (Z2.O Λ Z3.l V Z2.l Λ Z3.0) —ï rχ.lψ
-^enι Λ ->e∏2 ~÷ n-0‡
-ιeni Λ ->ezi2 ~÷ D∙U

The strengthening prevents an invalid input from enabling PRs of the function block. Note that there are also two copies of a control signal, enχ and en∙2, in order to avoid a control



87signal becoming a single point of failure.Let us consider a function block for the [4,2] repetition code, whose parity-check matrix is
H =

10 10 0 10 1
A valid codeword satisfies that l1 Θ I3 = θ and k ® ⅛ = 0, which can be written in a corresponding linear DI code, as follows:

(Z1.0ΛZ3.0) V (Zi.l A Z3.l)(Z2.OΛZ4∙O)v(⅛∙lΛZ4.l)
Compared with the function block for the parity [3,2] code, the strengthened function block for the repetition [4,2] code is as follows:

en A fi.0 → ∏.0↑ 'epctltl⅛rι f1,2^ enγ a en2 A ⅛.0 A Z3.O -÷ n∙θ↑',">',¾p'2) eni λ ell2 λ λ θ λ k 0 v l21 λ → rpθt
The function block for the repetition code has fewer literals than that of the parity code. To check whether a variable such as fi.0 of the repetition code is corrupted or not, it isenough to check just one counterpart variable ∕3.O. On the other hand, in the case of aparity code, it is necessary to read more variables such as ∕2.O, ⅛∙0, ∕2∙l, and ⅛.1 together. Consequently, checking the parity code requires more literals (i.e., transistors).In the same manner, we can strengthen the PRs of function blocks for general computa­tions. Let us assume that the process *[£?/; R{f(l)] uses a linear DI code encoding two-bit messages, and f(l) = f(lι,l2) =∕ιΦ h where /1 and /2 are the first and the second bit of the value I. A normal PRS of the precharging-evaluating function block is as follows:

en Λ (Zχ.0 A ∕2∙θ V /1.1 Z2∙l) —>■ n.O†->en → n.O†en A (fi.0 A Z2∙l V ∕j .1 Λ ∕2∙θ) -÷ n*l†→ n∙U->en



By applying the conditions of the [4, 2] code and the [3,2] code to the function block, we can obtain strengthened function blocks, as follows:
en A (Zχ .0 A Z2.O V Zj ∙1 A ∕2∙l) —> ∕'ι.0 †

repetition

parity
eτt∖ A 6Zi2 A (Zχ.0 A Z3.O A Z2.O A Z4.O V Z{.l A Z3.l A Z2.l Λ Z4.l) —∏.0↑
enγ Λ enι2 A (Zj.0 A Z2.O V∕j.lΛ Z2.l) A Z3.O —>∙ ∏.0↑

As we see, the [3,2] code leads to a smaller function block for this computation. The reason for this difference is that the function f computes the parity of a codeword so that the function block for the [3,2] code can take advantage of the inherent structure of the parity code itself. However, there are not many functions that can exploit the structure of the parity code, which will be shown later.Although the strengthened function blocks satisfy Cond. El, the strengthened function blocks do not satisfy Cond. E2, since an error on the output is not corrected after the inputs are reset. One way of getting a strengthened function block to satisfy Cond E2, is to decompose a gate of a strengthened function block into two gates, and to add cross-coupled C-elements, as follows:
enι A /1.0 → wι .0†->e∕zι → wi.O‡
en? A A ∕3.O V ∕2∙l A ∕3.l) → zι.0†
->e∏2 —> 2i.0‡
W].θΛ2j.O —rj.O† ->wι.0 A ->zι.0 —> rι.0φ

This is similar to what we did in the DD scheme. The shown PRS is an error tolerant function block of a buffer for the [3,2] code. The conjunction of ∕i.0 and (Z2.OAZ3.OVZ2.IΛZ3.I) of a gate r1.0 is separated, which can be viewed as the separation of computation (i.e., Z1.0) and parity checking (i.e., (Z2.O A Z3.O V fc.l A Z3.l)). (Some alternative ways of decomposing a function block exist. They are discussed in Appendix D.) The assignments of the primary outputs such as 7,7.() and r«.l are done only if both the output of the computation (i.e., w^.0) and the output of the parity-checking (i.e., ¾.0) are completed.



89Once a codeword is established on the primary outputs such as ryθ, τyl, the values of the intermediate outputs such as u⅛.0, ¾.0, wt.l, and zlA persist until the primary outputs are acknowledged by the receiver (i.e., e∏ι and β∕⅛ are reset). If an error occurs on the primary outputs, the corrupted primary output can be restored, because of the persistence of the intermediate outputs; if an error occurs on the intermediate outputs, then cross- coupled C-elements prevent the error from affecting the primary outputs. As a result, the function block can resolve the problem of a underflowed codeword. Error tolerant function blocks of ∕(∕) = l1 θ l'2 of the [3,2] code and the [4, 2] code are shown in Figures 6.7 and 6.8. (Compared with the DD scheme, r2.0, τ∖A correspond to checked-out variables, and Wi∙0, w∣.l, ⅞.0, zvl correspond to checked-in variables. See Chapter 5.)

Figure 6.7: Part of Function Block of Buffer for [3,2] Parity Code.

6.3.2 Simplifying Based on Symmetry of Repetition CodesWe can simplify function blocks of repetition codes by exploiting the symmetry of repetition codes, which leads to the PRs of the computation and the PRs of the parity-checking being identical. Some of the identical gates are removed, and the outputs are shared, as shown in Figure 6.9.Let us simplify an error tolerant function block of f(l) = lγ Φ ⅛ for the [4, 2] code:
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Figure 6.8: Part of Function Block of Buffer for [4,2] Repetition Code.

en↑ f∖ (∕ι∙0 Λ Z2∙O V Zι∙l Λ ∕2∙l) —wi.O†->e∏ι —> wi.O‡e∏2 Λ (∕3.O Λ Z4.O V ∕3.l Λ ∕4.l) —> Z∖ .O†
~'en,2 —2i.0‡
Wι-0Λzι.0 → ri.0↑-∙Wι.0 Λ 12⅛.O → ri.0φ
e?ii Λ (∕ι∙0 Λ Z2∙O V Zχ.l Λ ∕2∙l) ^÷ w⅛.0↑->e∏ι —> w<3.0‡e∏2 Λ (Z3.O Λ ∕4.O V ∕3.l Λ ∕4.l) —> 23.O†-ιβu2 —23.04.
W3.O Λ Z3.O -÷ r3.O↑ —>W3.O Λ -123.O —> î'3-04-

The gates of wχ.0 and W3.O are identical except for the outputs; the gates of 2,.0 and 23.0 are identical except for the outputs, which allows sharing of the gates, as follows:



91
enι ∕∖ (∕i .0 Λ ∕β.0 V Iy .1 Λ ∕3∙l) —W[ .O† 
->e∏ι —> wj.O‡
wι.0Λzι.0 —> r1.0↑->wι.0 Λ->Zι.0 —> rpO‡
CTl'2 f∖ ∕∖ ∕∕J .0 V ∕,2∙1 ∕∖ ^4∙1) —2l∙0↑ ->βTZ2 → Zl-O†
wι.0Λzι.0 —> Γ3.0↑->wι.0 Λ->2⅛.0 → r3.0‡

The corresponding circuit diagram is shown in Figure 6.10. This function block is exactly the same as a function block based on the DD scheme. The symmetry of repetition codes allows us to save almost half the transistors of the function block, which makes repetition codes advantageous in designing error tolerant circuits, compared with other types of linear DI codes.

Figure 6.9: Function Block for Repetition Code and its Simplified Function Block. Redun­
dant gates of an original function block are removed.

ya
yb

6.3.3 Comparing Size of Function Blocks for Different Linear DI CodesThe size of a function block, specifically the number of transistors, depends on design style. For example, the size of a DIML function block is proportional to the size of the code,
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Figure 6.10: Simplified Function Block for Repetition Code. The DD scheme, which dupli­
cates a gate and adds cross-coupled C-elements, leads to the same design.

regardless of the function it computes. On the other hand, the size of a direct-logic function block and the size of a precharging-evaluating function block depend on the minimization of the boolean formula of the function f. However, it is hard to get the smallest representation of a given function because minimizing a boolean formula is a coNP-hard problem [55]. In order to compare the cost of function blocks employing different linear DI codes, we resort to existing heuristic logic-minimization techniques for minimizing the size of a precharging­evaluating function block [56] [57].A repetition code is advantageous in implementing a function (e.g., an identity func­tion), but a parity code is advantageous in implementing another function (e.g., a parity function). If so, which code is efficient for designing a function block? Let us first answer the question for the two-bit process *[£?/; β!∕(∕)]. There are only two types of linear DI codes encoding two-bit messages, which are the [3,2] parity code and the [4,2] repetition code; there are (22)2^ = 256 different functions that the process can implement, since there exist 22 input messages and 22 output messages. Table 6.1 shows the distribution of the number of transistors in two-bit function blocks. Out of 256 functions, only eight function blocks of the repetition code are larger than the function blocks of the parity code. (The
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Table 6.1: Size of Two-bit, Input∕0uput Precharging-evaluating Function Block# of function blocks the size of a function block using the [4,2] code the size of a function block using the [3,2] code4 32 2416 36 4840 40 488 40 6064 44 6024 48 4848 48 6016 52 6032 56 604 64 48

eight cases are relevant to computing the parity of the inputs.)There are more possibilities of encoding as the number of bits in a message increases.For example, a four-bit message can be encoded by five different types of linear DI codes, as shown in Figure 6.11, where the first one is one-bit parity code and the last one is a repetition code. Moreover the number of possible computable functions grows so rapidly that it is prac­tically impossible to enumerate all possibilities for comparison. There are (24)24 ≈ 2 × 10lθ possible functions for a four-bit message. Instead of enumerating all functions for compari­son, functions can be generated randomly, and the sizes of minimized function blocks using different linear DI codes are compared. The size distributions of three-bit, four-bit, and five-bit function blocks for different linear DI codes are shown in Figures 6.12, 6.13, 6.14. In the figures, the ^-coordinate corresponds to the size of a function block using the repetition code and the ^-coordinate corresponds to the size of a function block using a non-repetition code. The dotted line indicates the boundary where the size of a function block using the repetition code is the same as that of a function block using a non-repetition code. While we generated 1,000 functions randomly, we can see that corresponding function blocks for repetition codes are generally smaller than those for non-repetition codes. As the number of bits increases in a message, the advantage of repetition codes is more apparent, since the number of literals in the guards for parity-checking increases exponentially.
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χ7 = u∙>Figure 6.11: One-error Detecting Linear Codes for Four-Bit Message.

the repetition code is advantageous

a non repetition code is advantageous

Figure 6.12: Three-bit Function Blocks based on Repetition Codes vs Non-repetition Codes. 
The x-coordinate and the y-coordinate of each point correspond to the size of a function 
block using the repetition code, and the size of a function block using a non-repetition code 
(e.g., the [4,3] code and the [5,3] code).

