
 
 
Chapter 3 
 
Theory of Phase Noise Mechanism of 
NEMS 
 
 
 
We present the theory of phase noise mechanism of NEMS. We examine both 

fundamental and nonfundamental noise processes to obtain expressons for phase 

noise density, Allan deviation, and mass sensitivity. Fundamental noise processes 

considered here include thermomechanical noise, momentum exchange noise, 

adsorption-desorption noise, diffusion noise, and temperature fluctuation noise.  For 

nonfundamental noise processes, we develop a formalism to consider the Nyquist-

Johnson noise from transducer amplifier implementations. The detailed analysis 

here not only reveals the achievable frequency stability of NEMS devices, but also 

provides a theoretical framework to fully optimize noise performance and the mass 

sensitivity for sensing applications. 
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3.1 Introduction  

So far we have considered how physical fluctuations convert into the noise 

sidebands of the carrier and give the conventional definition of phase noise, frequency 

noise, and Allan deviation, all commonly used to characterize the frequency stability of 

an oscillator. Here we proceed to investigate phase noise mechanisms affecting NEMS 

devices. First, we examine the fundamental noise processes intrinsic to NEMS devices.1-3 

We begin our discussion from thermomechanical noise, originating from thermally 

driven random motion of the resonator, by considering the thermal fluctuating force 

acting on the resonator. We then consider momentum exchange noise, adsorption-

desorption noise, and diffusion noise, all arising from gaseous molecules in resonator 

surroundings. The impinging gaseous molecules can impart momentum randomly to a 

NEMS device and induce momentum exchange noise. Moreover, when gaseous species 

adsorb on a NEMS device, typically from the surrounding environment, they can diffuse 

along the surface in and out of the device and produce diffusion noise. Meanwhile, they 

can also briefly reside on the surface and then desorb again and generate adsorption-

desorption noise. We also discuss the noise due to the temperature fluctuations; these 

fluctuations are fundamental to any object with finite thermal conductance and are 

distinct from environmental drifts that can be controlled using oven-heated packaging, 

similar to that used for high precision quartz clocks.  

Note that the thermomechanical noise from the internal loss mechanism in the 

resonator and the momentum exchange noise from gaseous damping are dissipation-

induced fluctuations. They are expected for mechanical resonators with nonzero 

dissipation according to the fluctuation-dissipation theorem.4 Other noise sources 
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including adsorption-desorption noise, diffusion noise, and temperature fluctuation noise 

are parametric noise. These have to do with parametric changes in the physical properties 

of the resonator such as device mass and temperature, which cause the natural resonance 

frequency of the resonator to change, but do not necessarily involve energy dissipation, 

leaving the quality factor unchanged.1

Finally, we consider the nonfundamental noise processes from the readout 

circuitry of transducer implementations.5 In general, the NEMS transducers covert 

mechanical displacement into an electrical signal, which is subsequently amplified to the 

desired level by an amplifier for readout. Hence both the transducer and amplifier can 

add extrinsic noise to the NEMS devices, and the impact on frequency fluctuations is 

treated by our formalism developed here. Our formalism will reveal the resulting impact 

on the frequency fluctuations and enable the optimization of noise performance. 

Although we focus our discussion on the Nyquist-Johnson noise from the transducer and 

readout amplifier implementations, it can be readily generalized to incorporate other 

types of extrinsic noise such as flicker noise.  

In conjunction with the discussion of each noise process, we also give the 

expression for the corresponding mass sensitivity limit. In general, resonant mass sensing 

is performed by carefully determining the resonance frequency 0ω of the resonator and 

then, by looking for a frequency shift in the steady state due to the accreted mass.  

Therefore, the minimum measurable frequency shift, 0δω , will translate into the 

minimum measurable mass, Mδ , referred to as the mass sensitivity, Mδ . Henceforth, we 

model the resonator as a one-dimensional simple harmonic oscillator characterized by the 
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effective mass  and the dynamic stiffness .effM 2
0ωκ effeff M= 6 Assuming that δM is a 

small fraction of , we can write a linearized expression effM
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∂
≈ effM

M .                                  (3.1) 

  This expression assumes that the modal quality factor and compliance are not 

appreciably affected by the accreted species.  This is consistent with the aforementioned 

presumption that effMM <<δ . Apparently, δM critically depends on the minimum 

measurable frequency shift 0δω  and the inverse mass responsivity . Since 1−ℜ effκ  for 

the employed resonant mode—a function of the resonator’s elastic properties and 

geometry—is unaffected by small mass changes, we can further determine that  
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We note that equation (3.3) is analogous to the Sauerbrey equation,7 but is instead 

here written in terms of the absolute mass, rather than the mass density, of the accreted 

species. Both fundamental and nonfundamental noise processes will impose limits on 

,0δω  and therefore on .Mδ  For each noise process, we will integrate phase noise density 

to obtain the expression for 0δω  by using equation (2.25) and translate it into Mδ using 

equation (3.3).3  
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3.2 Thermomechanical Noise  

