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Abstract

A novel functional method is applied to calculate the statistics of a passive scalar in
a turbulent velocity field. The method yields asymptotic series expansions for small
velocity correlation time, from which approximate closure equations are derived. An-
alytical and numerical solutions of the equations accurately predict effective diffusivi-
ties and give new results for the scalar spectrum. Formulas expressing the Lagrangian

correlation of the velocity in the terms of the Eulerian correlation are given.
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Chapter 1 Introduction

Fluid in turbulent motion is characterized by an appearance of randomness—even
though the governing equations and initial conditions for the motion are known, high
Reynolds number flows amplify infinitesimal perturbations to the extent that the
motion cannot be accurately predicted for long times. Statistical measures of the
flows are therefore used, for example the mean velocity of the flow or the correlation
between the velocity at two points in space or at two different times. Averaging may
be over space, over time, or over an ensemble of experiments (or realizations). The
goal of statistical theories of turbulence is the prediction of such statistical measures
without the necessity of solving for the velocity field in each realization.

Batchelor’s theory of homogeneous turbulence [1] introduced a series of mathemat-
ical ideas that are used to this day. The fluid is assumed to obey the incompressible
Navier-Stokes equations, and equations for the various statistical measures are derived
by ensemble averaging. “Homogeneity” means that there is no statistically preferred
point in space—in other words all statistical quantities which are measured at two or
more points in space are assumed to depend only on the vector differences between
those points, and are independent of the absolute positions. A further simplification
is provided by the assumption of “isotropy”—there is no statistically preferred di-
rection. Thus any vector-dependent statistics may depend only on the magnitude of
the vectors and their relative orientation. The strong assumptions of homogeneity
and isotropy are not valid for most experimental situations (with some important
exceptions, e.g., the smallest scales of grid-generated turbulence), but they provide a
mathematical foothold in what is otherwise an apparently intractable problem. Above
all, the case of isotropic homogeneous turbulence is considered a first testbed for any
theories which aspire to real-world applications.

The most common mathematical approach to predicting velocity statistics is based

upon the consideration of successive moments of the velocity field, and leads to the
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so-called “closure problem.” This problem arises when predicting moments for any
quantity obeying a nonlinear equation. For ease of exposition consider the inviscid

Burgers’ equation

0 0,
U= %(u ) (1.1)

for a one-dimensional velocity u(z,t) with appropriate initial and boundary condi-

tions. To find the mean velocity (u(z,t)), equation (1.1) may be averaged to yield

8 9,
57 () = 5 (). (1.2)

The mean velocity depends on the correlation (second moment) (u?). An equation
for the correlation is found by multiplying (1.1) by u and then averaging; thus the
second moment is found to depend upon the third moment. Clearly this process of
multiplying and averaging may be continued to derive an arbitrarily large hierarchy
of moment equations, yet in order to solve the system it must be closed at some level.
The analogous closure problem for the Navier-Stokes equation is finding a closed
system of equations for the moments (usually first and second order) of the velocity
at arbitrary points in space and time.

A related but simpler hydrodynamic problem is provided by the turbulent ad-
vection (transport) of scalar quantity like dye concentration or temperature. For
sufficiently low values of the scalar, the flow will not be affected by its presence, and

the scalar field 6(x, t) obeys the passive scalar equation

%0 +u-V0—kV2 =0, (1.3)

with the velocity u being the solution of, say, the incompressible Navier-Stokes equa-
tions. If the scalar represents dye concentration, then the constant & is the value of
the molecular diffusivity; for temperature & is the conductivity of the fluid. A long-
standing problem of fluid mechanics is the calculation of the statistics of the scalar

0 from (1.3), given the statistics of the velocity u. The solution is of considerable
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importance in many areas, including applications in atmospheric and oceanic pollu-
tion, mixing processes and the scattering of electromagnetic waves by turbulence in
the atmosphere.

Although equation (1.3) is dynamically linear, the convection term u - V6 is non-
linear in stochastic (random) quantities and so any attempt to find equations for
the moments of the scalar must encounter the ubiquitous closure problem outlined
above. This stochastic nonlinearity is the fundamental obstacle to closure and re-
mains even if simplifying assumptions on the velocity field (e.g., time-independence
[2]) are made. Hence this passive scalar closure problem is a useful starting point
for statistical methods in turbulence, and also has interesting applications in its own
right.

We simplify the problem by assuming that the velocity field is Gaussian, i.e., the
velocity statistics are multivariate normal, and introduce a new closure method called
the functional derivative closure (FDC). We employ this method to expand statistics
of the scalar as renormalized (i.e., formally resummed) series which are shown to be
asymptotic series for small velocity correlation time. We solve the lowest order FDC
equations for the scalar spectrum and show how power law ranges for the scalar are
related to the velocity statistics. We calculate the mean concentration and dispersion
of the scalar and employ a generalized Padé resummation method to derive simple
formulas relating the effective (turbulent) diffusivity and the Lagrangian correlation
to the known Eulerian velocity correlations. These formulas are valid for velocity
correlation times which are not necessarily small. Numerical simulations of random
velocity fields confirm the accuracy and range of validity of these theoretical results.

Chapter 2 gives details and simple demonstrations of our closure method. The
application to mean concentration and dispersion is considered in Chapter 3, along
with the Padé resummation method and the approximate formulas for the effective
diffusivity and Lagrangian correlation of the velocity. Closed equations for the second
order scalar statistics, i.e., the correlation and spectrum, are formulated in Chapter

4 and are solved by analytical and numerical methods.



Chapter 2 A New Closure Method

2.1 Introduction

Suppose we know the statistics of a stochastic variable or function b and are concerned
with finding the statistics of R[b], some non-trivial functional of b. In general b
and R[b] may be vectors or tensors and may be functions of position and/or time.
The problem frequently reduces to finding (bR[b]), where the angle brackets denote
averaging over multiple realizations of b. We will see this later when considering
advection of a passive scalar by a random velocity field: in this case the passive scalar
equation yields 5

5% (0) — kV?(0) = =V - (uf)

and to solve for (§) we must find (uf). This is of the form (bR[b]) if we take b
to represent the velocity vector u and R the passive scalar . First we consider
a simplified example, the stochastic oscillator, which has the following governing

equation for each realization of b(¢):

q(0) = 1 (2.1)

The stochastic function b(¢) has a Gaussian distribution, mean zero, and correlation

function
(b(t1)b(t2)) = L'(t1, t2). (2.2)

We will use the notation I'(¢1,?5) throughout this chapter to refer to the known
correlation function of b. Closure schemes are used to approximate (b(t)q(¢)), and

then (2.1) yields a solution for the mean amplitude (g(t)).
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Kraichnan [3] and Orszag [4] discuss the stochastic oscillator and use it as an
example to demonstrate various closure methods which are also applicable to more
complex stochastic problems, such as those which arise in statistical theories of tur-
bulence. These include the iteration (“bare perturbation series”) approximation,
the quasi-normal (“cumulant-discard”) approximations and the direct interaction ap-
proximation. Kraichnan and Orszag show that the iteration and quasi-normal ap-
proximations are valid only under certain restrictions and that the direct interaction
approximation is a useful generalization of the others. They further discuss diagram
expansions of the perturbation series generated by (2.1) and interpret their closure
schemes in terms of resummations of this series.

In this chapter we introduce a new closure method which we have coined the func-
tional derivative closure (hereafter abbreviated to FDC). Application of this method
to an unknown like (bR[b]) which is nonlinear in stochastic quantities generates a
series, the terms of which involve (R[b]) and the statistics of b. In the stochastic
oscillator example (and later in turbulent advection problems) we show that trunca-
tion of the FDC series yields integrodifferential equations for {g(t)). We solve these
equations and compare the resulting approximations to those obtained from previous
closures. To highlight the underlying structure of the equations (as well as facilitate
the extension of the method to more complex problems), we examine the diagram
expansion of the FDC series. The diagram expansion provides an easy way to write
down the FDC approximations and we employ it to prove that when the problem
contains a correlation time 7,, the FDC series is an asymptotic series for (bR[b]) as

T. — 0.

2.2 Novikov’s Theorem

In most of what follows we will be concerned with stochastic variables b which are
Gaussian with mean zero, (b) = 0. By “Gaussian” we mean that all odd moments
of b vanish and all even moments may be factored into products of the correlation

(b(1)b(2)). (Here we use the digits 1 and 2 to represent aggregates of arguments
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on which the random function depends). For example the fourth order moment
(b(1)b(2)b(3)b(4)) may be written as a sum of three terms, each being the product of

a pair of correlations:

(b(1)b(2)b(3)b(4)) = (b(1)b(2)) (b(3)b(4)) + (b(1)b(3)) (b(2)b(4)) + (b(1)b(4)) (b(2)b(3)) -
(2.3)

The sixth order moment factors into a sum of 15 triple-pairs and in general the 2nth
moment factors into a sum of (2n)!/n!2"™ n-pairs. This represents the number of
different ways to choose n unordered pairs from 2n objects.

The statement of what we call Novikov’s Theorem appeared in a paper by E.
A. Novikov in 1965 [5]. Although it is applied there only to the simple case of b
delta-correlated (white-noise) in time, the proof as presented by Novikov applies for
arbitrary correlations.

In coordinate-free form the theorem may be stated as follows.

Theorem 1 (Novikov, 1965) If R is a functional of a Gaussian random function

b and (b) =0, then

oRE) = [ Gpe) <§f(“’)] > a2, (2.4)

where the integration is over the region in which the functions are defined.

More concretely, if we take b to be a vector function of position and time (e.g., the

velocity field we will consider later), then Novikov’s Theorem states that

(bs(x, £) R[b]) / d' /dx (5, 1)b t’)><6b‘5€i[}’£,)>, (2.5)

for functionals R of b. Novikov’s proof of his theorem is described in Appendix A.

A word on functional differentiation is in order here. The standard definition (e.g.,
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[6]) obeys the rules of normal differentiation, i.e.,

s (Rl + Ralfly = o S
s RURY = RS+ S R
and in addition 5
5;% ey

2.3 The stochastic oscillator example

We turn now to the stochastic oscillator example (2.1) to demonstrate the application
of Novikov’s Theorem to generate a closure scheme. To begin, a formal solution of
the governing equation must be found. In general the formal solution involves an

integral over the time-history of the function—in this example it is simply

o) =1+ /O "4 b(s)a(s). (2.6)

Note that ¢ appears on both sides of (2.6), so this is merely a formal solution, in
other words a restatement of (2.1) and the initial condition. Nevertheless the form of
(2.6) will permit us to generate a series which approximates (bg). Each term in this
series will depend on the unknown (g); such series are referred to as “renormalized.”

Before detailing the FDC closure method, let us consider the most straightforward

way of approximating (g) from (2.6). This involves generating a solution to (2.6) by
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iteration, then taking the average. The first few iteration approximations are

V@) = 1

¢V(t) = 1+

¢Pt) = 1+i

M) =

141 0alsb /Ods/od sl—Z/dS/d31/d82 1)b(s2)
/ds i dsl/0 dszfoszd )b(s2)b(s3),

with averages:

(dV@) = (@) =1 (2.7)
(@?@) = (®@)=1- /O ds /0 ds1 T'(s, 51) (2.8)
: (2.9)

(g™ (t)) : 1—/tds/sd81 I'(s, s1)

/ds/ d81/ d32/ dss [T'(s, s2)[(s1, s3)+

I'(s, s3)T'(s1, 52) + (s, 51)T (9, 83)] - (2.10)

The terms in the expression for <q(4)> containing I'(:)I'(+) arise from the Gaussian
decomposition (2.3) of (b(s)b(s1)b(s2)b(s3)). We will refer to this iteration solution
again later.

Now we consider how Novikov’s Theorem is applied to the equation (2.1), using
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the formal (integral equation) solution (2.6). By Novikov’s Theorem,

> dq(t) >
b(t)q(t)) = dty (b(t)b(t . 2.11
00 = [ a0 (510 (2.11)
To evaluate the functional derivative %%% we differentiate (2.6):
oq(t) ‘/oo 6q(%2)
5b(t1) - ’LH(t, tl)Q(tl) +1 . dtg H(t, tg)b(tg) 5b(t1), (212)

where H(z,y) is the Heaviside step function

1 ifx>y
H(z,y) = _ ,
0 ife<y

and its appearance here is a consequence of causality, i.e., ¢(t) can be affected by
changes in b(t;) only if ¢; is an earlier time than ¢. We have also assumed that ¢
and b are independent at time ¢ = 0. Again, (2.12) is a formal solution or integral

equation, this time for %%. Averaging this gives

<§bq<(tt))> —iH(t ) a(e)) i [ dra (e, n) <b(t2)gq(t2)> e

Using (2.13) to substitute for <%> in (2.11) gives

B0a) =i [Tt HE ) )+ [ i [ darieEew (s ).

(2.14)

We recognize <b(t2) gzgf» as the type of term to which we can again apply Novikov’s

Theorem:

()< [ (gl 8)
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and differentiating (2.12) yields the second functional derivative:

6*q(t) . dq(t1) oqlts) . [ 8%q(ts)
_— = 1H dts H(to,t —_—
Sty = e ) g+ iH (t ta) S 46 /O cH(t, t)b(t) s oS

o0 dq(t
= —H(ty, t1)H(t1, t3)q(ts) H(tQ,tl)/ dty H(ty, t)b(ts) alts)
0 5b(t3)
°° 6q(ts)
—_ H(tg, tg)H(tg, tl)q(tl) H(tz, tg) dt4 H(tg, t4)b(t4)
0 db(t1)
B e 6%q(ts)
dty H(to, t4)b(ty) ———7—
+ZA 4 ( 25 4) ( 4)(5b(t3)(5b(t1)’

(2.16)
where we have used (2.12) again to expand ggglg and . Substituting (2.15) and
(2.16) into (2.14) we have

0
~i [ an / dt / dta D8, 40)T (b2, ) [H (8, 02) H (12, 1) H (11, 1) (q(t))
0 0 0

+H (t,t2)H(t2, t3)H (t3,11) {q(t1))]

+ terms involving (b%) and <b§b5‘§)> (2.17)

We may continue to apply Novikov’s Theorem to each of the terms on the right-
hand side of equation (2.17) which still involve (6%} and <b §b6%>’ and so develop
a series expansion for (b(t)q(t)) involving integrals over (g). We make successive
approximations FDC1, FDC2, ... by truncating this series—the n in FDCn refers
to the number of times I appears in the last retained term of the series expansion

(i.e., we neglect all terms where T appears more than n times). Thus the FDC1

approximation to the right-hand side of (2.17) is

b)) eper = i/OOOdtx L@, 1) H(t, 1) (g(th)) (2.18)
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and the FDC2 approximation is

<b(t)q(t)>FDCZ (b(t) q(t)>FDCI

— ’I, dtl ‘/Ovoodt2 /Oood t tl tg, t3) [H(t,tz)H(tQ, tl)H(tl, t3) <Q(t3)>

+ H(t, t2)H(t2, t3)H(t3, tl) (q(tl))] . (219)

Then by (2.18) and the original differential equation (2.1), the FDC1 approximation

for (g(t)) is the solution of the integrodifferential equation

%<q(t)>FDCI = —/0 dt, T'(t, t1) (q(t1)), (2.20)

and the FDC2 approximation is the solution of

G Omes = [ an D) (a(w)
+ / 't / " ity / T 0 () (g(ts))  (2.21)

+/0tdt2 /0t2dt3 /Otgdtlr(t,tl)F(ta,ts) (q(t1)) -

2.4 Accuracy of approximations

We will compare the results of these approximations to the exact solution of (2.1),

{q(t)) = exp [—%/Otds /Otdslr(s, 81)] . (2.22)

This exact solution can be derived as follows [4]. Consider the governing equation

which is

(2.1), which in each realization of b has the solution

q(t) = exp (i/otb(S)dS)

_ i% (z /0 tb(s)ds>n. (2.23)



12

Taking the average of (2.23) and recalling that all odd moments of a Gaussian b(t)

are zero, we have

{q(t)) = i ((;737 <</0t b(s)ds) 2"> ) (2.24)

But
<( /Oib(s)ds)2“> S N N T T
= S8 ([as [[as v 2.29
and 50
wen = 3G ([ [ anrism)
_ :):p {—% Otds /0 tdslf(s,sl)] (2.26)
us claimed.