6.3.4 Function Blocks Using r-error Linear DI Codes

In order to build an r-error tolerant function block, we can use the same approach as we used to build one-error tolerant function blocks. That is, we strengthen a function block
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with conditions specified by a parity-check matrix, and add cross-coupled C-elements. For example, a parity-check matrix of the [7,4] Hamming DI code, which can detect two errors,
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H =

0 11110 010 110 10110 10 0 1
The following always holds for a codeword (∕1,∕2, ■■■J?):

I2 θ ⅛ Φ I4 Θ /5 — 0 /1 Θ /3 Θ /4 Θ ∕β = 0 /1 Φ∕2Φ∕4 Θ∕7 = 0
Accordingly a two-error tolerant, function block in *[£?/;R∖l], is as follows:

eni Λ ∕ι∙0 Λ p∕.O(∕3,∕4,Zβ) → a⅛. O†
en<2 Λ ∕7.O(∕2, Z4, /7) → Z/i-O†en3 Λp∕.O(∕2,∕3J4J5) → Z].0↑Zι ∙θ A yι .0 Λ z∖ .0 → r1.0↑
eni Λ Zι∙l Λ p∕.l(∕3, /4, 4>) —> i'i-I†

en-2 Λ p∕.l(Z2, Z4, /7) → :vi-i†en3 Λp∕.l(Z2,Z3J4,Z5) —> 2l∙l↑r∏.l Λ yι.l Λ z↑. 1 → ∏.1↑
Note that a gate is decomposed into three gates, and three-input C-elements are used instead of two-input C-elements. In the shown PRS, pf.0 (or p∕∙l) is a short-hand notation of a boolean expression of even (or odd) parity of one-of-two codes. For example,

py.O(∕3, /4, ∕β) — (⅛∙0 Λ ∕4.O Λ Zβ.O) V ∙ ∙ ∙ V (∕3.l Λ ∕4.l Λ ∕β.0),
py.l(∕3, /4, ∕β) — (∕3.O Λ ∕4.O Λ ∕β∙l) V ∙ ∙ ∙ V (∕3.l Λ ∕4.l Λ Zβ.l).

In this manner, we can design multiple-error tolerant function blocks of/'-error EDDI codes.
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6.4 Error Tolerant Completion Checker for Linear DI Code

A completion checker (CC) is a circuit whose inputs are the channel-code variables and whose output indicates whether the input variables read as a codeword or the spacer. For example, a CC for a one-of-n code is an n-input OR gate. A CC for the concatenation of one-of-n codes uses an n-input OR gate for each one-of-n code, and the outputs of the OR gates are combined by a C-element (or a tree of C-elements), as shown in Figure 6.15. In the PCHB implementation of * [£?/; R!∕(∕)], there is one CC for the channel A, and one for the channel R. If the primary outputs of both CCs are set (reset), then the acknowledgment of the channel L is set (reset).
10.0
10 . I·-
11
11 1 ∙ "

Figure 6.15: CC for Concatenation of Two One-of-two Codes.

A soft-error tolerant buffer using linear DI codes includes a CC for a linear DI code, which should tolerate an error. For error tolerance, the CC requires at least two primary outputs in order to avoid a single point of failure while the CC checks the validity of its primary inputs. Accordingly one possible design of an error tolerant CC is to duplicate a CC for a linear DI code and to add cross-coupled C-elements. For example, a PRS of a CC for the output channel R of the [3,2] parity code, whose outputs are Va and F⅛, is as follows:∏.0 Λ Γ2∙0 Λ r3.Orι∙0 Λ Γ2∙l A r3.lrpl Λ Γ2∙0 Λ r3.lri-1 Λ Γ2-I Λ r3.O->r1.0 Λ ->r2.0 A -T3.O A ->r1.l A r2.l A

^÷ va↑

→ ⅝↑→ ⅝↑ r3∙i ^÷ ⅛4



98n.0 A Γ2.0 Λ r3.O → ⅜tΓi-0 Λ Γ2∙l Λ 7,3∙1 →Γι.l Λ r2∙O A 7*3.1 →Γi∙l Λ Γ2∙l Λ 7'3.O → i⅛↑->Γι∙0 Λ -1Γ2∙O Λ ->Γ3.O Λ —∙7'ι.1 Λ -∣7'2∙1 A ->7'3∙.1 →
Va Λ Vf) —> Vα↑
~,va Λ ->vb → ½4

va Λ vb —> Vb↑

^va Λ ^vb → ¼>Φ

It consists of two sub-CCs and two C-elements. The four PRs of va† correspond to the four codewords of the [3, 2] code, and the last PR of va‡ corresponds to the spacer. The CC is soft-error tolerant as follows. If an error on a primary input turns a codeword into an invalid codeword, then the transitions of the primary outputs are disabled; if an error occurs on one of the sub-CCs (e.g., an error on v0), then only one of input of the cross-coupled C-elements is affected, and the duplicated primary outputs are not affected. In both cases, the error is masked out and corrected by the CC.The suggested CC, however, incurs a long series chain of transistors, which is inefficient in CMOS technology. In order to avoid the problem, we decompose the CC into a set of two-input parity checkers, which compute one-of-two XOR of two one-of-two inputs, as follows:
ιl.0Λx2.0 —> yQ↑

->x 1.0 Λ —>rτ2.0 -÷ τ∕0φ 

2T.l A x,2.1 → zθ↑

^,zT.l A ->rr2.1 → zO‡

2T.θΛχ∙2.l -÷ 2/l†

^xl.0 A ->rr2.1 → τ∕lφ 

2T.l A x,2.0 → zl↑

—>xr 1.1 Λ —>rτ2.0 -÷ 2l‡
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y Ο V z() —> parity. O†->ι∕O A -∙zθ —> parity S)∖,

ÿl V zΛ —> parity.λ↑

->yl A ->zl —> parity.lφ
Its corresponding circuit is shown in Figure 6.16, and recursively we can compute XOR of n one-of-two inputs, as shown in Figure 6.17. If we decompose a sub-CC for the [3,2] code into parity checkers, we obtain the circuit, which can easily be synthesized in CMOS technology, as shown in Figure 6.18.

parity.0

parity.1

Figure 6.16: Two-input Parity Checker.

Figure 6.17: Parity Decomposition.

Two copies of a parity-check CC are used to construct a CC for a linear DI code in the previous design, but one of them can be replaced with a CC for the concatenation of one-of-n codes, as shown in Figure 6.19. The simplification seems to weaken the error tolerance, but the simplified design still can tolerate an error in the following manner. If an error occurs
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Figure 6.18: CC for the [3,2] code.

on one of the sub-CCs, then it affects only one input of the cross-coupled C-elements, so that the primary outputs are not affected. On the other hand, if an error occurs on the primary inputs, the normal sub-CC may set its output, but the parity-checker sub-CC does not. That is, an error on the primary inputs affects only one input of the cross-coupled C-elements, so that the primary outputs are not affected.The CC for a repetition code can be simplified further by exploiting the symmetrical structure of the CC. The primary inputs are divided into two sub-CCs for the concatenation of two one-of-two codes; one sub-CC checks half of one-of-two codes, and the other sub-CC checks the remaining half. For example, a CC for the [4, 2] code consists of two CCs for two one-of-two codes and cross-coupled C-elements, as shown in Figure 6.20. The size of the simplified CC for a repetition code is roughly as small as half the size of the CCs of non-repetition codes. However non-repetition codes do not have the symmetrical structure.
An r-error tolerant CC for an r-error tolerant linear DI code, consists of r + 1 sub-CCs: 

r copies of parity checkers given by a parity-check matrix, and one normal CC; the outputs of the sub-CCs are used as the inputs of (r + l)-input C-elements.
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Figure 6.19: Simplified CC for the [3,2] code.

Figure 6.20: CC for the [4,2] Code.

'∙J∖>

6.5 Cost of Error Tolerant QDI Circuits for Different Linear 

DI Codes

There are several metrics by which to evaluate a circuit, such as the size (i.e., the number of transistors), the speed, the power, the latency, and so on. Here we use the size and the 
Et2 metric to evaluate the circuits of the process * [L?/; R↑f(l)1 of different linear DI codes.
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6.5.1 SizeAs shown in the previous section, the size of a CC for a repetition code, which can exploit the symmetrical structure of repetition codes, is as small as half the size of a CC for corresponding non-repetition codes; function blocks of repetition codes are generally smaller than those of non-repetition codes, even though there are a few exceptions. Figure 6.21 and Figure 6.22 show the distribution of the sizes of three-bit WCHB processes and the distribution of three-bit PCHB processes. A WCHB template consists of one direct-logic function block and one CC, and a PCHB template consists of one precharging-evaluating function block and two CCs. Since repetition codes are always favorable for CCs, the size difference between circuits for a repetition code and circuits for non-repetit ion codes is more apparent for the PCHB template, because the PCHB template requires two CCs. As the number of bits in a message increases, the size difference becomes more apparent , because a function block for non-repetition codes (e.g., a parity code) needs to examine more variables in order to ensure the validity of input variables than a function block for a repetition code.

Figure 6.21: Size Comparison of Three-bit WCHB Processes.
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Figure 6.22: Size. Comparison of Three-bit PCHB Processes. The PCHB using a repetition 
code is always smaller than the PCHB using a non-repetition code, so that the boundary is 
located outside the range of the figure.