  We now consider the thermomechanical noise, originating from thermally driven 

random motion of NEMS devices.1-3 For the one-dimensional simple harmonic oscillator, 

the mean square displacement fluctuations of the center of mass, thx , satisfy  

2/2/22
0 TkxM Btheff =ω .  Here,  is Boltzmann’s constant and T is the resonator 

temperature.  The spectral density of these random displacements, 

Bk

)(ωxS , (with units of 

m2/Hz) is given by  
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The thermomechanical force spectral density in units of N2/Hz has a white 

spectrum QTkMS BeffF /4)( 0ωω = . For Q/0ωω >> , the phase noise density is given by 

the expression1
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PC is the maximum carrier power, limited by onset of non-linearity of mechanical 

vibration of the NEMS. For a doubly clamped beam with rectangular cross section driven 

into flexural resonance, the non-linearity results from Duffing instability and the 

maximum carrier power can be estimated by QxMQEP CeffCC // 23
00 ωω ==  with 

critical amplitude Cx  given by )1(/ 2ν−Qt  for doubly clamped beams.8 t is the 

dimension of the beam in the direction of transverse vibration; ν is the Poisson ratio of 

the beam material.9

  Upon direct integration of the spectral density, Allan deviation is given by  
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   We can rewrite this expression in terms of the ratio of the maximum drive 

(carrier) energy, 22
0 CeffC xME ω= , to the thermal energy, TkE Bth = , representing the 

effective dynamic range intrinsic to the device itself. This is the signal-to-noise ratio 

(SNR) available for resolving the coherent oscillatory response above the thermal 

displacement fluctuations.  We can express this dynamic range, as is customary, by 

 in units of decibels. This yields a very simple expression )/log(10 TkE(dB)DR BC=

20/2/1
0A 10)/1()( DR

AA Q −= ωττσ .                                                                                   (3.7) 

We now turn to the evaluation of the minimum measurable frequency shift, 0δω , 

limited by thermomechanical fluctuations of a NEMS resonator. To obtain 0δω , the 

integral in equation (2.25) must be evaluated using the expression for )(ωωS  given in 

equation (3.5) over the effective measurement bandwidth. Performing this integration for 

the case where Q>>1 and Qf /2 0ωΔπ << , we obtain:  
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We can also recast equation (3.9) in terms of dynamic range DR and mass responsivity 
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Note that 0/ωQ  is the open-loop response (ring-down) time of the resonator. In table 3.1, 

we have translated these analytical results from equation (3.7) and equation (3.9) into 
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concrete numerical estimates for representative realizable device configurations. We list 

the Allan deviation Aσ  (for averaging time Aτ =1 sec) and the mass sensitivity Mδ (for 

measurement bandwidth fΔ =1 kHz), limited by thermomechancial noise, for three 

representative device configurations with quality factor Q=104. For the calculation of 

resonant frequency, we assume Young’s modulus E =169 GPa and mass density ρ =2.33 

g/cm3 for the silicon beam and silicon nanowire and E = 1 TPa and ρ = 1g/cm3 for the 

single walled nanotube (SWNT). First, a large dynamic range is always desirable for 

obtaining frequency stability in the case of thermomechanical noise. Clearly, as the 

device sizes are scaled downward while maintaining high resonance frequencies,  

and  must shrink in direct proportion. Devices with small stiffness (high compliance) 

are more susceptible to thermal fluctuations and consequently, the dynamic range 

becomes reduced. Second, the values of the mass sensitivity span only the regime from a 

few tenths to a few tens of Daltons.  This is the mass range for a small individual 

molecule or atom; hence it is clear that nanomechanical mass sensors offer unprecedented 

ability to weigh individual neutral molecules or atoms and will find many interesting 

applications in mass spectrometry and atomic physics.

effM

effκ

10,11  
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Device Frequency Dimensions (L ×w×  t) Meff DR σA (1sec) δM (1kHz)

Si beam 1 GHz 660 nm×50 nm×50 nm 2.8 fg 66 dB 3.2×10-10 7.0 Da 

Si nanowire 7.7 GHz 100 nm×10 nm×10 nm 17 ag 47 dB 9.5×10-10 0.13 Da 

SWNT 10 GHz 56 nm×1.2 nm(dia.) 165 ag 14 dB 7.4×10-8 0.05 Da 

 
 
Table 3.1. Allan deviation and mass sensitivity limited by thermomechanical noise 

for representative realizable NEMS device configurations  
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3.3 Momentum Exchange Noise  

We now turn to a discussion of the consequences of momentum exchange in a 

gaseous environment between the NEMS resonator and the gas molecules that impinge 

upon it. Gerlach first investigated the effect of a rarefied gas surrounding a resonant 

torsional mirror.12 Subsequently, Uhlenbeck and Goudmit calculated the spectral density 

of the fluctuating force acting upon the mirror due to these random collisions.13 

Following these analyses, Ekinci et al. have obtained the mass sensitivity of the NEMS 

limited by momentum exchange noise.3 Here we reproduce a similar version of their 

discussions. In the molecular regime at low pressure, the resonator’s equation of motion 

is given by  

)(2
0

.
0

..
tFxMx

v
pA

Q
MxM eff

D

i
effeff =+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++ ω

ω
.                                                           (3.11) 

The  term results from the intrinsic loss mechanism. The term  

represents the drag force due to the gas molecules. P is the pressure,  is the device 

surface area, and 

.