It is interesting to note that this exact solution is the solution of a differential

equation of form similar to (2.20):

% (a®) == ) [ 1.9 (227)

The difference between the FDC1 approximate equation (2.20) and (2.27) lies in the
argument of (¢) on the right-hand side. This determines whether the equation in
question is a differential or integrodifferential equation.

As a concrete example let us now take b(t) to be stationary (i.e., ['(¢,¢;) depends

only on the difference ¢ — t;), with covariance
L'(t,t1) = (b(0)*) exp [~ |t — t1]/7], (2.28)

for a constant parameter 7, which we call the correlation time of 5. We nondimen-
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09 Exact solution
- - — — — FDC1 approx.
08 F — e FDC2 approx.
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Figure 2.1: Mean amplitude (g(t)) for 7. = 0.45.

-1/2

sionalize all times by reference to T = (b(0)?)” /", Then the exact solution (2.22)

is
(q(t)) = exp [7} —tr, — T2e7"™], (2.29)

and the FDC1 and FDC2 approximations may be reduced to constant coefficient
ordinary differential equations by repeated differentiation with respect to ¢. Solving
these equations yields approximations (g;(¢)) and (g2(¢)). We also record here the
first few terms of the iteration approximation (2.10):

1
(@) =1+ 72 —tr, — 72e7™ + 5 (72 — b7, — r2e7™) 4 . (2.30)

In Figures 2.1 and 2.2 we plot the exact solution, the iteration approximation
(2.30) and the two FDC approximations for correlation time 7, = 0.45 and 7, = 1

respectively. For 7, = 0.45 the approximations are quite good, and their accuracy im-
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Figure 2.2: Mean amplitude {(g(¢)) for 7, = 1.0.

proves as 7, decreases (indeed for 7, much below 0.4 the curves are indistinguishable).
Clearly, however, there is trouble at 7, = 1. This is not surprising since the FDC
approximation series will be shown (in Section 2.7.2) to be asymptotically correct as
T« approaches zero but is not proven to be convergent. Therefore, the approximations
cannot be expected to be valid for arbitrarily large 7,.

In fact, if we expand the iteration approximation (2.30) and the FDC approxima-
tions as series in ¢ or in 7, the following becomes apparent: the iteration approxi-
mation is valid if ¢ < 1 but blows up for larger ¢, whereas the FDC method gives
successively improving approximations if either £ < 1 or 7, < 1. In this latter case
(small correlation time), the FDCn approximations are uniform in the sense that
their error is small (O(77) in fact) for all ¢. To prove these statements we will use the

diagram expansion of the FDC series which first requires some simplified notation.
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2.5 Notational conventions

The full expressions for the FDC integrodifferential equations (e.g., (2.20) and (2.21))
quickly become cumbersome to handle, and obscure the basic structure of the approx-

imations. For clarity we introduce the following notational conventions:

e Function arguments t,, will be abbreviated to the digit m. Thus [d21'(1,2) (q(2))
represents [dio I'(t1,%2) (¢(¢2)). The digit O represents ¢.

e This can be further simplified by writing the argument as a subscript to the

function, so g, will represent q(t»).

e Functional differentiation is always with respect to b, and so we abbreviate

gzg;; to g1, where the digits following the subscripted comma represent the

derivative operations.
e The Heaviside step function H(ty,1s) is represented by His.

We now rewrite the equations of the previous section using these conventions.

(2:11) — (bwao) = [ dITO,1) (a0, (231)
(212) — do,1 = iHOlQl +Z/d2 H02b2q2,17 (232)
(213) — (%,1) = iHm (q1> ) /d2 H02 <bgq2’1> 5 (233)

(2.18) —> (bodo)ypes = i / d17(0,1)Ho (1), (2.35)

(219) — <b0q0>FDC2 — <b0qo>FDC1 — Z/dl/d2 /d3 F(O, 1)P(2,3) [H02H21H13 <Q3>

+ HooHa3 H3 (q1)], (2.36)
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The FDC3 approximation is presented now without details of derivation:

d1T(0,1)Hop; (q1)

+ /dl /d2 d3T(0,1)I'(2, 3) [Hoe Ho1 H13 (g3) + HoaHa3 Hz1 (¢1)]

/
/ a1 | d2 / a3 / a4 / d5T(0, 1)T(2, 3)0(4, 5) [Hoo Hay Hys Has Hs (g5)
+ HooHy HiaHas Hss (g3) + Hop Has H3y Hyy Hys (gs)
+ HopHos Hyy Has Hs1 (q1) + HoaHoaHat Hi3 Hss (g5)
+ HooHay Hyy HisHss (g3) + Hop Haq Hyz H3 Hys (gs)
+ HogHoa Haz H3s Hs1 (q1) + Hoo HoqHas Hsi Hys (g3)

+ HoayHoyHys Hs3 H3y (q1)] (2.37)

Though lengthy, the derivation of the higher approximations is clearly a straightfor-
ward application of the method outlined above. In the next section a diagrammatic
method for representing terms is presented which enables us to write down higher

order approximations like (2.37) without tedious derivation.

2.6 Diagram expansion

It is evident from the form of the equations (2.20), (2.21) and (2.37) that the closure
method described above lends a certain structure to the resulting integrodifferential
equations. This structure may be illuminated by using a diagram representation of
these equations.

The FDCn integrals contain n I'-factors in their integrands. We define the corre-
sponding diagrams of order n to be polygons with 2n sides. Fixing one vertex and la-
beling it 0, we choose numbers for the remaining vertices from the set {1,2,...,2n—1}

based upon the ordering implied by the Heaviside functions in the integrand. For in-
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stance, the Heaviside factors in

/ d1 / 02 / d3T(0, 1)T(2, 3) Hoa Hay His (gs) (2.38)

give the vertex-ordering ty > ¢, > t; > t3, and so we proceed clockwise from vertex 0

to label the n = 2 diagram as:

[
[\

Similarly the HooHoy H14H,3H3s factor in one of the n = 3 diagrams give the ordering
to > ta > t1 >ty > t3 > t5 and the corresponding diagram is

5 0

Having thus defined the diagrams, we insert n internal dotted lines joining vertex 7 to

vertex j to represent each factor of I'(7, j). For example (2.38) contains I'(0, 1)I'(2, 3)

’

so we join vertex 0 to vertex 1 and vertex 2 to vertex 3:

3 0

Finally the vertex m corresponding to (g,,) term is enclosed in a circle (this vertex is

always the last vertex numbered, i.e., the furthest clockwise from vertex 0).

3 0
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@ (0) = 1 G (2.39)

N o
.. o
''''''
-------

(2.40)

4 ; (2.41)

2+ 5 more n=3 diagrams

Figure 2.3: Diagram expansion of (2.20), (2.21) and (2.37).

A little thought will suffice to convince that the diagrams just described are a sim-
ple method of representing the FDC approximations outlined in the previous section.
The integrals are over all vertices except 0. Figure 2.3 shows the diagram expan-
sion representing the right-hand side of the FDC1, FDC2 and FDC3 approximate
equations ((2.20), (2.21) and (2.37) respectively).

The iteration approximation (2.8)-(2.10) may also be written in the form of a
diagram expansion. It is instructive to compare this expansion to the functional

derivative closure expansion derived above. For example, the second iteration ap-
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proximate equations, (2.10), is equivalent to

% <q0> = — /le(O, ]-)HOI

-+ /d]. /d2 /d3 P(O, 1)F(2, 3) [H02H21H13 + H02H23H31 + H01H12H23] y
(2.42)

which has the diagram expansion:

(2.43)

Clearly there exists a relationship between the iteration expansion (2.42) and the
corresponding FDC expansion (2.21) and (2.40). Two major differences are clear
from the diagram representations: the (g;) term in the integrand (represented by a
circled vertex in (2.40)) does not appear in the iteration expansion (2.42); in fact its
place is taken by the value of {(¢;) at time ¢ = 0, which is simply 1. Also, the iteration
expansion contains extra diagrams which do not appear in the FDC expansion. Indeed
the iteration expansion contains (2n)!/n!2" diagrams of order n, corresponding to the
number of ways 2n vertices may be divided into n pairs, each connected by a dotted
line. Thus the numbers of diagrams in the first few orders of the iteration expansion
are given in Table 2.1. The number of diagrams in the FDC expansion is a little
more complicated to compute (see Appendix B). The results are given in Table 2.2.
Both the iteration expansion and the FDC expansion are formally exact—in other
words if every term in the infinite series is retained, then they are each equal to the
exact value of (b(t)g(t)). Approximations are made when the series are terminated

after some finite number of terms, as must be done for computational purposes. The
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n | number of diagrams of order n
in the iteration expansion
1
3
15
105
945
10395

S Tk W N

Table 2.1: Number of diagrams for iteration expansion.

n | number of diagrams of order n
in the FDC expansion
1
2
10
74
706
8162

O U W N

Table 2.2: Number of diagrams for FDC expansion.

formal identity of the iteration and the FDC expansions becomes clear if we replace
the (g;) term appearing in the integrand of the FDC expansion with its Taylor series
about ¢t = 0. This makes clear the difference between the two series: each term in the
FDC expansion equals a sum of terms of all orders from the iteration expansion which
have been “resummed” to give the (¢g;) term in the FDC integrand. By resumming
the unknown quantity (g;) in each term of the expansion, the FDC method reduces
the number of diagrams of each order. Such an infinite series, in which the unknown
quantity to be solved for appears in each term on the right-hand side of the equation,

is called a renormalized series.
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2.7 Applications of the diagram expansion

If we “flatten out” the diagrams of (2.41) so that the vertices lie in a straight line,

we get:
1
d 0
P (q) = O,. -
3 1 3 2 0
f ——————— t @
+ S 3 4 1 2 0 4+
.~.___"______.- .................... N e . (244)

A remarkable fact about all these diagrams is that they cannot be split into two
disconnected parts using only a single cut through the solid line. This is in contrast
to, say, the third n = 2 diagram of the iteration expansion (2.43), which when unfolded

is:

) . .
. R v o
pJ o . .
------------- .

and which may be separated into two disconnected parts by a single cut, thus:

¥ O
. - > s
. 0 ., Q D B * B
. o , B ., R R
LT A Y TR g A . * -
.......................
-

To highlight this property we call all the diagrams which cannot be split by a cut

through the solid line connected, and all other diagrams are termed unconnected.
Thus all the FDC diagrams we have listed so far are connected, whereas the iteration

expansion contains both connected and unconnected diagrams.
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2.7.1 Using diagrams to obtain FDC approximations

We have introduced the diagram expansion as a consequence of the FDC approxi-
mation, and shown how to associate a connected diagram with each FDCn integral.
However, the chief reason for using diagrams stems from the fact that we can reverse
this correspondence, and associate with each connected diagram of order n an FDCn

integral. This is summed up in the following lemma:
Lemma 1 A diagram of order n is an FDCn diagram if and only if it is connected.

We defer the proof to Appendix C. This lemma provides a labor-saving shortcut to
writing down the FDC equations; instead of repeatedly taking functional derivatives
we simply write down all (2n)!/n!2" diagrams of order n, throw away those which
are not connected and then interpret the remainder as FDCn integrals according to
the diagram rules of Section 2.6. This then gives us the full FDCn contribution. In
practice the FDCn approximations are all calculated using this method, for example
equation (2.37). Moreover, as we shall see in the next chapter, the diagram rules are
easily interpreted as an algorithm which can be used with a symbolic manipulation

program to obtain high order FDC approximations.

2.7.2 The FDC series is an asymptotic series

Another application of the diagram expansion is the elucidation of properties of the
corresponding FDC series; in particular we will show that the FDC series is an asymp-

totic series for small correlation time 7.

Lemma 2 If there exists M such that |(g(t))| < M for allt and T'(t,t;) = T(t — t;)
decays to zero sufficiently quickly (e.g., exponentially) at infinity, then all connected

diagrams are bounded as t — oo.

In other words each FDCn diagram is bounded as ¢ — oo (since by Lemma 1 every
FDC diagram is connected). Deferring the proof of the lemma to Appendix D, let’s

look at a simple example. Consider the stochastic oscillator again, with T'(t,¢;) =
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exp [—|t — t1]/7.] and examine the FDC2 approximation given by (2.21):

(a(t)) = /Odtle'“f” a(t)

[t— t1| _lta—tgl
+/dt2/ dtl/ dtge T T (q(t3)>
0 0 0

t2 _ o
+/dt2/ dtg/ dt e~ e (g1, (2.47)
0 0 0

then

Ll < m /tdt -
_ e Tw
at = o
t t2 t1 t—tq] —t3
+/ dtz/ dtl/ dtg G_L;:*l_e_ltz'r* |
0 0 0
t t2 t3 _ ty—ta]
+/ dtg/ dtg/ dt1 6_%€_| T* } (248)
0 0 0

The limit as ¢ goes to infinity of each integral exists and yields
li d N <M +1 +1 (2.49)
B |G (@) < Mqmtgrit g |

Note this nice behavior of the FDC diagrams is not true for the diagrams represent-

ing the iteration series. To see this, consider the second order iteration approximation

t [t—t1]
/dt1€ "*1
S1
d

_ = S2| 51 53!
S§9 d83 T*

|t 33| |51 SQI lt=s1l _ |sg—s3l
+6 ™ € T ,

to the previous example (2.10):

() =

)
/ ds;

(2.50)

and note that the final integral blows up as ¢ — oo, i.e., some iteration diagrams are
unbounded.
The bound M on the absolute value of (¢(¢)), which is assumed in Lemma 2, is not

known to exist a priori. If the approximation is reasonably valid we expect (g(t)) to
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be close to its physical value, which is bounded, and then we can invoke Lemma 2 to
ensure the FDC diagrams are connected. This is indeed the case in all the examples
we consider.

Given Lemma 2, it is straightforward now to prove the following:

Theorem 2 If there exists M such that |{q(t))| < M for all t and T decays to zero
sufficiently quickly (e.g., ezponentially) at infinity, then the FDC series for 4 (q(t))

is an asymptotic series as T, — 0, with each FDCn contribution being O (2" ).

The proof follows from the observation that each FDCn term contains 2n — 1
time integrations (equivalently: each FDCn diagram has 2n — 1 sides). If we change
each time variable ¢; by setting #; = ¢;/7, then we pull a factor of 72?1 outside the
integral, and the integral itself is bounded for all ¢ (by Lemma 2 and the fact that
(q(t)) is bounded). To clarify with an example, take the first FDC2 diagram for the
stochastic oscillator and write ['(¢,¢1) = R (ﬂ>

Tx

[l [an [ ((28) R (222) e (2.51)

Now let t = t/7., t; = t;/7., etc., and so the contribution of the first FDC2 diagram

to %(% <q(f7'*)> is

7'*3 /fd'é /£2d{1 /fldfg R (E* 7?1) R (2‘{2 - 53) <q(£37’*)> . (252)

Since we assumed (g(?)) is bounded for all ¢ and we know from Lemma 2 that the
FDC?2 integral is bounded, we conclude that (2.51) is indeed O(72) as 7, — 0.