6.5.2 Et2We shall evaluate circuits with other metrics, namely, energy and time. In CMOS tech­nology, each transition of a boolean variable corresponds to charging or discharging the capacitor of the physical node corresponding to that variable by bringing its voltage either to the supply voltage Vdd or to the ground voltage GND. The energy consumed through the charging and the discharging of the capacitor determines the system energy, and the time spent to charge and discharge capacitors determines the system speed.The energy, Ez↑, spent during the execution of a PR G —> z↑ is the energy dissipated as heat in the pull-up network during charging the capacitor Cz associated with the node of z, which is expressed as Ez↑ = Cz Y2dd^. Likewise we can have the same Ez± for G, → z±. The energy considers only dynamic energy during transitions, and for simplicity ignores energy consumption caused by leakage and short-circuit.The delay tz↑ for charging the node z is the time it takes for the current iz-↑- to carry the amount of charge, Qz = CzV, in the capacitor. We can approximate delay to be the ratio of the final charge Qz on Cz to the current iz↑ ≈ Kz↑ Vdd2 so that tz↑ = κc'zv ; similarly



104for the delay tz± and current iz±. Combining the expressions for delay and for energy, it has been found that Ezt2z of each transistor is independent of Vdd. Therefore Et2 of a system has been proposed as a metric for tradeoff between energy and throughput of a computation in the normal range of operation [58].A physical node corresponding to a variable in PRS is related to several capacitive com­ponents: the gate capacitance of transistors that the physical node drives, and the wiring capacitance source/drain diffusion capacitance of the transistors that drive the node. Ad­ditionally, there is the capacitance of internal nodes of transistor networks. Although all capacitive components should be included in calculating energy dissipation and delay, it was shown that the discrepancy between the simulation results of the simple charge/discharge model and of the SPICE model, is less than 8% in small circuits [59]. Even if the com­putation considers only the gate capacitance, which is called a fanout-weighted transition­counting model, the discrepancy is about 20%. Although some accuracy is lost, for simplicity we use the fanout-weighted transition-counting model to estimate the energy consumption. That is, it is assumed that Cz is proportional only to the load of z, (i.e., the fanout of z) since we are looking into a circuit of a small process like * [T?/, 7Z!∕] , where the wiring load is negligible.Let us first estimate the energy consumption of the function blocks of a two-bit buffer 
*[£?/; B,U1. The CMOS-implementable PRS of the function block using the [3,2] code is as follows:

e∏ι A r.e.γ Λ lγ .0 —y _W] .0‡
en-2 A r.C‘2 A ⅛-θ A ∕3.O V I2∙1 A ∕3.l) —> -Z↑ .04.-ιenι A ->7'.eχ → _wi .0↑->en-2 A ->r.e2 → _2i.0†
-i_wi .0 A ^-Z-[ .0 —> n .0†_wi .0 A -Zi .0 —> π .0‡
en∖ A ∕'.cι A lγ.l —y -W↑.U
e∏2 ∕∖ τ.c-2 A (Z2∙l A ∕3.O V Z2-θ A ∕3.l) —> -Z↑. IJ.
->enγ A τ.eι → _wi.lt->e∕i2 A ->r.e2 → -^ι∙l↑



105->.wχ.l Λ->_ζχ.1 —> r1.l↑_«/χ.1Λ_ζχ.1 -÷ rχ.lφ
The acknowledgment signal r.e∖ and r.e^ of the channel R are separated from the control signals en∖ and en2. To measure the energy consumption of the function block, we count how many literals are charged/discharged in one cycle. (Each literal corresponds to one transistor, and one transistor corresponds to one unit of capacitance. Here we do not consider the sizing of transistors.) In the buffer of the [3,2] code, 75 units of capacitance are charged/discharged during one cycle.A function block of the [4, 2] repetition code is as follows: 

eni Λ r.eχ Λ ⅛ .0 —> -Wχ.0φ 
en<2 Λ r.e2 Λ ∕3.O → -¾.0φ ->enχΛ->r.βχ —> .wχ.0↑->en2 Λ -τ.e2 —> -¾∙0↑
->.wχ.0 Λ ->-¾.0 → r1.0↑-Wχ.0 Λ -Z3.O —> r1.04,->-Wi.0 Λ->-2⅛.0 → Γ3∙0↑.wχ.0 Λ .¾.0 → r3.04,
enχ Λ r.e1 Λ Zχ.l → ,wχ.lj, 
en2 Λ r.e2 Λ ∕3.l —> -¾.lφ->enχ Λ ->r.eι → .ω1.l↑->ezi2 Λ ^r.e2 → -W3.I2↑->-Wχ.l Λ -ι-¾.l → n-l†-W1.1 Λ -Z3.l → n∙U->-Wχ.l Λ ~ι-Z3.1 → r3∙l↑-Wχ.l Λ -Z3.l → r3.iχ

In this function block, 52 units of capacitance in total are charged/discharged in a cycle. Therefore, the function block of the [4,2] code is expected to consume less energy than that of the [3, 2] code if the sizing of transistors is not considered.



106The same approach is used to estimate the energy consumption of function blocks com­puting a function f of a linear DI code encoding three-bit messages. The energy consump­tion of function blocks using the repetition code is compared with that of function blocks using non-repetition codes, as shown Figure 6.23. The ^-position and the y-position of each dot correspond to the energy consumption of a function block using the repetition code and the energy consumption of a function block using a non-repetition code. Note that the unit of energy consumption is a hypothetical unit for comparison.

Figure 6.23: Energy Distribution of Three-bit Function Blocks.

Likewise the number of units of capacitors of a CC that are charged and discharged during one cycle can be counted. Since the number does not depend on the function ∕, but on a type of linear DI codes, constant units of energy are added to the distribution of the energy consumption of a function block of a linear DI code. The final distributions of the energy consumption of the PCHB implementation of * [L?l; R∖f(Γf] are shown in Figure 6.24 and Figure 6.25. The energy consumption of a repetition code is always smaller than that of non-repetition codes when function blocks based on randomly generated 1,000 functions are compared.The cycle time of a computation is determined by the delay of each gate (i.e., the time it takes to charge/discharge capacitors), and the number of gates in a loop of gates (i.e., the
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number of transitions in a cycle). The delay is determined by the fanout and the load of gates; the number of gates is determined by the depth of the function block, which is two, and the depth of a CC, which depends on a type of linear codes. (The depth is the maximum



108number of gates between a primary input and a primary output.) For example, the depth of the CC for the [3,2] code is five, but that for [4,2] code is three. The distributions of cycle times of the processes * [T?Z; 72!∕(Z)] are shown in Figure 6.26 and Figure 6.27. (The function f are randomly generated.) After combining the delay and the energy numbers, we obtain the distributions of Et2 of three-bit and four-bit processes, as shown in Figure 6.28 and Figure 6.29. According to the distributions, repetition codes are generally advantageous in the Et2 metric, too.
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6.6 Simulation Results of QDI Circuits for Linear DI Codes

The circuit diagrams of a PCHB based on the [4,2] repetition code and the [3,2] parity code are shown in Figure 6.30 and Figure 6.31. As we expect, the circuit of the [4,2] code is simpler than that of the [3,2] code.SPICE simulations were done in TSMC 0.18-μm CMOS technology. A result of simu­lating the buffer for the [3,2] code with an error is shown in Figure 6.32. Charges (i.e., a soft error) are injected to Zχ .0 at 8 ns in the simulation. We can see that no communication on the output channel R is initiated, while the input channel L is corrupted. Eventually
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Figure 6.28: Distribution of Et2 of Three-bit PCHB Processes.

the corrupted node ∕ι .0 is restored, and then the primary outputs are computed. That is, the whole system continues to work normally after a short delay.
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Table 6.2: Performance Figures of PCHB for [4,2] Code and PCHB for [3,2] Code2-bit normal PCHB [4,2] PCHB [3,2] PCHB# of transistors 68 156 264Repetition Rate 660 MHz 446 MHz 343Transitions in Cycle 14 18 22Area(Λ2) 37536 84240 147888Energy per Cycle(pJ) 1.6 3.5 5.7
6.7 Summary

In QDI circuits, which assume no ordering of assignments of variables, timing information should be encoded to data communications, so that DI codes are used for QDI circuits instead of general binary codes. Conventional DI codes such as one-of-n codes, however, are vulnerable to errors. If a QDI circuit employs conventional DI codes and an error occurs in the circuit, deadlock or incorrect computations can occur. For this reason, error detecting delay-insensitive (EDDI) codes are introduced, which provide both delay-insensitivity for asynchronous communications and redundancy for error tolerance. Although there are many types of EDDI codes, we have focused on linear DI codes, which are delay-insensitive versions of linear ECCs, since the function blocks and the CCs of linear DI codes are easy
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Figure 6.30: PCHB based on the [4,2] Repetition Code. It is equivalent to the DD circuit of 
a 2-bit normal PCHB.

to build and to analyze.An error tolerant QDI circuit using linear DI codes prevents an invalid codeword from propagating, which ensures the persistence of correct inputs. Since the persistence can restore the corrupted outputs, the error tolerant QDI circuit can compute correctly even
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Figure 6.31: PCHB based on the [3,2] Parity Code.

though an error may delay computation momentarily. We have shown how to design an error tolerant QDI circuit for implementing the process * [£?/; Λ!∕(∕)] with linear DI codes. The error tolerant circuit consists of an error tolerant function block and error tolerant
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time∕inslFigure 6.32: Waveforms of Input and Output Channel Nodes of PCHB based on the [3,2] 
Parity Code. Until an error on the first bit of the input channel is corrected, all transitions 
of output-channel nodes are delayed.

completion checkers. Although we have examined buffer-like processes only, function blocks and completion checkers are basic components of any QDI circuits, so that the results can be expanded to build general error tolerant processes.Among several metrics under which to evaluate a circuit, the number of transistors is our first consideration. It is observed that most of the function blocks of repetition codes are smaller than those of non-rep et it ion linear DI codes; the size of a CC for repetition codes is roughly half the size of a CC for non-repetition linear DI codes. Even under the
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Et2 metric, circuits based on repetition codes are better because they tend to be simpler than circuits based on non-repetition codes. In another aspect, it is advisable to employ the repetition codes (i.e., the DD scheme), because it is easier to turn a QDI circuit into a repetition-code circuit (i.e., a DD circuit) than to apply a non-repetition code. Hence, we conclude that the DD scheme should be generally used in the design of error tolerant QDI circuits.
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Chapter 7

Design Example: Soft-error 
Tolerant Asynchronous 
Microprocessor

We have proposed a method for making all components of QDI systems soft-error tolerant, in the previous chapters. Here we shall demonstrate the method by detailing the design of a soft-error tolerant asynchronous microprocessor (STAM) down to transistor level.The overview of the STAM is given first, including its CHP description and its top-level decomposition. Then, as an example of synthesizing a circuit from a CHP description, the design of its program counter is detailed. In the end, the results of simulating the STAM are shown.
7.1 Overview

The STAM architecture implements a simple 32-bit RISC instruction set. The STAM has eight general-purpose registers, and it has four types of instructions: arithmetic, branch, shift, and memory operations. The detail of the architecture of the STAM is defined in Appendix E, which is identical to the architecture previously used in designing a simplepulsed asynchronous microprocessor (SPAM) [60].The sequential description of the STAM in CHP is as follows:
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SEQSTAM ≡

* [instr := imem [pc] ;

opx := gpr [instr.rx],

[ instr.ymode = REG —> opy := gpr [instr.ry]

D instr.ymode = I MM —> opy := instr.imm 

D instr.ymode = IMMSHIFT —> opy := instr.imm « 16 

D instr.ymode = REGIMM —> opy := gpr [instr.ry] + instr.imm1;
[ instr.unit = ALU —> opz := OP-ALU(instr.op)(opx, opy)

D instr.unit = BRANCH —> brch := OP-BRANCH (instr. op)(opx, opy)

Q instr.unit = DMEM —> opz := OP-DMEM (instr. op) (opx, opy)

Q instr.unit = SHIFT —> opz := OP SHIFT (instr.op) (opy)1;
[ instr.unit ≠ BRANCH —> gpr[instr.rz] = opz, pc := pc + 4