0 )/( xQM ieffω
.

)/( xvpAD

DA

mTkv B /=  is the thermal velocity of gas molecule. The quality factor 

due to gas dissipation can be defined as Dgas MvPAQ = . The loaded quality factor , as 

a result of two dissipation mechanisms, can be defined as . Since we 

have treated the thermomechanical noise from the intrinsic loss mechanism, we assume 

that  and focus on the noise from gaseous damping. The collision of gas 

molecules produces a random fluctuating force with the spectral density given by
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Similar to equation (3.5) and equation (3.6), the resulting formulas for the phase 

noise density and the Allan deviation are 
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After taking similar steps leading to equation (3.9), we obtain 
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3.4 Adsorption-Desorption Noise  

Adsorption-desorption noise has been first discussed by Yong and Vig.14 The 

resonator environment will always include a nonzero pressure of surface contaminated 

molecules. As the gas molecules adsorb and desorb on the resonator surface, they mass 

load the device randomly and cause the resonant frequency to fluctuate. Yong and Vig 

developed the model for noninteracting, completely localized monolayer adsorption, 

henceforth referred to as Yong and Vig’s model. In addition to Yong and Vig’s model, 

we present the ideal gas model for the case of noninteracting, completely delocalized 

adsorption. However, the extreme of completely localized or completely delocalized 

adsorption rarely occurs on real surfaces; the adsorption on real surfaces always lies 

between these two extremes.15 Adsorbed gases molecules can interact with each other, 

resulting in phase transitions on the surface.16 Instead of monolayer adsorption, multilayer 
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adsorption usually happens on real surfaces.15 All these effects can further complicate the 

analysis of adsorption-desorption noise. The two models presented here, despite their 

simplicity, reveal valuable insight in the theoretical understanding of the adsorption-

desorption noise.     

In Yong and Vig’s model, the assumption of localized adsorption means that the 

kinetic energy of the adsorbed molecule is much smaller than the depth of surface 

potential, and thus the adsorbed molecule is completely immobile in the later direction. 

Thus the concept of adsorption site on the surface is well defined. We further assume 

each site can accommodate only one molecule and consider the stochastic process of 

adsorption-desorption of each site. Consider a NEMS device surrounded by the gas with 

pressure, P, and temperature, T. From kinetic theory of gas, the adsorption rate of each 

site is given by the number of impinging atoms or molecules per unit time per unit area 

times the sticking coefficient, s, and the area per site Asite. 

sitea sA
mkT
Pr

5
2

= ,                                                                                                      (3.16) 

 where P and T are the pressure and temperature of gas, respectively. In general, the 

sticking coefficient depends on temperature and gaseous species.17 Here we assume that 

the sticking coefficient is independent of the temperature. 

Once bound to the surface, a molecule desorbs at a rate  

)exp(
kT
E

r b
dd −=ν ,                                                                                                       (3.17) 

dν  is the desorption attempt frequency, typically of order 1013 Hz for a noble gas on a 

metallic surface, and Eb is the binding energy. For N molecules adsorbed on the surface, 

the total desorption rate for the whole device is Nrd. Since each site can only 
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accommodate one molecule, the number of available sites for adsorption is Na-N, so the 

total adsorption rate is (Na-N)ra. Equating these two rates, we obtain the number of 

adsorbed molecules  

da

a
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r
NN

+
= .                                                                                                           (3.18) 

The average occupation probability f of a site is defined as the ratio of the 

adsorbed molecules to the total number of sites, N/Na, and is given by )/( daa rrrf += . 

Substitution of equation (3.16) and equation (3.17) into equation (3.18) yields the 

formula for the number of adsorbed molecules as a function of temperature, also known 

as the Langmuir adsorption isotherm.16 
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We can rewrite equation (3.16) in terms of the gaseous flux, fluxΦ , given by 
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We derive the spectral density of the frequency noise by considering the 

stochastic process of the adsorption-desorption of each site, which can be described by a 

continuous time two state Markov chain.14 Here we briefly sketch the derivation for a two 

state Markov chain.18 Since each site can be occupied or unoccupied, we consider a 
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continuous time stochastic process { )(tζ , t>0}, where the random variable )t(ζ  can take 

either 0 (unoccupied) or 1 (occupied). The two rate constants of such a Markov chain are 

rd, the rate from state 1 (occupied state) to state 0 (unoccupied), and ra, the rate from state 

0 (unoccupied state) to state 1 (occupied state).We define  as the conditional 

probability that a Markov chain, presently in state i, will be in the state j after additional 

time t. Assuming that the site is initially occupied, we have initial condition, 

)(tPij

1)0(11 =P , 

and for a two state system, )(1)( 1110 tPtP −= . The corresponding Kolmogorov’s forward 

equation and its solution are given by10 
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The correlation time rτ  is defined as )/(1 da rr + . The autocorrelation function can 

be found by calculating the expectation value of )()( tt ζτζ +  from the conditional 

probability function. By definition, the autocorrelation function of )(tζ is given by 

fettER r

OCCsite +=+= − ττσζτζτ /2)]()([)( .                                                              (3.24) 

E[] denotes the expectation value of the random variable. Here for our purpose, 

we neglect the constant term f since this corresponds to the D.C. part of the spectra.  

is the variance of occupational probability f, given by . 