Thus the FDC method generates an asymptotic series in 7, for £ (¢(t)) and so
for (g(t)). We will use this fact repeatedly in later chapters, so it worth noting that
the basis for these facts is the time-structure of the diagrams. For more complex
problems the FDC series is still governed by the same type of behavior in time as

described here, and so the interpretation of the FDC approximation as an asymptotic

series remains valid.
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Chapter 3 Application to effective
diffusivity

3.1 Introduction

In the previous chapter we presented the functional derivative closure method and
demonstrated its application to a simple example. It is now time to examine a more
complicated problem which is of real physical interest. When a pollutant tracer or
small amount of heat is transported (or advected) by a turbulent fluid, it doesn’t affect
the flow by its presence. Such a quantity is therefore called a passive scalar. Since
the advecting fluid is in turbulent motion, it can only be described by its statistical
characteristics, notably the mean value of the fluid velocity and the energy spectrum
of the flow. It is to be expected that the passive scalar will also require such a
statistical representation. An outstanding problem in fluid mechanics is to describe
the statistics of the scalar, given the velocity statistics.

In this chapter we will attack this problem using our closure method. We calculate
the mean scalar concentration, the dispersion of tracers in time and the so-called
effective diffusivity. The resulting equations look complicated, but the underlying
structure is highlighted when we recast the FDC method in terms of the diagram
expansion. We confirm that the molecular diffusivity interferes destructively with
the turbulent diffusivity [7] and use Padé approximation techniques to show how the
FDC can be useful even when the correlation time is not small. A generalized Padé
approximant is defined and used to relate the Lagrangian velocity correlation to the
known Eulerian correlations. We perform numerical simulations of Gaussian velocity
fields and find the FDC-Padé approximations to be accurate for correlation times on
the order of the eddy circulation time.

The effective diffusivity has been examined by various workers using different



26
closure schemes, e.g., Roberts’ [8] application of Kraichnan’s [9] direct interaction
approximation and the self-consistent theory of Phythian and Curtis [10]. The fact
that a series expansion in terms of the correlation time can give successively improving
approximations has been recognized (see Silantév [11]), but the actual calculation of
terms beyond second order and the application of Padé methods is, we believe, entirely
new. Our diagram expansion method is similar to that employed by Dean et al. [2] in
their consideration of advection by a time-independent velocity field. The connection
between Lagrangian and Eulerian correlation functions is motivated by Saffman’s [12]
application of Corrsin’s conjecture to obtain a quasi-normal type closure. This and

related methods are reviewed in the context of one-dimensional fields by Davis [13].

3.2 The passive scalar equation

Let 6(x,t) denote the solution of the passive scalar equation

0 2
50+ VO—kV0 = 0

0(x,0) = &(x— xg). (3.1)

The constant x is the molecular diffusivity of the pollutant (or the conductivity if
0 represents temperature). Note that without the advection term (3.1) is simply a
diffusion (or “heat”) equation. Here u(x,t) is the velocity of the advecting turbulent
fluid and so is a random function of position and time. In reality the velocity would
of course be calculated by solving the Navier-Stokes equations, but for simplicity
here we will suppose it to be a Gaussian random function with known correlation
(us(x, t)u;(x’,t')) and we assume that the velocity statistics are homogeneous and
isotropic. By choosing a reference frame traveling with the mean velocity, we may set
(u) = 0.

Then 6dx is the probability, for one realization of the turbulence, that a marked
particle which was at xq at time ¢ = 0 will be in the volume element dx at time ¢. The

average probability density (f(x,t)) is found by averaging over the velocity statistics.
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The dispersion or mean-square displacement of the marked particles at a time ¢ is
a measurement of their distance from the source at the origin and can be calculated

as

1

D(t) = 3 /xa:z:a 0(x,t))dx = %/(1'2 + 32 + 22) (0(x, 1)) dz dy dz, (3.2)

where x = (z,y, z) and the integration is over all of space. The quantity

is often called the effective diffusivity or eddy diffusivity. These names arise from the
use of this quantity in diffusion equation approximations for turbulent advection [14].
It is clear from (3.2) that to find the dispersion and the effective diffusivity it will
be necessary to first find the mean probability density or mean concentration (6(x, t)).
Writing ©(x, t) = (6(x, t)) for convenience and averaging equation (3.1) yields

%@ — KV20 = — (u- V). (3.3)

The term on the right-hand side of this equation is quadratic in stochastic quan-
tities and is symptomatic of the closure problem which arises in all moment-based
approaches to turbulence. In the next section we will apply the FDC method to
approximate the (u-V#) term. The resulting equations are complicated, but their
structure is made evident by considering the equivalent diagram expansion. We con-
struct diagram rules which enable us to employ symbolic manipulation computer

programs to calculate high order terms in the FDC series.

3.3 Application of the FDC method

The FDC method is most easily applied to the passive scalar equation (3.1) rewritten

in wavenumber space (i.e., Fourier transformed with respect to the spatial variable).
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We define

B(k, 1) = (271T)g / O (x, t)e M dx (3.4)

and Fourier transform (3.1) to obtain an evolution equation for (:)(k, t). The FDC
method is applied to obtain successive approximations to the averaged advection term

on the right-hand side of (3.1). The first approximation (FDC1) is
95 2
@(k t) + Kk @(k 1) =
/ dt, /dp [(k —p)-Q(p,t —t,) - k] e *IkPPE-t)5(K ). (3.5)
We have adopted the notation k> = k-k and a- Q - b = a;Q;;b;. Here Q;; is the
Fourier transform of the Eulerian velocity space-time correlation, i.e.,

1

Qij(k,7) = ) / (ug(x, t)uj(x +r,t+ 7)) e *7dr,

and for incompressible velocity with isotropic and stationary statistics (which we

consider hereafter) it may be written

with Q(k,7) = E(k)R(r, k)/4wk? for the energy spectrum E(k) and time correlation
function R(t, k).
The second approximation FDC2 is found through straightforward though lengthy

application of the functional derivative closure method. The resulting FDC2 equation
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for O(k, t) is

B(k, ) + kk?O(k, ) =

/ dty / dp[(k —p) - Q(p,t —t;) - k] e kPG (k 1,)

+/0dt2/0 dt1/0 dtg//dpdq{[(k—p)-Q(p,t~t1)~(k-Q)]

x[(k—p—a) Qa,tz — t3) - K]

ot

(3.6)
< e—'i[lk—P|2(t~t2)+|k—P—Q|2(t2 —t1)+|k—ql?(t1—t3)] }@(k, ts)

+/Otdt2/0t2dt3/0t3dt1 //dpdq{[(k—p)-Q(p,t—tl)-k]
X[(k—p—a) Qq,ta — t3) - (k — p)]

w« o~ " [k=PpI*(t=t2)+/k—p—al?(t2—t3)+|k—p|?(ts— tl)]} (k, t1).

3.4 Diagram rules

Clearly the FDC approximation equations quickly become very complicated to write
down. Therefore, it is important to realize that the equations may be reproduced
from the diagram expansion corresponding to the FDC series by following a few
simple diagram rules. Consider the FDC2 approximation for example. As we saw in
Chapter 1, the two FDC2 terms may be represented by diagrams with four vertices

each and two internal dotted lines signifying the correlation function:

3 0

2 (3.7)

For the case under consideration here the basic structure of the FDC2 diagrams

remains the same, but we associate additional meanings with the vertices and lines.
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Consider the diagram

(3.8)

which represents the first FDC2 term

/ dt2/ dt1/ dts Hyy Hyyy, Hyyy, //dpdq (k- p) - Q(p,t—t1) - (k — q)]

[(k—p—q) - Qa,ty —t3) - k]e ™" [lk~p|?(¢—t2)+|k~p—al|?(t2—t2)+|k—aq|2(t— ts]@(k,tg).
(3.9)

Note that we have added only vertex labels, line labels and arrows to the first term
of (3.7) to get (3.8), and observe that (3.9) may be produced from (3.8) by applying

the following rules:

1. Vertex labels are the time integration variables, except for the first vertex (which

is always labeled t).

2. The time integral limits are determined by associating a factor of H,,; with the

solid line joining vertices labeled ¢; and ¢;.

3. The wavevector integration variables are the wavevectors labeling the internal

dotted lines; these integrals are over all wavevector space.

4. The vector sum of wavevectors at each vertex is zero, except for the first vertex

(labeled ¢) which has sum +k, and the final (circled) vertex which has sum —k.

To compose the integrand, we multiply the factors resulting from each of the following

rules:

5. For each internal dotted line, consider the start and end vertices. For example,

in (3.8) for the internal dotted line labeled p, the start vertex is labeled ¢ and
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the end vertex is labeled ¢;. Both the start and the end vertex have solid lines
emanating from them; suppose the wavevector labels on these lines are a and
b respectively. Then the factor we seek is —a - Q(p,t — #;) - b where p is the
dotted line label and ¢ and t; are the start and end vertex labels. (If the end
vertex is the circled vertex, then let b = k). In the (3.8) example, a =k — p
and b = k — q, so that the factor is —(k — p) - Q(p,t — ¢1) - (k — q). By
applying this rule again to the second dotted line, we find another factor of

—(k—p—q) Q(q,t; —t3) - k.

6. For each solid line joining #; to ¢; say, and labeled by a, multiply by a fac-
tor of exp (—«lal®(¢t; — ¢;)). In the (3.8) example this gives us three factors of
exp (—rlk — p|(t — t2)), exp (~klk — p — q|*(t2 — 11)) and exp (—&[k — q|*(t1 — t3)).

7. Finally, the circled vertex carries a factor of @(k, t;), where t; is the label of the

circled vertex.

These rules enable us to write the FDC2 equation for @(k, t), (3.6), in the diagram

form

12 (3.10)

The diagram rules apply at each order in the FDC series, thus allowing us to take
the higher order diagrams described in Chapter 1 and derive from them the FDC
terms in the evolution equation for @(k, t). Furthermore, the rules form a simple
algorithm for finding the FDC terms and so may be implemented using a symbolic

manipulation program like Mathematica. The calculation of the FDC5 approximation
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for the effective diffusivity in this way will be described below.
We recall that the quantities of interest to us are the mean concentration ©(x, t),
the dispersion D(t) and the effective diffusivity D/2 (recall (3.2)). Here we show how
the FDC approximations for @)(k, t) yield these statistics. First, the mean concentra-

tion is simply the inverse Fourier (spatial) transform of @(k, t) and so may be found

by
@@J%i/@&Jk*Wk (3.11)
Effecting this transformation on the FDC1 equation for @(k,t), (3.5), yields the

integrodifferential equation

9 2 _
a@(x t) — KV O(x,t) =

8m 5 / dt, /dy (ui(x, )y (y, t1)) Gx —y,t —t1)O(y, t1).  (3.12)
Here G(z,7) is the Green’s function for the heat equation,
G(z,7) = (47rm')—g exp (—z°/4kT). (3.13)

In Section 3.13 we consider some solutions of (3.12), but now we move on to the
dispersion. Recalling the definition (3.2) and the relation between ©(x, ¢) and ©(k, t)
given by (3.4), we find

Ok, t)| . (3.14)

D(t) = —(27)?
koOkq Ko

LIl —
(o))

This relation allows us to find expressions for the dispersion (or more readily the
effective diffusivity D/2) from the FDC evolution equations for @(k, t), for example
(3.5) and (3.6)!. Taking the evolution equation for O(k, t), applying the operator

—(2m)33 T ;k , then setting k to zero (and noting ©(0,¢) = 1 since © is a probability

1Tt is a remarkable fact that the iteration expansion considered in Chapter 1 gives the same series
for D(t) (but not for the mean concentration) as does the FDC. The spatial averaging (3.14) sets to
zero the disconnected diagrams which would otherwise be unbounded in time.
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density) yields the FDC2 equation for D(t):

¢
iD(t) = 2K + %/ dt; /dp Q(p, tl)e_"’”p21t1
0

t
3 t2 t1

w e~ K[PP(t=t2)+ (P2 T2+ 2pqu) (t2—t1) +4* (11 —t3)]
+2p°(1 = p*)Q(p, t — t3)Q(g, t2 — t1)e““[ﬁ”z(t—tz)ﬂpz+42+2mu)(t2—t1)+1’2(t1‘t3)]}.
(3.15)

We denote by 1 the cosine of the angle between p and q, i.e., u = p-q/pg. Note that
this equation has no © terms—the right-hand side gives a simple series representation
of the effective diffusivity.

When we consider higher order FDC terms (or diagrams), we see that (3.15) gives
the first few terms of an infinite series. For convenience we will adopt the following

notation:
D(t) = 2kt + Dy(t) + D(t) + ... (3.16)
where D, (t) represents the new term appearing in the FDCn approximation. Thus

4 [t 2
H=3 / dt, / dp Q(p, 1)e=""t. (3.17)
0

and
—Dg = ——/ dta/ dt1/ dts //dpdq{pqu (12 = 1)Q(p,t — t1)Q(q, t2 — t3)
« KPP (t—t2)+ (P2 a7+ 2pqu) (t2—t1 ) +a2(t1 —ts)]

+20%(1 — 1) Q(p, t — t3)Q(q, ta — t1)e” K[P2(t—t2)+(P?+4>+2pap)(t2— t1)+p2(t1—ts)]}

(3.18)
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Note that (3.16), (3.17) and (3.18) permit the calculation of the effective diffusivity
given only the energy spectrum of the turbulence (recall Q(k,t) = E(k,t)/4wk?) and
the value of the molecular diffusivity «. It is usual to postulate a separable form for

Q(k,t)—in the following two sections we will take

Q(k,1) = MEUC) e 11/ 8), (3.19)

and we call 7, (k) the correlation time of the velocity. In general the correlation time
may depend on the wavenumber £.
We now proceed to examine some consequences of the above expansions for the

effective diffusivity.

3.5 Interference of turbulent and molecular diffu-
sion

In the absence of molecular diffusivity (k = 0) the effect denoted by D*=°(#) is referred
to as pure turbulent diffusion. In general x > 0 and the molecular diffusivity interferes
non-trivially with the turbulent diffusivity. Saffman [7] has considered this question
and by considering solutions of the passive scalar equation on short time and length

scales he demonstrates that
_ 1 .—
D(t) = D*°(t) — §/<;t3w2 +0(tY, (3.20)

for small times ¢t. Here w? is the root-mean-square vorticity. We consider the FDC
expansions for D;(t) and Dy(t) and examine the influence of nonzero k. Expanding

the integrand in (3.17) as a series in ¢ we obtain

Dit) = DF(0) - ot [dppalp) +

+%t4 [n"’ /dpp +2/$/de* o } +0(").  (3.21)



35
Similarly expanding the integrand in (3.18) we find

Ds(t) = D3=°(1)

+t5/ dp47rp2/ dq 27¢°Q(p)Q(q) [E/ﬁp‘l%— %KPQQQ +0(t%). (3.22)
0 0

Since (see, for example [1])

/ dk K2Q(k) = %&‘2

and

/dk E*Q(k) = %[v X w2,

we may rewrite (3.21) and (3.22) in physical space as

1 o
Di(t) = szo(t)—gh;t?'w?-l-

L 5T + 20 [ap 2 )] + 0
Igt lﬁ §[V X wl? + 2k /de*(p)Q(P)] +O(t’); (3.23)
Dy(t) = D;=°(t)+O(t"). (3.24)

Evidently to O(¢®) Saffman’s conclusion of destructive interference of the molecular
diffusivity with the turbulent diffusivity is confirmed. However, the positive sign
of the ¢* term in (3.23) raises the possibility that the interference may not remain
destructive at larger values of . In other words we wish to investigate whether

D(t) < D*=%(t) at large values of t.

3.6 Long-term effective diffusivity

To address this question of long-term interference, we consider in this section a sim-

plified case wherein the energy spectrum of the flow is given by

Bk, 0) = ;uzé(k ~ k). (3.25)
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Figure 3.1: Long-term diffusivity for small molecular diffusivity.