Q instr.unit = BRANCH —> pc := brch1]For synthesizing the STAM easily, the sequential description of the STAM is decomposed into small concurrent processes. Although there are several possible ways of decomposing the CHP process, we shall re-employ the existing decomposition of the SPAM for conve­nience. At the top level, the STAM is decomposed into seven processes: IMEM, DECODE, 
REGFILE, OPERANDS, EXEC, PCUNIT, and WB, as shown in Figure 7.1. Certainly these units will be decomposed further into smaller components so that they can be fit into circuit templates such as the PCHB template.The description of each unit is as follows:

• IMEM is an internal instruction memory holding up to 128 instructions. If necessary, we can easily expand the size of the instruction memory. Its CHP description is
* [ Addr? addr; Instr I imem [addr] ],which corresponds to instr := imem [pc] in the sequential description. This descrip­tion is similar to the memory unit in Chapter 5, even though the writing part is
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DMEM is protected by dual 
interlocked cells

Figure 7.1: Decomposition of the ST AM. The dotted arrows denote control flows, and block 
arrows denote data flows. Most of the units are protected by the DD scheme.

removed; the instruction memory can be easily designed with either the array of dual interlocked cells or a Hamming-coded array. Both designs have been implemented for the STAM.
• DECODE is simple to build, since the format of all instructions is the same. It merely copies the bit fields of a fetched instruction to several processes as control signals. For example, the most significant two bits of an instruction represent the type of an instruction, and the bit fields determine where operands are distributed in



118the EXEC process.
• REGFILE, which has eight 32-bit registers, implements opx := gpr [instr.rx∖, opy := 

gpr [instr.ry] , and gpr [instr.rz] := oρz. The execution unit can avoid waiting to write a result into a register when it reads and writes the same register, using the bypass mechanism of the MiniMIPS [61].
• OPERANDS computes opy according to instr.ymode, which implements [instr.ymode 

= REG —» opy := gpr [instr.ry] Q...].
• EXEC does calculation with given operands. There are four sub-processes such as 

ALU, BRANCH, DMEM, and SHIFTER, which handle the four types of instructions.
• PCUNIT updates the program counter (PC). Although there are several methods of handling branching, the arbitrated-branch mechanism of the SPAM is employed.
• WB is a write-back unit, which decides whether the result of the EXEC is written back to the REGFILE. That is, the WB guarantees the sequencing of instructions after a branching instruction. (This process is not necessary in the sequential description.)

The arbitrated branch and the role of WB are explained in Appendix F.
7.2 Designing Soft-Error Tolerant PCUNIT from CHP De­

scription to Layout

In this section, the design of the PCUNIT is detailed. The role of the PCUNIT is to increment the PC every cycle and, if necessary, to replace the PC with a branch target ad­dress. There are a few approaches to manage branching. For example, when an instruction is fetched from the IMEM, a pre-decoding stage determines whether the fetched instruc­tion is a branch instruction or not, and the pre-decoding notifies the PCUNIT to wait for a branch-target address from the BRANCH. This approach is in the design of a sub-nanojoule microprocessor, the Lutonium [2]. For designing the PCUINT of the STAM, we employ another approach, as follows. The PCUNIT probes a channel from the BRANCH to de­cide whether the PC should be changed or not; the communication between the PCUNIT and the BRANCH is established only if a branch instruction is encountered. The probed



119branching was proposed in the implementation of the SPAM, which was inspired by the exception handling mechanism in MiniMIPS and one of the AMULET designs [61, 62, 63].The sequential CHP of the PCUNIT is as follows:
PCUNIT ≡

pc := init-pc, Branched'.false;
* [Addr∖pc',

pc := pc + 4;
[-^DoBranch —> Branched', false I DoBranch —» BranchTolpc , B ranch ed∖f,τae]]

(Jf in the CHP is the probe of the channel A, which is a boolean function that indicates whether or not there is a pending communication on the channel A.) By probing the channel DoBranch from the BRANCH, the PCUNIT learns whether it needs to update the current PC or not. Finally, the information about branching is sent to the WB through the channel Branched.The sequential CHP of the PCUNIT can be decomposed into two units by factoring out the arbitrated mechanism, as follows:
EVAL-BRANCH ≡

*[-> DoBranch —> IsBranch∖false I DoBranch —> IsBranch∖tr∖ιe, DoBranch]



120
PCUNIT.NOARB ≡

pc := init-pc, Branched', false;

* [Addr'.pc;

pc := pc + 4;
IsBranch ? is -bran ch ;

[ is-branch = false —> Branched!f alse D is-branch = true —> BranchTo7pc, Branched∖tτue]]
In the following subsections, the details of the EVAL-BRANCHand of the PCUNIT-NOARB are shown.
7.2.1 Implementing Arbitrated BranchIf we assume that the channels DoBranch and IsBranch are both passive, we can compile the CHP process EVAL-BRANCH into the following HSE (The ‘passive’ channel is explained in Chapter 2.):*EE -∣DoBranch.i —> [IsBranch.e^] ; IsBranch. false↑∖

[-∣ IsBranch. e] ; Is Branch, false],I DoBranch.i —> [IsBranch.el ; IsBranch.true↑↑

[^IsBranch.e]; DoBranch. e].; [^DoBranch.z];
IsBranch.true],; DoBranch.e†]]

Since DoBranch is a synchronization channel, which does not carry data, a variable Do­

Branch.i and an acknowledgment variable DoBranch.e implement the channel DoBranch; variables IsBranch.true and IsBranch.false encode a one-of-two code, and the variables with an acknowledgment variable IsBranch.e implement the channel IsBranch. In order to compile this particular HSE into a PRS easily, the check of ^DoBranch.i in the HSE for the first guarded command is eliminated, as follows:
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*[[ Is Branch, e —> Is B ranch.fals e†; [~> Is Branch, el ; Is Branch.false],I DoBranch.i —> [IsBranch.e]; IsBranch.true,↑∙,

[—IsBranch.e]; DoBranch.e],; [-∣DoBranch.i] ↑ 
IsBranch.true],; Do Branch. e†]]The CMOS implementation of a two-way arbitrated selection statement corresponds to a basic arbiter in Chapter 5, which alternatively executes every selection whose check is evaluated to be true. In other words, if DoBranch.i is true, then a basic arbiter ensures that the second selection (i.e., branching) executes eventually. Because of the fairness, we can replace the check ^DoBranch.i with the check IsBranch.e.After factoring out a basic arbiter from the HSE, we obtain the following:

*[[ IsBranch.e —> w†; [^IsBranch.e]; u†
I DoBranch.i —> v†; [-> Do Branch.il; v†]]

II
*[[ u —> IsBranch. false↑∙, [-m]; IsBranch.false],Q V —> [IsBranch.e]; IsB ranch, true↑∖ [-IsBranch.e]; DoBranch.e].;

[->?;]; IsBranch.true].; DoBranch.e↑IIThe first process shown in the decomposition above is an arbiter between IsBraJich.e and 
DoBranch.i; the compilation of the second process results in the following PRS:

u → .IsBranch.false↑-∣w —> -IsBranch.false],

V Λ IsBranch.e -÷ -IsBranch.true],

->v Λ ^IsBranch.e —> -Is Branch.true↑

-IsBranch, true —> IsBranch. true],-1 -IsBranch.true —> IsBranch.true↑

-IsBranch.true —> -DoBranch.e],

^-IsBranch.true Λ -IsBranch.e ->■ -DoBranch.e↑
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.DoBranch. e —> DoBranch. e‡ 
-i-DoBranch.e —» DoBranch.e↑

In fact, a PRS of a similar HSE has been already demonstrated in the design of the Min- iMIPS, but the MiniMIPS’s PRS has more latency than the PRS shown above [62]. The corresponding circuit of the PRS with a basic arbiter is shown in Figure 7.2. It is easy to make the circuit soft-error tolerant: an arbiter is replaced with the DSET arbiter, and the DD scheme is applied to the rest of the circuit.
IsBranch.false

IsBranch.e

IsBranch.true

Figure 7.2: Circuit for Probing Branch. If there is a pending communication on the channel 
DoBranch, then the value of the channel IsBranch is assigned to be true. If not, the value 
is assigned to be false.

7.2.2 Implementing Body of PCUNITA decomposition of the PCUNIT.NOARB is as follows:
INCREMENTER ≡

PCIncOutUnit-pc;

* [PCIncIri? pc; PCIncOutlpc + 4]
SELECTOR≡

*[BC!bc, PCIncOutlpc, BranchTo? branch-to 
[ be = false —> NewPCipc 0 be = true —> NewPCibranch.to ]]
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COPY ≡

*[NewPC7pc; Addr∖pc, PCIncInlpc]

CONTROL ≡

Branched', false',

* [IsBranch,ι is-branch

[ is.branch = false —> 5C!false, Branched∖false D is.branch = true —» BC!true, Brarιched∖tτ∖ιe]]
PCUNIT.NOARB ≡ INCREMENTER ∣∣ SELECTOR ∣∣ COPY ∣∣ CONTROL

The corresponding process graph is shown in Figure 7.3. Extra buffers, which implement initial send/receive commands (e.g., PCIncOut∖init-pc in the INCREMENTER), are not shown in the decomposition but explicitly depicted in the process graph. If the boolean channel IsBraτιch from the EVAL.BRANCH carries false, then the current PC is copied to the EXEC and to the IMEM. If the boolean channel IsBranch carries true, then the target address on the channel BranchTo is read, and the PC will eventually be updated according to the target address.Although the process is decomposed functionally enough, there is still an extra decom­position step: splitting up wide channels such as the 32-bit channel NewPC into the small one or two-bit wide channels that can be implemented by one-of-two codes or one-of-four codes. This step, called vertical decomposition, requires the distribution of signals of the control channels to the vertically decomposed processes. A byte-skewing scheme of the SPAM is used again to distribute control signals in the STAM, since it provides a good trade-off between throughput and latency. In byte skewing, a control signal is simultane­ously distributed within a byte, but the process of the next byte gets a copy of the control signal in the next time step, which is illustrated in Appendix G.After finishing vertical decomposition, we now have small CHP processes, which can easily be synthesized. For obtaining a circuit from a CHP description, we can use a semi­automatic synthesis flow. (Some existing tools such as pl2xprs and cflat have been modified to generate layouts of DD circuits.) The steps of the synthesis flow are illustrated



124

Addr

EXEC PC
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Figure 7.3: Process Graph of PCUNIT_NOARB.