Note that  reaches a maximum for f=0.5 when the adsorption and desorption rates of 

the site are equal. 

2
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We apply the Wiener-Khintchine theorem to obtain the corresponding spectral 

density of )(tζ  for each site by performing the Fourier transform of equation (3.24).  
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Each adsorbed molecule of mass  will contribute to fractional frequency change 

m/2M

m

eff. We obtain the spectral density of fractional frequency noise by simply summing 

the contribution from each individual site.  
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Since the spectral density exhibits Lorentizian function form, we use equation (2.16) to 

obtain 
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)(xF  is the analytic function defined in equation (2.17). In the limit, Ar ττ << , equation 

(3.27) becomes  
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 In the other limit, rA ττ << , equation (3.27) becomes 
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In the ideal gas model, the assumption of delocalized adsorption means that the 

kinetic energy of the adsorbed molecule is much higher than the depth of the surface 

potential, and thus the adsorbed molecule is mobile in the lateral direction. The notion of 

adsorption site in Yong and Vig’s model is not well defined.14 We thus analyze the 
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kinetics of  adsorption-desorption using the total adsorption and desorption rates of the 

adsorbed atoms on the device. The total adsorption rate of the device is given by the flux 

of molecules multiplied by the sticking coefficient s and the device area , DA

D

B

a sA
Tmk

PR
5
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= .                                                                                             (3.30) 

  Once bound to the surface, the molecule desorbs at a rate given by 

. The total desorption rate of all the adsorbed molecules on the 

device is simply  
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At equilibrium, the total adsorption rate equals the total desorption rate, and the 

number of adsorbed molecules is given by 
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We also rewrite the expression in terms of the impinging gaseous flux fluxΦ , 
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We derive the spectral density of the fractional frequency noise by considering the 

dilute gas limit of Yong and Vig’s model. This is done by keeping the number of 

adsorbed molecules, , constant, and letting the occupational probability go to 

zero, and  go to infinity. Hence, . The spectral density of 

fractional frequency noise becomes  

afNN =

aN NNffN aaOCC →−= )1(2σ
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The correlation time due to adsorption-desorption cycle is given by the time constant of 

the rate equation 
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We find that  
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 Since the spectral density of fractional frequency in equation (3.35) exhibits 

Lorentizian function form, we use equation (2.16) to obtain   
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 In the limit, Ar ττ << , this expression becomes  
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In the other limit, rA ττ << , this expression becomes  
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Table 3.3 tabulates the expressions for the two models presented here. Note that equation 

(3.27) differs from equation (3.38) in the statistics. The occupational variance  in 

equation (3.27) and thus adsorption-desorption noise in Yong and Vig’s model vanishes 

upon completion of one monolayer due to the assumption that each site accommodates 

2
OCCσ
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only one molecule. In contrast, equation (3.38) exhibits idea gas statistics, manifested in 

the square root dependence of the number of adsorbed molecules.   

Now we discuss the effect of the correlation time on Allan deviation. Because the 

spectral density of fractional frequency for these two models exhibits Lorentizian 

functional form, both equation (3.27) and equation (3.38) have the same dependence on 

the ratio of the correlation time, rτ , to the averaging time, Aτ , through the analytic 

function, , defined in equation (2.17). Mathematically,  reaches a maximum at 

0.095 for x=1.85 and vanishes when 

)(xF )(xF

x  equals to zero or infinity, and. In other words, the 

adsorption-desorption noise in both models maximizes when Ar ττ 095.0=  and 

diminishes for Ar ττ >>  or Ar ττ <<  with the asymptotic behaviors dictated by equation 

(3.25), equation (3.26), equation (3.37), and equation (3.38). 

To explicitly illustrate the surface effect of adsorption-desorption noise, we give 

the expression for the maximum Allan deviation maxAσ in Yong and Vig’s model by 

simultaneously maximizing OCCσ  and )/( ArF ττ  in equation (3.27).  We find that  
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Here  is the mass of a single atom adsorbed the device.  is the total number of 

atoms of the device.  is the surface-to-volume ratio.  

Dm VN

Va NN /

Finally, we give the expressions for minimum measurable frequency shift and 

mass sensitivity. For Yong and Vig’s model, the integration of the spectra density yields 
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Similar to equation (3.41), we give the expression for the maximum mass fluctuation 

maxMδ  by the maximized OCCσ  and )2arctan( rfτΔπ  in equation (3.43) from Yong and 

Vig’s model. We find that mNM aπδ 321/≈max  when ∞→rfτΔπ2  and f=0.5.  