The time correlation function is as in (3.19), so

3u?
o _ —1t| /7«
Qk, 1) = g = ho)e™™

and the correlation time 7, does not depend on the scale. The FDC2 equation for
D(t), (3.15) then simplifies considerably, and taking the limit as ¢ — oo gives (twice)

the long-term effective diffusivity

: d 2u?
D = lim —D(t) =2 —
(00) = limy dt (t) =2 + T+ Kk
1 uks {2kk§(37% + 126k37 1 + TR k) —
8 ktkS (Tt + KE?) 0AT 07 0

=377 (7t + 3kkG) (1,71 + 26kG) log(1 + 2kk3T 1)} (3.26)

In Figures 3.1 and 3.2 the values of kyD(oo)/u are plotted against the nondimen-

sional correlation time 7, = ukq7, for various values of the nondimensional molecular
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Figure 3.2: Long-term diffusivity for larger values of the molecular diffusivity.

diffusivity ¥ = kox/u. Henceforth we will use these nondimensional quantities (unless
indicated otherwise) and drop the tildes. From Figure 3.1 we see that for low values
of 7, the nonzero molecular diffusivity lowers the effective diffusivity, indicating that

the effect found by Saffman persists in the long term, at least for the spectrum (3.25).

3.7 Convergence of the FDC series

The functional derivative closure method has been shown in Chapter 2 to provide
a perturbation series in 7, for a simpler one-dimensional problem. The negative
diffusivities shown in Figure 3.1 for 7, above 1.4 indicate that the FDC approximation
is failing to give physically reasonable results when 7, is not sufficiently small, at least
when k is also small. In Figure 3.2, however, & is larger and the values of the effective

diffusivity are more physically plausible. The convergence properties of the FDC
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series can be elucidated by taking the x — 0 limit of (3.26):

1iII(1) D(00) = 2u*r, —uk2r?  (dimensional) (3.27)
K=

or when nondimensionalized:

. kO - . 3
’1613% ED(OO) =27, — ;. (3.28)

We expect that further terms in the series are higher powers of 7,, thus leading to
the necessary condition for convergence of 7, < 1. This applies to the x — 0 limit

which we have taken above, but by rewriting (3.26) in terms of x and A = 1/(k7,):

ko - 1 2
D = 0K + =
u (00) K+KZ(1+)\)

{2(3X“ + 12X+ 7) = 3A(A +3)(A +2) log (1 + ;) } ,(3.29)

1 1

867 (1 N)?
we see that for finite A the series may be considered an expansion in powers of % for
large . This explains the improvement in behavior of Figure 3.2 over Figure 3.1:
because the nondimensional molecular diffusivity & is larger, the retention of just two
terms of the FDC series gives a better approximation to the true value of the effective
diffusivity—in particular we no longer get the negative values for D(oo), instead it
approaches an asymptotic positive value as 7, — oo.

This improvement in convergence of the FDC series is not surprising when we
consider that the nondimensional molecular diffusivity is the inverse of the Péclet
number Pe, which in turn is equal to the product of the Prandtl and Reynolds
numbers:

v ou

k' =Pe=PrRe= ——— (dimensional).
K VK

Thus the large-x region of improved convergence corresponds to small Péclet number,
i.e., small Prandtl and/or Reynolds numbers. This small parameter is available to

generate a perturbation series when 7, is not sufficiently small.
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3.8 Symbolic computation of higher order terms

3.8.1 Delta-function spectrum

As mentioned in Section 3.4 the diagram rules facilitate symbolic computation of the
@(k, t) approximations and so too of the long-term diffusivity. Let us review the

setup which yielded equation (3.28) above: we had Q(k,t) given by

Qk,t) = -3“—2—5(k — ko)e™ I/
’ 877':1{3(2) 0 y

1
== WEa(k)Ra (t, k?),

with E, = 3/2u?§(k — ko) and R, = exp(—|t|/7.), and then we took x — 0 and
examined the ¢ — oo or long-term limit. As we are taking x = 0 from here on, we

will adopt the convenient symbol x(t) for the nondimensional effective diffusivity, i.e.,
K(t) = lim — D(¢).

With a view to obtaining further terms in the series (3.28), we implement the diagram
rules with the above setup in Mathematica. The delta-function spectrum reduces all
wavevector integrals to angular integrals, while the time integrals may be done sepa-
rately and straightforwardly to yield the appropriate power of 7,. Finally the angular
integrals are also performed on Mathematica. All integration is done analytically
so the results for each diagram are exact. The following is the expression for the

nondimensional long-term diffusivity, correct to order 72:

(o0) 15 115 4061 , 8775020 ,
=T — 57T YRS * * s
2 24 7200 10080000

(3.30)

Note the alternating signs of the coefficients, and the fact that all coefficients are O(1).
This series does not converge quickly (if at all), nor should we expect it to—the FDC
method is justified (see Chapter 1) as a perturbation method for small correlation

time, so we must accept (3.30) as a possibly divergent asymptotic series.
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3.8.2 Padé approximation

We are thus motivated to examine methods for summing perturbation series. One
well-known method is Padé approximation [15]. Briefly, given a power series f(z) =
> s anz™, the Padé approximant P{}(z) is a rational function, i.e., a ratio of two
polynomials, with numerator of degree N and denominator of degree M, whose Tay-
lor series agrees with f(z) for the first N + M + 1 terms. To examine the Padé

approximants to (3.30) we rewrite

£(o0) ol 11, 4061 o 8775029
= T, - = — R
2'* 24 7200 * ' 10080000 *

(3.31)

let z = 72, and consider the Padé approximants for the term in square brackets in

(3.31):

1
P)z) = —/
1
1+ %z
5
1 i 1 + EZ
Pi(z) = 1+ 42
12
1661
Pl(z) = 1+ 15062
2 14 2401, | 2590 3
1500 750
8514637 18482041 _2
PXz) = 1 + 555002 1 59314400 2 (3.32)
2 = 1 10690237~ 58691863 3 .
4351200 52214400

From Figure 3.3 we can see that the Padé approximants appear to be converging and
doing so much more rapidly than the basic series (3.30).
The convergence theory of Padé approximants is chiefly based upon Stieltjes series,

i.e., a series of the form

where the coefficients a,, are the moments of a real nonegative function p(s):

an, = /Ooo s"p(s)ds, p(s) >0 (0<s< ).

For these series it can be shown (see [15], [16]) that when z is fixed, P{ (z) decreases
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Figure 3.3: The FDC5 approximation to x(co) and its Padé approximants for spec-
trum E,, time correlation R, and wy = 1/7,.

monotonically as N increases, P +1(2) increases monotonically as N increases, and
that PJ/(z) — P#,,(2) as N — co. Although we cannot prove that our series (3.30)
is a Stieltjes series, the available Padé approximants do indeed have these properties.
Thus we conjecture that 7,P}(72) provides a lower bound for the nondimensional

effective diffusivity and that 7, PZ(72) provides an upper bound, i.e.,
7.P} (72) < K(00) < T, PE(72). (3.33)

Since P;(r2) and PZ(72) differ by only about 1% even at 7, = 1, we conclude that

(3.33) gives an accurate approximation for the long term effective diffusivity for cor-

relation times as large as (uko) ™.

3.8.3 More general spectra

Even when the energy spectrum does not have the simple delta-function form con-

sidered above, the FDC integrals can always be reduced to multiple integrals over
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Energy Time wr || Coeff. | Coeff. | Coeff. | Coeff. | Figure
spectrum || correlation of 7o | of 72 | of 72 | of 7/

E, R, 1/7. || 1.000 | -0.500 | 0.459 | -0.564 3.3
E, Ry 1/7. || 0.886 | -0.184 | 0.050

E, R, 1/7 || 0.200 | 0.052 | -0.016 | 0.0047

Ey R, 1/7 | 1.000 | -1.250 | 3.906 | -19.13

By R, k/7m || 0.753 | -0.352 | 0.323 | -0.413 3.4
by, R, k*/7, || 0.667 | -0.222 | 0.140 | -0.116

Ey Ry 1/, || 0.886 | -0.459 | 0.429

By Ry k/T. || 0.667 |-0.128 | 0.034 3.5
E, R, k*/7, || 0.591 | -0.087 | 0.019

Ey R, k/7, || 0.113 | 0.034 | -0.007 | 0.0013

E.,6 =1 R, 1/7 | 1.000 | -1.027 | 2.221 | -6.925

E., 6=10 R, 1/7 || 1.000 | -7.35 | 318.1 | -23711

E.,6 =1 R, k/7. || 0.741 | -0.363 | 0.333 | -0.416

E., =10 R, k/r. || 0.492 |-0.211 | 0.189 | -0.254 3.6
E., =1 R, k*/7, | 0.569 |-0.162 | 0.085 | -0.060 3.7
E., =10 R, k?*/7, || 0.313 | -0.049 | 0.015 | -0.006

E;, =1 R, 1/7 || 1.000 | -1.167 | 2.810 | -9.585

E;, =10 R, 1/7 || 1.000 | -22.17 | 1424 | -133109 3.8
E;, =1 R, k/7. || 0.693 | -0.340 | 0.312 | -0.389 3.9
E;,, =10 R, k/7. || 0.240 | -0.098 | 0.089 | -0.120

E;, =1 R, k%/7. | 0.500 |-0.125| 0.056 | -0.036

E,, =10 R, k%/7. | 0.091 | -0.004 | 0.0004

Table 3.1: Coefficients of the FDC series for the long-term effective diffusivity.

wavenumbers and time by doing all the angular integrals exactly. Moreover, for sim-
ple forms of the time correlation R, the time integrals may also be done exactly. We
have calculated the first few terms in the FDC series for the long-term effective dif-
fusivity for variety of spectral shapes and time correlation functions. Specifically, we

list in Tables 3.1 and 3.2 results of the form (3.31) for the following energy spectra
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Energy Time Wi P)(72) | PL(r?) Ps(r? || Figure
spectrum correlation at,=1|latr.=1]at7r.=1
E, R, 1/7, 0.667 0.739 0.714 3.3
E, Ry 1/7, 0.734 0.742
E, R, 1/, 0.270 0.240 0.240
Ey R, 1/7. 0.444 0.697 0.541
E, R, k[, 0.513 0.569 0.549 3.4
Ey R, k% /7. 0.500 0.530 0.522
E, R, 1/74 0.584 0.649
E, R, k[, 0.559 0.565 3.5
Ey R, k?/, 0.515 0.520
Ey R, k/Ts 0.160 0.140 0.140
E. 6 =1 R, 1/, 0.493 0.675 0.578
E., =10 R, 1/7, 0.120 0.834 0.208
E., =1 R, k[, 0.497 0.551 0.5632
E., =10 R, k/T. 0.345 0.381 0.367 3.6
E.,6 =1 R, K%/, 0.443 0.463 0.458 3.7
E., =10 R, kz/T* 0.271 0.275 0.274
Ey, =1 R, 1/7. 0.462 0.658 0.549
E;, =10 R, 1/7, 0.043 0.660 0.080 3.8
E;. =1 R, k/T. 0.465 0.516 0.498 3.9
E;, =10 R, k[T 0.170 0.189 0.182
Ey, 6=1 R, k? /7, 0.400 0.415 0.411
E;, =10 R, k2/7'* 0.087 0.087 0.087

Table 3.2: Padé approximations to the FDC series in Table 3.1.
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and time correlation functions:

Eu(k) = gu25(k—k0)
4u’kt
Ey(k) = NG exp(—k*/k2)

2
L u2kik™3 for ko < k < (1 + B)ko,

E.(k) = { 1-+p)75
0 otherwise
3u?
Ed(k) _ 2%o8 for k() <k< (1 + /B)kg,
0 otherwise

R,(t, k) = exp(—wklt])
Ry(t,k) = exp(—wit?) (3.34)

where the “inverse correlation time” wy equals one of 1/7,,k/7. or k?/7,. Spectrum
Ej, is often used to approximate the final stages of decaying turbulence; spectrum E,
models an “inertial range,” and the constant spectrum FEj; is used to investigate the
behavior of the approximation when the spectrum does not decrease with increasing

k. Each spectrum is normalized so that

/ E(k)dk = 22,
0 2

The time correlation function R, makes the time integrals very simple; however, it is
not differentiable at ¢ = 0 and so we include R} as a more realistic model. Note that
both the above time correlation functions are positive for all ¢; we also consider the

effect of negative loops in R when we use
R.(t,k) = e~ 1/™ cos(2t/1,).

Padé approximants like (3.32) for certain cases from Table 3.1 are plotted in
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Figure 3.4: Padé approximants for x(oo) for spectrum Ej, time correlation R, and
wi = k/7y.

Figures 3.3 to 3.10. For each case we calculate the integral length

;3" I kL E(k)dk
4 [T E(k)dk

and plot the available approximants for values of 7, running from zero to L/u.

In general there is not much difference between the approximations resulting from
correlations R, and R, (see Figures 3.4 and 3.5), indicating that the shape of the
correlation function near ¢ = 0 is not critical to the value of k(c0). Note also that
the convergence of the approximations is improved when passing from w; = 1/7, to
wy = k/7, to wy = k?/7. (Figures 3.6 to 3.9). Indeed the pathological case shown in
Figure 3.8 which results from the constant spectrum E,; and wy = 1/7, is dramatically
improved when we take w, = k/7. instead— see Figure 3.9. This bodes well for
application to realistic velocity fields, as we expect the correlation time to have some
dependence on the scale k, for example w; = k/7, rather than the scale-independent

W = 1/7'*
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Figure 3.8: Padé approximants for x(oco) for spectrum E; (8 = 10), time correlation
R, and wy = 1/7,.
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Figure 3.9: Padé approximants for x(co) for spectrum E, (8 = 10), time correlation
R, and wy, = k/7.

In all cases with time correlation R, and R, we find behavior of the Padé ap-
proximants which we term Stieltjes-like, i.e., the power series coefficients alternate in
sign, P§ decreases monotonically and Py 41 increases monotonically as IV increases,
with no poles of the approximants being on the positive real axis. This leads us to
conjecture that Padé approximants provide successively improving upper and lower
bounds on the long-term effective diffusivity (as they are known to do for Stieltjes
series), when the time correlation function is always positive. However, for time cor-
relation R, the sign pattern of the power series coefficients violates the Stieltjes rule,
and indeed we find a pole of the P approximant for energy spectrum E, at 7. = 1.96.
Nevertheless the higher order Padé approximants still converge rapidly, so we can still
find close approximations for the value of the long-term effective diffusivity although
without the neat bounding behavior of the Stieltjes-like series. The accuracy of these
approximations is demonstrated by comparison with numerical calculations of the

effective diffusivity in Section 3.11.
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Figure 3.10: Padé approximants for x(oco) for spectrum E,, time correlation R, and
wr = 1/7. PP has a pole at 7, = 1.96, but P} and P} have no poles on the positive
real axis.

3.9 Generalized Padé approximation for k()

We wish to generalize the ideas of the preceding section to the calculation of x(t), the
effective diffusivity at finite time. Clearly each diagram contribution can be calculated
as before and now generates a function of ¢. We alter the time variable to t = ¢/,
and change each integration variable to #; = t;/7. to pull a factor of 72*~! outside
each FDCn integral (cf. Theorem 2 of Chapter 2). The generalization of (3.31) then

has the form
K(t) = Tukr (t/7a) — Tl Ra(t/7a) + 2R3 (t/7) + . .. (3.35)

with K, (00) being the FDCn contribution to the long-term effective diffusivity as cal-
culated previously. For example, for the energy spectrum E, (k) we know from (3.31)
that x;(00) = 1, kz(00) = § and k3(0c) = 3. Now we generate the generalized Padé

approzimants to (3.35) by treating each &;(t/7,) as if it were a constant coefficient in
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a 7. power series. Thus we set

0/ 2. . ﬁl(t/T*)
Pt = T wm
+ m(t/‘r*)T*
2
Pl(2. _ k1(t/7) +f€1(t/7'*)fc:2(z}’;3) fsz(t/‘r*)T*g
1(7.*’t) - 1+ Ks(t/T*)TQ .