in Figure 7.4. As an example, the details of synthesizing the SELECTOR according to the tool flow are given in Appendix G. Besides CHP, PRS, and HSE, a language PL2 is introduced to describe a system in the synthesis flow. The language can only describe CHP processes whose input channels and output channels are used at most once in each iteration, but PL2-describable CHP processes can be readily fit into circuit templates [60]. After decomposing a complex CHP process into PL2-compatible processes, we can com­pile a PL2 process into a CAST description of a DD circuit with the compiler pl2ddxprs, which is a DD version of pl2xprs. (CAST is a hierarchical, lexically scoped circuit de­scription language [64].) By extending the template-based PCHB design, pl2ddxprs first does boolean minimization with one-of-n encoded multi-valued variable and does synthe­sis of multiple-input and multiple-output logic networks. Then the program duplicates a generated circuit, and adds cross-coupled C-elements. pl2ddxprs provides an automatic pathway from a high-level description to a low-level description.cflat_layout converts the CAST description into a PRS and generates auxiliary in­formation for the layout tools. Using the extracted information, a layout tool xprs2stack
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Figure 7.4: Synthesis Flow from CHP Description to Layout. A box represents a tool, and 
a cloud shape represents an input description for a program.

together with stackgen generates a stack of transistors for a specific computation, which can be a part of computation blocks in a circuit template. Given a list of instances of cells, a placement tool sysiphus uses a simulated annealing heuristic to place the instances. That is, sysiphus places generated stacks of transistors and standard library cells (e.g., inverter,



126NAND, NOR) to generate a large cell. While the cost function of sysiphus is set up to minimize the expected Manhattan length of connection wires in the placement, it is hard to impose an internal structure on the placement, so sysiphus is mostly used to produce a layout of small processes such as bit-wide processes. (Manhattan length is the sum of the length of the projections of the line segment between two points onto the coordinate axes.) On the other hand, the placement tool myrope is used to place sysiphused layouts into a larger layout according to a floor plan determined by a designer. For example, we can compose layout of EXEC by putting layouts of ALU, BRANCH, DMEM, and SHIFTER side by side with myrope. After the placement is done, a suite of routers completes the layout with wires. The final layout of a CHP process is in the format of magic, a VLSI layout system [65].The wired layout of the soft-error tolerant PC UNIT based on the DD scheme has been completed in TSMC 0.18-μm CMOS technology. The PCUNIT.NOARB of the PCUNIT has been synthesized by the tools, and the EVAL-BRANCH has been done by hand.
7.3 Evaluating Soft-error Tolerant Asynchronous Micropro­

cessor in Simulations

The partially wired layout of the whole STAM was completed in 0.18-μm CMOS technology. The STAM has approximately one-and-a-half million transistors. We have designed most of the STAM, following the synthesis flow shown in the previous section and employing the DD scheme for soft-error tolerance. Certainly designing memory units, especially array, controller, and arbiters, has required human intervention.
7.3.1 Verifying Soft-error ToleranceThe soft-error tolerance of the STAM has been verified in three different ways. (1) The tolerance of small processes are verified exhaustively in PRS computation. From each valid state, every erroneous execution path is checked in order to ensure that an error cannot cause any erroneous behavior. (2) While the STAM runs a program in the production- rule simulator csim, variables of the STAM are flipped randomly. After the simulation is finished, the values of the registers are verified. (3) Charges (i.e., an error) are injected into the STAM every few nanoseconds in SPICE simulations. As before, the values of the



127registers are verified in the end of a simulation.First, seucheck has been written for the exhaustive testing. It facilitates verification of error tolerance of a given PRS by exploring all possible states of the PRS with an error on each variable of the PRS. (An example of using seucheck is in Appendix H.) That is, a valid-state set of the PRS of a process is generated, whose elements are states reachable from the initial state of the process by firing of PRs. Then the program checks whether or not a soft error on any node (a bit flipping) can cause a transition to an invalid state (deadlock state) where no PRs are effective; it checks whether the firings of PRs are excluded or repeated, owing to an error (i.e., data can be missed or can be generated unexpectedly). Tested processes in the STAM have been verified to tolerate an error in all possible states, as we expect. In fact, this testing is suited for small processes whose PRS has around 50 variables, since the number of states increases exponentially as the number of variables increases. If seucheck is used for a PRS, which has 100 or more variables, the program does not finish within more than a week in a machine with a 2.0 GHz Intel Pentium 4.Secondly, an extended csim, which has been written for simulating bit-flipping (i.e., soft errors), can randomly choose a variable in a given PRS and can flip the value of the variable during the execution of the PRS. If the csim is set to flip 15 nodes per cycle on average while the STAM runs the RC4 stream cipher, approximately 25% of electrical nets of the STAM experience bit-flipping until the end of simulation. (The RC4 stream cipher is used in popular protocols such as secure sockets layer to protect Internet traffic, and wired encryption protocol to secure wireless networks [66].) The coverage of bit-flipping is shown in Figure 7.5. The results of the bit-flipping tests in the csim have shown that corrupted nodes are restored quickly, so that the STAM is demonstrated to tolerate multiple errors. In fact, if we allow more than 20 errors per cycle on average, we have observed that the STAM fails to compute once in a while, because multiple errors occurred too close in distance (e.g., errors on a set of cross-coupled variables).Thirdly, one soft error, which is modeled as excess charges, is injected into randomly chosen nodes every cycle on average in SPICE simulations. For example, excess charges are injected into two nodes in the PCUNIT, as shown in Figures 7.6 and 7.7. In the first waveform, we can see that the corrupted node is restored quickly; in the second waveform, the erroneous transition is a premature firing of an expected transition, which is not propa­gated to the environment until the transition of a corresponding duplicated node happens.
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Figure 7.5: Floor Plan of the STAM and Locations of Flipped Nodes during Digital Simula­
tion of the STAM. Each dot represents the location of a flipped node, and a box, represents 
the bounding box of a circuit of a decomposed small process, which includes a few hundred 
transistors.

Throughout the several SPICE simulations, it has been verified that the STAM can tolerate each soft error, which occurs at every cycle on average.

Figure 7.6: Waveform of One Corrupted Node in PCUNIT. An error occurs at 12 ns, and 
the corrupted node is restored quickly.

7.3.2 PerformanceFor obtaining the performance figures, the STAM has been tested in SPICE and digital simulations with small programs such as a no-operation program, and the RC4 stream cipher.
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time∕lnslFigure 7.7: Waveform of One Corrupted Node in PCUNIT. An error occurs at 44 ns, which 

causes a premature transition, but it does not affect the correctness of computation, because 
cross-coupled C-elements of the DD scheme prevent the propagation of the premature firing.

The no-operation program consists of a series of an instructions ‘and rθ=rθ,rθ., It merely fills the pipeline of the STAM so that the maximum throughput of the STAM can be tested. The STAM runs at 22 transitions per cycle. SPICE simulations have shown that the STAM runs approximately 170 MHz with the no-operation program, which is limited by the performance of the REG FILE, it consumes approximately 5.1 nJ per fetched instruction.On the other hand, the RC4 stream cipher uses most of the functionality of the STAM. According to the results of simulations in csim, the program runs at 35 transitions per cycle on average; csim has revealed that the critical path includes the carry chain of the ripple-carry adder in the ALU. If necessary, the ripple-carry adder can be replaced with a carry-lookahead or a carry-select adder in order to achieve the full throughput, csim can also estimate the energy consumption based on a fanout-weighted transition-counting model, which is off by less than 20% compared with the results of SPICE simulations. For the RC4 program, it has been estimated that 7.1 nJ is consumed per effective instructions or 6.4 nJ is consumed per fetched instruction. (The fetched instructions include effective instructions whose results are written to the RE G FILE, and vacuous instructions which are fetched in the middle of branching.)



130
7.3.3 Comparing Overhead of Error ToleranceAdding error tolerance reduces throughput up to by 40%. For example, the PCUNIT of the STAM runs at 197 MHz, which is approximately 60% of the throughput of the PCUNIT in a corresponding simple asynchronous microprocessor (SAM), which employs no error tolerant methods. The reasons for the reduction of the throughput are as follows. The first cause is that the STAM requires more transitions per cycle than the SAM. While completion checkers of an output channel in a normal circuit take their inputs from pulldown stacks of function blocks directly, DD completion checkers take their inputs from cross-coupled C-elements, as shown in Figure 7.8. Therefore DD circuits take more transitions in a cycle: the SAM takes 18 transitions, but the STAM takes 22 transitions per cycle. In addition to the increase of transitions, some of the gates of the SAM are replaced with slower gates. For example, the inverters in a normal STAM are replaced with cross-coupled C-elements. Additionally, the average loads of gates also increase, because the average length of wires of the STAM is 1.2 times longer than that of the SAM, and there are more forking of signals (e.g., duplicated gates in a DD circuit need to drive two cross-coupled C-elements).The area penalty of major units is about a factor of three, not only because transistors are duplicated with cross-coupled C-elements, but also because the complexity of wiring- increases. For example, the PCUNIT has about 56,500 transistors while a corresponding- normal PCUNIT, which does not employ error tolerant methods, has about 19,500 transis­tors; the area of the layout increases by a factor of three or so. The penalty on the energy consumption is also about a factor of between two and three, since the average loads of gates also increase in addition to duplicated transistors. Because of the throughput penalty and the energy penalty, adding error tolerance needs the increase of Et2 by a factor of 7. The penalties are summarized in Table 7.1 where the speed of a system is measured in a unit of million instructions per second (MIPS).Comparing performance and cost of microprocessors designed in different architectures is difficult. Instead of finding synchronous competitors of the STAM, we compare existing radiation-hardened MIPS-like microprocessors with a soft-error tolerant MiniMIPS whose performance is estimated from the performance of the MiniMIPS [67]. In fact, radiation- hardened (also known as rad-hard) circuits are designed in order to resist malfunctions such as soft errors and dose effects caused by high-energy subatomic particles and electromag-



131

(b) DD circuit

Figure 7.8: Compared with a Non-DD Circuit, a DD Circuit Requires More Transitions in 
a Computation Cycle. A circuit for output-channel validity takes its inputs from function 
blocks, but a corresponding DD circuit takes its inputs from cross-coupled C-elements after 
function blocks.

netic radiation. Since a soft-error tolerant asynchronous circuit also resists them, comparing a DD MiniMIPS with rad-hard circuits can give rough ideas on how good or bad our scheme is. There are a few known rad-hard microprocessors. AT697E, which uses triple modular redundancy and error correcting codes, is a rad-hard 32-bit RISC embedded processor based on the SPARC V8 architecture [68]. It is manufactured using the Atmel 0.18-μm CMOS process, which has been especially designed for space. Mongoose-V is a rad-hard MIPS R3000 32-bit microprocessor that is fabricated in 1.0-μm CMOS Silicon-on-Insulator [69].
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Table 7.1: Performance Comparison between Simple Asynchronous Microprocessor and Its Corresponding Soft-error Tolerant Simple Asynchronous MicroprocessorEnergy (nJ ∕inst) Speed(MIPS*) Eii(lθ-24Js2)SAM 2.0 280 0.025STAM 5.1 170 0.176* MIPS is million instructions per second

Table 7.2: Performance Comparison with Synchronous CompetitorsProcessor Energy(nJ/inst) Speed(MIPS*) Eii(102l.Is2)0.18-μm DD MiniMIPS (scaled) 2.1 246 0.034
0.18-μm Rad-hard AT697E 8 86 1.080.18-μm Rad-hard Mongoose V (scaled) 0.5 50 0.2