Similarly, for ideal gas model, we obtain 
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            Table 3.2 summarizes the expressions from Yong and Vig’s and ideal gas models. 

Table 3.3 shows the numerical estimates of  and maxAσ maxMδ  arising from nitrogen for 

the same representative NEMS devices used in table 3.1. (The number of sites, , is 

calculated assuming each atom on the device surface serves as one adsorption site. For 

silicon beam and nanowire, we assume that the device surface is terminated Si(100) with 

lattice constant=5.43 Å. For a single-walled nanotube (SWNT), we assume that the 

carbon bond length is 1.4 Å.) First, the magnitude of 

aN

maxMδ  indicates that the mass 

fluctuation associate with adsorption-desorption noise of NEMS is at zeptogram level. 

Second, table 3.4 shows the increase of Allan deviation as a result of increasing the 

surface-to-volume ratio as the device dimensions are progressively scaled down. In 

particular, for the 10 GHz single-walled nanotube (SWNT), representing the extreme 

case that all the atoms are on the surface, the corresponding Allan deviation is almost five 

orders of magnitude higher than that due to thermomechanical noise (see table 3.1). In 

other words, the adsorption-desorption noise can severely degrade the noise performance 
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of the device. This, however, can be circumvented by packaging the device at low 

pressure or passivating the device surface.  
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Table 3.2. Summary of Yong and Vig’s and ideal gas models 
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Device Frequency Na/NV Na σAmax(gas) δMmax

1 GHz 1.1×10-2 8.9×105 1.7×10-6 1.6 zg Si beam 

7.7 GHz 5.5×10-2 2.7×104 4.9×10-5 0.28 zg Si nanowire 

SWNT 10 GHz 1 5.0×103 4.9×10-3 0.27 zg 

  

Table 3.3. Maximum Allan deviation and mass fluctuation of representative NEMS 

devices  
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3.5 Diffusion Noise  

So far we have analyzed the adsorption-desorption noise from adsorbed gasous 

species on the NEMS device. The surface diffusion provides another channel for 

exchange of adsorbed species between the device and the surroundings to generate noise. 

We start the analysis of diffusion noise from calculating the autocorrelation function of 

fractional frequency fluctuation. Mathematically, the autocorrelation function )(τG  is 

calculated as the time average (<> ) of the product of the frequency fluctuations of the 

NEMS. 

22 )(/'),'(),()(/)()()( ><>+=<><>+=< ∫∫ tfdxtxfdxtxftftftfG τδδτδδτ .     (3.47) 

Here  is the instantaneous resonant frequency of the device and we define the 

averaged resonant frequency by 

)(tf

0)( ftf >≡< . In the actual experiments, ),( txfδ  remains 

proportional to local concentration fluctuation dxtxC ),(δ  and is given by 

∫
−=

dxxu
L

dxtxCxu
M
m

f
txf

eff 2

2

0 )(1
),()(

2
),( δδ ,                                                              (3.48) 

where  is the mass of the adsorbed atoms or molecules,  is the effective vibratory 

mass of the device,

m effM

3  is the length of the device, and  is the eigenfunction 

describing  flexural displacement of the beam. Here we only consider the fundamental 

mode  for a beam extending from  to , with 

 with doubly clamped boundary condition imposed. Note that the end of the 

beam is never perfectly clamped so doubly clamped boundary condition is only an 

approximation. The normalization of u(x) factors out in equation (3.48); therefore we are 

L )(xu

kxkxxu cosh117.0cos883.0)( += 2/L− 2/L

730.4=kL
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free to choose u(0)=1. We define Green function for diffusion as 

>+=< ),'(),(),',( txCtxCxx δτδτφ . As a result, equation (3.48) becomes 
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In case of pure diffusion of one species in one dimension, the concentration 

),( τδ xC  obeys the diffusion equation 
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Following Elson and Magde,19,20 we find that  
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where N is the average total number of the adsorbed atoms inside the device. To calculate 

the autocorrelation function, we can approximate the vibrational mode shape by a 

Gaussian mode shape 
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to ∞. Figure 3.1 shows the true vibration mode shape of the beam with its Gaussian 
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Here the diffusion time is defined by . Note that the time course of )2/( 22 DaLD =τ )(τG  

is determined by the factor  even if the concentration correlation function 

has a typical exponential time dependence. This results from the convolution of the 

exponential Fourier components of diffusion with the Gaussian profile of the mode 

shape.