I‘Lz(t/T*) *

In Figure 3.11 we fix 7, = 1 and plot the approximations 7, PY(72;t) and 7. Pl (72; 1)
to x(t) as functions of the time ¢. The generalized Padé approximants are found to
give good approximations for all ¢ and for 7, up to order one, i.e., for dimensional

correlation times on the order of the eddy circulation time, (ukg)~!.

3.10 The Lagrangian correlation

Having introduced the generalized Padé approximation to x(¢) for 7, of order one,

we go a step further and consider how this method can approximate the Lagrangian
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correlation for isotropic turbulence

L(t) = %(ui(xo,O)ui(r(t),t)), (3.36)

where r(t) is the position vector of the fluid particle which was at x¢ at time 0, i.e.,

Er(t) = u(r(t),t)

r(0) = xo. (3.37)

The Lagrangian correlation is a very useful quantity in studies of turbulent dif-
fusion and particle dispersion, but for experimental flows the Eulerian correlation
(which is measured at two points fixed in space, instead of following a fluid particle
as for (3.36)) is much easier to measure. It is therefore of considerable interest to
investigate whether a connection can be made between the Lagrangian correlation
and the known Eulerian correlation.

It follows from the definition of the Lagrangian correlation that

L= ey =14 poy. (3.38)
dt 2 dt?
As we have already detailed an accurate approximation scheme for (t), it is straight-

forward to apply it to L(t). We take the series of FDCn integrals (3.35) for x(¢):
K(t) = k1 (t/7) — T2R2(t)7) + . .. (3.39)

and differentiate with respect to ¢ to get a series for L(t):

L(t) = %fc(t) = R (t)7) — T2 () + (3.40)

As each of the x;(t) functions is produced from repeated time integrals, the derivative

k;(t) reduces to an integral of one dimension less than k;(¢). For example, the FDC2
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term ko(t) is defined by

1 o] o] t t1 to kz
_1 / dk, / dks / dt, / dts / dts E(kr) E(ks) L R(t—t5, k) R(ty—ta, k),
3 0 0 0 0 0 3

which can be put in a more convenient form by employing the change of variables

s = t— tl, S9 = tl - tz, S3 = t2 — t3 to obtain:

1 fers) 00 t t—s1 t—s1—52 k2
= g / dkl / dk‘g / dSl / dSQ / d83 E(kl)E(k'g) %LR(S1+82+83, kl)R(Sg, k‘g)
0 0 0 0 0

and then the differentiation is easy to perform:

. 1 oo o0 t t—s1 8k2
ky(t) = 3 / dk, / dko / dsq / dsy E(k1)E(ks) 313(7: k1) R(s2, ko)
0 0 0 0
1 o0 o0 t i1 8]{32
= g/ dkl/ dkz/dtl/ dty E(ky)E (k) 1R(t k) R(t, — tg, ko).
0 0 0 0

From (3.40) we generate the generalized Padé approximants for L(t) as we did
above for x(t). In the cases we have calculated these converge remarkably quickly,
so that PP(72;t) and P}(72;t) give very good approximations even at 7, = 1. It is
therefore worth explicitly recording the approximations these give for L(t) in terms

of the Eulerian correlation functions:

L(t) = Li(t/7) — T2Ly(t/T,) +

1
3

812
dk, / dks / dt, / dty E()B(k2) S5 R(t, ) R(1y — ta, ko),
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and the Padé approximants to L(t) are then

Li(t/7)
L+ L™
L1t/ ) Lalt/ ) —L2(t/ 7w
Pl z.t _ Ll(t/T*)—f— 1(t/ )52(({/73) 3(t/ )7_*2
1(7'*7 ) - 1+L3(t/7-*)7_2

La(t/re) ' *

In the next section we generate a random velocity field with a given Eulerian
spectrum and advect particles according to (3.37). These numerical simulations show
that the FDC-Padé approximations to the Lagrangian correlation are indeed accurate
for 7, of order 1, i.e., for dimensional correlation times on the order of the eddy

circulation time, (uko)™!.

3.11 Numerical simulation of advection by a ran-
dom velocity field

We create a random velocity field with prescribed statistics and follow fluid particles
as they advect, recording the statistical quantities for comparison with the theory of
the previous sections. We consider Gaussian velocity fields and choose the velocity

spectrum to be of the form

1

Q(k,t) = ypE)

E..(k)Ri(t, k), with m,l =1 or 2.
and

Ei(k) = Ea(k) = —Z—u25(k ~ ko)
B 4u?kt
Tk
Ry (t, k) = exp(—wit?)

Ey(k) = Ey(k) exp(—k*/kf)

Ry(t, k) = exp(——%thQ). (3.41)
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The velocity field is generated using a method based on that used by Kraichnan [17].
In each realization, we set

N
u(x,t)=A Z {Zn cos [k, - X + wpt] + yusin [k, - x + wpt]}. (3.42)

n=1

To ensure incompressibility, we have
Zn:knxgn andYn:annna

with §,, and n,, chosen from independent Gaussian distributions. The frequencies w,
are chosen from a Gaussian distribution with standard deviation wq to produce Ry;
for Ry we set w, = |k,|. The vectors k, are chosen from a distribution shaped so as
to produce the desired energy spectrum E,,(k): for E1(k) the k,, are isotropically dis-
tributed on a sphere of radius kg, whereas for E5(k) each component of k,, is selected
from independent Gaussian distributions of standard deviation ky. The amplitude A

is chosen so that

(s (%, D) (x, £)) = 2 /0 " B(k)dk

= 3u?, (3.43)

3 u

so for £}, A = N and for Fs, A = ﬁ;“; The number of modes NV is taken to be

100. In Figure 3.12 we plot the average over 2000 realizations of u;(x, t)u;(x+r,t) as
a function of r = |r| for the spectrum E) (k)—this is compared to the exact correlation

function which is

sin(kr)

. dk

(g (%, B)us(x + 1, 8)) = 2 /OOO Ey(k)

osin(kor)
= —_— 44
3u Tor (3.44)

Having obtained a satisfactory velocity field, we proceed to follow fluid particles
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Figure 3.12: Comparison of exact (solid line) and numerical (symbols) correlation
functions for spectrum FEj.

as they are advected by:

r(0) =0. (3.45)

In each realization, (3.45) is solved by using a fourth-order predictor-corrector
scheme due to Hamming [18], with starting values formed by iteration of Newton’s
interpolation formula [19]. A time step of 0.2 was found to be satisfactory, and
each fluid particle was advected for up to 75 steps (i.e., 15 eddy circulation times).

The numerical approximations for the effective diffusivity x(¢) and the Lagrangian
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Figure 3.13: Generalized Padé approximants (lines) and numerical values (dots) for
k(t) for spectrum E,, time correlation R, and wy = 1/7,. Here 7, is fixed, 7. = 1/2/3.

correlation L(t) are then calculated from

3N Zr(z ) - u® (@ (1), ¢),

3N Zu(l) 0,0) - u? (x¥(2),¢). (3.46)

3.12 Results

In Figures 3.13 and 3.14 the statistical quantities (3.46) are compared to the cor-
responding FDC-Padé approximations which are calculated as outlined in Sections
3.9 and 3.10. The number of realizations, N,, is recorded in the legend. The 95%
confidence intervals are marked as error bars. Figure 3.13 uses energy spectrum Ej
and time correlation R; with wg = 1/7, = \/ﬁ In Figure 3.14 we use the spectrum
E5 and time correlation Ry which are equivalent to the spectrum Fp and correlation

Ry, of Section 3.8.3 if 7, is taken to be v/2. Thus the space-time correlation function
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Figure 3.14: Generalized Padé approximants (lines) and numerical values (dots) for
L(t) for spectrum Ej, time correlation Ry, and wy = k/7.. Here 7, is fixed, 7. = v/2.

is
27.2

Q(k7 t) = -

3
w3k}

exp(—k%/k2) exp(———;-u2k2t2) (dimensional), (3.47)

which is was also used by Saffman [12].

It is clear that the FDC-Padé approximations are extremely good, even for values
of the correlation time 7, of order one. In each case the second approximation P}
gives a small but definite improvement over the first approximation P?. Even the
lowest order Padé approximants give reasonable results which means the lowest order
FDC diagrams are all that need to be calculated in order to closely approximate the
effective diffusivity and Lagrangian correlation using the methods of Sections 3.9 and

3.10.
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3.13 Approximation of the mean concentration

We consider here the FDC1 equation for the mean concentration ©(x,t) which was

derived as equation (3.12):

0 ) 3
51?6(}(’ t) — kV°O(x,t) =
82 t
92,93 /0 dty /dy (ui(x, )u(y, 1)) G(x —y,t — t1)0(y, t1).

In many cases of interest, the molecular diffusivity is negligible compared to the
turbulent diffusivity, so we can set k to zero. Then G(x —y, ¢ — t;) becomes a delta

function and we have

) 82 t
&@(X, t) = 83:16333 /O <U,i(X, t)u] (X, t1)> @(X, tl) dtl (348)

For isotropic stationary turbulence, (u;(x,t)u;(x,t1)) = u?6;;R(t — t1), where u is
the r.m.s. velocity and R(t) is the Eulerian two-time correlation function. Equation

(3.48) becomes

t
%}-(x, t) = u’V? / R(t — t1)O(x, t1) dt;. (3.49)
0

This equation is a common approximation and arises in many different closure schemes.
In particular Saffman [20] derives it using a Wiener-Hermite expansion. He solves for
the evolution of ©(x,t) from a delta function initial condition, i.e., ©(x,0) = §(x).
He notes that the solution contains a term like ¢’(|z| — ut) and so propagates like a
wave of speed u, with negative values of ©. Since © represents a physically positive
quantity like concentration, the occurrence of negative values in the solution of the

approximate equation is a serious problem. Saffman comments that

The method may work better when the material is initially more diffuse
or is closer to a concentration of a type that exists some time after the

initial conditions...
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We decided to investigate whether equation (3.49) does indeed give physically rea-
sonable solutions if the initial scalar “blob” is of finite extent. We find that Saffman’s
conjecture is basically correct: for sufficiently smooth initial conditions with charac-
teristic length a, it is possible to find physically reasonable results (e.g., © positive)
for all time. Furthermore, we highlight the importance of the velocity correlation
time Tp. Our major result is that the dimensionless parameter 7, = uTg/a must be
small in order to guarantee that © will be positive for all time. In light of this fact it
is not surprising that Saffman found unphysical behavior. The delta function initial
condition he used corresponds to the limit a— 0 or 7, — 0.

The simplest generalization of Saffman’s work is to take an initial condition with
some finite characteristic length a. With a view to solving the equation using Laplace

transforms, we choose

4dma3 a?

O(x,0) = — H<1 TQ), (3.50)

with H(z) the one-dimensional Heaviside step function (H(z) = 1forz > 0, H(z) =0
for z < 0) and r = |x|. We also follow Saffman in taking R(t) = exp (—|t|/Tg). We
note in passing that this form of R permits us to cast the integrodifferential equation

(3.49) in the form of a damped-wave or telegraph equation:

0?0 1 00
5z T T Ve = 0. (3.51)

We have nondimensionalized lengths with a reference length L and times with a
reference time L/u. Hereafter a is the nondimensional length characteristic of the

initial condition, and T is the nondimensional correlation time.
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We solve (3.51), (3.50) by Laplace transforms, and find after some work that

2TE

“HE ar+ )/t s d
ae B a\r a e E
87ra3 r+a ria 2T/ y? — (1 + a)? Y

A y? — (r+a)?
+/r+a€ EI()< 2TE dy

11( yZ—(w)?)
t t _ 2T
+H( ——1 ae 2TE+a(r—a)/ e e

r—a

r—a

. £ (5=

31 t _ria by Il( y22_T(;+a)2>
= - H( / - dy

ae "t + a(r + a
8rad r r+a ) r+a 2T5\/y? — (r + a)?

t VY2 = (r+a)?
+ e 2TE T d
[—f—a ° 2Tg v
y?—(a—r)?
t a—r t Yy Il < 2TE‘ )
—-H ( - 1) ae” Tz 4 a(a — r)/ e p dy

a—r 2T5/y* — (@ —1)?

by 2—(a—r)?
+/a_re 2TEIO< i 27(’}5 )>dy

In the limit as a — 0 the expression for » > a should reduce to the solution of

+ 27‘} , ifr<a (3.52)

the delta-function initial condition considered by Saffman. His solution is given by

equation (31) of [20] and in our dimensionless variables is

- s (1) (1) ()
() [ () et () ) o
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Our analysis indicates that in fact the term in square brackets above should be divided
by an additional factor of v/2 — r2. Without this factor the solution as given by (3.53)
does not satisfy the equation (3.51) for ¢ > r.

Next we plot © as given by (3.52) for various values of a and Tg. Recall that these
dimensionless variables are defined by a = /L and Ty = @15/ L (here we use hats to
denote dimensional quantities). The reference length L is not present in the original
problem, so eliminating it leaves 7. = Tg/a = Ty /a as the only control parameter
of the problem. In other words solutions for different values of @ and Ty but with
fixed 7, will have identical forms, though on different length and time scales.

In Figure 3.15 we plot O as a function of r for seven different times. The param-
eter 7, is 10 in this case. We see the propagating ¢'-like spike, with large negative
values of ©. This corresponds to the case examined by Saffman. We set 7, = 1 in
Figure 3.16. Wave-like propagation and negative © values are still clearly evident.
However, Figure 3.17 for 7, = 0.1 displays behavior which appears to be physically
reasonable—no apparent negative values and a diffusive-type smoothing of the initial
profile.

Unfortunately, even for this case © is not positive for all times. Careful analysis
of the solution (3.52) shows that for times ¢ with |t — a| on the order of exp(—1/27,)
and r of this same exponentially small order, ©(x,t) has large negative values. In
Figure 3.18 we blow up the region of Figure 3.17 near r = 0 and ¢ = a to show this
unphysical behavior of ©.

Are we then to conclude that we cannot avoid negative solution values, even for
T, < 17 This is certainly true for the particular initial condition (3.50). However, we
notice that the singularity in Figure 3.18 looks like the singularity which appears as
r— 0 and t—a in the solution of the “balloon problem” for the spherical wave equa-
tion [21]. This singularity is a consequence of using a discontinuous initial condition.
Thus we are motivated to examine solutions of (3.49), or equivalently of (3.51), with
initial conditions that are sufficiently smooth.

Relevant theorems are found in [22], [23]. For an initial condition that is four times

differentiable, the solution of the telegraph equation (3.51) is equal to the solution of
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Figure 3.15: Solution (3.52) for 7, = 10.
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Figure 3.17: Solution (3.52) for 7. = 0.1.
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the corresponding heat equation

1 00

299 w20 —
To ot V<o =0,

plus terms of order 72. This holds for all r and all ¢. We conclude that when 7, < 1 a
sufficiently smooth initial condition for the telegraph equation will evolve to solutions
which are non-negative everywhere (at least up to order 72). Thus in this case the
closure approximation (3.49) gives physically reasonable results, which hopefully will
be close to the true © values. The analysis we have performed above for the step initial
condition demonstrates that a condition on differentiability of the initial condition is
indeed necessary in the theorems.

All this is very well, but we recall that the case of interest to us, (3.1), also has a
delta function initial condition and so corresponds to infinite 7,. As shown by Saffman,
unphysical results are found in this case. It is not clear why the FDC1 approximation
for ©(x,t) can have unphysical negative regions, and yet give the FDC1 expression

for the effective diffusivity (3.17) which seems physically reasonable.
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Chapter 4 Application to scalar

spectrum

4.1 Introduction

In this chapter we apply the functional derivative closure method to derive equations
for the scalar correlation and its Fourier transform, the scalar spectrum. As before the
FDC1 approximation gives an integrodifferential equation which is the first term in a
series expansion. We solve this equation using analytical and numerical techniques,
and derive new results for power law forms of the scalar spectrum.