0.35-μm Rad-hard Sandia Pentium 35 200 0.8750.25-μm Rad-hard RAD 750 260
* MIPS is million instructions per second

Since Mongoose-V is designed in the old technology, it is necessary to estimate the per­formance of the processor in 0.18-μm CMOS technology. If the constant E-field scaling is assumed, delay is reduced by the scale factor (i.e., 0.18) and the energy is reduced by the scale factor cubed, which gives us the rough estimation. Although most of the numbers are estimated, the soft-error tolerant MiniMIPS outperforms its synchronous competitors by a factor of 6 or more in the Et2 metric. The comparison between the microprocessors is shown in Table 7.2. Besides these microprocessors, there exists a rad-hard Pentium processor of the Sandia National Labs, and RAD750, which implements the advanced features in the PowerPC 750 and adds radiation hardening [70]. Their performances are also shown in the table for reference purpose.
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7.4 Summary

Here we demonstrated the method by designing a soft-error tolerant asynchronous micro­processor (STAM), which is a simple 32-bit RISC microprocessor. Using a synthesis flow, we have finished the partially wired layout of the STAM in TSMC 0.18-μm CMOS technol­ogy. The STAM can run at 170 MHz. The soft-error tolerance of the STAM has also been verified in digital testing and analog testing.
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Chapter 8

Conclusion

8.1 Lessons Learned

QDI circuits are vulnerable to soft errors, which may cause incorrect computations or cause deadlock. The duplicated double-checking (DD) scheme provides a simple way to make a QDI circuit soft-error tolerant, and we have shown how DD QDI circuits can tolerate soft errors. However the DD design requires that two copies of a component provide the same outputs when the same inputs are given. Most of the components of QDI circuits satisfy the condition with the exception of arbiters. To address this, we introduced a protection circuit, called a mutual excluder to adapt an arbiter for use with DD circuits. Additionally a mutual excluder is also used to design an error tolerant memory using a Hamming code. While a Hamming-coded array is suitable for a large memory such as a data memory, an array of dual interlocked cells (DICEs) is suitable for a small memory such as a register file.Although the DD scheme uses a repetition code for the channels of CHP processes, other error correcting codes (ECCs), such as parity codes, can be used for channel communica­tions. In a few cases, non-rep et it ion codes are advantageous, but it turned out that the DD scheme, which is based on repetition codes, generally generates more efficient circuits because the symmetry of repetition codes allows us to simplify the circuits.We were able to demonstrate the feasibility of designing a complex system of soft- error tolerant QDI circuits through designing a soft-error tolerant simple asynchronous microprocessor (STAM), whose architecture defines a 32-bit RISC instruction set. Most parts of the STAM are based on the DD scheme. Using the automated tools, we have completed the partially-wired layout of the STAM. SPICE simulations show that the STAM in 0.18-μm CMOS technology can run at 170 MHz. The error tolerance of the STAM has



135been tested in a few different manners. The STAM can tolerate injected errors unless multiple errors occur on one set of cross-coupled variables. An error may cause a delay due to the time it takes to restore from the error, but QDI circuits can absorb the delay without affecting the correctness of computations. Meanwhile the cost in throughput is about 30% to 40%, and the area penalty is between a factor of two and a factor of three.Hence this work has demonstrated a complete method for designing a system of soft- error tolerant QDI circuits.
8.2 Future Work

It is desirable to improve and expand the present method of error tolerant asynchronous circuit designs. Although a preliminary idea of designing fault tolerant reconfigurable cir­cuits such as a FPGA was presented, it can be expanded in order to design defect tolerant DD circuits. That is, if a hard error occurs in a defect tolerant reconfigurable DD system, then the system, which tolerates soft errors, can be designed to reconfigure itself to bypass the hard error.Furthermore it is desirable to find a way to apply the robustness of asynchronous circuits to nano-scale circuits. Designs at this scale will experience much higher fault and defect rates than conventional circuits.
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Appendix A

Acronym Glossary

The acronyms that are used in the thesis are described.
Acronym MeaningCI checked-inCO checked-outCHP communicating hardware processesCC completion checkerDI delay-insensitiveDIML delay-insensitive minterm logicDICE dual interlocked cellDD duplicated double-checkingDSET duplicated soft-error tolerantECC error correcting codeEDDI error detecting delay-insensitiveFIT failure in timeFPGA field programmable gate arraysHSE handshaking expansionPCHB precharged half bufferPCFB precharged full bufferPR production rulePRS production-rule setPC program counterSOI silicon-on-insulator



137SPAM simple pulsed asynchronous microprocessorSEL single-event latch-upSEU single-event upsetSTAM soft-error tolerant simple asynchronous microprocessorSOP sum-of-productsQDI quasi delay-insensitiveTMR triple modular redundancyWCHB weak-conditioned half buffer
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Appendix B

Controller in Memory Unit

A controller in a memory unit generates signals for precharging bit lines and acknowledg­ment signals for the input channels DATA-IN, ADDR, and RW. Its specfiction in HSE is as follows:
* [ [Addrv] ;

[RW.Read Λ DATA-OUT.e —> Decoder .en↑∖
[Bitlinev A Wordlinev] ;

ADDR.e],, 7'<∕o↑, Decoder.en];

[-^DATA-OUT .e Λ ~>Addrv Λ -^Wordlinev] ; pchg],, rgo],, 
[DATA-OUT.e]∖DΛ⅛r.H, rite —> wgo↑∙,

[DATAJNv A Bitlinev'] ; Decoder.en↑

[Wordlinev] ; wgo],, ADDR.e],, DATA-IN. e‡, Decoder, en];

[^DATA-INv A -> Wordlinev ∕∖ ^Addrv] ; DATA-IN.e↑, pchg];];
[-> Bitlinev] ; pchg↑-, ADDR.e↑]

A corresponding CMOS-implementable PRS is as follows:
Bitlinev → -Bitlinev],-IBitlinev —> -Bitlinev↑

Wordlinev —> -Wordlinev],

-* Wordlinev —> -Wordlinev↑
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-Wordlinev A Addrv —» dgo↑

^-Wordlinev Λ Addrv →

dgof∖pchg Λ (RW .Read ∕∖ DATA-OUT.e V Bitlinev Λ RW. Write) 
dg o∕∖^-Bitlinev

-Decoder, en → Decoder, en],

^-Decoder, en → Decoder, en↑

(-^-rgoV~^-wgo) A ->-Bitlinev —» rwgo↑

(-rgo∕∖-wgo) Λ -Bitlinev → rwgo],

rwgo → -rwgo],

-∣rwgo —> -rwgo↑

-Decoder. en], 
-Decoder .en↑

->-Wordlinev ∕∖->-rwgo —» -ADDR.e↑

-rwgo → -ADDR.e],

-ADDR.e —ADDR.e],

^-ADDR.e —> ADDR.e↑

RW.Read —> -JTW .Read],

^RW.Read —» -RW.Read↑

DATA-OUT.e → -DATA-OUT.e‡
^DATA-OUT.e → -DATA-OUT.e↑

-DATA-OUT.e → —DATA-OUT.e],

^-DATA-OUT.e → -DATA-OUT.e↑

^-RW.Read A ->-Bitlinev → ~rgo],

-DATA-OUT.e Λ -RW.Read Λ -Wordlinev → _n?o†
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(^-DATA-OUT.e V ->DATAJN.e Λ -∣DATAJNv) → done↑

(—DATA-OUT.e ∕∖ DATA-IN.e) → done±

-^-Bitlinev Λ -^Addrv —> badrv↑

-Bitlinev —> badrv],

badrv A done Λ _ Wordlinev —> pchg], 
badrv A ~^done —> pchg↑

Addrv A DATA-IN. e Λ pchg Λ RW. Write A DATA-OUT .e → _w#o‡ 
Addrv A ^DATA-IN .e —> .wgo↑

-wgo → wgo],

^-wgo —> wgo↑

DATA-INv A wgo → dinvwgov↑

-^DATA-INv A ->wgo —> dinvwgov],

dinvwgov A Bitlinev —> DATA-IN.e‡
-^dinvwgov ∕∖-^pchg → DATA-IN .e↑
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Appendix C

Upper Bound of the Size of Code

Given the length n, the size of an EDDI code is bounded, as follows. If C is an /-error detecting DI code, then
∣q≤ (C.l)

holds.
Proof:π + 1 In case ∣A — Y∣ >0 and ∣Y — A∣ > 0, C is a Sperner code, and ∣C∣ ≤ Sperner’s theorem can be easily proven by the Lubell-Yamamoto-Meshalkin∖ l⅞J ∕inequality (more commonly known as the LYM inequality), widely used in combinatorial mathematics. Here we are going to prove our theorem using LubelΓs approach [43].Let us begin by proving the theorem in case of r = 1, and then generalize the proof. Each maximal chain ordered by inclusion in power — set (i.e., set of all subsets of {1,..., n} ) intersects at most one codeword in C. (e.g., if n = 3, then a maximal chain is {1} — {1,3} — {1,2,3}.) Let α⅛ denote the number of A>sets, sets with size k in C. We can generate k (k - l)-sets out of a A>set by removing one element. For example, three 2-sets {1,2}, {1,3}, {2,3} come from a 3-set {1,2,3}. All (k — l)-sets from ⅛-sets in C are different from each other. If Yfc ‡ Xk in C, and a (k - l)-set rrfc-ι out of ¾ and yk~↑ out of Yk in C are the same, then ∣Λjfc — Yk∖ = ∣rr⅛-ι U {rr} — yk-ι U {τ∕}∣ = ∣{rr}∣ = 1, which contradicts the condition that ∖X — K| > r = 1 and ∣Y — A∣ > r = 1.