2/1)/1( −+ Dττ

20 Also note that )(τG  is of the form  with d
D

2/1)/1( −+ ττ =d 1, the 

dimensionality of the problem. This is consistent with the factor , obtained 

by Elson and Magde with 
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We then apply the Wiener-Khintchine theorem to obtain the corresponding 

spectral density by  
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are Fresnel integrals defined by
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In figure 3.2, we plot the function )(xξ  with its asymptotic forms: =)(xξ x/1   as 

 and 0→x =)(xξ π2/1 2x  as ∞→x . For Dτω /1<< , the spectral density of 

fractional frequency noise is given by 
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For Dτω /1>> , the spectral density of fractional frequency noise is given by 
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We now obtain the expression for Allan deviation using equation (3.53) by the 

performing the following integration, 
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Here )(xΧ is defined as 
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For ∞→x , the asymptotic form of  )(xΧ  is given by 
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In figure 3.3, we plot the function )(xΧ  in equation (3.60) together with its asymptotic 

form. For the limit, AD ττ >> , we give the expression for Allan deviation as1  
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Figure 3.1. Vibrational mode shape of the beam with doubly clamped boundary 

condition imposed and its Gaussian approximation. The vibrational beam mode shape 

(black) with doubly clamped boundary condition imposed is displayed with its Gaussian 

approximation (red).  
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Figure 3.2. Plot of the function )(xξ . The function )(xξ  (black solid) is plotted 

together with it asymptotic approximations x/1  (red dash) as  and 0→x

π2/1 2x (blue dash) as ∞→x . 
 

 55



 
 
 
 
 
 
 
 

   

10-2 10-1 100 101 102
10-4

10-3

10-2

10-1

 

 

Χ
(x

)

x 

 
 

Figure 3.3. Plot of )(xΧ and its asymptotic form. The function )(xΧ  (black solid) is 

plotted together with its asymptotic form (red dash) 
x
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2/1πΧ =  as ∞→x . 
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3.6 Temperature Fluctuation Noise  

  The small dimensions of NEMS resonators in general imply that the heat capacity 

is very small and therefore the corresponding temperature fluctuations can be rather 

large. The effect of such fluctuations depends on upon the thermal contact of the NEMS 

to their environment. Because the resonant frequency depends on the temperature through 

the resonator material parameters and geometric dimensions, the temperature fluctuations 

produce frequency fluctuations. Here we present a simple model using the thermal circuit 

consisting of a heat capacitance, c , connected by a thermal conductance, g , to an infinite 

thermal reservoir at temperature, T.  In the absence of any power load, the heat 

capacitance, , will have an average thermal energy, c cTEC = . Changes in temperature 

relax with thermal time constant, gcT /=τ . Applying the fluctuation-dissipation theorem 

to such a circuit, we expect a power noise source, p , connected to the thermal 

conductance, g , with the spectral density, , and cause the 

instantaneous energy, 

πω /2)( 2 gTkS Bp =

)()( tEEtE CC δ+= , to fluctuate.4 The spectral density of the 

energy fluctuations )(tEδ  can be derived as 
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  We can interpret the energy fluctuations as temperature fluctuations )(tTCδ , if we 

define the temperature as cET CC /= . The corresponding spectral density of the 

temperature fluctuations is given by  
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Equation (3.63) applies to any system that can be modeled as a heat capacitance 

with a thermal conductance. For a doubly clamped beam, however, there is no clear 

separation of the structure into a distinct heat capacitance and a thermal conductance. 

Cleland and Roukes have developed a distributed model of thermal transport along a 

doubly clamped beam of constant cross section, and derived the spectral density of 

frequency fluctuations arising from temperature fluctuations of a NEMS resonator.1 Their 

analysis leads to 
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           Here ρ/Ecs =  is the temperature dependent speed of sound, 

TLLT ∂∂= /)/1(α  is the linear thermal expansion coefficient, and  and g Tτ  are the  

thermal conductance and thermal time constant for the slice, respectively. In the limits 

TA ττ >> , the Allan deviation is given by 
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           To give the expression for 0δω  and Mδ , we integrate equation (3.65) over the 

measurement bandwidth and obtain  
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The values of the material dependent constants for silicon have been calculated 

as1  
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= 1.26×10-4 1/K.                                                                    (3.69) 

g = 7.4×10-6 W/K and Tτ = 30 ps. Using these values, a numerical estimate of equation 

(3.66) for 1 GHz silicon beam in table 3.1 is given by =)( AA τσ 9.3x10-11/ Aτ .1 For 

=Aτ 1 sec, the Allan deviation is 9.3x10-11, of the same order of magnitude as that due to 

the thermomechanical noise at room temperature listed in table 3.1. Similarly, for the 

same device at room temperature with measurement bandwidth fΔ = 1 Hz, we obtain 

Mδ = 0.245 Da. Despite of the role of thermal fluctuations in generating phase noise that 

limits the mass sensitivity, single Dalton sensing is readily achievable. The effect can be 

even more significant as we further scale down the dimensions or increase the device 

temperature. This can be circumvented by lowering the temperature or optimizing the 

thermal contact of the NEMS to its environment. 