Obukhov [24] and Corrsin [25] independently proposed the existence of an inertial-
convective range in the spectrum of a passive scalar which is advected by a turbulent
fluid. Their ideas followed the universal equilibrium hypothesis of Kolmogorov [26]
which leads to the famous k=% law for the velocity inertial range. Obukhov and
Corrsin showed that for sufficiently large Prandtl number Pr = v/k there exists a
range of wavenumbers where the scalar spectrum also has a ks range. Batchelor
[27] extended this analysis and used a model for the small-scale velocity to predict a
k=1 scalar range when Pr > 1. The k=% law has been confirmed by experiment and
direct numerical simulation, but the k™! range is very difficult to check (because of
the Pr > 1 requirement) and is still a source of some debate.

Predictions for the inertial-convective and Batchelor scaling ranges are a first test
for any closure model of turbulence. Kraichnan’s [9] direct interaction approxima-
tion (DIA) predicts a k~2 inertial range for the velocity and so does not give a k=3
scalar inertial-convective range. A k3 range is, however, predicted by an improved
(and more complicated) version of the DIA, the so-called Lagrangian history direct
interaction approximation (LHDIA [28]). The LHDIA also predicts a k~! Batchelor

range, as does another model due to Kraichnan which is based upon a rapidly varying
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(delta-correlated) velocity field [29], [30]. Our functional derivative closure is closely
related to this latter model—it may be considered as an extension of Kraichnan’s
zero-correlation-time model to finite, but small, correlation times. We show that for
stationary isotropic turbulence the FDC1 equation does indeed yield a £~! Batchelor
range, but of a slightly different form than that originally proposed by Batchelor.
Moreover, the inertial-convective scaling in the FDC closure depends upon both the
inertial range form of the velocity spectrum and on the scaling of the velocity correla-
tion time—a k™5 inertial-convective scalar range results if the correlation time scales
as k™5 in the velocity inertial range.

Recently there has been considerable interest in the case of a turbulent passive
scalar with an imposed mean gradient [31], [32], [33]. Experimental and numerical
work shows that the interaction between the scalar gradient and the turbulent velocity
field acts as a “forcing,” or source term, for the scalar fluctuations. This case has
not yet received much attention from closure modelers. Notable exceptions are the
EDQNM numerical calculations of Herr et al. [34] and the renormalization group
analysis of Elperin et al. [35] which predicts a k= inertial-convective power law.
We find that the FDC1 closure predicts a dominant k~% inertial-convective scaling
(just as in the isotropic case), but the difference between longitudinal and transverse
spectra scales as kP with p ~ —3.2. This scaling law, unlike the k=3 case, is not
independent of the large scales of the flow.

In the final section we present the results of numerical computations of the FDC1
and DIA approximations for a freely decaying scalar and conclude that the FDC1
predictions for the scalar spectrum are likely to be valid only for small velocity cor-

relation times.

4.2 The scalar spectrum

The scalar correlation for homogeneous turbulence is defined by

S(r,t) = (0(x, )f(x + 1, 1)) . (4.1)
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Note that the time arguments of the scalar are the same, so that S(r,¢) represents
a simultaneous measurement of the scalar at two points separated by the vector
r. By allowing S to depend on t we consider both decaying and stationary scalar
correlations—if the scalar statistics are stationary, then S(r,t) will be independent
of t.

The Fourier transform of S gives the scalar spectrum S by

2 1 —ik-r
Sliet) = dnk g / S(r, t)e-*7dr. (4.2)

We will see below that the FDC approximations are most easily derived in wavenum-
ber space, giving equations for the spectrum S(k,t). These equations may be Fourier
transformed using (4.2) to give corresponding physical space equations for the scalar
correlation.

The advection of an unforced passive scalar is described by the equation

%O(X, t) +u-Vl(x,t) — sV30(x,t) = 0. (4.3)

To find an equation for S(r,t), we multiply (4.3) by #(x + r,t) and add the corre-
sponding equation for 6(x + r, ¢t) multiplied by 6(x,t). Using a superscripted plus to
denote quantities evaluated at x + r, we have then

62
0ra0ra

240 — o (w00 + 2 (ug00) ~ 2mp e (00%) =0 (44
for homogeneous turbulence in an incompressible fluid. It is straightforward to show
from (4.4) that the total scalar variance (8(x,t)0(x,t)) = S(0,t) must be a decreasing
function of ¢t when & is positive. In order to achieve a stationary state, with S(r, t)
independent of time, we conclude that (4.4) and thus (4.3) must include some form of
“forcing term” on the right-hand side. When considering stationary statistics below
we examine two ways of introducing such a forcing. The first possibility is simply to
add an artificial isotropic forcing term to (4.3) and to hope that by suitable choice

of forcing statistics the effects of the forcing may mimic the effects which occur for
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real isotropic stationary scalar turbulence. The second idea is to consider the effect
of a mean scalar gradient imposed in one direction, so that (§) = x - g instead of zero
as before. Here g is a constant vector with the dimensions of a gradient of §. The
equation for the fluctuations of the scalar # about this mean is found from (4.3) by
setting 6 = (8) + 6, and is

5;9(){, t)+u-Vo(x,t) — kV?0(x,t) = —u-g. (4.5)

As we shall see below, the —u-g term on the right-hand side of this equation provides
an effective forcing term for 6. We note that in this case the existence of g implies
a preferred direction, so that the statistics of 9 are no longer isotropic, but instead

axisymmetic about the direction given by g.

4.3 The FDC1 equations

4.3.1 Unforced scalar spectrum

We consider the FDC approximating equations for the scalar correlation S(r,t) and
its Fourier transform S(k,t) given by (4.2). The equations are most easily derived in

wavenumber space. Briefly, we consider the Fourier transform of (4.3):

%9&, £ +i / dj j-ulk — 3,) 80, ) + k20(k, ) = 0, (4.6)

where 6(k, t) is the Fourier transform of 6(x,t) and has the correlation function

Ok, DK, 1)) = 5(k + k')%(%).

We multiply (4.6) by 8(k’, t) and add the corresponding equation for #(k’, t) multiplied
by 6(k,?). Averaging gives an equation for S(k,t) which contains the terms (u,06")
and (u,06'). These are expressed as integrals over S(k,t) by applying Novikov’s
Theorem and retaining just the first, i.e., FDC1 term of the series. The result for the
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unforced scalar is

9 S(k, 1) + 26k2S (K, ) =
k4]2E 1k Jlt ) 2\ ,—k(k%+5%)(t—0) S(.7U) S(k,O’)
o | o S e et
(4.7)

0
ot

where p = k - j/kj and E(k,t) is the stationary velocity (energy) spectrum. This is
an integrodifferential equation for the spectrum S(k, ¢). It can be written in physical
space by inverse Fourier transforming (or alternatively applying the FDC method to

(4.4)) and yields

0

R — 2 —_
5 S(r,t) —2kV=S(r,t)

t 82
_ /0 o [2Fup(r,t = 0) = 2Fap(0,1 = 0)] 5,755 r,0), (4.8)

where Fyg(r,t) = (ua(x, t)ug(x +r,t’' +1)).

4.3.2 Forced isotropic scalar spectrum

As discussed in the introduction, we are interested in finding possible stationary scalar
spectra, i.e., S(k, t) independent of ¢. To balance the effects of the diffusion terms in
(4.7) we add a stochastic forcing term to (4.3):

%H(X,itj +u-VO(x,t) — kV?0(x,t) = Phi(x,t). (4.9)

The forcing is taken to have isotropic, Gaussian statistics and correlation function

B(x, )0, 1) = 6(t — ')C(jx — x']), (4.10)

with the overbar denoting averaging over the realizations of the forcing ®. Terms like
0® are then calculated using Novikov’s Theorem; because of the delta-function time

correlation in (4.10) the FDC1 approximation to #® is exact—the delta-function in
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(4.10) is equivalent to having a zero correlation time for the forcing.
We redefine the scalar statistics to include averaging over both velocity and forcing,

SO

S(r,t) = (0(x, D0(x + 1, 1))

for instance. Then the equation for the forced isotropic scalar spectrum is (4.7) with

the forcing term added to the right-hand side:

-‘9—5(1{ £) + 2%25(1{ )

ot
k42E|k J|t o) 9 o vy | SG,0) Sk, o)
1— —k(k*+35%)(t—0) ) ! L
(4.11)
where C(k) is the forcing spectrum
1 .
= 47k? ~kT 4.12
C(k) = 4k s / Cr)e=*+dr (4.12)
The inverse Fourier transform of (4.11) gives the physical space equation
t 025 (r, s)
2 Fog(r,t —s) — Fog(0,t — ——*ds —
| Bt = 9) = Fop(0,t = )y S22
625( t)
—28 55 = ¢ (4.13)

4.3.3 Imposed mean gradient

If a mean scalar gradient is imposed in one direction, the passive scalar obeys equation
(4.5) instead of equation (4.3). The —u - g term on the right-hand side of (4.5) acts

as a forcing term, so artificial forcing is no longer necessary. The FDCI equation is
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derived as above, and yields

9 Sk, t) + 26k2S (k, ) =

ot
/dj/ k4.72E Ik—-]l i — )(1 . u2)€—n(k2+j2)(t——a) S(',O') S(k7 0) +

Ik —j[* 2k

+ [g - (kkf) } /0 tdaE(k,o). (4.14)

The direction of g fixes a direction in space; let i be the angle between this
direction and k, i.e.,

k-g=kgcos.

We consider a Fourier series for the axisymmetric scalar spectrum,
S(k,t) = So(k,t) + Si(k,t) cos + Sa(k,t) cos 2t + ...

and want to find equations for the S;(k,t).

For calculation in the convolution integral, let

k-j = kjcosyp

j-g = Jjgcos(

and let ¢ be the azimuthal angle of g with respect to the k—j plane (see Figure 4.1).

Then from simple trigonometry,
cos ( = cos 1 cos ¢ + sin 1 sin @ cos @,

and

/2ﬂcos2Cd¢:27r{;(cos <,0—1)+c082¢( coS gp—%)}. (4.15)
0



Figure 4.1: Geometry of the integration variables.

The forcing term of (4.14) is
t
[9* — 9% cos® Y] / doE(k,o)
0
1, [ 1, !
= —g¢° | doE(k,0) — =g°cos2¢ [ doE(k, o),
27 Jo 2 0

and so only the constant term and the cos2iy term of the scalar spectrum Fourier
series have non-zero forcing and appear in the stationary spectrum. We therefore

write the scalar spectrum as

S(k,t) = So(k,t) + Sa(k, t) cos 2 (4.16)
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and use (4.15) to find the following pair of equations for Sy and S,:

?—So(k t) + 26k*Sy(k, t) =

ot
k‘4]2E (k—3jl,t— o) 2, ;2 So(j,0)  So(k,0)
1 — 2\ ,—k(k*+5°)(t—0) 0\J> Q0B
/ dJ/ k- U T
k4J2E (k- J| t—o) 2\ —r(k2+2)(t—=c) L 2 S2(j, 0)
—Eg /OdaE(k o), (4.17)

—Sg(k,t + 26k28 (k, 1) =

k'3 E(k —j|,t — o) 2, ;2 S:(j,0) Sk, o)
d 2\ (kP +5%)(t—0) ’ -; ’
d"/o 7 [k —jl* e J? k?

1
—2—9 /doE (k, o) (4.18)

Given the velocity spectrum, (4.18) is an integral equation for Ss(k). Solving for Sy (k)
and substituting into (4.17) then allows the calculation of Sy(k) by solving another
integral equation. The full scalar spectrum is given by (4.16).

The corresponding physical space equation for the correlation S(r,t) is

2*S(x, s)
/ {Faﬁ t—S F (O t— S)} st
9*S(r, )
—2K Traor. =2 [/0 Fos(r, s)ds] 9a93- (4.19)

In the next section we analyze stationary spectra using the physical space equations

for S(r,t), and will then (in Section 4.4.6) numerically solve the spectral equations.

4.4 The stationary spectrum

When the diffusivity « is balanced by a production term like the artificial forcing or
the mean scalar gradient, the scalar spectrum may evolve to a stationary state, i.e.,
S(k,t) = S(k) independent of t. To examine the form of such a stationary spectrum in

wavenumber space, we let t— oo in (4.11), (4.17), (4.18) and assume S(k, t) = S(k).
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We will proceed to analyze these stationary equations in physical space and check

our analysis with numerical solutions in wavenumber space.

4.4.1 Analysis in physical space
From (4.13), the stationary equation for the forced isotropic scalar in physical space
is

o 525 525
2 [ /0 (Fag(r,7) — Fag(o,f)}df] 5~ g = Ol (4.20)

and that for the mean gradient scalar is (from (4.19))

* 0%8 9%S o0
2 [/0 {Fop(r,7) — Fap(0,7)} dT] Fradrs — 2587"&87"& =2 [/0 Fop(r, T)d’]'] 9ags-

(4.21)

We want to find the solutions S = S(r) of these equations in the inertial range.
Clearly a first step must be a hypothesis for the form of the time-integrated velocity

correlation. For an incompressible isotropic velocity field this may be written

/ Fop(r,t)dt = u? (F;;Grarﬁ + Géaﬂ) ,
0
with
F(r) = / frt)dt and G=F+ %TF'(T), (4.22)
0

and f(r,0) is the usual longitudinal velocity correlation function (see [1]). The func-

tion F'(r) is related to the time-integrated energy spectrum by

W2 F(r) =2 /O h /0 " E()R( k) (Sl(‘;i’;? - C?Zi’;?) dt dk. (4.23)

Kolmogorov [26] showed that when the Reynolds number of a turbulent flow is

sufficiently high there exists a range of wavenumbers called the “inertial” range where
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the energy spectrum E(k) scales as a power law, E(k) o« kP, and from dimensional
considerations he found p = —5/3. We make the assumption that the time-integrated

energy spectrum will obey a similar power law in the inertial range, i.e.,
/ E(k)R(t, k)dt oc k~(F,
0

for some v > —1. There is then a corresponding power law range in the correlation

function—for r > nand r < L,

F(0) - F(r) « %/Ooo (1) (% B s?r;iljz) N c?zgl;g)) dk+ O (9 L0 (g)

= % (=3 —7)+T(-2—7)]sin ((1 + ’y)g) "+ 0O (%) +0 (g) ,
(4.24)

with 7 in the range (0 < v < 2). The approximate beginning and end of the inertial

range are labeled by the Kolmogorov scale n and the integral scale L respectively.

4.4.2 Analysis of isotropic scalar equation

The isotropic scalar equation (4.20) may now be written

F-G 028
2 _ —_ 2 =
u { 5 Talp + (G G(O))Jag} 5roor; 2kV2S =C(r) (4.25)

or equivalently

<F — F(0) - -5’5) St 2 (G —G(0) - -’3) s, =0 (4.26)

-
This is expressible in the integrable form

d%{rz (F—F(O)—fg) Sr} _ r22(i(2r)7
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whence

——'—1_ o] j‘P 20
=Tna ) g (F@)—-F(O)—i)d" (427

u2

under the conditions that S, remain bounded at the origin, and that the correlation
vanishes at infinity. Equation (4.27) gives an integral representation for the scalar cor-
relation function, in terms of the statistics of the velocity and forcing. The structure

function of the scalar is then easily found from the relation

{(6 — 67)%) = 25(0) — 25(r)

which yields

5 r P 20 8
@077~ || o) —ron 429

We will make one further assumption: that the forcing correlation C(r) is approxi-
mately constant over the range of » under consideration. This will certainly be the
case if the forcing spectrum is strongly peaked at wavenumber k; and kf < 1/L, i.e.,

low wavenumber forcing.