142We can construct a DI (7,, which consists of codewords generated from C by removing one element in each codeword for every possible choice. That is, each codeword, c, in C can generate ∣c∣ codewords with size ∣c∣ — 1 in C,. Let 6∕c = + l)ttfc+ι denote the numberof fc-sets in Cr. Then every maximal chain meets C' in at most one element, say, fc-set. (If not, we have X'-1 c T∕.1 or X'k~γ D K∕,1 for X'k_} and T∕-1 in C, which is generated from Xk and K∕. And it implies that ∣¾ — Yι∖ = 1 or ∖Yι — X∣ζ∖ = 1 , which contradicts the condition. )For i = k to 1, there are i choices of an (i - l)-set out of each z-set chosen previously. Thus, in total, this A>set is contained in Ä:! chains of subsets. Likewise, for i = k to n, there are n - i choices of an (z + l)-set on top of each z-set chosen previously. Thus, in total, it is contained in (n — A:)! chains of supersets. So each of ⅛ Assets meets kl(n — k)∖ maximal chains. Counting the number of maximal chains meeting Assets of all possible sizes from 0 to n, we obtain at most ∑2J⅛-o - ^)∙ = ∑‰o akh(k — l)!(n — (k — 1))! maximal chains,which cannot be greater than n!, the maximum number of all possible maximal chains. Accordingly, we obtain the following:
n! ≥ ∑ akk(k - l)!(n - (k - 1))!

fc=o
n1 ≠, fe!(n + l-fe)!n+1 “ ⅛1°fc (" + l)!fc=0
n

= Σ a>k

fc=o ∕ n ÷ 1 

k

0>k≥ Σfc=0 n + 1
I I , ∖ L 2 j ∕

Finally we have an upper bound for the maximum size of a one-error-detection DI code, which is as follows:
n + 1 ∖

∣C∣ = ∑<⅛≤fc=0 mj
n + 1In the same manner, we can prove that r is set as an arbitrary value. All (k — r)-sets
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Table C.l: One-error Detecting Delay-insensitive Code# of codewords Upper bound One-error Correction Binary Code4 2 25 2 3.336 4 57 7 8.75 168 14 149 14 25.2 4010 28 4211 44 77 14412 132 13213 132 245.114 252 429

generated from A*-sets in r-error-detection DI C are different from each other. That is, we can construct, a DI C', which consists of codewords generated from C by removing r
( k + relements in each codeword ot every possible choice. And then we have ⅛ = α^+Γ,
∖ r Jthe number ot fc-sets in C,. Then every maximal chain meets C' in at most one element, say, A*-set. In the same manner, we can have r-error-detection DI code (I, C): ∣JY — Y∣ > r and ∖Y — JV∣ > r for all X,Y € C. Note that a code whose size satisfies the equality does not always exist, as shown in Table C.l.
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Appendix D

Minimizing Decomposed Function 
Block

In Chapter 6, we decompose a function block and add cross-coupled C-elements in order to satisfy Cond E2; we have shown one way of decomposing a function block. Here we show alternative ways of decomposing a function block.A PRS of the function block in * [I?/; R∖f (∕)] using a linear DI code is the following:
en↑ A ∕¾θ → w^.O†->enι -÷ Wj.O‡
CTl2 A ∕∕θ —> 2j.0^∣"
-'C7l'2 —> ¾.0f-
Wi.0f∖Zi.0 → rz.0↑ -'ι∕λ,>0 Λ-∣2⅛.0 —> r7>0f
e∏i A K.∣ → wi.l↑

->en↑ →

ejι2 A μ} → ¾∙i↑

->en2 → zi.U

Wi. 1 A Zi..1 -÷ ι



145The function f of the process is defined as ∕(z,, ...a⅛) = (∕, (xi,..., ⅜),..., fk(xl, ...,xk)) where Xi is a boolean variable, and the function is defined only for codewords satisfying that u(7 = (a?i, ...,τn) and u = (uχ, ...m⅛) iθ a message. The remaining step is to represent the function in the linear DI code, that is, to find the boolean expressions of κ3i and μ3i satisfying the condition of error-tolerance.Let us define boolean functions k3i (τχ, ...xk) and m3i (xγ, ...Xk), which are associated with 
κ3i and μ3i, as the following:

A∙°(τι,. .., xn)

k∙(xι,. ·’■> %n)

mθ(τι,. ..,Xn)

mj(τι,...,xn)

== ΛH=
= fiM

where uGr = (a?x, ...,τ7l) is satisfied. But the definition is incomplete because the functions are not defined for invalid codewords. As a simple choice, all invalid codewords can be mapped as false. For example, let us consider a process using a [4,2] DI code whose generator matrix is
G =

10 100 10 1
If f is an identity function and all invalid codewords are mapped as false, then its k[ and 
m∖ are the following:

⅛lJ2A3,⅛ = #1 A X2 A (^3 A X4 V ->X.3 ^

m}(τι,,T2,^3,^4) = xι A X2 A (x% A x4 V ^3 Λ-√r4).

Then we have the corresponding one-of-two code representation of κ3i and μ3i such as
λ:} = j;i.l Λ rr3.l A (τ2T Λ rr4.l V ^2∙0 A τ4.O)

μ,∖ = xχ.l A rr3.l A (a72∙l A T4.l V a?2.0 A .τ4∙O).

Considering an obvious minimization of the guards such as κ[ — ^χ.l and μ{ — x^. 1,



146we shall note the inefficiency of assigning false to all invalid codewords. Instead, the value of one of a pair of functions kji and mji is set as false at an invalid codeword, and the value of the other is set as dont-care, which can be either true or false during minimization. That is, we shall guarantee that at least one of κji and μji is evaluated to be false, which would be sufficient enough to prevent double-checking C-elements from firing- primary outputs unexpectedly. In addition, the function values at an invalid codeword, whose distance from other codewords is more than one, can be assigned to be dont-care since the invalid codeword cannot be observed when only one error occurs.The suggested method of using dont-care produces better minimization results. For example, a function ∕1(u1,u2) is defined as Uιθ¾ before applying a linear DI code. In case of using the parity [3,2] code, k[ and m∖ have the following truth tables:fc11 m∖codeword output codeword output000Oil101110
0110

000011101110
0110invalid codeword output invalid codeword output001010100111

0
0

001010100111
00

From these, we have minimal representations of two functions: k± = Xl Λ -∣^2 V7?211 = .2:3, which correspond to
κ[ = rcχ.l Λ T2.O V rcχ.0 Λ 2⅛T μj = τ3.l,

as shown in Figure 6.7. On the other hand, k± and m∖ of the [4,2] code are the following:



147codeword *110000 00011 11100 11111 0invalid codeword (d=l)0100 00001 01011 01101 00111 -0010 -1000 -1101 -invalid codeword (d=2)1001 -0101 -1010 -0110 -

codeword mJ0000 00011 11100 11111 0invalid codeword (d=l)0100 -0001 -1011 -1101 -0111 00010 01000 01101 0invalid codeword (d=2)1001 -0101 -1010 -0110 -After minimizing the representation, k‡ = a⅛ A ->a¾ V ->xι Λ a¾ and = X3 Λ -∣X4 V ~∣X3 Λ X4, which correspond to
κ[ = #i.l A a⅛∙θ V J7χ.0 A a⅛∙l 
μ[ = X3.l Λ X4.O V X3.O A X4.l,

as shown in Figure 6.8. Note that we can simplify the function block of the repetition codes, because of the symmetry of the construction.Although there are many ways of assigning false and dont-care for invalid codewords, there is a heuristic method in case of a systematic code. We shall find a minimal represen­tation of a given function ∕, and the minimized form will be kjf. If the value of k3i at an invalid codeword is true, then the value of mji at the invalid codeword is assigned to be false; otherwise it is assigned to be dont-care.
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Appendix E

STAM Architecture

The STAM architecture defines eight general-purpose registers, gpr [0] through gpr [7] , of which gpr [0] is always read as zero, although it may be written by any instruction. The remaining state of the processor is the program counter pc.All STAM instructions have the same format. The instruction format is a four-operand RISC format with three register operands and a single immediate operand. The opcode format has two fields, which are also the same across all instructions. These fields are the operation unit and the operation function. The operation "Y-mode,” which determines the addressing mode used to conjure operand opy, is further defined in a fixed position in the instruction.STAM instructions are 32 bits wide. Considering that a STAM instruction i as a 32-bit array of bits, we identify the fields of the instruction:
1. The opcode = «[31... 27], further divided into:

(a) The unit number unit = «[31... 30].(b) The function fxn = «[29... 27].
2. The Y-mode ymode = «[26... 25].
3. The result register number rz = i[24... 22].
4. The X-operand register number rx = «[21... 19].
5. The Y-operand register number ry = «[18... lβ].
6. The immediate field imm = «[15... 0].



149The first operand, opx, is always the value of gpr[z.rx]. The second operand, opy, is computed from the vaine of gpr[z.ry] and the immediate field, depending on z.ymode.Allowable vaines for i. ymode are as follows, where sext signifies sign extension:
i. ymode Mnemonic Decimal value Operand generatedYM0DE_REG 0 opy := gprU.ry]YMODE-IMM 1 opy : = sext(i. imm)YMQDE_IMMSHIFT 2 opy := z.imm « 16YMODE_REGIMM 3 0Py := gpr[i.ry] + sext(i. iram)

Operations are defined on two-complement numbers. There are no flags or condition codes. We divide the operations by four units.All ALU operations take two operands and produce one result. The bitwise-NOR is included in the instruction set for the express purpose of computing the bitwise inverse of opx using a zero operand for opy.
Mnemonic Name i .fxn Operationadd Add 0 opz := (opx + opy)3ι...osub Subtract 1 opz : = (opx - opy)3ι...onor NOR 4 opz : » bitwise-NOR ( opx, opy )and AND 5 opz : » bitwise-AND ( opx, opy )or OR 6 opz : = bitwise-OR ( opx, opy )xor Exclusive OR 7 opz bitwise-XOR(opx>opy)

All branch operations unconditionally produce the same result as opz, namely the value of pc, right-shifted by two. Likewise, a branch taken will branch to the address denoted by opy left-shifted by two and incremented by one. The shifting avoids alignment errors.The hit instruction halts the processor. An external action, not defined within the architecture, is required to restart the machine.Conditional branches branch according to the value of opx.
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Mnemonic Name z.fxn Branch if Targethit Halt 0 true 1beq Branch on Equal 1 opx = 0 opy29...0∣OObne Branch on Not Equal 2 opx ≠ 0 opy29...o∣θθbgt Branch on Greater Than 3 opx > 0 opy29...0∣θθbit Branch on Less Than 4 opx < 0 opy29...0∣OOble Branch on Less or Equal 5 opx ≤ 0 opy29...0∣OObge Branch on Greater or Equal 6 opx ≥ 0 opy29...0∣OθJmP Jump 7 true opy29...0∣OO
Only two memory operations are defined, load word, lw, and store word, sw. The address of the memory access is determined by opy. On a memory load, opx is ignored, whereas on a store, it becomes the value stored. A store returns opy (the computed address) as opz.