 

                               
3.7 Nonfundamental Noise    

We develop a simple formalism to consider nonfundamental noise process from 

transducer amplifier implementations of NEMS.5 First, the spectral density of the 

frequency noise )(ωωS  is transformed into the voltage domain by the displacement 
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transducer, the total effective voltage noise spectral density at the transducer’s output 

predominantly originates from the transducer and readout amplifier.5 It is the total 

voltage noise referred back to the frequency domain that determines the effective 

frequency fluctuation spectral density for the system .  is the 

transducer output voltage. If we define the transducer responsivity by the derivative of 

transducer output voltage with respect to displacement, i.e., , a simple 

estimate is given by 

2)//()( ωωω ∂∂= VSS V V

)/( xVRT ∂∂=

0/)/( ωω CT xQRV ≈∂∂ . Assuming the voltage fluctuation  

results from Nyquist-Johnson noise from the transducer amplifier and thus has a white 

spectrum, using equation (2.15) we obtain the expression for the Allan deviation 
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We can rewrite this equation in a simple form in terms of the dynamic range, 

])//(log[20 2/122
AVCT SxRDR τπ= , or equivalently the signal-to-noise ratio (SNR) 

referred to transducer output of the NEMS. 

20/-101)( DR
AA Q
=τσ .                                                                                                    (3.71) 

Finally, we give the expression for the minimum detectable frequency shift δω  

and mass sensitivity Mδ . Upon the integration of spectral density using equation (2.21), 

the minimum detectable frequency shift for the measurement bandwidth fΔ , is simply 

20/-0
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The mass sensitivity follows as 

20/10)/(2~ DR
eff QMM −δ .                                                                                            (3.73) 
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Equation (3.73) indicates the essential considerations for optimizing NEMS based mass 

sensors limited by the Nyquist-Johnson noise.  First, this emphasizes the importance of 

devices possessing low mass, i.e., small volume, while keeping high Q. Second, the 

dynamic range for the measurement should be maximized. This latter consideration 

certainly involves careful engineering to minimize the noise from transducer amplifier 

implementations and controlling the nonlinearlity of the resonator through the mechanical 

design.  

 

3.8 Conclusion 

We present the theory of phase noise mechanisms affecting NEMS. We examine 

both fundamental and nonfundamental noises and their imposed limits on device 

performance. Table 3.4 tabulates the expressions for fundamental noise processes 

considered in this work. We find that the anticipated noise is predominantly from 

thermomechanical noise, temperature fluctuation noise, adsorption-desorption noise, and 

diffusion noise. First, a large dynamic range is always desirable for obtaining frequency 

stability in the case of thermomechanical noise. Clearly, as the device sizes are scaled 

downward while maintaining high resonance frequencies,  and  must shrink in 

direct proportion. Devices with small stiffness (high compliance) are more susceptible to 

thermal fluctuations and consequently, the dynamic range becomes reduced. Second, next 

generation NEMS appear to be more susceptible to temperature fluctuations—more 

intensively at elevated temperatures. This fact can be circumvented by lowering the 

device temperatures and by designing NEMS with better thermalization properties. Third, 

for adsorption-desorption noise, both Yong and Vig’s and ideal gas model suggest that 

effM effκ
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this noise becomes significant when appreciable molecules adsorb on the NEMS surface 

and the correlation time of adsorption-desorption cycle roughly matches the averaging 

time. One could easily prevent this, for instance, by reducing the packaging pressure or 

passivating the device to change the binding energy between the molecule and the 

surface.    

To evaluate the impact of each noise process on the mass sensing application, we 

give expressions for the minimum measurable frequency shift and mass sensitivity. Our 

analysis culminates in the expression equation (3.10), i.e., 
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2/1

0 101 DR

Q
fM −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ℜ

≈
ω

Δδ .                                         (3.74) 

Equation (3.74) distills and makes transparent the essential considerations for 

optimizing inertial mass sensors at any size scale.  There are three principal 

considerations.  First, the mass responsivity, ℜ , should be maximized.  As seen from 

equation (3.3), this emphasizes the importance of devices possessing low mass, i.e., small 

volume, which operate with high resonance frequencies.  Second, the measurement 

bandwidth should employ the full range that is available. Third, the dynamic range for the 

measurement should be maximized.  At the outset, this latter consideration certainly 

involves careful engineering to minimize nonfundamental noise processes from the 

transducer amplifier implementation, as expressed in equation (3.72) and equation (3.73).  

But this is ultimately feasible only when fundamental limits are reached.  In such a 

regime it is the fundamental noise processes that become predominant.   

In table 3.1, we have translated the analytical results from equation (3.10) into 

concrete numerical estimates for representative and realizable device configurations. The 

values of Mδ span only the regime from a few tenths to a few tens of Daltons.  This is the 
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mass range for a small individual molecule; hence it is clear that nanomechanical mass 

sensors offer unprecedented sensitivity to weigh individual neutral molecules routinely—

blurring the distinction between conventional inertial mass sensing and mass 

spectrometry.11  
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Table 3.4 Summary of expressions for spectral density and Allan deviation for 
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Noise Correlation Time Expression 
Thermomechanical None 2

0
28

)( ⎟
⎠

⎞
⎜
⎝

⎛=
ω
ω

π
ωφ QP

Tk
S

c

B  

 

AC

B
AA QP

Tk
τ

τσ 28
)( =  

Momentum Exchange None 2
0

28
)( ⎟

⎠
⎞

⎜
⎝
⎛=
ω
ω

π
ωφ

gasc

B

QP
TkS

 