Inertial-convective range

We consider r in the the inertial range:
nKr <KL, (4.29)
so by (4.24) the velocity correlation scales as

F(0) — F(r) = Dr?, (4.30)
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correct to O(r/L,n/r). The scalar structure function is then

(6 - 6+)?) = So /OT ___'O_dp7

~3u? )y & - Dpv

so for r satisfying both (4.29) and

rt > 2D’ ( . )
the scalar structure function is
v Cy 1
0 —0+)%) = — 2=
0= =-32p5=7"

correct to O(r/L,n/r). The connection between the structure function and the spec-

trum is given by

25(0) — 25(r) = /O " Sk (1 - %) dk,

and noting

/Ooo -3 (1 . Sinéf”) dk+ 0 (%) +0 (g)

=T(y=3)sin (3-7)Z)r*7+0 (%) +0 (g) , (4.32)

o X

we infer that the stationary scalar spectrum in the inertial-convective range is

Co 1 1

S(k) = ) (2=7v)T(y—3)sin ((’Y - 3)%)

kK3, (4.33)

To summarize, by assuming a k~(!*7 inertial range scaling of the time-integrated
energy spectrum, we find the resulting scalar spectrum scaling is k72, The value of

7 depends on the power law of E(k) (which by Kolmogorov’s theory is k~3), but also
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on the scale-dependence of R(t, k), since we have defined
k=) = B(k) /000 R(t,k)dt in the inertial range.
Taking R(t, k) = exp(—|t|/7«(k)) for the purpose of illustration, we find
k=) = Bk)r.(k), (4.34)

and must now postulate a power law form for 7, (k) in the inertial range. The question
of the best power law fit for 7, (k) has been examined by various workers in the field
(see Section 4.4.3), but no conclusive result has yet emerged. One proposal is the

“convective” (or “sweeping”) scaling:
(k) ocu kT, (4.35)

which leads to v = 5/3, and gives a scalar spectrum scaling as k™3 in the inertial-
convective range. There is also some evidence that the “inertial” time scaling may

be important, this is given by
(k) ox € 3k 3. (4.36)

Note that this inertial time scaling gives ¥ = 4/3 from (4.34) and leads to a k3
scalar spectrum in (4.33). Most probably the real time scaling is some mixture of
(4.35) and (4.36), with the scalar spectrum power law exponent lying between —5/3
and —4/3.

4.4.3 Realistic correlation times

We briefly digress to review the rather scanty literature related to the velocity time
correlation. Sanada and Shanmugasundaram [36] consider the convective time (4.35)

amd the inertial time (4.36) and conclude that their DNS data is satisfactorily reduced



81
onto a curve of the form

R(t, k) = exp(—w2t?),

(compare to the model correlation time function Ry in (3.34)), with
wi = uk/T,.

The value of 7, is found to be between 1.64 and 1.89 for microscale Reynolds numbers
between 100 and 200, with 7, decreasing with increasing Re.

McComb et al. [37] concentrate on the predictions of various closure theories for
R(t, k) and believe that the inertial time scale gives a better reduction of their results
than does the convective scaling.

In our numerical work (Section 4.4.6) we use the experimental work of Comte-

Bellot and Corrsin [39], who found that a correlation time

1 1 1 1)
T*(k)ET*{—+_+——+—}
Tc TR Ts D

collapsed their data onto a single curve. Here the 7, on the right-hand side is just a

fitted constant of order one; 7 is a “convection time”

T = {kQ/OkE(p)dp]— :

Ts a “straining time”

N

Tg is a “rotation time,”

and 7p a “diffusion time”

Tp = [k‘* /k Oop‘zE(p)dp}_%-
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4.4.4 Analysis of mean gradient equation

Equations (4.21) and (4.22) yield the following equation for the scalar correlation in

the case of a mean gradient:

F—Q F-d
u2{ - rarg+(G—G(0))5aﬁ}m*“vzszlﬁ{ 2 Tarﬂ+G5aﬁ}gagf”

(4.37)

or equivalently

1 1 1 1
—-Q—TF,SM + (F + ETF, — F(O)) v2s — Q—L'%VQS = ———2—7“F'g2 cos? 3+ (F + ET‘F') g%

(4.38)

where 3 denotes the angle between r and g. The presence of the gradient g breaks
the isotropy of the scalar statistics—the scalar correlation now depends not only on
the magnitude of r, but also on its direction. In a coordinate system axisymmetric

about g,
10 1 9 .
5 77 (5in(6)Sp) ,

2¢
VS = r2sin 8 98

(TQST) +

and we will seek a solution of (4.38) by expanding S in terms of Legendre functions:

o0

S = Z Sn(r) Py (cos 3) . (4.39)

n=0

Noting that
- 2 n(n +1)
2¢Q " S
Vs = E [Sn + 7nS’n ———=Sn| P, (cos )

2
r
n=0

and

1 2
2
J—— __P
oS ﬁ_3—|—3 » (cos ) ,

we obtain

2 1 1
SV [F ~ F(0) - %} + 5 [F +57F = F(0) - i} . [F + ng'] ¢>  (4.40)
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and

2 1
st [F — F(0) - %} + S [F +rF — F(0) - -’“—} -

2 u?
6 1 K 1,
—SQT_Q I:F + —2-TF, = F(O) — Ez_jl = —gg rF’ (441)

with S, = 0 for n # 0, 2.
It is straightforward to solve (4.40) in a manner similar to that used to solve

(4.26). The resulting structure function is

fop 52 [F+ %sF’} ds
P — 2 [F(p) — FO)]"

250(0) — 25y(r) = 24* / _
0 uZ

and with the inertial range form for F' given by (4.30), we obtain

_2¢°F(0) 1 g°

250(0) — 2S54(r) = 3D @) r?77 — 373 forn<«r< L, (4.42)

correct to O(r/L,n/r).
The equation (4.41) for S,(r) involves more work, though the existence of a par-

ticular solution
1
Sop = = g°r* (4.43)

which is independent of both F'(r) and & is noteworthy. To find homogeneous solutions
we make a further assumption x — 0 (which is reasonable in the inertial-convective

range), and then (4.41) is simply
1 3 1
Sy + Sé; 2+7) - SQT—Q 247) = *592%

which has homogeneous solutions 7™+ and r™- with

. (1+7) /72 + 147+ 25
+ — .

2

(4.44)
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Figure 4.2: The exponent n, as a function of ~.

For S(r) bounded as r — 0, we must only have the r"+ solution, leaving
n 1 2.2
Sa(r) = Ar™+ + 39T (4.45)

for some undetermined constant A. For v = 4/3, n, = 2.20, while for v = 5/3,
ny = 2.24—Figure 4.2 shows that n lies between 2 and 2.275 for v between 0 and
2. The constant A cannot be determined solely from the inertial-range information
we have at our disposal—in other words it depends on the form of the spectrum in
the low-wavenumber “energy-containing” range.

The equations relating spectra and correlation functions for the axisymmetric case

under consideration are

So(r) = /oo [So(k)smk(fr) + Sy(k) cos(kr) _Sz(k)sin(kr)] i (4.46)

0 . (kr)? - (kr)3
Sa(r) = | S(k) [Smk(fr)+3c?zg;§ —351(111{5];?}%, (4.47)

where the three-dimensional energy spectrum is given by S(k) = Sy(k)+Sa(k) cos(21)
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and the correlation function is S(r) = Sp(r) + Sa(r) cos(23), with ¢, 3 the angles
between k and g and between r and g respectively. In order to get the inertial

convective scaling (4.42) for Sp(r), we must have

_g*F(0) 1 1

m3(2-ﬂr@-3nm«7—$@kF'

So(k) ~

We consider power law forms of Sy(k) which can give (4.45):

% o |sin(kr) cos(kr) sin(kr) _
Lk[ = +3(kr)2 _3(kr)3 dk =

13T — _ (P LR L 2 et
[3T'(p — 2) + 3C(p — 1) + I'(p)] sin( 5 )r S T35 +0(L i)

(4.48)

where the lower cutoff is needed for p < —3, but the first two terms on the right-hand
side are the dominant terms in an asymptotic expansion as r/L — 0. As discussed
above, the constant A depends on the large scales of the fluid motion, but is in general
nonzero. Then comparison of (4.48) and (4.45) leads us to infer that Sy(k) scales as
k—(147+) in the inertial-convective range, but with a coefficient which depends on the
large scale motions. Figure 4.2 shows the exponent —(1+n.) lies between -3.275 and
-3 for the range of physically possible v values.

"To measure the power law scaling of Sy(k), we recall the total spectrum is S(k) =
So(k) + S2(k) cos(2¢)) where 1 is the angle between k and g. Hence the difference be-
tween the longitudinal spectrum (measured parallel to g, so 1) = 0) and the transverse

spectrum (perpendicular to g, so ¢ = 7/2) is 2S5,(k) and will scale as k~(1+7+),

Remark

Our definition of “longitudinal” and “transverse” spectra above are based on our
usage of the three-dimensional spectrum S(k). In experimental work the longitu-

dinal spectrum S)(k) is defined to be the one-dimensional Fourier transform of the
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correlation function measured parallel to g, i.e.,

_ L [T o(r8)
S“(k)—%/_ooS(g)e dr

and similarly the transverse spectrum is

S.(k) = %/ S <r - r—gg—) ek dr,

Using these definitions the spectra S and S, can be written in terms of the Sy and

S, spectra we used above; in particular the difference between them is

s -su =5 [ (3 -2) s

72 g

For the inertial-convective range scaling Sy(k) ~ k~(*7+) derived above this also
yields
S(k) — Sy (k) ~ k=(Fn+),

4.4.5 The Batchelor range

We return to the isotropic case and consider the Batchelor range of wavenumbers,

with r < 7. In this range the velocity correlation F'(r) is approximately parabolic:

F(r) - F(0) = %F”(O)r2 +O0Y r<,

and using the integral form (4.28) we find

(0 —6+)%) ~ ggms? In <1 + ’"_j) (4.49)

B

[ 2k
r>rp= m (450)

for
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Thus we have demonstrated a scaling (4.49) which exists for r3 < r < 0. The
existence of such a range clearly requires rz < n (which is equivalent to Pr > 1).
It is also possible to derive this Batchelor-like range from the stationary wavenum-

ber equation (see 4.11 and Section 4.4.6):

2nk28(k)—/djk4j2Eeff(|k—j|)(1_ 2) [S(j) S(k)

— ——=| =C(k),
2 k-7 -5 = ew
with Eeg representing the time-integrated energy spectrum. Consider wavenumbers
k which lie beyond the viscous cutoff for the energy spectrum; for these wavenumbers

the integral may be evaluated using the approximation |k — j| < k and neglecting

C(k). Letting q = k — j, expanding in terms of ¢/k and doing the angular integrals

yields
2k*S(k) = [2192%-2—5( )—48(k)], (4.51)
with
B = —15; dq/ ds ¢°F $,q)
= 15—/{/0 dq ¢*Eea(q)
Note that

0 15u? _,
| ¢Eatids= 2517 0)
0

and so B = 1/r%. The equation (4.51) has the bounded solution

Co E\ 1 k
_ LIS .2 4.52
S(k) 6k (1+ kB) kexp[ kB:I , (4.52)

defining the Batchelor wavenumber kg = 1 /TB.

This solution is different to Batchelor’s form

S(k) = 22’% exp [—252-], (4.53)
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Figure 4.3: Logarithmic slopes of FDC (4.52) (solid), and Batchelor’s theory (4.53)
(dashed).

although the difference is probably too small to be detected experimentally. We plot
the logarithmic slopes of both our solution and Batchelor’s in Figure 4.3. The z—axis

is log,o(k/kp) and the y—axis is

d(logo S)
d(IOglo(%)) .

A power law scaling S o< kP will manifest as a horizontal line y = p. Both solutions
give a k7! scaling range, but to see it we must be at least 1.5 decades below kp. As
the length of the Batchelor scaling range is O(Pr%) [27], we conclude that a Prandtl

number of order 10% is needed before any k™! range will be discernible.

4.4.6 Numerics for stationary spectrum

The equations (4.11), (4.17) and (4.18) are forced integrodifferential equations. In
order to investigate possible stationary solutions, we let ¢ — oo and assume S(k,t) =

S(k). For sufficiently small molecular diffusivity &, the time integration may be
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performed: we set
Een(k) = / Bk, 0)do.
0

Thus the stationary version of (4.11) is

2k2S(K) — / dj k;f Elffk('f j—|4j|) (1-12) [% - Sg)] _Cck),  (454)

with analogous equations from (4.17) and (4.18).

'To numerically solve a linear integral equation such as (4.54) we begin by discretiz-
ing the wavenumber integral and converting the integral to a sum (see, for example,
[38]). The integral equation may thus be rewritten as a matrix equation for the

unknown vector S:
AS — \S =C. (4.55)

We wish to solve (4.55) for different values of the parameter A. Since the matrix A
is symmetric, its eigenvectors form an orthogonal basis and so we may expand the

unknown vector & and the forcing vector C on this basis:

N

S = Zai</5i,
z;l

C = ) b, (4.56)
i=1

where ¢; are the eigenvectors of A, a; are the coefficients to be solved for and b; are

coefficients given by
C- ¢

b =
bi - b

(no summation). Then (4.55) implies

N N N
D_aikidi =D Aaidi = b
i=1 i=1 i=1
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where J; is the eigenvalue corresponding to ¢;, and hence

bi
Ai — A

a; =

Jfor A£ X, i=1,... N. (4.57)

Having found the coefficients a; the vector S is constructed using (4.56). Note that
the parameter A is positive for positive diffusivity and the eigenvalues ); are negative,
so we never divide by zero in (4.57).

The stationary-state mean gradient equations derived from (4.17) and (4.18) have

the matrix form

ApSy —ASy = —C+ BiS» (4.59)

for symmetric matrices A;, Ay and B;, and here C is the discretized version of
—FEe(k)g?/2. Solving (4.58) for S; by the same method as above allows the con-
struction of the right-hand side of (4.59), which is in turn solved to find S,.

4.4.7 Velocity spectra

We consider two types of velocity spectrum—a “purely inertial” spectrum, which
exhibits a k%3 scaling within a finite range, and is set to zero otherwise. A more
physically realistic case is provided by the “full” spectrum, which is piecewise smooth,
with power law scaling for the energy and inertial ranges, and an exponential decay
in the viscous range.

The time correlation function is taken to have the simple form

R(t, k) = exp(—|t| /7 (k)), (4.60)

and 7,(k) is chosen to be one of two cases—either the purely inertial time scale

winy

T (k) o € ikT3,
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or the “full” time scale which we base on the form used by Comte-Bellot and Corrsin

[39].

Purely inertial spectrum

We set the instantaneous energy spectrum to have a purely inertial range form

ae3k=3 for ky < k < ky
E(k) =
0 otherwise,

where a = 3/2 is the Kolmogorov constant. Complementing this spectrum is the

correlation time, which we take as
1 2
To(k) = The73k73 (4.61)

for a constant 7,. This purely inertial time scale is expected to produce a k=3 scalar
spectrum (as seen in Section 4.4.2). The time-integrated energy spectrum is

T*CKG%]C_% for k1 < k < ks
Eeff =

0 otherwise

Full spectrum

A more realistic instantaneous energy spectrum is given by

4

AE™ ko< k< kl
aes k3 ky < k < ky
BkTexp(—sk) ko <k

{ 0 otherwise

where A and B are determined by the continuity of the spectrum, and m, ¢ and

s are empirical constants. We follow Comte-Bellot and Corrsin [39] in defining the



92

10%

10°

f k” S(k)

Lol i e ol
107 10°
log k

Figure 4.4: Scalar spectrum for purely inertial range velocity spectrum. The spectrum
has been multiplied by k'™ to highlight the scaling. Inertial range is k; = 0.01,
ks = 0.316, with parameter 7, Pr = 0.6.

correlation time by

T*(k)ET*{_l_+i+_1_+i}_l, (4.62)

TC TR Ts Tp

as in Section 4.4.3. Comte-Bellot and Corrsin found that this scaling of the corre-
lation time collapsed experimental data onto a single curve, R(t/7.(k)), which we

approximate by the exponential form (4.60).