Mnemonic Name i .fxn Operationlw Load Word 0 opz := dmem[opy]sw Store Word 4 dmem[opy] := opx, opz := opy
The STAM architecture defines a restricted shifter that is capable only of logical shifts. Arithmetic shifts must be simulated using bit. The STAM shifter can shift by one or eight. Shifts-by-eight are provided so that byte memory operations can proceed at a reasonable speed.
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Mnemonic Name z.fxn Operationsrl Shift Right by One 0 opz := 0∣opy3ι...1sr8 Shift Right by Eight 1 opz := OOOOOOOO∣opy31...8sll Shift Left by One 2 opz := opy30...o∣0sl8 Shift Left by Eight 3 opz := opy23...0∣00000000
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Appendix F

Arbitrated Branch

A rough sketch of the STAM with the arbitrated branch mechanism is shown as follows: 
STAM ≡ valid?;

*[ PCUNIT : [-»DoBranch —> branched?,pc := "next pc"I DoBranch —> branched?, pc := "branch pc", DoBranch?];
IMEM : i := imem[pc\;

DECODE : id := decode (i);

EXEC : "read operands";

" execute instruction"; 
b := "branch instruction?";

WB : [.valid V branched —> [-ώ —> valid? " write results"Qfr —> valid?, DoBranch?]
valid A ^branched —» skip]]

We introduce a channel DoBranch that has a one-place buffer that is used to notify PCUNIT of the presence of a branch instruction. When a branch occurs, WB inserts a token into this buffer without blocking. The PCUNIT polls the state of the buffer and if it finds a token in it, the token is removed and the PCUNIT sets the program counter to the branch target address, which is given by the EXEC unit. In the CHP notation, PCUNIT uses the probe of channel DoBranch to check if there is a token in the buffer. Naturally there is no



153dependency between PC UNIT and EXEC when b =false.Since we do not make assumptions about the speed of buffers, the PC UNIT may not immediately notice the presence of a token in the buffer. All we assume is that PCUNIT will eventually notice the token and detect the branch. Therefore, EXEC might execute instructions that are invalid, since the sequence of PC values could have changed. EXEC only executes these invalid instructions after the branch token has been inserted into the 
DoBranch buffer by WB, and before the branch is detected by PCUNIT. We introduce variable branched that is set to true when the branch is detected by PCUNIT, and variable 
valid that is set to false when the branch token is inserted into the buffer by WB. The STAM is therefore executing invalid instructions when valid is set to false and branched is also false.The probe DoBranch becomes true eventually, causing the PCUNIT to detect the pres­ence of the branch token in the buffer. WB inserts a token into the buffer by performing an DoBranch! communication when a branch instruction is encountered. Then the com­munication DoBranch? removes the token from the buffer once an branch is detected, and 
PCUNIT reads the target address from EXEC.
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Appendix G

Designing CHP Process Using 
Synthesis Tool Flow

Here, the details of synthesizing the SELECTOR, which is a sub-process of the PCUNIT, ac­cording to the tool flow described in Chapter 7. It is desirable to decompose the SELECTOR vertically, which requires the distribution of signals of the control channels to the vertically decomposed processes. In the MiniMIPS, control signals for vertical decompositions are dis­tributed to the datapath by a pipelined tree of copying processes: a control signal is copied to several copying processes at each stage, and each bit of datapath gets a control signal simultaneously from the leaves of the copying tree. On the other hand, if the throughput of a system is a primary concern (e.g., DSP applications), each bit of datapath is made to copy the received control signal at the same time as it performs its data computation, which is called bit skewing [71]. While the two approaches stand on each extreme, a compromise between the two approaches, called byte skewing, was used for the SPAM. In byte skewing, a control signal is simultaneously distributed within a byte, but the process of the next byte gets a copy of the control signal in the next time step, as shown in Figure G.l. After decomposing the SELECTOR vertically with byte skewing, we obtain the following:
*LBCrtbc', BCfW]↑ be,..., BC, Eft ∖bc,BCSm∖bft 
*LBC-SιQY!bc, BC,[4ft bc,...,BC'Cn ∖bc,BC-5[l]!k∙]*[£C_S[l]?6c; BC, [8]! be,..., BC, [11] lbc, BCSEft !6c]
* LBC-S [2] ? fcc; BC, [12] ↑bc,.., BC, [15] !k∙]
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Byte UnitFigure G.l: Byte-skewed Distribution of Control Signals.

* [BCf [0] ? be, PCIncOut [0] ?pc [0], BranchTo [0] ? branch.to [0] 
[ be = false —» NewPC [0] !pc [0]□ be = true —> NewPC [()V. branch .to [0]]]
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* LBCf [15] e>bc, PCIncOut [15] Ipc [15], BranchTo [15] ?branch.to [15]

[ be = false —» NewPC [15] ∖pc [15]D be = true —> NewPC [15] I branch-to [15]]]
The channels PCIncOut [rc], Branch To in], NewPC ιnl are the vertically decomposed channels of 32-bit channels, and the channels BC[n] are copies of the control channel 
BC. A control signal of the BC is simultaneously distributed within a byte. In a 32-bit datapath, the most significant bit of the bit-skewing design experiences the latency of 32 time units; in contrast, the most significant bit of the byte-skewing design experiences a latency of only four time units. The byte skewing, which is applied to the STAM, produces a good trade-off between throughput and latency.Although PL2 can describe only a restricted subset of CHP programs, the basic processes whose input channels and output channels are used at most once in each iteration, can be generally described in PL2 [60]. The syntax of PL2 is based on the CHP and C languages. PL2 programs do not specify the sequencing of a set of actions explicitly, but list the set in such a way that the actions are performed concurrently under certain conditions.The PL2 level of description maintains the channel communications similar to CHP descriptions but introduces channel encodings such as elof4, elof2. For example, a PL2 description of a vertically decomposed process of SELECTOR is the following:

PROCESSFRAGMENT pc.sel(IN c:elof2; IN incpc:elof4;IN genpc:elof4; OUT newpc:elof4) =BEGINTRUE -> c?, inepe?II c = 0 -> newpc!inepeII c = 1 -> newpc!genpc, genpc?END pc_sel
There is an auxiliary language which arranges PL2 processes in one collection:

PROCESS pc.sel( c, inepe, genpc, newpc : CHANNEL) =



157VARcpc_sel := pc.sel( c, incpc, genpc, newpc);END pc_sel
It is possible to combine several PL2 processes in one collection but having internal channels between the processes is not allowed. The following is a part of the CAST description:

sypdefine pc_sel()(2xelof(2) c; 2xelof(4) incpc;2xelof(4) genpc; 2xelof(4) newpc){node enGOa;node enGOb;2x.lof4 _newpc;
celem2 Cell_newpc_da[O] celem2 Cell_newpc_da[l] celem2 Cell_newpc_da[2] celem2 Cell_newpc_da[3]

(_newpc.da[0], _newpc (_newpc.da[l], _newpc (_newpc.da[2], _newpc (_newpc.da[3], _newpc
db[0], newpc.da[0]); db[l], newpc . da [1] ) ; db[2], newpc .da[2] ) ; db[3], newpc.da[3]);

stackdefine newpc_pda()(node enGOa; 2xelof(4) incpc; 2xelof(4) genpc;
{sprs {enGOa & newpc.ea &

enGOa & newpc.ea &
enGOa & newpc.ea &
enGOa & newpc.ea &

2xelof(2)1 c:; 2x.lof4 _newpc; 2xelof(4) newpc)
(incpc.da[0] & c.da [0] 1 genpc.da[0] & c.da[l])-> _newpc.da[0]-(genpc.da [1] & c.da[l] 1 incpc.da[1] & c.da[0])-> _newpc.da[l]-(incpc.da[2] & c.da[0] 1 genpc.da[2] & c.da[1])-> _newpc.da[2]-(genpc.da[3] & c.da[l] 1 incpc.da[3] & c.da[0])-> _newpc.da[3]-}}newpc.pda() Cell__ newpc.pda(enG0a, incpc, genpc, c, _newpc, newpc);node _newpc_va0;



158nor3 Cell__ newpc.vaθ(newpc .da[0] , newpc.da[l], newpc.da[2], _newpc_vaO);

The generated circuit is similar enough to a corresponding hand-designed circuit.The final layout of the PC UNIT is a combination of generated transistor stacks, standardcells such as inverters, NANDs, C-elements, and so on.For example, a part of the description of the floor plan of the SELECTOR is as follows:
HORIZ {VERT {CELL pcunit/pc.sel p(0) PAD_E;CELL permit ∕pc.sel p(l) PAD_E;CELL pcunit/pc_sel p(2) PAD_E;CELL pcunit/pc_sel p(3) PAD_E;

HGLUE 8 LAMBDA;CELL cells/cdist_2 Ctrl PAD_N;}
where HORIZ and VERT represent a horizontal box and a vertical box.
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Appendix H

Checking Error Tolerance of PRS

seucheck is a 1500-line C program, which facilitates error-tolerance verification of a given PRS by exploring all possible states of the PRS with an error on each variable of the PRS. The input form of the program is as follows:
init Le 1init L 0
init R 0init Re 1
seu Rseu Le
Le & Re & L -> R +~Le & ~Re -> R -

L & R -> Le -~L &~R -> Le +
input Le -> L +input ~Le -> L -
output R -> Re



160output ~R -> Re +
In this input form, the values of variables are initialized first, and variables which experience an error are indicated, seucheck checks whether PRs associated with the keywords input’ and ‘output.’ fire the same number of times in one cycle of a computation. With the input, seucheck generates the following output:
# of init status : 14Le flipping

-> (0 , 7)R flipping
-> (0 , 7)# of deadlock : 0# of abnormality : 14

It shows that the given PRS can experience an abnormal computation (i.e., data can be missed or can be generated unexpectedly), but an error does not cause deadlock. Besides the output, the program generates more informative output files: a list of valid states of the given PRS of whose elements are states reachable from the initial state of the process by firing of PRs, and a list of execution paths, which are caused by an error on a variable, from each valid state. The first output is as follows:
(1001) (0, 0):(0, 0) (1101) (1, 0):(0, 0) (1111) (1, 0):(0, 0) (0111) (1, 0):(0, 0) (0011) (1, 1):(0, 0) (0010) (1, 1):(1, 0) (0000) (1, 1):(1, 0) (1000) (1, 1): Cl, 0)(1100) (2, 1): Cl, 0)(0001) (0, 0):(0, 0) (0110) (1, 0): Cl, 0)(0100) (1, 0): Cl, 0)

L+L+ R+L+ R+ Le-L+ R+ Le- L-L+ R+ Le- L- Re-L+ R+ Le- L- Re- R-L+ R+ Le- L- Re- R- Le+L+ R+ Le- L- Re- R- Le+ L+L+ R+ Le- L- Re- R- Re+L+ R+ Le- Re-L+ R+ Le- Re-- R-



161(0101) (1, 0):(1, 1) : L+ R+ Le- Re- R- Re+(1110) (1, 0):(l, 0) : L+ R+ Re­
it shows 14 valid states. The first column has a list of the representation of valid states; the second column has a list of the number of firings of input and output PRs. The execution path from the initial state is shown after the two columns. The second output is as follows:

Le:<(1001)...(0010)>SEU<(1010)...(1001)> Invalid State Abnormal : (1, l):(0, 0) - L+ to the state : (1110)
Le:<(1001)...(0011)>SEU<(1011) ..(1001)> Invalid State
Le:<(1001)...(0100)>SEU<(1100)...(1001)>
This output information shows that if an error on Le occurs in the state (0010), the error turns a valid state into an invalid state, and causes the PR of L↑ to fire. As a result, a set of firings of the input PRs (i.e., L↑ and Z‡) are acknowledged before a set of firings of the output PRs occurs: an output communication is missed, owing to the error. By reading the second output, we can figure out when and how an error causes deadlock or an abnormal computation.
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