 

AgasC

B
AA QP

Tk
τ

τσ 28
)( =

 

Adsorption-Desorption 
Yong and Vig’s Model 
 
 
 
 
Ideal Gas Model 
 
 

 
)/(1 dar rr +=τ  

 
 
 
 

)/exp(/1 TkE Bbdr ντ =  
 

 
2

2

2

)
2

(
1

/2
)(

effr

raOCC
y M

mN
S

τω
πτσ

ω
+

=
 

)()(
A

r

eff

OCC
aAA F

M
mN

τ
τστσ =

 

2

2 21
/2)( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

effr

r
y M

mNS
τω
πτω  

 )()(
A

r

eff
AA F

M
mN

τ
ττσ =

 

Diffusion DaLD
22 2/=τ  

)(2)(
2

A

D

eff
AA M

maN
τ
τΧ

π
τσ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

 

gcT /=τ               Temperature Fluctuation 
22

2

0

0 1
/4)(1)(

T

B

T
y

gTk
T

S
τωπ

ω
ω

ω
+⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

=
 

 
 

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
Tg

Tk

TA

B
AA

0

0

114)( ω
ωττ

τσ
 

 

 64



References 

 

1. A. N. Cleland and M. L. Roukes Noise processes in nanomechanical resonators. J. 
Appl. Phys. 92, 2758 (2002). 

2. J. Vig and Y. Kim Noise in MEMS resonators. IEEE Trans. on Ultrasonics 
Ferroelectics and Frequency Control. 46, 1558 (1999). 

3. K. L. Ekinci, Y. T. Yang, M. L. Roukes Ultimate limits to inertial mass sensing 
based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682 (2004). 

4. L. D. Landau and E. M. Lifshitz Statistical Physics (England, Oxford, 1980). 

5. K. L. Ekinci, X. M. H. Huang, and M. L. Roukes Ultrasensitive 
nanoelectromechanical mass detection.  Appl. Phys. Lett. 84, 4469 (2004). 

6.        For the fundamental mode response of a doubly clamped beam with rectangular 
cross section, the effective mass, dynamic stiffness are given as ρltwM eff 735.0= , 

. Here, L, w, and t are the length, width and thickness of the 
beam. E is Young’s modulus and ρ is the mass density of the beam. We have 
assumed the material is isotropic; for single-crystal device anisotropy in the 
elastic constants will result in a resonance frequency that depends upon specific 
crystallographic orientation. 

33 /32 LwEteff =κ

7. G. Z. Sauerbrey Verwendung von Schwingquarzen zur Wagang dunner Schichten 
und zur Mikrowagung Z. Phys. 155, 206-222 (1959). 

8. H. A. C. Tilmans and M. Elwenspoek, and H. J. Flutiman Micro resonator force 
gauge. Sens. Actuators A 30, 35 (1992). 

9.        For a doubly clamped tube of diameter , we can calculate the maximum carrier 
power using 

d
)1(5.0/2/ 2ν−= QdxC . See A. Husain et al. Nanowire-based 

very high frequency electromechanical resonator. Appl. Phys. Lett. 83, 1240 
(2003).  

10. W. Hansel, P. Hommelhoff, T. W. Hansh, and J. Reichel. Bose-Einstein 
condensation on microelectronic chips. Nature 413, 498-500 (2001). 

11.       R. Aebersold and M. Mann Mass spectrometry-based proteomics. Nature 422, 
198-207 (2003).  

12.       W. Gerlach Naturwiss. 15, 15 (1927). 

13.       G. E. Uhlenbeck and S. A. Goudsmit A problem in brownian motion. Phys. Rev. 
34, 145 (1929). 

 65



14. Y. K. Yong and J. R. Vig Resonator surface contamination: a cause of frequency 
fluctuations. IEEE Trans. on Ultrasonics Ferroelectics and Frequency Control. 
36, 452 (1989). 

15. H. Clark The Theory of Adsorption and Catalysis  (London, Academic Press, 
1970). 

16. S. Ross and H. Clark On physical adsorption VI two dimensional critical 
phenomena of xenon, methane, ethane adsorbed separately on sodium chloride. J. 
Am. Chem. Soci.76, 4291  (1954). 

17. H. J. Kreuzer and Z. W. Gortel Physisorption Kinetics  (Heidelberg, Springer-
Verlag, 1986). 

18. S. M. Ross Stochastic Process   (New York, John Wiley & Sons, 1996).  

19. E. L. Elson and D. Magde Fluoresence correlation spectroscopy I concept basis 
and theory. Biopolymer 13, 1-27 (1974).  

20. D. Magde, E. L. Elson, and W. W. Webb Thermodynamic fluctuations in a 
reacting system- Measurement by fluorescence correlation spectroscopy. Phys. 
Rev. Lett.  29, 705-708 (1972).  

21. I. S. Gradshteyn and I. M. Ryzhik Alan Jefferey, Editor  Table of Integrals, 
Series, and Products  5th edition (New York, Academic Press, 1980). 

 
 

 

 

 66