4.4.8 Results

A sample of numerical results is presented in Figures 4.4 through 4.7.

Each figure is a log-log plot of wavenumber against k?S(k), where p is a scaling
exponent which best matches the power law behavior of S(k) in the inertial-convective
range. The region where the scalar spectrum S(k) scales as kP thus appears on the
plots as a straight line.

The nondimensional control parameter depends on 7,Pr, and the form of the
spectrum depends on this parameter—we plot results using values of 7, Pr which give

the most extensive power law ranges.
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Figure 4.5: (a) Scalar spectrum parallel to g, multiplied by k*%*; (b) difference be-
tween longitudinal and transverse spectra, multiplied by k312: Purely inertial range
velocity spectrum. k; = 0.01, ky = 0.316, and parameter 7, Pr = 0.8.
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Figure 4.6: Scalar spectrum for full velocity spectrum. 7,Pr = 5. The spectrum has
been multiplied by k!5 to highlight the scaling. k; = 0.0316, ky; = 0.316.
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Figure 4.7: (a) Scalar spectrum parallel to g, multiplied by k'4*; (b) difference be-
tween longitudinal and transverse spectra, multiplied by k31%: Full velocity spectrum;
ky = 0.0316, ks = 0.316, and parameter 7, Pr = 0.04.

The purely inertial velocity spectrum has v = 4/3, so from the analysis in Section
4.4.2 we expect the isotropic scalar spectrum to scale as k773, i.e., with exponent
—5/3. From Section 4.4.4 the expected longitudinal and transverse scalings for the
mean gradient case are —5/3 and —3.20 respectively. As shown in Figures 4.4 and
4.5, the numerical isotropic exponent is found to be —1.72 and the mean gradient
exponents are —1.64 and —3.12. The agreement with the analysis is reasonable,
especially given that the numerical inertial range is only 1.5 decades in extent, in
contrast to the infinite inertial range considered in Sections 4.4.2 and 4.4.4.

The scaling of 7, (k) for the full velocity spectrum as given by (4.62) is only approx-
imately a power law. We find for a one-decade inertial range that the time-integrated
spectrum Feg(k) is best fitted by 57293 hence v = 1.63. The theoretical values for the
isotropic, longitudinal and transverse scaling exponents are therefore —1.37, —1.37
and —3.24 respectively (see equations (4.33) and (4.48)). The numerical results (Fig-
ures 4.6 and 4.7) are —1.55, —1.44 and —3.14. The agreement between theory and
numerics is not as good as in the purely inertial case. This is attributable to memory
and resolution limitations which constrain the inertial range size to one decade (in-
stead of 1.5 decades for the purely inertial case), and to the fact that 7.(k) is not a

pure power law throughout the inertial range.
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4.5 Decaying spectrum—comparison with DIA

The FDC1 equation for the unforced isotropic scalar spectrum is (4.7):

S(k,t) + 2xkk*S(k, t) =

4.2 -
/d_]/ k' E(k —jl,t - )(1 _u2)e—n(k2+j2)(t—a) S(,0) S(k, o)

k—jl* S

9
ot

(4.63)

Based upon the analysis of the FDC method in previous chapters, we expect equa-
tion (4.63) to provide good approximations to the true scalar spectrum when the
correlation time of the velocity is small. To quantify this condition and compare the
FDC with more traditional closure methods, we consider also the direct interaction

approximation (DIA) for the unforced isotropic scalar spectrum (see [40]):

%S(k t,t') + kk*S(k; t,t') =
. k4j2 9 t . , S(j;t,0)
/d.]m(l — p ){ i E(k —j|,t—o)g(k,t' — U)Tda
t : . S(k;t',o
—/ E(Ik—*Jl,t—U)g(J’t‘“)(_/gf‘lda}’ (4.64)
0

where S(k;t,t) = S(k,t) and the response function g(k,7) is the solution of

—g(k,7) + £k>g(k,T) =

or
/d_]/da— _ )E(ll{ll{_iljilt4_a)g(k,Twa)g(j,a). (4.65)

The stationary velocity field is taken to be

4u2kt

E(k,t) = TR exp(—k*/k?) exp(—%quQtQ), (4.66)

(compare with (3.47)). This form is especially convenient as it allows the angular
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integrals in (4.7), (4.64) and (4.65) to be done exactly—for example, (4.63) becomes

%S(k, t) + 2xk*S(k,t) = %;?H(k, t) (4.67)
and
H(k,t) = 1/Oocljj? K /tda [e%jw (1 — —1~—) + e 2kiw (1 + —1—)] X
2 Jo 0 2kjw 2kjw
s~ 2o~ Wk +i%) o=k (k?+j?)(t~0) [8(;‘,20) - S(:;")} : (4.68)

with w = v?(t — 0)?/2 + 1/k%. Time and space variables are discretized and we set

the initial scalar spectrum to have the form
S(k,0) o k2e /K

First consider the simpler FDC equation (4.11). At each time step the time and
space integrals are approximated by the trapezoidal rule. The scalar spectrum at the
next time step is found by using a predictor-corrector scheme to solve (4.67)—two
iterations were found to be sufficient (see Lee [40]). A similar procedure was followed

for the direct-interaction approximation equations (4.64) and (4.65).

4.5.1 Results

Results of the FDC and DIA calculations are compared in Figures 4.8 to 4.10. Both
methods are known to be asymptotically correct as the correlation time goes to zero,
and Figure 4.8 shows them to give similar results for the velocity spectrum (4.66)
with 7, = 0.1. For larger values of 7, however, we see different distributions of scalar
variance in wavenumber space—this is despite the fact that both methods predict

very similar values for the total scalar variance at time ¢,

/0 " Sk, t)dk.
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Figure 4.9: Decaying DIA (solid) and FDC1 (dashed) spectra for 7, = 0.3.
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Scalar spectrum
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Figure 4.10: Decaying DIA (solid) and FDC1 (dashed) spectra for 7, = 0.5.

The direct interaction approximation is considered to be reasonably accurate for
velocity spectra of the form (4.66) and so the divergence of the FDC and DIA leads
us to conclude that the validity of the FDC1 spectral equation is limited to small

values of 7,.
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Chapter 5 Conclusion

We briefly summarize our work:

e Outlined the functional derivative closure, a novel closure method for problems

which are stochastically nonlinear.

e Used the simple stochastic oscillator example to demonstrate the interpretation

of the FDC series as perturbation series in the correlation time 7,.

e Defined a generalized Padé approximant to derive formulas relating the effective
diffusivity and Lagrangian correlation to the Eulerian correlation, and numeri-
cally computed random velocity fields to confirm the accuracy of the approxi-

mations.

o Applied the first order FDC approximation to derive power laws for the station-
ary scalar spectrum with isotropic forcing and with a mean gradient. Compared
numerical computations of a decaying spectrum with the direct interaction ap-

proximation to demonstrate their equivalence for small correlation time.

The effective diffusivity and the Lagrangian correlation approximations are valid
for correlation times on the order of the eddy circulation time, whereas the spectral
results are likely to be accurate only for smaller correlation times. In Section 4.4.3 we
showed that the current experimental and numerical results on turbulence indicate
values of 7, between 1 and 3 times the eddy circulation time.

Further experimental and numerical work on the form of the velocity correlation
time would be most welcome, and should permit testing of the predictions made
here, for example the Lagrangian-Eulerian formulas and the k=32 spectral scaling in
the mean gradient case. Other ideas for future work include the extension of the
FDC to non-Gaussian stochastic fields and to closure modeling for the small scales

in large-eddy simulations of engineering flows.
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Appendix A Proof of Novikov’s Theorem

We present Novikov’s [5] proof of the following theorem:

Theorem 1 For arbitrary Gaussian random functions f;(s) with zero mean and cor-

relation tensor

(£i(8)fx(s) = Fi(s, s')

where s represents an aggregate of arguments on which the random function depends,

the cross-correlation (f;(s)R[f]) may be computed as

(LR = [ Fulss) () ds, (A1)

where the integral extends over the region in which the functions are defined. Here R

stands for any functional of £.

To prove the theorem, represent R as a functional Taylor series

R[f] = R[0] + Z%/---/Rg{?%(sl,... s 5n) fir (51) - i (Sp)dsy . . . dsn,

_ " R[f]
B 6 fir (81)0 fi (82) - - - 0 fi, (8n) f=().

(A.2)

(BRIED =Y o [ [ R Gt s ilor) - filon))dsy s
(A.3)

Using the fact that the mean value of a product of an even number of quantities with

a Gaussian distribution is equal to the sum of the products of the mean values of all
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possible pairwise combinations, we have

(fi(8)fur(s1) - - fin(sn)) =

n

D {59 fra(sa))(Fir(51) - - fiams (Sa-1) fiasa (Satt) - - fin (0)),

and thus
= 1
(ORI = X o= [ Bt

X [/---/jo{in(sl,...  50)(fin(52) « - fin (5n))dsa ... dsp| ds;.  (A.4)
On the other hand, taking the functional derivative
SR[f] <~ 1
Sfu(s') Z - 1!

— (n
n=1
« / / R (550 5a) fia(52) . i (50)dss ... dsm.  (A.5)

and substituting (A.5) in the right-hand side of (A.1), we see that the resultant

expression coincides with (A.4), proving the assertion (A.1).
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Appendix B Counting the FDC diagrams

We want to calculate the number of diagrams of order n in the FDC expansion. To
begin, we schematically represent the hierarchy of functional derivatives that begins

with equations (2.12) and (2.16):

= = p—
/7 b 5b
H
LRI .
Lo T6b 5b2
_w = Swm T e

(B.1)

Clearly this is a highly schematic representation, for we have not shown the factors of
¢, the function arguments nor the Heaviside step functions. The arrows indicate the
possible paths of expansion, in the following sense: to expand {bg) we apply Novikov’s
Theorem (see (2.11)) and so seek (g—g). To find this, we average the first term in the
hierarchy (B.1) and find one term containing (g) and remainder terms of the form
1l (bg—g). Applying Novikov to expand these in turn (see (2.15)), we gain a factor of
I' and descend a level in the hierarchy, and now need to expand <‘£—Z> As in (2.16)
this gives 2 terms of the form (), plus the [ <b‘;z—§> remainder. Each (&) term
can in turn be expanded by returning to the highest level in (B.1), while [ <b%§> is
expanded by Novikov’s Theorem, gaining a factor of I' and descending another level
in the hierarchy, etc. Each term which is expanded in this way contains a unique
combination of Heaviside terms and so gives a unique FDC diagram.

By definition the FDCn diagrams contain n I' factors, and so must result from

expansion paths in (B.1) which include n — 1 descents (one factor of I' comes from
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Figure B.1: T}, the trellis for n = 3.
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Figure B.2: Ty, the trellis for n = 4.

applying Novikov’s Theorem to (bg) to get [T'(3Z)). Since each diagram finally
contains (g) (along with the multiple I-factors), the expansion path also must include
n — 1 ascents in the hierarchy (B.1), and so there are 2n — 2 steps in the expansion
path for each integral.

To count the FDC diagrams of order n, we employ some graph theory ideas [41].
We begin with a trellis (an ordered graph) of width 2n — 1 with n—1 levels, such that
at each vertex the expansion paths can lead upward or downward in the hierarchy
(B.1) as appropriate. The starting and ending vertices are both at the highest level,
level 1. The numerical multiplying factors in (B.1) are included as edge weights on
the trellis—note each ascending edge has a weight equal to the number of the level
from which it ascends, whereas each descending edge has weight 1. For n = 3 the
trellis T3 is as shown in Figure B.1, and the n = 4 trellis 7} is in Figure B.2.

Now we have reduced the calculation of the number of FDC diagrams of order n
to finding the sum of the weights of each path in the trellis T}, leading from the start
to the end vertex—the weight of a path being simply the product of the edge weights
along the path. For example, the path shown in Figure B.3 has weight 1 x2x1x2 = 4
and the only other possible path in T3 has weight 1 x 1 x 3 x 2 = 6, which tells us
that 4 + 6 = 10 of the 15 diagrams of order 3 are FDC3 diagrams.

In general the sum of the weights of each path in T, is given by a combinatorial

quantity called the flow for the trellis and may be calculated by using the matrix
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Figure B.4: T, labeling for incidence matrices.

representation of the trellis. Take 73 as an example and label the vertices as shown
in Figure B.3. At each step an incidence matriz gives the path weights for moving
from each vertex on the current step to each vertex on the next step. For example,

the T3 incidence matrices are:

ORI R

Then by Theorem 4.7.1 of [41], the flow (i.e., the number of FDC3 diagrams) is equal

to the matrix multiplication of the incidence matrices:

The incidence matrices for Ty (see Figure B.4) are:
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b c d ié
c
() vy o[l
g h g .
e (21 g |1 7
i (2)

e () () ()@=

The trellis and incidence matrices for higher orders are readily found—indeed the

incidence matrices may easily be inferred without drawing the trellis. We give here

the flow for T5 which is reported in Table 2.2:

(1)(21)10 210 ;(1)
3 1 0 4 1 .



106

Appendix C Proof of Lemma 1

By definition the FDCn integrals contain 2n — 1 I-factors, each of which occurs as a
consequence of the application of Novikov’s Theorem. The I'(f3,_s,t2,_1) term, for

instance, must appear in the combination

5% q(ton_
/dth—l P(th—27t2n—1) <5b(t 31( 2 (5;()t )> )
Ji) e Tk

with £ (the order of the functional derivative) being greater than 1. As a consequence
of causality the functional derivative is zero unless ¢4,,_; is later than each of the times
jys- -« 5 b, 1.e., the vertex f,,_; must appear in the vertex-ordering with ts,_; >
tisstm—1 > tj, ... ;tan—1 > t;,. Thus the dotted line representing I'(¢2,-2, t2,_1) on the
diagram has at least one vertex “foot” to the right (i.e., anticlockwise on the diagram)
of the vertices t;,,;,,... ,t;,, and so the diagram cannot be cut so as to separate the
['(tan—2,tan—1) loop from the rest of the diagram. Since a similar argument applies to
each of the other I loops, it follows that the FDC diagrams cannot be disconnected
diagrams.

That every connected diagram must be an FDC diagram can be shown by a
counting argument: the number of FDCn diagrams equals the number of connected
diagrams of order n, and since we have shown that every FDC diagram is connected,

it follows that every connected diagram must be an FDC diagram.
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Appendix D Proof of Lemma 2

Consider “flattened-out” diagrams as in (2.44). The vertex 0 corresponds to ¢, and
we want to examine the limit ¢ — oco. Integration is over all the other vertices, with
constraints (e.g., for (2.45) these constraints are 0 > 1 > 2 > 3). Imagine that the
vertices are beads on a wire which cannot pass through each other. The dotted lines
between vertices ¢ and j represent a connection of the form I'(i,j). The integrand is
composed of the product of n such I'-factors, and will be non-zero only when each I'-
factor is non-zero. The function I is assumed to go to zero at infinity, so we take it to
be zero after some cutoff distance 7,, i.e., I'(¢;,t;) = 0 for |t; — ;| > 7. It follows that
the only non-zero contribution to the integrand comes from such bead configurations
as have each pair [t; — t;| < 7. for each factor ['(i,5). In connected diagrams, the
leftmost bead cannot be further than n7, from the rightmost bead (which is bead 0),
and so the integrand over the vertices is finite, even as ¢t — oo (i.e., as bead 0 moves
arbitrarily far to the right). That this does not happen for unconnected diagrams
is clear from the (2.45) diagram. The beads-on-a-wire model of the diagram tells us
that we get non-zero contribution to the integral when bead 1 stays within a distance
7, of bead 0, and bead 3 within 7, of bead 2. As bead 0 moves to the right, however,
the 2-3 pair can roam freely over a larger and larger region, and so the integral may

become arbitrarily large.
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